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CEAPTER I
INTRODUCTION

In this paper we shall consider integral ideals in number
fields, that is, in finite algebraic extensions of the field of
rational numbers. Fields will be denoted by the letters F, F', F",
F), Fpy ees, while the German letters v, Aq, T, C, 11, &, ..,
will‘denote ideals. Algebraic numbers in a number field F will be
denoted by Greek letters and numbers of the field R of rational num-
bers will be denoted by lower case Latin letters.

Two ideals in the same field are said to be equal if and only
if they contain the same numbers.

Let F; O Fp and let 07, be an ideal of Fp. The numbers of Ui,
generate an ideal U, in F; and it is known that the intersection
Uy N Fy = U, (see Hecke, "Theorie der algebraischen Zahlen," q 37).
Also if the ideal 2 in F and the ideal ¢t' in F' generate the same
ideal in a field containing F and F', then.d'L and ! generate the
game ideal in F U F!' and thus in evéry field containing F and F',

We shall therefore call two ideals 77 and (Tp equal if they
generate the same ideal in a field containing all the mumbers of <%y
and of /tp. Two such ideals may therefore be denoted by the same
symbol and we shall speak of an ideal ¢t without regard to a partic-
ular field. An ideal ¢T is said to be contained in a field F if it
may be generated by numbers in ¥, that is to say, if it has a basis
in F,

Let U1 be an ideal contained in the fields Fl and F2' We say
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that F; and F, have corresponding residue systems modulo ¢Z if for

every integer & of Fy there exists an integer X, of F, such that

ot = uz(mod.ffl), and for every integer o, of F, there exists an in-
teger q of Fy such that %, = o ,(mod.0l). The problem considered in
this paper is the following one: 1if Fl and Fy are two fields contain-
ing an ideal ¢¢, under what conditions will F; and F, have correspond-
ing residue systems modulo . In Chapter II we show that this problem
reduces to that in which the ideal Ul is a power of a prime ideal,

and a necessary and sufficient condition for Fy and F, to have corres-
ponding residue systems modulo ¢Z is derived in the case that Ul is a
prime ideal. In Chapters III and IV we consider the problem for fields
of the type F( g\fF ), where R is a rational prime, P an integer of
F, and F contains a primitive AR root of unity.

In the remainder of Chapter I we give a list of definitions and
theorems used in Chapters II and III. The proofs of the theorems may
be found in "Theorie der algebraischen Zahlen" by Hecke or in "Alge~-
braic Number Theory" by H. B, Mannm,

Let F} @ Fp be two fields and let &%y be an ideal in Fy. The
numbers of <7y which lie in F, form an ideal ¢Z, in Fy. This ideal
¢Z, is said to correspond in F, to the ideal ¢Z,. The ideal 7,
depends on ¢7; only, and not on F;. If %y in F, corresponds to &7,
in F) and (7p = 300 with (&3 07) = (1), then 1 is said to be of
order e with respect to Fo. Not every ideal has an order with re-

spect to Fp; however, every ideal which is a prime ideal in some ex-

tension of F2 doese



If ¢ is a number if Fj} D Fy, we define the relative norm

FN (<) of o in Fy over F, and the relative trace ,T.(o¢) of o« in
1F2 FF;

F; over Fp by
W (o) = ot o e o)
Flquz ) e o<
#e{) = 4oy 4 (T

where o, o<(22 ces d(r) are the conjugates of o« in Fy over F,.
The relative norm INngU'() of an ideal ¢t in Fy over Fo is defined by

rﬁ’réuz) . e A

where o1'1) is the ideal formed by the ith conjugates in Fy over Fp

of all numbers of ¢T. If F; D F23F3 and T is an ideal of F,, then

gl) = (/4 .
) = a0

The absolute norm of an ideal ¢T in Fl is the relative norm of ¢ in

F} over the field R of rational numbers and .is denoted by I,.}»I:LR(UI) or
F?(UZ ). The idealF:lLlFéUZ) is contained in Fp and in case Fp = R this
ideal is principal. By IFS_IR(UU l we mean the absolute value of the
rational number that generates FNR(UZ).
1

Theorem 1.1: If UT is an ideal contained in the number field F,
the number of residue classes modulo J7 in F is equal to lFN(UI- )l .

Theorem 1.2: If /) is a prime ideal in F} D F,, there exists

a unique prime ideal '!2 in F, such that '!2 £ 0 (mod. %1) and
%) = 4

Let F_ denote the field of residues mod. 4 in F, where % is

%



a prime ideal in F,

Theorem 1.3: Let 4/' be a prime ideal in F' DOF and let %
correspond to »/' in F. Then F,NF(f') = //gand F;. is an alge-
braic extension 61‘ F/ of degree f.

The number £ = (F!',, | F’/( ) is called the degree of f' in F!
over F,

Theorem 1.4: If 7?1 is a prime ideal in F} O F, and 'fl is of
degree one over F, then every residue class mod. ‘/ 1 in Fj contains
an integer of Fs.

Theorem 1.5: The set S of numbers £ in F; O F, for which

F{ngi) £0 (mod. (1) ) for & 0 (mod. (1) ) is the reciprocal of

an integral ideal Fi&f‘z » called the relative differente of Fy over Fp.
The relative differente of a number © in Fl:D F2 is defined by

$'(6) -ﬁ (e - 0t

where the product is extended over all the relative conjugates e(i)
n .
of © in Fy over F, and P(x) = T (x- 9(1)).
Theorem 1.6t The relative differente /&F of ¥} over Fp is the
¥
greatest common divisor of all number differentes ¢'(&), where 8

is an integer in Fy.

If © is an integer of F; D Fp, it follows from Theorem 1,6 that

there exists an ideal ﬁ , called the relative conductor of & in Fy

over Fp, such that

t = ’3‘
(@'(6)) @Fl ¥,



Theorem 1.7: If /1 is a prime ideal in F; = Fé, then
FJ”&FQE 0 (mod. 4. 1) if and only if 4. 1 1s of order greater than one
with respect to Fp.

Let F' be normal over F and let ‘g(F' | F) denote the Galois
group of F' over F. If A is any automorphism of "y(F' | F), we shall
write o for the number into which the number o is transformed
under A. If o7 is an ideal of F', we shall write «&® for the ideal
into which (X is mapped under thé avtomorphism A.

Let 4! be a prime ideal in the field F' normal over F. The

inertial group ‘Qti of »j ' is the subgroup of automorphisms A of
“g(F'I F) for which «® = o (mod. Af') for every integer o< in F!,

The inertial field ¥y of 4f' is the subfield of F' corresponding te

%ti under the Galois correspondence.

Theorem 1.8: Let 4f* be a prime ideal in the field F' normal
over F. If f denotes the degree, e the order, and g the n\;mber of
conjugates of +f' in F' over F, then efg = (F'| F),

Theorem 1.9: Let 4/' be a prime ideal in the field F' normal
over F, and let Fj be the inertial field of #/' in F' over F. Then
o' is of order (F'| Fj) with respect to Fy.

" Theorem 1.10: Let /' be a prime ideal in the field F! normal
over F, ‘g the Galois group of F' over F, and let »j’ correépond to
70 in F. There exists an automofphism A in ‘g such ﬁhat

| ot = ocN(?,) (mods 4£')

for every integer o< in F', where N(J ) is the norm of »f in F!' over

the rational field.
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The y% ramification group ) of a prime ideal ' in a field

F' normal over F is the subgroup of automorphisms A of ¢ (F'| F) for
which oc® 2 o¢ (mod. ;a”'J) for all integers o< in F', We have
F,=9,°9,29, 2 ...
Theorem l.11: The sequence Uji = 713 72 D ... ends with the
unit‘element.
If v 18 the first integer such that ‘gv_'_l is the unit element,

then v is called the order of ramification of the ideal +f' in F!

over F,

Theorem 1.,12: Let ‘5{' be a prime ideal in the field F' normal
over ¥, let p be the rational prime corresponding to ;/', aﬁd let e
denote the order of ,f' in F' over F. If e = eop” with (egs D) = 1,
then ‘{1 / 72 is cyclié of order ey and (g‘;j-l/ ‘9‘;’ is Abelian of type
(P, eses p) and order p d for j >2.

Theorem 1.13:¢ Let +f' be a prime ideal in the field F' normal
over F, and let 1r be a number of F! exactly divisible by j ', Then
an automorphism 4 in 71 is in 'fj if and only if wt = v (mod. 4'3).

