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Abstract

Scientists visualize their data and interact with them on computers in order to

thoroughly understand them. Nowadays, data become so large and complex that it is

impossible to display the entire data on a single image. Scientific visualization often

suffers from visual clutter problem because of high spacial resolution/dimension and

temporal resolution. Interacting with the visualizations of large data, on the other

hand, allows users to dynamically explore different parts of the data and gradually

understand all information in the data.

Information congestion and visual clutter exist in visualizations of different kinds

of data, such as flow field data, tensor field data, and time-varying data. Occlusion

presents a major challenge in visualizing 3D flow and tensor fields using streamlines.

Displaying too many streamlines creates a dense visualization filled with occluded

structures, but displaying too few streams risks losing important features. Glyph

as a powerful multivariate visualization technique is used to visualize data through

its visual channels. Placing large number of glyphs over the entire 3D space results

in occlusion and visual clutter that make the visualization ineffective. To avoid the

occlusion in streamline and glyph visualization, we propose a view-dependent interac-

tive 3D lens that removes the occluding streamlines/glyphs by pulling the them aside

through animations. High resolution simulations are capable of generating very large
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vector fields that are expensive to store and analyze. In addition, the noise and/or un-

certainty contained in the data often affects the quality of visualization by producing

visual clutter that interferes with both the interpretation and identification of im-

portant features. Instead, we can store the distributions of many vector orientations

and visualize the distributions with 3D glyphs, which largely reduce visual clutter.

Empowered by rapid advance of high performance computer architectures and soft-

ware, it is now possible for scientists to perform high temporal resolution simulations

with unprecedented accuracy. The large number of time steps makes it difficult to

perform post analysis and visualization after the computation is completed. Instead

of visualize all the time steps, users filter the original data that is too large to be

all visualized and interactively pick the interesting parts of the data to display. To

achieve this goal, we provide a time-varying data exploration system that allows users

to pick the most salient time steps with Dynamic Time Warping (DTW) algorithm

and then only visualize the data volumes corresponding to those time steps. We gen-

eralize three general strategies to manage visual clutter and demonstrate them using

four visualization techniques. In the end of this dissertation, we present possible di-

rections of future works that may inspire the readers to do more researches on visual

clutter management for different data and applications.
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Chapter 1: Introduction

1.1 Motivation

Scientific data are mostly generated from measurements or numerical simulations.

As the accuracy of measuring instruments and the compute powers of high perfor-

mance computers increase, the sizes of scientific data rapidly grow. The increases

in the spatial and temporal resolutions of data allows the scientists to observe more

details of data in the spatial and temporal domains. For example, scientists use nu-

merical weather prediction simulation to predict weather. A high spatial/temporal

resolution provides more accurate location/time information. More complex simula-

tion models may produce more realistic results, but also produce a large number of

variables as output, which increases the amount of information to be analyzed. In

a weather simulation, for example, the variables can include precipitation, pressure,

temperature, etc. In ensemble simulations, scientists run a simulation multiple times

with different initial conditions and different models and produce results across all the

simulation runs or ensemble members. The increasing number of ensemble members

also greatly raise the amount of overall data information.

Scientific visualization first converts scientific data using two dimensional (2D) or

three dimensional (3D) geometries, such as 2D bar charts and 3D isosurfaces, and
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(a) (b)

Figure 1.1: Examples of visual clutter in flow visualization. (a) In the streamline
visualization of Hurricane Isabel flow field dataset, streamlines occlude each other;
(b) Arrow plot visualization of a synthetic tornado dataset forms visual clutter.

then display the geometries on a computer screen. Visualization can more intuitively

present information in data to users than simply presenting the numbers. Because

of computer screen’s limited resolution/size and human’s limited visual perception

ability, it is not realistic to display all the data on a screen at the same time. Besides,

different users may have different interested aspects of the data, so a single image

cannot fulfill the needs from different users. If information is overloaded or badly

organized in a visualization, they could occlude each other and form visual clutter

that distracts users from understanding the visualization.

For example, streamlines and arrow glyphs are well known flow visualization tech-

niques, as shown in Figure 1.1. Both images present severe visual clutter. The stream-

lines in Figure 1.1a occlude each other, which prevents the viewers from easily tracing

a particular streamline. The arrows in Figure 1.1b are densely distributed and overlap

with each other, making it difficult to identify the pointing direction of a particular
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Figure 1.2: Superquadric glyphs visualize the tensor field in a DTI image of a tumor
patient’s brain. The dense glyphs create severe visual clutter and distraction.

arrow. In another example, superquadric glyphs are used to show the tensor field in

diffusion tensor imaging (DTI) data. As shown in Figure 1.2, putting glyphs through-

out the brain region generates visual clutter. The glyphs on the surface of the brain

block the view of the glyphs inside the brain. Some glyphs in different depths may

reside at the same image position, so their depth relationships are difficult to know.

1.2 General Strategies

In this dissertation, we want users to use the following three general strategies to

reduce or remove visual clutters in scientific visualization.

Strategy 1: Directly manipulate geometries in visualization. The most in-

tuitive way of removing visual clutter is directly taking the cluttered geometries away.

We can allow users to pick their interested portion of data, such as a sub-region in

the 3D spatial domain, and suppress the distraction from other parts of the data.
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Instead of completely removing the occluding or distracting geometries, we smoothly

transform their positions to the side to become contexts. In this way, both the user

interested information and the occluding geometries are visible to the users. For

example, in Figure 1.1a and Figure 1.2, users can interactively pull away the stream-

lines or superquadric glyphs on the surface of the volumes to see the inside geometries.

In immersive environments, such as using virtual reality headsets, traditional com-

puter input devices, such as mouse and keyboard, are difficult to use, because they

are invisible in the view and their interaction space, the desktop, is different from

the visualization space. A better interaction space is the 3D areas in front of users

where their hands are captured by tracking systems with devices such as hand motion

camera.

Strategy 2: Statistically summarize and visualize the data. If showing in-

dividual data item is not possible, the statistical summarization of the data, such as

data’s distribution, can also help users understand data. Distributions can be visual-

ized in various forms, such as pie charts, box plots, histogram and etc. For example,

the vector directions in Figure 1.1b can be summarized as histograms of 3D directions

in individual local regions. Placing the visualization of the histogram in each local

region visualizes the vector direction distribution in that region without introducing

any visual clutter.

Strategy 3: Automatically suggest interesting parts of data to display.

When data can be easily separated into multiple parts, we want the computer to

automatically suggest the most representative parts to give an overview of the data.

For example, when visualizing time-varying datasets, we can subdivide the screen
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into multiple regions and display the visualization of different time steps as small

multiples in order to compare them. If visualizing all the time steps generates visual

clutter, then only visualizing the data in computer suggested key time steps can make

the information on the screen less cluttered.

1.3 Contributions

We summarize the contributions of this dissertation as follows:

Occlusion Management Using Deformation We propose a new streamline and

glyph exploration approach by visually manipulating the cluttered streamlines or

glyphs by pulling visible layers apart and revealing the hidden structures underneath.

We present a customized view-dependent deformation algorithm to minimize visual

clutter. The algorithm is able to maintain the overall integrity of the fields and

expose previously hidden structures. We provide two space deformation models to

displace the glyphs based on their spatial distributions. After the displacement, the

streamlines or glyphs around the user-interested region are still visible as the context

information, and their spatial structures are preserved.

Interactive Lens By using a lens metaphor of different shapes to select the transi-

tion zone of the targeted area for deformation interactively, the users can move their

focus around and examine the vector or tensor data freely.

Visualization of Directional Distribution We present the cube map histogram,

a new data structure for storing the distribution of three-dimensional vector direc-

tions. We also present the crystal glyph that effectively visualizes the directional
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distribution using OpenGL cube map textures. By placing crystal glyphs in the 3D

data space, users can identify the directional distribution of the regional vector field

from the shape and color of the glyph without visual clutter.

Salient Time Steps Selection We present a novel technique that can retrieve

the most salient time steps, or key time steps, from large scale time-varying data

sets. Visualizing only a small number of salient time steps reduces visual clutter.

To achieve this goal, we develop a new time warping technique with an efficient

dynamic programming scheme to map the whole sequence into an arbitrary number

of time steps specified by the user. A novel contribution of our dynamic programming

scheme is that the mapping between the whole time sequence and the key time steps

is globally optimal, and hence the information loss is minimum. We propose a high

performance algorithm to solve the dynamic programming problem that makes the

selection of key times run in real time.

Interactive Visualization Systems We developed interactive visualization sys-

tems to explore glyph-based visualization and streamline visualization. In the sys-

tems, we provide a few lens utilities that allows users to pick a feature and look at it

from different view directions. We compare different display/interaction techniques

to visualize/manipulate our lens and glyphs. Our visualization system supports both

mouse, direct-touch, and hand motion gesture interactions to manipulate the viewing

perspectives and visualize the streamlines and glyphs in depth. We also create a visu-

alization system that allows the user to browse time varying data at arbitrary levels

of temporal detail. Because of the low computational complexity of this algorithm,

the tool can help the user explore time varying data interactively and hierarchically.
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Case Studies and Expert Feedback Case studies are provided for the proposed

four techniques to demonstrate the utility for solving real world visualization problems

with real scientific data. Domain experts, such as neurosurgeons, neurologists and

researcher in material science, provided useful feedback on our streamline deformation

and GlyphLens techniques. Their feedback not only validate the practicality of our

techniques, but also provide valuable suggestions for further improvements.

1.4 Accompanying Videos

We provide three accompanying videos for the Chapter 3 - 5. Watching the videos

can make the proposed techniques easier to be understood. The videos can be found

on the YouTube website through the following links.

• Chapter 3: https://youtu.be/9RJ70Mm33x4

• Chapter 4: https://youtu.be/acsFQvv4B0Q

• Chapter 5: https://youtu.be/Mx-GsOxoO18
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Chapter 2: Background

2.1 Visual Clutter Management

Overcoming visual clutter or occlusion is an important but challenging task in 3D

visualization. Several approaches have been proposed in the past to avoid or remove

occlusion. Li et al. [76] argued that the use of transparency fails to convey enough

depth information for the transparent layers. They use cutaways to remove occlusion

and expose important internal features. McGuffin et al. [83] used a deformation

approach to allow users to cut into, open up, spread apart, or peel away parts of the

volumetric data in real time, which makes the interior of the volume visible while

preserving the surrounding contexts. An occlusion-free route is visualized by scaling

the buildings that occlude the route. Hurter et al. [56] used an interactive dig tool to

deform the volumetric data by simply pushing the data points, to reduces occlusion.

In 3D streamline visualization, many streamline selection or placement approaches

have been proposed with a goal to minimize occlusion or visual clutter. Mattausch

et al. [82] applied magic volume, region-of-interest-driven streamline placement, and

spotlights to alleviate the occlusion problem. Li and Shen [76] proposed an image-

based streamline generation approach that places seeds on the 2D image plane, and

then unprojects the seeds back to 3D object space to generate streamlines. Occlusion
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is avoided by spreading out streamlines in image space. Marchesin et al. [81] defined

the overlap value, the average number of overlapping streamlines for each pixel in

the image space, to quantify the level of cluttering and then remove the streamlines

that have high overlap values on their projected pixels. Lee et al. [73] proposed a

view-dependent streamline placement method. In their method, streamlines will not

be generated if they occlude regions that are deemed more important, characterized

by Shannon’s entropy. Another method to alleviate streamline occlusion is to reduce

the opacity of the occluding streamlines. Park et al. [91] applied multi-dimensional

transfer functions (MDTFs) based on physical flow properties to change the color

and opacity of streamlines. Xu et al. [127] proposed to make the streamlines in lower

entropy regions more transparent to reduce occlusion. Günther et al. [49] provided

a global optimization approach to render streamlines with varying opacity in order

to achieve a balance between presenting information and avoiding occlusion. Bram-

billa [15] measures the degree of occlusion for stream surface and split the surface along

a cutting curve to reduce the degree of occlusion. The above occlusion-aware stream-

line placement methods and transparency modulation methods have their downsides.

The problem for the streamline removal methods is that some interesting streamlines

may not be shown when they occlude many other streamlines. On the other hand,

for the transparency modulation methods, it is difficult to judge the relative depths

among the semi-transparent streamlines, and those streamlines can become a distrac-

tion. Our F+C streamline deformation method can solve the occlusion problem with

better user control while making all the input streamlines easier to see.

There are various types of interactive occlusion removal techniques, such as vol-

umetric probes, virtual X-ray, and projection distorter [32]. The volumetric probe
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can transform the visualization near the probe in object space. The space near the

probe can be enlarged [18, 104] or deformed [83] to make the geometries near the

probe less occluded. In addition, the geometries near the explosion probe [101] can

be exploded and separated from each other to reduce visual clutter. Deformation

techniques have also been used to visualize driving routes and remove the occlusion

from their environments [103]. However, the conventional volumetric probes cannot

completely remove occlusion or well preserve features in glyph visualization. Virtual

X-ray techniques remove occluding objects mostly in image space, using dynamic

transparency, cutaway, and 3D magic lens. Dynamic transparency techniques change

the transparency of occluding objects [29] to reduce occlusion. Cutaway techniques

directly remove the occluding part of the model [35, 30, 76]. 3D magic lens tech-

niques [10, 110, 79, 8] visually transform the contents beneath the lens. However,

the virtual X-ray techniques cannot preserve the occluding objects as contextual in-

formation. The projection distorter bends the camera ray, instead of distorting the

space, to avoid going through occluding objects [95, 26, 126]. It is powerful when

being used to discover targets, but it can make the relative positions of the displayed

objects confusing. Compared with the existing techniques, our technique not only

can provide view-dependent occlusion-free images, but also can better preserve the

spatial structures of context features.

2.2 Focus+Context Technique

F+C techniques have been used by different applications that magnify the focus

objects while preserving the surrounding context. The techniques include fisheye

views [39, 97, 40] and magnification lens [70, 19, 115, 130]. Magic lens [10] changes the
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presentation of objects to unveil hidden information. In flow visualization, 3D lenses

have been applied to show the focus region with greater details [38, 82]. Gasteiger et

al. [42] use a magic lens to attenuate the focus attribute while showing the context

attribute within the lens. Krüger et al. [66] use 2D lens to control the visibility of

features. Van der Zwan et al. [109] blend several levels of detail with a halo-like

shading technique to simultaneously show multiple abstractions. NPR lens [88] and

the Edgelens [123] interactively distort the features within a 2D lens to emphasize

effects and reduce edge congestion, respectively. Among those referenced F+C works,

some of them do not solve the occlusion problem. Some methods [38, 82] can reduce

occlusion in 3D but do not completely keep the focus objects out of occlusion. Some

other methods [66, 42, 109] can completely remove occlusion, but they remove the

context information (the occluding objects) at the same time. Only the Edgelens [123]

work solves the cluttering problem without removing context.

Some of our proposed techniques are related to the following works with F+C flow

visualization using spatial deformation. Correa et al. [23] proposed an illustrative de-

formation system for F+C visualization of discrete datasets. Deformation is used to

expose the internal focus region, and an optical transformation is applied to mark up

the context region. Because the deformation is performed in data space, the focus

can be occlusion-free for only certain view directions. Tao et al. [104] devised a defor-

mation framework specifically for streamlines. This method deforms the data grid,

and generates streamlines based on the deformed grid. It magnifies the streamlines in

the focus while compressing the context region. In their method, because deforming

space cannot move individual streamlines according to their specific locations, it is

more difficult to avoid occlusion from certain view angles. Both Correa et al.’s and
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Tao et al.’s methods are view-independent, which means the deformation can fail to

remove occlusion completely. Besides, both methods require user input of 3D loca-

tions on a 2D screen, which makes direct user manipulation difficult. In contrast to

these two deformation approaches, our new approach displaces the streamline vertices

in 2D screen space and hence can achieve efficient occlusion-free rendering and easy

user control for an arbitrary view.

2.3 Glyph-Based Visualization

Glyph-based visualization is a powerful technique for visualizing multivariate

datasets. The data attributes are encoded on the glyph’s visual channels, such as

shape, color, texture, size, orientation and etc. To visualize three-dimensional(3D)

volumetric datasets, glyphs can be placed in 3D space to visualize data attributes

at local positions or regions. There are three strategies for placing glyphs in 3D

space [12]: data driven, feature-driven, and user-driven. Placing too few glyphs in

3D space leads to information loss or missing contextual information. Placing dense

glyphs over the entire 3D space, on the other hand, can show more information but

also introduces severe visual clutter or occlusion, making the visualization ineffective.

Thus, occlusion is a major challenge when visualizing glyphs in 3D space [12].

Glyph-based methods have been used for visualizing multivariate data to preserve

the spatial relationship of data. Particle simulations are widely used in fluid dynam-

ics [67], cosmology [116] and molecular dynamics [7]. Spherical glyphs are commonly

used to visualize particle datasets with the sphere’s color representing a scalar value of

the particle [46, 45, 65]. To visualize the local vector fields, one can either use simple

arrow glyphs [94] to visualize the 3D directions or to use a probe to visualize local
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change of velocity [28]. Even though the integration-based methods such as stream-

lines or stream surfaces can also visualize the vector field, they cannot completely

replace the glyphs when the data is noisy or uncertain. To visualize diffusion imaging

dataset, superquadric glyphs [62, 98] are used to visualize tensor field dataset, while

HARDI glyphs [92, 99] are used to visualize high angular resolution diffusion imaging

(HARDI) dataset.

Glyphs are very powerful in visualizing two-dimensional flow fields because there

are less concerns of visual clutter or occlusion on 2D images. Kirby et al. provide a

2D flow visualization that uses arrow glyphs to represent velocity and ellipse glyphs

to show the rates of strain tensors [63]. Peng and Larameee use 2D glyphs to visualize

the flow on the surfaces of an unstructured adaptive resolution boundary mesh [94].

In 3D flow visualization, the vector glyph can be used as a simple and direct render-

ing of the local vector field [24, 31]. De Leeuw and van Wijk design a probe/glyph

to show characteristics of the flow such as velocity and velocity gradient tensor [28].

The avoidance of visual clutter and the occlusion of important details become im-

portant factors in determining the effectiveness of these glyph-based techniques. The

2D projections of 3D glyphs can overlap if they are not well placed in the 3D space.

Boring and Pang [13] apply different lighting conditions to a three-dimensional hedge-

hog glyph and other geometry-based forms of the flow to emphasize different vector

directions. By only highlighting the glyphs corresponding to user-defined directions,

they reduce the displayed data and hence alleviate the clutter problem. Laramee [71]

addresses visual clutter by resampling the vector field and generating a smaller num-

ber of summary vectors that leads to a sparser glyph placement. Our work is also

related to the angular distribution in the high angular resolution diffusion imaging
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(HARDI). The angular distributions are described by certain models or functions,

which can be visualized by 3D glyphs [92, 61, 99].

2.4 Vector Field Histogram Visualization

Vector Field Histogram Two-dimensional vector field histograms have been widely

used in computer vision to analyze the statistics of directions or orientations. The

applications include real-time obstacle avoidance in mobile robots [11], crowd flow

abnormality detection [58], and human detection using HOG [27]. There are very few

modern techniques of visualizing the vector field histogram directly. Neuroth et al. [89]

visualize local 2D velocity histogram with low visual clutter. Their binning strategy

based on Cartisian coordinates also allows showing the distribution of velocity mag-

nitudes, but it is not intuitive to express the distribution of vector orientations.

Glyph-based Uncertainty Vector Field Visualization Part of our work is

closely related to vector field uncertainty glyphs that show the uncertainty infor-

mation of local regions within a vector field. Lodha et al. place uncertainty glyphs

along particle traces to show the magnitude of the deviation between two stream-

lines [78]. Wittenbrink et al. present a technique that expresses the variation of both

vector direction and magnitude using different glyph shapes [121]. Zuk et al. discuss

the interactive rendering of glyphs for visualizing uncertainty in a bidirectional vec-

tor field [131]. Hlawatsch et al. extend the vector field uncertainty glyph to visualize

unsteady flows [53]. This technique shows the possible ranges of flow directions by

angles and the time by the glyph radius. Jarema et al. use 2D glyph to visualize

the Gaussian Mixture Models (GMM) of the ensemble vector field [60]. The last four

techniques [121, 131, 53, 60] only visualize the measures of distribution (e.g. mean
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and variance) or the models of distribution (e.g. GMM). Besides, these glyphs with

2D geometries do not effectively visualize 3D directions. The use of our crystal glyph

is a three-dimensional geometry that directly visualizes the histogram of 3D vector

directions.

2.5 Time Series Browsing

As the speed of processors and degree of parallelism continue to increase, the

high cost of storage and slow speed of data movement have now become the major

limiting factors for applications to take full advantage of the computation power in

large scale parallel machines. For scientific applications such as climate modeling,

nuclear reactor simulation, and combustion engine design, the overwhelming amount

of data generated by time-varying simulations forces the scientists to cut down the

amount of data that can be stored to disk. Since it is not possible to analyze results

from all time steps, scientists often can only look at a small fraction of data at

some pre-selected time interval decided with simple heuristics. When the phenomena

modeled by the simulations have complex patterns and occur at unknown frequency,

the question of what time steps to use for analysis and visualization is still illusive.

Researchers have focused on various aspects of time-varying data visualization in

the past two decades. Examples are feature tracking, compression, high-dimensional

rendering, and interaction.

One strategy to overview time-varying data is to depict the information from

all time steps simultaneously. As histograms are frequently used to display data

distributions, Akiba et al. designed a visualization interface based on Time Histogram

[5]. Time Histogram is a 2D image that concatenates data distributions over time,
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allowing the user to design effective transfer function across multiple time steps.

Later Time Histogram was combined with parallel coordinates for multivariate volume

exploration [6]. Besides, other statistics over time can be utilized too. One example

is the importance curves presented by Wang et al. [113]. For each spatial block, its

importance curve is computed from the mutual information between adjacent time

steps over time. As mutual information represents the similarity between local time

steps, importance curves can indicate when the distribution within a data block has

changed.

