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Abstract

Commodity hardware is becoming more parallel. To benefit from parallel hardware,

software needs to become more parallel as well. Parallel execution of a concurrent program

can increase program throughput and reduce program execution time. However, writing

concurrent programs that are both correct and scalable is known as notoriously more diffi-

cult than writing sequential programs because of the interaction of multi-threaded execution

model, synchronization, and the memory hierarchy. Concurrent programming therefore has

been traditionally the exclusive domain of a small portion of expert programmers.

To make concurrent programming more accessible, researchers and practitioners have

built various runtime support to facilitate the programmability, debuggability, performance,

and scalability of concurrent programs on multiprocessor machines. This dissertation

makes several contributions by introducing novel approaches that provide efficient runtime

support on modern commodity multiprocessor hardware to support reliable and scalable

concurrent programming with available parallelism.

To address a common challenge in building many types of efficient runtime support—

how to efficiently track memory access dependences, the dissertation introduces a novel

design that tracks memory dependences in a relaxed way which overlaps coordination with

program execution to hide coordination latency. The dissertation introduces client analyses

to demonstrate the practicality and caveats of the relaxed tracking approach.
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Transactional memory is a promising high–level abstraction for shared-memory concur-

rency. However, it faces challenges in both performance and semantics. The dissertation

introduces LarkTM, a low-overhead, scalable software transactional memory (STM) sys-

tem with strong semantics and strong progress guarantees. The dissertation also introduces

LarkTM-S, which extends LarkTM by hybridizing optimistic and pessimistic concurrency

control, and a variant of LarkTM which is based on relaxed dependence tracking.

Finally, the memory model is at the heart of concurrency semantics. To increase the

practicality of strong memory consistency models, the dissertation is the first that identifies

the availability issue in strong memory models with fail-stop semantics. It introduces a

new memory model based on snapshot isolation which has strong, well-defined semantics

and devises a memory model enforcement approach that enforces the new memory model

while at the same time does best-effort tolerance of consistency exceptions.

iii



To my family.

iv



Acknowledgments

This work could not have been possible without the guidance and inspiration I received

from my advisor Michael Bond. Working with Mike was one of the best decisions I have

made in my life. Not only he taught me the knowledge necessary for conducting research

projects, he has showed me the key qualities one needs to have to become an independent

researcher. I am very grateful to Mike for spending hours with me every week to answer all

of my questions, going through problems on the board, and even helping me improve my

code and writing. Mike has always motivated me to focus on the long run and has given

me very useful career advice.

I also thank the other members of my dissertation committee: Professor Nasko Roun-

tev, from whom I learned a lot about compiler, static analysis, and dynamic analysis, and

Professor Radu Teodorescu, whose helpful suggestions increased the readability and re-

duced ambiguity of this dissertation. I thank Professor Dhabaleswar Panda who helped me

attend OSU and guided me to work on high-performance distributed computing. I thank

our department chair Xiaodong Zhang for helping me see the “big picture” many times

when I was facing difficult decisions.

I want to express my gratitude to my fellow OSU students Jipeng Huang, Swarnendu

Biswas, Aritra Sengupta, Man Cao, Jake Roemer and Rui Zhang for valuable discussions

and research collaborations. I am thankful to all of the friends I met at OSU for making

my Ph.D. journey more enjoyable. Thanks to Harry Xu, Bing Ren, Xiangyong Ouyang,

v



Miao Luo, Hao Wang, Kazuya Sakai, Tian Luo, Mark Arnold, Tony Yan, Jithin Jose, Yang

Zhang, Ye Wang, Qinpeng Niu, Di Cao, Fengtao Fan, Linchuan Chen, Yu Su, Yi Wang,

Wasiur Radhman, Nusrat Islam, Victor Yang, Martin Kong, Yuan Yuan, Diego Zaccai,

Dustin Hoffman, Meisam Fathi Salmi, Xin Tong, Xiaofeng Wu, Ayan Biswas, Zhi Wang,

Siyuan Ma, and many others.

I am thankful for guidance and help provided by Kathryn McKinley, Yuxiong He,

Sameh Elnikety, and Srikumar Rangarajan, who have supported and mentored me. Mi-

crosoft funded my research with three internships.

Finally, I am grateful to my parents Sancai Zhang and Ping Wu for their unconditional

love and support. Without them, I would not have come this far.

vi



Vita

August 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ph.D. in Computer Science and Engineer-
ing, The Ohio State University University

September 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .M.S. in Computer Science and Engineer-
ing, The Ohio State University University

August 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M.S. Computer Science and Technol-
ogy, Huazhong University of Science and
Technology, China

June 2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.E. Computer Science and Technol-
ogy, Huazhong University of Science and
Technology, China

Publications

Research Publications

Minjia Zhang, Swarnendu Biswas, Michael D. Bond. Relaxed Dependence Tracking for
Parallel Runtime Support. In the 25th International Conference on Compiler Construction
(CC 2016), March 2016.

Man Cao, Minjia Zhang, Aritra Sengupta, and Michael Bond. Drinking from Both
Glasses: Combining Pessimistic and Optimistic Tracking of Cross-Thread Dependences.
In the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP 2016), March 2016.

Swarnendu Biswas, Minjia Zhang, Michael D. Bond, and Brandon Lucia. Valor: Efficient,
Software-Only Region Conflict Exceptions. In the ACM SIGPLAN conference on Systems,
Programming, Languages and Applications (OOPSLA 2015), October 2015.

vii



Minjia Zhang. SIRe: An Efficient Snapshot Isolation-based Memory Model for Detecting
and Tolerating Region Conflicts. In the Companion Proceedings of the 2015 ACM SIG-
PLAN International Conference on Systems, Programming, Languages and Applications:
Software for Humanity (SPLASH Companion 2015), October 2015.

Minjia Zhang, Jipeng Huang, Man Cao, and Michael D. Bond. Low-Overhead Soft-
ware Transactional Memory with Progress Guarantees and Strong Semantics. In the 20st
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP
2015), Feburay 2015.

Aritra Sengupta, Swarnendu Biswas, Minjia Zhang, Michael D. Bond, and Milind Kulka-
rni. Hybrid Static-Dynamic Analysis for Statically Bounded Region Serializability. In the
the 20th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2015) March 2015.

Man Cao, Minjia Zhang, and Michael D. Bond. Drinking from Both Glasses: Adaptively
Combining Pessimistic and Optimistic Synchronization for Efficient Parallel Runtime Sup-
port. In International Workshop on Dynamic Analysis (WoDet’14), March 2014.

Michael D. Bond, Milind Kulkarni, Man Cao, Minjia Zhang, Meisam Fathi Salmi, Swar-
nendu Biswas, Aritra Sengupta, and Jipeng Huang. Octet: Capturing and Controlling
Cross-Thread Dependences Efficiently. In the ACM SIGPLAN conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA 2013), pages
693-712, March 2013.

Jithin Jose, Hari Subramoni, Miao Luo, Minjia Zhang, Jian Huang, Md. Wasi-ur-Rahman,
Nusrat S. Islam, Xiangyong Ouyang, Hao Wang, Sayantan Sur, and D. K. Panda. Mem-
cached Design on High Performance RDMA Capable Interconnects. In the 44th Interna-
tional Conference on Parallel Processing (ICPP ’11), pages 743-752, September 2011.

Fields of Study

Major Field: Computer Science and Engineering

Studies in:

Programming Languages and Software Systems Prof. Michael D. Bond
High-End Systems Prof. Feng Qin
Distributed Systems Programming Prof. Gagan Agrawal

viii



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Concurrency in Shared-Memory Systems . . . . . . . . . . . . . . . . . 2
1.1.1 Memory Dependence Tracking . . . . . . . . . . . . . . . . . . 4
1.1.2 Concurrent Programming Models . . . . . . . . . . . . . . . . . 5
1.1.3 Memory Consistency Models . . . . . . . . . . . . . . . . . . . 7

1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Dissertation Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Meaning and Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2. Preliminaries and Background . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Capturing Cross-Thread Dependences . . . . . . . . . . . . . . . . . . . 16
2.1.1 Biased Reader–Writer Locking . . . . . . . . . . . . . . . . . . 18

2.2 Transactional Programming . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Performance and Semantics . . . . . . . . . . . . . . . . . . . . 29

2.3 Memory Consistency Models . . . . . . . . . . . . . . . . . . . . . . . 33

ix



2.4 Implementation and Methodology . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3. Relaxed Dependence Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Tracking Cross-Thread Dependences under Relaxed Conditions . . . . . 41
3.1.1 The Relaxed Coordination Protocol . . . . . . . . . . . . . . . . 42
3.1.2 Handling Relaxed Accesses . . . . . . . . . . . . . . . . . . . . 46
3.1.3 Optimizations at Synchronization Release Operations . . . . . . 49

3.2 Recording Dependences . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.1 ST-Based Dependence Recorder . . . . . . . . . . . . . . . . . 51
3.2.2 RT-Based Dependence Recorder . . . . . . . . . . . . . . . . . 51

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Evaluating Relaxed Dependence Tracking . . . . . . . . . . . . 53
3.3.2 Performance of Runtime Support . . . . . . . . . . . . . . . . . 59

3.4 Conclusion and Interpretation . . . . . . . . . . . . . . . . . . . . . . . 60

4. LarkTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 LarkTM-O: Low-Overhead Software Transactional Memory . . . . . . . 63
4.1.1 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.2 Conflict Detection . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.3 Resolving Transactional Conflicts . . . . . . . . . . . . . . . . . 68
4.1.4 LarkTM’s Instrumentation . . . . . . . . . . . . . . . . . . . . . 69

4.2 LarkTM-S: Scalable Software Transactional Memory . . . . . . . . . . . 71
4.3 Comparison with NOrec and IntelSTM . . . . . . . . . . . . . . . . . . 73
4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5.2 Execution Characteristics . . . . . . . . . . . . . . . . . . . . . 87
4.5.3 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Conclusion and Interpretation . . . . . . . . . . . . . . . . . . . . . . . 96

5. Software Transactional Memory with Relaxed Dependence Tracking . . . . . . 99

5.1 Extending LarkTM-O with RT . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Comparison with ST-based STM . . . . . . . . . . . . . . . . . . . . . 102
5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4 Conclusion and Interpretation . . . . . . . . . . . . . . . . . . . . . . . 105

x



6. Strong Memory Consistency Models With Fail-Stop Semantics . . . . . . . . . 107

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Increasing Availability Under RSx . . . . . . . . . . . . . . . . . . . . . 110

6.2.1 FastRCD and FastRCD-A . . . . . . . . . . . . . . . . . . . . . 110
6.2.2 Valor and Valor-A . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 SIx: A New Strong Memory Model . . . . . . . . . . . . . . . . . . . . 116
6.3.1 Snapshot Isolation of Regions . . . . . . . . . . . . . . . . . . . 117
6.3.2 A Memory Model Based on Snapshot Isolation . . . . . . . . . . 120

6.4 Snappy: Runtime Support for SIx . . . . . . . . . . . . . . . . . . . . . 120
6.4.1 Tolerating Read–Write Conflicts . . . . . . . . . . . . . . . . . 120
6.4.2 Detecting Read–Write Conflicts Imprecisely . . . . . . . . . . . 124

6.5 Correctness of Snappy . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.7.1 Runtime characteristics. . . . . . . . . . . . . . . . . . . . . . . 131
6.7.2 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.7.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.7.4 Performance–Availability Tradeoff . . . . . . . . . . . . . . . . 137
6.7.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.7.6 Space Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.8 Conclusion and Interpretation . . . . . . . . . . . . . . . . . . . . . . . 140

7. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.1 Tracking Dependences . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.2 Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3 Memory Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.1 Summary and Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

xi



List of Tables

Table Page

2.1 State transitions for biased reader–writer locks. * Acquiring a read lock
on a RdShc object by T triggers a fence transition if and only if per-thread
counter T.rdShCount < c. Fence transitions update T.rdShCount to c. . . . . . 20

3.1 Runtime characteristics of strict and relaxed dependence tracking. . . . . . 58

4.1 Comparison of the features and properties of NOrec [49], IntelSTM [135],
LarkTM-O, and LarkTM-S. SLA is single global lock atomicity (Section 2.2.2).
∗LarkTM-S guarantees progress only if it forces a repeatedly aborting trans-
action to use fully eager concurrency control. . . . . . . . . . . . . . . . . 74

4.2 Transaction APIs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Accesses instrumented by NOrec, IntelSTM, LarkTM-O, and LarkTM-S
during single-thread execution. . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Lock acquisitions when running LarkTM-O and LarkTM-S. Same state ac-
cesses do not change the lock’s state. Conflicting accesses trigger the co-
ordination protocol and conflict detection. Contended state accesses use
IntelSTM’s concurrency control. Percentages are out of total instrumented
accesses (unaccounted-for percentages are for upgrading lock transitions).
Each percentage x is rounded so x and 100% − x have at least two signifi-
cant digits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Transactions committed and aborted at least once for four STMs. . . . . . . 90

6.1 Runtime characteristics of the evaluated programs, rounded to two signifi-
cant figures. *Three programs support varying the number of active appli-
cation threads; by default, this value is equal to the number of cores (32 in
our experiments). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

xii



6.2 The number of consistency exceptions reported by approaches that provide
RSx and SIx. For each program, the first row is dynamic regions that report
at least one exception, and the second row is dynamic exceptions reported.
Reported values are the mean of 10 trials, including 95% confidence inter-
vals, rounded to two significant figures (if ≥1.0). . . . . . . . . . . . . . . 134

xiii



List of Figures

Figure Page

2.1 Pseudocode for biased reader–writer locking’s instrumentation fast path. T
is the executing thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Pseudocode for biased reader–writer locking’s slow path. T is the executing
thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 The biased reader–writer locking coordination protocol. (a) Implicit re-
quest: (1) respT accessed o previously. (2) respT enters a blocked state
before performing some blocking operation. (3) reqT wants to access o. It
changes o’s lock’s state to RdExIntreqT or WrExIntreqT. (4) reqT performs runtime-
support-specific actions while keeping respT in a “blocked and held” state.
(5) respT finishes blocking but waits until hold(s) have been removed. (6)
reqT removes the hold on respT and changes o’s lock’s state to WrExreqT or
RdExreqT and proceeds to access o. (7) respT leaves the “blocked and held”
state. (b) Explicit request: (1) respT accessed an object o previously. (2)
reqT wants to access o. It changes o’s lock to RdExIntreqT or WrExIntreqT, and
enters a blocked state, waiting for respT’s response. (3) respT reaches a
safe point. (4) respT performs runtime-support-specific actions and then
responds. (5) respT leaves the safe point. (6) reqT sees the response. (7)
reqT changes o’s lock’s state to WrExreqT or RdExreqT and proceeds to access
o. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xiv



3.1 The relaxed coordination protocol. (a) Implicit response: (1) respT ac-
cessed o at some prior time. (2) reqT wants to access o. It changes o’s lock
to RdExIntreqT or WrExIntreqT. (3) reqT proceeds without waiting to receive respT’s
response. (4) respT reaches a safe point (SP) and (5) sees reqT in a blocking
state, so respT puts reqT in a “blocked and held” state. (6) respT changes
o’s lock’s state to WrExreqT or RdExreqT. (7) respT removes the hold on reqT,
then leaves the safe point. (8) reqT finishes blocking, then waits until all
holds have been removed. (b) Explicit response: (1) respT accessed o at
some prior time. (2) reqT wants to access o. It changes o’s lock to RdExIntreqT

or WrExIntreqT. (3) reqT proceeds without waiting to receive respT’s response.
(4) respT reaches a safe point (SP), (5) sends an explicit response, and (6)
leaves the safe point. (7) reqT reaches a safe point and sees the response.
reqT changes o’s lock’s state to WrExreqT or RdExreqT. . . . . . . . . . . . . 43

3.2 The fast and slow paths of RT’s instrumentation at stores. . . . . . . . . . . 45

3.3 The fast and slow paths of RT’s instrumentation at loads. . . . . . . . . . . 46

3.4 Relaxed stores cannot be deferred past synchronization points. . . . . . . . 48

3.5 Runtime overhead added to an unmodified JVM by capturing dependences
using (1) ST, compared with (2) an ideal, unsound configuration that elim-
inates coordination latency and (3) RT. . . . . . . . . . . . . . . . . . . . . 54

3.6 Speedup of RT relative to ST. Ideal is an unsound configuration that pro-
vides an upper bound on RT’s performance. . . . . . . . . . . . . . . . . . 56

3.7 Runtime speedup of the RT-based dependence recorder over the ST-based
dependence recorder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Overview of LarkTM’s concurrency control. The figure shows the process
of acquiring a lock for every transactional and non-transactional access. . . 64

4.2 A conflicting transition is a necessary but insufficient condition for a trans-
actional conflict. Solid boxes are transactions; dashed boxes could be either
transactional or non-transactional. . . . . . . . . . . . . . . . . . . . . . . 65

xv



4.3 (a) Thread reqT’s read triggers a state change from WrExrespT to RdExreqT, at
which point LarkTM declares a transactional conflict even though respT’s
transaction has only read, not written, o. This imprecision is needed be-
cause otherwise (b) reqT might write o later, triggering a true transactional
conflict that would be difficult to detect at that point. . . . . . . . . . . . . 67

4.4 Our prototype implementation’s programming model requires manually
rewriting atomic blocks to support abort and retry and to save and poten-
tially restore local variables. . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Reuse read-set to avoid overhead of clearing. . . . . . . . . . . . . . . . . 82

4.6 Speedup of STMs over non-STM single-thread execution for 1–64 threads
for two representative programs. . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Overhead added to non-transactional programs by strongly atomic STMs.
The 6 and 9 suffixes distinguish DaCapo 2006 and 2009. . . . . . . . . . . 91

4.8 Single-thread overhead (over non-STM execution) added by the five STMs.
Lower is better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.9 Performance of Deuce, NOrec, IntelSTM, LarkTM-O, and LarkTM-S, nor-
malized to non-STM single-thread execution (also indicated with a hori-
zontal dashed line). The x-axis is the number of application threads. Higher
is better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.10 STM performance for 1–8 threads on an Intel Xeon platform. Otherwise
same as Figure 4.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.11 STM performance for 1–32 threads on an Intel Xeon platform. Otherwise
same as Figure 4.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Allowing unhandled relaxed accesses in transactions would lead to serial-
izability violations. The values in parentheses after each executed store and
load are the values written and read, respectively. . . . . . . . . . . . . . . 101

5.2 Performance of ST-based STM and RT-based STM. . . . . . . . . . . . . . 105

6.1 FastRCD-A avoids/tolerates some region conflicts: the read at (1) will
cause a region conflict, but by waiting until (2), it succeeds without a con-
sistency exception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xvi



6.2 Example executions comparing SI to RS and SC. Each thread executes just
one region. Shared variables x and y are initially 0. Values in parentheses
are the result of evaluating a statement’s right-hand side. . . . . . . . . . . 118

6.3 Examples showing how Snappy works. Dashed lines indicate where Snappy
increments its clock. The exact synchronization operations (e.g., acq(m)
versus rel(l)) are arbitrary and not pertinent to the examples. . . . . . . . . . 121

6.4 Runtime overhead added to unmodified Jikes RVM by FastRCD, Valor,
and our implementations of FastRCD-A, Valor-A, Snappy-P, and Snappy-I. 137

6.5 The comparison of performance and availability of different memory models.138

6.6 Execution time of the configurations that can incur waiting versus configu-
rations that do not incur waiting, for 1–32 application threads. The legend
applies to all graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.7 Runtime space overhead of FastRCD-A, Valor-A, Snappy-P, and Snappy-I. 140

xvii



Chapter 1: Introduction

Multicore processors have significant computation potential over traditional processors

with single core. However, multicore architectures are more complex and have different

programming models, development environments, and memory systems. This has driven

the need for writing programs that can run in parallel and creating tools that allow develop-

ers to easily and efficiently exploit the entire computation power of these parallel hardware.

Concurrent programming is a form of programming where multiple computations are ex-

ecuted in overlapping time periods, also called concurrently, instead of sequentially. Con-

current programs can execute in parallel for performance on multicore hardware. However,

it puts challenges to programmers to write correct and scalable concurrent programs and

has often required expertise.

This dissertation’s goal is to make concurrent programming more accessible to pro-

grammers through efficient runtime support. Section 1.1 provides introduction and back-

ground on problems and challenges in concurrent programming. Section 1.2 presents the

thesis statement. Section 1.3 introduces briefly the ways we propose to address the chal-

lenges. Section 1.4 describes the contributions and organization of this dissertation. Sec-

tion 1.5 introduces the meaning and impact of this dissertation.
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1.1 Concurrency in Shared-Memory Systems

Software must become more parallel in order to scale to hardware that provides more—

instead of faster—cores. In the past, to get a burst of performance improvement, one simply

needs to wait for the next generation of processor that has a faster clock speed than the pre-

vious generation. In the legendary article, “The Free Lunch Is Over: A Fundamental Turn

Toward Concurrency in Software”, Herb Sutter explains why free and regular performance

gains are no longer available, and future software is expected to be written more in a con-

current fashion in order to gain performance benefits [145].

Concurrency and multicore can put huge processing power at our disposal, which makes

it possible to create software with more responsiveness, less latency, and increased through-

put. However, concurrent programming on multicore is challenging because multicore

hardware has a shared-memory architecture, where all cores can make changes to the

shared memory, causing data races. A data race is generated when a pair of threads in

a shared-memory multi-threaded program access the same memory location without any

ordering enforced between the two accesses and at least one of them is a write. Data races

can cause correctness issues. Though some data races could be benign, many of them can

be harmful [22]. In extreme cases, data races can be disastrous [91, 146, 117]. To ad-

dress these correctness challenges, practioners and researchers have developed better tools

to help diagnose or eliminate data race related bugs, to help express parallelism better to

that programmers can reason programmers at higher level, etc. These tools face challenges

in terms of performance, scalability, and correctness:

• To rigorously analyze and debug a program with data races, researchers and practi-

tioners have built various runtime support systems, such as data race detector, which
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detects and reports data races; atomicity violation detector; record & replay, which

deterministically replay a program’s execution. Many of these systems require the

ordering information (or dependences) of cross-thread memory accesses (i.e., read–

write, write–read, and write–write dependences, which are unknown without explic-

itly tracking them). However, tracking cross-thread dependences is expensive, and

runtime support usually ends up adding an order of magnitude of overhead to the

original programs, which limits its usage.

• Programmers have traditionally used locks to restrict the ordering of memory ac-

cesses in order to eliminate data races, but it is extremely difficult to use locks to

write both fast and correct concurrent programs. An alternative is to use a differ-

ent programming model: transactional memory (TM), which simplifies the concep-

tual understanding of concurrent programs by treating multiple memory accesses as

a transaction and executing them atomically. Though an appealing idea, software

transactional memory suffers from significant performance penalties and weak se-

mantics in practice.

• Data races become most problematic when defining the semantics of underlying

memory models for multi-threaded programs. Existing memory models for concur-

rent programming languages are still quite incomplete. Mainstream languages such

as Java and C++ promise sequential consistency for data-race-free programs, but

when the program has data races, it becomes fuzzier on how to support reasonable

performance and semantics.

Overall, existing runtime support often adds high overhead or target at weak semantics.

Though one might try to solve these issues in programming languages, compilers, or even
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hardware, this dissertation tries to address these issues by using novel approaches to build

effective runtime support. Various kinds of runtime support have already been built to

check or enforce concurrency correctness properties such as atomicity, data-race freedom,

and determinism. Multi-threaded record & replay enables offline debugging and online

replication for concurrent programs [40, 65, 66, 158, 136, 148, 89]. Software transactional

memory systems built in runtime enforce atomicity of code regions, simplifying and im-

proving programmability of concurrent programming [73, 157, 124, 135, 76, 51, 80, 84,

104, 105, 31, 164]. Memory model enforcement provides reasonable programming seman-

tics toward programming ease at the cost of sacrificing performance [17].

Runtime support can affect many issues we have introduced, and they face similar chal-

lenge such as how to track memory dependences and maintain metadata efficiently, how to

provide atomicity or isolation at the instrumentation and/or code level, and what static and

dynamic analyses would help reduce instruction overhead and improve scalability.

1.1.1 Memory Dependence Tracking

Runtime support generally needs to capture (i.e., detect or control) dependences of

cross-thread memory accesses soundly, which entails using synchronized instrumentation

to ensure that each program access and its instrumentation execute together atomically

(Section 2.1). Furthermore, the instrumentation at potentially racy accesses, which are con-

flicting accesses to the same variable that are not ordered by synchronization operations,

must perform synchronization in order to ensure that thread interleavings are properly cap-

tured. This synchronized instrumentation slows execution substantially, often by about an

order of magnitude [58, 63, 64, 149].
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1.1.2 Concurrent Programming Models

Even with efficient runtime support, perhaps the biggest challenge of concurrent pro-

gramming is that it is hard to get it right and make it fast at the same time. This is because

the programming model, meaning the model in programmers’ mind that they use to rea-

son about their programs, is quite different from sequential programs. Furthermore, data

races make it difficult to reason about what it means to be correct. Below are some of the

programming models for dealing with data races, starting from the most traditional one.

Locking. Lock-based synchronization has been used traditionally to coordinate access to

shared-memory data. It works through the principle of mutual exclusion. A thread that

owns a lock can be sure that it is the only one to access the associated shared memory data.

Typically, a programmer will use one lock per data structure to keep the synchronization

simple. Unfortunately, such a coarse-grained locking can lead to serialization on high-

contention data structures and therefore severely affect scalability. Another solution is

to use fine-grained locking where more than one lock is associated with a data structure.

However, find-grained locking can also easily increase the complexity for operations that

access shared data, which can easily lead to problems such as deadlock, atomicity violation,

priority inversion, and high locking overhead.

Lock-free Programming. An alternative form to lock-based programming is lock-free

programming. Typically, it involves using atomic primitives provided by hardware such as

compare-and-swap (CAS) instruction directly to perform synchronization instead of using

them to build locking primitives and use those primitives to write concurrent programs.

5



While lock-free programming can avoid issues with locks such as deadlocks and prior-

ity inversion, it still can cause other problems such as livelock and starvation. And although

lock-free programming can lead to programs that are more scalable than lock-based pro-

grams, in practice concurrent lock-free programming is known as to be much harder for

programmers to understand and reason about than lock-based programming. Also, it is

difficult to compose two different operations into one atomic action with lock-free pro-

gramming.

Transactional Memory. Another alternative is transactional memory (TM) [79, 73]. In

the TM model, programs specify atomic regions of code, which the TM system executes

speculatively as transactions and ensures serializability of transactions. To ensure serial-

izability, the system detects conflicting transactions, rolls back their state, and re-executes

them if necessary.

TM is not a panacea. TM does not help if atomicity is specified incorrectly or too

conservatively; it does not help with specifying ordering constraints; and it does not handle

irrevocable operations such as I/O well. However, TM has significant potential to improve

productivity, reliability, and scalability by allowing programmers to specify atomicity with

the ease of coarse-grained locks while providing the scalability of fine-grained locks [115].

TM also enables systems features such as support for speculative optimizations [110].

Despite these appealing benefits, TM is not widely used because it is impractical. Ex-

isting software transactional memory (STM) are impractical because they provide weak

semantics and poor performance—or else strong semantics and even worse performance—

leading some researchers to question the viability of STM and call it a “research toy” [55,

37, 160]. STMs are slow largely because concurrency control (detecting and resolving
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conflicts) is expensive. Concurrency control adds synchronization (i.e., atomic instructions

and/or memory fences) even when transactions do not conflict. Furthermore, STMs that

provide strong atomicity (atomicity of transactions with respect to non-transactional ac-

cesses) slow the entire program, not just transactions. Hardware TM (HTM) is efficient,

but manufacturers have been reluctant to make dramatic changes to already-complex cache

coherence protocols, caches, and memories. Recent HTM support is limited, still relying

on efficient software TM (STM) support (Section 7.2).

1.1.3 Memory Consistency Models

Giving the asynchronous behavior of threads and the hierarchical structure of the mem-

ory system, one challenging problem in concurrent programming is: what should be the

value retrieved by a read of a shared memory location, i.e., is it the correct and expected

data value? In a sequential program, it can be taken for granted that a read operation on a

memory location will read the last value previously written at the same location. In sequen-

tial codes the concept of last write operation is precisely defined by program order, namely,

the order in which the read/write operations appear in the program. In a multicore shared-

memory system, read and write operations executed by different threads are not naturally

related by program order. What makes things even more complex is that in order to achieve

high performance, compilers and architectures for shared-memory programs perform opti-

mizations, such as eliminating and reordering memory accesses, assuming no dependences

with concurrent threads.

Though these optimizations may introduce unintended consequences, they are restricted

from reordering across synchronization operations (e.g., lock acquire and release), and

they allow programming languages and hardware to provide strong guarantees—sequential
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consistency (SC), as well as serializability of code regions bounded by synchronization

operations—for program executions that are free of data races. However, for executions

with data races, compiler and hardware optimizations lead to erroneous, unpredictable,

often undefined behavior [4, 21]. These guarantees are formalized in the DRF0 memory

consistency model [6], which ensures strong semantics for data-race-free executions only.

Java and C++ and other programming languages provide variants of DRF0 [23, 100]. As a

result, the state-of-the-art of memory models is still quite incomplete.