Theorem 1.1Li: Let ;f ' be a prime ideal in the field F' normal
over F and let p°J be the order of UIJ for j 2 2. Then F?&F is
exactly divisible by v
g +2_ 67 -1)
where e is the order of 7&’ ' in F' over F and v is the order of rami-

fication.
Let { be a positive rational prime, & # 1 an &Yh root of unity,
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and F a number field containing & . Let pt be a mumber of F which
is not the ' power of a number in F. The following three theorems
(see Hecke, "Theorie der algebraischen Zahlen," 539) give the prime
decomposition of a prime ideal of F in FY( R\R—A‘ )e

Theorem 1.15: If 4 is a prime ideal in F, one of the following
three possibilities must hold: 1.) */ remaing a prime ideal in
F( {— )e 2.) ’f is the LR power of a prime ideal in F( J‘ Ve
3.) "f is the product of { different prime ideals in F(s) @ Je

Theorem 1.16: Let 4 be a prime ideal in F and suppose
(p) = % with az 0 and (R, ) = (1). If (a,£) =1, /f is the
QR power of a prime ideal in F(Q\IF )o If a=0 and (/,12 ) = (1),
then f is the product of X different prime ideals in F( Q\IF- ) in
case the congruence

B = 52 (mod. 4f )
is solvable for Z in F, and 4 remains a prime ideal in F( ij? ) in
case this congruence is not solvable.

Theorem 1.17: Let ! be a prime divisor of (1 - % ) in F such
that (7, P ) = (1). Suppose (1 -%) = 727, with (T, ) = ().
Then 1.) 7 is the product of % different prime ideals in F(\l-F )
in case the congruence

M= %’R (mod. Zagfl)
is solvable for £ in F. 2.) ! remains a.prime ideal in F({IF )
in case the congruence of 1.) is not solvable and the congruence
K3 (mod 7 2%

is solvable for % in F. 3.) 7 1is the Xthpower of a prime ideal in
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( \](A ) in case the congruence of 2.) is not solvable.



CHAPTER IT
GENERAL THEOREMS

In this chapter we zonsider the problem of corresponding resi-
due systems mod. an ideal ¢U for two general mumber fields, and also
for two number fields Fy and F» each normal over their intersection
F; N Fp, The main result of this chapter is Theorem 2.5 which gives
a nec-essary and sufficient condition for two number fields to have
corresponding residue systems mod.an ideal which is a prime ideal in
both fields.

We first show that we need only to consider the case in which
the modulus ¢T is a power of a prime ideal.

Theorem 2.1: Let ¢T be an ideal in the two number fields Fy and
Fp, and suppose Fy and F» have corresponding residue systems mod. ¢7.
Then ¢T has the same prime ideal decomposition in Fj and in Fp.

Proof: Let

U m tfil‘...‘ /f:r in By

Uz =%{1‘.-o. %:s ian

where the '2’ 4 are prime ideals in Fy and the %5_ are prime ideals in
Fp. Let ol be an integer in F; such that o¢ is exactly divisible by
771 and (o¢, 7/1.) = (1) for 1 =2, ..., r. There exists an integer
£ in F, such that

o< = $ (mod. o7) h
and thus in Fy U Fp we have (§,01) = 51. Since $ is in Fp and

QU C Fy, it follows that
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Y <F,.
In the same maunner it follows that
fiCFz is]l, ooy v
and also that
Fy<F 121, .., s.
Thergfore in ¥y and in Fy we have
,.fil olLe y:r = (gil. ves® ,{‘ng‘
In Fy the ¥4 are prime ideals and hence
b2 | #;
in Fp for some j. In Fy the ﬂf; are prime ideals and therefore
fe | o
in Py for some ke Thus in Fj U Ewe have
fe | 4
which implies that
’{k = f-j = 71
in ¥} and in Fp. By renumbering and repeated application of the
above argument we obtain r = s and
’fi =7
for 1 =1, oo, r = 8 in F and in Fp, Hence ¢¥ has the same prime
ideal decomposition in Fy and in Fo.
Theorem 2.2t Let U7 be an ideal in the two number fields Fy
Fou. Then ¥y and Fy have corresponding residue systems mod. vt if
and only if o7 = 4f1L* ... *+f ¥ where +fy is a prime ideal in Fy

and in Fp, and Fj and Fp have corresponding residue systems



mod. Af3F for 4 = 1, eee, T
Proof: Suppose F; and F, have corresponding residue systems
mod. J{ . By Theorem 2.1 we have
T mof e ofE
in F) and in Fp, where //; is a prime ideal in Fy and in Fp. It fol-
lows that Fl and F2 have corresponding residue systems mod. 1/ zi for
i=1, sesy re
Conversely, suppose < = ‘}';_ ‘eee’ )f:r in Fand in F,, where
;/Z is a prime ideal in Fj and in Fy, and that F; and F»p have corres-
ponding residue systems mod. 4:1 for 1 =1, .es, ro Let  be any
integer of Fj. There exist integers $ 4 in F such that
o 2$y (mods £31) 1=l ..., .
By the Chinese remainder theorem applied in Fp there exists an in-
teger £ in F, such that
B =By (modofY) 1w, .,
and hence
oz (00).
It follows that F} and F, have corresponding residue systems mod. JC.
In order to prove the main result (Theorem 2.5) of this chapter
we first prove two preliminary theorems.
Theorem 2.3: Let Fy and Fp be two number fields, ¥ = Fj N Fp,
and let 4/ be a prime ideal in both F; and Fp. Suppose F; and F,
havé corresponding residue systems mod. ,j J and let Fp be the small-
est normal extension conteining Fj and ¥p. Then for every auto-

morphism A in Y% (Fu!| F) we have
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xd o (mod lj 3)
1 1 ‘
X e, (mod. +9)
o 2 X, mod. +f
for every integer <7 in ¥ and o¢5 in Fp,

Proof: Let Y1 and Y5 be the subgroups of YJ(Fn| F) which
leave F} and Fo fixed respectively. Since the ideal 7" is contained
in F.and in Fp, we have

A
(35" = o3
for every automorphism A in the group ‘jl v sz. Since F = P N Fy,
we have by Galois theory that "Ilu %3 o corresponds to F under the
Galois correspondence between subgroups and subfields. Hence
U-J]_U ujg = UJ(Fn' F).
Denote by Sy (1 = 1, 2) the set of automorphisms A in “g(Fnl F)
such that
A _ J =
Xy & oy (mods »fY) 1=1,2
for all integers o4 in Fy for i = 1, 2, The sets S; are subgroups
of "J(Fnl F). Furthermore the sets Sj contain ‘71 fori =1, 2,
Let A be an automorphism of Sy, For every integer o3 in Fy
there exists an integer ol in Fp such that
o‘l 2 0(2 (mOdo dj)o
TFherefore
A
(8¢9 = o5) =0 (mod. éj)
A _ A J
Yo, ( 3)
A
1

o4 50‘1 (mod. dd) ®
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Hence the automorphism A is also in S; and it follows that
ST 54,
Similarly S3< Sp and ‘therefore
59 = 5.
Thus
| S, =S, = HA(F,| F)
since Sy DY for 1 m 1, 2 and YU Y], =Y (F,| F).
Corollary 2.3.1t Under the conditions of Theorem 2.3 it follows

that

'F}_&i" 20 (1) 1;2&1? 20 (y02d)

where ny + 1 = (Fj| F) and ny + 1 = (F;| F),

Proof: The corollary follows from Theorem 1.6 and Theorem 2.3.

Theorem 2.h: Let F; D F be two number fields and let Pre a
prime Heal in Fl' Suppose that for every integer o¢ in Fl we have

o2 o) (mod. P)  1=1, ..., k= (F|F)
Then M is of order k = (F3| F) with respect to F.

Proof: It is clear that 2 coincides with all of its conjugates.
Let Fp denote the smallest normal extension containing Fi. Let pn be
a prime divisor of Pin F, and let f in F correspond to K,

The residue field mod ¥ in ¥ is an algebraic extension of the
residue field mod. % in F by Theorem l.3. Its Galois group is gen-
erated by the automorphism o¢-» aN(”‘ﬂ) where N(’f) is the absolute
norm of 4f in F. Let < be a primitive root mod. P in F;. By Theorem

1.10 there exists an automorphism A such that
wN(f) z wh (Ba).



But
wh w(i? 2 (mod. P).

