This dissertation has been 61–5104 microfilmed exactly as received

Mc MICKING, James Harvey, 1929– VAPOR PRESSURES AND SATURATED LIQUID AND VAPOR DENSITIES OF ISOMERIC HEPTANES AND OCTANES.

The Ohio State University, Ph.D., 1961 Engineering, chemical

University Microfilms, Inc., Ann Arbor, Michigan

VAPOR PRESSURES AND SATURATED LIQUID AND

VAPOR DENSITIES OF ISOMERIC HEPTANES

AND OCTANES

DISSERTATION

Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University

By

James Harvey Mc Micking, B.S., M.S.

The Chio State University 1961

Approved by

Adviser

Department of Chemical Engineering

ACKNOWLEDGMENTS

I wish to express my gratitude to the American Chemical Society Petroleum Research Fund, for supporting this project, and The Shell Oil Company, for a fellowship for the last year of the project. Sincere thanks are expressed to Dr. W.B. Kay, my adviser, for his assistance and encouragement, to Katherine, my wife, for her patience, and to Faye, my sister, for her help with the typing of the final manuscript. TABLE OF CONTENTS

INTRODUCTION	1
DESCRIPTION OF MATERIALS	2
EXPERIMENTAL METHODS AND APPARATUS	4
OUTLINE OF METHOD	4
APPARATUS	4
Compressor Block	4
Experimental Tube	7
Temperature Bath	9
Temperature Measuring Equipment	11
Apparatus for Stirring the Sample	11
Pressure Measuring Equipment	11
EXPERIMENTAL PROCEDURE	12
Preparation of the Sample	12
Loading the Experimental Tube	12
Determination of the Amount of Sample	15
Operation of the Apparatus	16
CORRECTION AND CALCULATION OF DATA	17
RESULTS	19
PRESENTATION OF SMOOTHED DATA	19
ACCURACY OF DATA	22
CORRELATION OF CRITICAL TEMPERATURE AND PRESSURE OF PURE COMPOUNDS	80
THEORY	80
EMPIRICAL EQUATIONS FOR CRITICAL TEMPERATURE AND PRESSURE	81

TABLE OF CONTENTS (Contd.)

WIENERS CHARACTERIZATION OF MOLECULAR STRUCTURE	83
VAPOR PRESSURE CORRELATION	92
APPENDIX I - Experimental Data	95
APPENDIX II - Calibrations	139
APPENDIX III - Example of Correlations	153
BIBLIOGRAPHY	157
AUTOBIOGRAPHY	159

LIST OF TABLES

Table	Description	Page
l	Sample Purity	3
	Vapor Pressure, Saturated Liquid, and	
	Vapor Densities of:	
2	n-Heptane	51
3	2-Methylhexane	52
4	3-Methylhexane	53
5	3-Ethylpentane	54
6	2,2-Dimethylpentane	55
7	2,3-Dimethylpentane	56
8	2,4-Dimethylpentane	57
9	3,3-Dimethylpentane	58
10	2,2,3-Trimethylbutane	59
11	n-Octane	60
12	2-Methylheptane	61
13	3-Methylheptane	62
14	4-Methylheptane	63
15	3-Ethylhexane	64
16	2,2-Dimethylhexane	65
17	2,3-Dimethylhexane	66
18	2,4-Dimethylhexane	67
19	2,5-Dimethylhexane	68
20	3,3-Dimethylhexane	69
21	3,4-Dimethylhexane	70

v

Table	Description	Page
22	2-Methyl-3-ethylpentane	71
23	3-Methyl-3-ethylpentane	72
24	2,2,3-Trimethylpentane	73
25	2,2,4-Trimethylpentane	74
26	2,3,3-Trimethylpentane	75
27	2,3,4-Trimethylpentane	76
28	Vapor Pressure Equation Constants	77
29	Critical Constants for the Heptanes	
	and Octanes	78
30	Comparison of Data from this Study	
	with Kay and Warzel for 2,2,4-Trimethyl	
	pentane	79
31	Comparison of Predicted Values of	
-	Critical Temperatures to Experimental	
	Data	88
32	Comparison of Predicted Values of Criti	cal
	Pressures to Experimental Values	91
33	Sample Data Points - n-Heptane	99
	Experimental Data for:	-
34	n-Heptane	100
35	2-Methylhexane	101
36	3-Methylhexane	102
37	3-Ethylpentane	103
38	2,2-Dimethylpentane	104

vi

Table	Description	Page
39	2,3-Dimethylpentane	105
40	2,4-Dimethylpentane	106
41	3,3-Dimethylpentane	107
42	2,2,3-Trimethylbutane	108
43	n-Octane	109
44	2-Methylheptane	110
45	3-Methylheptane	111
46	4-Methylheptane	112 -
47	3-Ethylhexane	113
48	2,2-Dimethylhexane	114
49	2,3-Dimethylhexane	115
50	2,4-Dimethylhexane	116
51	2,5-Dimethylhexane	117
52	3,3-Dimethylhexane	118
53	3,4-Dimethylhexane	119
54	2-Methyl-3-ethylpentane	120
55	3-Methyl-3-ethylpentane	121
56	2,2,3-Trimethylpentane	122
57	2,2,4-Trimethylpentane	123
58	2,3,3-Trimethylpentane	124
59	2,3,4-Trimethylpentane	125
	Pressure-Volume Isotherm for:	
60	n-Heptane	126
61	2-Methylhexane	126

.

Table	Description	Page
62	3-Methylhexane	127
63	3-Ethylpentane	127
64	2,2-Dimethylpentane	128
65	2,3-Dimethylpentane	128
66	2,4-Dimethylpentane	129
67	3,3-Dimethylpentane	129
68	n-Octane	130
69	2-Methylheptane	130
70	3-Methylheptane ,	131
71	4-Methylheptane	131
72	3-Ethylhexane	132
73	2,3-Dimethylhexane	132
74	2,3-Dimethylhexane	133
75	2,4-Dimethylhexane	133
76	2,5-Dimethylhexane	134
77	3,3-Dimethylhexane	134
78	3,4-Dimethylhexane	135
79	2-Methyl-3-ethylpentane	135
80	3-Methyl-3-ethylpentane	136
81	2,2,3-Trimethylpentane	136
82	2,2,4-Trimethylpentane	137
83	2,3,3-Trimethylpentane	137
84	2,3,4-Trimethylpentane	138
85	Calibration Data - Tube A	142

Table	Description	Page
86	Calibration Data - Tube B	143
87	Calibration Data - Tube C	144
88	Pressure Gage Calibration	147
89	Pressure Gage Weights	150
90	Equipment Used - by Compounds	152
91	Estimated Vapor Pressure of	
	2,2,3,3-Tetramethylbutane	156

LIST OF FIGURES

Figure	Description	Page
1	P-V-T Apparatus	5
2	Compressor Block	6
3	Experimental Tube	8
4	Loading and Degassing Apparatus	13
5	Pressure-Volume Isotherm for n-Heptane	20
	Vapor Pressure Deviation Curve for:	
6	n-Heptane	25
7	2-Methylhexane	26
8	3-Methylhexane	27
9	3-Ethylpentane	28
10	2,2-Dimethylpentane	29
11	2,3-Dimethylpentane	30
12	2,4-Dimethylpentene	31
13	3,3-Dimethylpentane	32
14	2,2,3-Trimethylbutane	33
15	n-Octane	34
16	2-Methylheptane	35
17	3-Methylheptane	36
18	4-Methylheptane	37
19	3-Ethylhexane	38
20	2,2-Dimethylhexane	39
21	2,3-Dimethylhexane	40
22	2.4-Dimethylhexane	41

х

LIST OF FIGURES (Contd.)

!

Figure	Description	Page
23	2,5-Dimethylhexane	42
24	3,3-Dimethylhexane	43
25	3,4-Dimethylhexane	44
26	2-Methyl-3-ethylpentane	45
27	3-Methyl-3-ethylpentane	46
28	2,2,3-Trimethylpentane	47
29	2,2,4-Trimethylpentane	48
30	2,3,3-Trimethylpentane	49
31	2,3,4-Trimethylpentane	50
32	Reduced Boiling Point Difference as	
	a Function of Wiener Path No. Ratio	87
33	Critical Pressure Correlation	89
34	Vapor Pressure Deviation-Reduced Temper	ature
	for Heptanes	93
35	Vapor Pressure Deviation-Reduced Temper	ature
	for n-Octane and 2,3,3-Trimethylpentane	94
36	Estimated Deviation Curve for	
	2,2,3,3-Tetramethylbutane	155

xi

INTRODUCTION

In the separation of useful products from crude petroleum by distillation, basic data on the vapor pressure and densities of the liquid and vapor phases of pure hydrocarbons are of great technical importance. Crude oil is composed of literally thousands of compounds of which the paraffin hydrocarbons are the most abundant. The majority of these are isomers, compounds of the same molecular weight but with different molecular structure and physical properties. To determine the vapor pressure and densities up to the critical point of all of the isomers would be a herculean task. Since the difference in properties of the isomers is due solely to differences in molecular structure, it seems plausible that values of these properties for any isomer might be estimated from a correlation with the molecular structure. Data for such a correlation are available only for the paraffin hydrocarbons containing six or fewer carbon atoms. These are quite inadequate to establish empirical relations. To provide additional data for this purpose, the vapor pressures and densities of the 9 isomeric heptanes and 17 of the 18 isomeric octanes were determined up to their critical points. This report gives a summary of the experimental data and the development of the methods of correlation.

DESCRIPTION OF MATERIALS

The isomeric heptanes and octanes used for this work were made available by the American Petroleum Institute through the API Research Project 44 at the Carnegie Institute of Technology. The samples were purified by the API Research Project 6 from material supplied from the following laboratories: Ethyl Corporation, Detroit, Michigan; API Research Project 45 at the Ohio State University; Socony-Vacuum Laboratories, Paulsboro, N.J.; General Motors Corporation, Detroit, Michigan; Penn State Hydrocarbon Laboratory, Pennsylvania State College, State College, Pennsylvania. Table 1 lists the compounds, their purity and the source of the starting material.

The methods employed in the purification include the following: regular distillation, azeotropic distillation, adsorption, crystallization and formation of molecular or clathrate compounds. Purity of the compound was determined by freezing point determination. The apparatus and procedures have been described in detail elsewhere (18). The samples were received in glass ampoules and were used without further purification. The standard boiling point, liquid density at 20° and 25°C. and the vapor pressure-temperature relation up to 1500 mm Hg. have been determined by Rossini and coworkers (19).

TABLE 1

SAMPLE PURITY

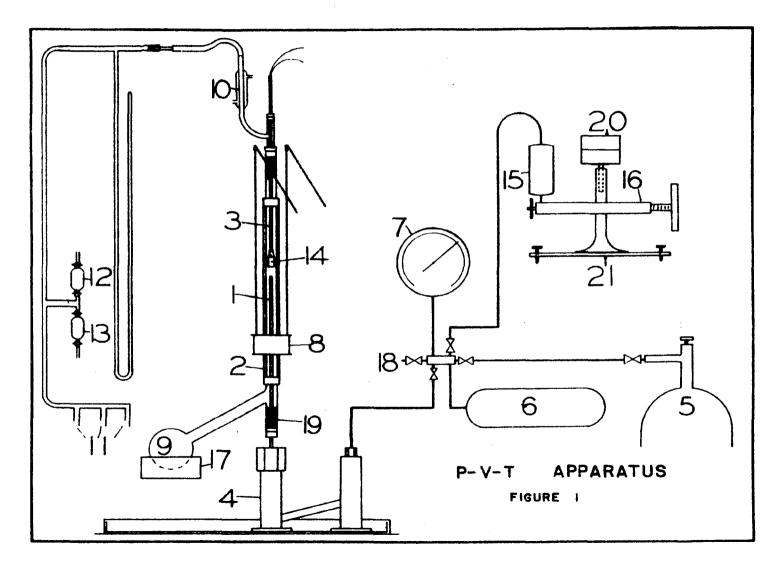
Parenthesized values of purity indicate an estimated value.

Name of Compound#	Purity Mole Percent	Source of Starting Material
n-Heptane*	99.92	Phillips Lot No. 643
2-Methylhexane (B)	99.91 ± 0.07	Ethyl
3-Methylhexane (A)	(99.80 ± 0.15)	Ethyl
3-Ethylpentane	99.94 ± 0.03	APIRP 45
2,2-Dimethylpentane	99.81 ± 0.06	Socony Mobil
2,3-Dimethylpentane	(99.85±0.10)	General Motors
2,4-Dimethylpentane	99.88 ± 0.05	APIRP 6
3,3-Dimethylpentane (B)	99.96±0.04	APIRP 45
2,2,3-Trimethylbutane (B)	99.991 ± 0.008	General Motors
n-Octane	99.95±0.04	APIRP 6
2-Methylheptane	99.66 ± 0.18	APIRP 45
3-Methylheptane (A)	99.62±0.23	APIRP 45
4-Methylheptane	99.89±0.07	APIRP 45
3-Ethylhexane	(99.75±0.20)	APIRP 45
2,2-Dimethylhexane (B)	99.89±0.11	APIRP 45
2,3-Dimethylhexane (B)	(99.85±0.10)	APIRP 45
2,4-Dimethylhexane	(99.75±0.20)	Penn State
2,5-Dimethylhexane (B)	(99.97±0.005)	Penn State
3,3-Dimethylhexane (A)	99.75 ± 0.20	APIRP 45
3,4-Dimethylhexane	(99.75±0.20)	APIRP 45
2-Methyl-3-ethylpentane	99.78±0.11	APIRP 45
3-Methyl-3-ethylpentane	99.93 ± 0.04	APIRP 45
2,2,3-Trimethylpentane	99.68±0.20	General Motors
2,2,4-Trimethylpentane (B)	99.95±0.04	APIRP 6
2,3,3-Trimethylpentane (A)	99.79 ± 0.05	Penn State
2,3,4-Trimethylpentane	99.83±0.06	APIRP 45

The designations, such as (A) and (B), mean there are different batches of the sample.

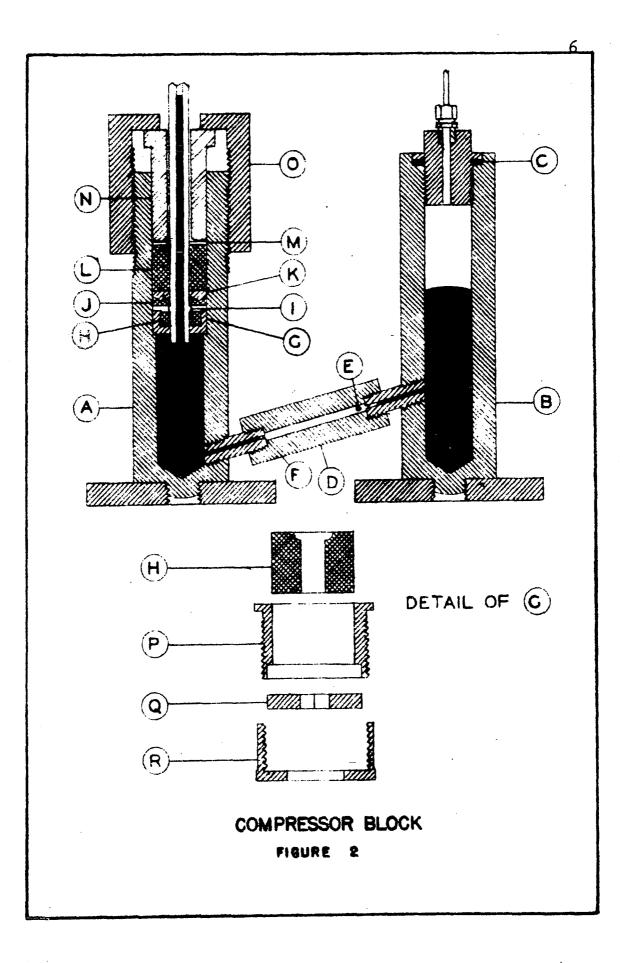
* The n-Heptane sample was obtained commercially from the Phillips Petroleum Corportion and was not an API sample.

EXPERIMENTAL METHOD AND APPARATUS


OUTLINE OF METHOD

The static method of determination of vapor pressure was employed. Figure 1 shows a sketch of the apparatus. A small air-free sample of the liquid hydrocarbon was confined over mercury in a thick-walled capillary tube, 1, hereafter called the experimental tube, which was heated to a constant temperature by the vapors of a series of pure organic compounds in the jacket, 2. The temperature was measured by the platinum resistance thermometer, 3. The capillary was held in one leg of a mercury-in-steel U-tube, 4, the other leg of which was connected by copper tubing to a high pressure gas cylinder, 5, and surge tank, 6, for regulating and controlling the pressure on the sample and to a pressure gage, 7, and dead weight gage, 16, for measuring the pressure. The volume of sample was determined by measuring the length of the capillary occupied by the sample; this length was related to the volume by a prior calibration of the tube. Equilibrium between the liquid and vapor phases was quickly reached by moving a small steel ball up and down through the sample by means of a magnet around the outside of the tube.

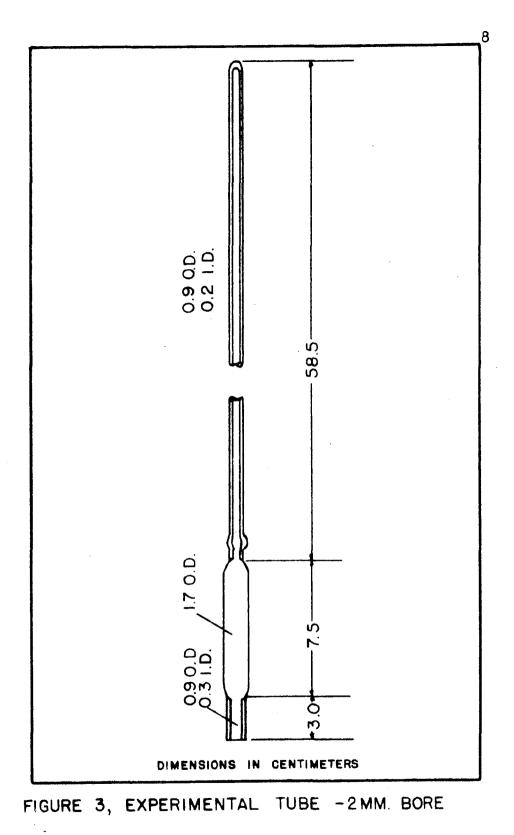
APPARATUS


Compressor Block

A cross-sectional view of the compressor block is shown in Figure 2. The block was a mercury-in-steel U-tube. Leg A was fitted with a stuffing box for holding the experimental tube while

٠

S



leg B was closed by a plug and connected to a tank of compressed gas. The pressure of the gas acting on the mercury surface in B was transmitted through the mercury to the sample in tube. The check valve D contained a steel ball, E, which in the event of the bursting of the tube, was driven into the seat F and thus prevented the escape of the mercury.

The method of holding the experimental tube was as follows: Near the open end of the tube an expanded section, 1, was made which rested against a small rubber cylinder, H, in the loose-fitting cylindrical steel cup, G. Surrounding the tube above the expanded section was first a rubber washer, J, then a loose-fitting steel thrust ring K, machined so as to form a bearing seat for the upper part of I and finally a close-fitting cylindrical rubber stopper L. The tube thus prepared fitted into A, the cap G, resting against the shoulder therein. The gland N, was then slipped over the tube and drawn, not too tightly against the rubber cylinder by the cap O.

The Experimental Tube

A sketch of the experimental tube is shown in Figure 3. The working section of the tube was constructed of precision bore pyrex glass. Its volume in terms of the distance from the outside tip of the tube, was determined. The tube was cleaned, dried and the empty tube was weighed. The tube was partially filled with pure mercury and mounted in a vertical position. By means of a cathetometer reading to 0.05 mm., the distance from the mercury meniscus to

the tube tip and the height of the mercury meniscus were measured. The tube containing the mercury was weighed and then the tube was remounted and more mercury was added; the distance and weight were redetermined. This procedure was repeated for several different volumes. From a knowledge of the weight, the specific volume and the temperature of the mercury, the volume of mercury was calculated for each determination. By taking the change of volume from one determination to the next, the change in volume per unit length was calculated. From the change in volume per unit length the average tube diameter was calculated. The average tube diameter and the height of the meniscus were used to calculate the complimentary volume of the mercury meniscus. The value of the compliment of the meniscus was calculated for each volume determination and added to the volume occupied by the mercury. A volume equation was then derived giving the volume as a function of length, by the method of least mean squares. (See Appendix II for calibration and equation details.)

The Temperature Bath

The experimental tube was surrounded by the jacket, 2, (Figure 1) and heated to a constant temperature by the vapors of a series of pure organic liquids whose boiling points lay within the temperature range desired. The liquid was heated in a side arm boiler, 9, the vapors rising through the side tube and around the experimental tube, were condensed in condenser, 10, at the top of the jacket, and liquid returned to the boiler. To prevent excessive

heat loss the jacket was constructed with a double wall with the inner walls silvered and the inner space evacuated. Two narrow, unsilvered strips diametrically opposite each other were left to serve as a window for observing the experimental tube. The jacket rested on a tight fitting rubber stopper which was covered with mercury to prevent contamination of the boiling liquid by the rubber stopper, 19.

By reducing the pressure on the boiling liquid the temperature of the boiling point was lowered and any temperature, within a 30° C. range, constant to within 0.01°C. or better was obtained with a single liquid.

For the sake of control, the pressure in the boiler was indicated on a closed end manometer, and three five-gallon bottles were connected to the line at 11, to absorb small pressure fluctuations. These were insulated to eliminate pressure changes due to changes in the temperature of the gas in the bottles. Minute changes in pressure on the boiling fluid were made by means of small bulbs 12 and 13, one of which was open to the atmosphere and the other was connected to a vacuum pump. Carborundum crystals or clean glazed porcelain plate chips were added to the liquid to reduce bumping and produce even boiling.

The following compounds were used for the temperature bath; Carbon tetrachloride, 55°-75°C.; chlorobenzene, 75°-131°C.; bromobenzene, 131°-155°C.; aniline 155°-183°C.; naphthalene,

 183° - 218°C.; diphenyl ether 218° - 255°C.; alpha-bromonaphthalene, 256° - 280°C.; benzophenone, 280° - 305°C.

Temperature Measuring Equipment

The temperature to which the experimental tube was heated was measured by means of a platinum resistance thermometer with a sensitive bridge for measuring the resistance of the coil. The resistance thermometer previously had been calibrated at the Bureau of Standards and was capable of measuring temperature to $0.001^{\circ}C$.

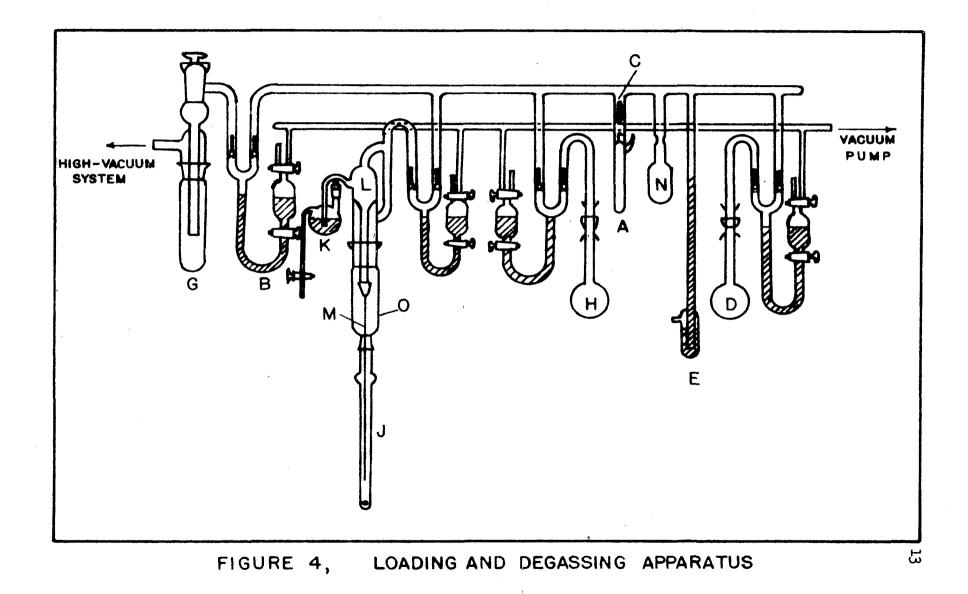
Apparatus for Stirring the Sample

In order to bring about equilibrium quickly between the liquid and vapor of the sample and mercury vapor in the narrow bore experimental tube, and to initiate vaporization when the pressure on the sample was reduced to the vapor pressure, a 1/16 inch diameter steel ball bearing was moved through the sample by means of a strong permanent magnet 8 around the outside of the jacket.

