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Abstract 

 

Logistic regression is a commonly used statistical technique in business and the 

sciences when an outcome is binary.  For example, clinical trials may employ a logistic 

regression model when an outcome is presence or absence of disease, or a business may 

use such a model when the outcome is the presence or absence of a customer’s purchase 

of a product.  An ideal logistic regression model both discriminates well and is well-

calibrated.  A well-calibrated model is one where the predicted percentages of success are 

close to the observed percentages.   

The Hosmer-Lemeshow test is a commonly used goodness of fit test that is used 

to test the calibration of a logistic regression model.  The Hosmer-Lemeshow test 

becomes too powerful as the sample size increases, and an adaptive equation was recently 

proposed by Paul et al. (2013) to recommend the number of groups to use as the sample 

size increases.  A new method to test the calibration of a logistic regression model, the 

calibration belt, was recently proposed by Nattino et al. (2014).   

The purpose of this study is to compare the power of the calibration belt with the 

Hosmer-Lemeshow test through simulations of several models with differing deviations 

from the true model and various probabilities of success.  The Hosmer-Lemeshow test is 

applied to the models with varying number of groups (from g=6 to g= 5000), including 

the number of groups recommended through the adaptive equation proposed by Paul et 
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al. (2013). The type 1 error rate of the calibration belt and the Hosmer-Lemeshow test is 

also assessed in all of these models.   

The simulations show that the calibration belt is nearly always the most powerful 

test, but the type 1 error rate of the calibration belt is often significantly below the 

nominal rate of 5%.  The Hosmer-Lemeshow test does not suffer from this problem.  It is 

also shown that the adaptive group equation proposed by Paul et al. (2013) depends 

largely on the probability of success of each of the models.   

 

  



iv 

 

 

 

 

Acknowledgments 

 

I would like to thank my thesis advisor, Dr. Andridge, who has done more for me 

over the last two years than can possibly be seen in these pages.  I could not have asked 

for a better advisor.  I’m very grateful for her instruction and guidance. 

Dr. Lemeshow came up with the idea for this project, and he also provided the job 

opportunity that enabled me to gain experience building logistic regression models.  I 

first learned about logistic regression by taking his class, and I was happy to take on this 

project after being inspired by his teaching.  Of course, this project never would have 

happened if it weren’t for his work developing the Hosmer-Lemeshow test to begin with! 

I would also like to thank Giovanni Nattino.  He helped me with any questions I 

had related to his calibration belt.  It amazes me that he developed this test so early in his 

career.  He will make an excellent professor in the near future. 

Finally, I would like to thank the College of Public Health at The Ohio State 

University.  I have had nothing but excellent experiences in this college, and that mostly 

stems from the excellent professors I have been fortunate to meet along the way.   

 

  



v 

 

 

 

Vita 

 

May 2005 .......................................................Gahanna Lincoln High School 

2010................................................................B.S. Biology, The Ohio State University 

2015-2016  .....................................................Graduate Research Associate, College of 

Public Health, The Ohio State University 

 

 

 

Fields of Study 

 

Major Field:  Public Health  

 

  



vi 

 

 

 

Table of Contents 

 

Abstract ............................................................................................................................... ii 

Acknowledgments.............................................................................................................. iv 

Vita ...................................................................................................................................... v 

List of Tables ................................................................................................................... viii 

List of Figures .................................................................................................................... ix 

Chapter 1:  Introduction ...................................................................................................... 1 

Chapter 2: Statistical Power and the Hosmer-Lemeshow Test ........................................... 4 

Chapter 3: Type 1 Error, the Hosmer-Lemeshow Test, and the Calibration Belt .............. 8 

Chapter 4: Methods ........................................................................................................... 11 

Chapter 5: Results ............................................................................................................. 14 

Chapter 6: Discussion ....................................................................................................... 19 

Future Work .................................................................................................................. 21 

References ..................................................................................................................... 22 

Appendix A: Additional Simulation Results .................................................................... 23  



vii 

 

Appendix B: R Code ......................................................................................................... 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

 

 

 

 

 

List of Tables 

 

Table 1.  Simulation Models Used in Paul et al. (2013) ................................................... 15 

Table 2.  Empirical Power for All Models ........................................................................ 24 

Table 3.  Type 1 Error Rates for All Models .................................................................... 26 

Table 4.  Incorrect Models with a Success Rate of 0.05 ................................................... 32 

Table 5.  Incorrect Models with a Success Rate of 0.20 ................................................... 33 

Table 6.  Incorrect Models with a Success Rate of 0.40 ................................................... 34 

Table 7.  Incorrect Models with a Success Rate of 0.60 ................................................... 35 

Table 8.  Incorrect Models with a Success Rate of 0.80 ................................................... 36 

Table 9.  Correct Models with a Success Rate of 0.05 ..................................................... 37 

Table 10.  Correct Models with a Success Rate of 0.20 ................................................... 38 

Table 11.  Correct Models with a Success Rate of 0.40 ................................................... 39 

Table 12.  Correct Models with a Success Rate of 0.60 ................................................... 40 

Table 13.  Correct Models with a Success Rate of 0.80 ................................................... 41 

 

 

 

 

 



ix 

 

 

 

 

List of Figures 

 

Figure 1. An Example of the Calibration Belt .................................................................. 18 

Figure 2.  Statistical Power by Event Rate ....................................................................... 25 

Figure 3.  Histograms of the P-values for the Calibration Belt and H-L Test .................. 27 



1 

 

 

 

Chapter 1:  Introduction 

 

Logistic regression is one of the most commonly used methods in statistical 

modeling with binary outcomes.  Binary outcomes are found in nearly all areas of study, 

including the medical, economic, and psychology fields.  For example, Witt et al. (2004) 

used logistic regression to identify the association between several demographic factors 

and cardiac rehabilitation after myocardial infarction.  After a logistic regression model is 

built, model fit is usually assessed.  A model fits well if it has both good calibration and 

discrimination.  A model that discriminates well can distinguish successes from failures 

with high accuracy.  A model that is well-calibrated accurately predicts the probabilities 

of successes.   

The Hosmer-Lemeshow test is a commonly used technique for assessing logistic 

regression model calibration that is included in most statistical software programs.  The 

Hosmer-Lemeshow test first creates groups of observations based on estimated 

probabilities from the logistic regression model and then compares observed and 

expected probabilities within these groups. Recently, several papers have looked at issues 

of type 1 error and power with the Hosmer-Lemeshow test.  It is well-known that the 

Hosmer-Lemeshow test, like all chi-square tests, becomes too powerful as the number of 

observations increases (Paul 2013).  Paul et al. (2013) attempted to overcome this 

limitation by increasing the number of groups in the Hosmer-Lemeshow test through an 
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adaptive equation.  This adjustment standardized the power, so that the test did not 

always reject when the model is not far from the truth.    

Nattino et al. (2014) developed another method to assess the calibration of a 

logistic regression model.  They compared the type 1 error rate of the Hosmer-Lemeshow 

test versus their newly developed calibration belt.  They found that the Hosmer-

Lemeshow test rejected the null hypothesis of good calibration more often than expected 

in scenarios where the event is rare.  They found the calibration belt, alternatively, to be 

closer to the nominal type 1 error rate in all scenarios.  Another advantage of the 

calibration belt is graphical.  While the calibration belt – like the Hosmer-Lemeshow test 

– is a global test, it can be graphed to identify the probability levels where the model fits 

imperfectly.  Although the Hosmer-Lemeshow test can also be viewed graphically, it 

involves collapsing probabilities to see any deviations from the observed and estimated 

probabilities.  As Hosmer, Lemeshow, and Sturdivant note in their book (Hosmer, 

Lemeshow, and Sturdivant 2013), as the number of groups increases, it becomes very 

difficult to distinguish a large departure between estimated and observed probabilities. 

