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ABSTRACT

Multiple Criteria Decision Making (MCDM) problems involve the selection of “good”
alternatives from a set of alternatives, each of which is evaluated along multiple, and
potentially conflicting, criteria. The criteria are intended to reflect the dimensions of
outcome that matter to the decision-maker (DM). The decision-making process should
select alternatives which optimize the outcomes most desired by the DM. Decision
Support Systems (DSSs) are aids that enhance the decision-making capabilities of the
DM in various ways. The DM may be modeled as a holder of preferences of various
kinds. Decision support, then, entails the elicitation of these preferences and their
application to the set of alternatives at hand. Ideal DSSs, in this view, must allow
for the natural, accurate, and complete expression of preferences by the DM and
apply, or help the DM apply, these preferences. Another aspect of decision-making
is the wide variability in what we might call decision situations. These situations
are characterized by the differences in the degrees to which optimality is essential
to the DM, the time-pressure under which the decision is being made, the degree of
pruning desired, the presence of uncertainty in criteria values, etc. DSSs that provide
situation-specific support are more valuable.

In this work, we focus on the Seeker-Filter-Viewer (S-F-V) family of architectures

and on their applicability as decision support architectures. The generic version of

il



this architecture makes use of the Pareto Dominance Filter to eliminate suboptimal
alternatives. We explore Tolerance-Based Dominance Filters (TBDFs), which are
based on decision rules similar to the Dominance rule but contain criteria-specific
tolerances in the rule clauses. We analyze the applicability of TBDFs to a class
of decision situations, with and without uncertainty in criteria values, and in the
presence of a number of user-needs and other problem characteristics.

The goal is to develop a framework for mapping decision situations to appropriate
instantiations of the S-F-V architecture. We present such a framework for the Filters
and decision situations we consider in the dissertation. By using such a framework,
the S-F-V architecture can cater to a larger class of decision problems and DMs than

the earlier versions.
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CHAPTER 1

INTRODUCTION

1.1 Decision-making and Decision Support Systems

Decision-making involves choice from within a set of alternatives, which may be finite
or infinite in number, available either explicitly or implicitly as choice alternatives.
Certain outcomes are desirable to the decision-maker. The decision-making process
should therefore select alternatives that have the greatest chance of maximizing the
outcomes desirable to the decision-maker. Various sorts of decision support can be
provided to aid the decision-maker - the identification and generation of the choice
alternatives in case the alternatives are not available explicitly, the identification of
the attributes of the choice alternatives that one should care about, and in getting the
values for these attributes for the choice alternatives at hand. Hence, some aspects
of decision support can be computational in nature while other aspects might involve
providing knowledge-based support.

If the alternatives are explicitly available or have been generated and once the at-
tributes of the alternatives which are of importance to the decision-maker have been
identified, the task of decision support is one of helping the decision-maker select
the best alternative(s) from the available set. Even in the presence of a finite set of
alternatives, human decision-makers, due to their limited computational capacities,
have been known to find the task of choosing the best alternative to be daunting. As
stated by Tversky [54], “in choosing among many complex alternatives such as new
cars or job offers, one typically faces an overwhelming amount of relevant information.
Optimal policies for choosing among such alternatives require involved computations

based on weights assigned to the various relevant factors, or on the compensation



rates associated with the critical variables. Since man’s intuitive capacities are quite
limited, the above method is quite difficult to apply.” In such circumstances, hu-
mans have been known to use various decision heuristics to solve the decision-making
problem so as to strike a reasonable balance between the complexity of the problem
and the resources at hand ([50], [52], [52] and [40]). As shown in [54], the use of
a decision heuristic will not always lead to the best choices from the viewpoint of
the decision-maker. Hence a very important dimension of decision support is the
provision of computational support to the decision maker so that the employment of

suboptimal decision heuristics is curtailed or at least limited.

1.2 Multiple Criteria Decision Making (MCDM) as the norm

The norm has been to view most decision problems as belonging to the class of
multiple-criteria decision-making or MCDM, the word criteria being used to refer to
the attributes of the choice alternatives that have been identified as of interest to the

decision-maker. More formally, the MCDM-problem is:
maximize {d;;,d;o, ...diy} for d; € D

where D is the set of n choice alternatives and d,, is the value taken by the alternative
d, on criterion g.

A standard technique directed towards producing the best solution for the MCDM
problem is to produce one, some, or all elements of the Pareto Optimal set of alter-
natives from the given set; the best solution then is the alternative(s) within this set
which best satisfies the decision-maker. One way to produce the Pareto Optimal set
is to apply the principle of dominance. This principle makes use of the dominates re-
lation to declare the dominated alternatives to be suboptimal; the dominates relation
is defined as below:

Dominance: Multicriterially evaluated alternative A is said to dominate another
multicriterially evaluated alternative B if A is at least as good as B in all the criteria
and there is at least one criterion in which A is strictly better than B. i.e.

(A dominates B) <= Ji: (A; > B;) AVYj: (4; > B)),

where X, refers to the value taken by alternative X on criterion k.



The Pareto Optimal set is also referred to, in literature, as the Efficient set. The
idea of a Pareto Set applies to a discrete alternative MCDM problem as defined above
for which the number of decision alternatives is finite. For decision problems where
the number of alternatives is potentially infinite in number, one refers to the Pareto
Surface rather than the Pareto Set. Under such circumstances, and as mentioned
earlier, an extra dimension of the decision support might involve either generating
some of the Pareto Optimal points, or generating a finite sample from the potentially
infinite number of alternatives and obtaining the Pareto Optimal set from it. For
purposes of the dissertation, we consider only discrete alternative MCDM problems.

In most real world decision problems, it will be rare that a single alternative will
excel in all the criteria. This is because, typically, criteria often conflict with one
another and alternatives which evaluate to a good score on one criterion would not
do so well on some other criteria. This results in a Pareto Optimal set that has more
than a single alternative. In such a case, the Pareto Optimal set is known to have
the property that, for any alternative in the set, the only way to improve along any
criterion is to accept a loss in some other criterion. Therefore, choice among Pareto
Optimal alternatives becomes a matter of making trade-offs.

There are many possible ways to handle the problem of choosing from Pareto
Optimal alternatives. For decision problems where any alternative will do so long
as it is Pareto Optimal, one of the alternatives from the Pareto Optimal set can be
randomly chosen as the final solution. For problems where this is not the case, the
problem again comes down to choosing from within a set of alternatives.

Different techniques address this problem by use of different mechanisms. For
example, one class of techniques make use of weights to extract the final solution. The
decision-maker expresses weights or weighting coefficients for the individual criteria
such the weight values are in proportion to the relative importance of each criterion to
him. These weights can now be used to select Pareto Optimal alternatives of interest

to the user.



Another class of techniques elicits the user’s trade-off expressions for each pair of
criteria in the form of marginal rates of substitution or MRS and uses these expres-
sions to obtain the final solution. Studies, however, indicate that the use of concepts
like weights and MRS is suspect due to various reasons, ranging from whether or not
decision-makers can relate to these concepts, to whether an accurate translation of
the user’s desires to some of these concepts is even possible (see [7],[20],[37], [19], [22],
[23]). Hence, it is not clear if the solution produced thereby is indeed the best solution
with respect to the decision-maker, given that these concepts might not represent his
desires completely and accurately.

In the next section, we discuss an approach that views the decision-making prob-
lem as one of modeling the decision-maker as a holder of different kinds of prefer-
ences. The presence of different kinds of user-preferences motivates the requirement
that DSSs must be sensitive to the elicitation of each of these kinds of preferences by
means which are natural and easy for the decision-maker to comprehend. By virtue
of this sensitivity, the DSS will be shown to not only facilitate accurate expression
of preferences by the user, but also to be responsive to different kinds of decision

situations

1.3 Modeling the Decision Maker

One approach to providing support for a decision problem involves modeling the
decision-maker as a holder of various kinds of preferences. Psychological literature
in decision-making uses the term preferences to characterize the values of a decision-
maker that are used in selection from among a set of alternatives. Decision support
is seen as eliciting these preferences from the decision-maker in a natural way and
applying these preferences to the given set of alternatives. For computational assis-
tance in the decision-making, it would be attractive if a decision-maker’s preferences
can be expressed in such a way that a DSS can use them to select alternatives on
behalf of the decision-maker. If the preferences have been accurately and completely

elicited, the decision-maker can be assured that the decision alternatives that he gets

!The MRS for a pair of criteria is the amount of decrement in the value of one criterion that
compensates the decision-maker for the one-unit increment in the value of the other criterion, while
the values of all other criteria remain unaltered.



with the assistance of the DSS are the same alternatives that he would have picked
in the absence of the DSS.

Some preferences are context-independent i.e, they are independent of the specific
alternatives. For example, prior to obtaining the Pareto Optimal set, the criteria to
be used for dominance along with their directions of goodness, can be elicited from
the decision-maker without reference to the set of alternatives at hand. We call such
preferences abstract preferences. There are the following advantages to the use of

abstract preferences:

e They make it easy to automate the decision-making process. The abstract
expressions can be applied by an automated system like a computer to the set

of alternatives at hand to produce the final solution.

e Since these preferences are independent of the alternatives at hand, the decision-
maker does not have to be burdened with the size of the problem. In other
words, the number of alternatives at hand will not directly affect the amount
of effort, time, and information-processing, that the DM has to incur in order

to express these preferences.

Unfortunately, studies in behavioral decision sciences indicate that not all preferences
can be expressed abstractly by the user. Tversky [53] shows that choice among
options may be context dependent; the relative value of an option depends upon
not only on its own characteristics, but also upon characteristics of other options
in the choice set. As stated by Tversky, “people do not maximize a precomputed
preference order, but construct their choices in light of the available options.” The
expression of such context -dependent preferences is often easily done in the presence
of concrete alternatives at hand. We refer to such preferences that are expressed in
terms of concrete alternatives at hand as concrete preferences. Tradeoff expressions
are often better expressed as concrete preferences, although sometimes tradeoffs can
be expressed independent of the alternatives as in, “a 5% increase in cost for a 10%
increase in functionality is acceptable.” However, it is often the case that tradeoffs
are highly nonlinear in the space of alternatives, and in any case the decision-maker

may not be able to articulate his tradeoffs except when presented with the specific



alternatives. Therefore, for many problems it might be inevitable that preferences be
elicited as concrete preferences.

The expression of concrete preferences has its own set of problems as shown by
Tversky [54]. In the presence of an information overload, say due to a large number
of alternatives, people use heuristics to accommodate the mismatch between their
limited cognitive capacities and the information processing warranted. As a result, the
choices produced by the application of such preferences cannot be guaranteed to be the
best choices from the viewpoint of the decision-maker. Moreover, since the expression
of concrete preferences is completely guided by the decision-maker’s interaction with
the actual data at hand, the solutions produced might be very sensitive to the path
taken by the decision-maker which is a function of what catches the eye of the decision-
maker first.

A third kind of preferences come about by virtue of the constraints that the
decision-maker wishes to impose upon the decision-making process itself. For ex-
ample, if the decision-maker is under a lot of time-pressure, he might want a quick
solution. Note that quickness in decision-making is a criterion that has nothing to
do with attributes of the decision alternatives. However, inability to cater to such
preferences can render the DSS ineffective. For example, the decision-maker de-
scribed above might be open to satisficing (nearly optimal) solutions as long as the
the decision-making is quick. A DSS which produces an optimal, but not a quick,
solution might not be of much utility to the above user.

Therefore, if providing support for decision-making is considered as a matter of
eliciting and applying the decision-maker’s preferences, there are at least two classes
of preferences that need to be catered to - preferences that have to do with the decision
problem (we call them it object preferences), and preferences that have to do with the
decision-making process(what we call process preferences). Within the former class,
some preferences (like criteria that matter to the DM) are better elicited abstractly
and are called abstract preferences while other preferences (like trade-offs) are mostly
easier to express after considerations based on the choice alternatives at hand; these
are concrete preferences. In general, there can be a conflict between some of the
object preferences and the process preferences. In such a case, the decision-maker

will need to be told of his unrealistic expectations and presented with ways in which



he can relax some of these preferences in order to obtain a set of preferences that
is mutually satisfiable. We will soon present a decision support architecture which
is based upon the above view of providing decision support. But first, we present a

brief survey of some of the existing MCDM techniques.

1.4 Existing approaches for solving the discrete alternative
MCDM problem - A Brief Survey

The MCDM literature identifies many techniques for solving the discrete alternative
MCDM problems. Zionts [47], Despontin [30], MacCrimmon [26], Hwang and Yoon
[14] are some references providing surveys describing and evaluating these techniques.
Ozernoy [34] estimates that there are at least 50 available MCDM methods [pp. 163].

As stated previously, in a discrete alternative problem the Pareto set is obtainable
by the use of the dominance principle. However, since the Pareto set can itself contain
multiple alternatives, the decision problem remains unsolved until choice is made from
this set (unless of course the entire Pareto set is of interest to the decision-maker).
Therefore, most techniques are focused on obtaining preference information from the
decision-maker that will not just enable the obtaining of the Pareto set but also
make it possible to produce only a handful of alternatives as the final solution. A
few techniques do this by trying to produce only a subset of the Pareto set, while a
few others are not committed to producing only Pareto Optimal alternatives as final
solutions. In recent years, however, it has become general consensus that the final
solutions must be from the Pareto set- each of [35], [36], and [29] state that the final
solution of the MCDM problem should be the one which is the most preferable to the
decision-maker relative to any of the Pareto optimal alternatives, and therefore that
the final solution(s) must be Pareto optimal.

Hwang and Yoon [14] classify discrete alternative MCDM methods according to
the form and the depth in which a decision-maker’s preferences can be expressed.
For instance, the form of preference expression can be attribute-based (preferences are
expressed in terms of the criteria) or alternative-based (preferences are expressed in
terms of pairwise choices made by the decision-maker). The latter class of preferences

shares some properties with what we identified as concrete preferences previously, but



it really allows for context-dependent preference expression only in the presence of
pairs of alternatives. In general, the context dependency that we referred to with re-
spect to concrete preferences includes the presence of all other competing alternatives
and not just pairs. Within each of these two forms of preference expression, Hwang
and Yoon [14] further classify methods based on the depth, or degree, of preference
expression. For example, attribute-based information could be either in the form
of criteria-thresholds, ordering of criteria, weights for criteria, and so on. We next
describe the various techniques as discussed in [14].

If only the criteria of interest to the user have been identified and no other pref-
erences are expressed by the user, then popular techniques include the maximin and
the maximax techniques. The maximin and maximax techniques apply only if the
criteria are commensurable or have been normalized. The maximin technique involves
finding for each alternative, the criteria on which it performs the worst, and in the
end selecting the alternative which has the most acceptable evaluation from these
evaluations. As stated in [14], this technique is ultra-pessimistic in that, for each
possible choice, it considers only the worst that can happen, while ignoring other cri-
teria evaluations of the choice. Also, this technique can produce a final solution that
is not in the Pareto set. On the other hand, the maximax method obtains for each
alternative its highest criteria evaluation and then selects the alternative that has the
maximum such evaluation. Provided there are no ties on the highest criteria evalua-
tions, this technique can be expected to produce a Pareto optimal solution. However,
alternatives that perform reasonably well across all criteria will be ignored in favor
of alternatives which are virtuous along a single criterion alone by the maximin and
the maximax methods. One would expect these multicriterially optimal alternatives
to be of interest to most decision-makers, if not preferable to the unicriterially op-
timal ones. This technique can be considered as ultra-optimistic, in the sense that
it satisfies a decision-maker who is interested in the alternative for which the best
criteria evaluation is the best from the remaining, while ignoring other aspects of the
alternative.

The next class of methods take additional information related to the criteria of

interest to the user. This class includes several subclasses of techniques.

e Techniques like the conjunctive method and the disjunctive method take criteria



information in the form of criteria-thresholds expressed by the decision-maker.
In this subclass, the user is told to specify minimal acceptable values along
each criterion. In the conjunctive method, only alternatives which are better
than the minimum acceptable values along all the criteria are retained as final
solutions. Therefore, alternatives which perform well on all but one criterion
will be eliminated as well. In general, very few alternatives can be expected to
excel along all criteria and therefore the application of the conjunctive method
with very high thresholds might result in none of the alternatives surviving as
solutions. One way to counter this effect is to use the disjunctive method in
which an alternative has to only score better in any one criterion relative to the
minimum acceptable value for that criterion in order to be retained as a final
solution. However, this can result in a large number of alternatives surviving
as final solutions. Clearly, both techniques will produce final solution sets that
need not contain only Pareto Optimal alternatives. Also, they produce multiple
solutions and often choice from this set involves picking up a random alternative
from the set and presenting it to the user. In such a case, the solution cannot

be guaranteed to be optimal.

Techniques like Lexicographic Ordering and Elimination By Aspects take crite-
ria information in the form of the ordinal preference or ranking of the criteria
by the user. In lexicographic ordering, the user is expected to order all the
criteria according to their relative degree of importance to him. Alternatives
are now selected starting with the most important criteria and retaining the
best alternative along that criterion; if there are multiple survivors, the pro-
cess is repeated for the survivors using the second-most important attribute
and so on until a single alternative survives. This technique does not allow for
a small increment along an important criterion to be traded off with a great
decrement of a less important attribute while such a trade off might often be
appealing to the decision maker. To counter this, the technique is modified as
lexicographic semi-ordering wherein apart from ordering the criteria, the user
is also expected to specify bands of imperfect discrimination along the criteria.
When alternatives are considered along some criterion, not only those alter-

natives which perform the best in the criterion are retained, but additionally



alternatives which are not significantly or noticeably different along that crite-
rion relative to the highest alternatives as also retained before processing along
the next-most important attribute. Therefore, alternatives which do not score
the highest along the most important criterion but which do reasonably well on
it will be retained for comparison during the next stage. Tversky [54] shows
that this modified technique can be shown to lead to intransitive choices. Both
techniques can however be shown to produce only Pareto optimal solutions.
Elimination by aspects is another technique introduced by Tversky [55] which
belongs to this subclass. In this method, each alternative is viewed as a set of
aspects where the aspects might be either criteria or they could be arbitrary
features of the alternatives. Tversky’s model now describes choice as an elim-
ination process governed by successive selection of aspects instead of cutoffs.
It is similar to the lexicographic techniques but it differs from them in that,
the attributes are not ordered in terms of importance, but in terms of their
discrimination power in a probabilistic mode. Due to its probabilistic nature,
the criteria for elimination and the order in which they are applied vary from
one occasion to another and are not determined in advance. This technique can
be shown to produce only Pareto optimal alternatives. However, as Tversky
himself noted, this technique can lead to the elimination of alternatives which

can be better (multicriterially) than those which are retained.

Techniques which take the user’s criteria-based preferences as cardinal informa-
tion either in the form of weights or utility functions, concordance measures, or
ideal points. The methods belonging to this class all involve implicit trade-off

but they differ in terms of how this achieved:

1. The final solution is an alternative with the largest utility expressed us-
ing some kind of weighting technique, with weights specified by the user to
express intercriterial preference. In simple additive weighting, the decision-
maker is expected to supply importance weights to each criterion so that
the weights sum to 1. Each alternative is now rated as a linear combina-
tion of its criteria values with the corresponding weights. The alternative

with the highest rating is chosen as the final solution. As mentioned in
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[7], it is often difficult to understand what the weights actually represent.
Hobbs [20] states that instead of relative importance they must be held
to represent the trade-off expressions of the decision-maker. Nakayama
[22] mentions indicates that it is difficult to control the direction of the
solutions by the weighting coefficients. Mietinnen [33] states that small
changes to the weight vector may cause big changes in the quality of the
solutions; at the same time, dramatically different weight vectors can pro-
duce quite similar solutions. In Das and Dennis [15] it is emphasized that
an evenly distributed set of weighting vectors does not necessarily produce
an even representation of the Pareto Optimal set. Also, in continuous
MCDM problems, the weighting technique cannot produce the Pareto Op-

timal points that lie in the non-convex regions of the Pareto surface.

. The alternatives are ranked to achieve an overall preference ranking which
best satisfies a given concordance measure as in ELECTRE [4], [2], [5],[3],[32]-
The ELECTRE family of methods uses an outranking relationship that is
built on two indices, the concordance index and the discordance index.
Based on these indices, it can be ascertained for any pair of alternatives if
either outranks the other using their criteria values. This technique also re-
quires the use of criteria weights as in (1) above. Also, the user is expected
to furnish the two indices by translating it in terms of his risk propensity.
Also, [14] states that the two indices are rather arbitrary although their

impact on the final solution can be significant.

. The alternative which has the largest relative closeness to the ideal point
is chosen as the final solution. Here, the ideal point refers to the max-
imum value on each criteria considered as a single criterion vector. For
most decision problems, this point does not pertain to a single alternative.
The techniques in this subclass try to minimize the Euclidean distance
from the ideal point and simultaneously maximize the Euclidean distance
from the negative ideal point (criteria vector composed of the minimum
criteria values) to obtain the final solution. For some problems, the si-
multaneous achievement of these two goals becomes impossible. The user

is expected to provide information in the form of weights expressing his
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relative importance of the criteria.

e Other techniques take tradeoff expressions of the user in the form of marginal
rates of substitution. This was already mentioned previously as a technique
whereby the user expresses his trade-off expressions along all pairs of criteria
in terms of the marginal rates of substitution (definition in Section 1.2). This
expression can be used to choose fewer points from the Pareto set. The problems

associated with this technique was also discussed in Section 1.2.

e Techniques which take preferential information in the form of a set of choices
made by the user when presented with pairs of alternatives. It is expected that
the set so obtained may contain inconsistent choices. The methods belonging to
this class produce their final ordering by trying to minimize the inconsistency
between the ordering and the set of choices expressed by the decision-maker.
The output is typically a set of weights that is supposed to best reflect the choice
made by the decision-maker. If the number of alternatives is large, the large
number of overall pairwise choices, which is n(n —1)/2, can be cumbersome for
the user to interact with and there is a need to select a salient set of pairs that

best reflect the entire space of alternatives in the original set.

This finishes the brief survey of discrete alternative MCDM problems. As stated
by Ozernoy [34] the different methods represent radically different approaches to
decision-making. The choice of an appropriate method for a problem itself becomes
an MCDM problem. The properties along which these individual MCDM methods
can be evaluated are many, including the kinds of information that are available
about the problem as well the decision-maker’s preferences. In the next section, we
introduce the term decision situation to capture all such properties and more which
can be used to decide on the best technique to solve a given problem in a given

decision situation.
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1.5 Decision Situations: The need for situation-specific de-

cision support

Many of the currently existing techniques for solving MCDM problems leave out
issues that are important to practical DSSs. This is mainly because most such tech-
niques are focused towards solving the decision problem independent of the situation
under which the problem is being solved. For example, consider a situation wherein
the decision-maker desires a quick, satisficing, single alternative solution. In the
above specification, quickness, satisfiability and unity are all properties which are in-
dependent of the decision alternatives. In fact these are properties related to the
decision-making process, and what we referred to earlier as process preferences. The
above process preferences are representative of a class of users who are in high time-
pressure to make a decision, to whom optimality is not a primary concern and for
whom pruning to a single final solution is necessary. MCDM techniques that are
unresponsive to such demands of the user will render the resultant decision support
ineffective. Therefore, it is important that DSSs be designed so that they can provide
situation-specific support.

The process preferences expressed by the decision-maker characterize only part of
the decision situation. The decision situation also includes the characteristics of the
problem at hand. For example, if the criteria values obtained for the alternatives are
noisy or cannot be trusted to be accurate, the DSS must still be able to produce a
solution that is robust even in the presence of noisy criteria evaluations, or for which
assurances of different sorts can be given. For example, in the presence of noise, it may
be possible to give guarantees about closeness to optimality, if not optimality itself;
this can make the solution completely acceptable to the certain decision-makers. In
the dissertation, we refer to decision situations as composed of the process preferences

of the decision-maker and the characteristics of the problem at hand.

1.6 A Decision Support Architecture for MCDM

In the preceding sections of the chapter, we analyzed some existing techniques for

solving the MCDM problem. Also, using various results from behavioral sciences, we
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were able to state some desirable properties for decision support systems. To restate

these requirements, we need DSSs to possess the following desirable properties:

1. Decision Support Systems must support the elicitation of object preferences
(concrete and abstract preferences) as well as process preferences of the decision-
maker by means which are natural. Additionally, DSSs must be responsive to

the various characteristics of the decision problem at hand.

2. Decision Support Systems must augment the computational capacity of the
decision-maker such that the solution(s) produced by the decision process re-

spects all of the preferences expressed in (1) to the degree feasible.

In the next section, we will look at the S-F-V-architecture[42], which was developed
at the OSU-LAIR? and examine its applicability as a decision support architecture in
the context of the above requirements. One of the primary goals of the dissertation
will be to investigate ways in which the S-F-V architecture can be modified so that
it is sensitive to various decision situations and thus applicable to a large class of

decision problems.

1.7 The Seeker-Filter-Viewer Architecture

In [42], Josephson, Chandrasekaran et. al. propose an architecture, the Seeker-
Filter-Viewer (S-F-V) architecture, for the exploration of large design spaces. In
this paper, design optimization is viewed as being essentially multicriterial. In this
section, the three different modules of the architecture will be considered one at a
time. This will provide us with a better context to analyze how the architecture
meets the requirements stated as desirable above. The primary components of the

S-F-V-architecture, along with the human in the loop, are shown in Figure 1 below.

2The Ohio State University - Laboratory for Artificial Intelligence Research
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Figure 1: The Seeker-Filter-Viewer architecture

1.7.1 The Seeker

The Seeker is responsible for generating, or otherwise making available, the different
alternatives and their evaluations along the various criteria, i.e., it generates the C'(D)
matrix for the MCDM formulation stated in Section 1.2.

1.7.2 The Filter

The Filter allows the DM to express his abstract preferences. From among the avail-
able attributes of the alternatives, the decision-maker is allowed to choose those which
directly relate to his main concerns towards obtaining desirable outcomes. For exam-
ple, in a printer purchasing problem, if the decision maker is looking for a printer to
use on a daily basis, to print a large number of documents, and for which the quality
of the printouts need not be very good, then attributes like long-life, reliability and
high speed of printing might be of primary interest to the user while other attributes

like resolution, and color-printing need not interest him.
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The indicated attributes, of interest to the user, are used as the dominance criteria
by the Filter to produce the Pareto Optimal set; hence such attributes are referred
to as the primary criteria with respect to the user. In other words, the primary
criteria are the criteria in terms of which the decision-maker associates the notion
of optimality of an alternative. In many cases, the problem of choosing the primary
criteria might itself require the provision of decision support to the decision-maker.
This is because many times, the relation between the underlying criteria of importance
to the user and the attributes of the alternatives which map to those criteria might
not be directly visible to the decision-maker. In such a case, the DSS must be able to
use the primary user-concerns and choose the primary criteria on its own. Currently,
the S-F-V architecture does not provide any support in the selection of the primary
criteria. A list of all evaluated attributes pertaining to the choice alternatives is
presented to the user and he is expected to choose the primary criteria on his own.
By virtue of the fact that most attributes that are used often used as primary criteria
are only tokens of the underlying criteria of importance to the user, these attributes
are often called as proxies or prozxy criteria. In the use of proxies to represent criteria,
one needs to be careful in ensuring that the correspondence between the criteria being
modeled and the proxy holds uniformly across the entire range of the proxy values.
The alternatives that remain after the application of the Filter will be referred to as
the survivors of the Filter.

As the number of primary criteria increases, the Filter’s pruning efficiency de-
creases. Thus when the number of criteria is large, it is essential that only the
attributes of primary interest should be selected by the decision-maker as the pri-
mary criteria. Those attributes which are of interest to the decision-maker but which
he doesn’t consider to be primary are referred to as secondary criteria. Secondary
criteria are typically meant to be used by decision-maker to help in breaking a tie
between two Pareto Optimal alternatives. In the S-F-V architecture, this is done at
the Viewer stage, when the user interacts with the survivors of the Filter to express
his tradeoffs and other concrete preferences.