Pressure Measuring Equipment

Pressures up to about 45 pounds per square inch were measured with an open end mercury column and higher pressures by means of a pressure balance, 16. In the use of the pressure balance the approach to equilibrium between the pressure exerted on the piston by the weights on the pan and the line pressure, was indicated by a slow change in the position of the pan. This was detected quickly by an arrangement whereby the slightest downward movement of the pan made an electrical circuit which caused an electromic relay to turn. on a signal light. With this arrangement it was possible to detect changes in pressure as small as 0.02 pounds per square inch. the effective diameter of the piston was determined by calibration against the vapor pressure of pure carbon dioxide (13). (See Appendix II for calibration details.)

EXPERIMENTAL PROCEDURES


Preparation of the Sample

The pure hydrocarbon sample was degassed by subjecting the sample repeatedly to the following cycle of operations: freezing the sample, pumping off the residual non-condensed gas over the solid, melting and distilling the sample at low pressure and freezing the condensate.

Loading the Experimental Tube

The apparatus for deaerating the sample and for transferring the degassed sample to the experimental tube is shown in figure 4. The apparatus was constructed of pyrex glass. In order to avoid the possibility of contaminating the hydrocarbon sample with stop cock lubricant, mercury sealed plug valves were used.

Referring to Figure 4, the pure liquid was contained in a glass break-off tube A which was sealed to the manifold of a high vacuum line. A mercury diffusion pump, backed by a mechanical oil pump, was used to produce a vacuum with a residual non-condensible gas pressure of less than 1×10^{-5} mm of mercury, as measured by

a McLeod gage. When such a pressure was attained in the system, valve B was closed, the break-off tip was broken by dropping the glass-covered iron rod C and the sample transferred to bulb D by cooling the bulb with a dry ice-acetone mixture. Valve B was then opened, and the system evacuated for 20 minutes, or until the pressure was less than could be read on the gage. Valve B was closed, the cold trap around bulb D removed, and the sample allowed to melt and warm up until a vapor pressure of about 10 mm was indicated on the barometric manometer D. The valve to D was then closed, and the tip of the experimental tube cooled, thereby condensing the vapor in the tip of the tube. Valve B was then opened, and the liquid in the experimental tube pumped into trap G and valve B closed again. Valve D was then opened, the cold bath placed around bulb H, and the sample transferred to H. Next, valve B was opened, and the residual gas over the solid in bulb H pumped off. The cycle was then repeated with the sample transferred back to bulb D. This purging of the apparatus with the vapors of the degassed sample was repeated six times which was considered sufficient to remove all traces of non-condensible gas.

Upon the completion of the degassing operation, a small sample of the degassed liquid was transferred by distillation to the experimental tube J, and was frozen in the tip with a dry ice-acetone mixture. By admitting air to flask K, mercury spilled into L and entered the experimental tube through the hair-size glass capillary M which extended into the tube to a

point about 3 cms. above the surface of the frozen hydrocarbon sample. This method of introducing the mercury made it possible to displace most of the vapor from the experimental tube, thereby eliminating traces of air that might still be present in the vapor. The degassed hydrocarbon remaining in the flask D was transferred to the ampoule N which was then sealed off from the line.

Next, air was admitted to the system until atmospheric pressure was attained. Part O was lowered until capillary M could be detached from L at the ground joint and removed from the tube. During this latter operation, the open end of the experimental tube was completely covered with mercury. The packing assembly for holding the tube in the compressor block was put into place. Finally, with the end of the tube closed firmly with a finger, the tube was turned up into the mercury filled compressor block and fastened into place.

The 1/16 inch diameter steel ball which was used for stirring the sample during the vapor pressure determination was put into the tube at the time the apparatus was assembled.

Determination of the Amount of Sample

Before measuring the liquid volume of the sample, the heating jacket was put in place (figure 1) and the tube heated to about 200[°]C. The pressure was first adjusted so that the mercury level in the tube was lowered in order to release any liquid occluded between the glass wall and the mercury. Once this was done, the

pressure was raised in order to bring all of the sample into the top of the tube. The jacket was then removed, and the tube allowed to cool, after which it was surrounded by a jacket filled with water at room temperature. Measurements of the distance between the top of the tube and the top of the mercury meniscus as well as the height of the mercury meniscus and the temperature of the water were made using a cathetometer reading to 0.05 mm. From a knowledge of the density of the liquid and the volume of the sample the weight of the sample was calculated. (See Appendix II for sample calculation of volume of sample.)

OPERATION OF THE APPARATUS

Referring to Figure 1 the pressure release valve 18 and the valve to the pressure balance were closed and the valve to the compressor block was opened. The valve to the compressed gas tank was then opened cautiously and the pressure, allowed to increase to a value that was certain to be higher than the vapor pressure to be measured. The electric heater, 17, was turned on and the experimental tube and constant temperature jacket brought up to temperature by the vapors from the boiling liquid in 9. The pressure on the boiling liquid was adjusted to give the temperature desired and the current to the heater set so that the position of the line of condensation of the vapor was steady at the top of the double wall section of the jacket. The pressure on the sample was then reduced slowly by cracking valve 18 while the sample was stirred until vaporization occurred and the mercury meniscus had fallen to

a point in the tube slightly above the level of the mercury 19. valve 18 was then closed and the pressure balance cut in by opening the valve to it. The sample was stirred intermittently for about 20 minutes in order that equilibrium was established between the mercury vapor and the sample. The pressure was then raised by small increments, with intermittent stirring, until condensation of the vapor started. The beginning of condensation was detected by noting the effect of a very small change of pressure on the position of the mercury meniscus; a minute increase of pressure above the condensation pressure produces a relatively large decrease in the volume occupied by the sample, whereas a reduction of pressure produces relatively no change. Readings of the temperature, pressure and distance of the mercury meniscus from the tip of the tube were recorded for this point. The pressure was then reduced and the observations repeated. This was done until 2 consecutive sets of readings agreed to within the experimental error. The pressure was again increased and the sample stirred until only a small bubble of vapor remained in the tip of the tube when readings of the pressure, temperature and position of the mercury meniscus were again noted. Finally, the pressure was increased by an extremely small amount causing the bubble to disappear and a final reading of the position of the mercury meniscus only was noted.

CORRECTION AND CALCULATION OF THE DATA

The pressure as determined by the dead weight gage was corrected for (1) the difference in levels of the mercury (corrected

to standard temperature) in the experimental tube and compressor block, (2) for the vapor pressure of mercury, (3) barometric pressure.

In calculating the volume of the sample, account was taken of the following factors: (1) the volume of the mercury meniscus, (2) the thermal expansion of the tube, (3) the volume of the steel ball stirrer. The volume of the mercury meniscus was calculated from the height assuming the meniscus to be a segment of a sphere with the base of the segment equal to the diameter of the tube. A value of 24×10^{-7} for the volumetric coefficient of expansion of pyrex glass was used for calculating the correction for thermal expansion of the tube. The diameter of the steel ball was measured and the volume calculated using the formula for a sphere.

The apparatus and experimental procedures described have been used in the study of pure substances and binary systems of which a few are (3), (4), (5), (6), (7), (8), and (9).

RESULTS

PRESENTATION OF SMOOTHED DATA

The volumes of the saturated liquid and the saturated vapor and their related pressures were measured at temperatures from 210° C. for heptanes and 240° C. for octanes, up to the critical temperatures. Below these temperature ranges, down to the standard boiling point temperature, measurements were made only on the liquid phase, the volume of the saturated vapor phase being larger than the volume of the useable portion of the experimental tube.

Measurements were made at temperature intervals ranging from about 10 degrees near the standard boiling point to about 5 degrees near the critical point.

One pressure-volume isotherm was determined for each of the compounds studied; for the heptanes, the temperature was 210° C. and for the octanes, it was 240° C. From these isotherms, the pressure change between the bubble and dew point could be determined, which served as an over-all indication of the purity of the experimental sample. It was found exceedingly difficult to reduce this difference to less than 0.2 to 0.3 of a pound per square inch. It is believed that this difference is due principally to residual non-condensible gas. Figure 5 shows the isotherm for n-heptane which is, in general, representative of the isotherms of the other compounds and indicates that the pressure at large values of the V/L ratio (volume of vapor

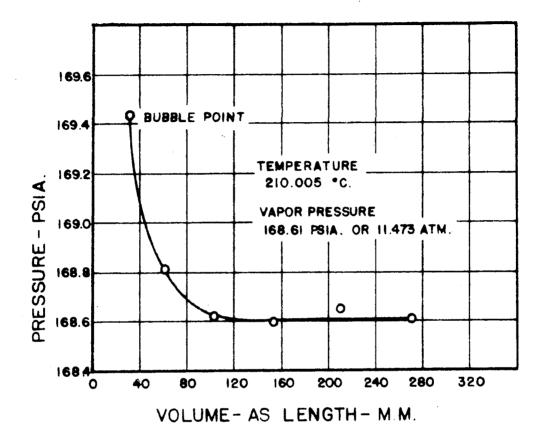


FIGURE 5, PRESSURE -VOLUME ISOTHERM FOR N-HEPTANE

÷

to the volume of liquid) more nearly represents the true vapor pressure.

The experimental data for all samples that were studied are given in Appendix I. The pressures listed as "observed pressures" are the dew point and bubble point pressures. The column listed as "pressure deviation" refers to the difference between the pressure calculated from the equation:

$$\log P_{calc} (atm.) = A + B/T(^{O}K)$$

and the observed pressure at the experimental temperature. The value of the constants A and B in the equation were evaluated using the critical point and the standard boiling point of the compound. They are listed in Table 28 for each of the compounds studied. The pressure deviation were plotted against the temperature and a smooth curve drawn between the dew points and bubble points to correspond with the constant pressure section of the isotherm (see Figure 5). In general, the curve was plotted for values at large V/L ratios. These curves are shown in Figures 6 through 31. With the aid of the equations and the deviation curves the vapor pressure was calculated at 10 degree C. intervals from the standard boiling point to the critical point and are listed in Tables 2 through 27.

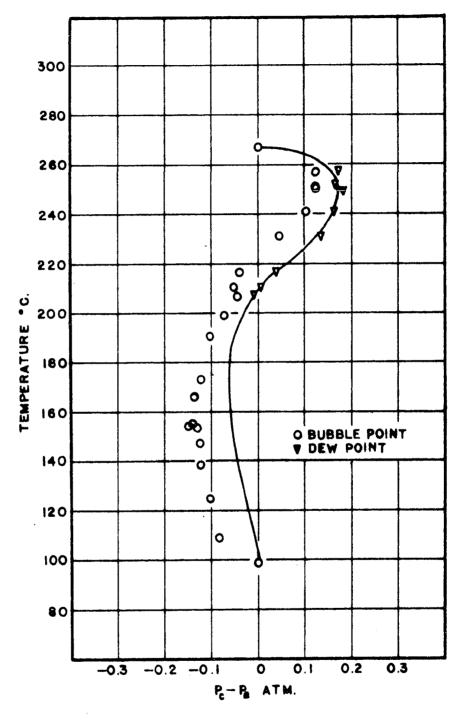
The experimentally measured volumes of the saturated liquid and vapor were expressed as densities in grams per cubic centimeter. Large scale plots of density versus temperature were constructed from which values of the densities of the liquid and vapor were read. These values are listed in Tables 2 through 27. By plotting the arithmetical average of the densities of the liquid and vapor against the temperature and extrapolating the curve to the critical temperature, values of the critical density were obtained. These values are listed in Table 29 together with the critical temperature and pressure for all compounds studied.

ACCURACY OF THE DATA

As has been stated, temperatures could be read to within $0.001^{\circ}C$ with the platinum resistance thermometer. The thermometer was confined within the vapor jacket (see page 11) and was well shielded from outside radiation. Fluctuations in the pressure over the boiling liquid sometimes amounted to temperature changes in the bath of the order of $0.02^{\circ}C$. over periods of 10 to 20 minutes. However, the thermometer responded rapidly to temperature changes so that it is believed that the temperature readings are accurate to within $0.02^{\circ}C$.

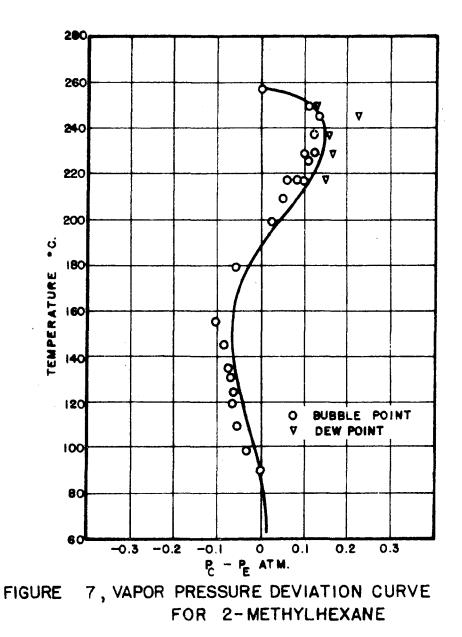
To get a value of the overall accuracy of the pressure measurements, the vapor pressure of water was determined at three temperatures covering the range in temperature encountered in the hydrocarbon measurements. The data were then compared with the vapor pressure data of Osborne and Meyers (14). The results are shown on the following page.

Test of Accuracy of Temperature and Pressure Measurements


Vapor Pressure of Water

Temp. °C.	Pressure Expt. Atm.	Pressure Literature <u>Atm.</u>	Deviation Atm
157.39	5.708	5.705	0.003
216.775	21.519	21.519	0.000
240.332	33.261	33.235	0.026

Since the same apparatus and experimental procedures were used, it is believed that the accuracy of the data obtained for the hydrocarbons is about the same for the water.


An additional check on the precision of the measurements was made by a comparison of the vapor pressure and density data on, 2,2,4-trimethylpentane (iso-octane) with that of Kay and Warzel (11). This is shown in Table 30. The vapor pressures at temperatures below 210°C. are approximately 0.03 atmospheres higher than those reported by Kay and Warzel, whereas, above 210°C. up to the critical point, the agreement is within 0.01 atmosphere which is within the experimental accuracy of the measurement.

The precision of the measurements of the density is of the order of 0.0015 g/cc for the liquid and 0.002 g/cc for the vapor at near room temperature. As the temperature increases the precision increases for the liquid and stays the same for the vapor, becoming the same as the critical temperature is approached. In the critical region, the deviations become large and difficult to estimate. However, critical densities estimated by the law of rectilinear diameters are believed to be accurate to within 0.001 gm/cc.

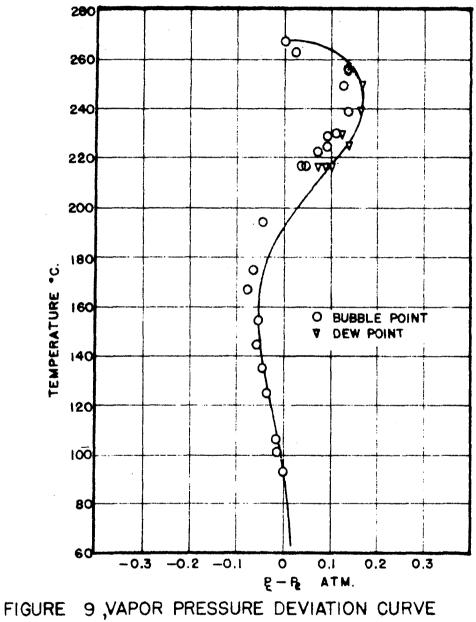
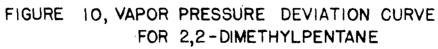
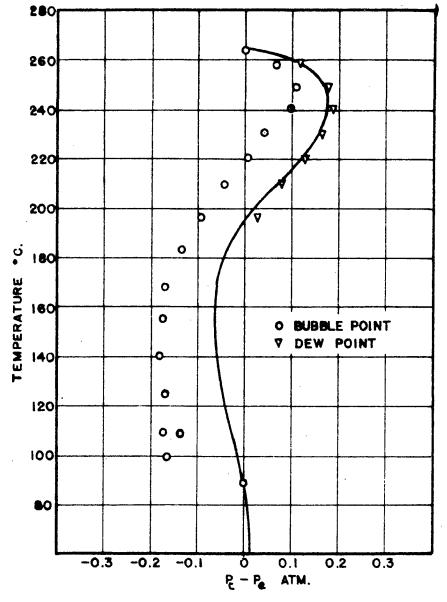
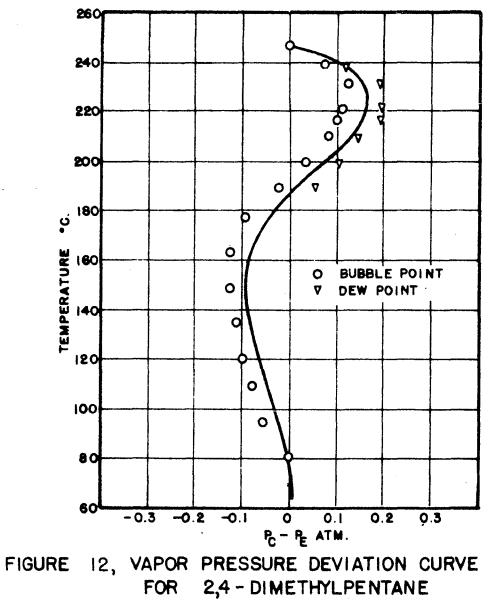

.

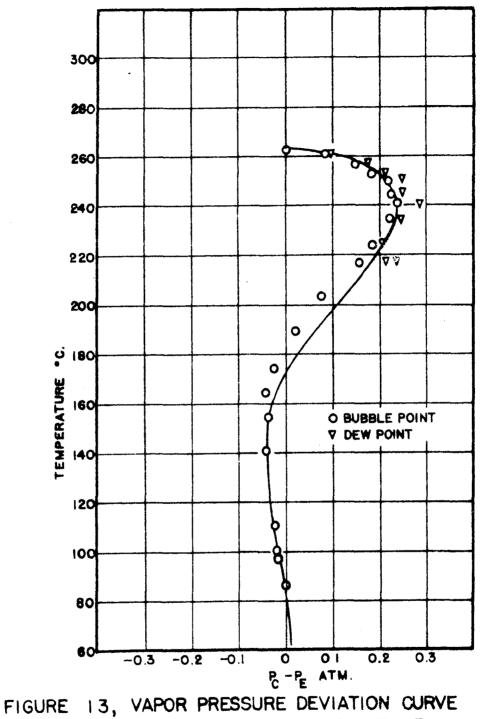
FIGURE 6, VAPOR PRESSURE DEVIATION CURVE FOR N-HEPTANE

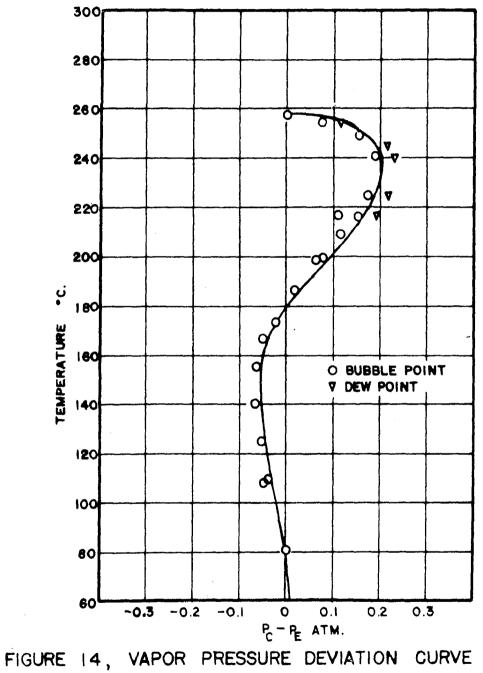


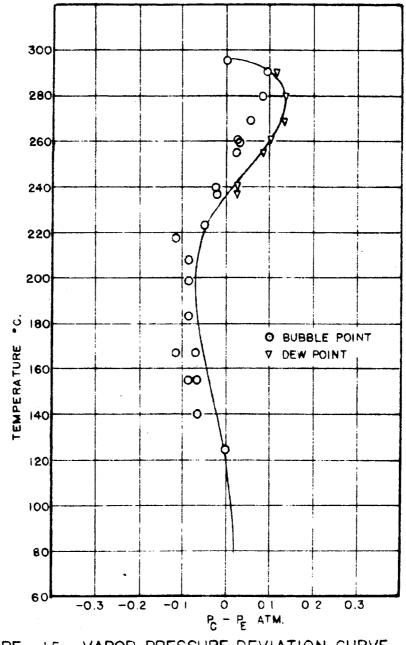

FOR 3-METHYLHEXANE




FOR 3-ETHYLPENTANE







FOR 3,3-DIMETHYLPENTANE

FOR 2,2,3-TRIMETHYLBUTANE

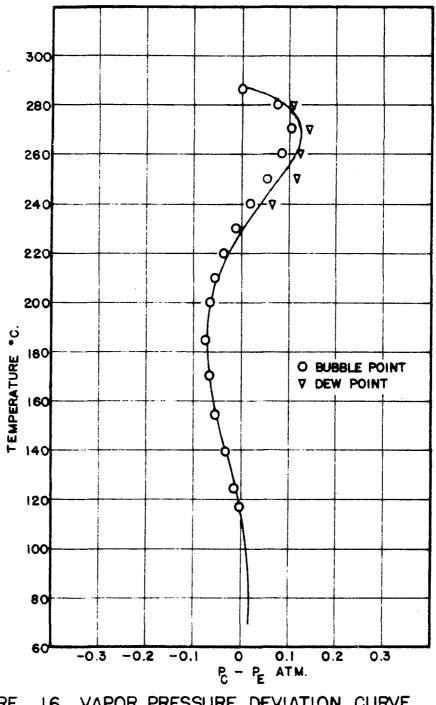


FIGURE 16, VAPOR PRESSURE DEVIATION CURVE FOR 2-METHYLHEPTANE

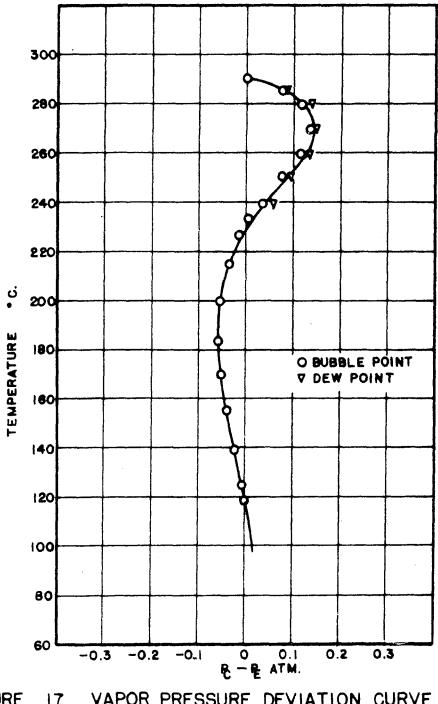
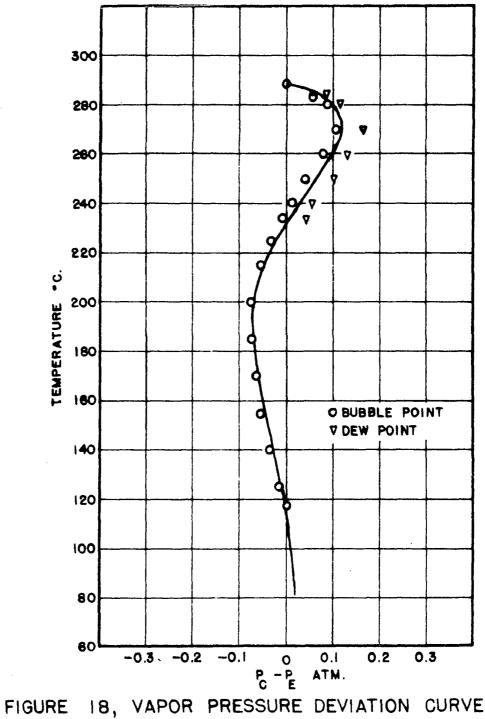



FIGURE 17, VAPOR PRESSURE DEVIATION CURVE FOR 3-METHYLHEPTANE

.

FOR 4-METHYLHEPTANE

.

