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ABSTRACT

This thesis aims to address privacy concerns in data sharing as well as secu-

rity concerns in wireless data communication using information theoretic framework.

In the first part of the thesis, we build security establishing algorithms that bring

unbreakable security to wireless data communication. The broadcast nature of wire-

less medium makes data communication susceptible to various security attacks. For

instance, an adversary can eavesdrop on confidential data traffic without actually

tapping a wire or optical fiber, or block the data traffic by transmitting meaningless

but powerful radio signals. First, we study point-to-point communication in the pres-

ence of a hybrid adversary. The hybrid half-duplex adversary can choose to either

eavesdrop or jam the transmitter-receiver channel in arbitrary manner. The goal of

the transmitter is to communicate a message reliably to the receiver while keeping it

asymptotically secret from the hybrid adversary. We show that, without any feedback

from the receiver, the channel capacity is zero if the transmitter-to-adversary channel

stochastically dominates the effective transmitter-to-receiver channel. However, the

channel capacity is non-zero even when the receiver is allowed to feedback only one

bit periodically, that describes the transmitter-to-receiver channel quality. Our novel

achievable strategy improves the rates proposed in the literature for the non-hybrid

adversarial model.
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Then, we study the security of a single-cell downlink massive multiple input mul-

tiple output (MIMO) communication in the presence of an adversary capable of jam-

ming and eavesdropping simultaneously. After showing massive MIMO communica-

tion is naturally resilient to no training-phase jamming attack in which the adversary

jams only the data communication and eavesdrops both the data communication and

the training, we evaluate the number of antennas that base station (BS) requires in

order to establish information theoretic security without even a need for extra secu-

rity encoding. Next, we show that things are completely different once the adversary

starts jamming the training phase. Specifically, we consider an attack, called training-

phase jamming in which the adversary jams and eavesdrops both the training and

the data communication. We show that under such an attack, the maximum secure

degrees of freedom (DoF) is equal to zero. To counter this attack, we develop a de-

fense strategy in which we use a secret key to encrypt the pilot sequence assignments

to hide them from the adversary, rather than encrypt the data. We show that, if the

cardinality of the set of pilot signals are scaled appropriately, hiding the pilot signal

assignments from the adversary enables the users to achieve secure DoF, identical to

the maximum achievable DoF under no attack.

The last part of the thesis is devoted to developing a mathematical framework

for privacy-preserving data release mechanisms. The objective of privacy-preserving

data release is to provide useful data with minimal distortion while simultaneously

minimizing the sensitive data revealed. Dependencies between the sensitive and useful

data results in a privacy-utility tradeoff that has strong connections to generalized

rate-distortion problems. In this work, we study how the optimal privacy-utility

tradeoff region is affected by constraints on the data that is directly available as input

to the release mechanism. Such constraints are potentially motivated by applications

where either the sensitive or useful data is not directly observable. For example,
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the useful data may be an unknown property that must be inferred from only the

sensitive data. In particular, we consider the availability of only sensitive data, only

useful data, and both (full data). We show that a general hierarchy holds, that is, the

tradeoff region given only the sensitive data is no larger than the region given only

the useful data, which in turn is clearly no larger than the region given both sensitive

and useful data. In addition, we determine the conditions that make the tradeoff

region given only the useful data identical with the tradeoff given both sensitive and

useful data.
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To my dear friend Ozgur Dalkilic, rest in peace...
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CHAPTER 1

INTRODUCTION

Wireless networks flourishing worldwide enable online services, such as social networks

and search engines to serve huge number of users and to collect large amount of

data about their users. Sharing of this data has been key driver of innovation and

improvement in the quality of these services, but also raised major security and

privacy concerns. This thesis aims to address privacy concerns in data sharing as

well as security concerns in wireless data communication using information theoretic

framework. Wireless networks flourishing worldwide enable online services, such as

social networks and search engines to serve huge number of users and to collect

large amount of data about their users. Sharing of this data has been key driver of

innovation and improvement in the quality of these services, but also raised major

security and privacy concerns. This thesis aims to address privacy concerns in data

sharing as well as security concerns in wireless data communication using information

theoretic framework.

In the first part of the thesis, we build security establishing algorithms that bring

unbreakable security to wireless data communication. The broadcast nature of wire-

less medium makes data communication susceptible to various security attacks. For

instance, an adversary can eavesdrop on confidential data traffic without actually tap-

ping a wire or optical fiber, or block the data traffic by transmitting meaningless but

powerful radio signals. First, we study point-to-point communication in the presence
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of a hybrid adversary. The hybrid half-duplex adversary can choose to either eaves-

drop or jam the transmitter-receiver channel, but not both at a given time. The goal

of the transmitter is to communicate a message reliably to the receiver while keeping

it asymptotically secret from the hybrid adversary. During the communication, the

state of the adversary (jamming or eavesdropping) changes in an arbitrary manner

and is unknown to the transmitter.

The main challenge in our problem stems from the fact that simultaneously main-

taining reliability and security is difficult because of the adversary’s arbitrary strategy

in choosing its state, i.e., jamming or eavesdropping, at a given time. If we design

a scheme focusing on a particular adversary strategy, with a slight change in that

particular strategy, the adversary can cause a decoding error or a secrecy leakage.

For instance, if our scheme assumes a fully eavesdropping adversary, then jamming

even in a small fraction of the time will lead to a decoding error. Likewise, if the

scheme is designed against a full jammer, then the adversary will lead to a secrecy

leakage even it eavesdrops for a small fraction of time. A robust scheme should

take into account the entire set of adversary strategies to maintain reliability and

secrecy. We show that, without any feedback from the receiver, the channel ca-

pacity is zero if the transmitter-to-adversary channel stochastically dominates the

effective transmitter-to-receiver channel. However, the channel capacity is non-zero

even when the receiver is allowed to feedback only one bit periodically, that describes

the transmitter-to-receiver channel quality. Our novel achievable strategy improves

the rates proposed in the literature for the non-hybrid adversarial model.

Finally, we study the security of a single-cell downlink massive MIMO communi-

cation in the presence of an adversary capable of jamming and eavesdropping simulta-

neously. Massive MIMO is one of the highlights of the envisioned 5G communication
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systems. In massive MIMO paradigm, the base station is equipped with a num-

ber of antennas, typically much larger than the number of users served. Combined

with a TDD-based transmission, this solves many of the issues pertaining channel

state information. In particular, the base station exploits law-of-large-numbers-like

certainties as it serves each user over a combination of a large number of channels.

While many issues behind the design of multicellular massive MIMO systems have

been studied thoroughly, security of massive MIMO has not been actively addressed.

We show that massive MIMO communication is naturally resilient to no training-

phase jamming attack in which the adversary jams only the data communication and

eavesdrops both the data communication and the training. Further, we evaluate the

number of antennas that base station (BS) requires in order to establish information

theoretic security without even a need for extra security encoding. Next, we show

that things are completely different once the adversary starts jamming the training

phase. Specifically, we consider an attack, called training-phase jamming in which

the adversary jams and eavesdrops both the training and the data communication.

We show that under such an attack, the maximum secure degrees of freedom (DoF)

is equal to zero. Furthermore, the maximum achievable rates of users vanish even

in the asymptotic regime in the number of BS antennas. To counter this attack, we

develop a defense strategy in which we use a secret key to encrypt the pilot sequence

assignments to hide them from the adversary, rather than encrypt the data. We show

that, if the cardinality of the set of pilot signals are scaled appropriately, hiding the

pilot signal assignments from the adversary enables the users to achieve secure DoF,

identical to the maximum achievable DoF under no attack.

The last part of the thesis is devoted to developing a mathematical framework

for privacy-preserving data release mechanisms. The objective of privacy-preserving

data release is to provide useful data with minimal distortion while simultaneously
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minimizing the sensitive data revealed. Dependencies between the sensitive and useful

data results in a privacy-utility tradeoff that has strong connections to generalized

rate-distortion problems. In this work, we study how the optimal privacy-utility

tradeoff region is affected by constraints on the data that is directly available as input

to the release mechanism. Such constraints are potentially motivated by applications

where either the sensitive or useful data is not directly observable. For example,

the useful data may be an unknown property that must be inferred from only the

sensitive data. In particular, we consider the availability of only sensitive data, only

useful data, and both (full data). We show that a general hierarchy holds, that is, the

tradeoff region given only the sensitive data is no larger than the region given only

the useful data, which in turn is clearly no larger than the region given both sensitive

and useful data. In addition, we determine conditions under which the tradeoff region

given only the useful data coincides with that given full data.

1.1 Contributions

Chapter 2

We consider a block fading wiretap channel, where a transmitter attempts to

send messages securely to a receiver in the presence of a hybrid half-duplex adver-

sary, which arbitrarily decides to either jam or eavesdrop the transmitter-to-receiver

channel. We provide bounds to the secrecy capacity for various possibilities on re-

ceiver feedback and show special cases where the bounds are tight. We show that,

without any feedback from the receiver, the secrecy capacity is zero if the transmitter-

to-adversary channel stochastically dominates the effective transmitter-to-receiver

channel. However, the secrecy capacity is non-zero even when the receiver is allowed

to feed back only one bit at the end of each block. Our novel achievable strategy im-

proves the rates proposed in the literature for the non-hybrid adversarial model. We
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also analyze the effect of multiple adversaries and delay constraints on the secrecy ca-

pacity. We show that our novel time sharing approach leads to positive secrecy rates

even under strict delay constraints. We also expand our results to the delay-limited

and multiple adversaries setting.

Chapter 3

We consider a single-cell downlink massive MIMO communication in the presence

of an adversary capable of jamming and eavesdropping simultaneously. We show that

massive MIMO communication is naturally resilient to no training-phase jamming at-

tack in which the adversary jams only the data communication and eavesdrops both

the data communication and the training. Specifically, we show that the secure de-

grees of freedom (DoF ) attained in the presence of such an attack is identical to

the maximum DoF attained under no attack. Further, we evaluate the number of

antennas that base station (BS) requires in order to establish information theoretic

security without even a need for Wyner encoding. Next, we show that things are

completely different once the adversary starts jamming the training phase. Specifi-

cally, we consider an attack, called training-phase jamming in which the adversary

jams and eavesdrops both the training and the data communication. We show that

under such an attack, the maximum secure DoF is equal to zero. Furthermore, the

maximum achievable rates of users vanish even in the asymptotic regime in the num-

ber of BS antennas. To counter this attack, we develop a defense strategy in which

we use a secret key to encrypt the pilot sequence assignments to hide them from the

adversary, rather than encrypt the data. We show that, if the cardinality of the set

of pilot signals are scaled appropriately, hiding the pilot signal assignments from the

adversary enables the users to achieve secure DoF , identical to the maximum achiev-

able DoF under no attack. Finally, we discuss how computational cryptography is a

legitimate candidate to hide the pilot signal assignments. Indeed, while information
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theoretic security is not achieved with cryptography, the computational power neces-

sary for the adversary to achieve a non-zero mutual information leakage rate goes to

infinity.

Chapter 4

Privacy-preserving data release mechanisms aim to simultaneously minimize in-

formation leakage with respect to sensitive data and distortion with respect to useful

data. Dependencies between sensitive and useful data results in a privacy-utility

tradeoff that has strong connections to generalized rate-distortion problems. In this

work, we study how the optimal privacy-utility tradeoff region is affected by con-

straints on the data that is directly available as input to the release mechanism. In

particular, we consider the availability of only sensitive data, only useful data, and

both (full data). We show that a general hierarchy holds, that is, the tradeoff region

given only the sensitive data is no larger than the region given only the useful data,

which in turn is clearly no larger than the region given both sensitive and useful

data. In addition, we determine conditions under which the tradeoff region given

only the useful data coincides with that given full data. This is based on the common

information between the sensitive and useful data.
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CHAPTER 2

ON THE SECRECY CAPACITY OF BLOCK FADING

CHANNELS WITH A HYBRID ADVERSARY

2.1 Introduction

We study point-to-point block fading channels, depicted in Figure 3.1, in the presence

of a hybrid adversary. The hybrid half-duplex adversary can choose to either eaves-

drop or jam the transmitter-receiver channel, but not both at a given block. The goal

of the transmitter is to communicate a message reliably to the receiver while keeping

it asymptotically secret from the hybrid adversary. During the communication, the

state of the adversary (jamming or eavesdropping) changes in an arbitrary manner

from one block to the next and is unknown to the transmitter. We further assume

that the transmitter has no channel state information (CSI) of the transmitter-to-

receiver channel (main channel), the transmitter-to-adversary channel (eavesdropper

channel) and the adversary-to-receiver channel (jamming channel). The receiver has

perfect causal CSI of the main and jamming channels. We study the secrecy capacity

of this setting when (i) there is no receiver-to-transmitter feedback, and (ii) there is

1-bit of receiver-to-transmitter feedback sent at the end of each block.

Our technical contributions are summarized as follows:

• We show that the secrecy capacity is zero when the receiver feedback is not

available and the eavesdropper channel stochastically dominates the effective
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Transmitter

Adversary

Receiver

Switch,

Main Channel

Figure 2.1: System Model

main channel gain. However, we also show that even one bit of receiver feedback

at the end of each block is sufficient to make the secrecy capacity positive for

almost all possible channel distributions.

• Under an arbitrary adversarial strategy, the receiver cannot employ a well

known typical set decoder [1] since it cannot assume a certain distribution for

the received signal. To that end, we propose a receiver strategy in which the

receiver generates artificial noise and adds it to the received signal (i.e., jams

itself to involve typical set decoding [1]). We show special cases in which arti-

ficial noise generation at the receiver is an optimal way to achieve the secrecy

capacity.

• For the 1-bit receiver feedback case, we propose a proof technique for the equiv-

ocation analysis, that is based on renewal theory. By this technique, we can

improve the existing achievable secrecy rates in [2], which focus on passive eaves-

dropping attacks only. Note that our adversary model covers the possibility of

a full eavesdropping attack as well since it allows for the adversary to eavesdrop

(or jam) for an arbitrary fraction of the time.

8



• We bound the secrecy capacity when there are multiple hybrid adversaries.

The challenge in bounding the secrecy capacity for multiple adversaries scenario

stems from the fact that, when an adversary jams the legitimate receiver, it also

interferes to the other adversaries as well. However, we show that the impact

of the interference of one adversary to another adversary does not appear in

the bounds, which results in a tighter upper bound. Furthermore, the bounds

we provide are valid for the cases in which the adversaries collude or do not

collude. In the non-colluding case, we show that the secrecy capacity bounds

are determined by the adversary that has the strongest eavesdropper channel.

In addition to the aforementioned set-up, we also consider a delay limited commu-

nication in which a message of fixed size arrives at the encoder at the beginning of

each block, and it needs to be transmitted reliably and securely by the end of that

particular block. Otherwise, secrecy outage occurs at that block. We analyze delay

limited capacity subject to a secrecy outage constraint. We employ a time sharing

strategy in which we utilize a portion of each block to generate secret key bits and

use these key bits as a supplement to secure the delay sensitive messages that are

transmitted in the other portion of each block. Our scheme achieves positive delay

limited secrecy rates whenever the secrecy capacity without any delay constraint is

positive.

Related Work

The wiretap channel, introduced by Wyner [3], models information theoretically

secure message transmission in a point-to-point setting, where a passive adversary

eavesdrops the communication between two legitimate nodes by wiretapping the le-

gitimate receiver. While attempting to decipher the message, no limit is imposed

on the computational resources available to the eavesdropper. This assumption led

9



to defining (weak) secrecy capacity as the maximum achievable rate subject to zero

mutual information rate between the transmitted message and the signal received

by the adversary. This work was later generalized to the non-degraded scenario [4]

and the Gaussian channel [5]. By exploiting the stochasticity and the asymmetry of

wireless channels, the recent works [6, 7] extended the results in [3–5] to a variety of

scenarios involving fading channels. However, all of the mentioned works consider a

passive adversary that can only eavesdrop.

There is a recent research interest on hybrid adversaries that can either jam or

eavesdrop [8–10]. In [9], the authors formulate the wiretap channel as a two player

zero-sum game in which the payoff function is an achievable ergodic secrecy rate.

The strategy of the transmitter is to send the message in a full power or to utilize

some of the available power to produce artificial noise. The conditions under which

pure Nash equilibrium exists are studied. In [8], the authors consider fast fading

main and eavesdropper channels and a static jammer channel, where the adversary

follows an ergodic strategy such that it jams or eavesdrop with a certain probability

in each channel use. Under this configuration, they propose a novel encoding scheme,

called block-Markov Wyner secrecy encoding. In [10], the authors introduce a pilot

contamination attack in which the adversary jams during the reverse training phase

to prevent the transmitter from estimating the channel state correctly. The authors

show the impact of the pilot contamination attack on the secrecy performance. Note

that, neither of these works consider an adversary that has an arbitrary strategy to

either jam or eavesdrop, which is the focus of this thesis.

Channels under arbitrary jamming (but no eavesdropping) strategies have been

studied in the context of arbitrary varying channel (AVC). AVC, the concept of

which is introduced in [11], is defined to be the communication channel the statis-

tics of which change in an arbitrary and unknown manner during the transmission

10



of information. In [12], the authors derive the capacity for Gaussian AVCs, mem-

oryless Gaussian channels disrupted by a jamming signal that changes arbitrarily

with unknown statistics. An extensive treatment of AVCs, outlining the challenges

and existing approaches can be found in [13]. Recently, discrete memoryless AVCs

with a secrecy constraint and no receiver feedback have been studied in [14] [15] [16]

where the states of the channels to the both receiver and the eavesdropper remain

unknown to the legitimate pair and change in an arbitrary manner under the control

of the adversary. In [14] and [15], the achievable secrecy rates the authors propose are

zero when the worst possible transmitter-to-receiver channel is a degraded version of

the best possible transmitter-to-adversary channel. In [16], the authos investigate the

case in which there is a common randomness between the legitimate pair. They study

the secrecy capacity when the adversary exploits the common randomness between

the legitmate pair. In this thesis, in addition to the jamming signal of the adver-

sary, we consider the fading channels whose states cannot be completely controlled

by the adversary. We also do not assume that the legitimate pair shares a common

randomness. We show the secrecy capacity is zero when the main channel gain is

stochastically dominated by the eavesdropper channel gain. Furthermore, under ar-

bitrarily small receiver feedback rate (1-bit at the end of each block), we show that

the secrecy capacity is non-zero. In [17], the authors consider an (ρr, ρw) adversary

which can see a fraction ρr, and modify a fraction ρw, of the sent codeword. The

adversary chooses which components of the codewords it will observe and modify ar-

bitrarily. The authors characterize the secrecy capacity and provide an explicit code

construction method to achieve the secrecy capacity

The rest of this section is organized as follows. In Section 2.2, we explain the

system model. In Section 2.3, we present the secrecy capacity bounds for the no

feedback case, and in Section 2.4, we consider the 1-bit feedback case. In Section 2.5,

11



we study the multiple adversaries case. In Section 2.6, we present our results related

to the strict delay setting. In Section 2.7, we present our numerical results

2.2 System Model

We study the communication system illustrated in Figure 3.1. In our system a trans-

mitter has a message w ∈ W to transmit to the receiver over the main channel. The

adversary chooses to either jam the receiver over the jammer channel or eavesdrop

it over the eavesdropping channel. The actions of the adversary is parametrized by

the state, φ(i) of a switch, shown in Figure 3.1. Thus, our system consists of three

channels: main, eavesdropper and jammer channels, all of which are block fading. In

the block fading channel model, time is divided into discrete blocks each of which

contains N channel uses. The channel states are assumed to be constant within a

block and vary independently from one block to the next. We assume the adversary

is half duplex, i.e., the adversary can not jam and eavesdrop simultaneously. The

observed signals at the legitimate and the adversary in i-th block are as follows:

Y N(i) = Gm(i)xN(i) +Gz(i)S
N
j (i)φ(i) + SNm(i) (2.2.1)

ZN(i) =


Ge(i)x

N(i) + SNe (i) if φ(i) = 0

∅ if φ(i) = 1

(2.2.2)

where xN(i) is the transmitted signal, Y N(i) is the signal received by the legitimate

receiver, ZN(i) is the signal received by the adversary, SNj (i), SNm(i), and SNe (i) are

noise vectors distributed as complex Gaussian, CN (0, PjIN×N), CN (0, IN×N), and

CN (0, IN×N), respectively, and Pj is the jamming power. Indicator function φ(i) = 1

if the adversary is in a jamming state in i-th block; otherwise, φ(i) = 0. Channel

gains, Gm(i), Ge(i), andGz(i) are defined to be the complex gains of the main channel,

eavesdropper channel, and jammer channel, respectively (as illustrated in Figure 3.1).
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Associated power gains are denoted with Hm(i) = |Gm(i)|2, He(i) = |Ge(i)|2, and

Hz(i) = |Gz(i)|2. For any integer M > 0, the joint probability density function (pdf)

of
(
GM
m , G

M
e , G

M
z

)
is

pGMm ,GMe ,GMz
(
gMm , g

M
e , g

M
z

)
(2.2.3)

=
M∏
i=1

pGm,Ge,Gz (gm(i), ge(i), gz(i)) . (2.2.4)

Here, gm(i), ge(i), and gz(i) are the realizations of Gm(i), Ge(i), and Gz(i), respec-

tively. We assume that the joint pdf of instantaneous channel gains, pGm,Ge,Gz(gm, ge, gz)

is known by all entities. The transmitter does not know the states of any channel, and

also cannot observe the strategy of the adversary in any given block. The adversary

and the receiver know ge(i) and (gm(i), gz(i)), respectively at the end of block i. The

receiver can observe the instantaneous strategy of the adversary, φ(i) in block i (e.g.,

via obtaining the presence of jamming) only at the end of block i. We generalize

some of our results to the case in which the receiver cannot observe gz(i).

We consider two cases in which feedback from the receiver to the transmitter is

not available or some limited feedback is available. In particular, in the latter case,

we consider a 1-bit feedback over an error-free public channel at the end of each block.

Hence, the feedback is available both at the transmitter and the adversary. We denote

the feedback sent at j-th time instant as k(j).

For the 1-bit feedback case, k(j) is an element of {0, 1} and is a function of

(yj, gim, g
i
z, φ

i) if time instant j corresponds to the end of a block, i.e., j = iN for

any block index i ≥ 1. For other time instants, the receiver does not send feedback:

k(j) = ∅ if j 6= iN for all i ≥ 1. For the no feedback case, k(j) = ∅ for all j ≥ 1.

The transmitter encodes message w over M blocks. The transmitted signal at

j-th instant, x(j) can be written as

x(j) = fj(w, k
j−1), (2.2.5)
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where fj is the encoding function used at time j. We assume the input signals satisfy

an average power constraint such that

1

NM

NM∑
j=1

E
[∣∣fj (w,Kj−1

)∣∣2] ≤ Pt (2.2.6)

for all w ∈ W , whereW is the message set. Here, the expectation is taken overKj−1 =

[K(1), . . . , K(j − 1)], where K(j) is the random variable denoting the feedback signal

sent at j-th instant . The channels depicted in Figure 3.1 are memoryless i.e.,

p
(
yN(i), zN(i)|xNi, gim, gie, giz, kN(i−1), φi

)
= p

(
yN(i), zN(i)|xN(i), gm(i), ge(i), gz(i), φ(i)

)
(2.2.7)

= p
(
yN(i)|xN(i), gm(i), gz(i), φ(i)

)
×

p
(
zN(i)|xN(i), ge(i), φ(i)

)
, (2.2.8)

where (2.2.7) follows form the memoryless property and (2.2.8) follows from the fact

that the additive noise components in yN(i) and zN(i) are independent. Adversary

strategy φ(i) changes arbitrarily from one block to the next. Here, the conditional

pdfs p
(
yN(i)|xN(i), gm(i), gz(i), φ(i)

)
and p

(
zN(i)|xN(i), ge(i), φ(i)

)
are governed by

the signal models of the main channel (2.2.1) and the eavesdropper channel (2.2.2),

respectively.

The transmitter aims to send message w ∈ W = {1, 2, . . . 2NMRs} to the receiver

over M blocks with rate Rs. By employing a c
(
2NMRs , NM

)
code, the encoder at

the transmitter maps message w to a codeword xNM , and the decoder at the receiver,

d(·) maps the received sequence Y NM to ŵ ∈ W . The average error probability of a

c
(
2NMRs , NM

)
code is defined as

PNM
e (φM , gMm , g

M
z , c)

= 2−NMRs
∑
w∈W

P
(
d
(
Y NM , φM , gMm , g

M
z

)
6= w|w was sent

)
(2.2.9)
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where c , c
(
2NMRs , NM

)
.

The secrecy of a transmitted message, w is measured by the equivocation rate

at the adversary, which is equal to the entropy rate of the transmitted message

conditioned on the adversary’s observations.

Definition 1. A secrecy rate Rs is said to be achievable if, for any ε > 0, there exists

a sequence of length NM channel codes c
(
2NMRs , NM

)
and sets AM for which the

following are satisfied under any strategy of the adversary, φM :

PNM
e

(
φM , gMm , g

M
z , c

)
≤ ε, (2.2.10)

1

MN
H
(
W |ZMN , KMN , φM , gM , c

)
≥ Rs − ε, , (2.2.11)

for sufficiently large N and M and for any gM =
[
gMm , g

M
e , g

M
z

]
∈ AM such that

P[AM ] ≥ 1− ε.

Note that KMN = ∅ for the no feedback case. The secrecy capacity is defined to

be the supremum of the achievable rates. The secrecy capacities for the no feedback

and 1-bit feedback case are denoted as Cs and C1-bit
s , respectively. Our goal is to find

secrecy rates, Rs that are achievable under any strategy of the adversary and find the

cases in which they are tight.

2.3 No Feedback

In this section, we provide bounds to the secrecy capacity for the no feedback case

and evaluate the capacity for special cases. In the sequel, we provide a number of

remarks under which we provide the basic insights drawn from the results.

Theorem 2.3.1. (Secrecy capacity bounds for the no feedback case) The

secrecy capacity, Cs is bounded by

C−s ≤ Cs ≤ C+
s (2.3.1)
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Figure 2.2: Achievability strategy described in the proof sketch of Theorem 2.3.1.

where

C−s =

[
E
[
log

(
1 +

PtHm

1 + PjHz

)
− log (1 + PtHe)

] ]+

(2.3.2)

C+
s =

min
pH̃m,H̃e,H̃z

E

[(
log

(
1 +

PtH̃m

1 + PjH̃z

)
− log

(
1 + PtH̃e

))+]
(2.3.3)

subject to : pH̃m,H̃z = pHm,Hz , pH̃e = pHe

�

Notice that in Theorem 2.3.1, the positive operator,1 [·]+ is outside the expectation

in the lower bound, whereas it is inside the expectation in the upper bound. In the

upper bound, minimization is over the all possible joint pdfs, pH̃m,H̃e,H̃z that satisfy

the following constraints pH̃m,H̃z = pHm,Hz and pH̃e = pHe . Here, there is no constraint

on the dependency of
(
H̃m, H̃z

)
and H̃e. Note that if Pj = 0 in Theorem 2.3.1, then

new bounds are valid for the scenario in which the adversary always eavesdrops the

main channel, which is a common scenario in the literature.

The complete proofs for the lower bound and the upper bound in Theorem 2.3.1

1[x]
+

= min(0, x).
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are available in Appendix A.1. Here, we provide a proof sketch for the lower bound.

We consider the impact of the adversary’s arbitrary strategy on both the probability

error and secrecy. The secrecy encoder, depicted in Figure 2.2, maps message w ∈

{1, . . . , 2NMC−s } to randomized message m ∈ {1, . . . , 2NMRm} as in [3]. The channel

encoder, illustrated in Figure 2.2, employs codebook c, where the codebook contains

2NMRm independently and identically generated codewords, xNM of length NM . The

channel encoder maps randomized message m to one of the codewords in c. The

probability law of the main channel is p
(
yN(i)|xN(i), gm(i), gz(i), φ(i)

)
, where φ(i)

changes from one block to the next arbitrarily. To remove the arbitrary nature of

the main channel, the decoder artificially generates a noise sequence drawn from

CN (0, hzPjIN×N), where hz is picked from Hz(i), and adds the noise sequence to

it’s received signal yN(i) when the adversary is in the eavesdropping state, φ(i) = 0.

Hence, the decoder can employ typical set decoding [1], which would not have been

possible without the artificial noise, due to the lack of the underlying probability

distribution for the received signal associated with the arbitrary adversary strategy.

We select Rm as

Rm = max
p(xN (i))

1

N
I(XN(i), Y N(i)|Gm(i), Gz(i), φ(i) = 1) (2.3.4)

= E
[
log

(
1 +

PtHm

1 + PjHz

)]
, (2.3.5)

where the joint distribution of
(
XN(i), Y N(i)

)
in (2.3.4) is governed by (2.2.1) for

a given p(xN(i)), and (2.3.5) follows from the fact that XN(i) ∼ CN(0, PtIN×N)

maximizes the optimization in (2.3.4). Therefore, each codeword, xNM is picked from

CN(0, PtINM×NM). For the equivocation analysis, the possibility of the adversary

eavesdropping at all times should be taken into account. We need to use a conservative

secrecy encoder, designed for φ(i) = 0 for all i ≥ 1; otherwise, we cannot achieve an

arbitrarily low mutual information leakage rate to the adversary with high probability.
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With the aforementioned techniques, we show that C−s satisfies constraints (3.2.10)

and (2.2.11) in Appendix A.1. Note that the lower bound C−s is valid for any value

of block length N . We now provide several remarks related to Theorem 2.3.1.

