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Abstract

A large portion of cold atom researches have been devoted to finding novel systems

by taking advantage of the high manipulability of cold atom experiments. From the origi-

nal Bose-Einstein condensates, to the recent realization of Harper-Hofstadter models, cold

atoms have kept feeding the world with surprises of realizing systems that were once

thought to be purely theoretical constructions. Such trend of research have propelled this

thesis to seek for possible new physics based on current cold atom technologies, and to

discuss its unique properties.

In the first part, we will discuss the local spin ordering for systems made of large spin

fermions. This is a generalization of the usual magnetic ordering for spin-1/2 systems, and

we shall see that the large spin characters have made qualitative difference. Here we provide

a general tensorial classification for fermionic systems of arbitrary spin, and discussed

their general character and associated topological defects in the Majorana representation.

We have also identified a series of highly symmetric “Platonic solid states” that are stable

against perturbations, and have good chance of being observed in experiments.

The second part focuses on another topic, which is the effects of background manifold

on the quantum systems residing on it. We will first examine the vortex physics for Bose

condensates confined on non-trivial 2D surfaces with synthetic gauge fields. In particular,

we discuss in detail the cylindrical surface as an example where two types of vortices and a

peculiar “necklace” pattern show up as a result of the confining geometry. Then we discuss
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the topic of Hall viscosity, a unique dissipationless viscosity coefficient that is related to

the adiabatic change of space geometry. We relate it to the density response of a system,

and therefore provide an alternative way to compute and measure such a quantity.
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Chapter 1: GENERAL INTRODUCTION

The past two decades have witnessed the blossom of cold atom researches. Since the

production of Bose-Einstein condensate in 1995 [2] — 70 years after its prediction by Ein-

stein — a sequence of novel systems have been realized in cold atom laboratories. For

instance, the crossover from weakly interacting Bardeen-Cooper-Schrieffer (BCS) pairing

of fermions to the Bose-Einstein condensation (BEC) of tightly bound molecules was ob-

served in 2004 [3–5]. It bridges two fundamental statistics, the bosonic and fermionic ones,

and shows that they are two limits in a smooth crossover when one tunes the interaction in

a system. Optical lattices for atoms [6, 7], which resembles the lattice potentials for elec-

trons in solids, allows for simulation and engineering of a wide range of crystal structures

in a well-controlled and tunable way. In the past few years, there has been another wave of

research on topological insulating phases of matter in cold atom systems. The unique char-

acter of cold atom systems enables the engineering of a wide range of topological systems

in a clean way, and also allows for the measurement of quantities that are hard to access in

solid state systems, such as the Berry curvature with momentum resolution in the Brillouin

zone [8, 9].

Such developments benefit from the high tunability of cold atom experiments. For in-

stance, as composite particles, atoms interact with each other through multi-channel scat-

tering, and such scattering will depend on the atomic levels. By applying magnetic fields,
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the atomic levels are changed due to Zeeman effects, and the interaction strength are cor-

respondingly changed. Such an idea have led to the development of “Feshbach resonance”

that allows one to smoothly tune the interactions by changing magnetic fields, and there-

fore to study the BCS-BEC crossover. Besides the atom-atom interactions, the atom-laser

interactions are also heavily exploited to engineer different systems. For example, optical

lattices are produced by the interference pattern of laser beams; therefore, by changing

the wavelength and intersection angles of laser beams, lattices of different geometries can

be obtained (i.e. square lattice [6, 7], triangular lattice [10], honeycomb lattice [11, 12], a

continuous crossover from triangular to honeycomb lattice [13], and kagome lattice [14]).

Also, through a 2-photon obsorption-emission process (Raman process), the phases of hop-

ping constants can be tuned [15–17], and therefore allowing for engineering of topological

bands. Exploiting the manipulability of cold atom experiments to engineer and investigate

new physical systems have been fruitful in the past, and have propelled this thesis to fur-

ther investigate two topics: the high spin physics for fermions, and the effects of non-trivial

background manifolds on quantum systems living in it. More extensive introductions will

be provided in following chapters regarding each topic, while we outline the topic for each

chapter below, and briefly relate them to the current trend of research in the fields.

Very soon after the advent of optical trap, it was realized that without the freezing of

spin degree of freedom by magnetic field, the spin interactions will play a significant role

in determining the ground state structures [18, 19]. A large amount of theories and experi-

ments have been done since 1998 regarding BEC with large spin (dubbed “spinor conden-

sate”), where rich physics of topological defects as well as dynamical phenomena emerge

along with BEC of different spins and interactions. (For reviews, see [20, 21]). In com-

parison, due to the experimental difficulties in obtaining fermionic superfluids of large spin
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characters [22], large spin fermions have not received as much attention as their bosonic

counterparts in the past. However, in recent years, there has been an emergence of interest

in large spin fermionic systems regarding their spin structures [23] and dynamics [24,25] in

normal (non-superfluid) state. It was found that although a long-range ordering is absent,

the fermionic systems exhibits collective behaviors of large spin characters due to spin in-

teractions. More recently, a class of “SU(N)” fermionic atoms, such as ytterbium [26] and

strontium [27], have been successfully trapped and cooled in laboratories. These elements

feature an interaction of high symmetry, so each spin component is completely indistin-

guishable from the other, leading to an SU(N) symmetry of the system. Such experimental

successes have propelled a wave of interests in studying fermionic systems in the normal

states regarding their spin structures and spin dynamics. Most of the current theoretical

works concern systems of a specific spin [28–33]. Therefore, both out of theoretical com-

pleteness and the need for guiding future experiments using other elements, it is desirable

to provide a road-map for the properties of high spin fermions of arbitrary spin. Due to such

considerations, we discuss in Chapter 2 a general scheme to analyse fermionic systems with

arbitrary spin, focusing on their local spin structures.

Chapter 3 and 4 are devoted to a separate topic, which is the quantum systems on non-

trivial manifolds. The research on the effects of background manifold has a long-standing

history in physics, most well-known in the study of general relativity and quantum gravity.

For quantum fluids, such research can be dated back to the study of topological defects

in 3He and 4He in 1970s, where the surface of the container for liquid helium could func-

tion as a curved two-dimensional surface [34, 35]. More recently, it was found that local

Gaussian curvatures could lead to intriguing physical phenomena in a system. For instance,
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in thin films for biological systems, there has been extensive study of vortices experienc-

ing effective force induced by the Gaussian curvature (for a review, see [36]). Also, in

graphene, it was found that straining the system would lead to effective gauge fields in the

system [37]. Theoretically, an intriguing study around 1990 showed that the topological

order of a quantum system can be introduced when the system is placed on manifolds of

high genus [38–40]. The resulting concept of the “Hall viscosity” was observed in photonic

system in 2015 [41]. Such trend of research has propel the study in Chapter 3 of ultracold

quantum gases confined in curved surfaces, and in Chapter 4 of revealing the signature of

Hall viscosity in density response signatures.
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Chapter 2: LOCAL SPIN ORDER FOR LARGE SPIN FERMION

SYSTEMS

2.1 Introduction

Prior to the laboratory realization of Bose-Einstein condensates [2], the only quantum

liquids realized in materials are the electron liquids in solids, and the low temperature

phases of liquid 4He and 3He. All these systems are made up of spin-1/2 fermions (like

electrons and 3He atoms), or spin-0 scalar bosons (4He atoms). Bosonic excitations medi-

ating the interactions could have slightly higher spins, such as the spin-1 photons mediat-

ing electromagnetic interactions, and the spin-2 gravitons that conducts gratitational force.

From the limited pool of conventional examples, people have already felt the profound

influence of having different spins for the particles in a system. Besides distinguishing

statistics for bosonic and fermionic systems, having larger spin not only makes quantitative

but also qualitative difference. A simple example is the cosmic “B-mode” in the cosmic

microwave background. As a spin-2 object, gravitons are capable of inducing a unique ten-

sorial perturbation – called “B-mode” – to the cosmic microwave background (CMB). It

differs qualitatively from other perturbations induced by lower spin objects, such as spin-1

bosonic photons or spin-1/2 fermions, and consists of a fingerprint of gravitational effects

on the CMB. Clearly, a whole host of new physics is pending discovery if a system made

of higher spins are realized, especially in a controllable way.

5



Recent advances in cooling atomic gases to quantum degeneracy have created an ex-

citing opportunity to study the high spin quantum fluids. Here by “spin”, it refers to the

“hyperfine spin”

F = L + S + I, (2.1)

that is a sum of electronic angular momentum L and spin S, as well as nuclear spins I

in an atom. The spin degree of freedom is described by | f m〉, an eigenstate of the spin

operators (F2, Fz). In weak magnetic fields where the Zeeman effect is small, the ground

state consists of almost degenerate states of fixed f and m = − f ,− f + 1, . . . , f . Up to date,

the spins of atomic bosons trapped in experiments can range from f = 1, 2 (87Rb bosons) to

f = 8 (162Dy bosons) [42], and those of fermions can be as high as f = 21/2 (161Dy) [43].

Several examples of experimentally realized large spin systems are provided in Table 2.1.

(One can also check [44] for an updated list of global cold atom experimental groups and

the species of atoms they use).

Table 2.1: Examples of bosonic atoms and their hyperfine spins
Element Spin- f Group

7Li 1, 2 Many
23Na 1, 2 Many
41K 1 Many

87Rb, 87Rb 1, 2 Many
52Cr 3 Tilman Pfau, Stuttgart [45]
168Er 6 R. Grimm, Innsbruck, Austria [46]
164Dy 8 B. Lev, Stanford [47]

For Bose condensation and fermion pairing, there have been theoretical generalizations

to high spin particles [18] [22] [19]. While there are many experiments on large spin Bose
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Table 2.2: Examples of fermionic atoms and their hyperfine spins
Element Spin- f Group

132Cs 3/2 respectively Many
134Cs 7/2
136Cs 9/2

40K 9/2 Many
87Sr 9/2 J. Ye, JILA, Colorado [27]

173Yb 5/2 L. Fallani, Florence [26]
161Dy 21/2 B. Lev, Stanford [48]

condensates (or spinor condensates), experiments on large spin fermions are still at their

infancy. At present, there is no realization of the superfluid phases of large spin fermions

because of their very low transition temperatures. On the other hand, scatterings in different

angular momentum channel and dipolar effects can lead to non-trivial spin structures in the

normal state, which can be realized at higher temperatures. For instance, they are revealed

by the spin dynamics of 40K fermions in the presence [24] or absence [25] of optical lattices,

as well as by the formation of the spatial spin structure (spin wave) [23]. Theoretically, the

possibility of rich spin structures for high spin fermions has already been illustrated in the

cases of spin-3
2 fermions [28] [29], and alkali earth fermions with SU(N) symmetry [49].

The case of spin-3/2 fermions is very illuminating. By simply changing the spin value from

1/2 to 3/2, the system immediately gains a rich SO(5) symmetry. Such experimental and

theoretical progresses have motivated the investigation in this thesis on the spin ordering of

large spin fermionic systems, in the absence of superfluid orders.

In the following, we shall discuss the spin structure of spin- f fermions in the normal

state by analyzing their single particle density matrices. We shall show that these density

matrices can be decomposed into different angular momentum components, L = 0, 1, ..., 2 f

7



made up of a particle and a hole. We then show that each L-component can be represented

by L pairs of antipodal points (or Majorana points) on a sphere. From the single particle

density matrix, one can see that the L = 0 component is the average density, and the

L > 1 components describe the spin structure of the system. The entire spin structure is

then specified by a sequence of 2 f spheres with 1, 2, ..., 2 f pairs of antipodal Majorana

points respectively. To illustrate the special properties of these spin structures, we shall

study the class of inert states [50] which are robust against perturbations. We show that

many of these inert states have the symmetry of Platonic solids and will have non-abelian

line defects. Furthermore, we shall perform mean field calculations to demonstrate the

emergence of these inert states.

2.2 Symmetry Classifications

2.2.1 Bosonic Spinor Condensate and Ferminoic Pairing

Before discussing local spin ordering, we review basic concepts about rotations in quan-

tum systems. Also, we make some connections to previous works on the Bose-Einstein

condensates of large spin boson, as well as pairing of large spin fermions.

Let ψ̂m(r) denote the field operator that destroys a particle with spin component m.

Under rotation, the field operator ψ̂m(r) transforms as

ψ̂m → D( f )
mm′(θ) ψ̂m′ , (2.2)

where the rotation matrix reads

D( f )
mm′ = 〈 f m|e−iF·θ| f m′〉, (2.3)

with F the spin operator satisfying

[Fµ, Fν] = iεµνρFρ, (2.4)
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and | f m〉’s are the eigenvectors of spin operators (F2, Fz). For spin- f bosons, its condensate

(known as spinor condensates) is a (2 f + 1) component vector [18, 19],

Ψm(r) = 〈ψ̂m(r)〉, m = f , f − 1, .. − f . (2.5)

Then it is clear that the order parameter also transforms as a vector

Ψm →
∑
m′

D( f )
mm′Ψm′ . (2.6)

For fermion superfluids, we can decompose the pairing order parameter

Ψmn(r) = 〈ψ̂m(r)ψ̂n(r)〉, m, n = f , f − 1, . . . ,− f (2.7)

into sectors of total angular momentum |FM〉,

(
∆

(F)
M

)
mn

(r) =
∑
FM

〈FM| f m, f n〉Ψmn(r), (2.8)

where 〈FM| f m1, f m2〉 is the Clebsch-Gordon coefficients [51] for the addition of angular

momentums. Then ∆
(F)
M also transforms under rotation like a spin-F spinor condensate [22],

∆
(F)
M → D(F)

MM′∆
(F)
M′ . (2.9)

Much of the symmetry properties in the spinor condensates and fermion pairing systems

have been studied in the past decade [52].

2.2.2 Local Spin Ordering

Here we focus on the local spin order of a Fermi gas, which is contained in the single

particle density matrix ρm1m2 = 〈ρ̂m1m2〉,

ρm1m2(r) = 〈ψ̂†m2
(r)ψ̂m1

(r)〉. (2.10)
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We clarify that by “local” order it means we are not considering correlations between dif-

ferent points, i.e. 〈ψ̂(r)†ψ̂(r′)〉. However, the local order ρ(r) itself can be non-uniform in

space, for instance in the presence of spin textures or spin density waves. We will return

to this point later when discussing topological defects. To lighten notations, we shall now

temporarily suppress the spatial coordinate.

Under a spin rotation θ, the field operator rotates as in Equation (2.2), so the density

matrix transforms as

ρm1m2 → D( f )
m1m3

(θ) ρm3m4 D( f )†
m4m2

(θ), (2.11)

where repeated indices are summed over. Here we employ the rotation matrix (2.3) with

the hermitian conjugate D( f )†
mm′(θ) = 〈 f m|eiθ·F| f m′〉. F is the spin operator for spin- f particles

and | f m〉 is the eigenstate of (F2, Fz).

To sort out the spin structure of ρm1m2 , we decompose it in terms of tensor operators

of different total angular momenta (made up of a particle-hole pair). This is achieved by

introducing a (2 f + 1) × (2 f + 1) matrix,

(
Y (L)

M

)
m1m2
≡

√
2L + 1
2 f + 1

〈 f m1|LM; f m2〉, (2.12)

where 〈 f m1|LM; f m2〉 is the Clebsch-Gordon coefficient. It has the important property that

it transforms under rotation as

D( f )
m1m2

(θ)
(
Y (L)

M

)
m2m3

D( f )†
m3m4

(θ) =
∑
M′

(
Y (L)

M′

)
m1m4

D(L)
M′M(θ). (2.13)

Thus, (Y (L)
M )m1,m2 is a tensor operator [53] (with angular momentum L) in the spin- f space.

We can then expand ρm1m2 as

ρm1m2 =

2 f∑
L=0

L∑
M=−L

Φ
(L)
M (Y (L)

M )m1m2 . (2.14)

10



To simplify notation, we will sometimes omit (m1m2) for (Y (L)
M )m1m2 and ρm1m2 , and treat

these objects as matrices Y (L)
M and ρ with m1,m2 being regarded as indices of the matrix.

Since the Clebsch-Gordon coefficients are real numbers, so is (Y (L)
M )m1m2 . That means Y (L)†

M =

Y (L)T
M , where † and T means hermitian conjugate and transpose of the matrix. Since the

Clebsch-Gordon coefficients satisfy [53]

Y (L)†
M = (−1)MY (L)

−M, TrY (L)
M Y (L′)†

M′ = δLL′δMM′ . (2.15)

we have

Φ
(L)
M = Tr

(
ρY (L)†

M

)
. (2.16)

From the rotational properties in Eqn (2.11) and (2.13), it is easy to see that the vector

Φ(L) ≡ (Φ(L)
−L, . . . ,Φ

(L)
L )T (2.17)

transforms as a spin-L vector in spin space,

Φ
(L)
M → Φ

′(L)
M =

∑
M′

D(L)
MM′Φ

(L)
M′ . (2.18)

Another convenient way to represent this transformation property is to regard Φ
(L)
M ’s as the

expansion coefficients of a abstract spin state |Φ(L)〉 in the angular momentum basis |L,M〉,

|Φ(L)〉 =

L∑
M=−L

Φ
(L)
M |LM〉. (2.19)

The rotation property of |Φ(L)〉 immediately gives Eqn.(2.18). Note that not all Φ
(L)
M in |Φ(L)〉

are independent. The fact that ρ is hermitian implies that

Φ
(L)∗
M = (−1)MΦ

(L)
−M. (2.20)

This means Φ(L) is specified by 2L + 1 independent real variables.
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To connect with current literatures, it is worth mentioning an equivalent decomposi-

tion [22–25]. That will employ the tensor operator Ỹ (L)
M (F) satisfying the similar transform

property (2.13), where F is spin operator. The way to construct it is to first multiply the stan-

dard spherical harmonic function with radial coordinate r: rLỸ (L)
M (θ, ϕ), and then express it

in terms of Cartesian coordinates x, y, z. Finally, we replace x, y, z with spin operators

Fx, Fy, Fz respectively. Since the solution to (2.13) is unique, the two objects Y (L)
M and Ỹ (L)

M

must be equivalent. Indeed, we show in the appendix Sec.2.7.3 the specific proportionality

relation [
Ỹ (L)

M

]( f )

µν
= (−1)L

√
(2 f + L + 1)!

4π22L(2 f − L)!

(
Y (L)

M

)( f )

µν
. (2.21)

We adopt Y (L)
M in Equation (2.12) here for the convenience of later analysis.

Finally, taking the trace of the expansion in Eqn. (2.14), we have

Φ(0) = n/(2 f + 1). (2.22)

where we have made use of the fact that

TrY (L)
M = 0, for L ≥ 1. (2.23)

To show Eq.(2.23), we take the Trace of Eqn.(2.13). This gives TrY (L)
M = TrY (L)

M′ D
(L)
M′M(θ) for

all L ≥ 1 and all θ, which can only be satisfied if Eqn.(2.23) is valid. Because of Eqn.(2.22),

one sees that the non-trivial spin structures are given by the traceless part of ρ,

ρ̃mn ≡ ρmn −
n

2 f + 1
δmn. (2.24)

Although Φ(L) is formally similar to a spin-L spinor condensate, it has very different

meaning. From Wigner-Eckart theorem (or from the relation (2.21), we note that Y (L)
M is

proportional to a product of L spin operators F in spin- f space. Thus, Φ(1) and Φ(2) are

proportional to a single and to a product of two F operators respectively, and thus represent
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ferromagnetic and nematic order respectively in spin- f space. The vectors Φ(L) for L ≥ 1

will be referred to as the L-th sector of spin order. All L = 1, 2, . . . , 2 f sectors are contained

in the traceless part of ρ̃.

2.2.3 Majorana Representation on a Bloch Sphere

To gain further insight, we express each sector of ordering |Φ(L)〉 in Majorana represen-

tation as a set of 2L points (referred to as Majorana points) on the unit sphere S 2 [54–60].

To accomplish it, we use the Schwinger boson representation of angular momentum states,

|LM〉 =
a†L+Mb†L−M

√
(L + M)!(L − M)!

|0〉, (2.25)

where a and b are boson operators, and (a, b)T transform as a spin-1/2 spinor [61]. A

general state of the form Eqn.(2.19) can then be factorized as

|Φ(L)〉 = λ(L)
2L∏
i=1

(u(L)
i a† + v(L)

i b†)|0〉, (2.26)

where λ(L) is a constant, and ζ(L)
i ≡ (u(L)

i , v(L)
i )T is a normalized spinor

|u(L)
i |

2 + |v(L)
i |

2 = 1. (2.27)

Equation (2.26) follows from the fundamental theorem of algebra which implies a ho-

mogenous polynomial P(x, y) =
∑L

M=−L αM xL+MyL−M can be factorized to 2L linear terms

P(x, y) = λ
∏2L

i=1(uix + viy).

To simplify notations, we shall suppress the superscript (L) when we discuss a specific

L component. It will be reinstated when needed. Using the standard representation for a

spinor

ζ = (u, v)T ≡ (cos
θ

2
e−iφ/2, sin

θ

2
eiφ/2)T eiχ/2, (2.28)

we have

ζ†~σζ = n̂ = cosθẑ + sinθ(cosφx̂ + sinφŷ). (2.29)
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Hence each ζi in Eqn.(2.26) can be represented as a point on the unit sphere S 2 in the

direction n̂i with polar angle (θi, φi). Note that all the phases χi absorbed into the constant

λ.

