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1f A is generated by a, then each d_e‘unlt(L) is com~
pletely dotgrnined by the distributive law 1f we kﬂow axa,
Thus Mult(A) is the cyclic group having the same order ss
A and generated by' p it g is defined by apa = a.

Por another example of Mult(Ad), suppose that A 1s a
finitely generated free group goﬁofttod by a4, 1 €1 5 %,
Then Mult(A) is a free group on % gonorutor-;' To see this
note that each element « € Mult(A) is determined by kmowing
afxaj for ail i, J. Moreover, we iay chooco atdaj arbitrar-
1ly and extend & to all of A by the distributive law, No
~difficulties arise from this construction since A 1s froo.
If now we define elements (1,j,k) € Mult(4d) for each i, J,

k such that 1 < 1, J, k < t by |
an(i,J,k)ap =0 4ifn #1iorm#]
ay(1,1,k)ay = 8y " |
each « € Mult(A) is a linear combination of the (1,3,k).
Mult(A) is then the free group on the % gonoratofa (1,3,k).

By making use of Theorem 1.1 and properties of the
tensor product it 1is pésaiblo to determine Mult(A) for
groups A that are direct sums of cyclic groups. The de-

talls of this may be found in [5].

According to 2) of Theorem 1.1 every. aCe-Hnlt(L)
corresponds to a subgroup K of A which is the kernel of a
homomorphism of A into End(A)., The following result gives

necessary and sufficient conditions for a subgroup K of A



to determine an element o € Mnlt(d).

Zheoren 1.2. Let K be & unbg'rouﬁ of a group A, Then X
1s the kernel of a homomorphism of A into End(d), 1. e.
K determines an element « € Mault(d), 1f end only if thers
is a subgroup A = {ffac 4 oFf Hol(A/I,A) such that
1) A is a homomorphic image of A,
'2) QEer(p,) = K. |
£roof. Supposs K is the kernel of a homomorphism
%N: A—> End(A). Then as in the proof of Theorem 1.1
nN—+ra, for o« € Mlt(d), if an = ﬁ for each a € A, iow
for each x € A define @ : A/K —+ A as follows:
(a + K)py = xRy,
This 18 5. mapping since ay - ;.2 € K implies
- #:1-32 = (a4 - a‘2)’l = 0 ‘
or By, = By, so that xRy, = xBg, for all x € A, Also
[(a +K)+ (b+ E)]?x = [(a. + D) + K]?x
o = aRg, = x(Eg 4 By
= xH, + By
= (a + K)fy + (b + K)p,.
Thus each ¢ is a homomorphism of A/K into A. The set
A = {pglze 4 18 a homomorphic image of A under the corres-
pondence x--r?x. For this is clearly a mapping and
(a + K)fx-o-y. = (x + y)E§ = xBS + yBY
= (a + K)px + (a + K)py
= (a + K)(Py + py)



implies that P»xq-y = Pg + 'py. This proves 1).

To prove 2) suppose & + K € Q Kexr( P, ).. For every
x€ A o B o |
| (a + K)P, = xB: = x(a«) = 0,

It then follows that R} = an 1is the zero endomorphism snd
hence that a ¢ K, the kernel of 7. Therefors () Ker(fy) = K.
Oonversely, assume the existence of tho_ subgroup A
of Hom(A/K,A) satisfying 1) and é). | For elements a, x €A

define a jroduct x#a € A as follows: choose ¢ €A and if
QEY + x; iot |
| xwe = (y + K)p,.
ais obvlouil’y well-defined. PFor x, YEA, €Yy + K, s€4
| (x + zhia = (y + 47 2.

= (y+ K)p; + (v + K)p,

= X8 + $Ka,
It aéy + K, bew + K, x€4A

ze(s + 1) = [(y + w) + K¢,

= [(y-o-x) +,(v+x)]¢x'

= (y + 9] s (ne K)p, |

= Xda 4 xdb.v
We conclude that X 1is distributive with respect to + and
that « € Mult(A). Also, K is the kernel of the homomor-
phism 7¢: A —> End(A) such that an = n‘:. . ror'lt an = n: = 0,
we have by definition of | -

0 = xEj = 8 = (y + K)?y for all x\éL,
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‘where 8 € y'_+ K. But then ¥ + K 18 in the kernel of every
‘fr By condition 2) YEK and consequently a € X, This
shows mt the kernel of N is contained in K and since the -
rovorn Mclusion follows from the definition of o, the

assertion is proved.

If «€Malt(A) and % € End(A), & product «7 e Malt(A)
‘may be defined: |
x(«n)y = (x2yn.
It 1s routine to verity that lult(.l) 1- a ri.sht module over
its ondonorphian ring End(4d) with ‘this donnltion of product.

We will have occasion to make use of the following
resultis,
Zheoren 1.3. Let 4 = B + C be & direct sum of the groups
B ind O and suppose that « € Mult(B). Then « may be ex~-
tended to an element a*eMult(A). | |
Rroof. If o€ Mult(B) and 8y = by + 04, 8 = by + ¢y for
by, Do €B, ¢4, .ezéo, we ‘uy define a¥* by

a,d.‘ha (by + 01)1*(1:2 + Cp) = b,dba.

«¥* 1is obviously in Mult(A) and an extension of . We
call «* the trivial sxtomsion of o to all of A,

Iheoren 1.4. If A is a divisiblo group and B a torsion
group, thon ABB = '

2rocof. Suppose a €A and bEB rith b having order n., Since
~ 4 is divisidle there 1s an elanont X €A such that nx = a.
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- Then by the distribdutive property of the temsor product
~ seb = (ax)ob = x®(nb) = 0. |
Hence A28 = 0. |
Corollary 1. 1If A is a torsicn divisible group, then .
Mult(d) = 0, |

£roof. 7This follows froam Theorem i.1 since by the prcsonf
theorsm AGA = O, |

Qorollery 2. If A =B + O 1s the direct sum of a divisible
group B and a torsion group O, then any ring on A is the
ring direct sum of rings on B and O,

Proof. If b€D and ceO, we have as in the proof of the

theoren b.c = O,



OHAPTER II
'THE BEAUMONT CONDITIONS FOR p-GROUPS

The ob:cct of this ohaptor is to ducrﬂu all possibdble
uul on s g:.nn group A which has s buu or a quasi-basis,
'loro procinly. we seeX to determine the multiplication
tables of the bassl elements in much the same way as one
does this for an algebrs over a field. The first results
of this type for groups ars dus to Besumont [1]; later these
were generalised by Rédei [8] to arbitrary groups with oper-
ators. !ho main result of this ch_nptér is also a general-
ization of Besumont's result in which all multiplications

on an aibitrary_tornion group are dotornnad.

‘Buppose a group A = e, is g‘.lvon as the direct sum

CEA
of the coyclic groups {01} 1¢n 804 the orders O(e,) = n, are
finite. Then a multiplication < on A is completely deter-
mined if we know the values of ofcoj for 311_ 1, Je A Let
these values ‘1“'3 be given by
1 e ,%Xe ty 410
(1) ey = 2ty gyex

where 1, J, k€A and at most a finite number of the teras
tijk‘k are different from gero and t“'k ari integers, If |
A(+,x) 18 to be & ring, the distributive laws-imply
| ni“i“‘d) =0
and
| | nj(‘_t""j) = O,
11
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Oonnoquontly (n,_. B4, nk)t“kok = 0, where (ni. ny, By) is
the srutut common diﬂ.aor of the integers n,, ny, By.

