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and only if for every y € A and every scaler @ with (ot < 1, it is

true that o y € A.

The following facts are easily checked. The closure of a bal-
anced set in any linear topological space is also a balanced set. If
A is a balanced subset of X, then

A° = {x' :x'€ X%, Ix'x1 &€ 1 for all xe A} .
Similarly, if A' is a balanced subset of X%, then

Op ={x : x €X, Ix'x1«l1l for all x'€ A'} .
It is then immediate from these relations, the fact that Sl and Si
are belanced and from (0) and (1) that

(8) 89 = 5] and O8] = 5, .

Definition 2. A subset A of & linear space Y is sbsorbing if
and only if for each y € Y there exists a positive real number r

such that {f\ > r implies y € B A (see equations (3)).

An sgbsorbing set contains the zero vector. Also it contains a

nonzero multiple of every vector in the space since y &€ B A and

B # 0 imply (1/B)y € A.

Definition 3. ILet A be a subset of the linear space Y. The

balanced and convex hull of A is the intersection of &ll balanced

and convex sets which contain A.



We note that the intersection of balanced sets is balanced and
the intersection of convex sets is convex. Thus, the balenced and

convex hull of A is the smallest convex and balanced set containing A.

Definition _lt. Let A be & balanced, convex, and absorbing set in
a8 linear space Y. For each y€ Y let
A(y) = {r : r is a positive real and y € rA}l.
Because A is a@bsorbing, A(y) is nonempty. For each y & Y define

.p(y) =inf .
r € A(y)

P is called the Minkowski functional of A (__"{_, PP 131-1--137)’.’

If (a,00 ) and [, a0 ) represent the open and closed semi-
infinite intervels to the right of the real number ¢, then it is clear
Prom the fact that A is convex and absorbing that

(p(y),00 )€ A(y) £ [p(y), 0 ).
Also it is easily checked that if A is the unit sphere of a norm

il M\e on X, then Il‘{l,1s the Minkowski functional of A.
Definition 5. A norm N:llyon X is equivalent to Il on X if
and only if (X, W: Wg) and (X, N ¢« |) are equivalent topological

spaces.

Definition 6. A subset A of X is a norm set for (X, - W ) if

and only if A is the unit sphere of some norm on X equivalent to Hi:W\.



We would like to state here several theorems involving the above

concepts.

Theorem 1. The norm M+lgon X is equivalent to W-ll on X if and
only if there exist positive real numbers r and t such that
rifxlle & Ixll € tHxll,g

for all x € X.
Proof. BSee (7, p. 87).
Theorem 2. Suppose W' lly is a norm on X. For any nonnegative real

number r, let

T, = {x:xeX, Nxllo & r} .

Then, if ry is a positive real number,
rlﬂx\l, < IxH for all x € X
if and only if

If r, 1s & positive real number, then
ixll € vl xllo for all x € X
if and only if

T

1 € 8,._-

T2
Proof. The necessity of the condition follows easily. TFor the

converse of the first assertion, suppose Srlg Ty. Then x’“# 0
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r.X .
implies _—t € S and hence also in T. . Thus we have
I xu Ty 1

r —x
1 “ Nxn “oﬁ l. This shows that, for all x 74 o,

r, W xlle € Wxt .
Trivially x = O also satisfies this inequality. For the converse of
the second assertion we apply the first assertion of the theorem and the
fact that, if U is a sphere of radius r for some norm in X, then r.U

2

is the sphere of radius rr,, for that norm.

Theorem 5. If K:llg is a norm on X and Tl is the unit sphere of
(X, Wen,), then 1 x No ixn for all x & X if and only if
Sl = Tl .

This theorem is simply stating that two norms on the space X are
the same 1if and only if they have the same unit sphere. Its proof

follows by using Theorem 2 with rl = r2 =]

Theorem }}_ Iet Y be a locally convex linear topological space and
let A be a nonempty, closed, convex subset of Y. If y, ¢ A,. then there
exist a continuous linear functional y' on Y and a real number ¢ such
that

R(y'y,) > o 2 R(@Gy'Y) for all y € A.

(The importance of this theorem lies in the fact that the points

in Y need not be closed sets. There are several standsrd theorems
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[ see (1, No. 1189, p. 71) and (3, p. h17)] in which y, is replaced
in the above inequality by an arbitrary element of a closed, compact,
convex set B not intersecting A. Taylor shows (:(_, P. 151) that the
hypothesis that B is closed can be eliminated. Although Theorem 4 is
a special case of this result, we include a proof of the theorem since

we can give a simpler proof in this special case.)

Proof. We will first suppose that the scalar field of Y is the
real field. Since Y is a regular space (7, p. 126), there exist open
nonintersecting sets W and Wl with Yo €& Wand A € Wl. Since Y is
locally convex, we may assume W is convex. Then there exist - see
(1, No. 1189, p. 97) or (7, p- 139) - =a nonzero continuous linear
functional y' on Y and a real number o such that

Yy 2z a for all y € W
and

y'y & a for all y € A.
There is a balanced and convex neighborhood U of OJ such that
Yo +U € W. Since y' is not the zero functional, there exists some
y1 € Y such that y'yl 74 O. Because it is a neighborhood of zero, U
is absorbing. Then there exists some real number B 74 0 such that
Yo = By; € U. Since U is balanced, we may assume y'y2 =R y'yl < 0.
Then yo + Yp € ¥, + U & W implies y'(yo + ¥2) = @. But then
Y'Vo + ¥'yp 2 @ and since y'y2 < 0, y'yo » @. This completes the

proof when the scalar field of Y is the real field.
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If the scalar field of Y is the complex field, then we can also
regard Y as & locally convex linear topologicel space YR over the real
numbers. The proof above is valid for YR' But, the continuous linear

functionals y_' on Y_ can be characterized as the resl parts of con-

R R
tinmuous linear functionals on Y in the following way: y'y =
yR'(y) -1 yR'(iy) where y' is a functional on Y and yR'(y) = R(y'y).

' and conversely. Thus there

If y' is linear and continuous, so in YR
exist a continuous linear functionel y' on Y and a resl number ¢ such
that

R(y'v,) > @ 2 R(y'y) for all y € A.

Corollary. Iet Y be a locally convex linear topological space
and let A be a nonempty, closed, convex, and balanced subset of Y. If
Yo é. A, then there exist a continuous linear functional y' on Y and
a real number ¢« such that

{y'y,8 > a 2 1y'yl for all y € A.

Proof. Let the scalar field of Y be the complex numbers (the
proof for the real case is similar). By Theorem 4, there exist a con-
tinuous linear functional y' on Y and a real number « such that

R(y'y,) > o= R(y'y) for all y & A.
The inequelity ly'y | > «a is immediate since 1y'y,1 2 R(¥y've)-
Suppose y € A and @ 1is such that 0 £ ¢ & 27 and
v'y = ly'yi el® ., Because A is balanced, e'i?y € A and
a® Riy'(e*®y)) =R(e™® y'y) = |y'y| . Thus

ly'yvl & for all y € A.
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The next theorem will concern the weak topology 77° on X* gener-
ated by a linear subspace M of X. A base at O' for this topology is
the family of all sets of the form

vi(a,€) = {x' t 1x'xlg € for all x € A}

where A is a finite subset of M and € 1is & positive real number.
Since by definition, x' & M’ implies x'x = 0 if x € M, it is true
that M' & V'(A,€) for all A € M and €> O. We note that when

M =X, J° is the weak* topology on X*.

Theorem 5. For every B'< X* with "TJ° as above,

B'+Mr €SB 9.

Proof. Iet x' =Db' + m', wvhere b' € B' and m' € M'. One base
at x' is the collection of all sets x' + V'(A, €) for A a finite sub-
set of M and € a positive real number. But b' = x' + (-m') is in
every set x' + V'(A,€) since -m' € M" € Vv'(A,€) for all A € M

and € » 0. Every neighborhood of x' contains b' and thus x'€ B'": .