However, the n̂i are not independent, as Eqn.(2.20) implies that Eqn.(2.26) can be

rewritten as

|Φ(L)〉 =
L∑

M=−L

Φ
(L)∗
M√

(L+M)!(L−M)!
b†L+M(−a†)L−M |0〉

= λ∗
∏2L

i=1(u∗i b† − v∗i a†)|0〉, (2.30)

where we have suppressed the superscript (L). Eqn.(2.30) shows that the spinors ζi in

Eqn.(2.26) must be accompanied by its time reversed partner −iσ2ζ
∗
i = (−v∗i , u

∗
i ). There-

fore, the 2L vectors n̂i must appear in terms of antipodal pairs (n̂i,−n̂i) ≡ [n̂i]. It is then

sufficient to represent each pair by only one of its members. The presence of antipodal

pairs implies Eqn.(2.26) is of the form

|Φ(L)〉 = λ(L)
L∏

i=1

(−uiv
∗
i a†2 + (|ui|

2 − |vi|
2)a†b† + u∗i vib

†2)|0〉

=
λ(L)

2

L∏
i=1

(
sin θieiφib†2 − sin θie−iφia†2 + cosi θia†b†

)
|0〉,

(2.31)

with λ(L)∗ = λ(L) because of Eqn.(2.20). The (2L+1) real variables of Φ(L) is now represented

by the L unit vectors n̂i and a real number λ(L). In equilibrium, different λ(L)’s are correlated

to minimize the energy.

In summary, we have decomposed the non-trivial traceless part of the density matrix

ρ̃m1m2(r), which represent local spin order into various spin-L vectors Φ(L), where L =

1, 2, . . . 2 f . Each Φ(L) is represented by L antipodal pairs of points on a spherical surface,
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whose radius λ(L) represents the strength of the L-sector of spin order. In the following, we

discuss the properties of the local spin order in each L-sector.

2.3 Topological defects

Figure 2.1: Ferromagnetic order Φ(1) represented the Majorana pair [n̂] ≡ (n̂,−n̂). [n̂] and
[−n̂] are distinct.

For L = 1, the ferromagnetic order, there is only one pair of Majorana points [n̂]. (See

Fig. 2.1). Since n̂ can be in any direction, the configurational space is the unit sphere S 2.

Note that [n̂] and [−n̂] are distinct because |Φ(1)〉:

|Ψ(1)〉 = λ(−
1
2

sinθe−iφa†2 + cosθa†b† +
1
2

sinθeiφb†2)|0〉 (2.32)

becomes −|Φ(1)〉 as n̂ changes continuously to −n̂. That is |Φ(1)〉 → −|Φ(1)〉 as θ → π − θ,

φ→ φ + π. Since the first homotopy group of S 2 is trivial, (π1(S 2) = 0), the ferromagnetic

sector (L = 1) of spin ordering {Φ(1)
M (r)} has no topologically stable line defects [62].

For L = 2, the nematic order, there are two Majorana pairs [n̂][m̂]. If n̂ = ±m̂, the

system is uniaxial nematics characterized by a single antipodal pair on the unit sphere with

each pole doubly occupied. (See Fig. 2.2). Unlike L = 1, where [n̂] and [−n̂] are distinct,
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Figure 2.2: Uniaxial nematic state Φ(2) represented by two identical Majorana pairs: It has
the symmetry of a rod. [n̂][n̂] and [−n̂][−n̂] are identical.

the states [n̂][n̂] and [−n̂][−n̂] are identical, as they correspond to the same state

|Φ
(2)
uni〉 = λ(ua† + vb†)2(−v∗a† + u∗b†)2|0〉. (2.33)

(Note that ([n̂][−n̂] = −[n̂][n̂]). The configuration space is therefore S 2 with antipodal

points identified, which is the projected space P2. Since π1(P2) = Z2, there is only one type

of nontrivial line defect.

Figure 2.3: Biaxial nematic state Φ(2) with two distinct Majorana pairs: The quantum state
is invariant under π rotation about n̂× m̂, n̂ + m̂, n̂− m̂. It has the symmetry of a brick with
different edge lengths.
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If n̂ , ±m̂, it is straightforward to show that |Φ(2)〉 is unchanged only under a π rotation

along the orthogonal axes n̂ × m̂, n̂ + m̂, and n̂ − m̂. The system has two distinct antipodal

pairs, [n̂] and [m̂]. Choosing the z-axis along n̂ × m̂, the polar angles of n̂ and m̂ are

(π/2, φ1) and (π/2, φ2) respectively. The corresponding quantum state is

|Φ
(2)
bi⊥〉 =

λ

4
(−e−iφ1a†2 + eiφ1b†2)(−e−iφ2a†2 + eiφ2b†2)|0〉, (2.34)

which is unchanged under a π-rotation about ẑ when changing φi to φi + π. Next, if we

choose the z-axis along n̂ + m̂, and the x-axis along n̂ − m̂, the polar angles of n̂ and m̂ are

then (θ, 0) and (θ, π) respectively. The corresponding state is

|Φ
(2)
bi‖〉 =

λ

4
(−sinθ[a†2 + b†] + 2cosθa†b†)(sinθ[a†2 + b†] + 2cosθa†b†)|0〉. (2.35)

This state is also invariant under a rotation of π about ẑ, which changes a† to −ia†, b† to

ib†. The system is therefore a bi-axial nematics, and has nonabelian line defects [62].

For L ≥ 3, there will be more pairs of Majorana points. A simple situation is that all

pairs locate at the same position, as what happens for uniaxial nematics. The discussions

above show that for odd and even L, the configuration space is S 2 and P2 respectively. In

general, the pairs of points can distribute arbitrarily, forming the vertices of an irregular

polygon, as those in Fig. 1 (e). The fact that the Majorana points must appear in antipodal

pairs forbids the polygon to have tetrahedral symmetry, as shown in (Fig.1 (iv)). This is

different from the situation in bosonic spinor condensates where tetrahedral symmetry is

allowed in the case when spin f ≥ 2 [55].

Of particular interests are the cases when the Majorana points are distributed in high

symmetry, such as the Platonic solids shown in Fig. (c) (d) (f) (g), which are cube, octahe-

dron, icosahedron, and dodecahedron respectively. The symmetry groups of (c) and (d) is
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Figure 2.4: A fermionic system with spin- f can possess structures represented by Platonic
solids (octahedron, cube, icosahedron and dodecahedron respectively) consisting up to 4 f
vertices. The high-spin analogue of spin texture as in spin-half cases will be made of
polygons with different orientations.

the ocatahedral group O, and that for (f) and (g) is icosahedral group Y . These states be-

long to the class of “inert states” whose structures (i.e. distribution of Majorana points) are

independent of interaction parameters [63]. These states, if present, must therefore occupy

a finite region in parameter space, and have a good chance of being observed. We show

in the next section through a mean field calculation that all these Platonic solids states can

arise from spin exchange interaction [18].

As mentioned before, the spin order is specified by the set of vectors {Φ(L)} with L =

1, 2, ..2 f . In general, when dipolar interaction is taken into account, these vectors (and their

corresponding Majorana points in S 2) will vary in space, forming a spin texture in each L-

sector. The general behavior of these spin textures {Φ(L)(r)} is illustrated in Figure 1 (1-7)

for the case of f = 7/2. The figure displays the spin orders |Φ(L)(x)〉 along a loop C in real

space, which can be represented as a straight line along x with end points identified. The

entire set of spin order {Φ(L)(x), L = 1, 2, ..2 f } is represented as an array of 2 f spherical

surfaces with radius |λ(L)(x)| and L pairs of antipodal Majorana points. One can recall that

the spin texture in spin-1/2 systems corresponds to a rotation of a vector in space; the

direction of the vector designates the local spin order 〈S〉. In comparison, the spin textures
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in higher L-sector of the spin order correspond to the rotation (or even deformation) of a

polygon in space. As long as λ(L)(x) , 0 and different Majorana pairs do not merge as on

traverses the loop C, each L sector can have its own line defects.

Figure 2.5: The numerals (1, 2, ..7) denote the spin order (Φ(1),Φ(2), ...Φ(7)) of a spin f =

7/2 Fermi gas along the loop C in real space. The loop is stretched out into a straight line
along x with end point (A) identified. Here, λ(7) = 0, Φ(3), Φ(4), Φ(6) form an octahedron, a
cubic, and an icosahedron. Φ(5) is a polyhedron with 5 vertices forming a pentagon. The
texture of Φ

(2)
M (x) depicted implies a line defect inside loop C, whereas the texture of Φ

(1)
M (x)

is defect free. Our model calculations for spin f = 21/2 Fermi gas reveal Platonic solid
configurations like (c), (d), (f) and dodecahedron (g) in certain parameter regimes.

2.4 Energetic considerations and Platonic solid inert states

Next, we discuss how interaction effects give rise to the spin order discussed above. We

shall consider a general short range spin-exchange interaction between fermions [18]. Such

a description has been shown to be effective in recent experiments in 40K [23–25], where

dipolar interactions are negligible. Many other high spin systems (i.e.161Dy) have stronger
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dipolar interactions which will lead to non-uniform spin ordering. As a first step, we shall

ignore dipolar interactions. In practice, dipolar interactions can be averaged out to zero

through a sequence of magnetic pulses [64]. On the other hand, many competing orders

may arise at low temperatures, including the superconducting ordering. Different orders

would be favored in different regions in the parameter space. For instance, for spin-1/2

fermions, attractive interaction leads to superconducting phase while repulsive interaction

induces magnetic ordering [65, 66]. For higher spin systems, in general, the orders may

have overlap in the parameter space and different orders will compete with each other.

Here we do not consider the possibility of competing phases, and discuss first the parameter

regions that can give rise to spin ordering.

Finally, we emphasize that the structures discussed in previous sections do not rely on

the magnetic ordering as discussed below. The emergence of magnetic ordering shown

below not only leads to the existence of different L sectors, but also ensures that local spin

ordering at different locations are long-range correlated, as in the magnetism of familiar

spin-1/2 situation. At higher temperature when long-range magnetic ordering vanishes

(like superconductivity), the higher L-sectors of spin ordering may still persists locally.

The discussion of high temperature regime is left for future works, while in the following

we focus on the possible magnetic states at low temperatures.

The Hamiltonian for local spin-exchange interaction is H = H0 + H1, where the kinetic

and interaction parts are

H0 =

∫
d3r

∑
m

ψ†m(r)
(
~2∇2

2m̃
− µ

)
ψm(r), (2.36)

H1 =

∫
d3r

∑
m1m2
m3m4

ψ†m1
(r)ψ†m2

(r)γm1m2m3m4ψm4(r)ψm3(r), (2.37)
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Table 2.3: Exploration of T = 0 mean field phase diagram for spin f = 21/2 fermion
systems in the presence of spin exchange interactions. kn = (6π2n)1/3, where n is the total
number of particles in the system. {aF , F = 0, 2, . . . , 2 f − 1} are scattering channels with
total spin F. The spin orders of different sectors are represented in Majorana representation.
|Φ(L)〉 sector would contain 2L points (L pairs). But different points may occupy the same
location, as is the case in (I) and (II). The objects in set (II) and (III) are Platonic solids.
All of these states are inert states.

Set kna0 kna2 kna4 kna6 kna8 kna10 kna12 kna14 kna16 kna18 kna20

(I) 0.1 0.3 0.4 0.45 0.5 0.5 0.45 0.45 -0.3 -0.5 -0.5
(II) -0.1 -0.6 -0.6 0.55 0.75 0.75 0.45 -0.75 -0.8 0.8 0.8
(III) -0.6 -0.74 0.87 0.79 0.84 -0.8 -0.83 0.82 0.82 -0.85 0.85

Set Sectors of Spin Order

(I) |Φ(1,2,3,4)〉

(II) |Φ(4,8)〉 and |Φ(6)〉

(III) |Φ(6)〉 and |Φ(10)〉

where m̃ is the fermion mass, µ is the chemical potential, and

γm1m2m3m4 =
1
2

2 f−1∑
F=0,2,...

gF

F∑
MF=−F

〈m1m2|FMF〉〈FMF |m3m4〉. (2.38)

Here 〈m1m2|FMF〉 is an abbreviation for Clebsch-Gordon coefficients

〈 f m1; f m2|FMF〉. gF ≡ 4π~2aF/m̃ is the interaction constant in the scattering channel

with total spin-F, and aF is the corresponding scattering length [67]. For half integer spin

f , 〈 f m1; f m2|FMF〉 = ±〈 f m2; f m1|FMF〉 for odd/even F respectively. Thus, (2.37) and

Fermi statistics require F to be even integers only. That means γm1m2m3m4 is odd under the

exchange m1 ↔ m2 or m3 ↔ m4.

(It is useful here to summarize our notations. ( f ,m) are the eigenvalues of single atom

spin operators (F2, Fz). (F,MF) is the total spin and magnetic quantum number when two
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atoms scatter with each other. (L,M) introduced previously denote the particle-hole total

angular momentum quantum numbers, and are the quantum numbers we use to classify

spin orders in terms of different sectors |Φ(L)〉 in (2.19). )

We shall study the uniform spin order using the mean field approximation. The order

parameter is ρm1m2 defined in (2.10), and it is equal to the average

ρm1m2 =

∫
d3r
V

ρm1m2(r) =
1
V

∑
k

〈
c†km2

ckm1

〉
, (2.39)

where we used the Fourier tranform ψm(r) = 1
√

V

∑
k

eik·rckm, and V is the volume. Then the

mean field Hamiltonian reads HMF =
∑

k,m1m2
c†km1
Hm1m2(k)ckm2 , with

Hm1m2(k) = (εk − µ) δm1m2 + 4Γm1m2 , (2.40)

Γm1m2 =
∑
m3m4

γm1m3m2m4ρm4m3 . (2.41)

Here εk = ~2k2/2m̃ is the kinetic energy. The quardratic Hamiltonian can be diagonalized

in spin space through a unitary transform (U†H(k)U)m1m2 = (εk − µm1[Γ])δm1m2 , where

µm[Γ] = µ − 4(U†ΓU)mm. Then the quasi-particles bkm1 =
∑

m2
U†m1m2ckm2 are free fermions

obeying 1
V

∑
k

〈
b†km1

bkm2

〉
= nm1δm1m2 , where nm1 = 1

V

∑
k

(
e(εk−µm1 [Γ])/kBT + 1

)−1
. With the

above information, we can determine the order parameter through the consistency equation

ρm1m2 =
∑
m3

Um1m3nm3U
†
m3m2

, (2.42)

and obtain the spin vector {Φ(L)} using Eqn.(2.16).

We have solved the self consistency Equation (2.42) at T = 0 numerically for the case

of f = 21/2 with some specific value of gas parameters {knaF}’s, where

kn = (6π2n)1/3, (2.43)
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and n is the total number density. See Table 2.3. Since aF’s are unknown at present, we

have tried various parameter sets, labelled (I) to (III) in Table 2.3. Their mean field states

are:

(I): Only Φ(1),Φ(2),Φ(3),Φ(4) are nonzero. The Majorana points of each one of them collapse

into a single antipodal pair like (a) and (b) in Fig. 1. The pairs of different L orient

differently.

(II): Only Φ(4),Φ(6), Φ(8) are non-zero. Φ(4) and Φ(8) form cubes (Fig.1(d)). Φ(6) forms an

octahedron (Fig.1(c)). For Φ(8) and Φ(6), the vertices of the cube and octahedron are doubly

occupied respectively.

(III): Only Φ(6) and Φ(10) are non-zero. Φ(6) forms an isocahedron (Fig.1(f)) and Φ(10) forms

a dodacahedron (Fig.1(g)).

The states found in (II) and (III) are the Platonic solids. All the states in (I) to (III) are the

so-called inert states as the distances between Majorana points in these states are indepen-

dent of interactions. All these states are found in a region containing the parameter set in

Table 2.3. There are also non-inert states in other regions of parameter space. We empha-

size that the scattering lengths in Table. 2.3 satisfy kna < 1 and are below the resonance

regime, so the atom loss due to strong interaction should be small.

2.5 Phase Transition: Ginzburg-Landau Theory

Since there are many scattering parameters {aF , F = 0, 2, . . . , 2 f } for large spin systems,

it is laborious to explore every corner in the phase diagram numerically. However, consid-

erable insight can be gained by exploring the phase transition boundary using Ginzburg-

Landau theory.
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Near the phase boundary, the spin order ρ̃m1m2 defined in Eqn.(2.24) is small . We can

then expand the free energy in mean field approximation

Ω = −
1
β

ln
(
Tre−βHMF

)
− B (2.44)

around ρ̃m1m2 = 0, where β = 1/kBT is the inverse temperature. Here HMF = H(0)
MF + H(1)

MF,

with

H(0)
MF =

∑
km

(εk − µ)c†kmckm, (2.45)

H(1)
MF =

∑
km1m2

Γ̃m1m2c
†

km1
ckm2 , (2.46)

Γ̃m1m2 = 4
∑
m3m4

γm1m3m2m4 ρ̃m4m3 , (2.47)

and we have restored the condensate energy B = 〈H − HMF〉MF to the free energy:

B = 2V
∑

m1...m4

γm1m2m3m4ρm3m1ρm4m2

= 2V
∑
m1m2

Γ̃m1m2 ρ̃m2m1 + Vn2
2 f−1∑

F=0,2,...

gF
2F + 1

(2 f + 1)2 . (2.48)

Terms linear in ρ̃mm′ vanishes due to the identity

〈 f m1; f m2|FMF〉 = (−1) f +m2

√
2F + 1
2 f + 1

〈 f (−m2); FMF | f m1〉 (2.49)

and the completeness relation 1 =
∑

m | f m〉〈 f m|. Similarly, one can show that Γ̃m1m2 is

traceless and Hermitian.

Using the technique of linked cluster expansion [68], we have

Ω = Ω0 − B −
1
β

∞∑
l=1

Ml, Ω0 = −
1
β

ln Tre−βH(0)
MF , (2.50)

Ml =
(−1)l

l!

∫ β

0
dτ1 . . .

∫ β

0
dτl〈Tτ H(1)

MF(τ1) . . .H(1)
MF(τl)〉c, (2.51)
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where H(1)
MF(τ) = eτH0Ve−τH0 , and “〈. . . 〉c” means connected diagrams, Tτ is the imaginary-

time ordering. Evaluating (2.51) using Wick’s theorem and keeping up to second order in

ρ̃m1m2 , we have

∆Ω = −
V
2

(
TrΓ̃ρ̃ + χ(T, µ)TrΓ̃2

)
, (2.52)

where we have treated Γ̃m1m2 and ρ̃m1m2 as matrices. The susceptibility function is

χ(T, µ) =
1
T

∑
k

fk(1 − fk) =

∫ ∞

0
dεD(ε)

(
−
∂ f (ε)
∂ε

)
, (2.53)

where D(ε) = 3n
√
ε/2ε3/2

n is the density of states, εn = ~2k2
n/2m̃, and fk = (e(εk−µ)/T + 1)−1

is the Fermi distribution function. χ(T, µ) is always positive and increases as temperature

is lowered.

Now we express (2.52) in terms of Φ
(L)
M to see the emergence of each L-sector of the

spin order. Note that ρ̃m1m2 has the same expansion as those of ρm1m2 in equation (2.14),

except for the absence of L = 0 term. Combined with (2.47), we have

Γ̃m1m2 = −

2 f∑
L=1

L∑
M=−L

Φ
(L)
M GL

(
Y

(L)
M

)
m1m2

, (2.54)

GL = 2
2 f−1∑

F=0,2,...

gF(2F + 1)W(FL). (2.55)

Here we used the identity

∑
m1m2 MF

〈FMF | f m1; f ma〉〈 f m1|LM; f m2〉〈 f m2; f mb|FMF〉

= 〈smb|LM; sma〉(−1)2 f−F(2F + 1)W(FL), (2.56)

which is derived from the definition of Racah coefficients W( f f f f ; FL) ≡ W(FL) [53].

Feeding the expansions into (2.52), we reach the concise form

∆Ω =
n2V

2

2 f∑
L=1

L∑
M=−L

∣∣∣Φ(L)
M

∣∣∣2 GL
[
1 − χ(T, µ)GL

]
. (2.57)
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Equation (2.57) shows that Φ(L) will emerge if

(i) GL > 0, and (ii) χGL ≥ 1, (2.58)

where the equal sign gives the phase boundary. Up to the quadratic order in Φ
(L)
M , all M

components are degenerate. Higher order terms in Φ(L) will lift the degeneracy and mix

different L components. Condition (i) is necessary for the ordered phase to be stable. Con-

sider a single Φ
(L)
M , which means Γ̃ = −GLΦ

(L)
M Y

(L)
M . Then for the ordering to be stable,

the energy B in Eqn.(2.48) must be lowered due to the presence of spin orders Φ
(L)
M . Since

B = −2V(Φ(L)
M Y

(L)
M )2GL + constant, the case GL > 0 will ensure the spin-ordered phase

is energetically favored over the normal phase. Condition (ii) simply means that the spin-

ordered state is at least a local minimum in the free energy functional.

To help further understanding the conditions (2.58), consider a spin-1/2 systems. Here

the only non-trivial spin order is L = 1 ferromagnetic ordering, and G1 = g0. Then con-

ditions (i) reduces to g0 > 0, which means the interactions are repulsive. Condition (ii)

χg0 ≥ 1 is the Stoner criterion for ferromagnetic ordering. (Note χ→ D(εF) at T = 0). For

higher spin systems, GL represents the total interaction strength responsible for triggering

the spin order |Φ(L)〉. Since the Racah coefficients W(FL) can be both positive and negative,

not all gF’s have to be repulsive in order to create a critical total interaction GL to start the

spin order, unlike the spin-1/2 case.