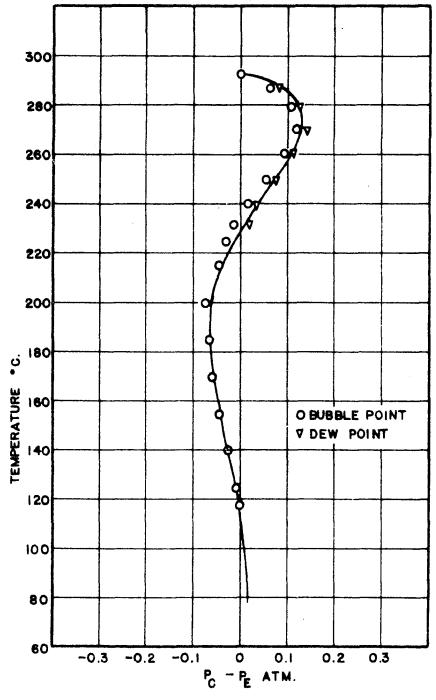


FIGURE 19, VAPOR PRESSURE DEVIATION CURVE FOR 3-ETHYLHEXANE

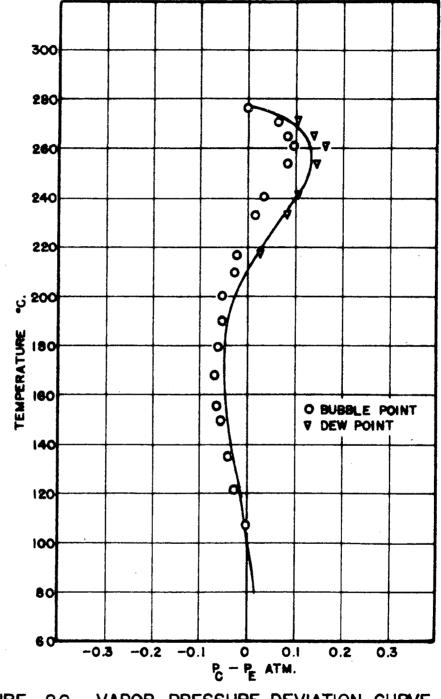


FIGURE 20, VAPOR PRESSURE DEVIATION CURVE FOR 2,2-DIMETHYLHEXANE

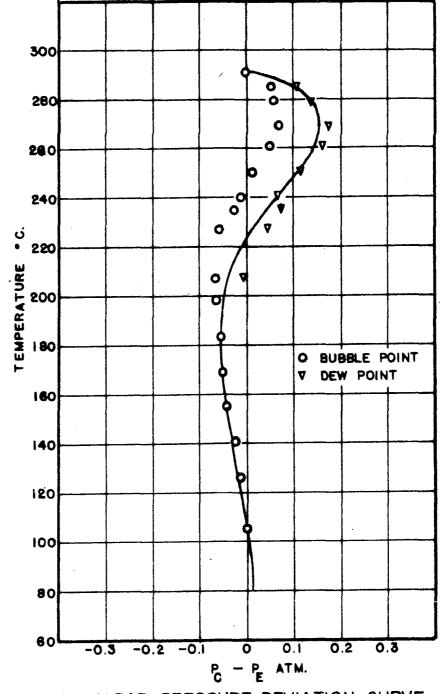
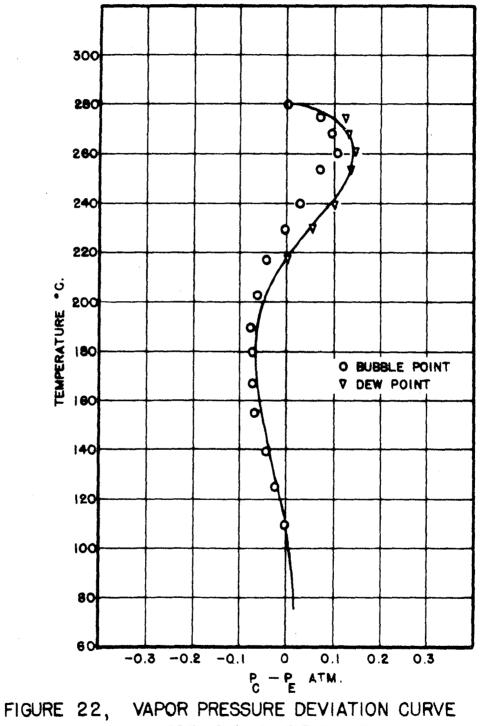



FIGURE 21, VAPOR PRESSURE DEVIATION CURVE FOR 2,3-DIMETHYLHEXANE

FOR 2,4 -DIMETHYLHEXANE

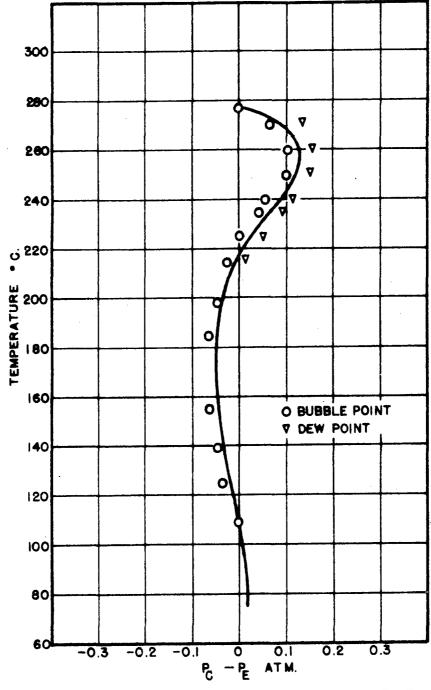


FIGURE 23, VAPOR PRESSURE DEVIATION CURVE FOR 2,5-DIMETHYLHEXANE

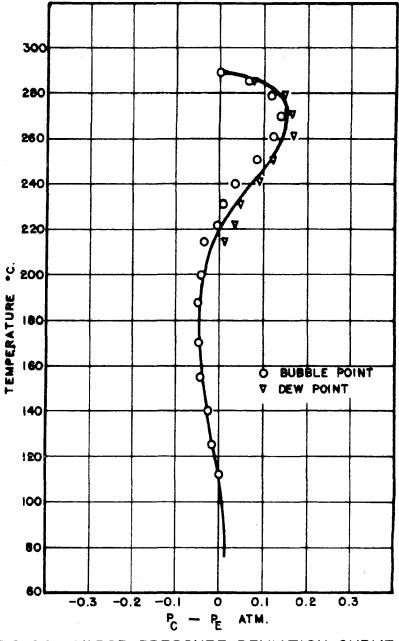


FIGURE 24, VAPOR PRESSURE DEVIATION CURVE FOR 3,3 - DIMETHYLHEXANE

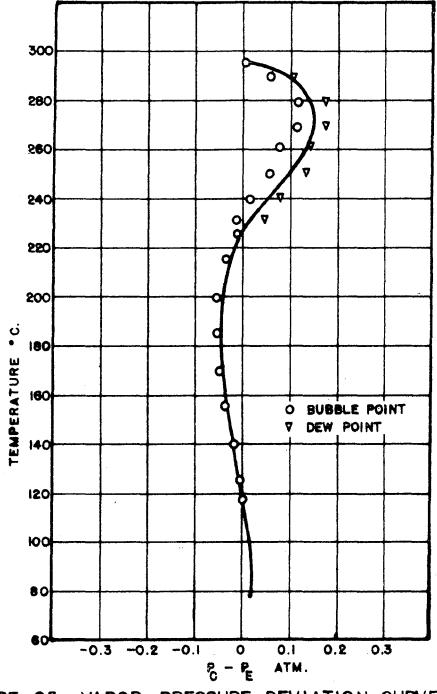


FIGURE 25, VAPOR PRESSURE DEVIATION CURVE FOR 3,4 - DIMETHYLHEXANE

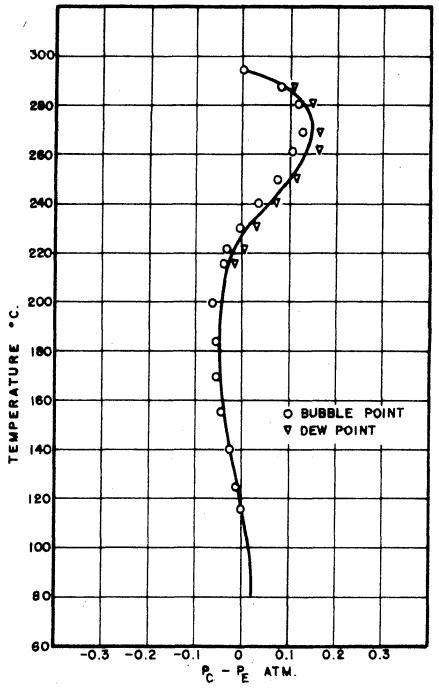


FIGURE 26, VAPOR PRESSURE DEVIATION CURVE FOR 2-METHYL-3-ETHYLPENTANE

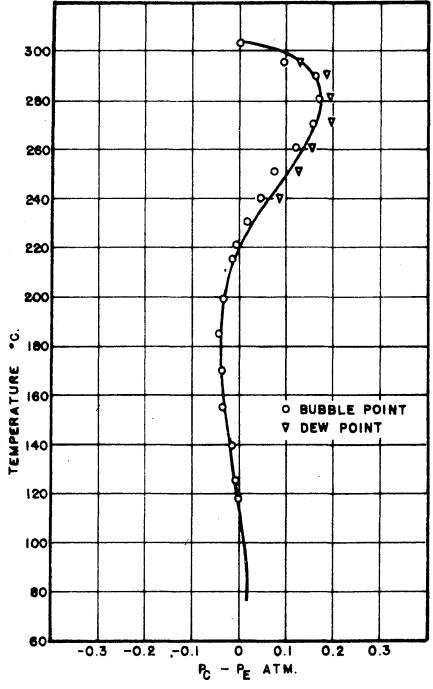
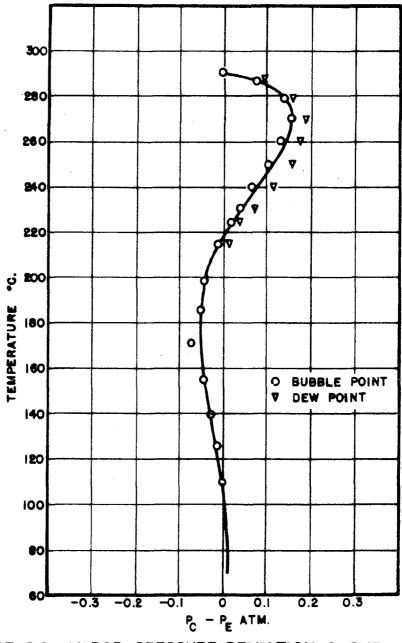



FIGURE 27, VAPOR PRESSURE DEVIATION CURVE FOR 3-METHYL-3-ETHYLPENTANE

ļ

FIGURE 28, VAPOR PRESSURE DEVIATION CURVE FOR 2,2,3-TRIMETHYLPENTANE

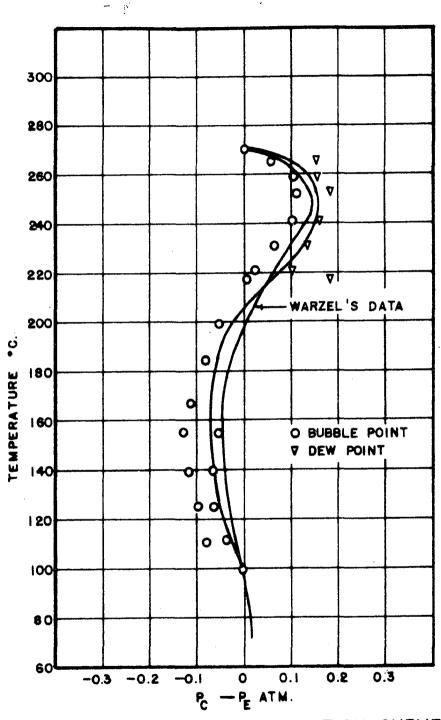


FIGURE 29, VAPOR PRESSURE DEVIATION CURVE FOR 2,2,4 - TRIMETHYLPENTANE

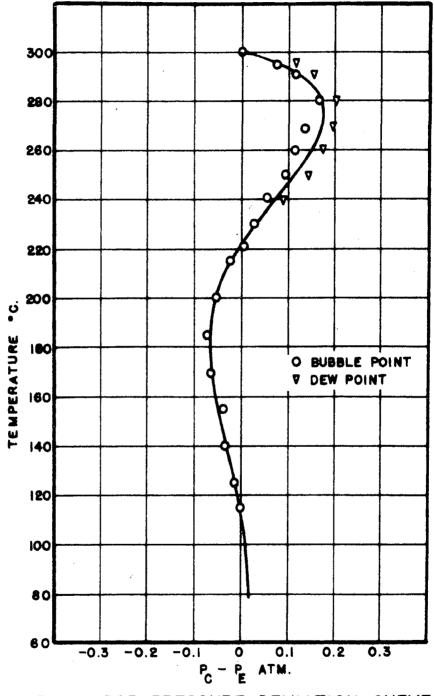


FIGURE 30, VAPOR PRESSURE DEVIATION CURVE FOR 2,3,3-TRIMETHYLPENTANE

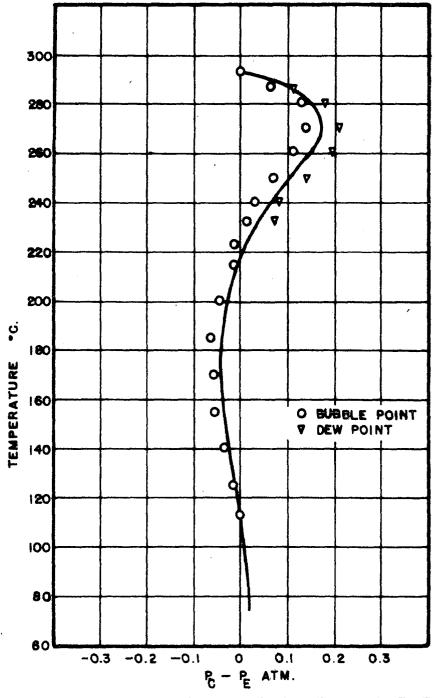


FIGURE 31, VAPOR PRESSURE DEVIATION CURVE FOR 2,3,4-TRIMETHYLPENTANE

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure*	Liquid	Vapor
°C.	Atm.	Atm.	gm/cc	<u>gm/cc</u>
98.42	0.000	1.000		
-			0.608	
100.00	-0.004	1.050	_	
110.00	-0.015	1.391	0.598	*****
120.00	-0.025	1.811	0.588	
130.00	-0.035	2.323	0.578	
140.00	-0.045	2.941	0.567	
150.00	-0.055	3.681	0.556	
160.00	-0.061	4.553	0.544	
170.00	-0.065	5.576	0.531	
180.00	-0.063	6.765	0.517	
190.00	-0.055	8.135	0.503	
200.00	-0.035	9.701	0.488	0.042
210.00	0.006	11.472	0.472	0.047
220.00	0.066	13.467	0.455	0.052
230.00	0.130	15.725	0.436	0.060
240.00	0.167	18.290	0.415	0.072
250.00	0.179	21.186	0.385	0.094
260.00	0.145	24.449	0.335	0.135
266.85	0.000	27.002		Critical

of n-Heptane

* Calculated by means of equation

 $\log P$ (Atm.) = 4.58932 - 1705.34/(t°C. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure*	Liquid	Vapor
<u>°C.</u>	Atm.	Atm.	gm/cc	gm/cc
00.05	0.000	1 000	0 (0)	
90.05	0.000	1.000	0.606	
100.00	0.015	1.337	0.598	
110.00	-0.027	1.751	0.590	
120.00	-0.039	2.257	0.582	
130.00	-0.050	2.868	0.572	
140.00	-0.059	3.599	0.562	
150.00	-0.064	4.463	0.552	
160.00	-0.065	5.477	0.540	
170.00	-0.052	6.648	0.528	
180.00	-0.026	7 • 995	0.513	
190.00	0.010	9.540	0.499	
200.00	0.050	11.306	0.484	*****
210.00	0.090	13.310	0.467	
220.00	0.123	15.602	0.447	0.058
230.00	0.146	18.181	0.422	0.075
240.00	0.151	21.079	0.392	0.096
250.00	0.115	24.342	0.350	0.129
257.15	0.000	26.971		Critical

of 2-Methylhexane

* Calculated by means of equation

log P (Atm.) = 4.54120 - 1649.45/(t°C. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

of 3-Methylhexane

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure	Liquid	Vapor
<u>°C.</u>	Atm.	Atm.	gm/cc	gm/cc
91.85	0.000	1.000		
100.00	-0.015	1.271	0.622	
110.00	-0.030	1.671	0.612	
120.00	-0.045	2.159	0.602	
130.00	-0.057	2.808	0.592	* = = 4 4
140.00	-0.066	3.447	0.582	
150.00	-0.070	4.275	0.572	****
160.00	-0.066	5.245	0.561	
170.00	-0.057	6.374	0.550	
180.00	-0.041	7.680	0.538	
190.00	-0.018	9.180	0.524	*****
200.00	0.015	10.889	0.508	
210.00	0.056	12.828	0.489	0.048
220.00	0.116	15.006	0.468	0.058
230.00	0.175	17.460	0.445	0.071
240.00	0.197	20.246	0.418	0.089
250.00	0.180	23.385	0.386	0.119
260.00	0.081	26.939	0.313	0.183
262.04	0.000	27.767		Critical

* Calculated by means of equation

log P (Atm.) = 4.53958 - 1657.04/(t°C. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

of 3-Ethylpentane

N N	Pressure	Vapor	Saturated	Density
Temperature ^o C.	Deviation Atm.	Pressure# Atm.	Liquid gm/cc	Vapor gm/cc
				-Teedeman
93.47	0.000	1.000		
100.00	-0.005	1.205	0.620	*****
110.00	-0.016	1.583	0.610	
120.00	-0.027	2.046	0.599	
130.00	-0.038	2.607	0.588	
140.00	-0.046	3.277	0.578	
150.00	-0.051	4.071	0.568	
160.00	-0.053	5.003	0.557	
170.00	-0.050	6.090	0.545	
180.00	-0.039		0.533	
190.00	-0.010	8.772	0.520	
200.00	0.030	10.400	0.506	
210.00	0.072	12.253	0.490	
220.00	0.115	14.352	0.473	0.053
230.00	0.148	16.725	0.453	0.065
240.00	0.165	19.352	0.429	0.079
250.00	0.161	22.391	0.398	0.100
260.00	0.125	25.735	0.353	0.134
265.00	0.075	27.564	0.314	0.170
267.42	0.000	28.530		Critical

* Calculated by means of equation

log P (Atm.) = 4.52268 - 1658.19/(t°C. + 273.17)

and pressure deviation.

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure*	Liquid	Vapor
<u> </u>	Atm.	Atm.	gm/cc	<u>gm/cc</u>
79.20	0.000	1.000		
90.00	-0.011	1.367	0.612	
100.00	-0.021	1.791	0.602	
110.00	-0.031	2.310	0.591	
120.00	-0.040	2.936	0.581	
130.00	-0.046	3.683	0.570	
140.00	-0.048	4.565	0.560	
150.00	-0.045	5.598	0.548	
160.00	-0.036	6.798	0.537	*****
170.00	-0.024	8.185	0.524	
180.00	-0.002	9.771	0.511	
190.00	0.038	11.564	0.496	
200.00	0.096	13.584	0.478	
210.00	0.149	15.924	0.457	0.063
220.00	0.168	18.474	0.431	0.078
230.00	0.161	21.401	0.400	0.100
240.00	0.110	24.688	0.355	0.133
247.29	0.000	27.367		Critical

of 2,2-Dimethylpentane

* Calculated by means of equation

 $\log P (Atm.) = 4.45009 - 1568.08/(t^{\circ}C. + 273.17)$

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor	Saturated Density	
Temperature	Deviation	Pressure*	Liquid	Vapor
<u>°c.</u>	Atm	Atm.	gm/cc	gm/cc
89.78	0.000	1.000		
90.00	-0.001	1.007	0.661	
100.00	-0.017	1.344	0.650	
110.00	-0.031	1.757	0.638	
120.00	-0.044	2.259	0.626	
130.00	-0.052	2.859	0.614	±
140.00	-0.058	3.574	0.604	
150.00	-0.063	4.421	0.592	
160.00	-0.062	5.411	0.580	
170.00	-0.056	6.561	0.568	
180.00	-0.043	7.885	0.556	
190.00	-0.020	9.398	0.541	
200.00	0.020	11.110	0.526	0.042
210.00	0.069	13.048	0.508	0.051
220.00	0.119	15.240	0.489	0.062
230.00	0.158	17.706	0.469	0.076
240.00	0.176	20.484	0.444	0.095
250.00	0.165	23.595	0.412	0.121
260.00	0.099	27.085	0.360	0.168
264.14	0.000	28.700	0.262	Critical

of 2,3-Dimethylpentane

* Calculated by means of equation

log P (Atm.) = 4.49262 - 1630.60/(t^oC. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

of 2,4-Dimethylpentane

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure*	liquid	Vapor
°C.	Atm.	Atm.	gau/cc	gm/cc
80.50	0.000	1.000		
90.00	-0.017	1.327	0.611	
100.00	-0.033	1.747	0.602	
110.00	-0.047	2.260	0.592	
120.00	-0.060	2.879	0.582	
130.00	-0.071	3.619	0.572	*
140.00	-0.080	4.497	0.560	
150.00	-0.085	5.527	0.548	
160.00	-0.084	6.724	0.534	
170.00	-0.070	8.100	0.520	
180.00	-0.035	9.665	0.504	0.037
190.00	0.025	11.433	0.489	0.044
200.00	0.081	13.452	0.472	0.052
210.00	0.130	15.745	0.451	0.064
220.00	0.160	18.342	0.427	0.079
230.00	0.163	21.268	0.398	0.100
240.00	0.100	24.584	0.256	0.136
246.58	0.000	27.009	0.240	Critical

* Calculated by means of equation

log P (Atm.) = 4.47991 - 1584.41/(toc. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor	Saturated Density	
Temperature	Deviation	Pressure*	Liquid	Vapor
<u>°c.</u>	Atm	<u>Atm</u> .	gm/cc	gm/cc
86.06	0.000	1.000	0.622	
90.00	-0.004	1.121	0.618	
100.00	-0.010	1.474	0.608	
110.00	-0.016	1.908	0.598	
120.00	-0.025	2.438	0.588	
130.00	-0.031	3.072	0.577	
140.00	-0.034	3.823	0.565	
150.00	-0.031	4.704	0.554	
160.00	-0.023	5.730	0.542	
170.00	-0.006	6.914	0.529	
180.00	0.021	8.270	0.516	
190.00	0.065	9.809	0.502	
200.00	0.110	11.562	0.488	
210.00	0.155	14.546	0.474	
220.00	0.195	15.784	0.458	0.058
230.00	0.225	18.298	0.438	0.071
240.00	0.235	21.126	0.414	0.088
250.00	0.211	24.261	0.382	0.112
260.00	0.125	27.783	0.328	0.160
263.19	0.000	29.073		Critical

of 3,3-Dimethylpentane

* Calculated by means of equation

log P (Atm.) = 4.43153 - 1591.94/(toc. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure*	Liquid	Vapor
<u> </u>	Atm.	Atm.	gm/cc	gm/cc
80.88	0.000	1.000		
90.00	-0.010	1.299		
100.00	-0.019	1.698	0.630	
110.00	-0.030	2.187	0.618	
120.00	-0.042	2.778	0.605	
130.00	-0.054	3.483	0.592	
140.00	-0.059	4.311	0.580	
150.00	-0.058	5.276	0.467	
160.00	-0.050	6.394	0.554	
170.00	-0.030	7.676	0.542	
180.00	0.000	9.138	0.529	
190.00	0.039	10.799	0.515	
200.00	0.090	12.672	0.500	0.046
210.00	0.145	14.782	0.484	0.056
220.00	0.180	17.167	0.464	0.068
230.00	0.201	19.839	0.442	0.083
240.00	0.203	22.819	0.412	0.104
250.00	0.165	26.142	0.362	0.139
257.96	0.000	29.146	-	Critical

of 2,2,3-Trimethylbutane

* Calculated by means of equation

log P (Atm.) = 4.39299 - 1555.34/(toc. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

n-Octane

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure*	Liquid	Vapor
⁻ °C.	Atm.	Atm.	gm/cc	gm/cc
125.66	0.000	1.000		
130.00	-0.006	1.128	0.608	
140.00	-0.021	1.471	0.599	
150.00	-0.034	1.886	0.590	
150.00	-0.046	2.384	0.580	
170.00	-0.056	2.976	0.569	
180.00	-0.062	3.674	0.558	
190.00	-0.066	4.494	0.546	*****
200.00	-0.068	5.449	0.534	
210.00	-0.064	6.550	0.512	
220.00	-0.050	7.810	0.509	
230.00	-0.023	9.241	0.495	0.040
240.00	0.011	10.865	0.479	0.045
250.00	0.055	12.697	0.460	0.053
260.00	0.091	14.771	0.438	0.064
270.00	0.120	17.104	0.411	0.079
280.00	0.129	19.727	0.378	0.100
290.00	0.110	22.664	0.332	0.135
295.59	0.000	24.537	0.232	Critical