Corollary. If M is a subspace of X with M* # {0'} and T° is
the weak topology on X* generated by M, then the closure in the
topology TJ° of a nonempty subset of X* is unbounded. (A subset C' of
X* is bounded if and only if there is a real number r > O such that

HNx'W & r vwhen x' € C'.)

Proof. As the reader can quickly check, M+ is a linear subspace

of X*. If M' # (0'}, then there is some x' €& M* with x' # 0'. Then
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the subspace generated by x' is in MY, i. e., for all scalars q,

x' & M. Suppose B' is a nonempty subset of X¥. By Theorem 5,
-—jo

B'+M & B' ..

If x ' B', then x

o '+ oox! B' for all scalars Q.

o
Bxo" +ox'N 2 uxg'n = nox'#l = Jhxo'W = ta1 nx'u} .
Since lIx'W # O and o is any scalar, the quantity on the right is

unbounded as a function of o. Therefore B' Jo is also unbounded.

We will later find it convenient to know Jjust what conditions a

set must satisfy to be a norm set (Def. 6) in a Banach space (X, W:{l).

Theorem 6. ILet (X, H+0) be a Banach space. A subset U of X is &
norm set for (X,W+W) if and only if U is balanced, convex,
absorbing, and bounded and closed in (X,ll+U). If U is a norm set, its
Minkowski functional is the norm (equivalent to W*ll) for which U is.

the unit sphere.

Proof. It is immediate that any unit sphere of a norm equi-

valent to W'l must have the stated properties.

Conversely, suppose U is balanced, convex, and absorbing.
Denote the Minkowski functlonal (Def. 4) of Uby p . If x, x, € X,
aﬁd « is any scalar,

plex) = Jajp(x), p(x +x ) = p(x) + p(x;)

and p(x) 2 0, p(0) = 0.
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Since U is bounded, there is a positive nunber r such thet x € U
implies lixll € r. ThenU & Sr. If x # 0, ﬁr_’t_ll?ﬁ ¢ Sy and hence
x it
also not a member of U. Then x WX\ y. By Definition 4 end the
€ 3% M
remarks which follow it, this implies, for x # O,
Wxt < p(x) .
r+ 1
Since the last inequality is trivially true for x = O,
(9) Hxn € (r+ 1)p(x) for all x € X.
It is clear from (9) that p(x) = O implies x = 0, which completes the

proof that p is a norm.

Because U 1s absorbing,

oo

\J nU = X.

n=1
Since multiplication by a nonzero constant is a homeomorphism of X onto
itself and U is closed, for each n the set nU is closed. By the Baire
category theorem (at this point we need to know (X, W+W) is complete,
i. e., & Banach space), some set nU has & nonempty interior, and hence
U = (1/n)nU must also have a nonempty interior. In particular, there
exist an X, € U and a real number t such that t > O and

s={x: Nx-xN < t}c U
Let x € X with llxW\ < t. -Then x_ + x and X, - %X are both in 8.
Also, since U is balanced, -(xo - X) = x - xo is in U. Since U is
convex,
x = (1/2)(x - x5) + (1/2)(x, + x)

must also be in U. Hence

{x: nxn < t}evu.
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Since the closure of {x D nxM L&t } is St and U is closed,
(10) Sy & U.
Also since U is closed (7, p. 134),
(11) U= {x:p(x) 1} .
From (10), (11), Theorem 2, and the fact p is & norm,
(12) t p(x) € Wx\ for all x € X.
From (9) and (12), with Theorem 1, we conclude p and M:l| are equi-
valent norms. Then, from (11), U is a norm set.
o
The following theorem is an immediate consequence of standard

theorems (6, p. 194).

Theorem 7. Iet X and Y be two normed linear spaces with norms W:W
and W'Wo respectively. Iet T be a linear mapping from X into Y and let

r= inf WxMNe .
x$0 " W\xi

Then r ;‘ O if and only if T has a continuous inverse on its range. If

-4 -f
r # 0 and T is the inverse of T on its range, then WTW = 1/r .
Theorem § (Riesz’s Lemma,) Let M be a closed and proper subspace
of X. Then for each r such that 0 € r & 1 there exists an elemént

¥p € X such that Wix.Wl =1 and [Ix - x, 1 > r if x € M.

A proof of this theorem 1s given in (7, p. 96).
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CHAPTER II

EQUIVALENT NORMS IN THE CONJUGATE

OR A NORMED LINEAR SPACE

In this chapter we would like to discuss how closely the usual
norm in X¥, as defined by (0), 1s linked to the fact that (X*,# W)
is the conjugate of (X, #+U). In particular, we want to ask this
question: If Ji'W, is & norm equivalent to W:W| on X*, then will
there exist om X a norm ||*W4 such that (X*, W+ W) is the conjugate

of (X, W+ Wy) ?

The starting point for the solution of this problem is simple.
One consequence of the Hahn-Banach theorem tells us that there is
only one way to define WxW, if we wish (X*, i) to be the con-

jugate of (X, WW2). According to formula (1), we would have to

define
WxW, = sup Ix'x| for all x €& X.

wx'nel

Or, if we set

(13) Uyt {x' s oux'W, e 13,

we have

(1k4) WxW, = sup Ix'x| for all x & X.
x' eul'

17
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If this is a norm on X, it is the only norm W:U, which would meke
(X%, A+ W) the conjugate of (X, W* We).

[y

-
As an example, let Y be the space of all n-tuples of real num-

bers with the usual norm. Thus, if y = (0jy,...,0) 1is an element of

Y, then Wyl = -\!70112 + oae + an2 . Every element y' of Y* can be
made to correspond with one and only one n-tuple of real numbers

(Bl:“';ﬁn) where, for y = (al:"':an):
N

v'y = E_ QiBy4 -

When this correspondence, which is & linear isometry, i1s made, the norm

of y' is glven by the formula Jy'll = 4,312 + coo + 'Sne .

It is easily checked that

“yllh - max IBi‘
l€ien

defines a norm on Y* which is equivalent to W' N, (In fact, Hy'll,
&‘-“ y'i e N By'll; .) A quick calculation shows that, if Py i,
is defined as in formula (1k), for an element of Y given by
Yy = (al,...,an)
Nyly = fog) + «o0 + Jo) -
It is well known that W :W,is a norm on Y equivaelent to W:ll. Also,

it can be easily checked that the conjugate of (Y, W+#,) is Y* with

norm W \,.

In the example, what might be expected does in fact occur; Mfslla is
a norm equivalent to WeW and the conjugate of (Y, ¥+ ) 1s (Y*, W Wy).

Now we would like to examlne this situation 1n generel.



| 19
Theorem 9. Let Wi:Wi be a norm on X* and define U;' and Wi+l, by
(13) and (14). In order that W 'll, be & norm on X 1t is sufficient that
#:ll. generate a finer topology on X* than W'l generates. If X is com-
plete, this condition is also necessary. Ii; Wt and W:ly are equi-

velent on X*, then W and Wll, are equivalent on X.l

Proof. It is clear that WxW, 2 0, and that WoxW, = {al §xil,
for all scalars o and all x € X. Also, since
fx"(x] + x5)| = [x'% + x'%5].& [x"x| +[x'%5{ ,
it is immediate that
hxy + x50, € lIxll, + Uxpll,

for all x; and X, in X. If lIxll, = O, then x'x = 0 for all x' & Uy '.

t '

Since Uy ' is the unit sphere of a norm on X¥, U;' must be absorbing.
Then xo' € X* implies there is some sceler B # O such that Bx,'€& Uy’
and hence Pxg'x = 0. Therefore x_'x = O for all x,' € X¥. By a.
corollary of the Hshn-Banach theorem (3, p. 65), this implies x = O.
This finishes the verificatlon that K:Wp is a norm when lxl, < 6O

for all x € X.