In summary, the Filter elicits and applies the abstract preferences of the decision-
maker to the initial set of alternatives. The primary advantage of filtering based on

the dominance principle is that provided all the primary criteria have been correctly

16



identified by the decision-maker, none of the eliminated alternatives can be of interest
to the decision-maker since there is an objective justification or rationale for the
elimination of such alternatives - that each such alternative is dominated by some
efficient alternative. Thus, the Filter helps in reducing the size of the problem, thereby
reducing the amount of information that needs to be dealt with by the decision-maker
at a later stage. Provided all the primary criteria have been correctly identified before
Filtering, there is no loss incurred by the decision-maker due to the elimination of

alternatives by the Filter.

1.7.3 The Viewer

If all of the decision-maker’s preferences regarding the alternatives are completely ex-
pressed at the Filter stage, then a random element of the Pareto Optimal set should
satisfy the decision-maker and nothing further needs to be done. However, in most
problems, a decision-maker is likely to have preferences in addition to those identi-
fied as criteria of interest at the Filter stage. The Viewer provides means by which
the decision-maker can express additional preferences to choose from among Pareto
Optimal alternatives. As mentioned earlier, choice from among Pareto Optimal al-
ternatives involves making tradeoffs, and in many problems the tradeoff preferences
tend to be nonlinear in the space of alternatives. Moreover, in many cases it becomes
easier for the decision-maker to express his tradeoffs as concrete preferences (namely
in the context of the existing options). The design of the Viewer is based on the
above observations.

Interaction with the Viewer involves use of various kinds of interactive diagrams
like 2-D plots, range plots and bar-charts to express concrete preferences among the
Pareto Optimal alternatives. By means of the graphical user interface provided by
the Viewer, the decision-maker chooses regions or alternatives of interest to him by
making selections on any of these diagrams. An example of such an interactive session
between the user and the Viewer can be found in [13][pp 5-8]. These selections might

be made by the user based any of the following observations:

1. The selected alternatives lie on a region in a 2-D plot so that they are the best

along both the criteria which form the axes of the 2-D plot. Of course, since
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all the alternatives being viewed are Pareto Optimal, it is to be expected that
these alternatives would have to necessarily lie on inferior regions along some of
the other criteria. All selections made by the decision-maker on a single plot are
cross-linked across the remaining plots, so the decision-maker can see the extent
to which the selected alternatives perform poorly in the other criteria. If the
inferiority in the other criteria happens to be within a tolerable level from the
viewpoint of the decision-maker, then he can use the Viewer to narrow down to
the set of alternatives at hand, with the remaining alternatives being removed
from present consideration. Now the decision-maker might use some other plot

to choose from among the survivors of the first selection and so on.

. The selected alternatives lie in a region in a 2-D plot such that their superiority
along one of the criterion-axis greatly outweighs or compensates for (according
to the user’s tradeoff preferences) the extent to which they are inferior along
the second criterion axis. Again, the user proceeds in the manner described in
(1) above.

. The selected alternatives might lie in an isolated region on some plot relative
to the other alternatives. In such a case, a decision-maker like a designer might
select these alternatives merely to examine the reasons that these few alterna-
tives have isolated performance measures. To do this, the decision-maker might
further pull up a plot showing the structural properties of the alternative and
see if the isolated points form a separate cluster in some region of the struc-
tural space as well. This allows the decision-maker to test and even acquire

knowledge about the domain by using the Viewer.

. The selection might be based on a category that the decision-maker is interested
in, like two-door cars. These selections are made in bar-charts which display

the alternatives as belonging to separate categories.

. Finally tradeoffs involving secondary criteria to break Pareto Optimal ties can
also be done in the Viewer by pulling up an appropriate plot which shows the
evaluations of the alternatives along the secondary criterion of interest to the

user.
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These are only some of the ways in which the decision-maker can use the Viewer to
select from among the survivors of the Filter. Additional facilities supported by the

Viewer include:
e retracting previous selections,

e retracing the path leading to a set of survivors arrived at by a series of Viewer-

based selections,
e reverting back to the original set of alternatives,

e maintaining the distinction between two separate selections by use of different

colors to highlight the alternatives in each of the two selections,
e combining sets of selections in various ways, and

e looking at the entire set of specifications for the alternatives in a selection, as a
table.

By means of the above features, the Viewer allows for the natural expression of

additional user-preferences in order to choose from Pareto Optimal alternatives.

1.8 Motivation, Goals, and Outline of the Dissertation

The Filter-Viewer combination in the S-F-V architecture imparts many of the prop-

erties that were stated in Section 1.6 as desirable for a DSS to be effective.

e The Filter elicits preferential information by means which are natural and easy
for the decision-maker to comprehend. No such quantities like weights, marginal

rates of substitution, are expected.

e The Filter augments the computational capacity of the DM by performing Dom-
inance Filtering on his behalf. Studies, [49], show that people find the task of
producing the Pareto set computationally demanding which results in the choice

of suboptimal alternatives.
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e The Viewer allows the decision-maker to express his tradeoffs. Since tradeoffs
are typically easier and more common to express in the context of the existing
alternatives, the Viewer is designed to aid the decision-maker in the expression

of concrete preferences.

e The design of the Viewer is tailored around the easy and natural elicitation
of concrete preferences. Thus the Viewer elicits those preferences which are
not easy to express abstractly, or at the Filtering stage. Moreover, the Viewer
allows for further pruning in case the Filter falls short of producing a handful

and virtually augments the filtering efficiency of the Filter.

In summary, not only do the Filter and the Viewer provide the architecture with
desirable properties but they also complement each shortcomings of the other. This
symbiotic relation between the two modules is highly instrumental in making the
overall architecture effective for use as a decision support architecture.

However, the S-F-V architecture lacks the ability to provide situation-specific
decision support. Consider a decision problem wherein the criteria values are known
to be noisy. In other words, the actual values taken by the alternatives on the various
criteria are not known; only approximate values are available along with bounds
placed on the approximations. There is no mechanism either in the Dominance Filter
or in the Viewer to account for the presence of noise in the criteria values. Ideally, we
would want to modify the Filter so as to produce the set that would have the greatest
chance of being the Pareto set based on the actual criteria values. However, since the
actual values are not available, the application of dominance based on the measured
values alone does not guarantee this. Clearly, the filter needs to take information
about the noise associated with the various criteria into account.

The primary goal of the dissertation is to show how the S-F-V architecture can be
tailored to become responsive to various decision situations. We do this by building
a framework which instantiates the S-F-V architecture in various modes so that the
instantiated architecture will retain all of the good properties of the original S-F-V
architecture while at the same time will impart it with the flexibility to be responsive
to various decision situations. More specifically, we formulate the notion of a Choice

Filter, of which the dominance filter is one kind. A choice filter can be made to cater
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to the abstract preference expressions of the decision-maker and also take into account
the situation-specific parameters of the decision problem. The idea is to instantiate
the S-F-V architecture with an appropriate choice filter towards making it responsive

to the decision situation.

1.8.1 Goals of the Dissertation

The primary goals of the dissertation are:

e To explore the design space of Filters which are variations or extensions of the
Dominance Filter so that a larger variety of user-needs and problem character-
istics can be accommodated. The dimensions of variation for user needs include
the degree of pruning desired, expressions related to the number of false pos-
itives and false negatives produced in the final set for decision problems with
uncertainty, expressions of near-optimality to allow more alternatives than the
Pareto set when more is desired. The problem characteristics investigated in
the dissertation are uncertainty in criteria values, number of criteria and alter-

natives in the decision problem, presence of correlations among the criteria.

e To develop a body of analytical and experimental knowledge needed to create
a framework for mapping decision situations to an appropriate instantiation of

the S-F-V architecture towards providing situation-specific decision support.

1.8.2 Outline of the Dissertation

In Chapter 2, we analyze the performance of the Dominance Filter in terms of its
complexity and filtering efficiency and their dependence upon several problem charac-
teristics. Chapter 3 introduces the idea of tolerance-based dominance filters as choice
filters; various choice filters will be defined and their performance characteristics will
be analyzed. Chapter 4 considers decision problems without uncertainty and presents
a scheme to map decision situations to various kinds of choice filters in the absence
of uncertainty. Decision situations with uncertainty are dealt with in Chapters 5 and
6- Chapter 5 deals with choice filters based on Bayes Decision Theory while Chapter

6 examines the use of tolerance-based dominance filters for dealing with uncertain
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decision situations. Chapter 6 also summarizes the results of Chapters 5 and 6 and
presents a framework based on these results for mapping decision situations to choice
filters. Chapter 7 presents a summary of the primary contributions of the dissertation,
and some open questions which are orthogonal to its goals but seem like interesting

questions to take up, as future research.
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CHAPTER 2

PERFORMANCE ANALYSIS OF THE
DOMINANCE FILTER

2.1 Introduction

In this chapter, we examine how the performance of the Dominance Filter varies with
the number of alternatives n, the number of criteria m, and under different corre-
lations among the criteria. The performance dimensions of interest are the Filter’s

filtering efficiency and computational time complezity.

2.2 Performance of the Dominance Filter

The performance analysis of the Dominance Filter presented in this section is based
on existing results from [12], [27], and [9]. Before we present the analysis, we first

define each of the two dimensions of performance of the Filter.

Definition 2.1 The filtering efficiency n of a choice filter is the fraction of the total

number of alternatives eliminated by the choice filter.

Therefore, the fraction of survivors produced by the filter, which is the fraction of the

total number of alternatives which survive the filter, is 1 — 7.

Definition 2.2 The computational time complexity T of a choice filter is the number

of steps taken by an implementation of the choice filter to produce its survivor set.
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Therefore, the lower the time complexity of an algorithm, the better its performance
in this measure. We will use the order notation to indicate the average and worst-case

time complexities.

2.2.1 Filtering Efficiency of the Dominance Filter With Un-

correlated Criteria

The expected number of survivors of the dominance filter are obtained in both [9] and
[12]. In [12] (pg. 143), the recurrence relation for the expected number of survivors
upon dominance filtering with n alternatives and m criteria is given by the following

approximation,

m_l Ipm—kp

a(n,m) ~ ]; =) + (1 = y)In™ 2n/(m — 2)! (2.1)

where v = 0.5772 is Euler’s constant.
From this it can be seen that the expected number of survivors is polynomial in
In(n), with the degree of the polynomial depending upon the number of criteria, m.

This provides the basis to arrive at [9]’s relation of,

a(n,m) = O(In™ 'n). (2.2)

This indicates how the fraction of survivors from the original number of alterna-

tives changes with respect to changing values of n and m:

e Since m appears in the exponent, the expected number of survivors will increase
much faster as m increases (for a fixed n) than with an increasing n. This is
because as m increases, it becomes more and more difficult for an alternative
to be dominated. It is proved in Theorem 2.1 that all survivors of an m-criteria
dominance will also survive an (m+k)-criteria dominance(with £ newly added
criterion to the previous set of m criteria), assuming that no two alternatives

are coincident along all criteria.
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Theorem 2.1 Every distinct® survivor of an m-criteria dominance is also a
survivor of (m+k)-criteria dominance, k > 0, where the (m+k)-criteria domi-

nance uses all the criteria used by the m-criteria dominance.

Proof: See Appendix A.

In general, the larger the number of alternatives n, the larger the value of m

required for all alternatives to end up as survivors.
As n increases, the absolute number of survivors tends to increase.

The filtering efficiency tends to increase as n increases. In other words, the
fraction of survivors reduces as n increases. This is indicated in Figure 2. From
the figure we can see that for any given value of m, the larger the value of n,
the smaller the fraction survivors produced by dominance. This indicates that
although the absolute number of survivors increases with an increasing n, the
filtering efficiency of the dominance filter actually tends to improve. This prop-
erty is justified from the expression for the expected number of survivors and
the fact that n grows faster than a polynomial in In n. Also, geometrically the
survivors of dominance in m-criteria space form the (m — 1) dimensional Pareto
surface. Intuitively, as n increases, one would expect a greater proportion of the
newly introduced alternatives to fall n the m-dimensional volume contained by
the Pareto surface, than on the (m — 1) dimensional surface itself. This also

explains why the fraction of survivors reduces as n increases.

Implications of the Filter’s Efficiency for Decision Making

Analysis of the filtering efficiency of the Dominance Filter indicates that the large-m,

small-n decision situation is the worst scenario for the application of the Filter since

one would expect almost every alternative to survive. The application of the Filter,

independent of how few alternatives it eliminates, is still defensible because the elim-

ination of suboptimal alternatives prevents the decision-maker from being exposed

3By a distinct alternative is meant one for which no other alternative is coincident with it on all
criteria
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Figure 2: Fraction survivors produced by the dominance filter with varying n and m.

to choosing a suboptimal alternative at a later stage of the decision-making. Also,
large-m situations are worrisome in general because the fraction survivors increases
quite rapidly with increasing m and ending up with a large number of survivors might
not be desirable for some decision situations. Of course, the Viewer can be used to
further prune the survivor set. However, the number of plots in the Viewer which
the user will need to refer to, before making selections and decisions based on selec-
tions, increases rapidly with increasing m as well. Thus, the cognitive load on the

decision-maker increases during the Viewing-stage as well with an increasing m.
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2.2.2 Computational Time Complexity assuming uncorrelated

criteria

We use Ty,4; to represent the worst-case time complexity, and 7 to represent the
average time complexity of an implementation of the Filter. At first glance an imple-
mentation for computing the dominance survivors might seem to require all possible
pairwise comparisons, which would make the algorithm O(n?) in the best-case, clearly
not very good. However, as noted in [12], one can exploit the transitivity of the dom-
inates relation to eliminate an alternative the moment it is dominated by another
alternative. A pseudocode describing an implementation of the dominance filter is
given below:

Dominance(X (n, m)){

U=X;S=X(1);

while(U # )

{

for each x € U{

for each y € S{

if (x dominates y)S = S — {y}; next y;

elseif(y dominates x)U = U — {z}; next z;

else next y;

}

S=5U{z}U=U —{a};

}

}

}

At each point, the algorithm maintains the set .S of survivors at this point, which
have not been dominated by any of the alternatives considered so far. Each new,

unconsidered, alternative C; from U is now compared only with this set of survivors.

e If a current survivor dominates C;, then C; is eliminated without further com-
pares. Since every alternative which is dominated by C; will also be dominated
by the survivor which dominated Cj;, there is no loss involved in eliminating C;

from further consideration at this point.
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e If any of the current survivors are dominated by C;, they are removed from the

stack.

e If upon reaching the end of set S, none of the present survivors dominate Cj,

then C; is added to S as a new survivor.

Given that only a small fraction of the total number of alternatives is expected to
survive dominance, one would expect size of S at every iteration to be quite small,
so that the overall complexity is expected to be much better than O(n?).

In order to compute the average-case time complexity of the algorithm, as noted
by [12], the average number of compares at the p'* iteration is equal to the expected
number of survivors at the p'* iteration, which is the same as a(p, m), the expected
number of survivors considering p alternatives and m criteria. Therefore the average-

case time complexity of the overall algorithm can be expressed as,

n—1
T(n,m) =} a(p,m)
p=1
Or,
m< ) el
so from Equation2.2 T( m) = O(n In™" ) (2.3)

Kung [27] proposes an algorithm and derives the following time-complexities for the
algorithm:

T(n,m) =0(nlnn) for m=2,3.

7(n,m) = O(n In™2n) for m > 4.

2.3 Impact of correlated criteria

The performance analyses for the dominance filter presented so far are based on the
assumption that the criteria are statistically independent or uncorrelated. In other
words, it was assumed that no knowledge about the value taken by an alternative

in one criterion can be gleaned by looking at any of its other criteria values. In
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real world problems however, criteria are often correlated. We expect vehicles with
higher city mileages to have higher highway mileages as well (positively correlated
criteria). Conversely, vehicles with higher performance measures tend to score low
on mileage efficiencies (negatively correlated criteria). A natural question is about
the effect of such correlations on the performance measures, filtering efficiency and
time-complezity, of the dominance filter. Since the time complexity of the described
implementation of the Filter is closely tied to the filtering efficiency of the filter, the

impact on the complexity can be inferred, and need not be discussed separately.

2.3.1 The Correlation Coefficient

Given two random variables, X; and X5, with means p; and po, and standard devia-
tions, o1 and o, respectively, the Correlation Coefficient pio between the two random
variables is defined as:

E((X1— ) - (X2 — pa))

= . 2.4
P12 0104 ( )

The term in the numerator is referred to as the Covariance of X; and X,. If C4
and Cy are column vectors of size n containing values on two criteria C; and Cy of n

alternatives, the Covariance between C; and () is obtained as,

1
CO’U 01,02 - Z Tk1 —371 ka —.Z'_Q)

3

where Z7 and T3 are the mean values for the criteria vectors C; and C; respectively.
Now using Equation 2.4 the correlation coefficient between C; and C5 can be written
as:

1 12

pro = —— (= (xr1 — 1) - (TR — T2))- (2.5)

g1092 N k=1

It can be proved that —1 < p,, < 1. If the correlation coefficient between two random
variables is zero, the two variables are said to be uncorrelated. If p,;, > 0 then X and
Y are said to be positively correlated and any increase in X is expected to increase

Y. If pyy < 0 then X and Y are said to be negatively correlated and an increase in
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X is expected to bring about a decrease in Y. When p,, = 1 or p,;, = —1, the two

variables are said to be perfectly correlated, positively or negatively, respectively.

2.3.2 Filtering Efficiency and correlation coefficient

Suppose that C; is one of n alternatives with criteria-vector X = {z1,xo, 23, Tm }
such that p;; is the correlation coefficient between criteria 7 and j respectively. In
other words, the n criteria-vectors can be considered as drawn from the m-variate
probability density function f(X,3) where ¥ is the covariance matrix containing
the pairwise covariances between the criteria with the diagonal values containing the
variances for the individual criteria, such that the individual p;;s are maintained
between the criteria. Then, the probability that another random alternative, C'; with

evaluations Y = {y1,v2, y3, - - - Ym} Will dominate C; is,

1(C;) = /: /:1/: FW1, Y25+ Ym)dyrdys - - - dym (2.6)

Then, (1—I(C;)) is the probability that C; is not dominated by a random alternative
from the remaining (n — 1) alternatives. So, the probability that C; is not dominated
by any of the other (n — 1) alternatives can be written as (1 — I(C;))"~!. Therefore,
the probability that a random alternative C; is a survivor from a set of n alternatives

can be written as:

S(C;) = /_O:o /_O:O “e /_0:0(1 — I(C))" * f(x1, 20, - - Ty )d21dTo - - - ATy (2.7)

Provided the form of the distribution function, f(X,X) is known, the expected num-
ber of survivors given the individual correlations between the criteria can be com-
puted by multiplying the above quantity with n. However, even considering only
two criteria, the above computation is quite complex as indicated by the above equa-
tions. Therefore, we conducted Monte-Carlo simulations to approximate the expected
number of dominance survivors with varying values of n, and p for 2 criteria. The
simulations consisted of generating a n points from a bivariate Gaussian distribution
with correlation p and then applying the Dominance Filter to obtain the number of

Survivors.
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Results obtained by Monte-Carlo simulations

Figures 3 and 4 respectively show the variation of the expected fraction and total
number of dominance survivors with varying values of the correlation coefficient, p,
between the two criteria. The plots were generated by means of Monte-Carlo trials
conducted on normal vectors generated such that they are correlated by preselected
values of p, and then applying the dominance filter to obtain the survivor sets .

The points for the plots are obtained over 100 trials conducted for the cases
n = 1000, n = 100, n = 10 and n = 2. All cases are for 2 criteria. For the family of
curves shown in Figures 3 and 4, three points on each of these curves can be obtained
analytically, namely for values of p equal to -1.0 (all alternatives survive), p = 0.0 (as
derived in [12] for independent criteria), and p = 1.0 (only one alternative survives)
respectively.

The following additional observations can be made from these plots:

1. The experiments indicate that for a given n, the expected number of dominance
survivors, as shown in figure 4, reduces as the value of p increases. This means
that the result obtained for the expected number of survivors assuming indepen-
dent criteria will be an overestimate when the criteria happen to be positively

correlated, and an underestimate when the criteria are negatively correlated.

2. Figure 3 also suggests another interesting result seen in the region of very high
negative correlation. When p = —1.0, we know that the fraction of survivors
is 1.0. Now, as p is increased just a little bit so that the negative correlation
is not perfect, we see that the fraction of survivors drops down drastically. For
example, with n = 1000, Figure 4 shows that at p = —0.9, we have close to
only 30 survivors, whereas at p = —1.0, we know that the expected number
of survivors is 1000. This means that for m = 2, the filtering efficiency of
the dominance filter is expected to deteriorate only in cases where the pairwise
correlation happens to be negative and perfect. At all other values, the efficiency

is expected to be close to that with independent criteria.

4Note that the minimum value of —1 on the Y-axis of the plot is an artifact of the plotting routine
of the software used to generate these plots.
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Figure 3: A plot of expected fraction of survivors for the dominance filter with varying
values of the correlation coefficient.

3. Figure 3 shows that for a given correlation, the expected fraction of survivors
reduces as n increases. We have already seen this to be true with the case when

the criteria are independent.

The above observations are true for a decision problem with m = 2. For the more

general case with m criteria, the following observations apply:

1. Even if a single pair of criteria from among the m criteria are perfectly, nega-
tively correlated, all the alternatives will survive dominance irrespective of the

evaluations along the remaining m — 2 criteria.

32



30 T T T T T T T T T

25

20

15

Expected number of survivors from dominance

n=1000
10+ B
n=100
5k n=10 _
n=2
0 | n:]' | | | | | | | |
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 4: A plot of expected number of survivors for the dominance filter with varying
values of the correlation coefficient.

2. The existence of a strong, imperfect negative correlation between a single pair
need not necessarily deteriorate the filtering efficiency of the dominance filter
since as shown in the previous section, even if a pair of criteria are strongly anti-
correlated, their impact upon the filtering efficiency can be minimal. Hence,
dominance filtering can be done even if such a pair of criteria are known to be

present.

3. Theorem 2.1 shows that by adding new criteria to the existing set of m criteria,

the expected number of survivors can only increase provided the alternatives

33



are distinct (no coincidence along all m criteria is allowed). The proof of this
theorem contains no assumptions about independence among the m criteria,
except for the requirement of distinctness which can be interpreted as requiring

that at least one pair of criteria not be positively and perfectly correlated.

2.4 Summary

The dominance filter has many virtues with respect to filtering efficiency. The filter-
ing is very effective for most problems except for problems with a large number of
criteria and relatively small number of alternatives. The computational complexity
of dominance is also O(n - In™ !n) and it scales well with increasing number of al-
ternatives. Experiments conducted to study the impact of correlated criteria on the
performance of dominance filter show that for m = 2, unless the pair of criteria are
almost perfectly anti-correlated, the filtering efficiency is comparable to the case for
statistically independent criteria.

For the general case with m criteria, however, even if two criteria are perfectly,
negatively correlated all alternatives survive the filter. Hence the presence of a pair of
criteria that are perfectly, negatively correlated with each other can drastically reduce
the filtering efficiency of the dominance filter. At the same time, if there is only one
pair of criteria that are known to be anti-correlated, then as long as the correlation is
not perfect, the filtering efficiency of the dominance filter is not affected as strongly.
If however, more than a pair of criteria are anti-correlated, then the impact on the
filtering efficiency of the dominance filter cannot be predicted based on the conducted
experiments.

In the presence of a pair of strongly anti-correlated criteria, the Viewer can be used
to express trade-offs along these two dimensions since they most require an expression
of compromise from the user (a strong anti-correlation between two dimensions is also
indicative of the extent to which it is difficult to maximize along both dimensions i.e.,
the need to express trade-off expressions along these dimensions). In the general case
where the dominance filter is not efficient, the S-F-V architecture can still provide
useful decision support by allowing the use of the Viewer to reduce the alternatives to

a handful. The presence of negatively correlated criteria is just one kind of decision
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situation for which the dominance filter will not maximally satisfy all the goals of
effective decision support. In the next chapter, we will look at other such decision
situations and motivate the need to extend the previously described S-F-V architec-

ture so that it will satisfy most of the requirements for providing effective decision

support.
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CHAPTER 3

DECISION SITUATIONS AND CHOICE
FILTERS

3.1 Decision Situations

A desirable property of DSS-architectures is that they be responsive both to the char-
acteristics of the decision problem at hand, and to the related needs of the decision-
maker. We will use the term decision situation to refer collectively to the problem
characteristics and the user-needs for a decision problem. An individual user-need
or problem characteristic will be referred to as a situational demand. An example of
problem characteristics is uncertainty in the criteria values. In the presence of such
uncertainty, the output of the dominance filter can no longer be assured to contain
only Pareto-optimal alternatives. An example of user-needs is the user’s stance to-
wards the degree of pruning. A decision-maker might be more interested in being
given a few good alternatives while another might want to make sure that he has
many alternatives to work with.

In the S-F-V-architecture, the Filter component is designed to accommodate the
abstract preferences of the decision-maker under various kinds of decision situations.
In this chapter, we describe a few such decision situations which can be commonly
associated with decision problems, and formulate corresponding alternatives to the
dominance filter. The presence or absence of uncertainty in a decision problem directly
limits the kinds of demands that a DM can impose. Therefore, in the dissertation, we
broadly classify decision situations into two classes - those with uncertainty and those

for which the criteria values are known accurately. We then consider the different
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decision situations that arise due to the presence of various kinds of user-needs and
other problem characteristics under each of these two classes. The goal is to be able to
cater to all the decision situations implied by the above classification by deploying a
suitable Filter in the S-F-V architecture. In the next section, we define Choice Filters
and then formulate a particular family of dominance filters which can be deployed as

choice filters in the S-F-V architecture to address various decision situations.

3.2 Choice Filters

A choice filter is a black box which takes as input the m criteria values for the n
alternatives, the abstract preference expressions of the decision maker, along with
situational demands, and produces a subset of the alternatives which will be referred
to as the filter-survivors. Thus, a choice filter decides whether a multicriterially
evaluated input alternative is to survive or be eliminated in a given decision situation

Ideally, the algorithm inside the box applies all of the decision-maker’s preferences
and at the same time is responsive to the decision situation. Constructing such a
Filter is non-trivial because often the needs expressed by the user might be in conflict
with some problem characteristics or other user-needs. For example, the decision
problem might have a very large set of alternatives and the decision-maker might
have indicated quite a large number of criteria as of interest to him, and that he
desires a quick decision. Clearly, the time-complexity of processing a large dataset
will need to be traded-off against the time of response desired by the decision-maker.

From the above definition of a choice filter, even an algorithm which selects the
survivors randomly from the initial set qualifies as a choice filter although it might
not satisfy a wide variety of situational demands. More practically, the decision sci-
ence literature teems with techniques to solve the MCDM problem. Methods like
elimination-by-aspects, goal programming, use of weights, marginal utilities and util-
ity functions and other kinds of decision heuristics like lexicographic ordering also ap-
ply the decision-maker’s preferences to produce a subset of the decision alternatives.
Therefore, these techniques could also qualify as choice filters. The only problem
with using any or most of the above as choice filters in the context of the S-F-V-

architecture is their inability to address the different properties that a DSS must
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possess, as discussed in Chapter 1, in order to elicit the decision-maker’s preferences
by means which are natural and easy for the decision-maker to express.

On the other hand, as discussed in Chapter 2, there is a very strong appeal to
the use of dominance as a choice filter. But we have also seen examples wherein
the use of the dominance filter might not be well-suited to catering to the related
situational demands e.g, pruning demands requiring fewer than, or more than, the
Pareto alternatives, accommodating uncertainty). Thus we are faced with the need to
resolve the tension between the use of dominance as an integral part of any decision-
making method and its inapplicability in dealing with certain situational demands.
The question is whether it is possible to do this by making minor changes to the
dominance rule itself so that all of its good properties are retained. Most of the
choice filters formulated in the dissertation will be based on such decision rules- rules
that can be derived by making minor adjustments to the dominance rule. First, we
introduce some notations that will be used from here on to refer to choice filters and

other related variables.