- : n »
(2) tyyg =0 -Md"_L_Tngo Ry
It .l(-l-,d) is to be an auochttn ri.ng. we must hnvo,

for all 1, J, k€ A, (oietoj)aok c,_at(oaauk) or
‘Ztijr.r?‘°t = Oid(;t:n.r)

Zt1 Jr' ooy = ;tjkr"i“r
;tiar(sztrk.") - ;t:h-(;tir..g)
T Ttugrtorales = T Ttatunalon:

Thor.fdro. for each 1, J, k, 8

) Ztiar rku‘—'zti.l:rtiro ‘“(‘s)'

Since (oruj)d-ek = Z(Zturtrn)e,. A(+,d.) will not
be a Lie ring_ unlou

(4)  THygpteny + Zgiakrtfi, + %gtkirt,j, =0 mod(ng).

The identity (4) is the conditlon imposed by the Jacobl
jdentity: (xdi)&z + (yxz)ax + (gax)ay = 0. But to be a
Iie ring A(+,2) must also uﬂ.ity xax = 0 and x«y = =(y«x).
These two conditions lead to the following:
(5) tiax =0 mod (n, )
(6) Yy = ~tjax  mod(ny).

One can also show that the above conditions are
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sufficient to insure that A(+,x) satisfies the appropriate

laws,
Zheoren 2.1. Iet A = 2 {esf be a group on which there is
EA ' )

_defined a binmary composition « such that
ogiey = thl Ix°k

fLor 1ntos§#- i, J, xeéA. Then

1.  (Beaumont [1]) A(+,%) 1s a ring if and only 1f con-

| dition (2) holds; |

11. (Besumont [1]) A(+,«) is an associative ring if and
only 1f conditions (2) and (3) hold;

111, A(+,«) 1s a Iie ring if and only if conditions (2),
(4), (6) and (7) hola.

_ 0f course the statement of Theorem 2.1 could be ex-
tended to include other kinds of rings.

- We wish now to consider multiplications on an arbditrary
tornion'sroupyl. Here the problem may de simplified by re-
solving A into its p;céippnontn;' The simplification l!il‘l.
from the fact that 1i'l(+.¢)‘1l & ring, then axd = O when
a, b are from different p-oénponontc of A, Hence A(+,%) is
the ring direct sum of 1ts p-coipon.nt-;bvii will therefors
confine our attention to p-groups.

The notion of pure lubgroup and basic subdgroup are

tundu_ental in the study of p-groups.
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Definition. A subgroup B is pure in a group A 1f solva-
bLlity of nx = bEB in 4 implies wolvability in B (a is an
-integer). | : |
~ Definition. (Inlikdf {71) 1 A 18 a p-group, then B is a
bagic subgroup of A 1f and only 1f
(a) B is a direct sum of cyclic groups;
(b) B 1s pure in A; -
(c) A/B is divisidble.

Kulikov {7] has proved the existence of basic sub-
groups for every p-group.

Iet B be a basic subgroup of a p-group A. . VB is a
p-group and by definition is divisidble. It then follows by
the structure theory for divisible groups that

Each 0,,. is generated dy cosets 0(1)_, 5}‘2), o o o O(n). o o o
satisfying the defining relations: pﬁ,‘,’) = 0, p'd}..a) = 5,(..1),

e o o pa,ﬁ“*‘_’ = 3}3‘)', . « « A fundamental result for pure
gubgroups is that if X ¢A/B, where B 1s pure in A, then.there
is an element ye X such that O(y) = 0(X). Applying this re-

()

sult in the present case we choose from each O, ° an element

c—ff’ (n)

= O, Because of the relation

c(n+1) L) - bﬁ‘n) for

such that p 0

pGia+t) _ g(m) pola+t), 6}.‘? and p



15
some b’f)é B when n » 1. Por n = O, PU“? = O, BSuppose
aeL,a-.-BeL/B. Then '

'a+B-lO(n?+aO(n"?+- . -+lta(nt)

where the ay are assumed not to be divisible by p. Having
chosen the representatives for each component O, in the

nanner duc'ribed above, we have

a+B= (a1o§._

i), 0,085 4 o oo v aofB)) 4B,

.Hence a - (a,o,ﬂ‘}" + azcsﬁ‘? + oo o+ atoﬁ.‘,*))en. Taking
a basis {bﬂ for B

a = (.'10(n’.) + e o o + 8 o(l:t)) = klbh + keb,ll_-l- e o o & hvblv
or
a= k'bl, + kzbl‘_"' s o o + k'bA“ + a1o(n ) $ o e o # ' c(ng). -

It sueh an expression werse O, it would follow that

a,O‘n ) + 3 G(n‘) + o o o & atﬂ(n"

80 that
l1°(n ) + ‘2o(n‘) 4+ o o o $ atO,(.‘n:) - O.
But A/B 18 a direct sum and hence
“nc) (n )
8,05,; = 0 and 8,0,;" = 0.
Then

k1bﬁ' % kzb"l.+ s o 0' & hvbau - 0
and since the b's are a basis for B, kb, = O, We may
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then conclude that the elements kb,  &nd aioﬁﬂi) are unique-
1y determined by the element a€ . The set {{bf , {02 )
is called a gussi-basis for A, This proves the following
theorem of Puchs [2].

Zheorem 2.2 Let A be a p-group ‘and B be a basic anbgroup

of A, If {{vat, {c(‘)ﬂ 18 a quasi-basis for A, then each

elenent a€ A can be expressed as

B =kyby +kpby + o s o4kl + 80880 4, P
where ﬁho 1 9 and_the a, are 1ntegerl with the ay not
divisidle by p. Moreover, the terms k,b), and n,Qﬁ?i) are
uniquely determined by the element & in A,

Let B, O be subgroﬁpo of the groups G and H respectively.
In general it is not posélblo to embed B®C isomorphically
in GOH in the naturai way. However, Af B, C are pure in G,
H respectively, then this can be done. By definition basic
subgroups are purewso that we may ldentify B&C with its
isomorphic image in G&H. Also by definition of pure aﬁb-
group G/B and H/C are both divisible. We may then solve the
rquations ' | |
n{(x + B) =g + B
m(y + ) =h + 0
where n, m are non-zero integers. In particular, we may

‘choose integers k snd t such that k » E(k), t = E(b) and
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pkx'-o- b=g
Py +c=h |
for certain elements d and ¢ in B émd c ruj»ectiuly. Then
gab = (p¥ + b)oh = (pExeh + (behn) .
‘ = x®(p*h) + b&(pty + ¢)
= v@(pty) + (véc) = (p*bvy + bec = vec,
This shows that GOH € BEO and proves the following.
Legpe 2.1. (Puchs [4]). I?. B, C are basic subgroups of the
p-groups G, : 'i'ospoctiiely, then G®E = BEC,
As a special ocase or- this lemma, BSB = AGA when B is
# basic subgroup of A. Then since Mult(A)=: Hom(A®A,A),
Mult(A) & Hom(B®B,A). o

" Theorem 2.3. (Muchs '['5] ). Let A be a p-group, B a basic
subgroup of A and «<Mult(A). Then for any i. JEA fhore
are slements b, c € B such that x(y = d«c, Moreover, any
mapping of B€B into A may be extended to & nulﬁplication
on 4, | | |