1.2 Thesis Statement

This dissertation seeks to address the aforementioned challenges arising in tracking

memory dependences, concurrent programming models, and memory models in shared-

memory systems, as outlined in Sections 1.1.1, 1.1.2, and 1.1.3 via designing and build-

ing efficient, scalable, and realiable runtime support that uses novel concurrency control

techniques and mechanisms. This dissertation provides evidence to support the following

statement:

Thesis statement: Using novel concurrency control techniques and mechanisms can

make runtime support for memory dependence tracking, programming models, and memory

models substantially more efficient, powerful, and scalable.

1.3 Our Approach

The trade-offs between performance, scalability, and correctness have created chal-

lenges for building effective runtime for parallelism. To address these challenges, we in-

troduce the following approaches:
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Relaxed dependence tracking. Tracking cross-thread dependences is the key component

for building many runtime support. However, it is also very expensive due to synchroniza-

tion costs. The dissertation explores the potential for reducing the runtime overhead of

tracking dependences by relaxing the requirement that runtime support must track all de-

pendences accurately—while preserving the runtime support’s guarantees and adhering to

the language’s semantics. We introduce relaxed dependence tracking (RT), which enables a

thread to continue executing past a memory access involved in a cross-thread dependence,

without accurately tracking the dependence. Our design of RT targets dependence tracking

based on so-called biased reader–writer locking [123, 82, 126, 149, 80, 129, 32, 28] (Sec-

tion 2.1.1), which avoids the costs of reacquiring a lock for non-conflicting accesses, but

incurs latency at conflicting accesses in order to perform coordination among conflicting

threads (Section 2.1.1.1). The high cost of coordination provides both a challenge and an

opportunity for RT to hide this latency, by relaxing the tracking of dependences at accesses

involved in dependences. Apart from designing RT, we also present two kinds of runtime

support that use RT in this dissertation: (1) an RT-based dependence recorder (Section 3.2)

and (2) an RT-based software transactional memory (STM) system (Section 5.1). Overall,

we demonstrate the potential for using novel mechanisms to address a key performance

bottleneck of runtime support for concurrent programs.

Programming ease with STM. TM gives the programmers the illusion of serial execu-

tion of transactions, and thus helps programmers reason about transaction execution serially

because no other transaction will perform any conflicting operation. To improve the pracat-

icality of TM, we introduce a novel STM called LarkTM that provides low instrumentation

costs. At the same time, its design naturally guarantees progress and strong semantics.
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Three key features distinguish LarkTM from existing STMs. First, it uses biased per-

object, reader–writer locks (Section 2.1), which a thread relinquishes only when needed

by another thread performing a conflicting access—making non-conflicting accesses fast

but requiring threads to coordinate when accesses conflict. Second, LarkTM detects and

resolves transactional conflicts (conflicts between transactions or between a transaction

and non-transactional access) when threads coordinate, enabling flexible conflict resolu-

tion that guarantees progress. Third, LarkTM provides strong atomicity semantics with low

overhead by acquiring its low-overhead locks at both transactional and non-transactional

accesses.

This basic approach, which we call LarkTM-O, adds low single-thread overhead and

scales well under low contention. But scalability suffers under higher contention due to

the high cost of threads coordinating. We design an adaptive version of LarkTM called

LarkTM-S that handles high-contention accesses, identified by profiling, using different

concurrency control mechanisms. We show that both LarkTM-O and LarkTM-S outper-

form existing high-performance STMs, and our work takes a concrete step toward making

concurrent programming easier.

Memory models with fail-stop semantics. A memory model specifies how memory be-

haves with respect to shared memory read and write operations. From the programmer’s

point of view, a memory model enables correct reasoning about the memory operations in a

program. From the system designer’s point of view, a memory model specifies acceptable

memory behaviors for the system. As such, the memory model affects many aspects of

concurrent programming, including the design of programming languages, compilers, and

the underlying hardware. Existing mainstream memory models have weak semantics, and

10



researchers have proposed memory consistency models that provide strong semantics for

all program executions (i.e., racy and non-racy executions) (more details in Section 2.3).

Existing strong memory models have limitations: they either incur high overhead or

require custom hardware, or they add relatively low overhead but suffers from high com-

plexity or poor availability (i.e., the ability to execute a program without being frequently

interrupted by exceptions caused by data races). To address these issues, we first extend

from prior approaches to avoid data race caused exceptions under a strong memory model.

We introduce waiting at program points that detect conflicts, in an effort to tolerate the

conflict and avoid raising an exception. An evaluation on benchmarked versions of large,

real Java programs shows that our approach improves availability substantially, compared

with their counterparts that do not wait at conflicts. However, the existing strong memory

model is a strong model that may inherently limit availability and/or cost and complexity,

whether implemented purely in software or with hardware support.

We thus introduce an alternative memory model called SIx based on snapshot isolation

of regions (SI). SIx ensures region isolation and provides significantly stronger guarantees

for racy executions than existing weak memory models. To provide SIx, we introduce an

approach called Snappy that correctly “tolerates” read–write conflicts by deferring handling

of the conflicts until region end. Our evaluation shows that Snappy can provide better avail-

ability than prior approaches, although it incurs high overhead in order to detect conflicts

precisely.

Our final insight is that Snappy can detect read–write conflicts imprecisely (false posi-

tives but no false negatives) without jeopardizing support for SIx. We leverage this idea to

introduce a new approach, called Snappy-I, that represents variables’ last reader informa-

tion imprecisely, enabling lower runtime costs and complexity than the other approaches.
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However, Snappy-I’s reduced precision gives up most of the availability gains that Snappy-

P provides over the approaches that provide RSx.

Overall, our exploration and evaluation of the design space exposes new directions

for supporting strong memory models with both strong semantics and high availability

while still allowing compilers and hardware to perform optimizations within code regions.

Furthermore, our design for enforcing SIx could enable simpler hardware designs, just as

Snappy-I yields a simpler software design than its competitors.

1.4 Dissertation Contributions

This dissertation studies concurrency control mechanisms in programming models, run-

time support, and memory consistency models. The following paragraphs describe the

organization and contributions of this dissertation.

Chapter 2 introduces the necessary definitions and concepts used throughout the disser-

tation.

Chapter 3 introduces how relaxed tracking (RT) improves the performance of runtime

support by hiding coordination latency. RT also solves problems that exist in LarkTM, and

in particular, the RT-based STM is an extension of LarkTM. The contribution of this part

includes:

• a novel dependence-tracking mechanism (relaxed dependence tracking) that improves

scalability by hiding synchronization costs;

• relaxed dependence tracking preserves both program semantics and runtime support

guarantees;
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• implementations of (i) relaxed dependence tracking and (ii) a RT-based recorder and

a RT-based STM; and

• an evaluation between relaxed dependence tracking and strict dependence tracking

to show that relaxed dependence tracking is able to improve performance of runtime

support, especially for applications with high-contention.

Chapter 4 introduces the details of the low-overhead, scalable software transactional

memory system with strong semantics. The contributions of this part include:

• a novel STM called LarkTM that (i) adds low overhead by making non-conflicting

accesses fast, and synchronization free, (ii) provides strong progress guarantees, and

(iii) supports strong semantics efficiently;

• a novel approach for integrating LarkTM’s concurrency control mechanism with an

existing STM concurrency control mechanism that has different tradeoffs, yielding

basic and adaptive STM versions (LarkTM-O and LarkTM-S);

• implementations of (i) LarkTM-O and LarkTM-S and (ii) two high-performance

STMs from prior work; and

• an evaluation on transactional benchmarks that shows that LarkTM-O and Lark-

TM-S achieve low overhead and good scalability, thus outperforming existing high-

performance STMs.

Chapter 5 introduces a novel STM design, called RT-based STM, that combine the fea-

tures of both LarkTM and RT in order to support a low-overhead and strongly atomic STM

with better scalability than the ST-based STM. Most STMs employ either entirely lazy or
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entirely eager concurrency control (e.g., [141, 49, 56, 164]). Some STMs combine lazy and

eager mechanisms, by using eager concurrency control for writes and lazy validation for

reads [124, 76]. RT-based STM combines eager and lazy concurrency control in a novel

way, using eager and lazy concurrency control for non-conflicting and conflicting accesses,

respectively.

Chapter 6 introduces novel and strong memory models that provide strong consistency

guarantees even for ill-synchronization programs with data races. Furthermore, to the best

of our knowledge, it is the first to consider the problem of availability for memory consis-

tency models that throw consistency exceptions. This part makes the following contribu-

tions:

• approaches for providing RSx that differ from prior work in that they have better

availability;

• a new memory consistency model called SIx that is weaker than RSx but still ensures

isolation of regions for racy executions;

• an approach that enforces SIx, and two designs with differing tradeoffs; and

• evaluations of availability, runtime performance, scalability, and other characteristics

of our approaches and existing approaches that provide RSx and SIx.

Chapter 7 presents related work for the work we have introduced. Finally, Chapter 8

concludes the dissertation and describes directions for future work.
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1.5 Meaning and Impact

Our techniques use novel insights to build efficient runtime support to get reliable

and scalable parallelism on shared-memory systems and are more efficient than prior ap-

proaches. Our dependence tracking technique effectively reduces the coordination latency

by relaxing the condition that dependence tracking needs to track dependences soundly.

Our transactional memory design and implementation rely on innovative ways to detect

and resolve conflicts between both transactional and transactional code and transactional

and non-transactional code. Our strong memory model work addresses the “availabil-

ity” issue of exception-based strong memory models and demonstrates techniques that can

significantly improve the availability of two strong memory models. Our implementation

developed in this dissertation is publicly available, and following up work has been built

upon on these implementations.

We believe that algorithms, tools, and systems developed in this dissertation will help

more people write efficient concurrent programs and take advantage of the power of mul-

ticore parallel hardware. It points to a future where (1) developers build more efficient

runtime support with relaxed dependence tracking; (2) more users embrace transactional

memory as a simple programming synchronization model for writing concurrent programs

because of its low-overhead, good scalability, and strong semantics; and (3) both users

and developers can more reliably reason about concurrent programs with a strong memory

model that has well-defined behaviors even when there are data races. Overall, as con-

current programming becomes easier and more efficient, more software can benefit from

ever-increasing parallel hardware.
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Chapter 2: Preliminaries and Background

This chapter presents the definitions, concepts, and base approaches that will be used

throughout the dissertation, which we have also published separately [163, 164, 162]. In-

dividual chapters have additional definitions and notations that are specific to that chapter.

Section 2.1 introduces the problem of tracking cross-thread memory dependences in

runtime support. Section 2.2 describes concepts related to transactional memory (TM).

Section 2.3 introduces problems and challenges related to memory consistency models.

2.1 Capturing Cross-Thread Dependences

Capturing cross-thread dependences is useful for checking or enforcing concurrency

runtime properties, such as atomicity, ordering, and determinism. More specifically, it

usually means one of the following two things:

Tracking cross-thread dependences. Examples of runtime support1 that need to soundly

(and sometimes precisely) track cross-thread dependences are data race detectors

(e.g., [63, 58]), atomicity checkers (e.g., [64, 16]), and dependence recorders for

deterministic record & replay (e.g., [89, 28]).

1Although data race detectors and atomicity checkers are often called “dynamic analyses,” here we clas-
sify them generally as “runtime support.”
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Controlling cross-thread dependences. Examples of runtime support that need to soundly

control cross-thread dependences are transactional memory (e.g., [79, 73]), sup-

port for stronger memory models (e.g., [114, 131]), and deterministic execution

(e.g., [112, 14]).

For data-race-free (DRF) executions, capturing cross-thread dependences requires only

tracking or controlling synchronization operations, since DRF0-based memory models in-

cluding the Java and C++ memory models guarantee atomicity of synchronization-free

regions for DRF executions [100, 23, 4, 6].

However, concurrent programs routinely have intentional and unintentional data races,

which languages and program analyses have failed to eliminate despite substantial effort

(e.g., [108, 63, 29, 89]). Thus, to capture cross-thread dependences, runtime support adds

instrumentation at each access that might be involved in a data race. (Even after applying

sound static data race detection as a filter, many accesses cannot be proven to be DRF [150,

39, 58, 89].)

Furthermore, to ensure that dependences are captured soundly, runtime support needs to

ensure that an access and its instrumentation execute together atomically, a property we call

instrumentation–access atomicity. To preserve instrumentation–access atomicity, runtime

support often synchronizes on a lock associated with each object2 (e.g., represented with

an extra word in the object’s header). The runtime support’s instrumentation acquires the

lock for reading and/or writing the object. An implementation typically relies on atomic

operations and memory fences, which introduce remote cache misses and serialize in-flight

instructions (e.g., [135, 63, 88, 64, 89]).

2The dissertation uses the term “object” to refer to any unit of shared memory.
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Therefore, capturing cross-thread dependences at almost every access to potential shared

memory location adds high synchronization overhead. Record & replay system, for exam-

ple, usually suffers from poor performance because of this high cost to capture dependences

during record in order to enforce that order during replay.

We note that some approaches have sidestepped these challenges but incur other limi-

tations. For example, record & replay can avoid tracking dependences by relying on repli-

cation and speculation, but its performance relies on extra available cores [148]. Some

analyses, notably data race detection, need not preserve instrumentation–access atomic-

ity, but still require instrumentation atomicity, which ends up incurring similarly high

costs [63, 103].

2.1.1 Biased Reader–Writer Locking

As tracking cross-thread dependences efficiently is the fundamental challenge in solv-

ing many concurrency issues (e.g., it is applicable to both record & replay, software trans-

actional memory, data race detection, and atomicity violation detection), my coauthors and

I have investigated how to track cross-thread dependences efficiently. Prior work introduces

so-called biased locks, in which each lock is “owned” by one thread, which can acquire the

lock without using an atomic operation [123, 82, 126, 28, 149, 80, 129, 32]. However, an-

other thread that wants to acquire a lock owned by another thread must coordinate with the

owner thread, in order to establish a roundtrip happens-before relationship with the owner

thread, which might otherwise continue to access the object that the lock guards without

performing synchronization. Biased locking offers low overhead for tracking cross-thread

dependences. In contrast, tracking dependences using traditional reader–writer locks often

slows down programs by 3–4X [35].
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In this dissertation, we describe a low-overhead design of biased locks called biased

reader–writer locks that is most closely based on prior work from my coauthors and me

called Octet [28]. We choose Octet since it supports read-shared pattern better than existing

work and it achieves lower overhead than most existing approaches. Furthermore, our

dependence recorder and software transactional memory are extended from biased reader–

writer locks. With biased reader–writer locking, each object’s lock can have any of the

following states:

• WrExT: write-exclusive for thread T.

• RdExT: read-exclusive for T.

• RdShc: read-shared for all threads, subject to a counter c that helps detect depen-

dences from the last write soundly [28].

When thread T allocates an object, the object’s lock is acquired in the WrExT state. Table 2.1

shows state transitions for locks for every possible initial state of an object and access. The

Same state rows correspond to cases where the lock is acquired in the needed state, and

no synchronization is needed. In Upgrading transitions, accesses allowed under the old

state are allowed under the new state, so coordination is unnecessary; an atomic operation

is needed in case two threads both try to change the state at the same time.

Fence transitions detect cases where a thread has not yet read an object in the RdShc

state since the last write to the object, ensuring detection of transitive happens-before rela-

tionship from the last write to the current read. Prior work provides more details on fence

transitions and the read-shared counter c [28].

Conflicting transitions handle cases where the thread(s) that currently hold an object’s

lock can perform accesses that would conflict with the pending access. The new thread
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Code Transition Old Program New Sync.
path(s) type state access state needed

Fast Same state
WrExT R/W by T Same
RdExT R by T Same None
RdShc R by T * Same

Upgrading
RdExT W by T WrExT Atomic op.
RdExT1 R by T2 RdShc

Fence RdShc R by T * RdShc Mem. fence
Fast &

Conflicting

WrExT1 W by T2 WrExT2

slow WrExT1 R by T2 RdExT2 Roundtrip
RdExT1 W by T2 WrExT2 coord.
RdShc W by T WrExT

Table 2.1: State transitions for biased reader–writer locks. * Acquiring a read lock on a
RdShc object by T triggers a fence transition if and only if per-thread counter T.rdShCount
< c. Fence transitions update T.rdShCount to c.

initiates a roundtrip coordination protocol to ensure that the other thread(s) relinquish the

lock safely. The new thread must wait for the other thread(s) to respond.

Figure 2.1 shows the instrumentation that the compiler adds at each program load and

store; the instrumentation “acquires” a write or read lock on the accessed object’s lock. If a

thread already owns the lock for an object, the instrumentation takes the synchronization-

free, write-free fast path. Otherwise, the instrumentation executes the slow path, which

changes the state and handles potential cross-thread dependences, as described next.

2.1.1.1 Conflicts Require Coordination

When a thread needs to acquire a read or write lock that it does not already own (e.g.,

at a read by T2 to an object whose lock is in WrExT1 state), it must coordinate with the

owner thread(s), so they can acknowledge the ownership transfer and cease unsynchronized

accesses to the object.
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1 if (o.state != WrExT ) {
2 slowPath(o); /∗ acquire o.state for write ∗/
3 }
4 o. f = ...; // program store to the object field o. f

5 if (o.state != WrExT &&
6 o.state != RdExT &&
7 (o.state != RdShc || T.rdShCount < c) ) {
8 slowPath(o); /∗ acquire o.state for read ∗/
9 }

10 ... = o. f ; // program load to the object field o. f

Figure 2.1: Pseudocode for biased reader–writer locking’s instrumentation fast path. T is
the executing thread.

Handling conflicting transitions with coordination. In a conflicting transition, suppose

a thread, called the requesting thread, reqT, wants to acquire an object’s lock held in a

conflicting state by other thread(s); each of these other thread(s) is a responding thread,

respT. If the object’s lock is in WrExrespT or RdExrespT state, then there is one responding

thread, respT. If the object’s lock is in RdSh state, then all other threads are responding

threads, and reqT coordinates with each responding thread separately. For simplicity of

exposition, we describe the case of a single responding thread respT.

The pseudocode in Figure 2.2 shows the slow path.3 First, reqT atomically changes

the state of the object’s lock to an intermediate state, RdExIntreqT or WrExIntreqT (depending on

whether a read or write lock is needed), with a CAS (line 17).4 The intermediate state sim-

plifies the protocol by allowing only one thread at a time to perform a conflicting transition

on an object’s lock. If there is another thread that has already changed the object to an

intermediate state, reqT waits for the other thread to finish coordination (lines 17–19).

3The pseudocode omits memory fences required by the implementation.
4The atomic operation CAS(addr, oldVal, newVal) attempts to update addr from oldVal to newVal, returning true

on success.
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11 slowPath(o) {
12 state = o.state ;
13 // Handle non−conflicting state transitions :
14 if (state == ...) { ...; return; }
15 // Coordination for conflicting transitions :
16 while (state == RdExInt∗ || state == WrExInt∗
17 || !CAS(&o.state, state, RdExIntT ) ) { // or WrExIntT

18 state = o.state ; // re-read state
19 }
20 coordinate(getOwner(state));
21 o.state = RdExT ; // or WrExT
22 }

23 coordinate(remoteT) {
24 response = sendCoordinationRequest(remoteT);
25 while (! response) {
26 response = status(remoteT);
27 }
28 }

Figure 2.2: Pseudocode for biased reader–writer locking’s slow path. T is the executing
thread.

After reqT successfully changes the object’s lock state to RdExIntreqT or WrExIntreqT, it co-

ordinates with respT (line 20) to ensure that reqT’s state change does not interfere with

respT’s instrumentation–access atomicity. respT participates in coordination only when it

is at a safe point: a program point that is definitely not in the middle of instrumentation or

its corresponding access—hence preserving instrumentation–access atomicity. Managed

language VMs already place safe points at periodic points in compiled code (e.g., method

entries and exits and loop back edges) for profiling and timely yielding for parallel garbage

collection. Blocking operations such as waiting to acquire a program lock or waiting for

I/O are also safe points.

If respT is at a blocking safe point, reqT makes an implicit request to respT (at line 24)

by atomically updating respT’s status, which respT will see when it leaves the blocking

state. The helper method sendCoordinationRequest() returns true if and only if it performs
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(a) (b)

Figure 2.3: The biased reader–writer locking coordination protocol. (a) Implicit request:
(1) respT accessed o previously. (2) respT enters a blocked state before performing some
blocking operation. (3) reqT wants to access o. It changes o’s lock’s state to RdExIntreqT

or WrExIntreqT. (4) reqT performs runtime-support-specific actions while keeping respT in a
“blocked and held” state. (5) respT finishes blocking but waits until hold(s) have been
removed. (6) reqT removes the hold on respT and changes o’s lock’s state to WrExreqT or
RdExreqT and proceeds to access o. (7) respT leaves the “blocked and held” state. (b) Ex-
plicit request: (1) respT accessed an object o previously. (2) reqT wants to access o. It
changes o’s lock to RdExIntreqT or WrExIntreqT, and enters a blocked state, waiting for respT’s re-
sponse. (3) respT reaches a safe point. (4) respT performs runtime-support-specific actions
and then responds. (5) respT leaves the safe point. (6) reqT sees the response. (7) reqT
changes o’s lock’s state to WrExreqT or RdExreqT and proceeds to access o.

an implicit request. Otherwise, reqT sends an explicit request to respT: reqT sends a request

to respT by adding a request to respT’s request queue, and then must wait (lines 25–27) for

respT to reach a safe point to respond. While reqT is performing coordination (lines 16–20,

including the body of coordinate), it is considered to be at a blocking safe point (mechanism

not shown in the pseudocode), to allow other threads to perform implicit requests with

reqT acting as a responding thread, thus avoiding deadlock. Figure 2.3 illustrates how

coordination works when using an implicit or an explicit request.
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Explicit protocol. If respT is not at a blocking operation, reqT performs the explicit pro-

tocol as shown in Figure 2.3(a). reqT requests a response from respT by adding itself to

respT’s request queue. respT handles the request at a safe point. respT performs conflict de-

tection and resolution while reqT is stopped, ensuring safety. Then respT responds to reqT.

Once reqT receives the response, it ensures that respT will “see” that the object’s lock’s

state has changed. During the explicit protocol, while reqT waits for a response, it enters

the blocked state so that it can act as a responding thread for other threads performing the

implicit protocol, thus avoiding deadlock.

Implicit protocol. If respT is performing a blocking operation, then reqT performs the

implicit protocol as shown in Figure 2.3(b). reqT atomically “places a hold” on respT by

putting it in a “blocked and held” state. If respT finishes its blocking operation, it will

wait for the hold to be released before continuing execution, allowing reqT to read and

potentially modify respT’s state safely. Multiple requesting threads can place a hold on

respT, so the hold state is actually a counter that indicates the number of holds placed

on respT. After reqT performs conflict detection and resolution, it removes the hold by

decrementing respT’s hold counter. Once respT’s hold counter drops to zero, it can proceed.

After either protocol completes, reqT changes the object’s lock’s state to the new state

(WrExreqT or RdExreqT)—unless reqT aborts, in which case the protocol reverts the lock to its

old state (Section 4.1.3). Finally, reqT changes the state to WrExreqT or RdExreqT (line 21) and

proceeds with its access to the field.

2.1.1.2 Coordination Cost

Coordination can slow programs substantially, even for programs that perform rela-

tively few conflicting accesses (e.g., 0.1–1% of accesses triggering coordination) [35].

24



The following table reports the average cost of coordination using explicit versus im-

plicit requests, compared with the cost of instrumentation that does not change the lock’s

state [163]:

Same state Implicit request Explicit request
CPU cycles 47 360 9,200

Coordination is substantially more expensive than a same-state check because coordination

requires several memory accesses, including atomic operations and memory fences. On

average, coordination using an explicit request is more than an order of magnitude more

costly than using an implicit request, since an explicit request incurs significant latency

waiting for roundtrip communication. Our work in Chapter 3 thus focuses on optimizing

coordination that uses explicit requests. Our STM in Chapter 4 addresses this issue by

using an adaptive approach to let objects that causes many conflicting accesses to use a

concurrency control mechanism that incurs less overhead to transfer lock ownership.

2.2 Transactional Programming

As Section 1.1 mentions, data races can have harmful or even disastrous effects. It is

therefore imperative to make a concurrent program data-race-free, and the program should

be written in a way that can be be verified with confidence during development and testing

phase that it does not contain data races. A common approach to prevent data races on

shared data is to use locks (or any kind of mutual exclusion). However, locks are hard

to use. Taking too few locks can compromise data integrity. Taking too many locks can

cause deadlocks or hampers concurrency. Programmers need to identify and remember the

connection between a lock and the data it protects, which can cause themselves or other

people to take the wrong locks or in wrong order. Locks make error recovery difficult as

it can leave the system in an inconsistent state. Worst of all, third party libraries written
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using locks cannot be easily composed, making them hard to retain scalability and avoid

deadlock and data races.

A different synchronization programming model is transactional memory (TM). TM

allows a thread to perform a sequence of instructions as if a single instruction, and guar-

antees that the execution of a sequence of transactons is serializable. Under this program-

ming model, the hazard of data races can be effectively reduced as it allow programmers to

move up from low level locks to more abstract concepts at a higher level. The underlying

TM system optimizes the actual concurrency of the execution by overlapping transactions

wherever it is possible without violating serializability. To highlight the advantages of TM,

Grossman makes an interesting analogy between TM and garbage collection that TM would

make writing concurrent programs easier as garbage collection made memory management

easier [70].

This section gives background on transactional memory and introduces basic concepts

that are used later in the text. Harris et al. provide a detailed overview of TM [75].

2.2.1 Design

Programming Model and Interface From a programmer’s point of view, the high-level

interface provided by TM is an atomic block. Programmers can use an atomic block to de-

note a sequence of operations that should be executed atomically, i.e., all operations inside

of the block appear to execute as a single atomic operation. For example, the following

code snippet is an atomic block that has two statements in it. These two statements are

executed as one indivisible operation.
atomic {

statement_1;
statement_2;

}
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Next, we introduce design components that are common for building TM.

Versioning. To enable transactions to execute speculatively, TM systems provide ver-

sioning of transactional stores to potentially shared memory. Lazy versioning buffers stored

memory values. In software transactional memory (STM) systems, this buffer is called a

redo log. The TM system writes the buffered values to memory if and when the transac-

tion commits. In STM systems, lazy versioning adds overhead because each load needs to

check the redo log for a recent store to the same location.

Eager versioning buffers old values of modified memory locations in an undo log. If

and when a transaction aborts, the TM system writes these old values back to memory.

Although eager versioning typically provides better performance, most STM systems do

not use it because it is incompatible with lazy conflict detection and resolution.

Read/write sets To support precise conflict detection, TMs record the addresses of shared

memory read and written during each transaction in read/write sets [107]. Hash-table-

based read/write sets provide precise conflict detection but slow transactional reads and

writes; Bloom filters [20] are faster but cause spurious conflicts due to imprecision [166].

Alternatively, each transaction can acquire read and write locks on shared memory and

release these locks when the transaction aborts or commits [135]. Another transaction or

non-transactional access conflicts if it tries to acquire a conflicting lock.

Conflict detection. Concurrency control consists of conflict detection and conflict reso-

lution. Conflict detection detects read–write and write–write conflicts between two over-

lapping transactions—or between a transaction and a non-transactional access in strongly

atomic STMs. Conflict detection can be eager (also called pessimistic) or lazy (also called
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optimistic). Eager conflict detection identifies conflicts as soon as a thread tries to perform

an access that conflicts with an access in other thread(s)’ in-progress transaction. Lazy

conflict detection occurs later, typically when a transaction tries to commit. Lazy con-

flict detection typically improves STM performance by reducing how much synchronized

instrumentation is needed, but it is incompatible with eager versioning.

Conflict resolution. Conflict resolution resolves detected conflicts, typically by aborting

one or more transactions. Aborting a transaction involves rolling back its speculative state

(in the case of eager versioning) and returning control to the start of the execution. Eager

(pessimistic) conflict resolution, which requires eager conflict detection, resolves conflicts

as soon as they are detected. Lazy (optimistic) conflict resolution resolves conflicts later,

typically when a transaction tries to commit. Eager versioning requires eager conflict reso-

lution: a transaction requires exclusive access to memory locations if it is going to directly

update them, or else a transaction can execute unserializable code indefinitely (so-called

“zombie” transactions).

Contention management. Contention management decides which transaction to abort

(or in some cases, delay) when a conflict is detected. There has been significant work

on contention management policies (e.g., [141]). Contention management is particularly

important for high-contention workloads, for which simple policies often perform poorly.

Overall, the design space for TM is large. In Chapter 4, we show how we reduce the

overhead of conflict detection and read/write sets in STM to get decent overhead and use

an adaptive approach to get decent scalability.
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2.2.2 Performance and Semantics

Existing STMs have been facing challenges mainly from performance and semantics.

Unlike hardware-supported TM (Section 7.2), STM slows programs significantly due to the

overhead introduced by supporting conflict detection and rollback. STM slows programs

further if it provides strong behavioral guarantees for data races between transactions and

non-transactional accesses.

Performance. Some researchers doubt whether STM is or can be made practical enough [160,

37, 55]. One way to measure STM’s success is whether an STM system can provide enough

parallelism to achieve a speed up over single-threaded execution—sometimes a difficult

feat because of STM’s huge single-threaded slowdown. The very fact that this measure

has been applied shows how much overhead existing STM systems add to single-threaded

performance. Overall, many researchers are pessimistic about whether STM can be made

efficient because of its performance [37, 160].