If B'll, generates a finer topology than Ill+l} generates on X*,
then there is a positive real number r such that lix'll ¢ r Ux'll, for
8ll x' in X*. Then for any x in X,

hxg, = sup Ax'xp & sup  QIx'0 opx

lThe author wishes to thank Professor Norman Levine who pointed
out an error in the original statement of this theorem.
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< sup Trix'h lxll =rixy<eco .
xX'e U
Thus, in this case, W:W,1is & norm on X.

Suppose W-Wy is a norm on X. Then Uxll, < 00 for all x in X. If
X is complete, then by the principle of uniform boundedness, U;' is &
bounded set in (X*,)| - \I). This implies there is some positive real
number r such that Ul' € Sp'e Then by Theorem 2, Mix'l € rux'l,

for all x' in X*. Hence W:W, generates a finer topology on X* than li-)l.

If WM, end Rl are equivalent in X*, there exist (Theorem 1)
positive real numbers s and t such that
slx'lly, € x't € tux'y, for all x' ¢ X*.
From Theorem 2, this is equivalent to

! t ?
(15) S 5;'€ U;' =8 .

1

For any nonnegative real number r, let Tr be the sphere of radilus
r for (X, W-Hy): T. = Lx: bxil, ¢ r} . From equation (14) and the
remarks after Definition 1, it is clear that

t
(16) T, = °Uy ‘.
Then from (15)
o o] '

(17) Sg' 2 Uyt 2%y .
But, ©Sg' = %(s8y') = (1/5)98y' = (1/6)Sy = S(1/s), s can be easily
checked. Relation (17) can be restated as

S(a/s)2 T1 2 S(a/t)

or, in view of Theorem 2,

(1/s)itxv, 2 Wxlh 2 (L/t)ux .
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Then by Theorem 1, §+W{, and 0*Il are equivalent norms for X.

Now that we know ll:W, is a norm on X, we turn to the problem of

determining whether or not we obtain (X*, || My ) by taking the con-

Jugate of the space (X, ]} ~|I;) in the sense that, for II:llpxas a norm in
(X%, W+ fly), we have ,
Wx'Wy = Wx'H, for all x' € X*.
Theorem 10. If W:ll,is equivalent to W:il in X*, then for all x'
in X* ||X'“1 < fIix', .

Proof. From (16), Ty = °U;'. Then T;° = (°U;')° 2 Uy '. By (8),
T,° is the unit sphere of (X¥*, | :Wl,). Then the inclusion ,° 2 U
implies (Theorem 2)

Hx'llyg € Ux"h for all x'€ X¥*.
For each nonnegative real number r, let Tr' be the sphere of
radius r for (X*, W-Wa): T,.' = {x": ux'n, & r} . From (8),

Ty = Ty '-

We recall that Ul' stands for the closure of Ul' in the weak*

topology.
Theorem 11. If R*H, is equivalent to N'W on X*, then U =Ty

Proof. Tl" as the unit sphere of the conjugate of (X¥, :Hl,),



22
is weak* closed. From the proof of Theorem 10, we know that always
Tl' 2 U’ .
Then since T;' is weak¥* closed,

™ 2T,

Suppose x,' € Uy'. By the corollary to Theorem 4 there exist an
element x € X (in the wesk¥* topology, continuous linear functionals f
on X* are of the form f(x') = x'x where x is some element of X) and a

real number ¢ such that

|xo'xl >a 2 |x'xi for all x' € Ul"
Then, since Ul'E Ul',
Ix,'xl > o 2 sup 'lx'xl = fixll, .
X' & Ul

Because || xo'||1 Wxh, 2 |x,'x|], the above inequality implies
" xo'“z > 1. Hence x,' ¢ Tl" This completes the proof that

Ul' = Tl'o

Theorem 11 is also a direct consequence of a very general theorem

of Bourbaki (1, No. 1229, p. 52).

Theorem 12. ILet I:l, be a norm on X%, equivalent to W:W on X*.
If Uy' is defined by equation (13) and W-Maby equation (14), and
(X*, H+ W) is the conjugate of (X, W:Wy), then fiIx'N, = Ux'll, for

all x' € X* if and only if Ul' is weak* closed.

Proof. From Theorem 3, |l x'll = llx'l\l for all x' € X* if and
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only if Uy ' = Tl'. From Theorem 11, the assertion Ul’ = Tl' is equi-
velent to the statement that Ul' is weak¥* closed. ‘

Theorem 12 is contained implicitly in the proof of a theorem by

Klee (5, p. 37).

The last fﬁeorem tells us necessary and sufficient conditions that
we retrieve the norm H:W, by the process of passing back to a norm ey
on X through equation (14) and then returning to W:ll,on X* by taking
the conjugate of (X, W: Wy). But Theorem 12, with Theorem 11, also
raises a question. S:I.nce'i-l?l_-_l =T, ', we know Ul; and T, ' are, in a
certain sense, 'close to being equal." Are they perhaps always equal ?

Are they always equal if X is some particular type of space ?

These are the questions we wish to investigate next. W' W, will
be -a norm on X¥* equivalent to KW if and only if Ul' is a norm set
(Definition 6) for Wl in X¥. With this in mind we may rephrase our
question as follows. Is it true that every norm set in (X*, W' W) is
weak* closed ? If this is not always true, are there any classes of

Banach spaces (X, Il W) for which it is true ?

We can answer the first question with an example, which we will

include here in a theorem preceded by a sequence of lemmas.

For the following six lemmas let X be a nonreflexive Banech space
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and let J denote the canonical map from X into X¥*¥. Thus, for x € X,

Jxx' = x'x for all x' € X%*.
o)
Lemma lt = S ! .

Proof. If x €S5,, then |Jxx'l = |x'x| . Then x'é& O(J‘Sl)

implies I1x'x1e€l for all x € Sl

versely, if x'e Sl', then for all x € S,

< i x'WHxg<e 1l and hence x' & O(.J”Sl).

and hence lIx'l € 1l or x'e Sl’. Con-

1Jxx'} = |x'x|

Iet T" be the balanced and convex hull (Def. 3) of the set

1"
JSlU S o ®

11 1"
Lemma 2. T o “_\I‘Jﬁ l(szl + (1 - r)s.,z),

Proof. Denote the set on the right of the statement of the
lemma by W". It is clear that W" contains J5,\J 8 ./:_ and that W" is
balanced since JS, and S, are balanced. Also, clearly the elements

1

of W" are contained in any convex and balanced set which contains Js8;

and Sy, . If we cen show W' is itself convex, then we will have proved
T" = w”
n

Iet ¥ be a resl nunber, 0 & ¥ < 1, X, =r.Js. + (1 - ry)8q"
1 11 17=]

and xe" = r,Js, + (1 - r2)52" where 5, € S, and Si"é S’:for 1 =21,2.
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Then Yxl" + (1 - Y)x2 "= J(lesl + (1 —Y)r252) + (v (1 - rl)sl" +
(1 -v)(1 - r2)sa"). et vy = ¥ry + (1 - \’)re . Then osr3u and
1- ry = Y(1 - rl) +(1L-v)(2 - r2). Define:
55 = (Yry/rg)sy + ((1 - ¥ )zp/ry)s,
s, " o (v(l-rl)/(l-r3))sl" + ((1- v )(l-rg)/(l-?i))se"-

From the facts that Sl is convex, sle Sl’ S, € 5y, and (Y 1'_1/1'3) +
((L -Y)r,/rz) =1, we conclude s, € S, . Similarly we may conclude
2’73 3 1
55 "€ Sy,+ But it is immediate thet
vx. "+ (1 -Y¥)x "=rJs + (1L ~r)s. "
1 2 3 3 ( 3) 5

and therefore is en element of W' since O €« r £ 1. Thus W" is con-

vex and therefore T" = W".