In addition to considering data distributions, direct visualization of value changes

over time can be beneficial too. Given a fixed spatial location, the data values over

time form a time series, or called Time Activity Curve (TAC) in medical applications

[122, 50]. In the user interface designed by Fang et al., data in the spatial domain can

be classified based on their TAC patterns, and the region of interest can be detected

based on user-specified TACs [33] . Woodring and Shen [124] used k-means clustering

to detect the representative TACs from all data points, and designed a spreadsheet-

like interface to overview all representative TAC and its distribution over the spatial

domain. Later Woodring and Shen use the TAC-based representation to detect the

evolution of features, and create a transfer function that can be automatically adapted

to capture the change of data ranges[125]. To track the propagation of feature, Lee

and Shen presented an idea called TAC-based distance field [74]. Given a user-

specified feature, their approach is to first model the feature as a TAC, and then

estimate when and where the feature TAC appears in all data TACs. Based on the

estimated locations and time steps, the propagation of the feature can be depicted in

a 2D plot.
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Because of the limited screen space, it is also beneficial to only display a subset of

time steps that can represent the change of importance within the data. Lu and Shen

presented a storyboard-like interface [80] where the key time steps are distributed on

2D screen space based on similarity measures of the data. By linking these key time

steps following the order of time, the user can see how the data evolve. Lee and Shen

modeled the change of TAC pattern as transition of states, thus reducing the TAC at

each location into a state machine that has fewer states [112]. The concept of state-

transition graph is also used by Wang et al. [112] and the TransGraph presented by

Gu and Wang [48]. Along this direction, our goal is to select salient time steps that

can be the most representative for the whole sequence. We also design effective user

interfaces to allow effective browsing of time-varying data.

2.6 Interaction Devices

Traditionally, users interact with 3D scientific visualization using the mouse. The

mouse, as a 2D interaction tool, also has limited abilities to perform 3D operations,

such as rotation [20, 100]. Using direct-touch interaction [129, 64, 128] on the touch

screens, users can directly interact with the 3D visualization on the display space.

However, none of the 2D space interaction techniques, such as mouse or touch screen,

provide intuitive 3D operations such as rotating an object or specifying a 3D slicing

plane. On the other hand, 3D interaction devices such as the 3D mouse by 3Dconnex-

ion and motion cameras such as Microsoft Kinect, Leap Motion and Intel RealSense,

can easily specify 3D position and orientation with six degrees of freedom (DOF).

Jackson et al. allow users to specify fiber orientations using a depth sensing camera

and interact with 3D thin fiber data [59]. Besides the 2D display devices, immersive
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techniques such as cave automatic virtual environment (CAVE) [25] and virtual real-

ity headset [69], can display stereoscopic views with head tracking. In this work, we

also discuss how these 2D/3D interaction techniques can be used to manipulate our

lens and visualization in 3D space with the assistance of different display techniques.
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Chapter 3: View-Dependent Streamline Deformation and

Exploration

3.1 Introduction

Streamlines are commonly used for visualizing three-dimensional (3D) vector and

tensor fields. When too many streamlines are shown, however, getting a clear view of

important flow features without occlusion is difficult. Even though a single streamline

does not cause much occlusion compared with higher-dimensional geometry, mixing

many streamlines of different depths together can generate a very confusing image.

Although through interactive seeding of streamlines one can control the amount of

occlusion and visual cluttering, it makes finding specific flow features, and hence un-

derstanding their surrounding context, more difficult. To reach a balance between

displaying too much information and too little, focus+context (F+C) techniques

provide a nice solution. In Chapter 3, we present a streamline deformation tech-

nique to achieve an F+C view of 3D streamlines. Earlier streamline deformation

approaches [23, 104] deform the 3D space of the flow field. The main drawback of the

space deformation approaches is that it is not easy for users to control the deformation

of continuous 3D space to remove occlusion completely.
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(a) (b)

(c) (d)

Figure 3.1: Three methods are compared to reveal the feature in Hurricane Isabel
dataset, a group of vortex-shaped streamlines, originally occluded by other stream-
lines. (a) original rendering with the features occluded; (b) transparency method is
applied; (c) cutaway method that removes both the occluding factors and the con-
texts; (d) our deformation method is applied, which completely removes the occlusions
with context information preserved.

Adjusting transparency is another common method used to expose occluded fea-

tures [91, 127]. But it is difficult to set the transparency value and define the semi-

transparent region so that a clear view of both the F+C objects can be obtained.

For example when visualizing a vortex in the Hurricane Isabel dataset, as shown in

Fig. 3.1a and 3.1b, the vortex-shaped streamlines are originally occluded in (a) and
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then become visible after making some streamlines more transparent in (b). However,

the context of the flow around the vortex is mostly lost if the occluding streamlines

are too transparent, and with transparency, the depth relationships among stream-

lines are more difficult to discern. Furthermore, depth sorting is required to render

semi-translucent objects correctly, but it is difficult to sort a large number of line

segments in real-time. Cutaway method is another common technique to deal with

occlusion. It not only removes all the objects occluding the focus features but also

removes the context features in that region, as show in the example of Fig. 3.1c.

We propose a view-dependent deformation model for interactive streamline ex-

ploration. After users defining a focus region in screen space, streamlines occluding

the focus region are deformed and gradually moved away based on two deformation

models, a point model and a line model. The point model moves streamlines away

from the center of the focus region, while the line model cuts the streamlines along

the principal axis of the focus region and moves the streamlines to both its sides.

Because occlusion has a view-dependent nature and our deformation is performed

in screen space, occlusion can be more effectively removed. Compared to the other

methods mentioned above, our deformation technique can better preserve the context

streamlines in the vicinity of the focus feature and through the graduate deformation

transition, as shown in 3.1d and the accompanying video. As an application of our

deformation model, an interactive 3D lens was presented to allow users to freely move

streamlines away from selected areas on the screen using both mouse and direct-touch

interaction. To explore more complex features, we also introducing two more com-

plex lenses, layered lenses and polyline lens. The layered lenses deform different layers

differently, so we can show the features and contexts of different layers more clearly.
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The polyline lens can cut the streamlines with a series of connected line segments

and deform the surrounding streamlines smoothly to the side. Two real vector field

datasets (Hurricane Isabel, Solar Plume) and a tensor field dataset (brain images

from a brain tumor patient), were used to demonstrate our deformation framework.

Additionally, neurosurgeons and neurologists were invited to evaluate our system and

provide valuable suggestions on further studies.

3.2 Algorithm

The goal of our algorithm is to expose interesting features in the focus area by

deforming the occluding streamlines. In our deformation model, depending on the

approximate shapes of the focus area, two shape models, the point model and the

line model, are used. These two shape models can generate effective deformation for

different shapes of focus area, and is easy for users to control interactively. For each of

the two shape models, we design a screen-space deformation algorithm that displaces

vertices of the occluding streamlines.

3.2.1 Algorithm Overview

The input to our algorithm is a set of densely distributed streamlines, which can

be roughly divided into focus streamlines and context streamlines. Focus streamlines

are what the user is interested in visualizing without any occlusion, e.g. a cluster

of streamlines with a similar shape, or a group of streamlines passing through a

user-specified region. The remainder are context streamlines. Any streamlines that

block the focus streamlines will be deformed and moved to the side. To perform the

deformation, our F+C deformation model divides the screen space into three regions:

focus region, transition region, and context region, as shown in Fig. 3.2. The focus
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region is a user-specified region in screen space that contains the features of interest;

the transition region is the area that is immediately adjacent to the focus region used

to contain the deformed streamlines; and the context region is the rest of screen space

that contains undeformed streamlines. Although streamlines are defined in 3D space,

our deformation takes place in 2D screen space, i.e., streamlines are deformed without

changing their original depth. For this reason, our shape model described below in

Section 3.2.2 is defined in 2D space.

The goal of the deformation is to compress and move the occluding streamline

segments from the focus region to the transition region. To make space for these

streamlines, streamline segments that were originally in the transition region will

also be compressed and moved towards the outer boundary of the transition region.

Essentially, the deformation makes sure that the features of interest in the focus region

occlusion-free to the view. The occluding streamlines are deformed but not removed,

providing the context to the focus area. Any other streamlines outside of these two

regions remain unchanged.

We have two design goals for our deformation model:

1. The deformed streamline should preserve its shape as much as possible, even

though the shape is compressed. In other words, the relative positions of the stream-

lines and their vertices should be preserved.

2. After the deformation, the vertices should be distributed on the streamline as

uniformly as possible. In other words, any two connected vertices on a streamline

should not be placed too far from or too close from each other, compared to other

pairs of connected vertices. Otherwise, the streamlines will be jagged and a long edge

between two connected vertices may cut across the focus region.
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In our algorithm, the deformation of a streamline is achieved by displacing its

projected vertices in screen space. During deformation, we displace the deformed

vertices away from the center of the focus region. The amount of the displacement

is determined by each streamline vertex’s distance to the center of the focus. We

design a displacement function to place the deformed streamlines in the transition

region, preserving their shapes as much as possible, in order to satisfy our first design

goal. In addition, an adjustment is applied to the vertex displacement to make the

deformed streamlines satisfy our second design goal.

3.2.2 Shape Models

We designed two shape models, a point model and a line model, to represent

the shape of the focus area. Fig. 3.2 illustrates these two models. The point model

is designed for focus areas that have a circular shape, while the line model is for

focus areas that have a linear shape. Both shapes are typical for streamlines. The

first section of the accompanying video demonstrates and compares the two shape

models. We note that besides the simple regular shapes (point and line), a more

complex irregular shape could be used, e.g. a skeleton or principal curve of the

streamline cluster and their surrounding curved tube-shaped regions. However, the

resulting context streamlines would be distorted, making it hard for users to mentally

recover their original shape. Therefore, they are not considered in this work.

Point Model

As shown in Fig. 3.2a, the point model is composed of a 2D focus area (the inner

black ellipse in the figure), a transition area (the area between the inner black ellipse

and the outer green ellipse), and its center O. The inner focus area can also be
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Figure 3.2: Sketches of the two deformation models: (a) the point model and (b) the
line model. The region inside the black boundary is the focus region. The region
between the black and green boundaries is the transition region. The region outside
the green boundary is the context region. During deformation, the vertex moves
from Porig to Pnew. In (a) O is the center of the black ellipse, while in (b) O is the
intersection point between the line AB and the perpendicular line of AB passing
through Porig. M and N are the intersection points between the line OPorig and the
two boundaries.

represented by a convex polygon if desired. The convex polygon and the ellipse-based

focus areas have their own advantages. The convex polygon model can more tightly

cover the focus streamlines, while the ellipse focus has a relatively smoother and more

regular shape and can be represented analytically. The center of the focus area in the

point model is the reference point from which the streamlines are moved away.

Line Model

Fig. 3.2b shows our line model. The line model is composed of a principal axis

line (line AB), a linear bounding area immediately outside of the principal axis that

represents the focus region, and the transition area that is an expanded area outside

of the inner focus. We call this bounding shape open blinds, because it looks like two

window blinds that are open. Around the two end points A and B, the shape of the
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open blinds is represented by the tanh function. During the deformation, we cut the

streamlines in the open blinds region by the axis line and move the streamlines to

both sides of the axis line along the direction normal to AB, until the focus area is

clear.

The point model and the line model are selected based on the shape of streamlines.

If we apply the point model to straight streamlines distributed in an area as in

Fig. 3.2b, for example, some vertices will have to travel a long distance to the region

around the point A or B, resulting in a large distortion. On the other hand, the

point model is good for circular focus regions to avoid unnecessary cutting of the

streamlines happening in the line model. The overall shape of the focus streamlines

determines which model to use. To measure the overall shape, we use the roundness

of the focus area, which is a minimum enclosing ellipse of the focus streamlines. If the

major radius of the ellipse is much larger than the minor radius, i.e. low roundness,

then we use the line model; otherwise, we use the point model.

3.2.3 Deformation Model

Our method achieves the deformation by displacing its vertices iteratively to pre-

serve the smoothness of the streamlines throughout the whole process, as required by

our second design goal. This means the relative positions of the vertices on a stream-

line need to be updated constantly; otherwise, the distance between two adjacent

vertices on a streamline can become too large, and consequently, the line segment be-

tween them can cut across the focus region and still cause occlusion. To achieve this,

the force-directed algorithm [37], which considers the relative positions of the points
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by moving them iteratively to generate the final layout, inspires the design of our ap-

proach. In our method, a vertex does not just follow a linear path and move towards

a single predetermined direction. Instead, the deformation is computed through mul-

tiple iterations and generates an animation sequence. In each iteration, the vertex

adjusts its moving direction so that its relative position is preserved throughout the

animation. This animation sequence provides the context, and the final layout of the

streamlines provides an occlusion-free view of the focus area, as shown in Fig. 3.1d.

When a streamline is deformed, in each iteration the position of a vertex on the

streamline is modified based on two considerations. First, the vertex should gradually

move out of the focus area. Second, the vertex should not be placed too far away from

its neighboring vertices. Based on these considerations, we control the displacement

of a vertex using two subcomponents, each of which is represented by a velocity and

a moving direction. Mathematically, the vertex movement can be written as:

P ′ = P + v · ~w + vc · ~u (3.1)

where P ′ is the new position of the vertex, P is the old position, v · ~w represents the

movement that moves the point out the focus area, and vc · ~u makes sure that the

new point position is not too far from its neighbors. Hereafter we refer to v · ~w as the

major displacement, and vc · ~u as the minor adjustment. The two directions ~u and ~w

are shown in Fig. 3.3a. Below we explain each of the terms in detail.

Major Displacement

At each iteration, the streamline vertex moves away from the focus area along the

direction ~w at a speed of v. The moving direction ~w is related to the underlying shape
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model in use. For the point model, as shown in Fig. 3.2a, ~w is from the centroid O

to the current vertex position P , i.e. ~w ‖ OP , which is also shown in Fig. 3.3a. If the

line model is used, shown in in Fig. 3.2b, ~w is the normal direction of the line AB. If

we draw a line through point P and perpendicular to AB, it intersects with AB at

O, and we have ~w ‖ ~OP ⊥ ~AB. For both shape models, we generalize the definition

of ~w as:

~w = normalize
(

~OP
)

(3.2)

The moving speed v determines the amount of major displacement in one iteration.

Assuming Porig is the vertex’s original position, and d is the distance between O and

the vertex’s final position Pnew after deformation, i.e. d = | ~OPnew|. For the vertex to

reach a distance of d from O, the speed of the movement for P is determined by how

much the point has yet to travel, that is:

v = (d− | ~OP |) · α (3.3)

where α is a constant that has a value in (0, 1). It controls the magnitude of the

moving speed. An empirical value of α is 0.01. Because as P moves away from O,

| ~OP | keeps increasing, and thus the speed of v keeps decreasing, until the vertex P

stops moving and arrives at its final position Pnew.

From Equation 3.3, we know that d determines the final position of each streamline

vertex after the deformation. Because we want to compress and preserve the shape

of the streamline, we control the value of d using a monotonically increasing function

to transform the original distance | ~OPorig| to a larger value d. This function, denoted

as g, takes a normalized value of | ~OPorig| as its input and has the general form:
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d = g

(

| ~OPorig|

| ~ON |

)

· | ~ON | (3.4)

where | ~ON | is the distance between O and the outer boundary of the transition region

along the moving direction of ~w, as shown in Fig. 3.2. | ~OPorig| is normalized to be

between 0 and 1 by dividing its value by | ~ON |.
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Figure 3.3: (a) Illustration of the point model in the normalized space. ~w and ~u are
the two displacement directions for the point at P . Pl and Pr are the two vertices
connected to P on this streamline. (b) Blue dotted line: normalized displacement
function g in Equation 3.10 when r = 0.5. Red line: a reference displacement function
F (x) = x, which gives no displacement for the entire domain.

Fig. 3.3a is an illustration of the point model similar to Fig. 3.2a, marked with

several normalized distances to illustrate the displacement function g(x). The nor-

malized value of | ~ON | is 1. We define r as the normalized value of |OM |, i.e. r = | ~OM |

| ~ON |
.

Before deformation, vertices on the non-deformed streamline segments distribute over

both the focus and transition regions, so | ~OPorig| varies in the range [0, | ~ON |], i.e.
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| ~OPorig|

| ~ON |
varies in the range [0, 1]. After deformation, the transformed vertices will all

go to the transition region, so d varies in the range [| ~OM |, | ~ON |], i.e. d

| ~ON |
varies in

the range [r, 1]. Essentially, g monotonically transforms a value in [0, 1] to a larger

value in [r, 1].

Displacement Function

Instead of designing the displacement function g as a linear function , we apply

the transformation function of fisheye lens [97] to design a non-linear displacement

function g to control the speed of streamline vertices as discussed in the previous

section and produce a smoother deformation across the region boundary. Here we

assume a point model with a circular boundary shown in Fig. 3.3a to explain the

idea. Below, we first give the design goal of the function g, and then solve g.

Our first criterion is that, as shown in Fig. 3.3a, a vertex located at O should be

moved to the inner boundary of the transition region atM , and a vertex located at the

outer boundary of the transition region at N should remain on the outer boundary.

So we have:

g (0) = r (3.5)

g (1) = 1 (3.6)

Secondly, the function g must be a monotonically increasing function to make sure

that the deformed streamlines and their vertices have the same relative positions to

O after the deformation. So we have:
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dg (x)

dx
> 0 (3.7)

dg(x)
dx

describes the amount of distortion in the deformed space at a point whose

distance to O is x. We know that dg(x)
dx

is 1 for any points in the context region because

they will not move. To ensure that the amount of distortion smoothly changes from

the transition region to the context region at their boundary point N in Fig. 3.3a,

dg(x)
dx

should be continuous at that point. So we know

dg (x)

dx

∣

∣

∣

∣

∣

x=1

= 1 (3.8)

Finally, our last design criterion is that, from a position near O to a position

farther away from O, the amount of distortion should also change monotonically.

The value of dg(x)
dx

should monotonically increase from a value less than 1 to the value

1 when x changes from 0 to 1. The change of the distortion amount is the second

derivative of displacement function d2g(x)
dx2 . So we get:

d2g (x)

dx2
> 0 (3.9)

Combining the four criteria from Equation 3.5 - 3.9, we can solve the displacement

function g. There is more than one solution for g, and we use the simplest one:

g (x) =
(r − 1)2

−r2x+ r
−

1

r
+ 2 x ∈ [0, 1] (3.10)

To show that the above function satisfies the four criteria, we plot Equation 3.10

in Fig. 3.3b. The figure clearly shows that Equations 3.5 - 3.9 are satisfied.
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(a) point model (b) line model

Figure 3.4: Deformed grids using two shape models with r = 0.5.

If we use the displacement function g to move a regular grid with our two shape

models, we get the deformed grids shown in Fig. 3.4. Note that we create a void

focus region at the center of the grid, because g (x) ≥ g (0) = r for x ∈ [0,∞); all

the streamline vertices will be cleared out of the focus region. We also notice that for

the same amount of distortion (same value of r) in the space we can create a larger

void space with the line model shown in Fig. 3.4b than the point model shown in

Fig. 3.4a. Besides, the deformed grid in the point model shows more stretching but

less compression than the deformed grid in the line model.

Minor Adjustment

The minor adjustment plays an important role in making the vertices uniformly

distributed on the deformed streamline and thus satisfies the second design goal of

our deformation model. During our deformation process, some edges can be stretched
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more, which makes those portions of the streamline jagged. Furthermore, the long

edge can cut across and hence still occlude the focus region, which is undesired.

As shown in Fig. 3.3a, the vertex P is connected to two vertices at point Pl and

point Pr with two edges. A local approach to uniformly distribute the vertices over the

streamline is that each vertex moves towards the farther one of the two neighboring

vertices through multiple iterations so that the relative positions among the vertices

are preserved. This shortens the longest edge in each iteration, and eventually no

edge is much longer than the other edges.

The minor adjustment vc ·~u is a product of a constant adjustment speed vc and an

adjustment direction ~u. ~u is a normalized direction parallel to the longer connected

edge, which is defined as:

~u =











normalize( ~PPl), if | ~PPl| > | ~PPr|

normalize( ~PPr), if | ~PPl| < | ~PPr|
~0, if | ~PPl| = | ~PPr|

Note that the minor adjustment may move the vertex in a direction other than the

direction of major displacement ~OP , which ends up changing ~w in the next iteration.

This change is not recoverable for the later iterations. Therefore, when the viewpoint

or the focus region is changed during the deformation, if we continue the deformation

with the new value of ~w or | ~ON |, then we can still keep the focus region occlusion-

free, but we may not be able to preserve the shape of deformed streamlines in the

transition region. The solution is to recover the streamlines’ original positions and

redo the deformation from the first iteration.
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3.3 Interactive Deformation

In this section we introduce a streamline exploration tool, interactive 3D lens,

based on the deformation algorithm described above. To overcome the occlusion

problem, the lens can be placed anywhere in the image space with an adjustable depth

to peel away the occluding streamlines layer by layer. To enhance the experience of

user interaction, we use a direct-touch technique to allow users to control the lens

directly on the screen with multi-touch gestures.

3.3.1 Interactive 3D Lens

The interactive lens is useful when users want to freely explore the computed

streamlines. The lens defines a focus region with a certain depth range. Any stream-

line that is entirely or partly under the lens and closer to the viewer than the far

side of the lens is treated as a context streamline and will be moved out of the focus

region in the screen space. The other streamlines are all treated as focus streamlines

that will not be deformed, even when they are not the interesting features.

We design our interactive 3D lens as a 3D cylindrical object, shown as the black

cylinder in Fig. 3.5. The lens resides in screen space with depth defined, shown as

the blue cube in the figure. The axis of the cylinder is perpendicular to the screen,

i.e., parallel to the z axis, and the top surface of the lens is parallel to the XY plane.