RProof. ILet ol€ Mult(A) end x, y €A, Then there is a
hononorphiu n ot A®A into A uuéh that zuj = (x@y )n. But
by the proof of Lemme 2.1 there are elemenis b, ¢ in B such
that x®y = b&c. Hence Xy = (x8y)n = (b®)n = bee, This
proves the first part of the theoren. | If a mapping of BEB
into A is given, we may nﬁe the isomorphism A®A = BAB to
define xxy = buc 1if Oy corresponds to bec for x, YE A,
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Lomms 2.2. Let A be a p=-group and let B be & basic sub-
group of A. If A<Mult(A) and « is associative on B, then
« is assoclative on all of A. | |
Proof. The proof of this is similer to the proof of
Iemma 2,1, Here, it a, b, ¢ are elements of A, We may
choose k as the maximum of the integers E(a), B(d), E(c)
and find olements d, e, £ €B such that |

phx +d=20a

Py +e=h

ok
,,,,i,gp,gre'}x, ¥, £ are certain elements of A. It then follows
that | |

s+ L =¢c

(axd)eec = deext = M(_bdc).
Now 1f A is a p-group and B = Z{e,j is a basic sub-
e~

group of 1. we may detornino the multiplications on A by
determining the values °1°“3’ Note that the values e “'3
may not be in B, Ohoose a quasi-basis {{uil ’ {0 ff for

4 and suppose the values '1‘“3 are given as follows:

where_t“e, r”; are integers and p‘f.f“s.
Just as in the previous case the integers tijt nust

satisfy the condition (2). We also must require

(100 2(c28)) < B(e, ) an n(o"“") < Eoy).
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Gondition (10) results from the fact that pP(®1)(esdey) = 0
and hence p“'i.)ru:o(") =. 0 s0 that ,E(O‘?f’ )' pnhi)rnr.

But since pfrtn:, px(o(nt))’pn(.i) The other part of (10)
is obtained similarly.

In oxrder to obtaln the conditions for assoclativity
we compute (eidej )dek: '

(ogtey)eey = (Z“iu% + Z‘iaro(n*))‘“k
= Ztljlald'k + Z‘iaro( *?dok
= Zty3( 2 tarn®n + Zf-kw"(n")) + Z‘iar"(n")*"r @

By Theorem 2.3 we may choose by = qu‘. e, €B for each r
T .
such that |

(%) o(nf_)ac.k = bpeey = (Zv( )'r)“‘k-
Uung the relation givon by (*) in (1)

(g )aey = Z( Ztu.t.n)o. + Z(Zt“,r,h,)o‘ o)
+ Zt“r(zys, ).,ak)
= Z(th,;.tan)’m + Z(Ztu-fskw)"( )
| ¢ Te1n vl [Ttaggey + RSN (a-1] )
Z(Z"ustanhm + Z(Z“uafshv)"( )
‘r'- g[;(g:% )ttx.fijr?]°a + Z[Z‘g';r),‘idrf*kr?] ofr)



and flnllw |
(.1‘.: )‘.k = ZIZtiaat'n + Z(Z‘ir)ttht"’r)] on

+ Z[ztj.’s skw + Z(th )fijrft )]O(n")
in like manner we find

‘1¢(.j‘01? "..':‘ ;[;tjkﬂtiﬂn + Z(;v‘s_r)fjntrt‘)].-
+ Z[E,:“:x-fin" %‘?’W‘:h‘itu’]"&w’

where

(**) eiaLG}.n*) = o, ;;r)‘t.

By uuns Lemma 2.2 these conditionn can also be shown to
be sufficient so that we conclude that a necessary and
sufficient condition for “ to be asso»éiative is that the
‘following hold: '

(11) ";‘13-‘?;&* Z(;V%r)tmfur) =
;t.‘lkltisn + tz(_z—-fé'r)takrtu‘n)' nod(ps‘.‘))
(12) Z‘nsfsku + Z(ngr ’turtm) =

. zt:lkufil\r + Z(ZV,c _ k:rtl't ) md(pE(O}‘n-’)))'
M 2.4, Let 4 bo a p-group and let B = Z'[.i; be a

basic subgroup of A, IZ {{eﬂ . Ggf)ff is a quasi-basis
.ror A and « is a binary composition on A given by (9), then
(a) A(+,%) 18 & ring if and only if (2) and (10) hold;

(b) A(+,%) is an associstive ring if and only if
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(2), (10), (11) ana (12) hold.

It is also possible to obtain necessary and sufficient
oondiftionu for A(+,«) to be a Iie ring.



CHAPIER III .
ASSOCIATIVE-CLOSED GROUPS

1. W. Ist P be a ring property and define

- P(A) = {«|deMalt(d), A(+,«) has property Pf.
In [5] Fuchs asks for a characterisation of those groups A
~ such that f(A) 48 a subgroup of Mult(A). In this chapter
we solve this probleam .f.oxj srohpl with a basis or quasi-
basis when P is the associative property 4. If P(A) is
a subgroup of Mult(A), we shall ssy that A is P-gloged.

LeNRs 2.1, If «,pcc4(L), then «@fcc4(A) 1f and only 1f
for all x, ¥, scA .

(xey)pe + (xpy)oez = xA(yps) + xp(yds).
Exoof. Suppose x@pect(A) for ﬂt.pécA(L). Then for all
X, Yo 8€A . | ,
(x(x00)y] (x0p)z = x(<0p)[y(«0p)d.
Using the definition of «0$ we obtain
(zvy + xpylie + (xay + xpy)ps = xa(yes + yps8) + xp(yoz + il’i)'
Since both ¥ and 0 are distributive over +, the above squa-
tion b@coun |
(xvty)ds + (xxy)ps + (xoy)es + (xpyles =

xe(yxs) + xu(yps) + xp(yes) + x(’(ns).

Now oinco o,8e AA), this last 1dentity is equivalent to
the identity of our lemma. This identity is also clearly

22
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.sufficlent to ensure that x@pc(4).

m. If kccAA) and ¢,¢cEnd(A), the mapping
of AXA into A is defined by o
x(por)y = (xg)e(ys)
for all x, ye . |
- If «€ Mult(A), a €A we have the right and left multi-
plication ondonorphllu‘n’: and I§ determined by a and «.
We write «, for Rg¢I, I the identity endomorphism on A.
- Here we have for x, Y€A
X%y = xciaacy
when « is associative.
Ismaa 2.2. et «,pc(4) and ¢, ¢, ¢ Tnd(4). Then
(a) Pape Malt(d); |
(b) | o € ¢A(A) for each sc€ A;
(o) id‘laé A} 18 & subgroup of Mult(A) of associative
multiplications and 1is a ﬁonourphio image of A;
(d) 12 the ring A(+,%) contains no element 0 ¥ O such that
x«¢oxy = O for all x, ye€A, th‘on.{d,‘f is isomorphic to A.
Exoof. (a) Por x, ¥y, €A
(x + r)(?.«ﬁ)z = [(x + y)oJx(2p)
= [(xp) + (y)]« (se)
= (xg)e(zp) + (yg)dlsp).
The other distributive law is similarly obtained eo that
g6 e mlt(d).
(b) We have by definition of «
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(xa‘y)d‘z z (Xdady)eads = xa-t(ywz)
= zaau(ye, z) = X (7 z)

(o) Let o, o€ {d,]. Then

X(%g0%y )y = XY + XApy

| = X&aoy + xobay
= xo(a + b)ay = xd(g,4y)T.
Hence (« ] is a subgroup of associative multiplications and
the nippins a~—>«, 1s a homomorphism of A onto (A f.
(d) We show that the hoionorphin a—>d,  1s 1-1 under the
given hypothuia. Suppose &g, = oy, Then for all x, ycA
XaeY = Xdpy ‘

and xdauy = xobuy,
This implies that xefs = bMy = O snd 1% follows that a = b.

