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CK&PTER I 
INTRODUCTION

In this paper we shall consider integral ideals in number 
fields, that is, in finite algebraic extensions of the field of 
rational numbers. Fields will be denoted by the letters F, F1, F", 
*1> *2> •••» th e German letters <K , 6/r^> <7T2, ^  ^ 1* ^  » •••
will denote ideals. Algebraic numbers in a number field F will be 
denoted by Greek letters and numbers of the field R of rational num­
bers will be denoted by lower case Latin letters.

Two ideals in the same field are said to be equal if and only 
if they contain the same numbers.

Let F^ CD F2 and let <77 2 be an ideal of F2. The numbers of 012 

generate an ideal in Fj and it is known that the intersection 
^ ( 1  F2 - 0 12 (see Hecke, "Theorie der algebraischen Zahlen,” 37). 
Also if the ideal (XI in F and the ideal oV in F 1 generate the same 
ideal in a field containing F and F1, then <Jl and o O  generate the 
same ideal in F U F1 and thus in every field containing F and F1.

We shall therefore call two ideals <xl ]_ and OZ 2 equal if they 
generate the same ideal in a field containing all the numbers of crt-  ̂

and of £772 * Two such ideals may therefore be denoted by the same 
symbol and we shall speak of an ideal (Jl without regard to a partic­
ular field. An ideal (XL is said to be contained in a field F if it 
may be generated by numbers in F, that is to say, if it has a basis 
in F.

Let (XI be an ideal contained in the fields F^ and Fg. We say



that F-|_ and F2 have corresponding residue systems modulo UL if for 
every integer of Fj there exists an integer «-g *2 suc*1 that
oti• oigCmod.C^), and for every integer <*2 of Fg there exists an in­
teger of F^ such that <*2^raoc**U*')* problem considered in
this paper is the following one: if F^ and F2 are two fields contain­
ing an ideal cJl} under what conditions will F-̂  and Fg have correspond­
ing residue systems modulo 6?. In Chapter II we show that this problan 
reduces to that in which the ideal 01 is a power of a prime ideal, 
and a necessary and sufficient condition for F^ and Fg to have corres­
ponding residue systems modulo 01 is derived in the case that 01 is a 
prime ideal. In Chapters III and IV we consider the problem for fields 
of the type F( sfp ), where i is a rational prime, p an integer of 
F, and F contains a primitive S.**1 root of unity.

In the remainder of Chapter I we give a list of definitions and 
theorems used in Chapters II and III. The proofs of the theorems may 
be found in "Theorie der aigebraischen Zahlen" by Hecke or in "Alge­
braic Number Theory" by H. B, Mann.

Let F]_ 3  Fg be two fields and let be an ideal in F-j_. The 
numbers of which lie in Fg form an ideal O l2 in Fg. This ideal 
0Z2 is said to correspond in Fg to the ideal 0Z^» The ideal 012 

depends on 01-^ only, and not on F^. If Ul2 in Fg corresponds to O?-̂  

in F^ and Ot2 * Ol^Ol with (**], OZ ) * (l), then 01^ is said to be of 
order e with respect to Fg. Not every ideal has an order with re­
spect to F2 J however, every ideal which is a prime ideal in some ex­
tension of Fg does.



If o< is a number if F^ ZD P2, we define the relative norm
) of <x in F-j_ over F2 and the relative trace j,Tf( ©c) of cx in

F-j_ over F2 by
P^F(o«) = oC.oc(2>- ...» oc<*>

T (o<r) = ... + <*(r)
*1*2

where c* , ... > e>Ar ̂ are the conjugates of ©c in F1 over F2 .
The relative norm ) of an ideal (ft in over F2 is defined by

jWF(̂ r) - O f  c f l ^  ... * c J Z ^

where is the ideal formed by the i^k conjugates in F^ over F2
of all numbers of (ft . If F^ Z> Fg Fj and cfl is an ideal of F̂ , then

= F ^ F ^ F ^  ̂ ^

The absolute norm of an ideal OX in F-̂ is the relative norm of <JZ in
F]_ over the field H of rational numbers and is denoted by ( f t)  o r

^ S ( tf t) . The idealpNpC^Z) is contained in F$ and in case Fg = R this 
1 1 2
ideal is principal. By 1 we mean the absolute value of the
rational number that generates

Theorem 1.1: If Cfl is an ideal contained in the number field F,
the number of residue classes modulo in F is equal to I jU(cft)l .

Theorem 1.2: If is a prime ideal in Fj_2 F2, there exists
a unique prime ideal ^ 2 f*1 *2 suc*1 that ̂ 2  - ® (mod. ^ \ f  and 
jBj,| / 1 ) « i % -

Let F denote the field of residues mod. %  in F, where %  is 
<r



a prime ideal in F.
Theorem 1.3* Let be a prime ideal in F* O F  and let ^

■f
correspond to ̂ 1 in F. Then ptNp( ̂  1) = and F^ , is an alge­
braic extension of Fg of degree f.

The number f * (F* , | Fg ) is called the degree of >£' in F'
over F.

Theorem l . k t  If ^  is a prime ideal in F-j_ "ZD F2 and ^  is of
degree one over Fg, then every residue class mod. V ]_ in F̂_ contains
an integer of F2 .

Theorem 1.5* The set S of numbers % in Fj_ Z> F2 for which
-T-.Coc^ ) 5 0 (mod. (l) ) for oca 0 (mod. (l) ) is the reciprocal of12
an integral ideal p^j?2> called the relative differente of F^ over F2 . 

The relative differente of a number © in F^ZD Fg is defined by
<p'(d) -TT (e - eu;)^ i-2

■where the product is extended over all the relative conjugates © ̂
m /. v

of © in F, over F« and <f(x) » TT (x - © ).x d 1 i»l
Theorem 1.6s The relative differente of F^ over F2 is the

greatest common divisor of all number differentes <$’(©), -where 6  

is an integer in F̂ .
If © is an integer of F^ZP F2» it follows from Theorem 1.6 that 

there exists an ideal f t , called the relative conductor of Q in F^ 
over Fg, such that

(<?«(©) ) * €
X1 2



Theorem 1.7? If is a prime ideal in F^z=>F2, then 
■ o (mod. i ) if and only if /t is of order greater than one*1 f 2

with respect to F2 .
Let F' be normal over F and let $(F* j F) denote the Galois 

group of F' over F. If A is any automorphism of (F1 | F), we shall 
write for the number into which the number e* is transformed 
under A. If (Jl is an ideal of F1, we shall write for the ideal 
into which tJl is mapped under the automorphism A.

Let be a prime ideal in the field F' normal over F. The 
inertial group of 1 is the subgroup of automorphisms A of 
(F» j F) for which o<A = o< (mod. y  ) for every integer ©tin F1. 

The inertial field F^ of ̂ 1 is the subfield of F* corresponding to 
under the Galois correspondence.
Theorem 1.8s Let be a prime ideal in the field F» normal 

over F. If f denotes the degree, e the order, and g the number of 
conjugates of in F1 over F, then efg » (Ff IF),

Theorem 1.9s Let y  be a prime ideal in the field F* normal 
over F, and let F^ be the inertial field of y  in F1 over F. Then 
y  is of order (F*| F )̂ with respect to F^»

Theorem 1.10s Let ^  be a prime ideal in the field F 1 normal 
over F, ^  the Galois group of F1 over F, and let y  correspond to 
$  in F. There exists an automorphism A in ̂  such that

<*A 5 (mod. y)
for every integer ex: in F', where N(-/) is the norm of ^  in F' over 
the rational field.



The j'kk ramification group of a prime ideal in a field
F1 normal over F is the subgroup of automorphisms A of (F1 I F) for
which o<̂  2 oc (mod. for all integers c* in F'. We have

* ̂ 2 ^ 3  D  “ •
Theorem 1.11s The sequence *** ends ‘bhe

unit element.
If v is the first integer such that is the unit element,

then v is called the order of ramification of the ideal ^  1 in F'
over F.

Theorem 1.12 s Let y 1 be a prime ideal in the field F' normal
over F, let p be the rational prime corresponding to , and let e
denote the order of in F1 over F. If e * eoP1" with (e0, p) ■ 1,
then is cyclic of order e0 and is Abelian of type

I* 4(p, ..., p) and order p J for 3 2.
Theorem 1.13* Let be a prime ideal in the field F1 normal

over F, and let fr be a number of F1 exactly divisible by ̂  1. Then
an automorphism A in ̂  is in °<fj if and only if ix^ s TT (mod.

