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Abstract

Risk-averse stochastic optimization problems widely exist in practice, but are gen-

erally challenging computationally. In this dissertation, we conduct both theoretical

and computational research on these problems. First, we study chance-constrained

two-stage stochastic optimization problems where second-stage feasible recourse de-

cisions incur additional cost. We also propose a new model, where recovery decisions

are made for the infeasible scenarios, and develop strong decomposition algorithms.

Our computational results show the effectiveness of the proposed method. Second,

we study the static probabilistic lot-sizing problem (SPLS), as an application of a

two-stage chance-constrained problem in supply chains. We propose a new formula-

tion that exploits the simple recourse structure, and give two classes of strong valid

inequalities, which are shown to be computationally effective. Third, we study two-

sided chance-constrained programs with a finite probability space. We reformulate

this class of problems as a mixed-integer program. We study the polyhedral structure

of the reformulation and propose a class of facet-defining inequalities. We propose a

polynomial dynamic programming algorithm for the separation problem. Preliminary

computational results are encouraging. Finally, we study risk-averse models for mul-

ticriteria stochastic optimization problems. We propose a new model that optimizes

the worst-case multivariate conditional value-at-risk (CVaR), and develop a finitely

convergent delayed cut generation algorithm.
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Dr. Kücükyavuz, none of these is possible. Dr. Kücükyavuz has taught me so many
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Chapter 1: Introduction

Risk-averse optimization problems involving uncertainty widely exist in practice,

but are generally challenging computationally because of their large scale and non-

convexity. For example, consider a call center staffing problem in which the customer

arrival rate is uncertain. We want to decide the staffing levels of different types of

servers in the first stage, before knowing the actual arrival rates of customers, to meet

the stochastic demands while minimizing the operating cost. One of the challenges

of this problem comes from the uncertainty of the parameters (random arrival rate).

One way to handle this difficulty is to use classical two-stage stochastic program-

ming to formulate this problem (see Birge and Louveaux [16] for an introduction to

stochastic programming). However, this modeling choice enforces that every possi-

ble scenario has to be satisfied by our staffing plan, even including the one that is

very unlikely but causes conservative first-stage decision and unnecessarily expensive

operation costs.

An alternative modeling choice is introducing a probabilistic (chance) constraint.

In the resulting joint chance-constrained model, it is not required to find a staffing plan

that satisfies all possible outcomes. Instead, the model enforces that the probability

of the staffing plan is successful is at least 1− ε, where 0 < ε < 1 is a user-given risk

rate. This modeling choice gives us the flexibility to ignore some of those extreme
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scenarios, as long as the reliability of our plan is maintained at the desired level (1−ε).

In this way, we can greatly reduce the operating cost caused by those unlikely but

extreme scenarios.

However, a potential drawback of the joint chance-constrained model is that if

the first-stage plan turns out to be unsuccessful, then we do nothing in the second

stage. In addition, the level of the infeasibility caused by the first-stage decisions

is ignored. To deal with these shortcomings of the joint chance-constrained model,

we also consider another measure of risk: Conditional Value-at-Risk. This measure

captures the expected shortfall of our decision, and thus provide more information

about the performance of our decision in the worst-case scenarios.

In practice, many other problems that involve risk or reliability considerations

appear in production planning, power systems, disaster management and homeland

security problems. Motivated by these problems, in this dissertation, we conduct

both theoretical and computational research on risk-averse optimization problems.

In this dissertation, we use two methods to measure the risk: joint chance con-

straint and conditional value-at-risk (CVaR). The joint chance constraint, as discussed

earlier, is a qualitative risk measure, which ensures that the quality of service of the

solution is maintained at a high level. The CVaR, on the other hand, is a quantitative

risk measure that captures the magnitude of the risk in the worst cases. For example,

let X be the random profit, and let CVaR0.05(X) = 100. This indicates that in the

worst 5% scenarios, the expected profit is 100.

In the remainder of this chapter, we provide a brief introduction and literature

review of the classical two-stage stochastic programming, and these two risk measures:

2



joint chance-constraint and CVaR. Then, we introduce the research scope and the

outline of this dissertation.

1.1 Two-Stage Stochastic Programs

First, we briefly introduce the classical two-stage stochastic programs (a detailed

introduction can be found in [16]). If we consider a stochastic facility location prob-

lem: we need to decide the optimal facility location, production level at each facility,

and the delivery plan for customers at different locations, in order to satisfy the

stochastic demand at each location. In this example, due to the time limit of setting

up the production facilities, we cannot wait until the random demand is observed to

open the facilities and start producing. Hence, we need to consider two stages in the

decision process. In the first stage, we make decisions on the facility locations and the

production levels. In the second stage, after the random demand at each location is

observed, we make the transportation plan according to the demand realization and

the strategic decision from the first stage.

Formally, let (Ω,F ,P) be a probability space. In addition, let x ∈ Rn and y ∈ Rn′

be the vector of the first-stage and second-stage decision variables, respectively. A

generic 2-stage stochastic program is given as follows:

min c>x + Eω[f(x, ω)]

s.t. x ∈ X ,

where c is the n-dimensional cost vector for the first-stage decision variables, and

X ⊆ Rn is the set of constraints for the first-stage decision variables. In addition, the

3



second-stage cost f(x, ω), for all ω ∈ Ω is given by:

f(x, ω) = min d>ωy

s.t. Tωx +Wωy ≥ hω,

y ∈ Rn′ ,

where dω is the cost vector for the second-stage decision variables parameterized by

the random variable ω ∈ Ω. In addition, Tω is the technology matrix, Wω is the

recourse matrix, and hω is the right-hand side vector with appropriate dimensions,

that are parameterized by the random variable ω ∈ Ω, respectively. If Wω =
(

I1
−I2

)
,

where I1 and I2 are identity matrices with appropriate dimensions, then the second-

stage problem has simple recourse structure. We refer to [16] for more details about

the properties of the generic two-stage stochastic programs. In addition, for solution

algorithms, we refer to [98], [11] and [17].

As we can see, the objective of the classical two-stage stochastic program is to

minimize the first-stage cost and the expected second-stage cost, while all possible

outcomes need to be satisfied. As we discussed earlier, this may lead to very conser-

vative or even infeasible first-stage decisions. In the next section, we briefly introduce

the classic single-stage chance-constrained programs, in which we gain the freedom to

ignore some of the “extreme” scenarios, while maintaining the quality of the solution

at an acceptable level.

1.1.1 Stochastic Program with Simple Recourse

1.2 Chance-constrained Programs

Chance-constrained mathematical programs (CCMPs) aim to find optimal solu-

tions to problems where the probability of an undesirable outcome is limited by a

4



given threshold, ε. Let (Ω,F ,P) be a probability space. In addition, let x ∈ Rn be

the vector of the decision variables, and let c be its cost vector. A classical single-stage

chance-constrained program is stated as follows:

min c>x

s.t. P(Ax ≥ b(ω)) ≥ 1− ε (1.1a)

x ∈ Rn,

where b(ω) is a m-dimensional random right-hand side vector parameterized by ω,

for all ω ∈ Ω. In addition, A is a n ×m deterministic matrix. Constraint (1.1a) is

the joint chance-constraint which enforces that the probability of our solution to be

infeasible should be less than the risk rate ε.

The first optimization problem with disjoint chance constraints is defined by

Charnes et al. [25]. Charnes and Cooper [24] establish the deterministic equivalent

for chance-constrained programs. Miller and Wagner [70] study the mathematical

properties of joint chance-constrained programs with independent random variables.

Prékopa [80] studies joint probabilistic constraints with dependent random variables

and proposes an equivalent deterministic convex program under certain assumptions

on the distribution of the random right-hand side.

1.2.1 Deterministic Equivalent Program

Luedtke and Ahmed [66] show that for more general distributions, sample-average

approximation (SAA) can be applied to find good feasible solutions and statistical

bounds to the original CCMPs. Related studies can also be found in [21, 22, 23,

73]. The resulting sampled problem can be formulated as a large-scale deterministic
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mixed-integer program by introducing a big-M term for each inequality in the chance

constraint and a binary variable for each scenario.

Let Ω := {1, 2, . . . , N} be the probability space of the finitely sampled problem,

and let πj = P(ω = j), where j ∈ Ω and
∑N

j=1 πj = 1. In addition, let zj, for all

j ∈ Ω, be the binary variable which indicates that scenario j is satisfied if zj = 0, for

all j ∈ Ω. Furthermore, to simplify notation, let bj = b(ω = j), for all j ∈ Ω. Then

we can reformulate the generic problem (1.1) as follows:

min c>x

s.t. Ax +Mzj ≥ bj (1.2a)

N∑
j=1

πjzj ≥ 1− ε (1.2b)

x ∈ Rn,

where M is a sufficiently large constant to make inequality (1.2b) redundant when

zj = 1, for all j ∈ Ω. Inequalities (1.2a) and (1.2b) represent the joint chance

constraints for the finitely sampled problem: if zj = 0, then the constraint set Ax ≥ bj

is enforced for scenario j ∈ Ω. Otherwise, if zj = 1, then the big-M constant

deactivates the constraint set for scenario j ∈ Ω, which indicates that we do not have

to satisfy the constraints of scenario j.

However, the weakness of the linear programming relaxation of this big-M for-

mulation and its large size make it hard to solve. Luedtke et al. [67], Küçükyavuz

[52] and Abdi and Fukasawa [1] study strong valid inequalities for the deterministic

equivalent formulation of chance-constrained problems with random right-hand sides.

An alternative reformulation for this class of problems involves using the concept of

(1− ε)-efficient points [81]. Sen [90] studies a disjunctive programming reformulation

6



by using (1− ε)-efficient points. Dentcheva et al. [26] give reformulations of CCMPs

based on the (1− ε)-efficient points, and obtain valid bounds for the objective value.

Beraldi and Ruszczyński [13] propose a branch-and-bound algorithm based on the

enumeration of the exponentially many (1− ε)-efficient points. See also Beraldi and

Ruszczyński [12], Ruszczyński [86] and Saxena et al. [88] for algorithms based on

the (1 − ε)-efficient points reformulation. For problems with special structures, for-

mulations that do not involve additional binary variables are developed in Song and

Luedtke [95] and Song et al. [94].

There are two potential shortcomings of the joint chance-constrained model. As

we can see from formulation (1.2), although the joint chance constraint ensures that

the quality of the solution must be maintained at a certain level, it does not provide

any information about the magnitude of the violation if the first-stage plan is not

successful (in the ε × 100% worst case). In addition, if the plan turns out to be un-

successful, we can do nothing to “recover” from the infeasible solution. In Chapter 2,

we propose a two-stage chance-constrained program with recovery, which allows us to

recover from a infeasible solution. Furthermore, in the next section, we briefly intro-

duce the concept of CVaR, which measures the “excepted shortfall” of our decision

in the worst cases.

1.3 The Conditional Value-at-Risk

Risk measures are functionals that represent the risk associated with a random

variable by a scalar value, and provide a direct way to define preference relations be-

tween the random outcomes. Among the risk measures that have desirable properties

such as coherence [3], CVaR, introduced by [83], has been very popular in a wide
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range of decision making problems under uncertainty. It is also important to note

that it serves as a fundamental building block for a large class of risk measures [56].

In this dissertation, we give the CVaR definition based on acceptability functionals,

which follows the lines of [78] and [75]. As a result, larger values of the random

variable is preferred (as in random profit).

We present some relevant definitions and relations based on CVaR; for more de-

tailed discussions we refer to [78], [82], and [75].

Definition 1 ([83, 84]). For a random variable X, the conditional value-at-risk at

confidence level α ∈ (0, 1] is given by

CVaRα(X) = max

{
η − 1

α
E ([η −X]+) : η ∈ R

}
, (1.3)

where [a]+ = max{a, 0}, for all a ∈ R.

For risk-averse decision makers typical choices for the confidence level are small

values such as α = 0.05. Note that CVaRα(X) is concave in X. Suppose X is a ran-

dom variable with (not necessarily distinct) realizations x1, . . . , xN and corresponding

probabilities p1, . . . , pN . Then, the optimization problem in (5.1) can equivalently be

formulated as the following linear program:

max{η − 1

α

∑
i∈[N ]

piwi : wi ≥ η − xi, ∀ i ∈ [N ], w ∈ RN
+}, (1.4)

where [a] = {1, 2, . . . , a}, for all a ∈ Z+.

It is well known that the maximum in definition (5.2) is attained at the α-quantile,

which is known as the value-at-risk (VaR) at confidence level α:

VaRα(X) = min{η ∈ R : FX(η) ≥ α}, (1.5)
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where FX is the cumulative distribution function of X.

Moreover, observing (for any given confidence level α ∈ (0, 1]) VaRα(X) = xk for

at least one k ∈ [N ] provides an alternative expression of CVaR:

CVaRα(X) = max
k∈[N ]

xk − 1

α

∑
i∈[N ]

pi[xk − xi]+

 . (1.6)

Then, we present the notation of CVaR-preferability for scalar-valued random

variables. Let X and Y be two random variables with respective cumulative distri-

bution functions FX and FY . We say that X is CVaR-preferable to Y at confidence

level α, denoted as X <CVaRα Y , if

CVaRα(X) ≥ CVaRα(Y ). (1.7)

Noyan and Rudolf [75] extend the univariate CVaR preference relation to vector-

valued random variables by considering a polyhedral scalarization set and requiring

that all scalarized versions of the random variables conform to the univariate CVaR-

preferability relation; we next provide the formal definition of this multivariate CVaR

relation:

Definition 2 ([75]). Let X and Y be two d-dimensional random vectors, C ⊂ Rd
+

a set of scalarization vectors, and α ∈ (0, 1] a specified confidence level. We say

that X is CVaR-preferable to Y at confidence level α with respect to C, denoted as

X <C
CVaRα

Y, if

CVaRα(c>X) ≥ CVaRα(c>Y) for all c ∈ C. (1.8)

1.4 Research Scope and Outline

In the first part of this dissertation, we study a class of chance-constrained two-

stage stochastic optimization problems where second-stage feasible recourse decisions
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incur additional cost. In addition, we propose a new model, where recovery decisions

are made for the infeasible scenarios to obtain feasible solutions to a relaxed second-

stage problem. We develop decomposition algorithms with specialized optimality and

feasibility cuts to solve this class of problems. Computational results on a chance-

constrained resource planing problem indicate that our algorithms are highly effective

in solving these problems compared to a mixed-integer programming reformulation

and a naive decomposition method.

Next, we study the polyhedral structure of the static probabilistic lot-sizing prob-

lem and propose valid inequalities that integrate information from the chance con-

straint and the binary setup variables. We prove that the proposed inequalities sub-

sume existing inequalities for this problem, and they are facet-defining under certain

conditions. In addition, we show that they give the convex hull description of a related

stochastic lot-sizing problem. We propose a new formulation that exploits the simple

recourse structure, which significantly reduces the number of variables and constraints

of the deterministic equivalent program. This reformulation can be applied to general

chance-constrained programs with simple recourse. The computational results show

that the proposed inequalities and the new formulation are effective for the the static

probabilistic lot-sizing problems.

Next, we study two-sided chance-constrained programs with a finite probability

space. We reformulate this class of problems as a mixed-integer program. We study

the polyhedral structure of the reformulation and propose valid inequalities that de-

fine the convex hull of solutions. Furthermore, we propose polynomial optimization

and separation algorithms for the optimization problem over a substructure of this

problem.
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Finally, we study risk-averse models for multicriteria optimization problems under

uncertainty. We model the risk aversion of the decision makers via the concept of mul-

tivariate conditional value-at-risk (CVaR). We use a weighted sum-based scalarization

and take a robust approach by considering a set of scalarization vectors to address

the ambiguity and inconsistency in the relative weights of each criterion. First, we

introduce a model that optimizes the worst-case multivariate CVaR, and develop a

finitely convergent delayed cut generation algorithm for finite probability spaces. We

also show that this model can be reformulated as a compact linear program under

certain assumptions. In addition, for the cut generation problem, which is in general

a mixed-integer program, we give a stronger formulation for the equiprobable case.

Next, we observe that similar polyhedral enhancements are also useful for a related

class of multivariate CVaR-constrained optimization problems that has attracted at-

tention recently. In our computational study, we use a budget allocation application

to compare the decisions from our proposed maximin type risk-averse model with

those from its risk-neutral version and the multivariate CVaR-constrained model. Fi-

nally, we illustrate the effectiveness of the proposed solution methods for both classes

of models.

The remainder of this dissertation is organized as follows. In Chapter 2, we study

the two-stage chance-constrained mathematical programs. In Chapter 3, we explore

a special case of two-stage chance-constrained program: static probabilistic lot-sizing

problem. In Chapter 4, we investigate the two-sided chance-constrained program. In

Chapter 5, we propose the worst-case multivariate Conditional Value-at-Risk model.

We conclude this dissertation in Chapter 6.
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Chapter 2: Decomposition Algorithm for 2-stage

Chance-constrained Programs

2.1 Introduction

This chapter is based on [63]. Most of the earlier work in CCMPs, including

the aforementioned studies, can be seen as single-stage (i.e., static) decision-making

problems where the decisions are made such that after the uncertain data is realized,

there is a low probability of an undesirable outcome. Zhang et al. [107] consider

multi-stage CCMPs and give valid inequalities for the deterministic equivalent for-

mulation, and observe that decomposition algorithms are needed to solve large-scale

instances of these problems. In this chapter, we study such algorithms for two-stage

CCMPs, where after the uncertain parameters are revealed, we would like to de-

termine recourse actions that incur additional cost. This is similar to traditional

two-stage stochastic programs (without chance constraints), where some decisions are

made in the first stage before the uncertain parameters are revealed. In the second

stage, recourse decisions are made to satisfy the second stage problems for all possible

scenarios at a minimum total expected cost. Van Slyke and Wets [98] propose the

L-shaped decomposition method, which is an adaptation of the Benders decomposi-

tion algorithm [11] to such stochastic programs. (See also Birge and Louveaux [17]
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for a multi-cut implementation.) However, these methods cannot be directly applied

to the two-stage CCMP, since both the feasibility and optimality cuts of the Benders

method work on the assumption that all second stage problems should be feasible,

which is not the case for CCMPs. Luedtke [65] overcomes one of these difficulties

by developing a valid “feasibility cut” for a special case of two-stage CCMPs with

no additional costs for the second stage variables. A few studies [102, 103] have

attempted to integrate Benders decomposition to solve two-stage CCMP, but the op-

timality cuts in these algorithms involve undesirable “big-M” coefficients, which lead

to weak lower bounds and computational difficulties. Hence, an interesting research

question is whether we can derive strong optimality cuts for two-stage CCMPs. In

this chapter, we answer this question in the affirmative. In a concurrent work, Zeng

et al. [106] propose a decomposition algorithm for two-stage CCMP, which is based

on bilinear feasibility and optimality cuts. However, these cuts need to be linearized

by adding additional variables which are constrained by “big-M” inequalities. This

yields a significantly larger master problem formulation, and in our experiments we

found that this approach also yielded weak lower bounds, although more promising

results were reported in Zeng et al. [106] on their test instances.

Similar to a static CCMP, the two-stage CCMP model assumes that we are al-

lowed to ignore the outcomes of a small fraction of the scenarios. This assumption

is appropriate when constraint satisfaction is “all or nothing” or if the magnitude

of constraint violation is not important, e.g., if this simply results in lost demands.

However, in some other problems the magnitude of violation, and not just the prob-

ability that a violation occurs, is also important. For example, in an emergency

preparedness problem it is important to have a plan that meets all the needs with
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high probability, but also that does not have excessive shortages in case the plan is

not successful. As another example, a power system operator wishes to have a plan

in which all energy supply needs are met with high probability, but also wishes to

control the amount of shortage in the cases when a shortage occurs. To deal with

such problems, we introduce in §2.2 an alternative model for risk management, which

models the need to recover from an undesirable outcome. We refer to this model

as two-stage CCMP with recovery (CCMPR). We show that a standard two-stage

CCMP is a special case of the two-stage CCMPR, and thus algorithms for two-stage

CCMPR can be used to solve either problem. In §2.3 we propose a branch-and-cut

based decomposition algorithm for two-stage CCMPR based on optimality cuts that

do not involve big-M terms. In §3.5, we summarize the performance of the proposed

decomposition algorithm on a resource planning example. We conclude with §2.5.

2.2 Mathematical Models

2.2.1 Two-Stage Chance-Constrained Programs with Recourse

Let (Ω,F ,P) be a probability space. We consider a two-stage problem with first-

stage decision variables x ∈ X ⊆ Rn1 , where X is assumed to be a polyhedron

representing the deterministic constraints of the problem. For each x ∈ X and random

outcome ω ∈ Ω, the second stage problem is defined as:

f(x, ω) := min
y
{qω>y : Tωx+Wωy ≥ hω, y ∈ Rn2

+ }. (2.1)

Here, for each ω ∈ Ω, Tω is a d×n1 matrix, hω ∈ Rd, Wω is a d×n2 matrix, qω ∈ Rn2
+ ,

and y is the vector of second stage decision variables. We adopt the convention that
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f(x, ω) = +∞ if (2.1) is infeasible. For any ω ∈ Ω, we define

P (ω) = {x ∈ X : ∃y ∈ Rn2
+ , Tωx+Wωy ≥ hω},

as the set of first-stage solutions x for which the second-stage problem (2.1) has a

feasible solution (i.e., f(x, ω) < +∞ if and only if x ∈ P (ω)).

Given a cost vector c ∈ Rn1 , the traditional two-stage stochastic program has the

form:

min{c>x+ Eω[f(x, ω)] : x ∈ X}.

This problem implicitly enforces that x ∈ P (ω) for almost every ω ∈ Ω, since other-

wise the objective value is infinite. In contrast, a traditional CCMP without costs in

the second stage has the form:

min{c>x : P{x ∈ P (ω)} ≥ 1− ε, x ∈ X}.

The motivation behind the chance constraint model is that enforcing x ∈ P (ω) for

almost every ω ∈ Ω may either lead to an infeasible model, or may lead to a model in

which the first-stage solutions are too costly. Thus, the constraint that the second-

stage must be feasible in all possible realizations is replaced with the relaxed version

that enforces this to hold with high probability. This chance-constrained model does

not account for the cost of second-stage solutions in the case when they are feasible.

We propose a two-stage CCMP that extends both the traditional two-stage and

chance-constrained models. The model uses indicator decision variables Iω for ω ∈ Ω,
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where Iω = 0 implies that x ∈ P (ω):

min
x,I

c>x+ P(Iω = 0)Eω[f(x, ω) | Iω = 0] (2.2a)

s.t. Iω = 0⇒ x ∈ P (ω), ω ∈ Ω (2.2b)

P{x ∈ P (ω)} ≥ 1− ε (2.2c)

x ∈ X, Iω ∈ B, ω ∈ Ω. (2.2d)

The idea behind this model is that the recourse model (2.1) represents the “normal”

system operation, which is the desired state. The constraint (2.2c) together with

the logical condition (2.2b) enforces the chance constraint, which states that the

probability that the system has a feasible second stage solution is at least 1− ε. The

objective in (2.2) minimizes the sum of the first-stage costs and the expected second

stage costs, averaged only over the outcomes ω for which Iω = 0. This ensures that

the objective is finite for any feasible solution.

Throughout the chapter we make the following assumptions:

A1: The random vector ω has finite support, i.e., Ω := {ω1, ω2, . . . , ωm}, and each

outcome is equally likely (P{ω = ωk} = 1/m for k = 1, . . . ,m).

A2: X and P (ω) for ω ∈ Ω are non-empty polyhedra;

A3: P (ω), ω ∈ Ω have the same recession cone, i.e., C := {r ∈ Rn : x + λr ∈

P (ω) ;∀x ∈ P (ω), λ ≥ 0} for all ω ∈ Ω;

A4: There does not exist an extreme ray, r̃, of X with c>r̃ < 0,

where (A1)-(A3) directly follow [65]. To simplify notation, let Pk = P (ωk), Wk =

Wωk , hk = hωk , qk = qωk Tk = Tωk , zk = Iωk , and f(x, k) = f(x, ωk) for all k ∈ K,
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where K = {1, 2, . . . ,m}. Assumption (A4) together with f(x, ω) ≥ 0 (because

q, y ≥ 0) ensures that there is a bounded optimal solution to the two-stage CCMP.

2.2.2 Two-Stage Chance-Constrained Programs with Recov-
ery

Model (2.2) ignores the outcome of scenarios that are not enforced to have a fea-

sible second-stage solution under the normal operations (Iω = 0), and instead just

enforces that the probability of this selected set of “ignored outcomes” be small. In

this section, we extend this model to also include a cost for scenarios in which the

normal operation is not enforced to be feasible (Iω = 1). The idea is to introduce

a secondary “recovery” model, that in some way represents the system operation in

cases when we do not operate under the normal operation defined by (2.1). For exam-

ple, the recovery problem may relax some of the constraints of the normal operational

model, by including decision variables that measure and penalize the magnitude of

the violation of such constraints. Formally, for any ω ∈ Ω and x ∈ X, we define the

recovery operation problem as follows:

f̄(x, ω) = min
ȳ
{q̄>ω ȳ : T̄ωx+ W̄ωȳ ≥ h̄ω, ȳ ∈ Rn̄2

+ } (2.3)

where T̄ω, W̄ω are d̄× n1 and d̄× n̄2 matrices, respectively, h̄ω ∈ Rd̄, q̄ ∈ Rn̄2
+ , and ȳ

is the vector of recovery decisions. Note that the dimension n̄2 of ȳ is not necessarily

the same as the dimension n2 of the recourse decision vector y (similarly for d and d̄).

For example, the recovery problem may be identical to the normal recourse problem

except for the addition of new recovery decision variables that guarantee a feasible

solution always exists.
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We then introduce the two-stage chance-constrained problem with recovery

(CCMPR) model as follows:

min
x, I

c>x+ P(Iω = 0)Eω[f(x, ω) | Iω = 0] + P(Iω = 1)Eω[f̄(x, ω) | Iω = 1]

s.t. Iω = 0⇒ x ∈ P (ω), ω ∈ Ω (2.4a)

P{x ∈ P (ω)} ≥ 1− ε (2.4b)

x ∈ X, Iω ∈ B, ω ∈ Ω. (2.4c)

The only difference between the CCMPR and CCMP models is the inclusion of

the term Eω[f̄(x, ω) | Iω = 1] in the objective, which captures the expected cost of

the recovery operations, conditioned over the scenarios that are selected to operate

in recovery mode.

We make the following assumptions in addition to assumptions (A1) - (A4):

B1: f̄(x, ω) < +∞ for all x ∈ X,ω ∈ Ω.

B2: f(x, ω) ≥ f̄(x, ω) for all x ∈ X,ω ∈ Ω.

The assumption (B1) is analogous to the standard relatively complete recourse as-

sumption used in two-stage stochastic programs, which we apply only to the recovery

model. The motivation behind assumption (B2) is that the recovery operation has a

larger feasible region than the normal operation due to the introduction of additional

recovery actions. The use of these recovery actions is either highly undesirable, or

possibly not even physically meaningful (e.g., if they are just used to measure con-

straint violation), and so the chance constraint enforces that in most scenarios they

should not be used. However, when they are allowed to be used, all the operations

of the normal recourse model are still feasible, and hence the cost in the recovery
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operation can only be smaller. On the other hand, if the recovery actions are not

allowed to be used, then the recovery model reduces to the normal model, and incurs

the same cost.

Based on assumption (A1), we once again simplify notation by letting W̄k = W̄ωk ,

h̄k = h̄ωk , q̄k = q̄ωk , T̄k = T̄ωk , and f̄(x, k) = f̄(x, ωk) for all k ∈ K. Using (A1) and

this new notation, we can re-write (2.4) as:

min
x,z

c>x+
1

m

(
m∑
k=1

(1− zk)f(x, k) +
m∑
k=1

zkf̄(x, k)

)
(2.5a)

s.t. zk = 0⇒ x ∈ Pk, k ∈ K (2.5b)
m∑
k=1

zk ≤ p (2.5c)

x ∈ X, z ∈ Bm, (2.5d)

where p := bmεc, and (2.5c) represents the chance constraint (2.2c). Throughout the

chapter, we adopt the convention that 0×∞ = 0.

The deterministic equivalent formulation for two-stage CCMPR (2.5) is then:

min
x,y,ȳ,z

c>x+
1

m

m∑
k=1

q>k yk +
1

m

m∑
k=1

q̄>k ȳk (2.6a)

s.t. Tkx+Wkyk +M ′
kzk ≥ hk, k ∈ K (2.6b)

T̄kx+ W̄kȳk + M̄k(1− zk) ≥ h̄k, k ∈ K (2.6c)
m∑
k=1

zk ≤ p (2.6d)

x ∈ X, y ∈ Rn2×m
+ , ȳ ∈ Rn̄2×m

+ , z ∈ Bm, (2.6e)

where M ′
k, k ∈ K is a vector of sufficiently large numbers to make (2.6b) redundant

when zk equals to 1, assuming it exists (e.g., when X is compact). Similarly, M̄k, k ∈

K is a vector of sufficiently large numbers to make (2.6c) redundant when zk = 0

(assuming it exists). Nonnegativity of the coefficient vector qk, together with (2.6b)

19



and nonnegativity of the recourse variables y imply that when zk = 1 the normal

operation cost term (q>k yk) will be zero, and similarly when zk = 0 the recovery

operation cost term (q̄>k ȳk) will be zero. In this chapter, we give a decomposition

algorithm with the aim of avoiding the constraints (2.6b)-(2.6c), because they lead

to weak LP relaxations and also because of the introduction of a large number of

variables yk, ȳk, k ∈ K.

Remark 1. In another line of work, an alternative risk-averse two-stage optimization

problem is defined where the expectation term in (2.2a) is replaced with the conditional

value-at-risk (CVaR) (see, for example Miller and Ruszczyński [71] and Noyan [74]).

Under the assumption that each scenario is equally likely and that ε = p
m

, such a model

would minimize the sum of p worst outcomes (using the representation of CVaR in

Bertsimas and Brown [14]) and hence will not lead to solutions with second-stage

infeasibility for any scenario. In contrast, model (2.2) minimizes the sum of m − p

best outcomes and allows the remaining outcomes to be infeasible with the assumption

that such outcomes can be ignored.

Special cases

We first observe that the two-stage CCMP model (2.2) is a special case of the

two-stage CCMPR model (2.4), by setting f̄(x, ω) ≡ 0 for all x ∈ X and ω ∈ Ω.

In this case, because f(x, ω) ≥ 0 for all x ∈ X,ω ∈ Ω, we immediately have that

assumptions (B1) and (B2) are satisfied.

Another interesting special case of two-stage CCMPR is a penalty-based model.

We refer to this class of problems as two-stage CCMP with simple recovery. In this
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case, the recovery model takes the form:

f̄(x, ω) = min
y,u
{q>ω y + w>ω u : Tωx+Wωy +Dωu ≥ hω, y ∈ Rn2

+ , u ∈ Rn′2
+ }, (2.7)

where Tω, Wω, hω, and qω are the data associated with the normal operation problem

under outcome ω. The vector of decision variables u ∈ Rn′2
+ can be interpreted as

slack variables that are introduced to ensure that (2.7) always has a feasible solution.

Thus, the full set of recovery variables is ȳ = (y, u), with dimension n̄2 = n2 +n′2. The

use of the slack variables u is penalized in the objective with the nonnegative cost

vector wω. Dω is a d×n′2 matrix. For example, feasibility of (2.7) can be guaranteed

by taking n′2 = d and Dω to be a d× d identity matrix. To simplify notation, we let

W̄ω = (Wω, Dω) and q̄ω = (qω, wω). Hence, if a constraint is violated in the normal

model, then the corresponding slack variable equals the shortfall. If Dω is chosen

such that (2.7) is feasible for any x ∈ X, ω ∈ Ω, then assumption (B1) is satisfied.

We next show that assumption (B2) is also satisfied, and therefore this is a special

case of the two-stage CCMPR model (2.4). For any x ∈ X \ P (ω), f(x, ω) = +∞,

so the assumption trivially holds. Now consider any x̂ ∈ P (ω) and ŷ, the optimal

second stage solution with objective f(x̂, ω). So we have Tωx̂ + Wωŷ ≥ hω. Then

according to (2.7), the vector (ŷ, 0) is a feasible solution (2.7). Hence, f(x̂, ω) =

q>ω ŷω = q̄>ω (ŷω, 0) ≥ f̄(x, ω), since (ŷ, 0) is a feasible solution to the recovery problem.

In Section 3.5 we will report computational experiments with two-stage CCMPR on

this special case.

Two-stage consistency

Takriti and Ahmed [97] observe that in two-stage stochastic programs with an

objective to minimize a weighted sum of the expected cost and some measure of the
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variability of costs, it is possible to obtain a model in which a second-stage solution

obtained when solving a deterministic equivalent of the two-stage problem is not an

optimal solution of the second-stage problem. They argue that this inconsistency

makes such models inappropriate, and in the two-stage stochastic programming set-

ting they provide conditions on the variability measure that assure this inconsistency

does not occur.

In our two-stage model, for a given first-stage solution x ∈ X and scenario ω ∈ Ω,

the key question is whether we will operate in the normal model of (2.1), or in

the recovery model (2.3). The two-stage model introduces decision variables Iω to

distinguish these cases. However, the constraints (2.5b) only enforce that if Iω = 0

then the normal operation is feasible, and do not enforce the converse that Iω = 0

whenever the normal operation is feasible. Thus, the CCMPR model allows the

possibility to operate some scenarios in recovery mode even when they could feasibly

be operated with the normal recourse model. Thus, when we are actually solving

the second-stage problem for a given x ∈ X and ω ∈ Ω, it may be ambiguous which

model should be solved. If the normal model is infeasible, then it is clear that we

must solve the recovery model. However, if the normal model is feasible, then we need

to have a policy to determine whether this is one of the outcomes that is selected to

be operated in the recovery mode.

Model (2.5) determines which outcomes will operate according to the recovery

model with a threshold policy. The decision maker first attempts to solve the nor-

mal operation problem (2.1). If it is infeasible, the recovery model is implemented.