The length of the cylinder is used as the lens depth. For the point model, the lens

has an elliptical surface; while for the line model, the lens surface has an open blind

shape. As the example shows in Fig. 3.5, there are three streamlines (one red and

two green), but only the red streamline that intersects with the lens will be deformed.

In the deformation, all the vertices on the red streamlines will be moved out of the
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Figure 3.5: The 3D lens. The blue cube denotes the 3D space. The yellow square
denotes the 2D screen space. The lens has an ellipse-shaped surface on the plane of
the screen. Inside the cube, there are three streamlines.

surface region in screen space, even for the right tail of the red streamline that is not

inside the cylinder.

Fig. 3.6 (a)-(d) show examples of the interactive 3D lens using the point and the

line deformation models. In Figures 3.6a and 3.6b, we use a lens with the point

deformation model to move the straight streamlines in the front away and reveal the

vortex gradually through animation (please see the accompanying video). In Fig. 3.6c

and 3.6d, a lens with the line deformation model is used to break the outside of

the vortex in two, so that the inner structure, which was previously occluded, now

becomes visible. Even though the streamline around the inner structure only partially

intersects with the 3D lens, we treat the entire streamline as the context streamline

and let all the vertices on it be deformed out of the screen space focus region in order

to ensure the continuity of deformation on this streamline.
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(a) (b)

(c) (d)

Figure 3.6: A point-model lens is applied to the streamline visualization in (a) to
push layers apart and reveal the hidden red curled vortex in (b). A line-model lens
cuts up a flow field in (c) into 2 halves and pushes them aside to expose the olive
colored helix twisted vortex in (d).
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In the interactive system, users can use the mouse buttons to modify the size,

shape, and orientation of the lens surface on the screen to specify the focus region.

In addition, users can use the mouse wheel to change the lens depth to explore the

streamlines at different layers in z direction.

In summary, the interactive 3D lens uses our view-dependent deformation model

to explore and reveal hidden streamlines in the flow field. By using the lens, users

can freely move their focus to different locations and change the shapes of the lens

interactively to search for interesting streamlines. Because the lens is always per-

pendicular to the image space, users can rotate the field and change the depth of

the lens to explore the 3D space. Users can progressively discover the features at

different depths even when the features are deeply buried inside the field, or move

the lens around to explore different parts of the focus streamlines when they are very

long. Because our deformation can be performed interactively, users can go back and

forth to replace the deformed streamlines to enhance their understanding of the 3D

features.

3.3.2 Specialized Lenses

The interactive 3D lens described above has received positive feedback and sug-

gestions of extension from researchers. Thus, we enhance our lens with additional

features to meet special needs in feature exploration. Streamline features look dif-

ferent at different depths and screen locations. A good interactive lens should adapt

itself to those different features in order to better preserve the context and acceler-

ate the process of finding features. In this section, we propose the layered lens and
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the polyline lens, which can explore features at different depths and different screen

locations with improved flexibility and adaptability.

Layered Lenses

In camera space, since streamlines in different layers have different shapes and

orientations, a lens used for the top-most layer may not be able to reveal features

clearly at a different depth layer. For example, when users use the open blind lens

to cut the streamlines and move them to the side, they usually want to make the cut

direction follow the trajectories of the streamlines. If the directions of the streamlines

vary in different layers, the cut directions should also be different in different layers.

Another reason to have layered lenses is that users usually want to explore the data in

a wider screen area first at the top layers, and then focus on a smaller screen area of

interest to inspect the inner structures. To make the deformed streamlines on the top

layers unchanged as the context while exploring the smaller scale features in the inner

layers, our layered lenses can make different screen sizes of focus regions in different

depths and present the users with multiple layers of contexts.

The layered lenses are composed of a set of regular lenses with increasing depths

and decreasing screen sizes, as shown from left to right in the Fig. 3.7. The lenses

are connected to each other in the depth direction. Between two adjacent lenses, the

screen area of the lens with a larger depth is contained within the screen area of a

smaller depth lens. A streamline passing through more than one lens will be deformed

by the lens with the smallest depth, because deforming streamlines by multiple lenses

can result in large distortion. Also, lenses with smaller depth have larger screen size,

and thus can create a larger void region to look through. For example in Fig. 3.7,

the green streamline intersects with both the green lens and the blue lens. Because
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Figure 3.7: Layered lenses are composed of three connected lenses, shown as dash
line frames in three different colors. The red lens has the smallest depth and largest
screen area, while the blue lens has the largest depth and smallest screen area. The
streamlines will be deformed by the lens that has the same color with the streamline.
The yellow streamline is the focus feature and will not be deformed.

the green lens has a smaller depth and larger screen size, the green streamline will

be deformed by the green lens but not the blue lens. After the deformation, the

streamlines originally located in the three lenses will be removed from the three 3D

focus regions. Then, users will be able to see the yellow focus streamline and also

see the three deformed streamlines (red, green and blue streamlines) as contexts in

different layers.

To demonstrate the use of our layered lenses, we apply it on white matter tracts

which are generated from a brain diffusion tensor dataset using the 3D Slicer soft-

ware [1, 34]. This dataset has a resolution of 256 × 256 × 51 with a 3 × 3 tensor

matrix on each grid point. Because this data is from a patient with a brain tumor,

we visualize the tumor as a polygonal surface in addition to the while matter tracts.

By visualizing the streamlines and the surface together in Fig. 3.8, users can explore
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Figure 3.8: Using layered lenses to open the brain tumor data set. Deformed stream-
lines are colored by lens and deformation magnitude, e.g. red streamlines are deformed
by the top-most lens, and regions of darker red are deformed more than regions of
lighter red.

the tracts, the tumor and their relationships. From the figure, we can see the white

brain tumor through the three lenses of different sizes and orientations. We give

the deformed streamlines different colors according to their affecting lens in order to

differentiate them from the unchanged ones and the ones deformed by other lenses.

The biggest lens is closest to the viewer and the color of its deformed streamline is

red; while the smallest lens is the deepest inside the volume and has yellow deformed

streamlines. With the layered lens, different layers of streamlines can coexist in the

same image, which gives users better context while exploring the 3D space.
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Polyline Lens

As said previously, having a lens with an irregular shape, e.g. an arbitrary polygon,

is not desired because the affected streamlines will be distorted too much and tend to

conform to the shape of the lens. On the other hand, a feature can have an irregular

shape, which can be difficult to inspect in detail by either the ellipse lens or the open

blind lens. In order to allow the focus region to have more general shapes, we propose

the polyline lens, which supports more complex shapes with relatively little distortion.

It divides the streamlines by a series of connected straight lines, or a polyline, and

pushes the context streamlines to the side. It works similarly to the open blind lens,

but with more flexible shapes and can easily fit a curvy streamline.

The deformation of the polyline lens mostly follows the deformation of the line

model, except for the vertices near the joint of two connected line segments. For ex-

ample in Fig. 3.9, polyline AO1B is part of a polyline lens, which cuts the streamlines

and pushes them out of the focus region. Our line model cannot be used to define

the movement of the vertices in the red and green regions, because the red/green

focus region has completely different shape with the red/green transition region, i.e.

one is a triangle and the other is a trapezoid. For example in Fig. 3.10a, the red re-

gion with white dotted texture is a triangular focus region; while the red region with

checkerboard texture is a trapezoidal transition region. By simply using line model

and pushing vertices along the direction perpendicular to the region boundaries, the

streamlines in the dots region plus checkerboard region cannot be uniformly fitted

in the checkerboard region. To give another example, there is a blue streamline in

the red region in Fig. 3.10a and one in the green region in Fig. 3.10b. When they

follow the line mode and move along the arrow dash lines, the middle two vertices
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Figure 3.9: Illustration of polyline lens. The red dashed lines, AO1 and O1B, are
two connected line segments that compose a polyline lens. The region inside the
black lines is the focus region. The region between black lines and the green lines
are the transition regions. Outside the green lines are the context regions. The
deformation regions of two line segments intersect on line GO2. Draw lines from
point O1 perpendicular to line EG and FG, which intersect at point C1 and D1,
respectively. Draw lines from point O2 perpendicular to line AO1 and BO1, which
intersect at point C2 and D2. The deformation region in the entire domain is divided
into three regions, marked with red, green and blue background colors. P1, P2, P3 and
P4 are four vertices located in three different color regions. The black arrows show
their moving directions during deformation. The extension lines of the directions are
the black dash lines, which intersect with the region boundaries atM1,2,3,4 and N1,2,3,4.

will diverge in the red region and converge in the green region. As a result, the de-

formed streamline vertices in the red/green transition regions are either too sparse to

be smooth (in the red region) or too congested to be visible (in the blue region).

To achieve a smooth and continuous deformation around the joint area of the

polyline lens, we want to compress the red region space into its upper transition

region, and compress the green region space into its lower transition region. We

notice that such compression will cause the vertices to move in a radial direction. For

the red region, vertices move away from point O1; while for the green region, vertices
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(a) (b)

Figure 3.10: Magnified views of the red and green regions in Fig. 3.9. The blue
streamlines become the purple streamlines after deformation.

move towards point O2. Thus, we can apply the point model in the two regions in

the joint areas. For the red region, we can directly apply the point model and push

vertices away from the center O1. On the other hand in the green region, instead of

pushing, vertices are pulled towards the center O2.

To determine how far a vertex should move, we still use our displacement function

g(x) to compute the vertex’s desired distance to the focus region center by Equa-

tion (3.4). For example, there are four vertices P1,2,3,4 in Fig. 3.9, which are from the

regions of three different colors and follow the four black arrows to move.

Vertex P1 is in the red region and follows the point model. It is pushed away from

O1 until reaching a distance of d1 from O1, where

d1 = g

(

| ~O1P1|

| ~O1N1|

)

· | ~O1N1| (3.11)

Vertex P3 is in the blue region and follows the line model. After deformation, its

distance to O3 is
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d3 = g

(

| ~O3P3|

| ~O3N3|

)

· | ~O3N3| (3.12)

If P1 and P3 are very close to each other at the boundary of red and blue region, i.e.

line O1C1, then we have ~|O1P1| = | ~O3P3| and | ~O1N1| = | ~O3N3|. From Equations (3.11)

and (3.12), we got d1 = d3. This means that the deformation is continuous around

the boundary of the red region and the green region.

Vertex P2 is a point in the green region and follows the point model. Equivalent to

pulling towards O2, we can think of it as pushed away from N2 and reach a distance

of d2 from N2, where

d2 = g

(

| ~N2P2|

| ~O2N2|

)

· | ~O2N2| (3.13)

Same as P3, Vertex P4 follows the line model and is pushed away from O4 at a distance

of

d4 = g

(

| ~O4P4|

| ~O4N4|

)

· | ~O4N4| (3.14)

If P2 and P4 are very close to each other around the boundary of the green region

and the blue region, i.e. line O2D2, then we have | ~N2P2| = | ~O4P4| and | ~O2N2| =

| ~O4N4|. From Equations (3.13) and (3.14), we know that d2 = d4, which means

the deformation around the boundary of the green region and the blue region is

continuous.

Because the red region and the green region do not share a boundary, we do not

need to verify the deformation continuity between them. Although our polyline lens

uses both the point and line models in different deformation regions, its deformation

is still continuous at the boundary of the regions using different deformation models.
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Figure 3.11: Using the polyline lens to open the brain tumor data set.

Fig. 3.11 demonstrates a visualization of the brain tumor in the white matter

tracts with the polyline lens. A polyline lens is drawn by the user to make it follow

the curvy shape of the tumor. Streamlines around the lens are cut and pushed away

from the lens region. The deformed streamlines around the joint of two connected

line segments are smoothly deformed and continuously connected to the surrounding

deformed streamlines. Compared to the regular ellipse lens and open blind lens, the

shape of the polyline lens can closely follow the tumor’s shape, which distorts the

streamline less and preserves the context better.

3.3.3 Direct-Touch Interaction

Because our deformation model is in screen space, it would be intuitive to interact

with the streamlines directly on a direct-touch display, so that users can use the screen

as an interaction space and pull away the occluding streamlines with their fingers. It

has been reported that touch-based visualization can benefit the users with its ability
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of direct manipulation and smooth interaction [64]. In our system, users cut and

move the streamlines with the interactive 3D lens, which requires users to specify

its location and shape. Six degrees of freedom (DOF) need to be supported for the

lens: 2D translation on the screen, 1D angle representing the orientation of the lens,

1D scaling factor for the two radii of the ellipse shape lens surface, and the 1D lens

depth.

Figure 3.12: Placing an open blade shape lens with two fingers on a multi-touch
display.

A traditional way to specify the 6DOF of the lens is through mouse interaction,

i.e. adjusting the lens surface screen position and shape with mouse dragging, and

adjusting lens depth with mouse wheel scrolling. With a multi-touch display, we

can replace all the mouse interaction with more intuitive and efficient direct-touch

interaction, as described by the following. With one finger, users can change 1DOF
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or 2DOF of the lens at a time, i.e. translation or rotation or scaling. When two

fingers are placed on the boundary of the lens and move, users can change 4DOF of

the lens at the same time. Swiping two fingers changes the 2D screen location of the

lens; rotating two fingers changes the 1D lens orientation; and pinching two fingers

changes the size of the lens. Pinching out/in two fingers inside the lens allows users to

increase/decrease the 1DOF lens depth and simulates pushing away or pulling back

the streamlines. Users can also drag one or two fingers on screen to specify a cutting

line of an open blade lens. This touch interaction simulates the process of cutting

streamlines with finger tips, as shown in Fig. 3.12. The Hurricane Isabel dataset is

used in Fig. 3.12. Hurricane Isabel was a strong hurricane in the west Atlantic region

in September 2003. The resolution of the dataset is 500×500×100. An efficient GPU

implementation of the streamline cutting process makes the cutting effects responds

to the cutting gestures in real-time. The viewpoint navigation is also enabled with

multi-touch gestures. The accompanying video demonstrates the interactions with

the multi-touch display.

3.4 Case Study

With the proposed deformation algorithm, as well as the interactive 3D lens and

direct-touch interface, we design an interactive system for streamline exploration. We

perform two case studies using our technique with two types of data: vector field data

and tensor field data.

3.4.1 Streamlines From Vector Field

In this section, we provide a case study that uses our system to explore the Solar

Plume dataset in three different ways: exploring the streamlines at different depths,
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from different view directions, and at different locations. In this case study, we provide

two ways to define focus streamlines, first as streamline bundles in Section 3.4.1, and

second as streamlines passing through a user-specified region in Section 3.4.1. Note

that users are free to use other methods to define the focus streamlines depending on

their needs. Alternatively, when the 3D lens is used, users are not required to define

their focus streamlines but can simply move the lens around the 3D space and search

for them. The Solar Plume dataset comes from a simulation of the solar plume on the

surface of the Sun. The resolution of the dataset is 126×126×512. A demonstration

of this case study is shown in the accompanying video.

Exploration with Different Depths

(a) (b) (c)

Figure 3.13: Exploring streamlines at different depths by the interactive 3D lens with
different lens depths.

Streamlines of different depths may be projected to the same screen location, and

those with smaller depths will occlude the ones with larger depths. Our interactive

3D lens can help show the streamlines at all different depths with reduced occlusion.

To do this, we can exploit the 3D lens that uses the line deformation model with open

blinds to explore the streamlines, as shown in Fig. 3.13. In Fig. 3.13a, initially the
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lens does not touch any streamlines so no streamline is deformed. We see a vertical

vortex-like object close to the surface of the volume. We push the lens into the volume

by increasing the lens depth, and then we see the blue horizontal streamlines in the

center of the volume, shown in Fig. 3.13b. Finally in Fig. 3.13c, we increase the lens

depth even more to remove the straight streamlines and a funnel shaped vortex is

revealed in the back of the volume.

Exploration with Different View Directions

A 3D object may look very different from different views; hence it is important to

view a 3D feature from different view directions to obtain a complete understanding

of its shape. Because our deformation model is view-dependent, we can remove the

occlusion regardless of the view direction. Furthermore, users can get different context

information from different views.

(a) front (b) left (c) top

Figure 3.14: Views of a bundle from different view directions.

In Fig. 3.14, we view a streamline bundle from three different sides of the volume.

A streamline bundle is a cluster of streamlines that are similar in location and shape.
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We measure the similarity between the streamlines with the mean of closest point

distance [22], and cluster the streamlines using hierarchical clustering. The focus

region is represented by the convex hull or the minimal enclosing ellipse of the focus

streamlines.

This bundle shows a turbulent flow structure with straight tails. From the front

view of the bundle in Fig. 3.14a, a yellow vortex is preserved at the upper-left of the

figure in the context region. In the left view of the volume (Fig. 3.14b), the contexts

appear to be stretched long streamlines, which look very different from the front view.

In the top view of the bundle (Fig. 3.14c), we can see some curvy vertical streamlines.

The yellow vortex visible in the context of Fig. 3.14a is again visible from this view,

which has a more complete shape than that in Fig. 3.14a.

Fig. 3.1 is another example of streamline bundles using the Hurricane Isabel

dataset. In the accompanying video, we also use the Isabel dataset to explore the

bundle from different view directions.

Exploration with Different Locations

(a) (b) (c)

Figure 3.15: Exploring flow features at different locations. The streamline picking
cube moves bottom up from (a) to (c).
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Users sometimes are interested in the flow behavior in a particular spatial region.

In our system, users are allowed to place a small axis-aligned cube in the domain, and

then the streamlines passing through this region are selected as the focus streamlines.

The minimal enclosing ellipse of the focus streamlines defines the focus region. Here

we illustrate the exploration of the streamlines from different locations around a

vortex. In Fig. 3.15, the streamlines passing though the selected location indicated by

the green cube are shown. In Fig. 3.15a, we place the cube at the bottom of the space.

A narrow vortex is selected and shown with some wider vortex-shaped streamlines on

the side. This image tells us that the flow passing through the selected region extends

to the top and the side of the surrounding area. When we move the cube up, a new

set of focus streamlines is selected as shown in Fig. 3.15b. From the tails of the focus

streamlines on the left, we know that this selected location is connected to the left

side of the flow. We move the cube to the top of the volume, as shown in Fig. 3.15c.

As can be seen, the flow behaviors are different on the top and the bottom of the

regions. The vortex on the top is located in a small region, while the vortex at the

bottom extends to a wider area. Note that the three images in Fig. 3.15 all preserve

the context features, such as the purple vortex on the left and the horizontal straight

streamlines on the right.

3.4.2 White Matter Tracts from Diffusion Tensor Imaging

Diffusion tensor MRI (DTI) provides directional diffusion information that can

be used to estimate the patterns of white matter connectivity in the human brain.

Diffusion tensor imaging (DTI) and white matter tract fiber tractography have opened

a new noninvasive windows on the white matter connectivity of the human brain. DTI
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and fiber tractography have advanced the scientific understanding of many neurologic

and psychiatric disorders and have been applied clinically for the presurgical mapping

of eloquent white matter tracts before intracranial brain tumor resections[85].

The most common technique for visualizing the white matter tracts from DTI

uses the major diffusion tensor eigenvector to define the local white matter tract

direction[118, 9, 72]. The result is a dense set of tracts, which can be represented as

streamlines (or tensorlines[118]).

Exploring Reshaped Tracts

(a) (b) (c)

Figure 3.16: Placing the layered lenses on reshaped tracts to see how the tumor
influences its surrounding tracts.

A growing brain tumor tends to compress and re-orient white matter tracts into

abnormal configurations. As seen in Fig. 3.16a, in the center near the bottom, the

tracts are distributed horizontally and connect the left and right halves of the brain.

However, the tracts above and to the left of the horizontal tracts are diagonal and

not symmetric because they are reshaped by the tumor.
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To further explore the tracts near the tumor, in Fig. 3.16b, we place a open blind

lens vertically to cut the tracts and move them to the left and right sides. It becomes

clearer that the orientations of the tracts change from horizontal (normal) to diagonal

from bottom up. We also notice that the tumor has a vertical elongated shape, which

is the same orientation of the tracts on the surface of the tumor. This observation

supports the finding that the tumor cells move faster along the white matter fiber

tracts in the brain [84].

In order to look at the deeper tracts near the tumor and without losing much

context information, we place a second smaller layered lens on the top region of

the first lens and make the cut following the orientation of the tracts, as shown in

Fig. 3.17c. Inside the second lens, we can see the tracts are connected to the right

half brain, but not connected to the left half. This may indicate the white matter on

the left has been destroyed.

Exploring Tracts Around Tumor

(a) (b) (c)

Figure 3.17: Placing a polyline lens around the tumor to inspect the relationship
between the tumor and its surrounded tracts.
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Because tracts around the tumor are of significant interest to neurosurgeons, we

can place a polyline lens around the tumor by following its silhouette, as shown in

Fig. 3.17. Before applying the lens as in Fig. 3.17a, tracts are densely distributed

above and around the tumor, which makes it difficult to inspect the tracts that

are close to the tumor but deeper inside. After placing a polyline lens around the

tumor, we create curved band shape focus region, as shown in Fig. 3.17b. When

the streamlines on the surface are removed from focus region, we can see that the

tracts above the tumor is connected to the tracts on the right side. The tracts on

the left side are vertically oriented. Some of them even penetrate through the tumor.

After further increasing the lens depth, we see the deeper tracts in Fig. 3.17c. Those

tracts at the bottom right of the tumor are relatively smooth and mostly horizontally

distributed.

Feedback from Domain Experts

To gain useful, informal feedback, we demonstrated our streamline exploration ap-

proach to five neuroscience experts: a biomedical engineer, two neuroradiologists and

two neurosurgeons. All experts have used primarily 2D slice- and transparency-based

occlusion reduction techniques for tract visualization. They were all very positive

about the deformation approach and said that it is ”smooth”, ”very useful” and could

be a ”terrific tool.” One neuroradiologist noted that the 3D environment allowed him

to see relationships that he couldn’t see with his 2D tools and the biomedical en-

gineer appreciated that the deformation approach gives greater spatial context with

less clutter than transparency techniques. Two experts were interested in using the

software to explore objects and features deeply embedded beneath tract streamlines
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for deep brain probing and, interestingly, visualization deep into the kidneys. Ad-

ditional application suggestions included visualization of tract disruption in trauma

cases, intraoperative visualization, tract morphology in cases of Multiple Sclerosis

and other neurological disorders, and endoscopy simulation. We based the coloring

of deformed streamlines (see Fig. 3.8) from expert feedback, as it gives a clear visual

cue of true versus deformed morphology.