* Calculated by means of equation

log P (Atm.) = 4.65176 - 1855.26/(t^oC. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure	Liquid	Vapor
°C.	Atm.	Atm.	gm/cc	gm/cc
				- <u>-</u>
117.65	0.000	1.000		
120.00	-0.004	1.070	0.614	
130.00	-0.015	1.399	0.604	
140.00	-0.028	1.803	0.594	
150.00	-0.042	2.292	0.583	
160.00	-0.055	2.876	0.572	
170.00	-0.064	3.565	0.560	
180.00	-0.069	4.373	0.549	
190.00	-0.068	5.312	0.536	
200.00	-0.063	6.399	0.524	
210.00	-0.047	7.643	0.511	
220.00	-0.024	9.064	0.496	
230.00	0.005	10.679	0.481	0.047
240.00	0.041	12.504	0.462	0.054
250.00	0.081	14.558	0.441	0.064
260.00	0.112	16.873	0.417	0.078
270.00	0.125	19.475	0.386	0.099
280.00	0.088	22.412	0.342	0.133
286.41	0.000	24.517	· · · · · · · · · · · · · · · · · · ·	Critical

of 2-Methylheptane

* Calculated by means of equation

log P (Atm.) = 4.60725 - 1800.61/(toc. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

of 3-Methylheptane

Barry and the second	Pressure	Vapor	Saturated	•
Temperature °C.	Deviation Atm.	Pressure# Atm.	Liquid gm/cc	Vapor gm/cc
				<u>an/ cc</u>
118.92	0.000	1.000		
120.00	-0.002	1.032	0.620	
130.00	-0.010	1.348	0.612	
140.00	-0.021	1.738	0.603	
150.00	-0.038	2.215	0.594	
160.00	-0.045	2.776	0.584	
170.00	-0.052	3.443	0.573	
180.00	-0.055	4.225	0.562	
190.00	-0.055	5.137	0.550	*****
200.00	-0.052	6.194	0.538	
210.00	-0.041	7.407	0.525	
220.00	-0.020	8.789	0.512	
230.00	0.005	10.362	0.498	
240.00	0.040	12.136	0.482	0.054
250.00	0 .08 6	14.127	0.462	0.064
260.00	0.120	16.375	0.440	0.078
270.00	0.139	18.900	0.413	0.096
280.00	0.115	21.746	0.376	0.124
285.00	0.081	23.302	0.350	0.147
290.45	0.000	25.127	0.246	Critical

* Calculated by means of equation

log P (Atm.) = 4.60063 - 1803.86/(toc. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure	Liquid	Vapor
<u> </u>	Atm.	Atm.	gm/cc	gm/cc
117.71	0.000	1.000		
120.00	-0.002	1.066		
130.00	-0.010	1.391	0.614	
140.00	-0.021	1.792	0.604	
150.00	-0.029	2.274	0.594	
160.00	-0.046	2.860	0.582	
170.00	-0.057	3.548	0.572	
180.00	-0.064	4.355	0.560	
190.00	-0.06 5	5.292	0.548	
200.00	-0.061	6.375	0.534	
210.00	-0.051	7.620	0.520	
220.00	-0.032	9.037	0.504	
230.00	-0.004	10.646	0.488	0.044
240.00	0.028	12.465	0.472	0.050
250.00	0.065	14.511	0.451	0.060
260.00	0.100	16.810	0.428	0.074
270.00	0.119	19.391	0.399	0.096
280.00	0.100	22.294	0.360	0.126
288.52	0.000	25.087	-	Critical

of 4-Methylheptane

* Calculated by means of equation

log P (Atm.) = 4.60194 - 1798.81/(t°C. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure *	Liquid	Vapor
<u> </u>	Atm.	Atm.	gm/cc	gm/cc
118.53	0.000	1.000		
	0.000	1.041	0.632	
120.00	-0.001			
130.00	-0.012	1.363	0.622	
140.00	-0.025	1.757	0.612	
150.00	-0.037	2.232	0.602	
160.00	-0.045	2.796	0.592	
170.00	-0.054	3.467	0.582	
180.00	-0.058	4.253	0.572	
190.00	-0.060	5.170	0.561	
200.00	-0.055	6.237	0.549	~~~~~
210.00	-0.046	7.443	0.536	
220.00	-0.028	8.829	0.524	0.042
230.00	-0.004	10.404	0.510	0.046
240.00	0.028	12.180	0.493	0.052
250.00	0.067	14.177	0.474	0.063
260.00	0.109	16.415	0.453	0.077
270.00	0.135	18.928	0.426	0.095
280.00	0.122	21.758	0.391	0.124
290.00	0.050	24.940	0.326	0.180
	•	· · ·	-	
292.27	0.000	25.738	0.271	Critical

of 3-Ethylhexane

* Calculated by means of equation

 $\log P (Atm.) = 4.59076 - 1798.20/(t^{\circ}C.+ 273.17)$

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure *	Liquid	Vapor
<u>°</u> C.	Atm.	Atm.	gm/cc	<u>gm/cc</u>
106.84	0.000	1.000	,	
110.00	-0.001	1.091		
120.00	-0.010	1.427	0.608	
130.00	-0.020	1.839	0.597	
140.00	-0.031	2.338	0.586	
150.00	-0.040	2.934	0.574	
160.00	-0.046	3.637	0.564	****
170.00	-0.047	4.460	0.552	
180.00	-0.045	5.420	0.539	
190.00	-0.039	6.530	0.526	
200.00	-0.025	7.801	0.512	
210.00	0.000	9.246	0.498	
220.00	0.029	10.888	0.482	0.050
230.00	0.060	12.744	0.465	0.054
240.00	0.096	14.830	0.445	0.063
250.00	0.122	17.175	0.421	0.078
260.00	0.133	19.802	0.391	0.100
270.00	0.096	22.759	0.348	0.136
275.00	0.041	24 .3 85	0.300	0.180
276.65	0.000	24.961	0.239	Critical

of 2,2-Dimethylhexane

* Calculated by means of equation

log P (Atm.) = 4.52412 - 1719.21/(t^oC. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

of 2,3-Dimethylhexane

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure#	Liquid	Vapor
OC	Atm.	Atm.	gm/cc	gm/cc
115.61	0.000	1.000		
120.00	-0.010	1.134	0.626	
130.00	-0.020	1.475	0.616	
140.00	-0.028	1.887	0.606	-
150.00	-0.035	2.383	0.597	
160.00	-0.045	2.979	0.587	
170.00	-0.050	3.679	0.576	
180.00	-0.051	4.498	0.565	****
190.00	-0.050	5.452	0.554	
200.00	-0.043	6.552	0.542	
210.00	-0.031	7.812	0.529	
220.00	-0.014	9.250	0.514	
230.00	0.022	10.866	0.500	0.046
240.00	0.065	12.688	0.483	0.052
250.00	0.110	14.738	0.464	0.064
260.00	0.144	17.045	0.440	0.077
270.00	0.154	19.637	0.413	0.095
280.00	0.125	22.548	0.376	0.122
285.00	0.090	24.133	0.345	0.167
290.27	0.000	25.938	0.244	Critical

* Calculated by means of equation

log P (Atm.) = 4.56126 - 1773.33/(t°C. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure*	Liquid	Vapor
<u>°C.</u>	Atm.	Atm	gm/cc	gm/cc
109.43	0.000	1.000	0.604	
110.00	-0.004	1.020	0.602	****
120.00	-0.010	1.335	0.596	
130.00	-0.020	1.725	0.588	
140.00	-0.032	2.200	0.579	
150.00	-0.044	2.771	0.570	
160.00	-0.055	3.445	0.560	
170.00	-0.061	4.236	0.550	
180.00	-0.063	5.158	0.540	
190.00	-0.059	6.224	0.528	
200.00	-0.047	7.446	0.514	
210.00	-0.026	8.840	0.502	
220.00	0.009	10.417	0.488	0.043
230.00	0.050	12.199	0.472	0.052
240.00	0.090	14.212	0.454	0.063
250.00	0.123	16.477	0.432	0.078
260.00	0.140	19.020	0.406	0.098
270.00	0.127	21.871	0.370	0.126
280.30	0.000	25.229		Critical

of 2,4-Dimethylhexane

* Calculated by means of equation

log P (Atm.) = 4.54094 - 1737.36/(toc. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor Saturated		Density	
Temperature	Deviation	Pressure *	Liquid	Vapor	
<u></u>	Atm.	Atm.	gm/cc	gm/cc	
109.10	0.000	1.000			
110.00	-0.001	1.026			
120.00	-0.014	1.352	0.606		
130.00	-0.025	1.748	0.596		
140.00	-0.035	2.227	0.586		
150.00	-0.042	2.799	0.574	÷+	
160.00	-0.046	3.478	0.562		
170.00	-0.050	4.280	0.550		
180.00	-0.049	5.214	° − 0.538		
190.00	-0.043	6.295	0.524		
200.00	-0.034	7.542	0.510		
210.00	-0.019	8.967	0.495		
220.00	0.007	10.582	0.480	0.044	
230.00	0.045	12.402	0.462	0.052	
240.00	0.087	14.452	0.442	0.063	
250.00	0.119	16.763	0.419	0.078	
260.00	0.131	19.362	0.391	0.099	
270.00	0.098	22.291	0.346	0.131	
276.84	0.000	24.542	-	Critical	

of 2,5-Dimethylhexane

* Calculated by means of equation

log P (Atm.) = 4.55744 - 1742.17/(t°C. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure#	Liquid	Vapor
	Atm.	Atm.	gm/cc	gm/cc
111.97	0.000	1.000		
120.00	-0.010	1.246	0.632	
130.00	-0.019	1.609	0.624	
140.00	-0.027	2.049	0.615	
	-0.036	2.577	0.606	
150.00	-0.041	3.201	0.596	
160.00	-0.045	3.937	0.587	
170.00	•		0.577	
180.00	-0.045	4.793		
190.00	-0.043	5.787	0.566	
200.00	-0.037	6.931	0.555	
210.00	-0.024	8.234	0.543	
220.00	-0.002	9.712	0.530	0.043
230.00	0.029	11.378	0.514	0 .0 50
240.00	0.066	13.250	0.495	0.058
		15.344	0.474	0.070
250.00	0.110		0.450	0.087
260.00	0.134	17.700		0.108
270.00	0.149	20.324	0.422	
280.00	0.125	23.261	0.384	0.120
288.80	0.000	26.187	0.258	<u>Critical</u>

of 3,3-Dimethylhexane

* Calculated by means of equation

log P (Atm.) = 4.50672 - 1735.72/(t°C. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure *	Liquid	Vapor
-0 <mark>0.</mark>	Atm.	Atm.	gm/cc	gm/cc
				-
117.72	0.000	1.000		*****
120.00	-0.002	1.065		
130.00	-0.009	1.385	0.635	
140.00	-0.019	1.779	0.623	
150.00	-0.028	2.253	0.611	
160.00	-0.038	2.721	0.598	*
170.00	-0.045	3.490	0.586	
180.00	-0.049	4.274	0.574	
190.00	-0.046	5.182	0.562	
200.00	-0.041	6.234	0.550	
210.00	-0.031	7.439	0.538	
220.00	-0.013	8.812	0.524	
230.00	0.012	10.367	0.508	0.044
240.00	0.050	12.115	0.491	0.050
250.00	0.100	14.071	0.474	0.058
260.00	0.135	16.280	0.454	0.068
270.00	0.150	18.760	0.431	0.084
280.00	0.140	21.534	0.400	0.107
290.00	0.084	24.628	0.348	0.146
295.63	0.000	26.569	•	Critical

of 3,4-Dimethylhexane

* Calculated by means of equation

log P (Atm.) = 4.55388 - 1780.07/(t°C. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor	Saturated	Saturated Density	
Temperature	Deviation	Pressure*	Liquid	Vapor	
°C.	Atm.	Atm.	gm/cc	gm/cc	
115.65	0.000	1.000			
120.00	-0.005	1.127			
130.00	-0.014	1.464	0.635		
140.00	-0.025	1.876	0.624		
150.00	-0.036	2.371	0.613		
160.00	-0.045	2.959	0.602		
170.00	-0.050	3.650	0.590		
180.00	-0.051	4.458	0.580		
190.00	-0.050	5.398	0.569		
200.00	-0.046	6 .48 2	0.5 <u>5</u> 8		
210.00	-0.036	7.724	0.546		
220.00	-0.018	9.134	0.532	0.040	
230.00	0.011	10.751	0.518	0.046	
240.00	0.052	12.514	0.501	0.054	
250.00	0.101	14.517	0.483	0.064	
260.00	0.137	16.773	0.462	0.077	
270.00	0.150	19.305	0.438	0.095	
280.00	0.133	22.137	0.406	0.122	
290.00	0.064	25.308	0.350	0.172	
293.87	0.000	26.651	0.258	Critical	

of 2-Methyl-3-ethylpentane

* Calculated by means of equation

log P (Atm.) = 4.53619 - 1763.76/(t°C. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure*	Liquid	Vapor
C	<u>Atm.</u>	<u>Atm.</u>	gm/cc	gm/cc
118.26	0.000	1.000	***	
120.00	-0.001	1.072	0.646	
130.00	-0.008	1.360	0 .6 36	
140.00	-0.016	1.740	0.628	
150.00	-0.026	2.199	0.618	
160.00	-0.035	2.745	0.609	
170.00	-0.040	3.386	0.599	
180.00	-0.040	4.134	0.589	
190.00	-0.036	5.001	0.578	*****
200.00	-0.030	6.003	0.566	
210.00	-0.019	7.150	0.554	~~~~
220.00	0.000	8.452	0.540	
230.00	0.029	9.921	0.525	
240.00	0.060	11.580	0.510	0.045
250.00	0.095	13.439	0.493	0.054
260.00	0.129	15.521	0.474	0.064
270.00	0.160	17.838	0.453	0.076
280.00	0.174	20.421	0.429	0.093
290.00	0.160	23.294	0.395	0.119
300.00	0.091	26.498	0.331	0.152
303.36	0.000	27.706	0.251	Critical

of 3-Methyl-3-ethylpen	tane	•
------------------------	------	---

* Calculated by means of equation

log P (Atm.) = 4.49320 - 1758.77/(t°C. + 273.17)

1

and pressure deviation.

• • •

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure#	Liquid	Vapor
C	<u>Atm.</u>	Atm.	gm/cc	gm/cc
109.84	0.000	1.000		
120.00	-0.009	1.313	0.636	
130.00	-0.017	1.689	0.626	
140.00	-0.027	2.145	0.616	
150.00	-0.037	2.691	0.606	
160.00	-0.045	3.335	0.595	
170.00	-0.051	4.091	0.585	
180.00	-0.053	4.968	0.575	
190.00	-0.049	5 .978	0.564	
200.00	-0.032	7.129	0.552	
210.00	-0.020	8.451	0.540	
220.00	0.005	9.942	0.526	0.044
230.00	0.040	11.618	0.512	0.051
240.00	0.078	13.501	0.496	0.060
250.00	0.115	15.610	0.478	0.070
260.00	0.146	17.964	0.455	0.084
270.00	0.160	20.589	0.426	0.104
280.00	0.131	23.525	0.388	0.134
290.00	0.020	26.824	0.299	0.220
290.28	0.000	26.937	0.262	Critical

of 2,2,3-Trimethylpentane

* Calculated by means of equation

log P (Atm.) = 4.46647 - 1710.70/(t°C. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

Temperature OC.	Pressure Deviation Atm.	Vapor Pressure* <u>Atm.</u>	Saturated Liquid gm/cc			
99.24	0.000	1.000				
100.00	-0.012	1.033				
110.00	-0.025	1.328	0.616			
120.00	-0.040	1.758	0.607			
130.00	-0.053	2.239	0.596			
140.00	-0.064	2.813	0.586			
150.00	-0.068	3.488	0.574			
160.00	-0.070	4.282	0.563			
170.00	-0.068	5.207	0.550			
180.00	-0.062	6.277	0.538			
190.00	-0.049	7.504	0.524			
200.00	-0.022	8.895	0.510			
210.00	0.024	10.462	0.494			
220.00	0.080	12.228	0.477	0.053		
230.00	0.124	14.231	0.458	0.062		
240.00	0.152	16.490	0.436	0.075		
250.00	0.160	19.025	0.409	0.093		
260.00	0.136	21.863	0.373	0.121		
270.74	0.000	25.340		Critical		

of	2.	.2.	4-Trimethylpentane
----	----	-----	--------------------

* Calculated by means of equation

log P (Atm.) = 4.45216 - 1658.03/(t°C. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure*	Liquid	Vapor
<u>°c.</u>	Atm.	Atm.	gm/cc.	gm / cc
	0.000	1 000		
114.76	0.000	1.000		
120.00	-0.005	1.152	0.643	*
130.00	-0.017	1.492	0.633	
140.00	-0.030	1.904	0.623	
150.00	-0.044	2.398	0.612	
160.00	-0.057	2 .98 3	0.602	
170.00	-0.066	3 .66 7	0.592	
180.00	-0.070	4 .46 2	0.582	
190.00	-0.066	5.377	0.572	
200,00	-0.054	6.425	0.560	
210.00	`-0 . 034	7.619	0.548	
220.00	-0.006	8.972	0.535	
230.00	0.031	10.499	0.521	
240.00	0.072	12.217	0.506	0.050
250.00	0.116	14.140	0.490	0.058
260.00	0.151	16.296	0.470	0.069
270.00	0.171	18.705	0.445	0.082
280.00	0.175	21.379	0.420	0.100
290.00	0.132	24.366	0.384	0.128
295.00	0.083	25.990	0.351	0.152
300.34	0.000	27.833	0.251	Critical

of 2,3,3-Trimethylpentane

* Calculated by means of equation

log P (Atm.) = 4.46422 - 1731.80/(toc. + 273.17)

VAPOR PRESSURE, SATURATED LIQUID, AND VAPOR DENSITIES

	Pressure	Vapor	Saturated	Density
Temperature	Deviation	Pressure*	Liquid	Vapor
<u> </u>	Atm.	Atm.	gm/cc	gm/cc
113.47	0.000	1.000		
120.00	-0.009	1.197	0.640	
130.00	-0.018	1.548	0.630	
140.00	-0.023	1.970	0.620	
150.00	-0.030	2.480	0.610	
160.00	-0.040	3.089	0.599	
170.00	-0.045	3.804	0.587	
180.00	-0.044	4.634	0.576	
190.00	-0.038	5.595	0.564	
200.00	-0.027	6.701	0.551	
210.00	-0.011	7.965	0.538	
220.00	0.010	9.403	0.524	
230.00	0.029	11.036	0.508	0.044
240.00	0.065	12.567	0.492	0.053
250.00	0.105	14.905	0.473	0.060
260.00	0.150	17.183	0.451	0.074
270.00	0.174	19.735	0.426	0.091
280.00	0.150	22.604	0.392	0.116
290.00	0.066	25 .8 16	0.330	0.165
293.19	0.000	26.941	0.248	<u>Critical</u>

of 2,3,4-Trimethylpentane

* Calculated by means of equation

log P (Atm.) = 4.50775 - 1742.87/(toc. + 273.17)

___ `

SUMMARY OF

VAPOR PRESSURE EQUATION CONSTANTS

Name of Compound	A	· B
n-Heptane	4.58932	-1705.34
2-Methylhexane	4.54120	-1649.45
3-Methylhexane	4.53958	-1657.04
3-Ethylpentane	4.52268	-1658.19
2,2-Dimethylpentane	4.45009	-1568.08
2,3-Dimethylpentane	4.49262	-1630.60
2,4-Dimethylpentane	4.47991	-1584.41
3,3-Dimethylpentane	4.43153	-1591.94
2,2,3-Trimethylbutane	4.39299	-1555.34
n-Octane	4.65176	-1855.26
2-Methylheptane	4.60725	-1800.61
3-Methylheptane	4.60063	-1803.86
4-Methylheptane	4.601.94	-1798.81
3-Ethylhexane	4.59076	-1798.20
2,2-Dimethylhexane	4.52412	-1719.21
2,3-Dimethylhexane	4.56126	-1773.33
2,4-Dimethylhexane	4.54094	-1737.36
2,5-Dimethylhexane	4.55744	-1742.17
3,3-Dimethylhexane	4.50672	-1735.72
3,4-Dimethylhexane	4.55388	-1780.07
2-Methyl-3-ethylpentane	4.53619	-1763.76
3-Methyl-3-ethylpentane	4.49320	-1758.77
2,2,3-Trimethylpentane	4.46647	-1710.70
2,2,4-Trimethylpentane	4.45216	-1658.03
2,3,3-Trimethylpentane	4.46422	-1731.80
2,3,4-Trimethylpentane	4.50775	-742.87

CRITICAL CONSTANTS FOR THE HEPTANES AND OCTANES

Name of Compound	Temperature	Pressure	Density	
	°C.	atm.	gm/cc.	
n-Heptane	266.85	27.002	0.232	
2-Methylhexane	257.15	26.971	0.238	
3-Methylhexane	262.04	27.767	0.248	
3-Ethylpentane	267.42	28.530	0.241	
2,2-Dimethylpentane	247.29	27.367	0.241	
2,3-Dimethylpentane	264.14	28.700	0.262	
2,4-Dimethylpentane	246.58	27.009	0.240	
3,3-Dimethylpentane	263.19	29.073	0.242	
2,2,3-Trimethylbutane	257.96	29.146	0.252	
<pre>n-Octane 2-Methylheptane 3-Methylheptane 4-Methylheptane 3-Ethylhexane 2,2-Dimethylhexane 2,3-Dimethylhexane 2,4-Dimethylhexane 3,3-Dimethylhexane 3,3-Dimethylhexane 3,4-Dimethylhexane 2-Methyl-3-ethylpentane 2,2,3-Trimethylpentane 2,2,4-Trimethylpentane 2,3,3-Trimethylpentane</pre>	295.59 286.41 290.45 288.52 292.27 276.65 290.27 280.30 276.84 288.80 295.63 293.87 303.36 290.28 270.74 300.34	24.537 24.517 25.127 25.087 25.738 24.961 25.938 25.229 24.542 26.187 26.569 26.651 27.706 26.937 25.340 27.833	0.232 0.234 0.246 0.240 0.251 0.239 0.244 0.242 0.242 0.245 0.258 0.251 0.258 0.251 0.262 0.244 0.251 0.251 0.248	

COMPARISON OF DATA FROM THIS STUDY WITH KAY AND WARZEL (11).

for 2,2,4-Trimethylpentane

				Saturated	L Density	
	Vapor Pr	ressure	Lig	uid	Vap	or
Tęmp.	Found	K & W	Found	K & W	Found	K & W
<u>°C.</u>	Atm.	Atm.	Atm.	Atm.	Atm.	Atm.
110.00	1.328		0.616			
120.00	1.758	1.736	0.607	0.603		
130.00	2.239		0.596			
140.00	2.813	2.783	0.586	0.582		
150.00	3.488		0.574			
160.00	4.282	4.253	0.563	0.560		
170.00	5.207		0.550			
180.00	6.277	6.245	0.538	0.536		
190.00	7.504	7.479	0.524	0.523		
200.00	8.895	8.867	0.510	0.509		
210.00	10.462	10.452	0.494	0.493		
220.00	12,228	12.238	0.477	0.476	0.053	0.050
230.00	14.231	14.249	0.458	0.457	0.062	0.061
240.00	16.490	16.500	0.436	0.435	0.075	0.075
250.00	19.025	19.022	0.409	0.408	0.093	0.093
260.00	21.863	21.873	0.373	0.372	0.121	0.120
265.00			0.349		0.141	
270.00	25.340	25.308	0.243	0.243	0.243	0.243 CP
210.00	27.340	27.500	VICTJ		0.2.5	

CP - Critical Point

CORRELATION OF CRITICAL TEMPERATURE AND PRESSURE OF PURE SUBSTANCES

THEORY

The critical temperature of a pure compound may be defined as the maximum temperature at which the liquid and vapor may coexist. The vapor pressure at this temperature is termed the critical pressure. According to kinetic theory of the liquid state the potential energy of attraction between molecules is counterbalanced to some extent by the kinetic energy of the molecules. The latter tends to separate randomly all portions of the liquid. Vapor pressure is caused by the fact that some of the liquid molecules have sufficiently high kinetic energy to break away from the strong cohesive force fields of the liquid. As the temperature is raised on a liquid system the kinetic energy of the molecules increases but the temperature has little effect on the cohesive forces. The temperature at which the average molecular kinetic energy becomes equal to the negative potential energy of attraction is termed the critical temperature. Any reliable method for predicting critical constants should be based upon this kinetic hypothesis but because there is no general method to calculate accurately the potential energy of attraction between molecules, any accurate theoretical prediction of critical constants is not likely at present. Simplification in the calculation of the potential energy, such as assuming the inverse power relationship of intermolecular forces with distance, are not of much value in real systems.

