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CHAPTER I
INTRODUC TION

Within the past decade there has been a major shift of interest
in transportation research. Pr;aviously Primary interest was in con-
struction techniques, materials, and design. Every attempt was made
to provide transport vehicles with an optimum passive environment
through which they could pass with minimum delay and impedance. As
traffic increased it became obvious that this Qq.s not adequate to meet
the requirements of higher density traffic flow., These remarks are
not restricted to the highway mode of transportation, although it is '
there that the problem has become most acute. With the increases
in traffic, disturbances to the flowhave become common.

Many of these disturbances /1,,1a"ve not been so much a result of
the t:rafficr _i‘?.‘{i_?/‘?nm e/ﬂ tbutn{ore a Aresult of the manner in which the
vehicles ;re controlled. Consequently the shift of interest has been
from the environment to the dynamics of the traffic itself. Since the
dynamic characteristics of vehicular traffic are determined by the
mode of control of the traffic, increasing interest has been directed

toward traffic control. 1, 2
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A considerable amount of research3’ 4 % 0 has been and is
underway in an effort to gain an understanding of the nature of the
present system of manual vehicular control. This task is made diffi-
cult by the quasi-random nature of the human controller. Simultaneous-
ly with this research, effort is being expended to improve the present
system of vehicular control.

Electronic devices can be used in a number of ways to improve
traffic flow. In general, the techniques fall into two broad categories.
The first is the control of the overall traffic stream by external con-
trollers, Examples of these are electronic control of traffic signals
and electronic control of entrances and exits from freeways. On the
other h;and, electronic devices can improve control of individual
vehicles within the traffic stream. This has been of particular interest

to vehicle manufacturers and the federal governmenl:8

for improving
vehicle transportation, while retaining a maximum of freedom for the
individual. This paper deals with the control of individual vehicles.
The.Ohj.p Department of Highways and the U. S. Bureau-of
Public Roads have jointly sponsored a research project at The Ohio
State University to study electronic devices as traffic aids. The inves-
tigation described in this paper is one phase of the study. Early in the
study it was decided that it would be most fruitful to use electronic

devices to improve control of individual vehicles in response to their

local traffic situation. It was shown that by activating the road bed

i
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itself, i.e., to place vehicle detectors in the road, it is possible, with
the aid of small electronic circuits connected to the d;al:ect:ors, to
transmit information about the preceding vehicle to a following con-
trolled vehicle.? The speed of the preceding vehicle and its distance
from the following vehicle can be determined. With this as a basis,
the study of methods for automatically controlling the following vehicle
in response to its local situation was undertaken. 10

Although it is not considered practical at the presrent..tirne to
proceed directly to automatic control, the development of such an
automatic system demonstrates its feasibility and also indicates an
upper limit on the ultimate capability of any man-machine controllers
for vehicles. The study of the automatic longitudinal control system
for individual vehicles has been quite instrumental in showing how
restrictions on transport vehicles containing passengers determine
the nature of the vehicle controller. ”Furthermore it has resulted in
the design of the vehicle controllévr’. il

The particular. controller designed has nonlinear modes of
control to‘accomplish such maneuvers as avoiding rear-end collisions.
On the other hand, it. has been determined that a linear mode controller
" is needed to provide stability in the traffic queue,12

The stability of linear mode controllers has been studied before.
13, 14 14 these studies the linear mode controllers were mathematical

models used to approximate manually controlled vehicles. Only the



response of such controllers to idealized disturbances was studied.

In the development of automatic controllers for highway
vehicles, the more realistic types of disturbances of the traffic sys-
tem must be studied, Design considerations for the control systems
of the vehicles depend on the response of a queue of controlled vehicles
to the real world disturbances. These real world disturbances cannot
be predicted with certainty for they are largely random in nature.
Consequently they must be treated as stochastic processes. The ran-
dom components of these disturbances can only be described by their
statistical properties. 15 The response of a queue with linear mode
controllers to these disturbances is also stochastic, and is also charac-
terized by ifs statistical properties. The characterization of the dis-
turbances and the resulting queue response by their statistical proper-
ties provides the basis for designing an optimum linear system. 16

It is the philosophy of this paper that ideally a certain desired
equilibrium condition should be maintained in steady state traffic flow.,
Random disturbances induced by external sources result in a random
deviation of the queue from the equilibrium condition. This random
deviation must be minimized by optimum design of linear controllers
for the vehicles of the queue. In this manner maximum traffic flow and

safety are achieved.



‘It» is the purpose of this paper to develop the techniques of
analysis and to show how the statistical properties of queue response
measures are related to statistical measures of the disturbances.
Then the general nature of the sources of disturbances are discussed,
and the relationships between the statistical properties of the dis turb-
ances and tﬁosé of their‘ sources are derived. Finally, the techniques
of analysis and descriptions of the disturbances are applied in the de-
sign of the optimum linear controller.

The sec'_ond chapter introduces frequency response techniques
which are required throughout this paper. The nature of the design
problem is also introduced in this chapter. Measures of queue
response to random disturbances introduced by the initial vehicle are
developed in the third chapter. The nature of the response of a queue
of vehicles to uncorrelated disturbances introduced by each vehicle
is also considered in the third chapter. The fourth chapter treats
the problem of random road-induced disturbances. Measures of quéue
response to road-induced disturbances are developed. In the fifth
chapter the optimum design of the control system is developed. Con-

clusions and recommendations of areas of further study conclude this

paper.



CHAPTER II

RESPONSE OF A QUEUE OF AUTOMATICALLY
CONTROLLED VEHICLES TO
SINUSOIDAL DISTURBANCES
Introduction

It is the purpose of this‘chapter to introduce frequency
response techniques and to use these techniques in the study of the
dynamic characteristics of a queue of automatically controlled vehicles.
~ Likewise, certain static characteristics of these controlled vehicles
are introduced. This material is developed in the following order.

The definitién of a linear system and the properties of linearity
are expressed first. The properties of the mathematical representa-
tion of these systems leads to the definition of the gain function, and it
is then shown that the response of a linear system is directly related
to a sinusoidal disturbance by the gain function. System variables are
defined for a queue of automatically controlled vehicles. Because of
linearity of the system, it is possible to separate the queue's dynamiic
motion into a desired constant or equilibrium component and a disturb-
ance from this equilibrium state due to disturbances externally induced
into the queue. The queue's response is related to sinusoidal induced

disturbances by the derived gain functions. These gain functions are



necessary in later sections of this work in the study of random disturb-

ances.,

Linear Time Invariant Systems

If the equations relating the response of a system to the input
excitation are linear, _the system is said to be linear. The equations
characterizing the response y to input disturbance =x are linear if
x and vy can be related by a linear combination of terms in x and
y and their derivatives, This linear combination is simply a sum of
the variables multiplied by coefficients independent of the dependent

variables as expressed by Eq. (2-1).

__. (t a_‘g(__ B
(2-1) A Ok +0,d S+ g, ye)

= b, d_x(t>+——- + b x(t)+ o, X ()

For time invariant linear systems, to which attention is confined in
this paper, the coefficients, the a's and b's , are constants.
The symbol p is used to represent the operation of taking the deriva-

tive of the variable it precedes, such that
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(2-2) Pn )’(’C)‘_ - d }’(f).

It is noted here that if A is a constant, then

e PAYE = APy,

and also that

e PO+ %®] = PN+ PR,

Substituting Eq. (2-2) into (2-1) yields
anPY(E) + O JUY () + - - - + 0, Py (1) + O,y 4)
= b, P X@) + === +b,px() + by X(t),

This equation is expressed in the form

(OnPn+an-1Pn-‘+-—_+O"P+d‘$)y(t>
= (b, p"+ - -- +bp+ b,) X (£),

D)y (®) = N(PIX(®),

(2-5)

(2-6)

or



and finally expressed by

y() = Ny 1y

D(p)

Here N{(p)/D(p) is the transfer function of the system characterized
by Eq. (2-1).

By substituting Eqs. (2-3) and (2;4) into (2-5) two basic
properties of 1inea{rity may be observed. First, if y;(t) is the
response to the input xj(t) , fhen the response to the input Axl(t)‘ ’
where A 1is a coﬁstant:, is Ayl(t) . Secondly, if yll(t) is the
response to xl(t). and y,(t) the response to x2(t) , thena
response y(t) to-the input x(t) = xl(t) +x,(t) is given by
1Y) = ¥, () + Yo ().

This property of linear systems is of prime inportance and is termed
superposition. If the input signal disturbance to a linear system is
equal to the sum of several components, ;:hen the response to this
input is equal to the sum of the responses to each of the input compo-
nents taken separately, The superposition principle will be used

extensively throughout this paper to simplify considerations.

The Gain Function

Let the input to the linear system be given by

(2-8)  X(t) = Aet,
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Because the linear combination of the response and its derivatives
is equal to a linear combination of x(t) _and its derivatives, the

response is given by

(wt+O
(2-9) yo = Bel® .),

where B and © are constants. This is termed the steady state

response and does not contain transient terms. It is seen from Eqgs.
(2-5) and (2-6) that

[a,, (o) + a,,_,(jw)"-'+ --- + 0w+, | yit)

DO,” (jw)m-i- ---+ b,jw + bo:]X(t') .

(2-10)

The ratio

[bm(jw)m+ --- 4 b,jw + lo, :l
[Gn(jw)n+ Ol,,_,(J’w)"-'+ -+ jw + q ]

is the '"gain" function. It is noted that this gain function is found from

the transfer function by setting p = jo , so the gain function is M

D(w)
Also, if x(t) "is given by Eq. (2-8), then
ot N(p) w) jwt
(2-11)  Yy(@) = =Py = Neo) p e
- D(p) D(Jw)
Since the gain is a .complex number for any given frequency w |,

it may be written in polar form as
N N({e) eje(w)
Dq w) Dg'w)

(2-12) y




where ©O(w) is the a_rgument‘ of the gain function. Swubstituting
Eq. (2-12) into (2-11)

y = N(jw) NGW | ) o '(wt+e)
(2-13) y(t - D(! )

Knowing the steady state solution for the exponential function,

one can quickly define the response for x(t) sinusoidal, namely,

wt  —jwt
(2-14) X(#) = Acos wt = %(eJ + e )
By superposition and Eqs. (2-11) and (2-13), y(t) is given by

N(w) A [wt+e@)] -I_Z_.)t—e( w)]

But from theory of complex numbers it is known that

N(({w) N( l’w}
D(‘jw) qu)

and O(~w) = ~-6(w) . Thus

(2-15)

y(_t_) ]D( )’ A ej(w'lH'Q) -J(wt-f'GJ ’ )Acos(wtw).

It is observed that for sinusoidal inputs, the response is also sinus-
oidal. Its amplitude is multiplied by the magnitude of the gain function

and advanced or delayed in time by S(w) » depending on the sign
y & g g

of ©6(w) . Methods of analysis based upon periodic disturbances

are termed frequency response methods,which are used throughout
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this work.

Problem Definition

Before proceeding it is necessary to define variables to be
used in representing a queue of vehicles and to define the equilibrium
state of the vehicles of the queue. In this development, the equili-
brium state exists when the velocities of all vehicles are equal and
constant. This equilibrium veloéity is denoted by vgg . The
vehicles are assumed to be traveling in the positive x direction.

The variables descfibing a queue of vehicles are shown in Figure 1.

N N-L -1 2 r 0

~V_’Va ‘\-"‘—"V‘ la e d VO

M @5 (6_32_‘3_
-

e e e

X

N X, rg?:;i X' X X,
l——h,,—AaJLJ«—hi—»I —h, ——

Fig. 1.-=-Traffic Queue Coordinates

(-4

The initial vehicle is indexed zero, with indices of the following
vehicles progressing from 1 to N . Tile instantaneous position
relative to an a.rbitr‘ary reference on the road of the leading edge of
the ith vehicle is x; as indicated previously. The headway hj of -
the ith vehicle is defined to be the position of the i-1st vehicle minus
the position of the ith vehicle. The absolute velocity v; of the ith
vehicle is

(2-16) v, = PXj.
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The absolute acceleration of the ith vehicle is
— ‘2 *
(2'17) ai - p X‘_ .
The relative velocity of the ith vehicle is the derivative of its
headway and is denoted by Vg o where

(2-18) V. = phi = PXi — PXt.

The length of each vehicle is assumed to be L. , as shown in

Figure 1 for the ith vehicle.

The equilibrium condition is described explicitly as follows:

n - . !
p"X = 0 ; nzz, iz0
pX; = Ves; iz o
h; = hg (2 |

Here vgg is a constant velocity and hg is a constant headway.

;I‘he first problem to be studied is the case where the velocity
vp(t) of the initial vehicle is composed of two parts, the constant
equilibrium component vgg and a sinusoidal component Avg(t)

given by Vg cos wt , namely

(2_19) ‘V°<t) = Vss 1 AVO('L'),

Here it is noted that the superposition principle can be applied. T(p)
is defined to be the transfer function of the linear control system
relating the velocity of the controlled vehicle to that of its predecessor

for each vehicle in the queue. Then



Vi = TV,

TV = [TE] V%,

=<
i

and

[T(p)]n Vo .

n like vp is composed of two parts, a constant

I
i

(2-20)
The velocity v

response vgg due to the constant component of vg , and A v, ,
a response to the disturbance component A vg(t) . The superposition
principle allows separate treatment of the two parts. The solution
for the constant component of v,(t) with no disturbance has already
been specified as the equilibrium state in which each vehicle has the
same velocity vgg . The first requirement of T is determined
from the equilibrium state requirement. Now by assumption, T(p)
m
is of the form Z b {
,, PP
=0
T(p) = -5
2 kP
kP

or k=0

n K m
(2) Y apult) =) bpv, ), - _
k=0 =0

where i is the vehicle index. Substitution of v; = v;_; =vgg into

(2-21)

Eq. (2-23) and remembering that p® vgg = 0, n >0, reduces it to
Vgg 20 = bg vgg Which indicates that ag =bg . Alternatively, this

solution can be represented by

(2-23) Vss = T(0) Vss .
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Here the equilibrium state introduces the restriction on T(p) that

T(0) = 1. The solution for the position x of the nth vehicle for

n

vy(t) =vgg is given by

(2-2) X, () = jvssdt + Xa(0) = vit +x,0).

(o)
If T(p) relates the velocities of adjacent vehicles as indicated, the

equilibrium velocities of adjacent vehicles will be equal if T(0) =1 .