Remark 2.3.2. (Secrecy capacity is zero when the eavesdropper channel

power gain stochastically dominates the main channel effective power

gain) If He stochastically dominates2 the main channel effective power gain, H∗m ,
Hm

1 + PjHz

, and He and H∗m have continuous cumulative distribution functions (cdfs),

then the secrecy capacity, Cs is zero. To observe this fact, let Ĥe , F−1
He

(
FH∗m (H∗m)

)
,

where FA and F−1
A stand for the cdf and the inverse cdf3 of random variable A,

respectively. From the definition of stochastic dominance and the definition of Ĥe, we

have Ĥe ≥ H∗m with probability 1. We now show that Ĥe and He have the same cdf

the following derivation:

P
[
Ĥe ≤ a

]
= P

[
F−1
He

(
FH∗m (H∗m)

)
≤ a
]

(2.3.6)

= P
[
FH∗m(H∗m) ≤ FHe(a)

]
(2.3.7)

= P
[
H∗m ≤ F−1

H∗m
(FHe (a))

]
(2.3.8)

= FH∗m

(
F−1
H∗m

(FHe (a))
)

(2.3.9)

= FHe(a),∀a ≥ 0, (2.3.10)

where (2.3.7) follows from the fact that F−1
A (b) ≤ c ⇐⇒ b ≤ FA(c) with b ∈

[0, 1], and (2.3.8) and (2.3.10) follow from the continuity of the cdf of H∗m. Hence,

(Hm, Ĥe, Hz) satisfy the constraint given in the upper bound (2.3.3). When (H̃m, H̃e, H̃z) =

(Hm, Ĥe, Hz), the expectation term in (2.3.3) is zero. �

2Random variable A stochastically dominates random variable B if FA(a) ≤ FB(a) for all a, where
FA(a) , P[A ≤ a] and FB(a) , P[B ≤ a] .

3F−1
A (a) , inf {b : FA(b) = a}.
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Remark 2.3.2 is easy to state for the fading scenario in which Hm and He are

exponentially distributed random variables. Condition E[Hm] ≤ E[He] is sufficient

for He to stochastically dominate H∗m (defined in Remark 2.3.2).

Remark 2.3.3. (Bounds are tight if the power gain of the effective main

channel is larger than that of the eavesdropper channel with probability

1) Suppose there exits random variables Ĥm, Ĥe, and Ĥz satisfying the following

conditions:

1)
Ĥm

1 + PjĤz

≥ Ĥe with probability 1,

2) pĤm,Ĥz = pHm,Hz , and

3) pĤe = pHe.

Then, C−s = Cs = C+
s . To observe this fact, let (H̃m, H̃e, H̃z) in (2.3.3) be (Ĥm, Ĥe, Ĥz).

Then, the positive operator gets out of the expectation in the upper bound, C+
s . Fur-

thermore, since the lower bound does not depend on pHm,He,Hz but depend on pHm,Hz

and pHe, we can replace (Hm, He, Hz) with (Ĥm, Ĥe, Ĥz). Thus, the upper and lower

bounds become equal. �

Remark 2.3.4. (The amount of the reduction in the achievable rate in

Theorem 2.3.1 can be significant when the jamming channel gain is not

available at RX.) In Theorem 2.3.1, the receiver is assumed to know gz(i). Now,

suppose that the receiver is kept ignorant of gz(i). Then, the following rate

R
′

s = [R− E [log (1 + PtHe)] ]+ (2.3.11)

is achievable, where

R = max
p
XN (i)

(xN (i))

1

N
I(XN(i), Y N(i)|Gm(i), φ(i) = 1). (2.3.12)
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Here, for a given pXN (i)(x
N(i)), the joint distribution of

(
XN(i), Y N(i)

)
is governed

by (2.2.1). We can lower bound R with the following steps:

R ≥ 1

N
I(XN

G (i), Y N(i)|Gm(i), φ(i) = 1) (2.3.13)

≥ E
[
log

(
1 +

PtHm

1 + PjE[Hz]

)]
, (2.3.14)

where XN
G (i) ∼ CN (0, PtIN×N) in (2.3.13). The covariance matrix of the jamming

component in Y N(i) is E [Hz(i)] IN×N . In [18], the authors show that Gaussian

noise that has the same covariance matrix with the original additive noise compo-

nent minimizes I(XN(i);Y N(i)) when XN(i) is Gaussian distributed. Hence, we

replace Gz(i)S
N
j (i) with CN (0,E [Hz(i)] IN×N), and reach the inequality in (2.3.14).

Note that when E[Hz] → ∞, lower bound R
′

s goes to zero, whereas in the original

case (Theorem 2.3.1), lower bound C−s does not neccesarily goes to zero. �

Suppose that the transmitter and the adversary power constraints scale in the

same order, parametrized by P , i.e., Pt (P ) = O (Pj(P )) as P → ∞. We show that

the secrecy capacity is zero in the no feedback case as P → ∞ in the following

corollary.

Corollary 2.3.5. (Secrecy capacity goes to zero when the jamming and

transmission power constraints scale similarly.) Suppose that Pt(P ) and

Pj(P ) are continuous functions of P with lim
P→∞

Pt(P ) = ∞, lim
P→∞

Pj(P ) = ∞ and

Pt (P ) = O (Pj(P )) as P →∞. When the power gains of the channels have bounded

and continuous pdfs and have finite expectations, the secrecy capacity of the no feed-

back case, Cs is asymptotically

lim
P→∞

Cs = 0. (2.3.15)

�

20



The proof of Corollary 2.3.5 is available at Appendix A.2. To prove (2.3.15), we

investigate the upper bound, C+
s as P →∞ and show that

lim
P→∞

C+
s = 0. (2.3.16)

2.4 1-Bit Feedback

In this section, we analyze the secrecy capacity for the 1-bit feedback case, i.e., the

receiver is allowed to send a 1 bit feedback over a public channel at the end of each

block. As we observe in Remark 2.3.2, the secrecy capacity of the no feedback case

is zero if He stochastically dominates H∗m ,
Hm

1 + PjHz

. However, in this section, we

show that the lower bound for the 1-bit feedback case is non-zero for the most of the

joint pdfs of power gains.

Theorem 2.4.1. (Secrecy capacity bounds for the 1-bit feedback case) The

secrecy capacity, C1-bit
s is bounded by

max
(
C−s , R

1-bit
s

)
≤ C1-bit

s ≤ C+1-bit
s (2.4.1)

where

C+1-bit
s = E

[
log

(
1 +

PtHm

1 + max(PjHz, PtHe)

)]
(2.4.2)

R1-bit
s = max

R

1

E[T ]
E

[
R− log

(
1 + Pt

T∑
i=1

H̃e(i)

)]+

(2.4.3)

where C−s is provided in (2.3.2), T is a random variable with probability mass function

(pmf), pT (t) = P(Dt ∩ Dct−1) = P(Dt)− P(Dt−1), t ≥ 1 with

Dt ,

{
log

(
1 +

t∑
i=1

PtHm(i)

1 + PjHz(i)

)
≥ R

}
and D0 = ∅, and

pH̃e(1),H̃e(2),...,H̃e(T )|T (he(1), he(2), . . . , he(T )|T = t) =
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pHe(1),He(2),...,He(t)

(
he(1), he(2), . . . , he(t)|Dt,Dct−1

)
�

The complete proofs for lower and upper bounds are available in Appendix A.3.

Note that the feedback available at the transmitter in block i, K(i−1)N is independent

from the channel gains in block i, G(i) since the transmitter observes the feedback

at the end of the block, and the channel gains change from one block to the next

independently. Hence, the transmission power term in the upper bound is not a

function of the channel gains and is equal to the transmission power constraint,

Pt. Furthermore, notice that in Theorem 2.4.3, the positive operator is inside the

expectation in (2.4.3), that makes the lower bound positive for a wide class of channel

statistics.

Remark 2.4.2. (Non-zero secrecy capacity) Note that

{
log

(
1 +

PtHm(i)

1 + PjHz(i)

)}
i≥1

is a sequence of i.i.d non-negative random variables and

T = inf

{
t :

t∑
i=1

log

(
1 +

PtHm(i)

1 + PjHz(i)

)
≥ R

}
.

If P
[

PtHm

1 + PjHz

6= 0

]
> 0, E[T ] <∞ for all R > 0 [19]. Furthermore, there exists R ≥

0 that makes E

[
R− log

(
1 + Pt

T∑
i=1

H̃e(i)

)]+

also positive since P

[
T∑
i=1

H̃e(i) <∞

]
>

0. Hence, we observe that C1-bit
s > 0. �

Here, we provide the proof sketch of the lower bound provided in Theorem 2.4.3.

First, C−s is achieved with the strategy provided in Theorem 2.3.1 without the feed-

back. The strategy to achieve R1-bit
s is as follows. The secrecy encoder, depicted in

Figure 2.3, maps message w ∈
[
1 : 2NMR1-bit

s

]
to bit sequence Bl ∈ {0, 1}NM

R
E[T ] of size

NM
R

E[T ]
with a stochastic mapping as described in [3], where l ∈ [1, 2, . . . , 2NM

R
E[T ] ].

Bit sequence Bl is partitioned into the bit groups {Bl(k)}k∈[1,2,...,d ME[T ]
e] each of which
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Figure 2.3: Achievability strategy described in the proof sketch of Theorem 2.4.1.
The feedback at at the end of block i is denoted as k(Ni), where N is the
length of a block.

has size of NR bits such that Bl = [Bl(1), Bl(2), . . . , Bl(d
M

E[T ]
e)]. The channel en-

coder, depicted in Figure 2.3, generates Gaussian codebook c of size 2NR, and each

bit group Bl(k) is mapped to one of the codewords in the codebook.

To send Bl(k) in block i, the associated codeword xN(i) is transmitted over the

channel. The channel encoder keeps sending the same codeword until Bl(k) is suc-

cessfully decoded. The channel decoder, depicted in Figure 2.3, employs maximum

ratio combining (MRC), and combines all received sequences associated with Bl(k).

Specifically, the channel decoder multiples each yN(i) associated with the bit group

with
g∗m(i)

(1 + Pjhz(i))
2 and sums them. From the random coding arguments, we can see

that Bl(k) will be decoded with arbitrarily low probability error at i-th block if event

S(i) ,

log

1 +

r(i)∑
j=1

PtHm(i− j + 1)

1 + PjHz(i− j + 1)

 ≥ R

 occurs, regardless of the adver-

sary strategy φi, where r(i) is the number of transmissions for Bl(k) until the end of

block i. If event S(i) occurs, the channel decoder sends back positive acknowledgment

signal (ACK), and the channel encoder sends the next bit group, i.e., Bl(k + 1) on

block i + 1. If event S(i) does not occur, the channel decoder feeds back a negative

acknowledgment signal (NAK) at the end of block i. On next block i+1, the channel
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encoder sends the same codeword, i.e., xN(i + 1) = xN(i). This process is repeated

until Bl is successfully decoded.

In the derivation for the lower bound for the equivocation rate, we assume that

the adversary can observe the transmissions in the jamming state4. Consider a re-

newal process in which a renewal occurs when the accumulated mutual information

associated with a bit group exceeds threshold R for the first time. In Appendix A.3,

we show that 1-bit feedback case can be considered as a model in which secure bits

of random size N

[
R− log

(
1 + Pt

T∑
i=1

H̃e(i)

)]+

are decoded successfully at each re-

newal point. Here, random variable T defined in Theorem 2.4.1 represents the number

of transmissions for a bit group and denotes the inter-renewal time of the renewal

process. Thus, N log

(
1 + Pt

T∑
i=1

H̃e(i)

)
can be considered as a random amount of

accumulated mutual information at the adversary corresponding to the transmissions

of a bit group. Theorem 2.4.3 follows when we apply the renewal reward theorem [20],

where the rewards are the successfully decoded secure bits at each renewal instants.

The complete proofs for lower and upper bounds are available in Appendix A.3.

Instead of employing MRC strategy, the receiver can employ a plain automatic

repeat request (ARQ) strategy in which the receiver discards the received sequence

yN(i) when the decoding error occurs on i-th block. Impact of plain ARQ on the

lower bound is captured with the following corollary.

Corollary 2.4.3. (Secrecy capacity lower bound with plain ARQ) The secrecy

capacity, C1-bit
s is bounded by

max
(
C−s , R

∗1-bit
s

)
≤ C1-bit

s (2.4.4)

4We will drop this assumption when we analyze the case in which the transmitter has the main
channel state information (CSI) in addition to the 1-bit feedback (Corollary 2.4.4).
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where

R∗1-bits = max
R

p× E

[
R− log

(
1 + Pt

T ∗∑
i=1

H̃e(i)

)]+

(2.4.5)

where C−s is provided in (2.3.2). In (2.4.5), p , P
(

log

(
1 +

PtHM

1 + PjHz

)
≥ R

)
, T ∗ is

a random variable with probability mass function (pmf), pT ∗(t) = p(1− p)t−1, t ≥ 1,

and

pH̃e(1),H̃e(2),...,H̃e(T ∗)|T ∗ (he(1), he(2), . . . , he(T
∗)|T ∗ = t) =

t−1∏
i=1

pHe

(
he(i)|R > log

(
1 +

PtHm

1 + PjHz

))
×

pHe

(
he(t)|R ≤ log

(
1 +

PtHm

1 + PjHz

))
. (2.4.6)

�

The proof of Corollary 2.4.3 can be found at the end of achievability proof of

Theorem 2.4.1. It can be observed that the lower bound in Corollary 2.4.3 is not

larger than the lower bound in Theorem 2.4.1.

In [2], the authors consider a scenario in which the adversary is a fully eavesdrop-

per, and the transmitter has no information of the states of main and eavesdropper

channels, which change from one block to the next randomly as described in our sce-

nario. For the case in which 1-bit feedback is available at the end of each block, the

authors employ the plain ARQ strategy mentioned above to achieve the secrecy rate

in Theorem 2 of [2]. However, in the secrecy analysis, the authors consider the impact

of the bit groups, Bl(k) that are successfully decoded only in a single transmission

on the equivocating rate. In this thesis, regardless of the number of the required

transmissions for the bit groups, we consider the impact of the each bit group on the

equivocation rate with the strategy mentioned in the proof sketch of Theorem 2.4.1.

Thus, we improve the achievable secrecy rate in [2] by employing a renewal based

analysis and MTC.
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In Theorem 2.4.1 and Corollary 2.4.3, we observe that the information corre-

sponding to the retransmissions of a bit group is accumulated at the adversary, which

reduces the lower bound. As we will show, we can avoid this situation if the main

CSI is available at the beginning of each block at the transmitter in addition to the

1-bit feedback at the end of each block. By using the rate adaptation strategy that

we will introduce, the legitimate pair can ensure that information corresponding to

the retransmissions of a bit group is not accumulated at the adversary.

Corollary 2.4.4. (Achievable secrecy rate with main CSI) If main CSI is

available at the transmitter and the adversary, the secrecy capacity with 1-bit feedback

at the end of each block is lower bounded by

R1-bit+CSI
s = max

R
p× E [R− log (1 + PtHe)]

+ ≤ C1-bit+CSI
s , (2.4.7)

where p , P
(

log

(
1 +

PtHM

1 + PjHz

)
≥ R

)
. �

We omit the proof since it follows from an identical line of argument as the proof

of Theorem 2.4.1. The only difference is that the legitimate pair employs a plain ARQ

strategy as in Corollary 2.4.3, and the transmitter employs a rate adaptation strat-

egy to utilize the main CSI such that R(i) = R if R ≤ log(1 + Phm(i)); otherwise,

R(i) = 0, where R is the rate of the Gaussian codebook used in the achievability

proof of Theorem 2.4.1. Since the transmitter keeps silent on the blocks in which

condition R > log(1+Phm(i)) is satisfied, the decoding error event occurs only when

the adversary is in the jamming state. Hence, the adversary cannot hear the retrans-

missions because of the half duplex constraint, and information that corresponds to

the retransmissions of a bit group is not accumulated as seen in (2.4.7).

Note that main CSI combined with 1 bit feedback provides the transmitter perfect

knowledge of the adversary jamming state (but with one block delay) since an ACK

indicates that the adversary is in the eavesdropping state, and a NAK indicates that
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the adversary is in the jamming state in the previous block. Therefore, we do not need

to employ a conservative secrecy encoder to account for the adversary that eavesdrops

at all times.

2.5 Multiple Adversaries

In this section, we study the multiple adversary scenario in which there are V half

duplex adversaries each of which has an arbitrary strategy from one block to the next.

We focus on the no feedback case. The results given in this section can be extended

to the 1-bit feedback case straightforwardly. Since there are multiple adversaries, the

message has to be kept secret from each adversary. Moreover, when an adversary jams

the receiver, it also jams the other adversaries. Consequently, the observed signals at

the legitimate receiver and adversary v in i-th block can be written as follows:

Y N(i) = Gm(i)xN(i) +
V∑
v=1

Gzv(i)S
N
jv (i)φv(i) + SNm(i) (2.5.1)

ZN
v (i) =



Gev(i)x
N(i)+

V∑
r=1,r 6=v

Gfrv(i)S
N
jv (i)φr(i) + SNe (i) if φv(i) = 0

∅ if φv(i) = 1

(2.5.2)

where Sjv is the jamming signal of adversary v, and is distributed with CN (0, PjIN×N).

As depicted in Figure 2.4, Gev(i), Gzv(i), andGfrv(i) are defined to be the independent

complex gains of transmitter-to-adversary v channel, adversary v-to-receiver channel

, and adversary r-to-adversary v channel, respectively. Associated power gains are

denoted with Hev(i) = |Gev(i)|2, Hfrv(i) = |Gfrv(i)|2, and Hzv(i) = |Gzv(i)|2. In-

dicator function φv(i) = 1, if the adversary v is in a jamming state in i-th block;

otherwise, φv(i) = 0.

For the multi adversary scenario, φM in (2.2.11) is replaced with {φMv }1≤v≤V , and
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Figure 2.4: System model for multi-adversary scenario including two adversaries.

the constraints (3.2.10)-(2.2.11) have to be satisfied for all {φMv }1≤v≤V . We study

two types of multi-adversary scenarios: colluding and non-colluding. In the colluding

scenario, the adversaries share their observations,
{
ZNM
v

}
error free whereas in the

non-colluding scenario, the adversaries are not aware of the observations of each

other. Hence, for the non-colluding scenario, constraint (2.2.11) needs to be satisfied

for each adversary and for the colluding scenario, equivocation is conditioned on the

adversaries’ joint knowledge, i.e., ZMN in (2.2.11) is replaced with {ZMN
v }1≤v≤V . We

use notations CC
s and CNC

s to denote the secrecy capacities for the colluding case and

the non-colluding case, respectively. We first analyze the non-colluding scenario.

Theorem 2.5.1. (Secrecy capacity bounds for non-colluding adversaries)

The secrecy capacity of the non-colluding multiple adversary scenario, CNC
s under the

no feedback case is bounded by

CNC−
s ≤ CNC

s ≤ CNC+
s (2.5.3)

where

CNC−
s =

min
1≤v≤V

[
E

[
log

(
1 +

PtHm

1 + PjĤz

)
− log (1 + PtHev)

]]+

(2.5.4)
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CNC+
s = min

1≤v≤V
min

pH̃e1 ,...,H̃eV ,H̃m,H̃z1 ,...,H̃zV

E

[(
log

(
1 +

PtH̃m

1 + PjH̃z

)
− log

(
1 + PtH̃ev

))+]
(2.5.5)

subject to: pH̃e1 ,...,H̃eV
= pHe1 ,...,HeV

pH̃m,H̃z1 ,...,H̃zV
= pHm,Hz1 ,...,HzV

where V is the number of the adversaries, Ĥz ,
V∑
k=1

Hzv , and H̃z ,
V∑
v=1

H̃zv . �

The proofs of the lower and upper bounds can be found in Appendix A.4.

Theorem 2.5.2. (Secrecy capacity bounds for colluding adversaries) The

secrecy capacity of the colluding multiple adversary scenario, CC
s under the no feedback

case is bounded by

CC−
s ≤ CC

s ≤ CC+
s (2.5.6)

where

CC−
s = E

[
log

(
1 +

PtHm

1 + PjĤz

)
− log

(
1 + Pt

V∑
s=1

Hes

)]+

CC+
s = min

pH̃e1 ,...,H̃eV ,H̃m,H̃z1 ,...,H̃zV

E

(log

(
1 +

PtH̃m

1 + PjH̃z

)
− log

(
1 + Pt

V∑
k=1

H̃ev

))+
 (2.5.7)

subject to: pH̃e1 ,...,H̃eV
= pHe1 ,...,HeV

pH̃m,H̃z1 ,...,H̃zV
= pHm,Hz1 ,...,HzV

where V is the number of the adversaries, Ĥz ,
V∑
k=1

Hzv , and H̃z ,
V∑
v=1

H̃zv . �

The proof of Theorem 2.5.2 is similar to the proof Theorem 2.3.1 since the collud-

ing scenario can be considered as a single adversary scenario, in which the adversary
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observes {ZMN
v }1≤v≤V instead of ZNM

v . As seen in Theorems 2.5.1 and 2.5.2, colluding

strategy severely affects the achievable secrecy rate.

Remark 2.5.3. (Independence of upper bound from cross-interference)

In (2.5.2), we observe that the received signal at v-th adversary includes the jamming

signals of the other adversaries, i.e.,
V∑

r=1,r 6=v

Gfrv(i)S
N
jv (i)φr(i). We expect that these

cross interference terms at the adversaries help the legitimate pair to communicate at

high secrecy rates. However, as seen in Theorem 2.5.1 and 2.5.2, the upper bounds

(and also lower bounds) are independent of these jamming terms. Note that the

secrecy constraint in the proof of upper bounds makes the minimization of the equiv-

ocation rate over the adversary strategies arbitrarily close to the message rate. The

strategies that minimize the equivocation rate in the proofs are the ones in which all

adversaries eavesdrop the main channel. Hence, the upper bound derivation becomes

independent of the cross interference across the adversaries. The detailed information

can be found in Appendix A.4. �

2.6 Strict Delay

In the previous sections, we study the communication of a message without imposing

any constraint on the number of blocks it takes for the decoder to decode the message.

In this section, we address the problem with the 1-block delay constraint: At the

beginning of each block i, 1 ≤ i ≤M , message w(i) ∈ {1, . . . , 2NRs} becomes available

at the encoder, and it needs to be securely communicated to the receiver by the end

of block i. We show that the secrecy capacity under the delay constraint is non-zero

as long as the secrecy capacity lower bound provided in Theorem 1 is non-zero.

The transmitter aims to send message w(i) ∈ W = {1, 2, . . . 2NRs} to the receiver

over a single block with rate Rs. By employing a ci
(
2NRs , N

)
code, the encoder at the
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transmitter maps message w(i) to a codeword xN(i), and the decoder at the receiver,

d(·) maps the received sequence Y Ni to ŵ(i) ∈ W . The encoder is not memoryless,

i.e., when choosing the current codeword, xN(i), it uses the previously transmitted

codewords, xNi, as well as the current message. The average error probability of

ci
(
2NRs , N

)
code is defined as

PN
e (ci, g

i, φi)

= 2−NRs
∑
w∈W

P
(
d
(
Y Ni, gi, φi

)
6= w(i)|w(i) was sent

)
(2.6.1)

where ci , ci
(
2NRs , N

)
and gi =

[
gim, g

i
e, g

i
z

]
. The secrecy of a transmitted message,

w(i) is measured by the equivocation rate5 at the adversary

Re(ci, g
M , φM) =

1

N
H
(
W (i)|ZNM ,WM\W (i), gM , φM , ci

)
(2.6.2)

Note that, the definition of secrecy capacity needs to be restated with the delay

requirement.

Definition 2. [21] Rate Rs is achievable securely with at most α probability of secrecy

outage if, for any fixed ε > 0, there exists a sequence of codes of rate no less than Rs

such that, for all large enough N , M1 and M2 where M = M1M2, the conditions

P(PN
e (ci, G

i, φi) ≤ ε) ≥ 1− α (2.6.3)

P(Re(ci, G
M , φM) ≥ Rs − ε) ≥ 1− α (2.6.4)

are satisfied for all i > M1, and for all possible adversary strategies φM ∈ {0, 1}M .

The secrecy capacity with α outage is the supremum of such achievable secrecy

rates. We use Csd(α) to denote α-outage secrecy capacity under no feedback, and use

5Although the messages {W (i)}Mi=1 are mutually independent, they may be dependent conditioned
on eavesdroppers’ received signal ZNM , therefore equivocation expression includes conditioning
on WM\W (i).
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C1-bit
sd

(α) to denote α-outage secrecy capacity under 1-bit feedback at the end of each

block.

Theorem 2.6.1. (Time sharing lower bound for α-outage secrecy capacity)

For no feedback, Csd(α) ≥ C−sd(α), where

C−sd(α) = max
γ,R̃s,Rs

Rs (2.6.5)

subject to:

P
({

(1− γ) log

(
1 +

PtHm

1 + PjHz

)
≥ R̃s

}⋂
{[
R̃s − (1− γ) log(1 + PtHe)

]+

≥ Rs −Rr0

})
≥ 1− α (2.6.6)

Rs ≤ R̃s, Rr0 = γC−s , γ ∈ [0, 1], (2.6.7)

where C−s is provided in (2.3.2). �

Similarly, for 1-bit feedback, α-outage secrecy capacity is lower bounded by C−1-bit
sd

(α),

where C−1-bit
sd

(α) is in the form (2.6.5-2.6.7), except Rr0 is replaced with Rr1 =

γC−1-bit
s .

The complete proof can be found in Appendix E. Here, we provide a sketch of

achievability. Suppose that the communication lasts M2 superblocks each of which

contains M1 blocks of N channel uses. In Theorem 5, γ ∈ [0, 1] is the time-sharing

parameter. We utilize the first γN channel uses of each block to generate keys using

the scheme described in proof of Theorem 1: Using a code (2NM1Rr0 , γNM1), we can

generate NM1Rr0 secret key bits at the end of every superblock, where Rr0 ≤ γC−s .

The keys generated in the previous superblock is used in the current superblock to

secure the delay sensitive messages. We utilize the rest of the block (N(1−γ) channel

uses) to send the delay sensitive message. At each block i, i > M1, message w(i) of size

NRs bits is divided to two independent messages w1(i) and w2(i), of sizes NRr0 and

N(Rs − Rr0), respectively. The encoder secures message w1(i) by one-time padding
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it with the part of the key generated in the previous superblock. Then, the encoder

maps one-time padded w1(i) and w2(i) to randomized message m(i) ∈ [1 . . . , 2NR̃s ].

Message m(i) is mapped to the corresponding codeword in codebook c containing

2NR̃s independently and identically generated codewords, x(1−γ)N of length (1−γ)N .

Note that we do not impose a secrecy outage constraint on the first M1 blocks,

which is referred to as an initialization phase, used to generate initial common ran-

domness between the legitimate nodes. Note that this phase only needs to appear

once in the communication lifetime. In other words, when a session (which consists

of M blocks) between the associated nodes is over, they would have sufficient number

of common key bits for the subsequent session, and would not need to initiate the

initialization step again [21].

With the following remark, we demonstrate the relation of the secrecy capacity

with a delay constraint and the secrecy capacity without a delay constraint.

Remark 2.6.2. (Non-zero delay limited secrecy capacity) Suppose that H∗m =

PtHm

1 + PjHz

has a strictly monotone cdf and P(H∗m 6= 0) > 0. If α ∈ (0, 1] and C−s > 0,

then Csd(α) > 0. We can observe this fact by setting R̃s = Rs = Rr0 in Theorem 2.6.1.

Furthermore, note that C1-bit
s > 0 if P (H∗m 6= 0) > 0 (Remark 2.4.2). Hence, by

setting R̃s = Rs = Rr1, we can get C1-bit
sd

(α) > 0 for any α ∈ (0, 1]. �

2.7 Numerical Evaluation

In this section, we conduct Monte Carlo simulations to illustrate our main results.

We compare the secrecy capacity lower and upper bounds of the no feedback case

with the lower bound of the secrecy capacity with 1-bit feedback. To evaluate the

effect of delay constraint, we also plot the lower bound of the α-outage secrecy ca-

pacity with no feedback and 1-bit feedback. We consider that the power gains of
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the main, eavesdropper, and jamming channels independently follow an exponential

distribution.

In Figure 2.5, we fix the outage term α = 0.2 and jamming power Pj = 1, and we

plot the secrecy capacity bounds as a function of the transmission power constraint,

Pt. We take E[Hm] = 5, E[He] = 2, and E[Hz] = 2. A notable observation is

that the lower bound for the no feedback case in Theorem 2.3.1 decreases with Pt

beyond a certain point. The reason is that the lower bound, given in Theorem 2.3.1

is not always an increasing function of Pt since the positive operator is outside of the

expectation term. The lower bound to the α-outage capacity without feedback, given

in Theorem 2.6.1 also decreases with Pt since the achievabilitiy strategy employs a key

generation step in which keys are generated with the strategy used in the achievability

proof of Theorem 2.3.1 . Let us replace Pt in the lower bounds with dummy variable

P . We conclude that the lower bounds in Theorems 2.3.1 and 2.6.1 can be further

tightened by maximizing them over P ∈ [0, Pt]. From Figure 2.5, we observe that

the secrecy capacity with 1-bit feedback is twice as large as that with no feedback at

Pt/Pj = 10.