Theorem l.ll̂ s Let be a prime ideal in the field F* normal 
over F and let pr0 be the order of ̂  for j 2 2. Then is
exactly divisible by

*.6-1 + (prJ - 1)
* .  2

where e is the order of ̂ 1 in F1 over F and v is the order of rami­
fication.

Let 5 be a positive rational prime, / 1 an SL^1 root of unity,



and F a number field containing « Let p. be a number of F which
is not the power 0f a number in F. The following three theorems
(see Hecke, "Theorie der algebraischen Zahlen,"^ 3 9 ) give the prime
decomposition of a prime ideal of F in F(

Theorem 1.15: If is a prime ideal in F, one of the following
three possibilities must holds 1,) * £  remains a prime ideal in
F(sfp )• 2.) t f  is the jlth power of a prime ideal in F( ).

^__
3.) is the product of S. different prime ideals in F(>) p ).

Theorem 1.16: Let jf be a prime ideal in F and suppose
(|A ) = with a > 0 and (OZ, ) » (l). If (a,>? ) = 1, is the

A ___
power of a prime ideal in F( ). If a = 0 and (-? , J2 ) * (l),

then $  is the product of Jl different prime ideals in F( s| p ) in
case the congruence

q
[ 1 5 ^  (mod. )

d__
is solvable for ^  in F, and remains a prime ideal in F( sj p ) in
case this congruence is not solvable.

Theorem 1.17* Let t be a prime divisor of (l - ̂  ) in F such
that ( 7, p ) = (l). Suppose (l - "£ ) = 7* ? 1   ̂ ^'* s

Jl .Then 1.) 7 is the product of 51 different prime ideals in F(>4p )
in case the congruence

ja s (mod. £ a ^ +1)
__

is solvable for ^  in F, 2.) 7 remains a prime ideal in F( <4 p )
in case the congruence of 1.) is not solvable and the congruence

p  s (mod. 7 a!l)
is solvable for 5- in F. 3.) 7* is the power of a prime ideal in



8
| -F( \Ua ) in case the congruence of 2.) is not solvable.
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CHAPTER II
GENERAL THEOREMS

In this chapter we consider the problem of corresponding resi­
due systems mod* an ideal Ol for two general number fields, and also 
for two number fields F^ and Fg each normal over their intersection 
Fl A Fgr ^he main result of this chapter is Theorem 2.5 which gives 
a necessary and sufficient condition for two number fields to have 
corresponding residue systems mod. an ideal which is a prime ideal in 
both fields.

We first show that we need only to consider the case in which 
the modulus eft is a power of a prime ideal.

Theorem 2.1: Let Ut be an ideal in the two number fields F-j_ and
Fg, and suppose F^ and Fg have corresponding residue systems mod. UX . 
Then (K has the same prime ideal decomposition in F]_ and in Fg.

Proof: Let

F2« Let oL be an integer in F]_ such that o<. is exactly divisible by
and ( o i, x / j j  9 (l) for i - 2, ..., r. There exists an integer 

£ in Fg such that
<* = $  (mod. cfl )

and thus in F]_ U Fg we have ,(J l ) *» Since is in Fg and
Ol <Z F2 , it follows that
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A « =  F2.

In the same manner it follows that
/ i C P 2 i - l, r

and also that
F^ 1 = 1, •. •, s.

Therefore in F]_ and in Fg we have

In Fg the l%± are prime ideals and hence

° i s . i
in Fg for some j. In F^ the ^  are prime ideals and therefore

A  I
in Pj for some k. Thus in F^ (J 13?we have

A  I ^
which implies that

i W j - f c
in F]_ and in Fg. By renumbering and repeated application of the 
above argument we obtain r ■ s and

^ i  s ^i
for i ■ 1, r ■ s in F]_ and in Fg. Hence X  has the same prime 
ideal decomposition in F]_ and in Fg,

Theorem 2.2» Let c/Z be an ideal in the two number fields F^ 
Fg. Then F^ and Fg have corresponding residue systems mod. Ul if 
and only if 61 * * ... *^*r where ^  is a prime ideal in
and in Fg, and F-j_ and F2 have corresponding residue systems
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mod. for i ■ 1, ..., r.

Proofs Suppose F^ and Fg have corresponding residue systems 
mod. 01 .  3y Theorem 2.1 we have

at -
in F]_ and in F2 , where ^  is a prime ideal in F]_ and in F£. It fol-

1 0lows that F^ and Fg have corresponding residue systems mod. y  ̂ i for 
i * 1, ..♦, r.

Conversely, suppose 01 * * ...* in F]_and in Fg, where
^  is a prime ideal in Fj_ and in F2, and that F^ and F2 have corres­
ponding residue systems mod. for i * 1, ..., r. Let oc be any
integer of F^. There exist integers ^ in F2 such that

2 $ i (mod. ̂ * i) i ■ 1, ..., r.
By the Chinese remainder theorem applied in F2 there exists an in­
teger $  in F2 such that

£ a ^  (mod. i ■ 1, ..., r
and hence

5 $ (01) .
It follows that F^ and Fg have corresponding residue systems mod. OZ .

In order to prove the main result (Theorem 2.5) of this chapter 
we first prove two preliminary theorems.

Theorem 2.3* I*et Fj_ and F2 be two number fields, F = F-j_ fl F2 , 
and let be a prime ideal in both F^ and Fg. Suppose F-̂  and Fg 
have corresponding residue systems mod. ̂  3 and let Fn be the small­
est normal extension containing F^ and F2 . Then for every auto­
morphism A in ̂  (Fn I F) we have
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c<^ ■ (mod.

o<2 a °<2 m̂od*
for every integer o<i in and c*2 in F2.

Froof t Let and ̂ 2  b® subgroups of °^(Fn | F) -which 
leave F]_ and F2 fixed respectively. Since the ideal is contained 
in F̂ -and in F2, we have

c V d>A = y 3
for every automorphism A in the group ^  U  ̂ 2* S in ce F ■ F]_ /I F2, 
we have by Galois theory that * 7 2 corresponds to F under the 
Galois correspondence between subgroups and subfields. Hence

^ 1 U ^ 2  = ° 1 < Fn l *)•
Denote by (i « 1, 2 ) the set of automorphisms A in ̂ (Fn J F) 

such that

°*i s °*i m̂od* i = 1, 2
for all integers in F^ for i * 1, 2. The sets are subgroups 
of °J (Fn | F). Furthermore the sets SjL contain i for i = 1, 2.

Let A be an automorphism of S2, For every integer in F^ 
there exists an integer oi 2 in F2 such that

< * 1  2 c*2 (mod. {/•*).
’Therefore

(e*-̂  - c*g)A -  0 (mod.

= o< g (mod.
A

o^l 5 o^2 (mod.

h. ô-j_ (mod. .
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Hence the automorphism A is also in and it follows that

S2 CL
Similarly S^CI S2 and therefore

Si » S2.
Thus

S1 - s2 ' ̂ < Fnl *)
since S^ D  % _  for i - 1, 2 and U 2 * °J(Fnl F)*

Corollary 2.3.It Under the conditions of Theorem 2,3 it follows
that

Ff F s 0 (tfai3> Ff F * 0 V"2J)
where n^ + 1 * (Fj| F) and ng + 1 a (Fg | F).

Proof: The corollary follows from Theorem 1*6 and Theorem 2.3*
Theorem 2.1;! Let F]_LD F be two number fields and let IP be a

prime Heal in F̂ . Suppose that for every integer ot in F̂  we have
ota (mod. f t ) i = 1, ..., k a (F-̂  \ F)

Then p i s  of order k « (F̂ i F) with respect to F.
Proof: It is clear that /^coincides with all of its conjugates*

Let Fn denote the smallest normal extension containing F̂ . Let i?a be*
a prime divisor of P in Fn and let /  in F correspond to JP,

The residue field mod. i? in F]_ is an algebraic extension of the 
residue field mod* ^  in F by Theorem 1.3* Its Galois group is gen­
erated by the automorphism ©;-% where N (^) is the absolute
norm of in F, Let cO be a primitive root mod. P  in Fi. By Theorem
1.10 there exists an automorphism A such that

* *>A <«,).



Ik

But
cO A s cl> (mod. P  ).

Hence
^  (mod>

^N(</) 5 ̂  (mod. P).

But this means that oti is in the field of residues mod. in F or
CO s ^  (mod. ^  in F,

Hence p  is of degree one over $  and therefore by Theorem 1,8 of
order k » (F̂ J F).