2. @Groups with & bagis. Assume the group A has.a basis and
is given as

A= ZIOJ

LEA
& direct sum of the cyclic groups fe,f . A multiplication
is completely determined here if we know the products oiauj.
Definition. If the group A = Z[c,_( » & binary conpoution w

is called an grihogomsl mltip;:oation on A 1f 1t is defined
as follows:

eqwey = &y ytyeq
for all 1, JeA and [13 is the Kronecker delta, t; is an

integer.
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m 2.3 If Olis the set of all orthogonal miltiplica-
tions on a group 1. then X ‘ut(L) and /7 1is a subgroup of
Hult(A).
Exeof. That X< A(A) is clear from the definition of olononto
in Jl, To prove that 71s a group, let «,g<4, Then
'ol(wi[s)oa = e‘iw03 + 03004
= fyqty0y + d, 3t101
= J"”(tl + ti)oi

 ‘and wep e A, Also

d13(=ty)ey = ~(oguey) = o1 (<)o,
so that Qwe 4,

Llenme 2.4. If p is the orthogonal multiplication such that
| eypey = djjey

for all 1, j€A, then A = {p,[ac€al,
Proeg. If A is finitely, then A(+,p) has the unit ¢ = Se,
and the isomorphism A = {1 follows at once from Lemma 2.2
'part (a). It 1s not necessary to sssume this finitonnli;
however. Iet f: A — fa Do defined as above: f(a) = po,.
let a, beh and a = Tk 0, b= Zkje,. Suppose that
fa = fpe Then for ucﬁ oy |

01 a® = 1/p°1

ejpape; = o,0bpe,.
By the definition of ¢ this reduces to k,ey = kjey for each i,

Hence 2 = b and £ 18 1=-1,
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It follows from Lemma 2,3 that 1if A is a oyclic group,
‘A(A) 18 & subgroup of Malt(A), .l"orriin this case «{(4) 18
the same as Mult(A). When the group A has more than one
sonoritor we have the rollowins..

 Theorem 3.1. Let A = E;\{ol} be a torsion group of rank |

T > {1 and let 31 be the order of e;. Then A(h) 18 a mb-
group of Mult(A) 1f o.nd only Aif (ni. na) = 1 for every i, }
for whioh 1 #£ J.

Rreof. Suppose the condition (n,, nj) = 1 holds and «

is in Mult(4) and 1s given by
eq¥ey = %t:l 3x°k

There exist integers t, s such that 1 = tngy + sna and
00y = 1.(e0y)

(tny + anJ) (oidoj)

= (tng)e (oictej) + (una) ('1"‘3)

= (tnloi)den + e,_d(anaej)

= Ollea + 6,40 =0+ 0=0,
This shows immediately that any ring on A is the ring direct
sum of rings on the cyclic summands of A, Since the integers

t”"k’muut satisfy the Beaumont condition (1)

n
taL=0
11Xk “ "°"-r—Ly. 1> Dp

or

t44x = 0  mod(ny)



when 1 £ k, o 1s an orthogonal mmltiplication. Hence
Mult(A) € 4. But since’ ws always have & € 4(A) < Mult(A),
for a.ny group A, we conclude o | |

0 = ¢A(A) = Mmlt(A).

Conversely, assume that for some i # Jj, we have
(ny, ng) = 4> 1, Fow define tyyy = ny/d and thus s
multiplication « by
| ' '31401 = tiij’i

exwep =0 1f k#1orm#1i,
mimltiplication « satisfies the Beaumqnt condition (1)
since ty,.. =0 for k #1 orm# i orr # J and

tiij = nj/d =0 lll.Od.(n_i.!’:J;J_’;

by definition of ty34. Thie is also clesrly associative.
Now we have «,fp ¢ cA(A) where pedl such that

o Py = 6‘“01.
If «4(A) is a group, we mey apply Lemma 2.1 for e,, e, EA:

(og001)oey + (ojxeq)pey = eip'(oldcn) + e3%(eyfey).
By definitlion of o end ¢ this gives
‘1¢‘J + (tiid.d )P.j = elpO +,01¢° = 0,

-Henoe |
tiij‘-ﬂ = 0._
But this contradicts tho_ order of oj since by definition of
ti:l.j we have O < tiij < D4 This completes the proof.
Corollery. If A 1s a torsion assoclative-closed group with
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a basis, then any ring A(+,v) is both commutative and asso-

clative.,

Zheoren 2.2. If A 18 & group with a basis and is not a
torsion gi'oup. then A 18 associative=closed 1:'md only if
A 1s the infinite cyclic group.
Exgof. If A is the infinite cyclic group generated by e,
then for any choice of integer t
| exe = te

defines a multiplication 1n ¢4(A) and these are the only
possibilities. Henoe «{(A) is a group.

Now suppose that A is a torsion-free group of rank
r > 1 and choose any two generators e,, 6y of A, Define
multiplications <, ¢ &s follows

" 68y = 6o
63284 = 0 11 £10r i #1
e fe, = o,
| e 084 = 0 it 1 £2or ) £ 2.

It 18 clear that o ,ged(t). If ¢4(A) is a group, then
d@p€ot(A). By Lemma 1.1, 1f <@peid(d), then |

(e1¢0q)poy + (eqf0,)ue, = 8 %(ayp0p) + e1p(0gaep)
that 1s | |
| 'oapea + Oxey = €,20 + 400 = 0.
This implies e,dep = O which 1s a contradiction.

If A 18 a mixed group with a basis, the torsion-free
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part of A, say T, cannot be of rank greater than 1 if A is |
. %o be sn a'-ociatlvo-cloucd group; for 1t the rank r > 1,
A(T) is not a,group and there exist olonntn o, p € A(2)
such that 08¢ A(T). Now since T 1s a direct summand of A,
we may apply Theorem 1.3 and have a#, A€ A(L) and |
(dtp)* = d.*!p*# (L), Thus we assume that A has exactly
one gonorator of infinite order. 3By the saxe reasoning,
the torsion part of A must satisfy the conditions of
Theorea 3.1. Let & be the generator of infinite order and
define multiplications <, /3 as follows:
avey = ejda = ejaey = O and ada = a for all i, }
afe; = ogfa = o, and afa = 8, e,fe, = dijey for all i, J.
If A is to be assoclative~closed, the identity of Lemma 1.1
must be satisfied. In particular the following must hold:
(e;%a)fa + (e 08)da = efx(apn) + 0,4 (ana),
But by the definition ot these multiplications this implies
that ¢; = O and this is a contradiction,

3. Some results for groups xithout & pasis. In general the
problem we are considering is mors difficult for groups withe

out a basis. Soio -pooifig cases, however, can be handled,
The following theorems contain results for these lfocitio |
ocases., |
:ggg;g.‘:gz.' If A is a torsion-free groﬁp of rank 1, then

4 is an ap.ociitive-clolod group.
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Eroof. Any two elements of A are dependent aince A bas
rank 1 and by a theorem of R. Bui A is isomorphic to &
subgroup of the rationals, Hence we may choose a fixed
non-sero element a €A and write every element bd €A as

b = ra for some rational r. Then any multiplication 1s
commutative since xy = (ra)(sa) = (rs)(aa) = yx., TFrom this
it follbn that any mltipiieafion on 4 1i assoclative

since a(aa) = (aa)a. Honbo A is associative-closed.