EMPIRICAL EQUATIONS FOR CRITICAL TEMPERATURE AND PRESSURE

The equations that have been proposed for the estimation of the critical temperature and pressure are strictly empirical. Reid and Sherwood (15) have tested a number of these equations by comparing the calculated values with experimentally determined values and have presented the results in terms of the deviation of calculated from experimental. A brief summary of the methods recommended by Reid and Sherwood is of interest in helping to discover the variables upon which T_c (critical temperature) and P_c (critical pressure) depend.

For the prediction of the critical temperature, Vowles (22), Riedel (16), and Lydersen (12) have proposed the simple equation

$$T_{c} = T_{B} / \rho$$
 (1)

where T_c and T_B are the critical temperature and the standard boiling point Temperature in ^OK. and **9** is a constant different for each compound but which may be calculated by summing atomic and structural constants which represent the component parts of the molecule. The values of these constants for a given component differ with the author.

Thodos (20,21) evaluated the van der Waal constants a and b from structural considerations for saturated and unsaturated aliphatic hydrocarbons and proposed that the critical temperature be calculated using these constants in the equation

$$T_c = \frac{8a}{27} R b$$
 (2)

where $T_c = critical temperature ^{OK}$.

R = gas constant, 82.06 cm³-atm/°K,g-mole. a = van der Waal's constant (cm³/g-mole)²atm. b = van der Waal's constant cm³/g-mole.

By the methods based on equation (1) the average deviation of the calculated from the experimental value is about 1.4%; by equation (2) it is of the order of 1%.

In the prediction of the critical pressure there is a much greater diversity in the form of the empirical equation proposed.

Riedel (16) and Lydersen (12) have developed the following equation:

$$P_{c}(atm) = \frac{M}{(\phi + 0.33)^{2}}$$
 (3)

where M = molecular weight

 ϕ = an additive constant determined from molecular structure

Vowles (22) correlated the critical pressure in atmospheres with the critical temperature T_c in ^OK and an additive function χ by the following equation

$$P_{c}^{a} = \frac{T_{c}}{\chi}$$
 (4)

where the exponent & depends on the homologous family.

Herzog (1) used the equation

$$\log P (atm) = A + B \log P_{ch}$$
(5)

where A and B are constants for a particular family of substances and P_{ch} is the parachor of the compound.

Thodos (20,21) proposed the equation

$$P_c = \frac{a}{27 b^2}$$
 (6)

where a and b are estimated van der Waal constants.

Compared with the equation for estimating the critical temperature, those representing the critical pressure are subject to much greater uncertainty. The errors in the calculated values may run as high as 10 to 15% for relatively simple non-polar compounds but usually are of the order of 3 to 4%.

The reason for the relatively large error in the calculated values of T_c and P_c , it would seem, is due to the failure to discover the form of the function for the effect of molecular structure on intermolecular forces. This is manifested indirectly by the fact that none of the equations proposed for the critical temperature and pressure contain terms which can distinguish differences in molecular structure of isomeric compounds.

WIENER'S CHARACTERIZATION OF MOLECULAR STRUCTURE

The Path Number and the Polarity Number

In a study of the relation between the standard boiling and the molecular structure. Wiener proposed, in 1947, a method of characterizing isomeric compounds, which appears to have real promise as a method for correlating critical constants. According to Wiener (23) the boiling points of the paraffins may be expressed by the linear equation

$$t_{B} = aw + bp + c \qquad (7)$$

where a, b and c are constants for a given isomeric group and p and w are structural variables. The polarity number p is the number of pairs of carbon atoms which are separated by three carboncarbon bonds. For example, for 2,3-Dimethylpentane

$$c_1 - c_2 - c_3 - c_4 - c_5$$

 $I I$
 $c_6 c_7$

the pairs of carbon atoms three bonds apart are C_1C_4 , C_1C_7 , C_2C_5 , C4C6, C5C7, and C6C7. The polarity number of the compound is therefore, p = 6.

The path number w, is equal to the sum of the distances between any two carbon atoms in the molecule, in terms of the carbon-carbon bonds. The path number is calculated by multiplying the number of carbon atoms on one side of any bond by those on the other side and determining the sum of these quantities for all bonds. To illustrate, consider 2-Methylbutane. The skeleton equation is

$$(1x4=4)$$
 (2x3=6) (1x4=4)
 $C - C - C - C$
 $1 1x4=4$
 C

and the path number is w = 4 + 6 + 4 + 4 = 18

According to Wiener (23), the path number indicates the compactness of the molecule. As the compactness increases, that is, as w decreases, the boiling point decreases. The polarity number is considered as a semi-quantitative measure of intramolecular attractive forces transmitted through the carbon chain.

In the application of the concepts of the path number and polarity number to the correlation of the standard boiling points of the compounds of the paraffin series, it was found more convenient to modify equation (7) to read

$$\Delta t = a \Delta w + b \Delta p$$

where $\Delta t = t_0 - t_B$, $\Delta w = w_0 - w$ and $\Delta p = p_0 - p$. in this form the boiling points of the branched isomers were referred to the boiling points of the normal paraffins which, throughout the series, have been more intensively and accurately determined and correlated. Using this equation with the value of $a = 98/n^2$ and b = 5.5, where n = number of carbon atoms, Wiener was able to calculate the standard boiling point of 94 pure paraffin hydrocarbons with an average deviation between calculated and observed values of less than one degree.

ESTIMATION OF THE CRITICAL TEMPERATURE AND PRESSURE OF ISOMERS

The Wiener numbers make it possible to express differences in molecular structure in a quantitive manner. Their application to the correlation of critical temperatures and pressures of the

a model, Wiener's correlation of the standard boiling points of the hydrocarbons and employing the ratio of the Wiener path numbers of the isomeric compound to the normal compound w_i/w_n , a plot was prepared in which the logarithm of $((T_{Rbp})_n - (T_{Rbp})_i)$ was plotted against the logarithm of $(1 - w_i/w_n)$. $(T_{Rbp})_n$ and $(T_{Rbp})_i$ are the reduced standard boiling points of the normal and isomeric compounds, respectively. The result is shown in Figure 32, a linear relation is indicated with only a slight scattering of the data. The equation for this line was found to be

$$\log \left[(T_{Rbp})_n - (T_{Rbp})_j \right] = -0.75463 + 1.52669 \log (1 - w_j/w_n)$$
(9)

Critical temperatures calculated by means of equation (9) are compared with the experimental values in Table 31. For the isomeric hexanes (8), heptanes and octanes, a total of 28 isomeric compounds, the calculated critical temperatures agree with the experimental values with an average deviation of 0.55° K. or 0.1 percent and a maximum deviation of 2.17° K. or 0.38 percent.

From a study of the critical pressure data it was found that, $(P_{cn} - P_{ci})$, the difference between the critical pressure of the n-compound and iso-compound, varied linearly with the difference between the reduced boiling point of the n- and iso-compound, when the polarity ratio P_i/P_n remained the same. A plot of the data points is shown in Figure 33. These relations have been expressed analytically by the empirical equation using

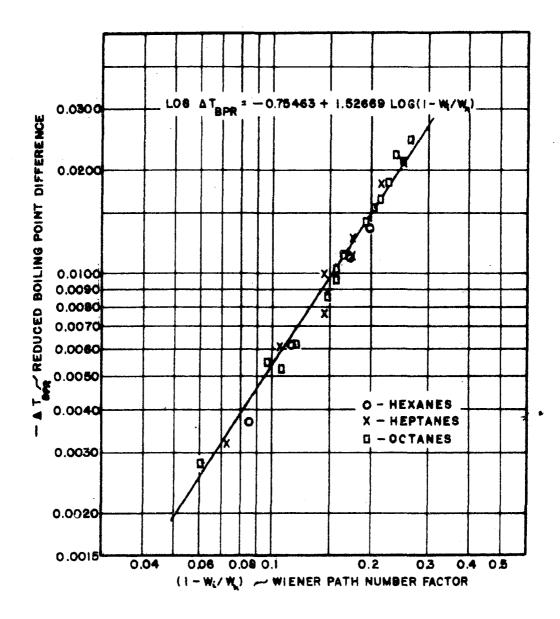


FIGURE 32, REDUCED BOILING POINT DIFFERENCE AS A FUNCTION OF WIENER PATH NO. RATIO

COMPARISON OF PREDICTED VALUES OF CRITICAL TEMPERATURES TO EXPERIMENTAL VALUES

	Path	Critical	Tempera	Temperatures		
· .	Number	Calc.*	Exp.	Dev.		
Name of Compound	Ratio	°ĸ.	°K.	°ĸ.	Dev.	
······································				هابا الباعيين واخالا مخلب مبار		
n-Hexane	1.000		507.87			
2-Methylpentane	0.914	498.41	498.07	0.34	0.07	
3-Methylpentane	0.885	504.65	504.37	0.28	0.06	
2,2-Dimethylbutane	0.800	490.67	489.37	1.30	0.26	
2,3-Dimethylbutane	0.829	500.79	500.27	0.52	0.10	
n-Heptane	1.0000		540.02			
2-Methylhexane	0.9286	530.25	530.32	-0.07	0.01	
3-Methylhexane	0.8929	534.98	535.21	-0.23	0.04	
3-Ethylpentane	0.8571	539.91	540.59	-0.68	0.13	
2,2-Dimethylpentane	0.8241	521.49	520.46	1.03	0.20	
2,3-Dimethylpentane	0.8241	537.15	537.31	-0.16	0.02	
2,4-Dimethylpentane	0.8571	520.79	519.75	1.04	0.20	
3,3-Dimethylpentane	0.7857	535.13	536.36	-1.23	0.23	
2,2,3-Trimethylbutane	0.7500	530.89	531.12	-0.23	0.04	
n-Octane	1.0000		568.76	****		
2-Methylheptane	0.9405	559.27	559.58	-0.31	0.06	
3-Methylheptane	0.9048	563.12	563.63	-0.51	0.09	
4-Methylheptane	0.8929	562.09	561.69	0.40	0.07	
3-Ethylhexane	0.8571	565.88	565.44	0.44	0.08	
2,2-Dimethylhexane	0.8452	549.94	549.82	0.12	0.02	
2,3-Dimethylhexane	0.8333	563.61	563.44	0.17	0.03	
2,4-Dimethylhexane	0.8452	552.73	553.47	-0.74	0.13	
2,5-Dimethylhexane	0.8809	550.50	550.01	0.49	0.09	
3,3-Dimethylhexane	0.7976	561.59	561.97	-0.38	0.07	
3,4-Dimethylhexane	0.8095	568.83	568.80	0.03	0.00	
2-Methyl-3-ethylpentane	0.7976	566.96	567.04	-0.08	0.01	
3-Methyl-3-ethylpentane	0.7619	574.36	576.53	-2.17	0.38	
2,2,3-Trimethylpentane	0.7500	563.25	563.45	-0.02	0.04	
2,2,4-Trimethylpentane	0.7857	544.14	543.91	0.23	0.04	
2,3,3-Trimethylpentane	0.7381	571.83	573.51	-1.68	0.29	
2,3,4-Trimethylpentane	0.7738	566.09	566.36	-0.27	0.05	
		Av	erage	0.55	0.10	

* Critical temperature calculated from the equation:

$$\log \left[(T_{Rbp})_n - (T_{Rbp})_i \right] = -0.75463 + 1.52669 \log(1 - w_i/w_n)$$

where,

TRbp = reduced boiling point w = Wiener Path Number Subscripts - i = isomer and n = normal

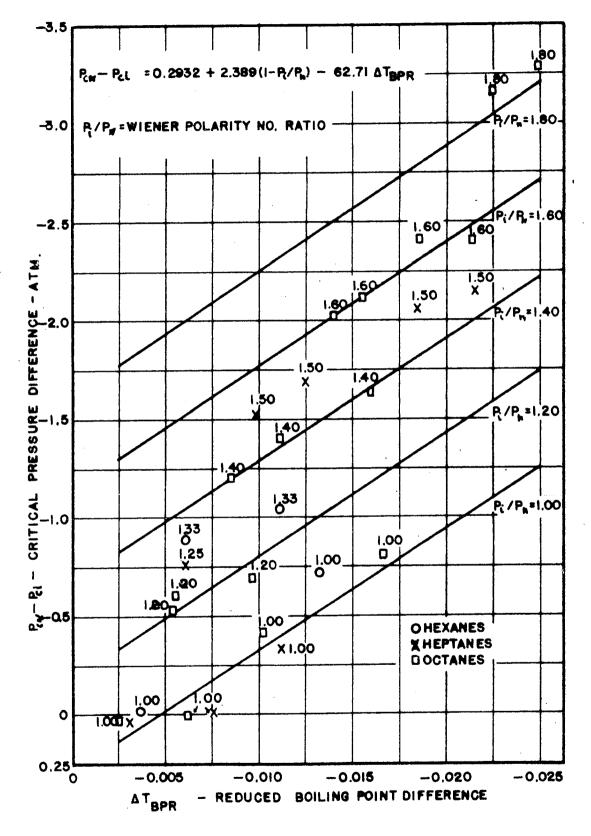


FIGURE 33, CRITICAL PRESSURE CORRELATION

the method of least mean squares for the evaluation of the constants of the equation.

$$P_{cn} - P_{ci} = 0.2932 + 2.389(1 - P_i/P_n) - 62.71 \Delta T_{Rbp}$$
 (10)

Table 32 shows a comparison to the calculated with the experimental values of the critical pressure. As will be noted, the average deviation of the calculated from the experimental values is 0.091 atmospheres or 0.33 percent while the maximum deviation amounts to 0.31 atm. or 1.14 percent.

	Polarity		Critica	Critical Pressures		
	Number	Calc.*	Exp.	Dev.	≸Dev.	
Name of Compound	Ratio	Atm.	Atm.	Atm.		
n-Hexane	1.000		29.94			
2-Methylpentane	1.000	29.91	29.95	-0.04	0.13	
3-Methylpentane	1.333	30.85	30.83	0.02	0.07	
2,2-Dimethylbutane	1.000	30.59	30.67	0.08	0.25	
2,3-Dimethylbutane	1.333	31.19	30.99	0.20	0.64	
n-Heptane	1.000		27.00			
2-Methylhexane	1.000	26.90	26.97	-0.07	0.25	
3-Methylhexane	1.250	27.67	27.77	-0.10	0.35	
3-Ethylpentane	1.500	28.47	28.53	-0.06	0.22	
2,2-Dimethylpentane	1.000	27.49	27.37	0.12	0.43	
2,3-Dimethylpentane	1.500	28.68	28.70	-0.02	0.07	
2,4-Dimethylpentane	1.000	27.27	27.01	0.26	0.98	
3,3-Dimethylpentane	1.500	28.96	29.07	-0.12	0.40	
2,2,3-Trimethylbutane	1.500	29.23	29.15	0.09	0.30	
n-Octane	1.000		24.54			
2-Methylheptane	1.000	24.39	24.52	-0.12	0.50	
3-Methylheptane	1.200	25.03	25.13	-0.10	0.39	
4-Methylheptane	1.200	25.08	25.09	-0.01	0.01	
3-Ethylhexane	1.400	25.76	25.74	0.03	0.10	
2,2-Dimethylhexane	1.000	24.88	24.96	-0.08	0.31	
2,3-Dimethylhexane	1.400	25 .91	25.94	-0.02	0.09	
2,4-Dimethylhexane	1.200	25.29	25.23	0.06	0.23	
2,5-Dimethylhexane	1.000	24.67	24.54	0.13	0.53	
3,3-Dimethylhexane	1.400	26.16	26.19	-0.02	0.08	
3,4-Dimethylhexane	1.600	26.56	26.57	-0.01	0.05	
2-Methyl-3-ethylpentane	1.600	26.64	26.65	-0.01	0.03	
3-Methyl-3-ethylpentane	1.800	27.39	27.70	-0.31	1.14	
2,2,3-Trimethylpentane	1.600	27.01	26.94	0.07	0.26	
2,2,4-Trimethylpentane	1.000	25.30	25.34	-0.04	0.17	
2,3,3-Trimethylpentane	1.800	27.58	27.83	-0.25	0.89	
2,3,4-Trimethylpentane	1.600	26.82	26.94	-0.12	0.47	
·-·			Average	0.09	0.33	
	·• • • •	0 1.1	- muchil an			

COMPARISON OF PREDICTED VALUES OF CRITICAL PRESSURES TO EXPERIMENTAL VALUES

* Critical pressure calculated from the equation

$P_{cn} - P_{ci} = 0.2932 + 2.389(1 - p_i/p_n) - 62.71 \Delta T_{Rbp}$

where

P = pressure in atm. p = Wiener polarity number

 ΔT_{Rbp} = reduced boiling point difference and subscripts n, i, and c refer to normal, isomer, and critical, respectively.

VAPOR PRESSURE CORRELATION

The vapor pressure data for each hydrocarbon have been represented by the standard vapor pressure equation $\log P = A + B/T$ supplemented with a deviation curve of T versus $(P_{calc} - P_{exp})$. If the temperature is expressed as reduced temperature, the curves are brought close together and, in the limit, should coincide to form a common deviation curve in accord with the theorem of corresponding states. Figure 34 shows the reduced temperature-pressure deviation curves for all of the isomeric heptanes. Figure 35 is the same for n-octane and 2,3,3-trimethylpentane. The deviation curves of all other isomeric octanes lie in between these two curves as limits. Since the maximum difference between the individual curves is about 0.1 atmosphere, the average error that would be introduced into the estimation of the vapor pressure, if an average deviation curve were drawn to represent the heptanes and octanes, would be less than 0.05 atm. over the temperature range from the standard boiling point to the critical point.

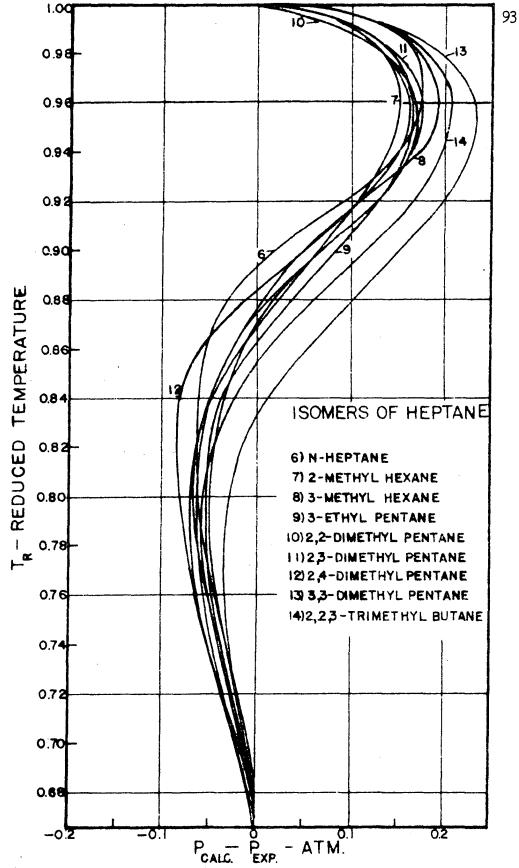


FIG.34, VAPOR PRESSURE DEVIATION - REDUCED TEMPERATURE

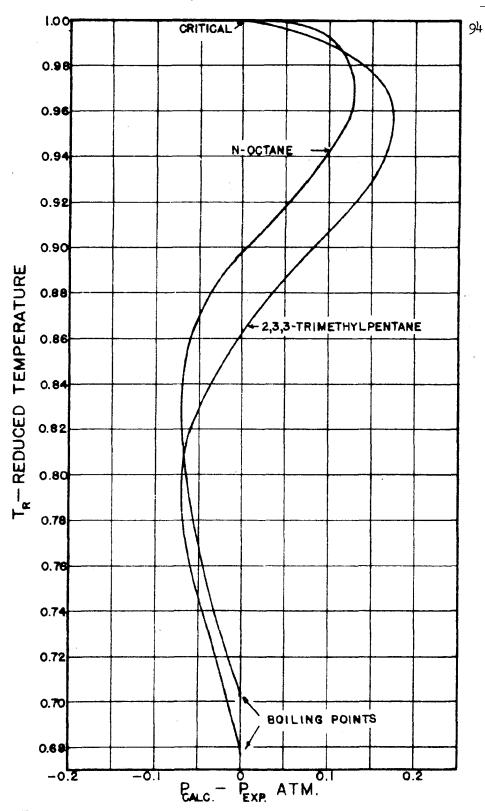


FIG. 35, VAPOR PRESSURE DEVIATION - REDUCED TEMPERATURE

APPENDIX I

EXPERIMENTAL DATA

The treatment of experimental data is shown, by example, in Table 32; two bubble points and a dew point determination are given for n-heptane. Explainations of the entries in Table 32 are given below (Numerals refer to equipment in Figure 1, page 5).

"Gage Temperature"

The temperature used to calculate the temperature correction for the dead-weight piston gage.

"True Gage Pressure"

The pressure which was exerted at the base of the piston of the dead-weight piston gage, 16, Figure 1. An example calculation is shown in Appendix II, ("Pressure Gage Calibration"). "Barometric Pressure"

The barometric pressure measured with a wall barometer, corrected to standard gravity and temperature.

"Hg Head Room Zone"

Since the differential mercury head between the back leg of the compressor block 4, and the top of the mercury in the experimental tube was at two different temperatures (room temperature and the temperature in the heating bath), the mercury head was calculated in two parts; "Hg Head Room Zone" and "Hg Head Hot Zone." The room zone was taken as the difference in mercury height from the back leg to the top of the mercury in the outer jacket at 19.

The level in the back leg was calculated from a knowledge of the mercury height in the experimental tube and back leg when the tube was loaded, the height of the mercury in the tube at the given pressure, and the volume ratio between the experimental tube and the back leg.

"Hg Head Hot Zone"

This head was calculated from the mercury height from the level in the outer jacket 19 to the top of the mercury meniscus, and the specific gravity of mercury at the temperature measured by the platinum resistance thermometer 3.

"Oil Head"

The oil head was calculated from a measure of the oil level in the reservoir of the piston gage 15, to the base of the piston, and the specific gravity of the oil. The level of the piston was maintained at a set level by means of an electronic relay arrangement.

"Hg Vapor Pressure"

It was assumed that the mercury and hydrocarbon were completely immiscible and the pressure exerted by the vapor, with both liquids present, was the sum of the hydrocarbon and mercury vapor pressures. Therefore, the mercury vapor pressure was subtracted from the pressure gage reading.

"Sample Liquid Head"

In the case of bubble points, a head due to the liquid sample was present and was calculated from the sample mass and the tube cross sectional area.

"Ball Head"

The head due 30 the steel stirring ball.

Calculated as the mercury depression in a 2 mm bore tube containing a hydrocarbon; for vapors the capillarity for mercurypentane vapors was used and for liquids mercury-octane liquid. "Vapor Pressure"

The vapor pressure, at the dew point or bubble point, was calculated by summing the pressure values just described. As may be seen in Figure 1, the pressure measured at the base of the piston, the sum of the weights and barometric pressure, was opposed by a differential mercury leg, an oil leg, a gas leg (negligible), the sample head, capillarity, the ball head, and the vapor pressure of the hydrocarbon and mercury. The only unknown pressure was the vapor pressure of the hydrocarbon; calculated by subtracting the pressure heads from the pressure gage weights and barometric pressure.

"Sample Temperature"

The sample temperature was determined by measuring the resistance of the platinum coil and then calculating the temperature from the calibration values.