Hence

aJN(ff) W (mod. [3))

a)N(‘f) =,y (mod. P).
But this means that <3 is in the field of residues mod. /£ in F or
ws.ﬁ(mod.}‘a) $inF.
Hence Pis of degree one over bp and therefore by Theorem 1,8 of
order k = (Fll P,

Theorem 2.5: Let ¥ and F, be two number fields and ‘/ be a
prime ideal in both fields. Then F; and F; have corresponding resi-
due systems mod. # if and only if % is of order (Fll F; NF,) in
Fy over Fy N Fp and of order (Fp | F; N F») in Fp over F; N Fop,

Prooft If Fy and Fp have corresponding residue systems mod.
o , 1t follows immedistely from Theorems 2.3 and 2. that the order
of {/ satisfies the conditions of the theorem.

The converse is clear since 4/ is of degree one over Fy N\ Fy by
Theorem 1.8, and therefore by Theorem 1l.L4 every residue class mod.
’f contains an integer of Fln Fo.

Corollary 2.5.1: Let 07 be an ideal in the number fields F; and

F2.

I Fl and F2 have corresponding residue systems mod. J7 , then
(Rl RAFR) = EIRNER),

Proof: The corollary follows from Theorems 2.2 and 2.5.

In the remainder of Chaper II we consider the case in which the

two number fields F; and F, are normal over their intersection Flf\ Fye
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Theorem 2.6: Let Fy and Fp be two number fields each normal
over F = Fj N Fp and let 4 be a prime ideal in Fy and in Fp, In
order that F; and F, have corresponding residue systems mod. /ff it
is necessary and sufficient that the imertial group of 4 in Fy over
F be equal to the Galois group of FJ over F for j =1, 2.

Proof: The condition is sufficient since by Theorem 1.9 #/ is
of degree one in F4 over F (j = 1, 2) if the inertial greup of £ in
F'j over F is equal to the Galois group of Fj over F (j =1, 2).

Suppose F; and Fy have corresponding residue systems mod. l/
and let Fj denote the inertial field of f in ¥} over F, By Theorem
1.9 the order of 4 in Fj over F is equal to (Fy| Fj), and hence from
Theorem 2.5 we have

(F]_' Fi) = (Fll F) .
It follows that F; = F, and hence the Galois group of F; over F is
equal to the inertial group of 4/ in Fj over F. In the same way it
follows that the Galois group of Fp over F is equal to the inertial
group of /"/ in F5 over F.

We were not able to obtain a necessary and sufficient condition
for two number fields to have corresponding residue systems mod, a
powsr of a prime ideal. However, if F; and F, are normal over
Fy N Fp, the following theorem gives a necessary condition for Py
and Fy to have corresponding residue systems mod. a power of a prime
1deal.

Theorem 2.7: Let F; and Fp be two number fields each normal over

F = F () Fy, and let 4 be a prime ideal in Fy and in F,. If F; and
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F, have corresponding residue systems mod. 4f J , then the Jth
ramification group of J in Fy; over F i3 equal to the Galois group
of Fix over F for k =1, 2,

Lemma: Let Fy and Fy be two fields normal over F = Fy N Fp,
Then every automorphism of ”J (Fil F) can be contimued to an auto-
morphism of f(Fy U Fp | ¥) for i = 1, 2.

?5_99_@ The lemma follows directly from Galois theory and the
fact that ”j(Flu F,| F) is the direct product of YJ(Fy| F) and

(5, ] ),
Proof of the theorem: Let A be any auvtomorphism of “’} (Flu’ F2| F).

It follows from Theorem 2.3 that
o{j z e(i(mod. Ajj)
for every integer o4y in Fy for i =1, 2, Hence if Ay is an auto~
morphism of “J(F;| F) it follows from the lemma that
04271 =2 o<y (mods 1fJ)
for every integer o¢j in Fj for 1 =1, 2. Thus the J*B ramification
group of % in Fy over F is equal to the Galois group of Fj over ¥
for 1 =1, 2.
Corollary 2.7.1: Let F; and Fy be two mmber fields normal over
F = F) N Fp, and let 4/ be a prime ideal in Fj and in F. If Fj and
Fp have corresponding residue sysiems mod., /f J for J »1, then
(F | F) = (Fp| F) = p¥ where p is the rational prime belonging to ff .
Proof: By Theorem 2.7 we have

Yr ) F) =Gy = 43
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where UJ j is the Jth ramification group of  in F, over F. By
Theorem 2.5 the order e of 4/ in F} over F is equal to (Fy | F).

By Theorem 1.12 we have ‘71 / sz cyclic of order e, where
e =e, pr (egy P) =1

and p is the rational prime belonging to the ideal ’] o Therefore

. (Fp| F) = eypT.
Since UJ]_ = sz, eo =1 and

(Fl-l F) =p* .
By Corollary 2.5.1
(F | F) = (5| F) = p".

Corollary 2.7.2: Let ¥y and Fy be two mumber fields normal
over F = F1 N Fp, let U7 be an ideal in Fy and in Fp, and suppose Fy
and Fp have corresponding residue systems mode ¢{ . Then JC is not
divisible by the square of a prine ideal if (Fy| F) = ¢, | F) is not
a prime power. If (Fj| F) = (Fp| F) = p¥ is a prime power, then
U = )/l‘ ces® ’fr' Ut where ’4{# %‘; are prime ideals and 2!
divides &'power of p. |

Proof: The corollary follows directly from Theorem 2.2 and
Corollary 2.7.1l.

Corollary 2.7.3: Let Fj and Fp be iwo number fields each nor-
mal over F = Fy N Fp, and let 4/ be a prime ideal in Fy and in Fp,
Let vy denote the order of ramification of "J in Fj over F for
i -'1, 2 and suppose vy 2 Vo = 2. It Fl and 1"2 have corresponding
residue systems mod. «f72, U’J(FQI F) is Atelian of type (py «ess P)

where p is the rational prime belonging to Af .
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Proof: 1If Fl and Fz have corresponding residue systems
V2
mode 4 2, it follows that from Theorem 2.7
"I(le F) = (11 - bj‘z - L. ® %72
th . 7’
where UJJ is the }*" ramification group of in ¥, over F. By the

definition of v, We have
"jvz-rl =1

the group identity. By Theorem 1.12 we have v},vz\ 7,, AL Abelian
of type (p, e.., p) where p is the rational prime belonging to 7’ .
It follows that "](FZI F) is Abelian of type (P, eess D)o

In case v, = 1 in Corollary 2.7.3 the group "?(le F) is cyclice
of order e, where (Fp| F) = o,p¥, (e,, p) = 1, p the rational prime
belonging to ‘f o

‘The condition of Theorem 2.7 is not sufficient as the following
example shows. Denote by R the field of rational numbers and let
7 = R(N2), 7, = R(J3), /= ({2). 1t is clear that the second
ramification of the ideal (\rE) in Fp over R is equal to the Galois
group of ¥ over R, and likewise for Fp. However, Fy and Fp do not
have corresponding residue systems mod. (4‘2)2. For suppose

Jz a4 bN3  (mod. 2)

in the field x(-.rz, 4—3') where a and b are rational integers. We
may suppose that both a and b are odd, for otherwise 2 lsfé-. There-

fore both a and b may be replaced by 1. Hence
42 = 1+\[3 (mod. 2)

and



Jz-1. {3

2

is an integer. Thus

(o1 Gy (fEa1.Gy. -
2 2

mist be an integer, which is a contradiction.

2z

2

19
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CHAPTER III
CORRESPONDING RESIDUE SYSTEMS
IN FIELDS F( 1{}:)

Lot A be a rational prime, & #1 an AP root of unity, and F
a number field containing ; . In this chapter we shall consider
fielc.is of the type F( Wl), F( Xﬂ:fz), «oe Where tAi is an integer
of F and not the {1 power of an integer in F.

Let P be a prime ideal in F( XJTA—l) and in F( &(FZ). By
Theorem 2.5 in order that F( 4?1) and F( 4—‘\;2) have corresponding
residue systems mod. W iﬁ is necessary and sifficient that W be
of order % in F( &‘IFI) over F and in FY( %FZ) over F. Therefore
by Theorem 1.7 it is necessary and sufficient that I° divide the

relative differente

o O
FC{pry) F

R —
of F( \.l Pi) over F for 1 =1, 2, If ci denotes the relative con-

ductor of Pa (1 =1, 2), then

S S F<Q¢Ff)%’
for 1 = 1, 2 since (Q{';Ii)g -1 ) is the relative mmber differente of
Wi over F (see Theorem 1.6). It follows that ¥ must divide
(‘\(—r;i)a_lﬁ for 1 =1, 2 if F( &4—(;1) and F( Q\f\_k' ») have corres-
ponding residue systems mod. \0 . | '
Denote by d’ the prime ideal correspending to WP in F. By
Theorem 1.16, if "/divides 4 then ’{= F’nin F( gsrls:i) if and

only if
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(py) =45 s, 1=1,2
where (ay, %) =1 and (14, £) = (1). Thus we have the following
theorem.