3.2.1 Terminology and Notations

A choice filter will be referred to as F'(). Although F'() will be used for the general
case, specific labels will be used to distinguish between different filters. The Dom-
inance Filter presented in the last chapter will be represented as D(); it takes no
parameters. A set of multicriterially evaluated alternatives will be represented as
X = {C, X}, where C is a set of labels, one for each of the n alternatives. Cy will
be used to refer to the kth alternative in the set. X; is an m-dimensional vector con-
taining the m criteria values for the alternatives. In other words, for the alternative
C,

Xy = {$k1, Tg2, - ﬂU/cm}

so that the quantity z;; will refer to the evaluation of the alternative C} on the jth
criterion. The set of alternatives that are produced upon application of a choice filter
(the survivor set of the choice filter) will be represented by S(F(),X’). The first
argument indicates the choice filter that is being applied while the second argument

is the set of labeled alternatives to which the choice filter is being applied; the second
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argument will often be omitted for convenience. The survivor set of a choice filter
is a set of labels indicating the alternatives that survive the application of the filter.
Therefore, S(F(),X) is a set of labels. We will often need to refer to the criteria
evaluations of the survivor set of a choice filter. The notation X (S(F())) will be used
to indicate the criteria values taken by the survivors of the filter F'().

For problems where there is uncertainty associated with the criteria values, we
will use X = {C, X}, where X}, is the set of m, measured criteria values for the
alternative Cy. As before, S(F(), X) will be used to indicate the survivors(labels for
survivors) of the application of the filter F' to the measured set of criteria values.
Finally, X (S(F())) refers to the measured criteria values of the survivors.

We say that two alternatives are e-indistinguishable along some criterion if the
values taken by the alternatives in that criterion are not separated by more than €
units. When we say that two alternatives are e-indistinguishable without reference to
a criterion, we mean that the alternatives are e-indistinguishable along each of the m
primary criteria.

We next consider a family of choice filters obtained by the introduction of toler-
ances in the dominance rule. This family of dominance filters will be referred to as

Tolerance-Based Dominance Filters or TBDFs.

3.3 Tolerance-based Dominance Filters (TBDFs)

The choice filters presented in this section modify the dominance rule in various ways
by the introduction of tolerances in the dominance rule. These tolerances are scalar
values which can be thought of as either representing noise-accommodating thresholds
or user-sensitivities to changes in criteria values. For each choice filter, we define the
decision rule, the algorithm used, and discuss characteristics of the survivors produced

by the algorithm. In the next section we consider the performance of these filters.

3.3.1 Single Pass Strict dominance tolerance filter- S7'(¢)

This choice filter produces its survivors after a single pass of the n alternatives. We

will typically refer to this filter will simply as Strict dominance filter.
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Decision Rule:

(Cy beats Cy by Strict Dominance) <= Ji(Cyi > Cpi + €) A 235(Ch; > Coj + €)

Algorithm:

The algorithm for this choice filter is the same as the one described for the Dominance
Filter in Section 2.2.2. The only difference is that when a pairwise comparison is being
made, the algorithm checks for the Strict dominance relation between the alternatives

instead of the dominance relation.

Characterizing the survivors:

The strictly dominates relation, unlike the dominates relation, is not transitive. In
other words, it is possible that an alternative C; strictly dominates alternative Cj, C;
strictly dominates alternative C}, and for C; to not strictly-dominate alternative CY.
It is possible that either C; and C}, tie or even that C strictly dominates C;. In the
former case, the strictly dominates relation is being weakly intransitive®. In the latter
case, we say the strictly dominates relation is being strongly intransitive®.

To see an example of the weak intransitivity of strict dominance, consider the 3

alternative case with 2 criteria p and q as indicated below-

p q
c, 2 3
c; 3 1 (e1)
Co 1 2

Let € = 1 for both criteria p and q. Then, for the above case we see that C; strictly
dominates C;, C; strictly dominates Cy, but C; doesn'’t strictly dominate Cy. Rather
C; and Cj, are tied under the strictly dominates relation. The triplet (C;,C;,Cy) in

the example is referred to as an intransitive chain.

5A relation R is said to be weakly intransitive if for some a,b, and ¢, we have: (aRb) A (bRc) A
—(aRc)

6 A relation R is said to be strongly intransitive if for some a,b, and ¢, we have: (aRb) A (bRc) A
(cRa)
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To see that the strictly dominates relation can be strongly intransitive, consider

the 3 alternative, 3 criteria example again with € values all set to 1.

b q r
c; 1 3 2
c; 2 1 3 (e2)
C, 3 2 1

In the above case we see that C; strictly dominates C;, C; strictly dominates Cy, and
Cy, strictly dominates C;. The triplet (C;,C},Cy) is referred to as an intransitive loop.
Theorem 3.1 below shows that strong intransitivity cannot occur for a case with less

than 3 criteria.

Theorem 3.1 The Strict Dominance rule cannot be strongly intransitive for a deci-

ston problem with m < 3.

Proof: See Appendix A.

The result of these breakdowns in transitivity is that the single pass algorithm for
the previous dominance filter is now seen to be order-dependent. To see this, con-
sider the previous example assuming that we use the single pass algorithm described.
Suppose that the algorithm starts with the pair C;, C;. Since Cj strictly dominates
C; in a pairwise comparison, the algorithm will discard C}; and go to the next un-
considered alternative C. Upon finding that Cj strictly dominates the survivor C;,
the algorithm discards C; so that the only survivor produced by the algorithm is Cy.
But clearly, there is a case to be made for why C; and C; deserve to be survivors- C;
strictly dominates Cj and C;j strictly dominates C;. Also, all three alternatives are
Pareto-optimal. But the single-pass algorithm will always discard two of them due
to order-dependency.

There are at least two ways to tackle the problem associated with order-dependence
of the single-pass algorithm. Choice filters based on each of these techniques make
use of the Strict dominance rule above, but operate using more than a single pass in
order to produce the set of survivors. These two filters, Twopass Strict dominance
filter, and Multipass Strict dominance filter, will be discussed in the next section as

possible alternatives to tackle the order-dependence of the single-pass algorithm.
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We already showed above that the strict dominance filter can eliminate Pareto
optimal alternatives. It can additionally be shown that the filter can retain suboptimal

alternatives as survivors. To see this, consider the 3 alternatives,

C; 3
Cj 1 2 (63)
Cr, 25 0.5

Let the es for both the criteria be 1. Then, C; and Cj, survive while C} is eliminated.

However, C}, is not Pareto-optimal while the eliminated alternative Cj is optimal.

3.3.2 Twopass Strict dominance tolerance filter- ST2(e)

In the discussion of the single pass strict dominance filter, it was shown how a single
pass algorithm which applies the strict dominance rule can result in a set of survivors
which are dependent upon the order in which the alternatives are compared. For many
applications, losing alternatives due to breakdown in transitivity can be undesirable
for the decision-maker, especially if the alternatives are Pareto optimal. Also, the set
of survivors produced by the application of a non-transitive decision rule is difficult
to characterize for the decision-maker. The twopass strict dominance filter is one
alternative to tackle the order-dependence of the original strict dominance filter.

To understand the rationale behind this filter, suppose that the single pass strict
filter retains a few alternatives that belong to intransitive loops. During its second
pass, the Twopass Strict filter checks if any of the survivors of the single pass are
strictly dominated by a non-survivor. Since for every loop representative retained by
the first pass, there will be one such non-survivor, all such loop representatives will be
removed during the second pass. In the case of an intransitive chain, if the single pass
keeps the single alternative at the tail of the chain (the one which is strictly-tied with
the head of the chain), then the second pass eliminates such alternatives). In other
words, at the end of the second pass, none of the survivors are strictly dominated by a
non-survivor. Hence the twopass strict filter produces the set of strictly undominated

alternatives.
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Decision Rule:

C; € ST2(e) <= —3C;(C; strictly dominates C;)

Algorithm:

1. Produce the survivors of the order-dependent single pass strict algorithm.

2. Eliminate any survivor that is strictly dominated by a non-survivor.

Characterizing the survivors:

In other words, the Twopass Strict dominance filter produces a survivor set with the
following property: 'no survivor is strictly dominated by any of the other alternatives.’
The algorithm described above runs in two passes. The first pass is the single pass
strict dominance filter and this produces a set of survivors for which the following are

true:
e No survivor strictly dominates another survivor and,
e Some survivors may be strictly dominated by non survivors of the first pass.

The second pass of this algorithm gets rid of the survivors which are strictly domi-
nated by the non-survivors. Hence the second pass iterates over the set of survivors
asking for each survivor if it is dominated by any of the non surviving alternatives.
If so, then the survivor at hand is eliminated and process iterates over the remaining
survivors. Not more than two passes are needed to produce a strictly-undominated
set of alternatives. Hence in the worst case, the amount of work done by this imple-
mentation is twice the amount of work done by its predecessor. Thus, the complexity
remains unchanged although it takes a little longer to produce its set of survivors.
Also, the set of survivors produced by this filter is a subset of the set of survivors
produced by the single pass filter. Hence this filter has a better pruning efficiency
than the single pass filter.

One problem with this filter is that it can potentially produce zero survivors as

can be seen for the example (e2) discussed in the previous section. In the example,

43



each of C;, C; and C}, are strictly dominated by another alternative and hence this
scheme will produce zero survivors. But it is fairly trivial to have a post-processor
in the implementation which checks for this condition and if the second pass leads
to zero survivors, it reverts to some other decision rule to produce an alternative

non-empty set of survivors.

3.3.3 Multipass Strict dominance tolerance filter— STm(e)

The previous section described one way to tackle the transitivity problem associated
with the single pass Strict dominance filter. Another way to solve this problem is to
allow for each and every alternative occurring in a loop or chain to survive, so long as
it is not strictly dominated by another alternative except by those which are also in
the loop or chain. Clearly, this filter will produce more survivors than that produced

by the single pass, or the twopass strict dominance filters.

Decision Rule:

Ci € STm(e) <= VC;( (C; strictly dominates C;) —

(C; occurs in an intransitive loop or chain with Cj))

In order to implement this filter, we need to seek out all those alternatives which
occur in loops and chains but which are not strictly dominated by any non-loop or
non-chain alternatives, i.e., alternatives like C; and C; in the example (e2). This
algorithm is a bit complicated and is therefore described below more formally. If
there are loops and chains, then it will take more than 2 passes to produce the final

set, of survivors.

Algorithm:

The first pass is obviously the single pass strict dominance filter as before. The

subsequent passes work as follows:
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Second Pass: Tterates over the non-survivors of the first pass, looking for any such
non-survivors which are not strictly-beaten by any of the first-pass alternatives. This
pass will fetch all such alternatives which occur at the end of a chain.”

Third pass: Iterates over the existing set of non-survivors now looking for all
such non-survivors which strictly dominate an existing survivor. If so, then such
non-survivors are salvaged as new survivors but are stored separately.

Fourth pass: Performs the same check on the existing set of non-survivors as the
third pass except that the check is performed only with respect to the newly salvaged
survivors of the third pass. The new survivors brought in by the fourth pass are again
stored separately.

Remaining passes: Each pass from here on, works exactly like the fourth pass,
looking for existing non-survivors which strictly dominate any of the survivors which
were salvaged by the previous pass. This is continued until none of the remaining
non-survivors can be salvaged as a survivor any more.

The third pass and the passes thereafter fetch alternatives which occur in a loop
or alternatives that occur in the middle of a chain. By storing the newly salvaged
survivors of each of these passes separately, the time taken by each of the passes is
reduced considerably. This is important since it is sufficient to keep comparing only
with respect to the survivors of the previous pass in order to produce the entire set
of alternatives that occur in a loop or a chain. In other words, each pass ¢ salvages
one non-surviving alternative, say X;, from each loop and the (i + 1)-st pass gets the
alternative, X;, which strictly dominates X; in the loop, and the (i+2)-nd alternative
fetches the alternative which strictly dominates X; and so on until all the alternatives
in each loop are salvaged. The total number of passes required by this algorithm is
equal to the size of the largest undominated loop, s, encountered by the first pass.
However, after the third pass, each subsequent pass does not have to iterate over all
of the existing survivors due to reasons discussed above. Each pass iterates over all
of the existing non-survivors until the strict-dominators for each of the previous-pass

survivors are found, which requires less than n compares. The application of this filter

7 Alternatives occurring at the end of a chain are by definition strictly-tied with the alternative
which occurs at the head of the chain and we know that the head of a chain always survives the first
pass.
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can therefore produce undesirable delays if n is large and under conditions wherein
the presence of big loops become probable.

Suppose that k% is the number of survivors produced by the the ** pass. Then,
the (i+ 1)st pass maximally requires comparing each of the remaining non-survivors
to the - survivors of the i'" pass. Hence, for s being the size of the largest loop, the
total number of pairwise comparisons required by the Multipass Strict filter excluding
the first pass is:

7(n, m) JZ2 Z kﬁ 7 (3.1)

which, including the first pass (Strict dominance), is O(n?) in the worst-case.

3.3.4 Strongly-Strict dominance filter - Sts(e)

The Strongly-Strict filter is another filter that belongs to the original Strict dominance
family of filters.

Decision Rule:

C; € StS(G) <~ (VCJ € C)E”{Z(jzk > :chk + 6).

where j # 1.

Clearly the above rule is neither transitive, nor even antisymmetric (meaning two
alternatives can beat each other by this rule). However, the application of this filter by
the use of an order-independent algorithm produces a survivor set that has interesting

properties.

The Algorithm:

1. Produce dominance survivors by applying the dominance rule to the measured

criteria values.

2. To the dominance survivors, apply the single pass Strict filter.
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3. Obtain the set of strictly undominated alternatives from the survivors of the

second pass.

4. From this set of survivors, further eliminate those which have at least one al-

ternative in any of its e-boxes.

The time-complexity of the above algorithm is also O(n - In™ 'n) like the other
TBDFs. To see this, note that the each pass subsequent to the first one maximally
compares all of the dominance survivors to all of the dominance non-survivors.

In order to see that this algorithm satisfies the decision rule, we need to prove
that all survivors of the algorithm satisfy the decision rule and that none of the non-
survivors satisfy the same rule. Let us consider the first part - that of showing that
all survivors of the above algorithm satisfy the decision rule.

At the end of the algorithm above, we have a set of alternatives none of which are
strictly dominated by any of the remaining n — 1 alternatives. This implies that each
survivor either strictly dominates another alternative or it is strictly tied with another
alternative (two alternatives are said to be strictly tied if neither dominates the other
according to the strict dominance rule). Now strict-ties can be classified into two
kinds - weak ties wherein neither of the two alternative strictly dominates the other
because they are e-indistinguishable with each other along all criteria or strong ties
wherein, the two alternatives are each e-better than the other along different criteria.
Step 4 of the algorithm however eliminates all such survivors that are weakly-tied
with some alternative. Therefore, we can now say the following: each survivor of
the algorithm are such that they either strictly dominate another alternative or they
from strong, strict-ties with another alternative. This implies that each survivor of
the algorithm satisfies the decision rule.

To prove that no non-survivor of the above algorithm satisfies the decision rule,
we first note that none of the non-survivors of the first step can satisfy the deci-
sion rule (since they are dominance non-survivors, they cannot be epsilon-better on
some criterion with respect to their dominator(s)). Also, step 2 eliminates those sur-
vivors of step 1 which are strictly-dominated by another survivor, hence these new
non-survivors cannot satisfy the decision rule either. Step 3 eliminates alternatives

that are strictly dominated by any alternative and hence removes alternatives that
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cannot possibly satisfy the decision rule. Finally, if there are survivors of Step 3
that are dominance-tied but e-indistinguishable along all criteria, Step 4 eliminates
such alternatives. This removal is also valid since e-indistinguishable alternatives
violate the the decision rule with respect to each other. In summary, none of the
non-survivors satisfy the decision rule for the strongly-strict filter. This shows that

the above algorithm produces the set of strongly-strict non survivors.

Characterizing the survivors:

The name of the filter is based on the fact that Strict-ties (namely pairs of alter-
natives where neither strictly dominates the other) which previously resulted from
e-indistinguishability are no longer considered as valid ties; only ties of the kind
where each of the two alternatives are e-better than the other alternative on different
criteria are considered to be valid ties. Hence one way to characterize the survivors
of the Strongly Strict filter is that it is the set of survivors produced by the Twopass
Strict filter with all weakly-tied survivors being eliminated.

The following two properties can be proved for the survivors produced by the
Strongly Strict filter:

Corollary 3.1 Every survivor of the Strongly Strict filter is a dominance survivor,
i.e.,

S(Sts(e), X) € S(D, X)
Proof: See Appendix A.

Theorem 3.2 For X = {C, X},
0 = S(Sts(ex), X) C ---S(Sts(es), X) C S(Sts(ez), X) C S(Sts(er), X) = S(D, X)
where,
€p > - > €6 >¢€ > 0.

In other words, the Strongly Strict filter allows for a smooth pruning of the Pareto
set with increasing €. As stated earlier, the survivor set produced by the original Strict
dominance filter can contain alternatives that are not in the Pareto set. Also, the
size of the survivor set is not a monotonic function of the magnitude of the tolerance.

As we will see in Chapter 6, there are decision situations where it becomes necessary
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to be able to produce gradually reducing, and exclusive, subsets of the dominance
survivor set by changing the magnitude of the tolerance. The Strongly Strict filter

suits perfectly for this requirement as indicated by the above two results.

3.3.5 Superstrict dominance tolerance filter- SS(e)

Decision Rule:

(Cy beats Cy by Superstrict Dominance) <= Fi(Cyi > Cyi+€) AVj(Cyj > Cyj+€)

Characterizing the survivors:

Corollary 3.3, to be stated soon, shows that all dominance survivors are also survivors
of the Superstrict dominance rule. Theorem 3.3 below shows that progressively in-

creasing the size of the tolerances produces progressively more inclusive survivor sets.

Theorem 3.3 For X = {C,X},

S(D,X) = S(S5(e1), X) C S(5S(e2), X) C S(SS(es), X)
.- C S(SS(e), X) =C.

where,
0<e <€+ <€

Hence for the Superstrict dominance filter, as the tolerance increases, more and more
alternatives are added to the dominance set. In other words, the survivors of the Su-
perstrict dominance filter can be characterized as consisting of all of the dominance
survivors and potentially some of the dominance non-survivors (the size of this addi-
tional set of survivors is a non-decreasing function of the size of the tolerance). This
theorem also indicates that the Superstrict filter acts as a dual to the Strongly strict
filter with respect to the Pareto set. This can be observed by comparing the above

theorem to Theorem 3.2. In fact, the two theorems allow us to infer the following
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interesting result: For X = {C, X'}
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where a1 > e >3-+ > 0p > 0 < wy <ws <wg -+ - < Wy

Also, we see from the decision rule above that if alternative C; superstrictly dom-
inates alternative C;, then it implies that C; Pareto dominates C; as well. In other
words a dominance non-survivor can be superstrictly dominated only by its Pareto
dominators. In other words, each dominance non-survivor which is retained by the
Superstrict filter is such that none of its Pareto-dominators superstrictly dominates
it. This motivates an algorithm to produce the survivors of Superstrict dominance
consisting of two passes with the first pass producing the dominance survivors and
the second pass additionally retaining each such non-survivor of the first pass, for

which none of the first pass survivors superstrictly dominates it.

Algorithm:

1. Apply the dominance rule to produce the set of dominance survivors.

2. For each non-survivor of the first pass, check if any of the first-pass survivors

superstrictly dominates it. If not, retain such alternatives as new survivors.

By using the above twopass algorithm instead of the original single pass algorithm
used for the Dominance filter, we make the time complexity of producing the Super-
strict survivor set independent of the additional alternatives produced by Superstrict
over dominance. The complexity of the first pass is same as that of producing the
dominance set and the second pass requires comparing each non-survivor once with
each dominance survivor and this is of the order of the same number of pairwise

compares as the dominance filter.
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3.3.6 DD-dominance tolerance filter- DD(e)

Decision Rule:

(Cy beats Cy by DD — Dominance) <= Fi(Cyi > Cyi + €) AVj(Cyj > Cyj)

Characterizing the survivors:

The dd-dominance rule was originally conceived to modify the Strict dominance rule
so that the transitivity problems associated with it can be addressed. The rationale
of the above modification can be elicited by looking at the example (e2) again which
contains the loop (C;, C;, Cy). Previously it was stated that C; strictly dominates C;
strictly dominates Cy, strictly dominates C;. However, careful observation will reveal
that the criterion on which each of these alternatives beat their neighbor is different.
C; beats C; on criterion y, C; beats Cj on criterion z and C}, beats C; on criterion
x. Since each pair is therefore being effectively compared only on mutually exclusive
dimensions (i.e. they are indistinguishable on the rest), clearly there is no reason to
expect transitivity. This is exactly the phenomenon that manifests itself in example
(€2) resulting in the intransitivity of the strictly dominates relation.

If it is ensured that either all criteria or at least 1 criterion plays an effective part
in every pairwise comparison, then weak transitivity has to follow (no loops). The
relation dd-dominates does the former - it makes sure that criteria which get ruled
out of the pairwise comparison due to indistinguishability necessarily play a part in
the fate of the pairwise comparison. Now even if C; is € better than C; on y, it is
really worse than C} on criteria x and z. Therefore C; no longer beats C; so that
both C; and Cj, and by similar argument Cj, all survive. This ensures transitivity.
Since the second clause of the dd-dominates relation requires that the dominator be
strictly better than the dominated alternative, the dd-dominates relation entails the
dominates relation. In other words, if C; dd-dominates C; then C; dominates C}.
This is better stated as the Theorem 3.1 below,

Theorem 3.4 FEvery survivor of the dominance filter is a survivor of the dd-dominance
filter, 1.e.,

ol



S(D,X) C S(DD(e), X)

Proof: See Appendix A

According to Theorem 3.4, dd-dominance keeps all the dominance survivors. Sim-
ilar to the Superstrict filter, the dd-dominance filter can potentially retain more, with
the number being directly proportional to the size of the tolerances used. Just like
the Superstrict filter, any dominance non-survivor can be dd-dominated only by its
dominator. Hence, the algorithm to produce the survivors of the dd-dominance filter

is similar to that for the Superstrict filter.

Algorithm:

1. Apply the dominance rule to produce the set of dominance survivors.

2. For each non-survivor of the first pass, check if any of the first-pass survivors

dd-dominates it. If not, retain such alternatives as new survivors.

It is easy to see that each second pass survivor is such that it is within € on all criteria
with respect to all of its dominators.
Theorem 3.5 shows the relation between the survivor sets produced by the dd-

dominance filter and the twopass strict dominance filter.

Theorem 3.5 FEvery survivor of Twopass Strict Dominance is a survivor of dd dom-

inance for the same tolerance value i.e.,

S(ST2(e), ¥) C S(DD(e), X)

Proof: See Appendix A

3.3.7 ¢-Box Twopass Filter (ebtp-filter)- EB(e)

Decision Rule:

C; € EB(e) <= (C;is a dominance survivor)

J(Ci is € — indistinguishable from a dominance survivor)
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Algorithm:

1. Apply the dominance filter to produce dominance survivors.

2. For each non-survivor of the first pass, check if it is within € on every criteria
from a first-pass survivor. If so, such alternatives are further added to the

survivor set.

Characterizing the survivors:

The set of survivors of the ebtp-filter has the property P that every survivor is either
a dominance survivor or it is inside the e-hyperbox of some dominance survivor. From
the discussion of the dd-dominance filter, we know that each second pass survivor of
the dd-dominance filter is such that it is inside the e-hyperbox of all of its dominators.
Since the first pass is identical for both the filters, it is easy to see that all survivors of
dd-dominance will also survive the ebtp-filter. Conversely, a second pass survivor of
the ebtp-filter need not be in the e-box of all of its dominators. Hence, the ebtp-filter
can potentially produce more survivors in addition to the survivors produced by the
dd-dominance filter.

Some theorems and corollaries establishing the relations between the survivor sets

produced by the different choice filters described so far are stated below.

Theorem 3.6 Fvery survivor of the ebtp-filter is a survivor of the Superstrict dom-

inance filter for the same tolerance value i.e.,
S(EB(e), X) € S(SS(e), X)

Proof: See Appendix A

Theorem 3.7 A survivor of the Superstrict dominance filter need not be a survivor

of the ebtp-filter for the same tolerance value.

Proof: See Appendix A

This implies that Superstrict dominance will produce a larger number of survivors
than the ebtp-filter. Not only does the Superstrict filter get all the survivors of the
ebtp-filter but it can potentially retain more alternatives as survivors. In this sense

the Superstrict filter is more conservative than the ebtp-filter.
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Theorem 3.8 Fvery survivor of dd-dominance filter is a survivor of the ebtp-filter

for the same tolerance value i.e.,
S(DD(e), ®) C S(EB(e), )

Proof: See Appendix A

Theorem 3.9 A survivor of the ebtp-filter need not be a survivor of the dd-dominance

filter for the same tolerance value.

Proof: See Appendix A

Corollary 3.2 S(ST2(¢), X) C S(DD(e), X) C S(EB(e), X) C S(S5(¢), X)

Proof: This follows from Theorems 3.5, 3.6, and 3.8

Corollary 3.3 Every dominance survivor is a survivor of Superstrict dominance fil-
ter, i.e.,
S(D,X) C S(SS(e), X)

Proof: This follows from Theorem 3.4 and Corollary 3.2

3.3.8 Onion-skin filter- OS(r)

Decision Rule:

Cre05() «= (G eSO, (x - L)D;)

k=1 j=1

Where Dp = S(D, (X — Dp—l)); DO = @

Algorithm:

Peelskin(r){
0=0;U=2X;
while(r # 0){
O=0US(D,U);
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U=U-S(D,U);

r=r—1,;

Characterizing the survivors:

OS(r) is the classical dominance filter applied iteratively r times to the eliminated
alternatives at hand. This process can be visualized as very similar to the peeling
of an onion-skin. The top skin represents the Pareto set. Upon removal of this set,
a new top skin is visible which can itself be peeled by the application of dominance
filter to the non-survivors to retrieve yet another layer of Pareto survivors. These
layers can each be named {PO};, {PO}, and so on, where {PO},; is the set of
alternatives obtained after ¢ applications of the dominance filter to the existing set of
non-survivors.

Large chunks of increase in the number of survivors over that produced by the
dominance filter can be obtained by the use of this filter. If n is large, the fraction of
survivors upon application of a single round of measured dominance is quite small.
As a result, the second application will produce almost the same number of survivors
as the first one and so on for quite a few number of initial applications of measured
dominance. Thus user expressions like ”"produce k times the number of measured
Pareto dominance survivors” can be met by peeling k£ skins from the original set by
the use of the above filter. Thus, the onion-skin filter can address some situational
demands both in the presence or in the absence of uncertainty. If the desired increase
in the number of survivors over the dominance survivors is not in large chunks, then
a stronger notion of neighborhood will need to be applied instead of the onion-skin
filter.

In the next section, we analyze the performance characteristics of some of the

choice filters discussed above.
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3.4 Performance characteristics of choice filters

The performance characteristics of choice filters provide us with knowledge about
how the filters behave with respect to varying kinds of problem characteristics and
user-needs.

We have already looked at how the pruning efficiency and time-complexity of
the dominance filter varies with respect to various problem characteristics like n, m
and correlations among criteria in Chapter 2. We next look at these performance

characteristics for the choice filters discussed in the previous section.

3.4.1 Filtering efficiency

The filtering efficiency for the dominance filter is expressed as a function of n and
m. For TBDFs, we want an expression in terms of n, m, and €. In order to find an
expression for the probability that a random alternative X is a survivor with respect
to n—1 randomly chosen alternatives for a certain filter, it is useful to refer to Figure 5.
The figure shows a simple case with 2 criteria for each of 4 filters; X is some arbitrary
alternative shown as a point in a plot with the criteria as the axes. The coordinates of
X, z1 and z, therefore correspond to the criteria evaluations for X respectively in the
two criteria. The box around the point X is a square of side 2¢, with X at its center.
This geometric representation will allow us to write an expression for the probability
that X survives m — 1 other, randomly chosen alternatives. Let’s assume that the
criteria values are obtained from a continuous, uniform distribution in the interval
[0,1]. All tolerance values therefore lie in the same interval. Figure 5a shows the case
for the Dominance filter discussed in the last chapter. The region @) seen as formed
to the top and right of the solid lines emanating from X is a sub-region in the C1-C2
region such that any alternative that lies in () will a dominator of X. This geometric
relation is inferred by using the dominance rule and observing from the figure that
any alternative in the region @ will be such that it will dominate X according to the
rule. Therefore the survival probability of X is indirectly proportional to the area of
the region (). Since the overall area of the C1-C2 plot region is 1.0, the area () can
be computed as 1.0-(total area of the non-Q regions of the plot).
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Figure 5: A geometric representation for a 2 criteria problem to compute the survival
probability of a random alternative X for various TBDFs.