Since no collapsing occurs with the calibration belt, it is easier to see the probabilities 

where the deviations between observed and estimated probabilities occur.  This is a 

potential advantage of the calibration belt over the Hosmer-Lemeshow test. 

The goal of this study is to compare both the power and the type 1 error rate of the 

Hosmer-Lemeshow test with varying numbers of groups -- including the adaptive model 

selection procedure proposed by Paul et al. (2013) – and the calibration belt.  A 

simulation study is conducted using the same six models originally used by Paul et al. 
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(2013) as the starting point, however, we also varied the probability of success for each 

model from .05 to .80 to explore the effect of changing the marginal probability of 

success.  Two of the six models in the original Paul et al. (2013) paper differed only in 

their intercept, thus the number of models we ran was reduced to five.  The Hosmer-

Lemeshow test was performed using a wide range of number of groups (from 6 to 5000), 

and these were compared to the calibration belt.  
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Chapter 2:  Statistical Power and the Hosmer-Lemeshow Test 

 

Statistical power is defined as the probability of rejecting the null hypothesis 

when the null hypothesis is false.  Having high statistical power is a desirable feature of 

testing, but a test can also quickly become too powerful.  A well-known flaw in the 

Hosmer-Lemeshow test is that the power of the test becomes too high as the number of 

observations increases (Hosmer, Lemeshow, and Sturdivant 2013) causing the test to 

always reject the null hypothesis that the model fits even if it does in fact fit well.  For 

example, a statistician may build a model that would have a positive impact in a clinical 

setting, but it may never be used if tests indicate it fits poorly. This is especially likely to 

happen if a large data set is used. As Hosmer, Lemeshow, and Sturdivant (2013) note, a 

model that may be well-calibrated with few observations looks increasingly poorly fit as 

the number of observations becomes large even with the exact same model.  They 

illustrate this point by starting with a model that fits well with a small sample size.  They 

then duplicated the data multiple times (thus increasing the sample size) until the model 

no longer fits well according to the Hosmer-Lemeshow test.  Thus, using the same model 

and the same data, a much smaller p-value was produced as the number of data points 

was increased. 

Paul et al. (2013) attempted to standardize the power of the Hosmer-Lemeshow 

test by changing the most mutable part of that test – the number of groups taken.  In most 

software packages, the number of groups defaults to ten.  Paul et al. (2013) ran 
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simulations with multiple models and differing numbers of groups to see if the power 

changes according to the number of groups.  They found that the power does in fact 

change, decreasing as the number of groups increases.  They then developed an adaptive 

equation to standardize the power for sample sizes with up to 25,000 observations.   

There were two goals of their paper.  The first goal was to show the relationship between 

the power of the test in relation to differing sample sizes, the amount of deviation of the 

model from perfect fit, and the number of groups.  To do this, they simulated binary 

outcomes, Y, with the model below: 

 

                             
                       

 

In this scenario, X1 and X2 were standard normal variables, while Z was a binomial 

variable with n=1 and p=0.5.  All three variables were independent of each other.  Values 

of the parameters for each of the six models are listed in Table 1. They then fit the 

following model to the data, 

 

                           

 

which differed from the six true models in different ways.  Their first model deviated 

from the fitted model the greatest amount, as it included a quadratic term with X1 and a 

large interaction between X1 and Z.  The second and third models fitted to the data 
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deviated the least from the fitted model, while models four through six were intermediate 

cases.  These models had a probability of success that ranged from 0.055 to 0.874. 

 

Model # Model psuccess 

1                            
                 0.256 

2                                  0.874 

3                                0.585 

4                         
  0.529 

5                         
      0.528 

6                            
  0.055 

Table 1.  Simulation models used in Paul et. al. (2013). 

 

Paul et al. (2013) found that the power of the Hosmer-Lemeshow test increased 

with sample size and decreased with the number of groups.  Of note, when the probability 

of success was low (Model 6), the Hosmer-Lemeshow test did not follow a chi-square 

distribution when the number of groups was large.  As a result, they believed that the 

Hosmer-Lemeshow test is not effective in instances when the probability of success is 

low.    

 Previous work has shown that the Hosmer-Lemeshow test works best when there 

are at least five observations per group, and when the number of groups is greater than or 

equal to six (Hosmer, Lemeshow, and Sturdivant 2013).  The test often breaks down as 

well when the event is rare, as confirmed by Paul et al. (2013).  Taking all of these into 

account, Paul et al. (2013) listed recommendations for what group sizes to use in various 

scenarios.  With sample sizes up to 1000, a group size of ten is recommended.  This often 

keeps the power below 70%, which in some scenarios may still be too powerful.  For 
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sample sizes between 1,000 and 25,000 observations, they recommend using the 

following equation to determine the number of groups, g, to use: 

 

              
 

 
 
   

 
     

 

    
 
 

    

 

where n is the sample size and m is the number of successes.  This formula is justified by 

noting that power was kept relatively consistent to a benchmark used with a sample size 

of 1000 and a group size of 10 in their simulation results when the equation     

  
 

    
 
 

was used.  Moreover, the assumption is made that the number of groups taken is 

never below 10.  It is also noted that this equation breaks down as the sample size 

becomes smaller, as it is recommended to have at least five observations per group.  

Finally, for sample sizes greater than 25,000, this equation breaks down as well, as the 

equation defaults to the number of successes (m in the equation above) divided by two.  

This results in a test that is too powerful. 
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Chapter 3:  Type 1 Error, the Hosmer-Lemeshow Test, and the Calibration Belt 

 

Nattino et al.(2014) recently developed a test, the calibration belt, that uses a 

regression model based on the expected and observed probabilities of the logistic 

regression model to assess model fit.  The predicted probabilities are used as an 

independent variable in the model, and the observed (binary) outcomes are used as the 

dependent variable.  The calibration belt fits a logistic regression model that is restricted 

to a polynomial equation up to degree four.  If the calibration belt were to exceed a 

polynomial of degree four, the worry is that non-significant parameters would be 

included in the model.  On the other hand, if the degree were too low, the calibration belt 

would not be able to accurately identify deviations from the model.  A forward selection 

procedure is used to build the calibration belt’s underlying regression model.  The first 

polynomial fit is one of degree two so that a likelihood ratio test can be performed against 

a polynomial of degree one.  This process is continued up to a polynomial of the fourth 

degree until the most parsimonious model is found.  An ideal calibration belt model 

would have an intercept of 0 and a slope of 1, with no other terms (e.g., no squared term) 

leading to the bisector of the axes, as this would correspond to perfect calibration. 

One of the greatest advantages of the calibration belt is that one can observe the 

areas where the model is not well-calibrated.  After fitting the calibration belt, a graph 

can be produced that shows the areas of poor calibration, as seen in Figure 1 below. 
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Figure 1.  An example of the calibration belt.  The sample size is 25,000, the event rate is 0.40, and the 

calibration belt is fit to model 5. 

 

The advantages of being able to graphically observe where the model fits poorly 

are numerous.  Nattino et al. (2014) give the example of picking a transformation for a 

continuous variable based off of where the model appears to be poorly calibrated.  

Additionally, with large sample sizes, the calibration belt will likely reject the null 

hypothesis that the model is well-calibrated, but one can judge how poorly calibrated the 

model truly is based on the graph.  