Theoren 3.4 If A i1s a torsion=fres divisible group, then
A 1is associative-closed if and only if the rank of A is 1.
Eroof. The condition is sufficient by Theorem 3.3, %o
prove that it is necessary, let r be the rank of A and
agsume that r > 1, In this cese, since 4 1s torsion-free
and diviiiblo, A is a vector space over the rationals and
any multiplication on A si.vu‘ us a linear algebra over the
rationals, A multiplication is thcn oomlotoly determined
by products of the basis elements. Let (01)16,\ be a basis
and since r > 1 we may choose elements e, 02 €(ey) and de-
fine multiplications as follows:

0,48, = €5 |

;x84 = O iIf1 £ 10r )£

e ey = ¢

o 00y =0 1f 1 £20r §¥2.
As in the proof of Theorem 3.2, «,p ¢ +A(A) and +4(A) can-
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not bo a group since Lemma 1¢1 18 violated.

It 1- mtoruting to note that vh-n the gronp A is
touion-tru and of rank 1. then every non-triual mlti=-
plication «on A endows A uth the structure of an 1nt|gra1
ddnin. rpt supposs that _thoifo are olonbhtu a, b€EA ind
#cMilt(4) such that asb # O, Then if x, Y€ A are not sero;
thorc are rntionall r, 8 such that X=ra, y= 8b 80 thnt |

xay = (ra)«(sd)
= re(axb) £ O
since A is torsion-free, UNow A(+,«) is associative by the
proof of Theorem 3.4 and commutative as well, Rédel and
Sgzele in [9] have determined necessary and sufficient cone
ditions for a torsion-free group A of rank 1 to have a none
trivial multiplication (also see Puchs [5] ),

Iheoxen 3.5. Let A be a divisible group. Then A is
associative=closed if and only if |

A=Ra+. j‘f@(p,”)

where each P .10 prtno and R 1is isomorphic to the ‘ratlonaln.
Exoefs. Since A is divisible, A = DR + Z@(p&’). But by
Theorsn 3,4 and Theorem 1.3 (A) will not de a group une
less ZR contains 'onvly one summand, The condition is there-
‘fore necessary. To prove the converse we show thﬁt every
multiplication on
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A=R+ ‘Z-@(pl")

is assoclative. But by Oorollary 2 of Theorem 1.4 any
multiplication on A is a direct sum of multiplications on
R and 2&(p;°). Then Theorem 3.4 and Corollary 1 of
Theorem 1.4 imply that every multiplication on A is asso-
clative. |

Corollaxry. Ilet A be a group such ih@t A =3 + 0 vhere B 1s
a divisible group and C is any group. !hdn A(L) 18 not a
group 12 the torsion-free rank of B is groutor'than 1.
Exeoef. If the torsion-fres rank of B is greater than 1, B
is not aasoctativo-éiblid by the theorem and hence A 1s not

by Theorem 1,3.

In Chapter II all rings oa foruiqn groups were desocribded.
We now seek a dotifnination of necessary and sufficlieant con-
ditions for a toruioﬁ group A to be associative-closed, Ais
bitoro. it is lufricioht to consider the p-conponontl of A,
Iet A, be a p-component of A and let B = 2.{84] be a basic
subgroup of ‘P' Now suppose that the rank r of B is greater
than 1 and write B = B, + B, where By = {ef + {ep] 18 a
direct lullnﬁd of B and is pure in B. Therefore By is pure
in A, and being finite is & direct summand of Ay:

.Ap = ﬁ1 + L;,. :

Any multiplication on By can be extended in the trivial way
to a multiplication on all of Ay by Theorem 1.3. But by
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Theorem 3.1 A(By) 1-:got’a group since (ng, np) # 1, both
{e4f and {ey} being p-groups. Hence «(4;) 1s not a group.
Therefore if A(4;) 1s a group, r = 1. This requires the
basic lnbgroup_n,'purelln Ap, to 'be finite and sinoe finite
pure subgroups are direct summands
Ap =B +D _

where D is divisidle. D is divisidle simce Ay/B = Z(@(p%).
With Ap being the direct sum of a torsion group ahd a
divisible group the proof of Theorem 3.5 shows that the only
multiplications on Ay are the trivial extenslions of multi-
plications on B and all of these are associative, This
" proves the following result.

Iheorem 3.6. Let A be a torsion group. Then «(A) is a
.group Af and only if A has the following form:

L= SEOM) + I,
¢ <

where the primes p; are such that py # Py if 1 £ § and for

éach ¢t

In [5] Puchs has determined the additive structure of
assoclative, commutative rings with descending chain con-
ditlion on left ideals; the determination of the additive
structure of semi-simple rings is also obtained in [S5]. Ve N

state these results in the theorem bdelow.
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Theorem 3.7 (Puchs [5]). Let A be a group. Thenm |
" (a) It is possible to define s commmtative and associative
Ting on A having descending chain condition on left
ideals if and only if
L= TR+ “Z'emw) + ze(p‘;n
where 1 and M are arbitrary cardinals and m is a fixed
integer such that p?iln,vt 1s finite.
(b) It is possible to define an assoclative semi-simple
‘ring on A 1f and only 1if
A= ZR+ Z@(m) # o0 o & Z@(p.)
wvhere Py, « « . » Pg aro different prinol and i,

Mo o o o ,n‘are ubitrm cm;nal.o

m 3.8, Iet A(+,X) be an associative, commutative
ring with descending chain condition on left ideals. Then
A is8 an assoclative-closed group if and only if A has the
following additive structure: | |

L=+ 2006 + 285

where the py and q4 are primes and the qj are distinct,
£roof. By Theorem 3.7 we know thet A = B + O + D where
B, C, D are the respective components of A given by that
theorem. By our previous results B can contain only one

copy of the rationals and D must satisfy the conditions of
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Thooroi 3”.“1 "." This shows that our conditions are necessary.
How assume the conditions are satlsfied. Since B + O 1s
divuiblol, D is torsion, any ring on (B + C) + D is a'ring
direct sum of rings on the two conpbnents. But as we have
‘seen before, A(B + C) = Mult(B + C) and A(D) = Malt(D). It
then follows that A(A) = Mult(A) and this completes the

proof.