Otherwise, the decision-maker compares the cost of the normal operation f(x, ω) to

22



a threshold v∗. If the cost exceeds v∗, the decision-maker chooses to operate in re-

covery mode, otherwise the decision-maker implements the optimal normal operation

decision. The value of v∗ can be obtained from the optimal solution of the CCMPR

model (2.5) by setting v∗ = max{f(x, k) : zk = 0}. By construction, this policy of

operation in the second-stage is consistent with the solution obtained in the CCMPR

model, and for the given sample yields a solution that is feasible to the normal model

in at least 1− ε fraction of the scenarios. This policy generalizes the traditional use

of a chance constraint, in which the “recovery” model amounts to just ignoring the

scenario, and this “recovery” option is only used when the normal model is infeasi-

ble. If we adopt the convention that an infeasible problem has infinite cost, then the

traditional chance constraint model operates in recovery mode only when the cost of

the normal model is infinite. Our model instead operates in recovery mode only when

the cost of normal operation exceeds a finite value, v∗.

2.3 Decomposition algorithm for solving two-stage CCMP
with Recovery

In this section we propose a decomposition algorithm for two-stage CCMPR. We

begin this subsection by analyzing the structure of optimal solutions for (2.5).

Proposition 1. There exists an optimal solution (x∗, z∗) of (2.5) in which
∑m

k=1 z
∗
k =

p.

Proof. This follows immediately from assumption (B2).

In other words, there exists an optimal solution where we operate under the “nor-

mal” mode for exactly m−p scenarios. Thus, we can replace (2.5c) with the constraint∑m
k=1 zk = p.
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To introduce the branch-and-cut algorithm, we first define the following sets which

will be approximated via cuts:

F =
{
x ∈ Rn1 , z ∈ Bm :

m∑
k=1

zk = p, zk = 0⇒ x ∈ Pk, k ∈ K
}
,

Z =
{

(x, z, θ) ∈ F × R+ : θ ≥ 1

m

m∑
k=1

(
(1− zk)f(x, k) + zkf̄(x, k)

)}
. (2.8)

With this notation, solving the problem min{c>x+ θ : x ∈ X, (x, z, θ) ∈ Z}, where θ

is the variable which is used to represent the expected second-stage costs (from both

normal and recovery operations), gives an optimal solution (x∗, z∗) to (2.5) satisfying

Proposition 1.

The branch-and-cut algorithm we propose works with the following master prob-

lem:

RP(K0, K1) = min
x,z,θ

c>x+ θ (2.9a)

s.t.
m∑
k=1

zk = p (2.9b)

(x, z) ∈ C (2.9c)

(x, z, θ) ∈ D (2.9d)

x ∈ X, z ∈ [0, 1]m, θ ≥ 0 (2.9e)

zk = 0, k ∈ K0; zk = 1, k ∈ K1, (2.9f)

where the sets K0 and K1 satisfy K0 ∩K1 = ∅ and represent the sets of variables zk

fixed to zero and to one, respectively, during the branch and bound process. The set

C is a polyhedral outer approximation of F , which is defined by feasibility cuts of the

following form:

α>1 x+ δ>1 z ≥ β1. (2.10)
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Here α1 and δ1 are n1 and m dimensional coefficient vectors, respectively, and β1 ∈ R.

The set D is a polyhedral outer approximation of Z, which is defined by optimality

cuts of the form:

θ + δ>z ≥ β − α>x, (2.11)

where α and δ are n1 and m dimensional coefficient vectors, respectively, and β ∈ R.

The key of the decomposition approach is to derive strong valid inequalities for the

sets F and Z. A class of strong valid feasibility cuts has been proposed by Luedtke

[65] based on the so-called mixing set. We use the same class of cuts in the present

chapter. However, Luedtke [65] does not consider second-stage costs, and therefore

does not require any optimality cuts. In this chapter, we focus on obtaining strong

optimality cuts for two-stage CCMPRs.

We first describe a naive way to obtain valid optimality cuts (2.11). Let (x̂, ẑ) be

such that x̂ ∈ X, ẑ ∈ Bm, and ẑ satisfies (2.9b). If there exists k ∈ K with ẑk = 0

and x̂ /∈ Pk, then this solution violates the logical condition (2.5b), and hence we

seek and add a feasibility cut. Otherwise, for each k ∈ K with ẑk = 0, we solve the

corresponding normal operation subproblem (which is now feasible by assumption):

min
y∈Rn2

+

{q>k y : Wky ≥ hk − Tkx̂} = max
π∈Rd+
{π>(hk − Tkx̂) : π>Wk ≤ qk} (2.12)

and let πk be an optimal dual solution. Also let Πk be the set of dual extreme points

in (2.12). In addition, for each k ∈ K such that ẑk = 1 we solve the recovery problem

min
ȳ∈Rn̄2

+

{q̄>k ȳ : W̄kȳ ≥ h̄k − T̄kx̂} = max
π̄∈Rd̄+
{π̄>(h̄k − T̄kx̂) : π̄>W̄k ≤ q̄k} (2.13)

and let π̄k be an optimal dual solution (let π̄k = 0 for problem (2.2) without recovery).

Also let Π̄k be the set of dual extreme points in (2.13). Then, if we let S(ẑ) = {k ∈
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K : ẑk = 0} and S̄(ẑ) = K \ S(ẑ), we obtain the following optimality cut, which is

valid for Z:

θ +
∑
k∈S(ẑ)

Mkzk +
∑
k∈S̄(ẑ)

Mk(1− zk) ≥

1

m

 ∑
k∈S(ẑ)

π>k (hk − Tkx) +
∑
k∈S̄(ẑ)

π̄>k (h̄k − T̄kx)

 , (2.14)

where Mk, k ∈ K is assumed to be large enough so that inequality (2.14) is redundant

whenever zk = 1 for some k ∈ S(ẑ) or zk = 0 for some k ∈ S̄(ẑ) (let Mk = 0 for

k ∈ S̄(ẑ) for problem (2.2) without recovery). We refer to inequality (2.14) as the

big-M optimality cut. To see its validity, observe that for the solution (x̂, ẑ), this cut

gives a correct lower bound on the second-stage costs (normal and recovery). For any

other solution, we must have at least one k ∈ S(ẑ) with zk = 1 or k ∈ S̄(ẑ) with

zk = 0, and hence inequality (2.14) is valid for large enough Mk. Note that additional

assumptions may be necessary to ensure the existence of such Mk. Once again, our

goal in this chapter is to avoid the use of such big-M cuts.

An alternative approach, recently proposed by Zeng et al. [106] for problems with-

out recovery, is to use a bilinear cut of the form:

θ ≥ 1

m

 ∑
k∈S(ẑ)

(1− zk)π>k (hk − Tkx) +
∑
k∈S̄(ẑ)

zkπ̄
>
k (h̄k − T̄kx)

 . (2.15)

To use this cut in a branch-and-cut algorithm, the bilinear terms (zkxj for k ∈ K,

j = 1, . . . , n1) need to be linearized by adding additional variables skj and inequalities

to enforce skj = zkxj. We experimented with this approach but on our test instances

we found its performance to be comparable to the performance of the basic method

using the cuts (2.14), and so we do not explore this approach further in this work. We
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think, however, that investigating the integration of these different techniques would

be an interesting subject of future study.

2.3.1 Strong optimality cuts for two-stage CCMPR

In this section we derive valid optimality cuts that are stronger than the big-M

optimality cuts (2.14). First, we define a secondary subproblem associated with the

normal recourse problem for a given α ∈ Rn1 and k ∈ K:

vk(α) = min{f(x, k) + α>x : x ∈ Pk} (2.16)

so that, by definition,

f(x, k) ≥ vk(α)− α>x, ∀x ∈ Pk. (2.17)

Problem (2.16) always has a feasible solution from assumption (A2). Let dom vk =

{α ∈ Rn1 : vk(α) > −∞} be the domain of vk.

Similarly, we define a secondary subproblem associated with the recovery problem

for a given α ∈ Rn1 and k ∈ K:

v̄k(α) = min{f̄(x, k) + α>x : x ∈ X} (2.18)

so that:

f̄(x, k) ≥ v̄k(α)− α>x, ∀x ∈ X. (2.19)

Problem (2.18) always has a feasible solution from assumption (A2). Let dom v̄k be

the domain of v̄k.

We make the following additional assumption:

B3: There exists D ⊆ Rn1 such that dom vk = dom v̄k = D for all k ∈ K.
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Assumption (B3) is satisfied with D = Rn1 if X is bounded. In our example appli-

cation in Section 3.5, this assumption is satisfied with D = Rn1
+ .

Next, for each k ∈ K, we define the following set:

Zk = {x ∈ X, zk ∈ B, ηk ∈ R+ : ηk ≥ (1− zk)f(x, k) + zkf̄(x, k)},

where ηk represents the objective function value of the second-stage problem for sce-

nario k. Using the relationship θ = (1/m)
∑

k∈K ηk, valid inequalities for the sets Zk,

k ∈ K can be used to obtain valid inequalities for the set Z (optimality cuts).

Proposition 2. Let k ∈ K, π ∈ Πk, and α = Tk
>π. Then v̄k(α) > −∞ and the

following inequality is valid for Zk:

ηk + (π>hk − v̄k(α))zk ≥ π>hk − α>x. (2.20)

Proof. Let (x, zk, ηk) ∈ Zk. If zk = 0, then

ηk ≥ f(x, k) ≥ π>hk − π>Tkx = π>hk − α>x

by weak duality. It also follows then that

vk(α) ≥ min{π>hk − α>x+ α>x : x ∈ Pk} = π>hk,

which shows that α ∈ dom vk = D, and thus v̄k(α) > −∞ by assumption (B3).

Finally, if zk = 1, then ηk ≥ f̄(x, k) ≥ v̄k(α)− α>x by (2.19).

We can obtain an analogous cut from dual solutions of the recovery problem.

Proposition 3. Let k ∈ K, π̄ ∈ Π̄k, and α = T̄>k π̄ (π̄ = α = 0 for problem (2.2)

without recovery). Then vk(α) > −∞ and the following inequality is valid for Zk:

ηk + (π̄>h̄k − vk(α))(1− zk) ≥ π̄>h̄k − α>x. (2.21)
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Proof. Analogous to the proof of proposition 2.

We next discuss how we obtain the dual solutions used in inequality (2.20) or

(2.21). Suppose that we have a solution (x̂, ẑ) and that ẑk = 0 for some scenario

k ∈ K. Then, we attempt to solve the normal operation problem (2.12). If it is

infeasible (i.e., x̂ 6∈ Pk), we must add a feasibility cut. If it is feasible, then we choose

π in (2.20) to be an optimal dual solution. Then, by construction, when ẑk = 0, (2.20)

enforces ηk ≥ f(x̂, k). If ẑk = 1 for some scenario k ∈ K, then we solve the recovery

problem (2.13) and choose π̄ in (2.21) to be an optimal dual solution. Again, this

choice enforces ηk ≥ f̄(x̂, k) when ẑk = 1.

We can use inequalities (2.20) and (2.21) in a multi-cut implementation of a

Benders-type decomposition algorithm. For a single cut implementation, we have

the following corollary.

Corollary 4. Let S ⊆ K, πk ∈ Πk and αk = Tk
>πk for k ∈ S, and π̄k ∈ Π̄k and

αk = T̄>k π̄k (π̄k = αk = 0 for problem (2.2) without recovery) for k ∈ K \ S. Then,

the following inequality is valid for Z:

θ +
1

m

∑
k∈S

(π>hk − v̄k(αk))zk +
1

m

∑
k∈K\S

(π̄>k h̄k − vk(αk))(1− zk)

≥ 1

m

∑
k∈S

π>hk +
1

m

∑
k∈K\S

π̄>k h̄k −
1

m

m∑
k=1

α>k x. (2.22)

For a given a solution (x̂, ẑ) with x̂ ∈ X and ẑ ∈ Bm, and such that the logical

constraints (2.5b) are satisfied, we choose S = {k ∈ K : ẑk = 0} and for k ∈ S choose

πk to be an optimal dual solution of (2.12), and for k ∈ K \ S choose π̄k to be an

optimal dual solution of (2.13).

Next we derive another class of optimality cuts for two-stage CCMPR.
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Theorem 5. Let S ⊂ K have |S| = m − p, πk ∈ Πk and αk = Tk
>πk for k ∈ S,

and π̄k ∈ Π̄k and αk = T̄>k π̄k (π̄k = αk = 0 for problem (2.2) without recovery) for

k ∈ K \S. Also define v∗(αk) = min{vk′(αk) : k′ ∈ K \S} and v̄∗(αk) = min{v̄k′(αk) :

k′ ∈ S}. Then, the following inequality is valid for Z:

θ ≥ 1

m

∑
k∈S

(
π>k hk − α>k x+ (v∗(αk)− π>k hk)zk

)
+

1

m

∑
k∈K\S

(
π̄>k h̄k − α>k x+ (v̄∗(αk)− π̄>k h̄k)(1− zk)

)
. (2.23)

Proof. Let (x, z, θ) ∈ Z. First, note, from (B3), that v∗(αk) and v̄∗(αk) are well-

defined since αk ∈ D for k ∈ K. We prove the two inequalities:

m∑
k=1

f(x, k)(1− zk) ≥
∑
k∈S

(
π>k hk − α>k x+ (v∗(αk)− π>k hk)zk

)
, (2.24)

m∑
k=1

f̄(x, k)zk ≥
∑
k∈K\S

(
π̄>k h̄k − α>k x+ (v̄∗(αk)− π̄>k h̄k)(1− zk)

)
(2.25)

which establishes the claim from the definition of Z in (2.8).

Let U = {k ∈ K : zk = 0}. By (2.9b), we have |U | = m−p, and so |S\U | = |U\S|.

Let σ : U \ S → S \ U be a one-to-one mapping between U \ S and S \ U , i.e.,
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{σk : k ∈ U \ S} = S \ U . Then, using (2.17) we obtain

m∑
k=1

f(x, k)(1− zk) =
∑
k∈U

f(x, k)

=
∑
k∈U∩S

f(x, k) +
∑
k∈U\S

f(x, k)

≥
∑
k∈U∩S

(π>k hk − α>k x) +
∑
k∈U\S

f(x, k)

≥
∑
k∈U∩S

(π>k hk − α>k x) +
∑
k∈U\S

(vk(ασk)− α>σkx)

≥
∑
k∈U∩S

(π>k hk − α>k x) +
∑
k∈U\S

(v∗(ασk)− α>σkx) (2.26)

=
∑
k∈U∩S

(π>k hk − α>k x) +
∑
k∈S\U

(v∗(αk)− α>k x) (2.27)

=
∑
k∈S

(
π>k hk − α>k x+ (v∗(αk)− π>k hk)zk

)
,

where (2.26) follows because U \ S ⊆ K \ S and therefore vk(ασk) ≥ v∗(ασk) and

(2.27) follows from the definition of one-to-one mapping σ. This establishes (2.24).

The arguments for (2.25) are similar. Let Ū = {k ∈ K : zk = 1} so that |Ū | = p

and so |S \ Ū | = |Ū \ S|. Let σ̄ : Ū \ S → S \ Ū be a one-to-one mapping between

Ū \ S and S \ Ū . Then, using (2.19), we obtain

m∑
k=1

f̄(x, k)zk =
∑
k∈Ū

f̄(x, k)

≥
∑
k∈Ū∩S

(π̄>k h̄k − α>k x) +
∑
k∈Ū\S

f̄(x, k)

≥
∑
k∈Ū∩S

(π̄>k h̄k − α>k x) +
∑
k∈Ū\S

(v̄k(ασ̄k)− α>σ̄kx)

≥
∑
k∈Ū∩S

(π̄>k h̄k − α>k x) +
∑
k∈Ū\S

(v̄∗(ασ̄k)− α>σ̄kx)

=
∑
k∈Ū∩S

(π̄>k h̄k − α>k x) +
∑
k∈S\Ū

(v̄∗(αk)− α>k x)

=
∑
k∈K\S

(
π̄>k h̄k − α>k x+ (v̄∗(αk)− π̄>k h̄k)(1− zk)

)
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which establishes (2.25).

Given a solution (x̂, ẑ) with x̂ ∈ X and ẑ ∈ Bm, and such that the logical con-

straints (2.5b) are satisfied, in Theorem 5 we use S = {k ∈ K : ẑk = 0}, and for

k ∈ S we choose πk to be an optimal dual solution of (2.12), and for k ∈ K \ S we

choose π̄k to be an optimal dual solution of (2.13). It is easy to see that if (x̂, ẑ) ∈ F ,

with this choice, (2.23) enforces θ ≥ 1
m

∑
k∈K
(
f(x̂, k)(1− ẑk) + f̄(x̂, k)ẑk

)
.

Based on numerical experiments presented in §2.4.2, inequality (2.23) provides a

stronger lower bound than optimality cut (2.22) with faster convergence rate, however,

at the cost of solving 2p(m − p) single scenario subproblems in order to obtain the

values v∗(αk) for each k ∈ S and v̄∗(αk) for each k ∈ K \ S. Hence, a strategy is to

combine the optimality cuts (2.22) and (2.23).

Note that for the special case without recovery given by (2.2), the last term in

inequality (2.23) is eliminated. In this case, we need to solve only p(m−p) secondary

subproblems to obtain the values v∗(αk) for k ∈ S.

2.3.2 Strong optimality cut for random right-hand sides
problem

Inequalities (2.22) and (2.23) are valid for two-stage CCMPR for which the ran-

domness appears only in the right-hand-side vectors hω, h̄ω, ω ∈ Ω. However, we can

take advantage of the special structure of this class of problems to obtain optimality

cuts with less effort.

For (2.12) and (2.13) with Tk = T,Wk = W, T̄k = T̄ and W̄k = W̄ for all k ∈ K,

the corresponding dual subproblems share the same polyhedron for all k ∈ K and

hence the same dual extreme point sets Π for the dual of (2.12) and Π̄ for the dual
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of (2.13). Furthermore, for each π ∈ Π and k ∈ K, we have

f(x, k) ≥ π>hk − π>Tx, ∀x ∈ Pk

and for each π̄ ∈ Π̄ and k ∈ K

f̄(x, k) ≥ π̄>h̄k − π̄>T̄ x, ∀x ∈ X.

Note that the second stage value approximation function generated by the same dual

extreme point π ∈ Π and π̄ ∈ Π̄ for different scenarios are parallel planes.

Let S ⊆ K have |S| = m−p (e.g., S = {k ∈ K : ẑk = 0} for some solution ẑ), and

let Gk(π) = π>hk for k ∈ S. In addition, define G∗(π) = min{Gk(π) : k ∈ K \S}, for

π ∈ Π. Also let Ḡk(π̄) = π̄>h̄k for k ∈ K \ S. Similarly, define Ḡ∗(π̄) = min{Ḡk(π̄) :

k ∈ S}, for π̄ ∈ Π̄. For each k ∈ S, let πk be an optimal dual solution to (2.12) and

for each k ∈ K \ S, let π̄k be an optimal dual solution to (2.13) (π̄k = 0 for problem

(2.2) without recovery). Then the proposed optimality cut is :

θ ≥ 1

m

∑
k∈S

(Gk(πk)− π>k Tx+ (G∗(πk)−Gk(πk))zk)

+
1

m

∑
k∈K\S

(Ḡk(π̄k)− π̄>k T̄ x+ (Ḡ∗(π̄k)− Ḡk(π̄k))(1− zk)). (2.28)

Theorem 6. Inequality (2.28) is valid for Z in the case when the randomness occurs

only in the right-hand-side.

Proof. Based on the definition of Gk(πk), we have:

f(x, k) ≥ Gk(πk)− π>k Tx, ∀x ∈ Pk.

In addition, we have:

f̄(x, k) ≥ Ḡk(π̄k)− π̄>k T̄ x, ∀x ∈ P̄k.
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Let αk = T>πk for k ∈ S, and αk = T̄>π̄k for k ∈ K \ S. Then, the rest of the

proof is identical to the validity of (2.23), where the role of vk(α) in (2.17) is replaced

by Gk(πk), and the role of v̄k(ᾱ) in (2.19) is replaced by Ḡk(π̄k).

Deriving inequality (2.28) requires only O(mp) vector multiplications in contrast

to O(mp) optimization subproblems, so it requires less computational effort.

2.3.3 Decomposition algorithm for two-stage CCMPRs

In this subsection, we present a branch-and-cut based decomposition algorithm.

The algorithm is described in Algorithm 1, and the optimality cut generation pro-

cedure OptCuts(x̂, ẑ, θ̂,D) is given in Algorithm 2. The feasibility cut separation

procedure SepCuts(x̂, ẑ, C) used in Algorithm 1 is the same as that in [65], so we do

not discuss the details of SepCuts(x̂, ẑ, C).

Theorem 7. Algorithm 1 converges to an optimal solution of (2.5) after finitely

many iterations.

Proof. First, as shown in [65], the number of feasibility cuts (2.10) is finite, and

(2.10) always cuts off solutions where zk = 0 but x 6∈ Pk. In addition, there are

finitely many optimality cuts (2.22), (2.23) and (2.28), because there are finitely

many πk ∈ Πk, π̄k ∈ Π̄k (and hence αk) to consider for all k ∈ K. Also, optimality

cuts (2.22), (2.23) and (2.28) do not cut off any (x, z, θ) ∈ Z with
∑

k∈K zk = m− p.

Next, we show that by using (2.22), (2.23) and (2.28), the algorithm converges

to an optimal solution (x∗, z∗). If for a current solution (x̂, ẑ), ẑ = z∗, then (2.22),

(2.23) and (2.28) reduce to Benders optimality cuts, which correctly capture the cost

approximation function for (x̂, ẑ). Otherwise, (2.22), (2.23) and (2.28) provide a

lower bound on θ∗. Hence, the convergence of the algorithm directly follows from the
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Algorithm 1: Decomposition algorithm for two-stage CCMPRs

1 t ← 0, K0(0) ← ∅, K1(0) ← ∅, C ← Rn1×m, D ← Rn1×m×1, OPEN ← {0}, Ub ← +∞, Lb
← −∞ ;

2 while OPEN 6= ∅ do
3 Step 1 : Choose l ∈ OPEN and let OPEN ← OPEN \ {l} ;
4 Step 2 : Process node l;
5 while CUTFOUND and RCUTFOUND 6= TRUE and Lb < Ub; do
6 solve (2.9) ;
7 if (2.9) is infeasible then
8 CUTFOUND ← FALSE ;
9 else

10 Let (x̂, ẑ, θ̂) be an optimal solution to (2.9);
11 Lb ← RP(K0(l), K1(l));
12 if ẑ ∈ {0, 1}m then
13 CUTFOUND ← SepCuts(x̂, ẑ, C) ;
14 if CUTFOUND 6= TRUE then

15 CUTFOUND ← OptCuts(x̂, ẑ, θ̂,D) ;
16 end
17 if CUTFOUND 6= TRUE, then update Ub ← Lb

18 end

19 end

20 end
21 Step 3 : Branch if necessary;
22 if Lb < Ub then
23 Choose k ∈ K such that ẑk ∈ (0,1);
24 K0(t+ 1)← K0(l) ∪ {k}, K1(t+ 1)← K1(l) ;
25 K0(t+ 2)← K0(l) , K1(t+ 2)← K1(l) ∪{k} ;
26 t← t+ 2;
27 OPEN ← OPEN

⋃
{t+ 1, t+ 2}

28 end

29 end
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Algorithm 2: Procedure: OptCuts(x̂, ẑ, θ̂,D)

Input: σ̂ = (x̂, ẑ, θ̂).

Output: If a valid optimality cut for (2.5) is found which is violated by (x̂, ẑ, θ̂), then add
this cut to D, and returns TRUE. Otherwise returns FALSE.

1 for all k ∈ K with ẑk = 0 do
2 solve (2.12) to obtain f(x̂, k) and a dual optimal solution πk;
3 end
4 for all k ∈ K with ẑk = 1 do
5 solve (2.13) to obtain f̄(x̂, k) and a dual optimal solution π̄k if there is recovery.

Otherwise, π̄k = 0. ;

6 end

7 if θ̂ < 1
m

∑m
k=1 f(x̂, k)(1− ẑk) + 1

m

∑m
k=1 f̄(x̂, k)ẑk then

8 CUTFOUND ← TRUE;
9 Generate an optimality cut: if the randomness appears only in the right hand-side, then

use (2.28). Otherwise, use (2.22) and (2.23) with αk = T>k πk for k with ẑk = 0, and
αk = T̄>k π̄k for k with ẑk = 1 (αk = 0 if there is no recovery);

10 else
11 CUTFOUND ← FALSE
12 end

convergence result of Benders decomposition algorithm. Finally, since the algorithm

uses a branch-and cut procedure to solve the master problem, it processes a finite

number of nodes. Thus, it terminates finitely.

2.4 Application and computational experiments

In this section we test our proposed algorithm on a resource planning problem first

with no recovery (2.2) and then with recovery (2.5). We implemented our approach

with C using CPLEX 12.4. The subroutines SepCuts(x̂, ẑ, C) and OptCuts(x̂, ẑ, θ̂,D)

were implemented using the CPLEX lazy constraint callback function. These subrou-

tines are called whenever CPLEX finds an integer candidate solution to the master

problem (2.9). All the tests were run on a Windows XP operating system with 2.30

GHz Intel QuadCore processor 2356 (2 cores) with 2GB RAM. Both cores were used

for testing the deterministic equivalent formulation and only a single core was used
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for the decomposition algorithm. A time limit of one hour and a tree memory limit

of 500 MB were enforced.

2.4.1 Two-Stage CCMP without Recovery

Here we test our approach on a resource planning problem adapted from [65]. It

consists of a set of resources (e.g., server types), denoted by i ∈ I := {1, . . . , n1},

which can be used to meet demands of a set of customer types, denoted by j ∈ J :=

{1, . . . , r}.

The problem can be stated as:

min
x∈Rn1

+ ,z∈Bm
c>x+

1

m

m∑
k=1

(
(1− zk)f(x, k) + zkf̄(x, k)

)
s.t. zk = 0⇒ x ∈ Pk, k ∈ K

m∑
k=1

zk ≤ p,

where

Pk ={x ∈ Rn1
+ : ∃y ∈ Rn1×r

+ ,
r∑
j=1

yij ≤ ρkixi, ∀i ∈ I,
n1∑
i=1

µkijyij ≥ ξkj, ∀j ∈ J}.

Here the first stage vector x represents the number of servers to employ, and c is its

cost. In this problem, ξ, ρ, µ are random vectors following a finite and discrete joint

distribution represented by a set of m equally likely scenarios K, where ρki ∈ (0, 1]

represents the utilization rate of server type i ∈ I, ξkj ≥ 0 represents the demand

of customer type j ∈ J , and µkij ≥ 0 represents the rate of serving customer type j

with server type i under scenario k ∈ K. Furthermore, the second stage problem for
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k ∈ K is stated as:

f(x, k) = { min
y∈Rn1×r

+

q>k y :
r∑
j=1

yij ≤ ρkixi, ∀i ∈ I,

n1∑
i=1

µkijyij ≥ ξkj, ∀j ∈ J},

where yij is the second-stage decision variable representing the number of server type

i allocated to customer j, and qkij is the unit allocation cost under scenario k. In this

section, we assume there is no recovery model, and so f̄(x, k) ≡ 0. In Section 2.4.2,

we consider the problem with a recovery model.

We generate the parameters c, ρk, and µk following the scheme in [65] for the

same type of resource planning problems. To generate the random demands ξk, we

first generate a base demand ξ̄j which follow N(200, 20) for all j ∈ J . Then we let

ξkj follow N(ξ̄j, 0.1× ξ̄j) for all k ∈ K. We let the second stage cost qkij = ρki, for all

k ∈ K and j ∈ J , which guarantees that the second stage costs associated with the

highly reliable servers are more expensive.

In Table 2.1, we summarize our experiments on problems where only the demand

(right-hand side) is uncertain. We compare our “Strong” decomposition algorithm

which uses the optimality cuts (2.28), against two other approaches: the deterministic

equivalent problem (DEP) (2.6) and the “Basic” decomposition approach which uses

the strong feasibility cuts (2.10) and the big-M optimality cuts (2.14). To obtain

a valid big-M in inequality (2.14), we let Mk =
∑r

j=1 πkjξkj, where πk is the dual

vector for the subproblem (2.12) for k ∈ K at the current optimality cut generation

iteration.

In all the tables, each row reports the average of three instances under the same

settings: the number of server and customer types (n1, r), the risk level ε, and the
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number of scenarios m. The Time column reports the average solution time in sec-

onds, and the Gap column reports the average percentage end gap of all instances

for each setting, given by (Ub − Lb)/Ub, where Ub and Lb are the best upper and

lower bounds returned by the algorithm, respectively. The # column reports how

many of the three instances are solved to optimality within the time limit. We do not

include Time and # columns in a table, if an algorithm reached the time limit for all

instances tested. The asterisk (*) indicates that there is at least one instance where

the tree memory limit is reached. The dash (-) indicates that no instance is solved

to optimality, and that no feasible solution is found by the algorithm within the time

limit.

Table 2.1: Result for instances with random demand.
Instances DEP Basic Strong

(m, ε) (n1, r) Gap (%) Gap (%) # Time Gap (%)

(2000, 0.05)
(5,10) 4.60 2.34 3 166 0
(10,20) - 2.93 3 483 0
(15,30) - 2.69 3 1106 0

(2500, 0.05)
(5,10) 4.64 2.61 3 279 0
(10,20) - 3.08 3 711 0
(15,30) - 2.88 2 1819 0.09

(2000, 0.1)
(5,10) 7.1 5.46 3 723 0
(10,20) - 5.99 3 1069 0
(15,30) - 6.27 3 1032 0

(2500, 0.1)
(5,10) 7.63 5.32 3 641 0
(10,20) - 5.79 3 1198 0
(15,30) - 6.03 2 2112 0.02

From Table 2.1 we see that the deterministic equivalent formulation is not able to

solve any instances to optimality within the time limit. Moreover, it even fails to find
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a feasible solution for instances of larger sizes. The basic decomposition algorithm

which uses the big-M optimality cuts, makes a big improvement over the deterministic

equivalent formulation. However, because of the weak lower bound resulting from the

big-M optimality cuts, it is still not capable of solving any of the instances within the

time limit. The end gaps are between 2-6% for the basic decomposition algorithm

after an hour. In contrast, the strong decomposition algorithm, based on the proposed

strong optimality cuts, is able to solve most of the instances to optimality. For the

two unsolved instances, the average end gap is less than 0.1%.

The only difference between the basic and strong decomposition algorithm is the

type of optimality cuts used. To illustrate the benefit of the optimality cuts we

propose, we report the number of nodes explored (Node) and the optimality cuts

(Cut) added to the master problem in the basic and strong decomposition algorithm

in Table 2.2 for the instances in Table 2.1. Observe that the strong decomposition

algorithm requires significantly fewer nodes than the basic decomposition algorithm.

The number of optimality cuts added for the strong decomposition algorithm is also

generally smaller than that for the basic decomposition algorithm. Hence, from Tables

2.1 and 2.2, we conclude that the additional computational effort to generate (2.28)

pays off.

In Table 2.3, we report results for instances with random demands, second-stage

costs, service and utilization rates. Since these instances are much more challenging,

we consider smaller instances. We see that the deterministic equivalent formulation

and the basic decomposition algorithm were not able to solve most of the instances.

In addition, for the basic decomposition method, the memory used by the branch-

and-cut tree exploded very fast as we added the big-M optimality cuts into the master
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Table 2.2: Number of optimality cuts and nodes for instances with random demand.
Instances Basic Strong

(m, ε) (n1, r) Node Cut Node Cut

(2000, 0.05)
(5,10) 15257 624 67 17
(10,20) 9266 474 3 58
(15,30) 10166 203 104 9

(2500, 0.05)
(5,10) 9174 563 6 34
(10,20) 9833 427 3 70
(15,30) 8203 190 20 135

(2000, 0.1)
(5,10) 10097 581 853 181
(10,20) 13139 263 76 160
(15,30) 8967 196 61 100

(2500, 0.1)
(5,10) 8275 554 598 93
(10,20) 11703 266 19 134
(15,30) 5867 132 9 137

problem, and so most of the instances terminated due to the tree memory limit. On

the other hand, the strong decomposition algorithm with proposed optimality cuts

(2.23) gives the best results. It solves many more instances to optimality within the

time limit. In our implementation we choose not to use inequalities (2.22) for the

case of no recovery.

Table 2.4 reports the number of nodes and optimality cuts for both of the decom-

position algorithms for instances with random demands, second-stage costs, service

and utilization rates. As before, the strong decomposition algorithm requires much

fewer optimality cuts and generally fewer number of branch-and-cut nodes to find

solutions that are of higher quality. Note that the branch-and-cut nodes reported

appear to be smaller in some cases for the basic decomposition algorithm than the

strong decomposition algorithm, but this is because the former algorithm terminates

prematurely for most of the instances due to the memory limit. Tables 2.3 and 2.4
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Table 2.3: Results for instances with random ρ, µ, ξ, q.
Instances DEP Basic Strong

(m, ε) (n1, r) # Time Gap # Time Gap # Time Gap

(400, 0.05)
(5,10) 1 2625 0.62 0 1765* 1.55 3 809 0
(7,14) 0 3600 1.21 1 1020* 0.50 3 1915 0

(500, 0.05)
(5,10) 0 3600 1.08 0 3600 1.63 3 1379 0
(7,14) 0 3600 1.37 0 3186* 0.36 2 2006 0.006

(600, 0.05)
(5,10) 0 3600 1.17 0 3067* 1.04 3 1346 0
(7,14) 0 3600 2.81 0 1352* 0.50 2 2731 0.07

(400, 0.1)
(5,10) 0 3600 1.50 0 3600 3.49 1 2633 0.21
(7,14) 0 3600 4.09 1 860* 0.68 0 1689 0.68

(500, 0.1)
(5,10) 0 3600 4.52 0 3339* 4.15 1 2528* 0.35
(7,14) 0 3600 5.73 0 2187* 1.11 1 1831 0.74

(600, 0.1)
(5,10) 0 3600 3.89 0 2639* 1.82 1 2041 0.48
(7,14) 0 3600 6.32 2 1449 1.00 2 2061 0.56

highlight the benefits of obtaining strong optimality cuts (2.23) despite their high

computational requirements to solve O(mp) single scenario subproblems. Note also

that we can further take advantage of the special structure of the resource planning

problem as suggested in [65] to solve these problems more effectively.