Experimental parameters are usually expressed by scattering length aF . Thus, we define

the total scattering length AL

GL =
8π~2AL

m̃
, AL =

∑
F

aF(2F + 1)W(F, L). (2.59)

Next, we note that χ(T, µ) in Eqn.(2.53) has the dimension of density of state. It scales as

√
µ and hence represents a momentum scale. We can then define a wavevector k(T, µ) as
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χ(T, µ) = (m̃/2π2~2)k(T, µ). (Note that k(0, µ) = kn). Condition (ii) then becomes

k(T, µ)AL ≥
π

4
, or knAL ≥

π

4
kn

k(T, µ)
, (2.60)

where the equal sign gives the phase boundary.

Certainly, the larger the AL, the easier for the L-th spin order to emerge. However,

for small gas parameters knaF < 1, it is not clear whether Eq.(2.60) can be satisfied. On

the other hand, one sees from equation (2.59) that AL will be maximized if the sign of aF

matches that of the Racah coefficient W(F, L). To demonstrate this effect, we consider a set

of aF’s with the same magnitude ā with a sign matching that of W(F, L). Equation (2.60)

then becomes

knā ≥
π/4∑2 f

F=0,2,.(2F + 1)|W(F, L)|

kn

k(T, µ)
. (2.61)

This condition is plotted in Figure 2 for a spin f = 21/2 Fermi gas. It shows spin orders

as high as L = 7 can emerge at the phase boundary for knā < 1. While equation (2.61) is

sufficient for the appearance of Φ(L), it is not necessary. Once a low order Φ(L) is present,

say, L = 1, higher L spin order can emerge through non-linear coupling as temperature is

lowered. Finally, we note from Eqn.(2.61) that the larger the spin f of the fermions, the

larger the sum in Eqn.(2.61), and the smaller the gas parameter knā needed to activate the

spin order.

2.6 Concluding Remarks

Since the diagonal element of the density matrix is the spin population along a specified

spin quantization axis, say ẑ, they can be determined by the Stern-Gerlach method. To

access the off diagonal elements, one can apply a magnetic pulse to rotate ρ to ρ′ = DρD†,

where D is a rotational matrix, see Eqn.(2.11). The diagonal elements of ρ′ will then
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Figure 2.6: The transition temperature for spin order |Φ(L)〉 for L = 1, 2, 6, 3, 5, 4, 7, (from
bottom to top), for a spin f = 21/2 Fermi gas.

contain information of the off-diagonal elements of ρ due to the rotation D. By repeating

the measurement of diagonal matrix elements for different D’s, one can then extract the

information of the off-diagonal matrix elements of the original density matrix ρ.

Large spin quantum gases are fertile grounds for new quantum matter. Here, we have

pointed out the very rich spin order possible in large spin fermions, most of which have no

analog in electron matter. We show that the spin order in different sectors can be conve-

niently described as Majorana antipodal points on a sequence of spheres representing the

spin order of different particle-hole angular momenta. Our model calculations show that

some of these orders can take the form of Platonic solids, which are structures that exist

within certain region of the parameter space instead of a single point. These structures are

therefore robust and will have good chance to be realized.
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2.7 Appendix

2.7.1 Numerical Algorithm for Exploring Phase Diagram

In this appendix we specify the numerical algorithm for exploring the zero-temperature

phase diagram, and introduce the dimensionless variables. The mean-field Hamiltonian

reads

H =
∑

k

c†kck(εk − µ) +
∑
kµν

c†kµΓµνckν, (2.62)

Γµν = 4
∑
FM

gF

∑
mn

ρnm〈µm|FM〉〈FM|νn〉. (2.63)

where the dimensions for various quantities are [ck] = 1, [Γ] = E, ρµν = 1
V

∑
k
〈c†kνckµ〉, [ρ] =

L−3. Here the density of states is

D(ε) = A
√
ε, (2.64)

The particle number density1 defines the Fermi energy

n =
2
3

Aε
3
2
F , A =

(
3n
2

)
1

ε
3
2
F

. (2.65)

From the diagonalized mean field Hamiltonian

H =
∑
kα

b†kαbkα

(
εk

εF
−

(µ − µα)
εF

)
, (2.66)

we have nα = 2
3 A(µ − µα)3/2, that is,

nα
n

=

(
µ − µα
εF

) 3
2

. (2.67)

Finally, the interaction strength gn = 4π~2a
m n has dimension [gn] = E. And one can rescale

it with respect to Fermi energy and obtain a dimensionless quantity 2

gn
εF

=
4π~2a

m
·

4πk3
F

3(2π)3 /
~2k2

F

2m
=

4
3π

kFa ≈ 0.42 × kFa (2.68)

1 In current experiments on ultracold fermion gas, the typical number density is n ∼ 1015∼18m−3

2 For resonantly interacting fermion gas, a typical scattering length is a ∼ 103aB ∼ 10−7m, where aB =

0.5 × 10−10 is the Bohr radius. Thus, g/εF ∼ 10−19m3.
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The whole process is

1. Choose kFa, which is a dimensionless number.

2. Convert to gn/εF using (2.68), which is dimensionless. Choose initial ρµν/n, which

is again dimensionless and of order 1. Then Γµν/εF ∼ (gn/εF)(ρ/n) is dimensionless.

3. Diagonalize Γµν/εF , get dimensionless matrices Tµν and the dimensionless chemical

potential bias µα/εF .

4. Then, solve for µ/εF through

1 =
∑
α

nα
n

=
∑
α

(
µ

εF
−
µα
εF

)3/2

. (2.69)

5. Obtain nα/n through
nα
n

=

(
µ

εF
−
µα
εF

) 3
2

. (2.70)

6. Then the consistency equation for the dimensionless order parameter ρµν/n becomes

ρµν

n
= Uµα

nα
n

U†αν. (2.71)

The iteration process is that one start from an arbitrary ρµν and solve for Uµα and nα.

Then, we use equation (2.71) to update the ρµν and start a new iteration.

30



2.7.2 CG coefficients, 3j and 6j Symbols

In the main text, we have extensively used the addition of angular momentums, which

applies the following symmetry relations [53] for the Clebsch-Gordon coefficients:

〈 j1m1; j2m2| j3m3〉 = (−1) j1+ j2− j3〈 j1 − m1; j2 − m2| j3 − m3〉

= (−1) j1+ j2− j3〈 j2m2; j1m1| j3m3〉

= (−1) j1−m1

√
2 j3 + 1
2 j2 + 1

〈 j1m1; j3 − m3| j2 − m2〉

= (−1) j2+m2

√
2 j3 + 1
2 j1 + 1

〈 j3 − m3; j2m2| j1 − m1〉

= (−1) j1−m1

√
2 j3 + 1
2 j2 + 1

〈 j3m3; j1 − m1| j2m2〉

= (−1) j2+m2

√
2 j3 + 1
2 j1 + 1

〈 j2 − m2; j3m3| j1m1〉. (2.72)

It is also useful to introduce the so-called 3 j symbols, which describe the addition of two

angular momentums and are related to the Clebsch-Gordon coefficients by the following

equation: (
j1 j2 j3

m1 m2 m3

)
=

(−1) j1− j2−m3√
2 j3 + 1

〈 j1m1; j2m2| j3 − m3〉, (2.73)

〈 j1m1; j2m2| j3m3〉 = (−1) j1− j2+m3
√

2 j3 + 1
(

j1 j2 j3

m1 m2 −m3

)
. (2.74)

The symmetry properties of 3 j-symbols include:(
j1 j2 j3

m1 m2 m3

)
=

(
j2 j3 j1

m2 m3 m1

)
=

(
j3 j1 j2

m3 m1 m2

)
= (−1) j1+ j2+ j3

(
j1 j2 j3

−m1 −m2 −m3

)
= (−1) j1+ j2+ j3

(
j1 j3 j2

m1 m3 m2

)
= (−1) j1+ j2+ j3

(
j2 j1 j3

m2 m1 m3

)
= (−1) j1+ j2+ j3

(
j3 j2 j1

m3 m2 m1

)
. (2.75)

In the main text, for technical reasons we have also used the 6 j symbols, which physi-

cally describe the addition of three angular momentums. The relation between 6 j-symbol
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and the Racah coefficient reads(
a b e
d c f

)
= (−1)a+b+c+dW(abcd; e f ). (2.76)

The symmetry properties of 6j-symbols include

1. When any two columns are interchanged, it remains invariant. e.g.{
a b c
d e f

}
=

{
b a c
e d f

}
(2.77)

and etc.

2. When two elements in one row are interchanged with two elements of another, it is

invariant, e.g. {
a b c
d e f

}
=

{
a e f
d b c

}
(2.78)

and etc.

The summation rule for 6 j symbol reads

∑
j3

(2 j3 + 1)
{

j1 j2 j3

l1 l2 l3

}{
j1 j2 j3

l1 l2 l′3

}
=

1
2l3 + 1

δl3l′3
, (2.79)

∑
l3

(−1) j1+ j2+ j3(2l3 + 1)
{

j1 j2 j3

l1 l2 l3

}{
j1 l1 J
j2 l2 l3

}
=

{
j1 j2 j3

l2 l1 J

}
.

(2.80)

Finally, the 3 j and 6 j symbols are connected through the following relation:

∑
µ1µ2µ3

(−1)µ1+µ2+µ3

(
j1 l2 l3

m1 µ2 −µ3

) (
l1 j2 l3

−µ1 m2 µ3

) (
l1 l2 j3

µ1 −µ2 m3

)
= (−1)l1+l2+l3

{
j1 j2 j3

l1 l2 l3

} (
j1 j2 j3

m1 m2 m3

)
, (2.81)
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or written in another way,

∑
mµ

(−1)µ1+µ2+µ3

(
j1 j2 j3

m1 m2 m3

) (
j1 l2 l3

m1 µ2 −µ3

) (
l1 j2 l3

−µ1 m2 µ3

)
(

l1 l2 j3

µ1 −µ2 m3

)
= (−1)l1+l2+l3

{
j1 j2 j3

l1 l2 l3

}
. (2.82)

2.7.3 Relation Between the Components of Generalized Spherical Har-
monic Operators [Ỹ (L)

M (F)]µν and the Clebsch-Gordon Coefficients
〈 fµ|LM; f ν〉

As described in the main text, the generalized spherical harmonic operators Ỹ (L)
M (F)

are constructed by first multiplying the standard spherical harmonic function with radial

coordinates: rLY (L)
M (θ, ϕ), and then replacing the Cartesian coordinates (x, y, z) with spin

operators (Fx, Fy, Fz). In many current literatures, this operator is used to perform tensorial

depomposition instead of the Clebsch-Gordon coefficients used in this thesis. So we discuss

the relation between [Ỹ (L)
M (F)]µν and 〈 fµ|LM; f ν〉 below.

They both satisfy the definition for spherical tensors

UY (L)
M U† =

∑
M′

Y (L)
M′U

(F)
M′M, (2.83)

so they must be proportional to each other, with proportionality coefficients independent of

M. This means they must satisfy the same symmetry property when changing M → −M.

Specifically, we know that

YF,−M = (−1)MY†FM. (2.84)
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Moreover,

Tr
(
Y ( f )†

FM Y ( f )
F′M′

)
=

(2 f + F + 1)!
4π22F(2 f − F)!

δFF′δMM′ , (2.85)

∑
µν

〈 fµ|FM; f ν〉〈 f ν|F′M′; fµ〉 =
∑
µν

√
2 f + 1
2F + 1

(−1) f +ν〈F,−M| f ,−µ; f ν〉

×〈 f ,−µ; f ν|F′M′〉

√
2 f + 1
2F + 1

(−1) f +ν

=
2 f + 1
2F + 1

δFF′δMM′ . (2.86)

Examples show that there is a (−1)F factor difference between them. Thus, in summary,

[YFM]( f )
µν = (−1)F

√
2F + 1
2 f + 1

(2 f + F + 1)!
4π22F(2 f − F)!

〈 fµ|FM; f ν〉. (2.87)

2.7.4 Ginzburg-Landau: General Formulation

We have the mean-field Hamiltonian

HMF =
∑

k,m1,m2

[(εk − µ)δm1m2 + Γ′m1m2
]c†km1

ckm2 − B, (2.88)

where

Γ′m1m2
= 4

∑
FM

gF

∑
m3m4

ρm4m3〈m1m3|FM〉〈FM|m2m4〉, (2.89)

B = 2V
∑
FM

gF

∑
m1m2m3m4

ρm2m1ρm4m3〈m1m3|FM〉〈FM|m2m4〉. (2.90)

Near the phase boundary,

Rµν = ρµν −
n

2 f + 1
δµν (2.91)

is a small quantity, where we have subtracted 1
2 f +1Trρµν = n to make Rµν traceless. Here n

is the particle number density. Then, we intend to expand the thermodynamic potential

Ω = −
1
β

ln(Tre−βHMF ) (2.92)
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with respect to Rµν.

To do so, we decompose the mean field Hamiltonian as

HMF = H0 + H1 (2.93)

where H0 is

H0 =
∑
kσ

(εk − µ)c†kσckσ − B, (2.94)

and B is the condensation energy,

B = 2V
∑
FM

gF[
n2

(2 f + 1)2 (2.95)

+
∑

m1...m4

Rm2m1Rm4m3〈m1m3|FM〉〈FM|m2m4〉]. (2.96)

B should be negative to make the condensate stable. In addition, here the chemical potential

includes the trace of the interaction part,

µ↔ µ −
TrΓ′

2 f + 1
=

4n
2 f + 1

∑
FM

gF

∑
m

|〈σm|FM〉|2 = µ − 4n
∑

F

gF
2F + 1

(2 f + 1)2 . (2.97)

The last step is achieved through the symmetry property of Clebsch-Gordan coefficients in

equation (2.72). Similarly we can show that the linear Rµν term in B vanishes, and Γ1
m1m2

is

traceless and Hermitian. Finally, the second term in (2.93) reads

H1 =
∑

km1m2

Γm1m2c
†

km1
ckm2 , (2.98)

Γm1m2 = 4
∑
FM

gF

∑
m3m4

Rm4m3〈m1m3|FM〉〈FM|m2m4〉. (2.99)

To expand the grand thermodynamic potential, we apply the technique of linked-cluster

expansion [68]

Ω = Ω0 −
1
β

∞∑
l=1

Ml, (2.100)
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where the correction

Ml =
(−1)l

l!

∫ β

0
dτ1 . . .

∫ β

0
dτl〈Tτ V(τ1) . . .V(τl)〉con.. (2.101)

(Here the subscript “con.” means to include only connected diagrams.) Here V(τ) means

the operators in the “interacting picture”, V(τ) = eβH0Ve−βH0 . In particular,

ckm(τ) = ckme−β(εk−µ), ckm(τ)† = c†kmeβ(εk−µ). (2.102)

The non-interacting part Ω0 in equation (2.100) is evaluated easily

Z0 = Tre−βH0 = eβBTre
−β

∑
kσ

(εk−µ)c†kσckσ

= eβB
∏
pm

1∑
npm=0

〈npm|
∏
kσ

e−β(εk−µ)c†kσckσ |npm〉

= eβB
∏
pm

(1 + e−β(εp−µ)), (2.103)

Ω0 = −
1
β

ln Z0 = −
1
β

[βB +
∑
pm

ln(1 + e−β(εp−µ))]

= −B −
(2 f + 1)

β

∑
p

ln(1 + e−β(εp−µ)). (2.104)

Then we evaluate the corrections. The first order term M1 is expected to vanish due to

symmetry consideration of the system. We can also verify it by explicit calculations:

M1 = −

∫ β

0
dτ〈V(τ)〉0 = −

∫ β

0
dτ

∑
kµν

Γµν〈c
†

kµckν〉con.

= −

∫ β

0
dτ

∑
kµν

Γµν
δµν

1 + eβ(εk−µ) . (2.105)

Since Γµν is traceless, we proved M1 = 0 as desired. In the above derivation we used the

property that 〈. . . 〉 is evaluated with H0, so it is diagonal in spin space.
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The second order term in equation (2.100) is

M2 =
1
2

∫ β

0
dτ1

∫ β

0
dτ2

∑
km1m2;pm3m4

Γm1m2Γm3m4

×〈Tτc
†

km1
(τ1)ckm2(τ1)c†pm3

(τ2)cpm4(τ2)〉con.

=

∫ β

0
dτ1

∫ τ1

0
dτ2

∑
km1m2;pm3m4

Γm1m2Γm3m4〈c
†

km1
ckm2c

†
pm3

cpm4〉con.

=
β2

2

∑
km1m2;pm3m4

Γm1m2Γm3m4

×

[
δm1m4

1 + eβ(εk−µ) × δm2m3(1 −
1

1 + eβ(εk−µ) )
]
δkp

=
β2

4

∑
k

1
1 + cosh β(εk − µ)

∑
µν

|Γµν|
2. (2.106)

where in the last step we used the Hermitian property of Γµν. In summary, the second order

term is found to be

M2 = −2V
∑

F

gF

∑
m1...m4

Rm2m1Rm4m3〈m1m3|FM〉〈FM|m2m4〉

−
1
β

β2

4

∑
k

1
1 + cosh β(εk − µ)

∑
µν

|Γµν|
2


= −

V
2

∑
µν

ΓµνRνµ −
β

4

∑
k

1
1 + cosh β(εk − µ)

∑
µν

|Γµν|
2 (2.107)

with Γµν given in (2.99).

To include the higher order terms, we have the expression

Ω = const. −
1
2

V ∑
µν

ΓµνRνµ + f2(T, µ)TrΓ2


+ f3(T, µ)TrΓ3 + f4(T, µ)TrΓ4, (2.108)

where the additive constant is

const. = −V
2n2

(2 f + 1)2

∑
F

gF(2F + 1), (2.109)
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and the functions fi(T, µ) are

f2(T, µ) =
1
T

∑
k

nk(1 − nk) =
1

2T

∑
k

1
1 + cosh(εk − µ)/T

, (2.110)

f3(T, µ) =
1

6T 2

∑
k

nk(1 − nk)(1 − 2nk)

=
1

12T 2

∑
k

tanh(εk − µ)/2T
1 + cosh(εk − µ)/T

, (2.111)

f4(T, µ) = −
1

24T 3

∑
k

nk(1 − nk)(6n2
k − 6nk + 1)

= −
1

24T 3

∑
k

−1 + 1
2 cosh εk−µ

T

(1 + cosh εk−µ

T )2
. (2.112)

The expansion up to 4th order is only meaningful if f4(T, µ) > 0 within the temperature

range under concern. From Eq. (2.112), f4(T, µ) > 0 for approximately T/TF < 0.35.

The above equations can be readily used to recover the simple spin-half case. Note that

3

lim
T→0

1
2T

1
1 + cosh(ε − µ)/T

= δ(ε − µ). (2.113)

Thus,

f2(T = 0, µ) = AV
√
µ = D(µ)V. (2.114)

Also, for spin-half, R =

(
δn ∆

∆∗ −δn

)
, Γ = −2g0R, R2 ≡ ψ2 =

√
δn2 + |∆|2. Then all the odd

order term vanishes, and we have

Ω = −
g0n2V

2
+ (1 − 2g0D(εF))2g0Vψ2 + (# > 0)ψ4 + . . . . (2.115)

Thus, for g0 > 0 (which makes the condensation energy in the constant term negative),

the second order phase transition occurs at 2g0D(εF) = 1, which is the renowned Stoner

criterion for magnetization instability [66].