However, the separation of adjacent vehicles at equilibrium will be

arbitrary and equal to xn-l( 0) - x,(0) . Because this separation

must be controlled, the headway at e.ntry' into the linear mode is con-

trolled, This is a fundamental characteristic of the velocity controller.
Suppose now that T,(p) is defined by

@ xi(t) = TEXA().

Such a system properly adjusted is termed a headway controller in

that x,_; - ¥, at equilibrium condition is constant for a given Vgg *

Because linear operators can be expressed by

(2-26)  px (1) = pTEX, (1) = T(EPX (),

and this reduces to the form given by Eq. (2-22). The justification

here is that both sides of Eq. (2-25) can be differentiated with re-

spect to time. At equjlibriurn vgg = T(p) Vgg » 8O again T(0) =1 ,

and ag=bgy . Systems whose equations are given by Egs. (2-22)

and (2-25) although similar in form are quite different in their

characteristics. For this reason elementary systems of both types
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will be considerec.I briefly before proceeding further with the analysis
of these systems.

Linear systems which will produce the desired equilibrium
state in traffic fall into two basic categories, The first of these is
the velocity controller which in simplest form is characterized by
the equation,

(2-27) p Vi = K (V;_, = Vi) .

This may be rewritten in the form

' K
(2-28) Vv, =, —5;—k—vi_, ’

LT ( '
which is the same form as Eq. (2-22). Manipulation of this equation

yields

p(xi-li—xi) = _FS%-RV"' = pht .

If the velocity vj_1 = vgs and if control according to Eq. (2-27)

is started at t = tg , then the complete solution for h is given by
- -k ('t"to)

The first term is the transient term with C dependent upon initial
conditions. After a long period of time, h;(t} is given by

h(@) = hy ) (t-t) > 1 .
Likewise, if w;i(t) is given by

V,(t) = Acos wt + Vss

the constant component of hj(t) will still be hg .
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An altgrna_.tive system intended for achieving the equilibrium
state is the headw#y controller which in simplesf form is character-
ized by the equatic'm,
(229)  PRiX;+ pX = K(x =X -h,) + K. P(xi—;"xi).
Here hp is a saf;aty factor introduced so as to increase the equili-
brium headway.. Neglecting hg , since it can be simply added to the

value of h determined with hg=0, xj and xj_] are related by

X, = K, + k;_p i-n
‘ Tp%+ (1+ k2)p + K,

which has the form of Eq. (2-26). It is shown in reference 2 that

restrictions on k; and ky reduce the transfer function to

2 »
7"P+ kz

For pxj.] =vgg , the steady state headway is then given by

W= Vs

s Ka

Here hg 1is the preset reference headway set into each headway

+ h,

controller. It is further shown in reference 2 that the headway con-
troller causes large accelerations if l h;( tg) - hg | is large.
However, both these controllers are considered possible alternatives
for control within a small linear mode of an automatic longitudinal
control system which has nonlinear modes to accomplish control for
large deviations from equilibrium. The nonlinear modes are so
designed é,s to guarantee that | hi(to) - hg l is small for both

systems. In other words, the nonlinear modes force the system
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response toward equilibrium, so the proper initial spacing is approx-
imately achieved for the velocit;r controller mode and accelerations
are small with the headway controller mode.
Queue Response to Sinusoidal
Disturbance of the Initial Vehicle

Although the pure or almost pure sinusoidal disturbance is
almost nonexistent in manually controlled traffic, it is conceivable
that such motion could occur under automatic control. A somewhat
cyclic disturbance has been observed in the response of a human
driver following a lead vehicle of constant velocity in a simulated
driving environrhent. At any rate if the assumption is made that
such disturbances can exist in the lead vehicle velocity, then the pro-
Blem is to determine where in the queue the sinusoidal headway
response is greatest and to adjust the equilibrium spacing hg so
that it is the minimum possible without the occurence of collisions
within the queue. This will give a .conservative estimate of the
traffic flow in vehicles/hour for the given velocity vgg .

The disturbance response of the first vehicle of the queue is
given by

av(t) = T(wave(t),

where Avo(t) =Acoswt . If T(jw) is givenin poiar form as
| T(jw) | e¥®(9) | then from Eq. (2-15), Av; is given by
(2-30) AV, (1) = [T(w)|Acos(wt+6),
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Now Av,(t) = T(p) Avy(t) = T(p)2 Avi(t) . It may be seen by
'induc tion that ,
o avl) = [TE] av(®),
which has been shown to reduce E:o
(2-32) AV, () = IT(jw)\‘A coS (wt‘ + ie), -

An observation can be made here about asymptotic stability, 2,
3 Local stability insures that disturbances associated with any single
vehicle will not build up without limit as time increases. Asymptotic
stability insures that disturbances transmitted from vehicle to
vehicle by the control systems die out as they propagate back along
the queue. For local stability it is sufficient that the poles of T(jw)
lie in the upper half plane, i.e., the roots of D(jw) are of the form
jo =X+ j@ , éﬂhere ¢ > 0 . For asymptotic stability, the
Barbosa criteria |states that if w(y is a frequency at which a rela-
tive maximum of | T(jw) I exists, then
(2-33) I TGeg |51 .

I | T(jw) | <1 , thenitis seen from Eq. (2-32) that

'li.m AV, (t) = O,

1> o0

(2-3L)
From Eq, (2-31) ' :
1=
(.35 av, @) = [T)] b8V (t),
Subtracting Eq. (2-31) from Eq. (2-35),
: =1
(2:36) AV = BViy -AY; = [-TE][T(E)] v .
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Since Avri ) = pAl’\l ('f))

then . | .
e ah®) = [FRIE]  ay )
and '

(2-38) A hi('D - }i;j-r‘:(j"ﬁll lT(Jw)) lilA cos [Cd't +(i-a)9(w)+¢(w2]

where ©(w) 1is the argumént of T(jw) and ¢(co) is the argument

of 1 -T(jw)
Jw

As a specific example, it is interesting to consider the velocity

controller. Its disturbance response is given by

K
(2-39)  AVit) = o+ K AV, (t)

and by
Vi) = L AV (8)
AV, W+ K T
for .
AV, (4) = Ael®t

In this case

| i
! ~Z -l W,
g - () S

 and =T(w) = LT¢w)
jw ko

(2-40) .——A\/; (f) K [ J .]
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The headway variation due to a sinusoidal disturbance Avg(t) =

VO cos wqpt is

. b o
(2-41) Alﬁl' (f> = —’I:(-('i-(-)% +f> z Vocos(wot— LTan ‘_%.)

It is obvious from Eq. (2-,1) that the magnitude of the headway
response to a given sinusoidal input is greatest when i =1 for
w g # 0 or when wg = 0 . Then the amplitude of A hl for Wy = 0

is simply

V.
(2-1:2) ’AL‘ (ﬂt 'R"

Howex}er, it should be observed here that Avg(t) = Vo cos wot is
not a very realistic representation of the extreme periodic velocity
of the lead vehicle; since the lead vehicle's acceleration would then
be

do(-t) = - (A)o\/c Stn (A)ot

and the peak value of a; would increase.wit:h g without bound.

It is more realistic to assume that the initial vehicle is not .
automatically controlled. In this case the vehicle's actual velocity
Avp(t) is approximately related to a commanded velocity Av_(t)
(assumed linearly proportional to accelerator pedal displacement)

by the equation

(2-L3) (Tap+ DAV, = AV.(H)
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where Ta is the major time constant of the automobile, The time
constant fl\)a *is on the order of 20 seconds. In order to affix an
envelope of response on Avgy(t) , let it be assumed that Av.(t)
=V coswt . On a periodic basis V = 44 ft/sec (30 mph) seems

tp’ be a reasonable upper limit.* Then the amplitude of Avo(t)

as a function of frequency is given by

_V__

T;J’wH

_ 44

1\ /1+400 w?

The initial vehicle's acceleration amplitude is then

(2-LL)

jwV
T’J‘w+l

[ a C‘c)}

The acceleration amplitude approaches a limit as w becomes large
(w>.5) given by ‘ apg(t) | = 2.2 ft/sec® . This corresponds to
approximately .07g , which is well within vehicle capability.

Using the above input function for Av (t) , the maximum
headway variation amplitude is then given by

|
_@_. ‘2| 44
| ah 0] = L(% H) Zofurl

*In this case the velocity of the controlled vehicle would vary

from 60 to zero miles per hour with Vgg = 30 miles per hour.
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Obviously Ah, is still maximized when « —+0 , in which case

cam Jim L ah®) = Aki

w-0

On the basis of avoiding collisions due to the above extreme disturb-
ance using this linear system with k = 0.644 , the equilibrium

spacing should be one car length plus the maximum headway varia-

tion amplitude, or

44 _
(16) ho= Lot Tk = 20+70 = S0t

This separation of vehicles based upon extreme variations of
the lead vehicle is considered excessive, and must be limited. *
Two methods can be used other than increasing k . One system
involves a modification of the strucﬁure of T , while the second
involves a nonlinear controller which comes into play whenever
extreme conditions such as considered here exist, This controller
causes hg to increase, once extreme conditions such as considered
here occur.

Propagation of disturbances also occurs in the queue, as is
shown in the following manner. The general equation for the headway

variation of the ith vehicle due to sinusoidal disturbance of the initial

*Note that if maximum and minimum speeds-are specified as
60 and 40 miles per hour, the above value of hg would be 43 ft.
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vehicle is repeated here for convenience and rewritten slightly.

[=T¢
(2-17) Ala(f)j T

T'(jw), \L, cos [wt + ((-Dhs Qﬁ—%— Cf’(“’

L>4|

Note that since small perturbations from equilibrium are being

considered (i-1) hg is approximately the distance from the initial

vehicle to the ith vehicle. That is,

(i-0h; = KX

Similarly,
(li—a) hs -~ XO—X‘I_,

Now consider a particular point of the oscillation of Ah;(t) such as

the peak, for which _
(2-18) W+ (Xo*xi)g—g‘—"l +Pw) =0
S

where ¢t; is the time at which the peak occurs. Similarly the head-
way oscillation of the (i-1)st wvehicle wi11> iéach a peak at t;_;

for which ‘
(2-h9) T + (xo—xid)—e—%l + Pw) =0

xi-l - Xi

Subtracting Eq. (2-49) from Eq. (2-}48) and solving for

tiel - t5
yields

Xio ™ Xi | — W }"s
Y e(w)

(2-50)
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‘which is the velocity with which the peak in the headway oscillation
appears to move with respect to the queue, or the propagation
velocity v, . Since ©(w) and t;_; - t; are both negative,

vp < 0 , indicating that propagation occurs in the negative direction,
or back away from the initial vehicle. If an observer were watching

the queue from the side of the road and if v__=v

ss p then the

observer would see the peak of the headway disturbance as each

vehicle passed. For the specific example previously considered

.

Ow) = —tan W
K /
and
Vp & — 2ls s
(2-51) P  tan'ul

indicating that propagation occurs back away from the initial vehicle.
The propagation velocity is independent of i and is thus constant:

along the queue. It is readily seen that at very low frequencies
(w < < k)

(2-52) Vp ~ j'(1'75

Note that tan"l_l‘:_ increases monotonically from 0 to ]2':[ as

w increases from 0 to oo . The normalized propagation velocity

v

o
s .
which attenuate the higher frequencies, the velocity khg is often

is plotted in Figure 2. Because of controller characteristics

termed the propagation velocity.



Fig. 2.--Propagation Velocity for Linear Mode System, T(s)

o0 =

9¢
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Queue Response to Sinusoidal
Road-Induced Disturbances

Up to this point the study has been concerned with queue
response to sinusoidal disturbances Avg(t) introduced by external
excitation of only the initial vehicle. Now attention is turned to the
possibility of a disturbance induced into each vehicle of the queue in
sequence. Again attention is confined to sinusoidal disturbances.

In particular, disturbances of a type which might be induced by a

road with a small sinusoidal vertical profile are considered. In this
case each vehicle is disturbed externally in the same manner as the
preceding vehicle, but the disturbance function is delayed in time by
the time spacing 7 . This is an approximation which holds only for
small disturbances of each vehicle from equilibrium. Equilibrium

is the same as previously defined. In thié case the total disturbance
of each vehicle is the sum of the disturbance induced by the road and
the disturbances transmitted to it from each of the preceding

vehicles.

It might occur to the reader at this point that it may not be
entirely true that t;.he road, under the‘ assumptions above, will induce
identical dismfbances into each vehicle, even if the queue is con-
trolled by identical control systems. This situation arises if the
initial vehicle is not automatically controlled. First assume that it

is automatically controlled in such a way that



(253 v, (1) = T(p) Vss

Now consider a disturbance induced by the road into the initial
vehicle given by Av,(t) . The road will induce a disturbance
Avo(t— ™) in tue lirst vehicle, Avo(t-Z?') in the second vehicle,

etc. If Avg(t) is given by
wt
AV, (t-1) = Ae

then the disturbance induced by the road in the first vehicle will be
' (wt-T wt -6 —jw?
(2-5L) AV, (t-T) = Aei@? )= Aeivigl . gl AV, (t)

Similarly, the disturbance induced by the road in the second vehicle

is

LY, (+-27) = €AY, (+)

The disturbance induced in the ith vehicle is the sum of all such
disturbances transmitted to it plus e"j“’iv Avg(t) . Thus the total
disturbance of the ith vehicle may be related by a gain function, yet
to be determined, to Avg(t) .

On the other hand if the initial vehicle is _riLt automaticallv
controlled, the road indﬁced disturbance of the first vehicle wiii iioe

be that of the initial vehicle delayed by 7 seconds, but will be give

by

28

n



29

(2-55) AV, () = T(wav, () + AV, () # TGa)ay, (t)+éf"’£t4,(f)

Here AvR(t) is the disturbance induced by the road in the first
vehicle. It can be seen that the overall queue response will be the
sum of two components. One is due to Av(t) externally induced
in only t};e initial vehicle. This response.was described in the first
section of this chapter. The second component is due to the dis-
turbance Av;(t) being induced with appropriate delay into each
vehicle of the queue. This problem is identical to the one for which
Eq. (2~53) holds, but with the indices increased by one. Therefore
in the remainder of this chapter it is assumed that Eq. (2.53 ) is
true, and all vehicles are similarly controlled.