Recent high-performance STMs typically use lazy versioning and concurrency con-

trol [49, 56, 54, 55, 143, 113] (although SwissTM detects write–write conflicts eagerly [56,

55]). Lazy mechanisms can make contention management (i.e., choosing which transac-

tion to abort) to be more effective by deferring decisions until commit time [141]. Lazy

mechanisms can also provide lower synchronization costs—a key STM cost [160]—than

eager mechanisms: instead of requiring synchronization for every distinct accessed ob-

ject in a transaction, some lazy STMs use a global clock or global metadata to perform as

little as one synchronization operation for each transaction [49, 143, 113]. For example,

NOrec acquires a single global lock to perform buffered writes [49]. Trading per-access

costs for per-transaction costs is not well suited to providing strong atomicity, since each
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non-transactional access essentially executes as its own tiny transaction. By using lazy

mechanisms for reads, STM can avoid atomic operations at reads, although memory fences

are still needed (e.g., [49, 135]).

Some STMs have used eager concurrency control for writes, but lazy concurrency

control for reads (so-called “invisible reads”) in order to avoid synchronization costs at

reads [124, 135, 76, 128]. Notably, we implement and compare against an STM that we call

IntelSTM, Shpeisman et al.’s strongly atomic version [135] of McRT-STM [124] (Chap-

ter 4). IntelSTM and other mixed-mode STMs detect write–write and write–read conflicts

eagerly but detect read–write conflicts lazily by logging reads and validating them later.

Alternatively, other STMs, including LarkTM introduced in this dissertation, use eager

versioning and eager conflict detection and resolution. Eager STMs have the potential to

be faster than lazy STMs, e.g., lazy versioning adds extra overhead to stores (to buffer

and replay them) and loads (to look up stored values); even state-of-the-art lazy STMs add

overhead that slows execution by several times (e.g., [49]). Furthermore, eager STMs can

provide strong atomicity if they acquire locks on non-transactional accesses. However,

overcoming eager mechanisms’ high synchronization costs has proven challenging.

Transactional semantics. Most existing STMs provide weak atomicity semantics: they

detect and resolve conflicts between two transactions but not between a non-transactional

access and a transaction. Researchers generally agree that STMs must provide at least

single lock atomicity (SLA) semantics (or a relaxed variant such as asymmetric lock atom-

icity [104]): behavior should be the same as if each transaction were replaced with a critical

section acquiring a global lock. SLA (and its variants, for the most part) provide safety for
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so-called privatization and publication patterns, in which data-race-free accesses to an ob-

ject occur both in and out of transactions [135, 106, 1]. Weakly atomic STMs can provide

privatization safety using various techniques that can hurt scalability [160], such as by com-

mitting transactions in the same order that they started [104, 154, 142], or by committing

writes using a global lock [49].

A stronger memory model than SLA is strong atomicity (also called strong isolation),

which provides atomicity of transactions with respect to non-transactional accesses. Strong

atomicity guarantees not only privatization and publication safety, but it always executes

transactions atomically, even when there are data races between transactions and non-

transactional accesses. Some researchers have argued that strong atomicity is not worth

its substantial cost: strong atomicity is only stronger than SLA for programs that have

data races between transactions and non-transactional accesses [46, 48]. Still, program-

mers often fail to eliminate data races due to the challenge of using locks and shared

memory. Adve and Boehm have argued that stronger behavior guarantees are needed for

(non-transactional) racy programs [4]. Hardware TM typically provides strong atomicity,

making it an appealing memory model for an STM used in hybrid software–hardware TM.

Prior work reduces the cost of strongly atomic STM by using static and dynamic analy-

ses to eliminate instrumentation at non-transactional accesses. Shpeisman et al. use whole-

program static analysis and dynamic thread escape analysis to identify thread-local ac-

cesses that cannot conflict with a transaction and thus do not need expensive instrumen-

tation [135]. We call this work IntelSTM. IntelSTM is the strong atomicity version of

McRT-STM. For transactional accesses, IntelSTM handles them the same way as McRT-

STM does. IntelSTM requires each non-transactional write to acquire a lock before doing

updates, and requires each non-transactional read to check whether its version number
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has been changed before and after itself. This approach could add high instrumentation

overhead. IntelSTM therefore relies on whole program analysis to eliminate redundant in-

strumentation. While the authors report relatively low overheads, the evaluation uses the

notoriously simple SPECjvm98 benchmarks.5 It is unsurprising that whole-program static

analysis and dynamic thread escape analysis work well, especially since all but two of the

benchmarks are single-threaded.

Progress guarantees. STMs can suffer from livelock: two or more threads’ transactions

repeatedly cause each other to abort and retry. STMs that use lazy concurrency control for

both reads and writes can help to guarantee freedom from livelock. For example, NOrec

can always commit at least one transaction among a set of concurrent transactions [49].

(Lazy mechanisms provide two additional benefits in prior work. First, they help to provide

sandboxing guarantees for unsafe languages such as C and C++ [47]. In contrast, our

design targets safe languages and does not require sandboxing; Section 4.2. Second, for

high-contention workloads, lazy concurrency control helps make contention management,

i.e., choosing which conflicting transaction to abort, more effective by deferring decisions

until commit time [141].)

Although fully lazy STMs can help to guarantee livelock freedom, they cannot gener-

ally guarantee starvation freedom: not only will at least one thread’s transaction eventually

commit, but every thread’s transaction will eventually commit. STMs that use eager con-

currency control for both reads and writes, including our LarkTM, can guarantee not only

livelock freedom but also starvation freedom, as long as they provide support for aborting

5The more-realistic DaCapo Benchmarks [18] were probably not yet available when Shpeisman et al.
conducted their evaluation.
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either thread involved in a conflict (since this flexibility enables age-based contention man-

agement; Section 4.1.3) [71]. (An interesting related design is InvalSTM, which uses fully

lazy concurrency control and allows a thread to abort another thread’s transaction [69].)

In contrast, STMs such as IntelSTM that mix lazy and eager concurrency control strug-

gle to guarantee livelock freedom: since any transaction that fails read validation must

abort, all running transactions can repeatedly fail read validation and abort [71, 135].

2.3 Memory Consistency Models

This section introduces how existing memory models and how they can affect perfor-

mance and reliability of concurrent programming.

DRF0. Modern shared-memory languages such as Java and C++ provide variants of the

DFR0 memory model, introduced by Adve and Hill in 1990 [6, 23, 100]. DRF0 (and its

variants) provides a strong guarantee for well-synchronized, or data-race-free, executions:

serializability of synchronization-free regions (SFRs) [4, 98].6 An SFR is a dynamic se-

quence of executed instructions bounded by synchronization operations (e.g., lock acquires

and releases) with no intervening synchronization operations. An execution is region se-

rializable if it is equivalent to some serial execution of regions (i.e., some global order of

non-interleaved regions).

For executions with data races, DRF0 provides weak or no behavior guarantees [21,

22, 4, 24, 25]. C++’s memory model gives undefined semantics for data races [23]. The

Java memory model (JMM), on the other hand, provides well-defined but weak seman-

tics for racy executions, in an effort to preserve memory and type safety [100]. However,

6DRF0 also provides sequential consistency (SC) [86] for DRF0 executions. SFR serializability implies
SC.
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as researchers later discovered, the JMM precludes common Java virtual machine (JVM)

compiler optimizations [133]. The state of practice is that JVMs perform optimizations

that violate the JMM [25]. According to Adve and Boehm, “The inability to define rea-

sonable semantics for programs with data races is not just a theoretical shortcoming, but a

fundamental hole in the foundation of our languages and systems” [4].

Despite much effort by researchers and practitioners, data races are difficult to avoid,

detect, fix, and eliminate (e.g., [132, 29, 2, 109, 108, 151, 60, 42, 58, 161, 119, 111,

41, 61, 125, 149, 26, 63, 17, 81]). Data races often manifest only under certain environ-

ments, inputs, and thread interleavings, allowing them to go undetected [165, 146, 68, 97].

Data races thus occur unexpectedly in production systems, sometimes with severe conse-

quences [91, 146, 117]. They often indicate concurrency bugs such as atomicity, order, and

sequential consistency violations [97]. Thus, systems that execute with weak or undefined

semantics due to data races are not just a problem in theory but in practice.

In spite of the shortcomings of DRF0-based memory models, languages and systems

continue to use them in order to maximize performance. DRF0 allows compilers and hard-

ware to perform uninhibited intra-thread optimizations, as long as optimizations do not

cross synchronization operations. Any attempt to provide stronger consistency must con-

sider the impact of restricting optimizations.

Sequential consistency. Much work has focused on providing sequential consistency

(SC)7 as the memory consistency model [102, 138, 5, 4, 67, 92, 120, 93, 134, 144]. En-

forcing end-to-end SC (i.e., SC with respect to the original program) requires restricting

optimizations by both the compiler and hardware. (In contrast, providing SC in the com-

piler or hardware alone does not provide end-to-end SC.)

7Under SC, operations appear to interleave in some order that conforms to program order [86].
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Although SC is certainly stronger than the undefined or weak behaviors that DRF0

provides for racy executions, it is not a particularly strong model. Programmers tend to

think in terms of operations that are larger than individual memory accesses, expecting a

multi-access operation such as x++ or buffer[index++] = 42 to execute atomically (regardless

of the actual memory model). Adve and Boehm argue that “programmers do not reason

about correctness of parallel code in terms of interleavings of individual memory accesses”

and that SC “does not prevent common sources of concurrency bugs . . . ” [4].

Region serializability. An alternative to DRF0 and SC is memory consistency based on

region serializability. Notably, region serializability of SFRs, which we abbreviate as RS,

extends the same guarantees to all executions that DRF0 provides for race-free executions

only. Under RS, an execution is equivalent to some execution in which SFRs (executed

sequences of instructions that do not contain synchronization operations) appear to execute

serially, i.e., without interruption by other threads [98, 17, 114]. RS is appealing because

(1) it provides the same strong guarantees for all executions that DRF0 already provides

but only for race-free executions, and (2) it does not restrict compiler and hardware opti-

mizations, which already respect synchronization operations as region boundaries.

However, enforcing RS seems inherently problematic due to supporting unbounded

speculative execution (Section 7.3). Researchers have thus introduced a memory consis-

tency model that we call RSx that treats data races as errors, potentially throwing a consis-

tency exception for a data race, but otherwise ensuring RS [98, 17]. (Furthermore, other

approaches treat some or all data races as errors [58, 156, 130].)
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RSx either (1) ensures RS or (2) generates a consistency exception—but only if there

exists a data race. RSx allows for some flexibility: an approach does not need to incur the

cost and complexity of soundly and precisely detecting all data races nor all RS violations.

Under RSx, data races are errors, just like buffer overflows and other memory errors

in memory- and type-safe languages such as Java. In contrast, under DRF0, data races

lead to undefined semantics, like buffer overflows in unsafe languages such as C++. In an

RSx-by-default world, programmers will need to identify and eliminate most or all data

races that cause consistency exceptions during testing, just as programmers now debug in

response to exceptions from buffer overflows and other memory errors in safe languages.

Nonetheless, even well-tested software may contain unknown data races that may manifest

only under certain production environments, inputs, or thread interleavings [146, 117, 91],

leading to unexpected consistency exceptions. Unexpected exceptions hurt the availability

(this dissertation’s term for exception freedom) of production systems.

2.4 Implementation and Methodology

This section describes implementations and experimental methodology that are com-

mon for all the work introduced in this dissertation.

2.4.1 Implementations

All implementations described in this dissertation are done in Jikes RVM, a high-

performance virtual machine [10]. As of October 2015, Jikes RVM performs competi-

tively with OpenJDK on DaCapo benchmark suites: If we exclude an outlier benchmark

pjbb2005, Jikes RVM is 20% slower (AMD) and 7% faster (Intel) than OpenJDK [17].

Jikes RVM therefore performs competitively with modern commercial JVMs and our per-

formance measurements are relative to a good baseline.
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All our implementations either are or will be made publicly available on the Jikes RVM

Research Archive:

• Four STMs: LarkTM-O, LarkTM-S, NOrec [49], and IntelSTM [135] as a patch

against Jikes RVM 3.1.3 (Chapter 4).

• Relaxed dependence tracking (RT), RT-based recorder and RT-based STM, as a patch

against Jikes RVM 3.1.3 (Chapter 3). Our RT implementation builds on our publicly

available strict dependence tracking (ST) implementation called Octet [28]. Our RT-

based recorder builds on the publicly available ST-based recorder [28, 27]. Our RT-

based STM (Chapter 5) builds on our publicly available ST-based STM called Lark-

TM [164]. Our implementations reuse features of the ST-based implementations as

much as possible.

• Snappy will be available once the work has been published (Chapter 6). The source

code will be a patch against Jikes RVM 3.1.3 and includes FastRCD-A, Valor-A,

Snappy-P, and Snappy-I. Our FastRCD-A and Valor-A implementations build on our

publicly available FastRCD and Valor [17]. We remove redundant memory accesses

in FastRCD’s read instrumentation without affecting its functionality. Our Snappy-P

and Snappy-I implementations instrument the exactly same memory accesses as Fast-

RCD. All four implementations demarcate synchronization-free-region in the same

way.

2.4.2 Methodology

Jikes RVM uses just-in-time (JIT) compilation and automatic memory management.

This section describes how our implementations use these features and common method-

ology in our experiments.
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Compilers. Jikes RVM has two compilers to produce machine code for each application

method at runtime. The first one is a baseline compiler that takes Java bytecode and gen-

erates machine code when the application first executes a method. The second one is a

Just-in-Time (JIT) compiler that recompile the bytecode of a method to machine code on

the fly at runtime. Jikes RVM’s adaptive system uses timer-based sampling to identify hot

methods. When a method executes many times and becomes hot, the VM launches the

JIT compiler to recompile the method at successively higher optimization levels. The JIT

compiler uses intermediate representation (IR) and performs optimizations such as inlin-

ing, constant propagation, and register allocation. The implementations in this dissertation

modify both compilers to add instrumentation to application code.

Memory Management. Jikes RVM supports a variety of garbage collectors (GC). By

default, we use the high-performance generational Immix GC [19]. It allocates new objects

into a nursery space and then periodically moves surviving objects to an Immix mature

space. The immix space uses mark-sweep collection and minimizes fragmentation to max-

imize freed blocks. Furthermore, heap size can affect garbage collection frequency and

workload. We let GC decide and adjust the size of the heap automatically for each bench-

mark.

Execution. To account for run-to-run variability due to the JVM’s nondeterministic com-

pilation and execution, each of our performance results executes 25 trials. We plot the

median, to minimize the effects of possible machine noise. We also show the mean, as the

center of 95% confidence intervals.
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Benchmarks. To evaluate overhead and scalability of STMs, we use the transactional

STAMP benchmarks, which were designed to be more representative of real-world behav-

ior and more inclusive of diverse execution scenarios than microbenchmarks [36], and have

continued to be used in more recent STM work (e.g., [55, 49]). We use a version of STAMP

ported to Java by the Programming Languages Research Group at UC Irvine [51] and the

Deuce authors [84]. We omit a few ported STAMP benchmarks because they run incor-

rectly, even when running single-threaded without STM on a commercial JVM. Six bench-

marks run correctly, including two with both low- and high-contention workloads, for a

total of eight benchmarks. Our experiments run the large workload size for all benchmarks

except three. We run kmeans with twice the workload size of the standard large size, since

otherwise load balancing issues thwart scaling significantly. labyrinth3d and ssca2 run out

of memory on our implementation for the large workload size, so we choose parameters

so the workload size is between the medium and large workloads. Although STAMP was

originally written with hand-instrumented transactional loads and stores, our experiments

do not use this information and instead instrument all transactional and non-transactional

accesses, except for statically redundant barriers (Section 4.4) and a few known immutable

types such as String.

To evaluate other implementations that target at lock-based programming model, we

use the following benchmarks:

• Benchmarked versions of large, real programs: the DaCapo benchmarks, versions

2006-10-MR2 and 9.12-bach (2009) [18], excluding single-threaded programs and

programs that Jikes RVM cannot execute, distinguished with suffixes 6 and 9.
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• Business logic benchmarks: fixed-workload versions of SPECjbb2000 and SPEC-

jbb2005.8

• Medium-sized benchmarks that stress various multi-threaded execution scenarios:

the Java Grande benchmarks (excluding microbenchmarks) [139].

Platform. Experiments execute on an AMD Opteron 6272 platform and an Intel Xeon

E5-4620 platform:

• Experiments for LarkTM-O, LarkTM-S, NOrec, and IntelSTM execute on an AMD

Opteron 6272 system running RedHat Enterprise Linux 6.7, kernel 2.6.32. The sys-

tem has eight 8-core processors (64 cores in total) that communicate via a NUMA

interconnect. We have also repeated these performance experiments on a system with

four Intel Xeon E5-4620 8-core processors (32 cores total). This platform supports

NUMA, but we disable it for greater contrast with the AMD platform.

• Experiments for relaxed dependence tracking, RT-based recorder, RT-based STM,

FastRCD-A, Valor-A, Snappy-P, Snappy-I execute on the Intel Xeon E5-4620 sys-

tem.

8http://www.spec.org/jbb200{0,5}, http://users.cecs.anu.edu.au/~steveb/research/
research-infrastructure/pjbb2005
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Chapter 3: Relaxed Dependence Tracking

This chapter investigates the potential for runtime support to hide latency introduced

by dependence tracking, by tracking dependences in a relaxed way—meaning that not all

dependences are tracked accurately. The key challenge in relaxing dependence tracking is

to preserve both the program’s semantics and the runtime support’s guarantees. We present

an approach called relaxed dependence tracking (RT) (Section 3.1) and demonstrate its

potential by building two cases of RT-based runtime support (Section 3.2 and Section 5.1 9).

Our evaluation shows that RT hides much of the latency incurred by dependence tracking,

although RT-based runtime support incurs costs and complexity in order to handle relaxed

dependence information (Section 3.3).

3.1 Tracking Cross-Thread Dependences under Relaxed Conditions

Section 2.1 described the approach for tracking dependences based on biased reader–

writer locking. That approach tracks each cross-thread dependence soundly (i.e., does not

miss any dependences), by waiting to acquire a read or write lock before proceeding with

each access. In this chapter, we refer to that approach as strict dependence tracking (ST).

9We introduce RT-based STM after introducing the STM it builts upon in Chapter 4.
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In contrast, this chapter introduces our novel approach called relaxed dependence track-

ing (RT), which relaxes the instrumentation–access atomicity guarantee provided by ST,10

allowing threads to continue executing program code without acquiring a dependence track-

ing lock. The challenge in making RT work lies in preserving both program semantics and

runtime-support-specific guarantees.

RT consists of two components: A relaxed coordination protocol (Section 3.1.1) and

support for performing relaxed accesses that overlap with coordination (Section 3.1.2).

3.1.1 The Relaxed Coordination Protocol

In RT, a requesting thread does not wait for responses after sending requests. Thus, a

requesting thread receives responses at some later point in its execution, and a requesting

thread may have outstanding requests for multiple objects simultaneously. To support this

functionality, the relaxed coordination protocol differs from the strict coordination protocol

in the following ways:

• A responding thread can respond either implicitly or explicitly, depending on whether

the requesting thread is blocking or actively executing program code.

• To support explicit responses, relaxed coordination extends strict coordination’s re-

quest queue to a request-and-response queue that holds both requests and responses.

At safe points, threads can receive not only requests, but also responses.

Figure 3.1 shows how the relaxed coordination protocol works. reqT sends an explicit

request to respT and continues execution. When respT reaches a safe point, it responds to

reqT either explicitly or implicitly. If reqT is blocked, respT responds implicitly, as shown

10Although our design of RT targets coordination latency introduced by biased reader–writer locking, it
should be possible to adapt RT to other dependence-tracking mechanisms.
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(a) (b)

Figure 3.1: The relaxed coordination protocol. (a) Implicit response: (1) respT accessed
o at some prior time. (2) reqT wants to access o. It changes o’s lock to RdExIntreqT or WrExIntreqT.
(3) reqT proceeds without waiting to receive respT’s response. (4) respT reaches a safe point
(SP) and (5) sees reqT in a blocking state, so respT puts reqT in a “blocked and held” state.
(6) respT changes o’s lock’s state to WrExreqT or RdExreqT. (7) respT removes the hold on
reqT, then leaves the safe point. (8) reqT finishes blocking, then waits until all holds have
been removed. (b) Explicit response: (1) respT accessed o at some prior time. (2) reqT
wants to access o. It changes o’s lock to RdExIntreqT or WrExIntreqT. (3) reqT proceeds without
waiting to receive respT’s response. (4) respT reaches a safe point (SP), (5) sends an explicit
response, and (6) leaves the safe point. (7) reqT reaches a safe point and sees the response.
reqT changes o’s lock’s state to WrExreqT or RdExreqT.

in Figure 3.1, by first putting reqT into a “blocked and held” state (so that reqT does not

leave the blocking state unless it is “unheld”) and then changing the object’s lock’s state.

Finally, the responding thread removes its hold on the requesting thread. Otherwise (reqT is

not blocked), respT responds explicitly, as Figure 3.1 shows, by adding a response to reqT’s

queue. Once reqT reaches a safe point, it changes the object’s lock’s state.

Although Figure 3.1 shows a single requesting thread sending requests to respT, multi-

ple requesting threads can send requests to respT before respT reaches a safe point. When

respT reaches a safe point, it responds to each queued request in turn.
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For a conflicting transition from WrExrespT or RdExrespT to WrExreqT or RdExreqT, reqT re-

ceives just one response. In contrast, for a transition from RdSh to WrExreqT, reqT may need

to wait for multiple responses. The protocol maintains a counter of unreceived responses

for each object lock in this situation, which responding and requesting threads decrement

as they respond implicitly and receive explicit responses, respectively.

Figures 3.2 and 3.3 show the pseudocode for RT’s load and store instrumentation. RT

uses the same fast path as ST (Section 2.1.1), except that it skips the original program access

if it takes the slow path, delegating the access to the slow path instead. For both loads and

stores, ST initiates coordination by changing the state of the object to WrExIntT (line 14 in

Figure 3.2) or RdExIntT (line 17 in Figure 3.3) and sending a request to the responding thread

(line 15 in Figure 3.2 and line 18 in Figure 3.3). After sending the coordination request,

T continues execution immediately, subject to constraints about accessing objects that are

not yet locked in the needed state.

Since T does not wait for responses, it instead receives responses at safe points (not

shown). A responding thread responds either implicitly or explicitly, depending on whether

or not the requesting thread is at blocking safe point. Before T receives a response, the

conflicting object o stays in the WrExIntT or RdExIntT state, since both T and other threads might

perform accesses to it. If the access is a store, and o is in RdExIntT state, RT upgrades the

state to WrExIntT (line 10 in Figure 3.2), in order to track relaxed stores, introduced shortly. If

o is locked in WrExInt∗ but not WrExIntT (i.e., other threads performing relaxed stores to o), the

access needs to wait until the state has changed to a non-intermediate state. If the access is

a load, as long as o is in WrExInt∗ or RdExInt∗ , the access can avoid performing coordination.

We note that RT’s relaxed coordination protocol differs from the strict coordination

protocol for explicit requests only. In RT, when coordination uses an implicit request, it
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1 if (o.state != WrExT ) {
2 writeSlowPath(o, &o.f, newValue);
3 } else {
4 o. f = newValue; // original program store
5 }

6 writeSlowPath(o, addr, newValue) {
7 state = o.state ;
8 // Handle non−conflicting state transitions :
9 if (state == ...) { ...; ∗addr = newValue; return; }

10 if (state == RdExIntT ) { /∗ upgrading trans. to WrExIntT ∗/ }
11 boolean relaxed = true;
12 while (state != WrExIntT ) {
13 if (state != WrExInt∗ &&
14 CAS(&o.state, state, WrExIntT ) ) {
15 relaxed = !sendCoordinationRequest(getOwner(state));
16 break;
17 }
18 state = o.state ; // re−read state
19 }
20 if (relaxed) {
21 storeBufferSet(addr, newValue); // defer the store
22 } else {
23 o.state = WrExT ;
24 ∗addr = newValue;
25 }
26 }

Figure 3.2: The fast and slow paths of RT’s instrumentation at stores.

follows the same steps as strict coordination. Interestingly, the relaxed coordination pro-

tocol handles requests and responses in a largely symmetric way. Requests and responses

each involve sending a message to another thread, either implicitly if the receiving thread

is at a blocking safe point; or else explicitly via a queue that the receiving thread processes

at its next safe point.
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1 if (o.state != WrExT &&
2 o.state != RdExT &&
3 (o.state != RdShc || T.rdShCount < c) )
4 ... = readSlowPath(o, &o.f); {
5 } else {
6 ... = o. f ; // original program load
7 }

8 readSlowPath(o, addr) {
9 state = o.state ;

10 // Handle non−conflicting state transitions :
11 if (state == ...) { ...; return ∗addr; }
12 if (state == WrExIntT && storeBufferContains(addr))
13 return storeBufferGet(addr);
14 boolean relaxed = true;
15 while (state != WrExInt∗ && state != RdExInt∗ ) {
16 // Coordination for conflicting transition :
17 if (CAS(&o.state, state, RdExIntT ) ) {
18 relaxed = !sendCoordinateRequest(getOwner(state));
19 break;
20 }
21 state = o.state ; // re-read state
22 }
23 value = ∗addr;
24 if (relaxed)
25 logLoadedValue(addr, value);
26 else
27 o.state = RdExT ;
28 return value;
29 }

Figure 3.3: The fast and slow paths of RT’s instrumentation at loads.

3.1.2 Handling Relaxed Accesses

A thread T performs relaxed accesses11 to objects whose locks are not (yet) in the

needed state. RT defers a relaxed store until it receives coordination response(s) for the

object’s lock. As we explain, relaxed stores still conform to the language memory model

as long as they are not deferred past synchronization release operations. RT performs a

11This dissertation’s relaxed accesses should not be confused with memory_order_relaxed operations on
atomic variables in C/C++ [23].
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relaxed load by loading from an object before receiving coordination response(s) for the

object’s lock. Relaxed loads do not affect program correctness, but they can affect runtime

support’s guarantees.

Relaxed stores. A thread T performs a relaxed store by deferring the store, buffering the

location (address) and new value in T’s store buffer (line 21 in Figure 3.2). The intuition

behind deferring stores is that another thread may be simultaneously (racily) accessing the

same location, so allowing the store to be performed could cause a cross-thread dependence

to be missed. Once T gets exclusive ownership of the conflicting object o (by changing o’s

lock’s state to WrExT), it performs all deferred stores to o using the store buffer.

For simplicity, our current design limits relaxed stores by T to objects locked in WrExIntT

state. (We have found that supporting relaxed stores to other lock states provides little

benefit.)

Deferring program stores changes program behavior since other threads can read out-

of-date values from the affected memory locations. However, language memory models,

including for Java and C++, allow substantial reordering of operations, except across syn-

chronization operations [4, 23, 100, 6], thus permitting significant deferring of stores. To

conform to the memory model and preserve program semantics, the key constraint is that

stores cannot be deferred past program synchronization release operations (e.g., lock re-

lease, thread fork, and Java volatile or C++ atomic writes).

On the other hand, why would it be incorrect to allow stores to be deferred past syn-

chronization release operations? Figure 3.4 shows an example. While object o’s lock is

intially in WrExT1, T1 sets o.f’s value to v1. Next, T2 attempts to store v2 to o.f. T2 changes

o’s lock to WrExIntT2, sends an coordination request to T1, and defers the store in its store
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Figure 3.4: Relaxed stores cannot be deferred past synchronization points.

buffer, avoiding conflicting with any accesses by T1, which still “owns” o. T2 must commit

its buffered store before executing unlock(l). Otherwise, T1’s load after its lock(l) operation

might read the old value v1, violating semantics, since communicating synchronization

guarantees visibility [23, 100].

Relaxed loads. At a relaxed load by T to an object o, T first checks whether the same

location has already been buffered in T’s store buffer (line 12 in Figure 3.3). (T only needs

to check its store buffer if o’s lock is in WrExIntT state.) If so, T uses the store buffer’s value

(line 13 in Figure 3.3) instead of loading from memory. Otherwise, T performs the load

directly from memory (line 23 in Figure 3.3). A relaxed load thus does not affect pro-

gram semantics: the execution still conforms to the memory model (since performing the

load would be permitted in the original program). However, a relaxed load could certainly

impact the correctness of runtime support that needs to detect or control cross-thread depen-

dences. In particular, another thread might be simultaneously (racily) writing to the same
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memory location, compromising the ability of runtime support to capture the write–read or

read–write dependence.

RT thus handles each relaxed load by logging the loaded value in a runtime-support-

specific way (line 25 in Figure 3.3). The intuition is that logging the value enables runtime

support to handle all values resulting from potentially untracked cross-thread dependences.

For example, our RT-based dependence recorder logs the value in order to assist replay

(Section 3.2), and our RT-based STM logs the value in order to validate it later (Sec-

tion 5.1).

3.1.3 Optimizations at Synchronization Release Operations

As presented so far, a thread must wait at each program synchronization release op-

eration for every outstanding deferred relaxed store (i.e., every entry in its store buffer).

This restriction limits RT’s ability to overlap coordination with program execution; we

have found that threads routinely end a critical section (by releasing a lock) shortly after

performing a store to a shared variable. Here we present two optimizations for avoiding

waiting at release operations. As our evaluation shows, these optimizations have perfor-

mance benefits but also drawbacks that lead to mixed performance relative to the base RT

design described so far.