2.4.2 Two-Stage CCMP with Recovery

Here we introduce the recovery version of the probabilistic resource planning prob-

lem studied in §2.4.1, where the simple recovery operation is given by

f̄(x, k) = { min
y∈Rn1×r

+ ,u∈Rr+
q>k y + w>k u :

r∑
j=1

yij ≤ ρkixi, ∀i ∈ I,

n1∑
i=1

µkijyij + uj ≥ ξkj, ∀j ∈ J},

where uj is a variable that represents the level of outsourcing to cover the shortage

in servers due to high demand of customer type j ∈ J . We let wk, the unit cost of

outsourcing, follow N(3, 0.2), which is higher than the unit costs of service qk.
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Table 2.4: Number of optimality cuts and nodes for instances with random ρ, µ, ξ, q.
Instances Basic Strong

(m, ε) (n1, r) Node Cut Node Cut

(400, 0.05)
(5,10) 36117 825 2676 207
(7,14) 20674 367 14619 301

(500, 0.05)
(5,10) 49404 1361 6681 243
(7,14) 92401 442 41060 177

(600, 0.05)
(5,10) 33291 996 17977 246
(7,14) 33280 321 116324 162

(400, 0.1)
(5,10) 44402 880 83383 300
(7,14) 41287 160 27159 169

(500, 0.1)
(5,10) 31864 878 82179 216
(7,14) 23154 346 12052 124

(600, 0.1)
(5,10) 41218 394 37493 146
(7,14) 23743 297 152293 82

In Table 2.5, we report the results for instances with random demands. For this

class of problems we use two types of optimality cuts (2.22) and (2.28) in the strong de-

composition algorithm, and compare its performance against the deterministic equiv-

alent formulation and the basic decomposition method with the big-M optimality cut.

In column ‘Strengthened’, we collected the results for the decomposition algorithm

using the optimality cuts (2.22) only. In column ‘Strong’, we report the results of the

decomposition algorithm which uses the optimality cut (2.28) only. The ‘-’ in the gap

column indicates that there is at least one instance where CPLEX failed to find any

feasible solution within the time limit. In this case, we report the average end gap

only for the instances for which it is available. As we can see, neither the determinis-

tic equivalent nor the basic decomposition algorithm terminated with an acceptable

gap. In addition, the basic decomposition algorithm performs worse than DEP for

this class of problems. In contrast, the strengthened decomposition algorithm which
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uses (2.22) as optimality cuts results in much smaller end gaps, and solves a few

instances to optimality. The strong decomposition algorithm which uses (2.28) does

not perform as well on the problems with recovery as it does for the problems without

recovery. It reaches the time limit for all instances, but it still provides the smallest

average end gaps for every setting.

Table 2.5: Result for 2-stage CCMPR with random demands only.

Instances DEP Basic Strengthened Strong
(m, ε) (n1, r) Gap (%) Gap (%) # Time Gap (%) Gap (%)

(800, 0.05)
(5,10) 2.16 4.26 1 2484 1.27 0.19
(10,20) 5.28 10.29 0 3600 2.44 0.19

(1200, 0.05)
(5,10) 5.05 9.07 1 2432 1.32 0.21
(10,20) 4.05(-) 8.46 0 3600 2.51 0.24

(800, 0.1)
(5,10) 5.33 10.61 1 2423 0.73 0.26
(10,20) 5.28 10.79 0 3600 1.45 0.39

(1200, 0.1)
(5,10) 7.32 9.08 1 3566 0.85 0.85
(10,20) 5.02(-) 14.28 0 3600 1.69 0.60

For the two-stage CCMPR with random ρ, µ, ξ, q, we generated the “expensive”

optimality cut (2.23) once every m × 0.02 calls to the OptCuts(x̂, ẑ, θ̂,D) function.

For the remaining calls, we use the strengthened big-M optimality cut (2.22). For ex-

ample, for an instance which has 1000 scenarios, inequality (2.23) was generated once

every 20 calls to the procedure OptCuts(x̂, ẑ, θ̂,D). We compare the proposed algo-

rithm against the deterministic equivalent formulation and the basic decomposition

algorithm.

As we can see from Table 2.6, for the general two-stage CCMPR problems, the

deterministic equivalent formulation and the basic decomposition algorithm which
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Table 2.6: Result for two-stage CCMPR with random ρ, µ, ξ, q.
Instances DEP Basic Strong

(m, ε) (n1, r) Gap (%) Gap (%) # Time Gap (%)

(1000, 0.05)
(5,10) 6.94 6.11 0 3600 1.34
(10,20) 6.91 8.51 2 1381 0.14

(1200, 0.05)
(5,10) 7.61 6.53 0 3600 1.67
(10,20) - 8.79 2 1413 0.20

(1000, 0.1)
(5,10) 10.16 11.05 0 3600 2.62
(10,20) 7.17 14.33 1 1539* 0.60

(1200, 0.1)
(5,10) 12.63 11.76 0 3600 2.95
(10,20) - 14.28 0 2316* 0.80

utilizes the big-M optimality cuts both performed poorly on all instances due to large

solution times and end gaps. These instances are difficult for the strong decomposition

algorithm as well. In most instances our algorithm reaches the time limit, but the

end gaps are less than 3% for all instances. In addition, there are some instances

where this algorithm reaches the memory limit. Therefore, developing more efficient

algorithms for the general two-stage CCMPR continues to be an interesting research

question.

2.5 Conclusion

In this chapter, we study a class of chance-constrained two-stage stochastic op-

timization problems where second-stage feasible recourse decisions incur additional

cost. In addition, “recovery” decisions are made for the infeasible scenarios to obtain

feasible solutions to a relaxed second-stage problem. We develop Benders-type de-

composition algorithms with specialized optimality and feasibility cuts to solve this

class of problems. Computational results on a chance-constrained resource planing

45



problem indicate that our algorithms are highly effective in solving these problems

compared to a mixed-integer programming reformulation and a basic decomposition

method, especially for the cases where the randomness appears only on the right-

hand-side. Even though our description assumes that the first-stage feasible region

X is a polyhedron, our algorithm can be extended to the case where there are integer

restrictions on the first stage variables. Similarly, we currently add optimality cuts

when an integral z is found as an optimal solution to the master problem. An inter-

esting extension is to add the optimality cuts at fractional z encountered during the

branch-and-bound algorithm.
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Chapter 3: A Polyhedral Study of the Static Probabilistic

Lot-Sizing Problem

3.1 Introduction

This chapter is based on [61]. In this chapter, we study the static probabilistic

lot-sizing (SPLS) problem. Given a joint probability distribution of random demand

over a finite planning horizon, and a service level, 1− ε, SPLS problem aims to find a

production plan at the beginning of the planning horizon (before the random demand

is realized), so that the expected total cost of production and inventory is minimized,

and the probability of stockout does not exceed ε. In this study, we focus on finite

probability spaces.

[101] introduce the deterministic uncapacitated lot-sizing (ULS) problem (without

backlogging), which is the problem of finding the optimal plan of production and

inventory quantities, to satisfy the demand in each period of the planning horizon on

time. The authors propose an O(n2) algorithm for ULS, where n is the number of

time periods in the planning horizon. Improved polynomial algorithms can also be

found in [34] and [100]. [6] give a complete linear description of the convex hull of

ULS in the original space of variables by the so-called (`, S) inequalities. In addition,
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[51] propose an extended formulation for the ULS problem, which gives the complete

linear description of the convex hull of solutions to ULS in the extended space.

[79] provide the first polyhedral study of a closely related deterministic ULS prob-

lem with backlogging (ULSB), in which backorders are allowed in intermediate periods

and penalized by shortage costs, and demands must be met at the end of the planning

horizon. [54] propose a class of inequalities that generalizes the inequalities of [79] and

show that this class of inequalities is enough to give a complete linear description of

the convex hull of ULSB. [35] give extended formulations for the deterministic ULSB

problem when there is a limit on the number of periods in which shortages occur.

The aforementioned studies assume that the demands are known for each time

period of the planning horizon. However, in many applications, these parameters

are uncertain, and only the joint probability distribution of these data is available.

[37] address a multi-stage stochastic integer programming formulation of the unca-

pacitated lot-sizing problem under uncertainty. They extend the deterministic (`, S)

inequalities to the stochastic case. [36] show that these inequalities are sufficient to

describe the convex hull of solutions to the two-period problem [see, also 30]. [2]

use the tight extended formulation proposed for the deterministic lot-sizing prob-

lem to strengthen the deterministic equivalent formulation of the stochastic lot-sizing

problem. [70], [46] and [48] propose dynamic programming algorithms for solving

stochastic uncapacitated lot-sizing problems that run in polynomial time in the input

size (number of scenarios and time periods).

The stochastic lot-sizing model assumes that we have to satisfy the uncertain

demand in each time period for every scenario, which may lead to an over-conservative

solution with excessive inventory. As an alternative, for a given service level, 1 − ε,
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a chance-constrained lot-sizing formulation, referred to as the static probabilistic lot-

sizing problem (SPLS), ensures that the production schedule, which is determined

at the beginning of the planning horizon before the realization of random demands,

meets the demands on time with probability at least 1 − ε. [12] consider a variant

of SPLS, where the total expected cost is approximated by eliminating the holding

cost and inventory variables from the objective function. The authors propose a

branch-and-bound method that relies on a partial enumeration of the so-called p-

efficient points [see 81, 90, 26, 86]. [See, also 58, for a more general probabilistic

production and distribution planning problem]. The SPLS model with the inventory

costs is solved using a branch-and-cut algorithm in [52]. [107] propose a dynamic

probabilistic lot-sizing model, in which the production schedule is updated based on

the scenario realization of the previous time periods. We refer the reader to [53] for

a survey on deterministic, stochastic and probabilistic lot-sizing models.

Chance-constrained programming (CCP) is a class of optimization problems where

the probability of an undesirable outcome is limited by a given threshold, ε, (see, e.g.,

Charnes et al. [25], Charnes and Cooper [24], Miller and Wagner [70], Prékopa [80]).

Luedtke and Ahmed [66] propose sample-average approximation (SAA) algorithm for

CCPs with general probabilistic distribution [see, also 21, 22, 73, 23]. The resulting

sampled problem can be formulated as a large-scale deterministic mixed-integer pro-

gram. However, the weakness of the linear programming relaxation of this formulation

makes it inefficient to solve with commercial integer programming solvers.

For unstructured chance-constrained programs (CCP) with random right-hand

sides, Luedtke et al. [67], Küçükyavuz [52] and [1] study strong valid inequalities

for the deterministic equivalent formulation of the chance constraint. In addition,
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Luedtke [65] and [63] propose decomposition algorithms for two-stage CCPs with a

finite number of scenarios, which show significant improvement in computational per-

formance when solving the deterministic equivalent formulation of the CCPs. CCPs

with other special structures are also studied in [95], [94] and [103].

In this chapter, we provide a polyhedral study of the static probabilistic lot-sizing

problem. Different from earlier studies (summarized in Section 3.3.1), we derive a

class of valid inequalities that synthesize information from the binary production

setup variables and the chance constraint (Section 3.3.2). As a result, we obtain

inequalities that are stronger than those considering the chance constraint and lot-

sizing structures separately. We prove that our inequalities are facet-defining under

certain conditions. Furthermore, we show that they are sufficient to provide the com-

plete linear description of a related stochastic lot-sizing problem. In Section 3.4, we

propose a new formulation for SPLS, which greatly reduces the number of variables

and constraints of the deterministic equivalent formulation. We also show that the

proposed new formulation can be extended to general two-stage chance-constrained

programs with simple recourse. Our computational experiments summarized in Sec-

tion 3.5 show that the proposed methods are effective.

3.2 Problem Formulation

Given a planning horizon with length n, let N := {1, . . . , n}. Also, let xi be

the production setup variable and fi be the fixed cost of production at time period

i for all i ∈ N . In addition, let yi be the production quantity and ci be the unit

cost of production at time period i, for all i ∈ N . Let ξ be the uncertain demand.

Throughout, we let [j] = {1, 2, . . . , j}, for j ∈ Z+.
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The generic model of the static probabilistic lot-sizing problem, which is intro-

duced in [12], can be formulated as a two-stage optimization problem. The first-stage

problem is stated as:

min f>x + c>y + Eξ
(

Θξ(y)
)

(3.1a)

s.t. P
( t∑
i=1

yi ≥
t∑
i=1

ξi, t ∈ N
)
≥ 1− ε (3.1b)

yi ≤Mixi, i ∈ N (3.1c)

y ∈ Rn
+,x ∈ Bn, (3.1d)

where Mi is a large constant to make (3.1c) redundant when xi equals to one, for all

i ∈ N . Constraint (3.1b) enforces that the probability of violating the demands from

time 1 to n should be less than the user-given risk rate ε. In addition, Θξ(y) is the

value function of the second-stage problem given by:

Θξ(y) = min h>s(ξ) (3.2a)

st(ξ) ≥
t∑
i=1

(yi − ξi) t ∈ N (3.2b)

s(ξ) ∈ Rn
+, (3.2c)

where s(ξ) is the vector of second-stage inventory variables with nonnegative cost

vector h. In addition, constraints (3.2b) together with (3.2c) ensure the correct

calculation of the inventory level. Note that the second-stage problem has a simple-

recourse structure. [107] propose a related model, in which there may be shortages

in the intermediate time periods, but all demand must be satisfied by the end of the

planning horizon to meet contractual obligations. Our methods are valid for both

variations of SPLS.

Given a finite scenario set Ω = {1, . . . ,m}, let πj be the probability of scenario

j, for all j ∈ Ω. In addition, let dji be the demand for period i under scenario j, for
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all i ∈ N and j ∈ Ω. Let sjt be the inventory at the end of time period t ∈ N in

scenario j ∈ Ω, which incurs a unit holding cost ht. As is common in SAA methods,

throughout the rest of this chapter, we assume that each scenario is equally likely, i.e.,

πj = 1
m

, for all j ∈ Ω. Letting k = bmεc, the deterministic equivalent formulation of

SPLS is

min f>x + c>y +
1

m

m∑
j=1

h>sj (3.3a)

s.t.
t∑
i=1

yi ≥
t∑
i=1

dji(1− zj), t ∈ N, j ∈ Ω (3.3b)

m∑
j=1

zj ≤ k (3.3c)

yi ≤Mixi, i ∈ N (3.3d)

sjt ≥
t∑
i=1

(yi − dji) t ∈ N, j ∈ Ω (3.3e)

sj ∈ Rn
+, j ∈ Ω,y ∈ Rn

+,x ∈ Bn, z ∈ Bm, (3.3f)

where we introduce additional logical variable zj, which equals 0 if the demand in each

time period under scenario j is satisfied, and 1 otherwise, for all j ∈ Ω. In addition,

Mi = maxj∈ΩDjin, for all i ∈ N , where Djin =
∑n

p=i djp, for all j ∈ Ω. Furthermore,

the cardinality constraint (3.3c) along with the big-M constraint (3.3b) represents the

chance constraint in the equal probability case. However, this deterministic equivalent

formulation is hard to solve due to the large number of scenario-based variables and

constraints, and the big-M type of constraints (3.3b) and (3.3d), which yield weak

linear programming relaxations. In the next section, we survey the existing valid

inequalities for this class of problems, and then propose new valid inequalities.
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3.3 Valid Inequalities

In this section, we propose a class of strong valid inequalities for SPLS that sub-

sume known inequalities for this problem. Before we describe the proposed inequali-

ties, we review existing inequalities for SPLS adapted from the (`, S) inequalities for

the deterministic lot-sizing problem, and the mixing inequalities for the deterministic

equivalent of chance-constrained programs with random right-hand sides.

3.3.1 Existing Studies

Consider the feasible region of (3.3) in the space of (x,y, z) variables. Let P =

{(x,y, z) ∈ Bn×Rn
+×Bm | (3.3b)− (3.3d)}. First, note that we can adapt the (`, S)

inequalities [6] for the deterministic lot-sizing problem, to obtain the following valid

inequalities for its chance-constrained counterpart:

∑
i∈S

yi +
∑
i∈S̄

Dji`xi ≥ Dj1`(1− zj), j ∈ Ω, (3.4)

where ` ∈ N , S ⊆ [`], and S̄ = [`] \ S. To see the validity of (3.4), note that if

zj = 0, then the demand in each time period of the j-th scenario must be met, and

(3.4) reduces to (`, S) inequalities for the j-th scenario. Otherwise, if zj = 1, then the

inequality is trivially valid. However, this class of inequalities contains the undesirable

big-M terms, which lead to weak linear programming relaxations. Furthermore, they

only contain information from a single scenario at a time. We will address the question

on the strength of inequalities (3.4) for a special case in Proposition 11. Similarly, we

can also apply the modified extended formulation of deterministic uncapacitated lot-

sizing problem studied in [51] to the SPLS, with the added big-M terms. However,

this simple adaption only uses the information from a single scenario, which may
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not be strong for the deterministic equivalent program where we have to consider

the intersection of the whole scenarios set. In addition, the number of variables and

constraints explode as we increase m and n.

Second, since the big-M inequalities (3.3b) contain the mixing structure, we can

apply the mixing inequalities to strengthen the linear programming relaxation of (3.3).

To simplify notation, let Dji = Dj1i, for all i ∈ N and j ∈ Ω. In addition, for all i ∈ N

and j ∈ Ω, let σ be a permutation of the scenarios such that Dσi(1)i ≥ Dσi(2)i ≥ · · · ≥

Dσi(m)i, whereDσi(j)i is the j-th largest cumulative demand for the i-th time period. To

further simplify the notation, let Dσi(j) = Dσi(j)i. Let T ∗i = {σi(1), σi(2), . . . , σi(k)}, for

all i ∈ N . Throughout this chapter, when we define a set such as T := {t1, t2, . . . , ta},

it should be understood that a is the cardinality of T .

Proposition 8 (adapted from [65]). For ` ∈ N , let T` := {t`(1), t`(2), . . . , t`(a`)} ⊆ T ∗` ,

where Dt`(1)
≥ Dt`(2)

≥ · · · ≥ Dt`(a`)
. The basic mixing inequalities

∑̀
i=1

yi +

a∑̀
j=1

(Dt`(j) −Dt`(j+1)
)zt`(j) ≥ Dt`(1)

, (3.5)

are valid for P , where t`(a`+1) = σ`(k+1).

[65], [52] and [1] provide extensions of the basic mixing inequalities (3.5) for equal

and general probability cases. However, the mixing inequalities based on cumulative

production quantities do not provide any strengthening for fractional x. Hence, an

interesting research question is whether we can combine the mixing inequalities and

the (`, S) inequalities to obtain valid inequalities that cut off fractional (x, z). Next,

we provide an affirmative answer to this question.
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3.3.2 New Valid Inequalities

In this section, we propose a class of valid inequalities which subsumes inequal-

ity (3.5). In addition, we study the strength of the new inequalities and provide a

polynomial separation algorithm, which is exact under certain conditions.

Proposition 9. For ` ∈ N , let S ⊆ [`], S̄ = [`] \ S, and let Ti−1 :=

{ti−1(1), ti−1(2), . . . , ti−1(ai−1)} ⊆ T ∗i−1, where Dti−1(1)
≥ Dti−1(2)

≥ · · · ≥ Dti−1(ai−1)
, for

all i ∈ (S̄ \ {1}) ∪ {` + 1}. In addition, we fix t`(1) = σ`(1). Let T̄ = (∪i∈S̄Ti−1) ∪ T`.

The inequality ∑
i∈S

yi +
∑
i∈S̄

(Dt`(1)
−Dti−1(1)

)xi +
∑
j∈T̄

ᾱjzj ≥ Dt`(1)
(3.6)

is valid for P , where ti−1(ai−1+1) = σi−1(k+1), for all i ∈ (S̄ \ {1}) ∪ {`+ 1},

αji =


0, if i = `, j 6∈ T`, or if i+ 1 ∈ S̄, j 6∈ Ti,
Dt`(p) −Dt`(p+1)

, if i = `, j = t`(p) ∈ T` for some p ∈ [a`],

Dti(p) −Dti(p+1)
, if i+ 1 ∈ S̄, j = ti(p) ∈ Ti for some p ∈ [ai],

and ᾱj = max
{

maxi∈S̄{αj(i−1)}, αj`
}

for j ∈ T̄ .

Proof. Suppose that xi = 0, for all i ∈ S̄. Then inequality (3.6) reduces to:∑
i∈S

yi +
∑
j∈T̄

ᾱjzj ≥
∑
i∈S

yi +

a∑̀
j=1

(Dt`(j) −Dt`(j+1)
)zt`(j) ≥ Dt`(1)

,

where the first inequality follows from the definition of ᾱj, and the second inequality

follows from the validity of the mixing inequality (3.5) for time period ` when xi = 0

for all i ∈ S̄. Otherwise, let i′ ∈ S̄ be the smallest index in S̄ such that xi′ = 1. Then

we have: ∑
i∈S

yi +
∑

i∈S̄\{i′}

(Dt`(1)
−Dti−1(1)

)xi +
∑
j∈T̄

ᾱjzj

≥
∑
i∈S

yi +

ai′−1∑
j=1

(Dti′−1(j)
−Dti′−1(j+1)

)zti′−1(j)
≥ Dti′−1(1)

,
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where the first inequality follows from the nonnegativity of (Dt`(1)
−Dti−1(1)

) and the

definition of ᾱj, since t`(1) = σ`(1). In addition, the second inequality follows from the

validity of mixing inequality (3.5) for period i′ given that yi = 0 for i ∈ S̄, i < i′.

Example 1. Let k = 2, n = 2, m = 5, and consider the demand data given in Table

3.1.

Table 3.1: Data for Example 1.
Scenarios 1 2 3 4 5
d1 6 3 1 2 4
d2 1 6 10 8 5
d1 + d2 7 9 11 10 9

For ` = 2, let T` = {3, 4}, T`−1 = T1 = {1, 5}, S = {1}, and S̄ = {2}. According

to the definition, T̄ = {1, 3, 4, 5}. Since 1 ∈ T̄ , and scenario 1 is the scenario with the

largest demand in the first time period, α11 = Dt1(1)
−Dt1(2)

= Dσ1(1)
−Dσ1(2)

= 6−4 =

2. In addition, since 1 6∈ T`, we have α12 = 0. Hence, we have ᾱ1 = max{α11, α12} =

2. Since 3 ∈ T̄ , and 3 6∈ T1, we have α31 = 0. In addition, since 3 ∈ T`, and it

is the scenario with the largest cumulative demand at time period `, we have α32 =

Dt2(1)
−Dt2(2)

= Dσ2(1)
−Dσ2(2)

= 11−10 = 1. Hence, we have ᾱ3 = max{α31, α32} = 1.

Similarly, ᾱ4 = max{α41, α42} = max{0, Dt2(2)
−Dt2(3)

} = max{0, Dσ2(2)
−Dσ2(3)

} = 1,

and ᾱ5 = max{α51, α52} = max{Dt1(2)
− Dt1(3)

, 0} = max{Dσ1(2)
− Dσ1(3)

, 0} = 1.

Hence, the proposed inequality for this choice of parameters is:

y1 + 5x2 + 2z1 + z3 + z4 + z5 ≥ 11. (3.7)

Next we show the strength of the proposed inequalities.
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Proposition 10. Inequalities (3.6) are facet-defining for conv(P ) if

1. S̄ 6= ∅ and 1 ∈ S;

2. Tp−1 ∩ (T ∗q−1 ∪ T ∗` ) = ∅, T` ∩ T ∗q−1 = ∅, for all p 6= q, and p, q ∈ S̄;

3. Dt`(1)
−Dti−1(ai−1+1)

< Mi, for all i ∈ S̄;

4. dji > 0, for all j ∈ Ω and i ∈ N .

Proof. First, note that dim(P ) = 2n + m − 1, assuming that dji > 0, for all j ∈ Ω

and i ∈ N , since x1 = 1 when demands are positive at period 1, and backordering is

not allowed in n− k scenarios. To show that inequality (3.6) is facet-defining under

conditions (i)-(iv), we need to find 2n + m − 1 affinely independent points (x,y, z)

that satisfy (3.6) at equality. Let g(ti(j)), for all ti(j) ∈ Ti and i+ 1 ∈ S̄∪{`+ 1}, be a

unique mapping such that scenario ti(j) has the g(ti(j))-th largest cumulative demand

at time period i. Also, for p ∈ [`], i ∈ T̄ and j ∈ [ai + 1], let ȳpj be an n-dimensional

vector such that ȳpj1 = Dtp(j) and ȳpji = 0, for all i = 2, . . . , n.

First, consider the feasible points: (e1 + e`+1, ȳ
`
j + e`+1M`+1,

∑g(t`(j))−1

i=1 eσ`(i)), for

j ∈ [a`+1], where ej is the j-th unit vector with appropriate dimension. These a`+1

points are affinely independent and satisfy inequality (3.6) at equality. Next, consider

the set of points: (e1 +e`+1, ȳ
`
1 +e`+1M`+1, ej), ∀j = Ω \ T̄ . These m−a`−

∑
i∈S̄ ai−1

points are feasible, affinely independent from all other points, and satisfy inequality

(3.6) at equality.

Next, for Ti−1, for all i ∈ S̄ we construct the following set of feasible points:

(e1 + ei + e`+1, ȳ
i−1
j + ei(Dσ`(1)

−Dti−1(j)
) + e`+1M`+1,

g(ti−1(j))−1∑
p=1

eσi−1(p)
), j ∈ [ai−1 + 1],
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and

(e1 + ei + e`+1, ȳ
i−1
ai−1+1 + ei(Dσ`(1)

−Dti−1(ai−1+1)
+4) + e`+1M`+1,

k∑
p=1

eσi−1(p)
),

where 0 < 4 ≤Mi −Dσ`(1)
+Dti−1(ai−1+1)

. These
∑

i∈S̄ ai−1 + 2|S̄| points are affinely

independent from all other points, and satisfy inequality (3.6) at equality.

Next, for each i ∈ S \ {1}, we construct the following set of feasible points:

(e1 + ei + e`+1, ȳ
`
1 + e`+1M`+1,0),

(e1 + ei + e`+1, e1Dσi−1(1) + ei(Dσ`(1)
−Dσi−1(1)) + e`+1M`+1,0).

These 2|S| − 2 points are feasible, affinely independent from all other points, and

satisfy inequality (3.6) at equality.

Next, for each i ∈ N \ [` + 1], consider the following set of points: (e1 + e`+1 +

ei, ȳ
`
1 +e`+1M`+1,0), and (e1 +e`+1 +ei, ȳ

`
1 +e`+1M`+1 +ei4,0), where 0 < 4 ≤Mi.

These 2(n− `− 1) points are feasible, affinely independent from all other points, and

satisfy inequality (3.6) at equality.

Finally, for a fixed index p∗ ∈ S̄, we construct the remaining two points: (e1 +

ep∗ , ȳ
p∗−1
1 +ep∗Mp∗ ,0), and (e1+ep∗+e`+1, ȳ

p∗−1
1 +ep∗Mp∗+e`+14,0), where 0 < 4 <

M`+1. These two points are feasible, affinely independent from all other points, and

satisfy inequality (3.6) at equality. Hence, we obtain 2n+m− 1 affinely independent

feasible points that satisfy inequality (3.6) at equality, which completes the proof.

Example 1. (Continued.) Inequality (3.7) is a facet-defining inequality for conv(P ),

because T`−1 ∩ T ∗` = ∅, T` ∩ T ∗`−1 = ∅, 1 ∈ S, and Dt2(1)
− Dt1(1)

= Dσ2(1)
− Dσ1(1)

=

5 < M2 = 10.

Remark 2. Note that if S̄ = ∅, then the proposed inequality (3.6) reduces to the

mixing inequality (3.5) for a given ` ∈ N and T` ⊆ T ∗` . In addition, suppose that
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Dσ`+1(k+1)
≥ Dσ`(1)

. Consider inequality (3.6) for the (` + 1)-th time period, when

S̄ = {`+ 1} and T`+1 = ∅, for the same choice of T` as inequality (3.5):

∑̀
i=1

yi +

a∑̀
j=1

(Dt`(j) −Dt`(j+1)
)zt`(j) ≥ Dσ`+1(k+1)

− (Dσ`+1(k+1)
−Dσ`(1)

)x`+1. (3.8)

Because Dσ`+1(k+1)
≥ Dσ`(1)

by assumption, the right-hand side of (3.8) equals

Dσ`+1(k+1)
(1−x`+1)+Dσ`(1)

x`+1 ≥ Dσ`(1)
= Dt`(1)

, the right-hand side of (3.5). Hence,

if S̄ = ∅ and Dσ`+1(k+1)
≥ Dσ`(1)

, then the mixing inequality (3.5) is dominated by the

proposed inequality (3.8).

Next, we consider another special case that shows the strength of our inequalities.

Proposition 11. If ε = 0, then adding the proposed inequalities (3.6) to P is suffi-

cient to give the complete linear description of conv(P ).

Proof. If ε = 0, then k = 0, and we have to satisfy every scenario, i.e., the cumulative

production until time period i ∈ N must be sufficient to satisfy the scenario with

largest cumulative demand until time period i. In this case, T̄ = ∅ , and the proposed

inequalities (3.6) reduce to the following inequalities:

∑
i∈S

yi +
∑
i∈S̄

(Dσ`(1)
−Dσi−1(1)

)xi ≥ Dσ`(1)
. (3.9)

Furthermore, when k = 0, we can fix z = 0 and sjt =
∑t

i=1(yi− dji) for all t ∈ N, j ∈

Ω, and rewrite the deterministic equivalent program:

min f>x + c>y +
m∑
j=1

n∑
t=1

πjht(
t∑
i=1

(yi − dji)) (3.10a)

s.t.
t∑
i=1

yi ≥ Dσt(1)
t ∈ N (3.10b)

yi ≤Mixi, i ∈ N (3.10c)

y ∈ Rn
+,x ∈ Bn. (3.10d)
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Note that the optimization problem (3.10) is equivalent to a deterministic uncapaci-

tated lot-sizing problem, where the cumulative demand in each time period is given

by the largest cumulative demand in each time period over all scenarios. Hence,

the (`, S) inequalities for the deterministic equivalent program (3.10) when k = 0

are sufficient to describe conv(P ) when ε = 0 [follows from 6], and they are in the

form of inequality (3.9), which is a special case of the proposed inequality (3.6) when

k = 0.

In contrast, for the special case of ε = 0, when we let z = 0, inequalities (3.4)

reduce to (`, S) inequalities for each scenario j ∈ Ω individually, which is not sufficient

to describe conv(P ) in this case. Clearly, inequalities (3.6) combine information across

all scenarios and yield stronger inequalities.

Separation of inequalities (3.6): There are exponentially many inequalities (3.6).

We have two main questions when dealing with the separation problem for a given

` ∈ N : first, for any time period i 6= 1, we need to decide if i ∈ S or i ∈ S̄; second,

for each i ∈ S̄, we need to find a subset Ti−1 of T ∗i−1 so that the term
∑

j∈T̄ ᾱjzj is

minimized. First, given a fractional solution (x̂, ŷ, ẑ), for all i ∈ N \{1}, we solve the

following problems

Yi−1 = min
Ti−1⊆T ∗i−1

{ −Dti−1(1)
x̂i +

ai−1∑
p=1

(Dti−1(p)
−Dti−1(p+1)

)ẑti−1(p)
}, (3.11)

Ŷi = min
Ti⊆T ∗i ,σi(1)∈Ti

{
ai∑
p=1

(Dti(p) −Dti(p+1)
)ẑti(p)}. (3.12)

Problems (3.11) and (3.12) can be solved similarly to the separation of the mixing

inequalities in O(k log k) time [38] for each i ∈ N \ {1}. We let T̄i−1 and T̂i be
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the optimal argument of problems (3.11) and (3.12), respectively. Finally, for each

` ∈ N \ {1} and i ∈ [`] if ŷi ≤ Dt`(1)
x̂i + Yi−1, then we let i ∈ S. Otherwise, we

let i ∈ S̄ and Ti−1 = T̄i−1. Then we obtain αj(i−1) for each i ∈ S̄ ∪ {` + 1} and

j ∈ T̄i−1. In addition, we let T` = T̂` and ᾱj = max
{

maxi∈S̄{αj(i−1)}, αj`
}

, for all

j ∈ T̄ = (∪i∈S̄Ti−1) ∪ T`. If
∑

i∈S ŷi +
∑

i∈S̄(Dt`(1)
−Dti−1(1)

)x̂i +
∑

j∈T̄ ᾱj ẑj < Dt`(1)

for this choice of `, S, T̄ , then we have found a violated inequality (3.6).

Proposition 12. The proposed separation procedure runs in O(nmax{n, k log(k)})

time. Suppose that T ∗p−1∩T ∗q−1∩T` = ∅, for all p 6= q, and p, q ∈ S̄, then the proposed

separation procedure is exact.

Proof. For a fixed index ` ∈ N , if the condition stated in the proposition holds, then

we can rewrite inequality (3.6) as:

∑
i∈S

yi +
∑
i∈S̄

(
(Dt`(1)

−Dti−1(1)
)xi

+

ai−1∑
p=1

(Dti−1(p)
−Dti−1(p+1)

)zti−1(p)

)
+

a∑̀
p=1

(Dt`(p) −Dt`(p+1)
)zt`(p) ≥ Dt`(1)

,

because αj(i−1) = 0, for all but at most one i ∈ S̄ ∩ {`+ 1} and j ∈ Ti−1. As a result,

each time period is separable from other time periods, and the separation procedure

is exact.

The complexity of the algorithm for solving (3.11) and (3.12) for all i ∈ N \ {1}

is O
(
nk log(k)

)
. After finding the optimal T̄i−1 for i ∈ N \ {1}, which is independent

of the choice of `, identifying the set S for a given ` ∈ N takes O(n) time. Therefore,

we get an overall run time of O(nmax{n, k log(k)}).

If the conditions in Proposition 12 are not satisfied, then the separation procedure

is a heuristic.
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In Appendix C we give a second class of valid inequalities that involves the in-

ventory variables, which is valid for the deterministic equivalent formulation, and

facet-defining under certain conditions.

3.4 A new formulation that exploits the simple recourse
property

The deterministic equivalent formulation contains O(mn) additional variables,

which becomes computationally challenging if the number of scenarios, m, or the

number of time periods, n increases. One can consider a Benders decomposition

algorithm given in Appendix D. However, we may have to add exponentially many

optimality cuts, which significantly slow down the solution of the master problem, as

we show in our computational study in Section 3.5.

In this section, we propose a new formulation for SPLS that is similar to the

master problem used in the Benders decomposition algorithm. However we show

that the new formulation only uses polynomially many inequalities to capture the

second-stage cost.