3 The summation over k can be expressed as
∑
k

=
∫

AV
√
εdε =

∫
3n

2ε3/2
F

V
√
εdε, where D(µ) = A

√
µ,

A = 3n/2ε3/2
F , and εF = µ(2 f + 1)2/3.
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2.7.5 Ginzburg-Landau: Dimensionless Variables

We employ the following dimensionless variables

gF ↔
gFn
εF

, Rµν ↔
Rµν

n
, Γµν ↔

Γµν

εF
,

fn(T, µ)↔ εn−1
F fn(T, µ), T ↔

T
TF
, µ↔

µ

εF
. (2.116)

Before phase transition or near the phase transition boundary, particles will distribute

equally among all f -states,

nα(µ0,T ) =
nα(εF ,T )
2 f + 1

(2.117)

and in particular, at T = 0, since nα/n = µ3/2,

µ0

εF
= (2 f + 1)−2/3. (2.118)

Further, converting the sum over ~k into an integral using footnote 3, we obtain the dimen-

sionless formulae

Ω

NεF
= const. −

1
2

∑
µν

ΓµνRνµ + f2(µ0,T )TrΓ2


+ f3(µ0,T )TrΓ3 + f4(µ0,T )TrΓ4, (2.119)

where the additive constant is

const. = −
2

(2 f + 1)2

∑
F

gF(2F + 1), (2.120)
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and the functions fi(µ0,T ) are

f2(µ0,T ) =
3

4T

∫ ∞

0

√
xdx

1 + cosh(x − µ0)/T

T → 0
−−−−−→

3
2
√
µ0 (2.121)

f3(µ0,T ) =
1

8T 2

∫ ∞

0

√
xdx

tanh(x − µ0)/2T
1 + cosh(x − µ0)/T

T → 0
−−−−−→

1
8
√
µ0

(2.122)

f4(µ0,T ) =
1

16T 3

∫ ∞

0

1 − 1
2 cosh x−µ0

T

(1 + cosh x−µ0
T )2

√
xdx

T → 0
−−−−−→

1

64µ3/2
0

(2.123)

Here we used the identities

lim
T→0

1
2T

∫
dx

k(x)
1 + cosh(x/T )

= k(0), (2.124)

lim
T→0

1
2T 2

∫
dxk(x)

tanh(x/2T )
1 + cosh(x/T )

= k′(0), (2.125)

− lim
T→0

1
T 3

∫
dxk(x)

1 − 1
2 cosh x−µ0

T

(1 + cosh x−µ0
T )2

= k′′(0). (2.126)

which can be derived by noticing that

lim
T→0

1
2T

1
1 + cosh(x/T )

= δ(x), (2.127)

−T
d
dx

(
1

1 + cosh(x/T )

)
=

tanh(x/2T )
1 + cosh(x/2T )

, (2.128)

−
T 2

2
d2

dx2

(
1

1 + cosh(x/T )

)
=

1 − 1
2 cosh x−µ0

T

(1 + cosh x−µ0
T )2

. (2.129)

2.7.6 Ginzburg-Landau: Angular Momentum Decomposition

In previous sections, we have decomposed the grand thermodynamic potential Ω into

different orders of Γm1m2 , where Γm1m2 is generally a superposition of different total angular
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momentums. In this sections, we further separate

Γµν = 4
∑

F

gF

∑
m1m2

Rm2m1〈µm1|FM〉〈FM|νm2〉, (2.130)

into components of different total angular momentums using the decomposition

Rµν =
∑
FM

cFM〈 fµ|FM; f ν〉, (2.131)

where cFM’s are given by

cFM = (−1)F+M 2F + 1
2 f + 1

∑
µν

Rµν〈 fµ|FM; f ν〉. (2.132)

The above relation can be derive with the aid of Eq. (2.72),

Rµν =
∑
JMJ

cJMJ〈 fµ|JMJ; f ν〉 =
∑
JMJ

cJMJ〈JMJ | f ,−ν; fµ〉

√
2 f + 1
2J + 1

(−1) f +ν. (2.133)

So

∑
µν

Rµν〈 f − ν; fµ|FM〉(−1) f +ν =
∑
JMJ

√
2 f + 1
2J + 1

cJMJδFJδMMJ =

√
2 f + 1
2F + 1

cFM. (2.134)

We remark that a similar decomposition can be carried out using YFM, while here we use

the Clebsch-Gordon coefficients in (2.131) for technical convenience. Note that 〈 fµ|F −

M; f ν〉 = 〈 f − ν|F − M; f − µ〉(−1)F+M = (−1)2F+M〈 f ν|FM; fµ〉. In our case, f ’s are

half-integers, so F’s are integers, and therefore

〈 fµ|F − M; f ν〉 = (−1)M〈 f ν|FM; fµ〉. (2.135)

Thus, if we expand

Rµν =
∑
FM

cFM〈 fµ|FM; f ν〉,

the coefficient also satisfies cF−M = c∗FM(−1)M due to the Hermitian property of Rµν.

41



The purpose of such decomposition is to obtain the total angular momentum, i.e. if

only c2M , 0, we know the total angular momentum is 2. This is true because 〈 fµ|FM; f ν〉

satisfies the definition for a spherical tensor of order (F,M), which can be shown through

the following. Let the rotation matrix be U = e−i( ~f1+ ~f2)·~θ = U1U2, then

〈LM| f1µ1 f2µ2〉 = 〈LM|U†U | f1µ1 f2µ2〉

=
∑

L′M′,µ′1µ
′
2

〈LM|U†|L′M′〉〈L′M′| f1µ
′
1 f2µ

′
2〉〈 f1µ

′
1 f2µ

′
2|U | f1µ1 f2µ2〉

=
∑

M′µ′1µ
′
2

(U†)(L)
MM′〈LM′| f1µ

′
1 f2µ

′
2〉U

( f1)
µ′1µ1

U ( f2)
µ′2µ2

.

Then,

∑
µ1

(U†)( f1)
µ1µ

′′
1
〈LM| f1µ1 f2µ2〉 =

∑
M′µ′2

(U†)(L)
MM′〈LM′| f1µ

′′
1 ; f2µ

′
2〉U

( f2)
µ′2µ2

.

Thus, we have

∑
M′
〈 fµ|FM′; f ν〉U (F)

M′M =
∑
µ′ν′

(U†)( f )
µµ′〈 fµ

′|FM; f ν′〉U ( f )
ν′ν , (2.136)

which is the definition for a spherical tensor.

The key of performing the decomposition is to apply the relation

∑
µνM

〈FM| fµ; f m〉〈 fµ|F1M1; f ν〉〈 f ν; f n|FM〉

= 〈 f n|F1M1; f m〉(−1)2 f−F(2F + 1)W( f f f f , FF1), (2.137)

where W( f f f f , FF1) is the Racah coefficient. In our case F is an even number and 2 f is

an odd number, so (−1)2 f−F = −1. Then

Γµν =
∑
F1 M1

cF1 M1 KF1〈 fµ|F1M1; f ν〉, (2.138)

where

KF1 = −4
∑

F

gF(2F + 1)W( f f f f ; FF1). (2.139)
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Further note that

∑
µν

〈 fµ|F1M1; f ν〉〈 f ν|F2M2; fµ〉 (2.140)

= (−1) f +ν

√
2 f + 1
2F1 + 1

〈 f − ν; fµ|F1M1〉 × (−1) f +µ

√
2 f + 1
2F2 + 1

〈 f − ν; fµ|F2 − M2〉 (2.141)

=
2 f + 1
2F1 + 1

δF1F2δM1,−M2(−1)M1 . (2.142)

Using the property cF1,−M1 = (−1)M1c∗F1 M1
, we have

∑
µν

ΓµνRνµ =
∑

F1 M1,F2 M2

cF1 M1 KF1cF2 M2

∑
µν

〈 fµ|F1M1; f ν〉〈 f ν|F2M2; fµ〉 (2.143)

=
∑
F1 M1

|cF1 M1 |
2 2 f + 1
2F1 + 1

KF1 , (2.144)

∑
µν

ΓµνΓνµ =
∑
F1 M1

|cF1 M1 |
2 2 f + 1
2F1 + 1

K2
F1
. (2.145)

And the second order term in the thermodynamic potential is then

M2 =
∑
F1 M1

|cF1 M1 |
2
[
−

1
2

2 f + 1
2F1 + 1

KF1

(
1 + f2(T )KF1

)]
. (2.146)

with KF1 given by (2.139). After the scaling (with Fermi energy εF and number density n)

introduced in Appendix 2.7.1, we have

gn
εF
≈ 0.42 × kFa. (2.147)
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Chapter 3: NON-TRIVIAL MANIFOLDS FOR SPINOR

CONDENSATES IN SYNTHETIC GAUGE FIELDS

3.1 Introduction

We explore another new directions in cold atom researches in this chapter, which is

the effects of non-trivial background manifold where the quantum gases could reside. In

the study of quantum matter, one usually deals with Euclidean space. Spaces with non-

zero curvatures or non-trivial topology are seldom encountered. However, recent studies

show that many important properties of many-body systems can be revealed by changing

the geometry or topology of the background manifold. For instance, the ground state de-

generacy of a quantum Hall system is shifted by an amount proportional to the genus of

the manifold [69]. A change of the spatial geometry of the system can also lead to a dis-

sipation free “Hall viscosity” response in two dimensional systems [70–72], which is the

topic of the next chapter. Furthermore, it was found in graphene that curvature effects can

mimic those of gauge fields [37]. The fact that manifolds with non-Euclidean geometry

can help uncover new features of quantum matter makes it desirable to create manifolds of

controllable shape, and to develop capability to add in synthetic gauge fields.

The purpose of this chapter is to discuss how to create quantum gases on curved surfaces

with synthetic gauge fields, as well as their properties. As a first step, we consider in detail a

spinor Bose-Einstein condensate (BEC) in the form of a cylindrical surface (produced by an
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annulus trap). Bose condensation will magnify quantum phenomena on the macroscopic

scale, while large spins will lead to stronger synthetic gauge fields through Berry phase

effects. This study is also an extension of the on-going effort of generating synthetic gauge

fields in quantum gases (using rotating traps [73–80], Raman transitions or shaking lattices

[81–88]) to explore the effect of geometry and topology of the underlying manifold on

BECs in such settings (there has also been a recent study in a lattice system [89]). Finally,

we will briefly discuss the extension to other shapes of manifolds, such as spherical and

toroidal surfaces, and the vortex physics associated with them.

3.1.1 Preliminaries of Optical Traps

Trapping potentials in cold atom systems are generally produced by introducing a

smooth energy shift of the atomic levels in space. Specifically, when atoms are subject

to an external field, i.e. electric field, magnetic field, etc., its energy levels will be shifted.

Then if the external field is inhomogeneous but does not change too rapidly (compared

with the size of the atom) in space, atoms will adiabatically stay in the same energy level

En + E′n(r), but with spatially dependent energy shifts. Such an energy shift essentially

functions like a potential V(r) = E′(r) in length scales much larger than the atomic size.

A simple example is the potential produced by Zeeman effects when atoms are exposed

to inhomogeneous magnetic fields. It amounts to a generalized Stern-Gerlach experiment.

The atomic levels are shifted by En − mµ · B(r), where µ is the magnetic moment of the

atom (which is chiefly contributed by electrons as the nuclear moment is several orders of

magnitudes smaller), and m is the magnetic quantum number for the state. If an atom adia-

batically stays in certain state | f m〉, the energy shift is linearly proportional to the strength

of magnetic field |B(r)|, see Fig. 3.1. In fact, this is the idea behind earliest magnetic traps
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Figure 3.1: Magnetic trap as a simple example of trapping potential. Left: In the atomic
scale, energy levels are shifted due to the magnetic field. And the magnitude of shift is
proportional to the strength of the field. For states m = 1, 2 shown schematically here, the
energy is lower for weaker B, and they are called “low-field-seeking” states. Right: The
field changes in scales much larger than the atomic size, and the atom adiabatically stays
in the same level with negligible transition amplitudes to other m-states. Then the energy
shift∝ |B|, and functions like a potential.

used in cold atom experiments, and is still widely used nowadays. Usually a quadrupo-

lar magnetic field is used, which can be produced by two parallel rings carrying currents

circulating in the opposite directions. The field is weakest in the center, and therefore for

“low-field seeking states” the effective potential functions as a trapping one. For more

details, see [67].

The magnetic trap discussed above has the character that the internal degree of freedom

m is freezed by external magnetic field, which is the basis for magnetic trapping. Optical

trapping, on the other hand, uses the Stark shift introduced by the electric-field component

in a laser beam, and does not lift the degeneracy of different m’s. Therefore, the ground

state manifold | f m〉 consist of fixed f but degenerate m = − f ,− f + 1, . . . , f states. We

review the basic properties of optical traps below.

When a neutral atom is exposed to electric fields E (in an electromagnetic field), its

charge distribution of the electron cloud is distorted, and it acquires an electric dipole in
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Figure 3.2: The blue-detuned (ω > ωmn) and red-detuned (ω < ωmn) Gaussian laser beams,
and the effective potentials they produce respectively. Here ω is the frequency of the laser,
and ωmn = ωm − ωn is the atomic level spacing between |m〉 and |n〉 that is closest to
resonance with the laser frequency.

the lowest order approximation

d̂ = −e
∑

j

r̂ j, (3.1)

where r j are the position of atomic electrons relative to the nuclei. The atomic levels

are correspondingly shifted due to such perturbations. The Hamiltonian describing such

influence is

H = H0 + H′, H′ = −d̂ · E (3.2)

where H0 gives the unperturbed atomic levels. Here in the atomic scale, we consider the

electric field to be constant in space and it oscillates with frequence ω

E = E0 cosωt. (3.3)
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Denote the unperturbed atomic levels generally as |n〉 with frequency ωn, and expand the

perturbed wave function as

|ψ(t)〉 =
∑

n

an(t)e−iωnt|n〉. (3.4)

From the Schrodinger’s equation we have

i~∂tan(t) =
∑

l

al(t)〈n|H′(t)|l〉e−iωlnt, (3.5)

where ωln = ωl − ωn. Suppose initially the state is |l〉, to the second order approximation

[67],

φ̇l =
〈l|di|l〉
~
E0 cosωt

+
E2

0

2~2

∑
n,l

|〈n|di|l〉|2e−iωnlt cosωt
[
ei(ωnl+ω)t − 1
ωnl + ω

+
ei(ωnl−ω)t − 1
ωnl − ω

]
. (3.6)

Here we denote al(t) = eiφl(t), so φl indicates an energy shift of the initial state l with

frequency ωl in (3.4). The dipole selection rule gives 〈l|di|l〉 = 0, and states with different

orbital angular momentums are coupled. In other words, states with different magnetic

quantum numbers remain almost degenerate, unlike in the case of magnetic trapping [18].

Taking a time-average, we have the energy shift

E′l (r) = ~〈φ̇l〉t =
E2

0(r)
2~

∑
n

ωnl

ω2
nl − ω

2
|〈n|di|l〉|2. (3.7)

Regarding the energy shift as trapping potential, there are two characters that will be ex-

tensively used later on this chapter:

1. Blue-detuned and red-detuned lasers. The most important contribution usually

comes from the state n where ωnl is closest to the laser frequency ω. Without loses of

generality, let us set ωnl > 0. Then we see for lower frequency ω < ωnl, the potential

is an attractive one, and the laser beam is called a red-detuned one. Similarly for

ω > ωnl the laser beam is called a blued-detuned one producing repulsive potentials.
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2. Strength of potential. Clearly, the stronger the laser field E0 is, the stronger the

potential will be. To obtain a local maximum, one can put a lense in front of a laser

beam to focus it. Usually the intensity of the laser beam has the Gaussian shape; then

around the center of the Gaussian intensity, the atoms approximately feel a harmonic

trap.

A schematic plot for the lasers and their effective potentials are plotted in Fig.3.2.

3.1.2 Synthetic Gauge Fields: General Discussions

We review some of the experimental schemes to generate synthetic gauge fields in cold

atom systems. The difference of cold atom systems from usual solid-state electronic sys-

tems is that atoms are neutral particles, and do not feel the Lorentz forces as charged elec-

trons do. The effort of making the neutral atoms behave like charged particles moving in

electromagnetic fields leads to the subject of “synthetic gauge fields”.

The common feature in all the experimental schemes is that one actually tries to synthe-

size the “gauge potential” Asyn, instead of the electric or magnetic fields E,B. Specifically,

in the kinetic term of the Hamiltonian

T =
p2

2m
→

(p − Asyn(x))2

2m
, (3.8)

one tries to generate a position-dependent kick to the momentum. Then the effective Hamil-

tonian resembles that in the presence of a gauge field (described by the gauge potential

Asyn). As such, it is clear that the “synthetic gauge field” generated in this way generally

will not enjoy the gauge freedom A→ A+∇χ, because different Asyn corresponds to differ-

ent physical systems. (For a specific example that shows the physical difference between

“Landau gauge” and “spherical gauge” for uniform magnetic fields, see [90]. It chiefly

concerns the effect of boundary conditions). In this sense, the word “synthetic gauge field”
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is a bit misleading, as gauge degree of freedom is often regarded as an important feature

of gauge fields. But with these caveats in mind, in the following we will follow most liter-

atures and continue calling the synthesized gauge potential a “synthetic gauge field” for a

charge-neutral system.

Up to date, there has been a number of experimental schemes realizing Abelian or

non-Abelian synthetic gauge fields (spin-orbit coupling) in the cold atom setting, both in

the presence or absence of optical lattices. These include the rotating gases [91], Raman

coupling [92], shaking lattice [93], and spin textures [94–96]. For concreteness, we next

quickly review the scheme in rotating gases for example. Such a scheme involves a time-

dependent trapping potential V(r, t) that rotates at certain frequency Ω. Then, the non-

interacting part of the Hamiltonian

T + V =
p2

2m
+ V(r, t) (3.9)

can be rewritten in the frame rotating with the potential as

→ TR + VR =

(
p2

2m
−Ω · L

)
+ V(r) (3.10)

where the trapping potential becomes static in the co-moving frame, and the Hamiltonian

gains an additional term due to the centrifugal force in the non-inertial frame [91, 97]. We

will derive it in a moment. Here L = r × p is the angular-momentum operator. Use the

relation Ω · (r × p) = p · (Ω × r), we easily see

TR =
(p − Arot)2

2m
−

m(Ω × r)2

2
(3.11)

where the synthetic gauge potential

Arot = mΩ(−y, x) = mΩ × r (3.12)
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Such a gauge potential corresponds to a static uniform magnetic field B = ∇×Arot = 2mΩez.

We can understand the derivation of (3.10) from two perspectives. One uses the trans-

form of Hamiltonian and states between rotating and laboratory frames

Hrot = e−i(Ωt)·LH(t)ei(Ωt)·L, |ψrot〉 = ei(Ωt)·L|ψ〉. (3.13)

In the laboratory frame we have the Schrodinger’s equation i∂t|ψ〉 = H(t)|ψ〉, so in the

rotating frame we have i∂t|ψrot〉 = (Hrot −Ω · L)|ψrot〉. Alternatively, we can start from the

Lagrangian, which is an absolute independent of frames

L =
mv2

2
− V(r, t) =

m(vrot +Ω × rrot)2

2
− V(rrot) (3.14)

Then we directly construct the Hamiltonian in the rotating frame through Legendre trans-

form

prot =
∂L

∂vrot
= m(vrot +Ω × rrot), (3.15)

Hrot = vrot · prot − L =
mv2

rot

2
−

m(Ω × rrot)2

2
+ V(rrot)

=
(prot − mΩ × rrot)2

2m
−

m(Ω × rrot)2

2
+ V(rrot)

=
p2

rot

2m
−Ω × L + V(rrot), (3.16)

which is the same as (3.10).

Later on in this chapter, we will employ another scheme that uses the spin textures of

the system to generate synthetic Abelian and non-Abelian gauge fields. We provide some

general discussions of this scheme in the following [94, 95]. The idea is that for particles

with spin, we can separate its wave function ψ(r) = ζ(r)φ(r) in terms of spin and density

degrees of freedom. If the external magnetic field fixes the spin degree of freedom ζ(r) (i.e.

by Zeeman effects), then the effective Hamiltonian for the density degree of freedom φ(r)
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resembles that of a charged particle moving in electromagnetic field. For instance, consider

a system in a strong magnetic field where the spin of a particle adiabatically follows the

direction of the field everywhere. Then when a particle completes a loop, its spin rotations

endow the particle a Berry phase, just like that for a charged particle moving in a magnetic

field.

Figure 3.3: Directions of local magnetic fields

Now we lay down the concrete mathematical formulation for such a scheme. Consider

a neutral particle with certain spin moving in external magnetic fields:

H =
p2

2m
− λ1B(r, t) · F + λ2(B(r, t) · F)2. (3.17)

Here the external real magnetic field B(r, t) serves to produce a (linear and quadratic) Zee-

man effect for neutral atoms, and it can vary in space and time. F is the spin operator.

The system satisfies the Schrodinger equation i~∂t|ψ〉 = H|ψ〉. Now we perform a local

spin rotation such that everywhere the spin-quantization axis is along the direction of local

magnetic field

|ψr〉 = U |ψ〉, U = eiαn̂·F (3.18)
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Here α(r, t) is the angle between the z-axis and the direction of the magnetic field

b̂ = B/|B| = (sinα cos β, sinα sin β, cosα), (3.19)

and the local rotation axis is

n̂(r, t) = b̂ × ez/|b̂ × ez| = (sin β,− cos β, 0). (3.20)

See Fig. 3.3. Then

UB · FU† = |B|Fz, (3.21)

UpU† = (p − i~U∇U†) (3.22)

i~∂t|ψr〉 = (i~(∂tU)U† + UHU†)U |ψ〉 (3.23)

and the Schrodinger’s equation in the transformed frame becomes

i~∂t|ψr〉 =

[
(p − Asyn)2

2m
+ Φsyn − λ1|B|Fz + λ2|B|2F2

z

]
|ψr〉, (3.24)

Here the synthetic vector and scalar potentials are

Asyn = i~U∇U†, Φsyn = i~(∂tU)U†. (3.25)

Now we can see the emergence of synthetic electric and magnetic fields, as well as non-

Abelian gauge fields (spin-orbit coupling) in different parameter regimes. Specifically, in

the Abelian regime where λ2 → 0 and λ1 are strong enough, the spins are all polarized along

the direction of local magnetic field. Then in the rotated frame the state is | f ,m f = f 〉,

where f is the spin of the particle. Thus, we can replace Fz → f , and Fx, Fy → 0 in

U = e−iαn̂·F after taking derivatives. In this case, we obtain the Abelian synthetic gauge

field Asyn,Φsyn with electric and magnetic fields equal to

Esyn ≡ −
∂Asyn

∂t
− ∇Φ = i~

[
(∇U)(∂tU†) − (∂tU)(∇U†)

]
, (3.26)

Bsyn ≡ ∇ × Asyn = i~(∇U) × (∇U†). (3.27)
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Thus, we see that a spatially varying external magnetic field (that polarizes (α, n̂) in U,U†)

results in synthetic magnetic field; if the external magnetic field further depends on time, it

also induces a synthetic electric field.

In another parameter regime where λ1, λ2 takes the values such that more than one spin

components are almost degenerate in the ground state, we have the non-Abelian gauge

field Asyn,Φsyn. We briefly discuss such extensions in the appendix of this chapter. In the

following we will focus on the Abelian case.

3.2 Realization of a BEC on a cylindrical surface with synthetic gauge
fields in Landau gauge

A cylindrical surface has a non-trivial topology (i.e. a hole) and an extrinsic curvature.