We may use Theorem 3.7 and an argument entirely similar
to that used in proving Theorem 3.8 to obtain the following.
Theoreg 3.9. Let A(+,x) be a ring which is semi-simple.
Then A is an assoclative-closed group if and only if A has
additive structure as follows:

A=R+ @p1) + Clry) + « « « + Clpy)
for distinct primes py, Yoy o o « s Pge

4. A zelatlon between commutative endomorphisms aud ssso-
clative-clogure. Tor a group A assume that its endomorphism
ring End(A) is commutative. '.!hbn for any «€ Mult(4d), aeL,‘
be A, the endomorphisms LY, R}, are commutative. If c€ A,
ax(cab) = ax(eRp) = (cR%)I:; = c(Bply) = c(IL3RE) = (cL‘:)ﬁ;
= (axc)ad,
Hence if End(A) is commutative, every multiplication on 4 is
assoclative, As a consequence we see that comtétivlty of

End(A) implies associative-closure of A, The determination
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of those Abelian groups which have commutative endomorphisa
ring is not yet complete. This question hes, however, been
resolved by Szele and Szendrei in [13] for torsion groups.
The result is that a torsion group A has commutative endo-

morphism ring if and only if

A= @(pf‘) + O(p%2) + .+ . o 4 @(pf‘“) + o0
where the p; are different primes and O < ky $ 0, 1Ihis,
when compared with Theorem 3.6, shows at once that asso-
clative=-closure does not imply commutative endomorphisms.
For example,
| @(2) + &(2%)
is associative-closed by Theorem 3.6 but does not have

commutative endomorphism ring by the Szele-Szendrel result.



CHAPTER IV
LIB-0L0SED GROUPS

In order to study the set A(A) of Iie multiplications
we need a condition for closure with rcipect to @ Jjust as
we did for J(A). Thias is tﬁe content of the following
lemma. For convenience of notation we introduce the
syametric Jscobisn J.,;:

Ju,0(Xs s 3) = (xaty)pz + (xpy)uz + (y«u)px + (yps)ux
| | + (zax)gy + (spx)ey..
lenps 4.1. If «,8€A(A), then x@pcA(A) 1f end only if
Jx,p(x. ¥, 2) =0
for all x, ¥, Z e A. |
Broof. Tor all x, y, z €A and o,8¢ /HA) we have
[x(x0p)y] (t0p)z = (xay)ez + (xey)ps + (xpy s + (xpy)pz,
[y(0p)z](cop)x = (yaz)ax + (yaz)px + (ypzlox + (yfz)px, |
[z@op)x] ep)y = (zwx)ey + (zex)py + (2px)ey + (3fx)PY.
Since of ,f€ 1(A)
 (xey)ez + (yez)ex + (zex)ey = 0
and (xp7)ps + (yp2)px + (z,dx)py = 0. _
Clearly then, from the definition of thc aynietric Jacobnn,

" our condition is both necessary and suffiocient.

When the group A has a basis, we u'ay that & 18 a 8
ide nultiﬁlication > § 4 °.1¢°1 = 0 and o uey = '(‘3“1) for all
1, J. |
| "~ 37
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Lexas 4.2. The set 07(1) of semi-Iie multiplications 1s a
group with respect to o. | |
Exoof. This follows from the definition,

1onas 4.3. If A is a‘group with a basis having r < 2,
then i(4) =4A(A). | . .
Proof. If r = 1, the result follows immediately simce both
/(L) and 41(A) contain only the trivial multiplication. Now
lﬁppou that r = 2. Since it 1is obvious ﬁllt every Lie
multiplication is a semi-Iie multiplication we only have to
show that J(A) < A(A)'. In order to prove that AlL) < A(L)
- we only' have to show that the Jacobl ldentity holds since a
semi-Iie multiplication « is anti-commutative by definition.
But if e, o5 sre the generators of A we have, for example,

(egnep)ee; + (o004 )uey + (6420, )0y

= (fo‘doz.,)xo{ - (61102)101 + OXe, = O

and in general

(o108 ;)aey + (o4x0y)dey + (oywey)dey = 0

follows in a similar manner for 1, J, k= 1 or 2.
Iheorem 4.1. If A = J[eqf 18 a torsion group such that
&

the orders ny satisfy the condition that for all pairwise
distinct 1, 3, X, (ng, ny, ny) = 1, then of(d) = A(A).

- 2rogof. The case where the rank r of A < 2 is proved by

Lemma 4.3. A8 in the proof of Lemma 4.3 we only have to
show that the Jacobi identity is satisfied for every semi-
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Lie multiplication and for this it is sufficlient to show
that (ejxey)eey + (eyaey)aey + (exwe,y)eey = O for peirvise
distinet 1, J, k. But for pairwise distinet i, J, k our
hypothesis is that (ny, ng4» 2y) = 1. Then there are in-
tegers r, s, t such that ray + sny + tay = 1 and hence
(o404 )aey = 1+ (030 )utoy
= (rny + sy + tnk).(oioloa Yoty

= (rni)-(eido:')azok + (snﬁ-(oi«e,)ak + (tnk).(eidaj)xok

= 0.
_Hence o(A) = A(A) and the theorem is proved.
Iheorem 4.2. Let A = Jfes] be a torsion group and let

c
O(ey) = ny. Then )l(A) is a group if and only 1if
(ng, ng, ny) = 1 for all pairwise distinct 4, J, k.
£r90f. That this condition is sufficient follows from
Theorem 4.1 because A(4) is a group for all A, To show
that the condition 1s necessary suppose that for some set
of pairwise distinct i, J, k we have (n,, By, ag) > 1, We
conslider the subgroup

4' = C(ny) + Cfny) + Clny)
of A. Since A' is a direct summand of A, it will follow,
ai we have seen before, that ¢/(i) is not a group if (A(Af)
18 not. We now consider the representation of D4, n,. ny

as products of prinob. Let



n = p?lp® Sy
By = Py Pa?e « Py
n: - Qi Q220_. Qq

nk = r"r;e. . or

Nn

Then (ng, ng, ny) > 1 implies p, = r, for some integers

U
n,,u,a-nuoh thl.tl N< u, 18457, 1< x, Now re-

solve A' into tho direct sum of its cyclic p-groups. A'
then has a subgroup B = @(p%1) + @(p™I) + ©@(p*k), where
P=Py=4q=Tes which is a direct summand, Again by
reasoning as before +L(A') is not a group 1f,1(B) is not.
Consequently, «I(A) is not a group if «Z(B) is not. It is
therefore sufficient to show that »Z(B) 1s not a group when
(ng, 4, ny) > 1. Let the summands of B be generated by

845 83, O3 :Eeepecti,vol& ahd assume, without loss of general-

ity, that 8; < Wy & 2y Define

- 63 -
-Tm';r-%&;i—a-;n"f;-rf‘ §=1,2 3

Two multiplications <, 4 are now dgtinod as follows:
e K8y = =8 Ney = dx05
e dey = ~03K8y = dase,
8”6
e %0, = 0 for £ =1, 2, 3
o,0e, =[o(o1)/(0(o1). 0(02))]0‘ = e,
8ep0p = 0 for f= !. 2, 3

-'3“.2 - d1 .1

etpes =0for£f=30rg=>73.
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The &, 8 were defined in such a way that the Beaumont con-
ditions for distribdutivity are satisfled. 4 simple calcu-
lation also shows that &,pe oA(B), By Lemma 4,1« @f€ A(B)
1f and only if J.,4(a, b, ©) = 0 for all's, b, c€B, In
particular«{(B) 18 not a group unless J“’P (o9, o3, e3) = O,
But _
Jd.P(e,, ey, 03) = (01402?p03 + (ogp0, )05 + (02a3)p61

+ (02503)0101 + (a3¢e, )p32 + (eye,)a{oz

= dz03fe3 + 6yXe5 + d 008, + Ode,

+ dpesfley + O%ep

=0 4+do8s + 0+ 0+ 0+ 0= dges.

dpep = O 1f and only if p¥3|d, or 1f and omly 1f p¥i|p¥i~Bi,
From the fact that ®; > 1 i1t follows that Jd,(,(o" oo, 03)
is not sero so that «{(B) is not a group. This completes
the proof of !heo:;.'em 4,2,