Iet d(x",A") denote the distance from the set A" to the point x"

in the usual sense:

-

d(X",A") = ’lénilr "X" - auu .
&

Lemma 3. If x" € T", then d(x",JX) € 1/2.

Proof. If x" €& T", then there exist a real number r with

0O r<l,ans €85, and an s"€ Sy such that x" = rJs + (1-r)s".

1
a(x",Jx) € U x" - J(rs)ll =11 - r|Us"ll & 1/2.

Iet Uy " be the closure in (X*¥, fi+ 1) of T".

Lemma 4. If x" e Uy ", then d(x", JX) & 1/2.



Proof. d(x'', JX) is a continuous function of x" in X*¥ with
the WB:W topology . Since Uy" is the closure of T" in this topology,

the result follows from the continuity of d(x", JX) and Lemma 3.

Lemma 5. Ug " is a norm set for Ml ' Il in X** with °U;" = 8, '.

Proof. The dinclusion
111 c n
2 = 51

v,
1s immediate. Simnce §;" is balanced and convex,

JSi\J S

1 1t 1"

Jsq U S./;Q-_T < sy

Then because S; is a closed set in (X*¥, W li),
(18) BV Sy, eV C 5

This in turn impl ies
" 1} "
S'lz = Ul < Sl
which shows Ul" is bounded and absorbing. Since it is slso balanced,

convex, and closed in (X**, W), U;" is a norm set for N+l in

X*% (Theorem 6).

Relation (18) also implies -
J1€ 1" ¢ 81"
Then
°(Js1) 2 %uy" 2 %"
Now, from (8) and Iemma 1,
| s1'2 %" 2 5"

or Sl' = OU:L "o

26
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Let W:W denote the Minkowski functional of Uy '". From Theorem 6,
Welly is a norm for X** equivalent to W'W and with unit sphere Uy "
by (11). If we define a norm I\'Wain X* by the analogue of (1), then
the unit sphere of W:la is U1 ", &s in (16). But since OUy " = S, ',
Theorem 3 implies {Ix'W4 = Wx'|l for all x' & X%*. Then the conju-

gate of (X%, 11-1l3) is (X**, W« Wl).
Lemma 6. Up" # 5"

Proof. JX is a closed proper subspace of X¥** gince X is not
reflexive. By Riesz's lemma (Theorem 8), there exists in S;" some x"

such that d(x", JX) > 1/2. Then from Lemme L, x" & Uy'".

Theorem 13. Iet (X, W |l) be a nonreflexive Banach space. There

exists in (X*%, W' ) a norm set which is not weak* closed.

Proof. U;" is a norm set for which Uy" ¥ 81" (Lemma 6). By
Theorem 6, Up" is the unit sphere of (X**, |- {ly). But from the
remerks after Lemma 5, the conjugate of (X*, \{* W) is (X**, I+ 1)
which has unit sphere S;". Then Lemma 6, Theorem 3, and Theorem 12

imply Uy " is not weak* closed.

This theorem answers the first of the questions asked in the
discussion after Theorem 12. Also, it will help to give a partial

answer to the second one.
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Theorem 1h. If (X, § - || ) is reflexive, every norm set for I: |l

in X* is wesk* closed.

Proof. A reflexive normed linear space must be complete. Hence
(X, +01) is a Banach space. Since a norm set is closed in (X%, W: W)
and convex, it must be weakly closed in X* (7, p. 153), i.e., closed in
the weak topology on X¥* generated by X¥¥. However, if X is reflexive,
the weak and wesk¥* topologies on X¥* are identical. Then every norm

set is weak¥* closed.

Theorem 15. Let X be the conjugate of some Banach space Y. Then

every norm set in X¥ is weak¥* closed if and only if X is reflexive.

Proof. This follows immediately from Theorem 14, Theorem 13, and

the fact that X = Y¥ is reflexive if and only if Y is reflexive.

This answers the second question raised in the discussion after
Theorem 12, but not“ip a complete manner. It would be ﬁore satisfy-
ing to have a theorem similar to Theorem 15 in which the hypothesis
that X is the conjugate of some Banach space Y did not appear.

1

For example, let cys L and 1%° refer to the spaces of sequences

converging to zero, gabsolutely convergent series, and bounded sequences
respectively, with their usual norms (7, p. 194 snd p. 201). c ¥ can

be identified with 1* end (1l Y% with 1% (both identifications are by
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means of linear isometries). Since ¢, is nonreflexive, Theorems 12 and
13 show it is possible to define norms in 1% so that 1% with its new
topology is not the con;]ugat;e of 11 with any norm topology although it
is linearly homeomorphic under the identity mapping to l°° with 1ts
usual topology. However, the question of whether or not this cah be
done in 11 as the conjugate of cg is untouched by the gbove theorems
since ¢, is not a conjugate space (8).

The example in Theorem 13 has an interesting feature. The ele-
ments of (X¥¥, j+||;) are continuous linear functions on (X*,W\:Il).
Since W'l and W*W are equivalent norms on X*¥, the identity map from
(x*%, N+ 1ly) onto (X**, W-l|) is a linear homeomorphism. Nevertheless,
Theorems 13 and 12 and the remarks after equation (14) show that

(x*%, |+ ) is not the conjugate of any Banach space.
>



CHAPTER III

THE CHARACTERISTIC OF A SUBSPACE OF THE CONJUGATE

OF A NORMED LINEAR SPACE

Dixmier has defined the "characteristic' of a subspace of X* and
used the concept to characterize those Banach spaces which are linear-
1y homeomorphic to a conjugate space (2). Taylor has also used the
charascteristic to give a variastion of the principle of uniform bound-
edness (7, pp. 201-208). In Dixmier's article several formmlas for
the characteristic are developed. Here we will give new derivations
of these formalas by an application of the results of the previous
chapters and by interpreting various quantities as the norms of suit-
able mappings. These interpretations will usually be based on show-
ing two norm topologies are equivalent and identifying the unit
spheres in the +topologies. The various formulas will appear as con-

sequences of the study of the topologies.

Dixmier's proofs of his formulas are ad hoc proofs in the sense
that they verify the equality of two numbers by 'proving the inequal-
ity holds both ways, " but do not reveal the underlying structure to

which the equalitles can be related.

In this chapter, (X, fl-l}) will still denote a normed linear

50
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space. V' will denote & linear subspace of (X*, I« W ). J and j.
will signify the weak topologies generated by V' on X and X¥* respect-
ively. As before, a bar "~" over the symbol for a set will denote

the weak* closure of that set.

Definition 7. The characteristic of the subspace V' of X* is '

(19) r) = Sup {r : Sr' < V'nsl'} .

Throughout this chapter let
(20) P={r:s.'€vins' } .
Because 5, ' is weel* closed, V'/\ S,'€ S, ' implies V'_r_\_s_;
c Sl' so that 1 is an upper bound for P. Also, P is non-empty since
O in an element of P. This shows r, is well defined and O € r. € 1.
There are three other quantities which enter into Dixmier's dis-

cussion of the characteristic.

(21) ry = inf sup Ix'x) |
x#0 x'ev'nsinxi
(22) r; = sup _ WxXH{ .
. 5 xe%’
(23) T) = inf Wax + 2" .

xf0, z"€v't ux i
J represents the canonical mepping from X into X¥* and, as above,

vita {x":x"ex**, x"x' =0 for all x'€ v} .

With the usual interpretation in case any of these quantities

are zero or infinite, Dixmier has shown
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(24) ry =T, = (l/r3) -T) .
These equations, with Definition 7, give four formulas for the charac-

-

teristic of V'.