As we shall see, the non-trivial topology of this surface leads to two types of vortices

(denoted as A and B) with the same circulation, in contrast to the single type of vortex for

given circulation in planar geometry. This is because there are only two conformal maps

that take a plane into a cylinder that satisfy the topological constraint. We further show

that in the presence of a synthetic magnetic field, the confining potential of the annulus will

give rise to a “necklace” of vortices – a row of alternating A and B vortices surrounding

the center of the cylinder at z = 0, rather than the usual hexagonal vortex array in a planar

geometry. Such vortex patterns will shown up in time-of-flight experiments as a density

distribution with 2n-fold rotational symmetry around the axis of the cylinder, (n being the

number of A-B vortex pairs in the ground state), which can be detected easily. The fact

that structures as fundamental as vortices can come in different varieties on a cylindrical

surface suggests that many new phenomena are in store for more complex curved spaces.
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Figure 3.4: The (repulsive) blue-detuned later beam penetrates through the center of a
(attractive) red-detuned laser, and the BEC is confined in the cylindrical surface.

3.2.1 Trapping BEC on a cylindrical surface

To create a quasi 2D BEC in the form of a cylindrical surface, we first create an annulus

trap of narrow width by piercing through a trap (produced by a red-detuned laser) with a

repulsive potential (produced by a blue-detuned laser), as shown in Fig.3.4. This will create

a confining well in the radial direction with a minimum at radius R. A harmonic potential

V(z) = Mω2
z z2/2 is applied along z. If ωz is much weaker than the trap frequency in the

radial direction, then a quantum gas in this trap will form a quasi-2D cylindrical surface

with radius R, thickness σ, and finite height. (See Fig. 3.4).

The total potential produce by the red and blue detuned laser, denoted as VR and VB, is

V(r) = −VRe−r2/2σ2
r + VBe−r2/2σ2

b , (3.28)
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Figure 3.5: The blue and red dotted lines represent the attractive and the repulsive potential
due to the red-detuned and blue-detuned lasers. The green curve is the combined potential,
with a minimum at R. For sufficiently large R and for weak harmonic confinement along
z, the quantum gas will form a quasi-2D cylindrical layer with thickness σ � R, shown in
green.

where σr, σb are the Gaussian width of these lasers. The minimum ro is located at

0 =
∂V
∂r

∣∣∣∣∣
r=r0

⇒ r2
0 =

2σ2
bσ

2
r

σ2
r − σ

2
b

ln
(
VB

VR

σ2
r

σ2
b

)
. (3.29)

For ro > 0, we need (i) σr > σb (“blue laser penetrating through the center of red laser”),

and (ii) VB/VR > σ2
b/σ

2
r , (blue laser must be strong enough to repulse gases from the cen-

ter). By tuning the relative strength and width of the red and blue detuned lasers, we can

adjust the location of the minimum ro.

The “width” of the annulus potential is given by the trapping frequency around the

minima r0, where V(r) around r0 behaves like

V(r) ≈ V (0) +
Mω2

r

2
(r − r0)2, Mω2

r = V (2) (3.30)

V (2) =
∂2V
∂r2

∣∣∣∣∣∣
r0

=
VR

σ2
r

(
1 −

r2
0

σ2
r

)
e−r2

0/2σ
2
r −

VB

σ2
b

(
1 −

r2
0

σ2
b

)
e−r2

0/2σ
2
b (3.31)
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The trapping frequency ωr can be tuned by changing VR and VB together, while keeping the

ratio VR/VB fixed.

It is convenient to introduce the dimensionless variables

κ1 =
σr

σb
, κ2 =

ωB

ωR
, (3.32)

where ωB(R) =
√

VB(R)/Mσb(r). Then the radius and harmonic trapping frequency becomes

r0 = σr

√
4κ1

2 ln κ2

κ1
2 − 1

, (3.33)

ωr = ωR

[(
1 −

4κ1
2 ln κ2

κ1
2 − 1

κ2
−

2κ1
2

κ1
2−1

)
− κ2

2
(
1 −

4κ1
4 ln κ2

κ1
2 − 1

κ2
−

2κ1
4

κ1
2−1

)] 1
2

. (3.34)

For instance, we choose κ1 = 2, κ2 = 1.2, then r0 ≈ 0.99σr, ωr ≈ 0.78ωR ⇒ thickness

≈

√
~

0.78MωR
≈ 3.1×10−5

√
ωR

m, where ωR takes the unit of Hertz. For ωR = 200Hz, the thickness

∼ 2.2µm. Thus, for σr ≈ 22µm we approximately have the radius-thickness ratio for the

cylindrical surface as R/σ = 10. These parameters are used to plot the potential V(r) in

Fig. 1.

3.2.2 Synthetic gauge fields in Landau gauge

Next, we insert a quadrupolar magnetic field B into the center of the cylinder, (see Fig.

3.4),

B(x) = B0(xx̂ + yŷ − 2zẑ)

= B0r(sin θ cosϕx̂ + sin θ sinϕŷ − 2 cos θẑ). (3.35)

Such a field configuration was used recently in the experiment by Hall’s group [98]. Our

configuration is a modification of their setup by piercing through the harmonic potential
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with a blue-detuned laser. For sufficiently large Bo, the low energy space is made up of

bosons with spin pointing to the direction of the local field B(x). Denoting the direction of

the spin as

l̂ = cos βẑ + sin β(cosαx̂ + sinαŷ), (3.36)

we have

α = ϕ, cos β = −
2z

√
R2 + 4z2

. (3.37)

The condensate wave function of bosons with spin S is then ψa(x) = ζa(x)φ(x), where a

is the spin index, ζa(x) is a normalized vector aligned with the local magnetic field, i.e.

B̂(x) · Sabζb(x) = S ζa(x).

The energy functional reads (with spin indices suppressed)

E[ψ] =

∫
d2x

[
~2

2M
|∇ψ|2 − (µ − V(z)) |ψ|2 +

g
2
|ψ|4

]
. (3.38)

Here, we have ∇ = ẑ∂z + R−1ϕ̂∂ϕ. With ζa(x) frozen by B(x), (3.38) reduces to a functional

of φ(x). The kinetic part becomes

|∇ψ|2 =

∣∣∣∣∣∣
(
∇

i
+
ζ†∇ζ

i

)
φ

∣∣∣∣∣∣2 +
[
|∇ζ |2 + (ζ†∇ζ)2

]
|φ|2. (3.39)

Both |∇ζ |2 and (ζ†∇ζ)2 serve as additional harmonic potential around z = 0. Near z = 0

they have the effect of a harmonic trap:

|∇ζ |2 + (ζ†∇ζ)2 =
S
2

5R2 + 4z2

(R2 + 4z2)2 ≈
S

2R2 [5 − 32(z/R)2]. (3.40)

We shall then denote the total harmonic trap along z as Vz = 1
2 Mω̃2

z z2. Thus, the system

represents scalar charged bosons φ(x) moving in synthetic magnetic field, with the gauge

potential and field strength

Asyn = iζ†∇ζ = S (∇α) cos β ≈ −
ϕ̂

R
2zS
R
, Bsyn = ∇ × Asyn ≈ (2S/R2)r̂ (3.41)
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near z = 0. The strength of the synthetic field is proportional to 2S , so a vortex ground state

is expected for condensates with sufficiently large spin. To simplify notations, we measure

length in units of R, so that z/R→ z, and z is now dimensionless. We further introduce the

dimensionless variables

α̃ ≡ Mω̄zR2/~, µ̃ ≡ µ/(~2/2MR2), g̃ ≡ g/(~2/2MR2), (3.42)

then the energy functional becomes E[ψ] = ~2

2MR2

∫
d2x E,

E = |∂zφ|
2 +

∣∣∣∣(−i∂ϕ + 2S z
)
φ
∣∣∣∣2 − (

µ̃ − α̃2z2
)
|φ|2 +

g̃
2
|φ|4. (3.43)

3.3 Vortex Physics on a Cylindrical Surface

3.3.1 Lowest Landau Level Limit for Condensates

The physics in the lowest Landau level (LLL) [99] can provide useful physical intu-

itions. The non-interacting part of the Hamiltonian in Eq. (3.43) is

h = −∂2
z + (−i∂ϕ + 2S z)2 + α̃2z2. (3.44)

It describes a charged particle in a magnetic field in the Landau gauge in the presence

of a harmonic potential. The eigenstates in the LLL are fm(ϕ, z) = e−imϕe−ν(z−zm)2/2, zm =

2S
ν

m, ν ≡
√

4S 2 + α̃2, with energy εm = ν + α̃2

ν2 m2. The state fm is a ring at zm with m

units of circulation around the azimuthal direction. It is useful to rewrite fm as

fm(ϕ, z) = Cmwme−νz
2/2, w = e−iu, u = ϕ + i

2S
ν

z (3.45)

where Cm = e−2S 2m2/ν3
. Here, u is the complex number that represents the point (ϕ, z), and

w is the conformal map that takes the cylinder (ϕ, z) into a 2D plane (wx,wy). Eq.(3.45)

shows fm is a simple power of w apart from the Gaussian in z.
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Due to the trapping potential along z, the states within LLL are not completely degen-

erate, and the energy is

εm ≡ E0m = ν +
α̃2

ν2 m2 (3.46)

For non-interacting systems, bosons will condense in the m = 0 state. However, as in the

planar case, an increasing repulsive interaction will change the condensate at m = 0 to

other linear combination of m states so as to reduce the repulsion energy. The spacing, the

width, and their ratio for states of different m are

∆z =
2S
ν2 , W̄ =

1
√
ν
,

W̄
∆z̄

=
ν3/2

2S
(3.47)

That means one state has density covering ν3/2/2S nearby states.

Next we consider the effect of interactions. Expand the many-body wave function in

terms of ground state free wave-functions

Ψ(z, ϕ) =
∑

m=0,±1,...

Cmφm(z, ϕ), N =
∑

m

|Cm|
2. (3.48)

We have the GP energy functional:

K[C] =
∑

m

(εm − µ̃)|Cm|
2 +

1
2

∑
[m]

Γ1234C∗1C
∗
2C3C4, (3.49)

Γm1m2m3m4 = γe−
S 2

ν3 [(m1−m2)2+(m3−m4)2]δm1+m2,m3+m4 . (3.50)

Without interaction, all particles will condense in the m = 0 state. Repulsion will cause par-

ticles to populate other m levels to reduce interaction energy. If the population terminates

at some state m, the wave function is

Ψ(z, ϕ) =

∑
m

Bmw̃m

 e−νz
2/2, Bm = DCme−

2S 2m2

ν3 . w̃ = e
2S z̄
ν +iϕ, (3.51)
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Since any polynomial can be written in factorized form, we have

Ψ(z, ϕ) = λ
∏

n

(w̃ − bn)e−νz̄
2/2, (3.52)

and bi’s are the location for vortices in w̃-space. If only−M, . . . ,M are populated,
∑

m Bmw̃m =

w̃−M ∑
l=0,...,2M Blw̃l, so there will be 2M vortices.

One can get the intuition of the vortex pattern through the following simple consider-

ations. If only 2 states being populated, i.e (−M,M), (B−M + BMw2M), so bn in Ea.(3.52)

is given by bn = (−B−Mei2πn/BM)1/2M, n = 0, 1, . . . (2M − 1). The vortices will then line

up with the same z along the azimuthal direction. This feature can be understood from

the fact that the state fm has magnitude peak at zm, and it carries angular momentum m~:

Lze−imϕ = −m~eimϕ. As the two different rings are populated, in the region where their wave

functions overlap, the flows arises from different rings have different velocities, which will

create a shear flow and hence a vortex.

We shall not discuss the vortex transition in the LLL. Instead, we point out that a linear

combination of the form BMφM + B−Mφ−M amounts to a linear array of 2π-vortices, since

BMwM + B−Mw−M = B−Mw−M ∏2M
`=1(w − (− B−M

BM
)1/2Meπ`/M). It is easy to see that a vortex in

the w space is also a vortex in the u space.

3.3.2 Isolated vortex on a cylindrical surface

To bring the discussion closer to current experiments, we consider a gas with ∼ 105

bosons, which typically occupy many Landau levels. If φ(ϕ, z) has a vortex at u j = ϕ j+i2S
ν

z j

with unit circulation, then as u → u j, it must be of the form φ ∝ (u − u j). On the other

hand, φ(ϕ, z) must be a linear combination of the basis functions {eimϕ,m ∈ Z} due to the
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Figure 3.6: Figure (a) and (b) are velocity profiles for the A and B vortex respectively.
The velocity of the A (or B) vortex reaches a constant above (below) the vortex core and
vanishes below (above) it over a distance of R. Figure (c) shows the velocity profile of a
necklace of six alternating AB vortices. It is equivalent to the velocity profile of two counter
circulating superfluid rings.

periodicity along ϕ. This implies the phase winding of φ(ϕ, z) is of the form

φ(ϕ, z) ∝ W±
j , W±

j =
(
e±iu − e±iu j

)
; u = ϕ + i

2S
ν

z. (3.53)

Their corresponding superfluid velocity are

vs = ∇Θ±j , Θ±j = arg(W±
j ) (3.54)
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Note that both W+
j and W−

j have the same +2π circulation, since both reduce to u − u j

as u→ u j. Their velocity profiles, however, are very different. The gradients

∂ϕΘ
±
j = ∓

e±
2S
ν (z−z j) − cos(ϕ − ϕ j)

2
[
cosh 2S

ν
(z − z j) − cos(ϕ − ϕ j)

] , (3.55)

∂zΘ
±
j =

2S
ν

sin(ϕ − ϕ j)

2
[
cosh 2S

ν
(z − z j) − cos(ϕ − ϕ j)

] . (3.56)

show that ∇Θ+
j and ∇Θ−j are related by a π rotation about vortex core. Far from the vortex

core, they approach a constant on one side and vanish on the other,

∇Θ+
j →

{
−1 · ϕ̂, z � z j

0, z � z j
, ∇Θ−j →

{
0, z � z j

1 · ϕ̂, z � z j .
(3.57)

as shown in Fig.3.6 (a) and (b). Because of this feature, we refer to Θ+
j and Θ−j as the A-

and B-vortex as their velocities are mostly non-vanishing “above” and “below” the vortex

core respectively. It is easy to see that vortices with `-circulation will also come in two

different types, (e±iu − e±iu j)`.

The presence of two types of vortices of the same circulation marks a key difference

between the cylindrical and the planar BEC. In the latter case, there is one typical vortex

with +2π circulation, of the form x+ iy. This difference can be traced back to the conformal

map w = ecu that takes a 2D plane (wx,wy) into a cylinder (ϕ, z), and c is a complex number

that describes the change in scale and orientation of the cylindrical strip with respect to

(wx,wy)-plane. However, since the wave function of the BEC is made up of the basis func-

tions {eimϕ}, c can only be ±i for vortices of unit circulation, reducing the infinite number

of mapping down to 2. The periodicity of the basis function, which exists in all Landau

levels, reflects the underlying topology of the cylindrical surface.
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3.3.3 Vortex array on a cylindrical surface

The condensate wavefunction is φ =
√

n exp(iΘ), where n is the density profile and

Θ is its phase function. For a condensate containing vortices, its wave function can be

approximated as
√

n =
√

nT H f , where nT F is the Thomas-Fermi (TF) density profile in the

absence of vortices, and f is a function that is 1 everywhere except within a region of the

size of the coherence length around the vortex singularity. In our calculations, we shall use

the variational form

f (u) =
∏

j

tanh
|u − u j|

ξ
(3.58)

for a system with vortices located at u j, where ξ is the core size, also written in units of R.

This form has been shown to match well with experiment for rotating gases [100]. For a

condensate with A-vortices at points ({u j, j = 1, . . . ,Q}) and B-vortices on another set of

points ({u j′ , j′ = 1, . . . ,Q′}), we take the following variational form of phase function Θ,

exp(iΘ) = W/|W |, W =

Q∏
j=1

W+
j

Q′∏
j′=1

W−
j′ . (3.59)

The entire variational wave function is therefore specified by the total particle number

(which fixes the chemical potential and hence nT H), and the location of vortices.

With the variational wavefunction φ =
√

nT F f exp(iΘ), the energy in Eq.(3.38) becomes

a function of the coordinates (ϕ j, z j) of the vortices. We have searched for the minimum of

this function numerically by varying the vortex locations. Since the system has reflection

symmetry in z-direction, A and B vortices must appear in pairs at appropriate location to

respect this symmetry. Our results are shown in Fig. 3.7. We have found that for S ≤ 4, the

gauge field is not strong enough to generate vortices in the ground state. For S = 5, 6, 7, 8,

there are 4, 6, 8, 10 vortices respectively lying on the circle at z = 0 (i.e. z j = 0). These

“necklaces” of vortices are all in the alternating pattern A-B-A-B-.. . . . with equal spacing.
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Figure 3.7: For S ≤ 4, the ground state contains no vortex. Within S = 5, 6, 7, 8, the
vortices aligned in one row at zi = 0 with the pattern A-B-A-B. For S ≥ 9, the vortices
array splits into two rows centering at zi = ±Z, with all A vortices aligned in one row and
all B vortices in another.

For S ≥ 9, the vortices split into two rows, with the A-vortices shifted above and B-vortices

shifted below z = 0.

The reason that the vortex pattern is so different from the planar case is a consequence

of the confining geometry (lack of trapping potential along ϕ direction). We can see the

connection of the necklace pattern to the usual hexagonal pattern in the following hypothet-

ical process. Assuming S can be increased continuously, the vortices will grow in number

and will split into more and more necklaces. The hexagonal array is the limit where the

number of necklaces approaches the number of vortices within one necklace. The S = 9

example in Fig. 3.7 can be viewed as a tendency towards the hexagonal lattice limit.

To conclude, we examine the phase function and velocity field of the alternating vortex

row in greater detail. Let us consider the case of S = 6 (corresponding to 168Er) where

the ground state has a necklace of 6 equally spaced, alternating A and B vortices at z = 0

and ϕ = n 2π
6 , where n = 0, 1, . . . , 5. Defining w = eiu = eiϕ− 2S

ν z, and α = e2π/6, the phase
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function W in Eq.(3.59) is

W =
∏

n=0,1,2

[
(w − α2n)(w−1 − α−(2n+1))

]
= w3 − w−3 (3.60)

The wave function is then

φ(ϕ, z) ∼
√

1 − z2 f (ϕ, z)
e3iϕ−3z 2S

ν − e−3iϕ+3z 2S
ν

|e3iϕ−3z 2S
ν − e−3iϕ+3z 2S

ν |
. (3.61)

For z > 0 (z < 0), φ(ϕ, z) quickly approaches e−3iϕ ( e3iϕ). The system is essentially two

counter-circulating superflows above and below z = 0, as shown in Fig.2(c).

Figure 3.8: The time-of-flight image of the vortex row in figure 2(c), taken at the time t
such that xo/R =

√
~t/m/R = 7 on the x-y plane at z = 0. Length is measured in units of R.

The 2n-fold symmetry of the image reflects the number of vortices in the vortex row.

3.3.4 Experimental Signatures

The presence of these alternating vortex array can be detected in time-of-flight exper-

iments. As we have discussed, a necklace of 2n vortices will generate two counter phase
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superflow e−inϕ and e+inϕ for z > 0 and z < 0. The system can be approximated by two rings

of condensates with opposite circulation, with one ring sitting above the other along z with

a separation of the order of their radius R. In the time-of-flight experiment, these two rings

will produce an interference at the z = 0 plane of the form e−inϕ + e+inϕ and exhibit a density

pattern with 2n-fold symmetry. This effect is in fact found in an explicit calculation of the

ballistic expansion of the vortex row condensate in Eq.(3.61). The time evolution of the

condensate is given by

φ(x, t) =

∫ 1

−1
dz

∫ π

−π

dϕU(ϕ, z, t;ϕ′, z′)φ(ϕ′, z′). (3.62)

where U(ϕ, z, t;ϕ′, z′) is the Green’s function for free particle propagation at large distance

and at long times in cylindrical coordinates,

U(ϕ, z, t;ϕ′, z′) ≈ exp
[
−i(Rr cos(ϕ − ϕ′) + (

2S
ν

)2zz′)/x2
0

]
, (3.63)

and x0 =
√
~t/m. The density pattern at the equatorial plane z = 0 at long times is shown in

Fig.4. Experimentally, the density of the expanded cloud in the equatorial plane (at z = 0)

can be measured by first using a sheet of light to excite the original atoms (denoted as “a”)

in this plane to a different atomic state (say, “b”), and then imaging the atoms in the b state

afterwards.

3.4 Conclusions and Outlook: General Compact Surfaces

The emergence of two kinds of vortices with identical vorticity in a cylindrical manifold

is a new feature of Bose condensates in a cylinder. It is a consequence of the topological

constraint on the single valueness of the wave function (i.e. that forces the spatial de-

pendence to be expressed in terms of einϕ), which will persist even when the manifold is

deformed. Although we focus on a particular aspect of the quantum gas in curved surfaces,
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there is a lot more to explore especially for systems with greater complexity. Realization

of quantum gases in curved surfaces will surely open an exciting direction for cold atom

research. In the following we extend the topic to other types of surfaces, and briefly discuss

the rich physics associated with them.

3.4.1 Tentative Schemes for Spherical and Toroidal Surfaces

In this subsection, we tentatively propose the schemes for trapping quantum gases on

spherical and toroidal surfaces. The methods described below are all based on current

technology in cold atom experiments, so the schemes should have a good chance to be

realized in the future.

(i) (ii)

Figure 3.9: The equal-potential line of blue-detuned and red-detuned lasers in the x-z plane
for (i) cylindrical surfaces, (ii) spherical surfaces. The two schemes differ in the Gaussian
width of the blue-detuned laser along z-direction, which can be tuned by changing the focal
length of the convex lense for the blue laser.