In order to determine where the largest sinusoidal headway
oscillations occur in the queue, it is desirable to find a gain function
for the headway disturbance of the ith vehicle of the queue as a
’ function of the input disturbance, Avg(t) = Aejwt | Specifically it

is desired to find Ahj(t) , whére

G56) Ay (1) = H; w) &% ()

This is found in the following manner. The response of each vehicle
is the sum of the response transmitted by the gain function from the

preceding vehicle plus the response induced by the road. For the kth

vehicle,
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]

G V() = TG () + €

Vo (1)

For the 1st vehicle,

(2-58) AV, () =T (jw)L\Va(t) + c{j“”}w° (+)

For the 2nd vehicle, applying Eq. (2-57),

C59) (1) = TG M +T(DE o)+ € h e

In general, then, for the ith vehicle,
 (2-60) AV, () =[T(J'w)£+T(ij"’é T _ _+.rqw)éf(¢'-:)wf+ e ﬂwﬂAV, @)
Substituting Eq. (2-60) into Eq. (2-57), where k-1=1 ,

w (0=l e - 4 Tauaf T 0T ay )

Therefore, by induction Eq. (2-60) is seen to be valid for all i . It
is further noted that the right member of Eq. (2-60) may be written

in closed form, given by

i [ 1= TGy el 00w

(2-61) AV () = € :—T(jw)efw ]AV"&)
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The relative velocity disturbance of the ith vehicle is
(2-62)  AVpt) = AV (1) - Av,(t)

After substitution of Eq. ( } into Eq. ( ) and some algebraic

manipulation

& [T & (T - D Tw) ]
[ - T(J'w) a@T

(2-63  AVg(D) = AV, (E)

Now Avr_(t)=pAhi(t) . So,
1

AV (4)
ear  ghy) = S

where the constant initial condition on Ah;j(t) is to be adjusted inde-

pendently.

1 [E-6) + (TGd-DTGS ],

@ 1-Tguyel*]

Eq. (2-69 gives the required gain function.

(2-65) AI’); ) =

In order to find the gain function, Avg(t) was given by .-
Avg(t) = Ael®t | which is not a realistic input disturbance. Road-
induced disturbances are external disturbances and must be accelera-
tions or forces on the vehicles. Because of the feedback systems used
to achieve equilibrium, Avg(t) cannot be specified as an independ-
ent disturbance. Rather, Avo(t) is the response of the feedba.ck.
system to an independent disturbance. Aao(t) . From block dia~-

grams of the controllers, it may be determined that for the velocity



32
controller,

es6) AV, @) = F{—KAG,(t))

and for the headway controller,

I]J
AV, (t) = a0 — AQ(t
(2-61) ) 73P2+Q+kz)p+ K, ®)

In order to solve the problem then, Aao(l:) must be determined.

This is done as follows.
Sinusoidal road-induced disturbances may be caused by a
road section with a sinusoidal vertical profile as shown in Figure 3,

The elevation of any point along the road is given by

(2-68) yx) = Yeos w, X

@ y (x)

v

Fig. 3.--Road With Sinusoidal Vertical Profile



It is seen from Figure 3 that the gravitational force component

tangential to the road is

4

(2-69)  AQ, = = gsin«(

For small X , Eq. ( ) becomes

(2-70)  Ad, & — =X

where

-y X(X) = ﬁiﬁ(—x)— = -~ Yw,sinw,X

33

The vehicle horizontal velocity component is given to a first approxi-

mation by vgg , so that
(2-72) X & Vg T
Substituting Eq. (2-72) into Eq. (2-7)) yields

(1) = = Ywy Sinay Vst

Letting w,vgo =0 ,

(2-73) x (1) = -—wa sinwt

Then A;o(t) is approximately given by sgbstituting Eq. (2-73)

back into Eq. (2.70), so that

3 o
(e-)  AQ, () = 9YwXSanT=gY—g551nwt
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It is noted that if Eq. (2-72 ) is substituted into Eq. (2-68), y(t)
is given approximately by

(2-15)  y(t) = Y cos wt

i

and

_ -9 .

(2—76) Ado(.t> - V PY(t) " 'L_,,_‘ L/
SS =
Substituting Eq. ( ) back into Eq. ( ) giveé Avo(t) for the

velocity controller as

(2=77) AV, ('t) = - \Z—Pf- e Y('L')

s +

Substituting Eq. ( ) back into { ) gives Avo(t) for the head-

way controller as

A ) = —— 9tap” )
sl TP (ke + Kk, | !

Thus the corresponding gain function relating Avy(t) to y(t) for

(2-78)

the two controllers are

AVL(EY) -39 jw _ p kot
(2-79) —‘.}’(JCB = Vs ik for y(t) A“ |
and A

AV, () g w®
(2-80) )

y(f) ) \{ssE'T;wa-F G'*'KZ)J,(A)'I'@

respectively, Subst:ituting Egs. (2-79) and (2-80) back into Eq. (2.65)
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gives the headWay tesponse for the road-~induced disturbance, y(t)

’

=Ycos wt , as

(2-1) Ahy(t '() e'mkjm(‘ wf)*'(T(lw) DT(lco)_] gY cos(wﬂ@
[-—T( e r_'[g +K) Ves

and

jud TER-ET) + (0 )T ]| g
[T(jw)e’“ﬂ[ T i)+ K] | %

respectively for the velocity and headway controllers, Here (b

(2-82) Alq 4) = cos a)’c-HP)

is the argument of the complex magnitude function in Eq. (2-81), and

() is the argument of the complex magnitude function in Eq. (2-82).
The magnitude of Ah;(t) appears to be indeterminate if

w =0, since T(0) =1 . This can be treated by L'Hospital's rule

or by a series expangion of the termns which approach zero as

w=>0 . In the present situation the latter course is the more

efficient and will be used. First T(jw) near w = 0 can be

approximated by

It o (- B)
Jwb +a ., o G

and ,
jwT
NS

e |+J’w’r“
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As a consequence the terms in the numerator and denominator of
the equations which approach zero as w —>0 become
~jw?

=& — juT

Te)-| — ju(%~ &)

=T & o (P4 & = 2D

o [}

The terms causing difficulty are the bracketed terms in
numerator and denominator, Substituting these series into the

bracketed terms one has

[ uom)+ (w2 - 8) (']
| - (e (T'+ gi- - %‘;)

The two terms in the numerator of the above expression appro‘ac‘h
unity as w —>0 causing the above ratio to approach -1 as w—>0 .
As a consequence Ah;(t) for the velocity controller approaches

, s —9Y
M"(ﬂ " KVss

and Ah; (t) for the headway controller approaches zero. These

results are valid only if

a _ b
'TJ+-O‘—; a, # 0.,
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Conclusion

It is remarked in closing that the sinusoidal analysis and the
gain function may be applied to evaluation of l:he.queue response to
more general periodic input disturbances. The periodic input may be
expanded in a Fourier series, a sum of sinusoids. Because super-
position applies, the terms of the series may be treated as separate
inputs. . The response to each of the inputs is related to the input
sinusoid by the magnitude and phase of the gain function as in the
previous sinusoidal response analysis. The periodic queue response
is then the sum of the sinusoidal response terms. For example, a

periodic disturbance of the initial vehicle only may be expanded in the

series
o0
(2-83) AV, (1) = Z cpcos(nuw,t+ xn)
n=| A
where wg =27 T, is the period of the disturbance, and X,
To

is the relative phase of the nth component. The headway response of

the ith queue vehicle Ah;(t) is then given by

2y Ah() = Z C, | Hinuw)

n=j

cos[nw;t + o+ QSi(nw;)]
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where Hj(jnwg) is the gain function,

4

|

(2-85) H: (nw) [ T(‘"“’O T(jnw.)
)
and Cj)i(nw 0) is the argument or phase of Hi(jnwo) . The maxi-

mum magnitude of Ah;(t) may then be determined, and the static '
headway hg is made larger than maximum Ah; . This indicates a
type of bound on the flow possible with the automatically controlled
queue. The periodic road-induced disturbances can be similarly
treated.

However, the sinusoidal and periodic disturbances are arbi-
trary and idealized disturbances, not likely to be encountered in
traffic. The disturbances to be encountered in traffic are not predict-
able, but ar;a random in nature. Queue response to these moz;e
realistic random disturbances is discussed at length in the remaining
chapters of this paper. Throughout the discussion, the same gain

factors derived from sinusoidal analysis will be extensively employed.



CHAPTER IIl

RESPONSE OF THE AUTOMATICALLY CONTROLLED
QUEUE TO INDEPENDENT STATIONARY
' RANDOM DISTURBANCES

Introduction

Inhf‘l'ii's chapter the response of a queue of automatically con-
trolled vehicles to stationary random disturbances is studied. Typi-
cal sources of such random disturbances are considered, as well as
their occurrence in the queue. Characterization of the disturbances
and the applicability of their treatment as stationary random functions
is discussed. The power which must be supplied by the vehicles is re-
lated to the disturbances. The method is then shqwn for determining
the mean square values of certain queue response functions from know-
ledge of autocorrelations or power spectra of the disturbance sources.
Finally, the engineering problem is discussed of determining the equili-
brium spacing to avoid collisions wh’en each vehicle is a disturbance
source.
Sources of Random Disturbances of
Automatic Queues

In the study of the z?.utomate'd highway, it has been considered
advisable that the automatic system be compatible with the present
manually controlled vehicles, In the automatic system the response

39
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of each vehicle to the motion of the preceding vehicle is controlled by
an automatic longitudinal control system, A compatible controller
must also detect and respond to manually driven vehicles in the traf-
fic system. In this case it is expected that occasional manually
controlled vehicles will be found in long queues of automatically con-
trolled vehicles and that the manually controlled vehicles may either
break the queue or simply accumulate a following queue of automatic
vehicles. In these situations the human driver introduces random
disturbances from the equilibrium condition of the queue. The random
disturbances are transmitted upstream by the automatic controllers.
The determination‘ o;measures of the random queue response to the
disturbances may be treated by considering the manual vehicle to be
the initial vehicle of an automatic queue and to be the sole source of
disturba.nce of the queue. This is one situation to be analyzed in this
chapter.

Another situation which may be treated in the same manner is
that of a queue which is entirely automatic, but in which random dis-
turbances are generated internally in one of the vehicles. Again the
random disturbance is transmitted upstream by the automatic con-
trollers, and the source vehicle may be considered to be the initial

vehicle of the queue for the purpose of analyzing the queue response

to the disturbance.
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it is readily conceivable that at any point ir: an automatic
queue there may be a random disturbance response to more than
one disturbance source downstream. Since attention is ¢onfined to
the linear mode operation of the automatic system, superposition
again applies, and the total disturbance may be found by summing the
responses af: eé.ch point of the queue determined separately by treat-
ing each source vehicle as an initial vehicle of an automatic queue.
If the sources of random disturbances are statistically independent,
then the response to each of the sources will be uncorrelated, and
the measures of queue response; will be the sum of the measures of
response to each independent disturbance.

Finally, it is to be expected in the realistic automatic traffic
queue that there will be random disturbance sources in each vehicle of
the queue due to quantization error in the measurement of velocity
and headway by each automatic controller. A first approximation to
the determination of the response to these disturbances can be made
by considering these sources to be independent, although they may
actually be correlated. The validity of such an .approximation should
be the subject of an advanced study, which is beyond the scope of this
paper. Correl.ated.‘ random disturbances of the queue due to road-

induced disturbances are considered in the next chapter.
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Stationary Random Disturbances

Random functions of time are distinguished from the determin-
istic functions of the previous chapter by the fact that it is not possible
to predict their value at any given instant with certainty.. Consequently,
they are not characterized by specifying them as known functions of
time. Instead, random functions a:re characterized by their time
averages. Only the mean and the autocorrelation of the random func-
tions are needed for engineering purposes of this paper.

In general the mean -y—(_ﬁ of a random function of time y(t)

is defined to be

T
(") NPTEN 'm _L__
3-1 y(f) TLLOO > T .)’(f)df,

T

il

The functions of interest are accelerations, velocities, headways, etc.
The above definition of the mean of a variable is not applicable to the
real traffic system because it is not possible ‘to observe the variable
for an infinite period of time. The question then arises, if it is only
possible to average a variable over a finite time period, then what is
the period to be. The variable associated with an automated queue of
vehicles is ofinterest here, so the average of interest is to be taken
while the vehicle is on a finite section of automatic highway. In this

case the measured mean is given by
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'
G Y® = z=[y@dt,
=T

where the vehicle enters the automatic sectionat t=- T and
leaves at t=T

Queues of vehicles form because the members of the queue
desire a higher mean velocity than the initial vehicle of the queue. If
passing cannot occur, the queue members are forced to remain behind
the initial vehicle and avoid collision with the preceding veh'icle. This
is true of either manué.lly controlled traffic or traffic in which each
vehicle is controlled individually by an automatic controller. Since
the queue respbnse"to initial vehicle disturbances is of interest here,
the period 2T over which the response is averaged occurs after th‘e
formation of the queue and may be shorter than the time for the initial
vehicle to traverse'the automatic section. On this basis, the initial
vehicle determines the average velocity of each vehicle of the queue,
and this is considered the equilibrium speed. For queues of automatically
controlled vehicles the equilibri}lm}spacing need not be a function of the
equilibrium speed, but must be large enough to eliminate collisions
due to disturbances from equilibrium. Therefore, it is sufficient from
here on to consider only disturbances from equilibrium,

The autocorrelation of a random function Ay(t) is denoted

(PAy(tl » T') andis given by
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T
o QL) - lim == Jay@et)ay G-tiamydt.
—T
This function again cannot be obtained on real road sections. Further-
more its usefulness is severely limited by its dependence on t; .
A function which can be obtained on the real road section is given by
- T
d> — _
(3-1) g (t.7) = o= ay (t-t)ay-t+7)dt .
T

The question then arises as to how large T rhust be in the function
q)szy( ty » )} in order that it reasonably approximate the autocorre-
lation and be independent of t; . Tﬁis function, which can be obtained
in reality, is a measure of the disturbance. The answer to the above
question depends on the disturbance source.

The first disturbance source considered is electrical noise
generated in an automatic controller's components. Such noise is in
general dependent on the temperature (such as transistor noise), the
material and design of the component (such as potentiometer transducer
noise) or on the equilibrium speed of the vehicle (such as tachometer
noise)., The temperature énd equilibrium speed are assumed constant,

so that the electrical noise can be considered stationary. This is
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generally a relatively high frequency noise source, and its autocorre-
lation can be expected to approach zero for T > 1 sec . How-
ever, it is generated in a feedback control loop which is expected to
have a major time constant of several seconds at most. The resulting
control system output disturbance, that of the vehicle, at any time
instant can be expected to be independent of its value at instants more
than several seconds earlier. In other words, if q)Ay(’f’) is the auto-
correlation of the vehicle response to electrical noise in its controller,
C])Ay(’f) will be e:s.sentially zero for 7 greater than several seconds.
In this case, ¢zy(')") is a reasonable approximation to (bAY( Yy if
T is only a few minutes. Also, d)zy(’r') is stationary and independent
of the time of measurement.