Theorem 2.5* Bet F^ an<̂  *2 3'wo number fields and ^  be a 
prime ideal in both fields. Then F^ and Fg have corresponding resi­
due systems mod, if and only if ^  is of order (F-jJ F^ A Fg) in 
F]_ over F]_ 0 F2 and of order (Fg I F^H Fg) in Fg over F^H Fg,

Prooft If F^ and Fg have corresponding residue systems mod.
, it follows immediately from Theorems 2.3 and 2.1* that the order 

of satisfies the conditions of the theorem.
The converse is clear since ^  is of degree one over Ff A  Fg by 

Theorem 1.8, and therefore by Theorem 1.1* every residue class mod, 
contains an integer of F-^A Fg.
Corollary 2.5.1* Bet cfl be an ideal in the number fields F^ and

Fg. If F^ and Fg have corresponding residue systems mod. (Si , then
(Fx | Fj A  Fg) = (F2 I FiC \ Fg).

Proof* The corollary follows from Theorems 2.2 and 2.5.
In the remainder of Chapter II we consider the case in which the 

two number fields F̂_ and Fg are normal over their intersection F-̂ A Fg.
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Theorem 2.6i Let and Fg he two number fields each normal 

over F a F^A Fg and let ̂  be a prime ideal in F^ and in Fg. In 
order that F^ and Fg have corresponding residue systems mod. it 
is necessary and sufficient that the inertial group of *£ in Fj over 
F be equal to the Galois group of Fj over F for j = 1, 2.

Froof: The condition is sufficient since by Theorem 1.9 V  is 
of degree one in Fj over F (j ■ 1, 2) if the inertial group of ^  in 
Fj over F is equal to the Galois group of Fj over F (j = 1, 2).

Suppose Fj_ and Fg have corresponding residue systems mod. 
and let F^ denote the inertial field of in F^ over F. By Theorem 
1.9 the order of ^  in F^ over F is equal to (F]_| F̂ ), and hence from 
Theorem 2.5 we have

(Fx | F±) a (F-lI F) .
It follows that F^ • F, and hence the Galois group of F-j_ over F is 
equal to the inertial group of ̂  in F^ over F. In the same way it 
follows that the Galois group of F2 over F is equal to the inertial 
group of in Fg over F.

We were not able to obtain a necessary and sufficient condition 
for two number fields to have corresponding residue systems mod, a 
power of a prime ideal. However, if F-̂ and Fg are normal over 
F1 f t f2j the following theorem gives a necessary condition for F-j_ 
and Fg to have corresponding residue systems mod. a power of a prime 

ideal.
Theorem 2.7* Let F-j_ and Fg be two number fields each normal over 

F ■ F]_ A  Fg, and let ^  be a prime ideal in F^ and in Fg. If Fj_ and
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Fg have corresponding residue systems mod* » then the 
ramification group of ̂  in Fu over F j.s equal to the Galois group 
of 5^ over F for k = 1, 2.

Lemmas Let F^ and Fg be two fields normal over F = F-j_ H Fg.
Then every automorphism of ^  (F̂  | F) can be continued to an auto­
morphism of (F^ U  Fg | F) for i ■ 1, 2.

Proofs The lemma follows directly from Galois theory and the 
fact that ^  (F̂  U Fg | F) is the direct product of ^  (F̂  | F) and 
°-}(Fg| F).

Proof of the theorems Let A be any automorphism of ^  (F^t?Fg|F). 
It follows from Theorem 2.3 that

oC^ * c^Gnod.

for every integer ot ± in F^ for i ■ 1, 2. Hence if A^ is an auto­
morphism of ^  (F̂ | F) it follows from the lemma that

(mod.

for every integer c*.j_ in Fj_ for i = 1, 2. Thus the ramification
group of in F^ over F is equal to the Galois group of Fj_ over F
for i ■ 1, 2.

Corollary 2.7.1s Let F^ and Fg be two number fields normal over
F ■ F^fi Fg, and let be a prime ideal in F^ and in Fg. If F^ and
Fg have corresponding residue systems mod. for j > 1 , then
(F  ̂I F) ■ (Fg | F) m pT where p is the rational prime belonging t o  $  .

Proofs By Theorem 2.7 we have
^(Fxl F) = % _  - ... = ̂
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where is the jth ramification group of *4 in F^ over F. Sy
Theorem 2.5 the order e of in over F is equal to (F^) F).
By Theorem 1.12 we have ^ i /  °$2 cyclic of order e0 where

e - e0 pr (e0, p) » 1
and p is the rational prime belonging to the ideal . Therefore

(Fi | F) * eoPr.
Since 3 1 ®0 » 1 and

(Fi-1 F) = pr .
By Corollary 2.5.1

(Fx l F) - (F2 | F) * pr .
Corollary 2*7*2: let F^ and F2 be two number fields normal

over F » F^n Fg, let 01 be an ideal in Fj_ and in Fg, and suppose F-̂
and F2 have corresponding residue systems mod* CJl . Then 01 is not 
divisible by the square of a priwe ideal if (F̂ | F) ■ 0?g | F) is not
a prime power. If (F̂ \ F) = (Fg | ?) * p^ is a prime power, then

CJl* where f  ^  are prime ideals and c/Zx

divides a'power of p.
Proof: The corollary follows directly from Theorem 2.2 and

Corollary 2.7.1*
Corollary 2.7.3: Let F^ and F2 be two number fields each nor­

mal over F a F2, and let ^  be a prime ideal in Fj_ and in F2.
Let Vj_ denote the order of ramification of ̂  in F^ over F for 
i - 1, 2 and suppose v1 > Vg >  2. If F^ and Fg have corresponding 
residue systems mod. c^(FgJ F) is Abelian of type (p, p)
where p is the rational prime belonging to ^  *
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Proof: If P-j_ and Fg have corresponding residue systems

mod. it follows that from Theorem 2.7

tf(i,2 l f ) « ^  - ••• - % 2
where is the ramification group of in Fg over S'. By the
definition of Vg we have

x . 1 1 ,the group identity. By Theorem 1.12 we have *v2 I J vjjH  Abelian 
of type (p, p) where p is the rational prime belonging to .
It follows that *<J(Fg| S’) is Abelian of type (p, ..., p).

In case vg - 1 in Corollary 2,7.3 the group °?(Fg| S') is cyclic 
of order eQ where (P2 j S’) • e^pr, (e0, p)> » 1, p the rational prime 
belonging to •

The condition of Theorem 2.7 is not sufficient as the following 
example shows. Denote by R the field of rationed numbers and let 
I1 « E(’f2), Fg s R(s[3) , m (nT2). It is clear that the second 
ramification of the ideal (v[”2) in Fg over R is equal to the Galois 
group of Fi over R, and likewise for F2. However, F]_ and F2 do not 
have corresponding residue systems mod. (vT2)̂ . For suppose

vf2 S a + b >|3 (mod. 2) 
in the field R(*j2, 3 ) where a and b are rational integers. We
may suppose that both a and b are odd, for otherwise 2 I \[2*. There­
fore both a and b may be replaced by 1. Hence

■s|~2 s 1 4 vj 3 (mod. 2)

and



is an integer. Thus

2 2
oust "be an integer, which is a contradiction.
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CHAPTER III

CORRESPONDING RESIDUE SYSTEMS
IN FIELDS F( )

Let 1 be a rational prime, £  f  1 an A?**1 root of unity, and F
a number field containing £. In this chapter we shall consider

^ ^ |— ' ■■■■
fields of the type F( *** wilere [*i 311 in-te8er
of F and not the power of an integer in F.

X iLet P  be a prime ideal in F( 4”̂ )  and in F( ^
Theorem 2 .5 in order that F( 4^^) and F( ̂  |U2) have corresponding
residue systems mod. P  it is necessary and sufficient that P  be^ ^  . 
of order 5 in F( 4 ^ )  over F and in F( *4^*2^ over Therefore
by Theorem 1.7 it is necessary and sufficient that P  divide the
relative differente

* 5 i

I
F

of F( over F for i * 1, 2. If ^  denotes the relative con­
ductor of ? !  (i * 1, 2), then

,<5l
F

£ -_ g ̂
for i » 1, 2 since ( 4 iAi) J is the relative number differente of 

ja £ over F (see Theorem 1.6). It follows that |P must divide 
( ji for i is 1, 2 if F( and F( 2  ̂have oorres"
ponding residue systems mod. IP .