Defer release operations. Instead of waiting at a release operation for outstanding de-

ferred stores, a thread can defer the release operation. Our design currently supports de-

ferring lock release operations. To defer a lock release, a thread continues to hold the lock

past the release operation; the thread records the lock into a per-thread lock buffer. It re-

leases the lock only when all responses have been received for deferred relaxed stores that

executed before the lock release (according to bookkeeping).
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This behavior naturally preserves program semantics because a thread continues to hold

a lock while it waits for responses for relaxed stores, effectively expanding the lock’s crit-

ical section—making other threads wait and thus increasing lock contention. Effectively

enlarging critical sections can serendipitously avoid some erroneous behaviors, which may

be desirable or undesirable, depending on the goals and setting.

Avoid stalling at release. An alternate approach is to permit a thread T to continue execu-

tion at a release operation—as long as no other thread may access the object(s) that are the

targets of deferred stores. A straightforward way to provide this restriction is to disallow

all accesses by other threads to objects locked in WrExIntT state. (Note that, in contrast, the

base RT design allows loads, but not stores, to an object in any intermediate state.)

This optimization allows threads to continue without waiting at release operations, but

it incurs other costs because a thread T2 must wait to access an object locked in WrExIntT1

state.

3.2 Recording Dependences

This section shows how to use RT to optimize multi-threaded record & replay, which

enables deterministically replaying a recorded execution. Record & replay enables both of-

fline debugging [89, 148] and system features such as replication-based fault tolerance [30,

90]. Recording dependences efficiently is the key challenge of multi-threaded record &

replay. However, recording dependences is expensive due to the high cost of tracking de-

pendences between all potentially shared memory accesses [89, 88].
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3.2.1 ST-Based Dependence Recorder

Prior work builds a dependence recorder, which we call the ST-based recorder, on

top of biased reader–writer locks that use strict dependence tracking [28]. It records all

happens-before edges [87] at transitions between WrEx, RdEx, and RdSh states. It records

each happens-before edge by recording its source and sink, each of which is recorded as a

dynamic program location (DPL), which consists of a static program location (e.g., method

and line number) and a per-thread counter incremented at every method entry, method exit,

and loop back edge. Another execution can replay these happens-before edges determinis-

tically by making the sink waits for its corresponding source to be reached.

3.2.2 RT-Based Dependence Recorder

Our RT-based dependence recorder extends the ST-based recorder by using relaxed,

instead of strict, dependence tracking. The RT-based recorder allows relaxed loads and

stores to objects that are not yet “owned” by the current thread. Given this behavior, how

is it possible to record dependences accurately and thus guarantee deterministic replay?

We refer back to Figure 3.1 on page 43 for examples of happens-before edges recorded

by the RT-based recorder. For an implicit response, at point #6, respT records the source

of the edge. At point #8, reqT records the edge’s sink. For an explicit response, respT

records the source at point #5, and reqT records the sink at point #7. Note that if the

replayed execution replays these same edges, it will not necessarily reproduce the same

behavior because the relaxed accesses at point #3 (and other relaxed accesses potentially

overlapping with coordination) are not ordered by the edge.
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The key to addressing this problem is to record enough information about loads and

stores that are not well-ordered by happens-before edges, such that they can be replayed

faithfully.

Handling stores. To handle deferred stores to objects locked in WrExIntreqT state, the RT-

based recorder uses the following strategy: reqT records an event for each deferred store,

to indicate that the store should also be deferred during replay. When stores are performed

from the store buffer at a safe point, reqT records an event indicating that deferred stores

should be performed at that safe point. By referring to indices of entries in the store buffer,

the recorded event unambiguously indicates which stores should be performed from the

store buffer at each safe point during replay.

Handling loads. When a requesting thread reqT loads a value from an object whose lock

is in an intermediate state, the responding thread may be simultaneously writing the ob-

ject. Thus, it does not seem possible to record a happens-before edge that will yield the

same value for the load. Instead, reqT records the value returned by the load (at point #3

in both Figure 3.1 and Figure 3.1). A replayed execution can reuse this value to ensure

determinism.

During the recorded execution, subsequent loads to the same memory location record

the (possibly updated) loaded value. Whenever reqT handles a load by getting the value

from its store buffer (Section 3.1.2), it still records the value in its log, so a replayed execu-

tion can load the correct value without needing to know which loads should read from the

store buffer.
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Value determinism. Our RT-based recorder provides value determinism, i.e., each load

reads the same value during replay as during record. If a load was relaxed during record, it

will load from the log during replay. Notably, this value will match the value of the variable

in memory (i.e., the value that would normally have been loaded from memory) unless there

is a data race. Other efficient record & replay techniques, such as DoublePlay [148] and

Respec [90], provide output determinism, which is weaker than value determinism but is

still useful for both offline replay (e.g., replaying buggy executions) and online replay (e.g.,

replicating a multi-threaded process).

3.3 Evaluation

This section first evaluates the performance and runtime characteristics of relaxed de-

pendence tracking (RT) without runtime support, compared with strict dependence tracking

(ST). It then evaluates a case study of runtime support built upon RT, compared with its

ST-based approach.

3.3.1 Evaluating Relaxed Dependence Tracking

This section evaluates RT and compares it with ST, by executing instrumentation that

tracks dependences but provides no runtime support on top of it.

Measuring the problem. We first measure the cost of ST, as well as the maximum ben-

efit that can be obtained from optimizations. Figure 3.5 shows runtime overhead of three

configurations over an unmodified JVM. Each configuration instruments accesses to track

dependences using biased reader–writer locks. The first configuration, ST, uses strict track-

ing (as described in Section 2.1.1.1) and adds 139% overhead on average. This overhead

varies considerably across the evaluated programs; the overhead for each program is closely
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Figure 3.5: Runtime overhead added to an unmodified JVM by capturing dependences us-
ing (1) ST, compared with (2) an ideal, unsound configuration that eliminates coordination
latency and (3) RT.

linked to the fraction of accesses that trigger coordination using explicit requests (as shown

later in this section), which is the main cost of tracking dependences.

Ideal is an unsound configuration that eliminates most of the cost of strict coordina-

tion. In this configuration, after a thread sends an explicit request, it continues execution

without waiting for any response. Responding threads in turn ignore requests. This con-

figuration attempts to estimate an upper bound on the performance that RT might be able

to provide. On average, Ideal adds 82% overhead—a little more than half of the overhead

added by the sound configuration. The remaining costs are due to fast-path instrumentation

at every access, as well as other transitions, including conflicting transitions that trigger

coordination using implicit requests. In addition, although requesting threads do not wait

for responses and responding threads ignore requests, Ideal incurs remote cache misses by

sending explicit requests.
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RT’s effectiveness at hiding coordination costs. Figure 3.5’s last configuration, RT (no

stall at unlock), uses relaxed dependence tracking with the second optimization from Sec-

tion 3.1.3. Its overhead over baseline execution is 90%, a significant reduction (49% rela-

tive to baseline execution time) from ST’s 139% overhead. Furthermore, RT achieves much

of the maximum possible benefit, approaching Ideal’s 82% overhead.

We note that for sparse, RT significantly outperforms the Ideal configuration. This

counterintuitive result is due to the fact that the Ideal configuration estimates the cost of

coordination without latency, but it does not account for potential other improvements that

RT might provide. As we show later in this section, RT can reduce the number of conflicting

transitions (compared with ST); RT reduces sparse’s conflicting transitions substantially,

leading to significantly lower overhead than for Ideal.

Figure 3.6 is a speedup graph (higher is better) that shows the same configurations as

Figure 3.5 plus two additional RT configurations. The RT configurations, which are all

sound, are as follows:

RT (stall at unlock): The default design from Section 3.1. Threads wait at synchroniza-

tion release operations for all outstanding relaxed stores.

RT (defer unlock): The first optimization described in Section 3.1.3. At a lock release, a

thread defers the lock release if there are outstanding relaxed stores.

RT (no stall at unlock): The second optimization described in Section 3.1.3 (and also

shown in Figure 3.5). At a lock release, a thread continues execution even if there

are outstanding relaxed stores. However, no thread except T can read from an object

locked in WrExIntT state.
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Figure 3.6: Speedup of RT relative to ST. Ideal is an unsound configuration that provides
an upper bound on RT’s performance.

The three RT configurations each provide an average speedup of 1.16–1.26X over ST.

These speedups are not far from the average speedups achieved by Ideal (1.31X), sug-

gesting that RT is getting most of the maximum possible benefit from hiding the cost of

coordination due to explicit requests.

While the RT configurations outperform ST and get close to Ideal’s performance on av-

erage, RT does not help much with the gap between ST and Ideal in several cases (hsqldb6,

xalan6, avrora9, xalan9, grand_sor, and montecarlo). As we show later, RT changes the bal-

ance of explicit versus implicit coordination requests (relative to ST), by causing threads

to spend more time executing code instead of blocking at safe points. This change cancels

out RT’s potential performance benefits in several cases, and it represents a challenge for

future work. Another significant source of RT overhead is bookkeeping costs: its queue

representation leads to more costs than for ST, and keeping track of relaxed events and

accesses requires performing additional work.

The RT (defer unlock) configuration does not improve performance on average (nor

significantly for any individual program) compared with the RT (stall at unlock). Although

56



deferring lock release operations has the potential to hide coordination latency, it incurs

two additional costs. First, deferring releases incurs additional bookkeeping costs. Sec-

ond, deferring releases often changes the balance between explicit and implicit requests

triggered for coordination, since threads are more likely to be executing code rather than

blocked at release operation waiting for coordination responses. These factors are enough

to outweigh any potential benefit provided by deferring unlocks.

Similarly, the RT (no stall at unlock) configuration helps hide latency, but it introduces

another source of latency: a thread (except for T) must wait to read an object locked in

WrExIntT state. On average, these factors cancel each other, so RT (no stall at unlock) provides

almost no average benefit over RT (stall at unlock).

Runtime characteristics. Next we focus on understanding factors contributing to the

performance difference between RT and ST. Table 3.1 reports runtime statistics for tracking

dependences with RT and ST. The table uses the RT configuration RT (no stall at unlock).

For each type of coordination, Lock state transitions counts how many accesses exe-

cute instrumentation that requires either no lock state change (Same state) or a Conflicting

transition that triggers coordination. An interesting point is that RT sometimes reduces

how many conflicting transitions occur, relative to ST. This phenomenon occurs because of

cases in which an object is heavily contended, and two or more threads repeatedly transfer

its ownership in quick succession. When using ST, a thread must wait for coordination

at each access, enabling another thread to make progress and trigger coordination for the

next access to the object, leading to many conflicting transitions. In contrast, when using

RT—particularly when executing past release operations as permitted by the RT no stall at

unlock configuration—a thread is more likely to perform consecutive relaxed accesses to a
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Strict dependence tracking Relaxed dependence tracking
Lock state transitions Coord. requests Lock state transitions Coord. requests Coord. responses Relaxed accesses

Same state Conflicting Explicit Implicit Same state Conflicting Explicit Implicit Explicit Implicit Read Write
eclipse6 1.2×1010 1.4×105 (0.0011%) 1.6×104 2.9×105 1.2×1010 1.4×105 (0.0011%) 1.1×104 2.6×105 9.6×103 1.4×103 1.4×104 4.8×103

hsqldb6 6.2×108 9.0×105 (0.14%) 3.5×104 3.8×106 6.2×108 9.0×105 (0.14%) 3.4×104 4.4×106 3.1×104 3.5×103 4.7×104 3.8×104

lusearch6 2.4×109 4.4×103 (0.00018%) 2.3×103 4.5×103 2.4×109 4.4×103 (0.00018%) 2.3×103 4.6×103 8.8×102 1.4×103 2.2×103 2.1×103

xalan6 1.1×1010 1.9×107 (0.17%) 1.3×107 5.9×106 1.1×1010 1.9×107 (0.17%) 1.4×107 5.2×106 1.3×107 6.3×105 1.6×107 1.8×107

avrora9 6.1×109 5.9×106 (0.097%) 4.1×106 1.8×107 6.1×109 5.7×106 (0.093%) 2.8×106 1.4×107 2.2×106 5.5×105 2.1×106 1.9×106

jython9 5.1×109 6.6×101 (0.0000013%) 1.8×101 1.5×100 5.1×109 6.2×101 (0.0000012%) 1.5×101 4.5×100 1.3×101 2.0×100 2.3×101 0
luindex9 3.5×108 3.7×102 (0.00011%) 1.5×101 3.3×102 3.5×108 3.7×102 (0.00011%) 1.2×101 3.3×102 9.5×100 3.0×100 1.9×101 2.5×100

lusearch9 2.4×109 2.9×103 (0.00012%) 4.6×103 4.4×103 2.4×109 2.9×103 (0.00012%) 5.0×103 3.3×103 1.3×103 3.7×103 6.4×103 4.1×102

sunflow9 1.7×1010 1.4×104 (0.000078%) 1.5×104 7.6×103 1.7×1010 9.3×103 (0.000054%) 9.6×103 8.7×103 3.3×103 6.3×103 2.4×105 8.4×103

xalan9 1.0×1010 1.8×107 (0.18%) 9.7×106 8.7×106 1.0×1010 2.0×107 (0.20%) 1.3×107 7.1×106 1.3×107 6.4×105 2.0×107 2.1×107

pmd9 5.7×108 4.4×104 (0.0077%) 3.1×104 5.3×104 5.7×108 4.3×104 (0.0075%) 2.7×104 4.9×104 2.0×104 6.9×103 2.5×104 3.4×104

pjbb2000 1.7×109 9.5×105 (0.055%) 6.2×104 9.0×105 1.7×109 9.5×105 (0.055%) 6.1×104 9.0×105 5.7×104 3.5×103 2.3×105 9.7×104

pjbb2005 6.6×109 4.6×107 (0.69%) 3.2×107 5.7×107 6.5×109 4.1×107 (0.61%) 2.5×107 6.2×107 1.9×107 5.5×106 1.2×107 1.6×107

lufact 8.0×109 6.0×105 (0.0075%) 5.3×106 1.4×106 8.4×109 5.2×105 (0.0061%) 8.5×105 8.4×105 3.3×105 5.3×105 1.2×107 3.1×105

series 4.0×106 2.0×106 (33%) 2.0×106 3.0×104 4.0×106 2.0×106 (33%) 1.4×106 6.2×105 1.2×106 1.4×105 1.2×102 1.4×106

sparse 6.7×109 2.4×108 (3.4%) 3.8×108 8.3×107 6.0×109 4.5×107 (0.74%) 3.1×107 1.8×107 2.8×107 3.3×106 5.0×108 4.9×108

grande_sor 3.7×109 3.9×104 (0.0011%) 4.2×105 1.2×105 3.6×109 3.9×104 (0.0011%) 3.7×105 1.3×105 4.2×104 3.3×105 8.8×104 2.8×104

moldyn 4.0×1010 9.7×107 (0.25%) 1.7×108 8.0×107 3.3×1010 8.5×107 (0.26%) 7.8×107 5.3×107 4.9×107 2.9×107 6.6×107 5.3×107

montecarlo 2.4×109 5.2×105 (0.022%) 3.2×105 2.0×105 2.4×109 4.3×105 (0.018%) 2.7×105 1.5×105 2.5×105 2.2×104 2.2×105 3.1×105

crypt 5.2×108 3.9×107 (7.0%) 3.9×107 3.2×105 5.2×108 7.4×106 (1.4%) 4.8×106 2.6×106 4.8×106 1.1×104 2.2×103 3.7×107

raytracer 3.3×1010 1.1×104 (0.000032%) 7.1×103 5.2×103 3.3×1010 1.1×104 (0.000032%) 5.6×103 6.4×103 4.4×103 1.2×103 1.6×105 1.6×103

Table 3.1: Runtime characteristics of strict and relaxed dependence tracking.

contended object, leading to fewer conflicting transitions, compared with ST. This effect is

directly responsible for RT outperforming the Ideal configuration for sparse.

The Coord. requests columns count explicit and implicit requests, which can sum to

more than Conflicting transitions because RdSh-to-WrEx transitions involve multiple re-

quests. Programs with more explicit requests generally have higher coordination overhead

and can benefit more from RT.

The Coord. responses columns tally RT responses. Each sum equals the number of

explicit requests, since there is one response for every explicit request. Since explicit re-

sponses do not incur latency, the ratio of explicit to implicit responses does not affect

performance significantly.

The last two columns count relaxed accesses. While some of these accesses immedi-

ately follow coordination requests, others are repeat accesses to the same memory location

or loads from objects for which some other thread has initiated coordination. Due to these
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cases, relaxed accesses can outnumber conflicting transitions. On the other hand, conflict-

ing transitions can outnumber relaxed accesses, since an implicit request does not lead to a

relaxed access.

3.3.2 Performance of Runtime Support

This section evaluates whether RT can benefit runtime support that detects cross-thread

dependences (dependence recorder) and controls cross-thread dependences (STM).

Dependence recorder. Figure 3.7 shows the performance of the ST- and RT-based recorders.

Not surprisingly, the performance story for the recorders is similar to the story for track-

ing dependences alone. On average, the RT recorder is 1.23X faster than the ST-based

recorder, and four benchmarks show large improvements.

We note that although RT can hide coordination latency, the RT-based recorder still

needs to record each happens-before edge. Some relaxed loads can avoid conflicting tran-

sitions and coordination entirely, but the recorder must log each of the loaded values. The

RT-based recorder thus often logs more than the ST-based recorder. Notably, the RT-based

recorder’s log size is about 2X the ST-based recorder’s for lusearch6, xalan6, and xalan9;

and about 6X for grande_sor. For all other programs, the RT-based recorder logs less than

50% more than the ST-based recorder.

In summary, RT reduces the cost of tracking dependences significantly, particularly for

programs with high coordination costs, recovering much of the maximum possible per-

formance achievable by eliminating coordination latency entirely. RT’s benefit is limited

by correctness constraints (e.g., limitations on deferring stores past synchronization) and

indirect effects (e.g., increases to the explicit-to-implicit request ratio when using RT com-

pared with ST). Although the RT-based recorder suffers drawbacks (increased log size),
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Figure 3.7: Runtime speedup of the RT-based dependence recorder over the ST-based
dependence recorder.

these results demonstrate the potential of RT to improve the performance of dependence-

tracking-based runtime support.

3.4 Conclusion and Interpretation

Many runtime support for concurrent programming build on top of memory depen-

dence tracking. Existing work that track memory dependences synchronously can add high

overhead because of coordination. In this chapter, we introduce RT, which is a novel ap-

proach for tracking cross-thread memory dependences. RT hides synchronization latency

by tracking dependences in a relaxed way—meaning that not all dependences are tracked

accurately. Our key insight is to relax the instrumentation-access atomicity provided by

normal tracking, and to allow threads to continue executing program code without acquir-

ing a dependence tracking lock.

The challenge for this work is to preserve both program semantics and runtime-support-

specific guarantees after making the relaxation. We use log buffering to defer relaxed stores
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so their effect is invisible to other threads until the coordination response(s) for the object’s

lock has been received. We handle relaxed loads by logging and processing the loaded

value in a runtime-support-specific way. We use lazy lock release techniques to extend

critical sections to allow more code being executed while a thread is waiting for responses

because Java memory model requires all states to become visible after a lock release.

Our performance results show that the relaxed approach has lower overhead than the

strict tracking approach, especially for high-contention cases. Drawbacks include increased

complexity and space overhead in order to handle extra relaxed dependence information.

We show RT is directly useful for improving record & replay’s performance, and it is

applicable to other runtime support, such as transactional memory introduced in Chapter 4.

From a research prospective, RT demonstrates that it is possible to build runtime support

more efficietly with relaxed dependence tracking while still preserving correctness. This

work therefore shows the potential to address a key cost of building efficient and scalable

runtime support for parallelism.
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Chapter 4: LarkTM

Transactional memory provides a new concurrency control option that can avoid the

perils of locks and eases concurrent programming significantly. By avoiding deadlocks

and allowing fine-grained concurrency, TM supports the programmer to write scalable ap-

plications safely.

Despite being promising, bringing TM into the mainstream faces many challenges.

STM suffers from high overhead and weak semantics in practice. This chapter presents a

novel STM system, called LarkTM, which incurs low overhead while at the same time sup-

ports strong semantics and strong progress guarantees. Section 4.1 introduces the design of

LarkTM-O. LarkTM-O adds low overhead and scales well with low contention programs

by reducing one of the major costs from detecting transactional conflicts (i.e., write–read,

write–write, and read–write data dependences involving two transactions). Section 4.2 in-

troduces the design of LarkTM-S, which extends from LarkTM-O and uses a cost-benefit

model to adaptively switch concurrency control on contended objects from using optimistic

concurrency control to pessimistic concurrency control. LarkTM-S adds little overhead on

top of LarkTM-O but is able to make concurrent programs scale with high-contention work-

loads. Section 4.4 gives the implementation details not covered in Section 2.4. Section 4.5

evaluates LarkTM-O and LarkTM-S against existing high-performance STMs.
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4.1 LarkTM-O: Low-Overhead Software Transactional Memory

This section describes a novel STM called LarkTM that uses eager mechanisms—

eager versioning and eager conflict detection and resolution—and provides strong atomic-

ity. LarkTM extends lightweight reader–writer locks to detect transactional conflicts. The

locks add minimal overhead to non-conflicting accesses and only cause synchronization

overhead at conflicting accesses, incurring very low overhead for programs with relatively

good thread localities. Further, LarkTM enables eager conflict detection and resolution that

support to abort either conflicting thread, providing strong progress guarantees.

LarkTM’s approach works well under low contention, but turns out to be too aggressive

under higher contention. Section 4.2 will describe an adaptive version of LarkTM that uses

pessimistic locking for high-contention objects.

4.1.1 Design Overview

LarkTM provides concurrency control by acquiring the biased reader–writer lock in-

troduced in Section 2.1.1 before each transactional and non-transactional memory access.

Figure 4.1 shows at a high level how the instrumentation for acquiring a lock proceeds.

If the current thread already holds the needed lock, there is no transactional conflict (a

conflict between a transaction and either another transaction or a non-transactional access),

and the access can proceed without performing synchronization. A thread does not need to

release the biased lock even when a transaction ends. Instead, a biased lock is released only

when there is another transactional access or non-transactional access that needs to acquire

the same lock to access the conflicting object.

If the current thread does not already hold the needed biased read or write lock, it must

acquire the lock. In some cases, acquiring the lock simply involves “upgrading” it, e.g.,
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Figure 4.1: Overview of LarkTM’s concurrency control. The figure shows the process of
acquiring a lock for every transactional and non-transactional access.

from read-exclusive to read-shared access. However, in other cases, the new lock status

will conflict with the old lock status (e.g., a read by one thread to an object held by another

thread for write-exclusive access). These cases require that the new thread coordinate with

the old thread(s) before acquiring the lock. Otherwise, the old thread(s) might continue to

access the object—after all, they will not use any synchronization as long as they see the

old lock status. This change of a lock’s state is called a conflicting lock transition or simply

a conflicting transition.

A conflicting lock transition is a necessary condition for a transactional conflict, and so

LarkTM checks for transactional conflicts (and performs conflict resolution if it detects a

transactional conflict). Since a conflicting transition is an insufficient condition for a trans-

actional conflict, LarkTM maintains read/write sets (i.e., the last transaction(s) to access

each object) to make conflict detection more precise.

4.1.2 Conflict Detection

Section 2.1.1.1 presents how biased reader–writer locking tracks cross-thread depen-

dences and handles conflict transitions with coordination. This part describes how LarkTM

extends from detecting dependences to detecting transactional conflicts. In order to sim-

plify the description, we first introduce active and passive threads.
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(a) (b)

Figure 4.2: A conflicting transition is a necessary but insufficient condition for a transac-
tional conflict. Solid boxes are transactions; dashed boxes could be either transactional or
non-transactional.

Active and passive threads. Unlike many existing STMs, LarkTM allows either thread

involved in a conflicting transition to perform transactional conflict detection. We refer to

the thread that performs transactional conflict detection and resolution as the active thread.

Either the requesting or responding thread is the active thread, depending on the protocol.

The other thread is the passive thread.

Active thread Passive thread
Implicit protocol Requesting thread Responding thread
Explicit protocol Responding thread Requesting thread

These assignments make sense as follows. During the implicit protocol, the responding

thread is blocked, so the requesting thread must do all the work. In the explicit protocol, the

responding thread performs concurrency control because the requesting thread is stopped

while it responds.

During the coordination protocol, the active thread detects transactional conflicts while

the passive thread is stopped. Figure 4.2 shows how an object’s lock’s conflicting transi-

tion (a) may or (b) may not indicate a transactional conflict, since the responding thread’s

current transaction (if any) may or may not have accessed the object.
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To detect whether the responding thread has accessed the object, LarkTM maintains

read/write sets. For an object locked in the WrExT or RdExT state, it maintains the last

transaction of T to access the object. Our implementation maintains this information in

object headers. For an object locked in the RdSh state, LarkTM maintains each thread’s

last transaction to read the object since being locked in the RdSh state. Our implementation

maintains this information using per-thread sets of objects read by the current transaction.

The active thread detects transactional conflicts by using the read/write sets to identify

the last transaction (if any) of respT to access the object whose lock is changing states.

If this transaction is the same as respT’s current transaction (if any), the active thread has

identified a transactional conflict, so it triggers conflict resolution.

An alternative is to let LarkTM simply assume a transactional conflict on every con-

flicting transition, avoiding the need for maintaining read/write sets. However, we have

found that in practice, this approach leads to too many false conflicts, hurting scalability.

Detecting conflicts at WrEx→RdEx. It is challenging to detect conflicts precisely at a

read by reqT to an object whose lock is in WrExrespT state. Consider Figure 4.3(a). Object

o’s lock is initially in WrExrespT state. respT’s transaction reads but does not write o. Then

reqT performs a conflicting access, changing o’s lock’s state to RdExreqT. In theory, conflict

detection need not report a transactional conflict. However, if reqT later writes to o, as

in Figure 4.3(b), upgrading the lock’s state to WrExreqT, conflict detection should report a

conflict with respT. It is hard to detect this conflict at reqT’s write, since o’s prior access in-

formation has been lost (replaced by reqT). The same challenge exists regardless of whether

reqT executes its read and write in or out of transactions.
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(a) (b)

Figure 4.3: (a) Thread reqT’s read triggers a state change from WrExrespT to RdExreqT, at
which point LarkTM declares a transactional conflict even though respT’s transaction has
only read, not written, o. This imprecision is needed because otherwise (b) reqT might write
o later, triggering a true transactional conflict that would be difficult to detect at that point.

One way to handle this case precisely is to transition a lock to RdSh in cases like reqT’s

read in Figures 4.3(a) and 4.3(b), when respT’s transaction has read but not written the

object. This precise policy triggers a RdSh→WrExreqT transition at reqT’s write in Fig-

ure 4.3(b), detecting the transactional conflict.

However, the precise policy can hurt performance by leading to more RdSh→WrEx

transitions. LarkTM thus uses an imprecise policy: for a conflicting read (i.e., a read to

an object locked in another thread’s WrEx state), the active thread checks whether respT’s

transaction has performed writes or reads. Thus, in Figures 4.3(a) and 4.3(b), LarkTM

detects a transactional conflict at reqT’s conflicting read. We find that LarkTM’s imprecise

policy impacts transactional aborts insignificantly compared to the precise policy, except

for the STAMP benchmark kmeans, for which the imprecise policy triggers 30% fewer

aborts—but kmeans has a low abort rate to begin with, so its performance is unchanged.

Overall, the precise policy hurts performance by leading to more RdSh→WrEx transitions.

We emphasize that LarkTM’s imprecise policy for handling conflicting reads does not

in general lead to concurrent reads generating false transactional conflicts. Rather, false
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conflicts occur only in cases like Figure 4.3(a), where o’s lock is in WrExrespT state because

respT has previously written o, but respT’s current transaction has only read, not written, o.

4.1.3 Resolving Transactional Conflicts

If an active thread detects a transactional conflict, it triggers conflict resolution, which

resolves the conflict by aborting a transaction or retrying a non-transactional access. A key

feature of LarkTM is that, by piggybacking on coordination, it can abort either conflicting

thread, enabling flexible conflict resolution.

Contention management. When resolving a conflict, the active thread can abort either

thread, providing flexibility for using various contention management policies [141]. Lark-

TM uses an age-based contention management policy [78] that chooses to abort whichever

transaction or non-transactional access started more recently. This policy provides not only

livelock freedom but also starvation freedom: each thread’s transaction will eventually

commit (a repeatedly aborting transaction will eventually be the oldest) [141]. We experi-

mented with other contention management policies, including the Karma policy from prior

work [127], but found that they had little affect on scalability, at least for benchmarks we

evaluated.

Aborting a thread. The aborting thread abortingT chosen by contention management

may be executing a transaction or a non-transactional access’s lock acquire. “Aborting” a

non-transactional access means retrying its preceding lock acquire.

To ensure that only one thread at a time tries to roll back abortingT’s stores, the active

thread first acquires a lock for abortingT. Note that another thread otherT can initiate implicit

coordination with abortingT while abortingT’s stores are being rolled back. If otherT triggers
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coordination in order to access an object that is part of abortingT’s speculative state, otherT

will find the object locked in WrExabortingT state, triggering conflict resolution, which will

wait on abortingT’s lock until rollback finishes.

In work tangentially related to piggybacking conflict resolution on coordination, Harris

and Fraser present a technique that allows a thread to revoke a second thread’s lock without

blocking [74].