The quantizé.tion or instrumentation noise in the input to the
feedback controller is dependent primarily on the spacing of detectors
in the highway and on the equilibrium speed for the automatic system
presently considered. According to the present concept of the auto-
matic system, the spacing of the detectors; will be constant. Since the
equilibrium speed is also assumed constant, it is expected that this type
of disturbance source is also stationary. The feedback controller filters
this noise in the same fashion as the internal electrical noise, so that
againa T of a few minutes will be sufficient for a stationary measure-

ment of the autocorrelation of the resulting vehicle disturbance.
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The final source of disturbances to be considered is the human
driver. He is also the most nonstationa.ry. His characteristics tend
to change with'mood, fatigue, environment, etc. Duﬁng the past few
years the human driver response in the car-following situation has
been studied exper‘.irnentally here at The Ohio State University. Speci~
| fically, measurements have been taken of the driver's response w.hile
he is attempting to follow a preceding vehicle of constant velocity. This
situation is quite similar to that of the driver as a member of a long
traffic queue. These measurements have been taken in a simulated
traffic environment and on the highway. In the simula‘ted environment
it was found that measurements of the mean square value of the driver ‘s
disturbance showed reasonable consistency for a given subject from
day to day and for several different measurements during a day if the
measurements were taken over 10 to 12 minute periods. In the road
tests it has been found that ten minute recordings of data reduce with
reasonable consistency also. Thus it seems thatif T 1is greater than
15 minutes, the measurements of (bzy(tl , ) are relatively inde-
pendent of t; . Furthermore, autocorrelations have been calculated
for velocity disturbance in car following, and they are found to be
essentially zero for "[) greater than 100 seconds. Thus it is expected

that T () for T > 15 minutes will reasonably approximate
, Ay Yy app

Gay(?) .
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From the above considerations it is estimated that on sections
of automatic highway where the above types of disturbances can exist,
averages of duration 15 minutes or more will ap;;ear stationary. Of
course, the validity of this estimate requires the ruling out of extremes
of mood changes, learning, environmental changes, etc. Also, the
same individual disturbance sources are assumed for all time on the
sections, Different sources will generate different stationary disturb-
ances. The exploration of the characteristics of the individual sources
is beyond the scope of this paper. Here representative characteristics

only will be assumed.

Power Dissipated By a Velocity Disturbance

It is of some interest to attach some physical significance to
the autocorrelation of the velocity disturbance of a vehicle. In general
the vehicle ié quite nonlinear. Also, it normally has vertical transla-
tion motion and pitching motion as well as the longitudinal translation
which is of interest here. The vertical and pitching motion are norm-
ally road-induced and need not be considered here. The friction force
on the vehicle is a nonlinear function of velocity. It can be expected to
be similar to aerodynarnilc drag, proportional to v® , where
n > 1 . In this case it will be similar to the characteristic shown

in Figureli . Here it is seen that F(v) may be expanded in a Taylor
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F(v) A

Fvgo) = —— — — —

Fig. 4.--Nonlinear Friction Force Characteristic

series about vgg , given by-

) F() = Flus) + & PO (vis) + -4 R4S,

V'—‘ \/55 V= VSS

For small disturbances from equilibrium, the disturbance velocity
Av = v - vgg produces a disturbance drag force AF = F(v) - F(vgg),
The relationship between them is linear and is given by the first two

terms of the Taylor series,

(3-6) AF = %E\i—"—)—AV = Fav

V= Vs.s

Finally, the changes in potential energy are not important in this dis-

cussion.
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The infinitesimal change in energy which must be supplied by
the engine due to inertia and friction forces resulting from disturb-

ances of velocity is

- dW =M dﬁ_iolx + E,'Avd)()

where x = v .t +Ax . The required engine power is then given by

p-d¥W - mav j,%zw + F () +Myge_av

d
at

dt
+ F Vas AV.
The average power is
T T T
5 - [ L ~ lim M. |,vd lim M¥s |d
P = 1!-1:; T Pdt Twz-rj;va_{zwdiwr_’_o 5 GH_AVOH‘
T =T =T
T
(3-8) + lim Fe CAVfdi‘ + ltm  Fss ;/di'
T_,,OZT T-»o0 —E_—T_- )
~T =T

The first integral of the right hand .mernber is zero because Av(t)

is uncorrelated with its derivative. The second integral is zero
because the disturba.nce‘ dAv(t) has zero mean. (v(t) =vgg + Av(t),
where vgg is the mean of v(t).) The third integral is recognized
as the autocorrelation of Av with zero argument and with the constant
multiplier I .

9 Rg,) =P

The fourth term is zero because Av has zero mean.
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Therefore the autocorrelation of the velocity disturbance with zero
argument is the average power dissipated due to the disturbance
Av(t) . This power must be supplied by the engine in addition to the

power required to maintain vgg , given by fsvss = F, Vs: .

Linear System Response to Stationary
Random Input Disturbances

Frequency response techniques are used to determine the
response of a linear system to random input disturbances in a manner
analogous to the sinusoidal analysis. The power spectrum @Ay(w)
of a random disturbance Ay(t) is defined to be the Fourier integral

of its autocorrelation, given by
+ 00
-jwT
o G, ) = f & (1) &Tar.

It is shown in various references!d, 16 that the spectrum of the re-
sponse of a linear system Ay(t) to a random input disturbance Ax(t)

is related to the spectrum of the input disturbance @y (@) by the

equation

(3-11) @Ay (w) = G({WGHWE, (W),
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where G(jw) is the gain function of the linear system, defined in the
sinusoidal analysis.
The autocorrelation of the linear system response is the

inverse transform of @Ay(co) , given by

+ o0

(3-12) Cay(’i’) = 3= | & W) e dw.

The average power associated with the response or its mean square

value is
+ 00

o

(3-13) CE}/ (O) - 2T @Ay (‘U) dw .
- 00

Thus if the spectrum or autocorrelation of the input disturbance is

known and the gain function of the linear system is determined, then

the mean square value of the system response may be determined. -

Measures of Queue Response to Random
Disturbances of the Initial Vehicle

There ax:e several measures of queue response to random dis-
turbances of thé initial vehicle, which may be of considerable use for
cvharacterizing the response in the engineering of the automatic traffic
system. These are listed below:

1. The average power dissipat:,ed by the nth vehicle

of the queue, denoted TSAD
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2. The total average power dissipated in a queue of
n vehicles, denoted TP, -
3. The mean square headway disturbance of the nth
vehicle of the queue, denoted O—Ahj
4. The mean square relative velocity disturbance of
the nth queue vehicle, denoted O—Avrnz
5. The mean square absolute acceleration disturbance
of the nth vehicle of the queue, denoted O'Aanz .
Each of these measures will now be related to the spectrum @Avo(w)
of the velocity disturbance of the initial vehicle, Avg(t) . The
procedure is simply to determine the pertinent gain from sinusoidal
analysis for each measure and then to apply Egqs. (3-11) and ( 3-13),
The average power dissipated by the nth vehicle is simply the
product of the constant multiplier Fy and the mean square absolute

2

velocity OA-':’n of the nth vehicle. The gain function relating abso-

lute velocity of the nth vehicle to that of the initial vehicle was shown

in Chapter II to be simply T(jw) . Therefore by Eq. (3-11 );
) 2hn
(3"‘1)-1) @Avh (LL)) = I TCJO‘))] @Avo(w) -

Then from Eq. (3-13) the mean square velocity is

W “ZWﬂTCJa}) @v(w)dw




and the average power of the nth vehicle disturbance is

_ : + 00
(3-15) En = 2—% ]T(jw)lan@mc(w) dw.

- 00

The total average power dissipated in the queue of n vehicles is

-+ oo
z p;n = 2571_'/';’1'(3'«))]2‘@“9(“3 olw,

which can be written in closed form as

+ 00
p o fi [ 1M &
(3-16) ZE" ~oam I*IT()'w)a C‘DAVo(w)dw'

The relative velocity of the nth vehicle,
(3-17) AVy. AV, —AV,

is related to Avgy by the gain function, [l-T(jwﬂ [T(jw ﬂn-l
The spectrum of the relative velocity disturbance of the nth vehicle

is then

(3-18) @Avr(w) = f"T(fw)la | T(wa)fa(n-‘) &, (cu))

and the mean square relative velocity disturbance is

53
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n

a9 G = Zwﬂ T TS, @) do

The relative velocity is the derivative of the headway,‘ so that

(3-20) Av,n(t) = PAI%

Then the headway gain function is given by
n-i
—T
[yl

It is necessary to determine if the apparent pole at w = 0 actually

exists. The gain function T(jw) for low frequencies is approximately

given by

T(fw) A bo + b, ['6()

o+ a,J'(AJ

9

since T(0) =1 . The first two terms of the expansion of T(jw)

are

Then [1m J:I;T(;’w) o b -0
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and it is seen that the pole does not exist at w = 0 . The spectrum

of the headway response @Ahn (w) of the nth vehicle is

2(n-1

(3-21) @Ahn(w) = ’ilj%i’)-\z]T (j"">’ @A%(w).

The mean square headway disturbance of the nth vehicle is then

+ o0
a2 = [ ]I-T¢ |
(3-22) ORI
Y a4

Finally, the acceleration of the nth vehicle is the derivative

aln-y
T(J’OU) @A " (W) d AP

of its velocity, and

Ao @) = PAVA(D).

The gain relating Aa_ (t) to Avg)t) is then given by
. n
JOU[TCJwﬂ )
The spectrum of the acceleration @Aan (w) of the nth vehicle is

ey B, ) = TG B .

The mean square value of the nth vehicle's acceleration is
o0
2 an
o = =2 ! ! .
(3-2L) da, = 27 |w*| TG @Avo(w) e

- 00
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It is thus seen that each of the above measures is of the form,

= a_gr_fp[r(jwﬂ B, @ dw.

The above measures are summarized in Table 1.

TABLE 1
MEASURE SYMBOL f(T)
Power dissipated by nth "FS F an
vehicle due to disturbance AN ' lT I

Total power dissipated
in a queue of n vehicles
due to the disturbance

LR

F/“‘ ITlan\

"\l-—(rla/

Headway variance of the o= 2 “__-'—I ,T l 2(n-
nth vehicle ah, WE
Acceleration variance of 2 2 2n
the nth vehicle GA—C!" W [T l
Relative velocity variance 2 l l ' |2(n
of the nth vehicle %r;‘ =T T

Queue Response to Multiple Independent

Disturbance Sources

The engineering design problem of allowing large enough equi-

librium headway to avoid collisions in the queue due to random disturb-

ances is illustrated by considering the headway disturbance of the nth

vehicle. The disturbances generated by each preceding vehicle are

assumed independent. In this case the mean square headway disturb-

ance of the nth vehicle is given by
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¥ 00

. » ey

- o = I—T( w) | 2(n k—l)

(3-25) G = 3r f kz ¢ )‘ (w)dw.
. — w -

where @Avk(w) is the spectrum of the velocity disturbance of the

kth vehicle due to its internal disturbance source. Eq. (3-25) may

be written,

+00

2 _ L [[1=Tqw)
(-26) G, = zT f |
—00

n-i

j@‘ @ (w) dlw.

nKI

The most severe problem here is that of disturbances genera-'
ted by each vehicle in very long queue‘s. Suppose for the sake of dis-
cussion that the spectrum of the disturbance of each vehicle due to its
internal source is the same and is @Avi(“’) . Then Eq. (3-26)

becomes

~+ 00
2 , 2 n-|
G, = [T ) g s
i =0

Recalling that T(0) =1 to meet the equilibrium requirements and that
IT( jw )lg 1 to meet the asymptotic stability requirement, and noting
that ,T(jm )I can be made to be less than unity for w # 0 , one can
observe that the series in the integrand converges for n -—»ow if

w # 0 . However, the series may converge to a very large number
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for small w # 0 ., The series will still be a large number if n is
large but finite. In order to avoid a building up without limit of dis-
turbance along the queue as the length of the queue becomes large, it
is necessary that the @Avi(“’) in Eq. (3-27) be zeroat w = 0 and
that it be small for small w . This will only be possible if @Avi(“’)
has zeros at w =0 . It will now be shown that by proper system
design @Avi(w) —>0 as w —>0 .

Consideration of the sources themselves shows first of all that
any constant bias of the disturbance sources must be removed to
maintain the equilibrium condition in the traffic queue. The remaining
disturbance from the source is bounded. Therefore the autocorrelation
of the source disturbance is bounded. Generally the value of the dis-
turbance of the source at any time is independent of its value a few
seconds or more earlier at most (excluding road-induced disturbances,
which eventually become independent). Therefore the autocorrelations
approach zero for large T . Consequently, the power spectra of
these source disturbances are bounded. This means at least that the
power spectra have no poles at w = 0 . The spectra of quantization
noise in the measurement of Av;_; and tachometer noise, which
both depend on the equilibrium speed of time vehicles, may have zeros
at w =0 . However, there is no obvious basis for assuming that
the spectra of the other source disturbances are not finite and non-

zeroat w =0 . These could cause O—A—If-n to increase without
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limit eventually if the length of the queue is unlimited.and if necessary
zeros are not introduced by the gain function relating Avi to the
source disturbances. This gain is characteristic of the type of controller
used. Several of these are now considered.

The velocity of each of the vehicles can only be changed by a
force on the vehicle. The sources of disturbance considered result'
in forces on the automatically controlled vehicle through its controller.
Consider first the block diagram of the ideal velocity controller shown

in Flg.
Ad;

)% % S e AV

Fig. 5 --Ideal Velocity Controller

The disturbance sources are An, , the noise and error in the measure-
ment of Avj.]; and Avy , and Aaj , which includes external
accelerations o;i the vehicle as well as noise generated in the servo-
mechanism components of the vehicle. From this diagram it can be
seen that the gain relating the measurement noise, component noise,

and accelerations to the velocity disturbance of the vehicle is simply

T(jw) . Then
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(3-28) (w) ]T(jw)] o (a)) or ]T(jw)[ & o

Since T{(jw) will not provide §Av1(w) with zeros at w =0 ,
and since épparently @Anv(w) and @Aai(w) don't have the zeros
themselves, it is anticipated that headway disturbances in long queues
, with this simpl;e controller would build up without bound.