Theorem 3.1: If (P,£) = 1, then F( ﬁﬂtl) and F( Q\)Fg)

have corresponding regidue systems mod. P’ if and only if
(P1) = oty
with (a;,0) =1 and (07, #) =(Q) for 1 = 1, 2.

From Corollary 2.7.1 it follows that F( &{F 1) and F( Wz)
do not have corresponding residue systems mod. PJ for jJ >1 in case
(B,2) = Q).

We now consider prime ideals in F(&FF ) which divide {, that is,
prime ideals which divide theideal (1 - % ) since = (1 - % )9“"1 in
F, Let

1-2)= LBt
in F, where (£,07) = (1) and K is a prime ideal in F, and let [ be
a prime ideal of F (&F ) which divides &. By Theorem 2.5 we are
concerned only with the case in which { is of order { in F( ’lﬁl )

over F, that is 2
L=1

in F( n\[‘tj ). We may suppose without loss of generality that either

(‘.\ ,R) = (i) or ({4, La) = & (see Hecke, Theorie der algebmischen
Zahlen, page 151). By Theorem 1.16 f becomes the ithpower of a

prime ideal in F(g\rt: ) in case (t}u, £2) = K. 1In case (‘J.,CJ) = (1) by
Theorem 1.17 & becomes an 'R power of a prime ideal in F( Rﬂ: ) if
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the congruence
= 2" (mods £2Y
is not solvable for ¥ in F,

The main result of this chapter is the following: if 4y, Mo
are two integers of F such that { = Ti in F(lﬁ-l) and in F(’irrrg),
and | has ramification orders = v > a in F( 9\\—; 1),¥ RX—FZ) over F,
then. F( &4—(‘:1) and F( &W 2) have corresponding residue systems mod.
T ARES

We consider first the case in which (I’" & 2) =§.

Theorem 3.2: If (p, £,2) = £ and n is a positive integer,
then o =" in K &(‘I ¥ and every integer o in F( g-f‘:) satisfies
the congruence

)
X & X, + xliﬁ $ooee b0¢ o \X,An'l (mod. T™)

where the oty are integers in F, Furthermore the order of ramifi-
cation v of [ in F(gr'; ) over F ig equal to a4 1.

Proof: Stnce (p, R2) = &, wenave L= 7" in F(YZ )
where [ is a prime ideal. It follows that 14}1 is exactly divisible
by 7. Let n be any positive integer. If o is any integer of F we
have

] R n
o ;o<°+o<1~r‘: L SRS +u-n__1\h4n'-1 (mods 77)
where the oty are residues mod.‘ 1 and may be chosen in F since 1
is of degree 1 with respect to F.
By Theorem 1.13 the order of ramification of I is equal to v

if and only if
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ﬂ\ﬁi =T 2\RA— (mod. 7'), R‘F‘: ¥ ;{r— (mod. I7*).

Hence v =a X + 1 since (1 -% ) = U_waa, £=17, and (K, ut)=(1)

Theorem 3.3: If p1s Ko are two integers of F each exactly
divisible by f , then F("»{F 1) and F(lsl_t_«_a) have corresponding resi-
due systems mod. Zahl—a.

‘ Proof: Choose a fixed residue system mod. £ in F consisting
of {th powers, which is possible since L is a prime ideal in F.
Represent the residue class O by O and let n = a(£- 1). Since P4
is exactly divisible by £ we have

= 8 ton ntl
M, = rlf...focngl (mode fu77)

L
where the o, belong to the fixed residue systems mod, L chosen above.

i
Hence

Q9 R, 1 0 L n¢
Cdpgm g Uy = oee - o\ p) Po=py =ve =% fylmod. K )

0 {mod. f\.m'l)
since all mixed terms are divisible by &K . It follows that
R - 1 R n n+4l
s + ses + X \( (mode T )
I 24 W‘l_ n T1 ’

% ' 2
and by Theorem 3.2 F( JFI) and F( -J-Fz) have corresponding residue

systems mod. alel-a

%
By Theorem 2.7 the two fields F( 4?1), F(’Q{r',,z) do not have

Zv’l where v is the order of

gorresponding residue systems mod.
ramification of | . The following theorem gives a sufficient condi-

’ [ R
tion for F( IF]_) , F( 4\»\ 2) to have corresponding residue systems
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mod. 7.
Theorem 3.4t Let g, f*2 be two integers of F each exactly

divisible by &. If

By &M, {mod.

% b8
then F( JF 1) and F( 4—&:2) have corresponding residue systems

Ral#l)

mod.- 13'2"'1, that is, mod. 1V where v is the order of ramification
of .
Proof: Since @, = My (mod. Lagfl ) and
( ’.‘rfxl - gﬂra)x Z - P (mod.R),
it follows that
9\&-‘:1 = Q\l—‘:z (mod. Ia(ﬁ-l)).

Suppose
1.) ‘J'Fi = Q‘J‘,Tz (mods 1) and l{Fl # {f{[z (mod. 1™*).

For any polynomial P(x, y) with integral coefficients such that both

x and y occur in every term we have
X % = 5\ % m
PO, N ) = PO, J;z) (mode I®D).
Thus
18 s L n
(py - o) =Py po (wede LITT)
2.) (9.{—‘:1_ l\x—z)gs \Al' t“z (mod. La(g-l)zmz).

Pp-tp #0  (mod. La(l.l) "7)
Then
Ya L+1) ¢ca(R=1) +m+1



25
since pp = py (mod, § 2y Therefore R< - 2% +m + 1 and
al+l-1<m
nzal+l,
On the other hand if
| By 2, moa. £20-1) gmy)
then
(9:1_?1 - 9:‘—?—:2) % 0 (mod. La(&_l) "7
from 2.). Thus by 1.)
nf 2al(f-1)+m+1
n(R-1)>2al(i-1)+1
m(%-1)>af(8-1)
m>al
and hence m > a Q + 1. Therefore in either case m= a % + 1 and we
have by 1l.)
x\ﬁ:l '&‘rt‘:z 5 0 (mod. 13“3.
Let o be any integer of F( {I'\I 1) and v the order of ramifica-

tion of , that 48, v w a X # 1. By Theorem 3.2
% X v-l v
o Botg +oty Ny b oeee bl g \Ir\l (mod. 7V)
where the o« 4 are integers in F. Let

5 lr—.
% E g +¢><1\l_|.:2 + oo bl g f\v}

then
X = $ (mod. 1Y)

'3 '3
and F( J{;l)’ F( \rt:z) have corresponding residue systems mod. J'.

We now consider the case in which (V’ £ ) = (1) and the congru-
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ence W& {l (mod., Lal) is not solvable for Z in F, that is,
(p, L) = (@) and L= t% 4 F(&I}—Z )e Let k be the largest pos-
itive integer such that the congruence

w3 (mod L)
is solvable for % in F. Clearly 0 < k < a & and k is the largest
posi’give integer such that the congruence
9:”: & £ (mod. Z’k)
is solvable for % in F.

Theorem 3.5: Let A be an integer of F such that (p, £)=()
and § = Tl in F(’iﬂii ). Let k be the largest integer such that
mezg £ (mod. £,%) is solvable for Z in F. Then the order of rami-
fication v of 7 with respect to F is equal to a  + 1 - k.

Proof: Let o in F be a solution of the congruence
p = ig (mode £ ¥) with k maximal. Since p - o 15 exactly
divisible by £¥, it follows that 9‘4? - o< is exactly divisible
by 1X. Furthermore we have (k, % ) = 1 (see Hecke, Theorie der
algebraischen Zahlen, page 153). Thus there exist positive integers
x and y such that k x =1 ¢ R y.

Let Tt be an integer of F exactly divisible by K, that is
(%) = ot & where (01, &) = (1) and N is an ideal of F. There ex~
ists an ideal € in F such that ¢1/C = («) is principal and C is
prime to L.