"Sample Length" and "Sample Volume"

The sample length, the distance from the tube tip to the top of the meniscus, and the height of the mercury meniscus were measured with a cathetometer, measuring to 0.05 mm. The volume

97

was calculated from the sample length, meniscus height and temperature, as described in Appendix II ("Calibration of Experimental Tubes").

"Density"

The density of the sample was determined from the sample volume and the mass of the sample. The mass of the sample had previously been determined from the volume of the sample at room temperature and the density of the sample at that temperature (19).

Tables 33 through 58 give the experimentally determined dew point pressures and temperatures, saturated vapor densities, bubble point pressures and temperatures, and saturated liquid densities. The "Observed Pressure" is the experimentally determined pressure. The "Pressure Deviation" is the deviation of the calculated pressure minus the observed pressure, where $P_{calc} = A + B/T$. The "Saturated Densities" are the densities determined for either the saturated vapor or liquid; the saturated liquid densities were determined at the bubble points and the saturated vapor densities were determined at the dew points.

Tables 59 through 83 give the data used for "P-V Isotherms", which were used to determine the vapor pressure of the hydrocarbons with relation to the bubble points and dew points. The "length" refers to the sample length which could have been used to calculate the volumes, but because all the values are at the same temperature, the length represents the volume.

98

SAMPLE DATA POINTS

n-Heptane

Type of Point	Dew Point	Bubble Point	Bubble Point
Gage Temp., ^O C.	32.2	32.2	28.9
True Gage Press., Psi	227.46	231.86	118.23
Barometric Press., Psi	14.362	14.362	14.411
Hg. Head Room Zone, Psi	-4.255	-4.279	-4.450
Hg. Head Hot Zone, Psi	-3.164	-6.438	-6.400
Oil Head, Psi	-0.148	-0.148	-0.148
Hg. Vapor Press., Psi	-0.844	-0.844	-0.242
Sample Liquid Head, Psi	0.000	-0.018	-0.018
Ball Head, Psi	-0.006	-0.006	-0.006
Capillarity, Psi	-0.080	-0.080	-0.101
Vapor Pressure, Psi	233.33	234.41	121.27
Sample Temperature*	230.65	230.65	190.44
Sample Length, mm.	209.85	33.35	29.50
Height of Meniscus, mm.	0.40	0.45	0.70
Vol. of Sample, cc.**	0.63837		0.07896
Sample Mass, g.	0.03944	0.03944	0.03944
Density, gm/cc	0.0618	0.4351	0.4995

* Platinum Resistance Thermometer # 770041

** Experimental Tube B.

• . • •

EXPERIMENTAL DATA	
n-Heptane	

	Observed	Pressure	Saturate	d Density
Temperature	Pressure	Deviation*	Liquid	Vapor
<u> </u>	Atm	Atm.	gm/cc	gm/cc
147.87	3.585	-0.125	0.5596	*****
152.79	3.987	-0.134	0.5532	
166.10	5.231	-0.136	0.5398	
173.63	6.046	-0.123	0.5248	
190.44	8.251	-0.105	0.4995	
199.45	9.646	-0.073	0.4867	
206.52	10.866	-0.046	0.4772	
206.52	10.830	-0.010		0.0446
210.00	11.470	0.007	******	0.0476
210.00	11.528	-0.051	0.4710	
216.57	12.759	0.040	*****	0.0490
216.71	12.841	-0.012	0.4602	
230.65	15.875	0.139	******	0.0618
230.65	15.948	0.046	0.4351	
240.36	18.396	0.161		0.0747
240.37	18.453	0.104	0.4113	
251.88	21.781	0.166		0.0994
251.88	21.824	0.123	0.3784	
256.32	23.196	0.171	*****	0.1133
256.34	23.251	0.122	0.3599	
266.85	27.002	0.000		Critical

The points below were considered to deviate too greatly from those above to be used for the vapor pressure determination.

	C C C C C C C C C C			
108.48	1.406	-0.085	0.6030	
124.47	2.101	-0.103	0.5880	*****
154.82	4.176	-0.151	0.5547	
139.27	2.969	-0.121	0.5753	
154.50	4.145	-0.147	0.5567	
		0.186		0.0936
	21.099	0.125	0.3870	*****
154.50 249.54 249.54	21.038	0.186		0.0

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

log P_{calc}. (Atm.) = $A + B/T(^{O}K)$ A = 4.58932 B = -1705.34

EXPERIMENTAL DATA

2-Methylhexane

	Observed	Pressure	Saturated	•
Temperature	Pressure	Deviation*	Liquid	Vapor
<u> </u>	Atm.	Atm.	gm/cc	gm/cc
			. (
98.78	1.311	-0.033	0.6015	~ ~ ~ ~ ~ ~ ~
109.62	1.759	-0.052	0.5898	
119.43	2.254	-0.067	0.5822	
124.16	2.518	-0.064	0.5749	
130.89	2.946	-0.069	0.5701	
135.33	3.263	-0.076	0.5655	
145.66	4.100	-0.092	0.5596	
155.02	4.992	-0.105	0.5242	
179.01	7.882	-0.058	0.5153	
199.10	11.173	0.011	0.4838	
209.63	13.279	0.049	0.4682	
217.18	14.954	0.091	0.4520	
217.38	14.943	0.149	***	0.0545
217.39	15.011	0.084	0.4517	
217.43	15.045	0.059		
225.83	17.103	0.103	0.4320	
225.76	17.079	0.109		*****
229.41	18.042	0.123		
229.51	18.025	0.168		0.0754
229.51	18.094	0.099	0.4244	
237.66	20.371	0.152		0.0920
237.66	20.402	0.121	0.4026	
244.58	22.537	0.131	0.3767	
244.47	22.477	0.222		0.1063
· · · · · · · ·	24.027	0.126		0.1260
249.10	24.027	0.108	0.3550	
249.10		0.000	Crit	ical
257.15	26.971	0.000	0110	

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

 $\log P_{calc}$ (Atm.) = A + B/T (^oK)

A = 4.54120 B = -1649.45

EXPERIMENTAL DATA 3-Methylhexane

	Observed	Pressure	Saturated	l Density
Temperature	Pressure	Deviation*	Liquid	Vapor
-o _C .	Atm.	Atm.	gm/cc	gm/cc
105.40	1.542	-0.088	0.6569	·
124.12	· .			
	2.454	-0.117	0.5980	
139.94	3.506	-0.130	0.5793	
149.37	4.286	-0.137	0.5716	
158.30	5.133	-0.131	0.5654	
167.72	6.165	-0.123	0.5514	
184.81	8.444	-0.099	0.5332	*****
198.88	10.750	-0.053	0.5098	
210.00	12.891	-0.007	0.4875	
210.00	12.820	0.064		0.0481
218.51	14.743	0.029	0.4729	
218.51	14.662	0.110		0.0577
234.12	18.648	0.108	0.4230	
234.12	18.559	0.197	****	0.0786
243.84	21.454	0.150	0.4076	****
243.84	21.398	0.206		0.0976
252.00	24.087	0.143	0.3768	
252.00	24.051	0.179		0.1269
262.04	27.767	0.000	Crit	ical

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

log P_{calc} (Atm.) = A + B/T (^oK)

ŗ

A = 4.53958 B = -1657.04

EXPERIMENTAL DATA 3-Ethylpentane

	Observed	Pressure	Saturated	Density
Temperature	Pressure	Deviation*	Liquid	Vapor
Temperature C.	<u>Atm.</u>	<u>Atm.</u>	gm/cc	gm/cc
100.61	1.232	-0.012	at in in in a	
106.11	1.430	-0.015		
125.49	2.341	-0.033	0.5934	
135.34	2.952	-0.044	0.5822	
144.80	3.651	-0.058	0.5726	
154.75	4.500	-0.057	0.5623	
166.60	5.725	-0.074	0.5485	
174.37	6.639	-0.069	0.5406	
184.58	8.006	-0.059	0.5254	*****
194.58	9.544	-0.046	0.5131	
217.02	13.730	0.072		0.0506
217.08	13.790	0.045	0.4795	
223.81	15.281	0.071	0.4618	
225.13	15.528	0.139		0.0585
225.16	15.583	0.091	0.4659	~~~~~
228.71	16.423	0.124	****	0.0626
228.79	16.477	0.091	0.4537	
229.84	16.720	0.113	0.4525	
239.20	19.203	0.133	0.4284	
239.25	19.188	0.162		0.0781
249.72	22.305	0.162		0.0990
249.80	22.363	0.125	0.3990	*****
256.06	24.386	0.131	0.3760	
263.29	27.000	0.020	0.3381	*****
267.42	28.530	0.000	0.2452	Critical

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

 $\log P_{calc}$ (Atm.) = A + B/T (^oK)

A = 4.52268 B =-1658.19

EXPERIMENTAL DATA 2,2-Dimethylpentane

	Observed	Pressure	Saturated D	ensity
Temperature	Pressure	Deviation*	Liquid	Vapor
°c.	Atm.	Atm.	gm/cc_	gm/cc
_			. (
89.12	1.374	-0.050	0.6226	
109.03	2 .296	-0.071	0.5924	
125.03	3.335	-0.083	0.5750	
139.92	4.598	-0.089	0.5596	
162.45	7.161	-0.074	0.5296	
178.02	9.469	-0.038	0.5055	
189.75	11.558	-0.004	0.4843	
199.61	13.545	0.050	0.4792	
209.95	15.856	0.163		0.0638
209.95	15.904	0.115	0.4571	
216.88	17.670	0.123	0.4369	
216.90	17.623	0.175		0.0737
216.88	17.612	0.181		0.0735
216.88	17.689	0.104	0.4355	
230.30	21.479	0.175		0.1005
230.30	21.527	0.127	0.3980	
240.61	24.878	0.128		0.1363
240.61	24.922	0.074	0.3524	
247.29	27.367	0.000	0.2407	Critical
CT[+C7	-1-241		•	

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

log P_{calc} (Atm.) = A + B/T (^oK) A = 4.45009 B = -1568.08

EXPERIMENTAL DATA 2,3-Dimethylpentane

Temperature	Observed Pressure	Pressure Deviation*	Saturated Liquid	Density Vapor
°C.	Atm.	Atm.	gm/cc	gm/cc
			· Martine	S.A.
99.97	1.491	-0.165	0.6418	
109.66	1.883	-0.172	0.6310	
109.69	1.871	-0.139	0.6374	
124.96	2.658	-0.164	0.6201	
124.96	2.663	-0.169	0.6141	
140.22	3.714	-0.181	0.6036	
154.71	4.985	-0.179	0.5867	
168.06	6.438	-0.171	0.5695	
183.58	8.506	-0.138	0.5507	
198.17	10.768	0.025		0.0419
198.17	10.887	-0.094	0.5288	
210.00	13.041	0.076		0.0495
210.00	13.163	-0.046	0.5084	******
220.08	15.254	0.123		0.0627
220.09	15.371	0.006	0.4896	
230.12	17.732	0.163		0.0767
230.12	17.856	0.039	0.4685	
240.08	20.498	0.185		0.0949
240.08	20.588	0.095	0.4445	
249.91	23.554	0.177		0.1197
249.91	23.625	0.106	0.4124	
259.04	26.724	0.116		0.1597
259.04	26.775	0.065	0.3672	
264.14	28.700	0.000	0.2556	<u>Critical</u>

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

 $\log P_{calc}$ (Atm.) = A + B/T (^OK)

.....

A = 4.49262 B = -1630.60

EXPERIMENTAL DATA 2,4-Dimethylpentane

Temperature °C.	Observed Pressure	Pressure Deviation#	Liquid	l Density Vapor
<u> </u>	Atm.	Atm.	gm/cc	ga/cc
94.45	1.536	-0.057	0.6126	
109.88	2.284	-0.078	0.5923	*****
120.53	2.954	-0.100	0.5810	****
135.38	4.111	-0.113	0.5671	
148.16	5.369	-0.128	0.5511	
163.29	7.204	-0.128	0.5293	
177.88	9.364	-0.091	0.5068	******
189.70	11.343	0.057		0.0424
189.70	11.421	-0.021	0.4905	
199.45	13.310	0.107		0.0512
199.43	13.376	0.032	0.4721	
210.01	15.734	0.143		0.0637
210.01	15.793	0.084	0.4493	
216.30	17.286	0.193		0.0721
216.14	17.262	0.190	*****	0.0721
216.14	17.354	0.098	0.4356	
220.97	18.575	0.197		0.0802
220.97	18.660	0.112	0.4252	
231.44	21.687	0.193		0.1034
231.44	21.753	0.127	0.3925	
239.88	24.521	0.122		0.1349
239.88	24.566	0.077	0.3573	
246.58	27.009	0.000	0.2357	Critical

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

> log P_{calc} (Atm.) = A + B/T (^oK) A = 4.47991 B = -1584.41

.

EXPERIMENTAL DATA 3,3-Dimethylpentane

Temperature °C:	Observed Pressure Atm.	Pressure Deviation <u>Atm.</u>	Saturated Liquid gm/cc	Density Vapor <u>gm/cc</u>
87.86	1.069	-0.017	0.6246	
101.23	1.528	-0.016	0.6048	
110.10	1.919	-0.022	0.5980	
124.56	2.720	-0.035	0.5824	
140.43	3.866	-0.042	0.5666	
155.81	5.290	-0.03 5	0.5500	******
164.92	6.318	-0.041	0.5317	
174.41	7.519	-0.024	0.5250	
189.37	9.747	0.021	0.5042	
204.74	12.525	0.078	0.4820	
217.36	15.201	0.152		
217.43	15.156	0.213	*****	*****
217.65	15.265	0.156		0.0561
217.64	15.286	0.233	0.4599	
224.17	16.800	0.207		0.0630
224.18	16.828	0.182	0.4478	
235.59	19 .824	0.243		0.0801
235.53	19 .8 30	0.220	0.4246	
241.36	21.474	0.281	~~~~~	0.0904
241.36	21.516	0.239	0.4083	
244.73	22.539	0:249		0.0976
244.74	22.567	0.224	0.3996	
250.72	24.468	0.240		0.1149
250.72	24.496	0.212	0.3786	
253.49	25.422	0.213		0.1230
253.46	25.444	0.180	0.3541	
257.63	26.890	0.174		0.1414
257.64	2 6.9 19	0.149	0.3423	
261.61	28.409	0.083	0.3073	
261.61	28.399	0.093		0.1743
263.19	29.073	0.000	0.2408	Critical

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

log P_{calc} (Atm.) = A + B/T (^oK) A = 4.43153 B = -1591.94

EXPERIMENTAL DATA 2,2,3-Trimethylbutane

Temperature	Observed Pressure	Pressure Deviation#	Saturate Liquid	i Density Vapor
Temperature	Atm.	Atm.	gm/cc	gm/cc
109.14	2.158	-0.046	0.6182	
109.81	2.187	-0.040	0.6169	
125.32	3.142	-0.053	0.6032	*****
140.45	4.359	-0.068	0.5873	
155.06	5.832	-0.066	0.5592	
155.36	5.861	-0.061	0.5618	
166.15	7.173	-0.051	0.5436	
173.52	8.169	-0.022	0.5343	
186.38	10.180	0.018	0.5207	
198.50	12.394	0.063	0.5114	
198.50	12.371	0.086		0.0452
199.56	12.595	0.075	0.4969	
208.13	14.386	0.114	0.4858	
217.16	16.482	0.110	0.4741	
217.15	16.475	0.153	0.4693	
217.19	16.443	0.191		0.0643
217.91	16.639	0.178	*****	0.0648
224.49	18.343	0.177	0.4505	
224.67	18.349	0.217		0.0750
232.13	20.418	0.230		0.086 5
240.56	23.006	0.189	0.4101	
240.56	22.968	0.227		0.1062
244.79	24.362	0.192	0.4100	
244.81	24.342	0.218		0.1174
249.81	26.087	0.152	0.3718	*****
249.79	26.047	0.151		0.1391
254.63	27.846	0.076	0.3389	*****
254.62	27.813	0.116		0.1657
257.96	29.146	0.000	Crit	tical

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

log P_{calc} (Atm.) = A + B/T(^oK)

A = 4.39299 B = -1555.34

EXPERIMENTAL DATA n-Octane

Temperature	Observed Pressure Atm.	Pressure Deviation# Atn.	Saturate Liquid gm/cc	d Density Vapor gm/cc
			· · ·	-
139.82	1.506	-0.062	0.5977	
155.18	2.176	-0.064	0.5849	
155.54	2.199	-0.089	0.5819	******
167.73	2.849	-0.070	0.5718	
167.76	2 .8 95	-0.114	*****	
183.90	3.998	-0.083	0.5525	
199.29	5.396	-0.088	0.5376	
208.90	6.443	-0.086	0.5262	
217.64	7.554	-0.111	*****	
223.33	8.275	-0.051	0.5047	
237.33	10.386	0.027		0.0422
237.33	10.435	-0.022	0.4815	
239.99	10.850	0.024		0.0466
239.99	10.900	-0.026	0.4797	
254.30	13.545	0.084		0.0577
254.31	13.608	0.021	0.4503	
260.74	14.920	0.108		0.0650
260.74	15.005	0.023	0.4322	
259.94	14.820	0.029	0.4310	*****
268.82	16.798	0.134		0.0761
268.82	16.875	0.057	0.4130	
279.76	19.650	0.139		0.0987
279.76	19.703	0.086	0.3794	
290.40	22.779	0.118		0.1375
290.40	22.806	0.091	0.3313	******
295.59	24.537	0.000	0.2279	Critical

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

log P_{calc} (Atm.) = A + B/T (^oK) A = 4.65176 B = -1855.26

EXPERIMENTAL DATA 2-Methylheptane

	Observed	Pressure	Saturated	Density
Temperature	Pressure	Deviation*	Liquid	Vapor
°C.	Atm.	Atm.	gm/cc	gm/cc
124.95	1.229	-0.014	0.6084	
140.01	1.809	-0.034	0.5931	*****
154.87	2.568	-0.053	0.5786	
170.12	3.576	-0.066	0.5575	
184.97	4.829	-0.076	0.5424	
200.01	6.404	-0.067	0.5238	
210.03	7.657	-0.057	0.5104	
220.01	9.080	-0.039	0.4968	
230.05	10.704	-0.012	0.4820	
240.00	12.480	0.065		0.0535
240.00	12.527	0.018	0.4607	
249.97	14.518	0.115		0.0641
249.97	14.576	0.057	0.4389	
260.19	16.906	0.127		0.0782
260.19	16.947	0.086	0.4164	
270.06	19.474	0.142		0.0986
270.06	19.513	0.103	0.3856	
280.01	22.402	0.101		0.1326
280.01	22.430	0.073	0.3429	
286.41	24.517	0.000	0.234	2 Critical

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

log P_{calc} (Atm.) = A + B/T (^oK) A = 4.60725 B = -1800.61

EXPERIMENTAL DATA 3-Methylheptane

	Observed	Pressure	Saturated	Density
Temperature	Pressure	Deviation#	Liquid	Vapor
-°C.	<u>Atm.</u>	<u>Atm.</u>	gm/cc	gm/cc
125.67	1.204	-0.008	0.6154	
139.99	1.740	-0.024	0.6026	
155.00	2.482	-0.040	0.5870	
170.06	3.447	-0.052	0.5734	
183.84	4.562	-0.059	0.5583	
199.89	6.188	-0.058	0.5376	
215.41	8.136	-0.034	0.5184	
226.10	9.731	-0.012	0.5021	
232.85	10.857	0.003	0.4913	
240.03	12.126	0.056	0.4913	0.0540
240.03	12.120	-	0.4817	0.0540
249.98		0.032	0.4011	
	14.115	0.094		0.0649
249.98	14.138	0.071	0.4608	
260.06	16.375	0.135		0.0776
260.06	16.397	0.113	0.4393	
269.68	18.804	0.149		0.0947
269.68	18.821	0.132	0.4137	
279.73	21.653	0.129		0.1226
279.73	21.667	0.115	0.3780	
285.53	23.474	0.074		0.1501
285.53	23.475	0.073	0.3460	
290.45	25.127	0.000		Critical

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

 $\log P_{calc} (Atm.) = A + B/T (^{O}K)$

A = 4.60063 B = -1803.86

EXPERIMENTAL DATA 4-Methylheptane

	Observed	Pressure	Saturated	Density
Temperature	Pressure	Deviation#	Liquid	Vapor
Temperature ^O C.	Ata.	Atm.	gm/cc	gm/cc
125.04	1.232	-0.017	0.6190	
140.02	1.809	-0.037	0.6040	
154.49	2.542	-0.054	0.5897	
170.03	3.559	-0.066	0.5700	*****
185.01	4.816	-0.074	0.5528	
199.98	6.388	-0.076	0.5345	
214.97	8.312	-0.053	0.5134	***
225.03	9.835	-0.033	0.4958	
233.95	11.304	0.042		0.0467
233.95	11.356	-0.010	0.4801	
240.09	12.454	0.056		0.0504
240.09	12.499	0.011	0.4710	******
250.04	14.480	0.105	*****	0.0627
250.04	14.545	0.040	0.4501	*****
260.04	16.790	0.130		0.0758
260.04	16.841	0.079	0.4283	
269.97	19.337	0.165		0.0945
269.97	19.399	0.103	0.3990	****
279.97	22.269	0.115		0.1253
279.97	22.296	0.088	0.3588	
283.62	23.423	0.087		0.1420
283.62	23.453	0.057	0.3388	
288.52	25.087	0.000		Critical
200.72	27.00	U.UU	V. CLAT	

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

> log P _{calc} (Atm.) = A + B/T (^oK) A = 4.60194 B = -1798.81

EXPERIMENTAL DATA 3-Ethylhexane

	Observed	Pressure	Saturated	Density
Temperature	Pressure	Deviation*	Liquid	Vapor
°C.	Atm.	Atm.	gm/cc	gm/cc
125.01	1.197	-0.009	0.6254	
139.63	1.740	-0.023	0.6116	
154.96	2.504	-0.046	0.5986	
170.04	3.476	-0.060	0.5832	
184.98	4.699	-0.066	0.5713	
200.01	6.247	-0.074	0.5448	****
214.98	8.121	-0.047	0.5303	
225.11	9.593	0.000		0.0426
225.11	9.625	-0.032	0.5160	
231.99	10.723	0.019		0.0492
231.99	10.756	-0.014	0.5046	
240.00	12.175	0.033	****	0.0520
240.00	12.192	0.016	0.4833	
249.99	14.168	0.074		0.0632
249.99	14.185	0.057	0.4741	معرفة الأرجب الأ
260.18	16.451	0.116	*****	0.0789
260.18	16.474	0.093	0.4543	
270.00	18.917	0.146	****	0.0950
270.00	18.945	0.118	0.4263	
279.97	21.745	0.126		0.1215
279.97	21.765	0.106	0.3901	
287.37	24.059	0.083		0.1550
287.37	24.076	0.066	0.3553	
292.27	25.738	0.000	0.2457	Critical

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

> $\log P_{calc}$ (Atm.) = A + B/T (^oK) A = 4.59076 B = -1798.20

EXPERIMENTAL DATA 2,2-Dimethylhexane

Temperature oc.	Observed Pressure Atm.	Pressure Deviation [*]	Saturated Liquid gm/cc	l Density Vapor gm/cc
120.11	1.445	-0.024	0.6074	
134.78	· 2.080	-0.039	0.5910	
149.68	2.930	-0.057	0.5742	
155.12	3.297	-0.061	0.5705	******
167.77	4.284	-0.066	0.5547	
179.93	5.429	-0.061	0.5380	
189.85	6.526	-0.053	0.5257	
200.24	7.862	-0.053	0.5123	
209.90	9.258	-0.028	0.4955	
216.96	10.357	0.029		0.0439
216.99	10.414	-0.023	0.4872	*****
232.63	13.253	0.086		0.0555
232.65	13.325	0.018	0.4586	
240.18	14 . 858	0.109		0.0647
240.16	14.927	0.035	0.4288	
253.91	18.148	0.148		0.0864
253.92	18.218	0.081	0.4099	
261.07	20.071	0.162		0.1033
261.07	20.137	0.096	0.3870	
265.28	21.302	0.138		0.1174
265.28	21.359	0.081	0.3710	******
271.13	23.102	0.101		0.1415
271.13	23.140	0.063	0.3414	
276.65	24.961	0.000	0.2375	Critical