Handling the conflicting object. When conflict resolution finishes, the conflicting ob-

ject’s lock is still in the intermediate state IntreqT. If abortingT is respT, then reqT changes the

lock’s state to WrExreqT or RdExreqT. If abortingT is reqT, then the active thread reverts the

lock’s state back to its original state (WrExrespT, RdExrespT, or RdSh), after rolling back spec-

ulative stores. This policy makes sense because reqT is aborting, but respT will continue

executing. (The lock cannot stay in the IntreqT state since that would block other threads

from ever accessing it.)

Retrying transactions and non-transactional accesses. After the active thread rolls

back the aborting thread’s speculative stores, and the lock state change completes or re-

verts, both threads may continue. The aborting thread sees that it should abort, and it

retries its current transaction or non-transactional access.

4.1.4 LarkTM’s Instrumentation

The following pseudocode shows the instrumentation that LarkTM adds to every mem-

ory access to acquire a per-object reader–writer lock and perform other STM operations.

At a program write:
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1 if (o.state != WrExT ) { // fast -path check
2 // Acquiring lock requires changing its state ;
3 // conflicting acquire → conflict detection
4 slowPath(o);
5 }
6 // Update read/write set ( if in a transaction) :
7 o.lastAccessingTx = T.currentTx;
8 // Update undo log (if in a transaction) :
9 T.undoLog.add(&o.f);

10 o. f = ...; // program write

At a program read:
11 if (o.state != WrExT && o.state != RdExT ) { // fast -path
12 if (o.state != RdSh ) { // check
13 // Acquiring lock requires changing its state ;
14 // conflicting acquire → conflict detection
15 slowPath(o);
16 }
17 load_fence; // ensure RdSh visibility
18 }
19 // Update read/write set ( if in a transaction) :
20 if (o.state == RdSh)
21 T.sharedReads.add(o);
22 else
23 o.lastAccessingTx = T.currentTx;
24 ... = o. f ; // program read

The fast-path check corresponds to the first three rows in Table 2.1. If the fast-path check

fails, acquiring the lock requires a state change. If the state change is conflicting, it triggers

the coordination protocol and transactional conflict detection. After line 5 (for writes) or

18 (for reads), the instrumentation has acquired the lock in a state sufficient for the pending

access. For transactional accesses only, the instrumentation adds the object access to the

transaction’s read/write set. For an object locked in WrEx or RdEx, each object keeps track

of its last accessing transaction; for an object locked in RdSh, each thread tracks the objects

it has read (Section 4.1.2). Then, for transactional writes only, the instrumentation records

the memory location’s old value in an undo log. Finally, the access proceeds.

LarkTM naturally provides strong atomicity by acquiring its locks at non-transactional

as well as transactional accesses. While one could implement weakly atomic LarkTM
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by eliding non-transactional instrumentation, the semantics would be weaker than SLA

(Section 2.2.2), e.g., the resulting STM would not be privatization or publication safe.

Redundant instrumentation. LarkTM can avoid statically redundant instrumentation to

the same object in the same transaction, which can be identified by intraprocedural compile-

time dataflow analysis [28]. Instrumentation at a memory access is redundant if it is defi-

nitely preceded by a memory access that is at least as “strong” (a write is stronger than a

read). Outside of transactions, LarkTM can avoid instrumenting redundant lock acquires

in regions bounded by safe points, since safe points interrupt atomicity [28].

4.2 LarkTM-S: Scalable Software Transactional Memory

As described so far, LarkTM minimizes overhead by making non-conflicting lock ac-

quires as fast as possible. However, conflicting lock acquires—which can significantly

outnumber actual transactional conflicts—require expensive coordination. To address this

challenge, we introduce LarkTM-S, which targets better scalability. We call the “pure”

configuration described so far LarkTM-O since it minimizes overhead.

A contended lock state. To support LarkTM-S, we add a new contended lock state to

LarkTM’s existing WrExT, RdExT, and RdSh states. Our current design uses IntelSTM’s

concurrency control [135] (Section 2.2.2) for the contended state. IntelSTM and LarkTM

are fairly compatible because they both use eager concurrency control for writes. Follow-

ing IntelSTM, LarkTM-S uses unbiased locks for writes to objects in the contended state,

incurring an atomic operation for every non-transactional write and every transaction’s first

write to an object, but never requiring coordination. For reads to an object locked in the
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contended state, LarkTM-S uses lazy validation of the object’s version, which is updated

each time an object’s write lock is acquired.

Our current design supports changing an object’s lock to the contended state at allo-

cation time or as the result of a conflicting lock acquire. It is safe to change a lock to

contended state in the middle of a transaction because coordination resolves any conflict,

guaranteeing all transactions are consistent up to that point.

Profile-guided policy. LarkTM-S decides which objects’ locks to change to the con-

tended state based on profiling lock state changes. It uses two profile-based policies. The

first policy is object based: if an object’s lock triggers “enough” conflicting lock acquires,

the policy puts the lock into the contended state. This policy counts each lock’s conflicts at

run time; if a count exceeds a threshold, the lock changes to contended state. (We would

rather compute an object’s ratio of conflicts to all accesses, but counting all accesses at run

time would be expensive.)

The object-based policy works well except when many objects trigger few conflicts

each. The second, type-based policy addresses this case by identifying object types that

contribute to many conflicts. The type-based policy decides whether all objects of a given

type (i.e., Java class) should have their locks put in the contended state at allocation time.

For each type, the policy decides to put its locks into the contended state if, across all ac-

cesses to objects of the type, the ratio of conflicting to all accesses exceeds a threshold. Our

implementation uses offline profiling; a production-quality implementation could make use

of online profiling via dynamic recompilation. Grouping by type enables allocating objects

locked in contended state, but the grouping may be too coarse grained, conflating distinct

object behaviors.
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Prior work has also adaptively used different kinds of locking for high-conflict objects,

based on profiling [34, 147].

Semantics and progress. Since LarkTM-S validates reads lazily, it permits so-called

zombie transactions [75]. Zombie transactions can throw runtime exceptions or get stuck

in infinite loops that would be impossible in any unserializable execution. Each transaction

must validate its reads before throwing any exception, as well as periodically in loops, to

handle erroneous behavior that would be impossible in a serializable execution.

Since our design targets managed languages that provide memory and type safety, zom-

bie transactions cannot cause memory corruption or other arbitrary behaviors [104, 54, 47].

A design for unmanaged languages (e.g., C/C++) would need to check for unserializable

behavior more aggressively [47].

Like IntelSTM and other mixed-mode STMs, LarkTM-S can suffer livelock, since any

transaction that fails read validation must abort (Section 2.2.2). Standard techniques such

as exponential backoff [141, 78] help to alleviate this problem. We note that LarkTM-

S can in fact guarantee livelock and starvation freedom by forcing a repeatedly aborting

transaction to fall back to using entirely eager mechanisms (as though it were executed by

LarkTM-O).

4.3 Comparison with NOrec and IntelSTM

To enhance our evaluation, we implement and compare against two STMs from prior

work: NOrec [49] and IntelSTM (the strongly atomic version of McRT-STM) [124, 135]

(Section 2.2.2). NOrec is generally considered to be a state-of-the-art STM (e.g., recent

work compares quantitatively against NOrec [33, 77, 152]) that provides relatively low
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NOrec IntelSTM LarkTM-O LarkTM-S
Write concurrency control Lazy global seqlock Eager per-object lock Eager per-object biased reader–writer lock IntelSTM–LarkTM-O hybrid
Read concurrency control Lazy value validation Lazy version validation Eager per-object biased reader–writer lock IntelSTM–LarkTM-O hybrid
Instrumented accesses All accesses Non-redundant accesses Non-redundant accesses Non-redundant accesses
Progress guarantee Livelock free None Livelock and starvation free Livelock and starvation free∗

Semantics SLA Strong atomicity Strong atomicity Strong atomicity

Table 4.1: Comparison of the features and properties of NOrec [49], IntelSTM [135], Lark-
TM-O, and LarkTM-S. SLA is single global lock atomicity (Section 2.2.2). ∗LarkTM-S
guarantees progress only if it forces a repeatedly aborting transaction to use fully eager
concurrency control.

single-thread overhead and (for many workloads) good scalability. Although not consid-

ered to be one of the best-performing STMs, IntelSTM is perhaps the highest performance

STM from prior work that supports strong atomicity.

Table 4.1 compares features and properties of our STMs and prior work’s STMs. Lark-

TM uses biased reader–writer locks for concurrency control to achieve low overhead.

NOrec and IntelSTM use lazy validation for reads in order to avoid the overhead of locking

at reads, but as a result they incur other overheads such as logging reads (both), looking up

reads in the write set (NOrec), and validating reads (IntelSTM).

IntelSTM, LarkTM-O, and LarkTM-S can avoid redundant concurrency control instru-

mentation (Section 4.1.4) because they use object-level locks and/or version validation.

NOrec must instrument all reads fully since it validates reads using values; NOrec performs

only logging (no concurrency control) at writes. None of the STMs can avoid logging at

redundant writes because we have implemented an object-granularity dataflow analysis

(Section 4.4).

NOrec provides livelock freedom (i.e., some thread’s transaction eventually commits),

and IntelSTM makes no progress guarantees. LarkTM-O provides starvation freedom (ev-

ery transaction eventually commits) by resolving conflicts eagerly and supporting aborting
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either transaction. LarkTM-S can provide starvation freedom if it uses (LarkTM-O’s) fully

eager concurrency control for a repeatedly aborting transaction.

NOrec provides weak atomicity (SLA; Section 2.2.2); a strongly atomic version would

need to acquire a global lock at every non-transactional store. The other STMs provide

strong atomicity by instrumenting each non-transactional access like a tiny transaction.

4.4 Implementation

Programming model. Our design assumes that the programmer only needs to add atomic

blocks around code to make it execute as a transaction. Our prototype implementation does

not support the atomic keyword, which would require modifying the Java compiler and/or

JVM compilers to recognize atomic and transform atomic blocks to support retrying trans-

actions and saving and restoring of local variables. Instead, our implementation requires

that atomic blocks be manually transformed, as shown in Figure 4.4. This programming

model involves the following transformations: (1) put the atomic block in a try–catch block

to support eager aborting; (2) put that block in a do–while loop to support retrying; (3) insert

calls to methods that initialize, start, and try to commit transactions; and (4) for each local

variable used in the transaction that is reachable by a definition outside the transaction, save

its old value in a “shadow” local variable before the transaction starts, and restore the old

value on restart. Table 4.2 explains the APIs called by the programming model.

These transformations are all straightforward, and a production implementation could

perform them automatically. Note this this programming model does not require manual in-

sertion of read and write barriers, nor does it require transformations that would be difficult

or impossible to perform automatically, such as manually eliding read and write barriers

through knowledge of which variables are actually shared or can actually conflict.
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1 TX.create();
2 /∗ Save local variables in shadow local variables ∗/
3 do {
4 try {
5 TX.start () ;
6
7 /∗ Original code in the atomic block goes here ∗/
8
9 } catch (RollbackException e) {

10 /∗ Restore local variables ∗/
11 continue;
12 }
13 } while(!TX.tryToCommit());

Figure 4.4: Our prototype implementation’s programming model requires manually rewrit-
ing atomic blocks to support abort and retry and to save and potentially restore local vari-
ables.

The implementation supports a configuration in which committing transactions perform

“sanity checking” that checks that every object in the read/write set and undo log has an

Octet state that allows the thread to read and write the object, respectively.

Eliminating and simplifying redundant barriers. Octet modifies the optimizing com-

piler to perform an intraprocedural, static dataflow analysis that identifies and removes

redundant barriers [28]. A barrier is redundant if all incoming paths will definitely execute

a barrier on the same object that is at least as “strong” (a write barrier is stronger than

a read barrier) as the current barrier. LarkTM builds on this analysis to eliminate more

redundant barriers. Octet’s analysis cannot consider a barrier to be made redundant by a

prior barrier if there is a safe point between the barriers; otherwise the safe point could

respond to an access and “lose” access to an object. LarkTM safely ignores this restriction

inside transactions since any safe point after a barrier on o that loses access to o will def-

initely abort. Prior work has employed similar optimizations (e.g., [76, 124]). Outside of
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TX.create() Indicates a thread is about to enter a new atomic region. It sets the thread’s
transaction timestamp to the value of a high-precision timer, the IA-32 TSC
register. We implement flattened nesting [75], so inner transactions execute as
part of the outer transaction.

TX.start() A transaction calls this method every time it starts or restarts. TX.start() sets
T.inTransaction = true, and it resets the thread’s read/write set and undo log. It
invokes contention management to perform exponential backoff before contin-
uing.

TX.tryToCommit() A transaction calls this method when it is ready to commit. It sets T.inTransaction
= false, and returns true if and only if the thread’s aborting flag has not been set.
(The transaction might need to abort because of a deferred abort.) It always
returns true for irrevocable transactions; it also clears the global irrevocable
transaction thread.

Table 4.2: Transaction APIs.

transactions, LarkTM inserts instrumentation at barrier slow paths that “reacquires” objects

that might have been acquired by other threads, allowing it to consider barriers redundant

across barrier slow paths. The redundant barrier analysis is object sensitive, not field or

array element sensitive, so the optimizing compiler still inserts undo log updates at each

write. Identifying redundant barriers is particularly important for TM benchmarks with

tight loops performing array accesses.

In non-transactional code, LarkTM-O eliminates redundant instrumentation within re-

gions free of safe points (e.g., method calls, loop headers, and object allocations), since

LarkTM’s per-object biased locks ensure atomicity interrupted only at safe points. Since

any lock acquire can act as a safe point, LarkTM-O adds instrumentation in non-transactional

code that executes after a lock state change and reacquires any lock(s) already acquired in

the current safe-point-free region, as identified by the redundant instrumentation analy-

sis. Eliminating redundant instrumentation in non-transactional code would not guarantee
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soundness for IntelSTM since it does not guarantee atomicity between safe points. How-

ever, recent work shows that statically bounded regions can be transformed to be idempo-

tent with modest overhead [131, 50], suggesting an efficient route for eliminating redundant

instrumentation. In an effort to make the comparison fair, IntelSTM eliminates instrumen-

tation that is redundant within safe-point-free regions. LarkTM-O and IntelSTM thus use

the same redundant instrumentation analysis, as does the hybrid of these two STMs, Lark-

TM-S.

Multi-versioning methods. LarkTM’s barriers perform different behavior depending on

whether they execute inside a transaction, e.g., transactional accesses behave differently

from non-transactional accesses. We instruct the compiler to create different versions of

compiled methods. For a method meth, we create a transactional version of the method

with a prefix _atomic_, and a non-transactional version of the method with _non_atomic_. A

call site invokes a different compiled version of a method depending on whether it is called

from a transactional or non-transactional context. If the compiler cannot infer whether a

method is called under a transactional or non-transactional context, another version of the

method with an isInTransaction check for its accesses is called to check at runtime whether

the access is executed under a transactional context or not.

Deferred abort. An aborting thread restarts a transaction (or a non-transactional access’s

barrier) by throwing a custom exception RollbackException. A requesting thread can safely

throw this exception since it is executing application or library code. However, a responding

thread may be executing JVM internal code, from which throwing an exception would leave

the JVM in an inconsistent state. Thus, the responding thread does not abort immediately.

Rather, the next transactional read or write barrier (or call to TX.tryToCommit()) will throw a
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RollbackException. We make this behavior efficient by invalidating the thread’s transaction

identifier and RdSh hash table, so the next access will take a slow path and check the

aborting flag and throw a RollbackException.

Contention management. To implement LarkTM’s age-based contention management,

we use IA-32’s cycle counter (TSC) for timestamps. Timestamps thus do not reflect exact

global ordering (providing exact global ordering could be a scalability bottleneck), but they

are sufficient for ensuring progress.

Read/Write sets and undo logs. The implementation tracks read/write sets by recording

information for WrEx and RdEx objects in object headers, and for RdSh objects in per-

thread hash tables. We add a word to each object’s header and for every static field, which

is in addition to the Octet state word. This word records the last transaction identifier

(thread identifier and transaction number) to access the object in the WrEx or RdEx state.

A transaction increments its thread’s transaction number every time it starts or restarts.

To update the read/write set on an access of WrEx or RdEx object, the thread checks that

the object’s transaction identifier matches the current transaction; if not, it updates the

object’s transaction identifier. On a conflicting transition, the active thread checks whether

the conflicting object’s transaction identifier matches the responding thread’s transaction,

indicating a transactional conflict.

RdSh objects may be accessed by multiple transactions simultaneously. Our imple-

mentation records accesses to RdSh objects in efficient per-thread hash tables that garbage

collection (GC) traces. A transaction’s read of a RdSh object triggers an update to the hash

table. Conflicting transitions trigger lookups in the responding thread’s hash table. These
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hash tables use open addressing and double hashing [45], and we build them using “raw”

memory instead of pure Java objects in order to avoid extra levels of indirection.

There are other alternative data structures to build the read/write set, for example: (1)

Sequential store buffer (SSB), which is fast to update, but it does not eliminate duplicates,

and it requires linear time to search during conflict detection; (2) Bloom filter, which may

provide faster updates [20], but it can suffer from false positive conflicts related to the

so-called “birthday paradox” [166]. Furthermore, GC that moves objects effectively inval-

idates a bloom filter when objects are hashed based on their address.

Each thread has an undo log, implemented as a sequential store buffer (SSB). For each

field or array element store, the write barrier appends three words to the undo log: the base

object reference, the field offset, and the old value of the field or array element. The undo

log records both the base object reference and the field offset, instead of the computed

address, so GC can still trace the object reference. One bit of the offset word is reserved

for indicating whether the value is a reference. For simplicity, every old value saved in the

undo log is a 32-bit word, even for fields and array elements that are smaller or larger than

32 bits. For 8- and 16-bit values, the entire 32-bit aligned value that contains the old value

is recorded in the undo log. For example, for a store to an element of a byte array, the undo

log treats it as a store to the aligned 32-bit word that contains the byte. This simplification

is correct because LarkTM guarantees that the entire object will be in the WrEx state, and

objects and static fields are 32-bit aligned. For 64-bit values, the undo log records two

distinct undo log entries, one for each 32-bit part of the 64-bit value.

Our implementation of read/write sets also support high-performance generational GC

as follows. Generational GC frequently collects only recently allocated objects that reside
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in a nursery space. To identify all transitively reachable nursery objects soundly, gener-

ational GC relies on remembered sets that record all references from non-nursery spaces

to nursery objects. These remembered sets are updated during program execution using

instrumentation at every store. Our implementation could achieve correctness by checking

for references from non-nursery to nursery objects when storing references in the read-

/write set and the undo log. However, this strategy would result in many remembered set

entries, since the read/write set and undo log are likely to be non-nursery objects, but many

program accesses are to nursery objects. Instead, we modify GC so that all collections—

both nursery and full-heap collections—scan read/write sets and undo logs, avoiding the

need for remembered sets for references in these data structures.

Reusable read-set. When a transaction starts (including when an existing transaction

restarts), the read/write set should be cleared to avoid detecting spurious conflicts. How-

ever, we use a hash map as our implementation of the read-set for RdSh accesses, and

clearing the hash table entries can be expensive, especially for short transactions.

We implement a reusable read-set that only needs to be clearly infrequently. The basic

idea is to use a sliding window in an array to represent the read-set, and hashed value

calculated in a previous window become obsolete once the sliding window has moved

forward. Figure 4.5 gives an example. The read-set has a size of 7, and the hash function

is key mod size . Four reads at location 16, 9, 23, and 7 in transaction Txn 42 get mapped

to slots 2, 3, 4, 6. The read-set not only records the value (the location) but also the offset

used to resolve the collision, e.g., location 23 is placed to slot 4 as slot 2 and slot 3 have

already been occupied by prior reads 16 and 9. Once Txn 42 has finished, it moves the

sliding window one slot forward. When there is a new read to location 39 from Txn 43, the
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Figure 4.5: Reuse read-set to avoid overhead of clearing.

hash function decides to to put 38 to slot 3. However, it finds there is already a value 23.

By calculating 23’s hash location, it finds that 23 is supposed to be slot 4, which indicates

that 23 is already obsolete. So the 38 can override the value 23 in slot 3.

Irrevocable transactions. Our implementation of LarkTM-O supports irrevocable trans-

actions by letting only one transaction to exclusively become an irrevocable transaction.

Before a transaction is performing a class loading or performing I/O, that transaction needs

to first become irrevocable. An irrevocable transaction has the highest priority to finish

and it does not follow the age-based contention management policy. Other transactions

that have transactional conflicts with the irrevocable transaction, or need to perform a class

loading or print must abort to let the ongoing irrevocable transaction finish first.

Zombie transactions. Our implementations of NOrec, IntelSTM, and LarkTM-S can

execute zombie transactions because they validate reads lazily (Section 4.2). The imple-

mentations must perform read validation prior to commit in a few cases. (NOrec only ever

needs to perform read validation if the global sequence lock has changed since the last

snapshot [49].) The implementations perform read validation before throwing any runtime
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exception from a transaction. The implementations mostly avoid periodic validation since

infinite loops in zombie transactions mostly do not occur, except that NOrec has transac-

tions that get stuck in infinite loops for three out of eight STAMP benchmarks. (NOrec

presumably has more zombie behavior than IntelSTM since NOrec uses lazy concurrency

control for both reads and writes.) For these three benchmarks only, we use a configuration

of NOrec that validates reads (only if the global sequence lock has been updated) every

131,072 reads, which adds minimal overhead.

NOrec. The original NOrec design adds instrumentation after every read, which performs

read validation if the global sequence lock has changed since the last snapshot [49]. This

check is needed for unmanaged languages in order to avoid violating memory and type

safety. Our implementation of NOrec targets managed languages, so it safely avoids this

check, improving scalability (we have found) by avoiding unnecessary read validation. Our

NOrec implementation can thus execute zombie transactions.

4.5 Evaluation

This section evaluates LarkTM’s single-thread overhead and scalability. It evaluates

both the LarkTM-O and LarkTM-S, and compares them to our implementations of Intel-

STM and NOrec.

4.5.1 Experimental Setup

Section 2.4 has introduced the common experimental methodology used for evaluating

all implementations. In this part, we show specific experimental setups for measuring Lark-

TM.
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Deuce. For comparison purposes, we also evaluate the publicly available Deuce imple-

mentation [84] of the high-performance TL2 algorithm [54]. Deuce’s concurrency control

is at field and array element granularity, which avoids false object-level conflicts but can

add instrumentation overhead. We execute Deuce with the OpenJDK JVM since Jikes RVM

does not execute Deuce correctly. Evaluating Deuce helps to determine whether overhead

and scalability issues are specific to our STM implementations in Jikes RVM.

Scalability. Performance shows little or no improvement beyond 8 threads, and it often

degrades (anti-scales). This limitation is not unique to LarkTM or even Jikes RVM: In-

telSTM and NOrec, as well as Deuce executed by OpenJDK JVM, experience the same

effect. The poor scalability above 8 threads is therefore due to some combination of the

benchmarks and platform. The scalability of the STAMP benchmarks is limited [167], e.g.,

by load imbalance and communication costs. Communication between threads executing

on different 8-core processors is more expensive than intra-processor communication.

Figure 4.6 shows the scalability of two representative programs for 1–64 threads. The

STM configurations generally anti-scale for 16–64 threads for kmeans_low, (which is rep-

resentative of kmeans_high, ssca2, and labyrinth3d, and intruder). For vacation_low (represen-

tative of vacation_high and genome), scalability is fairly flat for 16–64 threads, with some

anti-scaling.

Across all STMs we evaluate, performance is not enhanced significantly by using more

than 8 threads, so our evaluation focuses on 1–8 threads (with execution limited to one

8-core processor).
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Figure 4.6: Speedup of STMs over non-STM single-thread execution for 1–64 threads for
two representative programs.

Optimizations. All of our implemented STMs except NOrec perform concurrency con-

trol at object granularity, which can trigger false conflicts, particularly for large arrays di-

vided up among threads. We refactor some STAMP benchmarks to divide large arrays into

multiple smaller arrays; a production implementation could instead provide flexible meta-

data granularity. Furthermore, some of the most aggressive optimizations in Jikes RVM’s

optimizing compiler are disabled because they are buggy and perform unsound transfor-

mations, including loop unrolling and peeling, and common subexpression elimination for

memory loads. These optimizations are not necessarily crucial for performance, especially

on IA-32 since they can increase register pressure and lead to more register spills.

However, for several STAMP benchmarks, these optimizations are essential for allow-

ing LarkTM to identify redundant barriers and thus reduce single-thread overhead. We

have identified a few key hot loops across the STAMP benchmarks and performed manual

transformations:
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• For loops in transactions, we perform loop peeling (duplicating the the loop’s body

before its header), enabling redundant barrier analysis to identify accesses that are

redundant across loop iterations.

• For non-transactional loops, barriers are not redundant across safe points (Section 4.4).

We perform manual loop unrolling to identify some barriers redundant across loop

iterations. For example, an unroll factor of four allows identifying accesses in loop

iteration 4k that are redundant in iterations 4k + 1, 4k + 2, and 4k + 3.

• For transactional and non-transactional loops, we perform redundant load elimination

(RLE), common sub-expression elimination (CSE), and loop-invariant code motion

(LICM). These optimizations make it possible for redundant barrier analysis to de-

termine that two accessed objects definitely alias, e.g., two loads to a[i].f definitely

access the same object.

LarkTM performs concurrency control at object granularity, which can trigger false con-

flicts, particularly when a program divides a large array among threads that each access

different parts of the array. In the STAMP benchmarks kmeans and ssca2, different threads

perform conflicting accesses to different elements of shared arrays. We refactor these

programs using a transformation we call “array chunking” to eliminate this false shar-

ing. For large arrays that experience false sharing, we divide them into multiple smaller

arrays and use a level of indirection to access them. This level of indirection hurts single-

thread performance—but for all configurations (the baseline, LarkTM, and IntelSTM). Fu-

ture work should be able to avoid refactoring and the level of indirection by automatically

assigning each “chunk” of a large array its own Octet and LarkTM metadata.
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We note that all of our experiments run the manually optimized versions of the bench-

marks, making the comparison fair between LarkTM, NOrec, IntelSTM, Deuce, and single-

thread execution without STM support. The optimizations are straightforward and would

be performed by the optimizing compiler if all of its optimizations were enabled, and

by other ahead-of-time and JIT compilers, and prior work has performed these optimiza-

tions [124, 76].

Profile-guided decisions. LarkTM-S decides whether to change objects’ locks to the

contended state based on profiling (Section 4.2). In our experiments, LarkTM-S changes

an object’s lock to contended state after it performs 256 conflicting accesses. Sensitivity

is low: varying the threshold from 1 to 1024 has little impact, except for kmeans, which

performs worse for thresholds ≤128.

LarkTM-S uses offline profiling to select types (Java classes) whose instances should

be locked into contended state at allocation time. The policy selects types whose ratio of

conflicting to non-conflicting accesses is greater than 0.01, excluding common types such

as int arrays and Object. It limits the selected types so that at most 25% of the execution’s

accesses are to contended objects, since otherwise the execution might as well use Intel-

STM instead of LarkTM-S. Since profiling and performance runs use the same inputs, they

represent a best case for online profiling.

4.5.2 Execution Characteristics

Table 4.3 reports instrumented accesses executed by the four implemented STMs dur-

ing single-thread execution. The table shows that while reads outnumber writes, writes are

not uncommon. Several programs spend almost all of their time in transactions, while a

few spend significant time executing non-transactional accesses. NOrec instruments more
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NOrec IntelSTM, LarkTM-O, and LarkTM-S
Total Transactional Total Transactional Non-transactional

accesses reads writes accesses reads writes reads writes
kmeans_low 1.0×109 7.0×108 3.5×108 7.2×109 3.4×107 1.3×107 7.1×109 2.7×107

kmeans_high 1.4×109 9.2×108 4.6×108 7.5×109 2.4×107 9.1×106 7.4×109 4.6×107

ssca2 4.6×107 3.5×107 1.2×107 4.5×109 3.4×107 1.2×107 3.5×109 4.2×108

intruder 1.5×109 1.4×109 1.0×108 8.8×108 7.2×108 6.0×107 5.4×107 5.3×104

labyrinth3d 7.2×108 6.8×108 4.6×107 4.1×108 3.5×108 4.6×107 1.9×103 5.4×102

genome 1.7×109 1.7×109 6.7×107 5.3×108 2.9×108 6.9×105 2.1×108 2.1×106

vacation_low 1.4×109 1.3×109 7.8×107 7.9×108 7.2×108 2.9×107 2.0×103 1.3×107

vacation_high 1.9×109 1.8×109 1.0×108 1.1×109 1.0×109 4.0×107 1.1×104 2.1×107

Table 4.3: Accesses instrumented by NOrec, IntelSTM, LarkTM-O, and LarkTM-S during
single-thread execution.