We now numerically illustrate Remark 2.4.2, i.e., even when the eavesdropper

channel is better on average, we can achieve non-zero secrecy rates with the 1-bit

feedback. We take E[Hm] = 1, E[He] = 2, and E[Hz] = 1, i.e., the eavesdropper

channel stochastically dominates the effective main channel. As seen in Figure 2.6,

we observe that 1-bit feedback sent at the end of each block is sufficient to make

the secrecy capacity non-zero. Furthermore, we observe that the secrecy capacity of

the no feedback case is zero (Remark 2.3.2). The importance of the feedback can

also be seen in the delay limited set-up, where no feedback strategy results in a zero

achievable rate as opposed to the strategy employing 1-bit feedback.

We illustrate Corollary 2.3.5 in Figure 2.7. For each plot in Figure 2.7, we keep
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the ratio of transmission power constraint and adversary power same, and we increase

the jamming power. As mentioned in Corollary 2.3.5, in Figure 2.7, we observe that

the secrecy capacity with no feedback goes to zero, when the transmission power

constraint and adversary power increase in the same order.
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Figure 2.5: The comparison of the lower and upper bounds of the no feedback case
with the lower bound of the 1-bit feedback case with E[Hm] = 5, E[He] =
2, and E[Hz] = 2.
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2, and E[Hz] = 1.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
j

B
its

 p
er

 c
ha

nn
el

 u
se

 

 

C
s
+, P

t
/P

j
 = 0.2

C
s
+, P

t
/P

j
 = 0.4

C
s
+, P

t
/P

j
 = 0.6

C
s
+, P

t
/P

j
 = 0.8

C
s
+,P

t
/P

j
 = 1

Figure 2.7: The change of the upper bound of the no feedback case when the trans-
mission power constraint and jamming power scale in the same order.
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CHAPTER 3

PHYSICAL LAYER SECURITY OF MASSIVE MIMO

3.1 Introduction

In massive MIMO framework, the base station is equipped with a number of antennas,

typically much larger than the number of users served. While many issues behind the

design of multicellular massive MIMO systems have been studied thoroughly, security

of massive MIMO has not been actively addressed. Part of the reason for this may be

the fact that, there is a vast literature on the security of MIMO systems in general,

and a common perspective is that massive MIMO is merely an extension of MIMO

as it pertains to security. However, we demonstrate that massive MIMO has unique

vulnerabilities, and standard approaches to MIMO security do not address them

directly. Instead, these approaches focus on issues that massive MIMO is naturally

immune to. Furthermore, we argue that, common models used in MIMO security

eliminate the need to think on various components of the system that are critical to

understanding the vulnerabilities in security. In particular, in massive MIMO, merely

making assumptions on available channel state information (CSI) is not sufficient,

since the actual technique the system uses to obtain CSI may be the lead cause for

some major security issues. For all these reasons, security of massive MIMO calls for

a separate treatment of its own.
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To that end, we consider the TDD-based single cell downlink massive MIMO sys-

tem developed in [22] and later readdressed in [23]. The adversary is hybrid, capable

of jamming and eavesdropping at the same time with its multiple antennas and we

call our system secure if secrecy, measured in full equivocation is achieved at the ad-

versary and arbitrarily low probability of decoding error is achieved at the legitimate

receiver. We refer to these requirements as security constraints. We first show how

massive MIMO is naturally resilient to standard jamming and eavesdropping attacks,

unless jamming is performed during the training phase when pilot signals are trans-

mitted by the mobile users. We prove that, without pilot jamming, the achievable

secure degrees of freedom1(DoF ) is identical to the maximum DoF attained under no

attack, even without the need to use a stochastic (e.g., Wyner) secrecy encoder in the

massive MIMO limit. On the other hand, as we will show, the adversary can reduce

the maximum secure DoF and rate to zero by contaminating the pilot signal of the

targeted user via another correlated pilot signal. To address this attack, we develop a

defense strategy in which the base station (BS) keeps the assignment of pilot signals

to the users hidden from the adversary and informs the assignments to the users reli-

ably. Thus, in our approach, we use computational cryptography for encrypting the

pilot assignments in the training phase. We also discuss how the consequences of en-

cryption of pilot assignment is fundamentally different from the consequences of data

encryption. In particular, we argue that, even if we use non-information theoretic

methods (e.g., Diffie-Hellman) to encrypt the pilot assignments, the level of security

we achieve can be as strong as information theoretic secrecy for all practical purposes.

Note that, most of our results are not asymptotic in the number of antennas and

we specify the number of antennas necessary to achieve certain level of security.

1Our definition of degrees of freedom is different from the standard definition. Our definition
specifies how the achievable rate scales with the log of the number of base station antennas,
rather than the log of the transmission power as in the standard definition.
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The major ideas developed and demonstrated in this thesis include:

• In information-theoretic secrecy literature, it is often the case that assumptions

are made on the CSI available at the adversary. Typically, it is assumed that

the adversary has access to the CSI for all channels in the system, with the mo-

tivation of making the achievable security robust with respect to the availability

of CSI at the adversary. However, we show that, with massive MIMO, it is not

important if the adversary has full CSI or not. Indeed, we show that massive

MIMO is naturally immune to attacks during data communication phase. In-

stead, we demonstrate that the major question is how the adversary obtains

CSI. In particular, we show that if the adversary is active during the training

phase, it substantially degrades the security of data communication.

• Security in computational cryptography is based on the assumptions on the

computational power of the attackers. Once data is encrypted, it takes an un-

reasonable amount of time for a typical adversary to decrypt it without the

key. Making such an assumption on the adversary poses a problem for security,

since a sophisticated adversary can use various tools and techniques to cut down

the time for cryptanalysis applied to recorded encrypted data. We eliminate

this shortcoming by encrypting the pilot assignments -not the transmitted

data,- using keys that are shared via standard Diffie-Hellman. In our scheme,

to make an impact, the adversary needs to decrypt the pilot assignment before

the training phase starts. Note that, the training phase can start immediately

after the assignments are made, leaving an arbitrarily low amount of time for

the adversary to crack the assignment (i.e., pushing the computational power

necessary to infinity). Without the knowledge of the pilot assignment, our

scheme achieves perfect secrecy of information transmitted in the data commu-

nication phase, even without the use of a secrecy encoder. Thus, it is useless
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for the adversary to record the received signal for future cryptanalysis, since it

is indifferent from noise.

Next, we summarize the technical contributions. Throughout the section, we assume

that the adversary is full-duplex, i.e., it is capable of eavesdropping and jamming the

BS-to-user communication simultaneously. We first study an attack model in which

the adversary eavesdrops the entire communication between the BS and users and

jams only the downlink data communication (the adversary keeps silent during the

training.). Under this attack:

• We show that the maximum secure DoF is identical to the maximum DoF

achieved in the presence of no adversary.

• We provide a novel encoding strategy, δ-conjugate beamforming, that provides

full security, without the need for Wyner encoding [3].

• We evaluate the number of antennas that the BS requires in order to satisfy

the security constraints.

The proposed encoding, δ-conjugate beamforming, utilizes the fact that the correla-

tion between the estimated BS-to-user channel gains and the BS-to-adversary channel

gains becomes zero when the adversary does not jam during the training phase. We

observe that in order to cause a non-zero correlation between the estimated BS-to-

user channel gains and the BS-to-adversary channel gains, the adversary has to jam

the pilots of users.

Next, we consider an attack model in which the adversary eavesdrops and jams the

entire communication (including the training) between the BS and the users. Under

this attack:

• We show that, if the adversary jams the training such that there exists a non-

zero correlation between the BS-to-adversary channel gain and the estimated

40



gain of the channel from the BS to a user, the adversary reduces the maximum

secure DoF to zero. Further, we show that, if the amount of the correlation is

sufficiently large, the maximum achievable rate of the user also vanishes as the

number of antennas at the BS grows.

• We propose a counter strategy against the adversary. We show that, if the

cardinality of the set of pilot signals scales with the number of antennas at

the BS and the BS is able to keep the pilot signal assignments hidden from

the adversary, attained secure DoF is arbitrarily close to the maximum DoF

attained under no attack.

Related Work: Massive MIMO concept was first proposed in [22,24]. Since then,

there has been a flurry of studies focusing on different aspects of massive MIMO (see

survey [25]) such as channel estimation, energy efficiency, and pilot contamination.

However, while MIMO security has been an active area of research [26–28], issues

specific to massive MIMO have not been considered. Among the very few, in [29],

the authors consider downlink multi cell massive MIMO system in the presence of an

adversary that only eavesdrops. In order to confuse the adversary, the BS transmits

artificial noise from a set of its antennas. The authors conclude that, if the adversary

has sufficiently large number of antennas, it is impossible to operate at a positive

rate with artificial noise generation at the BS. In our earlier work [30], which sets

up the main results in this paper, we have focused on a fairly different model and

addressed other questions. For instance, our attack model considers both jamming

and eavesdropping, possibly simultaneously by the adversary.
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User 1 

User K 

Adversary Base station 
(𝑀𝑀 antennas) (𝑀𝑀𝑒𝑒  antennas) 

(Single antenna) 

(Single antenna) 

Figure 3.1: System Model

3.2 System Model and Problem Statement

We consider a multi user MIMO downlink communication system, depicted in Fig-

ure 3.1, including a base station (BS), K single-antenna users, and an adversary. The

BS equipped withM antennas wishes to broadcastK distinct messages {W1, . . . ,WK}

each of which is intended for a different user. The adversary is equipped with Me

antennas.

3.2.1 Channel Model

We assume all the channels in our system, illustrated in Figure 3.1, are block fading.

In the block fading channel model, time is divided into discrete blocks each of which

contains T channel uses. The channel gains remain constant within a block and

the channel gains on different blocks are independent and identically distributed.

Furthermore, we assume the channels are reciprocal; the instantaneous gain of the

channel connecting the BS to a user is as same as the gain of the channel connecting

to the same user to the BS.

We follow a TDD-based two-phase transmission scheme introduced in [31] and is

re-adressed in [23]. The signal transmission in a block is separated into two phases:
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training phase and data communication phase. On the first Tr channel uses of every

block, each user sends a pilot signal to the BS. The BS estimates each BS-to-user

channel from the observed pilot signals. On the last Td channel uses of each block

(Td , T − Tr), the BS transmits data to the users.

The observed signals during a data communication phase at k-th user and at the

adversary at a particular channel use of i-th block are as follows2:

Yk = Hk(i)X +Hjam,k(i)Vjam + Vk (3.2.1)

Z = He(i)X + Ve, (3.2.2)

where Yk is a received complex signal at k-th user, Z is a received Me × 1 complex

vector at the adversary, and X denotes M × 1 complex vector of transmitted data

symbols. Signals Vk and Ve are additive Gaussian noise components, distributed as

CN (0, 1) and CN (0, IMe), respectively. Signal Vjam denotes Me×1 complex vector of

jamming signal. Further, Hk(i) and Hjam,k(i) denote a 1×M complex gain vector of

the channel connecting the base station to k-th user, a 1 ×Me complex gain vector

of the channel connecting the adversary to k-th user, respectively, at i-th block.

Similarly, He(i) is the Me×M complex gain matrix of the MIMO channel connecting

the base station to the adversary at i-th block. We assume that all channel gains

He(i), H1(i), . . . HK(i), Hjam,1(i), . . . , Hjam,K(i) are mutually independent for any i ≥

1.

The users send pilots in the first Tr channel uses of each block. The received

signals at the BS and at the adversary in the training phase of i-th block are as

follows:

Y Tr =
K∑
k=1

HT
k (i)φk +HT

e (i)Wjam +W, (3.2.3)

2Except for the channel gains, we avoid the block and channel use indices in (3.2.1) and (3.2.2)
and the block indicies in (3.2.3) and (3.2.4) for the sake of simplicity.
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ZTr =
K∑
k=1

HT
jam,k(i)φk +We, (3.2.4)

where Y Tr and ZTr denote M × Tr and Me × Tr complex matrices of the received

signals over Tr channel uses at the BS and at the adversary, respectively. Signals W

and We are M×Tr and M×Tr complex matrices denoting the additive Gaussian noise.

Each element of W and We are i.i.d CN (0, 1). Signal Vjam denotes Me × Tr complex

matrix of jamming signal. Signal φk is 1 × Tr complex vector denoting the pilot

signal associated with k-th user. The power of pilot signals ρr, i.e.,
1

Tr
tr (φ∗kφk) = ρr

is identical for all users k ∈ {1, . . . , K}.

We assume that the users do not have the knowledge of the BS-to-user chan-

nel gains. Note that the BS, the users, and the adversary know pilot signal set

[φ1, . . . , φK ]. The adversary is assumed to be aware of which pilot signal is assigned

to which user. Utilizing the pilot signals, the BS estimates the BS-to-user channel

gains. Define Ĥk(i) as 1 × M complex vector of estimated BS-to-k-th user chan-

nel gain. Further, for any B ≥ 1, define HB, ĤB, HB
e , and HB

jam as the gains of

the BS-to-user channels, the estimated gains of the BS-to-user channels, the gains

of the BS-to-adversary channel, and the gains of the adversary-to-user channels

over B blocks, respectively, i.e., HB ,
[
HB

1 , . . . , H
B
K

]
, ĤB ,

[
ĤB

1 , . . . , Ĥ
B
K

]
and

HB
jam ,

[
HB
jam,1, . . . , H

B
jam,K

]
.

For any B ≥ 1, the joint probability density function of
(
HB, ĤB, HB

e , H
B
jam

)
is

pHB ,ĤB ,HB
e ,H

B
jam

(
hB, ĥB, hBe , h

B
jam

)
=

B∏
i=1

pH,Ĥ,He,Hjam

(
h(i), ĥ(i), he(i), hjam(i)

)
(3.2.5)

where H , [H1, . . . , HK ], Ĥ ,
[
H1, . . . , H̃K

]
, and Hjam , [Hjam,1, . . . , Hjam,K ].

For any k ∈ {1, . . . , K}, Hk and Hjam,k are distributed as CN (0, IM), CN (0, IMe),

respectively, and each element of matrix He is i.i.d CN(0, 1).
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The adversary has the perfect knowledge of the BS-to-user channel gains H and

the estimated BS-to-user channel gains Ĥ. Define Hk,m and Ĥk,m as the gain and the

estimated gain of the channel connecting m-th BS antenna to k-th user. We assume

that for any k ∈ {1, . . . , K}, {Hk,mĤk,m}m≥1 forms an i.i.d process. We also assume

that Ĥk are independent from Hl and E
[
ĤkĤ

∗
l

]
= 0 for k 6= l and k, l ∈ {1, . . . , K}.

Note that we do not impose these assumptions for the BS-to-adversary channels.

Remark 3.2.1. When MMSE estimator and mutually orthogonal pilot signals are

employed for channel estimation at the BS, these assumptions are satisfied.

3.2.2 Attack Model

We consider a full duplex adversary that is capable of eavesdropping and jamming

simultaneously. In the sequel, we consider two attack models that differ only in the

adversary’s jamming activity in the training phase.

In Section 3.3, we consider an attack model in which the adversary jams only

during the data communication phase and eavesdrops both the training and the data

communication phases. We call this attack model as no training-phase jamming. In

the no training-phase jamming, the adversary jams during the communication phase

using a Gaussian jamming signal and keeps silent during the training phase. Specifi-

cally, signal Wjam in (3.2.4) is identical to zero and jamming signal Vjam in (3.2.1) is

distributed as CN (0, ρjamIMe), where ρjam is the jamming power.

In Sections 3.4 and 3.5, we consider an attack model in which the adversary

jams and eavesdrops both the training and the data communication phases. We call

this attack model as training-phase jamming. The adversary strategy during the

data communication phase in this attack model is the same as that described in the

previous attack model (i.e., no training-phase jamming). Instead of jamming with

random signals, the adversary jams during the training phase with structured signals.
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We provide a detailed description of the signals used for jamming the training phase

in Section 3.4 and 3.5.

3.2.3 Code Definition

The BS has random messages {W1, . . . ,WK} each of which is uniformly distributed

on message set Wk, k = 1, . . . , K. We denote wk ∈ Wk as the realization of Wk.

The BS aims to send message wk, k = 1, . . . , K, to k-th user over B blocks with rate

Rk, while keeping wk secret from the adversary. The BS and the users employ code(
2BTR1 , . . . , 2BTRK , BTd

)
of length BTd, that contains: 1) K message sets, Wk ,

{1, . . . , 2BTRk}, k = 1, . . . , K. 2) K injective encoding functions, fk, k = 1, . . . , K,

where fk maps wk ∈ Wk to data signal sequence sBTdk ∈ CBTd satisfying an average

power constraint such that

1

BTd

B∑
i=1

T∑
j=Tr+1

|sk(i, j)|2 ≤ ρk, k = 1, . . . , K (3.2.6)

for all wk ∈ WK , where notation (i, j) indicates the j-th channel use of i-th block,

ρk denotes the power constraint for k-th user, and sk(i, j) is the complex data signal

of k-th user. Note that ρf ,
K∑
k=1

ρk is the cumulative average transmission power.

Further, note that encoding functions, fk, k = 1, . . . , K can be deterministic or

stochastic. Codes using stochastic encoding functions referred to as stochastic codes

and the ones using deterministic encoding functions are referred to as deterministic

codes. 3) Linear beamforming that maps data signals3 sBTd1 × · · · × sBTdK to channel

input4 XBTd . Two beamforming strategies are used throughout the section:

3Note that sBTd

k , {sk(i, j)}i=1:B,j=Tr+1:T and notation (·)BTd applied to any variable has the
same meaning.

4Note that the channel input sequence satisfies the following average power constraint

1

BTd

B∑
i=1

T∑
j=Tr+1

E
[
||X(i, j)||2

]
≤ ρf (3.2.7)
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• Conjugate beamforming: When the BS employs conjugate beamforming,

channel input at j-th channel use of i-th block can be written as

X(i, j) =
K∑
k=1

sk(i, j)
Ĥ∗k(i)√
Mαk

, (3.2.8)

for any i ∈ {1, . . . , B} and j ∈ {Tτ + 1, . . . , T}, where αk , E
[
|Ĥk,m|2

]
.

• δ-conjugate beamforming: We introduce a new beamforming strategy, called

δ-conjugate beamforming that is slightly modified version of conjugate beam-

forming. Let δ be a positive real number. When the BS employs δ-conjugate

beamforming, the channel input at j-th channel use of i-th block can be written

as

X(i, j) =
K∑
k=1

sk(i, j)
Ĥ∗k(i)√
M1+δαk

. (3.2.9)

Note that, when δ = 0, δ-conjugate beamforming becomes identical with con-

jugate beamforming in (3.2.8).

4) Decoding functions, gk, k = 1, . . . , K, where gk maps Y BTd
k to ŵk ∈ Wk.

3.2.4 Figures of Merit

We define the average error probability of code
(
2BTR1 , . . . , 2BTRK , BTd

)
as

Pe , P

(
K⋃
k=1

gk(Y
BTd
k ) 6= Wk

)
.

We assume that the adversary targets a single user during communication. The

secrecy of the transmitted message for k-th user is measured by the equivocation

rate at the adversary, which is equal to the entropy rate of transmitted message wk

conditioned on the adversary’s observations.

for all w1× · · · ×wK ∈ W1× · · · ×WK , where the expectation is over estimated channel gains Ĥ.
The inequality (3.2.7) follows from the individual power constraint (3.2.6) and from the fact that

E
[
ĤkĤ

∗
l

]
= 0 for k 6= l
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Definition 3. A secure rate tuple R1, . . . RK is said to be achievable if, for any ε > 0,

there exists B(ε) > 0 and a sequence of codes
(
2BTR1 , . . . , 2BTRK , BTd

)
that satisfy

the following:

Pe ≤ ε, (3.2.10)

1

BT
H
(
Wk|ZBT , HB, ĤB, HB

e

)
≥ Rk − ε (3.2.11)

for all B ≥ B(ε) and k ∈ {1, . . . , K}, where ZBT is the received signal sequence at

the adversary over BT channel uses.

We refer to the constraints in (3.2.10) and (3.2.11) as decodability and secrecy

constraints, respectively. We also refer to both constraints as security constraints.

We call the communication system information theoretically secure if both constraints

are satisfied. Notice that the achievable rate tuple definition above is presented for a

given M , i.e., M remains constant for a sequence of codes
(
2BTR1 , . . . , 2BTRK , BTd

)
,

B ≥ B(ε).

We mainly focus on the massive MIMO limit. Specifically, we study on how

achievable rate tuple R1, . . . , RK behaves as M goes to infinity. To that end, we use

the following notion of degrees of freedom for each user.

Definition 4. A secure degrees of freedom tuple d1, . . . , dK is said to be achievable,

if there exists achievable rate tuple R1, . . . RK such that

dk = lim
M→∞

Rk

logM
, k = 1, . . . , K. (3.2.12)

In the literature, degrees of freedom is typically defined as the limit lim
ρk→∞

Rk

log ρk
.

Since we aim to understand how Rk changes with M under constant ρk, the degree

of freedom definition in (3.2.12) is more relevant for our interest.

For a given achievable secure degrees of freedom tuple d1, . . . , dK , we define the

secure degrees of freedom of the downlink communication as the minimum value in the
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tuple, i.e., secure DoF , min
k∈{1,...,K}

dk. In the rest of the section, when we use secure

DoF , we mean secure degrees of freedom attained in the presence of an adversary,

and when we use DoF , we mean degrees of freedom attained under no adversary.

We characterize the maximum secure DoF in the presence of various security

attacks described in Section 3.2.2. Furthermore, we aim to develop defense strategies

that achieve the maximum secure DoF against the security attacks that would limit

the maximum secure DoF to zero, otherwise.

3.3 Adversary not jamming The Training Phase

In this section, we show that downlink communication in a single-cell massive MIMO

system is resilient to the adversary that jams only the data communication phase and

eavesdrops both the communication and training phases. We show that the maxi-

mum secure DoF attained under no training-phase jamming is identical to maximum

DoF attained under no adversary. Then, we show that we can establish information

theoretic security without using stochastic encoding, e.g., Wyner encoding. Finally,

we evaluate the number of antennas that BS needs to satisfy the security constraints

without a need for Wyner encoding.

3.3.1 Resilience of massive MIMO

In this subsection, we evaluate the maximum secure DoF of the downlink commu-

nication in the presence of no training-phase jamming. Then, we show that the

maximum secure DoF attained in the presence of no training-phase jamming is as

same as the maximum DoF attained without an adversary. This result demonstrates

the weakness of the no training-phase jamming in the massive MIMO limit.

Theorem 3.3.1. (Maximum secure DoF) For given block length T and data
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transmission phase length Td, the maximum secure DoF under no training-phase

jamming is given by
Td
T

. �

The complete proof is available in Appendix B.1, where we first provide an upper

bound on secure DoF and then present a strategy to achieve the upper bound. Here,

we provide a proof sketch. In order to find an upper bound on secure DoF , we

consider a multiple output single output (MISO) communication system without an

adversary, in which the BS communicates to a single user under power constraint

ρf . Further, we assume that the BS and the user have a perfect information of the

channel gains. We show that the supremum of achievable rates leads to a secure DoF

of
Td
T

. Hence, we conclude that
Td
T

is an upper bound on secure DoF attained in the

multi user downlink communication model in Section 3.2.

We now describe a strategy to attain the maximum secure DoF in Theorem 3.3.1.

On the first Tr channel uses of each block, the users send pilot signals that are

mutually orthogonal. The BS uses minimum mean square estimator (MMSE) to

estimate the BS-to-user channel gains. The BS constructs K codebooks, ck , k =

1, . . . , K, where codebook ck contains 2BTR̂k independently and identically generated

codewords, sBTdk of length BTd and R̂k > Rk. The BS maps k-th user’s message to a

codeword with a stochastic mapping function fk. Specifically, the BS maps message

wk ∈
{

1, . . . , 2BTRk
}

to randomized message mk ∈ {1, . . . , 2BTR̂k} as in [3] and then

maps randomized message mk to one of the codewords in ck , k = 1, . . . , K. Utilizing

the conjugate beamforming in (3.2.8), the BS maps K codewords, sBTdk , k = 1, . . . , K

to channel input sequence XBTd . Each user employs typical set decoding [1]. In order

to show that secrecy constraint (3.2.11) for a particular user is satisfied, we give the

adversary the other users’ transmitted codewords. �

In the next couple of remarks, we emphasize the robustness of the downlink com-

munication system against no training-phase jamming.
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Remark 3.3.2. (The weakness of the adversary not jamming the training

phase) In the proof of Theorem 3.3.1, we show that
Td
T

is indeed an upper bound

on the DoF of a downlink communication without the presence of an adversary.

Hence, with also showing that the secure DoF of
Td
T

is attained in the presence of the

adversary, we conclude that no training-phase jamming attack does not degrade the

performance of the communication in terms of DoF . The reason that secure DoF of

Td
T

is achieved is that the adversary keeps silent during the training phase; hence the

estimated BS-to-user channel gains are independent from He.

In the next section, we consider an adversary jamming the training phase. In the

presence of such an adversary, the BS-to-user channel gains become correlated with

He and the maximum secure DoF is reduced to zero.

Remark 3.3.3. (Resource race between the BS and the adversary) In Ap-

pendix B.1, we show that the achievable rate tuple that leads to a secure DoF of

Td
T

is Rk =
Td
T

log

(
1 +

Mρka

ρf + ρjam + 1

)
− Td

T
log (1 +Meρk), k = 1, . . . , K, where

a ,
ρrTr

ρrTr + 1
.

We next investigate how Rk varies in Me and M . Figure 3.2 illustrates this varia-

tion when ρk = 1, ρf = 10,
Td
T

= 0.99, ρjam = 1, and a = 0.9. As seen in Figure 3.2,

in the presence of the adversary not jamming the training phase, the achievable

secure rates are determined as a result of the arms race between the

adversary and the BS. Specifically, we can observe that if Me remains constant,

achievable rate Rk grows unboundedly as M is increasing. Moreover, for a fixed value

of M , the achievable rates decrease as a function of Me. In the next section, we con-

sider an adversary jamming the training phase instead of keeping silent during the

training phase. We will show that, armed with only a single antenna, the adversary

is capable of limiting the maximum achievable rate for any user to zero as M →∞.
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Figure 3.2: The variation of Rk with M and Me

Hence, by jamming the training phase, the adversary converts the arms

race between the BS and itself to the one between an user and itself.

3.3.2 Establishing security without Wyner encoding

In the achievability strategy given in the proof sketch of Theorem 3.3.1, we use

a stochastic encoding, a randomized mapping of each message to a codeword with

stochastic functions, at the BS. In fact, stochastic encoding, e.g., Wyner encoding [3],

is a standard technique in the literature for establishing information theoretic security

against the eavesdropping attacks.

In this section, we show that the BS utilizing deterministic encoding, a nonran-

dom mapping of each message to a codeword with deterministic functions, instead of

stochastic encoding is capable of satisfying the security constraints if it is equipped

with sufficiently large number antennas. In order to satisfy the security constraints

without using stochastic encoding, the BS employs novel beamforming strategy in-

troduced in (3.2.9).
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The following theorem shows that, when code
(
2BTR1 , . . . , 2BTRK , BTd

)
of length

BTd utilizes δ-conjugate beamforming instead of conjugate beamforming in (3.2.8),

the code satisfies the secrecy constraint in (3.2.11) for any k ∈ {1, . . . , K} and for

any ε > 0 without a need for stochastic encoding.

Theorem 3.3.4. (Establishing secrecy with no stochastic encoding) Let

δ > 0. Under no training-phase jamming, for any ε > 0, if M ≥ S(ε), then any

deterministic code
(
2BTR1 , . . . , 2BTRK , BTd

)
employing δ-conjugate beamforming sat-

isfies

1

BT
H
(
Wk|ZBTd , HB, ĤB, HB

e

)
≥ Rk − ε (3.3.1)

for all B ≥ 1 and for all k ∈ {1, . . . , K}, where

S(ε) ,

(
Meρmax

2
T
Td
ε − 1

) 1
δ

and ρmax , max
k∈{1,...,K}

ρk. �

We can consider S(ε) in Theorem 3.3.4 as the number of the antennas the BS

needs in order to make the conditional entropy ε-close to Rk for all k ∈ {1, . . . , K}.

Hence the BS equipped with at least S(ε) antennas can satisfy (3.3.1) by harnessing

any code
(
2BTR1 , . . . , 2BTRK , BTd

)
that employs deterministic encoding functions and

δ-conjugate beamforming.

The proof is available in Appendix B.2.1. The BS constructs K codebooks, ck ,

k = 1, . . . , K, where codebook ck contains 2BTRk codewords, sBTdk of length BTd. The

BS maps message wk to sBTdk codeword with a deterministic function, fk, k = 1, . . . , K.

Utilizing the δ-conjugate beamforming in (3.2.9), the BS maps K codewords, sBTdk ,

k = 1, . . . , K to channel input sequence XBTd .