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

> log P_{calc} (Atm.) = A + B/T (°K) A = 4.52412 B = -1719.21

1

EXPERIMENTAL DATA 2,3-Dimethylhexane

	Observed	Pressure	Saturated	· · · · · · · · · · · · · · · · · · ·
Temperature °C.	Pressure	Deviation*	Liquid	Vapor
<u>°</u> C	Atm.	Atm.	gm/cc	gm/cc
125.36	1.304	-0.011	0.6219	
139.35	1.854	-0.024	0.6054	** ** ** **
155.04	2.671	-0.041	0.5883	
168.01	3.532	-0.051	0.5774	
183.46	4.816	-0.055	0.5606	******
199.22	6.483	-0.066	0.5459	
216.96	8.839	-0.065	0.5185	
227.11	10.353	0.047		0.0424
227.11	10.448	-0.057	0.5039	
236.47	11.998	0.072		0.0483
236.47	12.097	-0.027	0.4901	
239.99	12.762	-0.011	0.4825	
239.98	12.681	0.067	*****	0.0522
250.30	14.800	0.115		0.0623
250.30	14.903	0.012	0.4602	10 m 0 m 10 M
260.63	17.182	0.163		0.0787
260.63	17.295	0.050	0.4384	and also and the set of a
268.90	19.318	0.174		0.0931
268.90	19.424	0.068	0.4130	
279.28	22.318	0.137		0.1196
279.28	22.396	0.059	0.3769	
284.98	24.109	0.107		0.1451
284.98	24.165	0.051	0.3466	****
290.27	25.938	0.000	0.2391	<u>Critical</u>

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

> log P_{calc} (Atm.) = A + B/T (^oK) A = 4.56126 B = -1773.33

EXPERIMENTAL DATA 2,4-Dimethylhexane

Temperature °C.	Observed Pressure <u>Atm.</u>	Pressure Deviation# <u>Atm.</u>	Saturated Liquid gm/cc	l Density Vapor gm/cc
109.32	1.003	-0.006	0.6052	
124.37	1.505	-0.024	0.5947	
139.60	2.190	-0.042	0.5806	
155.05	3.106	-0.063	0.5665	
167.32	4.020	-0.070	0.5522	
179.62	5.129	-0.072	0.5406	*****
189.17	6.149	-0.079	0.5273	
202.11	7.754	-0.061	0.5137	
216.70	9.864	0.007		0.0417
216.70	9.914	-0.043	0.4939	
229.30	12.058	0.056		0.0523
229.30	12.116	-0.002	0.4695	
240.02	14.201	0.105	******	0.0626
240.02	14.277	0.029	0.4507	
253.80	17.402	0.139		0.0828
253.80	17.471	0.070	0.4225	
260.27	19.085	0.148		0.1003
260.27	19.130	0.103	0.4040	
269.31	21.662	0.131		0.1208
269.31	21.697	0.096	0.3730	
274.69	23.313	0.117		0.1433
274.69	23.360	0.070	0.3445	
280.30	25.229	0.000	0.2408	Critical

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

 $\log P_{calc}$ (Atm.) = A + B/T (^oK)

A = 4.54094 B = -1737.36

EXPERIMENTAL DATA 2,5-Dimethylhexane

	Observed	Pressure	Saturated Density	
Temperature	Pressure	Deviation*	Liquid	Vapor
°c	<u>Atm.</u>	Atm.	gm/cc	gm/cc
125.29	1.561	-0.029	0.6004	
139.60	2.216	-0.044	0.5857	****
154.86	3.132	-0.061	0.5690	
184.40	5.685	-0.062	0.5322	
199.28	7.458	-0.046	0.5128	
215.03	9.733	0.014		0.0414
215.03	9.773	-0.026	0.4887	*****
225.34	11.500	0.053		0.0477
225.34	11.550	0.003	0.4705	
235.07	13.380	0.097		0.0576
235.07	13.437	0.040	0.4510	
240.01	14.424	0.117		0.0625
240.01	14.487	0.054	0.4426	
250.11	16.758	0.151	******	0.0786
250.11	16.808	0.101	0.4179	
260.27	19.407	0.160		0.0982
260.24	19.456	0.103	0.3906	
270.32	22.358	0.128		0.1322
270.32	22.418	0.068	0.3460	
276.84	24.542	0.000	0.2342	Critical

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

> log P_{calc} (Atm.) = A + B/T (^oK) A = 4.55744 B = -1742.17

.

EXPERIMENTAL DATA 3,3-Dimethylhexane

	Observed	Pressure	Saturated	Density
Temperature	Pressure	Deviation *	Liquid	Vapor
°C	Atm.	Ata.	gm/cc	
125.34	1.430	-0.014	0.6276	
139.82	2.042	-0.029	0.6128	
154.96	2.877	-0.042	0.5987	****
170.06	3.946	-0.050	0.5882	
183.87	5.167	-0.050	0.5737	
198.98	6.812	-0.043	0.5547	
214.05	8.794	0.001	*****	0.0390
214.05	8.833	-0.038	C.5333	*****
222.05	10.006	0.035		0.0463
222.05	10.050	-0.009	0.5248	*****
230,62	11.471	0.048	*****	0.0494
230.62	11.513	0.006	0.5133	
240.00	13.225	0.091		0.0596
240.00	13.281	0.035	0.4929	
250.30	15.399	0.122		0.0712
250.30	15.437	0.084	0.4739	
260.68	17.836	0.169		0.0884
260.68	17.883	0.122	0.4494	
270.02	20.318	0.161		0.1068
270.02	20.347	0.132	0.4226	
279.12	22.976	0.142		0.1354
279.12	22.999	0.119	0.3870	
284.91	24.842	0.078		0.1682
284.91	24 .8 59	0.061	0.3516	
288.80	26.187	0.000	0.2568	Critical

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

 $\log P_{calc} (Atm.) = A + B/T(^{O}K)$

A = 4.50672 B = -1735.72

EXPERIMENTAL DATA 3,4-Dimethylhexane

	Observed	Pressure	Saturated	l Density
Temperature	Pressure	Deviation*	Liquid	Vapor
C	Atm.	Atm.	gm/cc	ga /cc
125.71	1.238	-0.004	0.6312	*****
139.74	1.768	-0.019	0.6254	****
155.13	2.537	-0.038	0.6037	
169.91	3.489	-0.050	0.5840	.
185.01	4.721	-0.057	0 .5667	فن ها به ها بن بن
199.48	6.187	-0.053	0.5505	
214.58	8.062	-0.039	0.5340	
224.88	9.559	-0.013	0.5152	
231.34	10.562	0.044		0.0420
231.34	10.621	-0.015	0.5068	
239.97	12.079	0.080		0.0493
239.97	12.148	0.011	0.4909	
250.07	14.055	0.131		0.0584
250.07	14.130	0.056	0.4741	*****
260.26	16.330	0.146		0.0695
260.26	16.399	0.077	0.4510	
269.47	1 8.59 5	0.176		0.0844
269.47	18.660	0.111	0.4330	
279.30	21.300	0.171		0.1048
279.31	21.358	0.113	0.4023	
289.47	24.452	0.101		0.1423
289.47	24.500	0.053	0.3538	
295.63	26.569	0.000	0.240]	Critical

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

 $\log P_{CBLC} (Atm.) = A + B/T (^{O}K)$

A = 4.55388 B = -1780.07

EXFERIMENTAL DATA 2-Methyl-3-ethylpentane

	Observed	Pressure	Saturate	d Density
Temperature	Pressure	Deviation*	Liguid	Vapor
<u> </u>	Atm.	Atm.	gm/cc	gm/cc
124.98	1.289	-0.012	0.6362	
-	1.862		0.6249	
139.63		-0.028		
154.81	2.646	-0.045	0.6048	*****
168.40	3.540	-0.057	0.5918	******
183.95	4.822	-0.060	0.5752	*****
199.71	6.467	-0.064	0.5569	
214.95	8.387	-0.015		0.0374
214.95	8.412	-0.040	0.5351	
221.22	9.301	0.002		0.0408
221.22	9.334	-0.031	0.5270	
230.06	10.719	0.029		0.0458
230.06	10.753	-0.005	0.5159	*****
240.03	12.494	0.078		0.0536
240.03	12.540	0.032	0.5002	
249.99	14.496	0.120		0.0652
249.99	14.541	0.075	0.4816	
260.14	16.782	0.162		0.0777
260.14	16.837	0.107	0.4599	
269.27	19.094	0.166		0.0928
269.27	19.131	0.129	0.4382	
280.02	22.126	0.150		0.1202
280.02	22.133	0.143	0.4046	
280.03	22.135	0.147	0.4040	0.1199
280.05 280.04	22.164	0.118	0.4053	V.1177
286.82	24.244	0.109	0.4075	0.1469
286.82			 0 2750	0.1403
	24.273	0.080	0.3750	
293.87	26.651	0.000	0.25()	5 Critical

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

 $\log P_{calc}$ (Atm.) = A + B/T (°K)

A = 4.53619 B = -1763.76

EXPERIMENTAL DATA 3-Methyl-3-ethylpentane

	Observed	Pressure	Saturate	d Density
Temperature	Pressure	Deviation#	Liquid	Vapor
°C	Atm.	Atm.	gm/cc	gm/cc
124.98	1.196	-0.005	0.6416	
139.39	1.716	-0.017	0.6285	******
154.95	2.459	-0.032	0.6145	~~~~~
170.24	3.402	-0.039	0.5968	
184.90	4.546	-0.041	0.5828	*****
199.87	5.995	-0.036	0.5707	
215.30	7.825	-0.015	0.5493	
221.03	8.603	-0.005	0.5386	******
230.18	9.962	0.017	0.5250	*****
239.93	11.545	0.082	*****	0.0461
239.93	11.581	0.046	0.5119	
250.53	13.514	0.127		0.0548
250.53	13.565	0.076	0.4927	
260.85	15.683	0.157		0 .0 650
260.85	15.719	0.121	0.4739	
270.39	17.897	0.198		0.0776
270.39	17.942	0.153	0.4515	
279.84	20.355	0.196		0.0929
279.84	20.383	0.168	0.4289	
289.14	23.010	0.187		0.1158
289.14	23.037	0.160	0.3986	
295.41	24.986	0.129		0.1388
295.41	25.024	0.091	0.3691	
303.36	27.706	0.000		2 Critical

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

 $\log P_{calc}$ (Atm.) = A + B/T (^oK)

A = 4.49320B = -1758.77

EXPERIMENTAL DATA 2,2,3-Trimethylpentane

Temperature	Observed Pressure	Pressure Deviation#	Saturated Liquid	Density Vapor
Temperature	<u>Atm.</u>	Atm.	gm/cc_	gma/cc
125.69	1.521	-0.016	0.6307	
139.40	2.118	-0.020	0.6167	
154.84	2.991	-0.042	0.6007	***
170.16	4.126	-0.073	0.5868	
184.71	5.425	-0.051	0.5710	*****
199.18	7.037	-0.042	0.5529	****
215.17	9.179	0.012		0.0419
215.17	9.204	-0.013	0.5296	*****
224.50	10.654	0.038		0.0469
224.50	10.680	0.012	0.5197	
230.87	11.747	0.070		0.0509
230.87	11.784	0.033 *	0.5120	
240.02	13.467	0.117		0.0594
240.02	13.519	0.065	0.4973	
250.06	15.582	0.157		0.0718
250.06	15.638	0.101	0.4777	
260.02	17.942	0.173		0.0849
260.02	17.986	0.129	0.4550	
269.99	20.557	0.189		0.1053
269.99	20.595	0.151	0.4316	
278.97	23.191	0.152		0.1299
278.97	23.209	0.134	0.3937	
286.76	25.691	0.089		0.1706
286.76	25.706	0.074	0.3518	******
290.28	26.937	0.000	0.2607	Critical

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

log P_{calc} (Atm.) = A + B/T (^oK) A = 4.46647 B = -1710.70

EXPERIMENTAL DATA 2,2,4-Trimethylpentane

_	Observed	Pressure		l Density
Temperature	Pressure	Deviation*	Liquid	Vapor
-°c.	Atm.	<u>Atm</u>	gm/cc	gan/cc
נס מנו	1 610	0.070		
110.01	1.413	-0.079	0.6154	
110.81	1.398	-0.036	0.6192	~~~~~
124.42	1.976	-0.062	0.6061	
124.81	2.030	-0.098	0.5960	
139.78	2.803	-0.067	0.5894	
139.86	2.855	-0.114	0.5813	
154.37	3.804	-0.054	0.5740	******
154.86	3.915	-0.126	0.5692	
154.36	3 .8 18	-0.068	0.5740	
166.54	4.909	-0.107	0.5609	
166.97	4.953	-0.110	0.5609	
166.74	4.941	-0.120	0.5522	
183.88	6.755	-0.080	0.5333	
199.03	8.781	-0.054	0.5103	
216.41	11.443	0.185		0.0521
216.41	11.620	0.008	0.4835	
216.38	11.624	-0.001	0.4825	
220.66	12.329	0.107		0.0519
220.66	12.413	0.023	0.4764	
230.62	14.353	0.136		0.0618
230.62	14.427	0.062	0.4583	
240.10	16.502	0.164		0.0753
240.10	16.565	0.101	0.4349	
249.60	18.921	0.157		0.0919
249.60	18.964	0.114	0.4107	
251.94	19.522	0.187		0.0980
251.94	19.599	0.110	0.3798	
258.86	21.488	0.176		0.1172
258.86	21.562	0.102	0.3772	
265.10	23.392	0.152		0.1410
265.10	23.485	0.059	0.3463	
270.74	25.340	0.000		Critical
-14.14		~ • • • • •	v • •• •• • •	

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

log P_{calc} (Atm.) = A + B/T (^oK) A = 4.45216 B = -1658.03

EXPERIMENTAL DATA 2,3,3-Trimethylpentane

	Observed	Pressure	Saturated	Density
Temperature	Pressure	Deviation*	Liquid	Vapor
<u> </u>	Atm.	<u>Atm</u>	gm/cc	ga / cc
125.02	1.315	-0.012	0.6377	
140.02	1.908	-0.033	0.6223	
	2.680	-0.039	0.6052	
155.23	3.666	-0.066	0.5925	
169.98				
185.00	4.908	-0.073	0.5757	
199.98	6.423	-0.054	0.5610	
215.03	8.285	-0.027	0.5396	
220.31	9.012	0.001	0.5336	
230.00	10.503	0.027	0.5219	
240.04	12.206	0.090		0.0493
240.04	12.241	0.055	0.5052	
249.98	14.111	0.142		0.0583
249.98	14.160	0.093	0.4904	
259.95	16.259	0.177		0.0679
259.95	16.320	0.116	0.4679	
269.25	18.493	0.192		0.1142
269.25	18.547	0.138	0.4480	
280.22	21.413	0.203		0.1019
280.22	21.450	0.166	0.4189	
	24.462	0.153		0.1297
290.38		0.116	0.3824	
290.38	24.499		VIJULT	0.1516
294.98	25,952	0.114		0.1910
294.98	25.994	0.072	0.3543	
300.34	27.833	0.000	0.2460	Critical

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

> log P_{calc} (Atm.) = A + B/T (^oK) A = 4.46422 B = -1731.80

EXPERIMENTAL DATA 2,3,4-Trimethylpentane

	Observed	Pressure	Saturated	Density
Temperature ^O C.	Pressure	Deviation*	Liquid	Vapor
<u> </u>	Atm.	Atm.	gm/cc	gm/cc
			. (
125.01	1.370	-0.019	0.6357	
139.94	1.979	-0.034	0.6210	
154.97	2.786	-0.051	0.6047	
170.11	3.826	-0.059	0.5857	
185.01	5.118	-0.062	0.5687	
200.02	6.724	-0.048	0.5517	
215.08	8.685	-0.013	0.5294	** **
222.50	9.824	-0.017	0.5194	
231.90	11.332	0.071	****	0.0445
231.90	11.393	0.010	0.5070	*****
240.00	12.843	0.080		0.0505
240.00	12.895	0.028	0.4907	
250.00	14.870	0.140		0.0622
250.00	14.943	0.067	0.4730	
260.97	17.378	0.193	****	0.0754
260.97	17.460	0.111	0.4484	
270.06	19.715	0.210		0.0913
270.06	19.790	0.135	0.4255	
280.06	22.593	0.179		0.1162
280.06	22.645	0.127	0.3911	
287.46	24.949	0.111	*****	0.1468
287.46	24.999	0.061	0.3539	
293.19	26.941	0.000		Critical
			-	

* Pressure deviation obtained by subtracting the observed pressure from the pressure calculated by the following equation:

> log P_{calc} (Atm.) = A + B/T (^oK) A = 4.50775B = -1742.87

PRESSURE-VOLUME ISOTHERM

n-Heptane

t = 210.005°C.

Pressure	Length*
psia	
168.61	270.90 Dew Point
168.65	210.50
168.59	155.10
168.62	103.00
168.81	60.20
169.44	31.10 Bubble Point

* Length represents volume.

TABLE 61

PRESSURE-VOLUME ISOTHERM

2-Methylhexane

t = 217.44°C.

Length [*]
235.75 Dew Point 209.85
180.85
148.60
99.50
64.80
38.40
34.55 Bubble Point

PRESSURE-VOLUME ISOTHERM

3-Methylhexane

$t = 210.00^{\circ}C.$

Pressure psia.	Length#
188.434	273.65 Dew Point
188.450	263.80
188.485	243.50
188.545	193.50
188.613	144.00
188.724	97.30
188.941	55.80
189.468	30.70 Bubble Point

* Length represents volume.

TABLE 63

PRESSURE-VOLUME IS OTHERM

3-Ethylpentane

t = 217.25°C.

Pressure psia	Length [#]
202.317	243.60 Dew Point
202.287	210.50
202.370	187.90
202.418	137.00
202.543	90.40
202.641	69.05
202.788	50.40
203.094	29.35 Bubble Point

PRESSURE-VOLUME ISOTHERM

2,2-Dimethylpentane

t = 209.95°C.

Pressure	Length#
psia	
233.051	221.30 Dew Point
233.194	175.00
233.309	127.80
233.434	80.95
233.691	41.30
233.761	34.40 Bubble Point

* Length represents volume.

TABLE 65

PRESSURE-VOLUME ISOTHERM

2,3-Dimethylpentane

t = 210.00°C.

Length*
241.30 Dew Point
217.65
169.50
123.60
77.60
44.90
35.70
28.65 Bubble Point

PRESSURE-VOLUME ISOTHERM

2,4-Dimethylpentane

$t = 210.01^{\circ}C.$

Pressure psia.	Length#
231.23	172.35 Dew Point
231.47	167.85
231.49	159.95
231.48	132.45
231.60	85.75
231.87	46.75
232.10	27.95 Bubble Point

TABLE 67

PRESSURE-VOLUME ISOTHERM

3,3-Dimethylpentane

$$t = 241.36^{\circ}C$$

Length*
133.20 Dew Point
125.98
105.39
84.11
63.35
35.73
32.89
32.71 Bubble Point

PRESSURE-VOLUME ISOTHERM

n-Octane

t = 239.99°C.

Pressure	Length*
psia.	
159.47	282.05 Dew Point
159.65	247.15
159.73	198.10
159.65	140.80
159.71	90.20
159.91	46.90
160.20	31.10 Bubble Point

* Length represents volume.

TABLE 69

PRESSURE-VOLUME ISOTHERM

2-Methylheptane

 $t = 240.00^{\circ}C.$

Pressure	Length*
psia.	
183.42	247.20 Dew Point
183.53	223.95
183.70	179.20
183.76	129.05
183.83	79.15
183.90	55.75
184.10	32.35 Bubble Point

PRESSURE-VOLUME ISOTHERM

3-Methylheptane

$t = 240.03^{\circ}C.$

Pressure psia.	Length#
178.21	299.15 Dew Point
178.32	280.95
178.45	234.30
178.47	182.00
178.48	128.80
178.45	74.30
178.46	58.65
178.55	36.50 Bubble Point

* Length represents volume.

TABLE 71

PRESSURE-VOLUME ISOTHERM

4-Methylheptane

 $t = 240.09^{\circ}C.$

Pressure psia	Length#
183.03	276.15 Dew Point
183.16	256.15
183.28	208.80
183.32	157.20
183.39	107.15
183.51	60.25
183.69	33.20 Bubble Point

PRESSURE-VOLUME ISOTHERM

3-Ethylhexane

$t = 240.00^{\circ}C.$

Pressure psia.	Length*
178.93 178.97 178.99 178.99 178.99 178.99 179.18	244.50 Dew Point 219.50 167.20 113.50 62.70 29.30 Bubble Point

* Length represents volume.

TABLE 73

PRESSURE-VOLUME ISOTHERM

2,2-Dimethylhexane

 $t = 240.17^{\circ}C.$

Pressure	Length*
psia	mm.
218.36	206.55 Dew Point
218.47	173.70
218.51	122.45
218.52	123.35
218.69	76.85
218.80	56.95
219.37	34.65 Bubble Point

PRESSURE-VOLUME ISOTHERM

2,3-Dimethylhexane

t = 239.99°C.

Pressure psia.	Length*
186.36	243.35 Dew Point
186.36	206.30
1 86. 45 1 86. 59	157.85
186.83	111.30
	70 . 90 40 . 80
187.27	
187.55	30.00 Bubble Point

* Length represents volume.

TABLE 75

PRESSURE-VOLUME ISOTHERM

2,4-Dimethylhexane

 $t = 240.02^{\circ}C.$

Pressure	Length*		
psia.			
208.70	209.20 Dew Point		
208.91	192.25		
208.96	141.20		
209.14	97.35		
209.36	55.10		
209.43	43.65		
209.82	31.90 Bubble Point		

PRESSURE-VOLUME ISOTHERM

2,5-Dimethylhexane

t = 240.01°C.

Pressure	Length*
psia	
211.97	195.70 Dew Point
212.16	178.35
212.33	134.10
212.43	85.60
212.64	44.25
212.90	31.15 Bubble Point

* Length represents volume.

TABLE 77

PRESSURE-VOLUME ISOTHERM

3,3-Dimethylhexane

 $t = 240.00^{\circ}C.$

Pressure psia.	Length*
194.36 194.53 194.61 194.66 194.83	199.80 Dew Point 181.90 132.80 81.75 37.40
195.18	27.10 Bubble Point

PRESSURE-VOLUME ISOTHERM

3,4-Dimethylhexane

$t = 239.97^{\circ}C.$

Pressure psia.	Length*
177.52	257.25 Dew Point
177.67	238.10
177.90	196.60
177.98	147.50
178.05	98.30
178.20	52.40
178.52	29.55 Bubble Point

* Length represents volume.

TABLE 79

PRESSURE-VOLUME ISOTHERM

2-Methyl-3-ethylpentane

t = 240.03°C.

Pressure psia.	Length#
183.61	232.65 Dew Point
183.80	216.15
184.03	174.40
184.02	120.55
184.08	70.00
184.15	47.00
184.29	27.90 Bubble Point

PRESSURE-VOLUME ISOTHERM

3-Methyl-3-ethylpentane

t = 239.93°C.

Pressure psia	Length [#]
169.67	273.95 Dew Point
169.83	255.70
169.99	208.15
170.01	156.05
170.01	102.00
170.07	51.90
170.20	28.40 Bubble Point

* Length represents volume.

TABLE 81

PRESSURE-VOLUME ISOTHERM

2,2,3-Trimethylpentane

 $t = 240.02^{\circ}C.$

Pressure psia	Length [#]	
197.91	237.20 Dew Point	
198.11	219.20	
198.31	176.45	
198.44	130.20	
198.48	78.60	
198.65	33.95	
198.68	31.25 Bubble Point	

PRESSURE-VOLUME ISOTHERM

2,2,4-Trimethylpentane

 $t = 240.10^{\circ}C.$

Pressure	Length#
psia	<u></u>
242.51	155.55 Dew Point
242.62	136.00
242.73	88.75
242.99	49.00
243.44	30.35 Bubble Point

* Length represents volume.

TABLE 83

PRESSURE-VOLUME ISOTHERM

2,3,3-Trimethylpentane

 $t = 240.04^{\circ}C.$

Pressure	Length*		
psia.			
179.39	293.10 Dew Point		
179.37	270.35		
179.61	224.60		
179.64	172.49		
179.67	120.40		
179.73	70.30		
179.90	32.30 Bubble Point		

0

PRESSURE-VOLUME ISOTHERM

2,3,4-Trimethylpentane

$t = 240.00^{\circ}C.$

Pressure psia.	Length*
188.74	277.10 Dew Point
188.71	248.70
188.94	207.60
189.00	157.30
1 89.0 9	1 08. 55
189.22	61.70
189.30	48.80
189.51	32.20 Bubble Point

APPENDIX II

CALIBRATIONS

CALIBRATION OF EXPERIMENTAL TUBES

The experimental tubes were calibrated by measuring the volume of mercury in a given length of tube.