LarkTM-O LarkTM-S
Same state Conflicting Same state Conflicting Contended read Contended write

kmeans_low 6.3×109 (99.60%) 1.3×107 (0.20%) 6.2×109 (99.49%) 8.7×104 (0.0014%)1.6×107 (0.25%) 1.6×107 (0.25%)
kmeans_high 7.6×109 (99.69%) 1.2×107 (0.16%) 7.6×109 (99.65%) 8.2×104 (0.0011%)1.3×107 (0.17%) 1.3×107 (0.17%)
ssca2 6.5×109 (99.71%) 1.2×107 (0.19%) 5.3×109 (98.0%) 5.8×106 (0.11%) 9.0×107 (1.7%) 9.2×106 (0.18%)
intruder 1.4×109 (91.6%) 6.3×107 (4.3%) 1.1×109 (76%) 3.9×107 (2.7%) 2.6×108 (11%) 2.0×107 (1.4%)
labyrinth3d 4.6×108 (99.9910%)2.2×104 (0.0048%) 4.5×108 (99.997%)2.2×104 (0.0048%)9.5×102 (0.00021%)1.3×102 (0.000028%)
genome 6.8×108 (97.1%) 1.8×107 (2.6%) 4.5×108 (79%) 1.2×105 (0.021%) 8.2×107 (14%) 2.1×106 (0.37%)
vacation_low 7.8×108 (94.3%) 2.7×107 (3.3%) 7.2×108 (81%) 2.4×106 (0.27%) 1.4×108 (9.9%) 1.7×107 (1.9%)
vacation_high 1.1×109 (95.0%) 3.2×107 (2.8%) 9.7×108 (78%) 2.5×106 (0.20%) 2.5×108 (13%) 2.1×107 (1.7%)

Table 4.4: Lock acquisitions when running LarkTM-O and LarkTM-S. Same state accesses
do not change the lock’s state. Conflicting accesses trigger the coordination protocol and
conflict detection. Contended state accesses use IntelSTM’s concurrency control. Percent-
ages are out of total instrumented accesses (unaccounted-for percentages are for upgrading
lock transitions). Each percentage x is rounded so x and 100% − x have at least two
significant digits.

transactional accesses than the other STMs because it cannot exclude instrumentation from

redundant accesses (Section 4.4). Transactional writes does not count the undo log in-

strumentation that IntelSTM, LarkTM-O, and LarkTM-S add at every transactional write

(Section 4.4).

Table 4.4 reports lock state transitions for LarkTM-O and LarkTM-S running STAMP

with 8 application threads. The Same state column reports how many instrumented ac-

cesses require no lock state change, meaning they take the fast path. For LarkTM-O, more
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than 90% of accesses fall into this category for every program. Conflicting lock acquires

require coordination with other thread(s) in order to change the lock’s state. Although

LarkTM-O achieves a relatively low fraction of lock acquires that are conflicting—always

less than 5%—coordination costs affect scalability significantly.

LarkTM-S successfully avoids many conflicting transitions by using the contended

state, often reducing conflicting lock acquires by an order of magnitude or more. At the

same time, many same-state accesses become contended-state accesses. More than 10%

of accesses are to contended objects in four programs (intruder, genome, vacation_low, and

vacation_high).

Table 4.5 counts transactions committed and aborted for the four STMs implemented

in Jikes RVM, running STAMP with 8 threads. Different conflict resolution and contention

management policies lead to different abort rates for the STMs. Several programs have a

trivial abort rate; others abort roughly 10% of their transactions. LarkTM-O and LarkTM-

S have different abort rates because LarkTM-S uses IntelSTM’s conflict resolution and

contention management for contended accesses. Although we might expect IntelSTM’s

suboptimal contention management to lead to more aborts, the implementations are not

comparable: LarkTM always resolves conflicts by aborting a thread, while IntelSTM waits

for some time (rather than aborting immediately) for a contended lock to become available.

NOrec often has the lowest abort rate, mainly (we believe) because it performs conflict

detection at field and array element granularity, so its transactions do not abort due to

false sharing. In contrast, the other STMs detect conflicts at object granularity. As our

performance results show, abort rates alone do not predict scalability, which is influenced

strongly by other factors such as LarkTM’s coordination protocol and NOrec’s global lock.
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Transactions Transactions aborted at least once
committed NOrec IntelSTM LarkTM-O LarkTM-S

kmeans_low 6.2×106 4.4% 0.2% 1.8% 0.2%
kmeans_high 5.1×106 3.7% 0.3% 2.9% 0.4%
ssca2 5.8×106 < 0.1% 4.1% 4.7% 2.8%
intruder 2.4×107 7.5% 24.2% 35.1% 7.9%
labyrinth3d 2.9×102 3.8% 15.3% 0.3% < 0.1%
genome 2.5×106 < 0.1% 0.1% 0.2% < 0.1%
vacation_low 4.2×106 < 0.1% 0.3% 8.4% 0.1%
vacation_high 4.2×106 < 0.1% 0.5% 7.6% < 0.1%

Table 4.5: Transactions committed and aborted at least once for four STMs.

4.5.3 Performance Results

This section compares the performance of the STMs with each other and with uninstru-

mented, single-thread execution.

Overhead of strong atomicity. We first evaluate the cost of strong atomicity alone by

using non-transactional benchmarks: the DaCapo Benchmarks [18], versions 2006-10-

MR2 and 9.12-bach (excluding benchmarks that are single-threaded or that Jikes RVM

cannot run12) with the large workload size; and fixed-workload versions of SPECjbb2000

and SPECjbb2005.13

Figure 4.7 presents the runtime overhead IntelSTM, LarkTM-O, and LarkTM-S add

to non-transactional programs. (Deuce and NOrec are weakly atomic; they do not instru-

ment non-transactional accesses.) IntelSTM, which performs an atomic operation at every

non-transactional write and validates every non-transactional read, slows non-transactional

programs by 75% on average. LarkTM-O and LarkTM-S incur coordination overhead due

12We also exclude avrora9 since our implementation of IntelSTM fails on it for a reason we have not yet
diagnosed, although LarkTM runs it correctly.

13http://spec.org/jbb200{0,5}, http://users.cecs.anu.edu.au/~steveb/
research/research-infrastructure/pjbb2005
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Figure 4.7: Overhead added to non-transactional programs by strongly atomic STMs. The
6 and 9 suffixes distinguish DaCapo 2006 and 2009.

to conflicting accesses, since these programs are multi-threaded. This effect is greatest for

LarkTM-O running pjbb2005, which has the highest rate of conflicting accesses; LarkTM-S

reduces this overhead substantially by putting high-conflict objects’ locks into the con-

tended state. On average, LarkTM-O and LarkTM-S provide strong atomicity with 41 and

33% overhead, respectively. For this experiment, LarkTM-S uses only online object-based

(not offline type-based) profiling.

Single-thread overhead. Transactional programs execute multiple parallel threads in or-

der to achieve high performance. Nonetheless, single-thread overhead is important because

it is the starting point for scaling performance with more threads. Existing STMs have

struggled to achieve good performance largely because of high instrumentation overhead

(Section 1.1.2) [160, 37].
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Figure 4.8: Single-thread overhead (over non-STM execution) added by the five STMs.
Lower is better.

Figure 4.8 shows the single-thread overhead (i.e., instrumentation overhead) of the five

STMs, compared to single-thread performance on Jikes RVM without STM, except for

Deuce, which is normalized to single-thread performance on OpenJDK JVM. Deuce slows

programs by almost 6X on average relative to baseline OpenJDK JVM, which we find is

33% faster than Jikes RVM on average.

Our NOrec and IntelSTM implementations slow single-thread execution significantly—

by 2.9 and 3.3X on average—despite targeting low overhead. NOrec in particular aims

for low overhead and reports being one of the lowest-overhead STMs [49]. IntelSTM

targets low overhead by combining eager concurrency control for writes with lazy read

validation [135]. Yet they still incur significant costs: NOrec buffers each write; and it

looks up each read in the write set and (if not found) logs the read in the read validation

log. IntelSTM performs atomic operations at many writes, and it logs and later validates

92



reads. LarkTM-O yields the lowest instrumentation overhead (1.40X on average), since

it minimizes instrumentation complexity at non-conflicting accesses. LarkTM-S’s single-

thread slowdown is 1.73X; its instrumentation uses atomic operations and read validation

for accesses to objects with locks in contended state. In single-thread execution, LarkTM-S

puts objects into contended state based on offline type-based profiling only.

An outlier is ssca2, for which NOrec performs the best, since a high fraction of its

accesses are non-transactional (Table 4.3). While kmeans_low and kmeans_high also have

many non-transactional accesses, the overhead of its transactional accesses, which execute

in relatively short transactions, is dominant.

IntelSTM’s very high overhead on labyrinth3d is related to its long transactions, which

lead to large read and write sets. IntelSTM’s algorithm has to validate some read set en-

tries by linearly searching the (duplicate-free) write sets, adding substantial overhead for

labyrinth3d because its write sets are often large. IntelSTM could avoid this linear search by

incurring more overhead in the common case, as in a related design [76]. If we remove the

validation check, IntelSTM still slows labyrinth3d’s single-thread execution by 4X.

NOrec also adds high overhead for labyrinth3d. We find that whenever the instrumenta-

tion at a read looks up the value in the write set, the average write set size is about 64,000

elements. In contrast, the average write set size is at most 16 elements for any other pro-

gram. Although our NOrec implementation uses a hash table for the write set, it is plausible

that larger sizes lead to more-expensive lookups (e.g., more operations and cache pressure).

Scalability. Figure 4.9 shows speedups for the STMs over non-STM single-thread exe-

cution for 1–8 threads. Each single-thread speedup is simply the inverse of the overhead

from Figure 4.8.
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Figure 4.9: Performance of Deuce, NOrec, IntelSTM, LarkTM-O, and LarkTM-S, normal-
ized to non-STM single-thread execution (also indicated with a horizontal dashed line).
The x-axis is the number of application threads. Higher is better.

Deuce, NOrec, and IntelSTM scale reasonably well overall, but they start from high

single-thread overhead, limiting their overall best performance (usually at 8 threads). Lark-

TM-O has the lowest single-thread overhead on average, yet it scales poorly for several pro-

grams that have a high fraction of accesses that trigger conflicting transitions—particularly

genome and intruder. Execution time increases for vacation_low and vacation_high from 1 to

2 threads because of the cost of coordination caused by conflicting lock acquires, then
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decreases after adding more threads and gaining the benefits of parallelism. LarkTM-

S achieves scalability approaching IntelSTM’s scalability because LarkTM-S effectively

eliminates most conflicting lock acquires. Starting at two threads, LarkTM-S provides the

best average performance by avoiding most of LarkTM-O’s coordination costs while re-

taining most of its low-cost instrumentation benefits.

Just as prior STMs have struggled to outperform single-thread execution [55, 37, 160,

3], Deuce, NOrec, and IntelSTM are unable, on average, to outperform non-STM single-

thread execution. In contrast, LarkTM-O and LarkTM-S are 1.07X and 1.69X faster, re-

spectively, than (non-STM) single-thread execution.

Figure 4.9(i) shows the geomean of speedups across benchmarks. The following table

summarizes how much faster LarkTM-O and LarkTM-S are than other STMs:

Deuce NOrec NOrec− IntelSTM IntelSTM−

LarkTM-O 3.54X 1.09X 0.93X 1.22X 0.87X
LarkTM-S 5.58X 1.72X 1.47X 1.93X 1.37X

The numbers represent the ratio of LarkTM-O or LarkTM-S’s speedup to each other STM’s

speedup, all running 8 threads. NOrec− and IntelSTM− are geomeans without labyrinth3d.

Results on a different platform. We have repeated the performance experiments on a

system with four Intel Xeon E5-4620 8-core processors (32 cores total).

Figure 4.10 shows speedups for each STAMP benchmark and the geomean. Single-

thread overhead and scalability are similar across both platforms. As on the AMD plat-

form, NOrec, IntelSTM, and LarkTM-O have similar performance on average on the Intel

platform, although LarkTM-O performs slightly worse in comparison on the Intel platform.

On both platforms, LarkTM-S significantly outperforms the other STMs on average.
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Figure 4.10: STM performance for 1–8 threads on an Intel Xeon platform. Otherwise same
as Figure 4.9.

Figure 4.11 shows scalability for 1–32 threads for the same two representative STAMP

benchmarks as Figure 4.6. Although on vacation_low the STMs may seem to scale better on

the Intel machine, we note that Figure 4.11 evaluates only 1–32 threads.

Summary. Across all programs, LarkTM-O provides the lowest single-thread overhead,

NOrec and IntelSTM typically scale best, and LarkTM-S does well at both.

4.6 Conclusion and Interpretation

As introduced in Section 1.1, runtime support can be used to provide high-level pro-

gramming abstractions to better express parallelism. One such an example is transactional
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Figure 4.11: STM performance for 1–32 threads on an Intel Xeon platform. Otherwise
same as Figure 4.6.

memory, which serves as a programming model that simplifies concurrent programming.

The dissertation identifies the main challenges of existing STMs: either they suffer from

high overhead or support only weak semantics. To make transactional memory more practi-

cal, this chapter presents two novel STM designs that provide high performance and strong

semantics.

To tackle one of STM’s key cost in existing work—detecting and handling conflicting

accesses, we introduce LarkTM-O, which uses a novel mechanism for tracking conflicting

dependences that avoids synchronization except at truly conflicting accesses. LarkTM-O

provides strong atomicity with low overhead. Furthermore, to address how to make our

approach scale to high-contention workloads, we introduce a hybrid mechanism LarkTM-

S, which uses online profiling to identify contended objects and dynamically switches those

objects to use less-aggressive concurrency control that incurs less synchronization overhead

(but slightly more instrumentation overhead) for high-contention accesses. The hybrid

approach achieves the best of both worlds in terms of performance and scalability. Our
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performance results show that both LarkTM-O and LarkTM-S have much lower overhead

and high scalability than state-of-the-art STMs. Furthermore, LarkTM provides strong

semantics and strong progress guarantees, justifying our choice of such strong semantics

over weak semantics provided by many existing STMs.

By showing how to build STM systems with low overhead and strong semantics, this

work can promote the use of transactional memory in mainstream concurrent programming.

Our work would help researchers and practitioners to evaluate STM’s true programmability

and reliability benefits. We believe that widespread use of STM would encourage more

commercial development of hardware support for TM (e.g., to build hardware–software

hybrid TMs, which still need STM support). Practical TM would also provide system

benefits such as protection against security attacks, which would make concurrent programs

more reliable and scalable, enabling greater reliance on concurrent programs for safety- and

mission-critical tasks.
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Chapter 5: Software Transactional Memory with Relaxed Dependence

Tracking

Chapter 4 shows that STM can support strong semantics and strong progress guarantees

in an efficient, scalable way on existing multicore processors. Chapter 3 introduces the

relaxed dependence tracking that can hide coordination latency. Is it possible to combine

the features of both LarkTM and RT: support for low-overhead and strongly atomic STM

with even better scalability? This chapter introduces RT-based STM, which extends from

both LarkTM-O and RT to hide latencies caused by transactional conflict detection. We

also discuss how the resulting composite implementation compares with the existing STM.

5.1 Extending LarkTM-O with RT

This section describes how we extend LarkTM-O (introduced in Section 4.1) to use

RT. LarkTM-O uses biased reader–writer locks. For ease of description, we denote biased

reader–writer locks as strict dependence tracking since it tracks each cross-thread depen-

dences soundly (i.e., does not miss any dependences). We refer LarkTM-O as ST-based

STM since LarkTM-O employs biased reader–writer locks to provide eager concurrency

control: it detects and resolves conflicts before performing each memory access. Conflict

detection and resolution piggyback on coordination.
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Here we focus on how the STM piggybacks on coordination that uses an explicit re-

quest. In that case, the responding thread detects and resolves conflicts between the re-

sponding thread’s transaction and the requesting thread’s transaction or non-transactional

access.

Extending the LarkTM-O to use RT presents challenges. Unless handled properly,

the STM could be unable to detect and resolve transactional conflicts for relaxed loads and

stores. Figure 5.1(a) shows an example of a problematic execution. Thread T2 performs two

relaxed loads from o.f in a transaction, since o’s lock is in WrExT1 state. T1 performs conflict

detection when it responds to T2, but by then T1 has started another transaction that has not

accessed o, so T1 accurately reports no transactional conflict. Similarly, T1’s transaction

might have accessed o, but once T1 receives the request, it has already left the transaction,

causing T1 to report no transactional conflict either (Figure 5.1(b)). However, the result

is unserializable because T2’s loads see different values. Another problematic issue (not

shown) is that performing relaxed transactional stores directly could lead to unserializable

results due to another thread loading the value simultaneously.

Our RT-based STM addresses these issues as follows. In RT-based STM, each relaxed,

transactional load logs its loaded value, and validates the value later. (In Figure 5.1, T2’s

transaction would fail the read validation before commit and abort.) Each relaxed, trans-

actional store is deferred, to provide opacity of intermediate updates before the transaction

commits. Before a transaction commits, it waits for coordination responses so it can vali-

date all relaxed loads and perform all deferred stores.

Relaxed loads. A requesting thread reqT performs a relaxed load when it reads from an

object o locked in the WrExIntreqT or RdExIntreqT state. reqT first checks its store buffer for the

100



(a) (b)

Figure 5.1: Allowing unhandled relaxed accesses in transactions would lead to serializabil-
ity violations. The values in parentheses after each executed store and load are the values
written and read, respectively.

value (only if the object’s state is WrExIntreqT). If not found, reqT performs the load—but re-

sponding thread(s) may be simultaneously writing to o, potentially violating serializability.

reqT thus logs the loaded location and value in a read validation log.

When reqT receives the response for o, it validates all entries in the read validation log

against o’s current value(s), as the following pseudocode shows:
foreach (addr, value) in readValidationLog

if (∗addr != value) abortTxn();

For every field or array element of o in the read validation log, the current value must match

the log’s value. This logic makes sense as follows. The responding thread responded at

some safe point where it performed conflict detection (and potentially conflict resolution).

Validating the loaded value ensures that the values that were read previously for o are the

same as if the values had all been read at the responding thread’s responding safe point.
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If validation fails, reqT must abort its current transaction. (If respT responds implicitly, it

performs the above work on behalf of reqT.)

Relaxed stores. A requesting thread reqT defers a relaxed store by buffering its location

(address) and value in the store buffer, which is analogous to the redo log used by STMs

that use lazy versioning [75]. After reqT receives all responses for o, it performs the store(s)

for o from the store buffer—and also logs the store(s) in the undo log. (If respT responds

implicitly, it performs all of these actions on behalf of reqT.)

Commit and abort. Before a transaction commits or aborts, it waits for all outstanding

responses, in order to validate loads and perform deferred stores. Unlike our general RT

design, our RT-based STM does not support loads by T to objects locked in intermediate

states other than WrExIntT and RdExIntT ; supporting loads from other states would require a

mechanism for eventually changing the lock’s state to WrExT, RdExT, or RdSh in order to

validate reads before commit.

5.2 Comparison with ST-based STM

This section compares the progress guarantees and semantics of RT-based STM against

that of ST-based STM.

Guaranteeing progress. The ST-based STM guarantees progress by detecting all con-

flicts eagerly and then aborting the younger transaction [141, 164]. However, the RT-based

STM cannot guarantee progress, since any transaction that fails read validation must abort.

Other mixed-mode STMs have similarly lacked progress guarantees [76, 124]. Standard

techniques such as exponential backoff can help to alleviate livelock. For RT-based STM,
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a simple (unimplemented) solution exists: if a transaction repeatedly fails read validation,

it falls back to use strict dependence tracking, guaranteeing it will commit (at least once it

becomes oldest).

Correctness. At a high level, RT-based STM provides serializability by guaranteeing

that all of a committing transaction’s operations appear as though they happened instanta-

neously at commit time. For conflicting accesses handled by ST, eager conflict detection

and resolution guarantee that conflicting accesses between the committing transaction’s

accesses and commit time will be detected and resolved. (RT-based STM uses the same

mechanism for relaxed stores, but defers making the store visible until relaxed coordination

has finished.) For relaxed loads, commit-time value validation ensures that each value from

a relaxed load is consistent with the commit-time value of the memory location.

Semantics. Lazy read validation can lead to so-called zombie transactions whose behav-

ior is impossible in any serializable execution [75]. In managed languages such as Java,

zombies are not a serious problem because memory and type safety are preserved [104, 47].

Targeting a native language such as C++ would require additional support to provide sand-

boxing of zombie transactions [47]. Another issue is that zombie transactions can get stuck

in infinite loops that are impossible in any serializable execution. RT-based STM cannot

experience this issue because it validates relaxed loads within a bounded amount of time.
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5.3 Evaluation

We compare the ST-based STM and RT-based STM using the transactional STAMP

benchmarks. STAMP provides low- and high-contention workloads for kmeans and vaca-

tion; here we evaluate only low contention because high contention shows virtually iden-

tical differences between the two STMs. Figure 5.2 shows the execution time of the ST-

based STM and RT-based STM. We first note that both STMs typically scale poorly after 8

threads; prior work has also found that STAMP has limited scalability [167]. Furthermore,

our platform has 8 cores per socket, leading to greater inter-thread communication for >8

threads.

For genome and vacation, RT reduces overhead for 2–8 application threads, but the ben-

efit decreases with more threads. For genome, the ratio of implicit to explicit requests

increases substantially with more threads (statistics not shown), leading to fewer opportu-

nities for RT to improve performance. For vacation, the implicit-to-explicit ratio stays fairly

constant across thread counts, but RT’s benefit diminishes because accesses per thread de-

crease as threads increase, leading to less latency per thread for RT to reduce.

Fewer than 0.01% of labyrinth3d’s accesses trigger coordination, so it cannot benefit

noticeably from RT.

For kmeans, intruder, and ssca2, RT provides sustained or increasing benefit over ST

for 8 to 32 threads. For these programs, RT-based STM achieves a significantly lower rate

of aborting transactions than the ST-based STM. RT-based STM validates relaxed loads at

object field and array element granularity, as opposed to the ST-based STM’s loads, which

use reader locks and read sets at object granularity, leading to more transactional conflicts

due to false sharing—an interesting side effect of supporting relaxed loads. However, direct
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Figure 5.2: Performance of ST-based STM and RT-based STM.

benefits from RT are limited because many transactions are short, and RT-based STM must

wait at transaction end for all outstanding relaxed accesses (Section 3.2).

5.4 Conclusion and Interpretation

In Chapter 3, we introduced RT and we claimed it could be used for supporting many

runtime support, and in Chapter 4 we introduced a runtime support based STM system

LarkTM. In this chapter, we demonstrated RT’s practicality by extending LarkTM-O with

RT. The extended STM scales better than LarkTM-O while still permitting strong atomicity

and progress guarantees. Tests show that this approach is a viable option even though RT’s

benefit is somewhat limited by TM’s correctness constraints. Ultimately, this work shows
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the possibilities to further improve the scalability of dependence-tracking-based runtime

support while still being able to preserve low-overhead and strong semantics.
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Chapter 6: Strong Memory Consistency Models With Fail-Stop

Semantics

Allowing multiple threads to concurrently read and write a set of common memory lo-

cations complicates the behavior or semantics of memory operations in a shared-memory

platform. However, programmers need a conceptual model (i.e., referred to as memory

model or memory consistency model) for the semantics of memory operations to allow

them to correctly write concurrent programs. The memory model therefore is at the heart

of the concurrency semantics. Modern compilers perform optimizations such as code mo-

tion, loop transformations, and register allocation, and hardware performs optimizations

such as pipelining, branch prediction, forwarding, issuing multiple instructions in the same

clock cycle(s), and even reordering the instruction stream for out-of-order execution. Most

of these optimizations are safe for sequential programs, but can change the meaning of

concurrent programs and cause visible effects that can break programmer expectations.

A memory model defines the interface between the program and any hardware or software

that may transform that program, trying to eliminate the gap between the behavior expected

by the programmer and the actual behavior supported by a system.

Modern weak consistency model such as Java memory model (JMM) and C++ memory

model provide only guarantees to data-race-free programs [100, 4]. Researchers therefore

have also proposed stronger memory consistency models that treat data races as legal but
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exceptional behavior and throw an exception in the presence of a data race so that a data

race can still have well-defined behavior (as introduced in Section 2.3). Existing strong

memory models are promising, but has some potential problems: mainly exceptions and

complexity.

This chapter introduces a new strong memory model and a mechanism on how to en-

force the strong memory model in runtime. It is also the first to our knowledge to consider

and address the problem of availability in memory consistency models that generate consis-

tency exceptions. The goals are to explore alternatives to current approaches that provide

the strong memory model RSx (region serializability exceptions, see Section 2.3) and to

develop approaches that provide better performance–availability tradeoffs than existing ap-

proaches.

Section 6.2 develops mechanisms for avoiding consistency exceptions under RSx, which

improve availability significantly. In an effort to improve availability further, Section 6.3 in-

troduces a new memory model called SIx, which is still principled, meaning that it provides

well-defined semantics at region granularity, and does not inhibit compiler and hardware

optimizations. Section 6.4 presents two approaches for providing SIx that represent dif-

ferent points in the performance–availability space. Section 6.7 evaluates the availability,

performance, scalability, space overhead, and runtime characteristics of our mechanisms to

support strong memory models.
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6.1 Motivation

In section 2.3, we introduced a memory model RSx. Although RSx provides strong,

well-defined semantics, supporting it incurs a major disadvantage: the possibility of con-

sistency exceptions. Another challenge is the cost and complexity of detecting region con-

flicts. The drawbacks of providing RSx are:

Availability. RSx provides well-defined semantics even for racy executions. On the other

hand, any racy execution can throw a consistency exception, essentially trading availability

for strong, well-defined semantics. Data races occur unexpectedly, and then may or may not

manifest unexpectedly as consistency exceptions depending on whether the race manifests

as a region conflict.

Under RSx, data races are potential fail-stop errors, just like buffer overflows and null

pointer exceptions in memory- and type-safe languages such as Java. Ideally, program-

mers would eliminate nearly all data races by addressing consistency exceptions encoun-

tered during testing and early production runs (e.g., alpha and beta testing). An additional

mitigating factor is that programmers or automatic techniques may be able to handle con-

sistency exceptions in a way that preserves availability. Nonetheless, we expect that con-

sistency exceptions will occur unexpectedly and affect availability—just like null pointer

exceptions—which may frustrate developers and users more than the (often silent and un-

known) consequences of racy executions under DRF0. Prior work on memory models that

generate consistency exceptions has not considered the issue of availability nor how to

reduce exceptions [58, 17, 98, 101, 137].
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Performance. Existing work that provides RSx incurs significant cost and complexity,

whether implemented in hardware or software. Conflict Exceptions augments the cache

coherence protocol in order to detect region conflicts, and adds on-chip network traffic

and space overheads, making cache evictions and region boundaries more expensive [98].

Biswas et al. present two software-only approaches for providing RSx [17]. The first, Fast-

RCD, slows down executions by 3.7X on average. The second approach, Valor, slows

executions by 2.0X on average, through lazy detection of read–write conflicts. While ad-

vantageous for performance, it cannot tolerate read–write conflicts leading to consistency

exceptions, although we find this problem is not substantial in practice on average. Valor

incurs two other disadvantages: it provides asynchronous exceptions and cannot easily

handle unsafe languages such as C++ (Section 6.2.2). Common to existing software and

hardware approaches for providing RSx is the cost and complexity of tracking the last re-

gion(s) to read each variable (for example, Valor has to log reads [17]), in order to detect

or infer read–write conflicts accurately.

6.2 Increasing Availability Under RSx

This section extends two analyses from prior work [17] that provide RSx, FastRCD

and Valor, in order to avoid consistency exceptions while still providing RSx. While these

extensions by themselves are not huge intellectual contributions, our work is the first to

introduce and evaluate them.

6.2.1 FastRCD and FastRCD-A

FastRCD is an analysis from prior work that provides RSx. Our presentation of Fast-

RCD, including notations and algorithms, is closely based on prior work’s presentation [17].
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We extend FastRCD to wait, instead of throwing consistency exception, when it detects a

region conflict. We call the resulting analysis FastRCD-A (Available).

FastRCD uses epoch optimizations from an existing data race detection analysis called

FastTrack [63]. The analysis maintains, for each shared variable, (1) the last region that

wrote the variable and (2) the last region(s) (one per thread) that read the variable since

the last write. The analysis identifies regions by maintaining a per-thread logical clock for

each thread; a thread’s clock starts at 1, and the analysis increments it every time the thread

executes a region boundary. FastRCD uses the following notation:

clock(T) – Returns the current clock c of thread T.

epoch(T) – Returns the epoch c@T, where c is the current clock of thread T.

Wx – Represents last-writer metadata for variable x, as the epoch c@t, which means t last

wrote x at time c.

Rx – Represents last-reader metadata for x, as a read map that maps each thread to a clock

value (or 0 if not present in the map).

Our FastRCD-A analysis extends FastRCD by waiting at detected region conflicts, until ei-

ther (1) the region conflict no longer exists, in which case the analysis proceeds, or (2) the

analysis detects a cyclic waiting dependency, in which case the analysis throws a consis-

tency exception. Algorithms 1, 2, and 3, show FastRCD-A’s analysis at region boundaries

and program writes and reads, respectively.

Next, we describe the high-level operation of FastRCD-A’s (and FastRCD’s) analysis

at program reads and writes. The first if statement in Algorithms 2 and 3 checks whether

this region has already written or read this variable, respectively, in which case the algo-

rithm needs not check for conflicts or update read/write metadata. Otherwise, the analysis
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Algorithm 1 REGION BOUNDARY [FastRCD-A]: thread T’s region ends
1: incClock(T) .Increment value returned by clock(T)

Algorithm 2 WRITE [FastRCD-A]: thread T writes x
1: let c@t←Wx

2: if c@t 6= epoch(T) then .First write to x by this region?
3: if t 6= T ∧ clock(t) = c then .Write–write conflict?
4: if deadlocked then
5: throw consistency exception
6: else
7: Retry from line 1
8: for all t’ 7→ c’ inRx do
9: if t’ 6= T ∧ clock(t’) = c’ then .Read–write conflict?