Denote by the prime ideal corresponding to K  in F. By 
Theorem 1.16, if /  divides then ^  F( If and
only if
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(pi) = 1 * 1 , 2

where (ai# 8.) * 1 and ( ^ ,  * f ) * (l). Thus we have the following 
theorem.

j .. g __ .
Theorem 3.1* If ) *1, then F( and F(

have corresponding residue systems mod. if and only if
< f*i) «

with (a^,2) = 1 and ) = (X) for 1 = 1, 2.
5“ ^ ,From Corollary 2.7.1 it follows that F( "{"pi) and F( 4p~2)

do not have corresponding residue systems mod. y* J for j > 1 in case

( M )  = a).
0 __

We now consider prime ideals in F( >Ka ) which divide %, that is,
o ?.—lprime ideals which divide the ideal (l - ) since (l - £ ) in

F. Let
(i - £ ) = L a ^r

in F, where (£>, OX ) « (l) and £ is a prime ideal in F, and let t be
a prime ideal of F(Vjp ) which divides iv. By Theorem 2.5 we are
concerned only with the case in which X is of order 9. in F( )
over F. that is

%
i  = r

g (__in F( )• We may suppose without loss of generality that either 
(ja, L )  = (l) or ((X, (see Hecke, Theorie der algeb'Mschen
Zahlen, page 151). By Theorem 1.16 £» becomes the l^power of a 
prime ideal in F ( V p  ) in case (jl, ■ k . In case * (l^ b*
Theorem 1.17 £ becomes an power of a prime ideal in F( ) if
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the congruence

y - = ̂  (mod* £ ai) 
is not solvable for ^ in F,

The main result of this chapter is the following: if 2

are two integers of F such that & ■ 7 in F( and in F(
and 7 has ramification orders 2; v > a in F( ^ 2  ̂over

 ̂ ^ __
then F( •{ f^i) and F( 4 f”* 2) have corresponding residue systems mod.
•r v - ac

We consider first the case in which ( y ,  £> ) = L  .
Theorem 3.2: If ( ja, £,̂ ) » C, and n is a positive integer,

then £> ■ L in F( $ and every integer oi in F( 4 y - ) satisfies
the congruence

jk  9 f--- _
c< a c*o 4 4 ... + S f* (mod. 1 )

where the are integers in F. Furthermore the order of ramifi­
cation v of 7 in F ( V ^  ) over F is equal to a R 4 1.

J[ Q __
Proof: Since ( y ,  £»̂ ) * £» , we have L “ 7 in F( Af-1 )
v *r* »r~where L is a prime ideal. It follows that s is exactly divisible

by I . Let n be any positive integer. If <x is any integer of F we
have j S.----

OC 5 CXq + <*^<(^1 4 ... + otn_3>Ni ft11"1 (®od» 7 n )

where the oc ̂ are residues mod. 7 and may be chosen in F since 7 
is of degree 1 with respect to F.

By Theorem 1.13 the order of ramification of 7 is equal to v 
if and only if
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^  s v  V  <»°d. f > ,  ^ ? V  (»od. r +1>.

Hence v * a Jl + 1 since (l - "£ ) = CTl C&, C* = Z , and ( H , (ft) *(l), 
Theorem 3*3! If (■* 2 are 'two integers of F each exactly

fl £ ̂
divisible by C , then F( -(̂ 7̂ ) and F( 'Tp"2  ̂have corresponding resi­
due systems mod. £ afl+l-â

Proofs Choose a fixed residue system mod. t  in F consisting 
of &th p0werSj which is possible since C is a prime ideal in F. 
Represent the residue class 0 by 0 and let n ■ a(J?- l). Since 
is exactly divisible by C> we have

ji*2 5 o<.̂  |* + ... + (mod. kn+1)
S. Pwhere the belong to the fixed residue systems mod. chosen above. 

Hence
ft.—  ft—  n ft ft t n ,( S|7X- o C i ^ i  = -o^mod.

= 0 (mod. fLn+1)

since all mixed terms are divisible by A L . It follows that
V f  = «  V j Y  ... + 0Cn ^  (mod. t n+1) ,

ft  8,—
and by Theorem 3.2 R( and F( N have corresponding residue
systems mod. ak*,I“a.

1 JlBy Theorem 2.7 the two fields F( *4"^)* F( n0^ have
corresponding residue systems mod. where v is the order of
ramification of I . The following theorem gives a sufficient condi-

j __ ft —
tion for F( 4 F( 4^2^ to have corresponding residue systems
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mod. £v.
Theorem 3.it* Let n >  t* 2 be two integers of F each exactly 

divisible by £> . If
^ 2  a (mod.

then F( and FC^TjAg) bave corresponding residue systems
mod. I a +̂I, that is, mod. Xv where v is the order of ramification 
of t .

Proof: Since ^ 5  (mod. ) and.

( ^ 2  ̂- 2  ̂ - fl “ t^2
it follows that

^ T i 5 ^t*2 m̂od*
Suppose

X.) V f x  = l̂ r 2 (»od. r >  and * l4 f  2 <»°d. I”*1).

For any polynomial ?(x, y) with integral coefficients such that both 
x and y occur in e v e r y term we have

? ( V f  2> 5 ? < ^ 2. ^ 2) (“ >d- im n-

Thus

( - V ? 2)* = f"l " t*2 (mod* 51

2.) ( l'[p1 - V ^ 2 ^ ~  f 1“ t12 m̂0d*
If

^ 1 - ^ 2 ^ °  Uod-
Then

1 (a A ■«• l) <£ a $. ( - l) «■ m + 1
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t* Q xlsince ■ ja2 (mod* X* )* Therefore X< - aX +• m ♦ 1 and
a X + X - l < m  

m > a X + 1.
On the other hand if

^  5 (mod. L a(5“l} 2m 7)
then

(V p x  - V p 2) s 0 (mod* ^ a a ‘1) 2m T )

from 2.). Thus by 1.)
m X > a X ( X - l ) + m  + l 
m( X - l ) > a X ( X - l )  + 1  
m( X - l) > a 4(i - 1) 

m ?■ a X
and hence m > a S. + 1. Therefore in either case m e a X + 1  and we 
have by 1.)

i - 4 ^ 2  s ® (moci» t a^ .
ji __

Let oc be any integer of F( -4 and v the order of ramifica­
tion of 7 , that is, v ■ a X + 1. By Theorem 3.2

5 ocQ + + ... + ̂  v_i (mod. £v)

where the oc * are integers in F. Let
Xi—= oc0 f*2 + *»• + CNf v-1^ 2*

then
oC s £ (mod. £V )
^ ■— — *

and F( M  t*2  ̂have corresPonding residue systems mod. 7 .

We now consider the case in which ( jl* , K» ) * (l) and the congru­
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i-ence j-»- - (mod. L  ) is not solvable for | in F, that is,

( £/ ) » (l) and £»» t in F( '4"p ). Let k be the largest pos­
itive integer such that the congruence

3 ^  (mod. £>k)
is solvable for ̂  in F. Clearly 0 ^ k <■ a £ and k is the largest
positive integer such that the congruence

-fp S -5j (mod. Z’k) 
is solvable for %  in F.

Theorem 3.5* ket |a be an integer of F such that (f* , C ) » (l)
ft

and ■ 7 in F( ->fp ). Let k be the largest integer such that
ja 5 (mod. L k) is solvable for % in F. Then the order of rami­
fication v of X with respect to F is equal toafl + l -  k.

Proof* Let oc in F be a solution of the congruence 
p. a ̂  (mod. £ k) with k maximal. Since p. - oĈ  is exactly 
divisible by & k, it follows that ^[p - oc is exactly divisible
by k. Furthermore we have (k, X ) * 1 (see Hecke, Theorie der
algebraischen Zahlen, page 153). Thus there exist positive integers 
x and y such that k x = 1 + X y.

Let Tt be an integer of F exactly divisible by £ , that is 
(-fl ) a ffi C where (01, £ ) = (l) and 01 is an ideal of F. There ex­
ists an ideal /C  in F such that c/% f t  a (u>) is principal and sC is
prime to £.