3.5 Performance

We measured the performance of our interactive streamline deformation system

on a machine running Windows 7 with Intel Core i7 2600 CPU, 16 GB RAM, and an

NVIDIA GeForce GTX 560 GPU that has 336 CUDA cores and 2GB of memory. The

performance tests were performed in 2014. It can be higher if newer graphics card

had been used. Table 3.1 shows the results of two test datasets, Plume and Isabel.

In our implementation, the CGAL library [2] is used to extract 2D/3D convex hulls

and ellipse-shaped focus areas. To speed up the computation, CUDA and the Thrust

library [54] were used to perform the deformation computation.

Four different operations related to our deformation model described previously

were tested and the timings were collected. The Cut operation is the first step of

deformation for the line model (Section 3.2.2), which cuts a streamline into multiple

streamlines by a straight line. The Lens operation runs in the interactive 3D lens

mode (Section 3.3), which searches for the streamlines that intersect the lens, and is

done only when the lens or the view is changed. The Location operation runs in the

streamline selection stage by the location mode (Section 3.4.1), which searches for the

streamlines that pass through the cubic region only after the cube location is changed.

55



The results show that these operations only take a few milliseconds, and they are only

executed when some settings are changed. Therefore, they do not affect the overall

performance of our algorithm much. The deformation operation is performed at

every frame, so its speed is crucial for the interactivity of the system. We measured

the deformation computation time and the overall frame rates for the three models

described in Section 3.2.2. Note that the overall frame rate was computed from the

average time of drawing each frame and is not related to the constant deformation

speed. It reflects the speed of our algorithm in all stages, including the CUDA-based

deformation operation, data transfer, and coordinates transformation. The point

model with the ellipse focus takes the shortest deformation time and has the highest

frame rate, while the line model is slightly slower, but highly interactive. They are

both suitable for real-time performance. The point model with the convex polygon

as its focus area is much slower for deformation and has a comparatively lower frame

rate because both the shapes of the ellipse and the open blinds have an analytical

representation, but the convex polygon is represented by a point set. Although this

model is comparatively slower, it is still moderately interactive in our implementation

running at at least 30 frame per second (FPS). We also measured the performances

of the three layered lenses with line model and the polyline lens composed of 6 line

segments. Their speeds are slightly lower than the basic open blind lens, but still

high enough to guarantee the interactivity of the system. Finally, we can also see

that the Plume dataset has a higher frame rate than the Isabel dataset because the

deformation operates on each vertex and the Plume dataset has fewer vertices.
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Table 3.1: Performance test results.

Dataset Plume Isabel
Count Streamlines 921 609

Total vertices 317,814 522,436
Operation time for Cut 22 36

preparing deformation Lens 6 9
inputs (ms) Location 7 7

Deformation time Ellipse(point model) 0.67 1.08
(ms) Polygon(point model) 13.8 25.1

Blinds(line model) 0.81 1.27
3 layered lens(line model) 0.783 1.44
Polyline lens(6 segments) 1.53 1.83

Frame Rate (FPS) Ellipse(point model) 536 347
Polygon(point model) 58.3 35.4
Blinds(line model) 483 293

3 layered lens(line model) 226 147
Polyline lens(6 segments) 209 144

3.6 Conclusion

We have presented a streamline deformation technique to achieve occlusion-free

F+C streamline visualization, by displacing the occluding streamline vertices in screen

space. Our deformation model has the following advantages:

• Creates an occlusion-free view from arbitrary view directions,

• Preserves shapes of the deformed streamlines,

• Provides smooth transition when distorting the deformed streamlines,

• And provides interactive performance.

In this chapter, we describe the deformation model and its two variations regard-

ing the shape model used in deformation, the point model and the line model. To

allow users to freely explore the flow field without prior knowledge, our system pro-

vides an interactive 3D lens and direct-touch control to move away the streamlines

in user-specified regions in screen space at a given depth. To satisfy different user

requirements, we provided the layered lenses and the polyline lens that explore the

57



features in different layers and the features of more complex shapes. We develop

an interactive streamline exploration system based on our deformation model and

demonstrate our system through a case study using the Plume dataset and the brain

diffusion tensor dataset with experts feedback. Our deformation algorithm is easy to

parallelize and can achieve high performance using GPUs, and thus can be used for

interactive exploration of flow datasets. We believe our interactive streamline explo-

ration approach can help the CFD scientists and engineers and the neuroscientists to

freely explore the data, and also help students to learn about flows and the brain.

One limitation of our deformation model is that some deformed streamlines close

to the center of the focus region may still get significant distortion, so the original

shapes of these streamlines are not well preserved. The focus region should be rela-

tively small and local to the feature of interest to prevent too much distortion in the

context. Finally, when the viewpoint is changed abruptly, the transition of deforma-

tion may not always be smooth, so sometimes users need to restart the deformation

for the new viewpoint.
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Chapter 4: GlyphLens: View-dependent Occlusion

Management in the Interactive Glyph Visualization

4.1 Introduction

While viewing glyph-based visualization, users want to focus on interesting fea-

tures that are usually represented by one or a cluster of glyphs called focus glyph(s).

The glyphs around the focus glyphs in 3D space are called context glyphs that provide

contextual information, such as the focus glyphs’ relative spatial properties. Our goal

is to combine occlusion management and focus+context(f+c) so that we can visualize

both focus glyphs and their surrounding context glyphs in the same image without

any occlusion. There are various 3D occlusion management techniques. Elmqvist

and Tsigas [32] summarized them into a few categories including volumetric probes,

virtual X-ray, projection distorters, and etc.

In this work, we propose a view-dependent lens called GlyphLens to interactively

explore glyphs in 3D space. The GlyphLens uses space deformation techniques to

open a tunnel of various sizes from the viewer’s eyes to reveal the focus glyphs.

The context glyphs are displaced away from the lens, so the viewer can look at the

focus glyphs through the tunnel without occlusions. Besides, the lens attenuates the

brightness of the context glyphs based on the depths to provide additional depth cue
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as well as highlighting the focus glyphs. We use animation to depict the displacement

and attenuation of the glyphs, so users can mentally recover the original positions and

appearances of the glyphs through the transitions. Using this lens, users not only can

remove the occlusion from arbitrary view directions, but also preserve the shape and

relative positions of the context glyphs surrounding the focus glyphs. The GlyphLens

can either deform screen space or object space. Deforming screen space completely

removes occlusion, while deforming object space can preserve the spatial structure of

the deformed glyphs. We provide two shape models for the lens to fit different focus

feature shapes and to displace glyphs in different directions. To explore the power

of the GlyphLens, we implemented an interactive glyph visualization system using

the lens. The system provides a few lens utilities for accurate lens placement and

snapping. To view a group of focus glyphs from arbitrary view directions, users are

allowed to select their focus glyphs or predefined features to be always visible. We

implemented our system using different input devices, such as mouse, touch screen

and motion camera, for placing and manipulating the lens. We also explore two

output devices, screen monitor and virtual reality headset, for displaying our glyphs

and assisting on the view-dependent lens interaction. We provide three case studies to

demonstrate the effectiveness of different glyph-based visualizations using our glyph

lens and collected user feedback from two domain scientists.

4.2 Algorithm

To design an effective occlusion-free f+c lens for visualizaing 3D glyph, we have

three design goals as follows:
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• Remove occlusion completely. The lens can create an occlusion-free view to

visualize the originally occluded features.

• Preserve contexts. Glyphs around interesting features should also be visible as

the contexts. Besides, their relative locations or spatial structures should be

preserved.

• Provide depth cue. Because the glyphs at different depths overlapping with

each other on the screen, a clear depth cue can help identify the locations of

the focus features.

In this section, we first give an overview of our algorithm in Section 4.2.1. Because

glyph displacement is the major contribution of our lens, we explain how to displace

context glyphs using two space deformation models in Section 4.2.2 and two lens

shape models in Section 4.2.3.

4.2.1 Algorithm Overview

We use Fig. 4.1 to illustrate our problem and solutions. In the figure, the red

glyphs are the focus glyphs that are of user’s interest, while the blue glyphs are

the context glyphs. The glyphs around the focus glyphs are the important context

glyphs, e.g. the blue glyphs inside the red dashed circle, because they provide spatial

reference for the focus glyphs. Some blue glyphs, such as the glyphs marked as A

and B in the figure, occlude users’ views to the focus glyphs. Our view-dependent

GlyphLens is composed of two coaxial cylinders oriented from the viewer’s eye to

the focus glyphs. The double cylinder lens has two regions: focus region and context

region, as shown in Fig. 4.1a. Inside the inner cylinder is the focus region, because the
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focus glyphs are right behind it. Between the two cylinders is the context region. In

order to see the red focus glyphs, our lens displaces the blue context glyphs from the

focus region into the context region. With an empty focus region after displacement

as shown in Fig. 4.1b, viewers can see the red focus glyphs behind the lens through

the empty focus region without any occlusion. In Fig. 4.1b, the glyphes A and B are

moved to the context region and do not occlude the focus glyphs. The glyphs outside

the lens are not displaced such as the glyph C and D. The glyph displacement is

achieved by deforming the space. We can either deform screen space as described in

Section 4.2.2 or deform object space as described in Section 4.2.2 to preserve different

kinds of context features. Because the focus glyphs or the features can form different

shapes or spatial structures, the Section 4.2.3 describes how to design different shapes

of cylinder bases to fit different feature shapes. Users can interactively move the back

base of the lens to be in front of different glyphs, so that any glyphs right behind the

lens back base become the new focus glyphs and can be viewed without occlusion.

As we know, occlusion is an important depth cue for 3D rendering. However, in

the glyph visualization, there are a lot of empty spaces between the glyphs so that

the viewers can easily see through the empty spaces to see the glyphs at different

depths without much depth cue. Therefore, we use brightness difference to provide

extra depth cue for the glyphs behind the lens. The brightness of a glyph decreases

with the glyph’s distance to the lens back base as shown in Fig. 4.1b. To attenuate

a glyph’s brightness, we multiply its color RGB channel by an attenuation coefficient

a defined as

a = max{(s× z + 1)−1 , a0} (4.1)
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Figure 4.1: Illustration of how to displace the glyphs from (a) to (b). The red and
blue circles represent the glyphs. The red glyphs are the focus glyphs. The green and
pink cylinders define our lens and divide the space inside the lens into two regions:
focus region and context region.

where z is the glyph’s distance to the lens back base, s is an adjustable constant

coefficient to control the speed of attenuation, and a0 is the minimum attenuation

coefficient to prevent the glyphs from becoming invisible. An empirical value of a0 is

0.1.

4.2.2 Space Deformation Model

We provide two space deformation models, screen space deformation and object

space deformation, to displace the glyphs. The first model directly changes the glyphs’

positions based on their screen coordinates and completely removes occlusion. The

second model uses a tetrahedral mesh as the object space proxy geometry and deform
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the mesh based on a physically-based model. The glyphs are indirectly moved along

with the deformed mesh that puts constraints on the glyph movement and can better

preserve the spatial structures of the glyph clusters.

Screen Space Deformation

The screen space deformation is defined in 3D screen space similar to the one used

in the streamline deformation work by Tong et al. [107]. It is 3D because we add the z

coordinate or the depth from the clip space to make it a 3D space, shown as the blue

frame in Fig. 4.2d. Our lens is a cylinder in screen space, or a frustum in the camera

space as shown in Fig. 4.2a. We define the shape of cylinder base using its x and y

coordinates in screen space and define its visual transformation, such as displacement

and attenuation, based on its z coordinate. Fig. 4.2c is the frontal view of 3D screen

space that illustrates how the lens and its two regions look from 2D screen. Using

this coordinate system, users can easily change the size and shape of the lens base on

the screen to fit different shapes of focus glyph clusters, and change the lens position

to point to different focus glyphs in different regions.

As described in the algorithm overview, we need to displace the glyphs inside the

lens out of the focus region and preserve the glyphs surrounding the focus glyphs as

contexts. We divide the cylinder lens region into two halves, front part and back part,

based on the depth. The boundary of the two halves is illustrated as the black dashed

circle in Fig. 4.2d. The total depth of the lens is d, and the back part of the lens

has a depth of ∆d. Fig. 4.2b shows a cross section of the Fig. 4.2d. The horizontal

coordinate represents the depth direction and the vertical coordinate represents the

screen height. We displace the glyphs in the two parts of the lens differently. In

the back part of the lens, the space in both the focus region and the context region
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Figure 4.2: Illustrations of the screen space deformation model in camera space (a)
and screen space (d). (b) is a cross section of (d). (c) is a 2D frontal view of screen
space. The black dashed circle in (b) and (d) divide the lens into front part and back
part. (a) (c) and (d) show the glyphs before the displacement, while (b) shows the
glyphs after the displacement.

is linearly compressed into the context region. To displace a glyph whose distance

to the lens center line is x, it moves towards the direction pointing away from the

lens center until its distance to the lens center is x · R−r
R

+ r, where r and R are the

distances from the lens center to the inner and outer cylinders, respectively. As for

glyphs in the front part of the lens, they are not close enough to the focus glyphs to

be treated as contexts and could possibly occlude the displaced glyphs in the context

region in the back part of the lens. So we displace the glyphs in the front part of
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the lens to the outer lens boundary. This means they are almost cut away from the

image. For example, if we displace both the glyph B and E into the context region,

then glyph E may still occlude users from viewing glyph B. We decide to displace

glyph E to the outer boundary of the context region, then it will not cause occlusion

to glyph B. After the deformation as shown in the Fig. 4.2b, we not only can look

at the red focus glyph without any occlusion, but also see all the glyphs originally

around the red focus glyphs as contexts, and hence provide a f+c visualization.

Object Space Deformation

Even though screen space deformation can completely remove the occlusion, the

lens may destroy the spatial relationship of the displaced glyphs. For example, in

Fig. 4.3, the blue glyphs form two curved clusters in front of the red glyphs. If we use

the lens with the screen space deformation model to view the red focus glyphs, the lens

will break at least one of the blue clusters whose spatial structures could be important

context features. To preserve the spatial structure of the glyphs, we propose an object

space deformation model for displacing glyphs. Instead of displacing an glyph in

image space, we deform the underlying 3D object space and map the glyph positions

to the deformed space. To preserve the spatial structure, we want the regions with a

large number of context glyphs less deformable or rigid to keep the glyphs’ relative

positions. On the other hand, we want the region with fewer glyphs more deformable

or elastic, so that this region can either be stretched to create a big void region to

see through or be compressed to make space for other rigid regions.

Instead of being a frustum, the lens is a 3D cylinder shape in object space as

shown in Fig. 4.3. The lens is always parallel to the view direction and pointing to

the camera. To view the red focus glyphs through the lens without occlusion, the
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screen

Figure 4.3: In the object space deformation model, the GlyphLens is a cylinder shape
in object space, which is not a frustum.

lens needs to push the blue context glyphs out of the focus region into the context

region without breaking the two blue glyph clusters.

To simulate the space deformation, we model the 3D volumetric data space us-

ing an elastic tetrahedral mesh, shown as Fig. 4.4, and deform the mesh based on

physically-based deformable models [87]. Some previous researches [43, 41] also de-

form tetrahedral meshes built from volumetric dataset for volume rendering. To build

a tetrahedral mesh for an arbitrary 3D volume, we first fit a rectangular volume to the

target volume and decompose the rectangular volume into stacked cubes as shown

in Fig. 4.4b. Then, each cube can be decomposed into 5 tetrahedra as shown in

Fig. 4.4a. On each adjacent cube face, the triangles on the two sides should match

to make the tetrahedral mesh a manifold. The glyph positions are mapped to the

tetrahedral mesh using the barycentric coordinates within each tetrahedron. Then,

the glyphs can be displaced by following the mapping with the deformed tetrahedral

mesh.
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(a) 5 tetrahedra. (b) 40 tetrahedra.

Figure 4.4: (a) A cube can be decomposed into 5 tetrahedra. (b) Tetrahedralization
of a volume is made by stacking such cubes with correct orientations.

We used the Chebyshev semi-iterative approach in projective and position-based

dynamics to solve our elastic tetrahedral model [114], because it supports parallel

computation using GPU that can make our lens operation interactive. In the elastic

model, the stiffness of the tetrahedron is a variable to measure its ability to deform. In

our application, we determine the stiffness of a tetrahedron by the number of glyphs

inside the tetrahedron. The tetrahedra containing more glyphs are more rigid or less

elastic, while the tetrahedra containing fewer glyphs are more elastic or less rigid. As

long as the tetrahedron size we use is smaller than a glyphs cluster’s size, we can then

model the glyph cluster with a set of rigid tetrahedra. As a result, the glyph spatial

relationships in this cluster will not be changed during the deformation. We define

the stiffness of a tetrahedron as:

68



g = g0 + h×
( n

N

)2

; (4.2)

where g0 is the minimum stiffness of a tetrahedron, n is the number of glyphs in this

tetrahedron, N is the total number of glyphs in the dataset, and h is an adjustable

constant coefficient. In this equation, the stiffness grows quadratically with the num-

ber of glyphs. To use the lens to control the deformation, we apply the force F to

the mesh vertex V inside the lens and push it away from the lens center shown as the

red dashed line in Fig. 4.5a. The force F , shown as the gray arrows in Fig. 4.5b, can

be calculated by

F =











c× (R − r)×
~OV

|OV |
, if |OV | ≤ r

c× (R − |OV |)×
~OV

|OV |
, if r < |OV | ≤ R

~0, if |OV | > R

where O is the vertex V ’s nearest point on the lens center, r and R are the distances

from the lens center to the inner and outer lens boundary, and c is an adjustable

constant coefficient. Using this equation, the vertices in the focus region receive

constant force. For the vertices in the context region, its force reduces as its distance

to the lens center increases. The mesh outside the lens boundary, shown as the pink

frame in Fig. 4.5, is not deformable in order to restrict the distortion in a local region.

Then, values of g and F are used as the inputs to the elastic model simulation.

Fig. 4.5 illustrates the object space deformation model of our lens in 2D as an

example. The 2D space is modeled as a triangle mesh. The red glyphs are the

interesting glyphs that are occluded by two clusters of blue glyphs. To remove the

occlusion without breaking the spatial structures of the blue clusters, we place a green

lens in front of the red glyphs. Then the lens deforms the triangle mesh in Fig. 4.5a
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(a) (b)

O
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r

R

Figure 4.5: As an example in 2D, the tetrahedral mesh reduces to a triangle mesh.
The triangle grids represent the object space before (a) and after deformation (b).

into the mesh in Fig. 4.5b. During the deformation, the triangles between the two

blue clusters are stretched, while the triangles at the top and bottom of the space are

compressed. These deformed triangles are more elastic because they mostly represent

empty space that contains few glyphs. On the other hand, the triangles containing

the blue glyphs are not deformed much but only moved to the side. In the end as

shown in Fig. 4.5b, the viewer can see through the green lens to see the red glyphs

without occlusion. Besides, the curved shapes of the two blue glyph clusters are well

preserved as contexts.

Even though the object space deformation model is good at preserving the spatial

structure within the displaced glyph cluster, it has limitations as well. This model

becomes not effective when the glyphs do not form clusters or there is no void spaces

between the clusters. This model does not guarantee to create an occlusion-free
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focus region because the deformed space is still continuous. When glyphs scatter

throughout the whole space, the lens cannot sufficiently stretch or compress certain

tetrahedra because all the tetrahedra have similar elasticity.

We can decide whether the given glyphs in a dataset are suitable for our object

space deformation model. The criterion is that the glyphs need to have spatial struc-

tures, i.e. to form clusters. We use the histogram of the glyph locations X to measure

the glyph distribution and use the entropy H(X) of histogram as a metric to measure

the existence of spatial structures. Each tetrahedron cell k is treated as a histogram

bin whose bin counts nk is the number of glyphs in this cell. The probability of each

bin is pk = nk/N , where N is the total number of glyphs. Then we compute the

entropy value using the following equation [52]:

H(X) = −

m
∑

k=1

pk log(pk) (4.3)

where m is the total number of tetrahedra. Only when the entropy is lower than

a threshold, there exists spatial structures in the data, so we can use the object

space deformation model. Otherwise, we just use the screen space deformation model

mentioned in Section 4.2.2 to remove occlusion more directly.

4.2.3 Lens Shape Models

Although both our space deformation models deform the space in the directions

parallel to the screen, we need to define the directions and amounts of deformation

on the plane of the 2D cylinder base. In this work, we propose two basic lens shapes,

round lens and band lens, to deform the space. Those two shapes are simple enough

to minimize the distortion of the space. It is easy to implement and provides real-time
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performance and convenient user-interaction. The optimal shape of the lens depends

on the distribution of the focus glyphs on the screen and the choice of the space

deformation models. Besides, our basic lens shapes have the potential to extend to

other more complex shapes.

O

focus

context

(a) Round lens with circle
boundary

(b) Band lens with straight line cen-
ter
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(c) Band lens with curve center

Figure 4.6: Different shapes of the lens screen projection or the cylinder base. In (c),
the black points are the control points of the curves.

Round Lens

The round lens provides a circular shape focus region. For example, in Fig. 4.6a,

the focus region is represented by the inner green circle. The context region is a

concentric, but larger circular region outside of the focus region. It outer boundary is

shown as the pink circle in Fig. 4.6a. The center point of the round lens is the circle

center O. The space deformation direction and the glyph displacement direction is

pointing away from the center O, shown as the gray arrows in Fig. 4.6a. The goal

of the space deformation is to move the glyphs in the focus region into the context

region.
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Ellipse and other near circular shapes can also be used as the boundary shape of

the focus region. However the amounts of distortion are not the same in the different

deformation directions because of different radii in different directions. So using a

circle as the boundary shape of the circular lens is preferred over other shapes such

as ellipse. If using the screen space deformation model, the round lens will create

large distortions around the point O, because space at this point is deformed into a

much bigger green circle. Then, the features originally located at the point O can be

distorted more. Therefore, for the round lens, the object space deformation model is

preferred, because it generates smaller space distortions near the point O than the

screen space deformation model.