The same geometric analogy is true for the TBDF's as well except that the region
@ now also depends upon the value of the tolerance, e. Each of the other three figures
show the region ) and the corresponding solid lines that bound ) from the lower
end. From the figures it is seen that for a chosen X, the area () is the smallest for the
Superstrict Filter compared to the DD-dominance filter, which is smaller than the @)
region for the Strict filter. Hence, the survival probability of an arbitrary X will be
higher when the Superstrict dominance rule is applied than when the DD-dominance
rule is applied which is further greater than the survival probability for the Strict
Filter.

A closer examination of the plots will also show that except for the Strict filter,

the area of the region () reduces monotonically as the magnitude of the tolerance
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increases. To do this, one can imagine another, larger box around point X and look
at the equivalent () region produced by this new box. This implies that the number
of survivors produced both by DD-dominance filter and Superstrict filter will increase
as the tolerance values increase.

For the Strict filter, the change in the area of region () cannot be predicted by
the direction of change in the tolerance values. This is because the new () region
produced by a larger box (shown as dotted box in Figure 5b) for the Strict filter will
include previously excluded regions and also exclude some of the region which were
previously in the @) region. So the net change in the area of the region () cannot be
predicted. This means that we cannot in general expect the number of survivors to
either increase or decrease based merely upon the direction of change in the tolerance
values. Expressions for the probabilities that an arbitrarily chosen alternative X =
{z1, %9, ...., xym } Will survive each of the above TBDFs, given n, m, €’s, and assuming
that the criteria values come from a continuous uniform distribution in [0,1] are given
below. The expressions are based on computing the area of the individual @) regions
and taking its complement by subtracting from 1.0 and integrating over all possible
criteria evaluations that X can take. The expressions are generalizations of the 2
criteria case described above but the geometric ideas still apply except that the @)

regions now become m-dimensional volumes.

e Strict Dominance:

P(X € S(St(n,m,e¢))) =
/ / / (1= f(@0)f (@) f (@m) + 9(21)9(X2) g (20) ]|~ d1ds... A,

m mtegrals

where,
1 0<z<e
flz) =
l—x+¢e e<z<1
and for € < 0.5,
T+e€ 0<z<1l—c¢
g(x) =< 2 e<z<1l-—c¢

l—ax+4+e 1—-e<zx<1
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for € > 0.5,
T+ € 0<xr<1—c¢
glx)=4¢ 1 l1—e<z<e
l—xz+¢e e<z<1

e DD-Dominance:

P(X € S(DD(n,m,¢))) =
/0 /0 1= (1—21)(1 = 22)ere(1 — 2a) + 9(21)g(w2) . (@m)]* d1...de

m integrals

where,

(2) € 0<z<1l-—c¢
T) =
g l—z 1—-e<2<1

e Superstrict-Dominance:

P(X € S(SS(n,m,¢))) =
/ / / (1= f(z1) f(m2)-.. f ()] w1 d ... AT,

m mtegrals

where,
l—z—¢€¢ 0<z<1-—c¢
-]

0 1—-e<z<1

The above expressions can be used to compute the expected number of survivors
by multiplying the above quantity with n. These expressions also indicate the impact
of a change in the tolerance value on the number of survivors. As mentioned earlier,
an increase in the tolerance values results in an increase in the number of survivors for
Superstrict and DD-dominance filters. However the expression for Strict shows that
there are some terms containing € which increase the number of survivors while other
terms decrease the number of survivors. Hence, one cannot say that the number of
survivor of Strict dominance filter will necessarily result in an increase or decrease in

the total number of survivors produced by application of the filter.
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The pruning efficiencies of the various choice filters with respect to changing prob-
lem characteristics are shown in Figure 6 for various choice filters. Although the above
expressions could have been used to compute the fraction survivors for the filters, this
plot was generated by use of Monte-Carlo simulations with the trials conducted on
randomly generated datasets with n=2500 for various values of m. This was mainly
due to the computational complexity involved in evaluating the above integrals es-
pecially for large values of m and n. However, for a few points obtained by the
Monte-Carlo simulations, we did compare some of the values obtained by the sim-
ulations with the values from the above expressions and they matched to a great
degree of accuracy. For the simulations, the dataset was generated from a uniformly
distribution in the interval [0,1]. Each of the filters shown was then applied to the
dataset with tolerances set to 0.01 and 0.1 respectively for each filter. The pruning
efficiency for each filter was calculated as the mean fraction survivors over the total
number of trials for each value of the tolerance.

The plots show, as expected, that Superstrict dominance produces the most num-
ber of survivors followed by ebtp-filter, followed by dd-dominance and then Strict
dominance filter. However we also get to verify our additional insights as to how
the pruning of each of the choice filters will be affected as the situational demands
change.

Firstly, as the value of the tolerance increases, each of the three choice filters
Superstrict, ebtp and dd-dominance produce more number of survivors as expected.
A larger tolerance value could mean that the user is willing to compromise more on the
optimality of the alternatives and thereby allow more suboptimal, or nearly optimal,
alternatives to survive. It can be seen that for large values of tolerances, the increase
in the number of survivors with respect to the number of criteria is much rapid for
Superstrict than it is for ebtp and dd-dominance filter. However as m increases,
the survivors produced by dd-dominance and ebtp filter tend to become identical to
the Pareto set. This is because as the dimensionality of the e-box increases (i.e. m
increases) it becomes less and less probable for alternatives to occur in this e-box.
Thus neither dd-dominance nor ebtp will produce any additional alternatives in their
second pass.

When the tolerance values are small, as can be seen from the plot for the 0.01
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Figure 6: Plots showing fraction survivors with varying number of criteria for four
different choice filters when applied to a decision problem with 2500 alternatives and
with tolerances set to 0.01 and 0.1 respectively.

tolerance, both ebtp-filter and dd-dominance filter will tend to produce the same set of
survivors. This is expected because of two reasons: firstly since the tolerance value is
small, the resulting e-box is therefore small and the chances that any alternative occurs
in this small volume are considerably low. Additionally, all such alternatives which
are within the small e-box will consequently be closer to dominance survivors and it
will be rare for them to be dd dominated by a dominance survivor. If no alternatives
occur in some e-box then both ebtp and dd-dominance produce the Pareto set as their
survivors. If on the other hand, any alternatives do occur in some e-box, then all such
alternatives which survive ebtp will also survive dd-dominance since they will not be

dd-dominated by any alternative. In either case, the survivors produced by the two

61



filters will tend to coincide for small values of e.

3.4.2 Time complexity

An analysis of the time complexity of the dominance filter was presented in Chapter 2.
We also saw the impact of the size of the dataset as well as its nature (how competitive
the alternatives are, what kinds of correlations exist between the criteria) on the time
for dominance filtering. In this section, we consider the time-complexities for the

TBDFs discussed in the previous section.

Strict dominance filter

The Strict dominance filter uses the same algorithm as the dominance filter, as de-
scribed in section 2.2.2. Therefore, similar to the analysis for the dominance filter,
the average time-complexity for the strict dominance filter also depends upon the ex-
pected number of survivors for the filter. In general, this can be greater than, or fewer
than, the expected number of dominance survivors depending upon the the values of
the tolerances. The Monte-Carlo results show that for small tolerance values, Strict
dominance filter tends to produce fewer survivors than dominance filter. Hence for
small value of tolerances the running time of the strict filter is expected to be better
than that of the dominance filter. However as the tolerance values increase, the ex-
pected number of survivors begin to increase thereby potentially making its running

time worse than the dominance filter.

Superstrict-dominance filter

The algorithm described for the Superstrict dominance filter shows that the first pass
is the dominance filter which is O(n-In™ n) as discussed in Section 2.2.2. The second
pass of the filter compares each non-survivor of the first pass with the survivors of the
first pass, until some survivor superstrictly-dominates it in which case the algorithm
takes the next non-survivor from the first pass. If a non-survivor of the first pass is
not superstrictly dominated by any of the first pass survivors, then it is marked a new
survivor to be appended to the survivor of the first pass at the end of the second pass.

If s be the dominance survivors produced in the first pass, maximally each of the the

62



n — s non-survivors will require comparisons with all s survivors. This can take no
more than s-(n — s) pairwise compares for the second pass with a time-complexity of
O(ns — s?). Since the expected number of dominance survivors s = O(In™"'n), the
average case time-complexity of the superstrict filter, which is the sum of the time
required for the first pass and the second pass is O(n.In™ 'n) which is the same as

the average time-complexity for the dominance filter.

DD-dominance and e-box-twopass filter

The algorithms for each of the ebtp filter and dd-dominance filter show that their first
passes require the computation of the dominance survivors. In the second pass, each
filter considers the non-survivors of the first pass and checks for the respective kind
of dominance of the non-survivors by a survivor of the first pass. All such dominance
non-survivors that are not beaten according to the respective decision rule of the filter
are retained as new survivors and appended to the survivor set from the first pass.
Hence, using the same analysis as that for the superstrict dominance filter from the
previous section, we see that the average time complexities for both the ebtp filter

and the dd-dominance filter are each O(n.In™'n).

Comparing the actual running times of the TBDF's

Since each of the Superstrict, ebtp and dd-dominance filters produce the same set
in their first passes, their actual running times can be compared merely in terms of
their running time during the second pass. As m increases we expect more and more
non-survivors of the first pass to survive the superstrict decision rule. In fact, from
Corollary 3.2 we already know that for a given value of €, the superstrict filter will
retain all non-survivors that are retained by the ebtp and the dd-dominance filter and
potentially more. Therefore, the actual running time of the superstrict filter cannot
be better than that of the ebtp, and dd-dominance filters. In fact if m or € are large,
the difference between the running times of superstrict filter and the other two filters
above is expected to be large.

In comparing between the ebtp filter and the dd-dominance filter, firstly, if the

tolerance values are small, both the filters are expected to produce the dominance
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set, as their survivor sets due to reasons mentioned earlier. Hence, for small values of
tolerance, it is better to run the ebtp-filter since it has a greater chance of fetching
additional alternatives during the second pass than the dd-dominance filter (thereby
putting the second pass to good use). On the other hand if the tolerance values are
large, the ebtp filter is expected to run faster than the dd-dominance filter. This is
because any non-survivor that falls in the e-box of a first pass survivor gets retained
as a new survivor by the ebtp-filter without requiring further comparisons; however
the dd-dominance will need to keep checking if this non-survivor is not dd dominated
by any of its dominators. Of course, the ebtp filter is expected to produce a lot more
survivors than the dd-dominance filter for large values of tolerances as discussed in
the previous section. Finally, as the number of criteria m increases or if the tolerances
become smaller, it becomes rarer for the second pass of either the dd-dominance or
the ebtp filter to salvage anything at all. This is because, identical to the case when ¢
is small, the occurrence of alternatives inside e-boxes becomes improbable. Hence for
the same reasons as discussed above, it is better to use the ebtp filter in the interest

of making good use of the second pass in fetching additional alternatives.

3.5 Selecting a choice filter as a function of problem charac-

teristics and user needs

The above analysis of some choice filters indicates that the filtering efficiencies and
the running times for the filters depend upon the characteristics of the decision prob-
lem. For example if m is large, then the difference between the number of survivors
produced by the superstrict filter and that produced by the dd-dominance or the
ebtp-filter is large especially since the number of survivors produced in both passes
by the superstrict filter increases monotonically with increasing m, while the number
of survivors produced by the dd-dominance and the ebtp-filter in the first pass is
identical to that produced by the superstrict filter but the number of second pass
survivors reduces monotonically with increasing m. Additionally Corollary 3.2 indi-
cates how the filters line up in terms of their conservatism. Therefore, the choice to
deploy one filter over the other is clearly a function of user-needs like expressions of

conservatism, time-pressure, and problem characteristics like n, m,and €. Thus the
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choice of the right filter for a particular decision situation is itself an MCDM problem,
with the various situational demands of the decision situation being used to decide
on the best filter for the situation.

In general, the list of decision situations can be innumerable. However, even a
coarsely qualitative classification of decision problems based on decision situations
will reduce the problem to one of finding choice filters which are well-suited to these
qualitatively defined decision situations. For the purposes of the dissertation, we clas-
sify decision problems along decision situations that are most commonly encountered.
For example, at the topmost level we classify decision problems based on whether or
not they have uncertainty associated with them (in criteria values). This classification
is effective because the kinds of user-needs which can be addressed depend greatly
upon whether or not there is uncertainty associated with the criteria values. Also,
the presence of uncertainty curtails the user from expressing unachievable aspirations
like produce all and only the optimal alternatives. A filter-choice schema which is
aware of the presence of uncertainty can convert expressions of unachievable aspira-
tions from the user into one of achievable trade-offs and present them to the user.
The user’s trade-off expressions can then be used to decide on the appropriate filter
for the situation. The next chapter will make use of the performance characteristics
of various filters to develop a scheme to solve the filter-choice problem for a given

decision situation.
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CHAPTER 4

DECISION SITUATIONS WITHOUT
UNCERTAINTY

4.1 Introduction

In this chapter we will look at a class of decision problems for which the criteria
values are known accurately. In the absence of uncertainty, the application of the
dominance filter to a finite set of alternatives produces the Pareto set. In general,
however, a decision situation might require fewer or more alternatives than in the
Pareto set. In this chapter we will consider how an appropriate choice filter can be
used to address the various decision situations that arise with no uncertainty present.
The idea will be to make use of the performance characteristics of the different choice
filters with respect to varying problem characteristics to develop a scheme for choosing
an appropriate filter for a given decision situation. This scheme will enable the S-F-

V-architecture to apply across a wider class of decision situations.

4.2 Tolerances to model situational demands in the absence

of uncertainty

In Chapter 3, we developed a family of tolerance-based dominance filters. In this
chapter, we identify situational demands that the tolerances can be used to model.
Since each of the Superstrict, dd-dominance, and ebtp filters produces the Pareto set
and potentially more alternatives in addition to the Pareto set, decision situations

where the DM desires more alternatives than present in the Pareto set can be met by
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the use of any of these filters. In each case, the tolerances can be used to model user
expressions of criteria-specific bounds on the degree of suboptimality that he is willing
to tolerate. Thus, the dd-dominance filter retains the Pareto set and additionally all
such suboptimal alternatives which are not worse than any of their Pareto-dominators
by more than the magnitudes of the tolerances along the individual criterion. Fur-
thermore, these bounds might be in the form of a conjunctive expression across all the
criteria (namely the DM is interested in all those suboptimal alternatives which are
within the tolerance bounds of their dominators along all the criteria), or in the form
of a disjunctive expression (namely the DM is interested in those suboptimal alterna-
tives which are within the tolerance bounds of their dominators along even a single
criterion). The latter expression is a relatively more conservative expression where
near-optimality along even a single criterion is considered as a desirable property of
a suboptimal alternative.

The tolerances when used in Strict dominance filter can be interpreted as repre-
senting the marginal rates of substitution or trade-off rates of the decision-maker 8.
Hence when the tolerances are to be applied inside the Strict-dominance rule, the
preference elicitation called for is the trade-off rates of the decision-maker. There-
fore, the Strict dominance filter seems like a good filter to choose alternatives within
the Pareto set. However, as argued in Chapter 1, it is often unsuitable to elicit
preferential information like trade-off rates as abstract preferences; hence the use of
Strict-dominance filter for further pruning is not recommended. The Viewer in the
S-F-V architecture provides the user with a natural way to exert his trade-off prefer-
ences. Hence for decision situations where the DM desires fewer alternatives than in

the Pareto set, we recommend the use of the Viewer.

8Suppose, without loss of generality, that A and B are 2-criterial alternatives such that neither
dominates the other. In other words, on criterion ¢; , (a; = by +k1) and on criterion cg, (by = as+ks).
Now if we set €; < k1 and €3 > ks and apply Strict — dominance(ey, €2), A will strictly-dominate B.
One way to interpret the above € ’s used in Strict-dominance is to say that it modeled a trade-off
expression that, a loss of ko units on criterion ca is more than well-compensated by a gain of ki
units on criterion ¢ so that B can be traded-off in favor of A.
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4.3 The filter-choice problem for decision situations without

uncertainty

The S-F-V architecture makes use of the dominance filter to produce the Pareto
set, with respect to the primary criteria expressed by the DM. All further pruning
requirements of the user are interpreted with respect to the Pareto set as the reference
set. The different choice filters we discussed in the previous chapter allow for different
ways to order the suboptimal alternatives and the applicability of each filter depends
upon what kinds of expressions by the decision-maker are available. Certain kinds
of user-expressions call for certain basis for ordering the suboptimal alternatives and
hence the application of a certain filter.

The filter-choice problem can now be seen as one of translating user-expressions of
more alternatives to the exact basis upon which to order the suboptimal alternatives,
and further to the choice of the filter that would produce such an ordering. This is
indicated in the Figure 7. As shown in the figure, the dominance filter partitions the
original set into two sets - S which is the Pareto set and which survives the filter and
NS which is the suboptimal set or the set of alternatives eliminated by the dominance
filter. If the DM desires fewer alternatives than in S, he can make use of the Viewer
to further eliminate some of the Pareto alternatives in S by expressing various kinds
of concrete preferences like trade-offs.

If, on the other hand, the decision-maker desires more number of alternatives
than in S, use is made of an appropriate choice-filter, CF, from the available set of
choice-filters to further partition the inefficient set, NS, into NS1 and NS2. The
set NS1 can be seen as the survivors of the filter CF when applied to the set NS.
Similarly, NS2 can be interpreted as the non-survivors of CF-based filtering. Now,
NS1 is appended to the Pareto set S and this larger set, (S U NS1), is presented to
the decision-maker as the survivor set. If the decision-maker wishes to further explore
this set to get insights or to remove a few alternatives based on some constraints, he
can do this through the Viewer operating on the new set of survivors.

The success of this scheme depends on the assumption that the choice filter chosen
from the library is one which, for the given problem, best satisfies the different needs

expressed by the decision-maker. The manner in which this is done is the scope of the
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Figure 7: The filter-choice problem for situations without uncertainty.

rest of the chapter. Towards the end of the chapter, a scheme will be presented which

will point to the rules or pragmatics which will be used to decide on an appropriate

choice filter starting from a given set of user-needs and problem characteristics.

4.4 Pragmatics of mapping choice filters to decision situa-

tions

Based upon the performance characteristics of the various choice filters, one can now

analyze the situations under which each of the above choice filters may be deployed.

We only consider situations where the DM desires more alternatives than present in

the Pareto set. As mentioned previously, each of superstrict, dd-dominance, and the
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ebtp filter can be used to cater to the above demand. We discuss the conditions under

which one of the above filters is more suitable than the other.

4.4.1 e-box Twopass filter

The e-box Twopass filter appends the dominance survivors with the e-box survivors®
and reports this as its set of survivors. The question is whether these additional e-
box alternatives can represent some abstract pruning preference of the decision-maker.
But first we examine a few conditions under which the DM could be interested in

examining suboptimal alternatives:

e The DM may not be as much concerned with optimality as he is with having
a suitably large number of survivors in order to get insights about the good
regions in the structural space of the design problem (like the Genetic algorithm

example mentioned earlier).

e The DM may be willing to trade-off optimality with drastic gains along the
secondary criteria, or some structural characteristic of the alternative. Con-
sider for example two alternatives, C; and Cj, such that C; is optimal and Cj
dominates C; but C}; is within the e-box of C;. Now if C; additionally happens
to perform very well in some secondary criteria, then the sub-optimality of Cj
might not be as disconcerting to the user compared to the gain he obtains by

virtue of C; being much better in the secondary criterion'®.

In essence, the decision-maker might be oriented towards having final solutions
which might or might not be optimal in the space of primary criteria. People
often choose relatively expensive commodities because of some distinguishing
quality of the commodity, like color. It is unlikely that such a decision-maker
does not care about optimality at all; rather he is open to choosing those sub-

optimal alternatives which are very close to being optimal as long as they are

9 Alternatives which lie inside the e-box of a Pareto alternative.

10Note that this expression is not equivalent to treating the secondary criterion as a dominance
criterion. The above just means that the user’s sense of optimality is still related to the primary
criteria he expresses. However, he is using the secondary criteria to give the nearly-optimal alter-
natives a chance to survive if they have a chance of performing exceedingly well on the secondary
criterion.
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outstanding in some other aspect. Such a decision-maker might express his
conservatism in the following form, ”do not eliminate those suboptimal alterna-
tives which are indistinguishable from some optimal alternative within certain
quantitative bounds of the criteria-vector”. The decision-maker provides the
bounds-vector for the m criteria and this vector can be used in the EBTP-filter

to produce the newly appended survivor set.

At this point, one might wonder if the objections mentioned in Section 4.2 related
to the expression of tolerances required for Strict filter would apply to the expression
of tolerances for the ebtp-filter? And the answer is no, for the reasons mentioned

below:

e The primary reason has to do with the exact kind of preferential information
that the user is being told to give when he is asked to express the tolerances in
each of the two cases. If the kind of preferential information is such that it is
easy to express abstractly and moreover correctly by the user, then there is no
harm done in eliciting this information in such a form. The idea of near opti-
mality we contend is easier and natural to express in the form of bounds from
the dominance survivors. On the other hand, people find it difficult to express
trade-offs or MRSs (Marginal Rates of Substitution) abstractly and therefore
the expression of tolerances for Strict filter is susceptible to the objections men-
tioned previously. This difference justifies the use of abstract user expression
for tolerances used in ebtp-filter against the same kind of expression for use
with Strict filter.

e The most common definition of the best solution to the MCDM problem is
the following - it is the solution which satisfies the decision-maker more than
any of the other Pareto optimal solutions. This deals with two independent
properties, optimality which has to do with the alternatives, and satisfaction
which has to do with the decision maker. It is possible for the user to be
unsatisfied with an optimal solution; conversely it is possible for the user to be
satisfied even if the solution is a suboptimal one. In either case, however, in
order to solve for the best solution according to the above definition the user

has to be allowed to minimally examine all the optimal alternatives even amidst
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suboptimal ones. The use of a choice filter, like single pass Strict, to eliminate
some of the optimal alternatives can result in the user not being allowed to
examine them and thereby not ensuring that the best solution was solved for.
On the other hand, for choice filters which minimally produce the Pareto set,
even if the user is a bit conservative in his expression of the tolerance bounds
on his notions of nearly optimal, we ensure that he still gets to examine all of

the optimal alternatives.

These two reasons provide plausibility as to why the expression of tolerances for

ebtp-filter is not objectionable on the same grounds as it is with the Strict filter.

4.4.2 Superstrict dominance filter

Similar to the ebtp-filter, the Superstrict filter retains all the Pareto survivors and
potentially more. We already discussed the kinds of user-expressions for which the
ebtp-filter produces a suitable survivor set by describing the properties of the subopti-
mal alternatives that are retained by the ebtp-filter and showing how these properties
map to a class of decision-makers interested in nearly optimal alternatives.

The ebtp-filter brings in all such alternatives which are e-close to the dominance
survivors along all dimensions (i.e. those in the e-box). As a result, an alternative
that is within € along m — 1 criteria out of the m criteria will be eliminated by the
ebtp-filter. It is not hard to imagine DMs interested in such suboptimal alternatives -
those which are within € in at least one dimension with respect to a Pareto survivor.
The Superstrict filter, in addition to all the survivors of the ebtp-filter, retains all
such alternatives. Thus, if the user interest in near optimality is disjunctive over the
criteria, then it is recommended that the Superstrict dominance filter be used for

such decision situations.

4.4.3 DD-dominance filter

In Chapter 3, it was shown that both the ebtp-filter and the dd-dominance filter pro-
duce the Pareto set and additionally suboptimal alternatives which lie inside e-boxes
with respect to the dominance survivors. The difference between the survivors pro-
duced by the two filters is the following: the ebtp-filter produces all such suboptimal
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alternatives which are in the e-box of any single dominance survivor. On the other
hand, the dd-dominance filter only retains a suboptimal alternative if it lies in the
e-box of all of its dominators.

If the tolerance values are small, or if m is large, it is better to use the ebtp filter
instead of the dd-dominance filter as mentioned before. On the other hand, if the
tolerances are large, then the choice of one filter or the other depends upon whether
the user-needs are oriented towards a quick decision or getting more alternatives.
This is because is the tolerances are large, the ebtp filter is expected to produce more
survivors but do so in a shorter time since the ebtp second-pass condition is easily
satisfied for large tolerances. On the other hand, dd-dominance is not expected to
produce as many survivors but take more time during the second pass since the dd-
dominance condition will be more difficult to satisfy relative to the ebtp condition for

large tolerances.

4.4.4 Onion-skin filter

In general, when the user needs more that just the Pareto survivors, he might not be
capable of providing the tolerances for any of the criteria. In such a case, the user
might be interested in nearly optimal alternatives but might not be able to express
this idea quantitatively using tolerances. For such decision situations, the Onion Skin
filter can be used.

As mentioned in the previous section, this filters looks at the n alternatives on the
m-dimensional space as groups of concentric Pareto layers, the outermost layer being
the survivors of dominance, the next layer obtained by applying dominance to the
non-survivors of dominance from the previous iteration and so on. The user’s notion
of nearly optimal is related to the number of layers that need to be peeled and the
additional alternatives obtained are appended to the existing set of survivors. One
way to obtain the number of peels to be applied is to get an expression from the user
about the number of survivors he expects and then use that number to get an idea
as to how many layers will need to be peeled in order to get that many survivors.
This can be computed by using the closed form expression for the expected number

of dominance survivors, given n and m. Additionally if n is large then the number of
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newly added survivors from each peel will be the same as the number obtained from
the previous peel in which case the user can even be allowed to express his pruning
requirement in terms of multiples of the number of survivors of measured dominance
(twice, thrice or k times). In such a case, k peels can be expected to approximately

produce the number of survivors desired by the DM.

4.5 A scheme for the filter-choice problem in the absence of

uncertainty

Summarizing on the above analysis, and based on the choice filters considered above,
we are now in a position to lay out a scheme which would allow the selection of an
appropriate choice filter according to the particulars of the decision situation. This
scheme is shown in Figure 8 in the next page. As suggested previously, any time
the decision-maker intends to get fewer survivors than produced by dominance, it is
recommended that the Viewer be used for this purpose. Conversely, if the decision-
maker desires more survivors than that produced by dominance, the scheme indicates
how an appropriate choice filter is selected according to the situational demands. The
decision-maker not only provides information about the tolerances on various criteria
to express his notions of nearly optimal but additionally provides information about
his pruning versus conservatism trade-offs. The scheme takes into account whether or
not the decision-maker wishes to express any tolerances at all. Hence in the extreme
case where the decision-maker desires more alternatives but is not in a position to
express tolerances for any criteria at all, the Onion-Skin filter is used to peel the next
Pareto layer which is appended to the dominance survivors.

On the other hand, if the decision-maker does express his need for more alterna-
tives in the form of tolerances, then the choice filter selected further depends upon the
existing problem characteristics and other kinds of user-needs. Thus, if the decision-
maker’s notion of nearly optimal is extremely conservative, his tolerances expressions
are expected to be disjunctive over the criteria and Superstrict dominance is consid-
ered an appropriate filter for the occasion. If on the other hand, the decision-maker’s
idea of near optimality is expressed as a conjunctive expression of tolerance bounds

over the criteria, then either the ebtp-filter or dd-dominance filter is used depending
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Figure 8: The filter-choice scheme for situations without uncertainty.
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upon further constraints imposed by the decision-maker and the problem characteris-
tics. If the tolerance values are small (according to the range of criteria values), then
the ebtp filter is used. On the other hand, if the tolerance values are large, then if the
DM desires a quicker decision but poorer pruning the ebtp-filter is used; if the DM’s
need for a good pruning overweighs his need for a quick decision, then dd-dominance
is preferred over ebtp-filter.