Nattino et al. (2016) compared the type 1 error rate of the calibration belt with the 

Hosmer-Lemeshow test in a simulation study with probabilities of success of 0.10, 0.25, 



10 

 

and 0.50 with 5, 10 and 50 covariates.  In each model, they used 10 as the number of 

groups for the Hosmer-Lemeshow test.  They found that the type 1 error rates for both the 

calibration belt and the Hosmer-Lemeshow test were generally similar, however, in cases 

with a rare event the Hosmer-Lemeshow test was more liberal (i.e., had increased type 1 

error rates) than the calibration belt (Nattino 2014). 
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Chapter 4:  Methods 

 

A simulation study was performed using models used in the Paul et al. (2013) 

paper, with the goal of comparing the Hosmer-Lemeshow test with differing group sizes 

against the calibration belt with respect to both power and the type 1 error rate.  The goal 

was to see if the results reported in Nattino et al. (2016) and Paul et al. (2013) could be 

recreated and even expanded upon.  Nattino et al. (2016) only observed the type 1 error 

rate between the calibration belt and the Hosmer-Lemeshow test, while Paul et al. (2013) 

compared the power of the Hosmer-Lemeshow test with various number of groups.  The 

methods used in this paper are a synthesis and expansion of these two papers, so that the 

type 1 error rate and the statistical power could be compared across the calibration belt 

and the Hosmer-Lemeshow test with and without the adaptive group sizes method 

proposed by Paul et al. (2013). 

As in the Paul et al. (2013) paper, the model below was used to simulate the 

binary outcome: 

 

                             
                       

 

In this scenario, X1 and X2 are standard normal variables, Z follows a binomial 

distribution with n=1 and a success probability of 0.50, and all three variables are 

independent of each other.  Values of the coefficients                  were set to the 
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values used in the Paul et al. paper (Table 1), while the β0 value was changed so that the 

probability of success varied. This was done to see if the probability of success of the 

outcome causes changes in any of the goodness of fit tests. With the only difference 

between models 2 and 3 in the Paul et al. paper being the value of the intercept, and since 

we varied the intercept values, these two models were the same for our simulation.  Thus 

results are labeled as “Model 2/3”. The probabilities of successes chosen were 0.05, 0.20, 

0.40, 0.60, and 0.80.  This created a total of 25 scenarios (five model structures times five 

probabilities of success). For each model at each different probability of success, data 

were generated with sample sizes ranging from 100 to 25,000. 

To assess power, the following (incorrect) model was then fit to the data, 

 

                           

 

which differed from each of the six parent models in various ways.  The calibration belt 

and the Hosmer-Lemeshow test with varying numbers of groups (6 to 130) were then 

performed; for sample sizes of 25,000, the Hosmer-Lemeshow test with number of 

groups chosen using the adaptive group selection method proposed by Paul et al. (2013) 

was also conducted.  A total of 5,000 replicates were made for each of the five models 

listed below, and empirical power was estimated as the percentage of replicates where the 

test rejected the null hypothesis of good model fit.   

To assess type 1 error, the same simulation design was used, but the 

corresponding model-generating equation was fit to the data. Again, both the Hosmer-
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Lemeshow test with different numbers of groups and the calibration belt were performed. 

Empirical type 1 error was estimated as the percentage of replicates where the test 

rejected the null hypothesis of good fit.   
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Chapter 5:  Results 

 

With few exceptions, the results show that the calibration belt was more powerful 

than the Hosmer-Lemeshow test in all models run and at all probability levels and group 

sizes.  This can be seen in Table 2 where the event rate is 0.40. The results, however, are 

typical of those seen at all event rates. 
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Model Sample 

Size 

g=6 g=10 g=18 g=34 g=66 g=130 Adaptive 

g = 5000 

Calibration 

Belt 

1 100 .0980 .0800 .0638 .0326 .0018 N/A  .1762 

 500 .3700 .3058 .2316 .1638 .1094 .0624  .5948 

 1000 .6706 .6222 .5008 .3690 .2462 .1512  .8678 

 2000 .9448 .9334 .8776 .7498 .5744 .3766  .9924 

 4000 .9998 .9988 .9980 .9904 .9542 .8274  1 

 25000 1 1 1 1 1 1 .7958 1 

2/3 100 .0438 .0404 .0418 .0284 .0154 N/A  .056 

 500 .0560 .0514 .0524 .0436 .0398 .0328  .0686 

 1000 .0634 .0600 .0564 .0508 .0514 .0406  .1054 

 2000 .0860 .0758 .0704 .0618 .0562 .0502  .156 

 4000 .1242 .1050 .0950 .0754 .0640 .0476  .2604 

 25000 .6376 .5940 .4900 .3756 .2626 .1698 .0270 .904 

4 100 .0708 .0736 .0658 .0620 .0368 N/A  .1442 

 500 .2022 .1924 .1740 .1432 .1218 .1110  .5266 

 1000 .4024 .3874 .3326 .2706 .2346 .1870  .8088 

 2000 .7224 .7252 .6700 .5682 .4762 .3636  .979 

 4000 .9674 .9724 .9654 .9188 .8364 .6968  .9998 

 25000 1 1 1 1 1 1 .9732 1 

5 100 .0692 .0672 .0582 .0512 .0150 N/A  .135 

 500 .1758 .1680 .1464 .1212 .0996 .0822  .449 

 1000 .3262 .3292 .2708 .2116 .1692 .1366  .7316 

 2000 .6218 .6164 .5602 .4542 .3428 .2642  .9596 

 4000 .9194 .9346 .9108 .8400 .7206 .5530  .9996 

 25000 1 1 1 1 1 1 .8285 1 

6 100 .0664 .0578 .0460 .0282 .0040 N/A  .1606 

 500 .2140 .1728 .1368 .1042 .0754 .0462  .5432 

 1000 .3974 .3678 .3094 .2286 .1588 .0912  .8342 

 2000 .7328 .7166 .6576 .5334 .3868 .2398  .9816 

 4000 .9694 .9776 .9624 .9066 .7996 .6000  1 

 25000 1 1 1 1 1 1 .37 1 
Table 2.  Empirical power for the five data generation models with an event success rate of 0.40 and 

varying sample sizes. 

 

In regards to the adaptive group number equation proposed by Paul et al. (2013), 

the probability of success appeared to have a large impact on the power.  Although the 

models from the original paper were used, the power did not standardize well as the 
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probability of success changed.  For example, as can be seen in Figure 2 below, the 

power using the adaptive group number equation changed dramatically as the probability 

of success within each model changed as well.   

 

 

Figure 2.  Statistical power by event rate for each of the five models.  The sample size is 25,000, and the 

number of groups recommended by the adaptive group equation varies by event rate. 

 

The Hosmer-Lemeshow test and the calibration belt were both very conservative, 

with the calibration belt’s type 1 error being substantially lower than that of the Hosmer-

Lemeshow test.  Only in models 2/3 and 5 did the type 1 error rate of the calibration belt 

ever appear to be close to the ideal type 1 error rate of 5%.  In all other cases, the type 1 

error rate was often an order of magnitude or more too conservative, as can be seen in 
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Table 3 below.  Additionally, it is clear from Figure 3 that under the null hypothesis, p-

values from the calibration belt do not follow a uniform distribution as would be expected 

in models 1, 4, and 6, while they did for the Hosmer-Lemeshow test. 