For all i ∈ N and j ∈ Ω, let σ̄ be a permutation of the scenarios such that

Dσ̄i(1)i ≤ Dσ̄i(2)i ≤ · · · ≤ Dσ̄i(m)i, where Dσ̄i(j)i is the j-th smallest cumulative demand

for the i-th time period. To further simplify the notation, let Dσ̄i(j) = Dσ̄i(j)i.

Proposition 13. Let Θ′i be an additional variable that captures the total inventory

of i-th time period for all scenarios. In addition, let [k]+ = {0, 1, 2, . . . , k}. The
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formulation

min f>x + c>y +
1

m

n∑
i=1

hiΘ
′
i (3.13a)

s.t. (3.3b)− (3.3d), (3.13b)

Θ′i ≥ (m− q)
i∑

p=1

yp −
m−q∑
p=1

Dσ̄i(p) , i ∈ N, q ∈ [k]+ (3.13c)

x ∈ Bn, y ∈ Rn
+, z ∈ Bm,Θ′ ∈ Rn

+, (3.13d)

is equivalent to the deterministic equivalent of SPLS (3.3) under equiprobable scenar-

ios.

Proof. We can rewrite the deterministic equivalent formulation (3.3) as a two-stage

problem given by

min f>x + c>y +
1

m

n∑
i=1

hiΘ
′
i(y)

s.t. (3.3b)− (3.3d),

x ∈ Bn, y ∈ Rn
+, z ∈ Bm,Θ′ ∈ Rn

+,

where Θ′i(y), the total inventory level at each period i, is defined by the second-stage

simple resource problem with respect to each time period i, stated as

Θ′i(y) = min
m∑
j=1

sji

s.t. sji ≥
i∑

p=1

yp −Dji, j ∈ Ω

sji ≥ 0 j ∈ Ω.

Let Θ′i be a variable that captures the correct value of Θ′i(y) for any feasible y through

the exponentially many inequalities

Θ′i ≥ (m− q)
i∑

p=1

yp −
∑
j∈Rq

Dji, q ∈ [k]+, (3.14)
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where Rq ⊆ Ω is a subset of scenarios such that |Rq| = m − q. Hence, to show

that the proposed formulation (3.13) is equivalent to the deterministic equivalent

program (3.3), we show that the polynomial subclass (3.13c) of the exponential class

of inequalities (3.14) suffice to give a correct formulation. For a fixed q ∈ [k]+ and

i ∈ N , consider the following chain of inequalities:

Θ′i ≥ (m− q)
i∑

p=1

yi −
m−q∑
p=1

Dσ̄i(p) ≥ (m− q)
i∑

p=1

yp −
∑
j∈Rq

Dji,

where the first inequality follows from the fact that the set {σ̄i(1), σ̄i(2), . . . , σ̄i(m−q)}

is a possible choice of Rq, and the second inequality follows from the definition of

the permutation σ̄. Hence, the polynomial class of inequalities (3.13c) implies all

inequalities of the form (3.14), which completes the proof.

Example 1. (Continued.) Let i = 2, then the value of Θ′2 can be captured by the

following k + 1 = 3 inequalities

Θ′2 ≥ 5(y1 + y2)− 7− 9− 9− 10− 11, (3.15a)

Θ′2 ≥ 4(y1 + y2)− 7− 9− 9− 10, (3.15b)

Θ′2 ≥ 3(y1 + y2)− 7− 9− 9. (3.15c)

In the optimal solution, if every scenario is satisfied at time period 2, then inequality

(3.15a) captures the value of Θ′2, and the other two inequalities provide lower bounds

on Θ′2. Suppose that in the optimal solution, one scenario is violated in time period

2, then the violated scenario must be the scenario with the highest cumulative demand

at time period 2. Hence, inequality (3.15b) captures the correct value of Θ′2, and

inequalities (3.15a) and (3.15c) yield lower bounds for Θ′2.
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Remark 3. We show that the proposed formulation can also be applied to the gen-

eral two-stage chance-constrained program with simple recourse, equiprobable scenar-

ios and finite probability space.

Given a scenario set Ω = {1, 2, . . . ,m}, let x be the vector of the first stage

decision variables, c be its cost vector, and X be its feasible region. In addition, the

following scenario-dependent constraint set:

Ajx ≥ bj

is enforced only when scenario j ∈ Ω is satisfied by the chance constraint, where Aj

and bj are random coefficient matrix of x and right-hand side vector with appropriate

dimensions, respectively. In addition, the d-dimensional simple recourse function,

[see, e.g., 16] is defined as:

d∑
i=1

hi[u
>
i x− gji]+, j ∈ Ω,

where gji is scenario-dependent parameter, for all j ∈ Ω and i ∈ [d], and ui is the

coefficient vector of the recourse function for i-th dimension, for all i ∈ [d]. Let

hi, i ∈ [d] be a penalty term for the excess [u>i x− gji]+ in the second stage.

Assume that each scenario is equally likely. The deterministic equivalent of a

general two-stage chance-constrained program with simple recourse, equiprobable sce-

narios, and finite probability space is stated as follows:

min c>x +
1

m

m∑
j=1

d∑
i=1

hi[u
>
i x− gji]+ (3.16a)

s.t. Ajx+ M̄jzj ≥ bj (3.16b)
m∑
j=1

zj ≤ k (3.16c)

x ∈ X, z ∈ Bm, (3.16d)
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where (3.16b)-(3.16c) enforce the chance constraint, and M̄j is sufficiently large

to make (3.16b) redundant when zj = 1. Since we have to introduce O(md) new

variables and constraints to linearize the nonlinear term in the cost function (3.16a),

the deterministic equivalent program (3.16) is a large-scale mixed-integer program,

which is very hard to solve.

Let Θ̄i, for all i ∈ [d], be the additional variable that captures the value of the

recourse function for dimension i. In addition, let σ′ be the permutation of scenarios

such that: gσ′
i(1)

i ≤ gσ′
i(2)

i ≤ · · · ≤ gσ′
i(m)

i. In order to simplify notation, let gσ′
i(j)

i =

gσ′
i(j)

, for all j = 1, 2, . . . ,m. Hence, according to Proposition 13, we can rewrite the

deterministic equivalent formulation (3.1) as:

min c>x +
1

m

d∑
i=1

hiΘ̄i

s.t. (3.1b)− (3.1c)

Θ̄i ≥
m−q∑
j=1

(m− q)u>i x− gσ′
i(j)
, i ∈ [d], q ∈ [k]+,

Θ̄ ∈ Rd
+.

Here we only require d new variables and O(dk) many new constraints. In this case,

we can greatly reduce the number of variables and constraints in the deterministic

equivalent formulation, because k � m, for small ε.

3.5 Computational Experiments

In this section, we summarize our computational experience with various classes

of valid inequalities and our new formulation. All runs were executed on a Windows

Server 2012 R2 Data Center with 2.40GHZ Intel(R) Xeon(R) CPU and 32.0 GB RAM.

The algorithms tested in the computational experiment were implemented using C
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programming language, with Microsoft Visual Studio 2012 and CPLEX 12.6. A time

limit of one hour is set.

In our experiments, we compare the proposed new formulation (3.13) against the

deterministic equivalent formulation (3.3) and Benders decomposition algorithm (see

Appendix D), with different choices of valid inequalities. The first class of valid

inequalities (3.6) and its special case of mixing inequalities (3.5) are valid for the

deterministic equivalent formulation, the Benders master problem and the new for-

mulation (3.13). However, the second class of valid inequalities given in Appendix C

include the inventory variables, hence they only apply to the deterministic equivalent

formulation. In Tables 3.2 and 3.3, each row reports the average of three instances.

We let fi and ci to be randomly generated from a discrete uniform distribution over

[50, 100], and [5, 10], respectively, for all i ∈ N . In addition, we generate the demand

in each period randomly, where dji follows discrete uniform distribution [10, 30], for

all i ∈ N and j ∈ Ω.

In Table 3.2, the “DEP (3.5), (3.6), (C.1);” ”B. D. & Ineq. (3.5)-(3.6);” “N.F. &

(3.5);” and “N.F. & (3.5)-(3.6)” columns report the performance of the deterministic

equivalent formulation with the additional strengthening from inequalities (3.5), (3.6),

and (C.1); Benders decomposition algorithm with valid inequalities (3.5) and (3.6);

new formulation with valid mixing inequalities (3.5); and new formulation with mixing

inequalities and the proposed inequalities (3.6), respectively. The number of mixing

inequalities that can be added to both formulations is limited to 150, and based on

the results, this limit is hit by every instance. The “Time” column reports the average

solution time in seconds for the instances that are solved to optimality within time

limit, and the “Gap” column reports the average optimality gap for the instances

67



that reach the time limit. The “ - ” sign under the “Time ” column indicates that

no instance is solved to optimality within time limit. The “ * ” sign indicates that

CPLEX is not able to solve the instance due to memory limit, and no feasible solution

is obtained. In addition, we only add the proposed inequalities at the root node level.

Table 3.2: Computational results comparing different formulations.
Instances DEP (3.5), (3.6), (C.1) B. D. & Ineq. (3.5)-(3.6) N.F. & (3.5) N.F. & (3.5)-(3.6)

(ε, n) m (103) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%)

(0.01, 5)
10 277 0 199 0 143 0 92 0
20 * * 860 0 441 0 387 0
30 * * - 0.47 - 0.12 3534 0.05

(0.01, 10)
10 * * - 0.16 - 1.11 - 1.38
20 * * - 2.17 - 0.94 3416 0.90
30 * * * * - 3.28 - 2.36

(0.01, 30)
3 * * 1028 0 185 0 127 0
4 * * 1794 6.71 524 0 397 0
5 * * 3324 14.66 1472 0 1334 0

(0.01, 40)
3 * * 1179 0 723 0 606 0
4 * * - 23.02 1864 0.24 1690 0.07
5 * * - 14.51 3321 0.71 2793 0.57

Table 3.3: Additional information for the experiments in Table 3.2.
Instances B. D. & Ineq. (3.5)-(3.6) N.F. & (3.5) N.F. & (3.5)-(3.6)

(ε, n) m (103) Nodes Opt.Cut Nodes R.Gap (%) Nodes R. Gap (%) Cuts

(0.01, 5)
10 1828 42398 2028 1.08 880 1.00 7
20 12493 121553 737 3.90 623 3.43 6
30 48676 373193 54667 3.88 41379 3.41 7

(0.01, 10)
10 55031 98625 36067 3.61 33751 3.46 12
20 28112 288242 29315 6.76 32529 4.96 10
30 * * 6327 7.92 9088 6.78 10

(0.01, 30)
3 5047 29828 837 3.60 359 2.88 23
4 9696 64784 2233 5.46 1892 3.59 26
5 12267 88599 5917 7.42 5653 6.08 22

(0.01, 40)
3 5026 31672 2088 3.88 1608 3.76 16
4 9397 103936 6494 6.36 5729 2.53 19
5 8150 64154 7375 3.96 7672 3.24 18
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As we can see from Table 3.2, the deterministic equivalent formulation cannot

solve most of the instances, due to the memory limit. The Benders decomposition

provides slightly better results, since it is able to find a feasible solution. However, for

the instances with 30 or 40 time periods, the optimality gap of Benders decomposition

algorithm is very large. The proposed new formulation provides a big improvement.

It can solve most of the instances to optimality. For the instances that reach the

time limit, the optimality gap is small. Finally, the effectiveness of the proposed

inequalities (3.6) is shown in the last column. It provides the best results, with

generally the smallest solution time and optimality gap.

In Table 3.3, we report additional information on the average root gap (“R.Gap

%”) and number of nodes explored during the branch-and-bound process (“Nodes”).

The column “Opt.Cut” reports the number of optimality cuts added to the Benders

master problem. The column “Cuts” reports the number of the proposed inequalities

(3.6) added to the new formulation in addition to the mixing cuts (3.5), which are

special cases of inequalities (3.6). As we can see from Table 3.3, because we only add

the proposed inequalities (3.6) at the root node after adding the violated inequalities

(3.5), the number of additional inequalities (3.6) is not very large. However, the

new cuts are beneficial; the number of branch-and-bound nodes is reduced with the

proposed inequalities (3.6), and the root node gap with the new inequalities is also

smaller in most cases. As a result, more instances are solved to optimality within the

time limit. In addition, compared with the results from Benders decomposition, the

proposed new formulation uses much fewer “optimality cuts” to capture the second-

stage inventory value. For example, for the instances where m = 10000 and n = 5,

the Benders decomposition algorithm requires 42398 optimality cuts. In contrast, the
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proposed new formulation only requires m×ε×n = 500 additional inequalities to fully

capture the second-stage inventory value. As a result, the proposed new formulation

(3.13) provides a significant improvement in solution time.

We also tested the effectiveness of adapting the extended formulation of [51] for

deterministic ULS to strengthen the deterministic equivalent of SPLS. However, we

observe that it slows down the deterministic equivalent model further, so we do not

report our computations with this formulation.
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Chapter 4: Integer Programming Approaches to Two-Sided

Chance-Constrained Program

This chapter is based on [60]. To model complex systems operating under un-

certainty, chance constraints are used to assure that the quality of service or the

reliability of the solution at an acceptable level. Charnes et al. [25] defines the

first disjoint chance-constrained program. The deterministic equivalent program of

chance-constraint is proposed by Charnes and Cooper [24]. [80] provides the first

study of joint chance-constrained programs with dependent variables.

A sample-average approximation (SAA) algorithm for CCPs with general proba-

bilistic distribution is proposed by Luedtke and Ahmed [66] [see, also 21, 22, 73, 23].

The sampled problem (with finitely many scenarios) can be formulated as a deter-

ministic mixed-integer program, where the joint chance constraint is represented by

the scenario dependent Big-M type of constraints. This reformulation is generally

weak and inefficient to solve for state of the art mixed-integer programming solvers.

Luedtke et al. [67] observe that this reformulation contains a mixing set substruc-

ture that is first introduced by Günlük and Pochet [38], and propose valid inequalities

that strengthen the basic mixing inequalities studied in [38] and [4]. Küçükyavuz [52]

and [1] propose various methods, including strong valid inequalities and extended for-

mulations, for the deterministic equivalent formulation of the chance constraint, where
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the randomness only appears in the right-hand side of the joint chance-constraint. In

addition, Luedtke [65] proposes valid inequalities and a decomposition method for

general chance-constrained programs with linear constraints. [63] propose decompo-

sition algorithms for general two-stage CCPs.

In this chapter, we study the two-sided chance-constrained programs first intro-

duced in [64]. In particular, we consider an inequality in the chance constraints that

contains an absolute value term. This is the most natural extension of a linear chance-

constrained program. While individual linear chance constraints are easy to handle

and can be linearized using quantile arguments [17], a single inequality containing

absolute value terms cannot be linearized, because of its representation as two linear

inequalities that contain correlated random variables. Our work is differs from [64]

in that we do not assume any distribution on the random variables. In addition, the

structure of the two-sided inequality we study generalizes that of these authors under

the finite distribution assumption. As a result of the finiteness assumption, we are

able to obtain mixed-integer linear reformulations, for which we propose strong valid

inequalities.

Let (Ω,F ,P) be a finite probability space. We consider the following problem:

min ξ>x (4.1a)

s.t. P
(
|d>x− h(ω)| ≤ p>x− q(ω)

)
≥ 1− ε, (4.1b)

x ∈ X, (4.1c)

where x ∈ Rn1 is the vector of decision variables , ξ is its cost vector, and d and p are

n1 dimensional coefficient vectors. In addition, h(ω) and q(ω) are random parameters

that depend on the random variable ω ∈ Ω. The chance constraint (4.1b) enforces
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that the probability that the solution is feasible should be no less than the risk rate

ε. In Appendix F, we show that problem (4.1) is a special case of the problems that

contains the intersection of multiple mixing sets. In addition, we also show that the

inequalities proposed in this chapter can be extended to problems that contain the

intersection of multiple mixing sets.

Unlike the problem structures studied in Luedtke et al. [67], Küçükyavuz [52] and

Abdi and Fukasawa [1], problem (4.1) involves a absolute value of function inside the

joint chance-constraint, which brings more complication in terms of the convex hull

structure of this problem.

Before we present our results, we give a summary of the notation and conventions

used throughout the chapter.

Notation. Given a ∈ R, we set (a)+ = max{a, 0}. For a positive integer n, we let

[n] = {1, . . . , n}. We use bold letters to denote vectors. For a vector x ∈ Rn and an

integer k ∈ [n], xk denote the k-th coordinate of x. We let ej be the j-th unit vector

for j ∈ [n], and 1n denotes the vector of all 1’s in Rn. Given a set P , we denote its

dimension, closure, convex hull, and closed convex hull by dim(P), cl(P), conv(P),

and clconv(P), respectively.

4.1 Deterministic Equivalent Formulation

When the probability space Ω is finite, problem (4.1) can be reformulated as a

so-called deterministic equivalent program as follows. Let Ω := {1, 2, . . . ,m}, and

P(ω = j) = πj, for all j ∈ Ω and
∑m

j=1 πj = 1. In addition, to simplify notation, we
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define hj := h(ω = j) and qj := q(ω = j) for all j ∈ Ω. Then (4.1) is equivalent to

min ξ>x (4.2a)

s.t. |d>x− hj| ≤ p>x− qj +Mjzj, ∀j ∈ Ω, (4.2b)∑
j∈Ω

πjzj ≤ ε, (4.2c)

z ∈ Bm, (4.2d)

x ∈ X,

where Mj is a sufficient large constant to make (4.2b) redundant when zj = 1, for all

j ∈ Ω.

Let us define the variables yp = p>x and yd = d>x. Then inequality (4.2b) can

be linearized as follows

yp + yd +M1
j zj ≥ qj + hj, ∀j ∈ Ω, (4.3a)

yp − yd +M2
j zj ≥ qj − hj, ∀j ∈ Ω, (4.3b)

where M1
j and M2

j are sufficiently large to make inequalities (4.3a) and (4.3b) redun-

dant when zj = 1, respectively, for all j ∈ Ω.

Because X is a compact set, we can also derive lower and upper bounds on our

new variables yd = d>x and yp = p>x. In particular, we set ud := maxx∈X d>x,

and ld := minx∈X d>x. Then ld ≤ yd ≤ ud. Similarly, we have yp ≥ lp, where

lp := minx∈X p>x.

Throughout this chapter, in order to simplify our notation, we define

wj := qj + hj and vj := qj − hj for all j ∈ Ω.

Based on this, we set the big-M values in (4.3a)–(4.3b) to M1
j := wj − lp − ld and

M2
j := vj − lp + ud for all j ∈ Ω.
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Throughout the rest of this chapter, to simplify notation, without loss of general-

ity, we assume that lp = ld = 0, see Observation 14. Hence ud ≥ 0.

The constraint set (4.3) together with (4.2d) contains an interesting substructure.

Based on this notation, the key substructure originating from the inequalities (4.3)

that we are interested in is given by the variables yp, yd ∈ R and z ∈ Bm defined by

yp + yd + wjzj ≥ wj, ∀j ∈ Ω, (4.4a)

yp − yd + (vj + ud)zj ≥ vj, ∀j ∈ Ω, (4.4b)

yp ≥ 0, (4.4c)

ud ≥ yd ≥ 0, (4.4d)

z ∈ Bm. (4.4e)

We define

P := {(yp, yd, z) | (4.4a)− (4.4e)}.

Based on this, two-sided chance constrained problem (4.1) is equivalent to

min
x,yp,yd,z

{
ξ>x : x ∈ X, yp = p>x, yd = d>x,

∑
j∈Ω

πjzj ≤ ε, (yp, yd, z) ∈ P

}
.

Remark 4. P can be viewed as the intersection of two mixing sets represented by

inequalities (4.4a) and (4.4e), and inequalities (4.4b) and (4.4e), and the bound in-

equalities (4.4c)–(4.4d).

Despite Remark 4, interaction between these two mixing sets in P through the

shared continuous variables yp and yd, along with their bounds, easily lead to a

nontrivial structure. In this chapter, we study the structure of clconv(P).
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4.2 Structure of the Set P

4.2.1 Preliminaries and Main Assumptions

Throughout the chapter, we use (yp, yd, z) to express points from P .

Observation 14. Without loss of generality, we can assume that lp = ld = 0 in the

definition of P.

Proof. Let y′p = yp+ lp and y′d = yd+ ld. Define w′j := wj + lp+ ld and v′j := vj + lp− ld

for all j ∈ Ω. Consider the set P ′ defined as follows:

y′p + y′d + wjzj ≥ w′j, ∀j ∈ Ω,

y′p − y′d + (vj + ud)zj ≥ v′j, ∀j ∈ Ω,

y′p ≥ lp, ud + ld ≥ y′d ≥ ld, z ∈ Bm.

For any (yp, yd, z) ∈ P , the corresponding (y′p, y
′
d, z) ∈ P ′ and vice versa.

Observation 15. Without loss of generality, we can assume that wj ≥ 0 for all j ∈ Ω

in the definition of P.

Proof. Define Ω′ := {j ∈ Ω : wj < 0}. For every j ∈ Ω′, let z′j = 1− zj, w′j = 0, and

v′j = −ud. For every j ∈ Ω \ Ω′, we set z′j = zj, w
′
j = wj, and v′j = vj. Consider the

set P ′ defined as follows:

yp + yd + wjz
′
j ≥ wj, ∀j ∈ Ω \Ω′,

yp − yd + (vj + ud)z
′
j ≥ vj, ∀j ∈ Ω \Ω′,

yp + yd + (−wj)z′j ≥ 0, ∀j ∈ Ω′,

yp − yd + (−vj − ud)z′j ≥ −ud, ∀j ∈ Ω′,

yp ≥ 0, ud ≥ yd ≥ 0, z′ ∈ Bm.
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Then there is a one-to-one correspondence between the vectors in P and the vectors

in P ′.

Note that after the transformation, the constraints yp + yd + w′jz
′
j ≥ 0 ∀j ∈ Ω′

are redundant because all of the variables are nonnegative and w′j ≥ 0. However, the

constraint yp−yd + (−vj−ud)z′j ≥ −ud for some ∀j ∈ Ω′ may be non-redundant.

While it may be possible to have vj < 0 for some j ∈ Ω, throughout the rest of this

chapter, we work with the following assumption that complements Observation 15:

A∗: wj and vj are nonnegative for all j ∈ Ω.

We start by examining some valid inequalities for the set P and establishing

conditions under which these inequalities are facets of clconv(P).

4.2.2 Valid Inequalities

Mixing sets have been studied extensively in the literature. From Remark 4,

because of the existing mixing set substructure in P , the star inequalities of [4], or

the mixing inequalities of [38], can immediately be used to strengthen the formulation

of P .

Proposition 16. [4, 38] Let S := {s1, s2, . . . , sη} ⊆ Ω be a subset of scenar-

ios such that ws1 ≥ ws2 ≥ · · · ≥ wsη , and define wsη+1 = 0. Similarly, let

T := {t1, t2, . . . , tρ} ⊆ Ω be a subset of scenarios such that vt1 ≥ vt2 ≥ · · · ≥ vtρ,

and define vtρ+1 = −ud. Then the following mixing inequalities are valid for P.

yp + yd +

η∑
j=1

(wsj − wsj+1
)zsj ≥ ws1 , for the given S ⊆ Ω, (4.5)
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and

yp − yd +

ρ∑
j=1

(vtj − vtj+1
)ztj ≥ vt1 , for the given T ⊆ Ω. (4.6)

Proof. The validity of inequality (4.5) directly follows from [4] and [38]. In addition,

inequality (4.6) is closely related to the mixing inequalities for the set generated by

inequalities (4.4b)–(4.4d).

In general, the mixing inequalities are not sufficient to describe clconv(P) because

the intersection of the convex hulls of two mixing sets can create additional extreme

points. We next introduce a new class of valid inequalities for P and we will later on

show that these inequalities are facet defining for P under certain conditions.

Let τ ∈ [m], and Π be a sequence of τ scenarios given by π1 → π2 → · · · → πτ ,

where πj ∈ Ω, for all j ∈ [τ ]. Given Π := {π1 → π2 → · · · → πτ}, consider the

following class of inequalities:

2yp +
τ∑
j=1

(
(wπj − w̄πj)+ + (vπj − v̄πj)+

)
zπj ≥ w̄π0 + v̄π0 , (4.7)

where

w̄πj =

{
maxj+1≤`≤τ{wπ`}, if j ∈ [τ − 1] ∪ {0},
0, if j = τ,

and

v̄πj =

{
maxj+1≤`≤τ{vπ`}, if j ∈ [τ − 1] ∪ {0},
0, if j = τ.

Proposition 17. For a given τ ∈ [m] and a sequence of scenarios Π := {π1 → π2 →

· · · → πτ}, inequality (4.7) is valid for clconv(P).

Proof. Let R ⊆ Π be a subsequence of scenarios given by r1 → r2 → · · · → rτR , with

|R| = τR ≤ τ , such that rj ∈ R, for all j ∈ [τR] , if wrj ≥ w̄rj . Since w̄πτR = 0, we
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know that R cannot be empty. Similarly, let G ⊆ Π be a subsequence of scenarios

given by g1 → g2 → · · · → gτG , with |G| = τG ≤ τ , such that gj ∈ G, for all j ∈ [τG], if

vgj ≥ v̄gj . Since v̄πτG = 0, we know that G cannot be empty. From this construction,

we have wri ≥ wri+1
, for all i ∈ [τR−1], because wri ≥ w̄ri , and based on the definition

of the subsequence R, scenario ri precedes scenario ri+1 in R if and only if ri precedes

ri+1 in Π, which implies w̄ri ≥ wri+1
. Similarly, we have vgi ≥ vgi+1

, for all i ∈ [τG−1].

Hence, inequality (4.7) is equivalent to

2yp +

τR∑
j=1

(wrj − wrj+1
)zrj +

τG∑
j=1

(vgj − vgj+1
)zgj ≥ wr1 + vg1 , (4.8)

where wrτR+1 = 0, and vgτG+1 = 0.

For a given solution (yp, yd, z), let j1 := arg mini∈[τR]{i | zri = 0} and j2 :=

arg mini∈[τG]{i | zgi = 0}.

First, suppose that j1 and j2 exist. Then we have yp+yd ≥ wrj1 and yp−yd ≥ vgj2

from inequalities (4.4a) and (4.4b). Hence,

2yp +

τR∑
j=1

(wrj − wrj+1
)zrj +

τG∑
j=1

(vgj − vgj+1
)zgj

= yp + yd + yp − yd +

τR∑
j=1

(wrj − wrj+1
)zrj +

τG∑
j=1

(vgj − vgj+1
)zgj

≥ wrj1 +

j1−1∑
j=1

(wrj − wrj+1
)zrj + vgj2 +

j2−1∑
j=1

(vgj − vgj+1
)zgj

= wr1 + vg1 .

This establishes validity of inequality (4.7) when both j1 and j2 exist.
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Next, suppose that j1 does not exist, but j2 exists. Then yp+yd ≥ 0, yp−yd ≥ vgj2 ,

and

2yp +

τR∑
j=1

(wrj − wrj+1
)zrj +

τG∑
j=1

(vgj − vgj+1
)zgj

= yp + yd + yp − yd +

τR∑
j=1

(wrj − wrj+1
) +

τG∑
j=1

(vgj − vgj+1
)zgj

≥ 0 + wr1 + vgj2 +

j2−1∑
j=1

(vgj − vgj+1
)

= wr1 + vg1 .

Thus, inequality (4.7) is valid if j2 exists and j1 does not exist.

Next, if j1 exists and j2 does not exist, then zrj1 = 0, and we have yp + yd ≥ wrj1 ,

and yp − yd ≥ vrj1 . As a result, we have:

2yp +

τR∑
j=1

(wrj − wrj+1
)zrj +

τG∑
j=1

(vgj − vgj+1
)zgj

= yp + yd + yp − yd +

τR∑
j=1

(wrj − wrj+1
)zrj +

τG∑
j=1

(vgj − vgj+1
)zgj

≥ wrj1 + vrj1 +

τR∑
j=1

(wrj − wrj+1
)zrj + vg1

≥ wrj1 + vrj1 +

j1−1∑
j=1

(wrj − wrj+1
) + vg1

= wr1 + vg1 + vrj1 ≥ wr1 + vg1 ,

where the last inequality follows Assumption A∗.

Finally, suppose that both j1 and j2 do not exist, then inequality (4.7) becomes

2yp ≥ 0,

which trivially holds.

Therefore, inequality (4.7) is valid for clconv(P).
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Remark 5. From inequality (4.8), it is tempting to think that inequality (4.7) is

generated by simply adding up two mixing inequalities (4.5) and (4.6), for S = R and

T = G, respectively. However, because vtρ+1 = −ud in inequality (4.6) corresponding

to the set T = G and vgτ+1 = 0 in inequality (4.7) corresponding to the set R ∪ G,

we can see that the new inequality (4.7) is stronger than the inequality obtained by

adding the two mixing inequalities (4.5) for S = R and (4.6) for T = G.

We demonstrate Remark 5 more concretely on an example below.

Example 1. Let m = 3, lp = ld = 0, ud = 10, w = (8, 6, 10) and v = (3, 4, 2).

Consider Π := 2→ 1→ 3. Then R = 3 and G = 2→ 1→ 3, and the inequality (4.7)

is given by

14 ≤ 2yp + (4− 3)+z2 + (6− 10)+z2 + (3− 2)+z1 + (8− 10)+z1

+ (2− 0)+z3 + (10− 0)+z3

= 2yp + z2 + z1 + 12z3.

In Appendix E, we give the complete convex hull description of P for Example

1. Indeed, in Example 1, clconv(P) is simply described by including the classes of

inequalities (4.5)-(4.7).

Next, we study the polyhedral structure of clconv(P) under certain assumptions.

In particular, we establish conditions under which clconv(P) can be obtained by

adding only the classes of inequalities characterized in (4.5)-(4.7).

4.2.3 Polyhedral Study Preliminaries

We carry out our polyhedral study of clconv(P) under two main assumptions:

A1: wj ≥ vj for all j ∈ Ω;
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A2: ud ≥ maxj∈Ω{wj} > 0.

Assumption A1 is reasonable because, otherwise, if vj > wj and scenario j is satisfied,

i.e., zj = 0 fro some j ∈ Ω, then we must have yp + yd ≥ wj and yp − yd ≥ vj from

(4.4a)–(4.4b), but since yd ≥ 0, yp ≥ vj + yd > wj − yd, inequality (4.4a) is redundant

in the formulation. Assumption A2 ensures that the upper bound of yd is sufficiently

large so that it does not cut off any feasible solution with respective to inequalities

(4.4a)–(4.4c), and (4.4e).

From now on, we let α and β be the permutations of scenarios such that wα1 ≥

wα2 ≥ · · · ≥ wαm , and vβ1 ≥ vβ2 ≥ · · · ≥ vβm .

First, we present several results that are used to conduct our polyhedral study.

Observation 18. Consider a point (ȳp, ȳd, z̄) ∈ P. Define the set V (z̄) := {j ∈

[m] : z̄j = 0}.

1. For any j′ ∈ V (z̄), the point (ȳp, ȳd, z̄ + ej′) is also in P.

2. Whenever ȳd = 0, the point (max{ȳp, wj′}, 0, z̄− ej′) for any j′ ∈ [m] \ V (z̄) is

also in P.

3. The point (ȳp +4, ȳd, z̄), where 4 > 0, is also in P.

Proof. Given (ȳp, ȳd, z̄) ∈ P , let V := V (z̄), i.e., j ∈ V if and only if z̄j = 0.

1. Since (ȳp, ȳd, z̄) ∈ P , we have ȳp + ȳd ≥ maxj∈V wj, ȳp − ȳd ≥ maxj∈V vj,

ȳp ≤ 0, and ud ≥ ȳd ≥ 0. Then for any j′ ∈ V , the point (ȳp, ȳd, z̄ + ej′)

satisfies inequalities (4.4a) and (4.4b) because maxj∈V wj ≥ maxj∈V \{j′}wj, and

maxj∈V vj ≥ maxj∈V \{j′} vj. In addition, because ȳp and ȳd remain the same,
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inequalities (4.4c)–(4.4e) are also trivially satisfied. Hence, the point (ȳp, ȳd, z̄+

ej′) is also in P .

2. Since (ȳp, 0, z̄) ∈ P , we have ȳp ≥ maxj∈V wj, ȳp ≥ maxj∈V vj. Hence,

max{ȳp, wj′} ≥ maxj∈V ∪{j′}wj ≥ maxj∈V ∪{j′} vj where the last inequality fol-

lows from Assumption A1, and max{ȳp, wj′} ≥ 0 holds because ȳp ≥ 0. Thus,

inequalities (4.4a)–(4.4c) are satisfied. Inequalities (4.4d) and (4.4e) are also

trivially satisfied. Hence, the point (max{ȳp, wj′}, 0, z̄− ej′) is also in P .

3. This part follows because there are no constraints in P that can impose an

upper bound on the variable yp.

Next, we present classes of points that are critical in our convex hull characteri-

zation:

Lemma 19. The following points are in P:

A(V ) :
(

max
j∈V

wj, 0,
∑
j∈Ω\V

ej

)
, V ⊆ Ω,

(4.9a)

B(V ) :
(

max
j∈V

vj + ud, ud,
∑
j∈Ω\V

ej

)
, ∅ 6= V ⊆ Ω,

(4.9b)

C(V ) :
(maxj∈V wj + maxj∈V vj

2
,
maxj∈V wj −maxj∈V vj

2
,
∑
j∈Ω\V

ej

)
, V ⊆ Ω,

(4.9c)

D : (0, ud,1), (4.9d)

where A(∅) = C(∅) = (0, 0,1).
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Proof. The points listed above satisfy inequality (4.4e) trivially.

Recall our convention that for V = ∅ and a ∈ Rn, we define maxj∈V aj = 0. Then

because ud > 0 (from Assumption A2), all of the points A(V ) for V ⊆ Ω, B(V ) for

∅ 6= V ⊆ Ω, and D immediately satisfy inequalities (4.4d). The points C(V ) for V ⊆

Ω also satisfy inequalities (4.4d) because ud ≥ maxj∈V wj ≥ maxj∈V wj−maxj∈V vj
2

≥ 0

holds from Assumptions A2, A∗, and A1, respectively.