Thus depending upon the existing decision situation, characterized by the problem
characteristics and user-needs, an appropriate choice filter is used inside the S-F-V-
architecture thereby ensuring that a better set of survivors is produced as a solution of
the decision problem. In the next chapter, decision situations which have uncertainty
associated with them are considered and a similar scheme showing how the filter-
choice problem is solved depending upon the situational demands is developed at the

end of the chapter.
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CHAPTER 5

DECISION SITUATIONS WITH
UNCERTAINTY
PART I: BAYESIAN CHOICE FILTERS

5.1 Introduction

In the last chapter we considered a class of MCDM problems which do not have
any kind of uncertainty associated with the criteria values. In reality, most decision
problems are rife with uncertainty of one kind or the other. In design optimization
problems, criteria values are produced based on simulations run through computerized
models; hence the accuracy of these criteria values depend upon the extent to which
the models are realistic. In financial situations, the value of an asset depends upon
the future outcomes of a lot of events; hence the decision to hold onto an asset or
give it up is uncertain to the extent that the future cannot be predicted. In medical
domains, the assignment of ailment status starting from patterns of symptoms can
be inconclusive because of the inability to confirm the existence of a symptom with
complete certainty. Most uncertain situations come with at least some amount of
information not just about the variables of the decision problem but also about the
nature of uncertainty associated with them.

In this chapter, we will discuss choice filters for dealing with uncertainty, which
are modeled on Bayes’ decision theory [17]. In the next 2 chapters, we will look at
the use of the dominance filter, and tolerance-based dominance filters for handling

decision problems with uncertainty. This will also present us with the opportunity
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to compare the two classes of choice filters both in terms of their applicability to

different situations and the problems associated with them.

5.2 The MCDM-problem and uncertainty

One class of MCDM-problems which result due to the presence of uncertainty of a

certain kind can be formulated as below:
maximize {d;;,d;o, ...diy,} for d; € D

where D is the set of n choice alternatives and d,, is the value taken by the alternative
d, on criterion g. However, these values are not available; instead the measured criteria
values, cipq are available. These measured values are drawn from the known density
functions, f;() where

fi() = the probability density function representing the uncertainty of values along
criterion #; this will commonly be referred to as the noise model.

The difference in this formulation compared with the one defined earlier is the pres-
ence of probability distributions for the various criteria representing the uncertainty
associated with the criteria values. Also, in the above formulation the measured, but
inaccurate, criteria values are available while the actual criteria values are not.

The stochastic nature of the measured criteria values allow us only to estimate
the actual values. Therefore, any filter will be able to produce only an approxima-
tion of the actually optimal set. All filters will be prone to produce two kinds of

misclassifications:
e Labeling suboptimal alternatives as optimal alternatives (false positives)
e Labeling optimal alternatives as suboptimal alternatives (false negatives)

The selection of an appropriate filter will be therefore constrained by the decision-
maker’s concerns with each of these two kinds of misclassifications. As a matter of
notation, we will use the term f, (F, X ) to refer to the false positives produced by
the filter F'() when applied to the measured set of criteria values in X. The term
f—(F, X) will be used to refer to the false negatives produced by the filter F'() when

applied to the measured set of criteria values in X
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Decision situations for which the decision-maker’s tolerance for suboptimal alter-
natives is very low will require the use of a filter that produces fewer false positives.
Conversely, in situations where the decision-maker might not be as concerned with
having suboptimal alternatives as he is with the elimination of optimal alternatives,
choice filters which produce fewer false negatives are desirable.

Typically, the use of a decision rule to reduce the number of false positives by
eliminating some of its survivors will tend to increase the number of false negatives
since some of the eliminated alternatives might be truly optimal but the uncertainty
provides us with no information to test this. Conversely, any attempt to reduce the
number of false negatives by fetching additional alternatives will result in an increase
in the number of false positives. This gives an intuitive reason as to why the issue
is one of trading-off since the two goals (that of producing lower false positives and

lower false negatives) are conflicting.

5.3 Use of Bayesian Decision Rule(BDR) under Uncertainty

In many cases, the noise model is expressed as a density function which represents the
measured values as probability distributions. For example, the noise model might be
described by a Gaussian or Normal distribution with the standard deviation or the
variance specified as shown in Figure 9 below. The measured criterion value, namely
ZTm, 18 a normal distribution with mean equal to the actual criterion value, namely

Z4, and with a standard deviation o. i.e.,

1 —(ﬁ—ga)z (5 1)
Ty = -e 2 .
" oV2r

Obviously, the actual criterion value z,, namely the mean of the distribution, is

unavailable and the noise model is described by means of o alone. The question is
whether there is a way to use this partial information about the noise model and try
and get a good approximation of the optimal set.

Provided some knowledge about the prior distributions of the actual criteria values
is available, Bayes decision rule can be used to compute the posterior probabilities

that each alternative is optimal. Ordering the alternatives based on the values of
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Figure 9: The Gaussian Noise Model

these probabilities will produce an ordering wherein the position of an alternative in
the ordering is proportional to its chances of being optimal; we call this ordering the
Bayesian ordering. Now, various kinds of user expressions, like the maximum amount
of loss that he is ready to incur in terms of misclassifications, or the desired pruning,
can all be used to select an appropriate, best subset from the ordered set. The next
section shows how application of Bayesian Decision theory will allow a DSS to cater

to the above kinds of user-needs in the presence of uncertainty.

Mapping user concerns through the Bayesian ordering

Let a; and as be the possible actions of some decision rule with respect to some

alternative X, where a; pertains to the decision to keep X while as pertains to the
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decision to eliminate X''. Let w; and wy be the true state with respect to alternative
X, where w; refers to the state of affairs that X is a truly optimal alternative while
wy pertains to the state of affairs that X is not optimal. Then, we can construct a

penalty matrix as below:

W1 W2
(051 Al Arg

6%) Ao1 Ag

where )\;; is the penalty incurred for performing action c; when the state of affairs
w; is true about the alternative.
Let R(c;|C;) be the risk associated with performing action «; with regard to

alternative C;. Then,

R(ay|C;) = M1 P(E;) + A2(1 — P(Ey)). (5.2)

R(a2|C;) = A1 P(E;) + Moo (1 — P(E)). (5.3)

where the term P(E;) is the posterior probability that the alternative C; is truly
optimal.

If the user’s interest is in obtaining just the Pareto set, we can set A\j; = Ay = 0.

Bayesian decision theory dictates that the optimum action to perform is the one which

minimizes the posterior risk associated with the action. In other words, the decision

to keep alternative Cj, or perform action a1, is an optimal'?, decision if and only if
R(OJ1|CZ) < R(a2|C’Z) (54)
That is, retain C}; as a survivor if and only if,

A2P(E;) < Ao1(1 — P(E;)). (5.5)

11 e. the decision not to retain X as a survivor.

12.e. The decision rule should keep the alternative if the total risk associated with keeping it is
lesser than the total risk associated with eliminating it.
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which upon simplifying yields, keep C; as a survivor if and only if,

)\12

(5.6)
Equation 5.6 indicates that if we could order the alternatives in terms of their indi-
vidual probabilities of being optimal, then expressions of cost or penalties of misclas-
sifications as expressed by the decision maker can be used to produce a corresponding

survivor set. We construct a threshold 6 as follows:

A12
0= m (5.7)
We now retain all those alternatives, C,, from the Bayesian ordering for which the
values of P(E,) is greater than the value of f as obtained above. Since A5 represents
the penalty associated with keeping a suboptimal alternative, we can identify this
term with the cost of a false positive say Az,. Similarly we can replace Ag; by Ag, to
indicate that it is the penalty associated with the event of producing a false negative.

We can therefore rewrite the previous equation as,

As
f=—"> (5.8)
(Arp + Agn)
or,
1
(1+32)
If we write,
Afn
p=—. (5.10)
Afp
we can rewrite Equation 5.9 as,
1
= —. 5.11
T (5.11)

Here, 1 is a user concern expressing the ratio of the penalties associated with a single

false negative to a single false positive produced by a particular decision rule. We
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can call p the conservatism coefficient since it expresses the degree to which the user
is conservative with respect to trading off false positives with false-negatives. If the
value of p is large, then the value of # will be small and a lot of alternatives will survive
from the Bayesian ordering since surpassing the threshold value is easier. Conversely,
if the value of y is small, then relatively fewer alternatives will pass the threshold and
end up as survivors.

Thus, if we could obtain the Bayesian ordering, we could address different kinds
of user-needs in the presence of uncertainty. Therefore it can be a very useful choice
filter in the presence of uncertainty. However, it is computationally very complex to

produce the Bayesian ordering. We discuss this in the next section.

5.3.1 Producing the Bayesian Ordering

Let X be the set of alternatives in terms of their measured criteria values. Suppose
that the prior distributions and the noise models for all the criteria are known. In
order to produce the Bayesian ordering, we need to compute for each alternative, the
probability that it is optimal, given the above information. In other words, we are
interested in the following event related to each alternative Cj,

E; = the event that C; is optimal, given the set of measured values, the prior
distributions and the noise models for all criteria.

Suppose the term (C; S C;) stands for the event that alternative C; survives Cj.
Then, we can rewrite the event F; as follows,

n
Ei= () (CiSCy)
=15

The probability that the alternative C; is optimal is the probability of the event E;
defined as above. We cannot however express the probability of the RHS as the
product of the probabilities of the individual events because the individual events are
not independent. This is because knowledge about the probability of the single event
C; S C; changes our knowledge about the distribution of the values taken by Cj. If,
however, we fix the alternative C; as taking a given set of measured criteria values,
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say M = [Z;1, %4, -, Tim), then the events are independent. In other words,

j=n
P(E|X;=M)= [[ P(C;iSCjX;=M) (5.12)
Jj=1j#4

where each individual probability can be expressed as,
k=m
= 1- P( H (-lec > .’Elk)|Xz = M)
k=1
If we assume the criteria to be independent we can write,

k=1

From Equations 5.12 and 5.13 we can therefore, write,

j=n k=m
PEIX;=M)= J[ 1- II P((zjx > za)|X; = M). (5.14)
j=1,5#1 k=1

Since, we know the prior distributions and the noise distributions, we can use Bayes’
rule to compute the probability densities f,(z,4|/Zps) along each of the m criteria. We
are now ready to express the probability of the event F; that we are interested in. In

other words, we can now make use of Equation 5.14 to write,

/ / A/ H [1- H P(zjr > wi)] - fr(wa|Tin) fo(@io|Ti2)

j=1,5#1
fa(xiz|Tis) - - 'fm(l‘im|$z‘m)d$z‘1d$i2 ATy, (5.15)

Now, each probability term on the RHS is a pairwise comparison along a single
criterion and can be computed as,
o

P(zj, > zip) = /w Ji (@] Z k) d . (5.16)

ik
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Or, we can now write Equation 5.15 as,

[ oo/in\ 0o J=n k=m .oo
P(E;) = / / / IT - H/ fe(@ie|Zin)dzsr] - fr(win|Ta) fo(Tio| Ti)
—o0J—oo 00 j=1,j4i k=1 Y %ik
f3(@is|Ziz)  + * [ (Tim | Tim) dTi1dTio + - - ATy (5.17)

Computational Complexity of producing the Bayesian Ordering

Equation 5.17 expresses the probability that a single alternative C; is optimal, given
the measured values, the prior distribution and noise. This quantity is required to be
computed for each of the n alternatives in order to produce the Bayesian ordering. A
user-expressed value of # can then be used to retain only those alternatives for which
the above probability is greater than 6.

Equation 5.17 also indicates the complexity involved in producing the Bayesian
ordering. The first product ranges over n — 1 alternatives and therefore the overall
work involves n? considerations minimally in order to produce the probabilities for
all the alternatives. The integrals make it additionally complex. There are m single
integrals involved for each of the n? considerations. And finally there are m outermost
integrals for each of the n alternatives. All of the above restricts an easy application

of Bayesian ordering scheme for producing the survivor set of interest to the DM.

5.3.2 Summary

The computational complexity of producing the ordering is the primary bane in the
application of a filter based on Bayesian scheme described in this chapter. Another
problem with the Bayesian technique has to do with the parameter p which allows the
decision-maker to specify his conservatism. This expression does not allow for differ-
entiation among different kinds of false positives and false negatives. For instance, the
term Ay, in Section 5.3 is supposed to equally capture the user’s loss associated with
all false positives. However, it is very likely that a decision-maker finds false positives
of a certain kind more bearable than another kind. For example, false positives that

are in the neighborhood of Pareto alternatives need not be as worrisome to the DM as
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the ones that are farther away from the optimal alternatives. The BDR-based filter
has no mechanism to accommodate these distinctions.

A final problem has to do with the classical objection against the Bayes method-
ology in general - regarding the availability of the kinds of knowledge required for
applying Bayes’ rule. For many decision problems, complete knowledge about the
probabilistic structure of the problem might not be available. For example, the spec-
ification of the noise model might not be as specific as a normal distribution with all
parameters specified. Weaker noise models could be specified using terminology like,
central-tendency models with or without any parameters specified. In such a case, it
is not clear how Bayesian techniques can be used. In the next chapter, we will look at
how tolerance-based dominance filters can be used to tackle at least some of the prob-
lems with the BDR-based filter mentioned in this chapter for certain class of problem
distributions and noise models. The desired result is that the expressiveness of the
BDR-based filter be preserved by the use of TBDFs but in exchange computational
tractability is achieved along with robustness in the face of insufficiently specified

noise models.
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CHAPTER 6

DECISION SITUATIONS WITH
UNCERTAINTY
PART 1I: TOLERANCE BASED DOMINANCE
FILTERS

6.1 Introduction

In the previous chapter, we discussed how Bayesian Decision Theory can be used
for decision problems with uncertainty. At the end of the chapter, we also discussed
some of the problems involved in using the Bayesian ordering technique (primarily its
computational complexity). In this chapter, we will show how different TBDFs can
be used to tackle decision problems with uncertainty. In order to do this, we find it

useful to classify problems based the following two kinds of uncertainty models:

1. bounded uncertainty where the distribution of the actual value is such that it is

bounded on both sides of the measured value, i.e, Z;; — 0 < z;; < Z;; + 9, and

2. unbounded uncertainty where the distribution of the actual values around the
measured values is not bounded and is of the form z;; = f(Z;;), where Z;; is the

expected value of z;; and f() is the unbounded probability density function.

If the interest is in producing the optimal set, we want a choice filter to produce
no false positives or false negatives. However, in the presence of uncertainty, such
a filter may not be possible. In this case, the best filter might be one that respects

the DM’s tradeoffs between false positives and false negatives. In other words, the
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FP-FN characteristics of a choice filter (plot of the expected number of false positives
versus the expected number of false negatives produced by the choice filter) can be
used to assess its performance. In this chapter, we present the FP-FN performance of
the TBDFs. We often refer to the FP-FN curve to refer to the above characteristic.
But first, we discuss the performance of measured dominance for each of these two

classes of decision problems.

6.2 Performance of measured dominance for bounded noise

models

One way to model uncertainties in the criteria values is to provide bounds, in the
form of tolerances, on the criteria values. These tolerances could be tight bounds,
restricting the actual values to within a range of the measured values. For example,
for a given measured value say , the model is said to produce an evaluation that is
accurate or reliable within +0 from the measured value. In other words, the actual
evaluation can be expected to lie in the range [+, Z—J]. This is a specific, restricted
type of uncertainty model for which stronger characterizations can be given about the
behaviors of the TBDFs. For decision problems with the above kind of noise model,
in treating the measured value of an alternative on a particular criterion as its actual
value, the magnitude of error associated with the judgment can be easily assessed
by using the known bounds. For example it can be inferred that the value Z could
maximally have been as large as T + ¢ and no smaller than 7 — §.

Suppose two measured values are compared and we infer x > y based on = > 7,
then if it happened to be the case that y > z, we must still have y < x + 26 so that
the error in declaring x > y is less that 26. Hence, when measured dominance uses
such pairwise comparisons across all the criteria, the error associated in declaring
that an alternative C; dominates another alternative C; is similarly bounded in the
worst case by 26 along all criteria. In other words, suppose in the above case, C;
actually dominated Cj;, we could still assert that C; would still be within 26 on all
criteria with respect to its dominator C;. More generally, for all survivors of measured
dominance one could say that the suboptimal alternatives are no worse than 26 smaller

in criteria evaluations with respect to their actual dominators. If this difference of
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26 is not critically significant to the decision-maker, then the survivor set can be
considered as a best solution to the problem. Similarly, it can be said that for any
optimal alternative eliminated by the measured dominance filter for the bounded
noise model, it could not have been better by more than 20 it terms of its actual
evaluations with respect to its measured dominators. Therefore, for many practical
problems, if the noise model is bounded, the application of measured dominance and

many of its advantages, including its filtering efficiency still apply.

6.3 Performance of measured dominance for unbounded noise

models

In this case, the actual values are described by probability density functions which are
unbounded around the measured criteria values. Consider a random variable X, with
density function f(z) and distribution function Fx(z). Let X represent the actual
value taken by an alternative on some criterion. Now suppose the actual value taken
by another alternative on the same criterion is of the form Y = X + §. Then it is
well-known that the random variable Y has a density function g(y) = f(z — §) and
distribution function given by Gy(y) = Fx(z — ¢). In other words, the probability
functions for two actual values along a single criterion can be obtained by a shifting
operation, the amount and direction of shifting being dependent upon the magnitude
and sign of & respectively. The family of distributions so obtained is defined in
probability theory as the the location family of distributions with respect to the given
distribution and J is commonly referred to as the location parameter. The following
are well-known results for the location family of distributions: For X and Y described

as above,
E[Y] = E[X]|+6¢. (6.1)

G7'(p) = F~'(p) + 6, for pin (0,1). (6.2)

In our case, since the expected values of the variables are the measured criteria values,
we can also rewrite Property 6.1 as Y = X + . Property 6.2 indicates that the
cumulative distribution functions of the two random variables are also separated by

0 units. Location families can be associated with many well-known distributions; the
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normal distribution, the uniform distribution, the exponential distribution are some
examples.

Since the noise model is assumed to be unbounded, for a given measured value
the corresponding actual value could lie anywhere in the range [0o, —oo]. However,
we will show that different kinds of assurances can be provided to the DM by the
use of appropriate TBDFs even if the noise model is unbounded. In this section, we
present some theorems related to the survivors of measured dominance for decision
problems with unbounded noise models. We begin with the following theorem which

is true for the measured dominance survivors.

Theorem 6.1 If the actual criteria values and the measured criteria values belong
to continuous distributions then the application of measured dominance produces a

survivor set for which the following s true:
E(/f+(D, X)) = E(|/-(D, X)|) (6.3)

Proof: See Appendix A.

This theorem is useful for scenarios where the DM is unable to provide his tradeoffs
along the FP-FN curve. In such a case, one good solution would be to provide the DM
with a survivor set by assuming that the DM’s penalty associated with producing a
false positive is the same as that associated with producing a false negative. Theorem
6.1 shows that the measured dominance set is such a survivor set.

It will be shown later that measured dominance can be seen as belonging to, or
as a special instance of, a family of tolerance-based dominance filters. The measured
dominance set is special in the sense that it operates on the assumption that the
two penalties are equal. For problems where the DM expresses different penalties
for a false positive and a false negative, other filters in the family can be used. The
measured Pareto set can be thus used as a reference point to apply trade-offs in
either direction'® on behalf of the decision-maker. Operationally, the set of measured
dominance survivors can therefore serve as a good starting set for all decision problems
with uncertainty upon which further filtering operations can be applied to add or

remove alternatives as desired.

BFewer FPs or Fewer FNs
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The following can also be proved for the survivor set produced by measured dom-

inance.

Theorem 6.2 For location family noise models, if alternative C; dominates alterna-
twe C; in measured dominance then the probability that C; is not actually dominated
by C; is greater than the probability that C; is not actually dominated by C;. In other
words,

[C; measured dominates C;j] — [Pj(E;) > P;i(E;)]

where Pj(E;) is the probability that alternative C; is not actually dominated by the

alternative C;.

Proof: See Appendix A.

Theorem 6.3 For location family noise models, if alternative C; is a survivor of
measured dominance then,

Vj P;(E;) > 0.5.

where Pj(E;) is the probability that the alternative C; is not actually dominated by

alternative C;

Proof: See Appendix A.

Theorem 6.3 states that for all survivors of measured dominance, the probability
that they will survive with respect to any of the other alternatives is greater than
0.5. Thus, for every measured dominance survivor, there is more than an even chance
probability that it will survive each possible pairwise comparison. The application of
measured dominance does not require any information about the noise model since it
operates only on the measured set of criteria values. The above theorems show that
as long as the desire is to produce the optimal set, applying measured dominance
produces a set of survivors which can be useful for many kinds of user-needs with
respect to optimality, even in the presence of uncertainty.

In summary, for decision situations with uncertainty and under various conditions,
the dominance filter can still be used as an effective choice filter to meet the demands
of the decision situation. Specifically, for decision problems with bounded noise mod-
els, precise bounds can be provided on the degree of sub-optimality of the false pos-

itives retained, and on the degree of optimality of the false negatives eliminated by
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the dominance filter when applied to measured criteria values. Decision-makers for
whom the associated losses based on these bounds are tolerable can therefore make
a choice based on the measured dominance set. Also, if the DM is unable to express
his FP-FN tradeoffs, then the measured dominance set represents a set based on

assigning equal penalties to the production of a false positive and a false negative.

6.4 TBDFs for bounded noise models

In this section, we will first consider the bounded noise model and see how tolerance-
based dominance filters can be used to provide different kinds of assurances and
thereby cater to different kinds of user demands in the face of uncertainty. Consider
a bounded noise model with the measured value, T along with bounds on both sides
of the evaluation, restricting the range of the actual values that correspond to this
evaluation. We represent such a model as M(0) to reflect the fact that the actual
value is bounded on both sides of the measured value by § units. Without loss of
generality, we represent the magnitude of the bounds on both sides by the quantity
€¢/2. This only means that we use the variable € to be 2§ where the bounds indicated
for the model are +§. In other words, we have following m-vector specifying the
model tolerances for each of the m criteria, {407, 40 - - - + 0., }. From this we obtain
the decision rule tolerances, {+€;, +-€5 - - - + €, }, where ¢; = 25;. The reason for this
representation will soon become clear. Note that whereas typically the rule-tolerances
are treated as parameters of a TBDF rule, here the tolerances are fixed according to
the model bounds. In other words, in this section when we refer to a TBDF, F', we
implicitly refer to F'(29).

Now suppose the above measured value, ¥ is compared with another measured
value, say y. Ideally, for each pairwise comparison we want to be able to use measured
values, Z and ¢, and infer the order relation between the actual values, z and y. For
the bounded noise model, it is possible to do this for certain comparisons. We do
this by using worst-case assumptions for one measured value and the best-case for
the other. In other words, for the bounded noise model, we know that the smallest
value that Z can actually correspond to is Z — €/2. It cannot be any lower because

of the bounded model. Similarly, the largest actual value that can correspond to the
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measured value ¢ is § + €/2. So we can say that if the smallest possible value that
Z can actually correspond to, is greater than the largest possible value that can be
actually taken by the evaluation ¢, then this implies that under all circumstances, we
must have x > y. This implies that in order to ensure that z > y, we need to ensure
that:

T—€/2>7+¢€/2

or that,
T>1Yy+e
In other words, for the bounded noise model,

T>J+e—>x >y (6.4)

If the left hand side of Equation 6.4 is satisfied, then we can be sure that the al-
ternative taking the measured value £ above could not have been dominated by its
counterpart taking the measured value  above. Each of the respective decision rules
for Strict dominance, DD-dominance and Superstrict dominance require the above
expression to be true along at least one criterion, as a condition of their respective
kind of e-dominance. Therefore for each of these TBDFs, if there are two alternatives
C; and C5 such that C; e-dominates Cy according to the corresponding TBDF-rule
then, for a bounded noise model, we can infer that C5 could not have actually dom-
inated C4. This is because the first clause in each of the above TBDF-rules ensure
that there is at least one criterion in which C} is known to be actually better than Cs.
Therefore, the dominance rule will not allow Cy to dominate C'.

Since the noise model is probabilistic, it is still not possible for the general case to
produce a single set of survivors containing all and only, i.e. the exact set of, optimal
alternatives by the use of some decision rule. However, it will be shown next that
one can make use of Equation 6.4 to solve the decision problem towards providing
some strong assurances towards the ideal goal of producing the exact set of optimal
alternatives. More specifically, and for the bounded noise model, Equation 6.4 along
with two decision rules or TBDF's allows us to produce the following two survivor

sets:

93



e The sufficient set is the set of survivors which is guaranteed to contain all
the optimal alternatives and additionally guaranteed to maximally eliminate
suboptimal alternatives. By maximal elimination we mean that all and only
alternatives for which it can be categorically shown that they are suboptimal

will not be included in the sufficient set. We use PS to denote the sufficient set.

e The necessary set is the set which can be guaranteed to eliminate all subop-
timal alternatives and additionally guaranteed to maximally contain optimal
alternatives. By maximal containment we refer to the fact that all and only
alternatives for which it can be categorically shown that they are optimal will

be retained by the necessary set. We denote this set by NS.

Obviously, the necessary set will be a subset of the sufficient set. The sufficient
set corresponds to the class of users who are concerned about losing even a single
optimal alternative i.e., those who desire a false negative rate of zero. At the other
extreme, the necessary set can cater to the class of users who are worried about being
exposed to choosing a suboptimal alternative i.e., those who desire a false positive
rate of zero. The survivor set corresponding to the class of users in between these two
extreme stances will still be a subset of the sufficient set and contain the necessary set,
but it will be smaller than the sufficient set and larger than the necessary set. All of
this is indicated in Figure 10. The figure shows three different survivor sets and each
corresponds to three classes of users or user-concerns. The set of survivors indicated
as the in-between set applies to a class of users for which the sufficient set might be
too large and the necessary set too small. Assuming that the primary concern of this
class is optimality, the task becomes one of appending the necessary set with some of
the alternatives from the sufficient set which are not in the necessary set but which
can be known to have a high chance of being true positives. The next two claims

both specify and prove how the sufficient set and necessary set can be produced.

Theorem 6.4 For bounded noise model M (e/2), the application of Superstrict dom-
inance filter SS(e) produces the sufficient set

Proof : See Appendix A.
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Entire set of alternatives

Sufficient Set

An In-Between Set

Necessary Set

Figure 10: An illustration of the sufficient, necessary, and an in-between set of sur-
vivors corresponding to different classes of decision-makers.

The Superstrict dominance rule, in conjunction with Equation 6.4 indicates that
every survivor of the Superstrict filter is such that it is better (actually) than or
equal to every non-survivor along all the criteria, and strictly better than every non-
survivor along at least one criterion. Since this is exactly the dominance rule in terms
of the actual values, the survivors of Superstrict will not eliminate any true positive.
Thus it produces the sufficient set. However by virtue of its rule, it will also allow
for the survival of alternatives which are false positives. To see this, it is sufficient to
consider a counterexample consisting of two measured Pareto alternatives Cj, C; such
that C; is e — better than C; on some criterion but Cj; is not € — better than C; on any

criterion. Clearly, both these alternatives will survive the Superstrict filter since they
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belong to the measured Pareto set, according to Corollary 3.3. However, since there
are no criteria for which Cj is € — better than Cj, it is quite possible C; would have
been dominated by C;. However, due to € — indistinguishability along some of the
criteria, there is no way to infer this by using Equation 6.4. Hence, the Superstrict
filter can produce some false positives as well. Theorem 6.4 also allows us to see that
the measured dominance set is a subset of the sufficient set

The necessary set is bit more complicated to produce. Essentially, we need a
survivor set such that every survivor will be € — better than every non-survivor along
some criterion or the other. In such a case, using Equation 6.4 we can infer that no
non-survivor could have dominated any of the above survivors. A filter which can
produce such a survivor set will have produced a necessary set. Theorem 6.5 shows

that the Strongly-Strict filter produces the necessary set.

Theorem 6.5 For bounded noise model M (e/2), the Strongly Strict filter Sts(e) pro-

duces the necessary set.