A spherical surface can be engineered by directly generalizing the scheme for cylindri-

cal surface. In the previous discussions for cylindrical surfaces, we chiefly focus on the x-y

plane where a ring-shaped potential is engineered. In the x-z plane, the trapping potentials
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Figure 3.10: Toroidal surface produced by a attractive ring-shaped potential superposed
with a repulsive ring-shaped potential.

are highly anisotropic. In particular, the blue-detuned laser has a much larger Gaussian

width along z compared with the red-detuned laser, see Fig.3.9, so it penetrates a hole in

the center. On the other hand, if we reduce such an anisotropy for blue-detuned laser, we

directly end up with a ring-shaped potential minimum along all of the three directions —

that is, a confining potential for a spherical surface. Furthermore, we can similarly put in

synthetic gauge fields by using a quadrupolar magnetic field to polarize the spins.

A toroidal surface is more sophisticated to engineer, but should be also within the capa-

bility of current technology. To do so, we need to superpose a pair of ring-shaped potentials

on top of each other, see Fig.3.10. A thinner repulsive ring-shape potential resides inside

an attractive ring-shape potential, and the quantum gases will be confined on a toroidal

surface.

In current experiments there exist two ways to engineer a ring-shape potential. One

widely used method is similar to the one for cylindrical trap described earlier (i.e. see the

experimental thesis [101], and recent experiments [1, 102]). It amounts to reducing the

height of the cylinder in Fig. 3.9 (i), i.e. reducing the Gaussian width of the red-detuned
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laser along z. That is, we first have an anisotropic ”pancake”-like trapping potential pro-

duced by red-detuned laser, and then we penetrate a hole at the center using blue-detuned

laser, see Fig. 3.11(ii). The advantage of this method is that the radius and thickness of

the ring can be changed separately, which gives good tunability for the shape of the trap.

Another method is to employ a so-called Laguerre-Gaussian (LG) laser beam [103–105],

which is a laser mode of certain orbital angular momentum. It is denoted by two quan-

tum numbers (l, p), with the intensity in the x-y plane shown in Fig.3.11(i). For simplicity,

we focus on the modes p = 0; then the electric-field component of the laser is (with e−iωt

omitted)

El(r, φ, z) ∝ r|l|e−
r2

w2(z) eilφe−ikz. (3.64)

Its intensity peak has the shape of a tube along z. Then, it is clear that if one superpose

a pair of LG laser beams with the same l counter-propagating along z-direction, the net

intensity

I(r, z) = |El(r, φ, z) + El(r, φ,−z)|2 ∝ r2|l|e−
r2

w2(z) cos2(kz) (3.65)

has the shape of rings at z0 = 0,±πk , . . . . Furthermore, the fact that the LG beams carry

orbital angular momentum enables the possibility of imparting synthetic gauge field to the

quantum gases through Raman coupling [106]. In sum, by suitably applying both methods,

we should be able to trap quantum gases on a toroidal surface with synthetic gauge fields.

3.4.2 Vortices on Compact Surfaces: Hopf-Poincaré Index Theorem

As we have seen in previous sections, the vortex physics changes qualitatively when

quantum gases are placed on cylindrical surfaces. For compact surfaces (surfaces without

boundaries such as the spherical and toroidal surfaces), their vortex physics has a further

fundamental difference from that on a planar geometry. Consider a vector field v tangent
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(i)
(ii)

Figure 3.11: Two ways to produce ring-shape potentials. (i) The ring-shape trapping poten-
tial used in the experiment c.f. [1] (this figure is taken from the reference). It is produced
by superposing red and blue detuned lasers similar to the scheme for cylindrical trap in Fig.
3.9 (i). (ii) Intensity of Laguerre-Gaussian beam in x-y plane for modes (l, p).

to the 2D surface that is continuous and is non-vanishing except on isolated points. Such a

vector field can represent the velocity field of the superfluid vs = ~
mΨ∗∇Ψ, where Ψ is the

order parameter. The total vorticity (or total circulation number)

Γ =
∑

i

Γi =

∮
vs · dl (3.66)

of the vector field on a planar geometry can take arbitrary values in general. However, on

compact surfaces, the Hopf-Poincaré theorem [107–109]

Γ = χ(M). (3.67)

relates the total circulation to the Euler characteristic

χ(M) = 2(1 − g) (3.68)
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of the surface manifold M, where g is genus. For instance, a spherical surface S 2 has genus

g = 0, so the total circulation must be 2 for any continuous vector field tangent to S 2.

But a torus has genus g = 1, so there could be a continuous vector field without any pole

on a torus. Further, if there are vortex excitations, they must appear in terms of vortex-

antivortex pairs to ensure the total circulation is 0. Moreover, since the Euler characteristic

is a topological number, such constraint persists even if the 2D surface is distorted — so

long as such distortion does not change the topology.

3.5 Appendix

3.5.1 Synthetic Abelian and Non-Abelian Gauge Fields

Here we derive the effective energy functional (3.43) for φ from the functional (3.38)

for ψ = ζφ, with the spins ζ polarized by a quadrupolar magnetic field. The kinetic part of

the Hamiltonian is (we have also put in a quadratic Zeeman term for generality, though in

the main text we work in the regime where λ1 dominates)

T =
p2

2M
− λ1n̂ · S + λ2(n̂ · S)2 (3.69)

where n̂ is the direction of local magnetic field. (Here the ~’s are factored out from spin

operators so they are dimensionless). Denotes it as (β(ϕ, z), α(ϕ, z)), that is

B = b0n̂, n̂ = (sin β cosα, sin β sinα, cos β). (3.70)

Consider the unitary transform U1 = eiS zα. It rotates the spin with respect to ẑ by −α, and

U1∂ jU
†

1 = ∂ j − iS z(∂ jα) (3.71)

Further, U2 = eiS yβ rotate the spin along ŷ by −β, and

U2(U1∂ jU
†

1)U2 = ∂ j − iS y(∂ jβ) − i(S z cos β − S x sin β)(∂ jα). (3.72)
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On the other hand,

U2(U1n̂ · SU†1)U†2 = S z (3.73)

Thus, such consecutive rotations transform the kinetic part into

T →
~2

2M

[
−i∇ − S y∇β − (S z cos β − S x sin β)∇α

]2
− λ1S z + λ2S 2

z (3.74)

Depending on the functional form of (β, α), we can have different types of spin-orbit cou-

pling. One subtlety is the spin directions: S z is now pointing to the direction of local

magnetic field, and (S x, S y, S z) form a right-handed coordinate system.

-2 -1 0 1 2

-1.0

-0.5

0.0

0.5

1.0

Figure 3.12: Quadrupolar field in the x-z plane.

Now, consider a quadrupolar magnetic field

B = b0(−x,−y, 2z) = b0(−R cosϕ,−R sinϕ, 2z), (3.75)

as illustrated in Fig.3.12. We have

cos β =
2z

√
R2 + 4z2

, α = ϕ + π, (3.76)
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On a cylindrical surface, ∇ = ẑ∂z + (ϕ̂/R)∂ϕ, so

∇β = ẑ
−2R

R2 + 4z2 , ∇α =
ϕ̂

R
, sin β =

R2

√
R2 + 4z2

. (3.77)

Further, measure length in the unit of R, i.e. z/R→ z and z is now dimensionless,

T =
~2

2MR2

(−i∂z + S y
2

1 + 4z2

)2

+

(
−i∂ϕ + S x

1
√

1 + 4z2
− S z

2z
√

1 + 4z2

)2 − λ1S z + λ2S 2
z .

(3.78)

At z = 0,

T |z=0 =
~2

2MR2

[
(−i∂z + 2S y)2 + (−i∂ϕ + S x)2

]
− λ1S z + λ2S 2

z . (3.79)

To lowest order in z, as approximated in previous work,

T |near z=0 =
~2

2MR2

[
(−i∂z + 2S y)2 + (−i∂ϕ + S x − 2zS z)2

]
− λ1S z + λ2S 2

z . (3.80)

The previous case corresponds to large Zeeman splitting, where the system stays in |mF =

F〉 state, and the projection to that state gives 〈F|S x|F〉 = 0 = 〈F|S y|F〉, 〈F|S z|F〉 = F, and

the kinetic part reduces to the previous Abelian case.

3.5.2 Details of the Variational Calculation

Our variational wave function is

φ =
√

nT H f h, h = eiΘ, (3.81)

where nT H is the Thomas Fermi density profile, which is fixed by the trapping potential.

f is the function that describes the location of vortex core and Θ is the phase function of

the vortex state. The expression of Θ is given in Eq. (15) and the expression of nT H will

be given below. We shall consider M A-type vortices located at {(ϕi, zi), i = 1, ..N, and M′

B-type vortices located at {(ϕi, zi), i = N + 1, ..N + M′. The entire set of vortex coordinates
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{(ϕi, zi), i = 1, ...,M + N} are the variational parameters. In the calculations we have taken

2S/ν→ 1, as α̃ ∼ 1 (for typical experimental parameters), and ν→ 2S .

Substitute the Eq.(3.81) into the energy functional, we have

E[ψ] =
~2

2MR2

∫
d2x E,

E = |∂zφ|
2 +

∣∣∣∣(−i∂ϕ + 2S z
)
φ
∣∣∣∣2 − (

µ̃ − α̃2z2
)
|φ|2 +

g̃
2
|φ|4, (3.82)

we have

E = E1 + E2 + E3, (3.83)

E1 =
[
(∂zΘ)2 + (∂ϕΘ + 2S z)2

]
nT H f 2 (3.84)

E2 = −nT H f∇2 f − g̃n2
T H( f 2 −

f 4

2
−

1
2

) −
g̃n2

T H

2
(3.85)

E3 =

[
(∇
√

nT H)2 − (µ̃ − V(z))nT H +
g̃
2

n2
T H

]
f 2 (3.86)

We recognize that E3 has the form of usual Gross-Pitaevskii energy functional, and

determines the density profile in the absence of vortices. In the Thomas-Fermi regime,

where the gradient term in E3 is small, the integral is almost a constant and changes little

due to variation of the vortex positions. Thus, E3 can be set to zero, and the density is well

approximated by

nT H(z) =
µ − V(z)

g
=

Mω2R2

2g
(Z2

max − z2), g =
4π~2as

M
(3.87)

where as is the scattering length, and Zmax =
√

2µ/Mω2
z R2 is the extent of the condensate

along z. Taking the condensate to be homogeneous along radial direction, the total number

of particles is given by

N = (2πσ)
∫ Zmax

−Zmax

dznT H(z). (3.88)
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This gives the relation between particle number N and the extent of the condensate in the

z-direction, Zmax,

N =
Z3

max

3
×

α̃2

as/σ
, Recall: α̃ = R2/d2, d =

~

Mωz
(3.89)

where as is the scattering length related to g by g = 4π~2as
M .

With E3 = 0, we are left with E1 and E2. In the absence of vortices, f = 1 everywhere,

and the first two terms in E2 vanishes. These two terms then describe the energy increase

due to the existence of vortices. To evaluate them, we note that the core size of the vortex

at z is given by the local coherence length ξ ∼ ~√
2Mn(z)g

1
R . At the center of the trap, z = 0,

we have ξ0 ∼
1
α̃
. In our calculation, we take the harmonic length d along z to be an order of

magnitude smaller than R, then we have ξ ∼ 10−2 � 1.

Hence, the first two terms in E2 are only non-zero close to each vortex core. If f1(x) is a

smooth function, and f2(x) is only non-zero within a small region around xi’s, we then make

the approximation
∫ a2

a1
dx f1(x) f2(x) = (

∑
i f1(xi))

∫ ∞
−∞

dx f2(x). Using this approximation, we

have ∫
d2x E2 = −

2πα̃2

3
+ (2 + α̃2ξ2)C

∑
i

(Z2
max − z2

i ), (3.90)

where C = π
6 (4 ln 2 − 1) ≈ 0.928 is the integration result, and zi is the z coordinates of

vortices, which is confined to |zi| < Zmax. Dropping the constant term in Eq.(3.90), which

plays no role in our variational calculation, the energy E (in units of Mω2R4

2g ) can be written

as

E[ψ] = (2 + α̃2ξ2)
∑

i

(1 − z2
i ) +

∫ π

−π

dϕ
∫ Zmax

−Zmax

dz

×
[
(∂zΘ)2 + (∂ϕΘ + 2S z)2

]
(Z2

max − z2) f 2. (3.91)
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This is now a function of the coordinates of the vortices {(ϕi, zi), i = 1, 2, ..2N}, which are

contained in the phase function Θ. We have performed numerical calculations for different

number of A-types and B-types of vortices. The result presented in the main text is for the

case α̃ξ = 1 and Zmax = 1. However, our result is remains unchanged with other similar

parameters.
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Chapter 4: HALL VISCOSITY AND ITS SIGNATURES IN

DENSITY RESPONSE FUNCTIONS

4.1 Introduction

This chapter investigates another topic related to the geometric effects on quantum flu-

ids, which is the Hall viscosity ηH (or “Lorentz shear modulus”) [110–112]. It is the third

viscosity coefficient unique in 2-dimensional isotropic, parity-odd systems. Unlike the

usual shear and bulk viscosity, Hall viscosity causes neither dissipation nor entropy in-

crease, and therefore can be defined down to zero temperature. Like Hall conductivity,

Hall viscosity bears lots of topological information. It can be regarded as the Berry cur-

vature in the parameter space of a metric tensor [110], and is proportional to the Wen-Zee

shift [113, 114], a quantity characterizing the system’s spatial topology [69].

Besides the topological significance, the influence of Hall viscosity on various systems

shows up in multiple ways. As discovered recently, for integer quantum Hall systems [115]

and Laughlin wave functions [116], the Hall viscosity is related to the density response to

the variation of the sample’s scalar curvature. It acts as an anomolous force on vortices

and changes their streamlines in an eulerian vortex fluid [117]. More generally, the Hall

viscosity appears in the low-momentum expansion of Hall conductivity σH(q) for Galilean

invariant systems subject to inhomogeneous electric field [118, 119]. Clearly, studying
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these physical consequences not only broadens our perspective on Hall viscosity, but also

facilitates designing experiments to measure it.

This chapter is devoted to the discussions of basic concepts and characters of Hall vis-

cosity, and point out its signatures in the density response to external fields. Since density

mapping [67] or scattering experiments [120] are practical tools for measurements in cold

atom systems, this study may pave the way for future measurements of Hall viscosity in

cold atom systems. In the following we first review some of the basic concepts about Hall

viscosity.

4.1.1 Hydrodynamics

For ideal fluids, we have

• Continuity: ∂
∂t

∫
ndV = −

�
nv · dS = −

∫
∇ · (nv)dV ,

∂n
∂t

+ ∇ · (nv) = 0 (4.1)

• Stokes equation for force:
∫

mndv
dt dV = −

�
PdS +

∫
FdV =

∫
(−∇P + F)dV , and

note d
dt = ∂

∂t + dxi
dt

∂
∂xi

= ∂t + v · ∇,

mn
(
∂

∂t
+ v · ∇

)
v = −∇P + F. (4.2)

Here F is external force density, i.e. F = en(E + v × B) for Lorentz force.

• Navier-Stokes equation for momentum:∫
m
∂(nvi)
∂t

dV =

∫
m[
∂n
∂t

vi +
∂vi

∂t
n]dV = m

∫
dV[−∂ j(nv j)vi−n(

∂iP − Fi

mn
+v j∂ jvi)]

(4.3)

Thus,

m
∂(nvi)
∂t

+ ∂ jτi j = Fi, τi j = Pδi j + mnviv j (4.4)
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where τi j is the momentum flux tensor.

The viscosity serves as a force on interfaces of fluid layers,
∫

Fvisc
i dV =

�
σi jdS j =∫

∂ jσi jdV , so it can be written as a total divergence of a stress tensor σi j. It can always be

symmetrized.

The form of this tensor can be determined by physical considerations: 1) A constant

flow would not reveal viscosity, so it depends only on ∂iv j or higher gradients. For slow

varying velocity field, higher gradients are neglected. So σi j has the general form Ai j∂iv j.

2) A constant rotation, vi = εi jkΩ jri, also cannot reveal viscosity, because the fluid rotates

like a rigid body in this case. So 0 = Ai j∂iε jklΩkrl = εi jkAi jΩk. Since Ωk is an arbitrary

constant, we need Ai j = A ji. So it only depends on combinations of

vi j ≡
1
2

(∂iv j + ∂ jvi). (4.5)

In sum, the Navier-Stokes equation for viscous flow can be written as

∂gi

∂t
+ ∂ jτi j = Fext

i , (4.6)

gi = mnvi (4.7)

τi j = Pδi j + mnviv j − σi j, σi j = ηi jklvkl, (4.8)

where gi is momentum, σi j is the viscous part of stress tensor 4 and the viscosity tensor ηi jkl

is symmetric under i↔ j, k ↔ l. It can be decomposed into symmetric and anti-symmetric

part for exchange of the pair (i j)↔ (kl):

ηS
i jkl =

1
2

(ηi jkl + ηkli j), ηA
i jkl =

1
2

(ηi jkl − ηkli j). (4.9)

4There could be a elastic term σi j = λi jklukl + ηi jklvkl, with ukl the strain, ∂ukl/∂t = vkl. We neglect this
term temperarily and will restore it later on. For a fluid, the only elasticity comes from the compression,
σi j = κ−1δi jδklukl, with κ−1 is the inverse compressibility. We will consider it in the linear response approach.
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Onsager’s relation implies that under time-reversal, ηS is even while ηA is odd, i.e. in the

presence of external magnetic field, ηS (−B) = ηS , ηA(−B) = −ηA(B). It means that the odd

viscosity is only present in time-reversal breaking systems.

4.1.2 Dissipation

If some force does work on the fluid, we sum over such work over the whole fluid and

see whether it is non-zero. If not, the kinetic energy of the fluid will change. In the case of

viscous flow, such change corresponds to dissipation.

Specifically, the viscous force acting upon each fluid element is ∂ jσi jdV . The displace-

ment of the fluid ui is varied, corresponding to work done on the fluid which increases total

energy ∫
δεdV =

∫
(∂ jσi j)δuidV

=

∫
∂ j(σi jδui)dV −

∫
σi j∂ jδuidV. (4.10)

The first term is a total derivative and can be evaluated on the surface of the fluid. Consider

the surface effect negligible, and use the symmetry of σi j,

δε = −σi jδui j (4.11)

where

ui j =
1
2

(∂iu j + ∂ jui) (4.12)

is the strain, and ∂ui j/∂t = vi j. Using (4.8), and vary the both sides with respect to time t,

ε̇ = −ηi jklvi jvkl. (4.13)

This shows that only the symmetry part ηS > 0 causes dissipation.
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Further look at entropy change due to viscosity. The energy under concern is the me-

chanical energy (kinetic+potential), which equals the maximum amount of work that can

be done when the fluid passes from a given non-equilibrium state to equilibrium. According

to thermodynamics, the maximal work can be done through an entropy preserving process

(reversible). Denote E0 the initial energy in a non-equilibrium state, and E(S ) the final

equilibrium state with entropy S . Then

Emech = E0 − E(S ). (4.14)

The time evolution is then

Ėmech = −
∂E(S )
∂S

Ṡ = −T0Ṡ . (4.15)

Here T0 is the temperature that the system would have if it were in equilibrium with entropy

S . Combined with (4.13),

T0 ṡ = ηi jklvi jvkl. (4.16)

Again, we see that only the symmetric part ηS increases the entropy. Thus, the odd viscosity

is allowed to exist even down to zero temperature.

4.1.3 Independent Components

Due to symmetry of indices, the independent components of ηi jkl is significantly re-

duced. We further express those components in representations in which it is easier to

analyze their rotation properties.

2D

In 2D, we use the representation

ηi jkl = ηAB(σA)i j ⊗ (σB)kl, i, j = x, y; A, B = 0, 1, 3. (4.17)
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Table 4.1: Independent components in ηi jkl.
General Isotropic

Even Odd Even Odd
2D 6 3 2 1
3D 21 15 2 0

Here σA are Pauli matrices. Since i ↔ j, k ↔ l symmetric, only 0, 1, 3 are adopted. Thus,

the independent elements ηAB span a 9 dimensional space, with 6 even ones and 3 odd ones.