The point D satisfies inequalities (4.4c)–(4.4e) trivially. It is easy to see that the

point D also satisfies inequalities (4.4a)–(4.4b) because ud > 0.

Clearly, A(∅) ∈ P . For a given ∅ 6= V ⊆ Ω, starting from the fact that A(∅) ∈ P

and repeatedly applying Observation 18(ii) for the indices j ∈ V , we observe that the

point A(V ) is feasible.

Next, the point B(V ), for any ∅ 6= V ⊆ Ω, satisfies inequalities (4.4a) and (4.4b),

because yp + yd = 2ud + maxj∈V vj > maxj∈V wj from Assumptions A∗ (or A1) and

A2, and yp−yd = maxj∈V vj, respectively. In addition, B(V ) also satisfies inequalities

(4.4c) because ud ≥ maxj∈V wj ≥ maxj∈V vj from Assumptions A1 and A2.

Finally, the point C(V ), for any V ⊆ Ω, satisfies inequalities (4.4a) and (4.4b),

because yp + yd = maxj∈V wj, and yp − yd = maxj∈V vj, respectively. In addition,

C(V ) also satisfies inequalities (4.4c) from Assumption A∗.

The points in Lemma 19 are also useful in characterization of the extreme points

of clconv(P).

Proposition 20. The only recessive direction of clconv(P) is (1, 0,0). The extreme

points of clconv(P) are A(V ) and C(V ), for all V ⊆ Ω, B(V ), for all ∅ 6= V ⊆ Ω

and D, as defined in equations (B.3)–(B.6) in Lemma 19.
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Proof. From Observation 18 (iii), (1, 0,0) is a recessive direction of P . Moreover, there

are no other recessive directions of clconv(P) because yp is bounded from below, and

yd and z are bounded from above and below. Moreover, from Lemma 19, the points

A(V ), C(V ) for some V ⊆ Ω, B(V ) for some ∅ 6= V ⊆ Ω, and D are all in P .

Next, for a fixed V ⊆ Ω, let P̂(V ) be the resulting polyhedron of

(yp, yd,
∑

j∈Ω\V ej), i.e., P̂(V ) :=(yp, yd,
∑
j∈Ω\V

ej) | yp + yd ≥ max
j∈V

wj, yp − yd ≥ max
j∈V

vj, yp ≥ 0, ud ≥ yd ≥ 0

 .

(4.10)

When V = ∅, the only extreme points of P̂(∅) are A(∅) = C(∅) and (ud, ud,1).

Moreover, because ud > 0, the point (ud, ud,1) can be obtained from the point D and

the recessive direction (1, 0,0). For a given ∅ 6= V ⊆ Ω, under Assumptions A∗, A1,

and A2, Figure 4.1 illustrates the projection of the region P̂(V ) onto the space of

(yp, yd). We then immediately observe from Figure 4.1 that A(V ), B(V ), and C(V )

are the only extreme points of P̂(V ).

yp0 A(V )

C(V )

B(V )

yp + yd ≥ maxj∈V wj

yd ≤ ud

yp − yd ≥ maxj∈V vj

yd

Figure 4.1: Projection of P̂(V ) onto the space of (yp, yd) under Assumptions A∗, A1,
and A2
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Note that P =
⋃
V⊆Ω P̂ (V ) and the recessive direction of P̂ (V ) for any V ⊆ Ω is

(1, 0,0) for all V ⊆ Ω. As a result, clconv(P) is simply convex combinations of the

points of the form A(V ), C(V ), for some V ⊆ Ω, B(V ) for some ∅ 6= V ⊆ Ω, and D,

and conical combination of (1, 0,0).

Next, we address the complexity of optimizing over P . Given a linear objective

function (cp, cd, f), we denote the cost of a given solution (yp, yd, z) by F ((yp, yd, z)) :=

cpyp + cdyd + f>z.

Proposition 21. Let (cp, cd, f) be an arbitrary nonzero cost vector. Then the opti-

mization problem

min
(yp,yd,z)∈P

cpyp + cdyd + f>z (4.11)

can be solved in O(m3) time.

Proof. Note that if the problem is not unbounded (i.e., cp ≥ 0), then there exists

an optimal solution that is an extreme point of clconv(P). Let V ∗A ⊆ Ω be such

that A∗V = arg minV⊆Ω F (A(V )), in other words, A(V ∗A) is the solution among all

solutions of the form A(V ) that gives the minimum objective. Define V ∗B and V ∗C

similarly for the solutions of the form B(V ) and C(V ), respectively. Then the op-

timal solution is given by min{F (A(V ∗A)), F (B(V ∗B)), F (C(V ∗C)), F (D)}. Finding A∗V

and B∗V takes O(m logm) time, because this is equivalent to optimizing over the

mixing set [c.f. 4, 38]. Hence, we address the complexity of finding V ∗C . Recall

that A(∅) = C(∅). Therefore, we consider a slightly different problem of finding

V ∗C = arg min∅6=V⊆Ω F (C(V )).

For i, j ∈ Ω, we define Ωij = {k ∈ Ω : wk ≤ wi, vk ≤ vj} and let G(i, j) be

the objective value of the best extreme point of form C(V ), for some set V satisfying
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{i, j} ⊆ V ⊆ Ωi,j. From the definition of Ωi,j, we have wi = max`∈V w` and vj =

max`∈V v` for any set V satisfying {i, j} ⊆ V ⊆ Ωi,j. Therefore, for fixed i, j ∈ Ω, we

have

G(i, j) = min
{i,j}⊆V⊂Ωij

cpwi + vj
2

+ cd
wi − vj

2
+

∑
`∈(Ω\V )

f`

 . (4.12)

Next, we show that for a given i, j ∈ Ω, the optimal set Vij ⊆ Ωij minimizing (4.12)

can be found in polynomial time. By feasibility, i, j ∈ Vij. For all ` ∈ Ω such that

w` > wi, or v` > vj, we have ` 6∈ Vij from the definition of Ωij. Next, for all ` ∈ Ω such

that ` 6= i, j, and w` ≤ wi, and v` ≤ vj, if f` > 0, we must have ` 6∈ Vij to minimize

the cost. Otherwise, if f` ≤ 0, we let ` ∈ Vij. Hence, from this procedure, for a

fixed i, j ∈ Ω, we can find the optimal G(i, j) in O(m) time. Finally, the optimal

V ∗C = Vi∗,j∗ , where (i∗, j∗) = arg mini,j∈Ω G(i, j). Hence, the overall complexity is

O(m3).

While Proposition 21 brings good news by demonstrating an efficient algorithm to

optimize over P , in the cases where P arises as a substructure, such as our motivation

originating from two-sided chance constrained optimization problems, we cannot im-

mediately use Proposition 21. On the other hand, strong valid inequalities for P can

immediately be employed in the cases where P arises as a substructure. Consequently,

we examine the strength of the inequalities (4.5)-(4.7).

4.2.4 When are Inequalities (4.5)-(4.7) Facets of clconv(P)?

In this section, we establish conditions under which inequalities (4.5)-(4.7) are

facet-defining for clconv(P).

We first establish that clconv(P) is full dimensional under Assumptions .
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Proposition 22. Consider the points A(∅), A(Ω), B(Ω), (wα1 , 0, ej) for all j ∈

Ω \ {α1}, and (wα1 +4, 0,0), where 4 > 0 is a small number. All of these points

are in P. Moreover, dim
(

clconv(P)
)

= m+ 2.

Proof. From Lemma 19, we know that A(∅), A(Ω) and B(Ω) are feasible. Next,

using Observation 18(i) starting from A(Ω) = (wα1 , 0,0), we know that the point

(wα1 , 0, ej), for all j ∈ Ω \ {α1}, is feasible. Also, the feasibility of the point A(Ω)

along with Observation 18(iii) established that the point (wα1 +4, 0,0) is feasible.

Moreover, these points are affinely independent. Let P0 = A(Ω) = (wα1 , 0,0),

P1 = A(∅) = (0, 0,1), P2 = (wα1 +4, 0,0), P2+i = (wα1 , 0, ej), for all i = [m − 1]

and j ∈ Ω \ {α1}, and Pm+2 = B(Ω) = (vβ1 + ud, ud,0). Then, Pi − P0, for all

i ∈ [m+ 2] are linearly independent. Hence, Pi, for all i ∈ [m+ 2] ∪ {0}, are affinely

independent.

Let us next examine the mixing inequalities (4.5) and (4.6).

Proposition 23. [4, 38] Consider the setup of Proposition 16. Inequalities (4.5)

and (4.6) are facet-defining for clconv(P) if and only if ws1 = wα1, and vt1 = vβ1,

respectively.

Proof. To see the necessity condition, ws1 = wα1 , for inequality (4.5) to be a facet, if

ws1 < wα1 , then consider inequality (4.5) for S = {α1, s1, . . . , sη} given by

yp + yd +

η∑
j=1

(wsj − wsj+1
)zsj ≥ ws1 + (wα1 − ws1)(1− zα1).

The resulting inequality is stronger than the original inequality, because (wα1 −

ws1)(1 − zα1) ≥ 0. Hence, this establishes the necessity condition, ws1 = wα1 , for

inequality (4.5). The argument for the necessity condition, vt1 = vβ1 , for inequality

(4.6) is identical.
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To see that inequality (4.5) is facet defining if ws1 = wα1 , first, for all j ∈ Ω\S, we

consider the points (wα1 , 0, ej). These points are feasible (see the proof of Proposition

33). In addition, these points satisfy inequality (4.5) at equality and are affinely

independent. Next, for all j ∈ [η], we consider the points (wsj , 0,
∑

i∈Ω\(∪mi=jsi)
esi) =

A
(
∪ηi=jsi

)
, for all j ∈ [η]. From Lemma 19, we know that these points are feasible. In

addition, these points satisfy inequality (4.5) at equality and are affinely independent.

Finally, we consider the feasible points A(∅) and C(Ω), which are affinely independent

from all other points. In addition, they satisfy inequality (4.5) at equality. Hence,

we obtain m + 2 affinely independent points that are feasible and satisfy inequality

(4.5) at equality, which indicates that inequality (4.5) is facet-defining for clconv(P).

The sufficiency proof for inequality (4.6) is similar to the sufficiency proof of

inequality (4.5), where we consider the points B(Ω), C(Ω), C(Ω \ {j}), for all j ∈

Ω \ T , and B
(
∪ρi=j ti

)
, for all j ∈ [ρ]. These points are feasible from Lemma 19 and

are also affinely independent.

Next, we study the strength of the proposed inequalities (4.7).

Proposition 24. Consider the setup of Proposition 17. Given τ ∈ [m] and a sequence

of scenarios Π := {π1 → π2 → · · · → πτ}, let R ⊆ Π be a subsequence of scenarios

given by r1 → r2 → · · · → rτR , with |R| = τR ≤ τ , such that rj ∈ R, for all

j ∈ [τR] , if wrj ≥ w̄rj . In addition, let G ⊆ Π be a subsequence of scenarios given

by g1 → g2 → · · · → gτG , with |G| = τG ≤ τ , such that gj ∈ G, for all j ∈ [τG],

if vgj ≥ v̄gj . Then, inequality (4.7) is facet-defining for clconv(P) if and only if

wr1 = wα1 and vg1 = vβ1.
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Proof. Suppose that wr1 < wα1 . We can attach scenario α1 at the beginning of the

sequence Π to obtain another valid inequality of form (4.7)

2yp +

τR∑
j=1

(wrj − wrj+1
)zrj +

τG∑
j=1

(vgj − vgj+1
)zgj ≥ wr1 + vg1 + (wα1 − wr1)(1− zα1).

The resulting inequality is at least as strong as the original inequality because wα1 >

wr1 and 1− zα1 ≥ 0. We can apply a similar argument for the case where vg1 < vβ1 .

This shows the necessity of the facet conditions.

To see the sufficiency, first consider the feasible points A(∅) and D. It can be

seen that they satisfy inequality (4.7) at equality. Next, we consider the feasible

point C(Ω), which satisfies inequality (4.7) at equality. Now, consider the points

(
wα1+vβ1

2
,
wα1−vβ1

2
, ej), for all j ∈ Ω \ Π. For each j ∈ Ω \ Π, using Observation 18(i)

and the feasibility of the point C(Ω) = (
wα1+vβ1

2
,
wα1−vβ1

2
,0), we conclude that these

points are also feasible. Since j 6∈ Π, these points satisfy (4.7) at equality as well.

Note that the points considered thus far are affinely independent.

Next, for all j ∈ [τ ] \ {1} such that πj ∈ Π, if wπj < w̄πj and vπj < v̄πj , then we

consider the point (
wα1+vβ1

2
,
wα1−vβ1

2
, eπj). For each such j, the feasibility of the associ-

ated point follows from the feasibility of C(Ω) and Observation 18(i). In addition, this

point also satisfies inequality (4.7) at equality, because (wπj−w̄πj)+ = (vπj−v̄πj)+ = 0,

so the left-hand side of inequality (4.7), after substituting this point, becomes

wα1 +vβ1 . Otherwise, if wπj ≥ w̄πj or vπj ≥ v̄πj , then we consider the following feasible

point (
w̄πj−1+v̄πj−1

2
,
w̄πj−1−v̄πj−1

2
,
∑j−1

i=1 eπi +
∑

i∈(Ω\Π) ei) = C
(

(Ω \ Π) \ (∪j−1
i=1{πi})

)
,

for all j ∈ [τ ] \ {1}. Because

j−1∑
i=1

((
wπi − w̄πi

)
+

)
+ w̄πj−1

= max
`∈[τ ]

wπ` = w̄π0 ,
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and
j−1∑
i=1

((
vπi − v̄πi

)
+

)
+ v̄πj−1

= max
`∈[τ ]

vπ` = v̄π0 ,

this point satisfies inequality (4.7) at equality. In addition, these points are affinely

independent from the points listed earlier. Hence, in total, we obtain m + 2 affinely

independent feasible points that satisfy inequality (4.7) at equality. This completes

the proof.

Example 1(continued). Consider the inequality 2yp + z2 + z1 + 12z3 ≥ 14 derived

from Π := 2→ 1→ 3. Because this inequality also satisfies α1 ∈ Π and β1 ∈ Π, it is

facet-defining.

4.2.5 Separation of Inequalities of Form (4.7)

In this section, we give a polynomial-time dynamic programming algorithm to

separate inequality (4.7). Let (ŷp, ŷd, ẑ) be a fractional solution. In order to find the

most violated inequality (4.7), we need to find a sequence Π = {π1 → π2 → · · · →

πτ} that minimizes the value of the term
∑τ

j=1

(
(wπj − w̄πj)+ + (vπj − v̄πj)+

)
ẑπj .

Throughout the rest of our discussion, this value is interpreted as cost. Without loss

of generality, we assume that the sequence Π has length m. We will later show how

the resulting sequence can be shortened to a length τ ≤ m. Here, we only consider

the case where α1 ∈ Π and β1 ∈ Π, because otherwise the resulting inequality can be

strengthened by including α1 and β1.

In the proposed algorithm, the state function is:

Ḡi(j, w̄πi−1
, v̄πi−1

), i ∈ [m], j ∈ Ω, w̄πi−1
≥ wj, v̄πi−1

≥ vj,

which is defined as the minimum cost of the subsequence πi → πi+1 → · · · → πm,

where scenario j is the first scenario in this subsequence (i.e., πi = j), max{wπj : i ≤
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j ≤ m} = w̄πi−1
, and max{vπj : i ≤ j ≤ m} = v̄πi−1

. Note that there are O(m4) many

possible states.

Next, the boundary condition is defined as:

Ḡm(j, w̄πm−1 , v̄πm−1) =

{
(wj + vj)ẑj, if w̄πm−1 = wj, and v̄πm−1 = vj,

+∞, if w̄πm−1 > wj, or v̄πm−1 > vj,

where the state Ḡm(j, w̄πm−1 , v̄πm−1), in which w̄πm−1 > wj or v̄πm−1 > vj is infeasible,

because if scenario j = πm, then we must have w̄πm−1 = wj and v̄πm−1 = vj. The

optimal solution is then given by

min
{
Ḡ1(α1, wα1 , vβ1), Ḡ1(β1, wα1 , vβ1)

}
,

because α1 and β1 are in Π, and without loss of generality, we have wπ1 = wα1 or

vπ1 = vβ1 .

Next, we give the backward transition function

Ḡi(j, w̄πi−1
, v̄πi−1

) =

minj′∈Ω

{
Ḡi+1(j′, w̄πi−1

, v̄πi−1
)
}
,

if w̄πi−1
> wj, and v̄πi−1

> vj,

minj′∈Ω,w̄πi≤wj ,v̄πi≤vj

{
Ḡi+1(j′, w̄πi , v̄πi) + (wj + vj − w̄πi − v̄πi)ẑj

}
,

if w̄πi−1
= wj, and v̄πi−1

= vj,

minj′∈Ω,w̄πi≤wj

{
Ḡi+1(j′, w̄πi , v̄πi−1

) + (wj − w̄πi)ẑj
}
,

if w̄πi−1
= wj, and v̄πi−1

> vj,

minj′∈Ω,v̄πi≤vj

{
Ḡi+1(j′, w̄πi−1

, v̄πi) + (vj − v̄πi)ẑj
}
,

if w̄πi−1
> wj, and v̄πi−1

= vj.

Finally, note that this recursion will not lead to sequences with cycles.

The running time of the transition function is O(m3), so the total running time

of this dynamic programming algorithm is O(m7).
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4.2.6 Special Cases

In this section, we consider variants of polyhedron P . [64] examine a related model

for a two-sided chance-constraint given by

|yd − hj| ≤ qj +Mjzj, ∀j ∈ Ω (4.13a)

z ∈ Bm, (4.13b)

ld ≤ yd ≤ ud, (4.13c)

To simplify notation, let hj = hj + qj, and qj = hj − qj, we obtain the following

equivalent constraints

yd ≤ hj + (ud − hj)zj, ∀j ∈ Ω (4.14a)

yd ≥ qj − (qj − ld)zj, ∀j ∈ Ω (4.14b)

z ∈ Bm, (4.14c)

0 ≤ yd ≤ ud, (4.14d)

Let α and β be the permutations of scenarios such that hα1 ≤ hα2 ≤ · · · ≤ hαm ,

and qβ1 ≥ qβ2 ≥ · · · ≥ qβm , respectively.

When hα1 ≥ qβ1(i.e., we cannot find any pair of scenarios that cannot be satis-

fied at the same time), then conv(P) is simply given by the mixing inequalities for

inequality (4.14a) and (4.14b).

Proposition 25. Let P = {(yp, z) | (yp, z) satisfies (4.14)}. In addition, let T̄ :=

{t̄1, t̄2, . . . , t̄τ̄} be any subset of scenarios such that ht̄1 ≤ ht̄2 ≤ · · · ≤ htτ̄ . Similarly,

let T := {t1, t2, . . . , tτ} be any subset of scenarios such that qt1 ≥ qt2 ≥ · · · ≥ qtτ . If
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hα1 ≥ qβ1, then conv(P) is given by:

yd ≤ hα1 +
ā∑
i=1

(ht̄i+1
− ht̄i)zt̄i , ∀T̄ ⊂ Ω, (4.15a)

yd +

τ∑
i=1

(qti − qti+1
)zti ≥ qβ1 , ∀T ⊂ Ω, (4.15b)

0 ≤ zj ≤ 1, ∀j ∈ Ω (4.15c)

0 ≤ yd ≤ ud, (4.15d)

where ht̄τ̄+1
= ud, and qtτ+1

= −ld.

Proof. The inequalities (4.15a) and (4.15b) are mixing inequalities for (4.14a) and

(4.14b), respectively. Hence, for any extreme point solution of the polytope defined

by (4.15), if the inequalities (4.15a) and (4.15b) are not tight at the same time, then

the solution must be integral.

Suppose that inequalities (4.15a) and (4.15b) are tight at the same time, then the

only possible condition is when wα1 = vβ1 , and z = 0. To see why, suppose that one

of inequalities (4.15a) is tight, then yd = wα1 +
∑ā

i=1(wt̄i+1
−wt̄i)zt̄i ≥ wα1 . Similarly,

if one of inequalities (4.15b) is tight, then yd = vα1 −
∑a

i=1(vti − vti+1
)zti ≤ vβ1 .

If wα1 ≥ vβ1 , then the only possible condition which gives us a feasible yd is when

wα1 = vβ1 , and z = 0. Hence, any extreme point solution of (4.15) must be integral,

which completes the proof.

4.3 Preliminary Computations

In this section, we study the computational performance of the proposed inequality

(4.7) against adding mixing inequalities (4.5) and (4.6) only. In the tested instances,

yp =
∑5

i=1 pixi, yd =
∑5

i=1 dixi, and pi and di follow uniform distribution U [0, 1].

In addition, cp follows U [0, 1], cd follows U [0, 0.5]. Furthermore, vj follows discrete
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Table 4.1: Preliminary Computational Results
Instances DEP & Mix. Ineq. (4.5), (4.6) DEP & Mix.Ineq. (4.5), (4.6) & New Ineq.
ε m (103) Time Gap (%) R.Gap (%) Nodes Time Gap (%) R.Gap (%) Nodes

0.1

1 21 0 20.4 2004 14 0 10.84 1405
2 63 0 16.4 2042 50 0 16.13 992
3 182 0 17.8 12452 151 0 16.38 11324
4 453 0 18.5 33069 366 0 15.5 17081

0.2

1 110 0 22.4 32580 72 0 19.3 17141
2 1429 0 31.1 258478 329 0 26.7 87335
3 1536 0 25.3 226028 729 0 23.6 120003
4 3021(1) 1.12 35.2 400642 2883(2) 1.05 34.2 392047

uniform [20, 40], wj follows discrete uniform [60, 80], for all j ∈ Ω, and each scenario

is equally likely.

In our computational study, we apply the polynomial separation algorithms stud-

ied in [4] for inequalities (4.6) and (4.7), to find the minimum mixing sets S∗ and

T ∗. Although a polynomial separation algorithm for (4.7) is proposed in Section

4.2.5, it is inefficient because its complexity is O(m7). In our computational ex-

periments, we use heuristic to separate inequality (4.7). First, we get the mini-

mum S∗ and T ∗. Then, we generate inequality (4.7) using the following sequence:

Π = t1 → t2 → · · · → tρ → s1 → s2 → · · · → sη, where we append every scenario

in S∗ after set T ∗. It can be seen that the sequence Π generated by this procedure

minimizes the term
∑τ

j=1(wπj − w̄πj)+ẑπj .

All runs were executed on a Windows Server 2012 R2 Data Center with 2.40GHZ

Intel(R) Xeon(R) CPU and 32.0 GB RAM. The algorithms tested in the computa-

tional experiment were implemented using C programming language, with Microsoft

Visual Studio 2012 and CPLEX 12.6. A time limit of one hour is set. The preliminary

computational results are given in Table 4.1.
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In Table 4.1, the column “DEP & Mix. Ineq. (4.5), (4.6)” reports the results

of instances with mixing inequalities (4.5) and (4.6) only, and the column “DEP &

Mix.Ineq. (4.5), (4.6) & New Ineq.” reports the results of instances with both mixing

inequalities, and the proposed new inequalities (4.7). We only add these inequalities

to the root node. In addition, each entry averages the results of three instances.

Since inequalities (4.5) - (4.7) may not be facet-defining if we intersect clconv(P) and

the knapsack constraint (4.2c), in the computation, the number of mixing inequalities

(4.5), (4.6) and new inequalities (4.7) that can be added is limited to 150 each. Based

on the results, these limits are hit by every instance, for all valid inequalities. The

“Time” column reports the average solution time in seconds for the instances that are

solved to optimality within the time limit, and the “Gap” column reports the average

optimality gap for the instances that reach the time limit. If not all three instances are

solved to optimality within time limit, then the number inside the parenthesis under

the “Time” column indicates the number of instances that are solved to optimality

within time limit. The “ - ” sign under the “Time” column indicates that no instance

is solved to optimality within the time limit. In addition, the “R.Gap” column reports

the root node gap for the instances. Furthermore, the “Nodes” column averages the

number of branch-and-bound nodes explored during the process.

According to Table 4.1, the proposed inequalities are computationally beneficial:

the solution time, ending gap, root node gap and number of branch-and-bound nodes

added are generally better for the option with the new inequality (4.7) than the option

without the new inequality (4.7).
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Chapter 5: Robust Multicriteria Risk-Averse Stochastic

Programming Models

5.1 Introduction

This chapter is based on [62]. For many decision making problems under uncer-

tainty, it may be essential to consider multiple possibly conflicting stochastic per-

formance criteria. Stochastic multicriteria decision making problems arise in a wide

range of areas, including financial portfolio optimization, humanitarian relief network

design, production scheduling, and homeland security budget allocation [see, e.g.,

43, 50, 74]. In such problems, we can represent the stochastic outcomes of interest by

a random vector, each dimension of which corresponds to a particular decision crite-

rion. Then, comparing the potential decisions requires specifying preference relations

among random vectors. It is also crucial to compare the random outcomes based on

the decision makers’ risk preferences. These concerns call for optimization models

that incorporate multivariate risk-averse preference relations into constraints and/or

objectives. The class of models, which incorporates the multivariate risk preferences

into the constraints using benchmarking relations, has received some attention in the

recent literature. Alternatively, in this study, we introduce a new class of models with

an objective of optimizing a multivariate risk measure.
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First, we review the existing literature on risk-averse multicriteria optimization

models that feature benchmarking preference relations. In this line of research initi-

ated by [28], two types of benchmarking relations are modeled as constraints: multi-

variate risk-averse relations based on second-order stochastic dominance (SSD) and

conditional value-at-risk (CVaR). These models assume that a benchmark random

outcome vector is available and extend univariate (scalar-based) preference rules to

the multivariate (vector-based) case by using linear scalarization functions. The linear

scalarization corresponds to the weighted-sum approach, which is widely used in mul-

ticriteria decision making [96, 31]; the scalarization coefficients are interpreted as the

weights representing the relative (subjective) importance of each decision criterion.

In many decision making situations, especially those involving multiple decision

makers, it can be difficult to determine a single weight vector. There are many al-

ternative methods to elicit relative weights of each criterion, including multiattribute

weighting, swing weighting and the analytic hierarchy process [for a review, see 99, 87].

However, the relative weights of even a single expert could be very different depend-

ing on which elicitation approach is used as shown in [89] and [19]. The problem of

choosing a single weight vector is further exacerbated if multiple experts are involved.

To address these ambiguity and inconsistency issues, a so-called robust approach con-

siders a collection of weight vectors within a prescribed scalarization set instead of a

single weight vector. Various scalarization sets are considered in the literature such

as the set of all non-negative coefficients, arbitrary polyhedral and arbitrary convex

sets [see, e.g., 28, 42, 45, respectively].

While the majority of existing studies focuses on enforcing multivariate SSD rela-

tions [see, e.g., 28, 42, 45, 29], this modeling approach can be overly conservative in
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practice and leads to very demanding constraints that sometimes cannot be satisfied.

For example, due to this infeasibility issue, [43] solve such an optimization problem

with relaxed SSD constraints. As an alternative, [75] propose to use a multivari-

ate preference relation based on CVaR; their approach is motivated by the fact that

the univariate SSD relation is equivalent to a continuum of CVaR inequalities [27].

The authors consider polyhedral scalarization sets and show that their CVaR-based

methodology can be extended to optimization problems featuring benchmarking con-

straints based on a wider class of coherent risk measures. In our study, we follow the

line of research of [75], which provides sufficient flexibility to obtain feasible problem

formulations and capture a wide range of risk preferences, including risk-neutral and

worst-case approaches.

Optimization models under both types of multivariate preference relations (SSD

and CVaR) are challenging, since they require introducing infinitely many univariate

risk constraints associated with all possible weight vectors in the scalarization set.

For polyhedral scalarization sets, [42] and [75] show that enforcing the corresponding

univariate risk constraint for a finite (exponential) subset of weight vectors is suffi-

cient to model the multivariate SSD and CVaR relations, respectively. These finite

representation results allow them to develop finitely convergent delayed cut genera-

tion algorithms, where each cut is obtained by solving a mixed-integer programming

(MIP) problem. Since solving these MIP formulations is the main computational bot-

tleneck, [55] develop computationally effective solution methods for the cut generation

problems arising in both types of optimization models.

As outlined earlier, the existing literature on risk-averse multicriteria optimization

problems mainly focuses on multivariate risk-constrained models, where a benchmark
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random vector is available and the goal is to find a solution with a multivariate out-

come vector that is preferable to the benchmark (with respect to the multivariate

SSD or CVaR relation). In this chapter, we propose a novel model which does not

require a given benchmark and aims to optimize the risk associated with the decision-

based random vector of outcomes. In this sense, the problem we consider can be

seen as a risk-averse stochastic multiobjective optimization. There are, in general,

two types of approaches to solve stochastic multiobjective problems: 1) to eliminate

the stochastic nature of the problem by replacing each random objective function

with one of its summary statistics; 2) to eliminate the multiobjective structure of

the problem by aggregating the multiple objectives and obtaining a single random

objective function. For recent surveys on these two types of approaches we refer to

[40] and [7]. The first (non-aggregation based) approach results in a traditional deter-

ministic multiobjective problem and requires the identification of multiple (typically

exponential) non-dominated solutions in the efficient frontier. Ultimately, however,

the decision makers need to specify the weights for each criterion to choose among

the non-dominated solutions. In the second (aggregation-based) approach, one can

consider a weighted sum of the multiple objectives and solve the resulting stochastic

problem to obtain a solution. However, the weights to be used in either approach can

be ambiguous and inconsistent due to the presence of conflicting criteria and lack of

consensus among multiple experts. Alternatively, in the second approach of aggre-

gating multiple objectives into one, one can use an aggregated (but non-scalarized)

single objective using stochastic goal programming. This approach considers ran-

dom and/or deterministic goals (benchmark values) for the different objectives and

constructs a single objective based on a function of the deviations from the goals.
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However, a benchmark goal may not be immediately available in all practical ap-

plications. For problems where the relative importance of the criteria is ambiguous

and a benchmark performance vector is not available, we propose to focus on the

worst-case CVaR with respect to the prescribed scalarization set and employ a recent

notion of CVaR robustness in the context of stochastic multicriteria optimization.

In a related line of work, to address the ambiguity and inconsistency in the weights

used to scalarize the multiple criteria in the objective function of a deterministic

optimization problem, [76] and [44] consider minimax type robustness with respect

to a given weight set. Note that such existing robust weighted-sum models assume

that either the problem parameters are deterministic or the decision makers are risk-

neutral. For an overview on minimax robustness for multiobjective optimization

problems we refer to [32]. However, some multicriteria decision-making problems

of recent interest, such as disaster preparedness [44] and homeland security [43],

involve uncertain events with small probabilities but dire consequences. Therefore, it

is crucial to incorporate risk aversion into multicriteria optimization models, which

is the main focus of our study. Note that the risk-averse model we propose in this

chapter features the risk-neutral version as a special case.

In the recent literature, another type of CVaR robustness appears in the univariate

case stemming from the distributional robustness. [108] and [105] consider optimiz-

ing the worst-case CVaR and a wider class of convex risk measures (of a scalar-based

random variable), respectively. However, this line of work assumes that there is am-

biguity in the underlying probability distribution and express the worst-case with

respect to a specified set of distributions. [see also, 109, for Worst-Case CVaR ap-

proximation of joint chance constraints in the distributionally robust optimization
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framework]. In contrast, we assume that the underlying probability distribution is

known but there is ambiguity in the scalarization vector (i.e., relative importance

of multiple criteria) within a polyhedral set; this leads to a worst-case multivariate

CVaR measure.

5.1.1 Our contributions

We incorporate risk aversion into multicriteria optimization models using the con-

cept of multivariate CVaR. We propose a maximin type model optimizing the worst-

case CVaR over a scalarization set. While the worst-case multivariate CVaR measure

was recently introduced in the finance literature to assess the risk of portfolio vectors

[see, e.g., 85], to the best of our knowledge, there is no model or method to optimize

this risk measure. In this chapter, we fill this gap, and give an optimization model

that maximizes the worst-case multivariate CVaR. To demonstrate the adequacy of

the proposed model, we show that the risk measure of interest is coherent in an appro-

priate multivariate sense, and an optimal solution of the model is not dominated in an

appropriate stochastic sense. These two properties are highly desirable in risk-averse

optimization and multicriteria optimization, respectively.

Unlike the risk-neutral version with a polyhedral weight set, in the risk-averse

case, the inner minimization problem involves a concave minimization. Hence, the

problem in general can no longer be solved as a compact linear program [as in 44].

Therefore, we propose a delayed cut generation-based solution algorithm and show

that the cut generation problem can be modeled as a bilinear program that con-

tains the multiplication of the scalarization variables and some binary variables used

for representing CVaR. We demonstrate that the assumptions on the scalarization
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set allow us to employ the reformulation-linearization technique (RLT) [92, 93] to

strengthen the resulting MIP formulations of the cut generation problem. This ob-

servation in turn speeds up the overall solution time considerably as we show in our

extensive computational study.

We observe that the cut generation subproblems in the proposed algorithm have

similar structure with those encountered in solving the related multivariate CVaR-

constrained optimization model. Therefore, in the second part of the chapter, we

show that the RLT technique can be applied to obtain stronger and computationally

more efficient formulations for the cut generation problems arising in optimization

under multivariate CVaR constraints, especially for the equal probability case.

5.1.2 Outline

The rest of the chapter is organized as follows. In Section 5.2, we introduce the new

worst-case CVaR optimization model and provide some analytical results to highlight

the appropriateness of the proposed modeling approach. This section also presents

a cut generation algorithm and effective mathematical programming formulations of

the original optimization problem and the corresponding cut generation problems for

some special cases. We describe how to apply some of these algorithmic features to

the multivariate CVaR-constrained models in Section 5.3. Section 5.4 gives a hybrid

model that includes both the multivariate CVaR-based constraints and objective. We

give a unified methodology that solves the hybrid model, integrating the algorithmic

developments in Sections 5.2 and 5.3. Section 5.5 is dedicated to the computational

study, while Section 5.6 contains concluding remarks.
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5.2 Worst-case CVaR Optimization Model

In our study, we consider a multicriteria decision making problem where d random

performance measures of interest associated with the decision vector z are represented

by the random outcome vector G(z) = (G1(z), . . . , Gd(z)). All random variables in

this chapter are assumed to be defined on some finite probability spaces; we sim-

plify our exposition accordingly. Let (Ω, 2Ω,P) be a finite probability space with

Ω = {ω1, . . . , ωn} and P(ωi) = pi. In particular, denoting the set of feasible deci-

sions by Z, the random outcomes are determined according to the outcome mapping

G : Z ×Ω → Rd, and the random outcome vector G(z) : Ω → Rd is defined by

G(z)(ω) = G(z, ω) for all ω ∈ Ω. For a given elementary event ωi the mapping

gi : Z → Rd is defined by gi(z) = G(z, ωi). Let C ⊂ Rd
+ be a polyhedron of scalar-

ization vectors, each component of which corresponds to the relative importance of

each criterion. We naturally assume, without loss of generality, that C is a subset of

the unit simplex, Cf , i.e., C ⊆ Cf := {c ∈ Rd
+ |

∑
i∈[d] ci = 1}.