Band Lens

The band lens defines a band shape region as the focus region, whose boundary is

shown as the green lines in Fig. 4.6b. Instead of deforming the space outward from

a point, the band lens deforms the space away from its center line which could be

a line or a curve depending on whether the band is straight or not. In Fig. 4.6b,

the center line of the band is a straight line AB. The space deformation direction is

perpendicular to line AB and away from it. Compared to the round lens, the band

lens with a straight line center provides a more uniform space distortion, because the

void focus region is opened from a line that is larger than a point. Therefore, the

band lens can be easily used with the screen space deformation model and completely

remove the occlusion.

In addition to the straight line center, we also defined the band lens whose center

line is a curve that can be drawn arbitrarily by the users, as the red dashed line shown

in Fig. 4.6c. Drawing a curve on the screen gives users the maximum flexibility of
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fitting the lens shape to the different feature shapes with a slightly higher computation

cost. The users only need to draw a curve on the screen along the feature and specify

the width of the band. In order to make the curve smoother and filter out the hand

shaking artifacts from the user’s hand drawing, the curve is fitted by a Bézier curve

using a sequence of control points shown as the black dots in Fig. 4.6c. We can

compute the boundary of the context region using the offset of the center curve. The

offset of a curve is another curve that is generated by moving the vertices on the

original curve along its local curve normal or negative normal for a fixed distance.

We use Tiller and Hanson’s method [106] to compute the offset curve. The two

curves A1B1 and A2B2 shown in Fig. 4.6c are the two offsets on both sides of the

center curve using the given band width as the offset distance. Connecting the end

points of these two offsets,A1A2 and B1B2, can form the focus region. The two curves

A3B3 and A4B4 are the context region boundaries that can be computed in the same

way. In this way, each control point of the four offset curves have an one-to-one

correspondence with the control point on the center curve, as the black dashed lines

shown in Fig. 4.6c. Connecting the corresponding control points between the center

curve AB and the offset curves, A3B3 and A4B4, and the adjacent control points on

these curves, as the black lines, can divide the band lens into multiple quadrilateral

regions. Then, the space in each quadrilateral is deformed by a sheared version of the

displacement using the band lens with a straight center line.

4.3 Interactive Visualization System

Using the proposed lens, we provide an interactive glyph visualization system.

To fully explore the power of our interactive lens in the visualization system, we use

74



Table 4.1: Interactions techniques.

operations mouse touch screen motion camera
rotate drag left button drag one finger rotate head
zoom scroll wheel pinch in/out move head
pan drag right button drag with two fingers move head
change location drag lens center drag lens center move a fingertip
change depth scroll wheel in lens pinch inside focus move a fingertip
change size drag lens boundary drag lens boundary move two hands
change lens shape draw with left button draw with one finger n/a

different input devices, such as mouse, touch screen and motion camera, to manipulate

the lens. Besides, we display our glyphs and lens on two different display devices,

monitor and virtual reality headset, to study how the display devices can help the

interactions of different input devices. We also designed some software utilities to help

users interact with user-interested features. Our accompanying video demonstrates

the interactive visualization system.

4.3.1 Input Devices

To interact with the glyph visualization, we have two sets of operations to perform.

The first set of operations manipulates the 3D transformation of the rendered model,

such as rotating, zooming, and panning. The second set of operations controls the

parameters of the lens, such as screen location, size, shape and depth. We list how

the three input devices are used to perform these operations in Table 4.1 and analyze

their advantages and disadvantages as follows.

Mouse The mouse is capable of performing all the operations and is the most

familiar device to most users. It requires the least efforts because users only need
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to slightly move their fingers and arms to control the mouses. The mouse wheel

only measures the relative value changes, but it cannot specify an absolute value. So

scrolling the mouse wheel can only indirectly increase or decrease the zooming level

or the lens depth, but not directly specify their values. On the other hand, the mouse

can directly and accurately give the absolute values of the screen position to perform

all the other operations. However, users have to mentally map the mouse interaction

space (i.e. desktop) to the display space (i.e. monitor screen).

Touch Screen Similar to the mouse, the touch screen can also be used to ac-

curately specify absolute screen positions. Besides, users directly interact with the

display space, which makes specifying screen positions more intuitive. Furthermore,

touch screens provide intuitive gestures. For example, pinching gestures are more

intuitive when controlling the zooming and lens depth than mouse wheels. The only

disadvantage of touch screen interactions is that it requires more users’ efforts to move

fingers over a big screen. Fig. 4.7 shows how the user specifies both the location and

the size of a round lens at the same time on a touch screen using two fingers.

Motion Camera Motion cameras, such as Leap Motion [117] and Intel RealSense,

provide 3D positions and hand gestures of fingers that can be used to interact with

computers. In this work, we used the Leap Motion hand motion camera. As shown in

Fig. 4.8, we use the 3D positions detected by the camera to specify the lens location

in the object space. By using two hands, the distance between two index fingertips

is used to specify the lens size. In this way, we can efficiently control all the lens

parameters at the same time as if the lens is in our hands and our hands move

the glyphs in the 3D data space. The disadvantage of the motion camera is that
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Figure 4.7: A user uses touch gestures to control the lens and explore the particle
dataset.

it also captures hand shakes that may make the lens position unstable. But the

instability can be alleviated by stabilization algorithms that average a sequence of

finger positions.

4.3.2 Display Devices

Besides the traditional monitor screen, we also explore the use of virtual reality

headsets to display our glyphs as stereoscopic images. Different display devices can

be effective only with specific input devices, but not all of the three mentioned above.

Monitor The monitor displays one image that is a perspective 2D projection of 3D

glyphs. Because the viewer’s two eyes see the same image, the image looks flat and

lacks the sense of distance to the viewer. In this study, we used a regular 23 inches

LCD monitor. All of our three input devices work with the monitor. The touch
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screen works the best with the monitor because the interaction space and the display

space are unified. On the other hand, if the users want an effective method to specify

the 3D lens position, they can use the motion camera by placing it in front of the

monitor.

Figure 4.8: The user views stereoscopic glyph visualization in virtual reality headset
and controls the GlyphLens by the motion camera mounted on the headset. Head
tracking through the camera attached on the monitor is used to change the camera
position.

Virtual Reality Headset The virtual reality headset creates an immersive 3D

environment by displaying two different images side by side for a viewer’s two eyes.

In this study, we use the Open-Source Virtual Reality (OSVR) Hacker Dev Kit 1.3 as

our headset shown in Figure 4.8. The head tracking device coming with the headset

has six degrees of freedom (3D position and orientation) and can be used to control

our camera. We used two different modelview matrices to render two different images
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for the two eyes. In the screen space deformation model, we compute the deformation

based on one of the two images without noticing the artifacts. The stereoscopic display

and the head tracking simulate a physical presence of users in the glyph visualization

space, so it provides users a better sense of 3D shapes and positions of the glyphs.

Using the headset, users cannot see the outside environment, so mouses and touch

screens become ineffective and only motion cameras can be used. By combining

the virtual reality headset and the motion camera, users can see the glyphs and the

interactive lens in the same space, so the display space and the interaction space are

unified. A disadvantage of the virtual reality headset for visualizing scientific datasets

is that users may lose the spatial reference and don’t know where they look at when

glyphs are displayed too close to them.

4.3.3 Utilities

In the visualization system, we not only implemented the basic user interactions

to control the lens position and shape, but also designed a few utilities to allow more

efficient glyph exploration.

Feature Locking A feature of interest in a dataset can be a set of glyphs with

particular properties depending on users’ interests. Because the features are what

the users focus on, we can lock them in their original positions, so they cannot be

displaced by the lens. Then, the users can freely examine the features and their

surrounding glyphs without worrying about losing the features.

Glyph/Feature Picking A lens can be moved to a desired position by adjusting

its position manually. But sometimes users may want to directly move a lens to be
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centered at a glyph or a feature that they see or partly see. In these cases, we provide

a function to allow users to pick a glyph or feature by pointing on it. Then the lens

will automatically center on the picked glyph or feature, i.e. the center of the cylinder

lens back base overlaps with the position of this glyph or feature. The picked glyph

or feature will be fixed inside the lens focus region and will not be displaced. The lens

always centers on the picked glyph or feature even when users change view directions.

Glyph/Feature Snapping It is not always easy to pick a small glyph or feature

on a 2D screen or using hand motion camera. Instead of having to point at the exact

position of a glyph or a feature, we can let the cursor automatically find the nearest

glyph or feature from the lens. This utility not only helps users quickly move the lens

onto their target glyphs/features, but also helps stabilize the unstable lens position

caused by hand shaking when using hand motion cameras. The nearest glyph search

computation is implemented in GPUs by simply comparing the lens’s distances to all

the glyphs. It achieves a real-time performance even with large number of glyphs.

4.4 Case Studies

We provide three case studies to demonstrate our GlyphLens using two different

datasets. We compare the two deformation models in Section 4.4.1 and the two shape

models in Section 4.4.2. We also demonstrate how to lock features in Section 4.4.3.

More demonstrations of our interactive visualization system using different display

and interaction techniques can be found in our accompanying video.
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(a) Particle dataset. (b) Diffusion tensor dataset.

Figure 4.9: Glyph-based visualizations for the two datasets in our experiments. (a):
Spherical glyph visualization of the particle dataset. The particles on the top surface
have the highest concentration values. The particles in the middle and bottom of
the image form strip regions that are the viscous fingers. (b): Top view of the
superquadric glyph visualization for the diffusion tensor in a tumor patient’s brain.
The three colored surfaces represent ventricles (blue), cystic part of the tumor (green),
and solid part of the tumor (red).

4.4.1 Different Deformation Models

In this case study, we use a particle dataset from a fluid dynamics simulation of

viscous fluids [3]. This simulation uses the Finite Pointset Method (FPM), which

is a meshfree method, and generates particle datasets [67] containing large number

of particles. It studies how the salt supplied from the top of water is dissolved

in the water in a cylinder domain. The concentration of salt solution is a scalar

attribute of the particle. The area of high concentration is called the viscous finger,
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which is the interesting feature we want to observe without occlusion. Although this

dataset is an ensemble time varying dataset, we pick one time step of one ensemble

member to demonstrate our technique. Fig. 4.9a visualizes 19,483 particles whose

concentrations are greater than a threshold. Each spherical glyph represents a particle

whose concentration value is mapped to the sphere’s color using the cool/warm color

map. The goal of the visualization is to explore all the viscous fingers, including the

ones hidden inside the volume.

Fig. 4.10 gives an example of how to use the circular round lens to pull away the

particles on the volume surface and see the viscous fingers inside. Using a round lens

with the screen space deformation model, we can completely remove the occlusion

as shown in Fig. 4.10b. In the lens focus region, we can see the viscous finger with

the shape of an inverted triangle. The particles inside the focus region have different

brightness values that provide additional depth cue. In the bottom of the context

region, another big viscous finger, which originally occludes our focus feature, is still

visible but compressed into an arc shape. The object space deformation model as

shown in Fig. 4.10c can preserve the spatial structure or the shape of the displaced

viscous finger in bottom of the context region better than the screen space deformation

model in Fig. 4.10b. This is because in the object space deformation model, the region

with the viscous finger has denser glyphs and hence is more rigid, which prevents

excessive local space distortion. On the other hand, we can still see some context

glyphs in the focus region in Fig. 4.10c, because the object space deformation model

cannot ensure complete removal of occlusions.
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(a) Without lens.

(b) Screen space deformation model (c) Object space deformation model

Figure 4.10: Comparison of the two deformation models. (a) is a view without using
our GlyphLens, which shows high concentration particles on the top and a big reddish
viscous finger in the middle. In (b), the screen space deformation model lens pulls
away the big viscous finger into the bottom of its context region, as well as removing
the sparse blue particles from the focus region. In (c), the object space deformation
model is usded, which preserves the shape of the deformed viscous finger better. Both
deformation models reveal the originally occluded viscous finger in the focus region.

4.4.2 Different Shape Models

In this case study, we visualize a brain diffusion tensor imaging (DTI) from a

patient with brain tumor using superquadric glyphs and explore the white matter

especially around the tumor. Brain DTI image is used in neuroscience to study

the fibrous structure of white matter. The 3 × 3 tensor matrix can be visualized

by superquadric tensor glyphs [62] with the eigen decomposition results of the tensor
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matrix. The orientation and shape of the superquadric glyph depict the direction and

crossing of the white matter tracts. As shown in Fig. 4.9b, we put 7,549 superquadric

glyphs, which are generated by the Teem Toolkit library [4], on the grid points whose

fractional anisotropy (FA) value is greater than 0.4. The tensor field around the

ventricles and the tumors are the interesting features to the neuroscientists. However,

those glyphs are mostly occluded by many other glyphs.

(a) Without lens. (b) Straight band lens

(c) Curved band lens (d) Circular round lens

Figure 4.11: Visualizations of the ventricles and its surrounding tensor field before
and after using different shapes of the Glyphlens. Using the lens in (b)(c) and (d), we
can clearly see the glyphs near the ventricle surface in the focus region without any
occlusions. Among the three lens shapes, the curved band lens (c) fits the ventricle
shape better than the other two.
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Fig. 4.11 compares the displaced glyphs using lenses of different shapes. In

Fig. 4.11b, we see that the glyphs near the left side of the ventricle are mostly vertically

orientated and thin, which means the white matter tracts in this region are vertical

and homogeneously uni-directional. The glyphs from left to right in the focus region

gradually change to the horizontal orientation and become fatter, which indicates the

tensor becomes less isotropic. In the context regions, we can see the displaced context

glyphs. The other occluding glyphs that are far from the focus glyphs are pushed to

the outer boundaries of the context region. Note that the GlyphLens only changes

the glyphs’ positions but not their orientations, so that users can mentally translate a

glyph back to its original position while keeping its orientation. Because the ventricle

is of an arc shape, we also tried the curved band lens as shown in Fig. 4.11c. Because

of its thinner size, the curved band lens is going to displace less context glyphs than

the straight band lens. As a comparison, we tested circular round lens in Fig. 4.11d.

It displaces more glyphs than necessary and wastes a lot of screen space in this case.

4.4.3 Feature Locking and Snapping

The diffusion tensor around the tumor is an interesting feature, so our system

identifies the glyphs near the tumors as the feature. When users pick one feature,

e.g. the glyphs near the cystic part of the tumor, these glyphs are highlighted with

cyan color in Fig. 4.12b. When we apply a circular round lens on the feature, the

white context glyphs occluding the feature are pulled away. The lens can be snapped

on the feature center, so users can look at the feature from arbitrary view directions

without having to adjust the lens position. Looking from the top of the green tumor

in Fig. 4.12a, we see the glyphs in the upper-left of the focus region following the
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(a) Top view. (b) Side view.

Figure 4.12: The cyan glyphs near the cystic part of the tumor (the green surface)
are the features and hence locked in their original positions without being displaced
by the round lens. The lens snaps on the feature center, so users can freely change
their view from top view (a) to side view (b) and look at the feature without any
occlusion.

silhouette of the tumor; while the glyphs in the upper-right of the focus region are

vertically oriented. Looking from the side of the green tumor in Fig. 4.12b, we see that

the glyphs in the middle of the focus region are flat, which means planar anisotropy

and demonstrates complex branching and crossing of the white matter tracts. The

flat glyphs can also be seen in the bottom of the context region, which means the

tensor field on that side of the tumor also has planar anisotropy.

4.5 User Feedback

We found one domain scientist for each of the two datasets used in the case

studies. The domain scientist for the particle dataset is a PhD candidate in material

science who studied simulations based on meshfree methods and have related journal

publications. He is familiar with the particle dataset in our case study, which is also
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based on a meshfree method. After training him to use our system face to face, he

was able to control the lens and explore the data by himself. The domain scientist

for the DTI dataset is a faculty member who is experienced in neuroinformatics and

has related publications. Because of a long distance, we demonstrated our system to

him through a video conference and then collected his feedback.

The main goals of the user study are to find out whether the occlusion is removed,

whether the context is preserved, and whether the distortion is understood. Both sci-

entists thought occlusion existed in glyph-based visualizations and can be removed

when using the GlyphLens. They thought contexts are preserved but can be distract-

ing sometimes. The DTI expert said, from a static image of displaced glyphs, the

glyphs that are displaced and not displaced are mixed in the context region. This

makes the context information somewhat confusing, especially when the orientations

of the tensor glyphs varies largely in a local region. However, he also thought the

animation of glyph movement can solve the confusion, because the animation can

help distinguishing the displaced context glyphs from the static glyphs, observing the

relationship between focus and context glyphs, and reminding users the depth rela-

tionship among the displaced glyphs. The material scientist thought the displacement

can be a little confusing in the beginning. But when he became familiar with how

the displacement works, the confusion was gone.

We also collected their feedback on our other designs. The DTI expert thought

keeping the glyphs orientation during displacement is better than changing it, be-

cause changing the orientation of glyphs may create some artificial features. He can

do transformation in his mind to reconnect the glyphs and form streamlines using

the displaced glyphs. By comparing the two band lenses, he thought the specific
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advantage of straight band lens is its simplicity, while the curved band lens is slightly

more complicated but gives more flexibility. Both scientists hoped the lens depth

control can be improved. One scientist hoped to know the numerical value of the

lens depth, while the other scientist thought a slider bar should be added to control

the lens depth as well as the animation. The material scientist thought the back

and forth movement in the object space model animation is a little distracting and

should be reduced. Besides, both scientists thought the depth cue from the brightness

attenuation is very clear and helpful.

4.6 Performance

We measured the performance of our technique on a machine running Windows 10

with an Intel Core i5-6600K CPU, 16 GB RAM and an NVIDIA GeForce GTX 970

GPU with 4GB memory. We implemented all the deformation computations using

CUDA, the GPU-based parallel computation, to provide interactive performance.

The viscous fluids particle dataset, visualized by spherical glyphs, is used in the

performance tests.

Fig. 4.13a shows the computation time for three different lens shapes using the

screen space deformation model. The computation time increases with the increasing

number of glyphs. The circular round lens with the simplest geometry uses the

smallest amount of time, while the curved band lens with more complex geometry uses

the largest amount of time. The deformation times for the three lens shapes are very

close and all below 1 millisecond even for displacing around 20,000 glyphs. Fig. 4.13b

gives the frame rates for the two deformation models. The rendering ended up taking

more time than the deformation. In the experiments of object space deformation
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(a) (b)

Figure 4.13: (a): Computing times for different shape models using screen space
deformation model. (b): Frame rate for different deformation models.

model, we used a tetrahedron mesh composed of 78,125 (25×25×25×5) tetrahedra.

We can see that the screen space deformation model is much faster than the object

space deformation model, because the physically-based modeling is expensive. The

performance of the object space deformation model is less sensitive to the number of

glyphs, because the deformation computation is performed on the tetrahedral mesh.

The frame rate of object space deformation is just slightly above 20FPS, which is

acceptable for user interactions. The frame rate can be increased if we use a coarser

tetrahedral mesh, but then it will be difficult to preserve features in small sizes.

4.7 Conclusion

We have presented a view-dependent occlusion management tool, GlyphLens, for

interactive glyph visualization and exploration. Our GlyphLens has the following

major strengths:
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• Remove occlusion completely using screen space deformation model. Or reduce

occlusion using object space deformation model while better preserving the

spatial relationships of the displaced glyphs.

• Ensure the visibility of the glyphs around the focus glyphs as the context glyphs

in the lens.

• Specify the lens shape easily and intuitively using two shape models and various

interaction devices.

A limitation of our lens is that we can only use one of the two deformation mod-

els at a time, but cannot combine the advantages of the two together into a single

deformation model. The object space deformation does not work well when glyphs

distribute relatively uniformly. Another limitation is the lack of visualization for the

space deformation. A visualization of how the space inside the lens is deformed, maybe

using deformed grids, can help viewers to mentally recover the displaced glyphs’ orig-

inal positions.
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Chapter 5: Crystal Glyph: Visualization of Directional

Distributions Based on the Cube Map

5.1 Introduction

With increases in spatial resolution and the emergence of ensemble simulations,

massive amounts of data with uncertainty are commonly generated by simulations. In

addition, storing and analyzing datasets at the full spatial or ensemble resolution has

become unrealistic due to the required storage space and computing requirements.

On the other hand, down-sampling the data to a lower resolution loses the details

of data. Using data aggregation, such as a histogram, becomes a trade-off between

data size and details. Histograms can be generated from aggregations of spatial

partitions, ensemble members, or an analyzed distribution models. The resulting

histogram can be used to describe and detect features. Dalal and Triggs [27] uses

histograms of oriented gradient (HOG) as a feature descriptor to detect objects in

images. Thompson et al. used the hixel to store a histogram for scalar values at each

sample point and devised feature detection and visualization methods based on the

hixels [105]. However, little work has been done on histogram representations of 3D

vector data.
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Visualizing the movement of a group of objects can assist the understanding of

the motion of a large number of objects. Cosmology simulations generate a discrete

set of particles. Visualizing the velocities of these particles can help understand their

gravitational interaction and collapse [116]. In particle simulation of fluid dynamics,

visualizing the movements of particles can help scientists understand the transport of

physical quantities [67]. Plotting arrows to visualize the velocities of significant num-

bers of particles, however, is unrealistic due to the resulting visual clutter. Integrating

streamlines or stream surfaces based on the particle velocities does not make sense if

the data only describe local motion. To address the issue, we can use histograms of

the velocities to represent the velocity distribution for a group of vectors and visualize

the histograms. Neuroth et al. proposed two-dimensional (2D) velocity histogram to

interactively visualize the large-scale velocity field. They showed that their histogram

based representation can clearly describe the overall decomposition of velocities with-

out causing visual clutter [89]. However, visualizing 3D vector distributions remains

unsolved.