Now, let
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Then N 0
(f) ~ (N mot)® o (P - )%e¥
m.Y LY m}' LY,CY
b
- (dr e )%e7
(¥ (w¥) g7
Hence

%
(¥ 8) = LA = o0)%?
LY
The ideal fraction on the right in the last equation is an integral

jdeal exactly divisible by Z. It follows that .Y f 4is an integer
L

of F('{p ) exactly divisible by 7. Let

q—

y X
- ol
8 = wY f = w” ( JIA ) .
y
n

Since © is exactly divisible by [ it follows from Theorem 1.13
that the order of ramification of [ is equal to v if and only if

6 - ot is exactly divisible by 7V where A is the automorphism
% R
4—\:-—5;\“’{, that is, if and only if

v N= x y %j“ x

o7 o7
is exactly divisible by 7Y. Since (@, &) = (1) this is true if

and only if
& YRR G A P
is exactly divisible by §¥ vV = 7kx-1 7V, Now
GUT coyxa [P NP (WF -y ]®
= (F -t 4x (g - (795 NP0 4
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Therefore
(3 &JF -z (IR =) (mode 70N 7))
= ( 9;;—; - o)X (mod. ,Z»k(x-l)" ,Zan)
since 0 <k <a f and (1 - 7 ) = L®pcwith (R, 0r) = (1)s Further-

more this congruence holds exactly mod. 7 k(x-1) z’a’q. It follows that

kx-1l4+v=k(x-1)4+al

ag'}l"ko

v
Theorem 3.6: Let r‘i, Mo, be two integers of F each prime to [
and such that £ = I in F(’ll'Fl) and in F( SL«FFZ). Let k4 be the
largest integer such that the congruence M; = iﬂi (mod. Lki) is
solvable for £ 4 an integer in F( 1 31, 2). Let vy =a % 41 -ky
for i = 1, 2 and suppose V12 Vo> a. Then F(QJ—F 1) and F( &Fa)
have corresponding residue systems mod, ng-a.
Proof: Since py - i'g_ is exactly divisible by £Xi, then
gllT-s' i = £ is exactly divisible by 7%i(1 = 1, 2). Since (kg,0) =2
we have positive integers Xy and A such that kixi- 1+4 yi(i = 1,2).
Let 7% be an integer of F exactly divisible by & . Using the method

A
of Theorem 3.5 we obtain an integer of F{ 4 P 1)
9~r—-
91_:. a.)yi( Hi“ii)xi i
71
which is exactly divisible by [ .

a1, 2

R
We now show that ©; is congruent to an integer in F.mod. Lvie

for i = 1, 2. We have
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X
R TV A LA C R P
i _nYiR . ,uYiR

where Hi is an integer of F and Ri = 0 (mod. Lk'l). Hence

eﬁi = ST 4 g ABETR04 L)
o ¥i R
= YiR‘qX:. (“’yiqxiaii-lfig +oe.l)
= wyif AR (noq. (af+l-ki-a
Ji .
e
. ‘2 .
z 0T AT (goa. V12,
ik
STH A 8
is an integer of ¥, so that 9 is congruent to

But ¥ 3 = —————I——
an integer ¥, of F mod, 178 for 1 =1, 2,

We now show that the 'h power of every integer of F( r ) is
congruent to an integer of F mod. LY por 1 =1, 2.

Let [> be any integer of F( ﬁ?l) and let n ¥ vj- a. Since 6,
is exactly divisible by Z

ﬁo-& ﬁlel + aee "' § .162-1 (mod. Tn)

where the ?i are residues mod. T and may be chosen in F since 1 is
of degree 1 over F, Hence

,Q ,Q n_])&
[@-(%oﬁ'-u#?n, 1 = @ -(@ 4+ cee +§n_191 (mod .2 )
B (4t £ 0 on, £)

@R - ¢ (mod. Lvl‘a)
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where ¢~ is an integer of F. It follows that
X

$ s a (mod. r\,vl-a)o
I % )
4 (€> and @' are two integers of F( J—[I 1/ such that

3 o (mod. £,V172) and @'9‘ = ¢ (mod., LV179

B

then
b= {3' (mod, 7V17%),

Also if
[

e

where (", G-' are integers of F, then o 5 o' (mod, f 1 o).

T (mode QV1%) and R = o' (mod. Sl”l“”_‘)

The number of residue classes mode V172 in F ( h—f:l) is equal to
the number of residue classes mod. Y12 in F, It follows that it o
is any integer of F there exists an integer ﬁ of F( &J—Fl) such that
%SLE o (mods £7170)
In the same way, if ¥ is any integer of F( Q‘-GA- 2) there exists
an integer 1T of F such that
2 v (med. L7270
There exists an integer P of F( VL\.FI) such that
é = 1 (mode [179) .
Since vy 2 vy
%D' = '*{'Q (mod. R727% ).
But
p-)s 8-t moa D)
and therefore

e: =~ (mod, 7'27%),



31
Thus F( 14?1) and F( &J-F 2) have corresponding residue systems
mod. V278,

By combining Theorems 3.3 and 3.6 we have the following result.

Theorem 3.7: If ., o are two integers of F such that f = Zl
in F( SLﬂil) and in F( 911]12), and | has ramification orders
zv>ain F( Qﬂil), F( pll-Fz) over F, then F(iﬁl) and F(&“ﬁ:z)
have corresponding residue systems mod. Tv-8,

Proof: We need only to consider the case in which Q, is exact-
1y divisible by ﬁ. and Mo is prime to £ s the other two cases fol-
lowing from Theorems 3.3 and 3.6. Let vy =a {4 1 be the order of
ramification of I in F( 24?1) over F, and let 62 be the order of
ramification of [ in F (9%72) over F, From Theorem 3.5 it follows
that v -1 =af 2 vo.

Let ot be any integer of F( x\(—\al) and let n = a X - a. Since

gﬁu'l is exactly divisible by [ , it follows that

X E o+ o(lﬂ\r-‘:l + eee w0 o ﬁm_l (mode 71™)
where the.o(i are integers of F. Hence

°¢Q.=_ uﬁ +o¢iq' Hl + ree * u';-l \\4;.‘-1 (mods £.7)

o('QE g (mod. Laﬂ-a)

where @ is an integer of F. Using the sethod of Theorem 3.6, there
by
exists an integer %: of F( \(r\z) such that
.
% 2 g (mod. va.a)o

Therefore

DLQ s @Q (mod., LV2-3).
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o¢ 2 f (mod, 772,
Tms F( RJF l) gnd F( S:{F2) have corresponding residue systems
mode 7 V"2 where v, 2 v > a.
¢ Theorem 3.8t Let P Mo be two integers of F, each prime to
L, such that K = ZQ in F( “ﬂ:l) and in F( ’:J'FZ). Suppose
(‘*‘l z (“2 (mod. LaQ) and let k be the largest integer such that the
congruences [ E cXQ (mod. f.,k) and p, 2 ocl (mod. ﬁ,k) are solvable
for K an integer of F. Then F( 911? 1) and F( Rd?a) have corres-
ponding residue systems mod. 7V where v=a { +1 -k,

Proof: Since p; E M, (mod. £2Y ) it follows that
U,z N od. &%)
using the method of Theorem 3.4. We have k x =1 + { y and following
vTheorem 3.5 it is sufficient to show that '
(NFy - 2 (Npp - 0% (moa. 7T747),
We have
N o0 [ ARy - o0 e (R, - Ypp]”

= (slrt’[l —ot) ax( HFI -oc)x.l(plle —9‘&"1 ) 4 eee

- (&q‘—l _ o) (mode zk(x-l) zaR) '

. (L‘I—Fl o) (mod. 1+ Qy %k 2&2)

= ( My -« (o

L
Thus F( ﬁJ (41) and F( ] R 2) have corresponding residue systems

©~J

2v;2yx

mod. 7V where v = a & + 1 - k is the order of ramification of ] in

r(%fgi)amzﬂ%fF;x
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We remark that if F(%ﬁ:l) # F(%ﬁl—a) theng:fFl 7 ’:r‘:z(mod.'iahl),

for otherwise we would have corresponding residue systems mod. .[v+1

contrary to Theorem 2.7,

A necessary and sufficient condition for F( ,:ﬁ:l) and F( lIFZ)
to have corresponding residue systems mod. ”{v is not known to the
author (where v is the smaller of the ramification orders of { in
F( &rt;l) » F( 9:(?‘\2) over F), The following theorem shows that in case
v = al F 9:[?.1) and F(x-rf ) ) have corresponding residue sys-

1!9.

tems mod., if and .only if ‘*\1 and ® satisfy a system of

congruences and an example is glven to show that this system is not
always solvable.

Theorem 3.9: If F(QT(:]_) and F(&(F ) have corresponding resi-
due systems mode. J2 then the following congruences must be solvable

_ 8 2 1 L\ ak-a
1) PAT o bl ¥ --- okl By (w\"a k )

. 1 2, eﬁ--\w é
2 Hiprbse e S (e £

-0 l
eo*--«+2’..‘-.ﬂ e;ﬂg‘)\-(’,"'na-l
@ ke, y--- ﬁQL-t)GR_\?- wa R

3) Z L‘ -0l d?—'_deg' tA::\ = o (wad. La)

e )~-_e R=
@y k-~ *Cx~ -Q VSRR, Jro -0
€k 2@, % - A U-0€ =i

where o, ..ey 041_1 are integers of F and 815 seey € 4y D aTE
positive integers and 1 =1, ..., f -1, and conversely.