An alternative linear velocity controller using acceleration

feedback on the controlled vehicle was studied by English and Lim 17

18 simplified block diagram for this contrbller is shown:in Figure 6

Kz
P
+

av, 3 - = AV;

Fig. 6 --Velocity Controller With Acceleration Feedback

-~
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The response Av; to Avj.) for this controller is given by
(Tk D2+ (i Kodpr ko |av; = (K p +K2)av
(3-29) atK g +UHK +Reg)p+ K | OV P TR BV -

The block in Fig. 6 containing the transfer function __l__ is an
Tap +1

ideal linearization of the automobile response Av; to its accelerat'or
and brake pedal displacements. These characteristics have been meas-
ured on the road in a representative sedan, It was found that both the
speed vs, accelerator displacement and the speed vs. brake pedal dis-
placement could each be approximated with a single time constant filter.
Although the time constants were somewha;t different for acceleration
and for braking, they can be reasonably approximated by the same for
both. The measured value of T/, Was approximately 20 seconds. In
an actual vehicle there is a certain amount of dead zone in the brake
pedal. It is assumed that this can be removed and a smooth transition
from acceleration to braking can be achieved in a real servo controller,
The forcing function on the linearized vehicle which can be controlled
is then the throttle position and brake pressure, and the above transfer
function reasonably relates the vehicle velocity to this forcing function.
Practical implementation of this ;ontroller takes the form shown

in Fig.7 .
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AV

™

Fig. 7.=--A Practical Velocity Controller

The response Av; to Avj_; of the practical controller is given by

(3-30) [7‘5, p2+ (H— K3+K_,P),o+ K‘JAVZ = (K3F+ K4)AV'_, .

The three sources of noise shown in Fig. 7 are denoted An, for
noise associated with the measurement of the relative velocity
(vi-1 -vi) , Ang associated with comi:onent noise of the servo-
mechanism, and Af; representing wind force and road-induced
gravitational forces. Some discussion of these sources is now in
order,

Road-induced forces are not intended to be considered here,
but it will be shown in the hext'chapter that their spectra contain zeros

at w =0 . The wind force on the vehicle is certainly a continuous
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bounded function. Also, its value at any time is considered to be
independent of its value at a considerably earlier time. Consequent-
ly it must have a bounded spectrum, *

As has been discussed before, component noise is assumed to
have finite spect:fa at w =0 ,

The measurement noise requires consideration of the measure-
ment technique; It is assumed that vj.)} and v; are measured by
identical electronic sampling and clamping circuits actuated by pulses
recgived in the controlled vehicle. Detectors are imbedded in the
road at constant spacing, which by techniques already available can
provide the controlled vehicle with a pulse each time the preceding
vehicle crosses a detector. Similarly if provision is made; pulses may
be received in the controlled vehicle as it crosses detectors. 'I'his
results in two pulse trains received in the controlled vehicle as shown
in Fig. 8, Here the first order approximation is made that both vehicles
are at nearly the same constant speed vgg . This results in a con-
stant sampling period Tg , the tim‘e required for each vehicle to
travel from one detector to the next. Although the pulse trains are
displaced by Vg , nTg + Ty is the time spacing between vehicles.

The small integer n -may be on the order of 1 to 5.

*The details of this argument are presented in the discussion of
the spectrum of road elevation in the first section of the following
chapter.
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Fig. 8.--Pulse Trains Received In The Controlled Vehicle

a
!
ol
!

In one velocity measurement technique the time T between
pulse is registered each time a new pulse arrives., The time T is

the sum of three terms given by

The first term is the time that would be registered if the speed of the
vehicle, whose velocity is being measured, was the constant vgg and
there was no error in the placement of the detectors. The second term
is a time increment added due to error in the position of the detectors.
The third term is the time increment added due to the velocity disturb-

ance Av from vgg . The approximate velocity, computed elec-

tronically, is

V,
V = Zb=. SS
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The first two terms of the expansion of the right member for small

errors give the approximation,

V= Vssé—éib--.\_/is__y> - ss( Aly Aty |
lb lb Ts

The samples of lead vehicle velocity v;_.; obtained at instants t‘-k-l},

are Vi-c(ﬂ;) = Vss +-Adf:-l (kT5> +AV"'(KE>’

A' -
where Adj.)(kTg) = - vgg _.5 evaluated at kTg and

AV, (kTs) - = _\_/gst_S_tu.

evaluated at kTg . The corresponding values of the controlled

vehicle velocity v; are obtained at the time instants t=kTg + Vg ,

1

and are given by

(3-31) Vi(kTs+15) = Vs + Ad;(KTg+1.) + AV; (kﬂﬂj,).

These sampled values are held until the next samples are taken. A
difference amplifier follows the sampling aﬁd.holding devices. The
output of the difference amplifier is the input of the vehicle servo-

mechanism. It is noted that vgg Will not appear here, and will ﬁot

be considered. The difference amplifier output is given by

(3-32) AV, = __:_"51‘_@{@\/.‘_%&5 ’P}: ’P@v +ACJJ
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Here the asterisk indicates that the variables are sampled at the
time intervals t = kTg . The error Ad; appears in both vehicles,
delayed in time by the time spacing nTg + Ts in the controlled

vehicle. Thus
(3-33) Adl-: (KTy-nT, —Ts) = AO[L'(kTs)-

Substituting Eq. (3-33) and Avj; = T(p)Avj.; into Eq. (3-32), one

obtains

()| B - € PP TRV, ¥

(3-34) AV, = .
r P ¥ g%pl 5nTsPA A *

The gain function relating Avy, = Av;_; - Avy to Av;_; may be

found if the gaé.n function of a sampled variable is first considered.

In general if a response y 1is related to an input x by a relation

y = g(p)x , the transform of y is givenby Y(jw) =G(jw) X(jw) ,
where Y(jw) is the Fourier transform of y(t) and X(jw) is

the Fourier transform of X(t) . The effect of sampling y is to
make ’x,'k( jw) , the transform of the sampled variable y* , @ periodic

function of w with period wg = 27T . On the nth period

Ts

Y*(jo +jn ZT" ) = Y(%“’) . If z(t) =h(p) y*(t) -, then the trans-
-] 8

form of z(t) is '
2 (jw) = H(w) Y*(u.
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m

For fre.quencies in the range -~ .'ﬁ. <w <_'I‘|'_;__ ,
W) = HGY(w) _ H(wG (WX (w)
Z(Ju)) = 7 _r:s v = v _r; J

In this range one can consider z(t) to be related to x(t) by the
H{jw) G(jw)
Tg
the nature of the gain functions as w —»0 relating Av, to Avj_;

gain function Applying this discussion to Eq. (3-34),

and to  Ad;_; may be determined. The gain function relating Av.

to Av;. is

_.T;'

T;jw .J S Ts-
Also, the gain function relating Av, to Ad;j.; is

‘_EJ?(UD— e_(nTSHQJ‘wJ ( L <w< -.L,‘,s—

It is seen immediately that

(- >Ts (W - .
(3-35) lim g—:,-f—,—J—ZE— e (n7;+1;)1uj =0,
st

w=0

At very low frequency the approximation rhay be made that
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Then it can be seen that

=T. '

) I— SJ
(3-36) [(m ( e, )
W0 EJ‘U

-T(J'cu)]

Thus if the spectrum of the random spacing error of the
detectors converted to a time function by x = Vgst is denoted

@Ad(m) , then the spectrum of the resulting noise in the relative

velocity signal to the servos is

_ g 2
o B | Efi e |’ s

Also the .corhponent of this noise spectrum due to sampling and hold-

ing error is

) @ (w)— - [ (- —ﬁlﬁwj (0')).

It is reasonable to assume that §A"i-1 (w) and @Ad( w) are bounded
and are‘thus finite at the origin (w = 0) . Then @nvd(w) and
@nvs(w) have zéros at w=0 ,

Now the gain functions relating Av; to the various disturb-
ances are found from Fig. 7. The gain relating Av; to An, is the
same as that relating Av; to Avij_)} , readily determined from Eq.

(3-31) to be
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Kajw sy ,
Ta gw)z-}- 0+K3+K3‘3>jw +-' K4

which has no zeros at w =0 , Howgver, because ﬁnvd(w) and
§nvs(w) do have the zeros, the result:"mg QAvi(w) will have zeros |
at w =0 ., The gain function relating Av; to Ang is from Fig, 7
found to be
Jw _
Ta (J'w)?- +(1+Kg+ K’P)J'“’ + Kg

Since it was shown above Ehat all other di;;turbance sources could be
referred to Ang with spectra which'are finite at @ = 0 , the
resulting QAvj(w) will have zeros at w = 0 . Thus the @Avi(w)
has zeros at the origin for ail expected sources of random disturb-
ance, and it is anticipated that O Ah,> will remain finite for
unlimited n or queue lengths with this type of velocity controller.
The response of the queue with the headway controller is now
considered. Its simplified block diagram is shown in Fig, 9, In Fig.
‘7 the velocity measurement noise is denoted An, and the headway
measurement noise, ‘ An;, . Component al;xd external force '

noise' is designated by Af; . The gain.relating Ax; to Ax;.;
k2 jo +%; |
Taliw)2 + (1 +kz)jw +k

is found from Fig. 2 to be
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an
AXio P Y S
> (e

Ka
+ ity
4 | il. AVi | AX;
Sl . — -
Ki + i Tap+1 o :
Anh A‘Fl

Fig. 9. -~Simplified Headway Controller

The same gain function relates Av; to Av;_; . The gain relating
jo

Av; to Af; is
Ta(jo)2 +( 1 +k2) jo +k;

, and @Avi(w) is

is related to @A{:i(w) by

B W) = W & . W,
4 I T;qw)a+ (1+ kz)jw + K, = al

(3-39)

The gain relating Av; to the velocity measurement noise An, is

ka'iw
(o (J'w)a+ (H- ka)ja) + K,

The component of Q A"i( w) due to velocity measurement noise is
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_ - ke 3 @)
o BT T ey R '

Finally, the gain relating Avj to headway measurement noise Anp

is

K jw
T;(J'w)a-i— (J+k2_)jw + K,

The component of @ Avi(“’) due to headway measurement noise is

(3=-41) @ (OJ) = 2 klawz 2 (w) .
a | TG + (+ke)jw + k| T2

The velocity disturbances of the vehicle with a headway con-
troller have a spectrum with the required zeros at w =0 , as can be
seen in Eqs.(3-39), (3-40), and (3.-41). Furthermore it is noticed
in passing from the above gain functions, that constant biases ih the
noise will not be a problem with the headway controller. A small

AY

constant error in headway can be tolerated. It will not exist in
2
the relative velocity. If the headway controller is used, OZhn
of Eq. (3-28) will remain finite for unlimited queues. Its magnitude
will depend on the parameters of T(jw) , which are k; , kp , and
Ta -
It is not known whether the spectrum QAVi(oo ) of human

driver response has zeros at w=0 . However, it is expected that

the number of manually driven vehicles in the queue will be limited.
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Furthermore it is anticipated that the human driver will break the
queue and generate independent disturbances as the controller of the
initial vehicle of the following queue. Therefore consideration is not

given to compounding of manually driven vehicle response,



CHAPTER IV

QUEUE RESPONSE TO ROAD-
INDUCED DISTURBANCES

Introduction

In this chapter the nature of road-induced accelerations on
the automatically controlled vel;icles is discussed. Restrictions on
the spectra of the road-induced accelerations are related to the
source of the disturbances. The behavior of the queue of automati-
cally controlled vehicles in response to road-induced disturbances
is considered, and measures of the queue response are derived.

Finally the problem of building up of disturbance in long queues is

discussc_ad.

Source | of Road-Induced Disturbances

In considering the diagram of a vehicle travelling over a road
with a random vertical profile as shown in Fig. 10,it is seen that the
is

gravitational force on a vehicle Af;

) AR = —Mgsinx,
and for small, &

(b-2)  af, = =Mge.
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Mg

S

X
Fig. 10 --Road-~Induced Gravitational Force on Vehicle

The grade, X , at any point x is given by
1-3) - o= Sy,
dx
If small disturbances (small hills) are considered, a first approxi-
mation of the position of the vehicle is given by
(’-!"h) x = vsstl + Xo ’
where vgg is the mean speed of the vehicle on the road section.

Substituting x = vggt for the variable of y(x) , y(x) becomes a

function of time, and

o) o = dy@® dt =L dy@®

Then ‘
~ —9M dy®) . _ M
(L=6) S "\75]5']')%— - *@%Py

The road configuration and the mean speed over the road section thus
permit the tangential force on the vehicle ( which is approximately in
the horizontal direction . of x because of the assumption of

small grades) to be written as the derivative of the elevation of the
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vehicle, a function of time.
The mean value of y(t) is denoted m , and
W=D Y@ = YO + AY@®) .
The force disturbance on the vehicle is given by
(1-8) Af ) = -'%i‘ pay(® -
A number of observations can be made about Ay(t) . First
of ail. since vehicles are consl:raineéi to the surface of the earth,

Ay(t) is bounded. Consequently it has a finite average power,
T
' | 2 2
s lim S f [aY@)] dt & Y pax -

T

Then (PAY( 0) éAy(t)fnax and is finite, Since

.
ICE},(T’)l ¢ dgy (0), ‘Ey ®) = T’_;g 5‘—T: fy&)ay(t#)dt

is bounded for all ’f/ .

Also it ist"'v;;éted that y(t) must be continuous for all t from
/

¢

the fact that uséble road surfaces are continuous. If y(t) is continu-
ous, y(t+7) isa continuous function of 7 also. Then the product

y(t) y(t +7) is continuous forall t and 7 . Then q)AY(r) is
19

continuous over all 7’ . Furthermore ' (pAY( ) ‘ is continu-

ous for all T .
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Finally. the obsérvation is made that in general Ay(t + T’) is
independent of Ay(t) for large values of 7° . This is due to the
generally random nature of terrain, Since x = vggt , the distance
between positions of the vehicle at times t and t+7 is vgg? .
It is considered that the elevations of the road at any two points
widely separated (large 7 ) ‘are independent. The autocorrelation
of Ay , (bAy(T’) , i8 a measure of the correlation of vertical
displacements of pairs of points sepé.ra.ted by distance vgg 7’ all
along the road. If the ele\}ations of the pairs are independent, then
they will be uncorrelated, and (bAy( 7) will be zero. Then

11'5.'/2 cay ™ =0. .
Since M)Ay(?’) l is bounded for all 7 by the finite ¢Ay( 0) ,

and since ](bAY(’f’ ) l is continuous for all 7 and

Jim Gy (M) =0,

then [“;i y ml »

is finite. Furthefmore, gsince ¢AY(T') is an even function of ']’J ’

+o0 00 00
o [Gir=2fgmar s 2f 4 e
- 00 o 6]
Now the spectrum of Ay(t) is defined by

By =] gmerdr.