Glyph-based visualization is an ideal approach to visualize multivariate data. It

allows users to quickly perceive the pattern of multivariate data item within the

context of a spatial relationship [12]. Polar histograms [11], as shown in Figure 5.1,

visualize the distribution of a group of 2D vectors based on their angles. Placing many

polar histograms as glyphs in the data space can visualize the distributions of groups

of 2D vectors in local regions. Jarema et al. designed similar glyphs to visualize

2D directional distributions in 2D vector field ensemble datasets [60]. The spherical

histograms proposed in [47, 111, 93] can visualize distributions of three-dimensional

vector fields, but their sphere partition methods are based on spherical coordinate
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Figure 5.1: A polar histogram visualizes the distribution of 2D vector directions.

system that suffers from polar effects and inaccurately represent the distributions.

To better visualize the distribution of 3D velocities, we need an accurate 3D visual

representation of directional histograms.

In this work, we first introduce the concept of cube map histogram, a 3D di-

rectional histogram inspired by the environment cube map algorithm in computer

graphics [44]. The cube map histogram can be efficiently and accurately computed

from the Cartesian coordinates of vectors and stored using a much smaller size than

the original vectors. Compared with the directional histogram based on other sphere

discretization methods such as icosahedron, the cube map histogram can be more

easily computed, interpolated and visualized. We introduce a 3D directional distri-

bution glyph called crystal glyph. To create the crystal glyph, an OpenGL cube

map texture is used to efficiently map the cube map histogram onto a sphere and

deform its shape through OpenGL shading language (GLSL). We place the glyphs on

a slicing plane and interactively change the plane’s orientation and position as well as
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the glyph’s density, in order to visualize the velocity distributions in different spatial

locations and with different levels of details. Users can use mouse to pick one glyph

and see the unfolded view of its cube map histogram without occlusion. To provide a

dynamic and intuitive visualization of global vector directions, we animate a texture

on the glyph’s surface that follows the velocity directions. In the remainder of this

work we review previous work in Section 2.4, explain the computation of the cube

map histogram in Section 5.2, describe the glyph-based visualization in Section 5.3,

present case studies on different datasets to show the effectiveness of our crystal glyph

visualization method in Section 5.4, and measure its performance in Section 5.5.

5.2 3D Directional Histogram

A 3D directional histogram records the distribution of 3D vectors. For 3D veloc-

ity data, we omit their velocity magnitude, and only record their directions in our

histogram. Users can choose to generate the velocity magnitude distribution using

the traditional one-dimensional histogram if desired.

A bin in this histogram represents a range of similar 3D vector directions. For 2D

vector histogram as shown in Figure 5.1, each bin is a fan and all bins have the same

size. For 3D vector histogram, binning the 3D vectors is the same as partitioning

the sphere surface into small patches. Each patch represents a bin, and its area

describes the bin size. In a unit sphere, this patch area is equal to the solid angle, a

two-dimensional angle in three-dimensional space, subtended from the sphere center.

When bin sizes are equal, the probability density of a bin is proportional to the bin

frequency (bin counts); when the bin sizes are not equal, a bin’s probability density

is equal to its frequency divided by the bin size. It is difficult to have small bins of
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the same shape and size for 3D vectors because partitioning a sphere into small same

shape patches is non-trivial. In order to compute an accurate probability density of

a bin, we have to compute the sizes of all bins.

In this section, we fist describe how to partition the sphere surface into quadri-

lateral patches using the concept of the cube map in computer graphics environment

mapping. Our cube map based sphere partitioning ensures sphere patches of similar

sizes, and it achieves easy binning as described in Section 5.2.1. Then we show how to

compute the bin sizes, which can be used to normalize the bin frequency and produce

the probability density of the distribution, in Section 5.2.2.

5.2.1 Cube Map Histogram Construction

There are existing methods to partition the sphere into patches of equal area

or similar areas, such as spherical polar grid (latitude-longitude), icosahedral-based

grid (triangles or hexagons), cubed grid, spiral grid [57], Fibonacci grids [102], Leop-

ardi [75]’s grid, and unstructured grid. To represent a 3D directional distribution, we

need to design a histogram that satisfies two requirements. First for a given vector di-

rection, its corresponding bin should be easy and fast to determine. Second, it should

be easy to interpolate the histogram to a continuous distribution in the 2D space of

the sphere surface in order to sample and render the distribution, which means the

bins’ adjacency information should be easy to determine. In some partitioning meth-

ods, such as the icosahedral-based grid and unstructured grid, determining the bin is

not easy because it requires an expensive intersection test between the polygons and a

ray of the direction. In some partitioning methods, such as the spiral grid, Fibonacci

grid and Leopardi’s method, there are no accurate interpolation methods to evaluate
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an arbitrary point on the sphere. The spherical polar grid suffers from the pole effects,

so the interpolation near its two poles may produce artifacts. Westerteiger et al. used

HEALPix grid [119] to decompose the sphere surface hierarchically and record the

grid in the GPU memory for rendering the terrain on the sphere. Even though this

hierarchical grid is too complex to record our simple histogram, it inspires us to use

a grid that is easy to be recorded and looked up in the GPU memory. On the other

hand, the cubed grid-based sphere partitioning, as shown in the Figure 5.2, which

produce our cube map histogram, satisfies our two requirements. The bin of a vector

can be determined by simple division among its x, y, z coordinates. Interpolating

the cube map histogram is mostly a simple bilinear interpolation among its easily

determined adjacent bins. When rendering the cube map histogram, the OpenGL

cube map texture and the GLSL sampler can take care of all the adjacency lookups

and value interpolation automatically and efficiently.

(a) (b)

Figure 5.2: (a) The projection between a patch on the sphere surface and a grid cell
on the inscribed cube. (b) Cube map grid on the sphere.
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Our cubed grid on the sphere is created by projecting a cubic uniform grid onto

a sphere surface. Assume there is an inscribed cube in a unit sphere, whose faces are

evenly divided into a regular grid as shown in Figure 5.2a. Projecting the cube’s grid

from the cube center towards the sphere surface produces a grid on the sphere. The

points on these two grids then have an one-to-one correspondence after the projection.

We use the grid cells as the histogram bins of our cube map histogram. From another

perspective, if we cast a ray from the sphere center following a 3D vector, the vector

belongs to the bin of the cell that it intersects with.

How to compute the cube map bin based on a given 3D vector coordinate is com-

putationally simple and is explained in the original environment mapping paper [44].

Here, we briefly describe it using our application. For a given vector in Cartesian

coordinates v = (vx, vy, vz), we need to determine its bin represented as three integer

indices (bf , bx, by), where bf is the index of the cube face in the range of [0, 5], and bx

and by are the bin’s indices in the x and y directions on each face. Table 5.1 gives the

computation details, where m is the dimension of the 2D grid on each face, i.e. each

face hasm×m cells. The 3D bin index can be further reduced to 2D as (m×bf+by, bx)

to render the histogram as a 2D image, or be reduced to 1D as (m2×bf +m×by +bx)

to store in the linear memory space or to load into the OpenGL cube map texture

memory. From the formulas in the table, we see that the computations only involve

simple floating point operations that gives low computation cost. This small com-

putation can be helpful when dealing with big datasets containing large number of

vectors.
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Table 5.1: Binning: computing the bin indices (bf , bx, by) for the given vector v =
(vx, vy, vz).

Condition bf bx by
vx ≥ |vy | & vx > |vz | 0 ⌊(1 −

vy
|vx|

) · d
2
⌋ ⌊(1 − vz

|vx|
) · d

2
⌋

vx < − |vy | & vx ≤ − |vz | 1 ⌊(1 −
vy
|vx|

) · d
2
⌋ ⌊(1 + vz

|vx|
) · d

2
⌋

vy ≥ |vz | & vy > |vx| 2 ⌊(1 + vz

|vy|
) · d

2
⌋ ⌊(1 + vx

|vy|
) · d

2
⌋

vy < −|vz | & vy ≤ −|vx| 3 ⌊(1− vz

|vy|
) · d

2
⌋ ⌊(1 + vx

|vy|
) · d

2
⌋

vz ≥ |vx| & vz > |vy | 4 ⌊(1 −
vy
|vz |

) · d
2
⌋ ⌊(1 + vx

|vz |
) · d

2
⌋

vz < − |vx| & vz ≤ − |vy | 5 ⌊(1 −
vy
|vz |

) · d
2
⌋ ⌊(1 − vx

|vz |
) · d

2
⌋

5.2.2 Histogram Normalization

After determining the bins of all the vectors and counting the frequencies for all

the bins, the frequencies need to be normalized by their corresponding bin sizes or

solid angles. To normalize the histogram, we need to compute the histogram bin size

or the solid angle of each partition that is the sum of the two constituent spherical

triangles’ solid angles. The spherical triangle’s solid angle is equal to the spherical

excess that can be computed by l’Huilier’s theorem [132].

The solid angles of other cells can be computed similarly. Because the six faces

are symmetric, we only need to compute the solid angles for the cells on one face and

reuse them for the cells on the other 5 faces.

Figure 5.3a shows the solid angles of the cells (or bin sizes) on one face of a high

resolution cube map. We notice that the bins around the center have larger solid

angles than the bins near the boundaries. To verify the correctness of using the

solid angle to normalize the cube map histogram, we generate uniform samples by

randomly sampling a large number of 3D vectors, and then generate the cube map of

the bins’ frequencies whose one face is as shown in Figure 5.3b. After dividing it by
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(a) (b) (c)

Figure 5.3: (a) Solid angles for the cells on one cube face. (b) The cube map histogram
of bin frequencies for random samples. (c) The histogram normalized by the solid
angles.

the solid angle shown in Figure 5.3a, we get the cube map histogram of probability

densities shown in Figure 5.3c. We can see the values in Figure 5.3c are mostly

around the value of 1 with small variance that are from the sampling error. Thus, we

verified that the computed distribution normalized by the solid angles has uniform

bin densities as expected.

+x -x +y -y +z -z

fb 0 1 2 3 4 5

Figure 5.4: The 6 faces of the cube map histogram ordered by the cube face index bf .

To apply it on a vector field dataset, we compute the cube map histogram of an

example dataset and concatenate the 6 faces into a 2D image shown in Figure 5.4.
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From this figure we can tell that the directions on the +x face (bf = 0) have the

highest probability densities. Besides, the histogram bins on the +z face (bf = 4)

also have relatively high probability densities.

5.3 Directional Distribution Visualization

In the previous section, we plot a cube map histogram on a 2D image in Figure 5.4.

However in this 2D visualization, velocity directions corresponding to the bins lack

3D spatial reference, which makes this visualization not intuitive. In this section,

we demonstrate the pipeline of storing and visualizing directional distributions using

the cube map histogram, describe how to use 3D glyphs to visualize the directional

histogram in 3D space, and evaluate its effectiveness based on our design goals.

5.3.1 Data Processing Pipeline

vector field

 data

simulation or 

measurement

directional

histogram

(high res.)

data storage

aggregation

(vector ->histogram) visual mapping

3D glyph

data visualization

aggregation

(histogram->histogram)

directional

histogram

(low res.)

Figure 5.5: Data storage and visualization pipeline.

Our cube map histogram can be used for both storing and visualizing velocity

distributions. Figure 5.5 gives our data processing and visualization pipeline. Vector
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data generated from simulations or collected from measurements are output first. In

order to save storage, one can divide the vectors into groups based on their spatial

locations, then aggregate the velocities into the directional histogram for each group.

To visualize the velocity distributions, we need to generate directional histograms for

visualization by either aggregating the original vector data or by further aggregating

the stored directional histogram. In the end, we map the data attributes in the

directional histogram onto our 3D glyph for visualization.

5.3.2 Visualization Design Goals

Designing the glyph is essentially mapping two data attributes of each histogram

bin, 3D vector direction and the probability density, to the visual channels on the

glyph, such as size, color, shape and orientation. Borgo et al. [12] provide thirteen

general considerations and guidelines for glyph design by summarizing a few previ-

ous glyph-based techniques. By combining Borgo et al.’s design guidelines and our

application, we propose the following design goals to guide the design of our glyph:

[DG1] Vector direction should be naturally and intuitively mapped to a visual

channel. With natural mapping, users can easily infer the direction from the visual

output.

[DG2] Use perceptually uniform and accurate visual channels to map the proba-

bility density. Equal differences in the data values should be perceived as equal from

the visual channels.

[DG3] Redundantly map more visual channels on one data attribute if possible.

Redundant mapping can reduce the possibility of information loss. Since we only

have two data attributes, redundant mapping is affordable.
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[DG4] Visual channels are orthogonal to each other. Each visual channel can be

perceived independently without being interfered with other visual channels.

[DG5] Minimize occlusion and visual clutter. The surfaces of all glyphs should

be visible. Different glyphs should not occlude each other.

[DG6] Depths of glyphs should be easy to discern. Depth cues should be provided

for perceiving the 3D information inside a glyph and among different glyphs.

5.3.3 Glyph Design and Evaluation

(a) (b) (c) (d)

Figure 5.6: (a) The glyph is a sphere before drawing a histogram on it. (b-c) are the
crystal glyphs with the velocities distributed in (b) z direction, (c) y and z directions;
(d) white band moves from the spherical base outward as animation.

Our crystal glyph is generated from a sphere, whose grid is formed by projecting

from an inscribed cube grid, as shown in Figure 5.6a. Note that the grid does not

have to match the grid on the cube map histogram, because we can easily sample

the cube map histogram and interpolate the values. Each face of the spherical mesh

is a quadrilateral with a uniform color. The color is determined by the sphere’s

normal direction (x, y, z) at the center of the quadrilateral. The absolute values of

the unit vector’s components are used as the red, green and blue color components,
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i.e. (r, g, b) = (abs(x), abs(y), abs(z)). Each point on the sphere has a unique normal

direction ~v. This point then represents the vector direction of ~v in the directional

distribution. We define pv as the probability density of direction ~v in the directional

distribution. Then as shown in Figure 5.6b and 5.6c, we extrude each sphere vertex

along its normal direction ~v by an amount H(pv) that is a function of pv and form a

terrain on the sphere. We let H(pv) be a monotonically increasing function of pv, so

that higher terrain on the sphere surface corresponds to a higher probability density.

More specifically, we have

H(pv) = a× r × p1/dv (5.1)

where a is a scaling coefficient that can be adjusted by users to control the overall

amount of extrusion; r is the radius of the original sphere. d is a non-linear scaling

factor from the three values {1, 2, 3} chosen by the users to control different mapping

scenarios based on their goals. When d = 1, pv is proportional to H(pv), so the

probability density maps to the vertex’s distance to the original sphere surface. When

d = 2, pv is proportional to H2(pv), so the probability density maps to the area of the

extruded quadrilateral. When d = 3, pv is proportional to H3(pv), so the probability

density maps to the volume of the extrusion that is a hexahedron. Since the cube map

histogram serves as a lookup function T , to find the probability density pv for a given

direction ~v, we have pv = T (~v). By using the OpenGL cube map texture to store the

cube map histogram, we can efficiently interpolate the cube map histogram into a

continuous directional distribution. Plugging the lookup function into Equation 5.1,

we get
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H ′(~v) = H(pv) = H(T (~v)) = a× r × (T (~v))1/d (5.2)

Using this equation, we can compute the amount of extrusion H ′(~v) for any given

point on the sphere whose normal is ~v.

vector

direction

probability

density

size

shape

orientation

color

Figure 5.7: Mapping (dotted lines) between data attributes (ellipses) and the visual
channels (rectangles).

Figure 5.7 gives the mapping between our data attributes on the left and the

visual channels on the right. The vector direction is mapped to two visual channels,

the orientation of the extruded quadrilateral patch and its color. It is difficult to

interpret the orientation after projected to a 2D image, especially when the glyph is

small in the image, so the color can help to represent directions. Mapping color on

direction is intuitive because red, green, and blue colors are commonly used as colors

to draw x, y, and z axes that show directions. The XYZ-RGB color mapping scheme

has been widely used in showing the 3D orientation in tensor data [90, 108]. Mapping

the vector direction to the extrusion direction of the patch is intuitive and natural,

which satisfies our design goal [DG1].

The probability density of each histogram bin is mapped to two visual channels:

the size of the extrusion and the overall shape of the glyph. For example, the two

glyphs in Figure 5.6b and Figure 5.6c have different shapes: one with a linear shape
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and the other one with a planar shape. The shape clearly illustrates the overall trend

of the distribution. We allow users to choose the size of different geometric properties,

such as length, area or volume, to map bin frequency by choosing a different d in

Equation 5.1 as stated. According to [21], the length is a relatively accurate visual

channel, so our bin frequency can be accurately perceived when we choose d = 1,

which satisfies our design goal [DG2]. The three glyphs in Figure 5.6 b-d all use the

parameter d = 2. In this case, different glyphs’ projected image areas are similar.

When looking at a group of glyphs on the image, we can find the total probability

of a particular vector direction by looking at the total image area covered by its

corresponding color.

Both data attributes are mapped to two visual channels, so our design satisfies

the design goal [DG3]. From the glyph rendering as shown in Figure 5.6b, using

a uniform color on each face shows the mesh grid that helps viewers perceive the

surface curvature [17]. The Phong illumination model is used to illuminate the glyph.

These shading effects provides depth cues inside the glyph and satisfy the design goal

[DG6]. Regarding to the design goal [DG4], color is orthogonal to all other visual

channels, which satisfies the design goal. However, because of projecting on a 2D

screen, two patches with the same terrain heights (the amount of extrusion) may

have different sizes on the image because they extrude to different directions. So the

visual channels of size and orientation are not always orthogonal. On the other hand,

by interactively rotating the glyph, we can compare the surface terrain heights from

different viewpoints that help filter out the interference of orientation.

As shown in Figure 5.6d and the accompanying video, when animation is activated

on the glyph visualization, a white band is drawn on the glyph. The white band moves
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from the spherical base outward by following the surface’s extrusion directions, which

are essentially the velocity directions. The white bands on different glyphs start from

their spherical base at random times to avoid artifacts. The animation is implemented

in the OpenGL fragment shader with high performance.

5.3.4 Visualization System Design and Evaluation

(a) 3D arrow plot. (b) Crystal glyph.

Figure 5.8: Visualizing the flow in the tornado dataset.

The synthesized 48 × 48 × 48 tornado dataset is used as an example. Our glyph

placement strategy is putting glyphs uniformly on a slicing plane to represent the vec-

tor field of a layer as shown in Figure 5.8b to eliminate visual clutter. By interactively

changing the plane orientation and position in the volume, the glyphs can visualize
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the velocity of the entire spatial domain without causing much occlusion, which sat-

isfies our design goal [DG5]. From glyphs’ relative positions on the slicing plane, we

can find out the depth order among glyphs, which satisfies design goal [DG6].

Figure 5.8 shows the visualization of the 3D velocity field in the bottom 48×48×8

layer using both an arrow plot and our crystal glyph. In the arrow plot (Figure 5.8a),

5000 arrows are placed in the volume. The arrows overlap with each other and result

in severe visual clutter, so a majority of them are difficult to be identified. On the

other hand, in our crystal glyph visualization (Figure 5.8b), glyphs are well separated

and have different fan shapes. Those in the center have planar shapes showing high

variance in their directions, and the ones on the sides have linear shape showing low

variance. Each of them points to different directions from the spherical base. The

glyph at the 3rd row and 4th colume has velocity distributed in all directions in this

slicing plane, which means the tornado center is nearby.

From a glyph’s screen projection as in Figure 5.9a, the bins on the backside are not

visible if viewing from a fixed view direction. In order to help users explore a specific

glyph of interest and observe its represented cube map histogram without occlusion,

we visualize the cube map histogram by unfolding it onto a 2D image. Figure 5.9

gives an example about how to unfold (or project) the cube map histogram on the

glyph in Figure 5.9a. Two types of projections are provided: one (Figure 5.9b) is

cutting along the cube edges and unfolding the 6 cube faces without distorting the

grid; the other one (Figure 5.9c) is projecting to 2D spherical coordinates [14]. In

the spherical coordinates projection, the x coordinate is the longitude θ ∈ [−π, π]

and the y coordinate is the latitude φ ∈ [−π
2
, π
2
]. To draw the 2D image, one can

simply draw each pixel at (θ, φ) using the directional probability of the 3D vector
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(a)

Figure 5.9: (b) and (c) are two different unfolded views of the cube map histogram
on the user selected glyph (a).

direction (cosφ cos θ, sinφ, cosφ sin θ) that can be easily obtained from the OpenGL

cube map texture. The six face view of the cube map histogram in Figure 5.9b shows

the bins using the same size, but the boundaries of the faces are mostly disconnected.

This view is good for visualizing the spread (or range) of the distribution. On the

other hand, the spherical coordinate view in Figure 5.9c gives mostly continuous bins

but distorted bin shapes, which is good for identifying the number of peaks in the

distribution. Users can choose either one based on their preference and goal. In

the 2D views, the bin densities are mapped to color brightness on the image with

a gray-scale colormap. A colored wireframe of the histogram bins is overlapped on

the image to discretize the image into bins. By using the same color as the bins on
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the crystal glyph, users can easily find out their correspondence. In this way, users

can clearly view the full velocity distribution of the selected glyph using the unfolded

view of the cube map histogram. This unfolded view eliminates the occlusion on the

glyph, which satisfies design goal [DG5].

In summary, our glyph and visualization system design meets almost all of our

design goals.

5.4 Case Studies

To explore the effectiveness of our technique we applied our algorithm to two vector

field datasets from different application domains: a cosmology dataset (particles) and

a thermal hydraulics dataset (regular grid).

5.4.1 Cosmology

Our goal is to visualize the particle velocities in the cosmology dataset from the

Dark Sky Simulations [116] that study the evolution of the large-scale Universe. We

use the last time step of the dataset that contains 3D velocities of 2,097,152 particles.