In Figure 3.3, we illustrate the variation of S(ε) with ε when ρk = 1, δ = 0.7,

T/Td = 5/4, and Me = 1. As seen in Figure 3.3, 100 antennas at the BS are sufficient

to make the equivocation rate above Rk − 0.05 for any choice of Rk, k = 1, . . . , K.
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Figure 3.3: The variation of S(ε) with ε when ρk = 1, δ = 0.7, T/Td = 5/4, and

Me = 1. As long as M ≥ S(ε),
1

BT
H
(
Wk|ZBTd , HB, ĤB, HB

e

)
remains

ε-neighborhood of Rk for any k ∈ {1, . . . , K}.

Theorem 3.3.4 evaluates the number of antennas needed in order to satisfy only the

secrecy constraint. The following corollary takes both the secrecy and decodability

constraints into account.

Corollary 3.3.5. (Any rate tuple is achievable with no need to stochastic

encoding) Let 0 < δ < 1. In the presence of no training-phase jamming, for any

ε > 0 and any rate tuple R , [R1, . . . , RK ], if M ≥ max (V (R), S(ε)), there exists

B(ε) > 0 and sequence of codes
(
2BTR1 , . . . , 2BTRK , BTd

)
, B ≥ B(ε) that satisfy the

constraints in (3.2.10) and (3.2.11) without the use of stochastic encoding,

where

V (R) , max
k∈{1,...,K}

((
2
Rk

T
Td − 1

)
× ρf + ρjam + 1

aρk

) 1
1−δ

.

�

The proof of Corollary 3.3.5 can be found in Appendix B.2.2. The sequence of

codes in Corollary 3.3.5 utilizes δ-conjugate beamforming. Figure 3.4 illustrates the

variation of max (V (R), S(ε)) with δ when ε = 0.05, T/Td = 5/4, Me = 1, ρk = 1, and
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Rk = 0.2 for any k ∈ {1, . . . , K}. Note that, for these parameters, max (V (R), S(ε))

is minimized and identical to 60 when δ = 0.78. When the BS utilizes δ-conjugate

beamforming with δ = 0.78, the BS requires at least 60 antennas in order to satisfy

the constraints in (3.2.10) and (3.2.11) without the need for a stochastic encoding

(e.g., Wyner encoding).

Remark 3.3.6. (Achieving secure DoF arbitrarily close the maximum DoF

with no Wyner encoding) Theorem 3.3.4 and Corollary 3.3.5 show that it is

possible to establish information theoretic security without using stochastic encod-

ing. We next measure the amount of DoF sacrificed as a result of not utilizing

stochastic encoding. To that end, we evaluate how number of antennas at the BS

max(V (R), S(ε)) scales with Rk for given ε > 0 and {Rl}l 6=k. Specifically, we calcu-

late lim
Rk→∞

Rk

log max(V (R), S(ε))
as

lim
Rk→∞

Rk

log max(V (R), S(ε))
= lim

Rk→∞

Rk

log V (R)
(3.3.2)

= lim
Rk→∞

Rk

log
((

2
Rk

T
Td − 1

)
× ρf+ρjam+1

aρk

) 1
1−δ

(3.3.3)

= lim
Rk→∞

(1− δ)Rk

log
(

2
Rk

T
Td − 1

)
= (1− δ)Td

T
(3.3.4)

for all k ∈ {1, . . . , K}, for any ε > 0 and for any {Rl}l 6=k. The equalities in (3.3.2)

and (3.3.3) in the above derivation follow from the fact that max(V (R), S(ε)) and

V (R) are increasing functions of Rk. We observe from (3.3.4) that by choosing δ

close to 0, we can make the difference between (3.3.4) and the maximum secure DoF

provided in Theorem 3.3.1 arbitrarily small.
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Figure 3.4: The variation of max (V (R), S(ε)) with δ when ε = 0.05, T/Td = 5/4,
Me = 1, ρk = 1, and Rk = 0.2 for any k ∈ {1, . . . , K}. As long as
M ≥ max(S(ε), V (R)), constraints in (3.2.10) and (3.2.11) are satisfied
for a given ε and R without a need for stochastic encoding.

3.4 Adversary jamming the training phase

In the previous section, we show that the adversary not jamming during the training

phase does not degrade the performance of the multi user communication when the

BS has sufficiently large number of antennas. In this section, we aim to find attack

model that do degrade the performance. Specifically, we focus on finding an attack

strategy capable of limiting secure DoF to an arbitrarily small value. Next theorem

sheds light on finding such an attack strategy.

Theorem 3.4.1. (A non-zero correlation between the estimated user chan-

nel and the adversary channel gains limits the maximum secure DoF to

zero) Let the BS use either conjugate beamforming or delta-conjugate beamforming

for some δ > 0. Assume that there exists user k such that

•
{
Ĥk,mHe,m

}
m≥1

is5 an i.i.d random process.

• For any B ≥ 1, there exists a random vector H̃B
k that satisfies the following:

1) the joint probability distribution of HB
e , Ĥ

B is identical with that of HB
k , H̃

B,

5Hem is the gain of the connecting m-th antenna at the BS to the adversary.
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where H̃B , ĤB
1 , . . . , H̃

B
k , . . . , Ĥ

B
K and 2) the joint probability distribution of

H(i), H̃(i) is identical for any i ∈ {1, . . . , B}.

Then, the maximum secure DoF is zero if E
[
H∗e,mĤk,m

]
6= 0. �

Note that random vector H̃B is created by replacing ĤB
k in ĤB with H̃B

k . The

proof of Theorem 3.4.1 can be found in Appendix B.3.1. In the example given at

the end of this section, we show that the assumptions listed in Theorem 3.4.1, that

are related to the random variables hold when MMSE and mutually orthogonal pilot

signals are used as a channel estimation strategy. Note that such an estimation

strategy is quite popular in the multi-user communication [24].

We next give a proof sketch. As indicated in Section 3.2.3, we only focus on codes

that use either conjugate beamforming or δ-conjugate beamforming. Hence, upper

bound given in Theorem 3.4.1 is valid only for the codes using these beamforming

techniques. In the proof sketch, we assume that Me = 1 and the BS employs conju-

gate beamforming without loss of generality. We convert the communication set-up

explained in Section 3.2 to an identical set-up containing a BS equipped with K an-

tennas, where the channel input signal at l-th antenna in the new set-up represents

the data signal for l-th user Sl, l = 1, . . . , K. Since conjugate beamforming is used,

the gain of the channel connecting l-th antenna to i-th user in the new set-up is

HiĤ
∗
l√

Mαl
and the gain of the channel connecting l-th antenna to the adversary in the

new set-up is
HeĤ

∗
l√

Mαl
, i, l = 1, . . . , K. Following the assumptions in Theorem 3.4.1,

we show that the gain of the channel connecting the BS to the adversary can be

replaced with
HkĤ

∗
1√

Mα1

, . . . ,
HkH̃

∗
k√

Mαk
, . . . ,

HkĤ
∗
K√

MαK
. In Appendix B.3.1, we bound Rk as

follows

Rk ≤ E
[[

max
Σ∈S

(log (1 + AkΣA
∗
k)

− log (1 + AeΣA
∗
e))]

+] , (3.4.1)
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where Ak ,

[
HkĤ

∗
1√

Mα1

, . . . ,
HkĤ

∗
k√

Mαk
, . . . ,

HkĤ
∗
K

MαK

]
is 1×K complex gain vector of chan-

nels connecting the BS to k-th user, and Ae ,

[
HkĤ

∗
1√

Mα1

, . . . ,
HkH̃

∗
k√

Mαk
, . . . ,

HkĤ
∗
K√

MαK

]
is

1×K complex gain vector of channels connecting the BS to the adversary. Let Σ be

the covariance matrix of input signal S = [S1, . . . , SK ] and S be the feasible set for

the maximization problem in (3.4.1). Every matrix Σ in set S is diagonal due to fact

that S1, . . . , SK are independent, and satisfy Σ � diag(ρ1, . . . , ρk) due to the power

constraint in (3.2.6).

We show that, if E
[
H∗k,mHe,m

]
6= 0, then the right hand side (RHS) of (3.4.1)

over logM goes to zero as M →∞. Hence, the maximum secure DoF becomes zero.

�

Remark 3.4.2. (Adversary has to jam the training phase) When the adver-

sary does not jam the training phase, Ĥk and He are independent and consequently

E
[
Ĥk,mH

∗
e,m

]
= E

[
Ĥk,m

]
E
[
H∗e,m

]
= 0 for all k ∈ {1, . . . , K}. In order to have a

non-zero correlation between the gain of the channel connecting itself to the BS He

with Ĥk for any k ∈ {1, . . . , K}, the adversary has to jam the training phase. Hence,

the training-phase jamming is capable of limiting the maximum DoF to zero. �

In addition to limiting the maximum secure DoF to zero, the adversary can make

the maximum achievable rate of k-th user arbitrarily small as M → ∞. We next

provide the conditions under which the maximum achievable rate of k-th user goes

to a finite value as M →∞.

Corollary 3.4.3. (A user’s maximum achievable rate is bounded as M →

∞) In addition to the assumptions given in Theorem 3.4.1, assume that there exits a

finite non negative r such that pKM (x) ≤ r for all M ≥ 1 and x ∈ KM , where pKM is
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the probability density function of KM ,
1

M2
||HeĤ

∗
k ||2 and KM is the sample space

of KM . Then, the achievable rate of k-th user is bounded as

lim
M→∞

Rk ≤

log


∣∣∣E [Hk,mĤ

∗
k,m

]∣∣∣2∣∣∣E [He,mĤ∗k,m

]∣∣∣2



+

.

� The proof of Corollary 3.4.3 can be found in Appendix B.3.2.

As seen in Corollary 3.4.3, if the amount of correlation between the BS-to-k-user

channel gain and the estimated BS-to-k-user channel gain,
∣∣∣E [Hk,mĤ

∗
k,m

]∣∣∣ is smaller

than that between the BS-to-adversary channel gain and estimated BS-to-k-th user

channel gain,
∣∣∣E [He,mĤ

∗
k,m

]∣∣∣, the maximum achievable rate of k-th user vanishes as

M →∞.

Remark 3.4.4. (Resource race between the adversary and the user) We

show that if there exists a non zero correlation between the BS-to-k-user channel gain

and the BS-to-adversary channel gain, then the maximum secure DoF is constrained

to zero. Furthermore, we also show that if the amount of this correlation is higher

than the amount of the correlation between the BS-to-adversary channel gain and

estimated BS-to-k-user channel gain, the maximum achievable rate of k-th user goes

to zero as M →∞.

Hence, in the presence of the training-phase jamming, the achievable

rates and the maximum secure DoF are determined as a result of the

arms race between the adversary and users. �

Example 1. (Using MMSE and mutually orthogonal pilot signals for

channel estimation) We study an adversary that chooses to match k-th user’s pilot

signal on the training phase with one of its antennas when MMSE and mutually or-

thogonal pilot signals are used for channel estimation. We show that the assumptions

given in Theorem 3 are valid under such a jamming attack and a channel estimation

strategy. Then, we show that the maximum secure DoF is zero.
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We consider mutually orthogonal pilot signals {φl}l∈{1,...,K}, i.e.,

φk × φ∗l =


Trρr if k = l

0 if k 6= l

for any k, l ∈ {1, . . . , K}. The received signals at the BS in the training phase of i-th

block is as follows:

Y Tr =

√
ρjam
ρr

HT
e (i)φk +

K∑
l=1

HT
l (i)φl +W,

where ρjam is the jamming power. Note that we assume that the adversary jams the

data communication phase and the training phase with the same power, which is ρjam.

In order to validate the assumptions listed in Theorem 3.4.1, we next present the

estimated gain of the channel connecting the BS to l-th user at i-th block as

Ĥl(i) =


aHl(i) + bHe(i) + cVl if l = k

dHl(i) + eVl if l 6= k,

where Vl is distributed as CN (0, IM) for any l ∈ {1, . . . , K}, a , Trρr
Trρr + 1 + Trρjam

,

b ,
Tr
√
ρrρjam

Trρr + 1 + Trρjam
, c ,

√
Trρr

Trρr + 1 + Trρjam
, d ,

Trρr
Trρr + 1

and e ,

√
Trρr

Trρr + 1
.

Define H̃B
k stated in Theorem 3.4.1 as H̃k(i) , bHk(i)+aHe(i)+cVk, i = 1, . . . , B.

Further, define Ĥl , aHl + bHe + cVl if k = l, and otherwise, Ĥl , dHl + eVl. Note

that H̃k(i), H(i), He(i), Ĥ(i) is an i.i.d process due to (3.2.5) and the associated joint

distribution is identical with that of H̃k, H,He, Ĥ, where H̃k , aHk + bHe + cVk.

Hence, we conclude that the joint probability distribution of H(i), H̃(i) is identical for

any i ∈ {1, . . . , B}.

We next show that the probability distribution of HB
e , Ĥ

B is identical with that

of HB
k , H̃

B. Note that both (He, Ĥk) and (Hk, H̃k) are independent frrom {Ĥl}l 6=k.

Hence, noting that He and Hk have same probability distributions, it is sufficient to
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show that H̃k|Hk = hk has the same probability distribution with Ĥk|He = hk for any

hk ∈ RM :

P
(
H̃k ≤ x|Hk = hk

)
= P (bhk + aHe + cVk ≤ x|Hk = hk)

= P (bhk + aHe + cVk ≤ x) (3.4.2)

= P (bhk + aHk + cVk ≤ x) (3.4.3)

= P (bHe + aHk + cVk ≤ x|He = hk) (3.4.4)

= P
(
Ĥk ≤ x|He = hk

)
for any x ∈ RM , where (3.4.2) and (3.4.4) follow from the fact that He, Hk, and Vk

are mutually independent and (3.4.3) follows from the fact that (He, Vk) and (Hk, Vk)

are identically distributed.

Finally, note that {He,m, Ĥk,m}m≥1 forms an i.i.d process due to the fact that

Hk, He, Vk are mutually independent random vectors and each is composed of M i.i.d

complex Gaussian random variables.

Note that E
[
Ĥ∗k,mHe,m

]
= b. Since E

[
Ĥ∗k,mHe,m

]
is non-zero, we conclude that

the maximum secure DoF is zero by Theorem 3.4.1. �

Combining Remark 3.4.2 and Example 1, we conclude that under the downlink

communication set-up in which MMSE estimation and orthogonal pilot signlas are

used for channel estimation, if the adversary jams the training phase, it is not possible

to achieve non-zero secure DoF

3.5 Secure communication under Training-Phase Jamming

In the previous section, we showed that massive MIMO systems are vulnerable to the

training-phase jamming. In this section, we first provide a defense strategy against
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the training-phase jamming, that expands the cardinality of the set of pilot signals

and keeps the pilot signal assignments hidden from the adversary. Then, we show

that utilizing the defense strategy and δ-conjugate beamforming, the BS can sat-

isfy the security constraints without using Wyner encoding in the presence of the

training-phase jamming. Finally, we discuss that relying only on the computational

cryptography, we can secure the communication of pilot signal assignments; hence

the entire massive MIMO communication.

3.5.1 Counter strategy against training-phase jamming

We first describe our defense strategy against training-phase jamming attack. Then,

in Theorem 3.5.1, we show that the ratio of the achieved rate to the logarithm of

number of antennas can be brought arbitrarily close to maximum achievable secure

DoF of
Td
T

with the proposed defense strategy that will be explained next.

The BS constructs pilot signal set Φ containing L mutually orthogonal pilot sig-

nals, i.e., Φ = {φ1, . . . , φL}, where L is larger than the number of users in the system,

L ≥ K. Thus, the number the pilot signals is increased. At the beginning of each

block, the BS draws K pilot signals from set Φ uniformly at random and assigns each

of them to a different user. Let ΦK(i) = [φ1(i), . . . , φK(i)] be K pilot signals that the

BS picks at the beginning of i-th block, where φk(i) ∈ Φ is the pilot signal assigned

to k-th user on i-th block.

Throughout sections 3.5.1 and 3.5.2, we assume that the BS communicates to the

users the assignments of pilot signals reliably while keeping the assignments hidden

from the adversary. In Section 3.5.3, we discuss how this can be achieved. In par-

ticular, we consider computational cryptography as a way to communicate the pilot

signal assignments and discuss the notion of security achieved.

We next describe the attack model in detail, under the lack of knowledge of
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the pilot signal assignments. Suppose that the adversary targets k-th user without

loss of generality. The adversary eavesdrops the entire communication between user

k and the BS and simultaneously jams data communication phase with Gaussian

noise as in no training-phase jamming attack model. Furthermore, the adversary,

without knowing which pilot signal is assigned to which user, picks J ≤ L pilot signals

uniformly at random from set Φ at the beginning of a block and subsequently jams

these pilot signals with an equal power during the training phase. The adversary

repeats this process independently at the beginning of each block.

Particularly, the adversary divides its jamming power and transmits an equally

weighted combination of J randomly selected pilot signals using all of its Me antennas

with total transmission power
ρjam
J

. The signal received by the BS during the training

phase under this attack model can be written as follows:

Y Tr =
K∑
l=1

HT
l φl +

∑
l∈J

Me∑
n=1

√
ρjam
MeJρr

HT
enφl +W, (3.5.1)

where Y Tr denotes M×Tr complex matrix of the received signals over Tr channel uses

at the BS, Hen is 1×M complex gain vector of the channel connecting n-th antenna

at the adversary to the BS, and J is the set of pilot signals that are selected and

transmitted by the adversary at the corresponding block. Note that J is a random

set that can possibly change in each block and |J | = J .

Next theorem shows that when the cardinality, L of pilot signal set is increased as

a function of the number of BS antennas in a certain way, the ratio of attained secure

rate to logM for any user can be arbitrarily close to the maximum DoF attained in

the presence of no adversary.

Theorem 3.5.1. (Achievable rate under training-phase jamming) For given
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block length T and data transmission phase length Td, the achievable secure rate, Rk

under training-phase jamming satisfies

Rk

logM
≥ Td

T
min(1, γ)− ε (3.5.2)

for any k ∈ {1, . . . , K}, J ∈ {1, . . . Tr}, ε > 0, and γ > 0 if max(Mγ, K) ≤ Tr and

M ≥ G(ε), where

G(ε) ,

((
1 +Meρmax +

Meρmaxρjam
ρr

)
×(ρf + ρjam + 1)× ρr + ρjam + 1

ρminρr

)Td
Tε

, (3.5.3)

ρmax , max
k∈{1,...,K}

ρk, and ρmin , min
k∈{1,...,K}

ρk. �

Note that the lower bound to
Rk

logM
in (3.5.2) does not depend on how many

pilot signals the adversary chooses to contaminate. The proof of Theorem 3.5.1 can

be found in Appendix B.4.

Remark 3.5.2. (Attained
Rk

logM
is arbitrarily close to maximum DoF un-

der no attack) We can observe from the statement of Theorem 3.5.1 that when

γ = 1,
Rk

logM
that is arbitrarily close to the maximum DoF attained under no attack

can be achieved. In order to attain that amount of
Rk

logM
, the length of the training

phase Tr is expanded so that Tr ≥ max(K,G(ε)) for given ε > 0 and the size of pilot

signal set is set to Tr instead of K. Hence, we sacrifice the some of secure through-

put by increasing the training overhead. However, as illustrated in the next example,

the typical values for the block lengths for mobile wireless communication systems is

sufficiently large to keep the overhead ratio,
Tr
T

reasonably low.

Example 2. In this example, we consider massive MIMO downlink transmission to

users moving at a speed 10 m/s and the transmitted signal bandwidth is 10 MHz,

centered at 1 GHz The associated coherence time corresponds T to as 3×105 channel
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Figure 3.5: The change of G(ε) with ε

uses. We first evaluate the number of antennas required to keep Rk in ε neighborhood

of
Td
T

for a given training phase length Tr. To that end, we plot the variation of G(ε)

with ε in Figure 3.5, when γ = 1, Td = 2 × 105 channel uses, pjam = 1, K = 5,

pf = 5, Me = 1, pr = 10, pk = 1 for all k ∈ {1, . . . , K}. For these set of parameters,

200 antennas are sufficient to keep
Rk

logM
larger than

Td
T
− 0.3, where

Td
T

=
2

3
.

Next we study the trade-off between ε and
Td
T

for given M , where ε is the deviation

of achieved
Rk

logM
from

Td
T

as in (3.5.2). To that end, we plot the variation of ε and

Td
T

with
Tr
T

for M = 200 as we change
Tr
T

from
200

3× 105
to 1. The values of parameters

pjam, K, Me, ρk, and ρf are kept same as stated above and we set ρr =
Td
Tr
ρf . As

seen in Figure 3.6, ε vanishes as Tr goes to T and hence
Rk

logM
also gets closer to

Td
T

. However, as Tr increases, the training overhead increases and hence maximum

DoF
Td
T

decreases.

Remark 3.5.3. (Resource race between the adversary and the BS) By keep-

ing the pilot assignments hidden from the adversary and using a pilot signal set that

scales with M , the BS converts the arms race between the adversary and

the target user (which was the case with known pilot assignments), back
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to the one between the adversary and itself. Indeed, the power of the adversary

needs to scale with L for it to make an impact.

3.5.2 Establishing security without Wyner encoding

In this subsection, we show that the BS, when utilizing deterministic encoding in-

stead of stochastic encoding is still capable of satisfying the secrecy and decodability

constraints in the presence of training-phase jamming. Hence, this subsection can be

considered as the counterpart of Section 3.3.2. There, we assumed no training phase

jamming, whereas here we mitigate training-phase jamming by other means.

In order to satisfy the security constraints without using stochastic encoding, the

BS employs δ-conjugate beamforming given in (3.2.9) and the strategy explained in

Section 3.5.1. Specifically, Theorem 3.5.4 and Corollary 3.5.5 provide the number of

antennas that the BS requires in order to satisfy only the secrecy constraint and both

the secrecy and decodability constraints, respectively. Note that Theorem 3.5.4 and

Corollary 3.5.5 are the counterparts of Theorem 3.3.4 and Corollary 3.3.5.

Theorem 3.5.4. (Establishing secrecy with no stochastic encoding) Let δ,

γ > 0, and γ + δ > 1. Let block length be T and length of data transmission phase

be Td. In the presence of training-phase jamming, for any ε > 0 and any rate tuple
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R , [R1, . . . , RK ], if M ≥ S1(ε) and Tr ≥ max(Mγ, K), then any deterministic code(
2BTR1 , . . . , 2BTRK , BTd

)
employing δ-conjugate beamforming satisfies

1

BT
H
(
Wk|ZBTd , HB, ĤB, HB

e

)
≥ Rk − ε (3.5.4)

for any J ∈ {1, . . . , Tr}, B ≥ 1, and k ∈ {1, . . . , K}, where

S1(ε) ,

ρmaxMe max
(

1,
ρjam
ρr

)
2
T
Td
ε − 1


1

min(δ,δ+γ−1)

and ρmax , max
k∈{1,...,K}

ρk. �

The proof of Theorem 3.5.4 can be found in Appendix B.5.1. Note that when

γ = 1 and 1 ≥ ρjam

ρr
, the necessary number of antennas to meet the secrecy con-

straint under training phase attack becomes identical to that under no attack. This

result demonstrates the effectiveness of the defense strategy, hiding the pilot signal

assignments from the adversary and expanding the pilot signal set.

There is a tradeoff between the number, M , of antennas and the length, Tr, of

the training period necessary to satisfy constraints M ≥ S1(ε) and Tr ≥ max(Mγ, K)

. This tradeoff is controlled by parameter γ. While choosing γ close to 1 minimizes

S1(ε) for any ε > 0, it increases the length of the training period, i.e., the overhead. To

observe this: First, S1(ε) is minimum at γ = 1 due to the fact that min(δ, δ+γ−1) ≤ δ

and equality occurs when γ = 1. Second, increasing γ to 1 also increases training

overhead as Tr has to be larger than S1(ε)γ.

In Theorem 3.5.4, we provide the number of antennas required to satisfy only the

secrecy constraint. Next corollary presents the number of antennas that BS needs in

order to satisfy both the secrecy and the decodability constraints without need for

stochastic encoding.

Corollary 3.5.5. (Any rate tuple is achievable with no need for stochastic

encoding) Let 0 < δ < 1, γ + δ > 1. Let block length be T and length of data
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transmission phase be Td and J be any integer in {1, . . . , Tr}. In the presence of

training-phase jamming, for any ε > 0 and any rate tuple R , [R1, . . . , RK ], if

M ≥ max (V1(R), S1(ε)) and Tr ≥ Mγ, then there exists B(ε) > 0 and a sequence of

codes
(
2BTR1 , . . . , 2BTRK , BTd

)
, B ≥ B(ε) that satisfy the constraints in (3.2.10) and

(3.2.11) without a need for stochastic encoding, where

V1(R) , max
k∈{1,...,K}((

2
Rk

T
Td − 1

)
× (ρf + ρjam + 1)× (ρr + ρjam + 1)

ρrρk

) 1
1−δ

.

�

The proof of Corollary 3.5.5 can be found in Appendix B.5.2.

3.5.3 How do we hide the pilot signal assignments?

So far, we have demonstrated that, if pilot signal assignments can be kept secret from

the adversary, the impact of training-phase jamming can be mitigated by increasing

the cardinality of the pilot signal set at the expense of some increase in training

overhead. Next, we discuss how to keep the assignments secret from the adversary.

In order to communicate the pilot signal assignments securely, at the beginning

of each block, the BS shares with each user a secret key of size logL bits, that is

unknown to the adversary. In the literature, by far the most popular way to generate

an information-theoretically secure secret key across a wireless channels is via the use

of reciprocal channel gains [32–34]. However, we cannot use such channel-gain based

methods, since for those methods we need to observe the channel gains. However, our

objective of generating the keys is to secure the training phase, whose sole purpose is

to observe the channel gains in the first place, leaving us with a “chicken or the egg”

dilemma.
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With this observation, let us consider the methods in which these keys are gener-

ated and shared by standard private key based methods (e.g., Diffie-Hellman [35]) or

public key based methods (e.g., RSA [36]). Thus, it only relies on existing standard

computational cryptographic techniques and does not rely on information-theoretic

techniques for secure key sharing. Note that a shared key between the BS and a

user is used to hide the pilot signal assigned to that user from the adversary. With

the shared key, pilot signal assignments are encrypted with the shared key (for in-

stance; index k is encrypted if φk is assigned to the user) and these assignments are

communicated to the users immediately after key sharing.

Despite the use of computational cryptographic methods for key generation, the

security we provide has the “same flavor” as information theoretic secrecy, as we

clarify next. The main drawback of computational cryptographic methods such as

Diffie-Hellman is that, they make assumptions on the computational power of the

adversaries. This kind of security is based on the supposition that, given that the key

is hidden from an adversary via a difficult puzzle6, it takes an unreasonable amount

of time for an adversary to crack it. Nevertheless, given enough time, the adversary

will eventually decrypt the message (possibly quickly, given a quantum computer, for

instance). This constitutes the main motivation for information-theoretic security,

which makes no assumptions on the computational powers of the attackers.

In our approach, we have a hybrid scheme, combining information theoretic secu-

rity and computational cryptography. We are using cryptography to hide the pilot

sequence assignments, not the message. Encrypting the pilot signal assignments

is fundamentally different from encrypting the message. In message encryption, the

signal received by the adversary remains vulnerable to cryptanalysis, long after the

message is transmitted. On the other hand, with pilot signal assignment encryption,

6For example, RSA is based on an NP problem: prime factorization of a large number.
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this window of time for cryptanalysis can be arbitrarily small: unless the adversary

figures out the pilot sequence assigned to the targeted user before the training phase

starts, the knowledge of the assignment becomes useless. But, we know that the

training phase starts immediately after the encrypted assignment is communicated

to the users. If we define the computational power required for the adversary as

the ratio of amount of computation needed to decrypt the key via cryptanalysis to

the time required to solve the problem, the computational power necessary for the

adversary to make a damage on the targeted user goes to infinity. This addresses

the shortcoming of existing cryptographic methods due to their assumptions on com-

putational powers of adversaries. Note that, if the adversary cannot act during the

training phase, the message transmission is “perfectly secure” as shown in Theorem

4.

It is important to emphasize that, in the above discussion, we did not show that

the aforementioned defense strategy achieves information-theoretic security. Instead,

we argued that, utilizing our defense strategy of encrypting training signals, we can

avoid one of the main drawbacks of the existing computational-cryptographic meth-

ods, i.e., assumptions on the computational power of adversaries.
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CHAPTER 4

ON PRIVACY-UTILITY TRADEOFFS FOR

CONSTRAINED DATA RELEASE MECHANISMS

4.1 Introduction

The objective of privacy-preserving data release is to provide useful data with minimal

distortion while simultaneously minimizing the sensitive data revealed. Dependencies

between the sensitive and useful data results in a privacy-utility tradeoff that has

strong connections to generalized rate-distortion problems [37]. In this work, we

study how the optimal privacy-utility tradeoff region is affected by constraints on the

data that is directly available as input to the release mechanism. Such constraints are

potentially motivated by applications where either the sensitive or useful data is not

directly observable. For example, the useful data may be an unknown property that

must be inferred from only the sensitive data. Alternatively, the constraints may be

used to capture the limitations of a particular approach, such as output-perturbation

data release mechanisms that take only the useful data as input, while ignoring the

remaining sensitive data.