We will also consider three other quantities:

(25) rg =  inf sup tx"x" ,
X" 1 X'&V'I’\S T HX N
(26) - | rg =  sup ux"u ,
and x" € -J-‘él t
2 ' = .
(27) ro ) su-ll—;.‘a.“x U
x € Sl

Here J, is the topology induced on JX by “J, . We will find

However, while we might expect Ty and r., to be equal, this will not in

1
general be true unless X is reflexive.

Consider the set V' Sl" Since the week* topology is less fine

than the norm topology of X*, V' Sl' is norm closed. It is also con-
vex and balanced since V' Sl' has these properties. We saw gbove

that V'N Sl' < Sl'. Thus V' Sl' is a balanced and convex set bounded

and closed in (X*, W« il).

We note that r, & P (formulas (19) and (20)). This is immediate

if r, = 0. If r; > 0, it is clear from (19) that

{x': 1x'll e e Ving ' .

Since V'n Sl' is closed in the #:'Wl topology and Sri is the closure of
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{ x'": x'h < rl} in that topology, it follows that Sr;_ c v'n Sl'
or ry € P. Thus we may write

rl-ma.xP.

Suppose ry > 0. V'n Sl' is then ebsorbing since it contains the

sphere S..'! . 8ince V' Sl' is always balanced, convex, bounded and

r1
closed in (X*, H. W), r » O implies V'r\Sl' is a norm set for W« Il in
X* (Theorem 6). Denote the Minkowski functional of V' sl' by Weily.

From Theorem 6, W'\, is a norm equivalent to W‘'Il on X* and hence the
identity mapping from (X*, {- W) onto (X*, ||+ W) will be a linear homeo-

morphism. Denote this mapping by 'jOl‘

Forr » O,
Sp' & v'nsl'

if end only if

rx' e V'nSy' for all x' ¥ 0'.
x"u

Since V'AS,' is the unit sphere for W:lil, (Theorem 6), this is equi-

1
valent to
rtx'lh ¢ 1 for all x' #0',
~raxh &
nx"u
or

Hx'W, € (1/c)px'n for all x' € X*.
Then for ry > 0, .
(29) f{r:r >0, ux', € (L/r)tix'N for all x' € X*}

-{r:r > 0, Sr'g_ V'nSl'} .
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If we set Q ={r :r » O, Sr' = V'nSl'} , then, for rl> 0, clear~

ly r

lasuannd

(l/rl) = (1/ sup r) = inf (1/xr).
ré&Q re€ Q

But from the other form of the set Q in (29) we know

inf (1/r) =f3_ W
ré Q o1

and hence

- (l/rl) = || JOl" .

We collect these results as a theorem.

Theorem 16. Iet (X, W + Il ) be a normed linear space, V' &

linear subspace of X*, and let T be defined by (19). When

r > 0, Vv'n sl' is a norm set for N:«W in X*. If U:W,is the
Minkowski functional of V' Sl' and jOl is the identity mapping
from (X*, ff + )| ) onto (X*, N+ W,), then

(1/z)) = W3

_ 01“ ’

Next we attempt to find an analogous theorem involving r.. For

2
each x € X, let

(30) Wx i, = sup Ix'x)
x'e vV'NnSs !
1
Although the notation so suggests, we do not assert M+, is

always & norm on X.
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) 1 1 1
We note Nx W, & ‘ sup' {x'xt . But if xo e Vv'n Sl
X' €V nsl

end x € X, then there exists, for each integer n, an element

X,'€ V' N8, such that Ix 'x - x 'x1 < 1/n. Therefore,

lxo'xl = lim |x 'xf & sup Ix'x) = Hxly

n-spoo o x'evins,’
and
sup lxo'xlﬁllxllz .
t 1 (]
X5 eV nSl
Hence
(31) fxK, = su Ix'xl .
2 —,2———
x'eVin Sl'

The identity (31) shows that, when r,> 0, Mg is Just the norm
generated in X by the norm W:W; in X* as in Chapter II (formula (1k)).
Since V' Sl', the unit sphere for A'll,, is weak* closed, it fol-

lows from Theorem 12 that (X*, f{ + M, ) is the conjugate of (X, N« Ua).

This result is proved in a different manner in (_1t, Pe 570) by
using a theorem of Helly (3, p. 86) about the solvability of a finite
system of equations Xy 'x = cy where x ' and c; are given.

i

Let i, be the identity map from (X, We Ng) onto (X, 11 )

still assuming r, » 0). Since W+l and I ' are equivalent in X
1

(Theorem 9) in this case, 120 will be a linear homeomorphism. From

(21) end (30),
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(32) r, = inf sup ix'x\ = dinf Uxla
X0 x'€&V'N 5. WxW x40 WxN\
Thus = = 1 = sup LXMW .

| «+ This proves the next

1'2 inf WXy X*O Wx N u 20

theorem.

Theorem 17. et (X, l + W ) be a normed linear space, V' a
linear subspace of X*, and let r, and r, be defined by (19) and (21).

When ry? O, N:'Nz is a norm equivalent to #+ll in X. If 12 is the

0
identity mepping from (X, i - W) onto (X, & - W ), then i N = 1/ry.

According to Theorems 16 and 17 we have this situation:

X, 0 _Te0 o (x, uem)
(%%, W l) (201 (%, e ).

Both 120 and J o1 are identity mappings. This mekes it clear that ‘jOl
is the conjugate of 3’.20, and hence that
J = i .
o = il
This equation, with Theorems 16 and 17, shows that for ry > 0,
ry =T

2.

If rl =0, VA Sl' is not absorbing. (This is true since any
norm closed, sbsorbing, balanced, and convex set in X¥ must contain
some sphere of nonzero radius sbout O'. This was shown in the proof

of Theorem 6.) Then there is some xo'e X* such that rxé* v Sl'

for any real positive number r. By the corollary to Theorem 4, for



INTRODUCTION

Iet X be a normed linear space (over the real or complex numbers)
with norm W-*W , and let X* be its conjugate space. The usual norm
on the conjugate space is defined by

(0) Ux = sup 1x'x| .. for all x'e X*.
x€X, (Ixlle 1

If two equivalent norms are defined on X, the norms defined on X* from

the norms on X as in (0) are also equivalent.

One consequence of the Hahn-Ba.nach theorem shows that we can
“reverse” formula (0) to obtain the norm in X from the norm it gener-
ates in X¥*:

Wxg= sup 1x'x ) for all x € X.
(1) x'€ X¥%, Wx'n<l

This formule suggests an interesting possibility. As (1) is

stated, the norm MW-W in X* must have arisen as in (0) from a norm in

X. However, given any norm M°*ll, in X¥*, in analogy to (1), we could

define a function (which may or may not be a norm) in X as follows:

(2) NxW, = sup P x'x for all x € X.
x'€X¥% ux'nsl
Some questions ‘which arise are these: Is W:'Wlg a norm on X? If
it is a norm, and W-Wl, is equivalent to -\l on X*, will W¢||{3 be

equivalent to W*'W on X? In view of formulas (0), (1), and (2), if
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each positive real number r there exists a real number ar and an ele-

ment X, € X such that

\rxo xr‘ > ar Zx' es%rgr\ = I’x xrl
and _ 1
1 1 %
\r} "xO'“ 2 . |x° Xr > Or > SU.I') ' 1x X.rl - i r“z
] X, i Wx. i X' €& V' N Sl I x_ M M X, M

From (21)
= X . X
T, l% W |‘z$ inf W x. Wy < inf lry Bx 'l =o.
x nxan rs0 Wx_ i rs0 o
Thus, whether or .not Ty » 0, we have
(33) r. =r_.

1 2

Next we consider the set _SI‘J which enters into the definition
of r_.