A halo is a group of gravitationally bounded particles with coherent structure. In this

case study, we visualize the velocity direction distributions of 7,383 halos. The direc-

tional distribution of the particle velocities in every halo is computed and visualized

as a crystal glyph. The glyph size is scaled with the radius of the represented halo.

By observing the colors and shapes of the glyphs, we can understand the directional

distribution of the particle velocities in each halo and how different halos move in

space.

From Figure 5.10, we see many halos of different sizes. In the middle of the

image, there is a big halo whose velocity directions spread across many directions,
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Figure 5.10: Crystal glyphs are used to visualize halos containing moving particles in
the cosmology dataset.

which means the movements of the inside particles are very complex. Most of the

surrounding halos are attracted by the gravity of the big halo and move towards the

center. The velocities in some halos spread in a small range of directions, such as the

purple glyphs on the upper-left and upper-right of the image; some others’ directions

spread in a big range, such as the two reddish glyphs at the bottom of the image.

From these two glyphs, we not only see the major directions shown as the red high

peaks, but we also see the outlier directions as the green low peaks. The shapes of

most green glyphs are not clear because the extrusion direction of the green surface

is perpendicular to the screen. To see them, we need to interactively change the view

direction that is shown in our accompanying video.
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5.4.2 Thermal Hydraulics

The Nek dataset is generated from the Nek5000 simulation that simulates thermal

hydraulics in a nuclear reactor using the spectral element method [36]. The simulation

demonstrates the coolant flowing between and around the pins in the reactor. The

dataset we use is a 3D velocity field on a 512×512×512 regular grid resampled from

the original topology in the simulation.

The coolant flow in this dataset is turbulent, so the local velocities are very com-

plex. Our crystal glyphs can visualize the directional distributions of the local regions

and provide simple statistical representations of the complex velocity field. We place

crystal glyphs on a slicing plane perpendicular to the x axis as shown in Figure 5.11a.

Each glyph represents the vector directions in the local cubic region. The thin blue

glyphs at the bottom of the image show the water moves straight to the right along

the z direction. When reaching the right boundary, the water starts moving up shown

as the green glyphs. Then, it moves left at the top of the image and then comes down

at the left of the image. These movements form a circle that demonstrates how water

circulates in the space. The glyphs at the top row have mixed colors of red and

blue, which means the water flow has both components of x direction (towards the

viewer) and z direction (towards the left). Because the red surfaces on the crystal

glyphs extrude towards the viewers and are difficult to see from this view direction,

we changed the view direction and look at this slice from the side as shown in Fig-

ure 5.11b. In this view, we can easily identify the regions containing x directions

flows using the red color surfaces on the glyph. Among the big red glyphs, we can

compare their heights and fatness to find out their relative probability densities and

the variance of the distributions. The glyphs on the middle left of the image have low
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(a)

(b)

Figure 5.11: Crystal glyphs are used to visualize the velocity field in one layer of the
thermal hydraulics dataset. (a) and (b) show the same group of glyphs in different
view directions.

extrusions and rough surfaces that show turbulent flows going all different directions.

For those regions, we can interactively place glyphs more densely, as demonstrated

in the accompanying video, to see the distribution in smaller local regions and more

details.
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5.5 Performance

We measured the performance of our technique on a machine running Windows 7

with an Intel Core i7-4770 CPU, 16 GB RAM and an nVidia GeForce GTX 980 Ti

GPU with 6GB of frame buffer memory. The thermal hydraulics dataset is used.

(a) (b)

Figure 5.12: (a) Elapsed time of computing histograms from vector data. (b) Frame
rate of rendering crystal glyphs.

Four resolutions (1283, 2563, 5123 and 10243) are used to measure the elapsed

times of computing the cube map histograms. In the computation, we first divide the

data into a fixed number of 128×128×128 partitions and then compute a histogram

for each partition. In this way, no matter what resolution the original vector field

dataset is, we produce the same number of histograms. OpenMP is used to accelerate

the computation with multithreading. Figure 5.12a gives the execution time for the

four input vector datasets of different resolutions. Processing the smallest 3 datasets

only took less than 1 second. Even for the biggest dataset with over one billion
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vectors, it only took 5.3 seconds. The generated histograms can be either saved in

disk or directly used as input to crystal glyph rendering.

To compute the cube map histogram during rendering, we only need to aggregate

the already computed 128× 128× 128 histograms in the glyphs’ represented regions.

The aggregation for all the experiments took less than 0.1 seconds. In the test, each

glyph is rendered with a different 9 × 9 × 6 cube map texture. The produced image

resolution is 1419×996. Figure 5.12b shows the frame rates for an increasing number

of glyphs. The frame rate is computed from the average time of rendering one frame.

Even for rendering the largest number of glyphs (16,384 glyphs), the frame rate is

higher than 30 frames per second (FPS), which is sufficient for supporting effective

user interaction. We have not tested more than 16,384 glyphs to avoid visual clutter.

5.6 Conclusion

We have presented a technique to efficiently compute and store distributions of

three-dimensional vector directions using a cube map histogram. This histogram al-

lows easy interpolation of the probability density for any arbitrary direction. Besides,

we designed the crystal glyph to visualize local 3D directional distributions with the

OpenGL cube map texture. To allow users to freely explore the vector field, we

designed an interactive visualization system to present glyphs in the user specified

data layer without visual clutter. Additionally, we presented two case studies using

cosmology and thermal hydraulics datasets, and we reported the performance of both

the cube map computation and the glyph-based visualization.
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Chapter 6: Salient Time Steps Selection from Large Scale

Time-Varying Data Sets with Dynamic Time Warping

6.1 Introduction

Salient time steps are the time steps that are from a time series and contain the

most interesting features. Previously researchers have proposed various methods to

select salient time steps from time-varying data sets. One approach is based on user

input. By providing an overview of the time-varying data in a 2D layout, the user can

judge what time steps are more important and hence should be further investigated.

Examples of this approach include the spreadsheet-like layout for time series data

[124], storyboard-like layout in the form of images [80], or the time histogram method

that concatenates data distributions over time [5, 6]. For certain applications such

as data compression or in situ analysis, nevertheless, it will be challenging to have

direct intervention from the users so automatic approaches are more preferred. For

this purpose, there exist several algorithms that can find representative time steps.

One method is to group similar time steps using greedy approaches, and then choose

one time step from each group. Such an approach is taken by Akiba et al. [5] to

group time steps based on data distribution. Also, a time step can be deemed salient

if it changes drastically from the previous time steps. Based on this concept, Wang et
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al. measure the mutual information in local time steps to see when the distribution

has a larger amount of changes. [113]. Those approaches, however, only consider the

data in a local time range. Given a constraint in the total number of time step to

select, users are not able to interactively pick any number of time steps. Besides, the

selected time steps can be suboptimal if the global information over the entire time

sequence is not considered.

To allow scientists to focus on the most salient data for interactive analysis, we

present a novel technique for identifying key time steps from a time-varying data set

using a global optimization scheme. A key time step is a time step that can best

represent the data in its surrounding time steps. Given a user-desired number of key

time steps and a distance metric to compare data between two time steps, time steps

that can minimize the total cost of representing the whole data sequence are chosen

as the key time steps. Our technique is inspired by Dynamic Time Warping (DTW),

a technique that non-linearly warps one time series to another at a minimum cost.

Instead of mapping two different time series, as in most of the DTW applications,

in our technique we treat the input time-varying data as one time series and warp

it to a subset of its own time steps. We design an efficient computation algorithm

based on dynamic programming that can rapidly identify the time steps with the

minimum cost under nonlinear time warping. We present a data browsing tool that

can allow the user to interactively visualize and analyze time varying data with the

key time steps selected by our algorithm. The key time steps selection process can be

done very efficiently and hence allows the user to select any number of key time steps

in real-time. When the user detects an interesting time interval by visualizing the
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current key time steps, they can request additional time steps in the time interval,

invoking our key time step selection algorithm recursively.

We apply our key time step selection algorithm to a cloud-resolving simulation

using the Earth Mover’s Distance [96] as the dissimilarity measure. From the visual-

ization and analysis of the data in the key time steps, we can observe salient moments

of the Madden-Julian Oscillation, a long term weather event. Another application of

our algorithm is to identify key time steps for time varying isosurfaces. Based on the

isosurface dissimilarity map [16], our algorithm allows the user to obtain insight into

the temporal evolution of isosurfaces.

6.2 Time Sequence Alignment

The goal of this work is to identify the best K time steps from a time-varying data

set of N time steps, where K is specified by the user. The selected time steps should

be the most representative among all the possible choices, i.e., they should maximize

the information conveyed by the original data. Since K is smaller than N, to estimate

the cost of choosing the K key time steps we need to first align the original time-

varying data to the selected subset. For this, we can consider the entire data set as a

time series, where each time point represents the volume data at one time step. The

concept of time sequence alignment appears in the Dynamic Time Warping(DTW)

algorithm. DTW algorithm generates an optimal alignment between two time series,

and measures the cost of the alignment based on the similarity between the time

points in two series. Inspired by DTW, we apply a similar method to measure the

cost of key time steps. In our case, the time series is mapped to a subsequence of its
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own. Our goal is to find the best K time steps that give the minimum cost determined

by DTW. In the following, we describe our approach in detail.

6.2.1 Alignment in Dynamic Time Warping

Given two time sequences X and Y , to measure the similarity between the two se-

quences, a non-linear mapping can be done to align points considering their similarity.

An example of such a mapping is shown in Figure 6.1.

To represent the mapping, let an alignment between two sequences X = (x1, x2, ..., xN )

and Y = (y1, y2, ..., yM) be P = {p1, p2, ..., pL} = {(xn1
, ym1

) , (xn2
, ym2

) , ..., (xnL
, ymL

)}.

Each (xni
, ymi

) is a bi-directional mapping between xni
in sequence X and ymi

in se-

quence Y , and L is the total number of pairs between X and Y . Because one element

in a sequence can map to multiple elements in the other sequence and vice versa,

and P lists all the element-element alignment pairs, the number of pairs L in P, is

equal to or greater than both M and N , i.e., L ≥ M and L ≥ N . Figure 6.1 shows

the alignment pairs in green lines. Because of the non-linear nature, it can be seen

that an element on one sequence can map onto more than one element on the other

sequence. For example, x1 maps to both y1 and y2, xn1
= xn2

= x1.

To measure the cost of aligning two sequences X and Y , a dissimilarity function

between two data points xni
and ymi

, D (xni
, ymi

), is defined to measure the difference

between the two elements. Then, the overall mapping cost of the alignment is defined

as [86]:

C =
L
∑

i=1

D (xni
, ymi

) (6.1)

DTW cost is defined as the overall minimum cost among the set of all possible map-

pings P :
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Figure 6.1: Alignment between two sequences X and Y

C∗ = min
P∈P

(C) = min
P∈P

(

L
∑

i=1

D (xni
, ymi

)

)

(6.2)

This lowest overall mapping cost defines an optimal alignment P ∗, which is the

dissimilarity between these two sequences. DTW uses a dynamic programming algo-

rithm to generate the optimal alignment efficiently.

6.2.2 Mapping in Key Time Steps Selection

With the basic concept of DTW explained, in this section we discuss how key

time steps can be selected from a full time series. To simplify the notations, hereafter

we only list the time step indices rather than the actual data to represent a time

sequence.

Given a sequence of n time steps Tn = {1, 2, ..., n− 1, n}, called full sequence,

we can choose k time steps Rk,n = {r1, r2, ..., rk−1, rk} from the full sequence, where

1 ≤ r1 < r2 < ... < rk−1 < rk ≤ n. There are many possible selection of Rk,n. We

119



1
2

3 4
5

6

7
8

9

10

r1

r2

r3

r4

r5

p1
p2

p3 p4
p5 p6

p7 p8
p9

p10

Tn

Rk,n

(u1, u2)

(u3, u4)

(u5, u6)
(u7, u8, u9)

(u10)

(a)

pi (i, ui) value
p1 (1, u1) (1, r1)
p2 (2, u2) (2, r1)
p3 (3, u3) (3, r2)
p4 (4, u4) (4, r2)
p5 (5, u5) (5, r3)
p6 (6, u6) (6, r3)
p7 (7, u7) (7, r4)
p8 (8, u8) (8, r4)
p9 (9, u9) (9, r4)
p10 (10, u10) (10, r5)

(b)

Figure 6.2: (a): Mapping between full sequence Tn and key sequence Rk,n (b): DTW
mapping between the two sequences in (a)

want the one Rk,n that is the most similar to the full sequence Tn. To achieve this,

we will need a similarity measure for the two sequences.

If we apply DTW to Tn andRk,n, the overall mapping cost would tell us how similar

they are. To evaluate the cost, we start with constructing an alignment between the

full sequence and the selected sequence, as shown in Figure 6.2(a).

The mapping is defined by P = {p1, p2, ..., pn} = {(1, u1) , (2, u2) , ..., (i, ui) , ..., (n, un)}.

Each (i, ui) means time step i maps to time step ui, where ui ∈ Rk,n. In the example

shown in Figure 6.2(a), All n = 12 mappings of P between the two sequences Tn and

Rk,n are listed in Figure 6.2(b). Since in our case each time step i in Tn has only

a unique key time step ri in Rk,n to map to, we can simplify the more general bi-

directional mapping mentioned in section 3.1 by a uni-directional mapping function

ui = f (i), which is a special case of bi-directional mapping. On the other hand, a

time step ri in Rk,n still may have multiple time steps in Tn to be mapped onto. From
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the example, it can be seen that time step 1 and time step 2 are mapped to r1, so in

the mapping u1 = u2 = r1.

Let the dissimilarity between time step i and time step ui be D (i, ui). The DTW

cost of mapping between Tn and Rk,n, according to Equation 6.2, is defined as:

Ck,n = min
P∈P

(

n
∑

i=1

D (i, ui)

)

(6.3)

The specific P that gives the lowest mapping cost Ck,n is the optimal mapping,

denoted as P ∗, for a given Rk,n.

Given a n-step time series, there are many different ways to choose k time steps,

i.e. many possible Rk,n. If we simply exhaust all the possible Rk,n, and choose the

one with the lowest DTW cost as the optimal key sequence or optimal key time steps,

we have to evaluate:

R∗
k,n = argmin

Rk,n

Ck,n = argmin
Rk,n

(

min
P∈P

(

n
∑

i=1

D (i, ui)

))

(6.4)

Clearly, the amount of computation to find R∗
k,n is going to be very large. To

avoid the huge computation, in the next section we present an efficient approach to

select the optimal key sequence.

6.3 Algorithm

To allow efficient selection of key time steps based on Equation 6.4, we need to

place three constraints. First, each time step in the original time sequence maps to one

and only one key time step. Also, since the key time steps in Rk,n is to represent the

full time sequence Tn, it does not make sense if the key time step does not represent

itself. Therefore, our second constraint is that any key time step ri in the selected
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sequence should be mapped to itself in the original time sequence, i.e., uri = ri, as

shown in the blue lines in Figure 6.2(a). The third constraint is that the last time

step in the original time sequence is always used as a key time step, i.e., rk = n. In

fact, if this is undesired, we can easily amend it by adding an artificial time step in

the end of the full sequence that is very different from all the other time steps in Tn.

We can select one more key time steps from the total number of n + 1 time steps,

and discard this artificial step after R∗
k+1,n+1 is generated.

Given k key time steps, the full sequence is divided into k segments, as shown in

Figure 6.3. Each segment Si,j is bounded by two key time steps, time step i and time

step j, i.e. Si,j = {i, i+ 1, ..., j − 1, j}. Note that the first segment S1,r1 always starts

from the first time step and hence bounded only by one key time step, r1.

Each segment Si,j represents a mapping to the key time steps i and j, and is

associated with a cost, referred to as the segment cost and denoted as ‖ Si,j ‖.

This cost is determined by DTW, as will be explained later. The overall cost of the

mapping from the full sequence to the key time steps is the sum of the costs from all

k segments, denoted as Ck,n, and can be computed as:

Ck,n =‖ S1,r1 ‖ +
k−1
∑

i=1

‖ Sri,ri+1
‖ (6.5)

Equation 6.5 in fact solves the same problem as Equation 6.3, except that the

mappings in each segment can be solved independently because of the constraint that

each key time step maps to itself. This constraint forces each time step to map to

itself because DTW prohibits the mapping to contain crossing between the segments,

which allows us to solve the DTW cost of each segment independently.
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The result of the optimal key time steps selection is R∗
k,n, which gives the lowest

Ck,n value, that is:

R∗
k,n = argmin

Rk,n

(

‖ S1,r1 ‖ +
k−1
∑

i=1

‖ Sri,ri+1
‖

)

(6.6)

Similarly, Equation 6.6 gives the same result as Equation 6.4 because all possible

selections of key time steps Rk,n are considered, and the optimal mapping is used

within each segment.

The simplest but a brute force way to solve the above equation is to exam all the

(

n
k

)

possible combinations of Rk,n, and then pick the one with the lowest Ck,n value

as the optimal key time steps. However, the number of trials,
(

n
k

)

, is going to be very

large when n and k are large, which makes it impractical.

Actually, the DTW cost computations of different selection of Rk,n are not in-

dependent. If two key sequences share a sub-sequence of key time steps, the DTW

mapping within this sub-sequence is the same, and hence need not be computed more

than once. Dynamic programming can be used to avoid this redundant computation,

because it stores each step’s result for later use. In the next section, we describe how

dynamic programming can be used to solve the problem.

6.3.1 Dynamic Programming Selection

Dynamic programming divides a problem into sub-problems, and solve the sub-

problem in the same way as the original problem until a stop condition is reached.

Suppose the mapping costs of all possible segments Si,j are known. We want

to find the selection Rk,n for the lowest Ck,n value. Liu et al. proposed a dynamic

programming to select key frames from video by maximizing the energy function [77].
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Figure 6.3: Segments in the mapping between Tp and Rk,p

Their method could be adapted to help us figure out the key time steps and minimize

the DTW cost.

Let Tp = {1, 2, ..., p} be the first p time steps. Let Rk,p = {r1, r2, ..., rk−1, rk} be

the selection of the k key time steps from Tp, and the corresponding mapping cost be

Ck,p. Although we are dealing with only a subsequence Tp, the nature of the problem

is essentially the same as finding the key time steps for the full sequence, where Tn,

Rk,n and Ck,n are involved.

Suppose we have a constraint in Tp that the last key time step has to be time

step p, i.e. rk = p. Selecting k key time steps is then the same as selecting k − 1 in

the first m time steps, m ∈ [k − 1, p− 1], and selecting one more from the rest. The

overall mapping cost is the sum of the costs of two parts,

Ck,p = Ck−1,m+ ‖ Sm,p ‖ (6.7)

Let R∗
k,p be the optimal selection for Rk,p, whose corresponding overall cost is C∗

k,p,

the smallest among all possible Ck,p. We have the following optimal substructure: [77]

C∗
k,p =







min
m∈[k−1,p−1]

(

C∗
k−1,m+ ‖ Sm,p ‖

)

if k > 2

min
m∈[1,p−1]

(‖ S1,m ‖ + ‖ Sm,p ‖) if k = 2
(6.8)
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To prove the correctness of Equation 6.8, it should be noted that if a key sequence

is optimal, then its sub-sequence is also an optimal key time step selection for its

corresponding subset of the full sequence. In other words, we could say if R∗
k,p =

{r1, r2, ..., rk−1, rk} is the optimal k key time steps selection from Tp, then its prefix

{r1, r2, ..., rk−1} is also an optimal k− 1 key time steps selection from Trk−1
. This can

be proved by contradiction: in the case of k > 2 in Equation 6.8, if C∗
k−1,m is not the

cost of the optimal mapping for the first m time steps, we could have replaced this

sub-sequence by the optimal mapping with a lower Ck−1,m value, and hence a lower

Ck,p from Equation 6.7, with a fixed ‖ Sm,p ‖. This contradicts the facts that the

mapping for C∗
k,p is minimal.

In Equation 6.8, C∗
k,p is the minimum of C∗

k−1,m plus ‖ Sm,p ‖ among the different

selections of m. The (k − 1)’th key time step in R∗
k,p is

r∗k−1 =







argmin
m∈[k−1,p−1]

(

C∗
k−1,m+ ‖ Sm,p ‖

)

if k > 2

argmin
m∈[1,p−1]

(‖ S1,m ‖ + ‖ Sm,p ‖) if k = 2
(6.9)

In other words, r∗k−1 in Equation 6.9 is equal to the m that gives the minimum cost

C∗
k,p in Equation 6.8.

Based on Equations 6.8 and 6.9, the optimal key time steps R∗
k′,p can be solved

by dynamic programming: We iteratively find k′ key time steps, k′ = 2 . . . k, from

the first p time steps p = k′ . . . n. Once the cost C∗
k′,p has been computed, this cost

and the corresponding time step m will be stored in a 2D table indexed by k′ and p.

For k′ = 2, the cost only relies on the segment mapping costs ‖ S1,m ‖ and ‖ Sm,p ‖,

m = k′ − 1, . . . , p− 1. For k′ > 2, the cost is based on C∗
k′−1,m, m = k′ − 1, . . . , p− 1,

which have been solved. Once the cost C∗
k,p is obtained, the key time steps R∗

k,p can

be found by backtracking the time step stored in the table.
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6.3.2 Segment Mapping Cost

To solve the above problem, we need to know the cost ‖ Si,j ‖. It can be defined

differently for different use. In Liu’s work, an energy function [77] is used to define

the cost. Here to solve our problem of optimal mapping, we define ‖ Si,j ‖ as the cost

of mapping from the sequence Si,j = {i, ..., j} to the key sequence {i, j}.

As proved in Section 6.3.1, if a key sequence is optimal, its sub-sequence is also an

optimal selection of key time steps. Consequently, the mapping within each segment

is also optimal. Given a dissimilarity metric Di,j for a pair of time steps i and j,

which will be defined later. The mapping cost ‖ Si,j ‖ can be computed as the sum

of the optimal mapping costs within the segment Si,j.