The general challenge of privacy-preserving data release has been the aim of a

broad and varied field of study. Basic attempts to anonymize data have led to widely

publicized leaks of sensitive information, such as [38, 39]. These have subsequently

motivated a wide variety of statistical formulations and techniques for preserving
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privacy, such as k-anonymity [40], L-diversity [41], t-closeness [42], and differential

privacy [43]. Our work concerns a non-asymptotic, information-theoretic treatment of

this problem, such as in [37,44], where the sensitive data and useful data are modeled

as random variables X and Y , respectively, and mechanism design is the problem

of constructing channels that obtain the optimal privacy-utility tradeoffs. While we

consider a non-asymptotic, single-letter problem formulation, there are also related

asymptotic coding problems that additionally consider communication efficiency in a

rate-distortion-privacy tradeoff, as studied in [45,46].

In this work, we generalize the framework of [37, 44] to address scenarios with

data constraints and allow for general utility metrics. In particular, we compare

three scenarios, where only the sensitive data, only the useful data, or both (full

data) are available. We show that a general hierarchy holds, that is, the tradeoff

region given only the sensitive data is no larger than the region given only the useful

data, which in turn is clearly no larger than the region given both sensitive and useful

data. We also show that if the common information and mutual information between

the sensitive and useful data are equal1, then the tradeoff region given only the

useful data coincides with that given full data, indicating when output perturbation

is optimal despite unavailability of the sensitive data. Conversely, when the common

information and mutual information are not equal, there exist distortion metrics

where the tradeoff regions are not the same, indicating that output perturbation can

be strictly suboptimal compared to the full data scenario.
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Figure 4.1: The observation W of the sensitive data X and useful data Y is input to
the data release mechanism which produces the released data Z.

4.2 Privacy-Utility Tradeoff Problem

Let X, Y , and W be discrete random variables (RVs) distributed on finite alphabets

X , Y and W , respectively. Let X denote the sensitive information that the user

wishes to conceal, Y the useful information that the user is willing to reveal, and W

the directly observable data, which may represent a noisy observation of X and/or

Y . The target application dictates (or imposes a specific structure upon) the data

model PXY and observation constraints PW |XY so that (X, Y,W ) ∼ PXY PW |XY . The

data release mechanism takes W as input and (randomly) generates output Z in a

given finite alphabet Z dictated by the target application (perhaps implicitly via the

distortion metric). Note that Z must satisfy the Markov chain (X, Y ) → W → Z

and the mechanism can be specified by the conditional distribution PZ|W . A diagram

of the overall system is shown in Figure 4.1.

The mechanism should be designed such that Z provides application-specific util-

ity through the information it reveals about Y while protecting privacy by limiting

the information it reveals about X.

A commonly used information-theoretic measure of privacy-leakage which quan-

tifies the amount of information about X leaked by Z (on average) is the mutual

information I(X;Z) between them. We adopt this privacy-leakage measure in our

1This statement applies for both the Wyner [47] and Gács-Körner [48] notions of common infor-
mation.
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work. Privacy is inversely related to I(X;Z): privacy is stronger if the privacy-

leakage I(X;Z) is smaller. We have perfect privacy if I(X;Z) = 0. Thus, the aim is

to minimize I(X;Z) in order to maximize privacy.

The amount of utility that the mechanism-output Z provides about the useful

information represented by Y can be quantified through a general distortion metric

D(PY Z), which is a functional that assigns values in [0,∞) to input joint distribu-

tions of Y and Z. Utility and distortion have an inverse relationship to each other:

smaller the distortion, greater the utility. Thus, the aim is to minimize D(PY Z). The

specification of the distortion metric is dictated by the target application. Exam-

ple distortion metrics include: 1) expected distortion, where D(PY Z) = E[d(Y, Z)]

for some distortion function d : Y × Z → [0,∞), 2) conditional entropy, where

D(PY Z) = H(Y |Z) which corresponds to the goal of maximizing the mutual infor-

mation between Y and Z. Note that probability of error P(Y 6= Z) is an example

within the class of expected distortion metrics where d(y, z) is equal to zero when

y = z and equal to one otherwise.

Given a target application that specifies a particular instance of the problem

by dictating the data model PXY , observation model PW |XY and distortion metric

D(PY Z), the goal of the system designer is to construct mechanisms PZ|W that provide

the desired levels of privacy and utility while achieving the optimal tradeoff. We

say that particular privacy-utility pair (ε, δ) ∈ [0,∞)2 is achievable if there exists a

mechanism PZ|W with privacy leakage I(X;Z) ≤ ε and distortion D(PY Z) ≤ δ. The

set of all achievable privacy-utility pairs forms the achievable region of privacy-utility

tradeoffs. Particularly, we are interested the optimal boundary of this region, which

can be expressed by the optimization problem

π(δ) , inf
PZ|W

I(X;Z)

s.t. D(PY Z) ≤ δ,

(4.2.1)
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which determines the optimal privacy leakage as a function of the allowable distortion

δ.

The distortion constraint, D(PY Z) ≤ δ, can be equivalently expressed as a con-

straint on the conditional distribution PZ|Y given that PY is fixed by the data model.

Note that a mechanism specified by PZ|W determines the corresponding PZ|Y through

the linear relationship2

PZ|Y (z|y) =
∑

w∈W,x∈X

PZ|W (z|w)PW |XY (w|x, y)PX|Y (x|y). (4.2.2)

Similarly, PZ|X is determined by PZ|W through the linear relationship

PZ|X(z|x) =
∑

w∈W,y∈Y

PZ|W (z|w)PW |XY (w|x, y)PY |X(y|x). (4.2.3)

While general observation models PW |XY can be considered within this framework,

particular structures may be of interest for certain applications. We highlight and

explore the relationship between three specific cases for W , while allowing a general

distribution PXY between the sensitive and private data.

Full Data: In this case, PXY is general but W = (X, Y ), capturing the situation

when the mechanism has direct access to both the sensitive and useful information.

For this case, the privacy-utility optimization problem of (4.2.1) reduces to

πFD(δ) , inf
PZ|XY

I(X;Z)

s.t. D(PY Z) ≤ δ.

(4.2.4)

Output Perturbation: In this case, PXY is general but W = Y , capturing the

2This and all other statements involving conditional distributions are defined only for symbols in
the support of the conditioned random variables.
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situation when the mechanism only has direct access to the useful information. For

this case, the privacy-utility optimization problem of (4.2.1) reduces to

πOP(δ) , inf
PZ|Y

I(X;Z)

s.t. D(PY Z) ≤ δ,

(4.2.5)

where PZ|X(z|x) =
∑
y∈Y

PZ|Y (z|y)PY |X(y|x). Note: this optimization is equivalent

to that of (4.2.4), with the Markov chain X → Y → Z imposed as an additional

constraint.

Inference: In this case, PXY is general but W = X, capturing the situation

when the mechanism only has direct access to the sensitive information and the useful

information, such as a discrete hidden state, is not directly available or observable

and needs to be inferred indirectly by processing the sensitive information. For this

case, the privacy-utility optimization problem of (4.2.1) reduces to

πINF(δ) , inf
PZ|X

I(X;Z)

s.t. D(PY Z) ≤ δ,

(4.2.6)

where PZ|Y (z|y) =
∑
x∈X

PZ|X(z|x)PX|Y (x|y). Note: this optimization is equivalent

to that of (4.2.4), with the Markov chain Y → X → Z imposed as an additional

constraint.

4.3 Convexity and Rate-Distortion Connections

Here we discuss how for certain combinations of utility metrics and data constraints,

the resulting tradeoff problem is equivalent to generalized rate-distortion and privacy-

utility problems encountered in the literature. We also indicate how the tradeoff

optimizations of (4.2.4), (4.2.5), and (4.2.6) will become convex for certain utility

metrics.
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Note that in the general tradeoff optimization problem (4.2.1), the distributions

PZ|X and PZ|Y are linear functions of the optimization variable PZ|W as shown

by (4.2.2) and (4.2.3), while PXYW and its marginals are fixed. Thus, the con-

vexity properties of the problem will follow from the convexity properties of the

privacy and distortion metrics as functions of PZ|X and PZ|Y , respectively. The

mutual information privacy metric I(X;Z) is a convex objective function of PZ|X

and hence also of the optimization variable in each of the three scenarios given

by (4.2.4), (4.2.5), and (4.2.6). Thus, for all convex distortion functionals, the overall

optimization problem will be convex. For example, any expected distortion utility

metric D(PY Z) = E[d(Y, Z)] is a linear and therefore a convex functional.

The privacy-utility tradeoff problem as considered by [37, 44] assumes the out-

put perturbation constraint (see (4.2.5)), while using expected distortion D(PY Z) =

E[d(Y, Z)] as the utility metric, and mutual information I(X;Z) as the privacy met-

ric. Additionally, [44] also considers maximum information leakage,

max
z∈Z

[H(X)−H(X|Z = z)]

as an alternative privacy metric. As noted by [44], the optimization problem for the

full data scenario (see (4.2.4)) can be recast as an optimization with the output per-

turbation constraint, by redefining the useful data as Y ′ := (X, Y ) and the distortion

function as d′(Y ′, Z) := d(Y, Z). This approach allows one to solve the optimization

problem for the full data scenario using an equivalent optimization problem appear-

ing in the output perturbation scenario. However, the distinction between these two

scenarios should not be overlooked, as the output perturbation scenario represents a

fundamentally different problem where the sensitive data is not available, which in

general results in a strictly smaller privacy-utility tradeoff region (see Theorem 4.4.3).

The inference scenario given by (4.2.6) with expected distortionD(PY Z) = E[d(Y, Z)]

as the utility metric is equivalent to an indirect rate-distortion problem [49]. As shown
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by Witsenhausen in [49], indirect rate-distortion problems can be converted to direct

ones with the modified distortion metric d′(x, z) := E[d(Y, Z)|X = x, Z = z] =∑
y∈Y

d(y, z)PY |X(y|x) since Y → X → Z forms a Markov chain.

When the utility metric is conditional entropy, i.e., D(PY Z) = H(Y |Z), the equiv-

alent utility objective is to maximize the mutual information I(Y ;Z), and the dis-

tortion constraint can be equivalently written as I(Y ;Z) ≥ δ′, where δ′ := H(Y )− δ.

Thus, this results in the optimization problem of choosing Z to minimize I(X;Z) sub-

ject to a lower bound on I(Y ;Z). This problem in the inference scenario, where the

additional Markov chain constraint Y → X → Z is imposed, is equivalent to the In-

formation Bottleneck problem considered in [50], which also provides a generalization

of the Blahut-Arimoto algorithm [51] to perform this optimization. For the output

perturbation scenario, where the additional Markov chain constraint X → Y → Z is

imposed, this problem is called the Privacy Funnel and was proposed by [52]. In all

three scenarios, the optimization problems are non-convex as the feasible regions are

non-convex, specifically, they are complements of convex regions.

4.4 Results

For a given (fixed) distribution PXY between the sensitive and private data, we can

study how the optimal privacy-utility tradeoff changes across the aforementioned

three different cases of W . This is of practical interest, since the restrictions on W in

the inference and output perturbation mechanisms might be considered not just for

when these situations inherently arise in the given application, but also for simplifying

mechanism design and optimization.

Since the optimization problems of (4.2.5) and (4.2.6) are equivalent to (4.2.4)

with an additional Markov chain constraint, we immediately have that πFD(δ) ≤
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πOP(δ) and πFD(δ) ≤ πINF(δ) for any δ. This implies that the achievable privacy-

utility regions of both the inference mechanism and output perturbation mechanism

are contained within the achievable privacy-utility region of the full data mechanism,

which intuitively follows since the full data mechanism only has more input data

available. The next theorem establishes the general relationship between the inference

and output perturbation tradeoff regions.

Theorem 4.4.1. (Output Perturbation better than Inference) For any data

model PXY and distortion metric D(PY Z), the achievable privacy-utility region for the

output perturbation mechanism (when W = Y ) contains the achievable privacy-utility

region for the inference mechanism (when W = X), that is, πOP(δ) ≤ πINF(δ) for

any δ.

Combining the preceding theorem with the earlier observations, we have that

πFD(δ) ≤ πOP(δ) ≤ πINF(δ) for any δ. Thus, in general, full data offers a bet-

ter privacy-utility tradeoff than output perturbation, which in turn offers a better

privacy-utility tradeoff than inference.

The next theorem establishes that for a certain class of joint distributions PXY ,

the full data and output perturbation mechanisms achieve the same optimal privacy-

utility tradeoff. Thus, for this class of PXY , the full data mechanism design can

be simplified to the design of output perturbation mechanism, which can ignore the

sensitive data X without degrading the privacy-utility performance. Specifically, this

class is a characterized by the joint distributions PXY where the common information

C(X;Y ) = I(X;Y ). See Appendix C.1 for properties of common information.

Theorem 4.4.2. (Sufficient Conditions for the General Optimality of Out-

put Perturbation) For any distortion metric D(PY Z) and any data model PXY
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where C(X;Y ) = I(X;Y ), the achievable privacy-utility region for the output pertur-

bation mechanism (when W = Y ) is the same as the achievable privacy-utility region

for the full data mechanism (when W = (X, Y )), that is, πOP(δ) = πFD(δ) for any δ.

Theorem 4.4.2 establishes that C(X;Y ) = I(X;Y ) is a sufficient condition on

PXY such that, for any general distortion metric, full data mechanisms cannot provide

better privacy-utility tradeoffs than the output perturbation mechanisms. Our next

theorem gives the converse result, establishing that for data models where C(X;Y ) 6=

I(X;Y ), output perturbation mechanisms are generally suboptimal, that is, there

exists a distortion metric such that the full data mechanisms provide a strictly better

privacy-utility tradeoff.

Theorem 4.4.3. (Necessary Conditions for the General Optimality of

Output Perturbation) For any data model PXY where C(X;Y ) 6= I(X;Y ), there

exists a distortion metric D(PY Z) such that the achievable privacy-utility region for

the output perturbation mechanism (when W = Y ) is strictly smaller than the achiev-

able privacy-utility region for the full data mechanism (when W = (X, Y )), that is,

there exists δ ≥ 0 such that πOP(δ) > πFD(δ).
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CHAPTER 5

CONCLUSIONS

This dissertation focuses on information theoretic formulation of secure data com-

munication and private data sharing. In Chapter 2, we study the impact of a hybrid

adversary, that arbitrarily jams or eavesdrops at a given block, on the secrecy capac-

ity of point to point Gaussian block fading channels. We illustrate the necessity of

receiver-to-transmitter feedback by considering two cases: 1) no feedback and 2) 1-bit

feedback at the end of each block. For both cases, we bound the secrecy capacities.

We show that, without any feedback, the secrecy capacity is zero if the eavesdropper

channel power gain stochastically dominates the effective main channel power gain.

We also observe that, the secrecy capacity vanishes asymptotically when the transmit

power constraint and jamming power increase in the same order. However, even with

1-bit receiver feedback at the end of each block, the secrecy capacity is non-zero for

the wide class of channel statistics as described in Remark 2.4.2. We also analyze

the effects of multiple colluding/non-colluding adversaries and delay. We show that,

with no feedback, multiple adversaries can hurt the secrecy capacity even more, as

the secrecy capacity bounds are not affected by the cross-interference across the ad-

versaries. Finally, we provide a novel time-sharing approach for the delay limited

setting, and we show that α-outage secrecy capacity is positive whenever the secrecy

capacity without any delay limitation is positive.

In Chapter 3, we study the physical-layer security of massive MIMO downlink
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communication. We first consider no training-phase jamming attack in which the

adversary jams only the data communication and eavesdrops both the data commu-

nication and training. We show that secure DoF attained in the presence of no

training-phase jamming is as same as the DoF attained under no attack. This result

shows the resilience of the massive MIMO against adversaries not jamming the train-

ing phase. Further, we propose a joint power allocation and beamforming strategy,

called δ-conjugate beamfoming, using which we can establish information theoretic

security without even a need for Wyner encoding as long as the number of antennas

is above a certain threshold, evaluated in the sequel.

We next show the vulnerability of massive MIMO systems against the attack,

called training-phase jamming in which the adversary jams and eavesdrops both the

training and data communication. We show that the maximum secure DoF attained

in the presence of training-phase jamming is zero. We then develop a defense strat-

egy against training-phase jamming. We show that if the BS keeps the pilot signal

assignments hidden from the adversary and extends the cardinality of the pilot sig-

nal set, a secure DoF equal to the maximum DoF attained under no attack can be

achieved. We finally provide a discussion why standard computational-cryptographic

key sharing methods can be considered as strong candidates to encrypt the pilot

signal assignments and how they achieve a level of security that is comparable to

information-theoretically secure key-generation methods.

In Chapter 4, we formulate the privacy-utility tradeoff problem when the data re-

lease mechanism has limited access to the entire data composed of useful and sensitive

parts. Based on the information theoretic formulation, we compare the privacy-utility

tradeoff regions attained by full data, output perturbation, and inference mechanisms,

which have an access to entire data, only useful data, and only sensitive data, respec-

tively.
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We first observe that the full data mechanism provides the best privacy-utility

tradeoff and then show that the output perturbation mechanism provides better

privacy-utility tradeoff than the inference mechanism. We draw connections be-

tween common information and privacy-utility tradeoffs by providing a condition

that results in the privacy-utility tradeoff regions attained by full data and output

perturbation mechanisms equal. Specifically, we show that if the common and mutual

information between useful and sensitive data are identical, the full data mechanism

simplifies to the output perturbation mechanism. Conversely, we show that if the

common information is not equal to mutual information, the tradeoff region achieved

by full data mechanism is strictly larger than the one achieved by the output pertur-

bation mechanism.

In this thesis, we attack privacy and security problems separately. Specifically,

we do not take privacy of data at the receiver into account in our security research.

Similarly, we do not consider the security of data against the adversary in our privacy

research. In the future, we aim to develop algorithms that jointly establish privacy

and security in wireless communications. Further research directions can be listed as

follows:

• Deriving secrecy capacity of broadcast and multi access channels in the presence

of hybrid half-duplex adversary

• Understanding the performance of zero-forcing beam forming under pilot con-

tamination attack in the massive MIMO limit.

• Investigating the privacy-utility tradeoff problem for general privacy metrics

and observation models, and evaluating the tradeoff regions attainable for non-

trivial data models.
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APPENDIX A: PROOFS IN CHAPTER 2

A.1 Proof of Theorem 2.3.1

Codebook Generation: Pick Rs = C−s and Rm = E
[
log

(
1 +

PtHm

1 + PjHz

)]
− ε for

some ε > 0. Generate codebook c containing independently and identically generated

codewords xNMl , l ∈ [1 : 2NMRm ], each of which are drawn from
NM∏
k=1

pX(xlk). Here,

pX(x) is the probability density function of complex Gaussian random variable with

zero mean and variance Pt.

Encoding: To send message w ∈ [1 : 2NMRs ], the secrecy encoder draws index l

from the uniform distribution whose sample space is
[
(w − 1)2NM(Rm−Rs) + 1 : w2NM(Rm−Rs)

]
.

The channel encoder then transmits corresponding codeword, xNMl .

Decoding: Let yNM be the received sequence. If the adversary is in the eaves-

dropping state, i.e, φ(i) = 0, the channel decoder draws gz(i) from Gz(i) and a noise

sequence sNj (i) from SNj (i) to obtain

ŷN(i) = yN(i) + gz(i)s
N
j (i).

The channel decoder looks for a unique message l ∈ [1 : 2NMRm ] such that

(
xNMl , (ŷNM , gMm , g

M
z )
)
∈ ANMε

, where ANMε
(
XN , (Ŷ N , Gm, Gz)

)
is the set of jointly typical

(
xNM , (ŷNM , gMm , g

M
e )
)

sequences with

Ŷ N = GmX
N +GzS

N
j + SNm (A.1.1)
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Analysis of the probability error and secrecy: Random coding argument is used to

show that there exists sequences of codebooks that satisfy the constraint (3.2.10) and

(2.2.11) simultaneously. SinceRm <
1

N
I
(
XN ; Ŷ N , Gm, Gz

)
= E

[
log

(
1 +

PtHm

1 + PjHz

)]
,

by the channel coding theorem [1], we have EC(PNM
ε (C))→ 0 as M →∞, where the

expectation is over all random codebooks.

Define Re(c) ,
1

NM
H(W |ZNM , gM , KNM , φM , c). Note that Re(c) represents

the equivocation rate. Since we are studying the no feedback case, KNM is null

set, and we will omit feedback term KMN from the equivocation terms in the rest

of the section. In the secrecy analysis below, we show that the expectation of the

equivocation rate over random codebooks, EC [Re(C)] goes to Rs as M →∞, where

EC [Re(C)] =
1

NM
H(W |ZNM , gM , φM , C). (A.1.2)

Note that

1

NM
I(W ;ZNM |gM , φM , C)

=
1

NM
H(W )− 1

NM
H(W |ZNM , gM , KNM , φM , C)

= Rs − EC [Re(C)]

since W is uniformly distributed random variable on [1 : 2NMRs ]. We observe that

1

NM
I(W ;ZNM |gM , φM , C) → 0 as M → ∞. Hence, there exists a sequence of

codebooks that satisfy both (3.2.10) and (2.2.11) since we have

EC
[
PNM
ε (C) +

1

NM
I(W ;ZNM |gM , φM , C)

]
→ 0

as M → 0.

For the secrecy analysis, let’s define ẐN(i) = XN(i)ge(i) + SNe (i), 1 ≤ ∀i ≤ M .

The equivocation analysis averaged over codebooks is as follows.

MNRe(C) = H(W |ZNM , gM , C)
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(a)
= H(W |ZNM , gMe , C)
(b)

≥ H(W |ẐNM , gMe , C)

= H(W,XNM |ẐNM , gMe , C)−H(XNM |ẐNM ,W, gMe , C)

= H(XNM |ẐNM , gMe , C) +H(W |XNM , ẐNM , gMe , C)

−H(XNM |ẐNM ,W, gMe , C)

≥ H(XNM |ẐNM , gMe , C)−H(XNM |ẐNM ,W, gMe , C)

= H(XNM |gMe )− I(XNM ; ẐNM |gMe , C)

−H(XNM |ẐNM ,W, gMe , C)
(c)
= MNRm − I(XNM ; ẐNM |gMe , C)

−H(XNM |ẐNM ,W, gMe , C)

≥MNRm − I(XNM , C; ẐNM |gMe , )

−H(XNM |ẐNM ,W, gMe , C)
(d)
= MNRm − I(XNM ; ẐNM |gMe )

−H(XNM |ẐNM ,W, gMe , C)

≥MNRm −N
M∑
i=1

log(1 + Pthe(i))

−H(XNM |ẐNM ,W, gMe , C)

where (a) follows from the fact that W → ZNM , GM
e , C → GM

m , G
M
z forms a Markov

chain, (b) follows from the fact that conditioning reduces the entropy, (c) follows from

the fact that codeword XNM is uniformly distributed over a set of size 2NMRm , and

(d) follows from the fact that

C → XNM → ẐNM (A.1.3)
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forms Markov chain. We continue with the following steps.

1

MN
H
(
W |ZNM , gMe , C

)
≥ Rm −

M∑
i=1

1

M
log(1 + Pthe(i))

− 1

MN
H
(
XNM |ẐNM ,W, gMe , C

)
(e)

≥ Rm − E [log(1 + PtHe)]− ε1

− 1

MN
H
(
XNM |ẐNM ,W, gMe , C

)
(f)

≥ Rm − E [log(1 + PtHe)]− ε1 − ε2 (A.1.4)

= Rs − ε− ε3,

where ε3 = ε1 + ε2. Here, for any ε1 > 0, (e) is satisfied for any hMe ∈ BM with

Pr[BM ] = 1 and for sufficiently large M since

lim
M→∞

1

M

M∑
i=1

log(1 + PtHe(i)) = E [log(1 + PtHe)]

with probability 1.

To have the inequality in (A.1.4), we need to bound equivocation term

1

NM
H(XNM |ẐNM ,W, gMe , C).

In the encoding part, we mention that the secrecy encoder draws an index from the

uniform distribution whose sample space is
[
(w − 1)2NM(Rm−Rs) + 1 : w2NM(Rm−Rs)

]
to send message w, and the channel encoder then maps the index to corresponding

codeword, xNM . Hence, the number of the candidate codewords corresponding to

message w is 2NM(Rm−Rs). Let us define Rme , Rm − Rs. Note that from the

definitions of Rm and Rs, it easy to observe that Rme = E [log(1 + PtHe)]− ε, where

E [log(1 + PtHe)] is the capacity of the eavesdropper channel. Thus, the adversary

can find the transmitted codeword with a low error probability when message w
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chosen by the encoder is revealed to the adversary. Let us define a probability of

the event that the adversary cannot decode the transmitted codeword as: ENM(c) ,[
P
(
XNM 6= X̂NM

∣∣W = w, hMe , C = c
)]

, where X̂NM = f(ẐNM , gMe ,W = w, C = c)

is the decoded codeword at the adversary. Also, define average of ENM(c) over

random codebooks: ENM , EC
[
ENM(C)

]
. Inequality (f) follows from the fact that

1

MN
H
(
XNM

∣∣ẐNM ,W = w, gMe , C
)

(a)

≤ ENMRme +
1

MN
H(ENM)

(b)

≤ ε2

for any ε2 > 0 and for sufficiently large M , where (a) follows from Fano’s inequality

and (b) follows the fact that ENM → 0 as M →∞ from the random coding argument

since Rme ≤ E [log(1 + PtHe)]. �

We now provide the proof of the upper bound in Theorem 2.3.1. Suppose that Rs

is achievable rate. From definition (3.2.10)-(2.2.11) and Fano’s inequality, we have

min
φ(i):1≤i≤M

1

NM
H
(
W |ZNM , gM , φM

)
≥ Rs − aNM (A.1.5)

max
φ(i):1≤i≤M

1

NM
H
(
W |Y NM , gM , φM

)
≤ bNM (A.1.6)

for any hM ∈ AM with P(AM) ≥ 1− cNM . Here, aNM , bNM , and cNM go to zero as

N →∞ and M →∞.

Adversary strategy φ(i) = 0, 1 ≤ ∀i ≤ M solves LHS of (A.1.5) and strategy

φ(i) = 1, 1 ≤ ∀i ≤M solves LHS of (A.1.6). Hence, we have

1

NM
H
(
W |ẐNM , gM

)
≥ Rs − aNM (A.1.7)

1

NM
H
(
W |Ŷ NM , gM

)
≤ bNM (A.1.8)

where

Ŷ N(i) = gm(i)XN(i) + gz(i)S
N
j (i) + SNm(i), and (A.1.9)
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ẐN(i) = ge(i)X
N(i) + SNe (i), 1 ≤ ∀i ≤M. (A.1.10)

Here, the LHS of (A.1.5) equals to that of (A.1.7) since conditioning reduces the

entropy and the LHS of (A.1.6) equals to that of (A.1.8) since W → Y NM → Ŷ NM

forms a Markov chain.

We now show that if Rs is achievable, we have

1

NM
H(W |ẐNM , GM) ≥ (A.1.11)∫

AM

1

NM
H(W |ẐNM , gM)fGM (gM) dgM

≥
∫
AM

(Rs − aNM)fGM (gM) dgM (A.1.12)

≥ Rs − δNM , (A.1.13)

where GM =
[
GM
m , G

M
e , G

M
z

]
, δNM = −RscNM − aNM + aNMcNM , and δNM → 0 as

N →∞ and M →∞. Here, (A.1.12) follows from (A.1.7), and (A.1.13) follows from

the fact that P [AM ] ≥ 1 − cNM . Note that here, the message W is conditioned on

random vector, GM instead of gM in (A.1.7). With the similar steps, we can show

that

1

NM
H(W |Ŷ NM , GM) ≤ εNM , (A.1.14)

where εNM → 0 as N → ∞ and M → ∞. The upper bound, C+
s follows when we

combine (A.1.13) and (A.1.14) with the following steps:

Rs ≤
1

NM
H(W |ẐNM , GM)

− 1

NM
H(W |Ŷ NM , GM) + γNM (A.1.15)

(a)
=

1

NM
H(W |Z̃NM , G̃M

m , G̃
M
e , G̃

M
z )

− 1

NM
H(W |Ỹ NM , G̃M

m , G̃
M
e , G̃

M
z ) + γNM (A.1.16)

=
1

NM
I(W ; Ỹ NM |Z̃NM , G̃M

m , G̃
M
e , G̃

M
z ) + γMN
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(b)

≤ 1

NM
I(XNM ; Ỹ NM |Z̃NM , G̃M

m , G̃
M
e , G̃

M
z ) + γMN (A.1.17)

(c)

≤ 1

NM

M∑
i=1

I(XN(i), Ỹ N(i)|Z̃N(i), G̃m(i), G̃e(i), G̃z(i))

+ γNM (A.1.18)

(d)

≤ 1

NM

M∑
i=1

N∑
j=1

I
(
X(i, j), Ỹ (i, j)

∣∣
Z̃(i, j), G̃m(i), G̃e(i), G̃z(i)

)
+ γNM (A.1.19)

(e)

≤ 1

NM

M∑
i=1

N∑
j=1

E

[(
log

(
1 +

PtijH̃m

1 + PjH̃z

)

− log
(

1 + PtijH̃e

))+
]

+ γNM (A.1.20)

(f)

≤ E

[(
log

(
1 +

1
NM

∑M
i=1

∑N
j=1 PtijH̃m

1 + PjH̃z

)

− log

(
1 +

1

NM

M∑
i=1

N∑
j=1

PtijH̃e

))+
+ γNM (A.1.21)

(g)

≤ E

[(
log

(
1 +

PtH̃m

1 + PjH̃z

)
− log

(
1 + PtH̃e

))+]

+ γNM , (A.1.22)

where the notation (i, j) indicates the j-th channel use of i-th block and γNM =

δNM + εNM . Note that γNM → 0 as N and M → ∞. In (A.1.16), we define new

random variables, i.e.,

Ỹ N(i) = G̃m(i)XN(i) + G̃z(i)S
N
j (i) + SNm(i), and (A.1.23)

Z̃N(i) = G̃e(i)X
N(i) + SNe (i), 1 ≤ ∀i ≤M. (A.1.24)

and H̃m(i) = |G̃m(i)|2, H̃e(i) = |G̃e(i)|2, and H̃z(i) = |G̃z(i)|2. Here,

{
G̃e(1), G̃e(2), . . . , G̃e(M)

}
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are i.i.d random variables with G̃e(i) ∼ pGe , and GM
e is independent from(

W,SNMe , SNMj , SNMm
)

. In a similar way,{(
G̃m(1), G̃z(1)

)
,
(
G̃m(2), G̃z(2)

)
, . . . ,

(
G̃m(M), G̃z(M)

)}
are i.i.d random vectors with

(
G̃m(i), G̃z(i)

)
∼ pGm,Gz , and

(
GM
m , G

M
z

)
are indepen-

dent from
(
W,SNMe , SNMj , SNMm

)
.