3

Theorem 18. 5,7 = °(V'A s '):

Proof. From the remarks following Definition 1, we know

o ' a 'Yy < . ' P ' ' t

(viAs )= {x:ix'x1 €1 forallx’'e V'ns'Y.
or

°(v' A Sl') = ) {x: (x'xy ¢ l} .

Each x'e V' is continuous in the ‘J topology on X. Therefore,
for each x'& V', {x : |x'x\ & 1] is a closed set in the topology

J . Then (V' Sl') must also be closed in the topology J. The
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inclusion V'S, ' s, ' implies o(v' sl') 2%, " and, from (8),
°(viA 5,')=2s

)+ Since (V' 8y") is closed in the topology J, the

last inclusion implies

((vns ) 257

Suppose X, Q.Elj . By the corollary to Theorem 4, there exist a
real nunber B and an xo' € V' (‘the continuous functionals on X with
topology J are just the elements of V') such that

\xo‘xo\7 B 2 lxo'xl for all x 6-8-1'3.

We mey assume that |\xo' I = 1 since we could divide by xo'l\ in
the sbove inequality. Thus x,'€ V'/M\S;' and 1x,'x,1 28 2

sup |xo'x| 2  sup \xo'x\= uxo'n = 1, This shows
X €& Sl:’ X € Sl

| X5 "%, 1> 1 and hence xo' ¢ o(v' N Sl'), which completes the proof

of Theorem 18.

From (30) it is cleer that Wx|l, « 1 if and only if |x'x|& 1
for x'eé V' Sl'. This implies
0 L]
(v'Asy') = {x: ixll, & 1Y
and then from Theorem 18,

-Saj ={x: Wz, 2} .

. When ry # 0, -l is & norm on X and 53_7 is the unit sphere of

(X, W+ Wa). By (22), (33) and Theorem 17, if r, # 0,
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r,= sup  NxW = sup Hxl =(Qi | .
7 xeslj LS PX-a | 20

This verifies the following theorem.

Theorem 19. ILet (X, W + | ) be a normed linear space, V' a

linear subspace of X¥*, and let r, and r, be defined by (21) and (22).

2 3

Let r,> O and let i, be the identity mepping from (X, I + fly) onto

(X, W+ ). Then 5 = il -

It is a consequence of Theorems 19 and 17 and equation (33) that

Ty = l/r‘2 vhen r, ¥ 0. To verify that T3 = 00 when r, = O we first

2
show V'~ 8, ' = (°(V'A 5, "))° From (31), °(V As, ') =
{x: Wxuae1}. Also ve know (O(VT A5, ))°2 VTS, ‘. If
xo'¢ W, then there is an X € X and a real number @ such that
Ix, x50 > @ 2 [x'x|

for all x' & -\;'_r_\—ST'. If we set x; = xo/a,. then

|x°'xl| 21 3 |x'x| for all x' & ?r_'_rTéI-'.
Then xleo(m)and hence |xo'x1\ > 1 implies x,' ¢_

(VA5 ))°. Thus VA 5, ' = (°(v' A5 "))e.

= J

Now, if Ty < 00 , then °(v'r\sl') =5,"¢ Sr3 and
CETARSNP2(s, )% =51, ) - From (19), x> 0. By (33),
3 3

r27 O. The contrapositive of what we have proven would be: ry = 0

implies r3 = 00. Then in all cases

(34) T, = l/r3.
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The fourth quantity discussed by Dixmier is

(34) T, = inf Wax + z"W .
x #0, z'evt uxd '

To relate this quantity to the others we will use several sta.na.ard

mappings as suggested in the following figure.

X.;g.*————’f x*.*/VH-
2 | »
K
X — V¥

The coset relative to V'' containing x" will be indicated by [x"] .
These cosets are the elements of X¥*/V't, We note V't is a closed sub-
space. X**/V"" is given the quotient topology, which can be defined
by a norm W+l given by

"e
The restriction of x" & X¥* to the subspace V' of X* will be denoted

NG"T0 = e, W'l (x"] € Xee/vih,

by x"|V'. £ and h are the canonical meppings defined by
P(x") = [x"]  for all x" € X¥x,
h({x"]) = x"{Vv' for all [x"] € X*x/y'*,
f is linear and continuous from X** onto X**/V't while h is & linear
isometry of X""*/V'+ onto V'¥., J is the canonical mapping from X into
X*%, We define K to be the composition of J, £ and h : K = hfJ.
Then for x € X and x' € V',

(35) (kx)x' = (hfJx)x' = (Ix|V')x' = Jxx' = x'x.

V', as a subspace of X¥*, can itself be considered a normed linear

space if we use as norm the function W1l , the norm on X¥, restricted



to V'. Denote this restricted norm on V' by W'l and also denote the

norm in V'¥ as the conjugate of (V', W+ W) by W:W .

with these notational conventions,

) = inf WIx+z"l = inf 1 inf |\ Jx+z"
x#0, z"'ev't UxW xf0 WxW zreyr+
= inf _1  |\taxl\| = inr H23xl
x#0 hx\ x#0  fx Il
= inf W hex | (since h is an isometry).

xf0 hx|
Thus
(36) r, = inf Axxll .

x # 0 Ix]]

Theorem 20. ILet (X, l+ W) be a normed linear space, V' a linear
subspace of X%, let K be the mapping from X into V'# defined by (35),

and let r), be defined by (23). Then K has a continuous inverse on its

L1

-
renge if and only if r) # 0. If r), # O, and K represents the inverse of

K on its range, then

Nxl = 1/z, .

Proof. The theorem follows directly from Theorem 7 and equation

(36).

For each x, Kx € V'¥. Therefore,

MEx = sup  ((Rx)x'| = sup |(Re)x'] .
\lx'ﬂ&l, x'e V' X'eV'f\Sl'
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Then by (35),

(37) WKxy| = sup \x'x| .
xle vlnsli

From (56): (37); and (21):

ry = inf WKxll = inf _ 1 sup Ix'x| = r,.
x#0 T Axi x0 Wxll x'eV'ns’
Thus

Theorem 21. ILet (X, W:W) be a normed linear space, V' a linear

subspace of X* and let ry, T » and 1) be defined by (19), (21),

22 T3
(22), and (23). Then ry =1, = (l/r3) =1 .

Proof. Equations (33), (34), and (38) show the theorem is trie.

Theorem 21 verifies the formulas of Dixmier while Theorems 16, 17,
and 20 give geometric interpretations of the quantities involved (in the
nondegenerate cases). To prove Ty = Iy when ry 7‘ 0, we noted that
Jo1 = 120*, the conjugate of 120‘ This suggests a method of finding a

new formula for the characteristic in the following way.

If ry> O, then W-ll, is equivelent to W¢§ in X*. Taking conjugates,
we know W'l and W'l ere equivalent norms in X¥*. Then J5;%, the con-
Jugate on Jo,, Will be the identity mapping from (X*%, \+\,) onto

(X**, “ . “ ) . Hence
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1 - 1 . iar b <"l -
Hdox* W~ syp, Mx M 0" x|
x;’g" Wi,

LA }
inf" 1 sup Vxx'| .

xﬂ “x"u xlev nsll
The last equality holds since V'NS,' is the unit sphere of (X% 0 W)
Thus, vhen r; > O, by (25)

1 inf sup x| T

———“ Jol* “ m x"*O" xle vlr\slf ||xll“ 5

Theorem 22. Let X be & normed linear space and V' a linear sub-
space of X¥. With ry defined by (25), if r, > 0, then |\ Jor* N =
(l/rs) where jo.* is the identity mapping from (x*, W+ ||, ) onto
(X%*%, {+ 1) and hence the conjugate of the identity mepping Jj oL from

(Xx*,§+W) onto (X*, N-lly).