Now, let
_ -.*)*
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Then

( f ) - ( ̂  - o Q x . ( -yfp - <* )x/g7 
or7 ny <x7 c / * 7

( ? ) , dfr -oO**:y
(co^) ^

Hence

(«/f) = j J H _ = ^ U 5 $ L  .
t 7

The ideal fraction on the right in the last equation is an integral 
ideal exactly divisible by 2*. It follows that toy f is an integer 
of F( v[ja ) exactly divisible by 7 • bet

y  _  c 0 7 ( 5L4 h  - C ) X0 = w5yf = ---- 1 y----- 1—  •
TT

Since & is exactly divisible by 7 it follows from Theorem 1.13
that the order of ramification of t is equal to v if and only if
9 - 0^ is exactly divisible by ?v where A is the automorphism 
^ (_ Su__
■HZ — ^  , that is, if and only if

cOy ( ^ )X __ u)y (g -c* )X
Tty tTy

is exactly divisible by ^v. Since , Jo ) - (l) this is true if 
and only if

( ^ a  - <*)x - ( v -  o* )x

is exactly divisible by = Z kx~^ t * m Now
c?iff .<-)*. -V? ) *(Vp: -«op

. (Vj; --)x + * < - - )I_X (?Vp Vp) +...
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Therefore

(? ^  - *)* = ( V ?  - « )* (mod. zk(x* > (1 - * ) )
E ( ^ 7  - <*)x (mod. Y k(x‘l) 7 ai) 

since 0 < k < a Jl and (l - ^ ) * £ aot with (£>, OT ) * (l). Further­
more this congruence holds exactly mod.  ̂k(x-l) f0]_]_0WS that

k x - 1 + v = k(x - l) + a £ 
v = a fc + l -  k .

Theorem 3.6: Let f^be tw o integers of F each prime to C
Jl 1 , Ar—and such that <£ = 2" in F( 4 p  j_) and in F( 41f* g). Let k^ be the 

largest integer such that the congruence J*i * 3^ (mod. £>ki) is 
solvable for j? ± eua integer in F( i = 1, 2). Let v ± = a S. + 1 - k^

£ p.... A t" *
for i ■ 1, 2 and suppose ? ^ 2 >  a* Then ̂  H f-* ]_) 311(1 "‘"m 2̂
have corresponding residue systems mod. ^T2-a.

Proof: Since exactly divisible by £,ki, then
Q ___ .
"TFi “ % i is exactly divisible by I  i(i * 1, 2). Since (k̂ fi) * 1 

we have positive integers x̂  and y^ such that k^x^" 1 + X y^(i * 1,2). 
Let fi be an integer of F exactly divisible by & . Using the method 
of Theorem 3.5 we obtain an integer of F{ 4 j.)

iox, 2
Ttyi

which is exactly divisible by X .
% v We now show that ©j_ is congruent to an integer in F mod. £ i

for i - 1, 2. We have

-a
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e* . - Ei)3**
1 „ » *  T,yi*

nhere ^  is an integer of F and ■ 0 (mod. L^). Hence

A* - ...)
W 71*

. . (̂ yiâ  3ft-1 P,.i* • ••>
TTyii ^

r UJ7** rlfr (mod. t * H l  - k i - . )
yi xTT 

= «?* («od. e,yi - *).
„ yiJ!

- m -But -jr. = ■ ■ ■ ■ 8- —  is an integer of F, so that ©. is congruent to
Tr 1

an integer of F mod. £iVi”a for i = 1, 2.
We now show that the power of every integer of F( is

congruent to an integer of F mod. for i = 1, 2.
I.__Let be any integer of F( vj p. and let n £ v^- a. Since 

is exactly divisible by 7

6 = 6 + £, & + ... ♦ £ , © r 1 (mod- X n )' r o ‘ 1 1 ‘ n-1 1
where the ̂ ̂  are residues mod. X and may be chosen in F since I is
of degree 1 over F. Hence Jc Q ji
[? ■ ( $ 0 * ••• + ^n-1 ^ 1  - f - ( ^ 0 + ... ♦ ^ n_1©i:!)(mod .fi )

= _ ( £  + ... + ^ 1 6>i(n“l) ) (mod. JJ )

= g* - <T (mod.
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where 0" is an integer of F. It follows that

>̂ = tr (mod. £Jvl"a).
If and ^ ' are two integers of F( i' such that

^  5 0“ (mod. £Jvl“a) and * <r (mod. jLvl“̂
then

Also if
f ' (mod. 7 ^ ) .

5 (T (mod. d vl“a) and = cr • (mod. ^.^1“̂ )

■where CT, O’1 are integers of F, then 0" = cr1 (mod.
I,__The number of residue classes mod. in F( -4 is equal to

the number of residue classes mod. Lv3.“a in F. It follows that if 0“ 
is any integer of F there exists an integer |> of F( 4 such that

>̂ = (T (mod. k  ^ ) .

In the same way, if is any integer of -K 4 2' there exists
an integer f  of F such that

i*= r  (mod. dV2"a ) .
There exists an integer of F( such that

Since 2. "v̂

But

and therefore

^  s -T (mod. fsjvl“a) .

^  5 (mod. t72-a ).

( £> - "ll ) s $ ~ ~i ̂  (mod. S.)

^  (mod. Z r V + )  .
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Thus F( 4 j) and F( have corresponding residue systems
mod. t v2"a.

By combining Theorems 3.3 and 3.6 we have the following result.
Theorem 3.7* If ^x> ̂ 2 are two integers of F such that C - Z 

^_
in F( ■fFi) and in F( 4 ^ 2 ^  333(1 has ramification orders 
> v > a in F ^ ^ ) ,  F( VTfXa) over F, then F( -4 ]_) and F( '4~^2)
have corresponding residue systems mod. IT-a.

Proof: We need only to consider the case in -which is exact­
ly divisible by (4 and ^  i® prime to C , the other two cases fol­
lowing from Theorems 3.3 and 3.6. Let v^ s a 1 + 1 be the order of 
ramification of t in F( *4 ̂  over F, and let v2 be the order of 
ramification of 2 in FC*/^,) over F. From Theorem 3*5 it follows 
that vx - 1 = a 8 2. V2-

« __
Let be any integer of F( 'if-'x) 333(1 n * a % - a. Since

47^1 is exactly divisible by 1 , it follows that
£ „ 51 f  .

OC 5 aCQ * c * 1 ̂  J^x ♦ «»• +cscn„x m̂od*

where the o( ̂  are integers of F. Hence
u  ♦ ... ♦ (mod. ^ n)o 1 f 1 n-1 V 1

oC' = (T (mod. £,a ̂ “a)
where 0- is an integer of F. Using the method of Theorem 3.6, there

8.,—exists an integer |> of F( 331013 that
<r (mod. L T2_a).

Therefore
oL' = ^  (mod. ^4v2“a).



cu. = (mod. Z Y2~& )»
SL—  5̂ ( 

Thus F( ^nd have corresP°nddn& residue systems
mod. 1 v"a where vz Z v > a.

f. Theorem 3.8* Let p p  be two integers of F, each prime to 
k, such that C s 7 in F( and in F( 2). Suppose
^1 5 ^2 (mod. U & )̂ and let k be the largest integer such that the

& k 1 kcongruences ^  E ^  (mod. £, ) and = oc (mod. d , ) are solvable
9 .______  x  -for oc. an integer of F. Then F( and F( \J j-Cg) have corres­

ponding residue systems mod. J v  where v » a J l + l - k .
afi.Proof* Since ^  E ju.g (mod. £, ), it follows that

m̂od»
using the method of Theorem 3»U. We have k x = 1  * Jl y and following 
Theorem 3.5 it is sufficient to show that

( - *  f  s < v 2 - <*>* c-od. r +Jy>.
We have

C ^ 2 "  °^)X= [ (^ T l  “ °° * ( “ V i * } *
/ ̂ 1—  \x r —  \*“̂ v ̂ 1— - ^rrr \— ( s(^2. “  ̂ 4,x («J^C2.“ ĉ ) ( s4(^2“ v* ^ i ) + •*•

(mod. Z a#)

. ( ^ . o c ) 1 (mod. 2 a i )

= ( (mod. Z T* Sy).

Thus F( ̂ Tp-j_) and F( «sff72) have corresponding residue systems 
mod. 2V ‘"here v * a A  + l -  kis the order of ramification of 7 in
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We remark that if F( 4"p-|̂ then 4p^ ^ >[̂ 2Cmod.

for otherwise we would have corresponding residue systems mod. 7
contrary to Theorem 2.7.

A necessary and sufficient condition for F( and F( *Tj*2)
to have corresponding residue systems mod. is not known to the
author (where v is the smaller of the ramification orders of 1 in 

JL jl
F( over The T°13-ow:5-n§ theorem shows that incase

a JLr~ .v a ic* F( >Tp2.) and F( *(^2) ' have corresponding residue sys­
tems mod, 1®̂ -. if and only if. ^  and ^ 2 satisfy a system of 
congruences and an example is given to show that this system is not 
always solvable.

SL,—  —Theorem 3.9* If F( 4 ^ )  and F( *4^2^ lmve corresponding resi­
due systems mod. Jua then the following congruences must be solvable
v . i a t l - v /  rafi~a \1) 1 0C0 + otx V  ^  (w\oA. tv* )
.  ̂ t ,5 SI l~\ J NT"  C. \

2 ) -*■ • '•>^  v
, e i A 2 , p-®.