 

Model Sample 

Size 

g=6 g=10 g=18 g=34 g=66 g=130 Adaptive 

g = 2500 

Calibration 

Belt 

1 500 .0302 .0310 .0364 .0352 .0370 .0398  .003 

 1000 .0280 .0300 .0344 .0406 .0414 .0374  .0018 

 2000 .0300 .0282 .0318 .0352 .0360 .0396  .0006 

 4000 .0262 .0262 .0366 .0384 .0378 .0368  .0012 

 25000 .0296 .0322 .0346 .0396 .0446 .0468 .0366 .0008 

2/3 500 .0396 .0420 .0426 .0484 .0558 .0614  .0216 

 1000 .0392 .0426 .0432 .0442 .0454 .0562  .0268 

 2000 .0342 .0440 .0412 .0454 .0514 .0532  .0264 

 4000 .0426 .0386 .0444 .0456 .0518 .0572  .0248 

 25000 .0384 .0458 .0418 .0436 .0486 .0476 .0676 .0278 

4 500 .0346 .0370 .0392 .0410 .0426 .0280  .0038 

 1000 .0268 .0294 .0322 .0364 .0392 .0340  .0022 

 2000 .0324 .0346 .0380 .0408 .0434 .0440  .0032 

 4000 .0272 .0316 .0330 .0370 .0372 .0412  .0014 

 25000 .0306 .0328 .0394 .0378 .0426 .0442 .0324 .0012 

5 500 .0448 .0482 .0478 .0514 .0578 .0724  .0332 

 1000 .0468 .0434 .0470 .0490 .0554 .0632  .032 

 2000 .0476 .0416 .0514 .0528 .0526 .0598  .0316 

 4000 .0502 .0452 .0488 .0474 .0524 .0536  .0352 

 25000 .0454 .0424 .0494 .0424 .0458 .0520 .0716 .0328 

6 500 .0292 .0366 .0372 .0404 .0454 .0488  .0084 

 1000 .0292 .0326 .0368 .0410 .0428 .0428  .0028 

 2000 .0304 .0314 .0368 .0392 .0382 .0458  .0044 

 4000 .0314 .0352 .0408 .0384 .0372 .0450  .0022 

 25000 .0312 .0366 .0354 .0398 .0410 .0454 .0648 .0036 
Table 3.  Type 1 error rates for each of the five data generation models where the event rate is 0.20 with 

varying sample sizes. 
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Figure 3.  Histograms of the p-values for the calibration belt and Hosmer-Lemeshow test for model 4 with 

an event probability of 0.20 and a sample size of 1,000 after N=5,000 replications. 
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Chapter 6:  Discussion 

 

It appears that none of the goodness of fit measures tested in this paper are 

perfect, yet all seem to be useful.  The Hosmer-Lemeshow test, a staple of measuring 

goodness of fit in logistic regression, is still an extremely effective test.  Although it is 

not as powerful as the calibration belt, it remains a useful technique for evaluating the fit 

of a logistic regression model.  Paul et al. (2013) proposed an adaptive equation for the 

group sizes, but this equation appears to fall short, as it is dependent on the success 

probability of the model.  Perhaps an ideal solution would be to take multiple group sizes 

for a large sample, and then to judge whether one believes the model fits well based on 

the results.  These multiple group sizes would ideally span from the default size of ten, up 

to what is recommended by Paul et al.’s (2013) adaptive equation. 

One could also use the calibration belt, which was found to be more powerful 

than the Hosmer-Lemeshow test in nearly all cases.  Additionally, the ability to observe 

where the model fits imperfectly with a graph is a large boon for this test.  Although one 

is capable of seeing at what expected probability levels the Hosmer-Lemeshow test also 

imperfectly fits, the results must first be collapsed into groups.  With the calibration belt 

proposed by Nattino et al. (2014), collapsing of the groups is no longer a necessary step. 

A problem, however, occurred when trying to recreate the type 1 error levels that were 

nominally stated for the test.  In the Nattino et al. (2015) paper, it was found that the type 

1 error rate was close to the ideal level of 5% in both the calibration belt and the Hosmer-
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Lemeshow test, with the Hosmer-Lemeshow test appearing to be slightly liberal with its 

type 1 error rate when the marginal success probability was low.  The results of this 

simulation study show that both the Hosmer-Lemeshow test and the calibration belt are 

generally conservative, but the calibration belt is often an order of magnitude or more too 

conservative.  It is unknown why this would be the case.   

Based on the results of this simulation study, ideally any logistic regression model 

fit to data would be checked with both the Hosmer-Lemeshow test with several group 

sizes and the calibration belt.  These results would then be further analyzed to see if there 

is any apparent issue with the model.  With large sample sizes, the calibration belt may be 

the best pick, as one can clearly see at what probabilities the model deviates.  

Unfortunately, it is likely that the calibration belt and the Hosmer-Lemeshow test used 

with large sample sizes will reject the null hypothesis of a well-calibrated model, but one 

can observe where this lack of fit occurs better with the calibration belt.  One could 

similarly plot the observed and expected probabilities produced by the Hosmer-

Lemeshow test to look for deviance.  The outcome would be similar to the calibration 

belt, but not quite as smooth.  With the models fit in this simulation study, it is clear that 

both the calibration belt and the Hosmer-Lemeshow test are useful for assessing the 

calibration of a logistic regression model. 
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Future Work 

 

As was done in the Nattino et al. (2016) paper, more covariates could be tested 

when fitting the models.  It is possible that the models produced by the calibration belt in 

this paper are over-fitting the data.  This could be explored further in future analyses.   
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Appendix A:  Additional Simulation Results 

 

Model Sampl

e Size 

g=6 g=10 g=18 g=34 g=66 g=130 Adaptive 

g = 625 

Calibration 

Belt 

1 100 N/A N/A N/A N/A N/A N/A  * 

 500 .5294 .5704 .5520 .5230 .4750 .4474  .8516 

 1000 .8658 .8906 .8878 .8562 .7994 .7364  .9844 

 2000 .9956 .9990 .9980 .9950 .9874 .9692  1 

 4000 1 1 1 1 1 1  1 

 25000 1 1 1 1 1 1 1 1 

2/3 100 N/A N/A N/A N/A N/A N/A  * 

 500 .0492 .0512 .0586 .0704 .0914 .1140  .07 

 1000 .0412 .0462 .0506 .0594 .0760 .1034  .07 

 2000 .0502 .0488 .0432 .0540 .0630 .0804  .079 

 4000 .0468 .0414 .0430 .0510 .0496 .0666  .1116 

 25000 .0684 .0672 .0626 .0662 .0592 .0504 .0478 .3244 

4 100 N/A N/A N/A N/A N/A N/A  * 

 500 .1538 .1822 .2162 .2704 .3308 .3958  .1706 

 1000 .1948 .2154 .2668 .3306 .4086 .4902  .3006 

 2000 .2922 .3244 .3518 .4204 .4994 .5966  .5556 

 4000 .4952 .5154 .5380 .5648 .6290 .7238  .8426 

 25000 .9988 .9984 .9988 .9984 .9960 .9952 .9988 1 

5 100 N/A N/A N/A N/A N/A N/A  * 

 500 .1128 .1288 .1630 .1968 .2538 .3156  .1312 

 1000 .1278 .1558 .1860 .2418 .2958 .3804  .2212 

 2000 .2218 .2446 .2644 .3012 .3752 .4632  .4176 

 4000 .3606 .3676 .3836 .3992 .4496 .5296  .6848 

 25000 .9854 .9856 .9836 .9762 .9632 .9460 .9800 1 

6 100 N/A N/A N/A N/A N/A N/A  * 

 500 .0614 .0570 .0426 .0360 .0294 .0244  .222 

 1000 .0894 .0834 .0588 .0434 .0360 .0218  .3594 

 2000 .1616 .1388 .1062 .0698 .0446 .0264  .5966 

 4000 .3324 .2982 .2206 .1364 .0818 .0400  .8718 

 25000 .9980 .9994 .9976 .9878 .9398 .7572 .0764 1 
Table 4.  Incorrect models with a success rate of 0.05. 
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Model Sample 