From Theorems 16 end 22 end the identity §Jiz*|| = ||.101|| , we

obtain
ry = r5 it ry > 0.
To verify :c'5 = 0 when ry = 0O, we note that
r_ = inf sup Ix"%'N ¢ inf sup Ix"x'"l .

xn#ou X'GV'_;\SI' "X"“ ~x|¥0n, X”&JX xyevTrTS_J"“l .xuu
But, if x" € JX, then there is some x such that x" = Jx, x"x' = x'x,
and fx" = W\x{| . Then

r < inf sup ix'xt =2 inf WNxW\a= Ty e

x#0 x'ev'ns, ' x| x#0  nxy

= 0 which in turn implies r5 S O from the

Thus, rl = 0 implies r2
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above inequality. Since r5 is nonnegative, we have shown r5 =0 if
r, = O. In all cases,
(39) r,=r

It is easily checked that J is a homeomorphism of X with topology
“J onto JX with topology 'J,_ (the topology on JX induced by ~J, ).
Then
(40) 3(5;9) = 35, Y.
From this and the fact J is an isometry, it follows immediately that

sup W x"l| = sup Wx"W =  sup nWxiy .
x'"€e J5;or x'e 35 I) x €573
In view of (26) and (22), we have

(41) rg = Ty .

Theorem 23. If (X,W-Wl) is & normed linear space and V' is &
linear subspace of X*, then if r1 to rg are given by (19), (21), (22),

(23), (25), and (26), we have

r, =71, = (l/r5) =1, =75 = (1/rg) .

Proof. This theorem is a consequence of Theorem 21, equation (39),

and equation (k41).

Let r, > 0 and consider (X%*, Wl. \;), the conjugate of (X*, W:W,).
In this case, \l. ||, restricted to JX will be a norm on JX. (We denote
this norm on JX by MW« lli.) Let T, "be the unit sphere of (X**, §+ Ul,).
Since we sre assuming r{» O, W‘llyis a norm on X and (X**,{)-W,) is

the second conjugate of (X, W*Wy), which has unit sphere 53 (Theorem
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18 and equation (31)). Then J is an isometry from (X,Ml-Wz) into

(X%, W+ W\y), and we have

-‘J = 1 )
JSl Tl f\JXf

From (40), then

_31 = "

JSl 1 N JIX
and 38_131 is the unit sphere of (JX, W+ ). Iet k., be the identity
mapping from (JX, N +Wy) into (X, Well). Then

Wl = SUp Wx"lf =rg .
X € J5 %2
Theorem 24. Let (X, W:lWl) be a normed linear space and let V' be a

6
the restriction of N'll,to JX in (X*%, N «Wy) also by W+ W, and let klo be

linear subspace of X¥. Let r_ be defined by (26). If r » 0, denote

the identity mepping from (JX, W+ Wi) into (X¥*, W.W). Then for r, > 0,

The similarity of the definitions of the topologies J and J,
both generated by V' on X and X¥* respectively, suggests examining

X, = sup nx"

3
" 1]
x'€es; " !

as a possible means of obtaining still another formula for the charac-
teristic. We might expect r5 = r7, which would yield a new formula.
However, 1t is not always true that z-5 = r7'as the following example

shows.

ILet X be the conjugate of a nonreflexive Banach space Y and let

I be the canonical mepping from Y into Y¥* = X*. ILet V' = J;Y. V' is
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a proper closed subspace of X* and hence V't # {O"} (7, p. 186). In

-3,

this case, the corollary to Theorem 5 implies Sq is unbounded:

r., = sup Wx"l = 00 .
T xl‘ESl"‘J‘

However, (7, p. 228)
vias)' = aYAaly’ s uy'i g 13
=3 {vy:uyunel}
is wegk* dense in {y" : Hy'l < l} = 8 '. From this fact and (19),

r. = 1. By Theorem 21, then r

L 5 = 1. Thus Ty # T, in this case.

The corollary to Theorem 5, as used gbove, makes it clear that

r, = 00 whenever v't #{0"} . Then the formula r5 = T, mst fail

whenever V't # {0 ".& and r, # 0.

However, we can give two situations in which T3 and r_ are equal.

T

To do this we first note again that J is a linear homeomorphism of X

with topology J onto JX with topology J, induced on JX by J, .

Theorem 25. Let (X, Wl:1) be a normed linear space and let V' be a

linear subspace of X*. Let Ty and r7 be defined by (22) and (27)

respectively. Then r3 < r7- In particular, r3 = o0 implies

r7=oO andr7=11mp11esr3=l.

1
(x*¥%, 4+ W). From (40),

Proof. JS. = J}{f\sl " since J is an isometry of (X, W) into



M-y is & norm on X and we take the conjugate of X with the norm

-2, will we obtain X¥* with the norm N W, ?

We will find necessary and sufficient conditions that we do come

back to ll-|l, by this process. We will alsc discuss spaces in which
this may or may not be true for all possible norms {l* W, equivalent to
" * " on X*o

.As an spplication of the results obtained on the problems men-
tioned above, we will derive one of the formulas for the 'character-
istic" of a subspace of X* as introduced by Dixmier. Then we will
prove and aemplify from a geometric viewpoint his other formmlas for
the characteristic by relating the quantities inveolved to the norms of

various mappings. Several new formulas will be introduced, also.

A vord ebout notation. x will be a generic symbol for elements of
X, x' for elements of X¥*, and x" for elements of X¥* = (X*)¥, In
general, subsets of X will have no prime (A,V, etc.), subsets of X%
will carry one prime (A',V', etc.), and subsets of X¥* will carry two
primes (A",V", etc.). Iower case Greek letters will be scalars, either
real or complex numbers, while the letter r will be a generic symbol
for nonnegative real numbers. O, O', and 0" will represent the zero
vectors of X, X%, and X%* respectively. R(a), where o is any scalar,

will denote the real part of <.
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=) .75 = % o =
3(577) =B/t = BN = xAAs D' € 5 o,

—

Again using the isometry property of J, we see that the above inclusion

implies the result stated in the theoren.

Theorem 26. ZLet (X,M*N) be a normed linear space and let V' be a

linear subspace of X¥*. Iet T and r7 be defined by (22) and (27)

respectively. If (X,W:ll) is reflexive, then Tz = Iy .

Proof. If X is reflexive, JX = X** and JS, = Sl”. Then J is a
linear homeomorphism of X with topology J onto X¥* with topology T, -

Therefore,

=Iy T I 35 N
.J(Sl ) I8, 8

and since J is an isometry,

sup  Nxfl = sup Px"l

xeﬁj xnegi_ujl

or



SUMMARY
In the conjugate X* of a normed linear space (X,N:W), a norm can
be defined by the formula

(42) ix = sup |x'x\ for all x'€& X*.
Wxine 1

It is a consequence of the Hahn-Banach theorem that then

(43) Wxhh = sup [x'x| for all x € X.
Nx'we 1l :

If WU, is a norm in X equivalent to W+W, the two norms defined in X*
by WeWNo and N0 through the process indicated in (L42) will also be

equivalent.

These facts suggest the following problem. If Hll, is a norm on
X* and, paralleling (43), we define

(Lh) Wxh, = sup Ix'x\ for all x €X,
Wx'n &1

is this new function W ‘N, & norm on X? WN*W, is indeed & norm on X
for any norm W'l which generates a finer topology on X¥ than W« |l
does. Further, if WKW, is equivalent to W+ Wl , as defined by (42),

on X*, then WW, is equivalent to MWW on X.

when W W, is equivalent to WM on X*, if we take the conjugate of
X with the norm N:«W,, we obtain a norm W'll,on X* with the property
Wx'fglx'll, for all x' € X¥*. The norms Wi, and Ul are actu-

L8
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ally the same on X* if and only if {x' sfix"Nh, < l} is weak*
closed in X*. That is, if (4k4) is used to define from W-fl, in X* a
norm in X, the conjugate of X with the resulting norm Il 'l is X%
with the norm W:#, if and only if the unit spp_e_'re in the MWW topo-

logy of X* is weak¥ closed.