Before proceeding to give our definitions and models, we need to make a note of

some conventions used throughout this chapter, and recall a basic definition. The set

of the first n positive integers is denoted by [n] = {1, . . . , n}, while the positive part

of a number x ∈ R is denoted by [x]+ = max(x, 0). We assume that larger values

of random variables are preferred. We quantify the risk associated with a random

variable via a risk measure (specifically, CVaR) where higher values correspond to less

risky random outcomes. In this context, risk measures are often referred to as accept-

ability functionals. Our presentation follows along the lines of [78] and [75]. Recall

that for a univariate random variable X with (not necessarily distinct) realizations

x1, . . . , xn and corresponding probabilities p1, . . . , pn, the conditional value-at-risk at
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confidence level α ∈ (0, 1] is given by [83]

CVaRα(X) = max

{
η − 1

α
E ([η −X]+) : η ∈ R

}
(5.1)

= max{η − 1

α

∑
i∈[n]

piwi : wi ≥ η − xi, ∀ i ∈ [n], w ∈ Rn
+, η ∈ R}

(5.2)

= max
k∈[n]

xk − 1

α

∑
i∈[n]

pi[xk − xi]+

 , (5.3)

where the last equality follows from the well known result that the maximum in

definition (5.2) is attained at the α-quantile, which is known as the value-at-risk

(VaR) at confidence level α (denoted by VaRα(X)) and that VaRα(X) = xk for at

least one k ∈ [n]. For risk-averse decision makers typical choices for the confidence

level are small values such as α = 0.05. Note that CVaRα(X), as defined in (5.1), is

concave in X.

The significance of modeling robustness against the ambiguity and inconsistency

in relative weights motivates us to introduce a new robust optimization model for

the stochastic multicriteria decision making problem of interest. To model the risk

aversion of the decision makers, we use CVaR as the acceptability functional. In

particular, we focus on the recently introduced worst-case multivariate CVaR [85]

with respect to the specified scalarization set C, which we review next.

Definition 3 (Worst-Case Multivariate Polyhedral CVaR). Let X be a d-dimensional

random vector and C ⊆ Cf a set of scalarization vectors. The worst-case multivariate

polyhedral CVaR (WCVaR) at confidence level α ∈ (0, 1] with respect to C is defined

as

WCVaRC,α(X) = min
c∈C

CVaRα(c>X). (5.4)
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Following a risk-averse approach, we propose to optimize WCVaRC,α for a given

confidence level α ∈ (0, 1] and a scalarization set C, and introduce a new class of

robust multicriteria optimization problems of the general form

(W-CVaR) : max
z∈Z

min
c∈C

CVaRα(c>G(z)). (5.5)

We note that the proposed risk-averse W-CVaR problem features the risk-neutral

version, proposed in [44], as a special case when α = 1. Another special case appears in

the literature [31] for a sufficiently small value of α (corresponding to the worst-case);

it optimizes the worst value of a particular weighted sum over the set of scenarios.

This robust version of the weighted sum scalarization problem is clearly a special case

of W-CVaR if we assume that all scenarios are equally likely, α = 1/n, and there is

a single scalarization vector in the scalarization set C.

It is important to note that the major difficulty of the proposed optimization

problem W-CVaR, and the related models in the literature, stems from the presence

of the joint acceptability functional CVaRα(c>G(z)). One might wonder why an

alternative model that maximizes the scalarization of component-wise acceptability

functionals, i.e., maxz∈Z minc∈C
∑

i∈[d] ci CVaRα(Gi(z)) is not preferred. After all, this

approach would lead to more tractable reformulations; for example, the alternative

model can be formulated as a linear program when there is no integrality restriction

on the decision vector z, Z is a polyhedral set, and the mapping gi(z) is linear in z

for all i ∈ [n]. However, such a model completely ignores the correlation between the

random variables Gi(z), i ∈ [d]. The worst α proportion of scenarios with respect to

one criterion would most likely not coincide with the worst α proportion of scenarios

with respect to the other criteria, except for the very trivial case when Gi(z), i ∈ [d],

are comonotone random variables. Therefore, using the aforementioned alternative
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modeling approach could only be justified to capture the multivariate risk in the trivial

case when the worst-case scenarios of the multiple random outcomes coincide, which

does not appear to be the typical situation in optimization with conflicting criteria.

In all other cases, it would be a conservative approximation. In this chapter, we are

interested in exact models and methods that optimize a multivariate risk measure

based on the joint behavior of the random outcomes of interest.

In the remainder of this section, we first provide some analytical results to high-

light the appropriateness of the proposed model (Section 5.2.1). Then, in Section

5.2.2, we develop methods to solve this new class of problems.

5.2.1 Coherence and Stochastic Pareto Optimality

We first analyze the properties of WCVaRC,α as a risk measure and then show that

an optimal solution of W-CVaR is Pareto optimal according to a certain stochastic

dominance relation.

Desirable properties of risk measures have been axiomatized starting with the work

of [3], in which the concept of coherent risk measures for scalar-valued random vari-

ables is introduced. There are several approaches to define the concept of coherency

for the vector-valued random variables [see, e.g., 49, 20, 85, 41]. For example, [41]

introduce set-valued conditional value-at-risk for multivariate random variables; us-

ing such set-valued functionals as risk measures is appropriate for financial market

models with transaction costs [see, e.g., 49]. Our approach is more aligned with the

studies which consider multivariate risk measures that map a random vector to a

scalar value; in particular, we consider the following definition of coherence in the

multivariate case [33].
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We say that a functional ρ : L∞(Ω, 2Ω,P;Rd) → R mapping a d-dimensional

random vector to a real number is coherent in dimension d (in other words, ρ is a

coherent acceptability functional in dimension d, equivalently, that −ρ is a coherent

risk measure in dimension d), if ρ has the following properties (for all d-dimensional

random vectors V,V1,V2):

1. Normalized : ρ(0) = 0.

2. Monotone: V1 ≤ V2 ⇒ ρ(V1) ≤ ρ(V2).

3. Positive homogeneous : ρ(λV) = λρ(V) for all λ > 0.

4. Superadditive: ρ(V1 + V2) ≥ ρ(V1) + ρ(V2).

5. Translation invariant (equivariant): ρ(V + λe) = ρ(V) + λ for all λ ∈ R.

The constant vector e denotes the vector of ones (1, 1, . . . , 1). It is easy to see

that for d = 1 the definition coincides with the notion of coherence for scalar-valued

random variables [3]; we remind the reader that we provide the definition for accept-

ability functionals, along the lines of [78]. In monotonicity property we consider the

usual component-wise ordering; i.e., V1 ≤ V2 if V1(j) ≤ V2(j) for all j ∈ [d].

The next result indicates that the proposed risk measure is of particular impor-

tance since it satisfies the desirable properties axiomatized in the above definition of

coherence.

Proposition 26. Consider a one-dimensional mapping ρ and a scalarization set

C ⊆ Cf , and let ρC(X) = min
c∈C

ρ(c>X) for a d-dimensional random vector X. If

ρ is a coherent acceptability functional (-ρ is a coherent risk measure), then ρC(X)

denoting the worst-case functional in dimension d (with respect to C) is also coherent.
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Proof. It is easy to verify that ρC is normalized, monotone, and positive homogeneous.

To show that ρC is superadditive, let us consider two d-dimensional random vectors

V1 and V2. Then, by the supperadditivity of ρ and the minimum operator, we have

ρC(V1 + V2) = min
c∈C

ρ(c>(V1 + V2)) ≥ min
c∈C

(ρ(c>V1) + ρ(c>V2)) ≥ min
c∈C

ρ(c>V1) +

min
c∈C

ρ(c>V2) = ρC(V1) + ρC(V2). The translation invariance of ρC follows from the

assumptions that
∑

j∈[d] cj = 1 and ρ is translation invariant: for any constant λ,

ρC(V + λe) = min
c∈C

ρ(c>(V + λe)) = min
c∈C

ρ(c>V + λ) = min
c∈C

ρ(c>V) + λ = ρC(V) +

λ.

We note that one can also consider a stronger notion of translation invariance in

condition 5 of the above definition of coherence; for example, [20] state it as follows:

ρ(V+λej) = ρ(V)+λ for all j ∈ [d] and λ ∈ R, where ej is the standard basis vector

(1 in the jth component, 0 elsewhere). [85] claims that ρC(X) is coherent when ρ is a

coherent acceptability functional, even with the above mentioned stronger translation

invariance property. However, this claim is not correct even for the unit simplex (C =

Cf ), as we explain next. Since ρ(c>V) is concave in c, the minimum in the definition of

ρC(V) is attained at an extreme point of C, i.e., ρC(V) = min{ρ(V1), ρ(V2), . . . , ρ(Vd)}

if C is a unit simplex. Suppose that ρ(Vj), j ∈ [d], are not all equal, which implies

that there exists an index j∗ ∈ [d] such that ρC(V) < ρ(Vj∗). Then, for any λ > 0, by

the monotonicity of ρ, we have ρ(V + λej∗) = min{minj∈[d]\{j∗} ρ(Vj), ρ(Vj∗ + λ)} =

minj∈[d]\{j∗} ρ(Vj) = ρC(V) < ρ(Vj∗) < ρ(Vj∗ + λ) = ρ(Vj∗) + λ. This provides an

example where ρC(V + λej) 6= ρC(V) + λ for all j ∈ [d] and λ ∈ R.

We next discuss the Pareto efficiency/optimality of the solutions of W-CVaR. For

deterministic multiobjective optimization problems, the concept of Pareto optimal-

ity is well-known and it defines a dominance relation to compare the solutions with
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respect to the multiple criteria. It is natural to consider the “non-dominated” solu-

tions as potentially good solutions. Here, we recall two widely-used Pareto optimality

concepts:

• A point z∗ ∈ Z is called Pareto optimal if there exists no point z ∈ Z such that

Gj(z) ≥ Gj(z
∗) for all j ∈ [d] and Gj(z) > Gj(z

∗) for at least one index j ∈ [d].

(5.6)

• A point z∗ ∈ Z is called weakly Pareto optimal if there exists no point z ∈ Z

such that

Gj(z) > Gj(z
∗) for all j ∈ [d]. (5.7)

In contrast to the deterministic case, in a stochastic context there is no single

widely-adopted concept of Pareto optimality. The challenge stems from the stochas-

ticity of the criteria: G1(z), . . . , Gd(z) are in general random variables for any decision

vector z ∈ Z, and one should specify how to compare solutions in terms of these ran-

dom objective criteria. To this end, in this chapter, we use the stochastic dominance

rules and introduce stochastic dominance-based Pareto optimality concepts below for

stochastic multiobjective optimization problems. For k ∈ N0 = {0, 1, . . .}, let us de-

note the kth degree stochastic dominance (kSD) relation by �(k); we refer the reader

to Appendix A for a brief review of these relations [see, also, 77].

Definition 4 (Stochastic dominance-based Pareto Optimality). A point z∗ ∈ Z is

called kSD-based Pareto optimal for some k ∈ N0 if there exists no point z ∈ Z such

that

Gj(z) �(k) Gj(z
∗) for all j ∈ [d] and Gj(z) �(k) Gj(z

∗) for at least one index j ∈ [d].

(5.8)

110



Definition 5 (Stochastic dominance-based Weak Pareto Optimality). A point z∗ ∈ Z

is called weakly kSD-based Pareto optimal for some k ∈ N0 if there exists no point

z ∈ Z such that

Gj(z) �(k) Gj(z
∗) for all j ∈ [d]. (5.9)

These stochastic Pareto optimality concepts are based on comparing the random

variables Gj(z) and Gj(z
∗) (in relations (5.6) and (5.7)) using a univariate stochastic

dominance rule for each criterion j ∈ [d]. Such a component-wise dominance relation

provides a natural and an intuitive approach for extending the concept of traditional

Pareto optimality to the stochastic case. A closely related but slightly different no-

tion of efficiency based on the realizations under each scenario is presented in [7].

Alternatively, one can consider a multivariate stochastic dominance relation as in [8].

However, multivariate stochastic dominance relations are very restrictive [see, e.g.,

72] and finding a non-dominated solution according to such a multivariate relation

may not even be possible. For other generalizations of the Pareto efficiency concept

to multiobjective stochastic problems we refer to [7].

We next focus on the zeroth-order stochastic dominance (ZSD) rule (also known as

statewise dominance) defined in Appendix A, and present a close analogue of Theorem

2.2 in [44], which provides some managerial insights about our new W-CVaR model.

Proposition 27. Let C ⊆ Cf and z∗ be an optimal solution of W-CVaR.

1. z∗ is a weakly ZSD-based Pareto optimal solution of W-CVaR.

2. If for every c ∈ C we have cj > 0 for all j ∈ [d], then z∗ is an ZSD-based Pareto

optimal solution of W-CVaR.
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3. If z∗ is a unique optimal solution of W-CVaR, then it is an ZSD-based Pareto

optimal solution of W-CVaR.

Proof. Let us assume for contradiction that z∗ is not a weakly ZSD-based Pareto

optimal solution of W-CVaR. Then there exists ẑ ∈ Z such that Gj(ẑ, ωi) > Gj(z
∗, ωi)

for all i ∈ [n] and j ∈ [d]. By the non-negativity of c ∈ C and the observation that

ck > 0 for at least one index k ∈ [d] for every c ∈ C, we have
∑

j∈[d] cjGj(ẑ, ωi) >∑
j∈[d] cjGj(z

∗, ωi) for all i ∈ [n] and c ∈ C. Then, by the monotonicity of CVaR it is

easy to see that CVaRα

(
c>G(ẑ)

)
> CVaRα

(
c>G(z∗)

)
holds for any α ∈ (0, 1] and

c ∈ C. Therefore, the following inequalities hold and result in a contradiction:

max
z∈Z

min
c∈C

CVaRα

(
c>G(z)

)
≥ min

c∈C
CVaRα

(
c>G(ẑ)

)
> min

c∈C
CVaRα(c>G(z∗)) = max

z∈Z
min
c∈C

CVaRα(c>G(z)).

This completes the proof of part 1. The proofs of parts 2 and 3 follow from similar

arguments.

We would like to emphasize that the W-CVaR model keeps the stochastic nature

of the weighted-sum, and is novel in terms of incorporating the risk associated with

the inherent randomness. Therefore, it calls for the development of stochastic Pareto

efficiency concepts discussed above. In contrast, in some of the existing stochastic

multiobjective optimization models, summary statistics such as expected value, CVaR

or variance are used as the multiple criteria [see, for example, 50, for a stochastic port-

folio optimization problem with three criteria: expected return, CVaR and a liquidity

measure]. Using these summary statistics, the resulting problem becomes a deter-

ministic multicriteria optimization problem for which the well-defined deterministic

Pareto optimality concepts can be applied. One method of obtaining Pareto optimal

solutions is to scalarize these multiple criteria using a single weight vector in the
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scalarization set C. By heuristically searching over C, multiple solutions in the deter-

ministic efficient frontier are generated, and then an interactive method is employed

for the decision makers to choose among these solutions. To illustrate this approach,

consider a modification of the portfolio optimization problem in [50], where G1(z) is

the uncertain return of the portfolio and G2(z) is a random liquidity measure. Sup-

pose that two criteria are considered: CVaRα(G1(z)) and CVaRα(G2(z)). Thus, for a

fixed c ∈ C, the problem solved is maxz∈Z{c1 CVaRα(G1(z)) + c2 CVaRα(G2(z))}. In

contrast, in our model, we search over c ∈ C, such that the worst-case multivariate

CVaR is maximized: maxz∈Z minc∈C{CVaRα(c1G1(z) + c2G2(z))}, eliminating the

need for an interactive approach that may be prone to conflict among decision mak-

ers. Note also that the term in the minimization is different from the objective of the

interactive approach, because the order of CVaR and scalarization operations cannot

be changed. Only for the special case that the decision makers are risk-neutral (i.e.,

α = 1), the order of CVaR (expectation) and scalarization operations can be changed.

In addition, the interactive approach only considers a single weight vector at a time.

Although it is not directly related, we would like to mention that the concept of

Pareto optimality in a different decision-making under uncertainty setting has been

studied by [47]. The authors focus on the classical robust optimization (RO) frame-

work and aim to find robustly optimal solutions (so-called Pareto robustly optimal

solutions), which perform as well as possible across all uncertainty scenarios. To

highlight the differences from our setup, recall that in RO it is assumed that the

uncertain parameters belong to particular uncertainty sets, and decisions are made

to optimize the worst-case performance among all possible uncertainty realizations

without considering the underlying probability distributions. Moreover, [47] do not
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consider a multicriteria optimization problem, they borrow and adapt the correspond-

ing concept of Pareto optimality by considering RO as a multiobjective optimization

problem with an infinite number of objectives, one for each uncertainty scenario. For

robust optimization in general the interested reader may refer to [10, 9] and [15].

5.2.2 Solution Methods

In this section, we give reformulations and solution methods for W-CVaR. We

also provide improved formulations for the important special case when each scenario

has an equal probability. Before proceeding to describe the solution methods we first

show that W-CVaR is a convex program under certain conditions.

Proposition 28. If Z is a convex set and Gj(z) is concave in z ∈ Z for all j ∈ [d],

then W-CVaR is a convex program.

Proof. It is sufficient to prove that the mapping z 7→ min
c∈C

CVaRα(c>G(z)) is concave.

Recall that by our assumptions cj is non-negative and Gj(z) is concave in z ∈ Z for

all j ∈ [d] and c ∈ C. Since any non-negative combination of concave functions is

also concave, the mapping z 7→ c>G(z) is concave for any c ∈ C. Then, by the

monotonicity and concavity of CVaR, the mapping z 7→ CVaRα(c>G(z)) is concave,

and the claim follows from the superadditivity of the minimum operator.

We first observe that the inner optimization problem in (5.5) is a concave min-

imization over a convex set, which implies that an optimal solution of the inner

problem occurs at an extreme point of C. Let ĉ1, . . . , ĉN be the extreme points of C.
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Then, using the definition of CVaR given in (5.2), we can formulate (5.5) as follows:

max ψ (5.10a)

s.t. ψ ≤ η` −
1

α

∑
i∈[n]

piw`i, ∀ ` ∈ [N ], i ∈ [n] (5.10b)

w`i ≥ η` − (ĉ`)>gi(z), ∀ ` ∈ [N ], i ∈ [n] (5.10c)

z ∈ Z, w ∈ RN×n
+ , η ∈ RN , ψ ∈ R. (5.10d)

Note that if the mapping gi(z) is linear in z for all i ∈ [n], Z is a polyhedral set,

and z is a continuous decision vector, then the formulation (5.10) is a linear program.

Under certain assumptions on the scalarization set, the number of extreme points of

C may be polynomial (we will discuss these cases in Section 5.2.2), and hence the

resulting formulation (5.10) is compact. However, in general, the number of extreme

points, N , is exponential. Therefore, we propose a delayed cut generation algorithm

to solve (5.10). We start with an initial subset of scalarization vectors ĉ1, · · · , ĉL and

solve an intermediate relaxed master problem (RMP), which is obtained by replacing

N with L in (5.10). Solving the RMP provides us with a candidate solution denoted

by (z∗, ψ∗,w∗, η∗). At each iteration, we solve a cut generation problem:

(CutGen−Robust) : min
c∈C

CVaR(c>G(z∗)).

If the optimal objective function value of the cut generation problem is not smaller

than ψ∗, then the current solution (z∗, ψ∗,w∗, η∗) is optimal. Otherwise, the

optimal solution ct at iteration t gives a violated inequality of the form ψ ≤

CVaRα((ct)>G(z)). We augment the RMP by setting L← L+ 1, and ĉL+1 ← ct.

Observe that in the multivariate CVaR-constrained problems studied in [75] and

[55], given a random benchmark vector Y, the cut generation problems are given
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by minc∈C CVaR(c>G(z∗)) − CVaR(c>Y) (we will revisit this cut generation prob-

lem in Section 5.3). Due to the similar structure, we can use the formulations

and enhancements given in [75] and [55] to formulate the cut generation problem

(CutGen−Robust) as a mixed-integer program. Let X = G(z∗) with the realiza-

tions x1, . . . ,xn (i.e., xi = gi(z), i ∈ [n]). The representation of CVaR in (5.3) leads

to the following formulation of (CutGen−Robust):

min µ (5.11a)

s.t. µ ≥ c>xk −
1

α

∑
i∈[n]

pi[c
>xk − c>xi]+, ∀ k ∈ [n], (5.11b)

c ∈ C, µ ∈ R. (5.11c)

The shortfall terms [c>xk−c>xi]+ in inequalities (5.11b) present a computational

challenge. Introducing additional variables and constraints, we can linearize these

terms using big-M type of constraints, and obtain an equivalent MIP formulation

similar to the one proposed by [75] for the cut generation problems arising in opti-

mization under multivariate polyhedral CVaR constraints. However, the big-M type

constraints may lead to weak LP relaxation bounds and computational difficulties.

In order to deal with these difficulties, [55] propose an improved model based on a

new representation of VaRα, which we describe next. Let

Mik = max{max
c∈C

{c>xk − c>xi}, 0} and Mki = max{max
c∈C

{c>xi − c>xk}, 0}.
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Also let Mi∗ = maxk∈[n] Mik and M∗i = maxk∈[n] Mki for i ∈ [n], and M̃j = max{cj :

c ∈ C} for j ∈ [d]. Then, the following inequalities hold for any c ∈ C:

z ≤ c>xi + βiMi∗, ∀ i ∈ [n] (5.12a)

z ≥ c>xi − (1− βi)M∗i, ∀ i ∈ [n] (5.12b)

z =
∑
i∈[n]

ξ>i xi, (5.12c)

ξij ≤ M̃jui, ∀ i ∈ [n], j ∈ [d] (5.12d)∑
i∈[n]

ξij = cj, ∀ j ∈ [d] (5.12e)

∑
i∈[n]

piβi ≥ α, (5.12f)

∑
i∈[n]

piβi −
∑
i∈[n]

piui ≤ α− ε, (5.12g)

∑
i∈[n]

ui = 1, (5.12h)

ui ≤ βi, ∀ i ∈ [n] (5.12i)

β, u ∈ {0, 1}n, ξ ∈ Rn×d
+ , z ∈ R, (5.12j)

if and only if z = VaRα(c>X). Here ε is a sufficiently small positive constant to

ensure that the constraint (5.12g) is equivalent to the strict inequality
∑

i∈[n] piβi −∑
i∈[n] piui < α. Denoting the finite set of all non-zero probabilities of events by

K =
{
P(S) : S ∈ 2Ω, P(S) > 0

}
it is easy to see that ε can be taken as any number

that satisfies 0 < ε < min {α− κ : κ ∈ K ∪ {0}, κ < α}. For example, for the

equiprobable case, we let 0 < ε < 1
n
. The logical variable ui = 1 only if the i-th

scenario corresponds to VaRα(c>X), and the additional variables ξil = cl only when

ui = 1, for all i ∈ [n] and l ∈ [d].
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Based on the representation of VaRα(c>X) given in (5.12), we propose an alter-

native formulation for (CutGen−Robust):

min z − 1

α

∑
i∈[n]

pivi (5.13a)

s.t. (5.12a)− (5.12i), (5.13b)

vi − δi = z − c>xi, ∀ i ∈ [n] (5.13c)

vi ≤Mi∗βi, ∀ i ∈ [n] (5.13d)

δi ≤M∗i(1− βi), ∀ i ∈ [n] (5.13e)

β, u ∈ {0, 1}n, ξ ∈ Rn×d
+ , z ∈ R, (5.13f)

c ∈ C, v, δ ∈ Rn
+. (5.13g)

In this formulation, it is guaranteed that vi = [z − c>xi]+ and δi = [c>xi − z]+ for

i ∈ [n].

Equal Probability Case

To keep our exposition simple, we consider confidence levels of the form α = k/n

for some k ∈ [n], and refer to [75] for an extended MIP formulation with an arbitrary

confidence level. In this case, an alternative formulation of (CutGen−Robust),

adapted from [75], is given by the bilinear program

min
1

k

∑
i∈[n]

∑
j∈[d]

xijcjβi

s.t.
∑
i∈[n]

βi = k,

β ∈ [0, 1]n, c ∈ C.

Note that we can relax the integrality of β in this formulation, which follows from the

observation that in the special case of equal probabilities and α = k/n, CVaRα(c>X)
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corresponds to the weighted sum of the smallest k out of n realizations (c>xi, i ∈

[n]). Using McCormick envelopes [69], we can linearize the bilinear terms cjβi in the

objective function. Introducing the additional variables γij = cjβi, for all i ∈ [n] and

j ∈ [d], an equivalent MIP formulation is stated as:

min
1

k

∑
i∈[n]

∑
j∈[d]

xijγij (5.14a)

s.t. γij ≤ cj, ∀ i ∈ [n], j ∈ [d] (5.14b)

γij ≥ cj − M̃j(1− βi), ∀ i ∈ [n], j ∈ [d] (5.14c)

γij ≤ M̃jβi, ∀ i ∈ [n], j ∈ [d] (5.14d)∑
i∈[n]

βi = k, (5.14e)

β ∈ {0, 1}n, γ ∈ Rn×d
+ , c ∈ C. (5.14f)

For i ∈ [n], if βi = 1, then constraint (5.14b) together with (5.14c) enforces that

γij = cj, for all j ∈ [d]. For i ∈ [n], if βi = 0, then constraint (5.14d) enforces γij to

be 0.

Let P := {(γ, β, c) ∈ Rn×d
+ × {0, 1}n × C | γ = βc>,

∑
i∈[n] βi = k}. Then we have

minc∈C CVaRα(c>X) = min(γ,β,c)∈P
∑

i∈[n]

∑
j∈[d] xijγij. Note that the structure of P

also appears in pooling problems [c.f., 39]. The next proposition gives the convex hull

of P for a special choice of C using the reformulation-linearization technique (RLT)

[92].

Proposition 29. ([93, 39]) If C is a unit simplex (i.e., C = Cf), then the convex

hull of P is described by:

conv(P ) ={(γ, β, c) ∈ Rn×d
+ × [0, 1]n × C | γij ≤ cj, i ∈ [n], j ∈ [d], γij = βi, i ∈ [n],

γij = kcj, j ∈ [d]}.
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Using the fact that C ⊆ Cf and Proposition 29, we can strengthen the formulation

(5.14) as follows:

min
1

k

∑
i∈[n]

∑
j∈[d]

xijγij (5.15a)

s.t. γij ≤ cj, ∀ i ∈ [n], j ∈ [d] (5.15b)∑
j∈[d]

γij = βi, ∀ i ∈ [n] (5.15c)

∑
i∈[n]

γij = kcj, ∀ j ∈ [d] (5.15d)

(5.14c)− (5.14d), (5.15e)

c ∈ C, β ∈ {0, 1}n, γ ∈ Rn×d
+ . (5.15f)

Note also that if C is the unit simplex (C = Cf ), then the integrality restrictions on

β can be relaxed in (5.15) and the cut generation problem is an LP. However, recall

that if C is the unit simplex, then the extreme points of C are polynomial, given by

ĉ` = e` for ` ∈ [d]. Hence, in this case, the overall problem formulation (5.10) itself

is a compact LP when the mapping gi(z) is linear in z for all i ∈ [n], and Z is a

polyhedral set without integrality restrictions, even under general probabilities.

Furthermore, using the additional information on the structure of the scalarization

polytope C and the RLT technique, we can obtain stronger formulations. Suppose

that C = {c ∈ Rd
+ |Bc ≥ b}, for a given r× d matrix B and b = (b1, . . . , br). Let B`
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be the `th row of B. Then, we can strengthen the formulation (5.14) as follows:

min
1

k

∑
i∈[n]

∑
j∈[d]

xijγij (5.16a)

s.t.
∑
j∈[d]

B`jγij − b`βi ≤ B`c− b`, ∀ i ∈ [n], ` ∈ [r] (5.16b)

∑
j∈[d]

∑
j∈[d]

B`jγij − b`βi ≥ 0, ∀ i ∈ [n], ` ∈ [r] (5.16c)

∑
i∈[n]

(
∑
j∈[d]

B`jγij − b`βi) = k(B`c− b`), ∀ ` ∈ [r] (5.16d)

c ∈ C, β ∈ {0, 1}n, γ ∈ Rn×d
+ . (5.16e)

It is known that if C = {c ∈ Rd
+ |Bc ≥ b} is a d-simplex, then conv(P ) =

{(γ, β, c) ∈ Rn×d
+ × [0, 1]n × C |(5.16b)− (5.16d)} [39]. Therefore, the LP relaxation

of (5.16) is integral in this case.

Remark 6. Note that if M̃j = 1 for all j ∈ [d] (as is the case when C is the unit

simplex), then constraints (5.14c)-(5.14d) are implied by (5.15c)-(5.15d), and can be

dropped from the formulation. However, for the situations where M̃j < 1 for some

j ∈ [d], the constraints (5.14c)-(5.14d), obtained by applying the RLT technique to

the constraints cj ≤ M̃j, j ∈ [d], can be useful to reduce the solution time.

Remark 7. It is also possible to obtain stronger formulations of (5.12) by applying

the RLT technique for the general probability case. In particular, the RLT procedure

based on the constraint
∑

i∈[d] ci = 1 provides the following valid inequality

∑
j∈[d]

ξij = ui, (5.17)

which can be added to the formulation (5.12).

Next we consider an important special case of C that applies to multicriteria opti-

mization when certain criteria are deemed more important than others. In particular,
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we study the case where C contains ordered preference constraints that take the form

C = {c ∈ Rd
+ |

∑
j∈[d]

cj = 1, cj ≥ cj+1, ∀ j ∈ [d− 1]}. (5.18)

If the set C has the ordered preference structure (5.18), then we are able to obtain

the convex hull of P , which is stated in the following result.

Proposition 30. If C is given by (5.18), then the convex hull of P is described by:

conv(P ) = {(γ, β, c) ∈ Rn×d
+ × [0, 1]n × C | (5.15c), (5.15d), γij ≥ γij+1,

γij − γij+1 ≤ cj − cj+1, i ∈ [n], j ∈ [d− 1]}.

Proof. First, we show that the extreme points of C are given by

ĉ1 = (1, 0, 0, . . . , 0)

ĉ2 = (
1

2
,
1

2
, 0, . . . , 0)

ĉ3 = (
1

3
,
1

3
,
1

3
, . . . , 0)

...

ĉd = (
1

d
,

1

d
,

1

d
, . . . ,

1

d
).

Let c̃ = (c̃1, c̃2, . . . , c̃d) be a feasible point of C, by definition, we have c̃1 ≥ c̃2 ≥

· · · ≥ c̃d. First, we show that c̃j ≤ 1
j
, for all j ∈ [d]. Suppose that there exists j ∈ [d]

such that c̃j >
1
j
, then we have

∑j
i=1 c̃i ≥ jc̃j > 1 since c̃i ≥ cj, for all i ∈ [j − 1];

this results in a contradiction. Hence, for any feasible point, we have c̃j ≤ 1
j
, for

all j ∈ [d]. Next, let λj = j(c̃j − c̃j+1), for all j ∈ [d], where c̃d+1 = 0. Note that

0 ≤ λj ≤ 1, for all j ∈ [d], and
∑d

j=1 λj = 1. We have c̃ =
∑d

j=1 λj ĉ
j, which indicates

that any feasible point c̃ can be represented as a convex combination of the points

ĉj, for all j ∈ [d]. As a result, C is a (d − 1)-simplex, and the proposition follows

similarly from [39].
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5.2.3 Finite Convergence

In this section, we study the convergence of the proposed cut generation algorithm.

Proposition 31. The delayed cut generation algorithm described in Section 5.2.2 to

solve W-CVaR is finitely convergent.

Proof. We show that given a solution to RMP we can find an optimal solution to

the cut generation subproblem, which is an extreme point of C. As a result, the

proposed cut generation algorithm is finitely convergent, because there are finitely

many extreme points of C. For the general probability case, we can obtain such a

vertex optimal solution by using the following method: suppose that we solve one

of the MIP formulations of (CutGen−Robust) and obtain an optimal solution c∗.

Let π be a permutation describing a non-decreasing ordering of the realizations of the

random vector c∗>X, i.e., c∗>xπ(1) ≤ · · · ≤ c∗>xπ(n), and define

k∗ = min

k ∈ [n] :
∑
i∈[k]

pπ(i) ≥ α

 and K∗ = {π(1), . . . , π(k∗ − 1)}.

Then, we can obtain the desired vertex solution ĉ by finding a vertex optimal solution

of the following linear program:

min
c∈C

1

α

[∑
i∈K∗

pic
>xi +

(
α−

∑
i∈K∗

pi

)
c>xπ(k∗)

]
.

This LP relies on the subset-based representation of CVaR [Theorem 1, 75]. The

feasible set is the polytope C, so there exists a vertex optimal solution ĉ. It is easy

to show that ĉ is also an optimal solution of (CutGen−Robust).

Furthermore, when equal probability is assumed, by solving the alternative cut

generation formulation (5.16) using a branch-and-bound (B&B) method, we are guar-

anteed to obtain a desired vertex optimal solution c without solving an additional
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LP. To see this, note that once the LP relaxation at a B&B node results in an integral

β, the only remaining constraints enforce c ∈ C.