Proof: Since F( r 1) and F( ~r€2) have corresponding residue
systems mod. f,2 it follows that 1, “T‘z’ sssy Jrg"l is a basis

'l
for the residue system mod. f,® in F( sr(:z). Thus
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i ! TEL (oa. £)
= + # oo + X d.

V‘l °< 1 \"2 =l \A 2 me
where the j are integers of F, Therefore

t*l = ('Xo + u1~r': +* eee 0-0(9~ 1 \{ ;:'1) (mod. Lai)
and it follows that '

'S
.i -1 L 4
T{(ex ot %1 \lr2+...+°(Q -1 Yy - (o(o-c-o(l ‘»\2 FouotX g 4 \*2 )}
is cpngruent to a mumber of F mod. La. Since 1, J‘AZ, cesy 4'—\{.21 is
a l’ 1
a basis for the residue system mod. R s the coefficients of o

must vanish mod. f£,2. Thus the congruences

ﬁw (g ot m*-—w& .\Az )’g
.—l)‘ Z,,-“ en-‘ AVVN —
Zea!"'eg‘. O&-‘ r‘ =
Qi s Ry v, VAR, §=0,~ 2 0 fov i= by --- VQ—\
Y28 +--— 3 (-0 = wml ki
3
a.re solvable for i = 1,0.0, Q - 1»_ and i = o mod. L .
In Theorem 3.10 we consider a special case of Theorem 3.9 in
which F = R(%) and = 3.
Q
Theorem 3.10¢ If F=R(Z), {1 =3, and F(lJFl) and F({p,)
have corresponding residue systems mod. (1 - [4 ) s then either
- 3 €
for x in R(% ) and & =1l or 2, or
1Epp=0 (mod. (1~3%) ).
Proof: In R(Z) the ideal (1 - % ) is a prime ideal, that is,
L |
1-7)= .. Since F(J-Fl) and F(JFQ) have corresponding resi-
5y
due systems mod. (1 - &) we have (1 - 7) = 7" and the orders of
Q—
ramification of { in F(QJT"-I), F(d Mo) over R(T) are = { and
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hence either X or L+ 1. If the order of ramification of [ in
¥ \ﬁ; 1) over R(T) is § + 1, then P, may be chosen exactly divisible
by L=(1-%) and l,éxf—t:l, 3\(—‘:\-% is a basis for the residue sys—
tem mod. (1 -3 ) in F( ’lﬁrl). If the order of ramification of ( in
F( Qﬂ:l) over R(Z ) is equal to £, then k = 1 is the largest integer
such that the congruence p; = il (mod. Lk) has a solution % in
R(C). In this case iﬁil -~ % is exactly divisible by ! , and
again 1, il? 19 3\]"—:% is a basis for the residue system mod. (1~ Z )
in F(g:ﬁ:'l) over R(Z ). The same statements are valid for ’T\:z.

Since F( 9':[?1) and F( H—FZ) have corresponding residue systems
mod. (1 - £ ), we must have

1.) ifﬁlauo+«li[;2 rox, 3\{“1‘2 (mod. (1-%) )

2.) py = «2 * “i To *«3 g«é .3 P(isz) (mod.3(1-%) )

where P (x) is a polynomial with coefficients in R(3 ). It follows
that P( 3\[ ‘AZ) is congruent to a number in R(& ) mod. (1 - T ).
Since 1, 3\{;2’ 3-.1 f“g is a basis of the residue system mod. (1 - G )
in F( \(3 y«z) the coefficients of 3\[[¢2 and \3“\4% must vanish. Hence
’ 2 2 2 -
30) XSy # oty X5 Po t %] Sy Mp 20 (mod. (1-%) )

2‘_“ o 2

L) o &3 1% Mo+ X o, £ 0 (mod. (1-%) )

We consider two casest M, 20 (mod. (1-%) ) and
Ko Z0 (mod. (1-3) ).

Suppose fA, = 0 (mod. (1-%) ). This implies that o« or
&, =0 (mod. (1-%) ) from 3.). If x =0 (mod. (1-%) ), then

fy 50 (mod. (1~3) ) from 2.). If o, #0 (mod. (1-3) ) and
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o<, 50 (mod. (1-%) ), then x, 20 (mods (1-%) ) by L.) and
therefore from 2.) we have M, ‘«g (mod. 3(1-%) ). But the last
congruence means that (1 - 3 ) is not an &' power in F (1 JF 1) and
hence we can't have corresponding residue systems mod, Z o Thus if
P, 20 (mod. (1-%) ), then py 20 (mod. (1 -5 ) ) - provided we

have corresponding residue systems mod. (1-T).

Suppose p, # O (mods (1-%) ). If ¢ =0 (mod. (1-Z) ) then
either o, or o¢, = 0 (mod. (1-%) ) from 3.). It follows from 1.)
that 3\”‘—1 s 2 Y‘eg(mod. (1-F) ) where o= oky or ofp i in
R‘(g) and € =1 or 2. Hence P; = o<3 \"62 (mod. 3(1-%) ). We note

that if both ¢, and o¢, & O (mode (1~%) ), then pys0 (mod. (1<%} )

1
from 2.) which is impossible by the first case.

If =, # 0 (mod, (1-3) ) and either X5 =0 (mod. (1-3) )
or ¢ = 0 (mod. (1-%) ), then from 3.) it follows that

4y

]

™, E0 (mod. (1-%) ). Hence from 2.) we have

n

o3 (mod. 3(1-%) ) which is impossible as in the first case.
If >~ %0 (mod, (1-%)} ),* #0 (mod. (1-%) ), and

o, £ 0 (mod. (1-%) ), then uﬁ = °‘:|2. = ag = pg 1 (mod.(1~-%) )
and it follows from L.) that ac  4oq Moy + g pg 2 0 (mod.(1~%) )
Hence o #o¢y {er * o 23\5:2 =0 (mod. 1 ). It follows from 1.)
that 3\]_[:1':‘-: 0 (mod. ] ) and therefore Py 20 (mod. (1-3) ). It
follows from the first case that P2 = 0 (mod. (1-T) ) since the
roles of ¥1 and rkz in case one may be interchanged, which completes

the proof.
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IftF=R(%), £=3, '1 =2 and P, = 5, the congruences of
Theorem 3.10 are not solvable. For if
522« (md. 301 =% ) )
then
S=2 4207 +2%% 4 (d+eF +f ‘;2)(3)(1 -3)

where a, D, ...y f are rational integers. This means that

3d -3f +22a =5
-3d + 3¢ + 2b =0
3f ~3e+2020 ,

Thus, from the last two equétions,

3f - 3d = 0 (mod. L)
which is impossible by the first equation. Thus 5 # 2 >(mod.3(1-3))
and in the same manner it follows that 5 g L o3 (mod. 3(1-%) ). It

follows that the congruences of Theorem 3.9 are not solvable,
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CHAPTER IV
CORRESPONDING RESIDUE SYSTEMS
IN FIELDS F( 9:[',11, cees 9;[TXT) AND F(qm@\')
Let ! be a rational prime, % # 1 an %M root of unity, and F

a mmber field containing 4. In this chapter we consider the prob-
lem of corresponding residue systems for fields of the type

L '8 n
F( ' Py eees N f"r) and F(Q‘\I‘« ) where P Py eees pp are inte-
gers of F (but not 4% powers of integers of F). As in Chapter III
let (1 -~ §) = £20x where £ is a prime ideal in F, o7 is an ideal
of F, and (L, 0t) = (1).

9 R

Theorem L.1: Let F' = F( \“’*1, { I\ o) where {*p, V2 are
integers of F, and let 4 be a prime ideal of F' such that (77, )=
Then 4 is not of order R2 with respest to F.