Next we investigate the independent isotropic elements. Note that

eiσ2θ =

∞∑
n=0

(iθ)2n

(2n)!
+

∞∑
n=0

(iθ)2n+1

(2n + 1)!
σ2

= cos θI + iσ2 sin θ

=

(
cos θ sin θ
− sin θ cos θ

)
≡ U (4.18)

So U is the SO(2) rotation operator. It is real so UT = U† = U−1. That means that under

rotation,

ηi jkl → Uii′U j j′Ukk′Ull′ηi′ j′k′l′

= ηAB(Uii′σ
A
i′ j′U

†

j′ j) ⊗ (Ukk′σ
B
k′l′U

†

l′l)

= ηAB(UσAU†)i j(UσBU†)kl. (4.19)

Using eABe−A =
∑

n[A(n), B]/n!,

Uσ1U† = cos 2θσ1 + sin 2θσ3 (4.20)

Uσ3U† = − sin 2θσ1 + cos 2θσ3. (4.21)
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So

ηi jkl → σ3 ⊗ σ3[η11s2 + η33c2 + sc(η13 + η31)] (4.22)

+ σ1 ⊗ σ1[η11c2 + η33s2 − sc(η13 + η31)] (4.23)

+ (σ1 ⊗ σ3 + σ3 ⊗ σ1)[η11 − η33]sc (4.24)

+ σ1 ⊗ σ3[η13c2 − η31s2] (4.25)

+ σ3 ⊗ σ1[−η13s2 + η31c2] (4.26)

+ (I ⊗ σ1 + σ1 ⊗ I)[η01c − η03s] (4.27)

+ (I ⊗ σ3 + σ3 ⊗ I)[η01s + η03c] (4.28)

+ η00I ⊗ I. (4.29)

Here s = sin 2θ, c = cos 2θ. From these we see there are three independent components

that are invariant under rotation: ζ = η00, η
S = η11 = η33, and ηH = η13 = −η31. Explicitly,

the isotropic components are

Even: ζI ⊗ I, ηS (σ1 ⊗ σ1 + σ3 ⊗ σ3), (4.30)

Odd: ηH(σ1 ⊗ σ3 − σ3 ⊗ σ1). (4.31)

Written explicitly,

Even: ζδi jδkl, ηS (δikδ jl + δilδ jk − δi jδkl), (4.32)

Odd: −
ηH

2
(εikδ jl + ε jkδil + εilδ jk + ε jlδik). (4.33)
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The corresponding stress tensor is

Even: σS
i j = ζδi j∂kvk + ηS (∂iv j + ∂ jvi − δi j∂kvk) (4.34)

Odd: σA
xx = −ηH(∂xvy + ∂yvx) (4.35)

σA
yy = ηH(∂xvy + ∂yvx) (4.36)

σA
xy = σA

yx = ηH(∂xvx − ∂yvy) (4.37)

3D

Use the representation

ηi jklS iS jS kS l (4.38)

to map the SO(3) rotation property into SU(2) rotation as follows. Here S i are spin opera-

tors. A SU(2) rotation corresponds to U = e−iS·θ̂θ acting on S i:

η = ηi jklS i ⊗ S j ⊗ S k ⊗ S l

→ ηi jkl(US iU†) ⊗ · · · ⊗ (US lU†) . . .

= ηi jkl(αii′S i′) ⊗ · · · ⊗ (αll′S l′) . . .

=
[
αii′α j j′αkk′αll′ηi jkl

]
S i′ ⊗ · · · ⊗ S l′ (4.39)

where αii′ is the matrix element of SO(3) transform in Cartesian coordinates. Then the term

in the square bracket is the viscosity tensor after rotation.

We can then analyze the rotation property by first adding S i ⊗ S j into total spin repre-

sentation. Each spin operator can be regarded as ŶL=1,M(Ŝ), so it is an L = 1 representation

of su(2), and their tensor product can be decomposed as

1 ⊗ 1 = 2 ⊕ 1 ⊕ 0 (4.40)

Technically, this is writing S iS j in terms of YL=2,M(S),YL=1,M(S) and YL=0,M(S). The 2, 0

representations are even under exchanging i↔ j, while 1 is odd. Regarding the symmetry
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property of ηi jkl we only take 2 ⊕ 0 representation. The S k ⊗ S l can be added in the same

way. Then S iS jS kS l is added into the total spin representation

(2 ⊕ 0)2 = 422 ⊕ 322 ⊕ 222 ⊕ 111 ⊕ 022

⊕220 ⊕ 202

⊕000. (4.41)

Each representation contributes independent components as summarized in Table 4.2. Even

and odd are refering to exchange of index pairs (i j) ↔ (kl). So in total there are 21 even

Table 4.2: Independent elements contributed by each representation
422 322 222 122 022 220&202 000

Even 9 5 1 5 1
Odd 7 3 5

components and 15 odd components. The only 2 isotropic ones 022, 000 are all even ones.

Thus, there is no Hall viscosity in isotropic 3D fluid. The stress tensor is expressed in the

usual way

σi j = ζδi j∂kvk + ηS (∂iv j + ∂ jvi −
2
3
δi j∂kvk). (4.42)

4.2 Adiabatic Approach

The previous section gives macroscopic formulation of viscosity in terms of hydro-

dynamics. This section shows microscopically that the Hall viscosity can be regarded as

Berry curvature in the distortion parameter space, and can be calculated using the distorted

wave function.
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4.2.1 Berry Curvature for Distortion

We start from the microscopic many-body Hamiltonian, with the distortion ui j as pa-

rameter: Ĥ[ui j]. (ui j functions just like k for Bloch Hamiltonians). The stress tensor oper-

ator can be defined using (4.11). Note Ĥ is the many-body Hamiltonian representing the

whole system, while δε in (4.11) is energy density. For homogeneous systems the volume

integration simply gives V . So

Vσ̂i j = −
∂Ĥ[ui j]
∂ui j

(4.43)

Then

V〈σ̂i j〉 = −

〈
ψ[ui j]

∣∣∣∣∣∣∂Ĥ[ui j]
∂ui j

∣∣∣∣∣∣ψ[ui j]
〉

= −
∂〈Ĥ〉
∂ui j

+ 〈
∂ψ

∂ui j
|Ĥ|ψ〉 + 〈ψ|Ĥ|

∂ψ

∂ui j
〉

= −
∂E
∂ui j

+ 〈
∂ψ

∂ui j
|i~∂t|ψ〉 + (−i~∂t〈ψ|)|

∂ψ

∂ui j
〉

= −
∂E
∂ui j

+ i~〈
∂ψ

∂ui j
|
∂ψ

∂ukl
〉u̇kl − i~〈

∂ψ

∂ukl
|
∂ψ

∂ui j
〉u̇kl

= −
∂E
∂ui j

+ Ωi jklvkl (4.44)

where the Berry curvature is

Ωi jkl = i~
[〈
∂ψ

∂ui j

∣∣∣∣∣ ∂ψ∂ukl

〉
−

〈
∂ψ

∂ukl

∣∣∣∣∣∣ ∂ψ∂ui j

〉]
= −2~ Im

〈
∂ψ

∂ui j

∣∣∣∣∣ ∂ψ∂ukl

〉
(4.45)

Compared with the hydrodynamic result (4.8), 〈T̂i j〉 = ηi jklvkl, we see the Berry curvature

in response to distortion in a homogeneous system is the viscosity 5

ηi jkl =
Ωi jkl

V
(4.46)

(The first term represents elasticity, which we will not discuss here.)

5From the derivation we see that for non-homogeneous system, Ωi jkl =
∫
ηi jkl(x) dx. Then we cannot

extract viscosity from the Berry curvature calculation in general. Thus, the adiabatic method is effective only
in homogeneous systems.
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4.2.2 Distortion and Metric

The distortion of the system can be described as a change of metric. Specifically, orig-

inally we have the line element

ds2 = δi jdxidx j (4.47)

After distortion, dxi → dxi + dui(x). Then the line element becomes

ds′2 = δi j(dxi + dui)(dx j + du j)

= δi jdxidx j + δi jdxi∂u j

∂xk dxk + δi j
∂ui

∂xk dxkdx j + O((du)2)

=
(
δi j + (∂iu j + ∂ jui)

)
dxidx j (4.48)

So we can regard the metric being changed to (see Eq. (4.12) for definition of ui j)

δi j → gi j = δi j + 2ui j (4.49)

The inverse of the metric, gi jg jk = δi
k, is

gi j = δi j − 2ui j, (4.50)

also correct up to linear order in ui j. Then (4.45), (4.46) can be re-written as

ηi jkl = −
8~
V

Im
〈
∂ψ

∂gi j

∣∣∣∣∣ ∂ψ∂gkl

〉
= −

8~
V

Im
〈
∂ψ

∂gi j

∣∣∣∣∣ ∂ψ∂gkl

〉
(4.51)

Due to the simple relation between metric and strain, from now on we would focus on the

metric only because it is easier to manipulate.

4.2.3 Distortion of Unit Parallelogram

A simplest homogeneous distortion is the distortion of unit parallelogram, as illustrated

in Fig. 4.1. Originally, the two edges have ratio 1 : 1. After distortion, as illustrated by red
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Figure 4.1: Distortion of unit parallelogram. The volume is held fixed.

dashed parallelogram, the two edges have ratio 1 : τ parametrized by τ = τ1 + iτ2, and are

no longer perpendicular to each other. The constraint is that volume is kept the same. So

l1 = ατ2, l3 = α · 1 ⇒ V = ατ2 · α ⇒ α =
√

V/τ2. Then we have l1, l2, l3 as illustrated in

the figure, and further x′ =
√

V
τ2

x + y
√

Vτ2 ·
τ1
√

V/τ2√
Vτ2

=
√

V
τ2

x + y
√

V
τ2
τ1

y′ =
√

Vτ2y
(4.52)

Then

ds′2 = dx′2 + dy′2 =
V
τ2

(dx + τ1dy)2 + Vτ2dy2 (4.53)

=
V
τ2

[dx2 + 2τ1dxdy + |τ|2dy2]. (4.54)

That means the metric is

gi j =
V
τ2

(
1 τ1

τ1 |τ|
2

)
, ⇒ gi j = (gi j)−1 =

1
Vτ2

(
|τ|2 −τ1

−τ1 1

)
(4.55)
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With such parametrization, we can rewrite (4.51).

τ1 = −
gxy + gyx

2gyy , τ2 =

√
gxxgyy − (gxy)2

gyy ,V =
1√

gxxgyy − (gxy)2
(4.56)

Thus,

∂

∂gxx =
1
2

(∂τ2 − ∂V), (4.57)

∂

∂gyy = −
1
2

(∂τ2 + ∂V), (4.58)

∂

∂gxy =
∂

∂gyx = −
1
2
∂τ1 . (4.59)

The differentiations are evaluated in Euclidean metric gi j = δi j. Plug these into (4.51), and

note the wave function generally does not depend on V (because V appears only as a global

factor in Hamiltonian for a homogeneous system), there is only one component for Hall

viscosity as expected:

ηH = ηyxxx = −ηxxxy =
2~
V

Im
〈
∂ψ

∂τ1

∣∣∣∣∣ ∂ψ∂τ2

〉
. (4.60)

Thus, once we know the distorted wave function parametrized by τ1, τ2, we can readily

calculate Hall viscosity using this formula.

A special case is that if the coordinate part of the wave function is analytic,

ψ(τ1, τ2, x) = A(τ1, τ2)Φ(τ, x) (4.61)
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where Φ(τ) only depend on τ = τ1 + τ2 and A is real, then

〈
∂AΦ

∂τ1
|
∂AΦ

∂τ2
〉 − 〈

∂AΦ

∂τ2
|
∂AΦ

∂τ1
〉

= 〈(∂1A)Φ + A∂1Φ|(∂2A)Φ + A∂2Φ〉

−〈(∂2A)Φ + A∂2Φ|(∂1A)Φ + A∂1Φ〉

= [(∂1A)∂2A − (∂2A)∂1A]〈Φ|Φ〉 (4.62)

+(∂1A)A〈Φ|∂2Φ〉 + A(∂2A)〈∂1Φ|Φ〉 − c.c. (4.63)

+A2〈∂1Φ|∂2Φ〉 − c.c. (4.64)

Since ∂τ1 = ∂τ + ∂τ̄, ∂τ2 = i(∂τ − ∂τ̄), and ∂ = (∂1 − i∂2)/2, ∂̄ = (∂1 + i∂2)/2,

(4.62) = [(∂1A)∂2A − (∂2A)∂1A]
1
A2 = 0

(4.63) = (A∂1A)i∂
1
A2 + (A∂2A)∂̄

1
A2 − c.c.

= i(A∂1A)(−
2
A3 )∂A + (A∂2A)(−

2
A3 )∂̄A − c.c.

= −i
∂1A
A2 (∂1 − i∂2)A −

∂2A
A2 (∂1 + i∂2)A − c.c.

= −i
(∂1A)2

A2 − i
(∂2A)2

A2 −
∂1A
A2 −

∂2A∂1A
A2 − c.c.

= −2i
(∂1A)2 + (∂2A)2

A2

(4.64) = A2(∂̄i∂)
1
A2 − c.c.

= 2iA2(
∂1 + i∂2

2
)(
∂1 − i∂2

2
)

1
A2

=
iA2

2
(∂2

1 + ∂2
2)

1
A2

= −i[
(∂2

1 + ∂2
2)A

A
− 3

(∂1A)2 + (∂2A)2

A2 ].

Together, we have

− i[
(∂2

1 + ∂2
2)A

A
−

(∂1A)2 + (∂2A)2

A2 ] = −i(∂2
1 + ∂2

2) ln A. (4.65)
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Then

ηH = −
~

V
(∂2

1 + ∂2
2) ln A(τ1, τ2). (4.66)

The calculation is greatly simplified as we only need to look at the normalization factor.

4.2.4 Example: Quantum Hall Systems

First we write down the Hamiltonian in an arbitrary metric. The magnetic field is along

ẑ direction and is homogeneous. The system is in x-y plane. The Hamiltonian with flat

metric is

H =
(p − eA)2

2M
(4.67)

=
1

2M
[−~2∇2 + 2i~eA · ∇ + i~e(∇ · A) + e2A2] (4.68)

In a general metric, each term becomes

∇2 =
1
√

g
∂i
√

ggi j∂ j (4.69)

A · ∇ = Ai∂i (4.70)

∇ · A =
1
√

g
∂i
√

gAi (4.71)

A2 = gi jAiA j (4.72)

Using this, and apply the notation Ai = gi jA j, we can write the Hamiltonian as

H =
1

2M
1
√

g
πi
√

ggi jπ j, (4.73)

where

πi = −i~∂i − eAi. (4.74)

In the rest of this section, the metric is taken to be homogeneous (it only has time depen-

dence). Then

H =
gi jπiπ j

2M
. (4.75)
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Adopt the metric (4.55),

H =
1

2MVτ2
[|τ|2π2

x + π2
y − τ1(πxπy + πyπx)]

=
1

2MVτ2
[|τ|2π2

x + π2
y − 2τ1πyπx − i~eBτ1]

=
1

2MVτ2
(τ∗πx − πy)(τπx − πy) +

~eB
2MV

, (4.76)

where we have repeatedly used the commutation relation [πi, π j] = i~eB. Recall that for

Euclidean metric, τ = i, and we readily recognize that the corresponding Landau level

operators in distorted geometry are

a =
1

√
2~eBτ2

(τπx − πy), a† =
1

√
2~eBτ2

(τ∗πx − πy), (4.77)

and

[a, a†] = 1. (4.78)

The Hamiltonian then becomes

H =
~ω

V

(
a†a +

1
2

)
, (4.79)

where ω = eB/M. As expected, for a fluid, only changing the volume affects the energy,

while shear deformation τ does not. But the shear will distort the wave function.

To be specific, we work out lowest Landau level (LLL) wavefunctions in Landau gauge.

The discussion in spherical gauge is left to the appendix.

In Landau gauge, A = B(−y, 0, 0), and the wavefunction is an eigenstate of px. πx =

px + eBy, πy = −i~∂y. Then

a =
1

√
2τ2~eB

[τ(px + eBy) + i~∂y], (4.80)

a† =
1

√
2τ2~eB

[τ∗(px + eBy) + i~∂y]. (4.81)
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The ground state wavefunction is given by the condition aφ0 = 0, which gives

φ0,px =

(
eipx x

√
Lx

) (
(
eBτ2

π~
)

1
4 eiτ (px+eBy)2

2~eB

)
(4.82)

Denote lB = ~
eB , y0 = −px/eB,

φ0,px =

(
eipx x

√
Lx

) ( τ2

πl2
B

) 1
4

e
iτ (y−y0)2

2l2B

 (4.83)

Thus, a general many-body wave function is of the form

Ψ = A(τ1, τ2) f (x1 . . . xN , τ)
N∏

i=1

e
iτ

(y(i)−y(i)
0 )2

2l2B (4.84)

Now we can use (4.66) to evaluate the Hall viscosity. A further simplification occurs in

the thermodynamic limit where the filling factor is kept constant, but the degeneracy and

the particle number go to infinity. That means lB → 0, and the normalization is effectively

independent of f . Then in A(τ1, τ2), the relevant part is the factor (τ1/4
2 )N coming from the

normalization of e−τ2(y−y0)2/2l2B for the N particles. Therefore,

ηH = −
~

V
∂2

2[
N
4

ln τ2]|τ2=1 =
~n
4
, n =

N
V

(4.85)

4.3 Wen-Zee Effective Theory

Haldane shows that for a QH on a spherical surface,

H =
L2 − (~q)2

2M
, q =

1
2
, 1,

3
2
, 2, . . . (4.86)

where q is the monopole quantization number:

∇ · B = Φδ(x), Φ =
h
e

(2q) (4.87)

Φ = B · 4πR2 is the flux through the spherical surface. And

H|lm〉 =
~2

2MR2 [l(l + 1) − q2] (4.88)
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Or we can write ~2

2MR2 = ~ω
2q with ω = eB/M. Here

L = Λ + ~qn̂ (4.89)

where ~Λ = ~r × ~π, ~π = ~p + e~A, and n̂ = er. But note

~L · n̂ = ~q, (4.90)

l has minimal number q. So denote

l = q + n, n = 0, 1, 2, . . . (4.91)

we have

H|lm〉 =
~ω

2q
[q(2n + 1) + n(n + 1)], n = 0, 1, . . . (4.92)

The degeneracy of n-th level is

2l + 1 = 2(q + n) + 1 = 2q + (2n + 1) (4.93)

Then we see that different from planar QH, the degeneracy differs from the flux quanta by

(2n + 1).

The Wen & Zee effective theory is that

L =
1

4π

(
aI
µε

µνλKIJ∂νaJ
λ + 2AµtIε

µνλ∂νaI
λ + 2ωµsIε

µνλ∂νaI
λ

)
(4.94)

The first term is the effective Ginzburg-Landau term producing the QHE. It is generalized

to multiple components denoted by I, J with the coupling specified by the K-matrix. The

second term is the coupling of external vector potential Aµ to the system. The third term is

the key. It describes the coupling of external geometry to the system.

Before proceeding, we do some geometry. Denote the set of basis field as {(eµ)a}. Then

(eτ)b∇b(eµ)a = Γσµτ(eσ)a. (4.95)
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Define connection 1-form

(ω ν
µ )a = −Γνµτ(e

τ)a = (eµ)c∇a(eν)c (4.96)

It is related to the basis field via the First Cartan Equation

(deν)ab = −(eµ)a ∧ (ω ν
µ )b. (4.97)

The curvature two form defined by

(R ν
µ )ab = R d

abc (eµ)a(eν)b (4.98)

is related to the connection through the Second Cartan Equation

(R ν
µ )ab = (dω ν

µ )ab + (ω λ
µ )a ∧ (ω ν

λ )b (4.99)

On a spherical surface,

(e1)a = R(dθ)a, (e2)a = R sin θ(dφ)a. (4.100)

Then taking the exterior derivative, we have

(de1)ab = 0, (de2)ab = R cos θ(dθ)b ∧ (dφ)a. (4.101)

Thus, the first Cartan equation (for components ν = 1, 2) is written explicitly as

0 = −R(dθ)a ∧ (ω 1
1 )b − R sin θ(dφ)a ∧ (ω 1

2 )b, (4.102)

R cos θ(dθ)b ∧ (dφ)a = −R(dθ)a ∧ (ω 2
1 )b − R sin θ(dφ)a ∧ (ω 2

2 )b. (4.103)

The Cartan equations do not uniquely fix the connection — just like the connection A in

gauge theories, they are only fixed up to a gauge transform. From these equations we can

choose the simplest connection

ω 1
1 = ω 2

2 = ω 1
2 = 0; ω 2

1 = − cos θdφ (4.104)
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Since there is only one component, we will later on denote it simply as

ω = − cos θ dφ. (4.105)

Further, the curvature

(R 1
2 )ab = (dω 1

2 )ab = sin θ(dθ)a ∧ (dφ)b, (4.106)

or simply

R = dω = sin θdθ ∧ dφ (4.107)

To extract physics from (4.94), we integrate out gauge fields aI
µ in

∫
Daei

∫
L. Denote

(4.94) as

L =
1

4π
[a(Kε∂)a + (2Atε∂)a + (2ωsε∂)a] (4.108)

and treat the terms in (. . . ) as matrix. From the Gaussian integral formula∫
Dv e−vT Av+ρT v =

√
πD

det A
e

1
4ρ

T A−1ρ, (4.109)

we get

Leff = −
1

4π
(Atε∂ + ωsε∂)(Kε∂)−1(Atε∂ + ωsε∂) (4.110)

=
1

4π
(At + ωs)K−1ε∂(At + ωs). (4.111)

Then, the electric current is

Je =
δL

δA
=

1
2π

tK−1ε∂(At + ωs), (4.112)

and the “geometry current” is

Js =
δL

δω
=

1
2π

sK−1ε∂(At + ωs). (4.113)
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The zero-th component means density. So(
ρe

ρs

)
=

(
tK−1t tK−1s
sK−1t sK−1s

) (
dA
dω

)
(4.114)

Note dA = B, dω = R. Integrate over space we have(
Ne

Ns

)
=

(
tK−1t tK−1s
sK−1t sK−1s

) (
Nφ

NR

)
(4.115)

where Φ is the magnetic flux, and NR = 2(1− g) with g the genus of the system’s topology,

i.e. 0 for spherical surface, 1 for plane. That means

Ne = (tK−1t)Nφ + (tK−1s)NR ≡ ν(Nφ + S). (4.116)

Regard

ν = tK−1t (4.117)

as filling factor, we see that the shift is

S =
tK−1s
tK−1t

NR. (4.118)

Now we revisit Haldane’s model. The flux through the spherical surface is Nφ = 2q.