Size 

g=6 g=10 g=18 g=34 g=66 g=130 Adaptive 

g = 2500 

Calibration 

Belt 

1 100 .1456 .1386 .0968 .0652 .0238 N/A  .35 

 500 .7486 .736 .6588 .5208 .362 .2048  .9388 

 1000 .973 .9738 .9552 .8986 .7742 .5674  .9982 

 2000 1 1 .9994 .9988 .9936 .9572  1 

 4000 1 1 1 1 1 1  1 

 25000 1 1 1 1 1 1 1 1 

2/3 100 .0456 .0414 .044 .046 .057 N/A  .0694 

 500 .052 .0494 .0358 .0428 .0458 .0374  .0796 

 1000 .0578 .0498 .0482 .0422 .0444 .039  .107 

 2000 .068 .0584 .0574 .049 .0422 .0354  .1606 

 4000 .0972 .0898 .0748 .0662 .0542 .0460  .271 

 25000 .4496 .4722 .4362 .3464 .2376 .1560 .0168 .9048 

4 100 .0730 .0884 .0956 .1240 .1550 N/A  .111 

 500 .1826 .1912 .1862 .2028 .2308 .2752  .3926 

 1000 .2968 .3146 .3022 .2858 .3004 .3324  .6446 

 2000 .5708 .5888 .5524 .5066 .4792 .4734  .9158 

 4000 .8738 .8886 .8682 .8106 .7488 .6978  .9976 

 25000 1 1 1 1 1 1 1 1 

5 100 .0662 .0694 .0742 .0826 .1062 N/A  .1004 

 500 .1328 .1328 .1408 .1386 .1560 .1722  .301 

 1000 .2166 .2188 .2056 .1912 .2002 .2000  .5312 

 2000 .4286 .4240 .3962 .3556 .3288 .3010  .8222 

 4000 .7318 .7514 .7150 .6410 .5632 .4980  .9862 

 25000 1 1 1 1 1 1 .9852 1 

6 100 .0562 .0468 .0402 .0246 .0130 N/A  .1526 

 500 .1382 .1186 .0900 .0638 .0402 .0204  .4614 

 1000 .2682 .2404 .1838 .1174 .0728 .0338  .7446 

 2000 .5538 .5106 .4210 .3010 .1800 .0902  .9578 

 4000 .8734 .8784 .8210 .7020 .4976 .2860  .9984 

 25000 1 1 1 1 1 1 .1106 1 
Table 5.  Incorrect models with a success rate of 0.20. 
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Model Sample 

Size 

g=6 g=10 g=18 g=34 g=66 g=130 Adaptive 

g = 5000 

Calibration 

Belt 

1 100 .0980 .0800 .0638 .0326 .0018 N/A  .1762 

 500 .3700 .3058 .2316 .1638 .1094 .0624  .5948 

 1000 .6706 .6222 .5008 .3690 .2462 .1512  .8678 

 2000 .9448 .9334 .8776 .7498 .5744 .3766  .9924 

 4000 .9998 .9988 .9980 .9904 .9542 .8274  1 

 25000 1 1 1 1 1 1 .7958 1 

2/3 100 .0438 .0404 .0418 .0284 .0154 N/A  .056 

 500 .0560 .0514 .0524 .0436 .0398 .0328  .0686 

 1000 .0634 .0600 .0564 .0508 .0514 .0406  .1054 

 2000 .0860 .0758 .0704 .0618 .0562 .0502  .156 

 4000 .1242 .1050 .0950 .0754 .0640 .0476  .2604 

 25000 .6376 .5940 .4900 .3756 .2626 .1698 .0270 .904 

4 100 .0708 .0736 .0658 .0620 .0368 N/A  .1442 

 500 .2022 .1924 .1740 .1432 .1218 .1110  .5266 

 1000 .4024 .3874 .3326 .2706 .2346 .1870  .8088 

 2000 .7224 .7252 .6700 .5682 .4762 .3636  .979 

 4000 .9674 .9724 .9654 .9188 .8364 .6968  .9998 

 25000 1 1 1 1 1 1 .9732 1 

5 100 .0692 .0672 .0582 .0512 .0150 N/A  .135 

 500 .1758 .1680 .1464 .1212 .0996 .0822  .449 

 1000 .3262 .3292 .2708 .2116 .1692 .1366  .7316 

 2000 .6218 .6164 .5602 .4542 .3428 .2642  .9596 

 4000 .9194 .9346 .9108 .8400 .7206 .5530  .9996 

 25000 1 1 1 1 1 1 .8285 1 

6 100 .0664 .0578 .0460 .0282 .0040 N/A  .1606 

 500 .2140 .1728 .1368 .1042 .0754 .0462  .5432 

 1000 .3974 .3678 .3094 .2286 .1588 .0912  .8342 

 2000 .7328 .7166 .6576 .5334 .3868 .2398  .9816 

 4000 .9694 .9776 .9624 .9066 .7996 .6000  1 

 25000 1 1 1 1 1 1 .37 1 
Table 6.  Incorrect models with a success rate of 0.40. 
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Model Sample 

Size 

g=6 g=10 g=18 g=34 g=66 g=130 Adaptive 

g = 5000 

Calibration 

Belt 

1 100 .0598 .0484 .0466 .0286 .0012 N/A  .0798 

 500 .0820 .0710 .0684 .0580 .0506 .0328  .11 

 1000 .1084 .0922 .0740 .0612 .0574 .0446  .183 

 2000 .1680 .1356 .1020 .0902 .0748 .0586  .2908 

 4000 .3112 .2480 .1892 .1358 .1142 .0884  .5294 

 25000 .9852 .9794 .9478 .8566 .7078 .5168 .0440 .9976 

2/3 100 .0518 .0456 .0420 .0364 .0246 N/A  .0588 

 500 .0576 .0570 .0514 .0516 .0506 .0450  .063 

 1000 .0636 .0614 .0642 .0572 .0570 .0456  .0958 

 2000 .0772 .0698 .0598 .0628 .0620 .0532  .1246 

 4000 .1024 .0922 .0830 .0686 .0672 .0628  .1764 

 25000 .4362 .3882 .3042 .2258 .1762 .1336 .0920 .7544 

4 100 .0676 .0572 .0422 .0284 .0046 N/A  .1606 

 500 .2144 .1728 .1380 .1060 .0744 .0464  .5432 

 1000 .3944 .3692 .3054 .2274 .1588 .0914  .8362 

 2000 .7334 .7178 .6588 .5292 .3884 .2420  .9808 

 4000 .9704 .9778 .9634 .9042 .7994 .5974  1 

 25000 1 1 1 1 1 1 .3725 1 

5 100 .0722 .0516 .0444 .0252 .0020 N/A  .1606 

 500 .1934 .1680 .1334 .0984 .0684 .0360  .5126 

 1000 .3562 .3268 .2636 .2020 .1400 .0844  .7976 

 2000 .6890 .6650 .5958 .4618 .3156 .2038  .9788 

 4000 .9566 .9564 .9344 .8602 .7198 .5216  .9998 

 25000 1 1 1 1 1 1 .2785 1 

6 100 .0742 .0738 .0704 .0622 .0402 N/A  .144 

 500 .2028 .1932 .1734 .1430 .1220 .1106  .5264 

 1000 .4014 .3860 .3314 .2706 .2348 .1860  .809 

 2000 .7218 .7248 .6694 .5704 .4786 .3638  .9782 

 4000 .9668 .9722 .9644 .9188 .8360 .6966  1 

 25000 1 1 1 1 1 1 .971 1 
Table 7.  Incorrect models with a success rate of 0.60. 
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Model Sample 