The clean, dry tube was weighed on an analytical balance, and then mounted in a vertical position and the tube was partially filled with mercury by means of a fine capillary. The distance from the tube tip to the top of the mercury meniscus and the height of the mercury meniscus were measured with the aid of a cathetometer, reading to 0.05 mm. The tube containing the mercury was weighed, the tube remounted, more mercury added to the tube, remeasured and reweighed. This procedure was repeated several times. From a knowledge of the specific volume of mercury at the temperature of the length measurement, and the weight of the mercury, the volume of mercury was calculated for each length measurement. The volume change from one set of readings to the next per unit length was calculated, from which the average change in volume per unit length was calculated. Since the average volume per unit length is the cross sectional area of a tube, the tube diameter was calculated from this value. The volume occupied by the compliment of the meniscus was taken as the difference in volume of a cylinder of diameter D and height h and a spherical segment of one base of diameter D and height h; h is the height of the meniscus and D is

the tube diameter. Therefore, the volume of the compliment of the meniscus was calculated from the equation:

$$V = \pi h(D^2/8 - h^2/6)$$
 (1)

The volume of the compliment of the meniscus was calculated for each volume determination and added to the volume of the mercury, thereby, giving the total volume of the tube for any given length. it was assumed that the volume to length relationship was linear, giving an equation of the type:

$$V = a + bL \tag{2}$$

where, V is the volume in cc., a and b are constants and L is the length from the tube tip to the point for which the volume is desired, in mm. The values of the constants were determined by the least mean squares technique.

Tables 84, 85, and 86 present the data for the three tubes used. The data given are temperature, length, volume and the deviation of the volume calculated from the equation and the experimental volume. Also, the volume of the compliment of the meniscus for several different meniscus heights and the derived equation are given for each tube.

From an analysis of the deviations of the calculated and determined volumes, it was decided that no correction to the equation was necessary.

Volume Calculation

The volume of the hydrocarbons was calculated in the following manner:

 The volume was calculated from equation (2) by using the length from the tube tip to the top of the mercury meniscus.
 The volume of the compliment of the meniscus was added to the volume calculated from equation (2). The volume of the compliment was calculated from equation (1).

3) The ball volume was subtracted from the volume, or a modified volume equation was used which took the ball volume into account.
4) The volume of the tube was corrected for temperature by using the volumetric coefficient of expansion for pyrex.

Example Volume Calculation

Tube A , L = 25.25 mm., h = 0.50 mm., t = 200° C., and d = 0.20187 1) V = 0.003200 (25.25) - 0.0011918 = 0.09774 cc. 2) V_c = $(0.050)\pi [(0.20187)^2/8 - (0.05)^2/6] = 0.00073$ 3) Ball volume = 0.03095 , V₃₀° = 0.06752 4) V₂₀₀₀ = 0.06752 + 0.06752 x 24 x 10⁻⁷ x (200 - 30) = 0.06755

 $V_{2000} = 0.06755$ cc.

CALIBRATION DATA

EXPERIMENTAL TUBE A

Temperature ^o C.	Length	Volume	Deviation*
28.7	29.25	0.08193	-0.00024
28.8	41.90	0.12208	80000.0
27.8	54.75	0.16329	-0.00001
27.8	70.35	0.21321	-0.00001
27.8	89.05	0.27296	0.00008
28.0	104.75	0.32327	0.00001
29.4	121.20	0.37600	-0.00008
29.8	145.15	0.45250	0.00006
30.3	181.50	0.56901	-0.00013
29.7	196.40	0.61651	0.00005
29.8	238.80	0.75254	-0.00030
29.4	257.90	0.81357	-0.00021
29.2	272.35	0.85947	0.00013
29.1	298.20	0.94245	-0.00013
29.2	327.30	1.03534	0.00010
25.6	39.00	0.11287	0.00001
28.7 26.1	117.35 165.80	0.36381	-0.00021
25.6	218.60	0.51884 0.68806	-0.00020
24.6	274.40	0.86646	-0.00046 -0.00030
26.1	318.35	1.00678	0.00002
25.8	101.90	0.31445	-0.00029
25.6	170.10	0.53284	-0.00044
25.6	264.70	0.83475	0.00037
24.6	342.35	1.08331	0.00029
26.5	28.90	0.07997	-0.00059
26.6	207.30	0.65198	-0.00054
26.6	348.85	1.10414	0.00036
26.6	294.00	0.92920	-0.00032
Average Absolute Deviation 0.00021			
	Volume of	f Compliment of Menisc	us
h, mm. 0.40	0.50	0 60 0 70	0.80
v, cc. 0.00061	0.00073	0.00085 0.00094	0.00101
* deviation is $V_{calc} - V_{exp}$, where V_{calc} is from the equation			
V = 0.003200 L - 0.0011918			
Where L is in mm. and V is in cc. Tube Diameter = 2.0187 mm.			

CALIBRATION DATA

EXPERIMENTAL TUBE B

Temperature C.	Length	Volume 	Deviation*
28.6	50.35	0.14443	0.00036
28.2	62.15	0.18115	0.00024
28.0	85.15	0.25317	-0.00044
25.6	111.75	0.33551	-0.00026
29.5	130.65	0.39475	-0.00087
27.2	166.70	0.50558	0.00012
28.0	241.95	0.73845	0.00068
27.6	301.90	0.92538	-0.00029
27.5	320.95	0.98424	-0.00005
27.2	24.75	0.06540	-0.00003
28.3	57.90	0.16825	-0.00004
27.0	86.65	0.25739	0.00000
28.3	116.50	0.34981	0.00017
27.5	191.50	0.58217	0.00046
27.0	224.95	0.68619	0.00021
27.9	265.25	0.81147	-0.00006
26.9	305.20	0.93562	-0.00029
		ge Absolute Deviation	0.00027
•	Volume of	Compliment of Meniscus	

h, mm.	0.40	0.50	0.60	0.70	0.80
v, cc.	0.00059	0.00071	0.00082	0.00091	0.00098

* deviation is $V_{\mbox{calc}}$ - $V_{\mbox{exp}},$ where $V_{\mbox{calc}}$ is from the equation

V = 0.003102 L - 0.01140

Where L is in mm. and V is in cc. Tube Diameter = 1.991 mm.

CALIBRATION DATA

EXPERIMENTAL TUBE C

Temperature <u>°C.</u>	Length	Volume 	Deviation*
26.8 26.8	21.25 46.45	0.05272	0.00014 0.00038
26.8	40.45 99.05	0.13087 0.29505	-0.00016
27.3	132.65	0.39930	0.00012
26.8	156.40	0.47315	0.00016
27.0	200.25	0.61038	-0.00086
26.60	252.70	0.77280	0.00009
27.00	287.60	0.88117	0.00029
26.95	333.90	1.02547	0.00004
26.8	19.85	0.04865	-0.00015
26.8	40.60	0.11340	-0.00034
27.1	61.95	0.17940	0.0008
27.0	93.55	0.27769	0.00009
27.2	120.70	0.26236	-0.00012
26.5	144.30	0.43577	-0.00010
26.5	193.15	0.58779	-0.00015
25.9	226.70	0.69192	0.00009
25.9	336.30	1.03238	0.00059
	Averag	e Absolute Deviation	0.00022

Volume of Compliment of Meniscus

h, mm.	0.40	0.50	0.60	0.70	0.80
v, cc.	0.00059	0.00071	0.00082	0.00091	0.00098

* deviation is $V_{calc} - V_{exp}$, where V_{calc} is from the equation

V = 0.003111 L - 0.013255

Where L is in mm. and V is in cc. Tube Diameter = 1.9902

PRESSURE GAGE CALIBRATION

A Star dead-weight pressure gage with piston No.55 was used for all pressure measurements above 45 pounds per square inch. The gage and piston were calibrated July 22, 1958, against the vapor pressure of carbon dioxide at 0.00° C., as given by Meyers and Van Dusen (13). The purpose of this calibration was to determine the effective area of the piston.

A carbon dioxide sample was degassed and loaded into the experimental tube in a manner similar to that used for the hydrocarbons (apparatus shown in Figure 4). Commercial Dry Ice, the source of carbon dioxide, was allowed to vaporize through a drying tube which contained phosphorus pentoxide; the drying tube was connected to the loading apparatus. After the Dry Ice had vaporized sufficiently to flush the drying tube thoroughly, a valve to the high-vacuum manifold was opened. Carbon dioxide vapors were allowed to flush the loading apparatus for a few minutes, then a liquid nitrogen cold bath was placed around bulb D, and valve B was closed. When sufficient carbon-dioxide had been collected in bulb D, the valve from the drying tube was closed. The carbon dioxide was then alternately distilled between bulbs D and H in the same manner as that described in "Loading the Experimental Tube", page 12. Before each distillation, a small amount of carbon dioxide was condensed in the cold trap G and the experimental tube was flushed with carbon dioxide by condensing it in the tube and then pumping it off in trap G. After this

process had been repeated six times, a small amount of carbon dioxide was condensed into the experimental tube and mercury was forced from reservoir K to fill the tube. The experimental tube was removed from the line, after the vacuum line had been returned to atmospheric pressure and the tube was placed in the compressor block. During placement of the experimental tube into the compressor block and until sufficient nitrogen pressure had been applied to balance the vapor pressure of CO₂ at room temperature, a specially constructed dewar flask, filled with liquid nitrogen, was held around the experimental tube. The dewar was then removed slowly so that the mercury would melt before the carbon dioxide, to avoid damage to the experimental tube by expansion of the carbon dioxide. A glass jacket was placed around the experimental tube and filled with clear commercial ice and a small amount of distilled water. The amount of water and ice was carefully adjusted until the temperature, as measured by the platinum resistance thermometer, was 0.00°C. The carbon dioxide vapor pressure was measured at several V/L ratios until the vapor pressure remained reasonably constant for several ratios.

Table 87, gives the vapor pressure measurements, the pressure gage area corrections, and the average area correction. It was assumed that the gage area correction was constant, thus giving a linear relationship between gage pressure and true pressure:

 $P_{true} = P_{gage} x$ (area correction factor) (1)

PRESSURE GAGE CALIBRATION

Star Piston No. 55

Temperature $0.00^{\circ}C. \pm 0.01^{\circ}C.$

Gage Temperature	26.8	26.7	26.7	26.5
Nominal Pressure	500 . 762	501.262	501.762	500.262
Temperature Corr.	0.036	0.037	0.037	0.040
Gage Pressure	500.798	501.299	501.799	500.302
Barometric Pressure	14.313	14.313	14.314	14.317
Gas Head	0.004	0.004	0.004	0.004
Mercury Heads	8.789	9.270	9.806	8.308
Oil Head	0.114	0.114	0.114	0.114
Ball Head	0.006	0.006	0.006	0.006
CO ₂ Liquid Head	0.044	0.042	0.059	
Apparent Vapor Pressure	506.162	506.184	506.132	506.149
Actual Vapor Pressure	505.502	505.502		505.502
Deviation	0.660			
Area Correction Factor	0.9986	8 0.9986	4 0.0087	4 0.99871
Average Area Correction Factor	(1 -	0.00131)		

Pressure Gage Equation $P_{true} = P_{gage}$ (1-0.00131)

Effective Piston Area at 30°C. = 0.12484 square inches

Approximate Deviation from Pressure Gage Equation ± 0.03 psi at 500 psi.

 P_{true} is the pressure exerted on the piston and P_{gage} is the pressure which would be exerted on a 1/8 square inch piston at the same temperature.

Calibration of Pressure Gage Weights

The weights, used on the pressure balance were marked with a nominal pressure value to be used with a 1/8 square inch piston. The correction to be made on the nominal pressure value was found by weighing the weights, on an analytical balance, and calculating the pressure which would be measured by them on a 1/8 square piston. Table 88 gives the values of the weights and their corresponding pressure value.

Temperature Corrections

A temperature correction was used to correct the effect of expansion or contraction on the effective area of the piston. The temperatures were referred to 30° C.

Calculation of True Pressure

The true pressure was calculated from equation (1), the nominal pressure (as marked on the weights), the weight corrections, and the temperature correction. Calculation of pressure is shown by the example on the next page.

Example Calculation:	Temperature 35°C.	
Weights on Piston	Nominal Pressure	Correction
2K	100	-0.0296
2L	100	-0.0288
LA	10	-0:0026
lC	5	-0.0008
Spinner, Piston, and Can	10.40	0.0040
Small Weights in Can	1.52	0.0000
Sum	226.92	-0.0578
Nominal Pressure - Sum of Corrections	3 226.8	6 psi
Temperature Correction	0.0	<u>)3 psi</u>
Gage Pressure	226.8	3 psi

True Pressure = 226.83 (1 - 0.00131) = 226.83 - 0.30 psi = 226.53 psi

PRESSURE GAGE WEIGHTS

Designation	Weight - Grams	Pressure on 1/8 sq. in.
lA	566.8403	10 - 0.0026 psi
18	566.8498	10 - 0.0025
10	283.4518	5 - 0.0008
מנ	1133.6560	20 - 0.0056
1E	2834.192	50 - 0.0136
lf	28 34.182	50 - 0.0144
lG	2834.212	50 - 0.0120
21	5668.22	100 - 0.0296
2 L	5668.30	100 - 0.0288
2M	5668.22	100 - 0.0293
21	5668.15	100 - 0.0309
Piston	283.5498	5 0.0010
Spinner	283.5184	5 0.0040
Wt. Container (can)	22.6222	0.4 - 0.0010

Small weights correct as marked to four significant figures.

-----. . . .

TEMPERATURE MEASUREMENT

Temperatures, except for four of the samples, were measured with a platinum resistance thermometer and a Mueller Bridge: Mueller Bridge #713926, Leeds and Northup model G-2, NBS file #1.1/113128; Platinum Resistance Thermometer #714136, $R_0 = 25.5663$ abs. ohm; Platinum Resistance Thermometer #770041, $R_0 = 25.5530$ abs. ohm. The Mueller Bridge and the platinum resistance thermometers were calibrated by the National Bureau of Standards. Tables of the calibrations are given by Hill (2). The initial resistances for the thermometers were checked and the bridge was checked with a standard resistance: these checks agreed with the original calibrations. Table 89 gives the number of the platinum resistance thermometer used for each sample or indicates that a thermocouple was used.

The copper-constantan thermocouple, which was used for four samples, was calibrated by comparison to platinum resistance thermometer #770041. Thermocouple temperatures were calculated from the emf-temperature data of I.C.T. 1,58 and the deviation of this temperature from that measured with the platinum resistance thermometer, was plotted as a correction curve. The correction was applied to the temperature measured with the thermocouple.

Tempersture, ^o C.	0.00	131.11	216.53	256.27	304.69
Correction, ^o C.	0.00	-0.35	0.542	-0. 543	-0. 55

EQUIPMENT USED

Compound	Thermometer*	Exp. Tube	Sample Weight
n-Heptane	pt 770041	В	0.03944
2-Methylhexane	thermocouple	A	0.04382
3-Methlhexane	pt 770041	A	0.04154
3-Ethylpentane	thermocouple	· A	0.03866
2,2-Dimethylpentane	pt 770041	B	0.04300
2,3-Dimethylpentane	pt 714136	C	0.03912
2,4-Dimethylpentane	pt 770041	A	0.03429
3,3-Dimethylpentane	thermocouple	A	0.03736
2,2,3-Trimethylbutane	thermocouple	Α	0.03809
n-Octane	pt 770041	В	0.04019
2-Methylheptane	pt, 714136	· A	0.04165
3-Methylheptane	pt 714136	C	0.04974
4-Methylheptane	pt 714136	A	0.04387
3-Ethylhexane	pt 714136	C	0.03907
2,2-Dimethylhexane	pt 714136	В	0.04067
2,3-Dimethylhexane	pt 714136	A	0.03999
2,4-Dimethylhexane	pt 714136	C	0.04008
2,5-Dimethylhexane	pt 714136	A	0.03832
3,3-Dimethylhexane	pt 714136	C	0.03647
3,4-Dimethylhexane	pt 714136	A	0.03998
2-Methyl-3-Ethylpentane	pt 714136	C	0.03826
3-Methyl-3-Ethylpentane	pt 714136	A	0.03981
2,2,3-Trimethylpentane	pt 714136	C	0.04323
2,2,4-Trimethylpentane	pt 714136	A	0.03654
2,3,3-Trimethylpentane	pt 714136	A	0.04559
2,3,4-Trimethylpentane	pt 714136	A	0.04413

* pt refers to platinum resistance thermometer.

APPENDIX III

EXAMPLE OF CORRELATIONS

EXAMPLE CALCULATION OF CRITICAL TEMPERATURE AND PRESSURE for 2,2,3,3-Tetramethylbutane

$$w_i = 58$$
, $w_n = 84$, $Pi = 9$, $Pn = 5$
 $T_{bp} = 379.63^{\circ}K$. (19)

Critical Temperature for 2,2,3,3-Tetramethylbutane

$$\log (1 - w_i/w_n) = \log (1 - 58/84) = -0.50934$$

$$\log \Delta T_{Rbp} = -0.75463 + 1.52669 \log (1 - w_i/w_n)$$

$$\log \Delta T_{Rbp} = -0.75463 + 1.52669 (-0.50934)$$

$$\Delta T_{Rbp} = 0.0294$$

$$(T_{Rbp})_i = (T_{Rbp})_n - \Delta T_{Rbp} = 0.7012 - 0.0294 = 0.6718$$

$$T_c = T_{bp}/(T_{Rbp})_i = 379.63/0.6718 = 565.1^{\circ}K \text{ or } 291.9^{\circ}C.$$

Critical Pressure for 2,2,3,3-Tetramethylbutane

 $(P_{cn} - P_{c1}) = 0.2932 + 2.389(1 - P_1/P_n) - 62.71 \Delta T_{Rbp}$ $(P_{cn} - P_{c1}) = 0.2932 + 2.389(1 - 1.800) - 62.71(0.0294)$ $(P_{cn} - P_{c1}) = 3.462$ $P_{c1} = P_{cn} - (P_{cn} - P_{c1}) = 24.54 \text{ atm} + 3.462 \text{ atm} = 28.00 \text{ atm}.$

EXAMPLE VAPOR PRESSURE ESTIMATION for 2,2,3,3-Tetramethylbutane

The difference between the boiling point and the point at which the deviation curve is zero, other than the boiling point or critical, for n-Octane was observed to be lll.1°C., from this and the boiling point of the isomer, the point at which the deviation curve crosses the zero axes was calculated.

 $(T_0)_i = T_{bp} + 111.1^{\circ}C = 106.46 - 111.1 = 217.6^{\circ}C.$

This temperature on a reduced scale is:

$$T_0/T_c = 490.8/565.1 = 0.8685$$

and the reduced boiling point is $T_{\rm Kbp} = 0.6718$ The critical values as calculated are: $T_{\rm C} = 565.1^{\circ}$ K. and $P_{\rm C} = 28.00$ atm. From these critical values and the boiling point the constants of the vapor pressure equation were calculated to be:

The vapor pressure deviation curve was drawn utilizing the deviation curve of n-Octane, the critical temperature, the reduced boiling point and the estimated zero deviation temperature. It was also noted that when the reduced boiling point was low and therefore the point at which the deviation curve crosses the zero axes was low, The positive deviation just below the critical region was great. This observation was utilized in estimating the vapor pressure deviation curve for 2,2,3,3-Tetramethylbutane.

The estimated deviation curve for 2,2,3,3-Tetramethylbutane is shown on Figure 36 with the curve for n-Octane; the calculated vapor pressure data are shown in Table 90.

FIGURE 36 - ESTIMATED DEVIATION CURVE

		Calculated	Estimated	Estimated
Temper	ature	Pressure	Deviation	Pressure
Τ ^O K -	Tr ^O K	Atm.	Atm.	Atm.
				· · · · · · · · · · · · · · · · · · ·
379.63	0.6718	1.000	0.00	1.00
383.17	0.6781	1.098	0.00	1.10
393.17	0.6958	1.419	-0.01	1.43
403.17	0.7135	1.809	-0.03	1.84
413.17	0.7312	2.280	-0.04	2.32
423.17	0.7488	2.842	-0.06	2.90
433.17	0.7666	3.508	-0.07	3.58
443.17	0.7842	4.288	-0.08	4.37
453.17	0.8019	5.195	-0.07	5.27
463.17	0.8196	6.242	-0.06	6.30
473.17	0.8373	7.442	-0.04	7.48
483.17	0.8550	8.809	-0.02	8.83
493.17	0.8727	10.355	0.01	10.36
503.17	0.8904	12.095	0.04	12.06
513.17	0.9081	14.042	0.09	13.95
523.17	0.9258	16.210	0.10	16.09
533.17	0.9435	18.612	0.15	18.46
543.17	0.9612	21.262	0.16	21.10
553.17	0.9789	24.172	0.15	24.02
565.09	1.0000	(Critical)28.000	0.00	28.00

ESTIMATED VAPOR PRESSURE OF 2,2,3,3-TETRAMETHYLBUTANE*

*Calculated pressure is found using the equation:

The constants of this equation have been evaluated from the critical and boiling points. The estimated pressure is found by subtracting the estimated pressure deviation from the calculated pressure.

 $\log P = 4.40938 - 1673.93/T$ (^oK), P in atm.

BIBLIOGRAPHY

(1) Herzog, R., Ind. Eng. Chem. 36, 997 (1944).

(2) Hill, P.L., Ph.D. Dissertation, The Ohio State University, Columbus, Ohio (1950).

- (3) Kay, W.B., Ind. Eng. Chem. <u>30</u>, 459 (1938).
- (4) Kay, W.B., Ind. Eng. Chem. 32, 353 (1940).
- (5) Kay, W.B., Ind. Eng. Chem. <u>33</u>, 590 (1941).
- (6) Kay, W.B., Ind. Eng. Chem. 40, 1459 (1948).

(7) Kay, W.B., Ind. Eng. Chem. 32, 358 (1940).

(8) Kay, W.B., J. Am. Chem. Soc. <u>68</u>, 1336 (1946).

(9) Kay, W.B., J. Am. Chem. Soc. 69, 1273 (1947).

(10) Kay, W.B., and Rambosek, G.M., Ind. Eng. Chem. <u>45</u>, 221 (1953).

(11) Kay, W.B., and Warzel, F.M., Ind. Eng. Chem. 43, 1150 (1951).

- (12) Lydersen, A.L., "Estimation of Critical Properties of Organic Compounds," Coll. Eng., Univ. Wisconsin, Eng. Expt. Sta. Report 3, Madison, Wisconsin (April 1955).
- (13) Meyers, C.H., and Van Dusen, M.S., J. Res NBS 10, 381 (1933).
- (14) Osborne, M.S., and Meyers, C.H., J. Res. NBS 13, 1 (1934).
- (15) Reid, R.C., and Sherwood, J.K., "The Properties of Gases and Liquids," McGraw-Hill Book Co., Inc., New York, N.Y., 1958.

(16) Riedel, L., Chem. Ing. Tech. <u>24</u>, 353 (1952).

(17) Riedel, L., Z. Elektrochem. <u>53</u>, 222 (1949).

(18) Rossini, F.D., Mair, B.J., and Streiff, A.J., "Hydrocarbons from Petroleum," Chapter 17, Reinhold Publishing Corp., New York, N.Y., 1955.

(19) Rossini, F.D., Pitzer, K.S., Arnett, R.L., Braun, R.M., and Pimental, G.C., "American Petroleum Institute Project 44," Carnegie Press, Pitt., 1953.

(20) Thodos, G., Am. Inst. Chem. Eng. J. <u>1</u>, 165 (1955).

(21) Thodos, G., and Forman, J.C., Am. Inst. Chem. Eng. J. <u>4</u>, 356 (1955).

(22) Vowles, C., S.M. Thesis in Chem. Eng., Mass. Inst. of Tech., Cambridge Mass, (1951).

(23) Wiener, H., J. Am. Chem. Soc. <u>69</u>, 17 (1947).

AUTOBIOGRAPHY

I, James Harvey Mc Micking, was born in Detroit, Michigan, August 5, 1929. I received my secondary-school education at Concordia High School, Fort Wayne, Indiana. I received my undergraduate training at Wayne State University, which granted me the Bachelor of Science in Chemical Engineering degree in 1953; I was granted the Master of Science degree by the same university in 1955. While earning the Master of Science degree, I was a graduate student assistant. I was an American Chemical Society Petroleum Research Fund Fellow for two years, a Shell Oil Company Fellow for one year, and a summer instructor in the Department of Chemical Engineering at The Ohio State University while completing the requirements for the Doctor of Philosophy degree.