 '*'*

3) ° -fc,)
e«*-~ Wr-*\ i--

■■ -- ̂  U - O ^  - i. 
where ocq, ..., o<̂  are integers of F and e^ m are
positive integers and i = 1, ..., 4-1* and conversely.

Proof: Since FC^fj^) and F ( ^ * 2) have corresponding residue
systems mod. £,a it follows that 1, •4"p2* •••» *s|i~I is a basis

Xr—for the residue system mod. (,a in F( vTp2). Thus



•where the are integers of F. Therefore
s c«*o + +... ♦ (m°d*

and it follows that

T {(e<:o+0<l ̂  IV’"*“ta. - (<V°4 +Vl r21} ]
r a ^ r -  l C T - lis congruent to a number of F mod* lv . Since

n a * p ia basis for the residue system mod. k. , the coefficients of N J**2
/*  S.must vanish mod. . Thus the congruences

(t { , 4 . * * *-• n!T **-»>"-*“S.-1Y** M  , 1 " 
m ~ i)». j - o  v, »x 1g > *b~"" ^

ea\~- + , 4t‘AS, /q ^ov. j,- |t---
+ +  ̂— uaJI •*• t

are solvable for i ® 1,..., - 1 and i * 0 mod. £■ .
In Theorem 3.10 we consider a special case of Theorem 3*9 in 

which F : S ( ^ )  and  ̂= 3 •
  £  __

Theorem 3.10s If F = RC£), $1=3# and F( and F(
have corresponding residue systems mod. (l - £ ), then either

5 ©t3 pg (““d. 3(1- ?) )
for oc in H( 5 ) and 6 = 1 or 2, or

^i = ^2 = 0 (mod. (l-£) ).
Proofs In R(<0 the ideal (l - %  ) is a prime ideal, that is,

(l - ) s C .  Since and F(£fp2) have corresponding resi-
X

due systems mod. (l - £) we have (l - £) = T and the orders of
rt 51__

ramification of I in F( 'Tpi), F(4 p 2) over R( £ ) are >. A and
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hence either X or X+ 1. If the order of ramification of Z in 

* _F( 41* i) over R( ̂ ) is £ + 1, then ^ ̂  may be chosen exactly divisible 
by £ » Cl ) and l o T j * ^  > 1 ^  is a basis for the residue sys-

ft
tem mod. (l - % ) in F( vu']_). If the order of ramification of I in
F ( ^ l >  over R(^ ) is equal to 2 , then k = 1 is the largest integer

£ ksuch that the congruence p-j. a % (mod. £, ) has a solution % in 
R ). In this case ^ is exactly divisible by I , and
again 1, ^T^.* ds a basis for the residue system mod. (l- £ )

S»r-" Xt—in F( ̂  over R( £ ). The same statements are valid for 4 p2*
X.I—  S. I_Since F( spj) and F( sjvg) have corresponding residue systems

mod. (l - £ ), we must have
1.) 5 c*o 4- o<1 (mod. (1-^) )

2.) ♦ oC\  ^ 2  * **2 t*2 * 3 ̂  m̂od*3(l-^ ) )
where P (x) is a polynomial with coefficients in R(£ ). It follows 
that P( n|^2  ̂I® congruent to a number in R(? ) mod. (l - % )•
Since 1, *4^2* 4 |*2 is a ̂ asis of residue system mod. (l - £ )
in F( the coefficients of 34 F 2 and V i  must vanish. Hence

3.) oC1 + <*Q c<2 *̂2 + ̂ 1  u 2 (*2 - 0 m̂od# ^

U.) c*.Q o<^ + «<1 o*2 ^  ex'2 = 0 (mod. (l-^ ) )

We consider two casesi ^  g s 0 (mod. (l- £ ) ) and
^ 2 ^ 0 (mod. (l**^) )•

Suppose f̂ 2 - ® m̂od* (l“ ̂ ) )• Ihis implies that o<0 or
<*-!_ = 0 (mod. (l-£) ) from 3.)* If « Q = 0 (mod. (l-^) ), then 
^ 2 0  (mod. (l-’S ) ) from 2.). If ocQ jf 0 (mod. (l-£ ) ) and
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8 0 (mod. (l-^) ), then °<2 - 0 (mod. (l-1>) ) by U.) and 

therefore from 2.) we have £*-jS o<̂  (mod. 3(1-^) )• But the last 
congruence means that (l - ) is not an power in and
hence we can't have corresponding residue systems mod. t  . Thus if 
^ 2 - 0  (mod. (l-^ ) ), then ri s °  (mod. (l - ) ) - provided we
have corresponding residue systems mod. (l-*£).

Suppose 0 (mod. (l-^) ). If cxq s 0 (mod. (l-£) ) then
either <*2 or ot2 5 0 (mod. (l-^) ) from 3.). It follows from 1.) 
that "\J ̂ 1  = ot H  ̂ 2  (mod. (l-"<£ ) ) where o< ̂  or 0 ^ 2 is in

O ^
R(^ ) and 6. -  1 or 2. Hence {*•]_ 5 oi jAg (mod. 3(l-£ ) ). We note
that if both and crfg 5 0 (mod. (l-^ ) ), then {a^ = 0 (mod. (l-~5) )
from 2.) which is impossible by the first case.

If c<Q 0 (mod. (l-^ ) ) and either 2 0 (mod. (l-£) )
or <*2 5 ®  (mod. (l-”£ ) ), then from 3.) it follows that 
ot = = 0 (mod. (l-"5) ). Hence from 2.) we have
|*1 = (mod. 3(1-?) ) which is impossible as in the first case.

If <*Q t 0 (mod. (1-? ) (mod. (l-*J) ), and
oig £ 0 (mod. (l-F) ), then = o<g = Y"\ = 1 (m°d.(l-^ ) )

O
and it follows from i*.) that j-̂g + 2 2 = ̂  (m°d.(l-la) )•
Hence +
that 5 0 (mod. 2 ) and therefore ^  5 0 (mod, (l-£ ) ). It
follows from the first case that jAg £ 0 (mod. (l-£) ) since the 
roles of ^  and p>g case one msSr be interchanged, which completes 
the proof.

m  * 0 (mod. 1 ). It follows from 1.)



If F a R(^ ), Q- = 3> pi = 2 and p2 = the congruences of 
Theorem 3.10 are not solvable. For if

5 = 2 <*3 (mod. 3(1 ) )
then

5 “ 2a * 2b ■£ + 2c 52 * (d + -e£ + f £ 2)(3)(l - £)
where a, b, ..., f are rational integers. This means that

3d - 3f + 2a = $
-3d ♦ 3e + 2b - 0
3f - 3e ♦ 2c = 0 .

Thus, from the last two equations,
3f - 3d 5 0 (mod. h)

which is impossible by the first equation. Thus 5 ^ 2 (mod. 3(1-5))
3and in the same manner it follows that $ ii (mod. 3 ( 1 - ) •  It 

follows that the congruences of Theorem 3.9 are not solvable.



CHAPTER IV
CORRESPONDING RESIDUE SYSTEMS

0    51,__ »m.—IN FIELDS F( ^ffT^ ..., vrjXr) AND F(*4p)

Let i be a rational prime, ^ / 1 an root of unity, and F 
a number field containing £. In this chapter vre consider the prob­
lem of corresponding residue systems for fields of the type

JL/—— fl. .  «m__
F( •••> ^ f̂ r̂  311(1  ̂"here •••> are inte­
gers of F (but not powers of integers of F). As in Chapter III 
let (l - ^ ) = C»acJt where !L is a prime ideal in F, Ut is an ideal 
of F, and (£,, (R ) = (l).

n , Q _
Theorem U.l* Let F‘ = F( spi* 4 ^  2  ̂'"here y-2 arQ 

integers of F, and let /  be a prime ideal of F> such that ,  % )* (iX
Then ^  is not of order X? with respect to F.

Proofs Let in F» correspond to the prime ideal P i n  F. If 
either or (^2 is prime to (° , then by Theorem 1.16 ̂  is not of
order with respect to F.

S
Suppose both ^ 2  8X8 exactly divisible by |r . Then r * r j .
1in F( iff 1 ) where is a prime ideal in F( " T p " T h u s  {^2

0__
exactly divisible by ^  in F( *T(^1). Hence there exists an inte-

S. * nger in F( ^ ̂  ̂  such that ( = (l) and
Q   ft  6____ 0_r_
"Tpl* = "PPl* v* F V  Ŝee Hecke> Theorie der alge-

braischen Zahlen, page 15>l). It follows from Theorem 1.16 that P,
is not an &tlx power in F( 4^1* = p'* Therefore / f  is not of

order X? with respect to F.