Size 

g=6 g=10 g=18 g=34 g=66 g=130 Adaptive 

g = 2500 

Calibration 

Belt 

1 100 .0534 .0456 .0348 .0278 .0078 N/A  .0738 

 500 .0624 .0514 .0516 .0502 .0472 .0370  .0644 

 1000 .0562 .0558 .0590 .0534 .0444 .0348  .0684 

 2000 .0872 .0822 .0710 .0658 .0594 .0502  .0842 

 4000 .1208 .1104 .1026 .0880 .0734 .0690  .1348 

 25000 .6290 .6348 .5808 .4744 .3424 .2342 .0605 .676 

2/3 100 .0544 .0490 .0544 .0606 .0766 N/A  .0598 

 500 .0572 .0570 .0556 .0614 .0680 .0868  .0546 

 1000 .0568 .0562 .0624 .0620 .0706 .0722  .0634 

 2000 .0636 .0626 .0618 .0646 .0658 .0738  .0764 

 4000 .0678 .0648 .0622 .0672 .0650 .0760  .1012 

 25000 .1922 .1746 .1516 .1256 .1094 .0880 .1580 .4246 

4 100 .0562 .0470 .0362 .0248 .0126 N/A  .1532 

 500 .1384 .1180 .0890 .0624 .0408 .0202  .4616 

 1000 .2666 .2412 .1808 .1174 .0736 .0340  .7446 

 2000 .5544 .5110 .4212 .3010 .1798 .0908  .9584 

 4000 .8730 .8780 .8196 .7020 .4964 .2856  .9984 

 25000 1 1 1 1 1 1 .1155 1 

5 100 .0622 .0472 .0366 .0248 .0086 N/A  .1552 

 500 .1406 .1220 .0922 .0752 .0430 .0264  .442 

 1000 .2858 .2422 .1870 .1254 .0744 .0400  .7198 

 2000 .5612 .5122 .3992 .2906 .1762 .0952  .95 

 4000 .8844 .8794 .8194 .6840 .4822 .2794  .9996 

 25000 1 1 1 1 1 1 .1375 1 

6 100 .0708 .0878 .1030 .1236 .1606 N/A  .1106 

 500 .1824 .1902 .1862 .2022 .2300 .2746  .3922 

 1000 .2982 .3130 .2984 .2866 .3030 .3324  .6448 

 2000 .5688 .5902 .5518 .5068 .4778 .4732  .9154 

 4000 .8740 .8890 .8662 .8114 .7514 .6982  .9978 

 25000 1 1 1 1 1 1 1 1 
Table 8.  Incorrect models with a success rate of 0.80. 
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Model Sample 

Size 

g=6 g=10 g=18 g=34 g=66 g=130 Adaptive 

g = 625 

Calibration 

Belt 

1 500 .0286 .0312 .0324 .0446 .0572 .0722  .0056 

 1000 .0288 .0318 .0348 .0412 .0462 .0588  .0016 

 2000 .0300 .0288 .0334 .0426 .0448 .0562  .0016 

 4000 .0306 .0362 .0390 .0464 .0460 .0528  .002 

 25000 .0300 .0328 .0346 .0400 .0448 .0426 .0494 <.00001 

2/3 500 .0328 .0408 .0442 .0602 .0748 .1042  .0262 

 1000 .0364 .0426 .0534 .0652 .0772 .1054  .0246 

 2000 .0408 .0408 .0450 .0584 .0654 .0852  .0192 

 4000 .0428 .0424 .0438 .0500 .0564 .0792  .0234 

 25000 .0458 .0480 .0456 .0432 .0486 .0532 .1920 .0178 

4 500 .0368 .0382 .0374 .0450 .0504 .0614  .0088 

 1000 .0290 .0340 .0382 .0422 .0450 .0578  .0066 

 2000 .0354 .0350 .0322 .0416 .0434 .0486  .0024 

 4000 .0318 .0334 .0312 .0406 .0442 .0436  .0018 

 25000 .0352 .0400 .0392 .0440 .0460 .0444 .0404 .001 

5 500 .0472 .0538 .0674 .0862 .1098 .1468  .0264 

 1000 .0458 .0504 .0570 .0820 .1034 .1454  .0242 

 2000 .0494 .0428 .0550 .0660 .0866 .1198  .0266 

 4000 .0486 .0470 .0512 .0582 .0746 .0964  .0282 

 25000 .0554 .0508 .0514 .0524 .0612 .0636 .2266 .024 

6 500 .0346 .0396 .0352 .0400 .0486 .0564  .0168 

 1000 .0322 .0372 .0416 .0460 .0572 .0626  .0106 

 2000 .0368 .0330 .0410 .0420 .0508 .0572  .0074 

 4000 .0314 .0352 .0348 .0416 .0478 .0536  .0066 

 25000 .0302 .0376 .0364 .0412 .0416 .0482 .1156 .0028 
Table 9.  Correct models with a success rate of 0.05. 
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Model Sample 

Size 

g=6 g=10 g=18 g=34 g=66 g=130 Adaptive 

g = 2500 

Calibration 

Belt 

1 500 .0302 .0310 .0364 .0352 .0370 .0398  .003 

 1000 .0280 .0300 .0344 .0406 .0414 .0374  .0018 

 2000 .0300 .0282 .0318 .0352 .0360 .0396  .0006 

 4000 .0262 .0262 .0366 .0384 .0378 .0368  .0012 

 25000 .0296 .0322 .0346 .0396 .0446 .0468 .0366 .0008 

2/3 500 .0396 .0420 .0426 .0484 .0558 .0614  .0216 

 1000 .0392 .0426 .0432 .0442 .0454 .0562  .0268 

 2000 .0342 .0440 .0412 .0454 .0514 .0532  .0264 

 4000 .0426 .0386 .0444 .0456 .0518 .0572  .0248 

 25000 .0384 .0458 .0418 .0436 .0486 .0476 .0676 .0278 

4 500 .0346 .0370 .0392 .0410 .0426 .0280  .0038 

 1000 .0268 .0294 .0322 .0364 .0392 .0340  .0022 

 2000 .0324 .0346 .0380 .0408 .0434 .0440  .0032 

 4000 .0272 .0316 .0330 .0370 .0372 .0412  .0014 

 25000 .0306 .0328 .0394 .0378 .0426 .0442 .0324 .0012 

5 500 .0448 .0482 .0478 .0514 .0578 .0724  .0332 

 1000 .0468 .0434 .0470 .0490 .0554 .0632  .032 

 2000 .0476 .0416 .0514 .0528 .0526 .0598  .0316 

 4000 .0502 .0452 .0488 .0474 .0524 .0536  .0352 

 25000 .0454 .0424 .0494 .0424 .0458 .0520 .0716 .0328 

6 500 .0292 .0366 .0372 .0404 .0454 .0488  .0084 

 1000 .0292 .0326 .0368 .0410 .0428 .0428  .0028 

 2000 .0304 .0314 .0368 .0392 .0382 .0458  .0044 

 4000 .0314 .0352 .0408 .0384 .0372 .0450  .0022 

 25000 .0312 .0366 .0354 .0398 .0410 .0454 .0648 .0036 
Table 10.  Correct models with a success rate of 0.20. 
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Model Sample 