Theoren 4.3. It A= Z [oqF 18 2 torsion-tree group, then
 A(A) 1s a group if and only if the rank of A < 3,
£roof. That the condition is sufficient follows from
Lemma 4.3, To show that this condition is necessary, assume
that the rauk r 2 3. Then we may choose generators e, e,,
63 from the set (e;) and define two Lie mltipnéauonl «,
0 as follows: | |

ejXey = =8pey = 63

0.'183 - -°3d°1 - ‘2



8 %83 = =348, = 0,
o;¥e; = O for all &
og<ey =0 ford, §£1,2, 3
*1f8 = ~exfey = o,
efey =0 tor1, 341, 2
e,8¢y = 0 for all i,
It is easily verified that « off € A(L). Then applying
Lemma 4.1: -
Jd,p(o,, 6p, 03) = (8,oey)pe5 + (ey88p)des + (epwes)pe,
+ (egpez)ae, + (exney)fes + (ezfe,)xe,
= e3fe3 + 6jd63 + 6qfe; + 0151 + (éea)peal+ Oda, i
=0+083+0+0+0+0=e,
But since e, # O the proof is complete.

Theorem 4.4. Let A be a torsion-free divisible group of
rank r. Then A 18 a L&e-ciosod group if and only 1f r < 2,
£x00f. In this case A is a vector space over the rationals
and any nulfiplication may be desocribed in terms of a basis.
If (a4) 48 & basis for A end T < 2, we may show as 1# the
proof of Lemma 4.3 that A is Iie-closed. If r 2 3, we may
cﬁoosoa1; 8y, a3 from the set (a3) snd show, as in the
proof of Theorem 4.3, that A 1is not Iie-closed and conse-
quently that the condition 1s necessary. Q. E. D,

Corollery., If A is a divisibdble group of torsion-fres rank
r,, then 4 is Lis-closed if and omly if T, < 2.
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£r90f. Since A is divisidle
L= T8 + J@»s)
4 y . .

vhere each Ry 1s isomorphic to the rationals and the p,

are primes, By the preseat theorem r, < 2 1f A(Ry) 18 to

be a group., Hence the condition is necessary for «((4d) to
be a group. Conversely, the condition is sufficient bylthe

present theorem and the corollary of Theorem 1.4,

Zheorem 4#.5. Iet A= T + 7 be a mixed group with a basis,
whexre T is torsion and T is free, Then A is a Lie-closed
group if and only if T and F are assoclative=closed.
£x90f. 4 is not Lie-closed if either T or P is not ILie-
‘cloped. Hence assume that T satisfies the conditions or'
Theoren 4.2 and F satisfies the conditions of Theorem 4.3.
Suppose F has renk 2: F = {af + {bf. Then if T = D feyi,
we define multiplications «,8 € Mult(A) as IOIIOWI;
| °I“'J =0 = °J“‘1 for all 1,

.J'“' = uo; = O for all }

aca = 0 = bab

oij = bdej = O for all J

aclb = -bda = b

afe, = -e,0a = e,

bpe, = ~e4fb = oy

agb = 0 = bpa

afa = 0 = bpb



eyey = 0= ospoi for all i, }

age, = e4p8 = bfey = o,0b = 0 12 1 £ 1,
A few simple calculations show that «, pel(A). Using
the symmetric Jacobian we have

 J¢,plas b, eg) = (aud)pey + (apbleey + (baey)pa + (bgey)va

+ (o'ola)pb + (ehoa)db'
= bgey + Oxe, + Opa + e,¥a + Opb + (~e, )b
=e; +0404+404+04+0#0.
Thus F cannot have rank 2 and is therefore assocliative-
closed., If T has rank 1, +/I(T) is a group and thers is
nothing to prove. EHence as‘snme T has rank 2 2 and ;et 84
e, be two generators of T such that d = (ny, ny) > 1. Define
d,f € Mult(A): |
awe, = =848 = e,
aKey; = eqxa = 0 for 1 # 1
axa = ejney = 0 for all 1
ejx85 = =g 08, = (ny/a).e,
o,_aed=eadei=01ri;€1or20r3£1 or 2
afe = 0
°1’°1,= O for all 1
afge, = -6 fa = e,
afe; = eyfa = 0 1f 1 £ 2
8j8e4 = ajﬁei = 0 for all i, J.
Agaln o, f € /U4A) and
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J“’P(e" e, 8) = (e1d02)pa + (61902)013 + (."2"")(“1

+ (ozpa)¢e1 + (axe )fe, + (afe,)xe,

= (n,/d).e,8a + Ota + Ofe; + (-ep)e,

+ 6480 + O4e,

=0+0+ 04+ (ny/d)eeq +.0 + 0.
Since 4 > 1, J,,,(ey, ep, 8) # 0. It follows that «A(A)
is not a group unless (n,, nJ) = 1 for all i, j such that
1# 3, 1. e., unless T is associative-closed. It is thus
necessary that _

A="4+ {af
where T is assoclative-closed. But this means that
W(_T) = 0, A({af) = 0 énd the only possible ‘non-trlvial
pro_ducts_for gemi-ILie multiplications are

axey = -eyda = “Zta1k°k

for integers tayyx. The Jacobl ldentity clearly holds for
any such multiplication so that the semi-Lie multiplications
are also ILie. '.[.'hia shows that our conditions are necessary

and sufficient.

Theorem 4.6. Let A be a torsion group. Then 4 1s Ide-
closed if and oply ir

k= @) + Ty

teA JEM
where the Py and qj are primes and for any 1&€A there is
at most one 1'eé A such that Py = Pyt



INTRODUCTION

 Let A(+) be an Abelian group and consider the set

Mult(A) of all binary compositions on A(+) which are
distributive with respect to +. This is the set of all
® guch that A(+,x) is & ring, not necessarily associa-
tive., In recent yYears the set Mult(A) has 'Snn the object
of some 1nv6ltigution. The research relating to Mult(A)
may dbe ”div'idod j.nto two clauﬁ of problems: A

1) for a given group A(+), to 'dotoﬁuno Malt(A);

2) for a given ring propirty'r.» to determine those
groups A(+) such that there exists a non-trivial « € Mult(d)
and A(+,a) ‘has propexrty P.

Mult(A) is not the null set for any A(+) since one
nﬁy doﬁne the trivial ring on any Abelian "erup. Ir
Mult(A) consists_of only the trivial multiplication, we
say that A(+) 18 a gil group. 2T. Ssele in [11] has de-
tomnod the nil torsion groups. In .f.acf Siolo lhc proved
that ngAumnmmuAunmm

and & pixed m is pot nil. The genoral problon of
torsion-free nil groups has not been settled, However,

1n [10] R. Ree and R. J. Wisner have determined a special

class of nil torsion-free groups.