Proof: See Appendix A.

Each survivor of the Strongly Strict filter is such that it is e-better than every other
alternative on some criterion or the other. For a bounded noise model, this means
that each survivor is actually better than every other alternative on some criterion
or the other, which is the same as saying that each survivor of the Strongly Strict
filter is a true positive. This filter will generally not be able to produce all of the
optimal alternatives, i.e. it will produce false negatives. This is easy to understand
by considering the weakly-tied survivors of Twopass strict that are eliminated by this
filter. Among themselves, these weakly-tied alternatives could either both be optimal
or one could dominate the other. But since they are € — indistinguishable along all
criteria, there is no way to infer the above by using Equation 6.4. Hence, the Strongly
Strict filter can produce false negatives.

The ability of the Strongly-Strict filter to produce the necessary set suggests a way
to annotate the survivors of Superstrict filter with the subset which is the necessary
set. We already know that the survivors of the Superstrict filter contain all measured
dominance survivors, and hence all the survivors of the Strongly Strict filter (from

Corollary 3.1). This is especially useful with the Viewer in the S-F-V architecture.
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The Viewer can be used to not only display the survivors of Superstrict filter which
contain all of the optimal alternatives, but additionally the subset within this set
which is known to be surely optimal can annotated as using a different color. This
can provide the decision-maker with a lot of information that he can use to make

further choices in the Viewer.

6.5 TBDFs for unbounded noise models

In this section, we examine the applicability of TBDF's to decision problems for which
the actual values are described as unbounded distributions around the measured
values. Although the actual value can lie anywhere in the range [co, —oo], for many
distributions, the probability that the actual value will be different from the measured
value drops off quite rapidly in proportion to the difference between the actual value
and the measured value. For example, for the normal noise model, the probability
that the actual value will be outside the range [T — 20, % + 20] is known to be less
than 0.05. In such a case, it becomes possible to treat the normal distribution as
a bounded noise model with the distribution set to zero beyond the above range on
both sides. And now the decision problem can be treated as in the previous section
and the necessary and sufficient sets can be produced as before.

However, since there is a non-zero probability that the actual value can indeed fall
outside this approximated bounded range, the kinds of assurances on the sufficient
and necessary set become weaker. In other words, the necessary set can no longer be
assured to contain only optimal alternatives with a probability of 1.0, and the sufficient
set, can no longer be guaranteed to contain all optimal alternatives. The notions of
necessity and sufficiency can still be applied as long as we weaken the guarantees
associated with these sets for the bounded noise case. We introduce the terms near-
sufficiency and near-necessity to refer to the corresponding sufficient and necessary
sets that are produced by bounding the unbounded distributions. Since there is
more than one way to bound the unbounded distributions, each way of bounding
will produce its own pair of nearly-necessary and nearly-sufficient sets. These notions
become especially useful if we can additionally place bounds on the probability that

nearly-necessary set contains a suboptimal alternative, and on the probability that
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the nearly-sufficient set does not contain an optimal alternative. Before we obtain
such bounds, we first show how user expressions of conservatism can be mapped to

tolerances for location family, noise models.

6.5.1 Mapping conservatism expressions to tolerances

Consider the quantity P(zg, > %ip|Tkpy > Tip). This is the probability that the
actual value of alternative Cy on criterion p is greater than the actual value taken by
alternative C; on the same criterion, given that the corresponding relationship holds
for the measured values. The measured values are assumed to represent the expected
values. Suppose the measured values are separated by § units along this criterion. In
other words, Zj, = Z;p + 0, i.e. ¢ is the location parameter.

Let F'(x) be the cumulative distribution function for z;, and G(z) be the cumu-
lative distribution function for the variable zy,. Figure 11 shows the two distribution
functions; they are separated by § units, with G(z) being shifted ¢ units to the right

of F(x) since 6 > 0. Now, we can write

F(X)

(x+9)

I

0 X

Figure 11: Comparing two distributions in the location family.
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Plogy > 7ip) = 10— [ " Gy — 6)f (z3)dsy (6.5)

Also, for 6 > 0,
G(zip — 0) < F(z4p).

Therefore,

| Gl — )1 i)dmip < [ Flog) ()i, (6:6)

Now the right hand side of Equation 6.6 above is 0.5. Therefore, we can rewrite the

equation as,
/ Gz — 8) f () diy < 0.5. (6.7)

-0

Equations 6.5 and 6.7 together imply that,
P(zgp > xip) > 0.5. (6.8)
Conversely, if § < 0 (i.e., Z;, > Zxp) then we get,
P(zgp > xip) < 0.5. (6.9)
In other words, we can write
P(xyp > ip) = M (0, p) (6.10)

where M() is a monotonically nondecreasing function of §, the location parameter

and p refers to the other parameters of the distribution. Also,

M (6, p) 0.5 for 6 > 0.
0.5 for d < 0.

= 0.5 ford=0. (6.11)

>
<

This implies that a comparison between two actual criteria values can be expressed
in the form of a monotonically nondecreasing function of the difference between the

available measured criteria values, if the M() function can be obtained from the
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description of the noise model distribution. Using this function, probabilistic assur-
ances in terms of the actual criterion values can be translated in terms of the available
measured values.

To illustrate this, suppose the noise model is a normal distribution. Then, we
have,

P(.’Ekp > .’l?ip|ﬂ~7kp, fip) = P(Q?kp — Tip > 0|.’Ekp, i'ip). (6.12)
We know the difference of two random variables with normal distributions, N(p,0)
and N (ug,0) is also normal with mean, p,4, and standard deviation, o4, expressed as,

Ha = H1 — K2

Ud:U\/§

Coming back to Equation 6.12, since both the actual values are normally distributed
around their respective measured values (noise models are normal),the probability

can be rewritten as

— Tip — (Trp — Tip) > Tip — jkp)
V2 V2

This standardizes the resultant Gaussian'?. The above quantity can therefore be

Pz — x> 0) = P(222

computed in terms of the distribution function for the standard normal, NCDF'. In

other words,
Tip — Tkp

P(xyy — 25 >0)=1— NCDF( 3
o

)

or

P(zyy — 25 > 0) = NCDF(%J)
g

Thus, the probabilistic comparison of two actual criterion values, given that the noise
model is Gaussian in nature can be expressed in terms of the difference of their
measured values, and the parameter o, by using the CDF for the standard normal
N;(0,1) to get the corresponding value of the probability.

Equation 6.10 expresses the probability that the actual value, zj, is greater than

14Gince we are subtracting the mean value and dividing by the standard deviation
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xip by making use of corresponding measured values, Zj, and Z;,, on a particular
criterion p, along with the M-function. In the description of the choice filter based
on Bayesian decision theory, we stated that a single expression of conservatism p
from the user can be used to produce an appropriate survivor set from the Bayesian
ordering. We show for the TBDFs that a similar quantity p can be elicited and
translated to an appropriate set of tolerances permitting the application of TBDF's
to solve the problem.

Consider a pair of alternatives C; and C}. In order to infer that C; dominates C;
we want the following to hold in terms of the actual criteria values taken by these
two alternatives:

Ap (Trp > @ip) AVG (Thg > Zig) (6.13)

The TBDFs replace the comparisons between actual criterion values in the above
rule by comparisons between the corresponding measured criterion values along with
suitably chosen tolerance values inside the clauses. Consider a comparison between

two measured criterion values of the form below,
ikp > .i'ip + €,
which is the same as,
-%kp — Zi'z'p > €

or,
M(.’i’kp — -/Z'zp) > M(Cp).

Since ¢, is the difference between the measured criteria values, it is the same as J in
Equation 6.10. Therefore the above equation along with Equation 6.10 allows us to
infer that,

Ty > Tip + €, = P(xpp > ) > (6.14)

where,

uw= M(0) = a constant

Equation 6.14 shows the relation between comparing two actual criterion values and

comparing the corresponding measured values with a suitable tolerance introduced
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in the comparison. Thus, one way to interpret the tolerances in the TBDF rules
for decision problems with uncertainty is in the form of expressions of probabilistic
assurances desired by the user. In other words, since the tolerances and the mea-
sured criterion values can be used to compute the probability that the corresponding
actual values stand in a certain order relation, the user’s expression of how large a
probabilistic assurance he desires can be used to infer the tolerances to be used in a
tolerance-based dominance rule. So, if an expression of the quantity u can be elicited
from the user, then this expression can be used to infer the corresponding tolerances
for each of the criteria as,

& = M~ (1), (6.15)

and used in the TBDF decision rule. The user can express this quantity in a scale of
0 to 1. If the user can express the value of y then this value can be used to infer the

tolerances for all the criteria.

6.5.2 Bounding assurances based on expressions of conser-

vatism

In the previous section, we discussed how a single user expression of conservatism ()
can be used to produce tolerance values for the criteria. These tolerance values can
be considered as being inferred from the bounds being placed on the unbounded noise
models for the various criteria. Using these tolerances, the nearly-sufficient set and
the nearly-necessary set can be produced by using the Superstrict and the Strongly-
Strict filter as discussed in Section 6.4. However, and as mentioned earlier, since there
is a non-zero probability that the actual values could lie outside the bounded range,
the assurances on the nearly-sufficient and the nearly-necessary sets are no longer
complete. In other words, there is a non-zero probability that the nearly-sufficient set
leaves out a true positive and that the nearly-necessary set contains a false positive.
In the following, we derive bounds related to the above two quantities. We first derive
an upper bound on the probability that an alternative not in the nearly-sufficient set
is optimal. Then we derive an upper bound for the probability that any alternative in

the nearly-necessary set is dominated by a single other alternative (pairwise optimality
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assurance for the nearly-necessary set). This quantity is related to, but not the same

as the probability of there being a suboptimal alternative in the nearly-necessary set.

Bounds for the nearly-Sufficient set

Suppose that C; ¢ S(Ss(e),X). In other words, C; does not belong to the nearly-
sufficient set. We are interested in the probability that C; is optimal. This is the
same as the probability that C; is not dominated by any of the other alternatives,
which is the same as the probability that C; is better on some criterion or the other

with respect to each of the other alternatives. In other words,
C; is optimal <= Vj3k(zik > Tji), J # 1

P(C; is optimal) = H U Tikg > Tjk))
7j=1 k=1

Since the product is over all n alternatives, this product contains terms related to
alternatives which are in the nearly-sufficient set. Let C; € S(Ss(e), X)) be one such

alternative. Then we have,
P(C; is optimal) < P( U Tik > Tjk)) (6.16)

The right hand term is the probability that C; is better than C; in at least one

criterion which can be written as:

(xik > .’L'Jk)) =1- kln_—i P(Q?]k > xik) (617)

Cs

P(

k

Now since C; ¢ S(Ss(e), X) and since C; € S(Ss(e), X), we have,
an”ch > fﬁiq + €4 N EITi'jq > .’iiq + €.
This implies that,

VqP(zjq > Tig) > A IrP(xjq > Tig) > p. (6.18)
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From Equations 6.17 and 6.18, we see that
P(U Tik >£Ejk) <1 —y,m.
k=1

From Equation 6.16

P[An alternative excluded by the nearly — Suf ficient Set
is optimal] <1 — ™ (6.19)

Bounds for the nearly-Necessary set

Suppose that C; € S(Sts(e), X'). In other words, C; belongs to the nearly-necessary
set. We are interested in the probability that C; is dominated by some other alterna-

tive, say C;. So, we are interested in:

P(C; is dominated by C;) = [[ P(zjr > zir)[1 — [ P(xis = zj5)] (6.20)

r=1 s=1

Now since C; survives the Strongly-Strict filter we know that C; is e-better than every

other alternative on some criterion. Thus,
dqZiqg > Tjq + €.
From Equation 6.14, this implies that
AP (zig > xjq) > -

This implies that
gl — P(zj, > xig) > p.

dgP(xjq > xig) <1 — p. (6.21)

From Equations 6.20 and 6.21, we see that,

P(C; is dominated by C;) <1 — p.
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Or,

P[An alternative included in nearly — Necessary Set is pairwise dominated

by some alternative] < 1 — 1f6.22)

Equations 6.19 and 6.22 provide different sorts of assurances related to the nearly-
sufficient set and the nearly-necessary set respectively as a function of y. Indeed there
is no need for the p based on which the nearly-necessary set is generated to be the
same as the p for the nearly-sufficient set. Hence, if we label the p’s differently, u,, for
the nearly-necessary set and p, for the nearly-sufficient set, then rewriting Equations
6.19 and 6.22 we get:

P(C; not in the nearly-sufficient set is suboptimal) > [1,]™, and

P(C; in the nearly-necessary set survives any pairwise comparison) > i,

Now, the above i expressions can be considered as expressions of the user related
to the above probabilities. In other words, the user could be asked to express the

assurance that he desires related to the following probabilities:

e the minimum desired probability that an alternative not in the nearly-sufficient

set is suboptimal (i.e., [u,|™) and,

e the minimum desired probability that an alternative in the nearly-necessary set

survives any pairwise comparison (i.e. fiy,).

Each of these two p’s can be used to produce two different sets of € values for the
criteria. The nearly-sufficient set is then created by using the Superstrict-dominance
filter and the nearly-necessary set by using the Strongly Strict filter. Unfortunately,
we see that these bounds are weak and therefore not useful operationally.

The analysis, however, allows us to verify a few intuitions. Since the tolerances
are directly proportional to the value of y, we can see that when a user desires a very
high assurance that each alternative in the nearly-necessary set is not suboptimal,
the equivalent value of pu, is quite high and as a result, the resulting tolerances for

the criteria increase in magnitude as well. This results in the production of a subset
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of the original set and therefore the size of the nearly-necessary set reduces in order
to accommodate the extra assurance required by the user. Indeed setting the value
of p, = 1.0 results in the nearly-necessary set being empty (proven as Theorem 3.2
for the Strongly Strict filter).

Similarly, a high assurance on the probability related to the event that the nearly-
sufficient set does not exclude a true positive relates to a large value of yu, which in
turn increases the values of the criteria tolerances and thus produces a larger nearly-
sufficient set. Also, the extreme case wherein the user demands can only be met by
setting p, = 1.0, the tolerances result in all of the alternatives being in the nearly-
sufficient set(these have been proven in Chapter 3 as Theorem 3.3 for the Superstrict
filter).

6.5.3 Generalized nearly-Necessary and nearly-Sufficient sets:
The In-Between Sets

From Equation 3.2 in Chapter 3,
For X = {C, X}
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(6.23)

where o; > g >3---> 0 2> 0 < wy < ws <wg -+ < Wy

Equation 3.2 shows that there is a spectrum of survivor sets starting from the null
set at the left end to the entire set of alternatives at the right end in the above family.
The survivor set represented by S(D) contains the measured dominance survivors. All
survivor sets to the left of this term are subsets of the measured dominance set; they
are obtained by the application of the Strongly Strict filter, and are therefore nearly-
necessary sets parameterized on the tolerances «;. Similarly, all the survivor sets
which contain the measured dominance survivors are nearly-sufficient sets obtained

by the application of the Superstrict filter, parameterized over tolerances w;.
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The above equation also shows that there is a tolerance vector for which the
application of the Superstrict filter produces the measured dominance survivor set
and the same is true for the Strongly strict filter. This is represented by the equality
in the second line of Equation 3.2. This imparts an interesting property to the
measured dominance survivors - it is the smallest nearly-sufficient set that can be
expected to contain all of the true positives. Conversely, it is also the largest nearly-
necessary set that can be expected to contain only true positives. In other words, the
measured dominance survivors represent the in-between set which best compromises
necessity, sufficiency and pruning at the same time.

There is another manner in which measured dominance, nearly-necessary sets and
nearly-sufficient sets can be related and this is shown in Figure 12. The figure shows
an alternative C; plotted as a point on a 2-D axes for a 2-criteria problem. The
tolerance vector for the problem is denoted by € = {1, €2}. The figure shows a 2¢ box
around the point being considered, with the point at the center of the box. In the
figure, the region bounded by the angle labeled BB1 in its first quadrant represents
the region in which some alternative will have to lie in order for C; to not belong to
the measured dominance set. The angles AA1 and CC1 bound similar regions in order
for the alternative C; to not lie in the nearly-necessary set and the nearly-sufficient
set for tolerance € respectively. This also shows the inclusion-relation between the
three sets. In other words, if an alternative Cj lies in the first quadrant of CC1, then
this would imply that C; cannot belong to the nearly-sufficient set. Because C; lies
in the first quadrant of CC1, it will also lie in the first quadrants of BB1 and AA1 as
well, thereby preventing C; from lying in the measured dominance set or the nearly-
necessary set as well. Therefore, as we inferred previously, if C' does not belong to
the nearly-sufficient set, then it cannot belong the the measured dominance set or the
nearly-necessary set.

From the figure we can interpret the act of declaring an alternative as belong-
ing to the nearly-necessary set or to the nearly-sufficient set, as one of weakening or
strengthening the conditions to test for dominance. More specifically, if we consider
an alternative C} at the junction point of CC1, then the first quadrant of CC1 rep-
resents the region which controls whether or not Cj will lie on the dominance set

much like BB1 does for the alternative C;. Now we can consider Cj to be a point

107



c2

cl

Figure 12: Relating nearly-necessary (¢) and nearly-sufficient(e) sets to measured
dominance

obtained from C; but with its criteria values increased by e each. In other words,
testing whether C; belongs to the nearly-sufficient set is equivalent to testing if an
e-upgraded version of C; will survive dominance with respect to the original set of
alternatives. In other words, testing for sufficiency entails strengthening the alterna-
tive and checking if it is a dominance survivor. More precisely, The following can be

shown to be true for every alternative belonging to the nearly-sufficient set PS(e):
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Theorem 6.6 Fach alternative in the Nearly-Sufficient Set satisfies the following

condition with respect to every other alternative:
(ch € PS) (VC] € C) Elk(:i,k +e> i’jk) (624)

Proof: See Appendix A.

On the other hand, the junction point of the angle AA1 can be seen as obtained
by decreasing the criteria values of C; by €. So testing for necessity entails weakening
the alternative (by e-downgrading its criteria values) and checking if it continues to
survive measured dominance even under the weakened conditions. Specifically, we
know from the decision rule for the Strongly-strict filter that the following is true for

each alternative in the nearly-necessary set NS(e):
(VC; € NS) (VC; € C) 3k(Tik > Tji + €)- (6.25)

The in-between sets for the given tolerance vector are represented in the figure by
the diagonal of the box passing through all the three junction points and shown in
the figure. The diagonal represents a continuum of points along which the alternative

C; could be either weakened or strengthened to obtain corresponding in-between sets.

6.6 Mapping user needs to near-sufficiency and near-necessity

In Section 6.5.2, we saw that although we could map the assurances desired by the
DM on the nearly-necessary and nearly-sufficient sets to appropriate values of toler-
ances, the bounds based on which this mapping was done were too weak to produce
operationally useful survivor sets. In this section, we show that there is another man-
ner in which user expressions of a different kind can be mapped onto tolerance values
that can be used to produce an appropriate survivor set.

The optimal set can be produced by applying the following decision rule to the

actual criteria values:

Retain C; <= Vj3k(ziy > k)
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This is logically equivalent to the dominance rule but for our purposes this charac-
terization is more useful. Now, in the presence of uncertainty, a similar decision rule

expressed probabilistically can be of the following form:
Retain C; <= VjIk(P(zix > xji) > 1) (6.26)

where p is the probabilistic assurance that the user requires related to the event that
each survivor is better than every other alternative on some criterion. If the user is
able to express u, then according to Equation 6.14, we know that this decision rule

translates to the following one:
Retain C; <— V_]Elk(f?,k > ijk + 6).

The interesting result of applying this decision rule based on the y expression of
the user is that, for the entire range of y (i.e. [0,1]), it is now possible to deploy a
corresponding TBDF to produce the survivor set according to the decision rule above.
This is because it can be shown that if y is greater than 0.5, then the corresponding
value of € above will be positive. From Equation 6.25, we know that the survivor set
satisfying the above requirement can be obtained by applying Sts(e). On the other
hand if the p expressed by the user is less than 0.5, then the above requirement on

each survivor can be rewritten as
V]Hk(ii‘zk +€> i‘jk).

which according to Theorem 6.6 can be obtained by applying SS(e). And if u is
equal to 0.5, the corresponding value of ¢ becomes 0 and the decision rule becomes
the rule for measured dominance. In other words, every survivor set that satisfies
Equation 6.26 pertaining to some p value expressed by the user can be obtained by
the application of an appropriate choice filter. We already saw this mapping earlier,
as expressed in Equation 6.11.

Also, the pairwise probability of survival of an alternative, C;, with respect to
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another alternative say C} is expressed as:

m

k=1
Since every survivor obtained by the use of either the Strongly-strict or the Super-
strict filter satisfies Equation 6.26, we must have for any survivor C; and with respect

to any other alternative Cj,

This indicates that the pairwise probability of survival of each survivor produced by
the above probabilistic rule will be greater than u. Hence, the user expression of
i can also be obtained in terms of the degree of assurance he needs related to the
pairwise survival probability of each survivor with respect to any of the remaining
alternatives. This value of i can be translated to an equivalent value of tolerance and
either the Strongly-Strict, measured dominance, or Superstrict filter can be applied
to produce the survivor set, depending upon whether p is greater than, equal to, or

less than 0.5 respectively.

6.7 Relating In-between sets to Pruning demands

Figure 10 shows that for a bounded noise model, the in-between sets are sets which
contain the necessary set and which are subsets of the sufficient set. In the case of
an unbounded, tolerance model however, there is no predefined notion of a necessary
and a sufficient set. In fact, as we discussed in the previous section, different degrees
of necessity and sufficiency can be applied by using different values of tolerances. As
discussed in the previous section the user’s p expressions can be used to produce the
nearly-necessary and nearly-sufficient sets according to those expressions. Thus the
application of this technique is contingent upon the user being able to express the y
values, and upon there being sufficient information to allow the implementation of
the M () function, to obtain the equivalent tolerance values.

For the class of users who can only express their concerns in terms of their pruning
requirements, it is not clear how the nearly-necessary and nearly-sufficient sets can

be produced based on the pruning requirements, unless these requirements can be
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mapped somehow to u values. Even if the user is able to express p values, he might
not be satisfied with the results because they might not be in accordance to his pruning

15 Thus, it becomes necessary to extend the technique of producing

requirements
nearly-necessary and nearly-sufficient sets, to include the pruning requirements of
the user as well. In this section, we first show how the idea of nearly-necessary and
nearly-sufficient sets applies even in the absence of the p expressions. We also show
how pruning demands of the user can be incorporated in the technique.

Consider an unbounded noise model for which we do not have the p expressions.
However, we do have knowledge about the deviations or the ¢’s on the various criteria.
We could use these deviations to calibrate the tolerances along the criteria. For
example consider three alternatives C;, C;, and C} for an m = 2 problem with the

measured values as indicated below:

12
C; 15 4
C; 20 1
Ce 5 3

Based on the measured values alone, it is not clear which of the above three alterna-
tives have the highest chance of being truly optimal. For example, in comparing the
alternatives C; and C}, we see that C; is 15 units superior than Cj on criterion 1,
while C; is 2 units better than C} in criterion 2. Of course, since the units along the
criteria are incommensurable, there is no way to know which of these superiorities to
trust more. Without an idea of the range of actual values that these measured values
can be expected to take, it is both possible to imagine scenarios where C;; has a higher
chance of being optimal relative to C; and conversely other scenarios wherein Cj, has
a higher chance of being truly optimal. If however, we have additional information
about the noise models for each of these 2 criteria, then we will have more information
based on which to assign credibilities to the above measured values, and thereby infer
which has the higher chance of being truly optimal.

More specifically, suppose that 0; = 5 and 05 = 1. If we now normalize the values

on each criterion r according to the following technique:

15 As discussed, the nearly-necessary set could be empty and the nearly-sufficient set as large as
the entire set of alternatives, if the p expressions are too conservative
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1. The smallest value on criterion r, say I, is set to 0.

2. The remaining values in r are expressed as units of deviations away from the

smallest value. Thus, a value Z,, will be converted to (o — Zs) /0.

The result of the normalization is that a difference of £ units between the normal-
ized values for any single criterion represents a difference of £ deviations along that
criterion. For the above problem, the normalized values obtained according to the

procedure described and the given values of deviations for the criteria is as below:

C;
C;
Ck

o W N~
N O W N

From the above, we see that normalized values for Z;, and Zy; are 3 deviations apart

in criterion 1, as are the values for Z;» and Z;, along criterion 2. Thus we have,

Tj — gt Tig — Tjo

01 02
For the Gaussian noise model this translates to,

Tio — Tjo

\/502

Tj1 — Tpy

G( \/501

) =Gl )

From Equation 6.8 therefore,
P(SE‘jl > xik:) = P(SEZQ > .Tjg).

In other words, the above normalization standardizes the measured values across all
criteria so that a unit difference between two normalized values along all criteria can
be considered as equivalent. This restricts us to set the tolerance values for all criteria
to be the same (i.e., or tolerance vectors which have identical tolerance values for all
criteria).

With this requirement on the tolerance vector, we see that the following are true:
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e By considering all possible values that can be assigned to the tolerance vectors,
the only nearly-necessary sets that can result by the application of the Strongly
Strict filter using these tolerance vectors are: {C;}, and {C;, C;}.

e By considering all possible values that can be assigned to the tolerance vectors,
the only nearly-sufficient sets that can result by the application of the Super-
strict filter using these tolerance vectors are: {C;, C;}, and {C;, C;, Ci}. In fact
we already know that all nearly-sufficient sets contain the measured dominance
set ({C;, C;} in this case).

In other words, once we are restricted to the use of only tolerance vectors with equal
components, there is no way to get nearly-necessary sets like {C;} or {C}, Cy} or
nearly-sufficient sets like {Cy} based on the normalized values. Another way to in-
terpret this result is that we can consider the three alternatives to be ordered as
{C;, C},Cy} where only the subsets containing the topmost contiguous set of alter-
natives up to the measured dominance set can form nearly-necessary sets; all other
subsets are eliminated from being nearly-necessary sets (i.e., there is no tolerance
vector for which they can form a nearly-necessary set). Similarly, only the subsets
containing all of the measured dominance alternatives appended with contiguous al-
ternatives from the non-survivors of measured dominance can form nearly-sufficient
sets. Moreover, we can index each alternative with a minimum tolerance vector at and
above which the alternative will cease to be a member of the nearly-necessary/nearly-
sufficient set.

For the above problem these values are {2,1,1} for C;, C; and C} respectively.
In other words, tolerance vectors less than 2 but greater than 1 produce {C;} as
the nearly-necessary sets, tolerance vectors with values less than 1 but greater than
0 produce {C;,C;} as the nearly-necessary set and being the measured dominance
set, it is the largest nearly-necessary set. This measured dominance set is also the
smallest nearly-sufficient set. And finally for tolerance values greater than 1, we get
the entire set of alternatives as the nearly-sufficient set. This ordering now represents
an ordering of the different survivor sets from Equation 3.2 starting from the null set
which can be considered as the top of the ordering, any in-between set being a top,

contiguous set of alternatives from the ordering, with sets greater bigger than, and
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therefore including, the measured dominance set being nearly-sufficient sets while sets
which are subsets of the measured dominance set being nearly-necessary sets. One
way for the user to choose from this ordering is to impose a pruning expression either
in terms of how many alternatives he expects, or individual pruning expressions for
nearly-necessary and nearly-sufficient sets.

The question is whether such an ordering can be efficiently computed for the
general case with n alternatives. More specifically we desire an ordering such that, if
one selects the topmost r alternatives, indicated as the set I, then the following two

propositions must hold for any such set I:

o VC; € I,VC; € X — I, there is no tolerance vector for which C; belongs to
the corresponding nearly-necessary set and C; does not. Conversely there is a
tolerance vector for which C; belongs to the corresponding nearly-necessary set

and C; does not.

o VC; € I,VC; € X — I, there is no tolerance vector for which C; belongs to
the corresponding nearly-sufficient set and C; does not. Conversely there is a
tolerance vector for which C; belongs to the corresponding nearly-sufficient set

and C; does not.