Size 

g=6 g=10 g=18 g=34 g=66 g=130 Adaptive 

g = 5000 

Calibration 

Belt 

1 500 .0238 .0260 .0342 .0378 .0350 .0284  .002 

 1000 .0288 .0302 .0356 .0360 .0376 .0368  .0022 

 2000 .0268 .0294 .0354 .0376 .0414 .0398  .0024 

 4000 .0254 .0266 .0340 .0382 .0432 .0428  .0004 

 25000 .0232 .0286 .0360 .0318 .0358 .0382 .0366 .0008 

2/3 500 .0392 .0402 .0414 .0422 .0402 .0360  .0278 

 1000 .0420 .0448 .0458 .0444 .0474 .0404  .0266 

 2000 .0426 .0458 .0428 .0454 .0526 .0492  .0316 

 4000 .0398 .0438 .0422 .0444 .0410 .0490  .0288 

 25000 .0396 .0360 .0450 .0480 .0498 .0486 .0386 .032 

4 500 .0306 .0336 .0344 .0380 .0336 .0276  .0066 

 1000 .0304 .0328 .0408 .0418 .0432 .0310  .0036 

 2000 .0324 .0336 .0368 .0402 .0472 .0428  .002 

 4000 .0266 .0304 .0340 .0374 .0394 .0456  .0014 

 25000 .0282 .0308 .0372 .0360 .0444 .0462 .0372 .001 

5 500 .0400 .0418 .0444 .0460 .0404 .0384  .0312 

 1000 .0430 .0480 .0432 .0426 .0438 .0432  .0386 

 2000 .0480 .0460 .0478 .0458 .0460 .0424  .0408 

 4000 .0464 .0520 .0462 .0476 .0474 .0464  .0356 

 25000 .0478 .0458 .0520 .0538 .0494 .0524 .0424 .039 

6 500 .0328 .0354 .0362 .0380 .0374 .0352  .0052 

 1000 .0350 .0342 .0364 .0396 .0438 .0354  .0038 

 2000 .0312 .0346 .0344 .0466 .0396 .0422  .002 

 4000 .0318 .0358 .0366 .0414 .0476 .0460  .0024 

 25000 .0292 .0316 .0360 .0380 .0462 .0466 .0418 .0014 
Table 11.  Correct models with a success rate of 0.40. 
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Model Sample 

Size 

g=6 g=10 g=18 g=34 g=66 g=130 Adaptive 

g = 5000 

Calibration 

Belt 

1 500 .0246 .0310 .0294 .0342 .0334 .0326  .0014 

 1000 .0230 .0276 .0308 .0398 .0394 .0380  .0024 

 2000 .0260 .0288 .0318 .0376 .0364 .0370  .0014 

 4000 .0262 .0300 .0322 .0398 .0402 .0402  .0004 

 25000 .0270 .0324 .0374 .0404 .0392 .0434 .0452 .0006 

2/3 500 .0392 .0416 .0412 .0428 .0440 .0410  .029 

 1000 .0444 .0490 .0508 .0464 .0436 .0432  .0354 

 2000 .0388 .0480 .0444 .0452 .0504 .0554  .0396 

 4000 .0450 .0442 .0488 .0526 .0520 .0484  .0358 

 25000 .0438 .0436 .0462 .0494 .0436 .0456 .0484 .0366 

4 500 .0322 .0354 .0366 .0376 .0380 .0368  .005 

 1000 .0348 .0338 .0374 .0412 .0444 .0354  .0038 

 2000 .0304 .0344 .0340 .0474 .0404 .0428  .0022 

 4000 .0320 .0352 .0360 .0420 .0472 .0452  .0024 

 25000 .0308 .0316 .0360 .0366 .0464 .0452 .0422 .0012 

5 500 .0476 .0426 .0454 .0504 .0474 .0462  .0336 

 1000 .0502 .0436 .0468 .0510 .0440 .0488  .0354 

 2000 .0474 .0442 .0524 .0504 .0534 .0506  .04 

 4000 .0472 .0482 .0460 .0446 .0492 .0452  .0428 

 25000 .0436 .0482 .0532 .0512 .0548 .0518 .0546 .0368 

6 500 .0304 .0334 .0348 .0392 .0342 .0284  .0066 

 1000 .0288 .0328 .0384 .0410 .0436 .0316  .0038 

 2000 .0324 .0338 .0386 .0404 .0460 .0420  .0018 

 4000 .0268 .0302 .0348 .0364 .0404 .0468  .0012 

 25000 .0278 .0306 .0354 .0350 .0432 .0440 .0350 .001 
Table 12.  Correct models with a success rate of 0.60. 
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Model Sample 

Size 

g=6 g=10 g=18 g=34 g=66 g=130 Adaptive 

g = 2500 

Calibration 

Belt 

1 500 .0258 .0296 .0334 .0342 .0410 .0488  .0038 

 1000 .0298 .0296 .0324 .0342 .0404 .0440  .002 

 2000 .0284 .0294 .0308 .0324 .0426 .0478  .002 

 4000 .0342 .0326 .0350 .0326 .0404 .0448  .0014 

 25000 .0294 .0302 .0324 .0370 .0394 .0432 .0662 .002 

2/3 500 .0452 .0462 .0462 .0472 .0630 .0714  .0356 

 1000 .0420 .0464 .0454 .0464 .0616 .0666  .0358 

 2000 .0444 .0438 .0462 .0446 .0510 .0604  .039 

 4000 .0418 .0460 .0466 .0526 .0558 .0584  .0358 

 25000 .0470 .0448 .0424 .0468 .0506 .0490 .0906 .0346 

4 500 .0290 .0364 .0370 .0398 .0450 .0480  .008 

 1000 .0276 .0332 .0354 .0420 .0426 .0418  .0028 

 2000 .0312 .0328 .0372 .0380 .0378 .0440  .0044 

 4000 .0316 .0354 .0406 .0380 .0376 .0440  .002 

 25000 .0310 .0366 .0348 .0396 .0418 .0446 .0658 .0036 

5 500 .0472 .0540 .0468 .0516 .0614 .0718  .037 

 1000 .0496 .0506 .0514 .0580 .0616 .0746  .0388 

 2000 .0518 .0468 .0546 .0538 .0602 .0696  .0388 

 4000 .0436 .0440 .0438 .0458 .0518 .0634  .0462 

 25000 .0564 .0576 .0528 .0504 .0536 .0540 .1102 .042 

6 500 .0350 .0368 .0392 .0414 .0422 .0282  .0038 

 1000 .0272 .0288 .0310 .0368 .0394 .0336  .0022 

 2000 .0324 .0342 .0380 .0410 .0432 .0444  .0032 

 4000 .0272 .0314 .0338 .0360 .0378 .0418  .0014 

 25000 .0306 .0332 .0394 .0382 .0420 .0436 .0312 .0014 
Table 13.  Correct models with a success rate of 0.80. 
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require(ResourceSelection)  # package containing the H-L test 

require(givitiR) # Package containing Giovanni's test 

 

runsim <- function(NREPS, n, B0, B1, B2, B3, B4, B5, x){ 

  set.seed(6320489) 