Proof: Let #’ in F' correspond to the prime ideal Min F. If
either R9 or [, is prime to |2 , then by Theorem 1.16 'f is not of
order 42 with respect to F,

b

Suppose both (#;, pM, are exactly divisible by P. Then P = l‘l
in FY( 4 f*1) where Py is a prime ideal in F( 4 Mi). Thus P, is
exactly divisible by »}01 in F( «l Mq). Hence there exists an inte-

|/
ger M3 in K d* 1) such that ( fé, p3) = (1) and
X % ,
F( 1.‘ M1, SLJ o) = K "[_Fl’ 9'4 WQ) (See Hecke, Theorie der alge-
braischen Zahlen, page 151) It follows from Theorem 1.16 that W

¢ '——
is not an K} power in F( 4_ M1 ) = F', Therefore ff is not of

order 12 with respect to F.
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Corollary L.l.1l: Let F' = F( g\ﬂ:l, ceey X\ﬁ:‘:r) where
Pis eees Wy are integers of F and let '/be a prime ideal in F!
such that (‘/,X) = (1). Suppose (F'| F) = {T with r > 1 and let
F" be a number field such that F* N F' = F, Then F' and F" do not
have corresponding residue systems moci. '/ . |
Proof: The corollary follows from Theorem 2.5 and Theorem L.l.
Let F*t DF, (¥t| F) =R? and let 4 be a prime ideal in F' such
that (+f ,I—) = (). It is interesting to note that while 4’ is not
of order %2 with respect to F in case F' = F( ﬂ-:rpl, %IF‘ 0)s ’/ may
be of order {2 with respect to F in case F' = F( %I-Fl, 2\‘-5 ) where
© is an integer of F( &F 1). For example let I be a prime ideal
of F such that (P,R) = (1) and let A be an integer of F exactly
divisible by . From Theorem 1,16 it follows that [° = Vli in
F(i.f‘j) and P, = P:inF(y:I'_A, ’izr?')r-F(V;z(;" ), so that ¥,
is of order 12 with respect to F.
Theorem L.2: Iet ., [, be integers of F such that F( Qﬂ»—«l)
and F( x-.,‘“‘..-\‘2) have corresponding residue systems mod. Yﬁ. Ir 21
is a prime divisor of [ 4n F( {[Fl’ SL4—;\2), then 21 is not of order
2% with respect to F.
Proof: We may assume that F( 911?1) # ¥( &I{;z). Since
F( Q.f? l) and F( Q\[-F 2) have corresponding residue systems mod. £2,
1t follows that L = Z&in F(%IF 1) and in F( R‘(—Fg). Suppose
(o5 f) = (1). There exists an integer « of F( p‘\ﬂ:l) such that
9‘@2 = ot (mod. £3). Ssince
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A
)

(&ﬁz -

it follows that

\.A2 - v(l (mod. Q&a)

a9.2

049‘ (mod. 7 ) .

Mo
f— %
But this means that { is not an X' power in F('{ Ky J_\;z) by
Theorem 1.17. Hence if Zl is a prime divisor of K in F({f‘:l,vﬂ Pok
then Zl is not of order %2 with respect to F.
Suppose both My pp aTe exactly divisible by & . Let

(#) = o, K (1, L) =)

(hy) = 01, K (01,, ) = ()
where UZ]_, 012 are ideals of F. Then

(F2) _ Bk _ %
(P) 9k oy

There exists an ideal € of F such that ¢«t;.T = (ev) is principal and

((C, 5 ) = (l)o Thus

(Fo) _ %o _ T Y~

(py) o7y 2y (@)

(«0)(}*)
(pq)
@ o

Since K,c is an integral ideal of F, it follows that _FI— is an

G

integer of ¥ prime to f . Hence v
2
p =2t
M1

is an integer of F prime to f . Since
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2 X
gHS\-l: o P2 | r\x-l: W My
2 M1 2 (IJFI)I

is the Ath power of a number in F(%JTxl), it follows (see Hecke,
Theorie der algebraischen Zahlen, page 1L49) that F(ljixi,&f?.)

= F(&i]:i’ El}zé). Therefore the case in which both Pos P aTe
exactly divisible by N reduces to the case in which one of Py, Mo
is prime to L.

Corollary L.2.1: Let F' = F(%I?:l’ coey %J}:;) where
Pys cees M are integers of F, and let F" be any number field such
that PPN F = F, If F(%If:i) and F(iJ]:J) have corresponding resi-
due systems mod, f\,a for any pair P49 p 3 of the integers
SR such that F(QJ?Ii) # F(%i}zj), then F' and F' do not
have corresponding residue systems mod. any divisor of ﬁ:.

Proof: The corollary follows from Theorems 2.5 and L.2.

In the remainder of this chapter we consider fields of the type
F(%?E: ) where m is a positive integer and V.is an integer of I and
not the L0 power of an integer in F. Let ¥ be a prime ideal in
F(%?Trl) = F and in F(%?]Té) = F5, In order that F; and F, have
corresponding residue systems mod. £ it is necessary and sufficient
that 4 be of order ™ in F) and Fp over F. Therefore it is necessary
that z? divide the relative differentes ﬁ;gi and ﬁﬁi « The relative
number differente of &ﬁjﬁi over F is equal to (137:i)ﬁm'l Q® and

therefore

-1 ‘ |
e v ek S (1=
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where C%i is the relative conductor of fo?ii over F. Hence it is
necessary that 4 divide (‘ffj":'i)’z "R o 1 = 1, 2.

We consider first the case in which »f is prime to . Let o
correspond to the prime ideal P in F. The ideal /0 becomes an {th
power in F('E(F) if and only if () = Pz with (P, 2 ) = (1) and
(2, ) = 1 by Theorem 2.1. Suppose

| (p) = Poe with (P, ov) = (1), (a,€) =1.

Then | = PIQ in F(ﬂ.l?) where V| is a prime ideal and
Al = P rEiR)

it follows that Ul = a‘?l‘e in F( 3{'\&) and hence

(¥R PR, mwn (P, @) =) .
Therefore (by Theorem 2.1) V&_becomes an 4P power of a prime ideal
inF(gj-g:), say I = v“:. Hence |*= sza inF(QifF). Applying
the above argument and induction, it is clear that Va = 4 Rz in
F(Xﬁii) and thus 4/ is of order A™ over F.

Now, suppose 4 is of order &® over F, that is, PP = ¥ "‘m, and
let Vol in F(&f‘_&\) correspond to ’30 « GClearly Vol is of order £ with
respect to F, that is, ¥ = Pla in F( aﬂ»). Hence (p) = P70 with
(P, 01) = (1) and (a, 1) = 1.

Therefore, in order that o in F(%fh:) be of order 8™ with respect
to F it is pecessary and sufficient that (p) = P2 with
(WP, 0t) = (1), (a,£) = 1 in F where |? is the prime ideal in F cor-
responding to @l. Combining this result with Theorem 2.5, we obtain

the following theorem.
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Theorem L.3t Let {47, M5 be two integers of F, m a positive
m
integer. Let 1{ be a prime ideal in FT'%rFE) for i = 1, 2 such that
(’/:/Q) = (1), and let 9‘1 correspond to the prime ideal P in F.
m m :
Then Fc*JTIl) and F(QJ‘;Z) have corresponding residue systems mod. o
if and only if (y;) = P3 in F where (a,1) =1 and (P, 02) = (.
_’In case F contains the ™ roots df unity, it follows from
m__ m__
corollary 2.7.1 that F(thkl) and F(ﬁ‘IVQ) do not have corresponding
residue systems mod. gﬂz if (4,0) = ().
2-1 .
We now consider prime divisors of =1 - z ) in fields
Wt a
F( JF). As before let (1L -G ) = L2 in F where R is a prime
ideal and (R, Ul) = (1). We may assume that either Cprs L) =4
or (g, &) = ().
Theorem L2 Let 15 {o be integers of F each exactly divis-
qm
ible by f, and let m be a positive integer. Then h = 1 ( 7 a
m m
prime ideal) in each of the fields F(H’Fl) s F(XJFZ) and these two
fields have corresponding residue systems mods 7 a2+%-a
Proof: We prove the theorem by induction. If m = 1 the theorem
is true by Theorems 3.2 and 3.3. Suppose the theorem true for m = k.
k
We have fu = ‘ll" ( {1 a prime ideal) in each of the fielk
k <
F(&Ji;l)’ F(g]]:z). Since 4 is exactly divisible by £ it follows
k
that ¥ [P; 1s exactly divisible by I, for 1 =1, 2. Therefore by
| kel
Theorem 1.16, 71 = [” ( [a prime ideal) in the field F(%Jfri) for
' kel kel yical
i=1, 2. Thus R = z& in each of the fields F( |4r1), F( lrz)

and the first conclusion of the theorem follows by induction.
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k k
By the inductive hypothesis F(".] P1 ) and F( ’.l \*2) have corres~

Za Y+l-a

ponding residue systems mod. where 1, is a prime ideal in

k
each of these fislds and fq 1 . F‘urthermore we know that
L gked
Zl =1 (1la prime ideal) in FY( ..! 1) and F( J rlz) "It is clear

k
that 9‘-\'1"1 is exactly divisible by [ for i =1, 2.