Using this ordering, the user can select any set I either according to his pruning
demands or if he has expressions for the nearly-necessary and nearly-sufficient sets of
interest to him in the form of the p values. We next describe the procedure by which

this total ordering is computed for n alternatives.

6.7.1 A procedure to produce an ordering of In-between sets

Given a set X of n alternatives each with m measured criteria values, deviations o;

for the various criteria and assuming the noise models to be Gaussian:

1. For each criterion 4, normalize the individual values as described above (set the
minimum along the criterion to zero, the remaining values are standardized by

dividing their difference from the minimum value with the o;.

2. For each C; € X,
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3. For every other C}, € X,

(a) Compute the vectors v, = max[X; — Xj| and vy; = max[ Xy — X|]
(b) if vji > vy tolmat(j, k) = vg;
if C; dominates Cj,
tolmat(k,j) = vk
else if C; and Cj, are tied
tolmat(k,j) = oo
(c) else tolmat(k, j) = vj
if Cy, dominates C;
tolmat(j, k) = vy,
else if C; and Cy, are tied
tolmat(j, k) = oo

4. tolerances[l..n] = min[tolmat(:,1..n)]

5. order = getindex(sort(tolerances(1..n)))

Step 1 normalizes all the criteria values according using the o values for the individual
criteria by the technique described above. The remaining steps compute n values for
each of the n alternatives, thereby creating entries for an n x n matrix. This matrix
is shown in Figure 13. In case alternatives C; and C; are tied according to measured
dominance then each entry ij in the matrix corresponds to the value of tolerance for
which the alternative C; will be strong-strictly dominated by alternative C;. If there
is such a tolerance vector, then there is no vector for which C; will be strong-strictly
dominated by C; and therefore the corresponding entry ji is set to oo. All diagonal
entries are set to oo to indicate the there is no tolerance vector for which an alternative
can strong-strictly dominate itself.

If, on the other hand, C; and C; happen to be such that one measured dominates
the other, then the row entry for the dominator is set to the value at which the
dominated alternative becomes e-indistinguishable in all criteria with respect to it.
The row entry for the dominated alternative is set to the maximum value of the

tolerance vector at which it becomes € indistinguishable with its dominator in at
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Figure 13: An ordering to produce in-between sets
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least one criterion, thereby making it the minimum tolerance vector at which the
dominated alternative is inserted into the sufficient set.

Once all of the matrix entries are filled, Step 4 computes the minimum of all row-
entries for each alternative. This will produce a vector of length n with one tolerance
value for each alternative. The tolerance value for any alternative Cy from this vector
indicates the smallest value of tolerance vector for which C} will be either strong-
strictly dominated (in case Cj is a measured dominance survivor), or superstrictly-
dominated (in case C} is not a measured dominance survivor) by some alternative in
the set. Next, the alternatives are ordered by sorting according this tolerance vector.
This ordering is shown at the bottom of Figure 13. The above algorithm requires the
computation of n? entries of the matrix and is therefore O(n?). However, there is an
alternative technique to produce the above ordering which is more tractable and will
be discussed in the next section.

In this ordering of alternatives, any pruning expression of the user can be met
by selecting the appropriate number of alternatives from the ordering. In fact, for
any such in-between set, the corresponding tolerance value indexing its lower most
alternative can be used to compute p values and provide assurances of the kind
derived in the previous section for the in-between set. Conversely, if the user expresses
i values, then the corresponding nearly-necessary and nearly-sufficient sets can be

picked from the above ordering by using the p values.

6.7.2 Reducing the computational complexity of producing

the ordering of in-between sets

In this section, we describe a modification to the previously described technique of
producing the ordering of in-between sets. The modification will reduce the overall
complexity of the algorithm from O(n?) to O(nlog™ 'n). From Equation 3.2, we
see that the above ordering will always contain the measured dominance survivors
as an in-between set. Also, the nearly-sufficient sets pertain to the application of
the Superstrict filter which entails adding new alternatives to the existing measured
dominance set. Theorem 6.6 indicates the test condition for something to belong to

the nearly-sufficient set PS(e). According to the equation, it is necessary that the
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condition hold for each C; € PS(e) with respect to each of the other n—1 alternatives.
However, and fortunately, it suffices to see if the condition holds with respect to the
measured dominance alternatives alone. To see this, suppose alternative C; passes
the test with respect to a single measured dominance alternative C;. This implies
that C; will pass the test according to all alternatives which are dominated by Cj.
This implies that if the alternative passes the test condition according to all the
measured dominance alternatives, then it has to pass the test condition with respect
to every non-survivor of measured dominance. All of this implies that if one can
ascertain for some alternative C; that it satisfies the condition with respect to the
measured dominance set, then it will satisfy the condition for all of the alternatives.
Therefore, for the portion of the ordering below the measured dominance set, only
n—|S(D,X)|-|S(D, X)| entries need to be computed instead of n — |S(D, X)]| - n.

For the nearly-necessary sets, however, we need to check for the test condition
with respect to each of the remaining n — 1 alternatives. This is because a given
measured dominance survivor might satisfy the test condition with respect to every
other measured dominance survivor and yet there might be a dominated alternative
that is e-indistinguishable with respect to it in all criteria, thereby not allowing for
the test condition to hold. Hence, for all measured dominance survivors, it is required
that there be n — 1 comparisons to test the condition for belonging to the nearly-
necessary set.

The overall entries which need to be computed, therefore, is as shown in Figure
14. For the measured dominance survivors labeled as the set {C1,..C} in the figure,
all n entries need to be computed. However for the alternatives/rows below C;, which
is the set of non-survivors of measured dominance, only the entries shown as boxes
need to be computed. The reduction in complexity is seen by comparing Figure 14
to Figure 13; it is also indicated by the non-boxed region of the matrix in Figure
14. More precisely, the number of entries computed by this way of producing the

ordering, including the n - log(n) used in sorting is:

O(n|S(D, X)| + (n = |S(D, X))(|S(D, X)|) + nlog(n)) = O(n[S(D, X)| + nlog(n))
= O(nlog™ '(n)) (6.28)

119



— MEASURED —=—
DOMINANCE SET

Cl C2 C3 Cs Cn
Cl|

Cs ©

THESE ENTRIES DON’T NEED
TO BE COMPUTED

Cn
Min €1 €2 €
SORT
ep sq €y €,
max 0 min

MPS<=——F1——=Non-MPS

Tas—T—
sets sets

Figure 14: Overall complexity for ordering the in-between sets with new algorithm

120



since the number of dominance survivors is expected to be much smaller than n in the
average case. Thus the complexity is the same as that of computing the Pareto set
which is a lot more tractable than the O(n?) implementation discussed previously. In
other words, given a set of alternatives, they can be ordered according to the ordering
principle without a great amount of computational complexity. In-between sets can

now be chosen by the user according to his pruning desires or by the p expressions.

6.8 Performance of Choice Filters under Uncertainty

In this section we analyze all of the presented choice filters in terms of their perfor-
mance in the presence of uncertainty. As mentioned previously, in the presence of
uncertainty, one way to express the performance of a filter is in terms of a plot of the
expected number of false positives versus the expected number of false negatives or
the FP-FN curve, to represent the misclassification rate of a filter. The computational
complexity of applying a filter is also a primary performance measure of the filter. In
case the decision-maker expresses preferences related to pruning, it becomes necessary
to cater to these pruning demands while simultaneously minimizing the misclassifi-
cation rate. This ensures that the pruning is also directed towards producing a set
which has a high probability of containing only the optimal alternatives. In other
words, if the decision-maker desires additional alternatives, this must be achieved by
trying to bring in the false negatives instead of the true negatives from the set of
non-survivors. Similarly if additional pruning is desired, we want to eliminate false
positives from the current set of survivors rather than the true positives.

From Equation 3.2 one can see how by continuously varying the value of the
tolerance, one can gradually increase the survivor set starting from the null set going
all the way to a value of tolerance where all the alternatives survive. Since these in-
between sets are related by the set-inclusion relation, it can be said that the expected
number of false negatives will reduce and that of false positives will increase as we go
from smaller sets to larger sets within this spectrum. Therefore, any FP-FN tradeoffs
of the user can be potentially met simply by varying the value of the tolerances.

It has already been shown how the user’s FP-FN expressions in the form of the u

expressions can be met with by the choice of an appropriate e vector derived from the p
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expressions. Using the i expressions, not only can the corresponding nearly-necessary
and nearly-sufficient sets be produced but assurances related to the chances that
the nearly-necessary set might contain a suboptimal alternative, or that the nearly-
sufficient set might have excluded an optimal alternative can be given. Additionally,
pruning expressions of the decision-maker can also be met by making use of the
ordering technique to produce in-between sets.

However, it is quite possible that in certain decision situations, the decision-maker
might be concerned with the number of false positives or false negatives produced by
a choice filter. For example, the user might be interested in how many optimal
alternatives are not present in the nearly-necessary set or on how many suboptimal
alternatives are included in the nearly-sufficient set. If the survivor set is produced
to respond to a pruning demand of the user, then the user might be interested in
knowing how many optimal alternatives are present in the survivor set, and how many
optimal alternatives were not retained as survivors. In such situations, assuming that
the expressions of the user can indeed be met by the use of a suitable tolerance vector
and an appropriate choice filter, one would require an expression for the the expected

number of false positives and false negatives produced by a choice filter.

6.8.1 Deriving an expression for the expected number of false

positives and false negatives of a choice filter

In this section, an expression is derived for the expected number of false positives
and false negatives produced by a choice filter F'(). Let C; be a randomly chosen
alternative from the a given set of alternatives. By definition of a false positive we

have:

Ci € fL(F,X) = Ci ¢ S(D,X)A(C; € S(F(), X)) (6.29)

Similarly we can express that C; is a false negative of F'() by:

C;e f_(F,X)— (C; € S(D,X))AC; ¢ S(F(), X) (6.30)
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We first compute the probability that C; is a false positive. Using Equation 6.29 we

can write,

P(Ci € f4(F, X)) = P[(C;i ¢ S(D,X))A(C; € S(F,X))] (6.31)
Plel A e2]

The first event el occurring inside the RHS of the above equation is the event that
C; is not a Pareto survivor. Similarly, e2 is the event that C; is a survivor of F\().
The problem is that the events el and e2 are not independent. Hence the probability
expression on the RHS of Equation 6.29 cannot be opened as the product of prob-
abilities of the individual events. One way to view the problem is to start with a
randomly chosen alternative, say C;. Along with the remaining (n — 1) alternatives,
we can consider these n points as forming a configuration. For this fized configuration,
we first compute the probability that C'; will be dominated in the configuration. To
this configuration, we now apply the noise model thereby corrupting the configura-
tion in all possible ways according to the noise distribution. For each such corrupted
variant of the original configuration, we next compute the probability that the given
alternative in its corrupted version, C; will be a survivor according to the filter F
being considered. Once this probability is computed, we will have the probability
that a given configuration results in labeling C; as a false positive. We now, try out
all possible configurations as dictated by the prior distributions, repeating all of the
above for each such configuration. The final outcome will be the probability that a
randomly chosen alternative is a false positive of F'. By using the above technique,
an expression for the probability that a randomly chosen alternative C; from among
n— 1 other alternatives, {Cs, ...C,, } will be a false positive of the filter F' can be given
by:
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PCief(RR) = [ (6.32)

[ 0= P so ).

|72 [ IP(N(E: Se C)P(GIC)IP(CHIC1)AC -+ dC, -

- i=2

P(Cy) -+ P(Cy)dCy - - dC,, -

The innermost set of integrals occurring in the third line of Equation 6.32 compute
the probability that a given alternative C; will survive the filter F' in the presence of
n — 1 other alternatives, allowing for each of the n alternatives to take all possible
measured values according to the noise model. The term (C; Sy C}) is the event that
the alternative C; survives the alternative C; according to the decision rule of the
filter F' when applied to their measured criteria values. In other words the term Sg is
the proposition survives according to the decision rule of filter F. Similarly, the term
(Cy Sp C;) is the event that alternative C) survives alternative C; according to the
dominance rule, or filter D, applied to the actual criteria values taken by these two
alternatives. Again, the term Sp is the proposition survives according to dominance
rule. The second layer of integrals spanning lines 2 through 4 of the equation change
actual configurations according to the prior distribution of the criteria values. The
outermost integral makes the expression applicable for all possible choices of C; so

the expression applies to a randomly chosen alternative.

6.8.2 A Complexity analysis of computing the expected num-
ber of false positives for a choice filter

Equation 6.32 already gives indications that the computation of the above quantity is

of great complexity. In this section, we produce an order approximation on the com-

plexity of the above computation. Again, the unit of complexity will be one pairwise

operation involving either the D or the F' functions. Firstly the expressions inside the
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integrals are analytically complex because the two probability terms computed over
the conjunction of the events involve conditional probabilities since the events are
not independent. Even if we assume for simplicity that the events were independent
and compute the probability as the product of the individual probabilities, these two
inner products will each be O(n?) in complexity and lead to an overall O(n*) pairwise
comparisons. This is just for one cycle of the integration. Assuming a granularity
of k for each of the integrals in the expression, we see that the complexity becomes
exponential in n. It takes k£ cycles on the outermost integral, and £™ on the innermost

and finally k"' on the second layer of integrals. Hence the overall complexity is:
O(k-k"t-n? k" - n?) = O>k*™ - -n)

Clearly, even for a small n problem the complexity of the computations is of very
high order. As a result an alternative technique is required which can compute the
expected number of false positives and false negatives given a filter F'. One common
way to tackle computations which are extremely complex is by using Monte Carlo
simulations. The next section describes the technique and the experiments conducted

to assess the FP-FN characteristics of the various choice filters.

6.9 Monte Carlo Simulations to assess performance of choice
filters

In the previous section, the problem of computing the expected number of false pos-
itives for a choice filter F', given the set of measured criteria values for a decision
problem along with the probability distributions for the actual values and for the
criteria noise models, was shown to be analytically complex to solve. From the defi-
nition of a false negative, we would expect the computation of the expected number
of false negatives to be equally complex. In this section, we describe one way to
compare the FP-FN curves for the choice filters discussed for decision situations with
uncertainty. It involves the use of Monte Carlo simulations conducted on randomly

generated numbers.
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6.9.1 Data Generation

For a given n x m decision problem, a matrix of n x m values are generated by using
a random number generator. The distribution from which the values are generated is
set to be the prior distributions for the class of problems being investigated. For our
purposes we assume all prior distributions to be N(0,1) or the standard normal dis-
tribution, since the normal distribution can be expected to characterize distributions
to which many criteria values in the real world can be expected to belong to. This
generated matrix of values is treated as the set of actual criteria values, X', for the n
alternatives along the m criteria.

Next, the noise model is modeled. The noise model for each criterion is taken
to be N(u,0), or a normal distribution with the actual value p as its mean and the
standard deviation of o. For a chosen noise model, and for a generated set of actual
criteria values, a new matrix of n x m values is now generated by adding noise to each
of the values in the original matrix according to the chosen noise model. In other

words, the criterion value x;; is used to generate a possible measured value Z;; using:
-%ij = Tij -+ O'N(O, 1).

This newly generated matrix is treated as the set of measured criteria values, X for

the decision problem.

6.9.2 Simulations

In order to obtain the performance characteristics of any choice filter F(), we first
apply the filter to X' in order to obtain the survivor set S(F(),X). Since the set
of actual criteria values, X, is available we can find the optimal alternatives for the
decision problem, namely S(D, X'), by applying the dominance filter to X. Now, one
can examine the survivor set produced by the filter to see how many of the optimal
alternatives are retained as survivors and how many are eliminated. This will allow
us to compute the number of false positives and false negatives produced by the
single simulation of the decision problem. In order to obtain the expected number of

false positives and false negatives (as well as true positives and true negatives), the
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above simulation is repeated from start, each time beginning with a new X', using
the noise model to create a new X, applying the filter to this newly generated set,
and assessing its performance with respect to the new X. If an adequate number of
simulations is conducted, the Monte Carlo experiment can be expected to produce a
good approximation of the true quantities of interest. Standard tables can be used
to decide on the minimum number of simulations to be conducted for the results to
be reliable and for our purposes, we conducted 40 simulation trials per performance

measure.

6.9.3 Obtaining performance for various parameterized in-

stantiations of a filter

Since we are interested in the performance of each of the choice filters for different
values of their parameters, the above experiment will need to be conducted for each
instantiated set of parameters for each filter. In other words, for each filter instanti-
ated with a choice of tolerance vector, 40 simulation trials as described in the previous
section are conducted to obtain the performance measures - expected number of false
positives, false negatives, true positives and true negatives for the instantiation of
the filter. In other words, each point in the FP-FN space will correspond to the FP-
FN performance obtained by the application of the filter for a given tolerance vector.
Once a number of such points are obtained for different values of the tolerance vector,

the overall FP-FN curve is interpolated using these points.

6.9.4 Estimation of Confidence Intervals

In order to test for the statistical validity of the results, standard confidence estimates
in the form of Student T-interval estimates were obtained for the the points as well.
For the FP-FN characteristics, intervals for simultaneous 95% confidence regions for
the pairs { /P, FN} were obtained.
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6.9.5 Results
TBDF's

The plots in Figure 15 show the results of the Monte Carlo simulations conducted
for the Strongly-strict and the Superstrict dominance filters for various values of
tolerances. Each plot contains two curves which show the FP-FN characteristics for
the cases when o = 5% and o = 20% noise models respectively. As mentioned before,
the curve is an interpolation of points shown on the curve. Each point corresponds to
a distinct tolerance vector for the filter. The operating points for the Strongly-strict
filter which obtains nearly-necessary sets are shown as circles in the plots while those
for the Superstrict filter are shown as stars. The operating point where these two
interpolated curves meet is the measured dominance point as is known from Equation
3.2. As proved in Theorem 6.1, all the measured dominance points lie on the line
FP = FN through the origin. The first plot is for an n = 100, m = 4 decision
problem, the second one for an n = 100,m = 6 problem and the final one for an
n = 1000, m = 4 decision problem. All the curves indicate how a smooth tradeoff
along the FP-FN curve can be obtained by varying the tolerance vector alone. Each
plot also shows that the FP-FN curve for the less noisy problem is below the one
for the noisier situation. This is expected since as the noise increases, the chances
that a filter will produce a false positive and false negative is bound to increase. It is
important to relate each curve to Equation 3.2 in order to understand the direction of
increase in the tolerance when we move from one point in the curve to the other. In
other words, for the FP-FN curve related to the Strongly-Strict filter (i.e., the curve
with circles as points), as we move down the curve, the tolerance vector is reducing
until it hits the measured dominance point where the tolerance vector becomes zero.
From this point onwards, the FP-FN curve relates to the Superstrict Filter and moving
along the curve towards the right pertains to an increase in the tolerance vector.
Comparing the first two plots, we see that all else remaining the same, when the
number of criteria is increased, the expected number of false negatives increases while
the expected number of false positives reduces. This can be explained by considering

the fact that as m increases, the probability that an alternative is optimal increases
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and the probability that an alternative is suboptimal reduces. As a result, the prob-
ability that an alternative is a false positive (which is related to the probability that
the alternative is suboptimal) reduces as well. By a similar reason, the probability
that an alternative is a false negative increases. As a consequence we see a resultant
increase in the expected number of false negatives and reduction in the expected num-
ber of false positives. In the extreme case when the number of criteria is increased
to infinity, we would expect all alternatives to be optimal and as a result the number
of false positives will be zero for any survivor set while the number of false negatives

will be large for any set which excludes alternatives at all.

In-between Sets

Figures 16 and 17 show the FP-FN as well as the TP-TN characteristics for the case
where the ordering based on in-between sets (as described in Section 6.7.1) is used
to produce the survivor set. Note that although both Figure 15 and Figure 16 show
the FP-FN characteristics for the same family of filters, they are each parameterized
over different parameter and therefore relate to different user needs. Figure 15 is
parameterized over values of € and is therefore a performance measure for situations
where the user expresses p values to indicate the assurances he needs in terms of
the pairwise survival probabilities of each survivor. On the other hand, Figure 16 is
parameterized in terms of the percent survivors picked from the top of the in-between
ordering as a survivor set; therefore this plot is a good performance measure for

situations where the DM has pruning needs.

Confidence Intervals

A confidence interval is a range of values that has a specified probability of containing
the parameter being estimated. The 95% and 99% confidence intervals which have
.95 and .99 probabilities of containing the parameter respectively are most commonly
used. For example, if the parameter being estimated were ¢, the 95% confidence
interval might look like 15 < ¢ < 20. What this means is that the interval between
15 and 20 has a .95 probability of containing g. In other words, if the procedure
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Figure 16: FP-FN characteristics for the in-between sets obtained from various prun-
ing expressions of the DM from Monte Carlo simulations.
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Figure 17: TP-TN characteristics for the in-between sets obtained from various prun-
ing expressions of the DM from Monte Carlo simulations.
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for computing a 95% confidence interval is used over and over, 95% of the time the
interval will contain the parameter.
Suppose f; and f_ represent one operating point in an FP-FN curve. Then the

95% simultaneous confidence estimates are obtained as:

. o
f+ £ t39,0.0125 \/f—o

o_

fo+t —
f 39,0.0125 \/4—0

The limits on the mean values indicate that one can be 95% sure that the estimated
variable will lie in that range specified by the mean. The variable ?39 ¢.0125 is obtained
from the Student T-distribution that is often used to estimate the error associated
with the mean. The suffix {39,0.0125} indicates the degrees of freedom associated
with the estimation (number of trials-1=39) and the figure 0.0125 comes from requir-
ing a simultaneous 95% confidence intervals on two mean components. The quantities
o, and o_ refer to the sample standard deviations of the false positives and false neg-
atives respectively, over the 40 trials conducted.

Figure 18 indicates the simultaneous confidence intervals obtained on the { FP, FN }
points for one of the cases. These estimates provide additional validity to the sta-
tistical robustness of the curves obtained by the simulations. Each box in the figure
pertains to one operating point in the curve and the point itself is shown as a dot in
the center of the box with the size of the box representing the confidence intervals.
The figure also shows that the maximum size of the intervals is less than 2 alternatives
both for false positives and false negatives. The confidence intervals are expressed as
ranges around the mean values plotted as points in the operating characteristics of
the filters.

6.10 Mapping uncertain situations to choice filters

Based on the analysis of the various choice filters, a framework to map choice filters
for some decision situations in the presence of uncertainty is shown in Figures 19

and 20, one for situations characterized by bounded noise models and the other for
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unbounded noise models. Figure 19 addresses decision situations with bounded noise
model, where the bounds are +¢/2. Using the results from Theorems 6.4 and 6.5,
for the two extreme classes of users who require all optimal alternatives or those
who require only optimal alternatives, in the survivor set can be catered to be the
application of SS(e) and Sts(e) respectively, with the e values being obtained from
the bounds indicated for the noise model. For the more general class of users not
primarily concerned with optimality so long as bounds can be placed on the FPs
and FNs, survivor sets characterized by measured dominance, dd-dominance or ebtp-
filters can each be used according to various problem characteristics and other kinds
of user-needs.

As discussed earlier, the measured dominance filter produces a survivor set for
which the quality of the included false-positives and the excluded false-negatives can
both be expressed in terms of the bounds by which they are suboptimal or optimal
respectively. A decision-maker who needs fewer alternatives than that produced by
the Superstrict filter, or more than that produced by the Strongly-strict filter could
therefore use the measured dominance filter.

In case, the decision-maker desires more alternatives than that produced by mea-
sured dominance in hope of increasing the number of optimal alternatives in the
survivor set, he can then use either dd-dominance or the ebtp-filter, provided the
number of criteria are not too large (for large number of criteria, the survivors sets
for each of these two filters become identical to the measured dominance survivor set
as discussed in Chapter 4). Choice between dd-dominance or the ebtp-filter is based
on properties of the noise model and the size of the noise bounds. If the tolerances
are small, ebtp filter has a greater chance of producing additional alternatives (over
the dominance set) than the dd-dominance filter. If the e values are large, then the
choice between the ebtp and dd-dominance filter is based on the DM’s expressions
of pruning and time-pressure. For large tolerances, the ebtp-filter can produce a lot
more alternatives than dd-dominance. Additionally, if the noise model is known to
possess central-tendency, then it is recommended that dd-dominance be used instead
of ebtp-filter in hope of retaining only those alternatives additional to the measured
dominance set, which have a greater chance of being optimal. Figure 20 presents the

filter-choice scheme for decision situations characterized by unbounded noise models.
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If the decision-maker’s requirements are better expressed in terms of criteria-
wise, or pairwise survival, probabilities of an alternative then the corresponding u
expressions of the decision-maker can be used to infer the corresponding € vector and
apply the Strongly-strict, Superstrict, or measured dominance filter based on whether
4 is smaller than, equal to, or greater than 0.5. On the other hand if the decision-
maker can only provide pruning expressions, and if the noise model is Gaussian, then
the ordering based on in-between sets is used to cater to those pruning needs by
selecting the corresponding number of alternatives from the top of the ordered set of

alternatives.

6.11 Summary

This concludes the problem of mapping choice filters to deal with varying kinds of
decision situations in the presence of uncertainty. As is the case with situations
without uncertainty, we see that the choice of an appropriate choice filter in a decision
situation is again constrained by the kinds of user-needs and the characteristics of the
problem and uncertainty. The earlier sections of this chapter indicate that TBDF's
are well-suited to catering to problems with bounded noise models. The ability to
produce the necessary set and the sufficient set in addition to being able to produce
sets in between the above two kinds of sets imparts the TBDF family with a general
applicability to deal with bounded noise uncertainty problems.

We also showed how the ideas of necessity and sufficiency can be extended to
uncertainty problems with unbounded noise models described by distributions in the
location family. We introduced notions of near-necessity and near-sufficiency to pre-
serve the distinction that the sets produced for the unbounded case do not carry the
guarantees that could be given for the bounded case. Nevertheless, we show that dif-
ferent nearly-sufficient and nearly-necessary survivor sets can be produced depending
upon how tightly we bound the unbounded noise. The family of Strongly Strict, mea-
sured dominance, and Superstrict filters when parameterized over different tolerance
values allow us to produce a spectrum of survivor sets, where each survivor set in
the spectrum is either a nearly-sufficient, or a nearly-necessary set. Any survivor set

in this spectrum can be obtained in correspondence to user expression of pairwise
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survival probabilities desired of the survivors. Depending upon whether this quantity
is greater than, equal to, or less than 0.5 we showed that it is possible both to select
an appropriate filter to use, as well as the tolerance values to be used in the decision
rule. This allows us to produce the survivor set of interest to the DM from within
the spectrum.

For situations where the DM can only provide his pruning needs, we present an
algorithm for ordering the alternatives which allows easy retrieval of any of the sur-
vivor sets that occur in the spectrum indicated in Equation 3.2. The DM’s pruning
needs can now be met by using this ordering to pick out a survivor set of the ap-
propriate size. Moreover, the algorithm described in Section 6.7.2 indicates that this
ordering can be produced with a time-complexity equal to that required to produce
the dominance set, which is O(n?) worst-case. The Monte-Carlo simulations allow us

indicate the performance of TBDF's in terms of the FP-FN curve.
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CHAPTER 7

CONTRIBUTIONS AND FUTURE WORK

The primary goal of the dissertation was to address the issue that requirements posed
by the decision-maker and, characteristics of the decision problem typically tend to be
present as situation-specific constraints in decision problems. In response, we set out
to examine ways in which the S-F-V architecture can be extended to provide situation-
specific decision support. In particular, we studied the space of tolerance based
dominance filters towards building a framework which can be used to map decision
situations to choice filters. The outcome of this study is a mixture of analytical
and experimental results that were used to build such a framework for a variety of
decision situations. In the next section, we describe the primary contributions of the

dissertation.

7.1 Contributions of the Dissertation

The dissertation makes several contributions to the field of multiple criteria decision

making and design of decision support systems.

e Analysis based on the survey of literature in behavioral sciences leads to the

following contributions:

— The identification of different kinds of user-preferences based on the man-
ner in which they are best expressed, and on the aspects of the problem
that they relate to:
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x Object preferences relate to preferences of the decision-maker having
to do with the properties of the choice alternatives. Within object

preferences are:

- Abstract preferences, which are preferences about the alternatives

expressed independent of the alternatives at hand, and

- Concrete preferences which are preferences about the alternatives

that are best expressed in the presence of the decision alternatives.

x Process preferences relate to preferences of the decision-maker that
relate to properties of the decision-making process, like speed, nature

and size of the solution set.