  # vectors to hold results of the replicates 

  hl.stat <- hl.pval <- matrix(NA,nrow=NREPS,ncol=length(x)) 

  giovanni.pval <- vector(length=NREPS) 

  mean_y <- vector(length=NREPS) 

 

for (i in 1:NREPS) 

{ 

  if(i %% 100 == 0) print(paste("Replicate",i)) 

  ############i############ 

  ###### GENERATE DATA 

  ######################## 

  ## generate covariates (all are independent of each other) 

  x1 <- rnorm(n,0,1) 

  x2 <- rnorm(n,0,1) 

  z <- rbinom(n,1,0.5) 

  ## generate binary outcome 

  # linear predictor (XB) 
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  linpred <- B0 + B1*x1 + B2*x1^2 + B3*x2 + B4*z + B5*z*x1 

  # P(Y=1) 

  prob <- 1 - 1/(1+exp(linpred)) 

  # draw Y 

  y <- rbinom(n,1,prob) 

   

  ######################## 

  ###### FIT MODEL 

  ######################## 

  #To test alpha for model 1 

  #fit <- glm(y ~ x1 + I(x1^2) + z + z*x1, family=binomial)  

   

  #To test alpha for model 2/3 

  #fit <- glm(y ~ x1 + z + z*x1, family=binomial)  

   

  #To test alpha for model 4 

  #fit <- glm(y ~ x1 + I(x1^2), family=binomial)  

   

  #To test alpha for model 5 

  #fit <- glm(y ~ x1 + I(x1^2) + x2, family=binomial)  

   

  #To test alpha for model 6 
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  #fit <- glm(y ~ x1 + I(x1^2), family=binomial)  

   

   

  #To test power 

  fit <- glm(y ~ x1, family=binomial)  # may not match the data generation model, 

depending on the Bs 

   

  ######################## 

  ###### H-L TEST 

  ######################## 

  # perform test 

  for (j in 1:length(x)) 

  { 

    G <- x[j] 

    hl <- hoslem.test(fit$y, fitted(fit), g=G)  

    # save the test statistic and p-value 

    hl.stat[i,j] <- hl$statistic 

    hl.pval[i,j] <- hl$p.value 

  } 

  ctest <- givitiCalibrationTest(fit$y, fitted(fit), "internal") 

  giovanni.pval[i] <- ctest$p.value 

  mean_y[i] <- mean(y) 
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} 

  par(mfrow=c(2,1)) 

  hist(giovanni.pval, main="Calibration Belt", xlab = "p-value", las=1) 

  hist(hl.pval[,1], main = "Hosmer-Lemeshow Test", xlab = "p-value", las=1) 

   

hl.power <- apply(hl.pval, 2, function(X) sum(X<.05)/NREPS) 

Final <- 

list(yprob=mean(mean_y),hl=hl.power,gv=sum(giovanni.pval<.05)/NREPS,G=x) 

return(Final) 

return(fit) 

} 

 

##For model 1 

#set1.100 <- runsim(5000, 100, 1.024, 1, .2, 0, 1, -2, c(6,10,18,34,66,130)) 

set1.500 <- runsim(100, 5000, 1.024, 1, .2, 0, 1, -2, c(6,10,18,34,66,130)) 

set1.1000 <- runsim(5000, 1000, 1.024, 1, .2, 0, 1, -2, c(6,10,18,34,66,130)) 

set1.2000 <- runsim(5000, 2000, 1.024, 1, .2, 0, 1, -2, c(6,10,18,34,66,130)) 

set1.4000 <- runsim(5000, 4000, 1.024, 1, .2, 0, 1, -2, c(6,10,18,34,66,130)) 

set1.25000 <- runsim(2000, 25000, 1.024, 1, .2, 0, 1, -2, c(6,10,18,34,66,130,2500)) 

 

################################# 

##For model 2/3 
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#set2.100 <- runsim(5000, 100, 1.345, 1, 0, 0, 1, .5, c(6,10,18,34,66,130)) 

set2.500 <- runsim(5000, 500, 1.345, 1, 0, 0, 1, .5, c(6,10,18,34,66,130)) 

set2.1000 <- runsim(5000, 1000, 1.345, 1, 0, 0, 1, .5, c(6,10,18,34,66,130)) 

set2.2000 <- runsim(5000, 2000,  1.345, 1, 0, 0, 1, .5, c(6,10,18,34,66,130)) 

set2.4000 <- runsim(5000, 4000, 1.345, 1, 0, 0, 1, .5, c(6,10,18,34,66,130)) 

set2.25000 <- runsim(2000, 25000, 1.345, 1, 0, 0, 1, .5, c(6,10,18,34,66,130,2500)) 

 

################################# 

##For model 4 

#set4.100 <- runsim(5000, 100, 1.462, 1, .2, 0, 0, 0, c(6,10,18,34,66,130)) 

set4.500 <- runsim(5000, 500, 1.462, 1, .2, 0, 0, 0, c(6,10,18,34,66,130)) 

set4.1000 <- runsim(5000, 1000, -1.843, 1, .2, 0, 0, 0, c(6,10,18,34,66,130)) 

set4.2000 <- runsim(5000, 2000, 1.462, 1, .2, 0, 0, 0, c(6,10,18,34,66,130)) 

set4.4000 <- runsim(5000, 4000, 1.462, 1, .2, 0, 0, 0, c(6,10,18,34,66,130)) 

set4.25000 <- runsim(2000, 25000, 1.462, 1, .2, 0, 0, 0, c(6,10,18,34,66,130,2500)) 

 

################################# 

##For model  5 

#set5.100 <- runsim(5000, 100, 1.678, 1, .2, 1, 0, 0, c(6,10,18,34,66,130)) 

set5.500 <- runsim(5000, 500, 1.678, 1, .2, 1, 0, 0, c(6,10,18,34,66,130)) 

set5.1000 <- runsim(5000, 1000, 1.678, 1, .2, 1, 0, 0, c(6,10,18,34,66,130)) 

set5.2000 <- runsim(5000, 2000, 1.678, 1, .2, 1, 0, 0, c(6,10,18,34,66,130)) 
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set5.4000 <- runsim(5000, 4000, 1.678, 1, .2, 1, 0, 0, c(6,10,18,34,66,130)) 

set5.25000 <- runsim(2000, 25000, 1.678, 1, .2, 1, 0, 0, c(6,10,18,34,66,130,2500)) 

 

################################# 

##For model  6 

#set6.100 <- runsim(5000, 100, 1.844, -1, -.2, 0, 0, 0, c(6,10,18,34,66,130)) 

set6.500 <- runsim(50, 500, 1.844, -1, -.2, 0, 0, 0, c(6,10,18,34,66,130)) 

set6.1000 <- runsim(5000, 1000, 1.844, -1, -.2, 0, 0, 0, c(6,10,18,34,66,130)) 

set6.2000 <- runsim(5000, 2000, 1.844, -1, -.2, 0, 0, 0, c(6,10,18,34,66,130)) 

set6.4000 <- runsim(5000, 4000, 1.844, -1, -.2, 0, 0, 0, c(6,10,18,34,66,130)) 

set6.25000 <- runsim(2000, 25000, 1.844, -1, -.2, 0, 0, 0, c(6,10,18,34,66,130,2500)) 

 

 

 

 

 

 

mean(mean_y) 

sum(hl.pval<.05)/NREPS 

sum(giovanni.pval<.05)/NREPS 

 

#Creating the calibration belt 
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cb <- givitiCalibrationBelt(fit$y, fitted(fit), "internal") 

plotGivitiCalibrationBelt(cb) 

 

 

 