10: if deadlocked then
11: throw consistency exception
12: else
13: Retry from line 1
14: Wx← epoch(T) .Update write metadata
15: Rx← ∅ .Clear read metadata

checks for write–write and then read–write conflicts (Algorithm 2) or write–read conflicts

(Algorithm 3) by checking whether the last writer and reader regions are still ongoing (i.e.,

clock(t) = c). Note that checking for read–write conflicts involves checking for conflicts

with every other thread’s “last reader” region of x. If a conflict is detected, FastRCD-A

tries to tolerate the region conflict by letting T wait (i.e., retry from line 1). After checking

for conflicts, the analysis at a write or read updates the variable’s write or read metadata,

respectively. Additionally, the analysis at a write clears the read metadata. Instrumentation

atomicity needs to be guaranteed at these operations, as discussed in Section 6.6.
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Algorithm 3 READ [FastRCD-A]: thread T reads x
1: if clock(T) 6=Rx[T] then .First read to x by this region?
2: let c@t←Wx

3: if t 6= T ∧ clock(t) = c then .Write–read conflict?
4: if deadlocked then
5: throw consistency exception
6: else
7: Retry from line 1
8: Rx[T]← clock(T) .Update read metadata

Figure 6.1: FastRCD-A avoids/tolerates some region conflicts: the read at (1) will cause a
region conflict, but by waiting until (2), it succeeds without a consistency exception.

FastRCD differs from FastRCD-A in how it handles conflicts (lines 7 and 13 in Algo-

rithm 2 and line 7 in Algorithm 3). Instead of checking for a deadlock, FastRCD simply

throws a consistency exception.

Figure 6.1 shows an example of how FastRCD-A works. The boxes represent program

regions in each thread; time flows downward. Suppose that thread T2 has not accessed x in

its current region before reading x at time (1). When T2 tries to read x at (1), it causes a

region conflict with the previous write to x by T1 in region Ri, because T1 is still executing

Ri. T2 handles the region conflict by waiting until T1 finishes its region (Ri), at which point

T2 retries its read at time (2) and continues execution safely.
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Waiting-induced deadlocks. Due to waiting, FastRCD-A can run into waiting-induced

deadlocks. FastRCD-A maintains a global region wait-for graph in order to detect these

deadlocks. The graph’s nodes represent regions labeled with an epoch c@t, and the graph

contains at most one region per node. Each node has at most one wait-for edge from and to

another region. When one thread needs to wait for another thread to finish, a wait-for edge

is added into the wait-for graph. An edge-chasing deadlock detection algorithm is used to

find cycles in the graph [83].

Precise exceptions. FastRCD-A (and FastRCD) provide precise consistency exceptions,

meaning that it suspends a thread’s execution immediately before it performs a conflict-

ing access. Precise exceptions are easier to handle and debug than asynchronous excep-

tions [17].

6.2.2 Valor and Valor-A

As prior work and our evaluation show, FastRCD adds high runtime overhead, which

is largely due to the cost of tracking last-reader metadata Rx. Biswas et al. introduce an

analysis called Valor that elides tracking of x’s last-reader metadata [17]. Instead, Valor

logs each read in a per-thread read log, and infers read–write conflicts lazily at region end.

In addition to the epoch(T) and clock(T) helper functions used by FastRCD, Valor uses

the following notation (based closely on prior work [17]):

Wx – Represents last-writer metadata for variable x, as 〈v, c@t〉, where v is a version and

c@t is an epoch. A variable’s version starts at 0, and the analysis increments it at

every write to the variable.
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T.readLog – Represents thread T’s read logs. Each entry in the log has the form 〈x, v〉,

where x identifies the variable and v is x’s version when it was read.

We extend Valor to wait at detected conflicts instead of throwing a consistency exception.

We call the resulting analysis Valor-A (Available). Algorithms 4–6 show Valor-A’s analysis

at writes, reads, and region boundaries.

Algorithm 4 WRITE [Valor-A]: thread T writes variable x

1: let 〈v, c@t〉 ←Wx

2: if c@t 6= epoch(T) then .First write to x by this region?
3: if t 6= T ∧ clock(t) = c then .Write–write conflict?
4: if deadlocked then
5: throw consistency exception
6: else
7: Retry from line 1
8: Wx← 〈v+1, epoch(T)〉 .Update write metadata

Algorithm 5 READ [Valor-A]: thread T reads variable x

1: let 〈v, c@t〉 ←Wx

2: if t 6= T ∧ clock(t) = c then .Write–read conflict?
3: if deadlocked then
4: throw consistency exception
5: else
6: Retry from line 1
7: T.readLog← T.readLog ∪ {〈x, v〉}

Like FastRCD-A, Valor-A waits at detected write–write and write–read conflicts until

the conflict no longer exists or the analysis detects a deadlock due to waiting on conflicts.

However, unlike FastRCD-A, Valor-A cannot wait when it infers a read–write conflict:

both the read and write accesses have already executed, so it is too late to try to avoid the
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Algorithm 6 BOUNDARY [Valor-A]: T’s region ends
1: for all 〈x, v〉 ∈ T.readLog do
2: let 〈v’, c@t〉 ←Wx

3: if (v’ 6= v ∧ t 6= T) ∨ v’ ≥ v + 2 then
4: Throw consistency exception .Read–write conflict?
5: T.readLog← ∅

conflict. Note that if the condition (v’ 6= v ∧ t 6= T) ∨ v’ ≥ v + 2 holds true, the condition

cannot become false by waiting.

Valor-A (and Valor) therefore throw asynchronous consistency exceptions for read–

write conflicts. Asynchronous exceptions can be problematic because the reader region has

already executed using inconsistent values. This problem is particularly acute in the context

of a memory- and type-unsafe language such as C++, where so-called “zombie” regions can

lead to corruption that would not be possible in any RS execution [75, 47, 17]. Furthermore,

asynchronous exceptions are difficult to use during development and debugging.

Thus, FastRCD is amenable to avoiding consistency exceptions, but it adds high run-

time overhead. Valor improves performance by inferring read–write conflicts lazily, but it

is not as well suited to avoiding consistency exceptions.

6.3 SIx: A New Strong Memory Model

The previous section presented our extensions to analyses that provide RSx, in an effort

to avoid consistency exceptions as much as possible. Our evaluation shows that FastRCD-A

and Valor-A generate significantly fewer exceptions than their non-waiting counterparts.

Can an approach provide availability comparable to or better than FastRCD-A’s and

performance comparable to Valor-A’s? To achieve this goal, we relax consistency guar-

antees while still providing strong, principled semantics. This section introduces a new

116



memory consistency model called SIx, and the next section introduces an analysis for sup-

porting SIx.

This new SIx memory model is based on providing snapshot isolation of regions, or SI.

SI is weaker than region serializability (RS): under SI, a region that reads a variable can

be concurrent with a region that later writes the variable. Although SI is weaker than RS,

prior work (in database systems) has observed that behaviors that lead to SI instead of RS

semantics are rare in practice [62, 95]. Our insight here is that an approach that provides

SI can potentially have lower runtime costs and fewer conflicts because it does not need to

detect read–write conflicts accurately.

6.3.1 Snapshot Isolation of Regions

Prior work first introduced SI in the context of database processing [13]. Most of the

database literature defines SI operationally. Here we give a definition based on execution

equivalence, followed by a definition of conflict SI, which is a sufficient condition for SI.

Both definitions are based closely on prior work.

Snapshot isolation. An execution is SI if it is equivalent to (has the same outcome as)

some serial execution in which (1) each region R’s reads14 and writes each execute together

as a group (without intervening accesses), (2) each region R’s reads execute before its

writes, and (3) another region Q’s writes execute between R’s reads and writes only if R

and Q write distinct sets of variables [85].

In contrast, serializability demands equivalence to a serial execution in which all of a

region’s accesses (reads and writes) execute together without interruption [116, 114].

14These reads do not include reads from variables that the region has already written. These “local” reads
always read the value that the region wrote.
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T1 T2
int t = x + y + 1; (1) int t = x + y + 1; (1)
y = t; x = t;

(a) SI and SC but not RS.

T1 T2
int t = x + 1; (1) int t = x + 1; (1)
x = t; x = t;

(b) SC but not SI (and thus not RS).

T1 T2
x = 1; y = 1;
int t = y; (0) int t = x; (0)

(c) SI but not SC (and thus not
RS).

Figure 6.2: Example executions comparing SI to RS and SC. Each thread executes just
one region. Shared variables x and y are initially 0. Values in parentheses are the result of
evaluating a statement’s right-hand side.

Figure 6.2 shows a few examples to help understand the difference between RS and SI

as well as sequential consistency (SC). Figure 6.2(a) shows by example that SI is weaker

than RS. In contrast, Figure 6.2(b)’s execution violates SI (and thus RS): under SI, the re-

gions cannot be concurrent because their write sets overlap. SI provides isolation, but not

necessarily sequential consistency (SC), as Figure 6.2(c) shows. Despite not subsuming

SC, SI is likely to be more intuitive (in addition to more practical to enforce) than SC: pro-

grammers already reason about code regions, and, while SI provides isolation of regions,

SC subjects programmers to subtle reasoning about interleavings of memory accesses (Sec-

tion 2.3).

Conflict SI. SI, as defined above, is not directly useful for designing approaches that

provide SI. Instead, we use a slightly stronger property, conflict SI, a sufficient condition

for SI that a dynamic analysis can check on the fly. Conflict SI is analogous to conflict

serializability [155, 15].

The following definitions, which lead up to conflict SI, are closely based on prior

work [8, 7]. Adya’s dissertation proves that conflict SI is a sufficient condition for SI [7].

A multi-threaded execution consists of reads and writes executing in regions. The fol-

lowing notation describes read and write operations in an execution:
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• wi(xi): a write to variable x by region Ri

• rj(xi): a read from x by region Rj , which sees the value written by region Rj (i = j

is allowed)

The following definition captures the notion of ordering in a multi-threaded execution:

Definition 1 (Time-precedes order). This order ≺t is a partial order over an execution’s

operations such that:

1. si ≺t ei, i.e., the start of a region precedes its end.

2. For any two regions Ri and Rj , either ei ≺t sj or sj ≺t ei. That is, the end of one

region is always ordered with start of every other region.

Definition 2 (Conflict SI). An execution is conflict SI if the following conditions hold:

1. Two concurrent regions cannot modify the same variable. That is, for any two writes

wi(xi) and wj(xj) such that i 6= j, either ei ≺t sj or ej ≺t si.

2. Every read sees the latest value written by preceding regions. That is, for every ri(xj)

such that i 6= j:15

(a) ej ≺t si and

(b) for any wk(xk) in the execution such that j 6= k, either si ≺t ek or ek ≺t sj .

In the above definition, changing si ≺t ek (in part 2b) to ei ≺t sk yields the definition of

conflict serializability.

15if i = j, ri(xj) sees the value from the latest wi(xi).
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6.3.2 A Memory Model Based on Snapshot Isolation

We introduce a new memory model called SIx based on snapshot isolation of regions

(SI). Similar to RSx, under SIx, an execution either provides SI or throws a consistency

exception—but only if the execution has a data race. In particular, SIx guarantees that each

execution conforms to one of the following:

• a consistency exception, but only if the execution has a data race; or

• SI of regions if the execution does not throw a consistency exception.

If an execution is data race free, SIx inherently ensures not only SI but also RS. SIx is

strictly stronger than DRF0, and it relaxes semantics from RS to SI only for racy regions,

which have undefined or weak semantics under DRF0.

6.4 Snappy: Runtime Support for SIx

This section introduces Snappy, a novel, software-only approach that provides the SIx

memory consistency model. Like FastRCD-A and Valor-A, Snappy detects and waits at

write–write and write–read conflicts. Snappy differs from FastRCD-A and Valor-A—and

prior work in general—in two major ways. First, its support for SIx enables “tolerating”

read–write conflicts by deferring waiting to the end of the writer region. Second, as a result

of its handling of read–write conflicts, Snappy can detect read–write conflicts imprecisely,

enabling less costly tracking of last reader(s), while still preserving SIx (no deadlock with-

out a data race).

6.4.1 Tolerating Read–Write Conflicts

During a region’s execution, Snappy tracks each shared variable’s last writer and last

reader(s) accurately (just like FastRCD-A). Last-writer tracking allows Snappy to detect
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(a) Snappy deadlocks. (b) Snappy does not deadlock. (c) Snappy deadlocks.

Figure 6.3: Examples showing how Snappy works. Dashed lines indicate where Snappy
increments its clock. The exact synchronization operations (e.g., acq(m) versus rel(l)) are
arbitrary and not pertinent to the examples.

write–write and write–read conflicts precisely. Snappy handles read–write conflicts differ-

ently from both FastRCD-A and Valor-A: Snappy defers waiting on these conflicts until the

end of the executing region, which still preserves SIx. With this design, Snappy opens new

avenues for the improvement of availability and performance of exception-based memory

models.

To present Snappy, we reuse clock(T), epoch(T), Rx, and Wx from Section 6.2. In addi-

tion, we add the following notation specific to Snappy:

T.waitMap – Represents the regions that thread T is waiting on. T.waitMap is a map from a

thread t to the latest clock value c of t that executed a read that conflicts with a write in

T’s current region. Clock values for threads not mapped in T.waitMap are considered

to be 0.

Region boundaries. To support waiting at region boundaries, Snappy uses per-thread

clocks to differentiate region execution from waiting at a region boundary. In particular,

thread T’s clock represents two execution states of T:
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Algorithm 7 REGION BOUNDARY [Snappy]: T’s region ends
1: incClock(T) .Last region done; not ready to start next region
2: for each t 7→ c in T.waitMap do
3: while clock(t) = c do .Read–write conflict still exists?
4: deadlocked← checkIfDeadlocked()
5: if deadlocked then
6: throw consistency exception
7: T.waitMap← ∅
8: incClock(T) .Ready to start next region

• clock(T) is odd if the region is executing. Note that initially clock(T) is 1.

• clock(T) is even if the region has finished executing but is waiting to tolerate read–

write conflicts at a region boundary.

Algorithm 7 shows how Snappy maintains this invariant by incrementing clock(T) both

before and after a region waits for tolerating any remaining read–write conflicts. While

clock(T) is even, the algorithm checks whether read–write conflicts still exist; if the reader

region is still executing (i.e., if clock(t) = c), the algorithm waits until the reader region

finishes executing, throwing a consistency exception if Snappy detects deadlock.

Writes and reads. Algorithms 8 and 9 show the analysis that Snappy performs at each

program write and read, respectively. The analysis differs from the analysis for FastRCD-A

(Algorithms 2 and 3) in the following ways. First, in Snappy, a thread T waits at write–

write and write–read conflicts (line 3 in Algorithm 8 and line 3 in Algorithm 9) for the

writer region (executed by t) to finish any waiting at its region boundary. In order to take

into account the two increments to clock(t) at a region boundary, T waits until the writer

thread t’s clock is at least two greater than the variable’s clock c, i.e., clock(t) ≥ c + 2.
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Algorithm 8 WRITE [Snappy]: thread T writes x
1: let c@t←Wx

2: if c@t 6= epoch(T) then .First write to x by this region?
3: if t 6= T ∧ clock(t) ≤ c + 1 then .Write–write conflict?
4: if deadlocked then
5: throw consistency exception
6: else
7: Retry from line 1
8: for all t’ 7→ c’ inRx do
9: if t’ 6= T ∧ clock(t’) = c’ then .Read–write conflict?

10: T.waitMap[t′]← c′

11: Wx ← epoch(T) .Update write metadata
12: Rx← ∅ .Clear read metadata

Algorithm 9 READ [Snappy]: thread T reads x
1: if clock(T) 6=Rx[T] then .First read to x by this region?
2: let c@t←Wx

3: if t 6= T ∧ clock(t) ≤ c + 1 then .Write–read conflict?
4: if deadlocked then
5: throw consistency exception
6: else
7: Retry from line 1
8: Rx[T]← clock(T) .Update read metadata

Second, when T detects a read–write conflict (line 9 in Algorithm 8), instead of waiting,

it records the conflicting thread t’ and its current clock c’ in T.waitMap. T.waitMap needs to

maintain only the latest clock value for every other thread t’ (multiple values are possible

due to waiting on multiple threads), so the analysis updates T.waitMap only if the new value

is greater than the old value.

Examples. Figure 6.3 shows examples of how Snappy enforces SIx. In the figure, con-

current regions access the shared variables x and y. The gray dashed lines along with the
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synchronization operations, acq(l) and rel(l), indicate SFR boundaries. Ri and Rj are SFR

identifiers, where i and j are per-thread clocks for the respective threads. In Figure 6.3(a),

T2 waits on the read–write conflict at its region boundary, but T1 is unable to make progress

due to a cyclic dependence. In Figure 6.3(b), a cyclic dependence exists, but each region

can reach its region boundary, allowing each to proceed. In contrast, FastRCD-A deadlocks

for this example. In Figure 6.3(c), Snappy deadlocks due to a cycle of transitive depen-

dences involving two variables. Each thread gets stuck waiting: T1 and T3 at accesses, and

T2 at a region boundary.

6.4.2 Detecting Read–Write Conflicts Imprecisely

Although tolerating read–write conflicts allows Snappy to avoid exceptions that Fast-

RCD-A and Valor-A encounter, our evaluation shows that it incurs about the same (high)

overhead as FastRCD-A in order to detect all conflicts accurately when they occur. In

developing Valor, prior work shows that the main cost of FastRCD is in tracking the last

reader(s) for each variable precisely to detect read–write conflicts accurately [17].

This section proposes an alternate design for Snappy that focuses on the approximation

of the precise last reader(s) to improve performance. For clarity, the rest of the dissertation

refers to the design of Snappy described in Section 6.4.1 as Snappy-P (Precise) and the

alternate design introduced here as Snappy-I (Imprecise).

The key insight of having imprecise readers is to let a conflicting write conservatively

wait on potential read–write conflict(s) if the write cannot infer accurate read–write con-

flict(s). Importantly, Snappy-I still provides SIx: although Snappy-I may wait on a false

read–write conflict, any deadlock must include at least one (true) write–read or write–write
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conflict (this fact holds for Snappy-P as well as Snappy-I), indicating a data race, as Sec-

tion 6.5 shows.

In the design of Snappy-P from Section 6.4.1, each variable x has metadata both for

writes (Wx) and reads (Rx). Both are needed for precise tracking of last reader(s). In

particular, the read metadata needs to be inflated into a read map when there are multiple

concurrent reader regions. Since Snappy-I does not require precise detection of read–write

conflicts, it allows for a simpler and more efficient design.

Metadata representation. Like Snappy-P, Snappy-I maintains the epoch of the last writer

for each shared variable x. However, it maintains precise last reader information only if

there exists a single reader; for multiple readers, it does not maintain any information about

them (so any ongoing region is a potential reader). As a result, Snappy-I represents a vari-

able’s last writer and reader metadata into a single unit of metadata (e.g., a single metadata

word). This metadata has one of the following values:

WrExc@t : x was last accessed by region c@t, and that region performed a write to x.

RdExc@t : x was last accessed by region c@t, and that region performed only reads to x.

RdSh : At some point, there were multiple concurrent reader regions. Any ongoing region

may have read x, but no ongoing region may have written x.

The first write in region c@t updates the variable’s metadata to WrExc@t. Similarly, the first

read in c (if there is no prior write in the same region) updates the metadata to RdExc@t.

If a second read from a different thread reads the variable while the first read’s region is

still ongoing, Snappy-I promotes the metadata from RdExc@t to RdSh. Since all states can
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be encoded in a single metadata word, it is possible to use one compare-and-swap (CAS)

instruction to update the metadata (Section 6.6).

Snappy-I’s analysis. Algorithms 10 and 11 show the analysis that Snappy-I performs

at each program write and read. In Algorithm 10, if the last write to x comes from the

same region, the current write can skip the rest of the analysis operations (line 3) since the

metadata does not need to be updated. If the last write is from the same thread T the write

can update the metadata with the epoch of the current region (Rc). Otherwise, T handles

WrEx*@t and RdEx*@t (* denotes “any clock value”) as Snappy-P by detecting a write–write

or a read–write conflict (lines 4–14). If the variable is in RdSh state, Snappy-I treats every

other threads’ ongoing region as having potential read–write conflicts with T’s current write

(lines 15–18).

In Algorithm 11, if the same region has already read or written the variable or the

variable is in RdSh state, T does not need to update the metadata record (line 3). If the

read is the first read in a region before any writes, the read overrides the metadata record

from WrExc’@t to RdExc@T, so that a write from a different thread can still detect a read–write

conflict precisely at a WrExc’@t to WrExc@T transition instead of having a potential read–write

conflict (an alternative is to change the metadata to RdSh, but it would lead to unnecessary

imprecision and lower availability).

6.5 Correctness of Snappy

This section provides arguments that Snappy (in particular, Snappy-P) soundly and

precisely provides SIx.
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Algorithm 10 WRITE [Snappy-I]: thread T writes x
1: let oldMetadata← x.state
2: let c← clock(T)
3: if oldMetadata 6= WrExc@T then .First write to x by this region?
4: if oldMetadata = WrEx*@t then
5: let c@t← oldMetadata
6: if clock(t) ≤ c + 1 then .Write–write conflict?
7: if deadlocked then
8: throw consistency exception
9: else

10: Retry from line 1
11: else if oldMetadata = RdEx*@t then
12: let c@t← oldMetadata
13: if clock(t) = c then .Potential read–write conflict?
14: T.waitMap[t]← clock(t)

15: else if oldMetadata = RdSh then
16: for each thread t’ do
17: if t’ 6= T then .Potential read–write conflicts?
18: T.waitMap[t′]← clock(t’)

19: x.state← WrExc@T

Theorem 1. Snappy is sound: If an execution completes without deadlock under Snappy,

the execution conforms to snapshot isolation of synchronization-free regions (SI).

We have not proved this theorem; instead we provide an argument for its correctness. Fol-

lowing from prior work, FastRCD and FastRCD-A ensure that executions that complete

without exception or deadlock provide conflict serializability, a sufficient condition for re-

gion serializability (Section 6.3.1) [17]. The difference between FastRCD-A and Snappy

is that Snappy allows execution to proceed past a read–write conflict until the region end,

at which point execution can proceed if the reader region has finished executing, even if it

is waiting on read–write conflicts.

Consider an execution that completes without deadlock. Let Ri be an ongoing region

with a read to x, followed by a write to x by region Rj . Snappy detects the read–write
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Algorithm 11 READ [Snappy-I]: thread T reads x
1: let oldMetadata← x.state
2: let c← clock(T)
3: if oldMetadata 6= RdExc@T ∧ oldMetadata 6= WrExc@T ∧ oldMetadata 6= RdSh then
4: newReadMetadata← RdExc@T

5: if oldMetadata = WrEx*@t then
6: let c’@t← oldMetadata
7: if T 6= t ∧ clock(t) ≤ c’ + 1 then .Write–read conflict?
8: if deadlocked then
9: throw consistency exception

10: else
11: Retry from line 1
12: else if oldMetadata = RdEx*@t then
13: let c’@t← oldMetadata
14: if clock(t) = c’ then .Concurrent reader?
15: newReadMetadata← RdSh

16: x.state← newReadMetadata

conflict and allows Rj to continue executing until region end, at which point Rj’s thread

waits until Ri reaches its region end. Thus, Rj cannot finish waiting at its region end until

Ri ends.

According to the definition of conflict SI, si ≺t ej due to the read–write conflict. Our

soundness concern here is that the execution might also establish ej ≺t si (which would

violate conflict SI since ≺t is a partial order). However, if we suppose ej ≺t si, then

there must exist a (potentially transitive) write–write or write–read conflict from Rj to Ri.

Snappy in that case will ensure that Ri does not reach its end until Rj finishes waiting at

its region end, which implies a deadlock due to the conclusion above about Rj waiting on

Ri. A deadlock contradicts the original assumption that the execution completes without

deadlock. We thus conclude that Snappy’s relaxation for read–write conflicts does not lead

to violations of SI.
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Lemma 1. If an execution deadlocks under Snappy, it has a write–write or write–read

conflict.16

Proof. Suppose an execution deadlocks under Snappy, but the execution has no write–write

or write–read conflicts. Since Snappy waits at program writes and reads only if there is a

write–write or write–read conflict (Algorithms 8 and 9), Snappy does not wait at program

reads or writes for this execution.

The execution thus deadlocks by waiting at Snappy’s only other waiting point, a region

boundary (lines 3 in Algorithm 7). Let T be a thread that is waiting at a region boundary as

part of a deadlock. According to the wait condition, clock(t) = c. The value c comes from a

t 7→ c entry in T.waitMap (line 10 in Algorithm 8), which in turn comes from a t 7→ c entry

from Rx (line 8 in Algorithm 9). Rx[t] comes from clock(t), which must be odd because t

is executing a region. So c must be odd in the wait condition at T’s region boundary.

Since clock(t) = c, clock(t) is also odd, implying that thread t is in the middle of executing

a region (i.e., not at a region boundary). Since Snappy waits only at region boundaries for

this execution, t’s region eventually finishes, incrementing clock(t) and thus negating thread

T’s waiting condition, i.e., ¬(clock(t) = c). This contradicts the earlier conclusion that T is

waiting as part of a deadlock.

Theorem 2. Snappy is precise: If an execution deadlocks under Snappy, it has a region

conflict and a data race.

Proof. Suppose an execution deadlocks under Snappy. By Lemma 1, the execution has a

region conflict, which is a sufficient condition for a data race.

16Section ?? defines a region conflict.
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6.6 Implementation

All implementations instrument the same points (field and array element accesses),

demarcate regions in the same way (at lock, monitor, thread, and volatile operations), and

reuse code as much as possible. The compilers instrument all application code, and the

application calls an instrumented compiled version of the Java libraries (the JVM, which is

written in Java, calls a separately compiled, uninstrumented version of the libraries).

FastRCD-A and Snappy-P add two words of metadata for tracking writes and reads.

While each variable has only a write epoch, its read metadata can be inflated to a pointer

that points to a read map. In contrast, Snappy-I use one word of metadata: 21 bits for the

clock, 9 bits for the thread ID, and 2 bits for encoding the state (write-exclusive vs. read-

exclusive vs. read-shared). Snappy-I can reset clocks to either 0 or 1 at full-heap garbage

collection to avoid overflow [17]; or it can ignore overflow, in which case false positive

conflicts due to wraparound are unlikely. In all implementations, each per-field metadata

is laid out beside the field, while an array’s per-element metadata is referenced indirectly

through the array’s header.

Instrumentation atomicity. Following FastRCD, FastRCD-A, and Snappy-P guarantee

instrumentation atomicity by “locking” one of the variable’s metadata words (using an

atomic operation and spin loop) and “unlocking” (using a store and fence) when updat-

ing the metadata. The instrumentation does not perform any synchronization when the

instrumentation performs no metadata updates (for a read or write in the same region).

These analyses require lock and unlock operations to ensure instrumentation atomicity,

since metadata is two words or more (due to a possible read map). In contrast, follow-

ing Valor, Valor-A and Snappy-I use a single word of metadata per variable, and ensure
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instrumentation atomicity by using a single atomic operation at the end of the analysis to

atomically update the state.

Waiting at conflicts. Instrumentation for the FastRCD-A, Valor-A, Snappy-P and Snappy-

I waits when it detects a region conflict. In order for a thread T to wait on another thread t’s

clock to change, T waits on a monitor associated with t; t notifies T that it has finished its

region by broadcasting on the monitor at region boundaries.

6.7 Evaluation

This section evaluates the availability, performance, scalability, space usage, and other

characteristics of our approaches and existing approaches for providing RSx and SIx.

6.7.1 Runtime characteristics.

Table 6.1 shows characteristics of the evaluated programs. The Threads columns re-

port both threads created and maximum threads active at any time. The remaining columns

show statistics collected with Snappy-P (the statistics from other configurations are similar,

since these statistics are not specific to configurations). The Memory accesses are executed

memory accesses (loads and stores of fields and array elements), which all configurations

instrument. The Conflicts column shows how many conflicts of each type occur (during

execution under Snappy-P). Conflicts vary significantly in count and type across programs,

but they are generally many orders of magnitude smaller than total memory accesses, ex-

cept for avrora9, which incurs millions of write–read conflicts.

The last two columns report executed synchronization-free regions (SFRs) and average

memory accesses executed in each SFR. All programs except sunflow9 perform synchro-

nization at least every 720 memory accesses.
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Threads Memory accesses Conflicts Dyn. Avg. accesses
Total Max live Reads Writes Write–write Write–read Read–write SFRs per SFR

eclipse6 18 12 4,500M 1,400M 0 3.2K 21 150M 40
hsqldb6 402 102 250M 31M 0 33 1.9 11M 25
lusearch6 65 65 1,100M 400M 0 96 0 9.9M 150
xalan6 9 9 990M 220M 1.4K 520 26 58M 21

avrora9 27 27 900M 440M 380K 3.4M 25K 3.9M 350
jython9 3 3 720M 230M 0 0 0 100M 9.2
luindex9 2 2 290M 97M 0 0 0 540K 720
lusearch9* 32 32 1,100M 350M 38 5.7K 22 7.2M 210
pmd9 5 5 290M 97M 6.6K 5.3K 120 2.4M 160
sunflow9* 64 32 6,700M 720M 0 3.9 4.9 16K 450K
xalan9* 32 32 940M 210M 200 1.4K 42 22M 53

Table 6.1: Runtime characteristics of the evaluated programs, rounded to two significant
figures. *Three programs support varying the number of active application threads; by
default, this value is equal to the number of cores (32 in our experiments).