— The identification of the following desirable properties in order for DSSs

to provide effective decision support:

1. DSSs must elicit both object preferences (abstract and concrete pref-

erences) and process preferences, by means which are natural.

2. DSSs must be responsive to the characteristics of the decision problem
at hand.

3. DSSs must augment the computational capacity of the decision-maker
so that the solutions produced respect all of the preferences expressed

by the decision-maker.

e An analysis of the applicability of dominance as filter based only upon the
measured values (when the actual values are unavailable due to the presence of

noise) for the class of decision problems with uncertainty reveals that:

e The application of measured-dominance produces an equal number of false pos-

itives and false negatives.

e The discovery that one natural extension of the dominance rule, the single pass
Strict dominance rule, leads to counterintuitive results. Firstly the number of
survivors it produces is not a monotonically increasing function of the magnitude
of the tolerances. Secondly, the rule is not transitive, thereby making its solution

order-dependent. The ramifications on the use of this filter for decision support
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are examined. Also ways to modify it in order to address one or the other
problem results in other interesting TBDF's, like the twopass and the multipass

strict filters, the dd-dominance filter and the strongly-strict filter.

An analysis of the ability of TBDF's to cater to various kinds of user-needs in
the absence of uncertainty reveals that the different TBDFs can each be used
to produce different kinds of near-optimal sets of alternatives. These different
sets correspond to different notions of near optimality that the user might be
interested in, when he desires more alternatives in addition to the Pareto set.
A framework to map different kinds of near optimality to an appropriate TBDF

is presented in Figure 8.

Establishment of the set-inclusion relations among the survivors produced by
the different TBDFs. (Corollary 3.2)

An analysis of how TBDFs can cater to decision situations with uncertainty

reveals the following:

1. For bounded noise models, we show that the Strongly-strict filter produces
the necessary set (containing only optimal alternatives), while the Super-
strict filter produces the sufficient set(containing all optimal alternatives).
Each of the other choice filters provide survivor sets between these two
extremal sets. The filter-choice scheme for the bounded tolerance case is

indicated in Figure 19.

2. For unbounded, location family noise models, the notions of necessity
and sufficiency become contingent and we introduce the notions of near-
necessity and near-sufficiency. We produce weak bounds on the extent to
which these sets are contingent. These bounds can be expressed through
quantities that translate the user’s probabilistic threshold on the event of
the nearly-sufficient set excluding an optimal alternative or on the event
of the nearly-necessary set containing a pairwise-dominated alternative.
Since the bounds are weak, this technique of producing survivor sets is not

operationally useful.
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3. As an alternative, we introduce another technique that translates the DM’s
expression of the probability that an individual survivor is not pairwise
dominated by each of the other guys into a corresponding value of y in the

range [0,1].

4. We show that for the above technique, the appropriate filter to use from the
Strongly strict, measured dominance, Superstrict, family is decided by the
value of p itself. We show that a value of p > 0.5 translates to applying
the Strongly strict filter, a value of u = 0.5 translates to applying the
measured dominance filter, and a value of u < 0.5 translates to applying

the Superstrict dominance filter to produce a survivor set.

5. Equation 3.2 indicates that for the unbounded, normally distributed noise
models, it is possible to order the set of alternatives so that all of the
in-between sets represented in the equation can be obtained as contiguous
sets of alternatives from the top of the ordering. In situations, where the
DM can only specify pruning needs, this technique can be used to produce

the appropriate subset from the totally ordered set of alternatives.

6. We present an algorithm which produces this ordering with the same time-
complexity as that required to produce the Pareto set. This ordering as-
sumes the noise models to be normally distributed with deviation o’s spec-
ified. Based on this ordering, pruning expressions of the decision-maker

can be mapped onto a corresponding in-between set.

e Results based on Monte-Carlo simulations show the FP-FN performance of the
ordering based on in-between sets. Confidence estimates are also computed for
the individual operating points obtained by the simulations, to strengthen the

validity of the statistical indications.

7.2 Future Work

In this section, we discuss some issues related to the dissertation but which require

further exploration as research problems.
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7.2.1 Decision situations with very large number of criteria

We have already mentioned that the decision problems with large number of criteria
are the most troublesome for the S-F-V architecture. In general, a large m problem is
an intrinsically difficult decision problem and perhaps the solution lies in the problem
formulation rather than in the manner in which support is provided for its solution.
The dominance filter can be expected to produce some pruning, while interaction
with the Viewer might require the decision-maker to focus on a lot of information
in order to ensure that he is taking the consequences of his graphical selections into
account before deciding to proceed with the next step.

Traditionally, processing based on a subset of the information like lexicographic
ordering, elimination by aspects, or majority of confirming dimensions are used. But
these techniques can be shown to produce solutions which need not be the best
from the viewpoint of the decision-maker. However, we also know from the results
discussed in Chapter 2 related to correlations in criteria, that most of the criteria in
a large set of criteria are expected to be positively correlated. This automatically
suggests that all strongly and positively correlated criteria could be aggregated into
a single criteria. For example, if there are a number of criteria which are different
kinds of efficiency measures, then these could be aggregated (by the use of a suitable
aggregation function, like linear weighting) to produce a single efficiency criterion.

It can be shown that as long as the aggregating function is a monotonically increas-
ing function of its components and if an alternative A dominates another alternative
B in the aggregated criteria, then A cannot be dominated by B under the disaggre-
gated criteria set. In other words, this technique can only produces false negatives
with respect to the optimal set based on the original set of criteria. The question is
whether this false negative rate can be reduced by using something like the Super-
strict filter (or even dd-dominance or ebtp) on the aggregated criteria rather than
the dominance filter. It would be interesting to analyze what kinds of user concerns
in terms of the disaggregated criteria map to the tolerances applied to aggregated

criteria.
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7.2.2 Representing uncertainty in the Viewer

A large part of the dissertation dealt with analyzing various kinds of choice filters
which can deal with uncertainty in the criteria values to produce survivor sets for
which assurances of various sorts can be given. However, in the context of the S-F-V
architecture, the final stage of the decision-making process might involve the use of
the Viewer, where the user is allowed to plot the Filter survivors as Cartesian points
using their measured criteria values. Since most of the choice made by the decision-
maker while using the Viewer will be based on the relative location of the individual
points in the plots, representation of the alternatives as points based on the inaccurate
criteria values might mislead the decision-maker. Therefore it is desirable that the
uncertainty associated with the criteria values be somehow represented in the Viewer
as well.

One possible alternative is to represent points as boxes where the size of the boxes
could represent the actual range of values for the alternative, if the noise is bounded.
However, this can lead to problems like occlusion and clutter in the plot so that the
user might find it confusing to interact with the visible points. It is an interesting
question as to what kinds of visual primitives can be used to achieve this efficiently.

It will also entail modifying the selection and cross-linking mechanisms of the Viewer.

7.2.3 The Filter as an adviser/critic

The Filter module in the S-F-V architecture can act as an adviser or as a critic for
choices made by a decision-maker. While the Seeker-Filter-Viewer architecture can
be used as an aid throughout the decision-making process starting from generation
of the decision alternatives, one can imagine decision situations where the decision-
maker has already made the decision (with or without using any additional support)
and is now concerned with the relative quality of his final choice(s) compared to the
overall set of alternatives.

For such a decision situation, the Filter can act as an adviser by producing com-
peting alternatives from the original set which might be of interest to the user. For
example, if the final choice(s) of the DM happen to be suboptimal, the Filter can

produce the dominators of the final choice(s) as competing alternatives. This will

145



help in minimizing the irrationality of the decision-making process employed by the
DM. The relevant question is what sorts of competing alternatives can be expected
to catch the DM’s attention and how TBDF's can be used to produce these various

kinds of competing alternatives.
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APPENDIX A

PROOFS OF THEOREMS AND COROLLARIES

A.1 Introduction

This appendix contains proofs for all the Theorems, and Corollaries stated in the text
of the dissertation. The order in which they appear below is the same as the order in
which they appear in the text. Also, they are numbered according to the numbering
in the text, by the chapter numbers. For each proof, we first state the claim being
proved at the beginning and then present the proof. The terminology used in the

proofs is identical to the one used and described in Section 3.2.1.

A.2 Proofs for Chapter 2

Theorem 2.1
Every distinct'® survivor of an m-criteria dominance is also a survivor of (m+k)-
criteria dominance, k > 0, where the (m+k)-criteria dominance uses all the criteria
used by the m-criteria dominance.

Proof:

For all distinct dominance survivors we can write,

C; € S(D) < YC,(3r(zjr > z4r))

6By a distinct alternative is meant one for which no other alternative is coincident with it on all
criteria

147



Suppose C; € S(D) where D uses m criteria. Since C; survives D, the above relation

holds for C; and we can write,
VCk(Elr(acW > xkr))

With the introduction of any number of additional criteria, the above relation will
continue to hold. Hence C; will survive D even if it uses m + k criteria chosen by the

introduction of k criteria to the previous set of m criteria, k& > 0.

A.3 Proofs for Chapter 3

Theorem 3.1

The Strict Dominance rule cannot be strongly intransitive for a decision problem with
m < 3.

Proof:

Consider three alternatives C;, C;, and Cy, each evaluated in terms of two criteria,
say cl and c2.

Suppose also that these three alternatives form a strongly intransitive loop under
the strict dominance rule applied considering the two criteria above. Let this loop be
such that C; strictly dominates C; strictly dominates Cy strictly dominates C;. We
show that this assumption is contradictory under all possible scenarios.

Since C; strictly dominates C;, therefore C; must be e-better than C; on one of
the two criteria being considered. Without loss of generality let this criterion be cl.
Therefore we have,

Ti1 > Tj1 + €. (A.1)

Also, since C} strictly dominates Cy, there must be a criterion in which Cj is e-better
than C}. This criterion could be either c1 or c2. Let us consider this one case at a
time:

1. Suppose C} is e-better than C}, on criterion cl.

Then we must have,
Tj1 > Ty + €. (A2)
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From Equations A.1 and A.2 we must have,
Ty > Tp1 T €. (A3)

But this contradicts the assumption that C}, strictly dominates C; because if C;
is e-better than Cy on cl, then C}, cannot strictly dominate C; (considering the
second clause of the strict dominance decision rule). Incidentally, this means
that if the only criterion being considered was cl, then we cannot have strong

intransitivity. In other words, this proves the claim for m = 1.
. Conversely suppose C} is e-better than C} on criterion c2.
Then we must have,
Tjo > Tgo + €. (A4)

In other words, we have Equations A.1 and A.4 holding to be true. Now we have
assumed that C} strictly dominates C;. This means that C; must be e-better
than C; on at least one of the criterion. Here again, we have to consider two

cases:

(a) Suppose that Cy is e-better than C; on criterion cl.

Then we must have,
Tp1 > Ti1 + €. (A5)

From Equations A.1 and A.5 we further have,
Tk > Tj1 + €. (A6)

However, this contradicts our original assumption that C; strictly domi-

nates Cy considering the strict dominance rule.

(b) Conversely suppose that Cy is e-better than C; on criterion c¢2.

Then we must have
Tr2 > Ti2 T €. (A7)
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In other words, Equations A.1, A.4, and A.7 hold true. But they imply
the following,
Tjo > Ty + €. (AS)

This again contradicts our assumption that C; strictly dominates C;.

Hence, we reach a contradiction upon considering all possible scenarios based on
our initial assumption that the three alternatives form a strongly intransitive loop.
Therefore, our initial assumption that the three alternatives form an intransitive loop
based on 2 criteria must be incorrect. Since the claim for m = 1 was also proved
above we have that for m < 2, we cannot have strong intransitivity by applying the
strict dominance rule.

This completes the proof.

Theorem 3.2
For X = {C, X},

0 = S(Sts(ex), X) C ---S(Sts(es), X) C S(Sts(ez), X) C S(Sts(er), X) = S(D, X).

where,

€p > - > €6 >¢€ > 0.

Proof:

By setting €; to 0, it is clear that the first pass of Strongly Strict filter, which uses
the Strict dominance rule, produces the measured dominance survivors. Since the
second pass eliminates each such first-pass survivor which has some other alternative
e-indistinguishable on all criteria with respect to it, the second pass when applied on
the measured dominance set will not eliminate any additional alternatives provided no
two alternatives have identical measured values in all criteria. Hence by construction,

we see that,
Je15(Sts(e)) = S(D, X). (A.9)

Suppose we set each of the m components of the ¢, vector as follows,

(for i =1tom) €] = max[z;;] — min[z].
j=Llin j=lin
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Then, no single alternative will survive the Strongly Strict filter because for the above
setting of tolerances, every alternative will be e-indistinguishable on all criteria with
respect to every other alternative in the set and as a result no single alternative will

survive the second pass. Therefore we have,
JerS(Sts(ex)) = 0. (A.10)

Finally, suppose that ¢; and €, are two tolerance vectors such that €; < €5, meaning
that each component of the vector €; is lesser than or equal to the corresponding
components in the vector €; with at least one strict inequality. Now,

Suppose C; € S(Sts(ez)). This implies that C; is ep-distinguishable with respect
to every other alternative on some criterion or the other. This further implies that
C; is €;-distinguishable with respect to every other alternative on some criterion or
the other, since €; < €. Hence C; € S(Sts(e1)). Thus we have,

C; € S(St8(€2)) = (C; € S(Sts(el))

Or in other words,
S(Sts(e2) C S(Sts(er)). (A.11)

where €; < €. Since our choice of €1, €y was arbitrary, we can use Equations A.9,
A.10, and A.11 and write,
0 = S(Sts(e), X) C -+ S(Sts(es), X) C S(Sts(ez), X) C S(Sts(er), X) = S(D, X).
where,
€p > > € > €1 > 0.
This completes the proof.

Theorem 3.3
For X = {C, X},

R

o

S(D,X) = S(SS(er), X) (SS(e2), X) € S(SS(e3),
- C S(SS(e), X) = C.

M
N

i
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where,
0<e€ <é€---< €
Proof:

According to the Superstrict dominance rule, we say
(C; superstrictly dominates C;) <= Jk(xix > ik + €) AVEk(zip > ik + €).

If we set all the m components of the € vector to zeroes we get the dominance rule.
Hence we have,
S(D,X) = 5(SS(e1), 0 < . (A.12)

Suppose we set one of the m components of the ¢, vector, say the ith component, as
follows,

eeli] = maxlz;] — minfzy].

Then, no alternative in X will be able to superstrictly-dominate another alternative
since the strict inequality clause in the superstrict rule will not be satisfied along
the ith criterion. Hence all n alternatives will survive the application of Superstrict

dominance with the above value of tolerances. In other words,
S(SS (e, X)) = C. (A.13)

Finally, suppose that ¢; and €, are two tolerance vectors such that e; > €;, meaning
that each component of the vector €, is greater than or equal to the corresponding

components in the vector ¢;. Now,

Ci € S(SS(er, &) = —AC;Vk(vj > 2t + €1)-
= _'ECij(LL'jk > T, + 62).

= C; € S(SS(eg, X). (A.14)

In other words,,
(C; € S(SS(e1, X)) = (C; € S(SS(e2, X)).
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Since our choice of the vectors, €; and e was arbitrary, this proves that,
S(SS(e1), &) € S(SS(ex)). (A.15)

for €; < €5. We can now, generalize the results expressed in Equations A.12, A.13
and A.15 to get the desired result:

S(D,X) = 5(SS(e1), X) C S(SS(e2), X) C S(SS(e3), X) -+ C S(SS(ex), X) = C.

where 0 < ¢ < €g--- < €.
This completes the proof.

Theorem 3.4

Every survivor of the dominance filter is a survivor of dd-dominance filter. i.e,

C; € S(D, X) = C; € S(DD(e), X)

Proof:
Suppose that

C; ¢ S(DD(e), X). (A.16)

This means that there is some alternative C; which dd-dominates C; i.e. a C; such
that,
Vk i'jk > T N EIp jjp > ii'ip + €.

This further implies that
Vk i > Zip A3 Ejp > Ty,
Which implies that the alternative C; dominates Cj;. Or that,
C; ¢ S(D,X) (A.17)
Applying contraposition on Equations A.16 and A.17 the theorem follows.
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This completes the proof.

Theorem 3.5
Every survivor of Twopass Strict Dominance is a survivor of dd dominance, for the

same tolerance value i.e.,

Proof:

Suppose there is some alternative C; which survives Twopass Strict dominance
but does not survive dd-dominance.

Since C; does not survive dd-dominance there must be some alternative C; which

dd-dominates it. In other words,
Va jja > T A b ii'jb > Ty + €.

Using the Strict dominance rule we see that the above condition implies that
C; strictly-dominates C;. Since Twopass Strict is the set of Strictly undominated
alternatives, C; cannot be a survivor of Twopass Strict dominance. Hence our initial
assumption must be wrong.

This completes the proof.

Theorem 3.6
Fvery survivor of the e-box Twopass(ebtp) filter is a survivor of the Superstrict dom-

inance filter for the same tolerance value i.e,

C; € S(EB(e)) = Ci € S(SS(e)).

Proof:
An alternative C; can be survivor of the ebtp-filter by one of two possible ways.

Either it is a dominance survivor so that it survives the first pass, or it is within the
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e-box with respect to some measured dominance survivor. We consider each of these
types of survivors separately and show that the claim hold for both kinds of survivors.
Case 1: Suppose C; survives the ebtp-filter because it is a survivor of dominance.
Assume, for contradiction that C; does not survive Superstrict dominance. This
means that there must be some other alternative C; which superstrictly dominates
C;. That is,
VD Zjp > Tip +€N3q Tjq > Tig + €.

This implies that
Vp fﬁ'jp > ii'ip A dg fﬁ'jq > iiq-

This means that the alternative C; dominates C;. However, this contradicts our
assumption that C; is a dominance survivor. Hence our assumption that C; will not
survive Superstrict dominance must be wrong.

Case 2: Suppose that C; survives the ebtp-filter not by its first pass but by its
second pass. This means that C; must within the e-box form some Pareto alternative.
Let C; be such an alternative. Note that since C; is a dominance survivor, it must

also be a survivor of the ebtp-filter.
Vk Tjp < T + €. (A.18)

Suppose we assume, for contradiction, that C; does not survive Superstrict dominance.
Then we know that there must be some alternative C; which superstrictly dominates
C;. In other words,

VD Zyp > Zip + € N3G Tyg > Tig + €. (A.19)

From Equations A.18 and A.19 we can infer,
Vp jtp > jjp N 3(] ii'tq > ii'jq.

This implies that the alternative C; dominates C;. This is contrary to our assumption
that C; is a survivor of dominance. Hence our initial assumption, that C; does not
survive superstrict dominance must be incorrect. So, the theorem follows for the

second case as well.
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Therefore, for all survivors of the ebtp-filter we must have that they survive su-
perstrict dominance as well.

This completes the proof.

Theorem 3.7
A survivor of the Superstrict dominance filter need not be a survivor of the ebtp-filter
for the same tolerance value.
Proof:
All that is needed is a counterexample. Consider the 2 alternative, 2 criteria

decision problem shown below,

z Y
Cy
&)

Suppose we use the tolerance vector {1.1,1.1}. Clearly, only C; will survive the ebtp-
filter. However both C7 and Cy will survive superstrict dominance.

This completes the proof.

Theorem 3.8
Every survivor of dd-dominance filter is a survivor of the ebitp-filter for the same

tolerance value i.e,
Ci € S(DD(¢)) = C; € S(EB(e)).

Proof:

Suppose, C; € S(DD(e)).

Since dd-dominance requires dominance and an additional e-distinguishability on
some criterion, we must have either that C; is not dominated by any alternative (so
that it is a dominance survivor) or that C; is e-indistinguishable on all criteria with
respect to its dominators. Either way, we get that C; must survive the ebtp-filter.

This completes the proof.
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Theorem 3.9
A survivor of the ebtp-filter need not be a survivor of the dd-dominance filter for the
same tolerance value.
Proof:
All that is needed is a counterexample. Consider the 3 alternative, 2 criteria

decision problem shown below,

z Y
C; 5 4
Cy, 4 5
Cs 3 4

Suppose we use the tolerance vector e = {1.1,1.1}. We see that,
S(EB(e)) = {C1, Cy, C3} while,
S(DD(e)) ={C1, Ca}.
This completes the proof.

Corollary 3.1

Every survivor of the Strongly Strict filter is a dominance survivor, i.e.,

S(Sts(e), X) € S(D, X).

Proof:
Rewriting Equation A.35 we have,

(VCJ € S(Sts(e)) (VC@ € C) : Ht(fﬁjt > Ty + 6).
which implies that
(VC; € §(Sts(e)) (VC; € C) = Ft(Fy0 > ).

This implies that every survivor of the Strongly Strict filter has to be a dominance

survivor.

157



This completes the proof.

A.4 Proofs for Chapter 6

Theorem 6.1
If the actual criteria values and the measured criteria values belong to continuous
distributions then the application of measured dominance produces a survivor set for

which the following is true:

E(|f+(D, X)|) = E(|f-(D, X))). (A-20)

Proof:

In their paper [12], Calpine and Golding derive an expression for the expected
number of dominance survivors as a function of the number of alternatives n and
number of criteria m. They further show the general applicability of this expression
to all n x m set of alternatives, so long as the criteria are independent and the values
come from continuous distributions.

More specifically, this means that the application of the dominance filter to the
set X of actual criteria values and the set X of measured criteria values, can be both

expected to produce the same number of survivors. i.e.,
E(|S(D, X)|) = E(|S(D, X)|). (A.21)

By the definitions of false positives and false negatives we can write,

S(D,&)| = |S(D, ®)| + £(D, &) - f (D, &). (A.22)

Now, for random variables X, Y and Z we know that,
(X=Y+2)=>EX)=EY)+E).

Hence, for Equation A.22 we can write,

E(|S(D, X)) = E(IS(D, X)|) + E(f+(D, X)) — B(f-(D, X)). (A.23)
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From Equation A.21 and Equation A.23 we get,
E(|f+(D,X)|) = E(|f-(D, X))). (A.24)
which is the desired result.

Theorem 6.2
For location family noise models, if alternative C; dominates alternative C; in mea-
sured dominance then the probability that C; is not actually dominated by C; is greater

than the probability that C; is not actually dominated by C;. In other words,

[C; measured dominates Cj| — [P(E;, C;) > P(E;, Cy)).

Proof:

From Equation 6.27 we have,

p=m
P(E;,Cj) = 1= ]] Plajp > xip).
p=1
This can be written as,
P(Ez, C]) =1- €162 €Eimy-

Similarly,
p=m
P(E;,Ci) =1~ ][ P(zip > 25)
p=1
or,

P(EJ Cz) =1- €j1€52 " €Ejmpy.

Now, since C; dominates C; in measured dominance, we must have,

Vp iip > QN?]'p A dg iiq > jjq-
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From Equation 6.8 we get therefore that,
Vp P(zip > xjp) > 0.5 A 3q P(ziq > xjq) > 0.5.

Or,
Vp P(xjp > i) < 0.5 A 3q P(xjq > i4) < 0.5.

This allows us to conclude that,

V7 €jr > €ir A S €5 > €is.

Or,
r=m r=m
H €jr > H €ir-
r=1 r=1
That is,
r=m r=m
[1 — H ejr] < [1 — H Cir]-
r=1 r=1

which implies that,
P(E;, C;) < P(E;, Cj).

Therefore we can conclude,
[C; measured dominates C;j| — [P(E;,C;) > P(E;, C;)].
This completes the proof.

Theorem 6.3

For location family noise models, if alternative C; is a survivor of measured dominance
then

Vj P(E;,C;) > 0.5.

where P(E;, C;) is the probability that the alternative C; is not actually dominated
by alternative C;
Proof:

We are given C; which is a survivor of measured dominance. Let us consider
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another alternative, C;, from the remaining n — 1 alternatives. We know that the
probability that Cj is not dominated by alternative C; in terms of the actual values
is given by,
p=m
P(E;,C;) =1— ][] P(zjp > z4p). (A.25)

p=1

Since C; is a survivor of measured dominance exhaustively either,
[C; is not dominated by C]

or,
[C; dominates Cj).

Case 1: C; is not dominated by C; This implies,

dp (-{Ezp > -ijp)- (A26)
30 (50 > i) (A.27)

where 7, is the measured value of alternative C, on criterion s.

From Equation 6.8 we have therefore,

dg P(.qu > 332',]) > 1/2 (A28)
3p P(ziyp > xj,) > 1/2 which implies that, (A.29)
dp P(zjp, > xip) < 1/2. (A.30)

From the last equation we can infer that,

p=m

H P(.??jp > .’Eip) < 1/2

p=1

This implies that,

p=m

1-— H P(ZEjp > l‘ip) > 1/2

p=1
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This, from Equation A.25 implies that
P(E;,C;) > 1/2.
Case 2: C; dominates C; This implies,
Vp (Zip > Zjp) A g (Tig > Tjg)- (A.31)

From Equation 6.8 we have therefore,

Vp P(zip > zjp) > 1/2 A 3q P(z4g > zj4) > 1/2. (A.32)
This implies that

Vp P(zjp > i) < 1/2 A 3q P4 > xig) < 1/2.

Or,

p=m

1-— H P(:vjp > SIJZ'p) > 1/2
p=1
which from Equation A.25 implies that
P(Ez, CJ) > 1/2

Thus the result is proved for all possible choices of a second alternative C;. Therefore,

we must have, in general for all measured dominance survivors that,
P(Ez, CJ) > 1/2
This completes the proof.

Theorem 6.4
For bounded noise model M (e/2), the application of Superstrict dominance filter SS(e)

produces the sufficient set.
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Proof:

Let N be the set of alternatives which do not survive the application of SS(e),
where € is the tolerance vector obtained from the bounded noise model. This implies
that,

V(C; € N) 3(C; € S(SS(€))) : [C} superstrictly dominates Cj).

V(CZ € N) E(CJ € S(SS(G))) . HT(ii'jT > -fiir + 6) N VS(.’i‘jr Z ii'ir + 6). (A33)

For the bounded noise model, we know from Equation 6.4 that

3

>y+e—>x>.
Therefore we can rewrite Equation A.33 as,
V(C; € N) 3(C; € S(SS(€))) : Ar(zjr > zir) AVS(zjr > Tir). (A.34)

This implies that every non-survivor of the Superstrict dominance filter is such that
some survivor of the filter actually-dominates it. Therefore, none of the non-survivors
of the Superstrict filter can be optimal. In other words, for the bounded noise model,
the application of the Superstrict filter produces no false negatives.

This completes the proof.

Theorem 6.5
For bounded noise uncertainty model M (e/2), the Strongly Strict filter Sts(e) produces
the necessary set.
Proof:

From its decision rule we know that every survivor of the Strongly Strict filter
is such that it is e-distinguishable with respect to every other alternative on some

criterion or the other i.e,

(VCJ € S(StS(E)) (VCZ € C) : Elt(ijt > T+ 6). (A35)
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From Equation 6.4, this implies that,

(VC; € S(Sts(e)) (VC; € C) = Ft(xj > xir). (A.36)
The above two expressions together imply that,

(VC; € S(Sts(e)) (VC; € C) : Ft(wjr > xit)- (A.37)

This means that no survivor of the filter could have been dominated by another
alternative, or that for the bounded noise model, the survivor set of the Strongly
Strict filter contains only true positives, i.e, no false positives. In other words, the
Strongly Strict filter produces the Necessary set.

This completes the proof.

Theorem 6.6
Each alternative in the Sufficient Set satisfies the following condition with respect to

every other alternative:

Proof:
Suppose that C; € PS(€); also suppose there is another alternative C; such that

the following condition does not hold for C;. In other words,
Vk(i‘zk +e< .i‘jk).

But from the definition of Superstrict dominance, this will imply that alternative C;
superstrictly-dominates C;. Therefore C; cannot belong to the sufficient set, P.S(e).
So, we get a contradiction and the above condition must hold for each alternative in
the sufficient set.

This completes the proof.
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