- o0
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Because of the evenness of- q)Ay('r) | , ,
(b=12) CIJA Y(w> =2 433)’ (Y) cos w?d? & f (’r')l d’l’
o]

Consequently (PAY(w) is bounded by

Zfl  (V]dr

for all w ., 'I‘hus @Ay(w) has no poles on the real w axis and

no poles at w =0 .

Since Ay(t) has finite average power given by
e _ _
(4-13) Ay =z f @Aj(w) dw
- 00

§Ay( w) must have more poles than zeros. Thus the simplest form

that §Ay(w) can have is

QS() oz.>+c3(a

where K and o(, are finite constants.

Similar statements can be made about Af;(t) , since itis

observed that Af;(t) is always bounded by Mg ; and by ai/ésumption
of small grades,its bound will be considerably less than that, Then its

average power is finite. Since _.(L) is continuous for all roads,
dx

it follows that Af;(t) is also continuous. Finally, Af;(t +7) is
again independent of Af;(t) for large VY . Then all the preceding

discussion may be applied to the ¢ Afi( ) and @ Af, (@) functions.
‘ . i
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But in addition, ;
(4-1h) @Aﬁ(w) = wz éay (w) '

Thus gAfi (@) has zeros at the origin because §AY( 0) is
finite. Also, since Af;(t) has finite average power, by virtue

of its boundedness, the integral givén by

+ a0
[ah T = 6,0 = 37| @dw

must be finite., This in turn means that @Afi(w) must have more
poles than zeros. Since @Afi(m) must have a pair of zeros at

w = 0 , it must have two pairs of poles - not on the real w axis
because of the boundedness of §Aﬁ(w) as of §Ay(w) . Since
§Af1;. (0) must have the same poles as @Ay(w) » the simplest

rational function which may be assumed for @V(w) is

K
(b=15) @‘)’ (W) = W2+ o+ B)

where K, a , and b are constants, Then

_ Ko :
(4-16) @‘ﬁ' (+) = (w*sa?)wl+ B )
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Response of the Finite Queue to Road-
Induced Disturbances

The road-induced disturbances described in the pzlevious sec -
tion cause disturbances in i:he velocity of each vehicle of the queue.
The response of each .vehicle due to road;-induced disturbances is by
the superposition principle a summation of disturbances induced by
the r‘ro‘ad in preceding vehicles and transmitted to the particular
vehicle of interest by the automatic controller. Here the problem
differs from that of the last chapter in that the individual disturbance
terms are not independent, but are correlated with the other terms.

It is not possible to find the measures of queue response by simply .
summing the measures due to individual terms. It will be seen that a
gain function can be found relating the total response of the queue to
the road elevation Ay(t) . Then as before the spectrum of the
response variable is related to the spectrum of the input §Ay(co)

by the gain function, and finally the mean square value of the response
variable is the integral of its spectrum. It is convenient for develop-
ment of the gain function in terms of a general controller gain function
T(jw) to deal with disturbances of velocity of each vehicle Avi .
Finally although other disturbances are normally present, superposi-
tion permits the separate treatment of road-induced disturbances as if

there were no other disturbances.
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In the queue of vehicles where the velocity of each vehicle is
related to the preceding vehicle by the gain T(jw) , the total vel-

ocity disturbance of the nth vehicle is given by the relation,

n-|
(h=17) AV, & AV, + ). T<F)n—KA Vik
K=0
where Ava is the velocity disturbancé induced by the road in the’
kth vehicle and ‘evyn the same for the nth vehicle. The same equil-
ibrium conditions as before are assumed, namely that the vehicles
have the same equilibrium speed vgg and that the time spacing
between vehicles is constant } seconds, If the road induces a dis-
turbance Avo(t) in the initial vehicle of the queue, the disturbance
induced by the road in the kth vehicle is given by
(4-18) AVyg = av, (t-k¥)

or _ e_ k YP
(1-19) AVye = AV

Substituting Eq., (4-19) into Eq., (4-17),
n-i
n-K -ky -ny
w20y AV, =Y TEEPav, + " Fay,
k=g -
Factoring out e ™ ¥P and combining terms, Eq. (4-20) becomes

n
(4-21) AV, = € "TP Z qu)"e""PAv .
K=0

This can be written in closed form as

n . n+) (’"')Y
(b-22) AV, =€ YP‘E 1T7(f()/)0>g*l° Ela

° .
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The gain function relating the velocity disturbance of the nth vehicle
to that induced in each vehicle by the road is

-nrjw! | —T(',w)"“ gm W
[~ T(w)e Yjw

The spectrum of the velocity disturbance of the nth vehicle is then

) I-T(jw) el(m/)nu
e A"nw) , [- T(w)e v | @‘“’(w)

The average power of the nth vehicle is given in Chapter III as
+ o0

R F _ M J(IH-I)T(J
(122 P = oo = f ‘ :%@)e)m B d

The acceleration of the nth vehicle is simply
"= PAV")
so the gain function relating Aa, to Ay, is si.rhply jo , and the
spectrum of the nth vehicle's acceleration disturbance is
2 .
" (w w \fw
(1-25) D) = WP (w)
The mean square value of the random acceleration of the nth vehicle

due to the road-induced dlsturbance is

Ty el
f ‘l—%w)dn‘) |@°£w>dw'

(L-26)
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The relative velocity of the nth vehicle, given by
A\/r" = AV, — AV,

is found from Eq. (4-21) to be related to

(4-27) AVrn _ énrp K erp_,)”i: T(F)K ek rp_T(P)n nr:)
K=o

The corresponding gain function (with p = jw) is written in closed

form,

¥ ) N =T 'e8™ . Nl
(b-28) @MYL = | — e
e ler™ i) CThwyer™ Tgw

The spectrum of the random relative velocity response of the nth

vehicle to the road induced velocity disturbance is given by

2
— (@) ( T(jw)élnm] .V _invw ,
(1=29) Q_é\ V'gw) Clie? P S J ~Tgu e ) \gw)

The mean square value of the random relative velocity response of

the nth vehicle to the road-induced disturbance is

‘ + 02
2
- % I-T¢ jnvw (vt
S L T e R e

The relative velocity of the nth vehicle is the time derivative

of the headway of the nth vehicle, or

AVrn = PAL‘H'I
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Then the gain function relating the headway to the relative velocity
is simply J-é’_ . Then the spectrum of the random variations in |
headway of the nth vehicle response to the road-induced disturbance

is

' _ _i_ | qu)@'nnu .\ nvw
(o3 @Ahn(“’ T WA {I TG)el™ ~TGuwle”

)

The mean square value of the headway variation of the nth vehicle

due to the road-induced velocity disturbance Avg is

T(wy e!
(L=32) A;, f emg_ \P |
Sem T-Tgei™

nYaJ

JT()

Je jhvw

ZQV(LU) dw.

Immediately it is seen that difficulties  are encountered with the inte-
grand as w —=0 , Apparently the integrand becomes infinite as
w —> 0 (has poles at the origin). If this is true, the integral will
not converge and it can be expected that the magnitude of the headway
disturbance of the nth vehicle will build up without limit and collision
will occur in the queue. C.onsidering first the nature of the gain .'func-
tion as w —>»0 , the apparently indeterminate form

E ~T(u)'eim ]

— T(fa))e jYe J

is best understood from its equivalent series,
N=|

Z T(Jw) e"‘""

K =0
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The limit of the series as w —0 is (recall that T(0) = 1)
n-{ k 'kr
] ) w
lim 5" TGuwe™ =
W9 k=0

Then

=1,

o Tl e/™™ n_tayw
oﬁ’:ol ) T(]w)exm T(J'w)é‘

It can r}ow be seen.tha.t the necessary condition that :‘imodz:n be finite
is that §Avo(w) have zeros at the origin. Whether @Avo(“’) has
zeros at the or?gin depends on how the road induces the disturbance

in the initial vehicle's velocity, and since all vehicles are assumed
identical it depends on how the road induces disturban‘ce in any vehicle's
velocity. This in turn depends on the type controller used for each
vehicle., Several controllers were described in Chapter III. From the
block diagram of the practical velocity controller of that chapter, the
velocity disturbance of the vehicle to external acceleration is found to
be given by

w33 [Ty p"‘+ (ks+ks prp +k£‘AV,' = (T p+DA’CI

The road-induced force on the vehicle is given in terms of the eleva-
tion of the vehicle in Eq. (4-8). Then the gain function for this con-

troller, which relates the velocity disturbance to the vehicle elevation

s —ngw(?iuwH)

W) Er (Jw) +(|+k +k,F)Jw+K]
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The spectrum of @Avo(“’) is given by

. ] | )
-3 P (W) = — M Q:af |, Jw+l)f
o vss 73(]&)) +("" K3+k3F>jw+ K4_

It was shown in the first section (see Eq. (4-15) ) that §AY(O)

2 Ay (w)’

is finite, so @Avo(“) does have the necessary zeros. Similarly
it can be shown for each of the controllers considered that the spec-
trum of velocity response §AVO( w) to road-induced disturbance
has the necéssary zerosat w = 0 .,

The measures derived for queue response to road-induced

disturbances are all of the form

w® O = z7 f g7 Qw):l @Avfw)dw 2

The results are summarized on the basis of Eq. (4-36) in Table 2

below. l



TABLE 2
MEASURE SYMBOL gn [T(jwﬂ
Power dissipated by the nth nel 2
vehicle of the queue due to -p- F- l"'T( ) J(m')mj
the road-induced disturb- nu
an - J
ance. | T(J we
Mean square acceleration n+l +Dvw 12
of the nth vehicle due to O—a .wz ‘ T( w) Jm ) '
the road-induced disturb- Ad, |- T(w) eJﬂ()
ance. |
Mean square relative 2
inYWw
velocity of the nth vehicle 0._2 ejrw TK,U e‘ -) T )n jnfw
due to the road-induced dis- BV, T(J )eﬂw J g
turbance.
Mean square headway of . N , 2
the nth vehicle due to the GJZ u—akéﬂeqi’nw)e, w0 _Tgw)"clnn‘)
road-induced disturbance. n @ I-Tquel

Response of Very Long Queues
to Road-Induced Disturbances

It is interesting to determine the nature of 0, Ahnz as a
function of n for n very large but finite. The limit of the integrand
in Eq. (4-32) as o —» 0 has been determined to be

@%(w) /w':{:o :

Suppose ® is small but nonzero, Then

T(]a)) Jnrw ~ O for n large,
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T ~ 24 = [+ (b-adjw,

|+ erw
ejfw ~ ,+jYCL) ’
T(jw)ei"w% | + (Y—f-b,-—d.)ja),

and

(A ¥ |
= L d-b
!-T(J'a))eﬂw; ~ Y+b-a (T# l l) .

For very low frequencies then the integrand becomes

¥ Bl

Y+b -d
This integrand is independent of n . Consequently it is anticipated
that in very long queues, road-induced disﬁrbances will cause
finite O—A—hnz which builds up to a constant level with increasing n .
The value to which it builds is inversely related to ¥ - (aj - by) .
As Y - (al - b;) tends toward zero, O—'Ahnz builds up to extremely‘
high values. Either hg Would have to be extremely lar gé or collisions
would be expected. For the normal road condition and Y #a) - by ,
the constant level at which | O_Ahnz stabilizes in very long queues is
related to the spectrum of Ay(t) and the type of controller used.
The necessary hg is then related to G—Ahnz by considering the

probability density function associated with | Ay(t) .



CHAPTER V

DESIGN OF VEHICLE CONTE.{OLLERS FOR
OPTIMUM QUEUE RESPONSE

Introduction

The disturbances of the automatica;lly controlled traffic queue
may be separated into two groups based upon the manner in which the
disturbances are induced in the queue. The first group includes large
random disturbances, which have their source in a particular vehicle
of the queue. These disturbances are propagated from vehicle to
vehicle back along the queue. The nature of the queue response to
these disturbances is determined entirely by the closed loop character-
istics of the vehicie controllers. It is apparent then that the response
of the queue to these disturbances may be optimized by proper design
of the closed loop gain function T(jw) of the controller. This optim-
ization problem is discussed first in this chapter. It includes consider-
ation of criterié and problem formulation.
‘ The second group includes disturbances which are usually of
smaller magnitude, but which aré induced into each vehicle of the
queue. These include noise sources iﬂherent in the vehicle controllers

and road-induced disturbances. These disturbances are related to

their resulting velocity disturbances of the vehicles by gain functions

88



89
which are functions of the controller's componenl:s; It will be seen
that their effect on queue response may be reduced by servo design
techniques, while the optimum system closed loop function T(jw)

is maintained. This is.treated after the optimization problem,

Optimization of Queue Response to
Disturbances of Only the Initial Vehicle

The queue of automatically controlled vehicles may be repre- |
sented by a block diagram, as shown in Fig,1ll For the situation

considered here, where the only external disturbance induced in the

| 2 3 4
A%, T2 Tl 22— T 258 i) | 2250

Fig. 11 --Block Diagram of a Queue of Automatically
- Controlled Vehicles '

system is induced in the lead vehicle, the headway response of the ith
vehicle to such a disturbance was found in the Chapter II to be given

by the relation,
i~
1 Ak = AK —ax = [I-T(R)|T(D) 4%, .

It is obvious that the headway disturbance for the entire queue would
be minimum (zero) if T(p) =1 , corresponding to a rigid connection

between vehicles. But here the disturbance is transmitted without



90

reduction to the entire queue. In particular it is seen that Av; =
p Ax; = p Axg for all i , Each vehicle of the queue dissipates as
much power as the initial vehicle. This is rather an undesirable
requirement on the queue vehicles. The velocity disturbance of the
ith vehicle Av; , and consequently its power, can be reduced to zero
, bjr making T(p) = 0 corresponding to no coupling between vehicles,
Of course the controller does not function for any purpose here and
the headway disturbance between the first two vehicles will be Axqy
the maximum headway disturbance possible for a stable queue with
the single input disturbance. The above discussion suggests that the
most desirable system allows some heaany disturbance, but reduces
disturbances as they are transmitted through the queue.