%.—  X,—Corollary U.l.l: Let F1 = F( 4 ^ ^  •••» 4 j-*r) where
P 2.* •• •» pr 31,6 in'beg®rs of F aad let V be a prime ideal in F'
such that (</, I  ) = (l). Suppose (F* | F) a with r > 1 and let
F" be a number field such that Fn A  F1 ■ F. Then F* and F" do not
have corresponding residue systems mod. .

Proof? The corollary follows from Theorem 2.5 and Theorem U.l.
Let F* 3  F, (F* | F) s and let ^  be a prime ideal in F* such

that (V,jO = (l). It is interesting to note that while is not
of order with respect to F in case F' = F( 2), may
be of order ̂  with respeet to F in case F1 = F( 4"© ) where
© is an integer of F( 4"p F°r example let P be a prime ideal
of F such that (P,X ) a (l) and let ia be an integer of F exactly

JL
divisible by P. From Theorem 1.16 it follows that P ■ in 
F( ) and Pj_ « P2 in.  ̂= ^  80 ^2
is of order f t  with respect to F.

fi(—Theorem U.2? Let |Ag be integers of F such that F( 4
and F( 4p2^ bave corresponding residue systems mod* $4̂ . If 1 ̂  

is a prime divisor of £ in F( ^ 2 ^  then ^1 iS not order
with respect to F.

jti—  Xi—Proof: We may assume that F( 4 f  4f*2). Since
F( 4 p ]_) and F( 4p2^ bave corresponding residue systems mod, £, ,
it follows that £ = 7 in F( 4"p- j) and in F( 4 p' 2 ̂ * ®uPPose

n .__
C |/t2» ^   ̂= (l)• Ihere exists an integer ©< of F( 4|*-̂ ) such that 

s oL (mod. XP), Since



liO

(*T?2 -  &■) -  ^ 2  ” ^  (mod. J!Xa)

it follows that
0 a 0 2 

|A0 : «  (mod. 2 ) •
 ̂  ̂I"***

But this means that X is not an power in F( 4"^* S |*g) b7
«f JJ ̂ ^

Theorem 1.17. Hence if Z^ is a prime divisor of £< in F ( " m 2^ 
theni Z-l is not of order with respect to F.

Suppose both ^  50:6 exactly divisible by C . Let

(t*i) = «*].£ (^i, X  ) = (1)

(t*2} = ^ 2 ^ (dV  = (1)
where 6/7̂ , ̂  are ideals of F. Then

(^2> _ ^  ^ 2
(ri) = ^  = * i  *

There exists an ideal sC of F such that = (̂ O) is principal and
(*:,£) = (1). Thus

( ̂ 2 ) 2 2 ^ 2

( ~ n x ~ ‘r*.1 /C <“>)

w .(r a . = * , , «

^  t*2Since 6?2 ĉ- is an integral ideal of F, it follows that p-̂  is an 

integer of F prime to (v . Hence

f  . r d t o L
Ki

is an integer of F prime to 0 . Since



la
J2 Jl ^p j - 1 . ^2  . ^A-l _ ^  t*2

i t*8 - r i  t*2 - T T f ^ j r
£

is the 5>th power of a number in F( -47s)> it follows (see He eke,
£   $ , —

Theorie der algebraischen Zahlen, page li±9) that F( )
o —  5L,— ,

= F( 4 —4 |"a-2̂  * ^ erei°re the case in which both j* p  ^ g are
exactly divisible by & reduces to the case in which one of {*]_, f*2 
is prime to C .

S..  o .— -

Corollary I4..2 .I8 Let F' a F( 4 4 lrilere
y  r are integers of F, and let F" be any number field such 

 ̂!  £  _
that F1 H  Fn = F. If F( and F( Nj*j) have corresponding resi­
due systems mod. A,a for any pair p- pj of the integers

0________ o__
such that F( J^T^) ^ F(~4jVj)> then F* and F" do not

have corresponding residue systems mod. any divisor of £> .
Proof: The corollary follows from Theorems 2.5 and U.2.
In the remainder of this chapter we consider fields of the type

F(\["jJ ) where m is a positive integer and is an integer of F and
not the power of an integer in F. Let ^  be a prime ideal in
F(VTl) a *1 i-11 * *2* ^  orĉer that F^ and F2 have
corresponding residue systems mod. ^  it is necessary and sufficient
that be of order in F^ and F2 over F. Therefore it is necessary
that $  divide the relative differentes and j^y • The relative
number differente of over F is equal to )S.m—1
therefore

f-1
* ^  Vi



•where is the relative conductor of over F. Hence it is
p .nm,—necessary that y divide (\J X for i * 1, 2.

We consider first the case in which is prime to S.. Let
correspond to the prime ideal P  in F. The ideal becomes an Â h

o   .
power in F(^ja ) if and only if ({*■) * ^ c f l with ( r f C/l ) -  (l) and
(a, X ) * 1 by Theorem 2.1. Suppose

(a.) = | w i t h  ( p, J i )  = (l), (a, I  ) = 1  .
4 o

Then P’ 3 in F(\fj>) where is a prime ideal and

Q3-t follows that ^  in F{ and hence
(Vp)= *Lth ( m^) = (i) .

Therefore (by Theorem 2.1) ^  becomes an Hth power of a prime ideal 
in F( say ~ 1̂ 2 • Hence 3 ^  i*1 F( ̂ J"p). Applying

n .jiltthe above argument and Induction, it is clear that Y  m $  in
F(\j~p) and thus V  is of order Am over Fe

Now, suppose V  is °f order A® over F, that is, ^  , and
let 1^ in F( ) correspond to V . Clearly is of order A with

% o a
respect to F, that is, r 3 ^  in F( 4|* ). Hence (^ ) 3 \P 01 with
(1̂ , i l l ) » (l) and (a, $ ) - 1.

Therefore, in order that V  in F(*3]I) be of order Am with respect 
to F it is necessary and sufficient that ({* ) 3 \P&01 with
( l/*, </Z ) ® Cl), (a, X ) 3 1 in F where is the prime ideal in F cor­
responding to Combining this result with Theorem 2.5, we obtain 
the following theorem.



Theorem U.3* Let f a  be iw° integers of F, m a positive
integer. Let ^  be a prime ideal in F( for i « 1, 2 such that
( V , JO =» (l), and let ^  correspond to the prime ideal P in F.
Then F(\|"p^) and F(^^g) have corresponding residue systems mod. V
if and only if (p-j) = |P%r^in F where (a, i  ) = 1  and ( f ,  tfl.) -  (i).

In case F contains the i m roots of unity, it follows from 
«m  ,m__

corollai*y 2.7.1 that p}_) and *"( do not have corresP°n<iing
residue systems mod. if ( t f  ,9- ) ■ (l).

S —1We now consider prime divisors of 9. = (l - £ ) in fields
before le*t (l - £ ) * in F where L  is a prime

ideal and (£, dt) -  (l). We may assume that either ({*•, = £>

or (p., ft ) = (l).
Theorem li.l*: Let 136 inieSers °f ^ each exactly divis­

ible by L , and let m be a positive integer. Then ft * I ( 7 a
,m m

prime ideal) in each of the fields F( 4 ^ 1 ^  F( M F 2 ) anc* these two
€1 8 illfields have corresponding residue systems mod* X .

Proof: We prove the theorem by induction. If m ■ 1 the theorem 
is true by Theorems 3.2 and 3«3« Suppose the theorem true for m * k.

We have L  -  7^ ( 7]_ a prime ideal) in each of the fielfe
F ( ^ ) ,  F(frp2). Since is exactly divisible by ft it follows
that *\fpi is exactly divisible by 1-  ̂for i = 1, 2. Therefore by

i k*lTheorem 1.16, s I ( l a  prime ideal) in the field F ( ^ ^ )  for
#k*l lk+1 «ki*̂-i - 1, 2. Thus ft = X in each of the fields F( Ĵ *j_), F( J"p2)

and the first conclusion of the theorem follows by induction.



1*U
ftk kjcBy the inductive hypothesis ) and F( 4™^) have corres­

ponding residue systems mod. -where 1-̂  is a prime ideal in
L ok= . Furthermore we know that

- -i - jkli , ,%*±La L ( £ a prime ideal) in F(4|T^) and F( 4 ^  is clear
that p̂ijr. is exactly divisible by 7 for i = 1, 2.