For the derivation above, (a) follows from the fact
(
W,ZNM , GM

e

)
and

(
W,Y NM , GM

e

)
have the same joint pdf with

(
W, Z̃NM , G̃M

e

)
and

(
W, Ỹ NM , G̃M

e

)
, respectively. Fur-

thermore, note that W → ẐNM , GM
e → GM

m , G
M
z and W → Z̃NM , G̃M

e → G̃M
m , G̃

M
z

form Markov chain. In a similar way, W → Ŷ NM , GM
m , G

M
z → GM

e and W →

Ỹ NM , G̃M
m , G̃

M
z → G̃M

e form Markov chain. (b) follows from the fact that W →

XNM , Z̃NM , G̃M
m , G̃

M
e , G̃

M
z → Ỹ NM forms a Markov chain. (c) and (d) follows from

the memoryless property of the channel and from the fact conditioning reduces the

entropy.

The power constraint in (2.2.6) implies that
1

NM

M∑
i=1

N∑
j=1

E
[
|X(i, j)|2

]
≤ Pt,

where the expectation is taken over W . Also, note that G̃(i) =
[
G̃m(i), G̃e(i), G̃z(i)

]
and X(i, j) are independent random variables. Define

Ptij , E
[
|X(i, j)|2

]
= E

[
|X(i, j)|2|G̃(i) = g(i)

]
. Then, (e) follows from the fact that Gaussian distribution maximizes the conditional

mutual information [5]. In (A.1.21), (f) follows from the fact that(
log(1 + Ptijx)− log(1 + Ptijy)

)+

is a concave function of Ptij for any x ≥ 0 and y ≥ 0 and from Jensen’s inequality.

Finally, (g) follows from the fact that

(log(1 + Px)− log(1 + Py))+
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is a non-decreasing function in P for any x ≥ 0 and y ≥ 0. . �

A.2 Proof of Corollary 2.3.5

We have the following analysis:

lim
P→∞

C+
s

≤ lim
P→∞

E

[(
log

(
1 +

Pt(P )Hm

1 + Pj(P )Hz

)
− log (1 + Pt(P )He)

)+
]

(a)
= E

[
lim
P→∞

(
log

(
1 +

Pt(P )Hm

1 + Pj(P )Hz

)
− log (1 + Pt(P )He)

)+
]

= 0. (A.2.1)

Here, (a) follows from the dominant convergence theorem. To apply dominant con-

vergence theorem, we need to show that

gP (Hm, He, Hz)

=

(
log

(
1 +

Pt(P )Hm

1 + Pj(P )Hz

)
− log (1 + Pt(P )He)

)+

(A.2.2)

is upper and lower bounded by random variables that have a finite expectation. Note

that gP (Hm, He, Hz) is lower bounded by zero and upper bounded by log

(
1 +

Pt(P )Hm

Pj(P )Hz

)
with probability 1.

Since Pt (P ) = O (Pj(P )) as P → ∞, there exists finite B and p0 such that

Pt(P ) ≤ B × Pj(P ) for all P > p0. We now show that E[gP (Hm, He, Hz)] has a finite

expectation for all P > po with the following analysis:

E[gP (Hm, He, Hz)] ≤ E
[
log

(
1 +

BHm

Hz

)]
(A.2.3)

= E[log(Hz +BHm)]− E[log(Hz)]

≤ log (BE[Hm] + E[Hz])− E[log(Hz)] (A.2.4)

92



≤ log (BE[Hm] + E[Hz])−
∫ 1

0

log(hz)fHz(hz) dhz (A.2.5)

≤ log (BE[Hm] + E[Hz])− A
∫ 1

0

log(hz) dhz (A.2.6)

= log (BE[Hm] + E[Hz]) + A log(e) (A.2.7)

<∞, (A.2.8)

for all P > p0, where A = sup
hz

fHz(hz). Here, (A.2.4) follows from the Jensen’s

inequality, (A.2.7) follows from the fact that

∫ 1

0

log(hz) = − log(e), and (A.2.8)

follows from the fact that E[Hm],E[Hz] <∞ and the pdf of Hz is bounded.

Since log

(
1 +

Pt(P )Hm

Pj(P )Hz

)
is a continuous function of P , it is a bounded function

on the closed interval [0, p0] with probability 1. Hence, E[gP (Hm, He, Hz)] < ∞ for

all P ≥ 0. �

A.3 Proof of Theorem 2.4.1

Codebook Generation: Fix R > 0 and ε > 0. Pick Rm =
R

E[T ]
− ε, where T is defined

in Theorem 2.4.1. Generate codebook c containing independently and identically

generated codewords xNl , l ∈ [1 : 2NR], each are drawn from
N∏
k=1

pX(xlk). Here, pX(x)

is the distribution of complex Gaussian random variable with zero mean and variance

Pt.

Encoding: To send message w ∈ [1 : 2NMR1-bit
s ], the secrecy encoder draws an

index l from the uniform distribution whose sample space is[
(w − 1)2NM(Rm−R1-bit

s ) + 1 : 2NM(Rm−R1-bit
s )

]
. Then, the secrecy encoder maps l into NMRm bits and decompose NMRm bits

into groups of NR bits. To send the index l, the channel encoder transmits NR in

each block by using codebook c. When NAK is received, the channel encoder sends

the same bit group transmitted at the previous block.
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We first define several terms. Define r(i) as the required number of transmissions

for the bit group that is successfully decoded on i-th block, A as the set of blocks on

which decoding occurs successfully, i.e.,

A ,

i : log

1 +

r(i)−1∑
j=1

Pthm(i− j)
1 + Pjhz(i− j)

 < R

≤ log

1 +

r(i)∑
j=1

Pthm(i− j + 1)

1 + Pjhz(i− j + 1)

 and 1 ≤ i ≤M


and R∗w(M) , NR

∑
i∈A

1.

Consider a renewal process in which a renewal occurs when the accumulated

mutual information associated with a bit group exceeds threshold R for the first

time. Note that R∗w(M) is the accumulated reward (i.e., the number of sucessfully

bits) at the receiver up to M -th block for the renewal process, where the reward at

each renewal is NR bits.

We choose M such that | 1

MN
R∗w(M) − R

E[T ]
| ≤ ε is satisfied for channel gains

(gMm , g
M
z ) ∈ G where G is a set with probability 1, i.e., P(G) = 1. A similar renewal-

based approach for the ARQ transmission scheme was also used in [20].

Decoding: Let yN(i) be the received sequence. If the adversary is in the eaves-

dropping state, i.e., φ(i) = 0, the channel decoder draws gz(i) from Gz(i) and a noise

sequence sNj (i) from SNj (i) to obtain

ŷN(i) = yN(i) + gz(i)s
N
j (i).

The channel decoder collects yN(i)’s that correspond to the same bit group and

apply MRC to these observations as explained in the proof sketch. Then, the channel

decoder employs joint typicality decoding as in the no feedback case (mentioned in

the Appendix A.1).
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Secrecy Analysis: For the secrecy analysis, let’s define ẐN(i) = XN(i)ge(i)+S
N
e (i),

1 ≤ ∀i ≤M . The equivocation analysis averaged over codebooks is as follows:

EC[Re(C)] =
1

MN
H(W |{ZN(i)}i:φ(i)=0, g

M , C) (A.3.1)

(a)

≥ 1

MN
H(W |ẐNM , gM , C)

=
1

MN
H
(
W, {XN(i)}i:i∈A|ẐNM , gM , C

)
− 1

MN
H
(
{XN(i)}i:i∈A|ẐNM ,W, gM , C

)
(A.3.2)

≥ 1

MN
H
(
{XN(i)}i:i∈A|C

)
− 1

MN
I
(
{XN(i)}i:i∈A; ẐNM |gM , C

)
− 1

MN
H
(
{XN(i)}i:i∈A|ẐNM ,W, gM , C

)
=

1

MN

∑
i∈A

H
(
XN(i)|ẐNM , C, gM

)
− 1

MN
H
(
{XN(i)}i:i∈A|ẐNM ,W, gM , C

)
=

1

MN

∑
i∈A

[
H(XN(i))− I

(
XN(i); ẐNM |C, gM

)]+

− 1

MN
H
(
{XN(i)}i:i∈A|ẐNM ,W, gM , C

)
(b)
=

1

MN

∑
i∈A

[
NR− I

(
XN(i); ẐN(i− r(i) + 1 : i)|C, gM

)]+

− 1

MN
H
(
{XN(i)}i:i∈A|ẐNM ,W, gM , C

)
(A.3.3)

≥ 1

MN

∑
i∈A

[
NR− I

(
XN(i), C; ẐN(i− r(i) + 1 : i)|gM

)]+

− 1

MN
H
(
{XN(i)}i:i∈A|ẐNM ,W, gM , C

)
(c)
=

1

MN

∑
i∈A

[
NR− I

(
XN ; ẐN(i− r(i) + 1 : i)|gM

)]+

− 1

MN
H
(
{XN(i)}i:i∈A|ẐNM ,W, gM , C

)
(A.3.4)

(d)
=

1

M

∑
i∈A

[
R− I

(
X; Ẑ(i−r(i)+1)...,Ẑi

|gM
)]+
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− 1

MN
H
(
{XN(i)}i:i∈A|ẐNM ,W, gM , C

)
(A.3.5)

=
1

M

∑
i∈A

R− log

1 + Pt

r(i)∑
j=1

he (i− j + 1)

+

− 1

MN
H
(
{XN(i)}i:i∈A|ẐNM ,W, gM , C

)
(A.3.6)

(e)

≥ C−1-bit
s

− 1

MN
H
(
{XN(i)}i:i∈A|ẐNM ,W, gM , C

)
− ε (A.3.7)

≥ C−1-bit
s − 2ε (A.3.8)

for any ε > 0 and for sufficiently large M . Here, (a) follows from the fact that

conditioning reduces the entropy. In (A.3.3),

ẐN(i− r(i) + 1 : i) =
[
ẐN(i) . . . , ẐN(i− r(i) + 1)

]
is the vector of the observed signals at the adversary that corresponds to success-

fully received codeword XN(i). Here, (b) follows from the fact that XN(i) and

{ZN(j)}j /∈(i−r(i)+1,...,i) are independent. In (A.3.4), (c) follows from the fact that

C → XN(i) → ẐN(i), . . . ẐN(i − k + 1) forms Markov chain. Here, XN(i) is not

conditioned to codebook C, hence XN(i) = XN ∼ CN (0, PtIN×N). In (A.3.5),

Ẑk , X +Nk, k ∈ {i− r(i) + 1, . . . , i} (A.3.9)

where Nk’s are i.i.d and X and Nk are distributed with CN (0, Pt) and CN (0, 1),

respectively. In (A.3.5), (d) follows from the fact that

pXN ,ẐN (i−k+1:i)

(
xN , zN(i− k + 1 : i)

)
=

N∏
j=1

pX(xj)pẐ(i−k+1:i)
(zj (i− k + 1 : i) |xj, g (i− k + 1 : i))
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where zj(i) denotes j-th element of i-th block. In (A.3.7), (e) follows from the renewal

reward theorem, i.e., for sufficently large M , we have the following inequality∣∣∣∣∣∣ 1

M

∑
i∈A

R− log

1 + Pt

r(i)∑
j=1

he (i− j + 1)

+

−

1

E[T ]
E

[
R− log

(
1 + Pt

T∑
i=1

H̃e(i)

)]+
∣∣∣∣∣∣ ≤ ε (A.3.10)

for all chanel gains (gMm , g
M
e , g

M
z ) that construct a set with probability 1.

We can show that the second term in (A.3.7) goes to zero as M →∞ with the list

decoding argument used in the proof of Theorem 2 of [7]. This concludes the proof.

�

We now give the proof for Corollary 2.4.3. Since the proof is similar to the achiev-

ability proof of Theorem 2.4.1, we only present the differences in codebook generation,

encoding, decoding, and secrecy analysis steps. In the codebook generation, Rm is

selected as Rm = Rp−ε, where p is defined in Theorem 2.4.1. Note that p = 1/E[T ∗].

In the encoding step, we select M such that | 1

MN
R∗∗w (M) − R

E[T ∗]
| ≤ ε. Here,

R∗∗w (M) is the accumulated reward (i.e., the number of sucesfully bits) at the receiver

up to M -th block for the renewal process whose inter-renewal time is distributed with

T ∗ and whose rewards at each renewal are NR bits.

In the decoding step, as opposed to the MRC approach, the receiver discards

the received sequence, yN(i) if event Sc(i) =

{
log

(
1 +

Pthm(i)

1 + Pjhz(i)

)
< R

}
occurs.

Consequently, the transmitter sends back a NAK signal. The receiver successfully

decodes a bit group on i-th block if event S(i) occurs.

The secrecy analysis is same with the secrecy analysis in Theorem 2.4.1. �

We now provide the proof of the upper bound in Theorem 2.4.3. Instead of an

arbitrary adversary strategy, we assume the adversary strategy on a block, φ(i) is a

deterministic function of the instantaneous channel gains on the block, i.e., φ(i) =
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f (gm(i), ge(i), gz(i)). Since we constrain the adversary strategy, the secrecy capacity

upper bound for this case is also the upper bound of the secrecy capacity of the

original case in which the adversary strategy arbitrarily changes from one block to

the next.

Suppose that Rs is an achievable secrecy rate. From definition (2.2.11), Fano’s

inequality and the analysis (A.1.11-A.1.13), we have

1

NM
H(W |ZNM , KMN , GM

m , G
M
e , G

M
z ,Φ

M) ≥ Rs − δNM (A.3.11)

1

NM
H(W |Y NM , KMN , GM

m , G
M
e , G

M
z ,Φ

M) ≤ εNM (A.3.12)

for any deterministic function, f : R× R× R→ [0, 1].

Here, Φ(i) = f (Hm(i), He(i), Hz(i)) and εNM and δNM go to zero as N →∞ and

M →∞. The upper bound follows with following steps.

Rs ≤
1

MN
min
f
H
(
W |ZNM , KMN , GM

m , G
M
e , G

M
z ,Φ

M
)

−H
(
W |Y NM , KMN , GM

m , G
M
e , G

M
z ,Φ

M
)

+ γNM (A.3.13)

≤ 1

MN
min
f
I
(
W ;Y NM |ZNM , KMN , GM

m , G
M
e , G

M
z ,Φ

M
)

+ γNM

≤ I
(
W ;Y NM , GMN

m , GMN
z |ZNM , KMN , GMN

e ,ΦM
)

+ γNM (A.3.14)

where γNM = δNM + εNM and γNM → 0 as N → ∞ and M → ∞. By using

the following lemmas, we can reduce the mutual information term in (A.3.14) to a

simplier form. Since Lemma A.3.1 and Lemma A.3.2 are similar to Lemma 1 and

Lemma 2 of [?], respectively, we omit the proofs.

Lemma A.3.1. For each block i ∈ {1, . . . ,M}, we have that

I
(
W ;Y Ni, GM

m , G
M
z |ZNi, KNi, GM

e ,Φ
M
)
≤

I
(
W ;Y Ni, GM

m , G
M
z |ZNi, KN(i−1), GM

e ,Φ
M
)

(A.3.15)
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Lemma A.3.2. For each block i ∈ {1, . . . ,M}, we have that

I
(
W ;Y Ni, GM

m , G
M
z |ZNi, KN(i−1), GM

e ,Φ
M
)
≤

I
(
W ;Y N(i−1), GM

m , G
M
z |ZN(i−1), KN(i−1), GM

e ,Φ
M
)

+ I
(
XN(i);Y N(i)|ZN(i), Gm(i), Ge(i), Gz(i),Φ(i)

)
(A.3.16)

�

As in [?], by successively applying Lemma 1 and Lemma 2, we can show the

following inequality.

I
(
W ;Y NM , GMN

m , GMN
z |ZNM , KMN , GMN

e ,ΦM
)
≤

M∑
i=1

I
(
XN(i);Y N(i)|ZN(i), Gm(i), Ge(i), Gz(i),Φ(i)

)
.

Hence, we have

Rs − γNM (A.3.17)

≤ 1

MN
min
f

M∑
i=1

I
(
XN(i);Y N(i)|ZN(i), G(i),Φ(i)

)
≤ 1

MN
min
f

M∑
i=1

N∑
j=1

I (X(i, j);Y (i, j)|Z(i, j), G(i),Φ(i))

(a)

≤ min
f

1

MN

M∑
i=1

N∑
j=1

(
E
[
log

(
1 +

PtijHm(i)

1 + PjHz(i)

) ∣∣∣∣f(G(i)) = 1

]
×

P (f(G(i)) = 1) +

E
[
log

(
1 +

PtijHm(i)

1 + PtijHe(i)

) ∣∣∣∣f(G(i)) = 0

]
P(f(G(i)) = 0)

)
(b)

≤ min
f

(
E

[
log

(
1 +

1
MN

∑M
i=1

∑N
j=1 PtijHm

1 + PjHz

)∣∣∣∣f(G) = 1

]
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×P (f(G) = 1) +

E

[
log

(
1 +

1
MN

∑M
i=1

∑N
j=1 PtijHm

1 + 1
MN

∑M
i=1

∑N
j=1 PtijHe

)∣∣∣∣f(G) = 0

]

×P(f(G) = 0)) (A.3.18)

(c)

≤ min
f

(
E
[
log

(
1 +

PtHm

1 + PjHz

) ∣∣∣∣f(G) = 1

]
P (f(G) = 1)

+ E
[
log

(
1 +

PtHm

1 + PtHe

) ∣∣∣∣f(G) = 0

]
P(f(G) = 0)

)
(A.3.19)

= min
f

E
[
log

(
1 +

PtHm

1 + PjHzf(G) + PtHe(1− f(G))

)]
(A.3.20)

(d)
= E

[
log

(
1 +

PtHm

1 + max (PtHe, PjHz)

)]
, (A.3.21)

where the notation (i, j) indicates the j-th channel use of i-th block, G = [Gm, Ge, Gz],

H = [Hm, He, Hz], and G(i) = [Gm(i), Ge(i), Gz(i)]. The power constraint in (2.2.6)

implies that
1

NM

M∑
i=1

N∑
j=1

E
[
|X(i, j)|2

]
≤ Pt, where the expectation is taken over W

and K(i−1)N . Also, note that G(i) = [Gm(i), Ge(i), Gz(i)] and X(i, j) are independent

random variables. Define Ptij , E
[
|X(i, j)|2

]
= E

[
|X(i, j)|2|G(i) = g(i)

]
. Then, (a)

follows from the fact that Gaussian distribution maximizes the conditional mutual

information [?] for both values of Φ(i). In (A.3.18), (b) follows from Jensen’s in-

equality and from the fact that log
(
1 + Ptijx

)
and log

(
1 +

Ptijx

1 + Ptijy

)
are concave

functions of Ptij for any x ≥ 0 and y ≥ 0. In (A.3.19), (c) follows from the fact that

(log(1 + Px) and log

(
1 +

Px

1 + Py

)
are non-decreasing functions in P for any x ≥ 0

and y ≥ 0. In (A.3.21), (d) follows from the fact that f(G) = IPjHz≥PtHe minimizes

the expectation in (A.3.20), where Ix≥a = 1 if x ≥ a; otherwise, Ix≥a = 0. �

A.4 Proof of Theorem 2.5.1

The decoding and encoding strategies are the same with the strategies used in the

proof of Theorem 2.3.1. Therefore, we omit the probability error analysis and only
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focus on the secrecy analysis. We pick Rm = E

[
log

(
1 +

PtHm

1 + PjĤz

)]
− ε for some

ε > 0.

For the secrecy analysis, let’s define ẐN
s (i) = XN(i)gev(i) + SNev(i), 1 ≤ ∀v ≤

V, 1 ≤ ∀i ≤ M . With the same steps used in the secrecy analysis of the proof of

Theorem 2.3.1, we can get

1

MN
H
(
W
∣∣ {ZN

v (i), gev(i), φv(i)
}

1≤i≤M , C
)

(A.4.1)

≥ Ls − ε1 −
1

MN
H
(
XNM |ẐNM

v ,W, gMev , C
)

(A.4.2)

for any ε1 > 0 and sufficiently large M , where

Lv = E

[
log

(
1 +

PtHm

1 + PjĤz

)
− log (1 + PtHev)

]
.

We now show that, for any ε2 > 0,

1

MN
H
(
XNM |ẐNM

v ,W, gMe , C
)
≤ Lv − CNC−

s + ε2 (A.4.3)

for sufficiently large M . To prove (A.4.3), suppose that codewords correspond to

message W is partitioned into 2NM(Lv−CNC−s ) groups. Let’s define random variable T

that represents the group index of XNM . Then, we have

1

MN
H
(
XNM |ẐNM

v ,W, gMev , C
)

(A.4.4)

≤ 1

MN
H
(
XNM , T |ẐNM

v ,W, gMev , C
)

(A.4.5)

≤ 1

MN
H
(
XNM |T, ẐNM

v ,W, gMev , C
)

+
1

MN
H(T ) (A.4.6)

≤ ε2 + Lv − CNC−
s , (A.4.7)

for any ε2 > 0 and sufficiently large M . Here, (A.4.7) follows from the random coding

argument as in (A.1.4)) of the proof of Theorem 2.3.1. The proof follows when we

combine (A.4.2) and (A.4.3). �
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We now provide the upper bound. Suppose that Rs is achievable rate. From

definition (3.2.10)-(2.2.11) and Fano’s inequality, we have

min
1≤v≤V

min
φMj

1≤j≤V

1

NM
H
(
W |ZNM

v , gM , {φMj }1≤j≤V
)

≥ Rs − aNM (A.4.8)

max
φMj

1≤j≤V

1

NM
H
(
W |Y NM , gM , {φMj }1≤j≤V

)
≤ bNM (A.4.9)

for any gM ∈ AM where gM =
[
gMm , g

M
e1
, . . . gMeV , g

M
z1
, . . . gMzV , {g

M
fvj
}1≤v,j≤V

]
with P(AM) ≥

1− cNM . Here, aNM , bNM , and cNM go to zero as N →∞ and M →∞.

For each adversary v, the adversary strategy φj(i) = 0, 1 ≤ ∀i ≤ M, 1 ≤ ∀j ≤ V

solves the inner minimization problem in the LHS of (A.4.8). The strategy φj(i) = 1,

1 ≤ ∀i ≤M, 1 ≤ ∀j ≤ V solves LHS of (A.4.9). Hence, we have

min
1≤v≤V

1

NM
H
(
W |ẐNM

v , gM
)
≥ Rs − aNM (A.4.10)

1

NM
H
(
W |Ŷ NM , gM

)
≤ bNM (A.4.11)

where

Ŷ N(i) = gm(i)XN(i) +
V∑
v=1

gzv(i)S
N
jv (i) + SNm(i) (A.4.12)

ẐN
v (i) = gev(i)X

N(i) + SNe (i) (A.4.13)

for 1 ≤ ∀i ≤M and 1 ≤ ∀v ≤ V . Here, the LHS of (A.4.8) equals to that of (A.4.10)

since W → ẐNM
v → ZNM

v and the LHS of (A.4.9) equals to that of (A.4.11) since

W → Y NM → Ŷ NM forms a Markov chain. Furthermore, note that

W → Ŷ NM , GM
m , {Gzv}1≤v≤V → GM\GM

m , {Gzv}1≤v≤V
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and

W → ẐNM , {Gev}1≤v≤V → GM\{Gev}1≤v≤V

form Markov chains. The rest of the proof is similar to the proof of the upper bound

given in Theorem 2.3.1. �

A.5 Proof of Theorem 2.6.1

Fix γ ∈ [0, 1], γ̄ = 1 − γ, ε > 0. Each consecutive M1 blocks is called a su-

perblock. Suppose that communication lasts M = M1M2 blocks. Let us denote

xNM1(j), yNM1(j), and zNM1(j) as the transmitted signal, the received signal at the

receiver, and the received signal at the adversary in superblock j, respectively. De-

note xγN(j, i) and xγ̄N(j, i) as the transmitted signals in the first γN channel uses

and in the next γ̄N channel uses of i-th block of j-th superblock, respectively. Signals

yγN(j, i), yγ̄N(j, i), zγN(j, i) and zγ̄N(j, i) are defined in a similar way. Let w(j, i) be

the message to be transmitted in i-th block of j-th superblock. Finally, let xγNM1(j) ,

[xγN(j, 1), . . . , xγN(j,M1)], and yγNM1(j), zγNM1(j), xγ̄NM1(j), yγ̄NM1(j), and xγ̄NM1(j)

are defined in a similar way. Through this appendix, (j, i) indicates i-th block of j-th

superblock.

Encoding and decoding strategies are summarized in Figure A.1 and Figure A.2.

We begin with key generation. Let Rr0 > 0. At the beginning of superblock j, the

transmitter picks key k(j) from random variable K(j) which is uniformly distributed

in {1, . . . , 2NRr0}. By using the encoding strategy in the proof of Theorem 1, the

transmitter maps k(j) to codeword xγNM1(j). This process is repeated for every

superblock j ≥ 1. Next lemma provides a lower bound to achievable key rates.

Lemma A.5.1. For any ε > 0, there exit N ′ > 0, M ′
1 > 0 and a sequence of length
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Key 
Generation

Secrecy 
Encoder

Channel 
Encoder

Figure A.1: Encoder structure.

Key 
Generation

Channel 
Decoder

Secrecy 
Decoder

Figure A.2: Decoder structure.

γNM1 channel codes
(
γNM1, 2

γRr0NM1
)

for which the following are satisfied under

any strategy of the adversary, φM1(j):

P
(
K(j) 6= K̂(j)

)
< ε/3 (A.5.1)

1

NM1

H
(
K(j)|{ZγNM1(j)}, gM1(j), φM1(j)

)
> Rr0 − ε/2 (A.5.2)

for any superblock j ∈ {1, 2, . . . ,M2}, for any N ≥ N ′, and for any M1 ≥ M ′
1 where

Rr0 ≤ γC−s . �

The proof follows from Theorem 1. Now, we describe the transmission of delay
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limited message w(j, i)1, illustrated in Figure A.1. Let Rs ≥ Rr0 and R̃s ≥ Rs.

Message w(j, i) of size NRs bits is divided2 to two messages w1(j, i) and w2(j, i), of

size NRr0 and N(Rs − Rr0), respectively. We also divide key k(j − 1), generated

in previous superblock j − 1, into M1 equivalent size chunks such that k(j − 1) =

[k(j − 1, 1) . . . , k(j − 1,M1)], where k(j − 1, i) is of size NRr0 bits.

Let ws(j, i) = w1(j, i)⊕ k(j − 1, i). Suppose wx(j, i) is picked from random vari-

able Wx(j, i) which is uniformly distributed on sample space {1, . . . , 2N(R̃s−Rs−ε)} and

independent from W (j, i). We generate a Gaussian codebook consisting of 2N(R̃s−ε)

codewords each of which is independently drawn from

γ̄N∏
k=1

pX(xk). Here, pX(x) is the

probability density function of complex Gaussian random variable with zero mean

and variance Pt. To transmit w(j, i) = (w1(j, i), w2(j, i)), the codeword indexed by

(w1(j, i), ws(j, i), wx(j, i)) is transmitted.

Error and Equivocation Analysis :

Lemma A.5.2. For any ε > 0, there exit N ′′ > 0 and a sequence of length γ̄N

channel codes (γ̄N, 2γ̄R̃sN) for which the following are satisfied

P
(
(W2(j, i),Ws(j, i),Wx(j, i)) 6= (Ŵ2(j, i), Ŵs(j, i), Ŵx(j, i))

)
< ε/3 (A.5.3)

for any j ∈ {1, 2, . . .M2}, for any i ∈ {1, 2, . . .M1} and for any N ≥ N ′′ when the

channel conditions satisfy

γ̄ log

(
1 +

Pthm(j, i)

1 + Pjhz(j, i)

)
≥ R̃s. (A.5.4)

�

1Due to Definition 2, we skip the message transmission at first M1 blocks, and declare secrecy
outage.