5.3 Multivariate CVaR-constrained Optimization Model

In this section, we consider a related class of multicriteria decision making prob-

lems, where the decision vector z is selected from a feasible set Z and associated

random outcomes are determined by the outcome mapping G : Z ×Ω → Rd. We

consider an arbitrary objective function f : Z 7→ R and assume that a d-dimensional

benchmark random vector Y is available. We aim to find the best decision vector z

for which the random outcome vector G(z) is preferable to the benchmark Y with

respect to the multivariate polyhedral CVaR preference relation. Such multivariate

CVaR-constrained optimization problems are introduced in [75]. Given a polyhedron

of scalarization vectors C ⊆ Cf and a confidence level α ∈ (0, 1], the problem is of

the general form:

max f(z) (5.19a)

s.t. CVaRα(c>G(z)) ≥ CVaRα(c>Y), ∀ c ∈ C (5.19b)

z ∈ Z. (5.19c)

The benchmark random vector can be defined on a different probability space, but

in practical applications it often takes the form Y = G(z̄), where z̄ is a benchmark

decision.

Observe that (5.19b) contains infinitely many inequalities. [75] show that these

inequalities can be replaced with those for a finite subset of scalarization vectors cor-

responding to the vertices of a higher dimensional polyhedron. The authors propose
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a delayed cut generation algorithm, which involves the solution of a relaxed mas-

ter problem (RMP-B) to obtain a candidate solution ẑ ∈ Z, and the following cut

generation subproblem:

(CutGen−Benchmark) : min
c∈C

CVaRα(c>X)− CVaRα(c>Y), (5.20)

where X = G(ẑ). If the optimal objective function value of

(CutGen−Benchmark) is non-negative, then ẑ is optimal, otherwise we ob-

tain a solution c∗ ∈ C such that the corresponding CVaR inequality in (5.19b) is

violated. We augment RMP-B by adding this violated CVaR constraint and resolve

it. According to [75], the main bottleneck of this delayed cut generation algorithm is

solving the cut-generation problem (5.20), since it is generally nonconvex. Therefore,

the main focus of this section is the cut generation problem. Throughout the rest of

this chapter, we assume that Y is a random vector with (not necessarily distinct)

realizations y1, . . . ,ym and corresponding probabilities q1, . . . , qm. As before, we let

gi(ẑ) = xi = (xi1, . . . , xid) for all i ∈ [n].

To solve (5.20), we first need to represent CVaRα(c>X) and CVaRα(c>Y) ap-

propriately. Using the LP representation (5.2) for CVaRα(c>Y), we can reformulate

(CutGen−Benchmark) as

min CVaRα(c>X)− η +
1

α

∑
l∈[m]

qlwl

s.t. wl ≥ η − c>yl, ∀ l ∈ [m] (5.21a)

w ∈ Rm
+ , η ∈ R, c ∈ C. (5.21b)

The minimization of the concave term CVaRα(c>X) causes computational difficulties.

For this cut generation problem, [55] introduce a MIP formulation based on the VaR
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representation of CVaR (see (5.12)), which is given by

min z − 1

α

∑
i∈[n]

pivi − η +
1

α

∑
l∈[m]

qlwl (5.22a)

s.t. (5.13b)− (5.13e), (5.21a), (5.22b)

β, u ∈ {0, 1}n, ξ ∈ Rn×d
+ , z, η ∈ R, (5.22c)

c ∈ C, v, δ ∈ Rn
+, w ∈ Rm

+ . (5.22d)

The authors demonstrate that this formulation, which we refer to as

(MIP−CVaR), along with computational enhancements, outperforms existing

models for (CutGen−Benchmark) under general probabilities. In this section,

we consider the special case of equal probabilities, and propose strengthened MIP

formulations for the cut generation problems using the RLT technique.

5.3.1 Equal Probability Case

As in Section 5.2.2, to keep our exposition simple, we consider confidence levels

of the form α = k/n and assume that all the outcomes of X are equally likely. For

this special case, similar to the development in Section 5.2.2, [75] give the equivalent

formulation below:

min
1

k

∑
i∈[n]

γ>i xi − η +
1

α

∑
l∈[m]

qlwl (5.23a)

s.t. (5.14b)− (5.14e), (5.21a), (5.23b)

β ∈ {0, 1}n, γ ∈ Rn×d
+ , c ∈ C, w ∈ Rm

+ , η ∈ R. (5.23c)

As before, M̃j = max{cj : c ∈ C}. Suppose that the vertices of the polytope

C is known and given as {ĉ1, . . . , ĉN}. Then, we can simply set M̃j = max
`∈[N ]

ĉ`j.

Furthermore, we can use the RLT-based strengthening for (5.14b)-(5.14e) and obtain
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the following MIP formulation:

(MIP− Special) : min
1

k

∑
i∈[n]

γ>i xi − η +
1

α

∑
l∈[m]

qlwl (5.24a)

s.t. (5.15b)− (5.15e), (5.21a), (5.24b)

β ∈ {0, 1}n, γ ∈ Rn×d
+ , c ∈ C, (5.24c)

w ∈ Rm
+ , η ∈ R. (5.24d)

In addition, we can use the RLT technique to further strengthen this formulation

using any additional constraints in C as in (5.16); we will provide some numerical

results on the performance of such strengthened versions in the computational study

(Section 5.5.2).

From Proposition 29, we can obtain the minimum of CVaRα(c>X) by solving a

linear program when C is a d-simplex. However, even for the special case of unit

simplex, constraints (5.15b)–(5.15d) are not sufficient to describe the convex hull

of the set of feasible solutions to (5.24), due to the additional constraints (5.21a)–

(5.21b) representing CVaRα(c>Y). To show this and develop potentially stronger

MIP formulations, we derive a class of valid inequalities that describes facets of the

convex hull of feasible solutions to (5.24d).

Let

S := {(γ, c, β, η,w) ∈ Rn×d
+ × Rd

+ × {0, 1}n × R× Rm
+ | γ = βc>,

∑
j∈[d]

cj = 1,

∑
i∈[n]

βi = k, c>yl ≥ η − wl, ∀ l ∈ [m]}.

Proposition 32. For any i ∈ [n], s ∈ [m], and t ∈ [m] \ {s}, the inequality

c>ys −
∑
j∈[d]

(ysj − ytj)γij ≥ η − ws − wt, (5.25)
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is valid for S. In addition, inequality (5.25) defines a facet of conv(S) if and only if

s ∈ [m], t ∈ [m] \ {s} are such that ysj < ytj and ysi > yti for some i, j ∈ [d].

Proof. Suppose that βi = 0, then γij = 0 for all j ∈ [d]. Hence, inequality (5.25)

reduces to

c>ys ≥ η − ws − wt,

which is valid since wt ≥ 0. Otherwise, suppose that βi = 1, then γij = cj for all

j ∈ [d], and inequality (5.25) reduces to

c>yt ≥ η − wt − ws,

which is valid, because ws ≥ 0, for all s ∈ [m]. We provide the facet proof in Appendix

B (see Proposition 34).

Note that applying the RLT procedure directly to the additional constraints

c>yl ≥ η − wl, ∀ l ∈ [m], (5.26)

in the set S, would lead to additional bilinear terms ηβi and wlβi that will need to

be linearized by introducing additional variables and big-M constraints. The pro-

posed inequalities (5.25) can also be obtained by an indirect application of the RLT

procedure as follows. Given i ∈ [n], s ∈ [m], and t ∈ [m] \ {s}, multiply constraint

(5.26) for l = s with (1− βi), constraint (5.26) for l = t with βi, constraint 0 ≥ −ws

with βi and constraint 0 ≥ −wt with (1 − βi), and sum the resulting inequalities

up to obtain inequality (5.25) (the undesirable nonlinear terms cancel out with this

selection of multipliers). It is interesting to note that such an application of RLT

yields facet-defining inequalities as claimed in Proposition 32.
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Alternative VaR-based formulations

In this section, without loss of generality, we assume that all the realizations of

c>X are non-negative (or equivalently, xi is non-negative for all i ∈ [n]). Then, it is

easy to show that (CutGen−Benchmark) can be formulated as follows:

min
1

k

∑
i∈[n]

θi − η +
1

α

∑
l∈[m]

qlwl

s.t. θi ≥ c>xi − (1− βi)Mi, ∀ i ∈ [n] (5.27a)∑
i∈[n]

βi = k, (5.27b)

(5.21a), (5.27c)

c ∈ C, β ∈ {0, 1}n, θ ∈ Rn
+, w ∈ Rm

+ , η ∈ R. (5.27d)

In this formulation, Mi is the largest possible value of θi (e.g., Mi = max
c∈C

c>xi). This

new formulation again follows from the observation that in the special case of equal

probabilities and α = k/n, CVaRα(c>X) corresponds to the weighted sum of the

smallest k realizations of c>X. In this special case, VaRα(c>X) corresponds to the kth

smallest realization, and the model guarantees that θi = c>xi if c>xi ≤ VaRα(c>X),

and θi = 0 otherwise. However, this MIP formulation is weak due to the big-M

constraints (5.27a). Hence, we can take advantage of the new representation of VaR
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given in (5.12) to develop a stronger MIP formulation:

(MIP VaR Special) : min
1

k

∑
i∈[n]

θi − η +
1

α

∑
l∈[m]

qlwl (5.28a)

s.t. z ≤ c>xi + βiMi∗,∀ i ∈ [n] (5.28b)

θi ≥ c>xi − (1− βi)Mi,∀ i ∈ [n] (5.28c)

z ≥ θi,∀ i ∈ [n] (5.28d)

z =
∑
i∈[n]

ξ>i xi, (5.28e)

∑
i∈[n]

ξij = cj,∀ j ∈ [d] (5.28f)

∑
j∈[d]

ξij = ui,∀ i ∈ [n] (5.28g)

∑
i∈[n]

βi = k, (5.28h)

(5.12d), (5.12h)− (5.12i), (5.21a), (5.28i)

c ∈ C, β,u ∈ {0, 1}n, w ∈ Rm
+ , η, z ∈ R,

(5.28j)

ξ ∈ Rn×d
+ , θ ∈ Rn

+. (5.28k)

In this formulation, the variable z = VaRα(c>X) is represented by
∑
i∈[n]

ξ>i xi =∑
i∈[n]

uic
>xi, and it is guaranteed that ξij = cjui for all i ∈ [n] and j ∈ [d]. These bilin-

ear terms are linearized by using the McCormick envelopes and their RLT strengthen-

ing based on only the information that C is a subset of the unit simplex. Additional

constraints on the scalarization set C can be used to further strengthen the above

formulation. Notice that different from (5.12), this formulation includes the RLT

strengthening equality (5.17) (or (5.28g)).

Finally, we note that (MIP VaR Special) can also be applied to solve

(CutGen−Robust) by dropping the variables and constraints associated with
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CVaRα(c>Y); leading to enhanced versions of (5.13) for the equal probability case.

We test its computational performance in Section 5.5.2.

5.4 Hybrid Model

In this section, we present a hybrid model that includes both the multivariate

CVaR constraints and the robust objective based on the worst-case CVaR. We show

that the algorithms in Sections 5.2 and 5.3 can be integrated into a unified method-

ology to solve the hybrid model of the form

(Hybrid) : max
z∈Z

min
c∈C

CVaRα(c>X)

s.t. CVaRα(c>G(z)) ≥ CVaRα(c>Y), ∀ c ∈ C. (5.29)

For a given subset of scalarization vectors C̃ := {c̃1, · · · , c̃L̃} ⊂ C a relaxed master

problem (RMP-H) is given by

max
z∈Z

min
c∈C

CVaRα(c>X) (5.30a)

s.t. CVaRα((c̃`)>G(z)) ≥ CVaRα((c̃`)>Y), ∀ ` ∈ [L̃]. (5.30b)

We can represent the constraints (5.30b) by linear inequalities, leading to the

following equivalent reformulation of RMP-H:

max min
c∈C

CVaRα(c>X)

s.t. η̃r −
1

α

∑
i∈[n]

piw̃ri ≥ CVaRα((c̃r)>Y), ∀ r ∈ [L̃]

w̃ri ≥ η̃r − (c̃r)>gi(z), ∀ r ∈ [L̃], i ∈ [n]

w̃ ∈ RL̃×n
+ , η̃ ∈ RL̃

+, z ∈ Z.

As discussed in Section 5.2.2, we can handle the maximin type objective function

of interest using a finitely convergent delayed cut generation algorithm. In this spirit,
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suppose now that Ĉ = {ĉ1, . . . , ĉL} ⊂ C is a given subset of scalarization vectors

used to calculate the worst-case CVaR. In line with the formulation given in (5.10),

RMP-H takes the following form:

max ψ (5.31a)

s.t. η̃r −
1

α

∑
i∈[n]

p̃iw̃ri ≥ CVaRα((c̃r)>Y), ∀ r ∈ [L̃]

(5.31b)

w̃ri ≥ η̃r − (c̃r)>gi(z), ∀ r ∈ [L̃], i ∈ [n]
(5.31c)

ψ ≤ η` −
1

α

∑
i∈[n]

piw`i, ∀ ` ∈ [L], i ∈ [n]

(5.31d)

w`i ≥ η` − (ĉ`)>gi(z), ∀ ` ∈ [L], i ∈ [n]
(5.31e)

w̃ ∈ RL̃×n
+ , w ∈ RL×n

+ , η̃ ∈ RL̃
+, ψ ∈ R, z ∈ Z. (5.31f)

Given a solution to the RMP-H (5.31), two types of cut generation problems

are solved to identify if the current solution is optimal or if there is a scalarization

vector c ∈ C for which at least one of the following constraints is violated: (5.10b)

and (5.29). As discussed in Section 5.2.2, for minimizing the worst-case CVaR, it is

sufficient to consider the extreme points of C. On the other hand, for the multivariate

CVaR relation, it is sufficient to consider the finitely many c vectors obtained as the

projections of the vertices of the higher dimensional polyhedron P (C,Y) given by

[75]

P (C,Y) =
{

(c, η,w) ∈ C × R× Rm
+ : wl ≥ η − c>yl, l ∈ [m]

}
. (5.32)

Thus, generating the violated constraints associated with those particular vertex

scalarization vectors at each iteration guarantees the finite convergence of the delayed
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cut generation algorithm of (Hybrid). In other words, the provable finite convergence

depends on finding a solution to the cut generation problems (CutGen−Robust)

and (CutGen−Benchmark), which is an extreme point of C and the projection

of a vertex of P (C,Y), respectively. In Section 5.2.3, we discuss how to obtain a

vertex optimal solution of (CutGen−Robust) from an optimal solution obtained

by solving one of its MIP formulations (such as (5.13)). For obtaining the desired

vertex optimal solution of (CutGen−Benchmark), we refer to [75].

5.5 Computational study

In the first part of our computational study, we investigate the value of the pro-

posed W-CVaR model with respect a robust risk-neutral model and a multivariate

CVaR-constrained model. We also report on the performance of the cut generation

algorithm for the W-CVaR model. In the second part, we demonstrate the computa-

tional effectiveness of the MIP formulations and the valid inequalities developed (in

Section 5.3) for the cut generation problem arising in multivariate CVaR-constrained

optimization models.

5.5.1 Worst-case Multivariate CVaR Optimization

We explore the effectiveness of the proposed W-CVaR model by applying it to a

homeland security budget allocation (HSBA) problem [43]. This problem studies the

allocation of a fixed budget to ten urban areas, which are classified in three groups:

1) higher risk : New York; 2) medium risk : Chicago, San Francisco Bay Area, Wash-

ington DC-MD-VA-WV, and Los Angeles-Long Beach; 3) lower risk : Philadelphia

PA-NJ, Boston MA-NH, Houston, Newark, and Seattle-Bellevue-Everett. The risk

share of each area is measured based on four criteria: 1) property losses, 2) fatalities,
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3) air departures and 4) average daily bridge traffic. To represent the inherent ran-

domness a random risk share matrix A : Ω → R4×10
+ is considered, where Aij denotes

the proportion of losses in urban area j relative to the total losses for criterion i. The

set Z = {z ∈ R10
+ :

∑
j∈[10] zj = 1} represents all the feasible allocations and the as-

sociated random performance measures of interest are specified based on a particular

type of penalty function for allocations under the risk share. The negatives of these

budget misallocations associated with each criterion are used to construct the random

outcome vector G(z) = (G1(z), . . . , G4(z)), as given below, in order to be consistent

with our setup where the larger values of the random variables are preferred:

Gi(z) = −
∑
j∈[10]

[Aij − zj]+, i ∈ [4].

[43] model this HSBA problem using optimization under multivariate polyhedral SSD

constraints based on two benchmarks: one based on average government allocations

(Department of Homeland Security’s Urban Areas Security Initiative) - denoted by

G(zG), and one based on the suggestions in the RAND report [104] - denoted by

G(zR) . On the other hand, [75] replace the SSD constraints with CVaR-based ones,

leading to the following optimization model:

max min
c∈C

E(c>G(z)) (5.33a)

s.t. CVaRα(c>G(z)) ≥ CVaRα(c>G(zR)), ∀ c ∈ C (5.33b)

CVaRα(c>G(z)) ≥ CVaRα(c>G(zG)), ∀ c ∈ C (5.33c)

z ∈ Z. (5.33d)

We benchmark our W-CVaR model, defined in (5.5), against two relevant existing

models: the first one, which we refer to as B-CVaR, is obtained from (5.33) by
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dropping (5.33c) (the government benchmark is ignored for simplicity), and the second

one is the risk-neutral counterpart of our model [44]:

W-Exp : max
z∈Z

min
c∈C

E(c>G(z)).

We follow the data generation scheme described in [75] and consider their “base case”

scalarization set given by C = CBase := {c ∈ R4
+ :

∑
i∈[4] cj = 1, cj ≥ c∗j− θ

3
, j ∈ [4]},

where c∗ = (1/4, 1/4, 1/4, 1/4) and θ = 0.25. Additionally, we also consider a second

choice of C, which involves the so-called ordered preferences as follows: C = COrd :=

{c ∈ R4
+ :

∑
i∈[4] cj = 1, c2 ≥ c1 ≥ c3 ≥ c4}. This choice relies on the assumption that

the second criterion (based on fatalities) is the most important one, followed by the

first criterion (based on property losses), the third criterion (based on air departures)

and the fourth criterion (based on average daily bridge traffic). For further details on

data generation, we refer to [43] and [75].

In our benchmarking analysis, we consider the equal probability case, set n = 500

and obtain the results for three models W-CVaR, W-Exp, and B-CVaR under each

value of α ∈ {0.05, 0.1, 0.15}. The results on allocation decisions - averaged over three

randomly generated instances - are reported in Table 5.1. As seen from these results,

for each setting, B-CVaR provides solutions that allocate most of the budget (at least

51%) to the area with the highest risk (New York). This is primarily due to that

fact that New York has a large (58.61%) allocation in the RAND benchmark. On the

other hand, the budget percentage allocated to the five urban areas with lower risk

cities is less than 18 and 12 for the scalarization sets CBase and COrd, respectively.

Since the set COrd involves the scalarization vectors giving more priority to the second

criterion (based on fatalities), B-CVaR suggests to allocate even more budget to New

York, the most populated area with a significantly higher risk share associated with
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fatalities; for the raw data for fatalities and the remaining three criterion see Table

1 in [43]. As expected, the allocation decisions obtained by the B-CVaR model with

benchmarking constraints are sensitive to the particular benchmark allocations. On

the other hand, the robust risk-neutral model W-Exp provides a more “averaged”

solution compared to B-CVAR and W-CVAR. For both choices of the scalarization

set, W-Exp always allocates more budget to the areas with medium risk comparing to

the other models. For example, for the instances with CBase and α = 0.05, it allocates

almost three percent more budget to such areas than W-CVAR, and this behavior is

also observed under the other settings. The results of W-Exp are consistent with its

“risk-neutral” nature.

Finally, we would like to emphasize that W-CVaR allocates more budget to the

areas with lower risk compared to the other models. In particular, for the instances

with the scalarization set CBase, W-CVaR allocates on average four percent more

budget to such areas than W-Exp. These results are consistent with the risk-averse

perspective of W-CVaR. Moreover, it is much less conservative than B-CVaR with

respect to its allocation to New York.

We next provide some insights about the solution times of our proposed W-CVaR

model for the instances under consideration. All computations in this study are

performed on a 64-bit Windows Server 2012 R2 Datacenter with 2.40GHz Intel Xeon

CPU E5-2630 processor with 32 GB RAM, unless otherwise stated. The vertices of

both types of scalarization sets are known and there are only four of them. Thus, we

could easily solve W-CVaR using the compact LP formulation (5.10). For the HSBA

instances with CBase, α = 0.1, and n = 500, it takes at most 20 seconds to obtain

an optimal solution; even for n = 5000 it takes at most 60 seconds. We observe that
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while the cut generation algorithm we propose is only essential for cases where the

number of extreme points of C is exponential, it could also be useful in cases where

the number of extreme points is small. For example, for CBase, the compact LP takes

200 seconds on average for the three hardest instances with n = 5000 and α = 0.15,

whereas the cut generation algorithm takes on average 20 seconds, and generates only

three extreme points of CBase. This difference in solution times can be due to the large

number of scenario dependent constraints and variables introduced in (5.10b)-(5.10c)

for each extreme point of C.

Allocations (%) for Areas with Allocations (%) for Areas with
Higher Risk Medium Risk Lower Risk Higher Risk Medium Risk Lower Risk

Base Polytope (CBase) Ordered Preferences (COrd)

α = 0.05
W-CVaR 31.33 35.70 32.98 51.30 29.30 19.40
W-Exp 32.90 38.56 28.53 48.83 34.33 16.83
B-CVaR 52.03 30.41 17.56 57.10 31.43 11.47

α = 0.10
W-CVaR 31.30 35.50 32.20 51.13 31.83 17.03
W-Exp 32.93 38.63 28.43 48.83 34.33 16.83
B-CVaR 52.00 30.57 17.43 56.93 31.40 11.67

α = 0.15
W-CVaR 31.20 35.93 32.87 50.53 31.23 18.23
W-Exp 32.90 38.47 28.63 48.73 34.37 16.90
B-CVaR 51.77 30.92 17.32 56.93 31.17 11.90

RAND Benchmark 58.61 34.31 7.07 58.61 34.31 7.07

Table 5.1: Model benchmarking results for the HSBA data with n = 500

5.5.2 Multivariate Polyhedral CVaR-Constrained Optimiza-
tion

In order to perform a detailed analysis on comparing the computational perfor-

mance of the alternative MIP formulations of (CutGen−Benchmark) under equal

probabilities, we consider an additional type of problem and a class of randomly
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generated instances given by [55]

max{f(z) : CVaRα(c>Rz) ≥ CVaRα(c>Y) ∀ c ∈ C, z ∈ R100
+ }.

Here R : Ω 7→ [0, 1]d×100 is a random matrix and the benchmark vector Y takes the

form of R̄z̄ for another random matrix R̄ : Ω 7→ [0, 1]d×100 and a given benchmark

decision z̄ ∈ R100
+ . Following the data generation procedure presented in [55], we inde-

pendently generate the entries of the matrices R and R̄ from the uniform distribution

on the interval [0, 1]. Moreover, the decision variables z and z̄ are are independently

and uniformly generated from the interval [100, 500]. This data generation scheme di-

rectly provides us with the realizations of two d-dimensional random vectors X = Rz

and Y = R̄z̄; such an approach is sufficient since we only focus on solving the cut

generation problem given the random vectors X and Y. On the other hand, for

the HSBA instances, Y is already well-defined (since the benchmark allocations are

given) while the realizations of the random vector X are obtained using a different

approach. In particular, we solve the corresponding RMP-B once, and use its optimal

solution to calculate the realizations of the associated 4-dimensional random vector

X. For more details on both types of data sets (HSBA and random data sets), we

refer to [55].

All the optimization problems are modeled with the AMPL mathematical pro-

gramming language. All runs were executed on 4 threads of a Lenovo(R) workstation

with two Intel R© Xeon R© 2.30 GHz CE5-2630 CPUs and 64 GB memory running on

Microsoft Windows Server 8.1 Pro x64 Edition. All reported times are elapsed times,

and the time limit is set to 3600 seconds unless otherwise stated. CPLEX 12.2 is invoked

with its default set of options and parameters. If optimality is not proven within the

time allotted, we record both the best lower bound on the optimal objective value
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(retrieved from CPLEX and denoted by LB) and the best available objective value

(denoted by UB). Since the optimal objective function can take any value including

0, we report the following relative optimality gap: ROG = |LB−UB |/(|LB |).

One can obtain slightly different versions of the presented MIP formulations by

applying the RLT techniques for different types of available information (such as

the valid lower and upper bounds on the scalarization vectors). We next provide

the alternative MIP formulations of (CutGen−Benchmark) for which we report

results in Tables 5.2-5.3.

• (MIP−CVaR): The best available benchmark model proposed by [55]; it is

based on the VaR representation (5.12) and its formulation is given by (5.22).

For further computational enhancements, we added the valid inequality (5.17),

and deleted the set of Big-M constraints (5.12d).

• (MIP VaR Special): This new formulation is also based on the VaR repre-

sentation (5.12) but it is valid for the case of equal probabilities. Its formulation

is given in (5.28); (5.12d) is deleted as in (MIP−CVaR).

• (MIP− Special): This new model is obtained by using the RLT-based

strengthening for (5.23). The formulation (5.24) involves the inequalities ob-

tained by applying the RLT procedure based on the unit simplex condition and

the upper bounding constraints. We also apply the RLT procedure based on

the lower bounding information (cj ≥ Lcj, j ∈ [d]), which provides the following

valid inequalities:

γij ≥ Lcjβi, ∀ i ∈ [n], j ∈ [d], (5.34)

−γij + cj ≥ Lcj(1− βi), ∀ i ∈ [n], j ∈ [d]. (5.35)
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Unless stated otherwise, (MIP− Special) refers to the formulation obtained

by adding the constraints (5.34)-(5.35) to (5.24).

From Remark 6 for the unit simplex case, we drop the redundant constraints (those

obtained from the upper and lower bounding information). In Table 5.4, “Base Spe-

cial” refers to the model obtained from (MIP− Special) by deleting the constraints

(5.14c)-(5.14d) and (5.34)-(5.35); it only involves the most effective constraints (ob-

tained from the unit simplex condition).

For the HSBA problem, we report the results averaged over two instances with

different benchmarks (based on Government and RAND benchmarks) for each com-

bination of α and n. For the random data set, we randomly generate two instances

and report the average statistics. In all the tables in this section, the “Time” column

reports the average solution time and the “B&B Nodes” column collects the number

of nodes used during the branch-and-cut process.

From Table 5.2, we can see that (MIP− Special) solves a majority of the

test instances in the shortest amount of time. However, there are some instances

(for example, for HSBA data, unit simplex, α = 0.01, n = 1000, 1500) for which

(MIP− Special) only solves one out of the four instances within the time limit as

opposed to (MIP VaR Special) which solves three of the instances within the limit.

Furthermore, both new formulations we propose significantly outperform the existing

formulation (MIP−CVaR) for the equal probability case.

Furthermore, we can apply the computational enhancements proposed in [55] to

the proposed formulations, namely variable fixing, bounding and a class of valid in-

equalities referred to as the ordering inequalities (on the β variables). The variable

fixing method recognizes scenarios which are guaranteed to be larger than VaR, and
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fixes the corresponding β variables to zero. In addition, for the existing MIP (5.23)

and (MIP− Special), we introduce upper and lower bounds on CVaRα(c>X), for

the others which involve the z decision variable (representing the VaR) we introduce

upper and lower bounds on VaRα(c>X). Table 5.3 summarizes our computational ex-

perience with using these enhancements. The ‘Remaining Bin. Var.’ column reports

remaining percentage of binary variables after the preprocessing, and the ‘# of Order.

Ineq.’ column represents the number of ordering inequalities added to the formula-

tions. Observe that there is a significant reduction in the number of binary variables.

Furthermore, many ordering inequalities are added to strengthen the formulation.

As a result, instances that were not solvable to optimality by any of the methods

(reported in Table 5.2) can now be solved to optimality with at least one of the new

formulations. We would also like to note that the total time spent on preprocessing

(for calculating the Big-M coefficients and handling all the enhancements - fixing,

bounding, and ordering inequalities), which is not included in the times reported, is

negligible.

Effectiveness of the MIP formulations strengthened by the RLT procedure

In this section, we use additional information on C to obtain stronger RLT for-

mulations. Our experiments are reported in Table 5.4, for the scalarization sets

CBase and COrd. We observe that the RLT-based strengthening using only the unit

simplex information (5.15b)-(5.15d), reported in the column titled Base Simplex,

is not very effective. Recall (Remark 6) that when there exists an index j ∈ [d]

such that M̃j = max{cj : c ∈ C} < 1, the constraints (5.14c)-(5.14d) are not

redundant for (MIP− Special). In fact, for the HSBA instances, including these

inequalities in (MIP− Special) leads to a significant reduction in the computational
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(MIP−CVaR) (MIP VaR Special) (MIP− Special)
Time; B&B Time; B&B Time; B&B
[ROG] Nodes [ROG] Nodes [ROG] Nodes

HSBA Data Base Polytope & α = 0.01

n 1500 705.8 1524.2 447.1 1781.9 3.1 0.1
2000 1225.1 3095.9 †1840 [50] 3510.0 6.4 0.0
2500 †2313 [50] 5439.5 †1846 [50] 2995.9 9.1 0.0
3000 †2275 [50.5] 3712.3 †1970 [50] 2658.1 10.1 0.0
5000 †[1415.8] 4594.0 †[56.2] 6170.4 34.7 0.0

Base Polytope & α = 0.05

n 500 109.5 1422.6 109.6 1514.2 0.7 0.0
1000 1667.5 11976.4 †1829 [50] 8823.9 2.9 0.0
1500 †[100.3] 14627.9 †2316 [50] 7430.1 9.2 0.5
2000 †[451.9] 9696.0 †3071 [50] 8230.4 8.5 1.3
2500 †[174] 5998.7 †[57.2] 6928.7 †1837 [50] 2028.8
3000 � 1008.0 �[21.4] 4073.8 95.6 18.7
5000 †[145.5] 2901.7 †[77] 1332.6 †[50.2] 1047.9

Unit Simplex & α = 0.01

n 500 96.1 546.5 60.5 441.8 4.7 73.9
1000 1122.2 4388.1 1130.6 4139.8 †2048 [42.6] 26341.8
1500 †[129.6] 6424.9 †3245 [50] 7059.8 †[81.3] 29985.7
2000 †[108.5] 5910.1 †[159.7] 5327.7 †[215.9] 22330.7
2500 †[106.2] 1704.0 †[118.2] 4784.6 †[188] 19352.6

Unit Simplex & α = 0.05

n 300 211.4 2796.1 186.3 2833.4 †2001 [42.2] 71177.5
500 †2425 [145.3] 17459.6 1854.4 15871.0 †[125.1] 54251.9

Random Data Unit Simplex & d = 4 & α = 0.01

n 1000 581.4 2588.0 437.1 2800.6 60.3 820.0
1500 †[45.6] 7961.1 †3131 [47.6] 10201.0 †[56.9] 25972.6
2000 †[97.5] 6196.6 †[98] 10282.1 †[73.2] 22182.7

Unit Simplex & d = 6 & α = 0.01

n 500 542.2 4639.2 258.9 2540.5 5.3 59.2
1000 †[89.5] 9098.1 †[91.8] 15183.7 †1890 [4] 15124.4

Table 5.2: Computational performance of the alternative MIPs for
(CutGen−CVaR) under equal probability case

†: Time limit with integer feasible solution; �: Time limit with no integer feasible solution.
B&B Nodes are reported in hundreds.
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Existing-Special (5.23) (MIP−CVaR) (MIP VaR Special) (MIP− Special) Remaining # of
Time; B&B Time; B&B Time; B&B Time; B&B Binary Order.
[ROG] Nodes [ROG] Nodes [ROG] Nodes [ROG] Nodes Var. (%) Ineq.

n HSBA Data & Base Polytope & α = 0.01

1500 141.4 2580.9 2.9 23.4 1.8 9.8 0.3 0.0 3.6 353.0
2000 †[820.36] 19786.1 16.0 112.5 5.2 33.3 0.7 0.0 4.5 745.0
2500 †[290.89] 14933.2 23.0 160.8 15.2 74.2 1.0 0.0 4.3 1168.5
3000 †[422.16] 13630.5 42.3 245.3 24.3 99.4 1.0 0.0 4.4 1908.5
5000 †[221.54] 5731.1 366.3 1707.8 149.5 521.9 6.7 0.1 4.3 4960.0

n HSBA Data & Base Polytope & α = 0.05

300 106.5 4128.0 1.1 23.2 0.7 5.5 0.1 0.0 19.2 325.0
500 †2175 [71.3] 43351.7 5.3 58.5 1.4 9.7 0.3 0.0 16.2 818.0
1000 †[739.6] 28977.7 55.6 544.3 16.2 122.4 1.4 0.1 15.0 2959.0
1500 †[441] 17373.6 470.9 3461.1 90.9 415.8 2.6 0.0 15.7 7620.5
2000 †[351] 9858.6 768.7 3538.1 171.9 510.9 5.3 0.0 14.9 12656.5
2500 †[269.9] 3967.2 †3021 [9.2] 9700.8 813.0 1932.5 13.6 0.6 15.8 22194.5
3000 †[253.1] 2399.3 †[66.5] 8618.1 1029.1 1809.3 20.7 0.3 15.9 30857.0
5000 †[250.9] 632.4 †[138.5] 2248.4 †[74.7] 1671.8 42.7 0.3 15.5 84272.0

n HSBA Data & Unit Simplex & α = 0.01

500 788.6 32724.9 5.8 83.5 2.4 41.0 0.6 11.3 22.2 170
1000 †[106] 49324.4 105.1 788.0 81.8 640.7 †1847 [14.7] 37653.9 23.9 771.5
1500 †[105.7] 29495.4 374.5 2054.1 290.1 1631.1 †2002 [49.3] 21375.9 21.9 1837.5
2000 †[106.3] 19970.0 1706.1 7224.5 1172.6 4874.4 †[233.3] 27470.6 22.2 3237.5
2500 †[105] 14320.9 †[393.8] 9854.0 †3469 [50] 10137.6 †[1834.8] 15418.6 22.9 5386.5

n HSBA Data & Unit Simplex & α = 0.05

300 †[107] 72202.6 55.2 946.3 39.9 720.5 132.7 4143.7 52.8 761.5
500 †[107.1] 35273.8 473.6 5888.6 352.4 4430.1 †2756 [44.2] 33873.7 53.3 2049

n Random Data & Unit Simplex & d = 4 & α = 0.01

500 58.8 1482.2 2.5 40.3 3.5 54.0 0.7 12.3 17.4 146.0
1000 †[76.1] 67673.1 33.3 321.0 29.9 334.8 6.7 120.9 14.9 547.0
1500 †[89.4] 48570.4 184.2 1573.3 186.2 1819.4 †3514 [2.2] 48577.2 15.0 1261.5
2000 †[89.9] 30300.3 826.3 4878.4 835.4 6774.6 †[58.5] 32174.8 15.2 2287.5

n Random Data & Unit Simplex & d = 6 & α = 0.01

300 22.0 492.4 4.2 63.5 4.2 67.7 0.4 3.5 30.0 52.0
500 †2754 [41.3] 37181.5 50.7 503.8 50.1 706.9 2.0 39.9 31.1 191.0
1000 †[80.6] 48415.9 1810.5 10147.2 1464.9 12522.5 276.4 4806.8 30.5 953.5

Table 5.3: Computational performance of the alternative enhanced MIPs (fixing,
bounding, ordering inequalities) for (CutGen−CVaR) under equal probability case

†: Time limit with integer feasible solution.
B&B Nodes are reported in hundreds.
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time as reported in the second column of Table 5.4. It is surprising to observe that

(MIP− Special) could solve some instances in very short CPU time, while it reaches

the time limit when (5.14c)-(5.14d) are dropped.