«k+l v
Let oi be any integer of F( and I®'*1 n B a(̂  -l)2 . Then

flk+l „k+l.
= o<o + <*1 + •** + ̂ n_x J t5’1(“od- 2 )

where the ^ are residues mod. 7 and may be chosen in F since 2 

is of order with respect to F. Hence
cx^ 5 ♦ ••• ♦ °^n_i M ( m o d .  Zfln * 7^)

oC~ = T  (mod. 7j_n)
where t  is an integer of F(^4~p^). If «*- and oc’ are two integers

ak+1 0 1 r -1 n \of F(x<nr ) such that o( s ot1 s 'T' (mod. ) where f  is an in-
k n 0teger of F(*>4yT̂ ), then c*- = ©t1 (mod. I ) • If 5 (mod. 2 £ )

n m okand o* • T'g (mod. 2-̂ ) where and ^2 are integers of F( 4 Y"i)>
then 3 Tjj (mod. 7-J1). The number of residue classes mod. 2 n

flk+l _in F( 41*1/ is equal to the number of residue classes mod. in
in F(\jp^). Therefore if T  i® any integer of F(^^T1)J there existe

ok+1 , J£ / -j n\an integer oc in F( such that et S t  (mod. 2i )•
The statements in the above paragraph are valid if ^  is re­

placed by F-p* Jcfl
Let be any integer of F( There exists an integer T-
k

of F(^JYx^ 811011 i11®1*
o i ^ S  T  (mod. Z]_n).



Jc Jk
Since F( and F( have corresponding residue systems

i ̂ a+l-a . I *■>mod* , there exists an integer cr of F( p-g) such that
T  5 0“ (mod. a) •

ftk+1
There exists an integer f  in F( ) such that

^  S <J~ (mod. <£) .
Jj

Since n = a( 8 - 1)8 , and k 2.1, it follows that
o o _a£+l-a

oc = ,̂ (mod. 2. ) .X
Therefore

_ p > , •rai+l—a\©c - £ Cmod. i J
ik+1 jk+1 - .

and F(\Tjft), F( llfO have corresponding residue systems mod. 1 
The theorem follows by induction.

We consider next the case in which f*̂ , are two integers of 
F each prime to k .

Theorem H.5S Let ^2 integers of F each prime to & ,
and let k^ be the largest positive integer such that the congruence 

» esĉ (mod. is solvable for in F(i * l, 2). If
kl~ k2 < a ^and a &+ 1 - kg 2: 2a, then £» = 1 ( 7 a prime ideal)
in each of the fields FC^fp^), F(\|"pg) where m is a positive inte­
ger and these two fields have corresponding residue systems

, , ai+l-ko-amod. Z c .
We first prove the following lemma.
Lemmas L e t be an integer of F prime to Cj , m a positive 

integer, and let k be "toe largest positive integer such that the con­
gruence p 5 (mod. &^) is solvable for ©cin F, If k < a X and



U6
and a jl+ 1 - k 2 2a, then £ ■ 1® ( I  a prime ideal) in F( )
and k is the largest positive integer such that the congruence
kill £ 1. nffi

(mod. 1 ) is solvable for in F(*IjI ).
Proof t We prove the lemma by induction. Suppose m * 1. Since

k is the largest integer such that ^ s (mod. £,k) is solvable for
p A £ —

oc in F, it follows by Theorem 1.17 that k, ■ in F( 4 p ) where
is a prime ideal. Suppose

^  i—  _ A  . t  k + 1 .«4(*- = ^  (mod. )
j _

where $ ^ is in F( 4^-). By the method used in the proof of Theorem
3.6 there exists an integer "1 ̂  in F such that

s "I (mod. £ T""a) , v * a K  1 - k .
Since k < a X and a l + l - k  2. 2a by hypothesis, it follows that
311-— - . k + l x  r ) k + l v<4 = ̂ 2. vmod. Z ̂  3 and therefore p 5 mod. ki ) contrary
to assumption. Thus the congruence

iff 2 3* ("O'1- ?lk+1>
J_

is not solvable for ̂  in F(4 ^  ).
j kSince ^  * c>i (nod. £ ) where oc is an integer of F, it fol­

lows that s oi (mod. 2^). By the method in the proof of Theorem
3.6 there exists an integer in F(Vj*) such that

^  5 at. (mod. £7“̂ ) , v « a A * l - k  .

Hence
5 (moci‘ ^  )

£ jt kand the congruence 4 ^  -  % (mod. Z^) is solvable for %. in
F ( V ) .  This establishes the lemma for the case m * 1.



-,anSuppose the lemma is true for m = n. We have L  a Zn ( Zn a 
Qnprime ideal) in F(xvpjT) and k is the largest integer such that

(mod. ?*) is solvable for -fn in F(\fp. ). It follows 
—J2 .n+1

from Theorem 1.17 that in * Zn+1 ( Zn+1 a prdme ideal) in F(-Jp̂  )•
Suppose

a n+1 $ -̂ k+l
^ f* 5 ^ n+1 m̂od‘ n+1^

where -^n+^ is 311 integer of F( ) .  There exists an integer 
on_ .in F(\lf ) such that

& . vn-a!ln”\  .n8> 5 H  (mod. ] ), vn s  a \ ♦ 1 - k.Tn+1 n n«n
(This follows by taking F(ifp ) to be the ground field in Theorem 3 ,6  

and applying the method used in the proof there.) Since k 4. afi. and 
a i t 1 - k 2 2a, it follows that

a*!1 k+i
t  5 i n (m°d* in+l)

and therefore
= S* (mod. 2 k+1) r n n n+1XiATJ’ ĴL k+Xcontrary to assumption. Hence the congruence »Jp E (mod. Z ,)n+1

is not solvable for ^ in F(XJ^ ). However the congruence
tin+1 2 , nk xS ^ (mod. is solvable for in F(Jyy. ) by the method
used in the case m = 1. Thus the lemma is true for m = n + 1.

Froof of Theorem h,$* By the lemma we have Co - 7^m  in
F(lf~pj_) and in F( vf^) where . 2 is a prime ideal. We use induction
to prove that F( ̂Tp]_) and F(^!fp2 ) have corresponding residue systems
mod. -2 â 1"k"a . If m = 1 this follows from Theorem 3.6.



hB

in AnSuppose and F( sj"p̂ ) have corresponding residue sys­
tems mod. 2 where Zn is a prime ideal in FC^JTT^)

p Anand JO = 2n • 'the lemma k is the largest integer such that the 
congruence

ij7i = (mod* Zn>
•n_

is solvable for ^  in F(*^ (i « 1, 2), Furthermore 2n “ 2n4.̂
nn»l

■where 2n+]_ is a prime ideal in F( ) for i * 1, 2. Thus
4“̂  - is exactly divisible by 2 n+-j_ for i * 1, 2. It follows
by the method used in the proof of Theorem 3.6 that if is any in-

0*lii . flh__teger of F( 4 rjJ, there exists an integer in F(. J such that
o , TVn-aSn_1. nn

T i S Ti d* n * v„ « aS + 1 - k-
«h

for i = 1, 2. Furthermore if 7-̂  is any integer of F( there
r,n+l

exists an integer 7^ in F( *Tp^) such that the above congruence is 
valid (i - 1, 2).

Let 3^ be any integer of F(Tfp^), There exists an integer -p̂
of F( such that

y^.5 "T'̂ Cmod. ?nTn”a  ̂ )> Tn * a A + 1 - k.
nn  nn

Since F(*4 and F( 4""j*2̂  have corresponding residue systems
mod. 2 *̂*a> there exists an integer T 2 °I F(̂ 4~ĵ 2) such that

- t j 1 aJUl-k-a\
T 1 ~ r 2 n '•

Therefore
r *  = t 2 uod. i f ’1*-*).

& &  a v - o r 1There exists an integer in F( 4 ^ )  such that )



and therefore
/ n a£+l-k-a 

T  = V: (mod. Z , ).1 2 n+1
The theorem follows by induction.

It is clear that if ̂  is exactly divisible by L, and ^  is 
prime to £• , a result similar to theorems li.it and it.5 can be obtained. 
This result together with Theorems li.it and It.5 yields the following 
theorem.

Theorem It.6* Let be two integers of F such that lo = I
k  Jl r— -in F( and F( and let m be a positive integer. If the

$   —

orders of ramification of 2 in F( and F( are - v -
then £o = ^ m in F('\jp-̂) and F( and these two fields have

-,v-acorresponding residue systems mod. £ .
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