The mean-square value of headway disturbance of the ith

vehicle was given in Chapter III as

+ 00

(5-2) o;;f = —Z-LTFII—T(J'w)Ile("w)‘

- 00

2(1-\)@“(‘0) d . .

It is recalled that the equilibrium condition required that T(0) =1

’
and the asymptotic stability condition requires that lT(jw) |2 <1
for all w . Itis observed that for any physically realizable system,

lim T(jw) =0 .

W -»00

In view of these restrictions of ‘T(jw) , it is apparent from Eq. (5-2)

that Ozhf for any given @AXO(w) will be maximum for i =1 .

\
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The average power dissipated by the ith queue vehicle is given by

B F\; + 00 “E ]
(5-3) ng = é_fflT(jw)law Mo(w)dw .

Again, in view of the above restrictions on T(jw), it is apparent
from Eq. (5-3) that Paj < Pay for all i>1 . Consequently,
attention is focused on the optimization of the response of the first
vehicle, since the mgxiﬁum headway and velocity disturbances occur
for this vehicle,

In general it is desirable to minimize the relative moti;)n of the
vehicles, the headway and relative velocity in particular. Reducing
the headway disturbances reduces the‘equilibrium spacing hg required
for collision avoidance, and thus the traffic flow is increased. Reduc-
ing the relative velocity increases safety. However, these reductions
are obtained at the cost of larger individual motion, such as velocity
and acceleration disturbances, than would occur if larger relative
motion were allowed. Increase in velocity disturbance results in
increased power dissipated by the vehicle, which is reflected in the
cost of operation of the vehicle. Increase in acceleration disturbance
results in increased discomfort of the passengers and increased wear
in the vehicle. Tolerable limits on measures of the response motion,
such as limits on average power and limits on the mean square accel-

eration, can be determined independently., Systems which produce
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measures less than the limits are acceptable. The design problem
then reduces to the determination of the T(jw) which minimizes the
relative motion while simultaneously allowing no more than the limit
of individual motion,

As an example it will be quite instructive to consider the
very simple problem of minimization of the mean square headway

disturbance O'&h?'

17 subject to the limit O_&V% < c . In order to

= v
simplify the demonstration of techniques, the power density spectrum
0 Av 0(m) of the velocity disturbance Avg of the initial vehicle is

selected to be

2 NZ
B, W =

without regard to real physical considerations. The velocity disturb-
ance spectrum is related to the position disturbance

(from x0(0) +vggt) by*

0 B = W),

o
SO

2
55 D (w) N

w2+02

*Recall that Avo(t) = p Axqp(t) , so the gain function relating
Avp to. Axg is simply Jjw . Then @Avo(“’) = ljwlz éAxo(w) ’
which yields Eq. (5-4) directly.
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A block diagram of this problem is shown in Fig. L2

»

A)(.o  Sammm T(P) ax, > Ah

- O — AV,

Fig. 12 --Block Diagram of Simple Headway-Velocity
‘ Optimization Problem

Here it is desired to minimize the integral OZh% , subject to the
limit (constraint) that OZV% = ¢,, . This is a calculus of variations
problem with fixed end conditions and an integral constraint. This

problem is solved by forming the integral,

— 2 2 2
(5-6) L= Oz_sh, +)\VO:V, ’

where )\::', is a Lagrange multiplier. The integral is then minimized

by variation of T(jw) , which minimizes the integral is determined

as a function of w and Ay , Typ(jw, N,) . The optimum gain func-

tion is substituted back into the constra_,int, O'va = ¢y . Evaluation
of the integral,
+ 00
| o’ = 2= [1Taliw, W) &, @) dw
(5-7) Av, 2T oljWw, Ay AV, ’

- 00
yields an equation relating \,, to the parameters of 'QAVO(“’) and
to ¢y . Finally, Tg(jw) may be substituted back into the integi‘al

OZ.}& » and the integral may be evaluated to determine the minimum

4
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mean square headway for the given spectrum QAx o(co) and the given
constraint,

There are two alternatives to the minimization of .I by vari-
ation of the system gain function T(jw) . One is to consider the

integral
+e0 .

o e[l 0 il g o

-0 '
found by substituting the integrals for O-Zh% and OXV% into Eq.
"(5-6). Here the variation may be performed by létting T jo)
= To(jw) + € J‘I‘(jw) » where Tg(jw) is the optimum and 65 T( jw)
is the change in the function from optimum. Substituting the modified
expression for T(jw) into Eq. ( 5-8), one obtains the integral as a

function of € , I{(€) . Then sétting ' d_&)_‘:: (O and examin-
d€ L
ing the resulting integrands with the objective of meeting this require-
ment, one also obtains the ne:cessary requirements on the poles and
zeros of Tg(jw) and thus the function itself.
The second alternative is to minimize I by variation of the
impulse response of the system characterized by T(p) . Denote this

impulse respanse by J(t) and the impulse response of the optimum

system (To(p)) by 7o(t) . From Fig.]12 it may be seen that

(5-9) ah @) = BX (1) - f 7(3) A%, (t1)d v .
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The integral is the solution Axl(t) of the differential equation repre-

sented by Ax) = T(p) Axg . Since Av; —a_xl ’

(5-10) AV, () IY(V) dt JAY (t _V) dv .

2
The mean square hea'dway O'Zhl is then given by

(5-11) 6[;1'2 = {AX.,(*) - f §CV)AXO (f“V)d'V}a ’

and O-Z‘Z,l by

2 £0 2
R W E(OF PN COE
[o)
The variation of J(t) is given by

(5-13) ¢y = () +e8T(t).
Substituting Eqs. {5-11), (5-12), and (5-13) into Eq. (5-6) yields

i(e) ,

T(e) = {Ax,(ﬂ— f fZ(v) +re§ 7(v]AXo(’§-V) dV}E

(5-14)

+ }\2,, { f E’Z(V)+ 657(1/3 4 AX,(t-'V)d'V}Z.

Setting _d__I_(é_) = 0 and reversing the order of averaging and integra-

de

€=0
tion on v Ylelds

f 57(“){13)( (B ax,(t-=) — j J@)AxX, (t—'V)AX (t-2) v
- A f AOr" AX(f-V) A, G- dvpde = 0.

Since 57(04) is an arbltrary functmn, its coeff1c1ent musl: be zero

(5-15)

for X 2 0 , i.e.,
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B, (D) — [ 7B EVE-Ddv.
(5-16) ’

-\, ﬁ (V) 3 AX (t-V) T O (t-dv = 0

on the interval o2 O. Noting that the averages are autocorrelations

and denoting 1‘_‘"‘ ZT‘[X(tDX(tg)df b)’ d)(‘l‘ 'ta), Eq. (5-16 becomes

s B f 7, @y + 5, &, (i dv, w0

This equation is recogm.zed as the well-known Wiener -Hopf equation,
which is well covered in the literature.29» 21 The solution of this
equation will be outlined but not proved here.* At this point the defi-
nitions and nomenclature consistent with the literature are adopted.
Using the definitions,

(5-18) ¢, (x-7) = Cbeo(“-'V) + divd(“"v)

and .

(5-19) (‘") ¢Ax ¥

Eq. (5-17) is reduced to \

(5-20) q%d(x) =J'Z(v)4>“(m-v)dv, %20,

This equation is customarily solved by spectral factorization of the

I

two-sided Laplace transforms of the autocorrelation functions ¢id

and ¢ii » given by

*For details of the solution the reader is referred to any of
several good servomechanisms texts. The nomenclature defined in
this section is aligned with that of discussions in "Automatic Feedback
Control System Synthesis,' by J. G. Truxal.

’
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(5-21) @id@) ='[¢id(x) e “°du

and 4w
-0 S

(5-22) @;‘, (s) = [ ¢ () e " d .

- 00
Here s is the complex frequency variable, s = o+ jw . For the
autocorrelations considered here, the spectra exist for o =0 .
‘ Consequently the power density épectra, @id(‘*’) and @ii(w) ,
also exist. They are found from @id(s) and @ii(s) by letting

s = jo . The optimum system gain function found will be To(s,}\v) ,

and

=23 T, (jwh) = To(s,\,)

s=jW
The solution of the Wiener ~-Hopf equation is given by

(5-2L) T.(s,\) = [@ész/( ‘13);:(5)]4_
- (s

Here {;i(s) is a rational function of s which can be factored into

two rational functions ®ii(s) and @;( s) . The function Q5(s)
has poles and zeros only in the right half (6> 0) of the complex s
plane (abbreviated RHP hereafter), and Q:;( 8) has poles and zeros
only in the left half (67<0) plaﬂe ( LHP). The function

[@id( s)/qji-i( sﬂ + is the partial fraction expansion of @id( s)/@i;( 8)

with the terms for the RHP poles eliminated. As mentioned earlier,
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the solution is completed by substituting Tg(jw, >‘v) back into the
constraint and solving for >\v

The optimum system gain function Tg(jw) will now be de-
termined for the simple problem being considered. Taking the
Fourier transform of Eq.. (5-19), substituting in Eq. (5-5), and

letting s = jw , yields
2

9= 5,0 = —oox
Taking the Fourier transform of Eq. (5-18), substituting in Eqs.
(5-4) and (5-5), and letting s = jw vyields

Bi(s) = (1-09)B () = LASIN,

- 52

The RHP and LHP factors of Qjij(s) are respectively

@,;(S) _ (l‘)\vS)N

a-9S

and
(1+A,5)N
a+ S

51(5) =

Then

&,,(s) N

———

B (s)  (0+)(i-A,s)

The partial fraction expansion of @id(s)/éi-i(s) on the LLHP poles

only is given by

_ _ N
| [@zd<5>/@é£ (sﬂ+ ~ (+ah,)(s+a)
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Finally, To(s, )‘v) is given by

T(sh,) = [@td()/ 8.(s)], _ . |
) & (s) (i+aA)i+h,9

The constraint equation,

v = Cv
upon substitgtion of s for jw becomes
+jpo
57 LM L)) S, () ds = <.
_J,o

or

j’ -NZs® e
2T | (1+ak,) (l N3 1+),S) (a- 5)(d+3) Y

The integral is readily integrated by residue theory, yielding

2.~ N (a-i
(kah)er = 3 (/\%Ja;_l)

from which one obtains the equation,

2
4 53 l N _L_.__L) _

When this equation is solved for )\v and the solution is substituted
into Tg(s, X v) » the optimum design of the linear controller is

accomplished.
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In the above example it is observed that a particular difficulty

T exists with the optimnum syéi:erri function Tg(s, }\V) . Note that

=
T;(O))\V> "" (‘4‘0)\\,) ?5 I

This syé tem function will not meet the equilibrium requirement that
T(0) =1 . This is due to the nature of the assumed @Avo(w) in
the vicinity of w =0 . An artifice may be introduced which will
cause the optimization procedure to yield an optimum system gain
function such that Tgp(0, )\ v) =1 . The technique is to add a small
constant to the spectrum of @Avo(w) , such that QAVO(“)) be-

comes

_ wAN? 2
(8-28) @§¢@9 = iia: T b,
and @Axo(w) becomes
2 2
A (N> 22+ 2
= + —3 =
(5-26) QLJM) wireas Wt WE(wBral)

The optimization method can not be applied to spectra of this kind,

The poles at w =0 are first replaced by poles at w = +j& , such

that 3 (N2+A2.)wa + aZ.AZ
(5-27) C () = W+ @Y w2+ a?)

and € is allowed to approach zero. The optimization is then per-
formed, and finally Tq(s, )\v) is given by
lim
i T.(s,\,) = T.(seN).
(5-28) (s,h) = U T(SEA
The optimum system function is also dependent on A , which may
be made arbitrarily small. The optimum function Tl s, XV) or

To(jw, )\v) , will first be found and then the effect of the change in
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spectrum of @Avo(m) will be discussed,
The spectrum given in Eq. (5-2]) ay be factored just as

Qii(s) is, such that

V= B (\H _[oa-(NvaFs] [oa+ (N2 )
i @A"o(s)@“(s) - E3Na-s) a(e+s)(oli SBS]‘

Since @id(s) = @Axo(5> and @‘; (S) = (I-—)\\,S) @A-X;CSD)
@;_ (8) B (3) _ [oa+ (NZ+22)2 S]] .
SO I NG Rl e Coes) (e
B, (5) | (iwarJoa-(N*+s f?'e:](mS)—(|+e)\v)@m~(wif)%c_i](e +5)
D, (s) ; (O-€X|+E)\v>(l+d)\v)(6+5)(d+S)

To(s€h)= [Bu/B)s _(rohfra-tif(ord - (1rehfoa-(vi sfE e+ )
e @: (o-e)1+ E/\.,YH a)\,,Xl+)\.,s)[aA+(N‘+Aa)J='s:]

Letting & = 0 and simplifying yields

(N7 + 02 :} |
T + }\v . ‘
[+ A,
5-29)  T(s)) = — (1+ )\J_) .
0 (N2+ A%)= Sl ()\ S+‘)
| aA v
As <A Dbecomes very small,
N
om(H-c'}\‘,)S-l_l

(5-30) TO(S)AV) = (5N5$+l><}\v5+|) .
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From Eq, (5-29) it can be seen that T(0) =1 . Furthermore it may

be seen from Eq. (5-30) that since G)\V>O , the small A has

effectively caused a lag type filter in tandem with the filter X | .
S+
v
The ratio of the time constants of the lag type filter is independent of

N and A and each is inversely proportional to A . The high fre-
quency gain of. the lag type filter is TIIEX;_ the sarrfe' gain as

To( 0, A v) found before adding A% to @Avo(“’) . The effect of
A2 on the problem may be seen by considering Figs. 13 and 14 The
dashed curves show the modified spectra and the modified ‘To(jw) IZ

" and l 1 - To(jw) IZ due to the A% term. It may be shown that

for A< 1\;\ and Tq(s, )\v) given by Eq. (5-29)
d

2)\2
G AT "” "’)‘)) (l+ax)2'

Then the effect of the pole is to add an increment to the integral

2
Gzhl found by using Tg( jw, )‘v) = 1 so that

.an estimate for the mean square headway using Eq. (5-29) is

(5=32)

(cm) _NEND

+ a)\v)a

.Al Zﬂ-f|+a)\v) )\sz)

2 .
Also it may be seen from Fig. 13 that (a,, may be estimated by

|
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+ 00
CINL:

A W N dw +

av, 2T ( l+a}\v)a()\sz2+ i)(wz+.02)

. (5-33) l (CJA) (dev‘kaz}i)g‘ N e d
TUN/ (T+am)? 2T (1+a\J(iud+)

It .;15 seen from Eqs. (5.32) and (5-33 that the modification in response
from true optimum may be made arbitrarily small by making A2
very small, and yet the requirement T(0) =1 may be met.