Consider ν = N Landau levels being filled, each with degeneracy 2(q + n) + 1. So in total

Ne =

N−1∑
n=0

[2(q + n) + 1] = NNφ + N2 = ν(Nφ + N). (4.119)

Thus, the shift S = N. The non-interacting N-level model corresponds to rank-N KIJ = δIJ,

and tI = (1, . . . , 1). Then tK−1t = N. The I-th Landau level contributes to the shift by

ν−1(2I − 1) = (2I − 1)/N. Thus, from (4.118),

2I − 1
N

=
sI

N
2⇒ sI = I −

1
2
. (4.120)

98



Later on in other literatures, S is refered to as “shift”, and sI , the curvature charge, is

refered to as “orbital spin”. For lowest Landau level being filled, s1 = 1
2 . Compared with

(4.85), we can write

ηH =
sn~
2
. (4.121)

Also, for the ground state, S = 1, which mean S = 2s1.

4.4 Density Response

Density response measurement is a powerful and widely applicable tool to probe vari-

ous systems. In recent works, many authors have related Hall viscosity to density response

functions, i.e. the static structure factor [115, 121], using certain trial wave functions. It is

intriguing to see whether there are universal relations between density response functions

and Hall viscosity. In the following, we will relate the Hall viscosity ηH to the q4 term in

the density-susceptibility χ(q, ω) for a general Galilean invariant system, thus allowing for

measurements of Hall viscosity through density response experiments, or to calculate Hall

viscosity through density response functions. We first derive the relation in the microscopic

level using Kubo formulae, and verify the results in the integer quantum Hall example.

Then we present an independent derivation by applying effective hydrodynamics. The lat-

ter method has been adopted [122–124] to analyze collective modes of fractional quantum

Hall system at filling ν = 1/3, which gives qualitative agreement with experiment. [125]

The two derivations give the same result in the long wave-length expansion. Since both of

the derivations are independent of specific wave functions, type of interactions, filling fac-

tors, and etc., the results (4.135), (4.136) are valid for a general class of Galilean invariant

systems.
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4.4.1 Kubo Formulae Method

We first sketch the idea of relating viscosity and conductivity to susceptibility before the

strict derivation. In a viscous fluid, the stress tensor would respond to the velocity gradient

vαβ = 1
2 (∂αvβ + ∂βvα) through

δTµν = ηµναβvαβ, (4.122)

where ηµνρσ are the viscosity coefficients. In three dimensions, rotation symmetry reduces

the number of ηµνρσ to 2, corresponding to the usual shear and bulk viscosity:

ηS (δµαδνβ + δµβδνα −
2
d
δµνδαβ), ζδµνδαβ, (4.123)

where d is spatial dimension. But in 2D, the in-plane isotropy allows for an additional one

called Hall viscosity

ηH(δναεµβ − δµβεαν). (4.124)

Meanwhile, the density and current of a system would respond to potential and electric

field perturbations

δn(q, ω) = χ(q, ω)ϕ(q, ω), (4.125)

δ jα(q, ω) = σαβ(q, ω)Eβ(q, ω), (4.126)

where χ(q, ω), σαβ(q, ω) are the (charge-)susceptibility and conductivity respectively. The

key idea is that since in linear regime, the different transport processes probe the same

equilibrium property of the system, the transport coefficients are all related to each other.

Technically, the essential ingredients in the Kubo formulae for the transport coefficients

are the correlators χ ∼ 〈[n, n]〉0, σαβ ∼ 〈[ jα, jβ]〉0, and ηµναβ ∼ 〈[Tµν,Tαβ]〉0. For Galilean

invariant systems, the current is related to momentum by j = e
mp. Thus, the particle and
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momentum conservation for the system at equilibrium,

∂tn(x, t) + ∂αpα(x, t) = 0, (4.127)

∂t pα(x, t) + ∂βTαβ(x, t) = fα(x, t) (4.128)

naturally provides a bridge among the transport coefficients of different types. Roughly

speaking, by writing the conservation laws in Fourier space, we see the viscosity is related

to the q2 and q4 terms in conductivity and susceptibility respectively. Analogous ideas

have been adopted recently to discuss the unitary Fermi gases [126] and the conductivity-

viscosity relations [119], while in this paper we focus on the density response signatures

for 2D systems subject to uniform magnetic field.

The Hamiltonian describing density coupling to external potential is

H1 =

∫
d2x n̂(x)ϕ(x, t) =

∫
d2q

(2π)2 n̂(q)ϕ(−q, t), (4.129)

where n̂(x) =
∑N

j=1 δ(x − x̂ j) is the density operator, with the Fourier transform n̂(q) =∑N
j=1 e−iq·x̂ j

. For a translational invariant system, the susceptibility [127] is given by

χ(q, ω) = −
i
~

∫ ∞

0
dt eiω+t

∫
d2xe−iq·x〈[n̂(x, t), n̂(0, 0)]〉0. (4.130)

Here 〈. . . 〉0 means ensemble average in the fully interacting equilibrium system, and ω+ =

ω + iε with ε → 0 ensuring that the perturbation adiabatically sets in. On the other hand,

for current response to electric field, the Kubo formula gives the conductivity [128]

σαβ(q, ω) =
ie2n̄
mω+

δαβ +
1
~ω+

∫ ∞

0
dt eiω+t

×

∫
d2x e−iq·x〈[ ĵα(x, t), ĵβ(0, 0)]〉0, (4.131)

where n̄ = N/V is the average particle number density. Here the current density ĵα(x) =

e
2m

∑N
i=1{π̂

i
α, δ(x − x̂i)}, where {. . . } is anti-commutator, and π̂i

α = p̂i
α − eÂi

α(x̂i).
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Here we follow the Kubo formulae construction in [119] and obtain the frequency-

dependent conductivity-viscosity relation in the low-momentum expansion up to the q2

term, valid for Galilean invariant systems:

σ(2)
µν (q, ω) =

e2

m2(ω2 − ω2
c)2

× [(ζ(ω) −
κ−1

int

iω
)
(
ω2qµqν + iωωcq2εµν + ω2

cεµβενδqβqδ
)

+ηS (ω)q2
(
(ω2 + ω2

c)δµν + 2iωωcεµν
)

−ηH(ω)
(
iωωc(qµqν + q2δµν) − (ω2 + ω2

c)q2εµν
)
], (4.132)

where ωc = eB/m is the cyclotron frequency, and the “internal compressiblity” is

κ−1
int = −V

(
∂Pint

∂V

)
N,ν

= B2
(
∂2ε

∂B2

)
ν

, (4.133)

where V means area. Here the “internal pressure” Pint = P − BM/V excludes the pres-

sure contribution from the magnetization M due to edge current [119, 129]. Note that the

derivative is taken at fixed ν instead of fixed B. Thus, the internal compressibility has a

finite value.

In previous literatures [118, 119], the explicit frequency dependence in (4.132) was

not given, as for the discussion there it was not important. But from the relation between

susceptibility and conductivity [130], obtained from Kubo formulae (4.130) (4.131) and

particle conservation (4.127),

χ(q, ω) =
qαqβ
ie2ω+

σαβ(q, ω), (4.134)

we see that even if one only considers the susceptibility at zero-frequency, it reflects the

linear-in-frequency part of the conductivity. As we shall see later, it is essential to incor-

porate the ω-dependence in (4.132) before taking the limit. Explicitly, (4.132) and (4.134)
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shows the susceptibility-viscosity relation

χ(4)(q, ω) =
q4

m2(ω2 − ω2
c)2

[
κ−1

int − 2ωcηH(ω)

+ζ(ω)
ω

i
+ ηS (ω)

ω2 + ω2
c

iω

]
. (4.135)

And at zero frequency ω = 0, the static susceptibility is

χ(4)(q, ω = 0) =
q4

m2ω4
c

[
κ−1

int − 2ωcηH(ω = 0)

+ω2
c lim
ω→0

(
ηS (ω)

iω

)
−i lim

ω→0
(ωζ(ω))

]
. (4.136)

We stress that these relations are obtained under the only assumption of Galilean invariance.

Thus, the Hall viscosity is guaranteed to show up in the q4 term in the density response

function for a wide range of systems.

4.4.2 Example: Integer Quantum Hall Systems

We apply the above results to discuss the paradigm example of integer quantum Hall

effect. The Hamiltonian involves only the kinetic part Ĥ0 =
∑

i π̂
i
µπ̂

i
µ/2m = ~ωc

∑
i(â
†

i âi +

1/2), where the ladder operator for Landau levels is âi = (π̂i
x + iπ̂i

y)/
√

2~eB, with the

commutation relation [âi, â
†

j] = δi j. Working in the spherical gauge Âi = B
2 (−ŷi, x̂i, 0), and

defining R̂i = p̂i + eÂi, we can introduce b̂i = (R̂i
x − iR̂i

y)/
√

2~eB, with [b̂i, b̂
†

j] = δi j. It

specifies the degeneracy within each Landau level in terms of angular momentum L̂z =

~
∑

i(b̂
†

i b̂i − â†i âi). Consider a ground state with the lowest ν Landau levels fully filled; each

level has degeneracy V/2πl2
B. Using equation (4.130) we calculate the leading terms in

susceptibility directly. Start from

χ(q, ω) = −
i
~

∫ ∞

0
dt eiω+t

∫
d2xe−iq·x〈[n̂(x, τ), n̂(0, 0)]〉0
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we can explicitly calculate the charge susceptibility χ(q, ω) up to the fourth order term

χ(2)(q, ω) = (qlB)2 n̄ωc

~((ω+)2 − ω2
c)
, (4.137)

χ(4)(q, ω) = (qlB)4 ε

~2

(
1

(ω+)2 − 4ω2
c
−

1
(ω+)2 − ω2

c

)
. (4.138)

Here the energy density is ε = (eBν)2/4πm, and the average density is n̄ = ν/2πl2
B, where

the magnetic length l2
B = ~/eB.

Next we use (4.134) (4.135) to calculate the same terms in susceptibility so as to ver-

ify the susceptibility-viscosity relations. The zeroth order term in conductivity is directly

obtained from the Kubo formula (4.131),

σ(0)
µν (ω) =

ie2n̄
mω+

ω2

(ω+)2 − ω2
c
δµν +

n̄e2ωc

m(ω2
c − ω

2)
εµν, (4.139)

which reduces to the familiar one σ(0)
µν (ω = 0) = e2ν/h at zero frequency. Using (4.134) we

obtain (4.137). Further [119],

κ−1
int = 2ε, ζ(ω) = 0, ηS (ω) =

iω+ε

(ω+)2 − 4ω2
c
, ηH(ω) =

2ωcε

4ω2
c − (ω+)2 . (4.140)

Then from (4.135) we have (4.138), as expected.

We can further obtain the dynamic structure factor S (q, ω) [127] using the fluctuation-

dissipation theorem Imχ(q, ω) = − π
~V (S (q, ω) − S (−q,−ω)), and the identity 1

x±iε = P 1
x ∓

πiδ(x),

S (2)(q, ω) = (qlB)2 N
2
δ(ω − ωc), (4.141)

S (4)(q, ω) = (qlB)4 Nν
8

[δ(ω − 2ωc) − 2δ(ω − ωc)]. (4.142)

The static structure factor [127] S (q) = (1/N)
∫ ∞

0
dω S (q, ω) = 〈n̂(q)n̂(−q)〉 is then

S (q) =
(qlB)2

2
−
ν

8
(qlB)4 + O((qlB)6). (4.143)

For ν = 1, it reduces to the first two terms in the expansion of the well-known result

S (q) = 1 − e−(qlB)2/2 for a system with fully-filled lowest Landau level [131].
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4.4.3 Hydrodynamic analysis

Having performed the strict microscopic analysis, it is interesting to see whether there

is a macroscopic derivation of the susceptibility-viscosity relations (4.135) (4.136), which

would provide a simpler and more intuitive way to understand them. To this end, we next

show that (4.135) and (4.136) can be reproduced by pure classical hydrodynamic equations,

despite the underlying highly quantum structure of the electronic liquid. Such a method has

been adopted to discuss the fractional quantum Hall liquids and Bose-Einstein condensates

recently [67, 122–124, 132, 133].

In hydrodynamics, the microscopic details are averaged over, giving a few effective

macroscopic variables,

n(r, t) = n̄ + δn(r, t), u(r, t) = ū + v(r, t). (4.144)

Here n,u are the macroscopically averaged number density and the velocity respectively,

including the equilibrium value n̄, ū, and the small deviation δn(r, t), v(r, t) caused by exter-

nal perturbation. The dynamics is given by the Navier-Stokes equation (momentum conser-

vation) (4.128), where the momentum p = mnu. The force comes from the Lorentz force of

the uniform magnetic field and the external potential perturbation f = −enBez×u−n∇ϕ(r, t).

The stress tensor is

Tµν = Pintδµν + mnuµuν − δTµν, (4.145)

where the viscous part δTµν is given by (4.122)-(4.124), and Pint is the internal pressure

introduced earlier. We stress that Pint excludes the contribution to the pressure from the

Lorentz force exerted on the edge current, and therefore is suitable to be used here, as the

Naivier-Stokes equation only concerns bulk properties and assumes no boundary effect.

Consider the linear response regime where δn(r, t), v(r, t) are kept up to linear order, and
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use the equilibrium value n̄ = constant, ū = 0, the Navier-Stokes equation (4.128) becomes

mn̄∂tv = (en̄B + ηH∆)(v × ez) + ∇(ζ∇ · v − n̄ϕ − Pint) + ηS ∆v, (4.146)

On the other hand, the particle conservation, also kept up to linear order, gives

∂tδn + n̄∇ · v = 0, (4.147)

Then applying the alternative expression for compressibility κint = 1
n

∂n
∂Pint

, which gives

∇Pint = κ−1
int (∇δn)/n̄, we have the density response to potential perturbation δn = χϕ, where

the susceptibility (in momentum space) reads

χ(q, ω) =
n̄2q2

mn̄ω2 −

(
κ−1

int

iω
− ηS − ζ

)
iωq2 +

(mn̄ωc − η
Hq2)2

ηS q2/iω − mn̄

. (4.148)

In the low momentum expansion, the q2 term is exactly given by that for the integer quan-

tum Hall effect (4.137). This is because the intra-Landau level excitations start from the

q4 term [131]. Thus, the q2 contribution must entirely come from inter-Landau level exci-

tations, whose characters are captured by the integer quantum Hall effect. The q4 term is

given by the same equation (4.135), as being derived from the Kubo formula. Thus, in the

low-momentum regime, the classical hydrodynamics reproduces the strict susceptibility-

viscosity relations obtained from Kubo formulae.

(In general, the viscosity coefficients ζ, ηS , ηH would have momentum dependence also

[115,116]. In the expansion of (4.148) discussed above, we have taken the viscosity coeffi-

cients ζ, ηS , ηH to be constant (they only depend on frequency). This is suffficient when we

expand χ(q, ω) up to q4 terms, as can be seen from (4.148). But when applying (4.148) to

higher orders in q, one needs to first expand ζ, ηS , ηH to higher powers in q (i.e. q0 and q2

terms for ζ, ηS , ηH) before expanding (4.148) (i.e. to q6 term for χ(q, ω))).
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4.4.4 Obtaining Hall Viscosity through Density Response Signatures

The relations (4.135), (4.136) connect the Hall viscosity with the susceptibility, which

can be measured by scattering experiments. Since many recent works only concern the

zero frequency value of Hall viscosity ηH(ω = 0), we focus on equation (4.136) here. Note

that in most cases the bulk viscosity ζ(ω) does not diverge [119] at zero frequency. Then

the last term in equation (4.136) vanishes and the formula can be rewritten as

ηH =
κ−1

int

2ωc
+
ωc

2
lim
ω→0

(
ηS

iω

)
−

m2ω3
c

2
χ(4)(q)

q4 . (4.149)

In order to extract ηH from the measurement of χ(4)(q), one has to determine the first two

terms in (4.149). The inverse internal compressibility κ−1
int = B2(∂2ε(B)/∂B2)ν can be deter-

mined by the auxiliary measurement of magnetic susceptibility χM = µ0

(
∂M
∂B

)
ν

= −µ0

(
∂2ε
∂B2

)
ν

at constant filling fraction, or a local current measurement in response to the inhomoge-

neous magnetic field [118] δj = ∇× δM = −ε′′(B)ez ×∇δB. In particular, in high magnetic

field where Landau level mixing is negligible, the interaction energy can be neglected com-

pared with the kinetic energy. Then we have the free particle results ε =
(eBν)2

4πm and ε =
(eB)2ν
4πm

for integer and fractional quantum Hall systems respectively, giving κ−1
int = 2ε.

Further, limω→0(ηS /iω) generally yields a finite value (see the integer quantum Hall

system for example), and needs careful evaluations. Here we invoke the Kubo formula for

shear viscosity [119], ηS = ~ω+

V

∫ ∞
0

eiω+t〈[Ĵ12(t), Ĵ12(0)]〉0, to compute this quantity. Ĵ12 is

the off-diagonal element of the strain generator Ĵµν. In the spectral representation,

ηS

iω
=

2~
V

∑
n

ωn0|〈0|Ĵ12(0)|n〉|2

(ω+)2 − ω2
n0

, (4.150)

where ωn0 = ωn − ω0, with ωn the frequency of energy eigenstate |n〉. (In the presence

of Landau level mixing, |n〉 also includes higher Landau level eigenstates). Therefore, if
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ωn0 = 0 or the matrix element vanishes, the corresponding term is zero; otherwise, we have

the finite result

lim
ω→0

(
ηS

iω

)
= −

2~
V

∑
n

′ |〈0|Ĵ12(0)|n〉|2

ωn0
, (4.151)

where
∑′ means summing over energy eigenstates which are not degenerate with the

ground state. Explicitly, the off-diagonal element of the strain generator assumes the form

Ĵ12(0) =
∑

i

(
−{x̂i, π̂i

y} − eBx̂i 2
)
/2~, and can be written conveniently in the spherical gauge

Âi = 1
2B × r̂i as

Ĵ12(0) = −
∑

i

x̂i p̂i
y

~
= −

1
4

∑
i

[(âi − â†i )2 − (b̂i − b̂†i )2]. (4.152)

where âi, b̂i are inter- and intra-Landau level ladder operators defined previously. Consider,

for instance, integer quantum Hall effect. Then the only non-zero matrix element in (4.151)

is 〈0|â2
i |2〉, where |2〉 means the state with one electron from either of the top two filled

Landau levels in the ground state being excited 2 levels upwards, corresponding to an

excitation energy ω20 = 2ωc. Thus, limω→0(ηS /iω) = −ε/4ω2
c , in consistency with the

previous result. The evaluation for various fractional quantum Hall systems is left for

future work, which generally requires a numerical evaluation of (4.151) and (4.152) in the

presence or absence of Landau level mixings depending on specific experimental situations.

Thus, with κ−1
int and limω→0(ηS /iω) being measured or calculated, one can use equa-

tion (4.149) to determine the Hall viscosity ηH through the long wavelength part of static

susceptibility χ(4)(q, ω = 0), which is related to scattering experiments [127]. Explic-

itly, the quantity being measured is the dynamic structure factor S (q, ω) =
∑

n S n(q)δ(ω −

ωn(q)), where ωn(q)’s are excitation modes. Using Kramers-Kronig relation Reχ(q, ω) =

(1/π)
∫ ∞
−∞

dzP(Imχ(q, z))/(z − ω) and fluctuation dissipation theorem, we have the static
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susceptibility χ(q) = χ(q, ω = 0) as

χ(q) = −
2
~V

∑
n

S n(q)
ωn(q)

. (4.153)

We can compare it to the situation in single mode approximation [131]. There S n(q) be-

comes the static structure factor S (q) while ωn(q)→ ∆(q) corresponds to the single gapped

mode. But a recent experiment [125] shows the existence of two collective modes. Thus,

we keep the general form (4.153). But the presence of two or multiple modes does not affect

the conclusion that intra-Landau level excitation corresponds to S (q, ω), χ(q, ω) starting

from q4. This can be seen by applying the f -sum rule [127]
∫ ∞

0
ωS (q, ω)dω = ~Nq2/2m

and (4.137). Then we see the sum rule is saturated by the inter-Landau level excitations,

meaning that the q2 term comes entirely from the cyclotron mode.

The qualitative behavior of χ(q) in the small-q limit can be observed as follows. Using

the compressibility sum rule χ(q→ 0) = −Nκ−1
T and the incompressible feature of quantum

Hall states, we see the constant term in χ(q) always vanishes. Here κ−1
T = −V(∂P/∂V)N,B

is the isothermal compressibility. Moreover, the low-lying excitations within the lowest

Landau level correspond to χ(q) starting from the q4 term. That means if the inter-Landau

level excitation is supressed in the large magnetic field limit, (or if we can cancel such

contribution by subtracting the χ(2) given by equation (4.137)), χ(4) is the leading order in

χ(q). In sum, the algebraic relation (4.153) clearly means that it will be sufficient to extract

the q4 term in χ(q) by measuring only the long wavelength part of S (q, ω), as is usually the

case in current experiments.

4.5 Conclusion and outlook

The relation between susceptibility and viscosity in (4.135) and (4.136) is presented

and discussed, showing the role of viscosity coefficients in the q4 term of susceptibility for
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a general class of Galilean invariant system. It suggests the possibility of measuring the

Hall viscosity in terms of density response experiments for a wide range of quantum Hall

systems.

In addition, it is worth mentioning the connection of this work with cold atom systems,

where quantum Hall states can be simulated using rotating atomic gases. The quantum

Hall state is approached when the rotation frequency of the trapped gas approaches the

critical frequency, where the centrifugal force almost cancels the trapping force, and the

Galilean invariance is approximately satisfied. Since in cold atom systems, the density

measurement and the potential engineering are the most standard experimental tools and

can be made to high accuracy, our analysis paves the way for further discussions of Hall

viscosity signatures in cold atom experiments.
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