When we have the extreme points of C, we can easily obtain the upper and lower

bounds on the components of c. For COrd including the ordered preference constraints

cj ≥ cj+1, we obtain the corresponding inequalities obtained by using the RLT (see

Proposition 30):

γij ≥ γij+1, ∀ i ∈ [n], j ∈ [d− 1], (5.36)

γij − γij+1 ≤ cj − cj+1, ∀ i ∈ [n], j ∈ [d− 1]. (5.37)

In addition, for this case, M̃ = (1, 1/2, 1/3, 1/4) and Lc = (1/4, 0, 0, 0). In our

computational experiments reported in Table 5.4, we use the RLT strengthening of

the upper bounding inequalities and the ordered preference constraints defining CBase.

Table 5.4 demonstrates that the most effective solution method for cut generation

under equal probabilities is to use the formulation (MIP− Special) with all enhance-

ments: fixing, bounding, ordering inequalities on β, and the RLT-based strengthening

using the additional inequalities defining C.

Effectiveness of the new valid inequalities

In this section, we study the computational effectiveness of the proposed valid

inequalities (5.25). Although there are polynomially many inequalities (5.25), adding

all of them (O(m2n)) into a MIP formulation of (CutGen−Benchmark) may not

be effective due to the large number of scenarios, m and n. Therefore, we implement

a branch-and-cut algorithm that adds inequalities (5.25) to the MIP formulation

as they are violated. To further limit the number of inequalities added, instead
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of adding all the violated inequalities (5.25) for each s and t ∈ [m] \ s, we use a

separation algorithm where we add one violated inequality for the smallest t > s

for a given s ∈ [m]. In our implementation, we consider (MIP− Special) as the

base MIP formulation, and add the violated inequalities (5.25) as user cuts; this

approach to solve (CutGen−Benchmark) is implemented in C language using

CPLEX 12.6. Moreover, we only seek and add the violated inequalities (5.25) in

the root node and every 10,000 branch-and-bound nodes for the first 50,000 nodes.

We test the computational performance of (MIP− Special) with and without the

proposed inequalities. For each approach, one core is used and the dynamic search is

turned off. In these experiments, we solve random instances where each component of

the vectors X and Y is independently generated from a discrete uniform distribution

on the interval [1,10]. We assume that the number of realizations of X and Y are

equal (i.e., n = m), α = 0.01, and all the outcomes are equally likely.

(MIP− Special) (MIP− Special) & Ineq. (5.25) Remaining # of
d n Time B&B nodes Time B&B nodes # of Ineq. (5.25) Bin. Var. (%) Order. Ineq.

3
900 51 91260 31 49228 31 53.3 24822
1000 27 39615 17 16984 12 41.0 30975
1100 101.3 349827 36 124928 15 46.9 33412

4
600 44.3 53896 32.7 47387 17 53.0 10924
700 378 779551 358 766937 8 38.1 8457
800 329 382508 292 346429 31 50.1 11065

Table 5.5: Effectiveness of the valid inequalities (5.25) for α = 0.01 (with fixing and
ordering inequalities)

In Table 5.5, we report the results - averaged over three instances - on the perfor-

mance of two approaches. In both approaches, we also take advantage of two compu-

tational enhancements, namely variable fixing and ordering inequalities. In addition
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to the columns defined in earlier tables, the “ # of Ineq. (5.25)” column collects

the number of the proposed inequalities (5.25) that are added to (MIP− Special).

From this column, we see that only a small subset of inequalities (5.25) is added.

Nevertheless, according to the results, we are still able to benefit from these inequal-

ities for these instances. However, we note that as we increase d, the effectiveness

of inequalities (5.25) within a branch-and-cut algorithm decreases. We note that it

becomes more effective to use the base formulation (MIP− Special) for this data

set as α increases. In our experience, the base formulation (MIP− Special) is also

more effective for the HSBA data and the random data described in Section 5.5.2.

5.6 Conclusions

In this chapter, we study risk-averse models for multicriteria optimization prob-

lems under uncertainty. First, we introduce a model that optimizes the worst-case

multivariate CVaR, and develop a finitely convergent delayed cut generation algorithm

for finite probability spaces. In addition, for the cut generation problem, which is in

general a mixed-integer program, we give a stronger formulation for the equiprob-

able case using the reformulation linearization technique. Next, we observe that

similar polyhedral enhancements are also useful for a related class of multivariate

CVaR-constrained optimization problems that has attracted attention recently. Our

computational study demonstrates the effectiveness of the proposed solution methods

for both classes of models.
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Chapter 6: Contributions and Future Work

In this chapter, we summarize the research presented in this thesis and propose

potential extensions of current work. In this dissertation, we propose novel mathe-

matical models for risk-averse optimization problems under uncertainty. In addition,

we propose state-of-the-art algorithms using mixed-integer programming techniques,

including cutting plane and decomposition methods, dynamic programming and other

related algorithms.

In Chapter 2, we study a two-stage chance-constrained program where feasible

second stage solutions incur additional costs. Earlier work in chance-constrained

optimization either ignores the second-stage (recourse) decisions or the second-stage

costs. In addition, we propose a new model, where we are allowed to recover from a

unsuccessful strategic decision. We propose a decomposition algorithm, which uses

specialized feasibility and optimality cuts. The computational experiments indicate

that the proposed methods are highly efficient.

In our further study, we derived a new class of valid optimality cuts for the

problems where the randomness only appears in the right-hand side of the chance-

constraint. We prove that this class of inequalities is stronger than the optimality

cuts presented in Chapter 2, but uses more computational effort. It would be inter-

esting if we can test this improved version of optimality cuts against the optimality

148



cut used in Chapter 2, to see the difference in performance. In addition, it would also

be interesting if we can find more theoretical polyhedral results for this class of im-

proved optimality cuts, and extend the result to general two-stage chance-constrained

programs.

In Chapter 3, we study the polyhedral structure of the static probabilistic lot-sizing

problem and propose a class of new valid inequalities. We show the strength of this

class of inequalities. In addition, we show that it is practically effective. Furthermore,

we propose a new formulation for general two-stage chance-constrained programs with

simple recourse, which significantly reduces the number of variables and constraints

of the deterministic equivalent program. The computational results show that the

proposed formulation significantly outperforms the Benders decomposition algorithm.

We observe that there exist other facet-defining inequalities that are not in the

form of the proposed inequalities. It would be interesting to characterize new classes

of facet-defining inequalities for the static probabilistic lot-sizing problem.

In Chapter 4, we study the structure of the two-sided chance-constrained pro-

grams. We propose a class of valid inequalities, and give locally ideal formulation for

this class of problem. In addition, we propose polynomial optimization and separation

algorithms for the optimization problem over a substructure of the two-sided chance-

constrained programs. An interesting question is whether we can further strengthen

the proposed inequality using the information of the knapsack constraint in the for-

mulation. In addition, we observe that the two-sided chance-constrained programs

is a special case of general chance-constrained second-order conic program in R2.

In the mixed-integer programming reformulation of chance-constrained second-order

conic program, a continuous mixing structure with knapsack constraint is observed

149



as the key structure. It would be interesting to further investigate this problem, and

extend our results for the two-sided chance-constrained programs to general chance-

constrained second-order conic programs.

In Chapter 5, we introduce a model that optimizes the worst-case multivariate

CVaR, and propose develop a finitely convergent delayed cut generation algorithm

for finite probability spaces. In addition, we propose a strong formulation for the cut

generation algorithm in the equiprobable case using the reformulation linearization

technique. Next, we apply this method to a related class of multivariate CVaR-

constrained optimization problems. The computational results show that the pro-

posed model and algorithms are effective.

In our experiments, we observe that we obtain the complete linear description of

the convex hull for the multivariate CVaR-constrained optimization problems where

m = 2. It would be interesting if we can prove this result formally to show that the

proposed method leads to a locally ideal formulation. In addition, we observe that

the valid inequality (2.23) that is used in Chapter 2 can be applied in this problem, to

strengthen the linear programming reformulation of the cut-generation problem. It

would be interesting if we can compare the performance of inequality (2.23) against

the reformulation linearization technique in the future.
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Appendix A: Stochastic dominance

In this section, we review the well-known stochastic dominance relations, which

are essential for the stochastic Pareto optimality definitions presented in Section 5.2.1.

The stochastic dominance relations are fundamental concepts in comparing ran-

dom variables [68, 57] and have been widely used in economics and finance [see,

e.g., 59]. Different from the approaches based on risk measures, in a stochastic domi-

nance based approach, the random variables are compared by a point-wise comparison

of some performance functions (constructed from their distribution functions when

the order is greater than zero). We note that the lower order dominance relations

(k = 0, 1, and 2) are the most common ones (referred to as ZSD, FSD, and SSD,

respectively). We provide the formal definitions below and refer the reader to [72]

and [91] for further details.

• We say that a random variable X dominates another random variable Y in the

zeroth order if X ≥ Y everywhere, i.e., X(ω) ≥ Y (ω) for all ω ∈ Ω.

• An integrable random variable X dominates another integrable Y in the first or-

der (or X is stochastically larger than Y ) if F1(X, η) := P(X ≤ η) ≤ F1(Y, η) :=

P(Y ≤ η) for all η ∈ R.
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• For k ≥ 2 we say that a k-integrable random variable X (i.e., ∈ Lk) dominates

another k-integrable random variable Y in the kth order if Fk(X, η) ≤ Fk(Y, η)

for all η ∈ R, where Fk(X, η) =
∫ η
−∞ Fk−1(X, t) dt for all η ∈ R.

• For k = 0, if X(ω) > Y (ω) for all ω ∈ Ω, we will refer to the relation as

“strong ZSD” and denote it by X �(0) Y . For k ≥ 1, if all the inequalities

Fk(X, η) ≤ Fk(Y, η) are strict, then we refer to the relation as “strong kSD”

and denote it by X �(k) Y . We remark that the notion of “strong kSD” is not

analogous to the notion of strict kSD, which requires that at least one of the

inequalities defining the dominance relation is strict.
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Appendix B: A class of facets of conv(S).

Before we study the facets of conv(S), we first need to establish its dimension.

Proposition 33. Conv(S) is a polyhedron with dimension n+ d+m− 1.

Proof. First, we show that conv(S) is a polyhedron. First, note that the extreme rays

of conv(S) can be enumerated as follows:

δl = (0,0,0, 0, el), ∀ l ∈ [m] (B.1a)

δm+1 =: (0,0,0,−1,0), (B.1b)

δm+2 = (0,0,0, 1,1), (B.1c)

where el is a standard basis vector of an appropriate dimension with the l-th element

equal to 1 and all other elements equal to 0. We have

conv(S) = ∪Hh=1 {(γ, c, β, η,w) | γ = βĉh
>
, (c, η,w)

= (ĉh, η̂h, ŵh), β ∈ [0, 1]n,
∑
i∈[n]

βi = k}+
m+2∑
l=1

µlδl,

where (ĉh, η̂h, ŵh) for all h ∈ [H] are the vertices of the polyhedron P (Cf ,Y) (see

(5.32)) for a finite H. In addition, µl is a non-negative parameter for all l ∈ [m+ 2].

From [5] we know that we can take the union of these polyhedra parameterized by

ĉh, since each polyhedron shares the same recession cone (B.1). Hence, we obtain the
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extended formulation of conv(S) as:

1 =
H∑
h=1

λh, β =
H∑
h=1

βh,

c =
H∑
h=1

ch, γ =
H∑
h=1

γh,

η =
H∑
h=1

ηh +
m+2∑
l=m+1

µlδl,

w =
H∑
h=1

wh +
m+2∑
l=1

µlδl,

γh = ĉhβh, ch = λhĉh, ∀ h ∈ [H]

ηh = λhη̂h, wh = λhŵh ∀ h ∈ [H]∑
i∈[n]

βhi = kλh, ∀ h ∈ [H]

0 ≤ βh ≤ λh, ∀ h ∈ [H]

λ ∈ Rh
+, µ ∈ Rm+2

+ .

Therefore, conv(S) is a polyhedron. Next, we show that the dimension of conv(S)

is n + d + m − 1. Clearly, in the original constraints defining S, there are two

linearly independent equalities:
∑

j∈[d] cj = 1,
∑

i∈[n] βi = k. In addition, there are

nd implied nontrivial equalities: γij = cjβi, for all i ∈ [n] and j ∈ [d]. Hence,

dim(conv(S)) ≤ n+m+ d− 1.

Consider the following set of points:

(uve
>
1 , e1,uv, 0, 0) ∀ v ∈ [n],

(u1e
>
j , ej,u1, 0, 0) ∀ j ∈ [d] \ {1},

(u1e
>
1 , e1,u1, 0, el) ∀ l ∈ [m],

(u1e
>
1 , e1,u1,−1, 0),
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where uv, for all v ∈ [n] are any affinely independent vectors with k elements equal to

1 and the remaining elements equal to 0. These vectors exist because the dimension

of the following system:

β ∈ {0, 1}n,
∑
i∈[n]

βi = k, (B.2)

is n − 1. Clearly, this set of points is feasible and affinely independent. In addition,

the cardinality of this set is n+m+ d. Hence, dim(conv(S)) ≥ n+m+ d− 1, which

completes the proof.

Proposition 34. For any i ∈ [n], s ∈ [m], and t ∈ [m] \ {s}, inequality (5.25) is

facet-defining for conv(S) if and only if s ∈ [m], t ∈ [m] \ {s} are such that ysj < ytj

and ysi > yti for some i, j ∈ [d].

Proof. To show the necessity, we first note that if there exists a pair s ∈ [m], t ∈

[m] \ {s} such that ysj ≥ ytj or ysj ≤ ytj for all j ∈ [d], in other words, when

the realizations under a scenario are dominated by the realizations under another

scenario, then the corresponding inequality (5.25) is dominated. To see this, suppose

that ysj ≤ ytj for all j ∈ [d] for some pair ∀ s ∈ [m],∀ t ∈ [m] \ {s}. Then the

corresponding inequality (5.25) is dominated by the original inequality c>ys ≥ η−ws,

because the coefficients of γij are ytj − ysj ≥ 0, and γij, wt ≥ 0. Now consider the

case that ysj ≥ ytj for all j ∈ [d] for some pair ∀ s ∈ [m],∀ t ∈ [m] \ {s}. Then the

corresponding inequality (5.25) is dominated by the original inequality c>yt ≥ η−wt.

To see this, observe that we can rewrite inequality (5.25) for this choice of s and t

as, c>yt +
∑

j∈[d](ysj − ytj)(cj − γij) ≥ η − wt − ws. It is now easy to see that the

inequality is dominated, because ysj − ytj ≥ 0, cj ≥ γij and ws ≥ 0.
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To show sufficiency, we need to show that for any given i ∈ [n], s ∈ [m], and

t ∈ [m]\{s}, there are n+m+d−1 affinely independent points that satisfy (5.25) at

equality. From the necessity condition, we only need to consider the cases for which

there exists an index j1 ∈ [d], such that ysj1 < ytj1 , and there exists an index j2 ∈ [d],

such that ysj2 > ytj2 . In order to simplify the notation, and without loss of generality,

throughout the rest of the proof, we let j1 = 1, and j2 = 2, or equivalently, ys1 < yt1,

and ys2 > yt2.

First, we construct a set of points:

PT1
v = (uvẽ

>
v , ẽv,uv, ρ

1
v, ξ

1
v), ∀ v ∈ [n], (B.3)

where if uvi = 0, then ẽv = e1 and ρ1
v = ys1, else if uvi = 1, then ẽv = e2 and ρ1

v = yt2.

In addition, ξ1
vs = ξ1

vt = 0, and ξ1
vl = max{M̃s, M̃t} for all v ∈ [n] and l ∈ [m] \ {s, t}.

Clearly, the set of points defined in (B.3) are affinely independent feasible points, and

satisfy (5.25) at equality. Next, we construct a set of points:

PT2
j = (ũje

>
j , ej, ũj, ρ

2
j , ξ

2
j ), ∀ j ∈ [d] \ {1, 2}, (B.4)

where ũj is any feasible point of (B.2) with ũji = 0 if ysj ≤ ytj, and ũji = 1 otherwise

(i.e., if ysj ≥ ytj), for all j ∈ [d] \ {1, 2}. In addition, ρ2
j = min{ysj, ytj}, for all j ∈

[d] \ {1, 2}. Furthermore, ξ2
js = ξ2

jt = 0, and ξ2
jl = max{M̃s, M̃t} for all j ∈ [d] \ {1, 2}

and l ∈ [m]\{s, t}. It is easy to see that the set of points defined in (B.4) are feasible,

affinely independent from (B.3), and satisfy (5.25) at equality.

Furthermore, we construct the following set of points:

PT3
s = (ū1e

>
1 , e1, ū1, yt1, ξ

3
s ) (B.5a)

PT3
t = (ū2e

>
2 , e2, ū2, ys2, ξ

3
t ) (B.5b)

PT3
l = PT3

s + (0, 0, 0, 0, el), ∀ l ∈ [m] \ {s, t}, (B.5c)
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where ū1 is any feasible point of (B.2) with ū1i = 0, and ū2 is any feasible point of

(B.2) with ū2i = 1. In addition, ξ3
ss = yt1 − ys1, ξ3

st = 0, and ξ3
sl = max{M̃s, M̃t} for

all l ∈ [m] \ {s, t}. Similarly, ξ3
ts = 0, ξ3

tt = ys2 − yt2, and ξ3
tl = max{M̃s, M̃t} for all

l ∈ [m] \ {s, t}. Clearly, the set of points defined by (B.5) are affinely independent

feasible points which satisfy (5.25) at equality.

Finally, we construct the single point:

PT4 = (u1c
∗>, c∗,u1, η

∗, ξ4), (B.6)

where c∗ = (c∗1, c
∗
2, 0, . . . , 0), and the parameters (c∗1, c

∗
2, η
∗) are uniquely defined by

the following linear system:

c∗1 + c∗2 = 1

ys1c
∗
1 + ys2c

∗
2 = η∗

yt1c
∗
1 + yt2c

∗
2 = η∗,

or equivalently, c∗1 = ys2−yt2
ys2−yt2+yt1−ys1 , c∗2 = 1 − c∗1, and 0 < c∗1, c

∗
2 < 1. In addition,

ξ4
s = ξ4

t = 0, and ξ4
l = max{M̃s, M̃t}, for all l ∈ [m] \ {s, t}.

Clearly, PT4 is affinely independent from the points defined by (B.3), since the

following matrix:  1 0 ys1

0 1 yt2

c∗1 c∗2 η∗ = ys1c
∗
1 + ys2c

∗
2

 , (B.7)

has full rank (due to yt2 < ys2). In addition, it is easy to check that (B.6) is affinely

independent from the points defined by (B.4) and (B.5). Furthermore, it is also a

feasible point which satisfies (5.25) at equality. From (B.3)-(B.6), we obtain n+m+

d − 1 affinely independent feasible points which satisfy (5.25) at equality. Hence,

inequalities (5.25) are facet defining.
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Appendix C: Valid inequalities that involve stock variables

In this section, we study the polyhedral structure of the deterministic equivalent

formulation which includes the stock variables. Let P+ = {(x,y, z, s) | (3.3b)−(3.3f)}.

Proposition 35. For ` = 2, . . . , n, let T` := {t`(1), t`(2), . . . , t`(a`)} ⊆ T ∗` , where

Dt`(1)
≥ Dt`(2)

≥ · · · ≥ Dt`(n)
. For j ∈ Ω, the inequalities

sj(`−1)+(Dt`(1)
−Dj`−1)x` +

a∑̀
p=1

(Dt`(p) −Dt`(p+1)
)zt`(p) ≥ Dt`(1)

−Dj`−1, (C.1)

are valid for P+.

Proof. If x` = 1, then inequality (C.1) is trivially satisfied. Otherwise, y` = 0.

Because sj(`−1) ≥
∑`−1

p=1 yp − Dj(`−1) =
∑`

p=1 yp − Dj(`−1), the validity of inequality

(C.1) follows from the validity of the mixing inequality (3.5) for time period `.

Example 1. (Continued.) Let ` = 2, j = 1 and T` = {3, 4}, then we obtain:

s11 + (Dt2(1)
−Dt1(1)

)x2 + (Dt2(1)
−Dt2(2)

)z3 + (Dt2(2)
−Dt2(3)

)z4 ≥ (Dt2(1)
−Dt1(1)

),

which is equivalent to:

s11 + 5x2 + z3 + z4 ≥ 5.

In fact, this inequality is a facet-defining inequality for this problem, as we show in

Proposition 36.
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Next, we show the strength of the proposed inequalities (C.1).

Proposition 36. For ` = 2, . . . , n and T` ⊆ T ∗` , if σ`−1(1) 6∈ T ∗` ∪{σ`(k+1)}, j = σ`−1(1)

and t`(1) = σ`(1), then inequality (C.1) is facet-defining for conv(P+).

Proof. First, we show that under the conditions stated in Proposition 36, in-

equality (C.1) is facet-defining for the convex hull of the polyhedron: Psj(`−1)
=

{(x,y, z, sj(`−1)) ∈ Bn×Rn
+×Bm×R+ | sj(`−1) ≥

∑`−1
p=1 yp−Dj(`−1), (3.3b)− (3.3d)},

in which we only consider the stock variable for scenario j = σ`−1(1) at time period

` − 1. To show that inequality (C.1) is facet-defining for conv(Psj(`−1)
), we need to

find dim(Psj(`−1)
) = 2n + m affinely independent points (x,y, z, sj(`−1)) that satisfy

inequality (C.1) at equality.

Let g(ti(p)), for all ti(p) ∈ Ti and i + 1 ∈ S̄ ∪ {` + 1}, be a unique mapping such

that the scenario ti(p) has the g(ti(p))-th largest cumulative demand at time period i.

We first consider the following set of feasible points:

(e1 + e`+1, ȳ
`
p + e`+1M`+1,

g(t`(p))−1∑
i=1

eσ`(i) , ȳ
`
p1 −Dσ`−1(1)

), p ∈ [a` + 1],

where ȳqp is defined in the proof of Proposition 10. To see the feasibility of these

points, note that if σ`−1(1) 6∈ T ∗` ∪ {σ`(k+1)}, we must have ȳ`a`+1,1 − Dσ`−1(1)
≥ 0.

Hence, we obtain a` + 1 affinely independent points that satisfy inequality (C.1) at

equality.

Next, consider the following set of points:

(e1 + e`+1, ȳ
`
1 + e`+1M`+1, ep, ȳ

`
11 −Dσ`−1(1)

), ∀p = Ω \ T`.
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These m−a` points are feasible, affinely independent from all other points, and satisfy

inequality (C.1) at equality. Next, we consider the following set of points:

(e1 + e`, ȳ
`−1
1 + e`M`,0, 0),

(e1 + e` + ep, ȳ
`−1
1 + e`M`,0, 0), p ∈ N \ [`],

(e1 + e` + ep, ȳ
`−1
1 + e`M` + ep4,0, 0), p ∈ N \ [`],

where 0 < 4 < Mp, for all p ∈ N \ [`]. These 2(n− `) + 1 points are feasible, affinely

independent from all other points, and satisfy inequality (C.1) at equality.

Next, we consider the following set of points:

(e1 + e` + e`+1, ȳ
`−1
1 + e`(M` −41) + e`+1M`+1,0, 0),

(e1 + ep + e`, ȳ
`−1
1 + e`M`,0, 0), p ∈ [`− 1] \ {1},

(e1 + ep + e`, ȳ
`−1
1 + e`M` +42(ep − e1),0, 0), p ∈ [`− 1] \ {1},

where 0 < 41 ≤ ȳ`−1
11 , and 0 < 42 ≤ min{ȳ`−1

11 −Dσ1(1)
,Mp}, for all p ∈ [`− 1] \ {1}.

It is easy to see that these 2` − 3 points are feasible, affinely independent from

other points, and satisfy inequality (C.1) at equality. Finally, consider the feasible

point: (e1 + e`,y
∗ + e`M`, eσ`−1(1)

, 0), where y∗1 = Dσ`−1(2)
, and y∗i = 0, for all i =

2, . . . , n. This point is affinely independent from all other points, and satisfies

inequality (C.1) at equality. Hence, we have 2n + m affinely independent points

that satisfy inequality (C.1) at equality, which shows that the proposed inequality is

facet-defining for conv(Psj(`−1)
).

To show that the proposed inequality is also facet-defining for conv(P+), let:

(x̃p, ỹp, z̃p, s̃pj(`−1)), p ∈ [2n + m], be the affinely independent points constructed for

conv(Psj(`−1)
). Then, we construct the set of points: (x̃p, ỹp, z̃p, s̃p), p ∈ [2n + m],
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where s̃pqi = max{
∑i

u=1 ỹ
p
u − Dqi , 0} for q ∈ Ω, i ∈ N . These “extended” points

are feasible, affinely independent, and satisfy inequality (C.1) at equality. Finally,

for each inventory variable spi such that p 6= σ`−1(1) or i 6= ` − 1, we construct the

set of points: (x̃1, ỹ1, z̃1, s̃1) + (0,0,0,4epi), p 6= σ`−1(1), i 6= ` − 1, where 4 > 0,

and epi is an m× n dimensional matrix such that the (p, i)-th entry equals 1, and all

other entries are 0. These nm− 1 points are feasible, affinely independent from other

points, and satisfy inequality (C.1) at equality. Hence, we obtain 2n + m + mn − 1

feasible, affinely independent points that satisfy inequality (C.1) at equality, which

completes the proof.

Separation of inequalities (C.1): Given a fractional solution of the deterministic

equivalent formulation (x̂, ŷ, ẑ, ŝ), we solve the problem (3.12) to obtain Ŷi, i ∈ N\{1}.

Then, with a linear pass, we add the violated inequality (C.1) for ` ∈ N \ {1}, j =

σ`−1(1), if ŝj(`−1) + (Dt`(1)
−Dj(`−1))x̂` + Ŷ` < Dt`(1)

−Dj(`−1). Otherwise, there is no

violated inequalities (C.1). The overall running time is O(nk log(k)). In addition,

since we consider a single time period at a time, the separation procedure is exact.
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Appendix D: A Benders decomposition algorithm

There are mn stock variables, which could cause computational difficulty as the

size of the problem increases. In this section, we study a Benders decomposition

algorithm. Let θj, for all j ∈ Ω, represent the additional variable that captures the

second-stage cost of scenario j. The relaxed master problem is

MASTER: min f>x + c>y +
1

m

m∑
j=1

πjθj

s.t.
t∑
i=1

yi ≥
t∑
i=1

dji(1− zj), t ∈ N, j ∈ Ω

m∑
j=1

zj ≤ k

yi ≤Mixi, i ∈ N

θ ∈ Rm
+ ,y ∈ Rn

+,x ∈ Bn, z ∈ Bm,

where we relax the constraint (3.3e) which captures the second-stage cost of each

scenario. Note that the first class of proposed inequalities (3.6) is valid for the master

problem. However, since the second class of valid inequalities (C.1) involves the stock

variables, it cannot be directly applied to the master problem. For each j ∈ Ω, the
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subproblem is stated as:

θj = min h>sj

sji ≥
t∑
i=1

(yi − dji), t ∈ N (γji)

s ∈ Rn
+,

where γji is the dual variable associated with i-th time period of j-th scenario. Next,

the corresponding dual variable for j-th scenario is stated as:

θj ≥ max
n∑
i=1

( i∑
t=1

(yt − djt)
)
γji (D.1a)

γji ≤ hi, i ∈ N, (D.1b)

γj ∈ Rn
+. (D.1c)

Note that according to [18], we can apply the second class of valid inequalities (C.1)

to the subproblems, to further strengthen the quality of the Benders optimality cuts

added to the master problem. However, this implementation did not lead to improve-

ments in solution time for our test instances, hence we do not report experiments

with this version of Benders in our computational study in Section 3.5.

Given a first stage solution (ŷ, θ̂), instead of solving the dual problem (D.1) as a

linear problem, we can take advantage of the special structure of (D.1) and generate

Benders optimality cuts in O(n) time: for each i ∈ N , if the term
∑i

t=1(yt− djt) < 0,

then γji = 0, because of the nonnegativity of hi, for all i ∈ N . Otherwise, γji = hi.

Let γ∗j be the optimal dual solution for scenario j, if θ̂j <
∑n

i=1

(∑i
t=1(yt − djt)

)
γ∗ji,

then we add the following optimality cut to the master problem:

θj ≥
n∑
i=1

( i∑
t=1

(yt − djt)
)
γ∗ji,
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to cut off the suboptimal solution.

However, although we can solve the subproblem in O(n) time, there are an expo-

nential number of possible Benders optimality cuts for each scenario. As shown in

our computational study in Section 3.5, as the number of time periods (n) grows, the

Benders decomposition algorithm becomes ineffective.
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Appendix E: Convex Hull of Example 5.1

Recall that m = 3, lp = ld = 0, ud = 10, w = (8, 6, 10) and v = (3, 4, 2). The

convex hull is given by inequalities (4.7)

2yp + z1 + z2 + 12z3 ≥ 14 (Π = {2→ 1→ 3})

2yp + 11z1 + z2 + 2z3 ≥ 14 (Π = {3→ 1→ 2})

2yp + 2z2 + 12z3 ≥ 14 (Π = {2→ 3})

2yp + 2z1 + 10z2 + 2z3 ≥ 14 (Π = {1→ 3→ 2})

2yp + 10z2 + 4z3 ≥ 14 (Π = {3→ 2}),

inequalities (4.5)

yp + yd + 10z3 ≥ 10 (S = {3})

yp + yd + 8z1 + 2z3 ≥ 10 (S = {1, 3})

yp + yd + 2z1 + 6z2 + 2z3 ≥ 10 (S = {1, 2, 3})

yp + yd + 6z2 + 4z3 ≥ 10 (S = {2, 3}),
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and inequalities (4.6)

yp − yd + 14z2 ≥ 4 (T = {2})

yp − yd + 13z1 + z2 ≥ 4 (T = {1, 2})

yp − yd + z1 + z2 + 12z3 ≥ 4 (T = {1, 2, 3})

yp − yd + 2z2 + 12z3 ≥ 4 (T = {2, 3}),

and the variable bounds

10 ≥ yd ≥ 0

1 ≥ z1 ≥ 0

1 ≥ z2 ≥ 0

1 ≥ z3 ≥ 0.
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Appendix F: Extension for the intersection of multiple

mixing sets

In this Chapter, we show that the proposed valid inequalities can be applied to

strengthen the linear programming relaxation of the intersection of multiple mixing

sets. To simplify the exposition, we only study the intersection of two mixing sets. If

we consider the following problem

a>1 x + b1y +M1
j zj ≥ r1

j , ∀j ∈ Ω (F.1)

a>2 x− b2y +M2
j zj ≥ r2

j , ∀j ∈ Ω, (F.2)

where x ∈ Rn and y are decision variables, and a1 and a2 are arbitrary n-dimensional

vectors. In addition, b1 > 0 and b2 > 0 are coefficients of y and r1
j and r2

j are

right-hand side parameters for the first and second sets of inequalities for scenario

j ∈ Ω, respectively. We assume that a1 ≥ 0, and a2 ≥ 0. In addition, to simplify

the exposition and without loss of generality, we assume that x ≥ 0, and u ≥ y ≥ 0.

Hence, we can set M1
j = r1

j , and M2
j = r2

j + b2u. It can be seen that problem (4.4)

is a special case of the problem stated above. Next, we will show that the proposed

inequality (4.7) is valid for this formulation.
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Let τ ∈ [m], and Π′ be a sequence of τ scenarios given by π′1 → π′2 → · · · → π′τ ,

where πj ∈ Ω, for all j ∈ [τ ]. In addition, let

r̄1
π′j

=

{
maxj+1≤`≤τ{r1

π′`
}, if j ∈ [τ − 1] ∪ {0},

0, if j = τ,

and

r̄2
π′j

=

{
maxj+1≤`≤τ{r2

π′`
}, if j ∈ [τ − 1] ∪ {0},

0, if j = τ.

Proposition 37. The following class of inequalities for a given sequence of scenarios

Π := {π′1 → π′2 → · · · → π′τ}:

(b2a1 + b1a2)>x +
τ∑
j=1

(
b2(r1

π′j
− r̄1

π′j
)+ + b1(r2

π′j
− r̄2

π′j
)+

)
zπj ≥ b2r̄

1
π′0

+ b1r̄
2
π′0
, (F.3)

where r1
π′0

= max1≤`≤τ{r1
π′`
}, and r2

π′0
= max1≤`≤τ{r2

π′`
}, is valid.

Proof. We scale the set of inequalities (F.1) by b2, and the set of inequalities (F.2) by

b1. Letting yd = b1b2y, and wj = b2r
1
j , vj = b1r

2
j , j ∈ Ω, we obtain a structure similar

to (4.4a)-(4.4b). The rest of the proof follows from Proposition 17.

Example 1. Consider the following example:

2x+ 3y +M1
j zj ≥ r1

j ,

x− 2y +M2
j zj ≥ r2

j ,

where Ω = {1, 2, 3}, r1 = {4, 5, 8}, and r2 = {3, 2, 1}. In addition, let u = 10.

The following inequality (F.3)

7x+ 6z1 + 19z3 ≥ 25,

where Π = {1→ 3} is valid, and facet-defining for this example.
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