Any optimization technique, like methods of analysis, does
not treat all aspects of the real problem. As a consequence it is
generaily necessary to modify the theoretical or optimum ciesign.
Generally, the modifications will not seriously irhpair system per-
formance,

‘When more complex inpu:t disturbance spectra are considered
there are relationships which must exist between the spectra and the
assigned constraints if the optimum system Tg(s) is to be realis-
tic. First, hovyever, some consideration should be given to the
realism of the aésumed spectra. Consider the spectrum

i @Axo(“’) = @A:o(w) @An-co @)

where

@Zxo(w> — AlwreXiw+z) (w2 _ ANm(i@.

(5-3h) Q’WF')G“’*F’-Z)"“'CJ"‘J*P") __ D,,g'a'))
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Since

(5-35) @AVS@ = w° @_Axfw)

and

( S "'36 ) @A ao(a'J)

|

¢ g—LSA)(C,(("‘)):

and since it is known that A(Q, is a bounded function and consequently

has a finite mean square value

+T : | + 00
. 2
g2 = fin e [Baelat = fa wdw
. -T — 0

it can be seen that n>m +2 . Boundedness is also a property of
higher order derivatives, which implies even more poles of

@Axo(w) , but usually only the lower frequency poles need be con-
sidered so that the constraints assigned do exist. In other words, the
statement that 073(210 =Cq implies that n 2 m +3 . Since the
s olution of optimization problems becomes extremely complex as n
increases, usually n is made equalto m +3 . This valﬁe of n

is required if attenuation constraints are specified, e.g.,

02 < poyl " where p<

aQ, = ‘D AQ, ? . YV..el_'e_ F l .
On the other hand, if To(s) can be made to have more poles than
zeros and if the constraints are given in terms of G-Ad? avnd not

GZGi, » then the problem may be greatly simplified by neglecting the

higher frequency poles of @Aao(w) and making n=m +2 ,

The existence of Ozai s is then due to Tg(s) . This approximate
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optimization will be particularly accurate if the higher frequency
poles neglected are widely separated from the dominant poles con-

sidered,
When additional constraints are placed on higher derivatives,

the integral I corresponding to that of Eq. (56 ) becomes

(5-37) L= o—h +>‘| AX) +')\2. axt *o-- +}\q AX"'

where

a _ dax@)
v dt*

In this case, the q A's are found by solving simultaneously the q

AX

constraint equations,
-+ oD

5=38) O—xa = 2-‘-’-]-'— (J(JJ )\ )\ --- >\ ) A){&J)dk) = Ci,’ i=|:2)":q'

- 00
For small q the integrals are tabulated, 22 but are nonlinear alge-

braic functions of the A\'s and the poles and zeros of Qaxy(w) .
Also, the complexity of the functions increases very rapidly as q
and the number of poles of. @Axo(w) increase. Therefore it is very
desirable to consider the minimum number of poles of @Axo(“)
possible and use the minimum number of constraints necessary.
When the integral I of Eq. (5-37) is varied as in Eqs. (5-13)

to (5-16), the resulting Wiener-Hopf equation becomes

(5-39) d%x@ _-.f 7 (v)@% xgo(-‘ll) +\ ﬁx‘.,(oc—v) H ot N\ qcpwg(x.-pjdv , %20,



107

Then Q;;(w) becomes

s-b0)  Byw) = (I FAGE AW+ - -+ A q™) B,y @),

and
-4 P(S) = (IFA ST+ NS - + AgS™) B (8) .

It is possible to set

Y <2 4_ zq)._(__s_‘_)(_s’)‘ _s?
(5-L2) (I >\|S +>\aS — ~-+/\°‘3 =(1 iz | = I w2/
and by multiplying out the right member and equating coefficients of
like powers of s , the relations between the \'s and =z's are

obtained. Thus @ii(s) may be factored as before into LHP and RHP

factors, such that
3,0+ D) (+2IEE (-8 (-5
Let

613 &9 = REEEAET,E) -

Then _
&, &6  AN,.6) ‘
3.(s) ) DG

Partial fraction expansion of this function on only the n poles of -

(5=LL)

Dn(s) and recombination yields a function of the form

@id@] _ BM,.0)
(5-L5) @l-‘—(s) N Dn(s)

where the numerator polynomial Mj.1(s) is of degree n-l in s ,

asl indicated by its subscript. Then
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(s-46)  T.(S) = [@f){@{(s& - BM.G)
By (s) QLEAN,(5)

Here the numerator is of degree mn-l1 and the denominator of degree
m +q . Itis then seen that for T((s) to be physically realizable,
(5-L7) q+mz n.
For instance of a @’zxo(w) is specified with two poles and no zeros,
then a constraint must be assigned to qui' , or the resulting Tq(s)
will not be realizable. Note that if a constraint is assigned on AQ; ,
but not on Av; , such that )\2 =Ng#0 but XA =A;=0 , then
Qa'(s) will have complex poles. This rﬁay cause l Ty(jw) l to be
greater than unity for some w . A system characterized by such a
To(jw) will not meet the asymptétic stability requirements. The situ-
ation here will present the system designer with two alternatives. The
first is that if limits are determined on OZV% and O—A_Gi , then
the constants cy and c, of the constraints, O Av% = ¢, and
GZq% = c, may be adjusted. The other is to accept T (jw) and
approximate it with a tractical system for which l T(jw) ‘f 1 and
to accept the corresponding increase in G'&hi .

It is mentioned in closing that there are other reasonable op-
timization problems in which it is desired to minimize GZ'h? + /u O‘A’vi
or to put constraints on O;,Z . The relative velocity Av, is given

r

by Avy, = Avg - Av] in this case. In these problems the integral I
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takes the form

= 2 2
GO T =+ pay + NGE Al oo

A similar form of Wiener-Hopf equation is found. Now

(|+/uw2) @Ax‘{w) , |

fl

(5-L9) @zdw

(5-50) @

From Eq. (5-},9) it is seen that effectively §Axo(°") has an in-

E
1

[+ (ued)ust + Mot + -], ()

crease of two zeros, so that m ‘is increased by one. This in turn,
by Eq. (5-47), reduces the number of constraints by one, which are
needed to insure a physically realizable Tgy(s) .
If the problem is of the first kind, minimization of gy
plus a weighted O_A—vi » then M . is a known constant and not a
constraint. The constrainﬁ on Av; , szf =cy , may be removed
and the ﬁumber of nonlinear equations and A's reduced by one.
Optimization of Queue Response to
Disturbances of Each Vehicle _
Road induced dist:urbé,nces and internal noise sources in the con-
trollers of each vehicle can be referred to the force inpué to the auto-~
mobile, Consider the general feedback configuration for the linear
mode of the a;utomal:ic longitudinal control system of each vehicle,

shown in Fig. 15.

-
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Ay, — G —Bé——-) Gp)— =V

G~

Fig. 15 --General Feedback Controller

It can be seen from Fig, 15 that the gain function relating Av; to

Avi.l is-

GG ()
T ‘) = 1Y 2\|
(jw) | + G () Ge(jw) Gs ()
The gain function relating Avj to the disturbance forces Af; is
G, (jw)
| + G(w)G2(w)Gs ()

Now it is assumed that T(jw) is a physically realizable gain function

(5-51)

(5=52)

with the property that T(0) =1 . The open loop gain of the feedback
controller must have an integration so that T(0) =1 . The gain
G2(jw) , which relates the velocity of the vehicle to the applied force
cannot have the pole at w = 0 because of the friction of the vehicle.

This gain in simplified form is . Also, Gj(jw) cannot

Tajw+1
have the pole, as this would make T(0) =0 . Therefore Gy(jw)

possesses the pole. It may be seen from the gain function Eq. (5-52)
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I:Hé.t at fre.‘quenci‘es up to those for which I Gy (jw ‘) | | —» 0 , if the gain
Gi(jw) G3(jw) >>1, then the magnitude of the gain function » {(5=-52)
will be very small. This will greatlyvreduce the system rt;,sponse, and
consequently the queue response, to road-_induced disturbances and _
uncorrelated disturbances from other sources.

It can be observed from Eq. (5-51) that in order for T(0) =1 ,
it will be necessary for

(5-53) , Ga(o) = | ’

since Gj(0) —» o and lim T(jw) =__ 1 | . Furthermore, for

frequencies for which
G, (jw) G(jw) G4(jw) >> 1,
I
Ga(jw)

Then the optimum system gain function Tp(jw) may be achieved by

sy T (w) =

setting

[
G.(jw) = :
for low frequencies. The bandwidth of Gj(jw) Gz(jw) will provide

the higher frequency cutoff of Tg(jw) .

For instance, consider that To(jw) is given by

N
(W) = aa(i+aly)

J (a"-%iwﬂ)()\vjwﬂ) |

as found from the optimization of the two vehicle response to disturb-

jw + |

(5-56) To

ances of the lead vehicle. Then an asymptotic Bode plot for the feed-

back controller is shown in Figure 16‘. In this plot it is assumed that
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Gy(jo) = KL Taijo +1)

for the plot of log ,Gl(jw) Ga(jw) I .
jo | . .

The value of K to obtain To(jw) for the closed loop function is

found

logW

Fig. 16 --Asymptotic Gain Magnitude Plot
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as follows. Noting that log l K/jw l = log K - logw , the cross-

over point (where the loop gain is 1) is given by

(5-57) logK = logx: = —log(1+a\),
Thus
- l
(5-58) K= K(+an) |
For frequencies w < x];’_ , log | Toljw) 15\‘5 - log | G3(jw) l .
For frequencies w> 1 , log | Tg(jw) | = log 1 .
Ny 0 Ao(l +aky) jo

The optimum gain function Tg(jw) is thus achieved. Furthermore,
it is noted that K can be increased if a lag lead network is added to
Gy (jw) as indicated by the dashed line modification of the

) Gi(jw) (_}Z(jw) ] plot, This will further reduce the system response
to lower frequency components of force disturbances. This would be
especially useful for reducing road-induced disturbances because of

their very low frequency spectra.



CHAPTER VI

A~GONCLUSIONS

In this paper several aspects of the response of queues of
automatically controlled vehicles to various types of disturbances
have been studied. Although the sinusoidal disturbance is quite un-
realistic in the realm of traffic dynamics, it serves to define the
various gain functions associated with the automatic queue.

Gaiﬁ functions have been developed which relate headway,
relative velocity, velocity and acceleration of each yehicle of the
queue to the initial vehicle velocity and to velocity disturbance
induced in each vehicle by the road. Based on these gain functions
and the spectra associated with the random velocity disturbances,
the mean square values of the resulting disturbances in the headway,
relative velocity, velocity, and acceleration of each vehicle have been
determined.

The traffic engineering problém is that of minimizing the
equilibrium spacing, hg , yet keeping it large enough to avoid colli-
sions where the maximum headway disturbance occurs in the qp.éue.
For disturbances of the initial vehicle .only, the maximum headway
disturbance will occur between the initial vehicle and the first follow-

ing vehicle. On the other hand, when disturbances are induced in each

1
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vehicle, the resulting maximum disturbance occurs well back in the
queue. In very long queues the disturbance can become very large
unless the gain functions relating the nth vehicle disturbance to the
disturbance induced in each vehicle have zeros at w = 0 or the spec-
tra of the disturbance sources themselves contain the zeros, Investi-
gation showed that for all anticipated sources of disturbances in a
practical controller, either the gain relating velocity to the source or
the spectra of the sources do contain the zeros.

The main problem studied is that of determining the particular
controller which yields optimum queue response to. disturbances. It
was shown that minimization of headway and relative velocity disturb-
ances is accompanied by increases in the mean square velocity and
acceleration of each vehicle of the queue. Mean square velocity and
acceleration are related to power and discomfort, respectively, and
must therefore be kept below tolerable limits. These limits are in-
dependent of the controller to be used. For disturbance sources in
only the initial vehicle of the queue, the largest disturbances occur
between the initial vehicle and the first following vehicle. There-
fore the optimization is that of minimizing the mean square headway
of the first vehic.:le while keeping its mean square velocity below the

tolerable limit. An example of optimization of queue response was

the minimization of the integral,
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+ 00

I =GN, 6f = mf 1= @Av( B g+ M T(w)[@(w)dw

- 080
by proper choice of T(jw) , while keeping O—Avl =c, . Here
)\Zv is a Lagrange multiplier and c¢,, is a constant limit determined
independently. Minimization of the integral I by variation of
T(jw) results in the Wiener-Hopf equation. The solution of this
equation, To(jw , N,) , is the optimum controller. The Lagrange
multlpller is determlned from the equation,

EWIT(J“’)U 3 (w Ydw = Cy .

— 00

The assumption that

= N 2
@ w) = - + A
Avg ) WP + C(?‘

where & is a small constant, results in an optimum T(jw) given
by ’ N
T(w,).) = aa(l+an,) jw
J
(3 Jw'*'l)()\vjw'*'l)

The application of the optimization technique to similar problems is

discussed.
Optimization of the queue response to disturbances induced in
each vehicle is accomplished by designing the controller so that the

effects of such disturbances are minimized in each vehicle.
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The optimization depends on the power density spectrum of
the input disturbances. At the present time there is little informa-
tion available on such spectra. Research is needed to investigate
the- spectra of the human driver's response and spectra of other
sources. of disturbance of the initial vehicle. Also, the integral
rﬁeasures of queue response to disturbances induced in each vehicle
depend on the spectra of these disturbances. There may be enough
information available to determine at least the spectra of road-
induced disturbances on a regional basis. This should be investi-
gated.

The optimization further depeﬁds on the tolerable limits of
individual vehicular motion. Indices of comfort, wear, cost of opera-
tion, etc. should be determined in terms of mean square velocity,
acceleration, etc., of each vehicle. This is still another important
area for future study. i

Finally, it is noted that results are obtained for unilateral
systems, i.e., systems in which control of the motion of the vehicles
depehds only on the preceding vehicles. More specifically, the motion
of each vehicle is controlled according to the motion of its immediate
predecessor only. Itmay very very valuable in future systems to
weight the motion of several vehicles ahead and behind into the control
criteria for each vehicle. This may be a very profitable area of

future study.
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