An example demonstrates that, if X is the conjugate of some non-
reflexive Banach space, then it is possible to define a norm
equivalent to the original norm #:lI , but with its unit sphere not
closed in the wesk* topology. For such & norm I\*\ly, the process de-

scribed in the previous paragraph would not léad back to W', -

These problems can be raised to a different plane by consider-
ing, instead of one norm equivalent to W' W, &ll possible norms in X*
equivalent to H{-1l. If X is a reflexive space with norm K- I, then
the unit sphere of any norm in X* equivalent to §:-WI is week* closed.
Thus, in view of the example mentioned in the previous paragraph, in
‘the class of spaces which are the conjugate of a Banach space, those
which are reflexive are characterized by the property "the unit sphere

of any norm equivalent to W« W in X* is wesk¥* closed.'

The last mentioned result is not quite satisfying since it
applies only to spaces which are themselves already conjugate spaces.
If this restriction could be removed, & new characterization of

reflexivity might result.
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More steps can be placed in this procedure of going from X¥* to
X (by (44)) and returning by tsking the conjugate. We might stert in
X¥** gnd move successively to norms in X* and X by following the process
in (44) twice, and then teking the conjugate twice. If we start with
a norm W+l in X** equivalent to Wil , we would arrive back at X**
with some norm equivalent to A:ll,. Would we actually retrieve MNill, in
this way? From the results listed above and some elementary consider-
ations, this will be true if and only if (a) the unit sphere in X
for W+l is weak* closed in X** (i.e., in the weak topology on X¥*
generated by X*) and (b) the set {x’ : Ix"x'| € 1 for all x" with
Ux" h< l} is also weak¥* closed in X* (i.e.,in the weak topology on
X* generated by X). When (b) will be satisfied seems obscure. An

illuminating equivalent restatement of (b) would be very helpful.

The second part of this paper discusses the 'characteristic'” of a
linear subspace V' of the conjugate X* of a normed linear space
(X,W ). This concept was introduced by Dixmier (2). Seven quan-

tities enter here:

r, = sup {r :8.'¢& V'f\Sl'} s

1
rp, = inf sup Ix'xt ,
x$#0 x'evinsy' MHxll
ry = sup fixit ,
x€8y 3
r) = inf Nax + z"W,

x#0, z"ev't  nx

rg = inf sup Ix"x'y o,
X"#O" xle V'I\S]_' "x"“
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r = sup =",
6 " —‘z
X e JSl r
and
ro = sup hx"n .
i 113
X € Sl !

In these formulas J is the canonical mapping from X into X**, V't is the
annihilator of V' in X¥%, TJ is the wesk topology on X generated by V'
and I, is the weak topology on X¥* generated by V'. T, is the

topology on JX induced by J, .

By definition, 1r; is the characteristic of V'. The following
equations hold:
r, =r, = (l/r3) =r) =15 = (1/rg).
Each of the quantities r; to rg has a "geometric " meaning. When
ry > O, V’T\'é';' is absorbing. If W<«N, denotes its Minkowski func-
tional, then W:lly is equivalent to W'l on X*. If lxll, =

sup {x'x) , then, when r, » O, It'W,is & norm on X and
! 1 1 l
x'€ V'ns;

(X*, l «\\,) is the conjugate of (X, W« Mq). If Jop 1 the identity

mapping from (X*, W +% ) onto (X*, l«{l,) and i_. is the identity

20
mepping from (X,W+Wz) onto (X, 4:#), then || Jo W = (1/rl) and

Niggh = (1/rp) = r3.

If we define a mepping K from X inte V'* by (Kx)x' = x'x for all
x' € V' and x € X, then K has a continuous inverse on its range if
-|
and only if T, 7‘ 0. If ), # 0 and K is the inverse of K on its range,

then HY{' I} = (1/r),).
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When r, > O, l/r5 is the norm of the identity mepping from
(X*%, & <), the conjugate of (X*, §: (U, ), onto (X**, \+l|), the con-
Jugate of (X*,W-WIl). Also in this case, Te is the norm of the identity
mepping from (JX, WU, ) into (X**, M.4).
although they might

The quantity r. is not usually equal to r

7 5’
have been expected to be equal because of the similarity of their

definitions. The connection between r3 and r_ could be more exten-

7
sively studied.

These interpretations connecting the various formulas for the
characteristic with mappings may simplify present (see (2) and (7,

pp. 201-208)) or future applications of the characteristic.
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CHAPTER I
PRELIMINARIES

Throughout this paper (X, W:W) will denote a normed linear
space, over the real or complex field, with norm W-ll . X% will
denote the set of continuous linear functions x' mapping (X, N - W)
into its scalar field. The usual norm defined on X* as in formula
(0) will also be denoted by W-W. Thus (X*,W ‘W) is then the con-
jugate of (X, W+ W) and (X**, \'||) is similarly the conjugate of

(X*, “ * “)'

let A€ X, B g X, X, € X, and let B be an element of the scalar

field of X. Then we define

BA

{x:x=px) for some x| € A% .
(3) xO+A={_x:x=xo+x1 for some x7; € A} .
A+B={x:x=xl+x2 wherexleAandXQGB'}.

Similar definitions are used in X¥* and X¥*,

Iet r be =z nonnegative real number. We define
S, ={x:x€&X ux\ ¢ r} .

s, ={x'":x"€ X¥ Ux'h¢ r}.

2]
]

p={x"ix"ex¢, 1x"ne ry.



These sets will be called the “sphere of radius r" in X, X¥, and X¥*¥
respectively. When r = 1, each of these sets will be called the unit

sphere" of its space.

When it is necessary to refer to a particular norm topology, we
will precede the word "topology" by the symbol for the norm, as “the
W+ W topology." The letter "T" will be a generic symbol for a
topology. However, we will refer to the weak topology on X¥* generated
by X (or on X** by X*) as the 'weak* topology" (7, pp. 151-154). The
weak topology on X génerated by X* (or on X¥* generated by X¥*) will be

called the 'weak topology.

A base at 0' in the weak* topology on X¥ can be formed as follows.
Iet A< X, let € be a positive real number and define ,
U'(A,e)u{x’:\x'xl < €& fora.llxéA}.
The collection of all sets U'(A, € ) for finite subsets A of X and all
positive € is a base at O0' for the weak¥* topology on X¥. If A'e X*
and € is a positive real number, let
u(a', € ) = {x: Ix'x| <« € forall x'eA'} .
The collection of all suéh sets, where A' is a finite subset of X¥ and
€ is a positiire real number, forms a base at O for the weak topology

on X.

For the closure operation we will use the following conventions.

A bar " ™ " gbove the symbol for a set will denote the closure of
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thet set in the weak#* topology. A bar "~ " followed by a symbol "TJ "

for a topology, as ""93", will indicate the closure in the topology

I .

In the four definitions contained in this paragraph, and in rela-

tions (4) to (7), let A€ X and A'Q X*. We define the annihilator of

A in X¥* as
A"’-{'x' :x'e X* x'x=0 fora.llxeA} .

The ennihilator of A' in X is

+A a{x:xex, x'x =0 for all x'€ A'} .
The polar of A in X* is

po =fx' : x'e X¥, R(x'x)€ 1 for all xenl.
The polar of A' in X is |

Op' ={x : x€X, R(x'x) €1 for all x'€ A'} .

The following relations are easily checked.

() A€ A inplies AY2 A" and A7 A°.

(5) Al e A' implies +Al'?_+A' and °Al'2°A'.
(6) | *at)2 A ana °(n°) 2 a.

(7) (*a")*2 A' and (°A')%zA'.

At many points in this paper we will need the following defini-

tions.

Definition 1. A subset A of a linear space Y 1s balanced if