A guasj-pl]) sroup is an Abelian group A(+) such that
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Rroof. We write A as the direct sum of 1ts p-components A,.
As has been observed before, any ring on A is the ring direct
sum of rings on the Ap. Hence we investigate the Ay, Let
B be a basic sudbgroup of AP of rank r and suppose that
*r 2 3., Then B has a subgroup of the form

C= {eq] + ool + {oxf
which 1s a2 direct summand of Ap since finite pure subgroups
are direct summands. Then «{(0) is not a group since the
conditions of Theorem 4.2 do not hold. Oonsequently vl(Ap)
is not a group. We conclude that any bdasic subgroup B of
Ap must have rank r < 3, Then

Ap =B + D

where the rank of B < 3 and D is divisible. Thlis leads
to the condition on the primes py and thus to the form of
A stated in the theorem. Conversely, any multiplications
on & group of this form must be nil on the divisible ﬁart
and a product of an element from the non-dilvisible compo-
nent with an element from the divisible component must b;
gero by Corollary 2 of Theorem 1.4, Thus products csn be
non=trivial only on the non-divisible component of A, 3But
the non=divisible part of A is a Ile=-closed group from
which it follows that A is Llie=closed.



CHAPTER V
RINGS FREBLY GENERATED BY GROUPS

Let A(+) be a grbup and suppose that R(A, +, +) 18 a
ring containing A(+). R(A, +, ) is called the freest ring
genecated by A(+) if and only if the following condition is
satisfied: |

If A(+) 1u-m;pped into T(+) of & ring P(+,¢) Dy &

homomorphism f, then theré_is a homomorphism f#* of

R(A, +, ) into T(+,+) and £* 18 an extension of f.

The existence of R(A, +, ) for every group A(+) may be
established via the free non-assoclative ring on the set A,
For if R(+,*) is the free non-associative ring on the set A
-and N is the ideal of R(+,.) generated by the defining re-
lations of A(+), then R/N = R(A, +, ). Taking the free
associative ring W(+,) on the met A, W/N is the freest
assocletive Iing gepersted by A(s), W(4, +, <). Both
R(A, +, ) and W(A, +, ) have the interesting property that
they are generalizations of the tensor product A®A, This is
a consequence of the fact that the subgroup Ry of R(4, +, °)
or W(i, +, ) of second degree terms is isomorphic to A®A,

We therefore have Mult(A) as the group of homomorphisms of
| second degree terms into first degree terms.

| If is possible, of course, to derive a normal form for

47
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the elements of R(A, +, ¢) dbut this will not be done here.

Suppose n is a homomorphism of Ry < R(4, +, ) into the
set A of first degree terms o2 R(A, +, ). !.'hori n doﬁnu a
ring A(+,o) by aab = (ab)q. Take £ to be the identity map-
pins.or A(+) into the additive part of A(+,#). Then there 1is
a homomorphic extension f* of f mapping the ring R(A, +, +)
into A(+,«). For elements ab &Ry we have

(ab)z* = (af#)x(bLw)
= (af)a(bf) = aab = (ab)n,

We thus conclude that gvery homomorphism of Eo imto A(+) can
ke extended to s homomorphlsm mapping R(4, +. ) into A(+).

In some special cases of A(+) it has been possidle to
obtain some structure theory for R(A, +, ). This 1s omitted
here, however, since our purpose in introducing R(A, +, ) is
to increase our understanding of Mult(A) and nothing of
significance has yet been obtalned, |
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only & ﬁ.nito number of non-isomorp /9, rings on A(+) are
definsble. Quau-nil groups are considered by L. Fuchs

in (3] anda [5].

?roblon 1 may be solved easily in special caloilot
A(+) (see Chapter I). A description of Mult(A) when A is
& direct sum of cyclic groupi may be found in L. Puchs [s].
In [1] R. A. Beaumont gives necessary and 'lntﬁ.clon:l:_con-
ditions for a binary composition « sﬁch that « € Mult(A)
when A is a direct sum of cyclié groups. This result has
been generalized by L. Redei in 8] to groups with ojnr-
ators. In Ohuptor II a further generalization 1s obtained

to inoclude arditrary torsiomn groups.

Problem 2 has been consider by L, Fuchs and T. Ssele
in [5], [6] anda [12) . Results here inciude a) a deter-
mination of those groups on which it is possible to define
a ring with duéonding chain condition on left ideals;

b) a determination of those-groﬁpo on which a semi-simple
‘ring may be defined; c) a determination of those groups
on which a regular ring may be defined. \

An operation for Mult(A) may dbe defined in such a
way that Mult(A) is an Abelian group (see Ohapvto:-.' I). In
general a ring property P does not determine a subgroup of
Mult(A). This dissertation is mainly oconcerned with
determining those groups A(+) such that the associative
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and Iie ring properties deteramine a subgroup of Mult(A),
These two probldnl are solved for torsion groups in .
Ohapters III and IV. These chapters contain the main

results of the dissertation.

An area for ruturo‘ltudy is indicated in Ohaptor v
where the Lreest IADE gonersted by sn Abelisy group A(+)
- 1s defined. There:is some indication that this concept
will prove to‘ﬁo useful in the study of Hnlt(L).



CHAPTER I
PRELIMINARIES

fhroughout the dissertation group will mean Abelian
group uiq these will be denoted by upper cnc'htin letters
while elements of groups will be denoted by lower case
lott.fru. @(n) means the eyclic group otlérdu'" B, B &
natural number; (0(w) is the infinite cyclic group; ((p™)
denotes the quui-éyclié group for the prime p. If x 1s
an olomont of a p=group A, E(x) is the gm_ ot x, 1. 6.,
E(x) is the order of x. When the term g_;n_q_ gun or the
syabol 5 1s used we mean the repiricted direct sum, When
A, B aro‘groupa Hom(A,B) is the notation for the group of
. hononorphisms of A into B and End(A) s the set ot endo=-
-norphisma of A into itself.
Iz L(+) is a group, a mpying of AxA into A, 1, s,
a b!.nary conpoaitlon on A, is gum_m with relpcct
to + if both the right and left distrlbutivo lawa hold.
Deﬁne Hnlt(L) t0o be the set of all binary compositions
- on A that are diotributivo with respect to +. Hence «
is in Hult(A) AL 2nd omly AL A+,) is & Zink.
For eiegenta X, Y€ A and « € Mult(A) denote by x«y
the inage of (x, y) under o«,
binury composition @ is defined on Mult(A) as follows:
x(ofop)y XXy + XBY, X, y € A, ,p € Malt(d).

4
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With this definition of @ Mult(A) is eamsily seen to bde a
- group in which the trivipl hlﬁjuoation on A(+) is the

identity element and 6a 1is ‘the inverse of « where

x(8x)y = =(xay).

. Zheorem 1.1 (Fuchs [5]).
1) Malt(A) ¥ Hom(A®A,A)

2) | l{ult(L) Hom(A,End(4)).
Preof. To prove 1) let o< Mult(A) and consider the
correspondence (x, y) —» xxy. This is a bilinear function
of AXA into .A and by'a characterizing property of the temsor
product there is a homomorphism »m of AGL into A such that
| | (xoy)n = xa7.
Then the corrolpondoncc' N—>a gives the desired 1lonorrhiui.
Por the proof of 2) define for a fixed element a ¢ A
and o e Mult(A) the right multiplication Ry: x —* X8,
This is an endomorphism of 4 for each a e‘ Aand «e Mult(d).
Then the correspondence a — Ry 1s e homomorphism " of A
into End(A). The isomorphism of 2) is now obtained by the
mapping « — 7.

Ihe isomorphisms expressed in Theorem 1.1 can be used
to advantage in some cases to determine Hult(i) For
example, if A is cyclic, A®A = A and honce |

‘Mult(A) = Hom(A,A) ¥ Ena(4) & 1.
This is also easily obtained by direct computation. For