2Note that in this process, the messages are converted to binary form.
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The proof follows from standard arguments, and is omitted. Assume for the error

and equivocation analysis thatN andM1 are chosen such thatN = max(N ′, N ′′, N ′′′),

and M1 = M ′
1, where N ′′′ will be defined later. Then, error probability is bounded as

P(E(j, i)) , P
(
(W1(j, i),W2(j, i)) 6= (Ŵ1(j, i), Ŵ2(j, i))

)
≤ P

((
W2(j, i) 6= Ŵ2(j, i)

)⋃(
W1(j, i) 6= Ŵ1(j, i)

))
≤ ε

3
+ P

(
W1(j, i) 6= Ŵ1(j, i)

)
(A.5.5)

≤ ε

3
+ P

(
Ws(j, i) 6= Ŵs(j, i)

⋃
K(j, i) 6= K̂(j, i)

)
(A.5.6)

≤ ε, (A.5.7)

where (A.5.5) follows from Lemma A.5.2, (A.5.6) follows from the fact that W1(j, i) =

Ws(j, i)⊕K(j, i) and (A.5.7) follows from Lemma A.5.1 and Lemma A.5.2.

For the secrecy analysis, let’s define ẐN(j, i) = XN(j, i)ge(j, i) + SNe (j, i), 1 ≤

∀j ≤M1, 1 ≤ ∀i ≤M2. Equivocation analysis averaged over codebooks is as follows.

Note that all the equivocation terms below are conditioned on the channel gains gM ,

and we omit them for the sake of simplicity.

H(W1(j, i),W2(j, i)|ZNM ,WM\W (j, i), C)

≥ H(W1(j, i),W2(j, i)|ẐNM ,WM\W (j, i), C) (A.5.8)

= H(W2(j, i)|ẐNM ,WM\W (j, i), C)

+H(W1(j, i)|ẐNM ,WM\W (j, i),W2(j, i), C) (A.5.9)

We now bound the first term in (A.5.9).

H(W2(j, i)|ẐNM ,WM\W (j, i), C)

= H(W2(j, i))− I(W2(j, i); ẐNM ,WM\W (j, i)|C) (A.5.10)

= H(W2(j, i))

− I(W2(j, i); ẐNγ(j − 1), ẐNM1γ̄(j),WM1(j)\W (j, i)|C) (A.5.11)
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= H(W2(j, i))− I(W2(j, i); ẐNγ̄(j, i)|C)

− I(W2(j, i); ẐNM1γ(j − 1), ẐNM1γ̄(j)\ẐNγ̄(j, i),

WM1(j)\W (j, i)|ẐNγ̄(j, i), C) (A.5.12)

≥ H(W2(j, i))− I(W2(j, i); ẐNγ̄(j, i)|C)

− I(W2(j, i);K(j − 1, i), ẐNM1γ(j − 1), ẐNM1γ̄(j)\ẐNγ̄(j, i),

WM1(j)\W (j, i)|ẐNγ̄(j, i), C) (A.5.13)

= H(W2(j, i))− I(W2(j, i); ẐNγ̄(j, i)|C)

− I(W2(j, i);K(j − 1, i), ẐNM1γ(j − 1)|ẐNM1γ̄(j),WM1(j)\W (j, i), C)

(A.5.14)

= H(W2(j, i))− I(W2(j, i); ẐNγ̄(j, i)|C)

− I(W2(j, i);K(j − 1, i)|ẐNM1γ̄(j),WM1(j)\W (j, i), C)

− I(W2(j, i); ẐNM1γ(j − 1)|K(j − 1, i), ẐNM1γ̄(j),WM1(j)\W (j, i), C)

(A.5.15)

= H(W2(j, i))− I(W2(j, i); ẐNγ̄(j, i)|C)

− I(W2(j, i); ẐNM1γ(j − 1)|K(j − 1, i), ẐNM1γ̄(j),WM1(j)\W (j, i), C)

(A.5.16)

= H(W2(j, i))− I(W2(j, i); ẐNγ̄(j, i)|C) (A.5.17)

= H(W2(j, i)|ẐNγ̄(j, i), C)

≥ Rs −Rr0 −Nε/2, (A.5.18)

where (A.5.11) follows from the fact that

ẐNM\
(
ẐNM1γ(j − 1), ẐNM1γ̄(j)

)
,WM\WM1(j)

are independent from the rest of the random variables in (A.5.10) for every codebook.
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(A.5.16) follows from the fact that K(j − 1, i) and(
W2(j, i), ẐNM1γ̄(j),WM1(j)\W (j, i), C

)
are independent due to the fact that K(j − 1, i) → W1(j, i) ⊕ K(j − 1, i), C →

W2(j, i), ẐNM1γ̄(j),WM1(j)\W (j, i), C forms Markov chain, and K(j − 1, i) and

(W1(j, i)⊕K(j − 1, i), C)

are independent. (A.5.17) follows from the fact ẐNM1γ(j − 1) → K(j − 1, i), C →

W2(j, i), ẐNM1γ̄(j),WM1\W (j, i) forms Markov chain. Following the same steps in

the equivocation analysis in Theorem 2.3.1, we can show that (A.5.18) is satisfied for

any N ≥ N
′′′

if R̃s − (Rs − Rr0) ≥ log(1 + Phe(j, i)). Next, we bound the second

term in (A.5.9).

H(W1(j, i)|ẐNM ,WM\W (j, i),W2(j, i), C)

= H(W1(j, i)|ẐNM1γ(j − 1), ẐNM1γ̄(j),WM1(j)\W (j, i),W2(i, j), C) (A.5.19)

≥ H(W1(j, i)|ẐNM1γ(j − 1), ẐNM1γ̄(j), A) (A.5.20)

= H(K(j − 1, i)|ẐNM1γ(j − 1), ẐNM1γ̄(j), A) (A.5.21)

= H(K(j − 1, i))− I(K(j − 1, i); ẐNM1γ(j − 1), ẐNM1γ̄(j), A) (A.5.22)

= H(K(j − 1, i))− I(K(j − 1, i); ẐNM1γ(j − 1), ẐNM1γ̄(j)|A) (A.5.23)

= H(K(j − 1, i))− I(K(j − 1, i); ẐNM1γ(j − 1)|A)

− I(K(j − 1, i); ẐNM1γ̄(j)|ẐNM1γ(j − 1), A) (A.5.24)

= H(K(j − 1, i))− I(K(j − 1, i); ẐNM1γ(j − 1)|C)

− I(K(j − 1, i); ẐNM1γ̄(j)|ẐNM1γ(j − 1), A) (A.5.25)

= H(K(j − 1, i))−Nε/2

− I(K(j − 1, i); ẐNM1γ̄(j)|ẐNM1γ(j − 1), A) (A.5.26)

= NRr0 −Nε/2, (A.5.27)
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where A =
(
WM1(j)\W (j, i),W2(j, i),Ws(j, i), C

)
. Here, (A.5.20) follows from the

fact in (A.5.11), (A.5.21) follows from the fact that Ws(j, i) = W1(j, i) ⊕ K(j −

1, i), (A.5.23) follows from the fact that K(j − 1, i) and A are independent, and

(A.5.25) follows from the fact that
(
K(j − 1), ẐNM1γ(j − 1), C

)
are independent of(

WM1(j)\W (j, i),W2(j, i),Ws(j, i)
)
. From Lemma A.5.1, we observe that (A.5.26)

is satisfied for any N ≥ N
′

and for any M ≥ M ′
1 if Rr0 ≤ γC−s . (A.5.27) follows

from the fact that K(j − 1, i)→ ẐNM1γ(j − 1), A→ ẐNM1γ̄(j) forms Markov chain.

Combining (A.5.18) and (A.5.27), we can observe

H(W1(i),W2(i)|ZNM ,WNM\W (i)) ≥ N(Rs − ε), (A.5.28)

if R̃s − (Rs −Rr0) ≤ log(1 + Phe(j, i)) and Rr0 ≤ min(γC−s , Rs).

We can observe that α-outage secrecy capacity is lower bounded by Rs if there

exists
(
Rs, R̃s, Rr0, γ

)
that satisfy the following conditions: 1)

P
({

(1− γ) log

(
1 +

PtHm

1 + PjHz

)
≥ R̃s

}
⋂ {

R̃s −Rs +Rr0 ≥ (1− γ) log(1 + PtHe)IRs 6=Rr0

})
≥ 1− α,

(A.5.29)

2) Rr0 ≤ min
(
Rs, γC

−
s

)
, 3) Rs ≤ R̃s, and 4) γ ∈ [0, 1]. Notice that the second event

in the probability term is equal to

{[
R̃s − (1− γ) log(1 + PtHe)

]+

≥ Rs −Rr0

}
.

Let’s define set A containing
(
Rs, R̃s, Rr0, γ

)
’s that satisfy these four condi-

tions. The lower bound to α outage secrecy capacity can be written as C−sd(α) =

max
Rs,R̃s,Rr0,γ∈A

Rs. It is easy to observe that if Rs = C−sd(α), the corresponding Rr0 has

to be equal to γC−s . Then, the lower bound can be written as

C−sd(α) = max
Rs,R̃s,Rr0,γ∈A

Rs (A.5.30)

subject to Rr0 = γC−s

109



(A.5.31)

which concludes the proof. �
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APPENDIX B: PROOFS IN CHAPTER 3

B.1 Proof of Theorem 3.3.1

We first evaluate an upper bound on the secure DoF. In order to derive an upper

bound, we assume that there is a single user and no adversary in the system. Further,

we assume that the user and the BS have a perfect information of the channel gains.

As a last assumption, the user is assumed to know the received pilot signals at the

BS. Hence, with these assumptions, the communication model in Section 2 reduces

to a multiple input single output (MISO) communication set-up in which the channel

gains and pilot signals are available at the BS and the user. Note that the capacity,

the supremum of the achievable rates, of this new set-up upper bounds the secrecy

rates achieved under the communication set-up explained in Section 3.2. We derive

the capacity with the following analysis:

C = max
p(xTd |h1,yTr),E[tr(XTdXTd∗)]≤ρfTd

1

T
I
(
XTd ;Y Td

1 |Y Tr , H1

)
(B.1.1)

= max
p(xTd |h1),E[tr(XTdXTd∗)]≤ρfTd

1

T
I
(
XTd ;Y Td

1 |H1

)
(B.1.2)

= max
p(x|h1),E[tr(XX∗)]≤ρf

Td
T
I(X;Y |H1) (B.1.3)

= max
E[P (H1)]≤ρf

Td
T
E
[
log
(
1 + P (H1) ||H1||2

)]
(B.1.4)
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where XTd is a complex Td×M matrix and P (·) : CM → R+∪{0} is a power allocation

function. In the derivation above, (B.1.1) follows from Section 7.4.1 of [53] where the

capacity of a communication system in which the channel gains are available at both

encoder and decoder is stated. The equality in (B.1.2) follows from the fact that

Y Tr
1 → XTd , H1 → Y Td

1 forms a Markov chain and the equality in (B.1.3) follows from

the fact that

I
(
XTd ;Y Td

1 |H1

)
≤

Td∑
i=1

I(Xi;Yi|H1) (B.1.5)

and from the fact that the equality is attained in (B.1.5) if pXTd |H1

(
xTd |h1

)
=

Td∏
i=1

pX|H1(xi|h1). Then, the RHS and the LHS of (B.1.5) becomes I(X;Y |H1).

In (B.1.4), the equality follows from Section of [54], where the capacity of MISO

system is evaluated. In [54], the power allocation function maximizing (B.1.4) is given

as

P (h1) =

(
λM −

1

||h1||2

)+

,

where λM is a non-negative real number and is chosen such that E[P (H1)] = ρf . We

next find an upper bound on λM with the following analysis:

ρf = E

[(
λM −

1

||H1||2

)+
]

≥ λM − E
[

1

||H1||2

]
(B.1.6)

= λM −
1

M − 1
(B.1.7)

where (B.1.6) follows from the fact that
1

||H1||2
is distributed with inverse Gamma

distribution and has a mean of
1

M − 1
. Hence, we have λM ≤

1

M − 1
+ρf for M > 1.

We next bound the DoF of the MISO communication system as

lim
M→∞

Td
T

E [log (1 + P (H1) ||H1||2)]

logM
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≤ lim
M→∞

Td
T

E [log (1 + λM ||H1||2)]

logM
(B.1.8)

≤ lim
M→∞

Td
T

log (1 + λME [||H1||2])

logM
(B.1.9)

= lim
M→∞

Td
T

log (1 + λMM)

logM

≤ lim
M→∞

Td
T

log
(
1 + M

M−1
+Mρf

)
logM

(B.1.10)

=
Td
T

+ lim
M→∞

Td
T

log
(

1
M

+ 1
M−1

+ ρf
)

logM

=
Td
T
, (B.1.11)

where (B.1.8) follows from the fact that P (·) ≤ λM for all realizations of H1, (B.1.9)

follows from Jensen’s inequality, and (B.1.10) follows from (B.1.7). In (B.1.11), we

show that secure DoF can be at most
Td
T

. �

Next, we describe an achievability strategy to attain secure DoF of
Td
T

.

Channel estimation: Pilot signals are mutually orthogonal, i.e.,

φk × φ∗l =


Trρr if k = l

0 if k 6= l

for any k, l ∈ {1, . . . , K}. The BS employs MMSE for channel estimation. The

estimated gain of the channel connecting the BS to k-th user is as follows:

Ĥk = aHk + bVk (B.1.12)

for k ∈ {1, . . . , K}, where a ,
ρrTr

ρrTr + 1
, b ,

√
ρrTr

ρrTr + 1
, and Vk is additive Gaussian

noise distributed with CN (0, IM). Note that E
[
Ĥk

]
= 01×M , E

[
||Ĥk||2

]
= Ma.

Further, for any k ∈ {1, . . . , K} and for any m,n ∈ {1, . . . ,M}, E
[∣∣∣Ĥ∗k,nHk,m

∣∣∣2] =

a2 + a if m = n, otherwise; E
[∣∣∣Ĥ∗k,mHk,n

∣∣∣2] = a2.

Codebook generation: PickRk =
Td
T

log

(
1 +

Mρka

ρf + ρj + 1

)
−Td
T

log (1 +Meρk)
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and R̂k =
Td
T

log

(
1 +

Mρka

ρf + ρj + 1

)
− ε1 for some ε1 > 0 and for k = 1, . . . , K. Gen-

erate K codebooks, ck, k = 1, . . . , K, where K is the number of users. Codebook ck

contains independently and identically generated codewords, sBTdkl , l ∈ {1, . . . , 2BTR̂k},

each is drawn from CN (0, ρkIBTd).

Encoding: In order to send k-th user’s message wk ∈ Wk, the encoder draws

index lk from the uniform distribution that has a sample space of{
(wk − 1) 2BT(R̂k−Rk) + 1, . . . , wk2

BT(R̂k−Rk)
}

. Note that this mapping makes the encoder stochastic. The encoder then maps index

lk to the corresponding codeword sBTdklk
in codebook ck.

The encoder employs a conjugate beamforming to map codewords to channel input

sequence XBTd . The channel input at j-th channel use of i-th block can be written

as follows:

X(i, j) =
K∑
k=1

sklk(i, j)
1√
Mαk

Ĥ∗k(i)

where αk = a for all k ∈ {1, . . . , K} due to the fact that E
[
|Ĥk,m|2

]
= a for all

k ∈ {1, . . . , K}.

Decoding Each user employs typical set decoding [1]. Let yBTdk be the received

signal at k-th user over BTd channel uses. The decoder at k-th user looks for an

unique index lk ∈
{

1, . . . , 2BTdRk
}

such that
(
sBTdklk

, yBTdk

)
∈ ABTdε

(
STdk , Y

Td
k

)
, where

ABTdε

(
STdk , Y

Td
k

)
is the set of jointly typical sequences (sBTdk , yBTdk ) with

Y Td
k =

1√
Ma

HkĤ
∗
kS

Td
k

+
1√
Ma

K∑
j=1,j 6=k

HjĤ
∗
j S

Td
j +Hjam,kVjam + Vk

where STdj is distributed with CN (0, ρkITd), j = 1, . . . , K and Vk is distributed with

CN (0, ITd).
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Probability error and equivocation analysis By the channel coding theo-

rem [1], E [Pe]→ 0 as B →∞ if R̂k <
Td
T
I
(
STdk , Y

Td
k

)
, k = 1, . . . , K, where expecta-

tion is over random codebooks, C1, . . . , CK . Note that codebook ck is the realization

of Ck. Define

T0 ,
1√
Ma

SkE
[
HkĤ

∗
k

]
T1 ,

1√
Ma

Sk

(
E
[
HkĤ

∗
k

]
−HkĤ

∗
k

)
T2 ,

1√
Ma

K∑
j=1,j 6=k

HkĤ
∗
j Sj

T3 , Hjam,kVjam + Vk.

Note that E [T0] = E [T1] = E [T2] = E [T3] = 0 and E [T0T
∗
1 ] = E [T0T

∗
2 ] = E [T0T

∗
3 ] =

0. We can bound
Td
T
I
(
STdk , Y

Td
k

)
as

Td
T
I
(
STdk , Y

Td
k

)
≥ Td

T
log

(
1 +

Var [T0]

Var [T1 + T2 + T3]

)
(B.1.13)

=
Td
T

log

(
1 +

Var [T0]

Var [T1] + Var [T2] + Var [T3]

)
(B.1.14)

=
Td
T

log

(
1 +

Mρka

ρf + ρjam + 1

)
, (B.1.15)

where (B.1.13) follows from Theorem 1 of [55] and (B.1.14) follows from the fact

that T1, T2, and T3 are uncorrelated random variables. The equality in (B.1.15)

follows from the fact that Var [T0] = Mρka, Var [T1] = ρk, Var [T2] =
∑
j 6=k

ρj, and

Var [T3] = ρjam + 1. From (B.1.15), we conclude that R̂k ≤
Td
T
I
(
STdk , Y

Td
k

)
. Hence,

E [Pe]→ 0 as B →∞.

We next analyze the secrecy constraint in (3.2.11). Let H (Wk|ZTB, HB, ĤB, HB
e , C

)
be the expectation of the conditional entropy in (3.2.11) over random codebooks
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C , [C1, . . . , CK ]. We show that the expectation satisfies the constraint in (3.2.11) for

k-th user with the following analysis:

H (Wk|ZBT , GB, C
)
≥ H (Wk|ZBT , SBTd , GB, C

)
= H (Wk|ZBTd , SBTd , GB, C

)
(B.1.16)

= H
(
Wk, S

BTd
k

∣∣∣ZBTd , SBTd , GB, C
)

− H
(
SBTdk

∣∣∣Wk, Z
BTd , SBTd , GB, C

)
≥ H

(
SBTdk

∣∣∣ZBTd , SBTd , GB, C
)

− H
(
SBTdk

∣∣∣Wk, Z
TB, SBTd , GB, C

)
= H

(
SBTdk

∣∣∣SBTd , GB, C
)

− I
(
SBTdk ;ZBTd

∣∣∣SBTd , GB, C
)

− H
(
SBTdk

∣∣∣Wk, Z
BTd , SBTd , GB, C

)
= H

(
SBTdk

∣∣∣ Ck)− I
(
SBTdk ;ZBTd

∣∣∣SBTd , GB, C
)

− H
(
SBTdk

∣∣∣Wk, Z
BTd , SBTd , GB, C

)
(B.1.17)

= BTR̂k − I
(
SBTdk ;ZBTd

∣∣∣SBTd , GB, C
)

− H
(
SBTdk

∣∣∣Wk, Z
BTd , SBTd , GB, C

)
(B.1.18)

≥ BTR̂k − I
(
SBTdk , C;ZBTd

∣∣∣SBTd , GB
)

− H
(
SBTdk

∣∣∣Wk, Z
BTd , SBTd , GB, C

)
(B.1.19)

where GB ,
[
HB, ĤB, HB

e

]
. Signal set SBTd ,

{
SBTdi

}
i 6=k

is defined to be the

transmitted codewords of the users except k-th user. Signals ZBTr and ZBTd are the

received signals at the adversary over the training phases and data communication

phases, respectively. Note that ZBT ,
[
ZBTr , ZBTd

]
.

In the above derivation (B.1.16) follows from the fact that ZBTr and

(GB,Wk, S
BTd , ZBTd , C)
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are independent, (B.1.17) follows from the fact that (SBTdk , Ck) are independent from

(GB, {Ci}i 6=k), and (B.1.18) follows from the fact that SBTdk is uniformly distributed

on a set of size 2BTR̂k . We continue the derivation as

(B.1.19) = BTR̂k − I
(
SBTdk ;ZBTd

∣∣∣SBTd , GB
)

− H
(
SBTdk

∣∣∣Wk, Z
BTd , SBTd , GB, C

)
(B.1.20)

≥ BTR̂k

−
B∑
i=1

T∑
j=Tr+1

I (Sk(i, j);Z(i, j)|S(i, j), G(i))

− H
(
SBTdk

∣∣∣Wk, Z
BTd , SBTd , GB, C

)
≥ BTR̂k

−
B∑
i=1

T∑
j=Tr+1

E

[
log

(
1 +

ρk
Ma

Me∑
m=1

∣∣∣ĤkH
∗
e,m

∣∣∣2)]

− H
(
SBTdk

∣∣∣Wk, Z
BT , SBTd , GB, C

)
(B.1.21)

≥ BTR̂k −BTd log

(
1 +

ρk
Ma

Me∑
m=1

E
[∣∣∣ĤkH

∗
e,m

∣∣∣2])

− H
(
SBTdk

∣∣∣Wk, Z
BT , SBTd , GB, C

)
= BTR̂k −BTd log (1 +Meρk)

− H
(
SBTdk

∣∣∣Wk, Z
BT , SBTd , GB, C

)
(B.1.22)

≥ BT

(
R̂k −

Td
T

log (1 +Meρk)

)
−BTε2 (B.1.23)

= BT (Rk − ε) (B.1.24)

for any ε2 > 0 and sufficiently large B, where ε , ε1 + ε2 and He,m in (B.1.21) denotes

the gain of the channel connecting m-th antenna at the BS to the adversary. The

equality in (B.1.20) follows from the fact that C → STdBk , STdB, GB → ZTdB forms a

Markov chain. The equality in (B.1.22) is due to the fact that E
[∣∣∣Ĥ∗kHe,m

∣∣∣2] = Ma,

m = 1, . . . ,Me.
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To get the inequality in (B.1.23), we need to bound

1

BT
H
(
SBTdk

∣∣∣Wk, Z
TB, SBTd , GB, C

)
.

Define Re , R̂k − Rk. Note that Re <
1

T
I
(
STdk ;ZTd

∣∣∣STd , G) =
Td
T

log (1 +Meρka).

Hence, as in (52) of [56], utilizing Fano’s inequality and the channel coding theorem,

we show that lim
B→∞

1

BT
H
(
SBTdk

∣∣∣Wk, Z
TB, SBTd , G, C

)
= 0.

From the fact that E [Pe] → 0 as B → ∞ and from (B.1.24), we conclude that

there exists a sequence of codes satisfying constraints (3.2.10) and (3.2.11). We now

evaluate degree of freedom dk associated with Rk as

dk = lim
M→∞

Rk

logM
=
Td
T

+ lim
M→∞

Td
T

log (1 +Meρk)

=
Td
T

for k = 1, . . . , K. Hence, the attained secure DoF is equal to
Td
T

. �

B.2

B.2.1 Proof of Theorem 3.3.4

Note that since the adversary keeps silent during the training phases, the received

signals at the BS over training phases are independent from HB
e . Hence, we conclude

that ĤB ,
[
ĤB

1 , . . . , Ĥ
B
K

]
and HB

e are independent.

The BS picks message rates Rk > 0, k = 1, . . . , K. The equivocation rate for

a code
(
2BTR1 , . . . , 2BTRK , BTd

)
utilizing deterministic encoding mapping functions,

fk, k = 1, . . . , K and δ-conjugate beamforming is as follows:

1

BT
H (Wk|ZBT , GB

)
=

1

BT
H (Wk|ZBTd , GB

)
(B.2.1)

≥ 1

BT
H (Wk|ZBTd , SBTd , GB

)
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=
1

BT
H (Wk|SBTd , GB

)
− 1

BT
I
(
Wk;Z

BTd
∣∣SBTd , GB

)
= Rk −

1

BT
I
(
Wk;Z

BTd
∣∣SBTd , GB

)
(B.2.2)

≥ Rk −
1

BT
I
(
SBTdk ;ZBTd

∣∣∣SBTd , GB
)

(B.2.3)

≥ Rk −
1

BT

∑
i=1

∑
j=1

I (Sk(i, j);Z(i, j)|S(i, j), G(i))

≥ Rk −
1

BT

B∑
i=1

T∑
j=Tr+1

log

(
1 +

Pk(i, j)

M1+δαk

Me∑
m=1

E
[∣∣∣Ĥ∗kHe,m

∣∣∣2]) (B.2.4)

≥ Rk −
Td
T

log

(
1 +

ρk
M1+δαk

Me∑
m=1

E
[∣∣∣Ĥ∗kHe,m

∣∣∣2]) (B.2.5)

= Rk −
Td
T

log

(
1 +

Meρk
M δ

)
(B.2.6)

≥ Rk − ε

for any ε > 0 and for sufficiently large M , where G ,
[
HB, ĤB, HB

e

]
. Particularly,

for a given ε > 0 if M ≥

(
Meρk

2
T
Td
ε − 1

) 1
δ

, then there exists a code that satisfies the

constraint in (3.2.12).

In the above derivation, (B.2.1) follows from the fact that ZBTr and (ZBTd , GB,Wk)

are independent, (B.2.2) follows from the facts that Wk is independent from SBTd , GB

and uniformly distributed on [1 : 2BTRk ]. In (B.2.3), the inequality follows from the

fact that Wk → SBTdk → ZBTd , SBTd , GB.

In (B.2.4), Pk(i, j) , E
∣∣|Sk(i, j)||2], where the expectation is over Wk. In (B.2.5),

the inequality follows from Jensen’s inequality and from the fact that

1

BTd

B∑
i=1

T∑
j=Tr+1

Pk(i, j) ≤ ρk.
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In (B.2.6), the equality follows from the fact Ĥk and He,m are independent and

E
[∣∣∣Ĥ∗kHe,m

∣∣∣2] = Mαk, k = 1, . . . , K.

B.2.2 Proof of Corollary 3.3.5

Pick 0 < δ < 1. Pick arbitrary ε > 0 and rate tuple R = [R1, . . . , RK ]. Let

M ≥ max(V (R), S(ε)). Note that inequality M > V (R) implies that

Rk <
Td
T

log

(
1 +

M1−δaρk
M−δρf + ρj + 1

)
, k = 1, . . . , K. We first show that there exists B(ε) > 0 and a sequence of codes(
2BTR1 , . . . , 2BTRK , BTd

)
utilizing δ-beamforming and deterministic mapping, that

satisfy the decodability constraint in (3.2.10) for B ≥ B(ε).

The same channel estimation strategy in Appendix A is used. Codebook gener-

ation is as same as the one in Appendix B.1. The BS generates K codebooks, ck,

k = 1, . . . , K, where ck contains 2BTRk codewords, sBTdkl , l ∈ {1, . . . , 2BTRk}.

To send k-th user’s message wk ∈ Wk =
{

1, . . . , 2BTRk
}

, the BS maps message wk

to the corresponding codeword sBTdkwk
in codebook ck. Note that there is no random-

ization in the mapping as opposed to the mapping in the encoding in Appendix B.1,

where the codeword is a stochastic function of the message. The BS employs δ-

conjugate beamforming to map codewords to channel input sequence XBTd . The

channel input at j-th channel use of i-th block can be written as

X(i, j) =
K∑
k=1

skwk(i, j)
1√

M1+δαk
Ĥ∗k(i) (B.2.7)

where αk = a and a is defined in (B.1.12).

The typical set decoding is used at each user as in the proof of Theorem 3.3.1 in

Appendix B.1. Hence, since Rk <
1

T
I
(
SBTdk ;Y BTd

k

)
, k = 1, . . . , K, by the channel

coding theorem, there exists a sequences of codes that satisfy constraint (3.2.10).
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In addition, since M ≥ S(ε), the sequence of codes mentioned above satisfy the se-

crecy constraint in (3.2.11) due to Theorem 3.3.4. Hence, the proof of Corollary 3.3.5

follows. �

B.3

B.3.1 Proof of Theorem 3.4.1

Throughout the proof, we assume that the BS employs conjugate beamforming with-

out loss of generality. Suppose thatRk is an achievable rate. From the constraints (3.2.10)-

(3.2.11) and Fano’s inequality, we have

1

BT
H
(
Wk|ZBTd , HB, ĤB, HB

e

)
≥ Rk − δB (B.3.1)

1

BT
H (Wk|Y BTd

k

)
≤ εB (B.3.2)

where εB and δB go to zero as B →∞.