6.7.2 Availability

Under the DRF0 consistency model, data races are essentially errors since they have

undefined or weak semantics (Section 2.3). However, in practice, language and hardware

implementations typically ignore data races silently (rather than treating them as fail-stop

errors), and thus real programs—including those we evaluate—often contain data races that

commonly manifest but do not cause problems under typical compilation and execution en-

vironments. In contrast, by providing RSx and SIx, our work follows a line of research that

treats some or all data races as errors [22, 98, 101, 137, 17, 58, 156, 38]. In order to avoid

frequent exceptions in production environments, developers would need to identify and fix

data races that commonly lead to consistency exceptions when using Valor or Snappy or

another technique that provides RSx or SIx (e.g., during in-house, alpha, and beta testing).

Since the programs we evaluate have not been developed or debugged under the as-

sumption that data races are (fail-stop) errors, they throw consistency exceptions frequently

under RSx and SIx. We compare the numbers of consistency exceptions generated under
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different approaches for RSx and SIx. From that, we extrapolate which approaches would

be more likely to avoid exceptions if programs were developed and debugged to avoid

consistency exceptions.

Table 6.2 compares consistency exceptions raised by FastRCD, Valor, FastRCD-A,

Valor-A, Snappy-P, and Snappy-I. Our implementations do not actually generate excep-

tions; rather, they simply report the exception and allow execution to proceed. In case of a

deadlock, the thread that created the cycle of dependences is allowed to proceed immedi-

ately. FastRCD and Valor report an exception whenever they detect a conflict. FastRCD-A,

Valor-A, Snappy-P, and Snappy-I report an exception whenever they detect a deadlock.

Valor and Valor-A also report an exception whenever they infer a conflict via a read valida-

tion failure.

Since some executed regions may have many related conflicts, the first row for each

program is the number of dynamic regions that report at least one exception. The second

row is the number of consistency exceptions reported during the program execution. Each

result is the mean of exceptional regions or exceptions, ± 95% a confidence interval.

Waiting at conflicts. We first consider the effect of waiting at conflicts rather than gener-

ating an exception, i.e., Section 6.2’s innovation that yields FastRCD-A and Valor-A. Based

on comparing FastRCD-A with FastRCD and Valor-A with Valor, the effect of waiting at

conflicts is substantial, reducing regions that report an exception by up to three orders of

magnitude. Our evaluation of waiting at conflicts—which to our knowledge is the first

such evaluation—suggests that this approach is generally effective at increasing the ability

to avoid consistency exceptions while still preserving consistency models such as RSx and

SIx.
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FastRCD Valor FastRCD-A Valor-A Snappy-P Snappy-I

eclipse6
6.8K ± 10K 260 ± 510 0.2 ± 0.5 0.2 ± 0.3 0.3 ± 0.6 1.2 ± 1.6
(14K ± 24K) (1.8K ± 3.5K) (0.2 ± 0.5) (0.7 ± 0.9) (0.3 ± 0.6) (1.2 ± 1.6)

hsqldb6
27 ± 2.7 73 ± 2.6 0.8 ± 0.5 0.6 ± 0.3 0.1 ± 0.1 1.0 ± 0.5

(53 ± 5.6) (140 ± 5.4) (0.8 ± 0.5) (0.6 ± 0.3) (0.1 ± 0.1) (1.2 ± 0.6)

lusearch6
0.1 ± 0.1 0.2 ± 0.2 0 ± 0 0 ± 0 0 ± 0 0 ± 0

(0.1 ± 0.1) (0.2 ± 0.2) (0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0)

xalan6
48 ± 1.7 53 ± 1.7 12 ± 1.3 25 ± 1.1 5.5 ± 1.4 10 ± 1.3

(120 ± 5.8) (93 ± 3.4) (12 ± 1.3) (39 ± 1.1) (5.5 ± 1.5) (11 ± 1.4)

avrora9
200K ± 3.1K 230K ± 2.6K 38K ± 760 28K ± 400 16K ± 430 18K ± 430

(610K ± 6.4K) (670K ± 9.7K) (39K ± 820) (36K ± 920) (24K ± 730) (27K ± 760)

jython9
0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

(0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0)

luindex9
0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

(0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0) (0 ± 0)

lusearch9
63 ± 9.7 62 ± 7.3 62 ± 7.6 13 ± 3.3 20 ± 3.7 19 ± 5.7

(110 ± 25) (93 ± 13) (62 ± 7.6) (13 ± 3.3) (21 ± 4.5) (21 ± 6.6)

pmd9
450 ± 150 370 ± 150 91 ± 10 71 ± 7.2 52 ± 9.5 77 ± 7.2

(3.3K ± 520) (3.5K ± 930) (93 ± 11) (170 ± 62) (110 ± 51) (120 ± 17)

sunflow9
6.1 ± 1.8 11 ± 3.6 0 ± 0 0 ± 0 0 ± 0 4.6 ± 1.1
(23 ± 6.3) (37 ± 14) (0 ± 0) (0 ± 0) (0 ± 0) (4.7 ± 1.2)

xalan9
330 ± 35 3.0K ± 490 4.7 ± 3.7 40 ± 3.6 0.3 ± 0.4 16 ± 3.2

(1.5K ± 220) (6.2K ± 1.2K) (4.7 ± 3.7) (40 ± 3.6) (0.3 ± 0.4) (19 ± 4.5)

Table 6.2: The number of consistency exceptions reported by approaches that provide RSx
and SIx. For each program, the first row is dynamic regions that report at least one excep-
tion, and the second row is dynamic exceptions reported. Reported values are the mean of
10 trials, including 95% confidence intervals, rounded to two significant figures (if ≥1.0).

RSx versus SIx. A key intended benefit of Snappy is that by providing SIx, it can poten-

tially avoid consistency exceptions encountered by providing RSx. To evaluate this benefit,

we compare primarily exceptions generated by Snappy-P versus FastRCD-A, which are

identical except that Snappy-P can tolerate read–write conflicts. We find that Snappy-P

generally avoids consistency exceptions compared to FastRCD-A: Snappy-P has fewer ex-

ceptional regions than FastRCD-A for 10 programs, never has more exceptional regions

than FastRCD-A, and for the other 1 program (i.e., eclipse6) there is no statistically signifi-

cant difference.
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Relaxing Snappy’s precision. Another potential benefit of Snappy is that by relaxing

precision, it can improve performance. In order to evaluate the cost of this, we compare

reported consistency exceptions for Snappy-P and Snappy-I. Unsurprisingly, Snappy-I re-

ports more exceptions than Snappy-P, since Snappy-I introduces waiting at region bound-

aries for spurious read–write conflicts. This effect is mixed across programs: for 6 pro-

grams Snappy-I generates more exceptions than Snappy-P, whereas we find no statistically

significant difference for the other 5 programs.

Overall, waiting at conflicts and providing SIx instead of RSx both increase availability,

while relaxing Snappy’s precision decreases availability, but perhaps not excessively. The

suitability of each approach not just on its availability but also on its performance, discussed

next.

6.7.3 Performance

This section measures and compares the effect on performance of various approaches

for providing strong memory models. Since executions are multi-threaded, performance

overheads include not just instrumentation overhead but also time spent on waiting, which

differs among approaches due to different conditions for waiting. Section 6.7.5 attempts to

separate out this cost by measuring performance for varied application thread counts.

Figure 6.4 shows the runtime overhead added by the configurations from Section 6.7.1

to execution on an unmodified JVM. As prior work shows, FastRCD adds high runtime

overhead in order to maintain last readers, while Valor incurs significantly lower overhead

by logging reads locally and validating them lazily [17]. FastRCD-A and Valor-A each

add additional overhead over FastRCD-A and Valor-A, respectively, due to the time spent

waiting at conflicts.
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Snappy-P tracks write and read metadata in the same way as FastRCD-A, so it un-

surprisingly incurs similar overhead. However, Snappy-P incurs slightly less overhead

than FastRCD-A because Snappy-P provides SIx and thus can relax its waiting at read–

write conflicts (by deferring waiting until region end; Section 6.4). However, Snappy-P

adds 260% overhead on average in order to provide precise conflict detection. In contrast,

Snappy-I enables a significantly faster analysis that slows programs by 128% on average.

To understand the performance difference between Snappy-I and Snappy-P, we imple-

mented a configuration (not shown in the figure) that tracks both read and write metadata in

a way similar to Snappy-P (i.e., separate metadata words for the writer and reader(s), except

that it does not track multiple readers precisely, instead using a simple “read shared” when

multiple concurrent reader regions exist. On average this configuration incurs 75% of the

overhead that Snappy-P incurs over Snappy-I, suggesting that most but not all of Snappy-I’s

performance advantage comes from its ability to represent its metadata in a single metadata

word, leading to significantly simpler and cheaper instrumentation.

To isolate Snappy-I’s overhead due to waiting at conflicts (versus instrumentation over-

head), we also evaluated a Snappy-I configuration (not shown in the figure) that does not

wait at conficts, but instead allows a thread to proceed immediately after detecting a region

conflict. Compared with this “no waiting” configuration, the default Snappy-I configuration

adds only 9.5% additional overhead (relative to baseline, unmodified execution), suggest-

ing that little of Snappy-I’s overhead is due to waiting at conflicts. This result makes sense

conflicts are usually many orders of magnitude smaller than total memory accesses. The

entire execution time therefore is still dominated by instrumentation overhead added to

memory accesses.
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Figure 6.4: Runtime overhead added to unmodified Jikes RVM by FastRCD, Valor, and
our implementations of FastRCD-A, Valor-A, Snappy-P, and Snappy-I.

6.7.4 Performance–Availability Tradeoff

In order to evaluate availability and performance together, we plot the previous avail-

ability and performance results in Figure 6.5. The x-axis is the geomean of runtime over-

head across all programs. The y-axis is availability, which is defined as the geomean of

memory accesses performed without interruption by a consistency exception. That is, for

each program, availability = # memory accesses
# consistency exceptions+1

. (In contrast, taking the geomean of ex-

ceptions would be problematic because some values are 0.) Values closer to the top left

corner represent a better performance–availability tradeoff.

Valor has the best performance, but its availability is significantly worse than FastRCD-

A, Valor-A, Snappy-P, and Snappy-I. Snappy-P has the best availability, but its performance

overhead is relatively high. Snappy-I and Valor-A arguably have the best tradeoff between

availability and performance. We note that Snappy-I has lower space overhead than other

implementations (Section 6.7.6), and it does not have Valor-A’s disadvantages of asyn-

chronous exceptions and safety issues for unsafe languages (Section 6.2.2).
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Figure 6.5: The comparison of performance and availability of different memory models.

6.7.5 Scalability

Approaches that avoid exceptions by waiting at conflicts—FastRCD-A, Valor-A, Snappy-

P, and Snappy-I—incur not only instrumentation overhead but also overhead due to wait-

ing. In an effort to separate out the conflicts, this section evaluates scalability across varying

numbers of applications threads. Three of the evaluated programs support varying the num-

ber of application threads (Table 6.1). Figure 6.6 compares, for 1–32 application threads,

the execution time of the waiting and non-waiting versions of implementations that are oth-

erwise identical. We leave out Snappy-P and only show Snappy-I since the measurement

here is whether waiting at conflicts hurt scalability instead of instrumentation overhead. We

use Snappy-I (No wait) (introduced in the last subsection) as a comparison configuration to

Snappy-I.
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Figure 6.6: Execution time of the configurations that can incur waiting versus configu-
rations that do not incur waiting, for 1–32 application threads. The legend applies to all
graphs.

Overall, supporting RSx and SIx with waiting has no detrimental effect on scalabil-

ity. For all three benchmarks, the waiting versions (FastRCD-A, Valor-A, Snappy-I) scale

equally well as the non-waiting configurations (FastRCD, Valor, Snappy-I (No wait)).

6.7.6 Space Overhead

The approaches incur space overhead in order to represent write and read metadata.

Figure 6.7 shows the space overhead of all configurations that wait at conflicts, relative to

unmodified JVM execution. For each execution, we define its space usage as the maxi-

mum memory used after any full-heap garbage collection (GC). We omit luindex9 since its

baseline execution triggers no full-heap GCs.

On average, FastRCD-A adds 105% space overhead in order to maintain precise write

and read metadata, which is particularly costly for variables with concurrent reader regions.

Snappy-P adds similar memory overhead (103% on average), which makes sense because it

maintains the same metadata as FastRCD-A. Although Valor-A avoids storing per-variable

read metadata, it still adds high space overhead (110% on average) due to maintaining per-

thread read logs. Per-program space overheads depend largely on thread counts and region

size (Table 6.1).
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Figure 6.7: Runtime space overhead of FastRCD-A, Valor-A, Snappy-P, and Snappy-I.

Snappy-I adds 58% average space overhead, about half as much as the other approaches.

Snappy-I uses less space by not maintaining precise information about reads—particularly

in the case of multiple readers—whereas the other configurations maintain precise infor-

mation about reads (including Valor-A, which maintains them in pre-thread logs). Further-

more, Snappy-I is able to use a single metadata word per field and array element for write

and read metadata.

6.8 Conclusion and Interpretation

Memory models are the foundation for reasoning the behavior of concurrent programs.

Existing approaches providing strong memory model RSx suffers from availability issues

which limit its practicality. In this chapter, we mediated the need of high availability and

simplicity for strong memory models for the purpose of practicality and programming ease.

We considered designs and optimizations to existing approaches that provide RSx, which

our evaluation showed significantly improved availability. This led to an alternative strong

and intuitive memory model SIx that enabled a higher degree of performance and simplicity
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by relaxing some of the constraints imposed by RSx. We then introduced a novel approach

for enforcing SIx called Snappy. The rest of the chapter was devoted to a thorough analysis

of these two memory models with the hope of clarifying and resolving the various trade-

offs. Our evaluation showed that Snappy-P reduced the chances of unavoidable consistency

exceptions under SIx significantly. A high-performance version of Snappy-I achieved much

lower overhead, but in turn lost the availability benefit provided by SIx over RSx.

Overall, this work has been shed light on the complex trade-offs that arise in choosing

an appropriate strong memory consistency model, which helps enhance programmability.

It demonstrates efficient and scalable techniques for implementing a strong memory model

with high availability and performs detailed quantitative analysis of the performance bene-

fits of various models.
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Chapter 7: Related Work

In this chapter, we describe work that is related to the dissertation’s contributions and

compares them.

7.1 Tracking Dependences

Biased Locking. Prior work shows how to acquire locks without performing atomic op-

erations in the common, non-conflicting case. In biased locking, a lock is “owned” by one

thread, which can acquire the lock without using synchronization [82, 32, 123]. Before an-

other thread can acquire the lock, it must “coordinate” with the owning thread—a relatively

expensive operation—to ensure the owning thread safely releases the lock.

Hindman and Grossman use biased per-object locks in a strongly atomic STM to reduce

synchronization costs [80]. However, biased locks do not work well for objects that are

mostly read shared (i.e., multiple readers, no writers), since interleaved reads by different

threads lead to expensive coordination between threads. Some prior work provides biased

reader–writer locks [28, 126, 129, 149], although distributed shared-memory work targets

software cache coherence instead of detecting dependences [126, 129], and von Praun and

Gross’s model requires an atomic operation at each read-shared access [149]. However,

but to our knowledge, no prior work applies these ideas to build runtime support such as
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STM or record & replay systems. Furthermore, in Hindman and Grossman’s STM, a con-

flicting access triggers conflict detection and resolution as part of coordination; however, a

conflicting access always aborts the other thread’s transaction. Our LarkTM introduced in

Chapter 4 supports aborting either thread, enabling flexible contention management.

Commodity hardware support for capturing cross-thread dependences. Recently,

Intel’s Haswell architecture provides restricted transactional memory (RTM), best-effort

HTM support with an upper bound on shared-memory accesses in a transaction [121]. It

might seem at first that RTM could achieve the same goals as reader–writer locks, but

recent work suggests otherwise: RTM struggles to outperform locking based on atomic

operations, let alone biased locking, which tries to avoid atomic operations. Recent work

uses RTM to replace per-object locks for detecting data races, but several critical sections

need to be combined to overcome the costs of RTM [103]. Similarly, recent work finds

that an RTM transaction needs to be expanded to replace at least 3–4 atomic operations,

in order to amortize the overhead of a transaction [122, 159]. In contrast, biased reader–

writer locks try to avoid atomic operations, and can provide substantially lower overhead

than traditional locks or RTM.

7.2 Transactional Memory

McRT-STM and Bartok. Both McRT-STM and Bartok support weak atomicity and use

pessimistic concurrency control writes and optimistic concurrency control for reads. In

particular, a transaction has to acquire locks to perform updates and resolve writes/writes

conflicts eagerly. For reads, a transaction maintains read logs and performs read validation

to check reads/writes conflicts at the end of a transaction.
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TL2. Both McRT-STM and Bartok still need encounter-time locking for accessing trans-

actional writes. TL2 provides commit-time locking which can avoid using locks when a

transaction is executing. A commit-time locking mechanism also requires the transaction

to exploit lazy version management to make sure all transactional reads can read consistent

value. Though TL2 avoids the synchronization on writes, it needs a global clock to assign a

unique version number at the end of each transaction. Though the contention on the global

lock for every transaction might not affect the performance too much when transactions are

long, it might become a performance worry if extending TL2 to support strong atomicity

as each access need to be treated as a unary transaction.

InvalSTM and DSTM. InvalSTM detects conflicts with other transactions when com-

mitting writes lazily, potentially aborting either transaction [69]. A few STMs, like Lark-

TM, have detected read and write conflicts eagerly and supported aborting either transac-

tion (e.g., DSTM [78]), but fully eager conflict detection has added very high overhead.

Dynamic-NAIT. Schneider et al. and Bronson et al. reduce strong atomicity’s cost for

languages with dynamic class loading by optimistically performing static analysis incre-

mentally [128, 31]. Whenever newly loaded code invalidates an assumption about a non-

transactional access being unable to conflict with transactions, the dynamic compiler re-

compiles the non-transactional access’s method. In the best case, this approach adds no

overhead for non-transactional accesses. In the worst case, numerous mis-speculations lead

to substantial recompilation, and imprecise static analysis leads to unnecessary instrumen-

tation of non-transactional accesses. This approach is complementary to the inexpensive

instrumentation LarkTM adds at non-transactional accesses.
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Hardware-memory-protection-based STM. Abadi et al. present a strongly atomic STM

that uses commodity-hardware-based memory protection to detect non-transactional con-

flicting accesses [3]. Transactions and non-transactional accesses use separate page map-

pings, enabling triggering of traps only when non-transactional code accesses physical

pages being accessed concurrently by transactions. Two significant costs are (1) frequently

changing page permissions in transactions and (2) false conflicts due to page granularity.

The design ameliorates these costs through various static and dynamic techniques. It uses

static analysis to detect accesses to objects that can only be accessed inside or outside

transactions, similar to other prior work [128, 135, 31]. It reduces false conflicts (as well as

expensive true conflicts) on the fly by recompiling some non-transactional accesses to use

transactional instrumentation rather than relying on page protection, similar to prior dy-

namic work [128, 31]. These optimizations are complex and may not work well for all pro-

grams, although they work well for the implementation and programs evaluated by Abadi

et al. [3], adding 25% overhead on average to an existing weakly atomic STM [76]. This

approach is complementary to our work, which provides cheap non-transactional and trans-

actional barriers, and could provide a cheaper fallback when recompiling non-transactional

accesses.

Hardware transactional memory. Transactional memory can be supported either via

hardware or software. Hardware TM (HTM) detects and resolves conflicts efficiently by

piggybacking on cache coherence protocols; provides versioning efficiently by extending

caches; and provides strong atomicity naturally (e.g., [79, 12, 107]). However, hardware

manufacturers have moved slowly on HTM support, which requires changes to already-

complex cache coherence protocols, cache architectures, and memory subsystems. Sun’s
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Rock processor included HTM support and the silicon was built, but it was never sold

commercially [53]. Azul Systems produces custom processors with HTM support that is

tightly integrated with Azul’s custom Java virtual machine [44]. More recently, Intel’s

Haswell architecture, AMD’s Advanced Synchronization Facility, and IBM’s Blue Gene/Q

provide “best-effort” HTM support with an upper bound on shared-memory accesses in

a transaction [43, 153, 121]. None of these limited HTMs can provide language-level

TM since they cannot guarantee a transaction will ever succeed. They require a software

fallback, and efficient STM is critical for providing efficient hybrid TM [12].

7.3 Memory Models

Previous chapter covered RSx-based approaches, and this section covers other related

work.

Enforcing region serializability. Prior work has enforced serializability of synchronization-

free regions (RS), relying on heavyweight support for speculative execution [114]. The

costs and complexity for enforcing RS are similar to those encountered in software and

(unbounded) hardware transactional memory implementations (e.g., [72, 11, 49, 55, 160]).

Furthermore, operations such as I/O and system calls are not generally amenable to specu-

lative execution [75].

Serializability of bounded regions. Prior work supports a memory model based on se-

rializability of regions smaller than SFRs [101, 137, 9, 99, 131]. This approach can enable

architecture or analysis support that is less complex than for full SFRs. In addition to

being weaker than RSx, bounded region serializability requires restricting compiler opti-

mizations across region boundaries. Our SIx model and Snappy analyses relax RSx in a
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different way: they retain full SFRs but provide isolation but not atomicity, in an effort to

improve availability and reduce costs and complexity.

Detecting and tolerating data races. Data race detectors that soundly and precisely

check the happens-before relation [87] can provide RSx, by throwing a consistency ex-

ception on every detected data race. However, state-of-the-art happens-before detectors

slow programs by nearly an order of magnitude on average or rely on custom hardware sup-

port [63, 156, 58]. (Although prior work reports slowdowns of only 2X for Goldilocks [58],

Flanagan and Freund show that using realistic methodology would incur an estimated 25X

average slowdown [63].

Recent work introduces a data race detector called Clean that detects write–write and

write–read races but not read–write races [130]. By providing fail-stop semantics at the

detected data races, Clean eliminates some of the most egregious weak memory model

behaviors (e.g., so-called “out-of-thin-air” violations [100, 25]), Clean and Snappy both

relax the requirement of detecting read–write conflicts precisely. However, Clean incurs

high overhead in order to track the happens-before relation. It inherently cannot tolerate

detected data races: waiting at an access can avoid a detected conflict but not a detected

data race. Although Clean can avoid some erroneous behaviors, it does not provide SIx or

any strong guarantee of isolation of regions.

Deterministic execution. Systems that provide deterministic multi-threaded execution

have employed mechanisms that are related to those used by FastRCD-A, Valor-A, and

Snappy. DMP delays each region’s writes until a point where all regions perform writes

at the same time, in order to produce a deterministic outcome [52, 14]. Dthreads exploits

existing relaxed memory models in order to perform loads and stores in isolation and merge
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them at synchronization operations [96]. In contrast, Snappy detects conflicts in order to

provide the SIx memory model, and it waits at conflicts in an effort to increase availability.

Snapshot isolation in other contexts. Database management systems routinely support

SI instead of strict serializability semantics [59, 62, 118]. These systems typically im-

plement SI using multi-versioning to track multiple versions of data, based on a globally

ordered timestamp that provides a total order for all committed transactions. Maintaining

globally ordered transactions and multiple versions of data at the programming language

level would likely incur high overhead and poor scalability.

Prior work has used SI as the isolation model for software transactional memory (STM)

systems [85, 94]. In contrast, our work focuses on SI-based semantics for memory con-

sistency models. Furthermore, the database and STM work executes transactions specula-

tively (i.e., conflicts lead to rollbacks), while our work converts data races with ill-defined

semantics to well-defined behaviors and employs SI instead of RS in an effort to increase

availability and reduce costs and complexity.
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Chapter 8: Conclusion

This section concludes with a summary of the work presented in this dissertation and a

discussion of future work.

8.1 Summary and Impact

In recent years, CPU clock and speeds have barely increased, but multicore computers

have become common. As the trend of increasing cores on a single machine continues,

programmers need to develop concurrent programs in order to make the most use of modern

multicore parallel hardware. In order to have explosive growth of adopting concurrent

programming, programming languages and tool support have to become more mature and

practical.

We argue that using novel concurrency control techniques and mechanisms in run-

time support can make memory dependence tracking, concurrent programming models,

and memory consistency models substantially more efficient, powerful, and scalable.

Our dependence tracking approach empowers developers to build efficient runtime sup-

port for concurrent programs. The relaxed tracking technique hides coordination latency

incurred at tracking cross-thread dependences, and we demonstrate with client analyses

that this technique can be used to build more efficient runtime support, which will improve

programmers’ productivity, debuggability, and ability to analyze concurrent programs.
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We show that STM can be practical by designing and building an STM system that has

significantly lower overhead than prior work. Not just that, our STM is also scalable while

at the same time provides strong semantics, which helps programmers to reason about

program behaviors in a clearer way and makes programs more reliable. It further provides

strong progress guarantees, which makes it well suit for building hybrid TMs considering

that existing HTMs do not provide any progress guarantees.

Finally, we dig into today’s incomplete memory models that give clear behavioral guar-

antees only to data-race-free program but can lead to not well defined semantics for racy

executions. Recent work has introduced the RSx memory model, which provides strong

guarantees to all executions rather than just data-race-free executions. However, there are

also two significant challenges in bringing RSx into practice: availability and performance.

We address these challenges by introducing a way to tolerate consistency exceptions with

best-effort, which improves availability. We then introduce a new memory model SIx and

a novel approach for enforcing SIx during runtime. We show that our approach reduces the

chances of unavoidable exceptions significantly. Overall, our work represents an advance

in the state of the art by introducing novel memory models and runtime approaches that en-

able new and compelling points in the performance–availability space for strong memory

consistency models that use fail-stop semantics.

By addressing challenges in memory dependence tracking, concurrent programming

models, and memory consistency models, this dissertation provides evidence showing that

with efficient and scalable concurrency control mechanisms in runtime support, it is pos-

sible to get more reliable and scalable parallelism from shared-memory multicore systems

and make the use of multicore for computations more accessible to the community.
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8.2 Future Work

This section presents a brief overview of promising areas and ideas for the reader to

consider working on.

Region serializability violation detection. Instead of detecting data races soundly dur-

ing runtime, it is possible to detect data races that violate the underlying memory consis-

tency model, e.g., region serializability, which are often most harmful. This insight can

lead to data race detectors that add much lower overhead than traditional data race detec-

tors. Researchers have investigated a plethora of techniques for detecting data races [57,

58, 61, 63, 26, 111]. However, existing data race detector often slows down programs by an

order of magnitude. My coauthor and I have developed an approach called Valor to detect

region conflicts using lazy read validation inspired by McRT’s transactional conflict detec-

tion [17]. Valor significantly reduces the overhead to detect data races [17]. In particular,

any data race can manifest as a region conflict [57]. Based on this, there are several interest-

ing future directions. One direction is to investigate whether existing transactional memory

techniques can be used for better design of region serializability violation detection and

yield to lower overhead than Valor (which adds around 100% runtime execution overhead

on average). Another direction is to design novel architectures that provide somewhat

stronger consistency models. For example, instead of providing consistency at memory-

access granularity [140], stronger consistency models could be achieved at the granularity

of code regions (e.g., region serializability with fail-stop semantics). Furthermore, perhaps

a slightly relaxed memory consistency model not as strong as region serializability would

lead to better performance, scalability, and less hardware complexity.
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Hardware/software hybrid TM with strong isolation and strong progress guarantees.

Best-effort HTM needs to fall back to STM when hardware transactions fail. HTM nat-

urally supports strong isolation, in which any conflicts caused by transactional or non-

transactional accesses to shared memory locations will cause transactions to abort and to

fallback to an STM solution. However, once HTM falls back to an STM, such strong isola-

tion might no longer be guaranteed. Existing high-performance STMs mostly only support

weak atomicity, so whatever transactional vs. transactional conflicts will be ignored by

integrating a HTM and a weak STM system. Also, because of HTM limitations, software

fallbacks are the only way to the TM system to guarantee progress. Our work on STM has

demonstrated that it is possible to support strong isolation and strong progress guarantee

with low-overhead, making it appealing for use in a hybrid TM that supports both strong

isolation and strong progress guarantees, addressing one of the key limitations of HTM.

Providing SIx with multi-versioning concurrency control. Our Snappy approach en-

sures SIx with a variant of reader–writer lock that waits at a region end for a read–write

conflict. Alternatively, one can support SIx with multi-versioning concurrency control

(MVCC). Since under MVCC writers do not block readers, the availability of the SIx

model could be further improved. MVCC ensures that each region operates against its

own version (snapshot) which is created by finished regions. If a region Ri reads a vari-

able x, the read operation is performed from Ri’s snapshot, which should not be affected

by concurrent regions. Writes are performed in-place on memory, and MVCC can use

copy-on-write(CoW) to preserve the old version of memory that is being updated. On be-

gin of a new region, MVCC assigns the region a unique timestamp (T.ts), which is from a
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global timestamp that gets incremented each time a thread reaches a region boundary. Chal-

lenges include how to provide this global timestamp in an efficient and scalable way on a

shared-memory system as well as how to modify MVCC to adapt to tolerating consistency

exceptions.

Overall, there is still a lot of room for interesting research and solid contributions in the

area of efficient runtime support for shared-memory multicore systems based on the work

introduced in this dissertation. Our hope is that the direction and intuition presented here

shed some light for future development in this area.
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