‖ Si,j ‖= min
i≤q<j

(

q
∑

t=i

Di,t +

j
∑

t=q+1

Dt,j

)

(6.10)

Time step q is a time step between time step i and time step j, as shown in Figure 6.3.

Essentially the formula above computes the cost ‖ Si,j ‖ as the minimum cost for

mapping the time steps before q to i, and the rest time steps to j among all the

possible q ∈ [i, j).

It should be noted that in certain simulation, the first a few time steps can have

very small value during the initialization of the model. If the initial time step is

undesired, the algorithm can be modified in order not to always choose the first time

step. The basic idea behind this modification is to treat the first segment as a special

case. Given the first segment from time steps 1 to j, its cost ‖ S1,j ‖ is computed by

mapping all time steps to the j-th time step alone, other than both time steps 1 and
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j. i.e.

‖ S1,j ‖=

j
∑

t=1

Dt,j (6.11)

Hereafter this special treatment is applied to all case studies.

For all the other cases when Si,j is not the first segment, Si,j is divided into two

parts Si,q and Sq+1,j by time step q, where the time steps in Si,q map to time step i,

and the time steps in Sq+1,j map to the last time step j, as shown in Figure 6.3. We

define time step q as the jump time step, because at the point of time step q, each

element in Si,j changes from mapping to time step i to mapping to time step j. No

crossing is allowed in the mapping in our case considering the temporal coherence.

‖ Si,j ‖ is the minimum of the sum of the mapping cost in Si,q and Sq+1,j, for different

choice of q. We may also view the solution to Equation 6.10 as finding the DTW

warping between two sequences Si,j and {i, j}.

If the total number of time steps is n, then there are n(n−1)
2

pairs of (i, j), or

possible segments. If we solve the cost for all the n(n−1)
2

segments, the results can be

filled into a triangular matrix, which can be stored as input to the main algorithm

described in Section 6.3.1.

Finally, Di,j is the dissimilarity metric between time step i and j. The metric

can be defined differently for different goal. For example, if our focus is to compare

two isosurfaces in two time steps, we can use the isosurface similarity map [16]. If

we want to compare the distributions in two time steps, we can use Earth Mover’s

Distance [96] or K-L divergence [68]. Our algorithm does not depend on a particular

kind of dissimilarity metric, so can be broadly applied to different problems.
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6.4 Results

To test the efficacy of our algorithm, two case studies were conducted. The first

case study is based on the data generated from a simulation of Madden-Julian Os-

cillation, a well known weather phenomenon, and the second case study is on the

analysis of radiation from an astrophysics simulation.

6.4.1 Madden-Julian Oscillation

Madden-Julian Oscillation (MJO) is a weather phenomenon that consists of 30-

60 days oscillation of surface and upper level winds in the tropical area near Indian

and Pacific oceans. MJO can be characterized by an eastward progression of both

enhanced and suppressed tropical rainfall. Study of MJO is important because it

explains intra-seasonal variability in the tropics. MJO also influences the precipitation

during the summer months in North America. The data set of the simulation consists

of 479 time steps, where each time step contains of 2699 × 599 × 27 voxels. The

simulation was done by scientists in the Pacific Northwest National Laboratory [51].

Scientists usually observe MJO by Hovmoller diagrams generated from different

variables, such as cloud intensity and water vapor. Figure 6.4(a) shows a Hovmoller

diagram of the water vapor mixing ratio at the 583hPa pressure level . In the diagram,

the X axis represents longitude, and the Y axis represents time. Each pixel in the

diagram represents the average water vapor from points of different latitudes but a

constant longitude and time step. Hovmoller diagram is commonly used for plotting

meteorological data to highlight time progression of certain phenomena over a given

spatial region [55]. The limitation of Hovmoller diagram is that it can only show a

single spatial coordinate, e.g. longitude or latitude, at a time. If one desires to see the
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Figure 6.4: (a): Water vapor mixing ratio on Hovmoller diagram. (b): Water vapor
mixing ratio on 7 key time steps marked as red lines in (a).

data in multiple dimensions, 2D or 3D space for example, Hovmoller diagram will be

insufficient. In this case study, we use the sequence of scanlines from the Hovemoller

diagram shown in Figure 6.4(a) as the time-varying data input. We detect salient

time steps using our algorithm so that scientists can perform further analysis of the

data based on the key time steps.

MJO can be observed from cloud movement along the longitude direction, and the

cloud intensity is associated with water vapor mixing ratio. For this reason, we use

the time-varying water vapor intensity data over a range of longitudes as the input to
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our algorithm to identify key time steps. We use the Earth Mover’s Distance(EMD) to

measure the dissimilarity of water vapor distribution between different time steps [96].

The EMD measures the minimum amount of work to fill a mass of earth into a

collection of holes in the same space. The work is the sum of each unit of earth times

the ground distance that it moves. EMD will assign a larger dissimilarity value for

two time steps if their peaks of water vapor are far away.

Figure 6.5(a) shows a dissimilarity matrix among the time steps using EMD for

the water vapor data, where blue represents low and red represents high values. The

large blue squares in the dissimilarity matrix along the diagonal line indicates there

exists temporal coherence for data in adjacent time steps. Figure 6.5(b) shows the

relationship between the DTW cost and the number of key time steps selected by our

algorithm. It can be seen that the DTW cost drops sharply as more key time steps

are selected. Applying our key time steps selection algorithm, we selected 7 key time

steps. The plots of water vapor mixing ratio versus longitude for the key time steps

are shown in Figure 6.4(b).

From these plots, we can see the movement of MJO over time. In the plots, MJO

can be seen as peaks of the water mixing ratio, which is initially on the west (left in

the plot) side of the domain. The peaks then move to the middle in key time step 2,

and go to east with a large water vapor value in key time step 3. Before this MJO

has not fully left the domain, a second MJO is formed in the east again, as shown in

key time step 4. This is expected because MJO is a cyclic weather event. It can be

seen that this peak moves to the middle in key time step 5, and to east in key time

step 6. The small peak on the left of key time step 7 may indicate the formation of

a third MJO.
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Figure 6.5: (a): Water vapor EMD dissimilarity map. (b) DTW cost with increasing
number of key time steps for MJO data set.

In Figure 6.4(a), the selected key time steps are marked over the Hovmoller dia-

gram by red lines, and the jump time steps are marked on the right side of Hovmoller

diagram in blue. The distributions of the time steps between two adjacent jump time

steps are very similar, and are represented by the key time step between them. There

are more key time steps in the area of larger variance around time step 170, and fewer

key time steps in the area of lower variance around time step 80 and time step 370.

6.4.2 Radiation of Astrophysics Turbulence

The astrophysics turbulence data set is from a three-dimensional radiation hy-

drodynamical simulation of ionization front instabilities [120]. The data set consists

of 200 time steps, where each time step is a 600 × 248 × 248 point regular mesh.

The first star emits energetic UV radiation to the universe. The radiation ionized

the surrounding gas to a temperature around 20, 000K. The distribution of the hot
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gas is interesting to the scientists, so we visualize the data with the isosurface of the

temperature at 20, 000K, and see how it evolves change over time.

Among the 200 time steps in the dataset from which isosurfaces are computed,

many of them look quite similar. This information redundancy makes it difficult for

the user to focus on only the most essential information, in this case, how does the

isosurface evolve. To assist the user, we apply our algorithm where the focus is to

compare the isosurfaces and choose the most representative ones.

An important input to our algorithm is the dissimilarity between isosurfaces of all

pairs across the entire time sequence. For this, we use isosurface similarity map metric

presented in [16]. In essence, this metric computes the mutual information between

distributions of two distance fields derived from the isosurfaces. In our application,

we use the similarities of all pairs of isosurfaces to build the 200 × 200 isosurface

similarity map. After normalizing the similarity to a [0, 1] range, the value of one

minus similarity is used to build the dissimilarity map input for our key time step

selection algorithm.

The dissimilarity map is visualized in Figure 6.6(a). Blue color represents low

dissimilarity, and red color represents high dissimilarity. The entries around the

diagonal are mostly blue, which means the isosurface of one time step is similar to

the isosurfaces in its adjacent time steps. Several different sized blue squares can be

seen along the diagonal of dissimilarity map. Each square shows a group of similar

isosurfaces.

Based on the dissimilarity map, we ran our key time steps selection program and

selected 6 key time steps. Table 6.1 shows information about the selection results. In

this table, each row is a segment Si,j. It means that the time steps in this segment,
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Figure 6.6: (a): Radiation isosurface dissimilarity map. (b) DTW cost drops with
increasing number of key time steps for radiation data set.

Table 6.1: 6 key time steps and the mapping for radiation isosurfaces

p∗ i j characteristics
24 1 30 one plane
48 31 65 a clear circle in front of the plane
78 66 83 small isosurfaces in front and back of the circle
93 84 104 small isosurfaces only in front of the circle
113 105 125 a broken cylinder in front of the plane
141 126 200 possible small isosurfaces in front of the plane

time step i to time step j, map to the key time step, time step p∗, where i ≤ p∗ ≤ j.

The segments listed in Table 6.1 show a good correspondence with the blue squares

on the isosurface dissimilarity map in Figure 6.6(a). Thus, our algorithm is capable

of making temporal classification of similar isosurfaces in a time-varying data set.

We visualized the 6 isosurfaces in Figure 6.7. Each of the 6 isosurfaces is repre-

sentative for its corresponding time segment. We can see that they are quite different
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: 20, 000K isosurfaces of temperature field of 6 key time steps

from each other, and each has its unique characteristics, as described in Table 6.1.

The selected isosurfaces give the user a clear overview of how the isosurfaces evolve.

The relationship between the DTW cost and the number of key time steps selected

is shown in Figure 6.6(b). The DTW cost does not drop as sharply as the one in our

previous case study, the MJO data set, which is an indication that we may need more

key time steps to represent the whole data set. However, limited by the screen space,

we could not visualize too many key time steps at a time. In Section 6.5, we will

describe an interactive key time steps browser, taking advantage of our algorithm, to

explore time-varying data hierarchically.

134



6.4.3 Performance

A prototype of our algorithm was tested on a machine with Intel Core i7 2600

CPU, 16GB system memory, and nVidia GeForce GTX 560 GPU. The performance

tests were performed in 2012. It can be higher if newer processor and graphics card

had been used.

The dissimilarity matrix from the time-varying data is precomputed and used as

the input to the dynamic programming algorithm. The performance and scalability

of this preprocessing step depends on the dissimilarity metric we use. For the data set

MJO, the dissimilarity matrix is computed based on the approximated EMD between

the rows in the Hovemoller diagram, where each row represents data across different

longitudes at a particular time step. Because data at each time steps are aggregated

to a function of longitude, the computation of the dissimilarity matrix only took

25.6 seconds, including 24.2 seconds to generate the Hovemoller diagram from raw

NetCDF data, and 1.4 seconds to compute EMD from the Hovemoller diagram using

MATLAB. For the radiation data set, the dissimilarity computation first evaluates

the distance from each grid point to each isosurface, which took 4.64 hours on GPUs

for data at a full resolution. The mutual information computation is time-consuming,

too, since joint histograms need to be constructed. For each pair of time steps, the

mutual information is computed by scanning all voxels in their distance fields, which

totally took 8.4 hours for 200 time steps. Thus, the total preprocessing time for

radiation data set is 4.64 + 8.5 = 13.14 hours.

The implementation of the dynamic programming algorithm has two major stages.

The first stage is to run our dynamic programming algorithm to generate the time step

index table. Given n time steps, the time complexity of our dynamic programming is
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Figure 6.8: Performance of key time step selection for MJO.

O (n3). Figure 6.8 shows the time required to select different numbers of time steps

from the MJO dataset. It can be seen that the algorithm took less than 0.25 second

for all cases. Because the computation can be done very efficiently, the user can select

different sub time interval and then re-compute the table interactively. Once the time

step index table has been computed, the next stage is to select the key time steps

of any user-desired number. Because the task of this stage essentially is to scan the

table, the time spent on it is totally negligible compared to other stages. This allows

the user to query different number of key time steps in real time.

6.5 Key Time Steps based Time Varying Data Browser

To enable interactive analysis of time-varying data sets, we design a data browser

that can take advantage of the information computed from our key time step selection

algorithm. The key time steps and the mapping between the full sequence and the key

sequence allow the user to navigate time-varying data at different levels of temporal

detail. In the browser, we show information related to the nature of the time-varying

data, including the dissimilarity matrix, the key time steps, the jump time steps, and

the warping path between the full sequence and the key sequence. The data browser
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Figure 6.9: Time-varying data browser. Here 7 key time steps from all 479 time steps
of the MJO data are selected. The top 7× 470 2D map show the rows of the selected
time steps from the original dissimilarity map. The data of the key time steps are
rendered below the 2D map.

Figure 6.10: Zooming into a time interval in the browser. Here 6 key time steps are
selected from the time step interval [135, 223] of the MJO data.

allows the user to interactively specify the desired number of key time steps, across

the entire time sequence or within a local time segment. Figure 6.9 shows a snapshot

of our system.

6.5.1 User Interface and Visual Display

A key component of this interface is the visualization of the dissimilarity matrix.

It is visualized as a 2D greyscale image in the background. Each rectangle represents

an entry of the matrix, where black represents low dissimilarity values, and white
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represents high dissimilarity values. Let n be the total number of time steps, and k

be the number of key time steps. In the dissimilarity matrix viewer, we do not show

the whole n×n dissimilarity matrix, but only the rows that correspond to the selected

key time steps versus the full sequence in the columns, i.e. a k×n dissimilarity matrix.

This matrix shows the dissimilarities between the key sequence and the full sequence.

From the results of key time steps selection, we establish a mapping between the

key sequence and the full sequence. This mapping can be represented as a path in

the dissimilarity matrix, shown as the blue lines in Figure 6.9. The warping path

is composed of multiple horizontal lines segments. Each path segment is a mapping

between one key time step to all its represented time steps.

In Figure 6.9, the key time step of each path segment is marked by a red time step

index. The warping path between a pair of adjacent key time step is a time segment

mentioned earlier in the algorithm section. Between a pair of adjacent key time steps,

the warping path jumps from one row to the next row at the jump time step, which

is marked by a green time step index. In order to provide detailed information for

the time varying data set, visualization of data in the key time steps is shown below

the dissimilarity map, each connected with the corresponding key time step shown

on the warping path by a yellow line.

With this user interface, to browse the time varying data at different levels of

detail, the user can interactively input the time interval of interest, and specify the

number of desired key time steps. From the key time steps, the user may zoom in to

a smaller time interval. They can repeat this process until the time steps that contain

salient features are found.
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6.5.2 Use Case for the MJO Data Set

Here we use the MJO data set described earlier in Section 6.4.1 to demonstrate

the use of our browser. Given the pre-computed dissimilarity map, we pick 7 key

time steps with our algorithm from the whole sequence, i.e., from time step 1 to time

step 479.

Shown in Figure 6.9, the background is an image that shows a 7×479 dissimilarity

matrix. 7 key time steps and 6 jump time steps are marked along the warping path.

The 2D cloud intensity on the pressure level 850hPa for the 7 key time steps are

displayed below the dissimilarity matrix, connected to their corresponding key time

steps by yellow lines.

Since our algorithm run very efficiently after the dissimilarity map is computed,

the selection of key time steps can be done interactively. By viewing the 2D cloud

renderings at the key time steps, we found that time step 145 has high cloud intensity

in the middle, which later moves to the southeast at time step 171. In time step 214,

a second strong cloud appears in the southwest.

Assuming we are interested in the data around the three time steps mentioned

above, we can drag an interval on the dissimilarity map, e.g. from time step 135 to

time step 223. To get more details, we can double the number of key time steps in

this interval to 6 key time steps. The new results are shown in Figure 6.10. Time

step 145 and 171 are still the key time steps, with an additional key time step added

in between. Time step 214, a key time step in the previous selection, is replaced by

another 3 time steps, 177, 193, and 209. The new key time step, time step 161, shows

that before the middle point cloud moves to southeast, it first goes eastbound for

some distance. Time steps 177, 193, and 209 show that this cloud wave stays at the
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east with a high intensity for a long time, and the second cloud wave is gradually

formed in the southeast. We may further reduce the size of the time interval based on

our interested key time steps to extract more detailed information of the MJO data

set.

To summarize, with our system, the user can first obtain an overview of the

entire data set with a small number of key time steps. From the key time steps,

interesting time intervals can be selected where additional key time steps can be

generated recursively until the desire features are found.

6.6 Conclusion

We present a novel technique for selecting key time steps from large scale time-

varying data sets. Our goal is to identify a subsequence from the entire time steps

that can give a globally minimum cost. To achieve this goal, we apply Dynamic

Time Warping to establish the mapping between the full and the sub-sequences, and

choose the best subsequence among all the possible choices as the key time steps. The

dynamic programming scheme we developed is very efficient, and thus can facilitate

interactive data browsing. A time-varying data browsing system is designed to allow

exploring the time varying data interactively in different levels of temporal scales. The

algorithm was tested on a Madden-Julian Oscillation simulation data set using water

vapor distributions over areas of different longitude. We also tested our algorithm

on an astrophysics turbulence data set to select salient isourfaces over a long time

sequence.

The main limitation of our work is that computing the dissimilarity matrix re-

quires all time steps. Besides, because the complexity of distance computation for n
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time steps is O(n2), the distance computation can dominate the preprocessing stage.

One example is our case study for radiation dataset, which took 4 hours on GPUs.

Another direction of our future work is to enhance our time-varying data browser.

The current browser only displays a submatrix of the dissimilarity matrix. We be-

lieve that displaying the entire dissimilarity matrix to the user can provide additional

useful information. For instance, by highlighting the time segments on the matrix,

the user can visually evaluate whether the segments are sufficient to represent the

whole data. Besides, the current design uses most of the screen space to display the

dissimilarity matrix. Our new design will give more space to display the data in the

selected time steps. This will allow the user to clearly compare the selected time steps

side-by-side. One possible design is to shrink the dissimilarity matrix and arrange

the time steps around the matrix. Also, the browser will have more user control.

For instance, while currently the intensity of the dissimilarity map are automatically

scales based on the current range of distance scope, the future design will allow the

user to control the color mapping.
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Chapter 7: Contributions and Future Works

Visual clutter problem comes along with big data and will change as the data

size grows and data contents change. This dissertation provides solutions to solve

visual clutter and demonstrate the solutions using flow visualization, glyph-based

visualization, and time-varying data visualization. In scientific visualization, there

are more scientific data types and visualization techniques than what were present in

this dissertation. One particular visual clutter management technique cannot solve

visual clutter in all kind of scientific data or all visualization techniques. However,

our general strategies described in Section 1.2 should generalize most visual clutter

management methods. By following these general strategies, one can design more

visual clutter management methods to solve the visual clutter in specific applications.

We categorize our future works into three categories and describe them as the

following items:

1. Deformation technique

(a) We want to compare our deformation technique with more of other occlu-

sion removal techniques and perform user studies.

(b) We can combine our deformation technique with other techniques, such

as transparency and cutaway, to solve the occlusion problems in different
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situations. For example, we can use transparency on the streamlines whose

shapes cannot be well preserved by deformation.

(c) For the object space deformation model, we can allow users to interactively

cut the tetrahedral mesh and break a hole on the mesh. In this way, the

force from the lens can enlarge the hole to allow the users to see through

it.

(d) In order to work with time-varying datasets, our deformation model can

be designed to work with an animation of streamlines or glyphs.

(e) Besides solving visual clutter in 3D visualizations, this strategy can also be

used to tackle visual clutter in 2D visualization, such as parallel coordinates

plots (PCP). The difference between 2D and 3D is whether to consider

depth (or layer) information of geometries.

2. Interactive Visualization System

(a) More depth cues can be provided in the visualization of deforming geome-

tries.

(b) The lens shape can be more flexible in order to adapt to different shapes

of focus regions.

(c) To allow focus streamlines properly distributed in different regions of the

image space, the system should allow deformation in multiple focus regions

simultaneously.

(d) Multiple users can interact with lenses simultaneously using different input

and output devices.
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(e) The system should automatically suggest positions of interesting features.

Users can save time if being guided on where to place the lens.

3. Immersive Visualization and Interaction

(a) Occlusion should be removed in stereoscopic displays. For viewing stereo-

scopic images of visualization, user’s two eyes see different images. Ensur-

ing the visibility of focus features on both images can benefit the stereo-

scopic display quality.

(b) View navigation in virtual reality is challenging. It is easy to become lost

in a virtual environment when viewing data too closely. A side window

showing the viewer’s position in the spatial domain and the direction of

viewing can be very helpful.

(c) Accuracy and stability of hand tracking should be increased. More in-

teraction devices should be explored to control the lens. Hand motion

camera, such as Leap Motion, is limited by its mechanism and does not

recognize particular gestures or hand positions. Other controllers, such

as HTC VIVE controllers, provide more accurate and stable tracking and

may be a better alternative to manipulate our lens.

(d) Visual and haptic feedback from manipulated objects should be enhanced

in order to allow users to sense the existences of the objects. For exam-

ple, when a hand moves close to an object, the object changes color or

the controller vibrates. This feedback can increase the accuracy of lens

placement.

4. Others
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(a) For crystal glyph, the spherical base is not always easy to see, especially

when the distribution spreads in a big range of directions. Then, users lack

reference to observe the terrain heights and the corresponding probability

densities. Overcoming this limitation is a future goal.

(b) For the key time step selection work, we want to modify the algorithm

to make the dynamic programming algorithm work with a subset of the

dissimilarity matrix. In such a case, we do not need to access the entire

dataset, and thus our algorithm can be extended for in situ data reduction

as well.

We hope the general strategies and the presented techniques of visual clutter

management in scientific visualization can help viewers to better understand and solve

their visual clutter problems. We also wish the general strategies and the mentioned

future works can inspire researchers to study more along this direction and tackle

more specific problems.
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