The LHS of (B.3.1) can be written as follows

1

BT
H
(
Wk|ZBTd , HB, ĤB, HB

e

)
=

1

BT
H
(
Wk|ZBTd , ĤB, HB

e

)
(B.3.3)

=
1

BT
H
(
Wk|Z̃BTd , H̃B, HB

k

)
(B.3.4)

=
1

BT
H
(
Wk|Z̃BTd , H̃B, HB

)
(B.3.5)

where H̃(i) ,
[
Ĥ1(i), . . . , H̃k(i), . . . , ĤK(i)

]
and

Z̃(i, j) ,
1√
Mαk

Hk(i)H̃
∗
k(i)Sk(i, j)

+
K∑

l=1,l 6=k

1√
Mαl

Hl(i)H̃
∗
l (i)Sl(i, j) +W (B.3.6)

for 1 ≤ i ≤ B and Td + 1 ≤ j ≤ T . The equality in (B.3.3) follows from the fact

that HB → ZBTd , ĤB, HB
e → Wk forms a Markov chain and the equality in (B.3.4)
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follows from the fact that the joint distribution of Wk, Z
BTd , HB

e , Ĥ
B
1 , . . . , Ĥ

B
k , . . . Ĥ

B
K

is identical with that of Wk, Z̃
BTd , HB

k , Ĥ
B
1 , . . . , H̃

B
k , . . . , Ĥ

B
K . The equality in (B.3.5)

follows from the fact that HB/HB
k → Z̃BTd , ĤB

1 , H̃
B → Wk forms a Markov chain.

The upper bound on Rk can be derived with the following steps:

Rk ≤
1

BT
H (Wk|ZBTd , HB, ĤB, HB

e

)
− 1

BT
H (Wk|Y BTd

k

)
+ γB (B.3.7)

=
1

BT
H (Wk| Z̃BTd , H̃B, HB

)
− 1

BT
H (Wk|Y BTd

k

)
+ γB (B.3.8)

≤ 1

BT
H (Wk| Z̃BTd , H̃B, HB

)
− 1

BT
H (Wk| Z̃BTd , H̃B, HB

)
+ γB (B.3.9)

=
1

BT
I
(
Wk;Y

BTd
k

∣∣∣ Z̃BTd , H̃B, HB

)
≤ 1

BT
I
(
SBTd ;Y BTd

k

∣∣∣ Z̃BTd , GB

)
+ γB (B.3.10)

≤ 1

BT

B∑
i=1

T∑
j=Tr+1

I (S(i, j);Yk(i, j)| Z̃(i, j), G
)

+ γB (B.3.11)

=

∫
1

BT

B∑
i=1

T∑
j=Tr+1

I (S(i, j);Yk(i, j)|Z(i, j), g)

pG(g) dg + γB, (B.3.12)

where γB , εB + δB, GB ,
[
HB, H̃B

]
, and G ,

[
H, H̃

]
. In the derivation above,

(B.3.7) follows from (B.3.1) and (B.3.2), and (B.3.9) follows from the fact that con-

ditioning reduces the entropy. The inequality in (B.3.10) follows from the fact that

Wk → SBTd → Y BTd
k , Z̃Td , GB. The inequality in (B.3.11) follows from the memory-

less property of the channel and from the assumption in Theorem 3.4.1, stating that(
H̃(i), H(i)

)
have an identical probability distribution for any i ≥ 1. We continue
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the upper bound derivation with the following steps:

(B.3.12) ≤
∫

1

BT

B∑
i=1

T∑
j=Tr+1

I (SG(i, j);Yk(i, j)| Z̃(i, j), g
)

pG(g) dg + γB (B.3.13)

≤ Td
T

∫
I (SG;Yk|Z, g) pG(g) dg + γB (B.3.14)

≤ Td
T

∫ [
max
Σ∈S

(log (1 + ckΣc
∗
k)−

log (1 + ceΣc
∗
e))]

+ pG(g) dg + γB (B.3.15)

≤ Td
T
E
[
max
Σ∈S

([log (1 + CkΣC
∗
k)−

log (1 + CeΣC
∗
e )]+

)]
+ γB, (B.3.16)

where Ck and Ce are 1×K random vectors and are defined as

Ck ,

[
HkĤ

∗
1√

Mα1

, . . . ,
HkĤ

∗
k√

Mαk
, . . .

HkĤ
∗
K√

MαK

]

and Ce ,

[
HkĤ

∗
1√

Mα1

, . . . ,
HkH̃

∗
k√

Mαk
, . . . ,

HkĤ
∗
K√

MαK

]
. Further, ck and ce are the realizations

of Ck and Ce, respectively. Define Σij as K ×K covariance matrix of Sk(i, j). Note

that Σij is a diagonal matrix due to the fact that each component of S(i, j) are

independent. The inequality (B.3.13) follows from (41) of [57], where SG(i, j) in

(B.3.13) is distributed with CN (0,Σij).

Define f(Σij) , I (SG(i, j);Yk(i, j)| Z̃(i, j), g
)

. The inequality in (B.3.14) follows

from Jensen’s inequality and Proposition 5 of [57] that states f(Σij) is a concave func-

tion of Σij. Note that SG in (B.3.14) is distributed with CN

(
0,

1

BTd

B∑
i=1

T∑
j=Tr+1

Σij

)
.

The inequality in (B.3.15) follows from (139) of [57], where S is a set of covariance

matrices and defined as

S , {Σ : Σ � diag (ρ1, . . . , ρK)

and Σ is a diagonal matrix} (B.3.17)
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We can rewrite the random variable inside the expectation as

max
Σ∈S

([
log

(
1 +

1

M
CkΣC

∗
k

)
−

log

(
1 +

1

M
CeΣC

∗
e

)]+
)

(B.3.18)

= max
Σ∈S

([
log

(
1

M
+ ρk(G)vk(G) +

K∑
l 6=k

ρl(G)vl(G)

)

− log

(
1

M
+ ρk(G)wk(G) +

K∑
l 6=k

ρl(G)vl(G)

)]+
 (B.3.19)

with probability 1, where ρk(G) is defined to be k-th element on the diagonal of Σ,

i.e., Σ , diag (ρ1(G), . . . , ρK(G)). Note that

0 ≤ ρl(G) ≤ ρl, l = 1, . . . , K,

due to (B.3.17). In (B.3.19), we define

vl(G) ,
1

αlM2

∣∣∣HkĤ
∗
l

∣∣∣2
for l = 1, . . . , K and wk(G) ,

1

αkM2

∣∣∣HkH̃
∗
k

∣∣∣2. We continue to simplify (B.3.18) with

the following:

(B.3.19) =

[
max

ρk(G):0≤ρk(G)≤ρk

(
log

(
1

M
+ ρk(G)vk(G)

)
− log

(
1

M
+ ρk(G)wk(G)

))]+

(B.3.20)

=

[(
log

(
1

M
+ ρkvk(G)

)
− log

(
1

M
+ ρkwk(G)

))]+

(B.3.21)

with probability 1, where (B.3.20) follows from the fact that

f(x) = [log(a+ x)− log(b+ x)]+
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is a non-increasing function if x ≥ 0, where a and b are positive real numbers. The

equality in (B.3.21) follows from the fact g(x) =

[
log

(
1

M
+ ax

)
− log

(
1

M
+ bx

)]+

is non-decreasing if x ≥ 0 where a and b are non-negative real numbers and M ≥ 1.

We now bound Rk as follows:

Rk ≤
Td
T
E
[[

log

(
1

M
+ ρkvk(G)

)
− log

(
1

M
+ ρkwk(G)

)]+
]

+ γB (B.3.22)

=
Td
T
E
[[

log

(
1

M
+ ρkvk(G)

)
− log

(
1

M
+ ρkwk(G)

)]+
]

(B.3.23)

where (B.3.22) follows from (B.3.16) and from the fact that (B.3.18) = (B.3.21) with

probability 1 and (B.3.23) follows from the fact that lim
B→∞

γB = 0.

We now bound the secure degree of freedom of k-th user as follows

dk = lim
M→∞

Rk

logM

≤ lim
M→∞

Td
T
E
[[

log (1 +Mρkvk(G))

logM

− log (1 +Mρkwk(G))

logM

]+
]

(B.3.24)

=
Td
T
E
[

lim
M→∞

[
log (1 +Mρkvk(G))

logM

− log (1 +Mρkwk(G))

logM

]+
]
, (B.3.25)

where (B.3.24) follows from (B.3.23) and (B.3.25) follows form the dominant conver-

gence theorem. To apply the dominant convergence theorem, we need to show that

random variable

t(M) ,

[
log (1 +Mρkvk(G))

logM

− log (1 +Mρkwk(G))

logM

]+

(B.3.26)
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is upper and lower bounded by random variables that have a finite limit for M > 1.

Note that t(M) is lower bounded by zero and upper bounded by

t+(M) ,
log (1 +Mρkvk(G))

logM

for any M > 1 since the second log(·) term in (B.3.26) is non-negative. We next

upper bound E
[
t+(M)

]
as follows:

E
[
t+(M)

]
= E

[
log
(

1
M

+ ρkvk(G)
)

logM

]
+ 1 (B.3.27)

≤ E
[
log

(
1

M
+ ρkvk(G)

)]
+ 1

≤ log (1 + ρkE [vk(G)]) + 1 (B.3.28)

≤ log (1 + ρk (γk + πk)) + 1 (B.3.29)

<∞, (B.3.30)

where γk ,
∣∣∣E [Hk,mĤ

∗
k,m

]∣∣∣2 and πk , E
[∣∣∣Hk,mĤ

∗
k,m

∣∣∣2]. In the derivation above,

(B.3.28) follows from Jensen’s inequality and (B.3.29) follows from the fact that

E
[∣∣∣HkĤ

∗
k

∣∣∣2] =
(
M2 −M

) ∣∣∣E [Hk,mĤ
∗
k,m

]∣∣∣2 + ME
[∣∣∣Hk,mĤ

∗
k,m

∣∣∣2] =
(
M2 −M

)
γk +

Mπk.

We continue the derivation of the upper bound on dk with the following:

(B.3.25) =
Td
T
E

[[
lim
M→∞

log
(

1
M

+ ρkvk(G)
)

logM

− lim
M→∞

log
(

1
M

+ ρkwk(G)
)

logM

]+]
(B.3.31)

= 0, (B.3.32)

where (B.3.31) follows from the fact [·] is a continuous function. In order to show the

equality in (B.3.32), first note that

lim
M→∞

vk(G) = lim
M→∞

1

αkM2

∣∣∣HkĤ
∗
k

∣∣∣2
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= lim
M→∞

1

αkM

M∑
m=1

Hk,mĤ
∗
k,m×

lim
M→∞

1

M

M∑
m=1

H∗k,mĤk,m

=
1

αk

∣∣∣E [Hk,mĤ
∗
k,m

]∣∣∣2 , (B.3.33)

with probability 1, where (B.3.33) follows from the strong law of large numbers. In

a similar way we can show that

lim
M→∞

wk(G) =
1

αk
E
[∣∣∣Hk,mH̃

∗
k,m

∣∣∣2]
=

1

αk

∣∣∣E [He,mĤ
∗
k,m

]∣∣∣2 (B.3.34)

with probability 1, where (B.3.34) follows from the fact that the joint probability

distribution of
(
He, Ĥk

)
is identical with that of

(
Hk, H̃k

)
. Hence, we have

lim
M→∞

log

(
1

M
+ ρkvk(G)

)
= log

(
lim
M→∞

ρkvk(G)
)

= log

(
ρk
αk

∣∣∣E [Hk,mĤ
∗
k,m

]∣∣∣2) (B.3.35)

with probability 1. Further, we have

lim
M→∞

log

(
1

M
+ ρkwk(G)

)
= log

(
lim
M→∞

ρkwk(G)
)

= log

(
ρk
αk

∣∣∣E [He,mĤ
∗
k,m

]∣∣∣2) (B.3.36)

with probability 1. The equality in (B.3.32) follows by combining (B.3.35) and (B.3.36).

Hence, the proof ends.

The proof of Theorem 3.4.1 for the case in which the BS employs δ-conjugate

beamforming can be done in the similar way. One only needs to replace ckΣc
∗
k and

ceΣc
∗
e in (B.3.15) with

1

M δ
ckΣc

∗
k and

1

M δ
ceΣc

∗
e, respectively and change the rest of

the proof accordingly.

�

127



B.3.2 Proof of Corollary 3.4.3

Assume that the BS employs conjugate beamforming without loss of generality. Note

that from (B.3.23), we have following upper bound:

lim
M→∞

Rk = lim
M→∞

Td
T
E
[[

log

(
1

M
+ ρkvk(G)

)
− log

(
1

M
+ ρkwk(G)

)]+
]

=
Td
T
E
[

lim
M→∞

[
log

(
1

M
+ ρkvk(G)

)
− log

(
1

M
+ ρkwk(G)

)]+
]

(B.3.37)

where (B.3.37) follows from the dominant convergence theorem. To apply the domi-

nant convergence theorem, we need to show that random variable

g(M) ,

[
log

(
1

M
+ ρkvk(G)

)
− log

(
1

M
+ ρkwk(G)

)]+

is upper and lower bounded by random variables that have a finite limit for M > 1.

Note that g(M) is lower bounded by zero and upper bounded by

g(M) ≤
[
log

(
1

M
+ ρkvk(G)

)
− log

(
1

M
+ ρkwk(G)

)]+

≤ log (2 + ρkvk(G) + ρkwk(G))− log (ρkwk(G)) (B.3.38)

with probability 1 for any M > 1. Noting the analysis in (B.3.27)-(B.3.30), in order

to show (B.3.38) is upper bounded by a random variable that has a finite expectation,

it is sufficient to show the expectation of second log(·) term in (B.3.38) has a finite

lower bound. Hence,

E [log (ρkwk(G))] = log ρk + E [log (wk(G))]
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= log ρk + E [log (wk(G))]

= log ρk − logαk + E [log (KM)] (B.3.39)

≥ log ρk − logαk +

∫
log(x)pKM (x) dx

≥ log ρk − logαk +

∫ 1

0

log(x)pKM (x) dx

≥ log ρk − logαk +

∫ 1

0

log(x)r dx (B.3.40)

= log ρk − logαk − r log e

> −∞,

where r is defined in the statement of Corollary 3.4.3. In (B.3.39), the equality

follows from the definition of KM in Corollary 3.4.3 and from the fact that the joint

probability distribution of
(
He, Ĥk

)
is identical with that of

(
Hk, H̃k

)
. In (B.3.40),

the inequality follows from the assumption in Corollary 3.4.3. The rest of the proof

follows from Appendix B.3.1

The proof for the case the BS employs δ-conjugate beamforming follows from the

same argument at the end of Appendix B.3.1 �

B.4 Proof of Theorem 3.5.1

The length, Tr of training phase has to be identical to at least the size of the pilot

signal set L so that the BS can generate L ≥ K mutually orthogonal pilot signals.

Let J be any integer in set {1, . . . , Tr}. In order to estimate k-th user’s channel, the

BS first projects the received signal during the training phase Y Tr indicated in (3.5.1)

to φk. Then, the BS normalizes the projected signal and estimates the gain of the

channel connecting the BS to k-th user at i-th block as

Ĥk(i) = x1

(√
TrρrHk(i)
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+Πi

Me∑
n=1

√
Trρjam
MeJ

He(i) + Vk

)
(B.4.1)

for any k ∈ {1, . . . , K}, where E
[
||Ĥk(i)||2

]
= 1, Vk is distributed as CN (0, IM) for

any k ∈ {1, . . . , K}, x1 ,
1

√
M
√
Trρr + 1 + Tr

ρjam
J

and {Πi}i≥1 is an i.i.d Bernoulli

process, where P(Πi = 1) =
J

L
. Event {Πi = 1} indicates that the set of pilot signals

the adversary contaminates at i-th block contains k-th user’s pilot signal.

Utilizing stochastic encoding and conjugate beamforming as in the proof Theo-

rem 3.3.1, we can show that rate

Rk =

[
Td
T

log

(
1 +

Mρka

ρf + ρjam + 1

)
−Td
T

log

(
1 +Meρk +

MMeρkρjama

Lρr

)]+

(B.4.2)

for any k ∈ {1, . . . , K} is achievable, where a ,
Trρr

Trρr + 1 + Tr
ρjam
L

. Notice that the

rate in (B.4.2) does not depend on J . We can rewrite Rk as

Rk =

[
Td
T

log

(
1 +

MρkρrTr
(ρf + ρjam + 1)(ρrTr + ρjam + 1)

)
−Td
T

log

(
1 +Meρk +

MeMρkρjam
ρrTr + ρjam + 1

)]+

(B.4.3)

due to the fact that L = Tr. Suppose γ ≤ 1. We bound Rk as follows

Rk ≥
Td
T

[
log

(
1 +

MρkρrM
γ

(ρf + ρjam + 1)(ρrMγ + ρjam + 1)

)
− log

(
1 +Meρk +

MeMρkρjam
ρrMγ + ρjam + 1

)]+

(B.4.4)

≥Td
T

[
logM + log

(
ρkρr

(ρf + ρjam + 1)(ρr + ρjam + 1)

)
−(1− γ) logM − log

(
1 +Meρk +

Meρkρjam
ρr

)]+

=
Td
T

[
γ logM − log

((
1 +Meρk +

Meρkρjam
ρr

)
×(ρf + ρjam + 1)

ρr + ρjam + 1

ρkρr

)]+

(B.4.5)
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where (B.4.4) follows from the fact that Tr ≥Mγ. Notice that the second logarithm

term in (B.4.5) does not depend on M . Hence, we observe that
Rk

logM
≥ Td

T
γ − ε

if M ≥ G(ε). In a similar way, for γ > 1, we can show that
Rk

logM
≥ Td

T
− ε if

M ≥ G(ε).

B.5

B.5.1 Proof of Theorem 3.5.4

We set the size of the pilot signal set L to Tr. Let J be any integer in set {1, . . . , Tr}.

The BS uses the same strategy explained in the proof of Theorem 3.5.1 in order to

estimate the gains of channels connecting the BS to users.

The BS picks arbitrary message rates Rk > 0, k = 1, . . . , K. The equivocation

rate for a code
(
2BTR1 , . . . , 2BTRK , BTd

)
utilizing deterministic encoding mapping

functions, fk, k = 1, . . . , K and δ-conjugate beamforming is as follows:

1

BT
H
(
Wk|ZBTd , HB, ĤB, HB

e

)
≥ Rk −

Td
T

log

(
1 +

Meρk
M δ

+
M1−δMeρkρjama

Lρr

)
(B.5.1)

= Rk −
Td
T

log

(
1 +

Meρk
M δ

+
M1−δMeρkρjam
ρrTr + Tr + 1

)
(B.5.2)

≥ Rk −
Td
T

log

(
1 +

Meρk
M δ

+M1−δ−γMeρkρjam
ρr

)
(B.5.3)

for all k ∈ {1, . . . , K}, where a is defined in (B.4.2) and Ĥk(i) for any k ∈ {1, . . . , K}

and i ∈ {1, . . . , B} is given in (B.4.1). In the above derivation, (B.5.1) follows from

a derivation that is similar to (B.2.1)-(B.2.6) in Appendix B.2.1, (B.5.2) follows from

the fact the cardinality of pilot signal set L is chosen as Tr and (B.5.3) follows from

the fact that Tr ≥Mγ.

As δ + γ > 1, the RHS of (B.5.3) goes to zero as M → ∞. For any ε > 0,
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M ≥ S1(ε) implies that right hand side of (B.5.3) is smaller than ε, completing the

proof.

B.5.2 Proof of Corollary 3.5.5

We set the size of the pilot signal set L to Tr. Let J be any integer in set {1, . . . , Tr}.

The BS uses the same strategy explained in the proof of Theorem 3.5.1 in order to

estimate the gains of channels connecting the BS to users.

Pick δ and γ such that 0 < δ < 1 and γ + δ > 1. Pick any arbitrary ε > 0 and

arbitrary rate tuple R = [R1, . . . , RK ]. Choose M such that M ≥ max(V1(R), S1(ε)).

Note that inequality M ≥ V1(R) implies that Rk ≤
Td
T

log

(
1 +

M1−δρka

M−δρf + ρjam + 1

)
for all k ∈ {1, . . . , K}, where a is defined in (B.4.2). As in the proof of Corollary 3.3.5,

we can show that there existsB(ε) > 0 and a sequence of codes
(
2BTR1 , . . . , 2BTRK , BTd

)
that satisfy the decodability constraint in (3.2.10) forB ≥ B(ε), when δ-beamforming,

combined with deterministic mapping is used. In addition, since M ≥ S1(ε) and

Tr ≥ Mγ, following Theorem 3.5.4, the sequence of codes mentioned above satisfy

the constraint in (3.2.11), completing the proof.
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APPENDIX C: PROOFS IN CHAPTER 4

C.1 Properties of Common Information

The graphical representation of PXY is the bipartite graph with an edge between

x ∈ X and y ∈ Y if and only if PXY (x, y) > 0. The common part U of two random

variables (X, Y ) is defined as the (unique) label of the connected component of the

graphical representation of PXY in which (X, Y ) falls. Note that U is a deterministic

function of X alone and also a deterministic function of Y alone.

The Gács-Körner common information of two random variables (X, Y ) is given

by entropy of the common part, that is, C(X;Y ) := H(U), and has the operational

significance of being the maximum number of common bits per symbol that can be

independently extracted from X and Y [48]. In general, C(X;Y ) ≤ I(X;Y ), with

equality if and only if X → U → Y forms a Markov chain [58]. Since our results

are only concerned with whether C(X;Y ) = I(X;Y ), our theorem statements are

unchanged if we use instead the Wyner notion of common information (see [47]), since

it is also equal to mutual information if and only if X → U → Y forms a Markov

chain [58].

We give the following lemma which aids our proof of Theorem 4.4.3 in Ap-

pendix C.4.

Lemma C.1.1. If C(X;Y ) 6= I(X;Y ), then there exist x0, x1 ∈ X and y0, y1 ∈ Y,

such that y0 6= y1, PXY (x0, y0) > 0, PXY (x0, y1) > 0, and PX|Y (x1|y0) 6= PX|Y (x1|y1).
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Proof. We will prove this lemma by showing the contrapositive, that is, if there does

not exist x0, x1 ∈ X and y0, y1 ∈ Y satisfying the conditions stated in the lemma,

then C(X;Y ) = I(X;Y ). First, note that if for all x0 ∈ X and y0, y1 ∈ Y , either

y0 = y1, PXY (x0, y0) = 0, or PXY (x0, y1) = 0, then Y is a deterministic function of X,

which would result in C(X;Y ) = I(X;Y ). Thus, we are left with showing that for all

x0 ∈ X and y0, y1 ∈ Y , with y0 6= y1, PXY (x0, y0) > 0, and PXY (x0, y1) > 0, if we also

have that for all x1 ∈ X , PX|Y (x1|y0) = PX|Y (x1|y1), then C(X;Y ) = I(X;Y ). This

follows since these conditions would imply that for the common part U of (X, Y ),

X → U → Y forms a Markov chain. �

C.2 Proof of Theorem 4.4.1

It is sufficient to show that for any mechanism PZ|X that is a feasible solution in the

inference optimization of (4.2.6), there is a corresponding mechanism PZ′|Y for the

output perturbation optimization of (4.2.5) that achieves the same distortion and

only lesser or equal privacy-leakage.

Let PZ|X be a mechanism in the feasible region of the inference optimization

problem of (4.2.6). Define the corresponding mechanism for the output perturbation

optimization of (4.2.5) by

PZ′|Y (z|y) :=
∑
x∈X

PZ|X(z|x)PX|Y (x|y).

Let (X, Y, Z, Z ′) ∼ PXY PZ|XPZ′|Y . Note that by construction, (Y, Z) and (Y, Z ′) have

the same distribution PY PZ′|Y . Thus, both mechanisms achieve the same distortion

D(PY PZ′|Y ) and I(Y ;Z) = I(Y ;Z ′). Further, by construction, Y → X → Z and

X → Y → Z ′ form Markov chains. Thus, by the data processing inequality,

I(X;Z ′) ≤ I(Y ;Z ′) = I(Y ;Z) ≤ I(X;Z),
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showing that the output perturbation mechanism has only lesser or equal privacy-

leakage.

C.3 Proof of Theorem 4.4.2

Since πFD(δ) ≤ πOP(δ) is immediate, we only need to show that πOP(δ) ≤ πFD(δ).

It is sufficient to show that for any mechanism PZ|XY that is a feasible solution in

the full data optimization of (4.2.4), there is a corresponding mechanism PZ′|Y for

the output perturbation optimization of (4.2.5) that achieves the same distortion and

only lesser or equal privacy-leakage.

Let PZ|XY be a mechanism in the feasible region of the full data optimization

problem of (4.2.4). Define the corresponding mechanism for the output perturbation

optimization of (4.2.5) by

PZ′|Y (z|y) :=
∑
x∈X

PZ|XY (z|x, y)PX|Y (x|y).

Let (X, Y, Z, Z ′) ∼ PXY PZ|XY PZ′|Y , and let U be the common part of (X, Y ), where,

by construction, U is a deterministic function of either X alone or Y alone. Since

C(X;Y ) = I(X;Y ), we have that X → U → Y forms a Markov chain, i.e.,

I(X;Y |U) = 0. By construction, X → Y → Z ′ also forms a Markov chain, and

hence I(X;Z ′|UY ) = I(X;Z ′|Y ) = 0, since U is deterministic function of Y . Given

these two Markov chains, we have

0 = I(X;Y |U) + I(X;Z ′|UY )

= I(X;Y Z ′|U)

= I(X;Z ′|U) + I(X;Y |UZ ′)

≥ I(X;Z ′|U),
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and hence I(X;Z ′|U) = 0, i.e., X → U → Z ′ also forms a Markov chain. Continuing,

we can show the desired privacy-leakage inequality,

I(X;Z ′)
(a)
= I(XU ;Z ′)

= I(U ;Z ′) + I(X;Z ′|U)

(b)
= I(U ;Z)

≤ I(U ;Z) + I(X;Z|U)

= I(XU ;Z)

(c)
= I(X;Z),

where (a) and (c) follow from U being a deterministic function of X, and (b) follows

from the fact that PY Z = PY Z′ (and hence PUZ = PUZ′) by construction and the

Markov chain X → U → Z ′.

C.4 Proof of Theorem 4.4.3

We will show the following result, which is key to the proof.

Lemma C.4.1. If C(X;Y ) 6= I(X;Y ) then there exist random variables Z and Z ′

with PY Z = PY Z′, such that X → Y → Z ′ forms a Markov chain, I(X;Z) = 0, and

I(X;Z ′) > 0.

The proof of Theorem 4.4.3 then follows by defining the distortion functional

(metric) D(PY Z) to equal 1 for the particular choice of PY Z′ in Lemma C.4.1 and

to equal 2 otherwise, and choosing δ = 1. This choice for the distortion metric and

distortion level restricts the feasible output perturbation mechanism to only PZ′|Y ,

which by Lemma C.4.1 results in πOP (δ) = I(X;Z ′) > 0. However, Lemma C.4.1

also ensures the existence of Z produced by a full data mechanism PZ|XY that results

in πFD(δ) = I(X;Z) = 0.
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Using the symbols (x0, x1, y0, y1) shown to exist by Lemma C.1.1, we can prove

Lemma C.4.1 by constructing a binary Z with alphabet Z = {0, 1} as follows. Choose

any s ∈ (0, 1) and any t ∈
(
0,min{s′/PY |X(y1|x0), s/PY |X(y0|x0)}

)
, where s′ :=

(1− s). Define Z with (X, Y, Z) ∼ PXY PZ|XY , where

PZ|XY (0|x, y) :=


s+ tPY |X(y1|x0), if (x, y) = (x0, y0),

s− tPY |X(y0|x0), if (x, y) = (x0, y1),

s, otherwise.

The choice of s and t ensures that PZ|XY (0|x, y) ∈ (0, 1) for all (x, y) ∈ X × Y . This

construction of PZ|XY makes Z independent of X, since for all x ∈ X in the support

of PX ,

PZ|X(0|x) =
∑
y∈Y

PZ|XY (0|x, y)PY |X(y|x) = s.

With the above construction, we have

PZ|Y (0|y) =
∑
x∈X

PZ|XY (0|x, y)PX|Y (x|y)

=


s+ tPY |X(y1|x0)PX|Y (x0|y0), if y = y0,

s− tPY |X(y0|x0)PX|Y (x0|y1), if y = y1,

s, otherwise.

Next, we construct binary Z ′ such that X → Y → Z ′ forms a Markov chain, with

(X, Y, Z ′) ∼ PXY PZ′|Y , where we set PZ′|Y := PZ|Y . Then, consider

PZ′|X(0|x) =
∑
y∈Y

PZ′|Y (0|y)PY |X(y|x)

=
∑
y∈Y

PZ|Y (0|y)PY |X(y|x)

= s+ tPY |X(y1|x0)PX|Y (x0|y0)PY |X(y0|x)
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− tPY |X(y0|x0)PX|Y (x0|y1)PY |X(y1|x)

= s+ tPX(x0)PY |X(y0|x0)PY |X(y1|x0)

× [PX|Y (x|y0)− PX|Y (x|y1)]/PX(x).

Finally, we show that PZ′|X(0|x) is not constant for all x ∈ X in the support of

PX , which implies that Z ′ is not independent of X, i.e., I(X;Z ′) > 0. This can be

proved by contradiction, by supposing that PZ′|X(0|x) is constant for all x ∈ X in

the support of PX . Then, for all x ∈ X ,

PX|Y (x|y0)− PX|Y (x|y1) = cPX(x),

for some constant c. By summing over all x ∈ X , we have that c = 0. This would

imply that PX|Y (x|y0) = PX|Y (x|y1) for all x ∈ X , contradicting the existence of

x1 ∈ X given by Lemma C.1.1 for the choice of y0 and y1.
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