ko-l
. Let & be any integer of F( J—'l) and let n = a(} -1)9 Then

k+1 kel
o T +od “1’14... +oc Q\ﬁ{"l(mod ™

where the o¢; are residues mod. 1 and may be chosen in F since {
1s of order A¥*1 with respect to F, Hence
t - fn n
oégEo( +¢>k 25‘— +...+<x.nllxl‘~nl(mod.l =)

o

n

T (mod. Tl

where 1 is an integer of F( Jf"l). If o and ! are two integers
of F(&l:[%'l) such that 042.-‘-.' oc'l g ™~ (mod. 'Zf)‘where 1+~ is an in-
teger of F(*].‘[Fl), then o= ot! (mods M. Ir uﬂs T, (mod., 21")
and ot (mod. 2;_1) where "\‘1 and T are integers of F(&f"\x'l),
then T 2 T% (mod., ?ln). The number of residue classes mode 27

gkl
in F( .| l) is equal to the number of residue classes mod. Zl

in F(x,_(ﬁ). Therefore if T is any integer of F (9‘5?1) , there exids
an integer o in F( lﬁll) such that ol z ~+ (mod. 217
The statements in the above paragraph are valid if b} is re-
placed by P
Let << be any integer of F( {r—i). There exists an integer 7T
of F( 91[‘(1) such that
otz T (wods 7M.
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Since F( s{cfﬁ) and F( {ﬂ:é) have corresponding residue systeus

al+l-a k
?'l s there exists an integer o~ of F( U—Fz) such that

mod,
T 20 (mod. za9+l-a) .
sl 1
There exists an integer £ in F( Jp o) such that

£ 2 ¢ (mod o .

k
Since n = a( 8= 1), and k 21, it follows that

L afsl-a
oLR = @ (mod. 21 .
Therefore
«zf (mod, -[a.hl—a)

and F( kl}%l) s F( Rl._(l:%'z) have corresponding residue systems mod. 12 fsl-a
The theorem follows by induction.

We consider next the case in which , f, are two integers of
F each prime to k.

Theorem L.5: Let M1s (4, be integers of F each prime to Ry
and let ky be the largest positive integer such that the congruence

pi = u..i (mod. fuki) is solvable for o« , in F(i = 1, 2)., If

i
k)< ky < afand af+1l-ky,2 2a, then R = 19'm ( 2 a prime ideal)
in each of the fields F( 1}}11) , F(x}'ffa) where m is a positive inte-
ger and these two fields have corresponding residue systems

mod. 28.9-41—1{2-&.

We first prove the following lemma.

Lemma: Let ja be an integer of F prime to f, m a positive
integer, and let k be the largest positive integer such that the con-

gruence W = oL'Q (mod. £X) is solvable for ocin F, If k < a £ and
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and al+ 1l -k = 2a, then £ = ?.Qm ( ¢ a prime ideal) in F(PJ—VC)
and k ié the largest positive integer such that the congruence
\nlﬂ—* H &2 (mod. %) 1s solvable for £ in F( y‘n‘lﬁ: ).

Proof: We prove the lemma by induction. Suppose m = 1. Since
k is the largest integer such that p = o (mod. LX) is solvable for
o in F, it follows by Theorem 1.17 that L= li in F( %.IF) where
11 is a prime ideal. Suppose
&J—t" @i (mod. Zlk‘_.l)

where 61 is in F (g.l? ). By the method used in the proof of Theorem

3.6 there exists an integer "11 in F such that
éli ‘ll (mod. K¥V°2) s, v=al+l-k,.
Since k < aland a%+ 1 - k 2 2a by hypothesis, it follows that
&ﬁ)\' =~ {(mod. 2%#1) and therefore p = Nli mod. E‘kfl) contrary
to assumption. Thus the congruence
&ﬂ: E gx (mod. Zkal)

is not solvable for § in F (ﬁ? ).

Since = °LQ (mod. Lk) where « is an integer of F, it fol-
lows that Q&F = ot (mode 21“). By the method in the proof of Theorem

Q
3.6 there exists an integer 51 in F( JF) such that

4.
1

ot (mods V7%) vm=alal-k.
Hence
YT 5 ) (ot 25 )
and the congruence QJF E %ﬁ (mod. 2};_) is solvable for % in

F(XJ—F ). This establishes the lemma for the case m = 1,
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Suppose the lemma is true for m = n., We have L= ‘n ( Zn a

n
prime ideal) in F () and k is the largest integer such that

o L k. ip
dr\ = R (mod., ?n) is solvable for ‘Fn in F(4] M ). It follows

2 n+l
from Theorem 1.17 that ln = Zn,l ( Zml a prime ideal) in F(g.I;.-x Y.

Suppose
k+l

g %
4.] rA = %n-&l (mOdo zn_’l)

- peiRg A ,
where 'en+1 is an integer of (._r]&). There éxists an integer “1“
n
in F(RA"\I ) such that

~1
R -al® n
%n&-l s “{n (mod. 2:111 : )y m=akel -k

n )
(This follows by taking F(’;‘J_' ) to be the ground field in Theorem 3.6
‘&

and applying the method used in the proof there.) Since k < af and

al+1-k22a, it follows that
gl k41

J_r: = “{n (mod. Zn+1)
and therefore
R
R.?F = ‘ln (mod., znkfl)

qosl k+l

contrary to assumption. Hence the congruence @ = 21 (mod. Zml)

n+l
is not solvable for Z in F ¢t ™ ). However the congruence

1 n+l
{?{; = ;ﬂ (mod. 21;1) is solvable for % in F(&r\:) by the method

used in the case m = 1, Thus the lemma is true for m = n 4+ 1.

Proof of Theorem L4.5: By the lemma we have b= 2y“mrin

U=y 3R : |
F(.] Vi’ and in ¥ \] T\Z) where. { is a prime ideal. We use induction
m
to prove that F( 92] rl) and F (kﬂ ‘*2) have corresponding residue systems

mod. —la!Z‘rl-k-a . Ifm =1 this follows from Theorem 3.6.
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gn xn
Suppose F( J 1) and FY( \l 2) have corresponding residue sys-
tems mod. zg“l-k-a where {, is a prime ideal in F(“{Fl) F(M"‘2
and £ = Zn . By the lemma k is the largest integer such that the
congruence

B £
J—r—i = ii (mod. er‘,)

: 0 9

is solvable for i- in F("‘J ri) (1 = 1, 2). Furthermore 2 = Zn-tl
n+1

where lm_l is a prime ideal in F( ‘.« ) for i =1, 2. Thus

n+l
9 h z 4 s exactly divisible by Zn o fori=1, 2. It follows

by the method used in the proof of Theorem 3.6 that if 77 is any in-

i
n-l-l
teger of F( r ), there exists an integer Ty in F( J ri) such that
g n"aﬁn-l
—y—i _'-:Ti (mod. zn ), V“-a&&l—k—

a

for i =1, 2, HFarthermore if 1'1 is any integer of F( 'ngi) there
nf-l

exists an integer 3/ in F & P ) such that the above congruence is

valid (i =1, 2).

n+l
Let V. be any integer of F(g J_‘Fl). There exists an integer T,

1
gn
of F( 4}21) such that
‘Vil.E ’r‘l(mod.zvn a1 ), vp3alk +1l-k.
n__ n '
Since F(QJ rl) and F(QJ'FZ) have corresponding residue systems
- n
mod. Zihl k-a’ there exists an integer 77, of F(’Q..r‘: 2) such that
V - afsl-k-a
Tl - T'2 (modo 2n ‘ )0
Eherefore
X Rel-k-
V1 £Tp (mod. 2a 4.
n-l-l w-t

v,.-0R

There exists an integer 75 in F( J ) such that 3 ':n(moa.l“ )

w
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! R aftl-k-a
7’ = E )
1 2 % (mod. ¢ n )
and therefore
al+l-k-a
7"‘1 = 7‘; (mod. Zn-l-l ).

The theorem follows by induction.

Tt is clear that if . is exactly divisible by K and p, is
prime to R, a result similar to theorems L4 and L.5 can be obtained.
This result together with Theorems L.l and L4.5 yields the following
theoren.

Theorem 4.6: Let Py tp be two integers of F such that & = Zj
in F( X\F‘Il) and F('\JFZ), and let m be a positive integer. If the
orders of ramification of { in F(%Fl) and F(%{Fz) are 2 v 2 2a,
then f = 2n¥min F( l.?‘f-'l) and F( iﬁz) and these two fields have

zv-a

corresponding residue systems mod. (, .
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