Sparse Equidistribution of Unipotent Orbits in
Finite-Volume Quotients of PSL(2,R)

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree Doctor of

Philosophy in the Graduate School of the Ohio State University

By
Cheng Zheng, B.S.

Graduate Program in Mathematics

The Ohio State University

2016

Dissertation Committee:
Nimish A. Shah, Advisor
Vitaly Bergelson

James Cogdell



Copyright by
Cheng Zheng
2016



Abstract

We consider the orbits {pu(n'™)|n € N} in T'\ PSL(2,R), where I' is a non-
uniform lattice in PSL(2,R) and {u(t)} is the standard unipotent one-parameter
subgroup in PSL(2,R). Under a Diophantine condition on the intial point p, we can
prove that the trajectory {pu(n'™)|n € N} is equidistributed in T'\ PSL(2,R) for
small v > 0, which generalizes a result of Venkatesh [V10]. In Chapter 2, we will
compute Hausdorff dimensions of subsets of non-Diophantine points in I'\ PSL(2, R),
using results of lattice counting problem. In Chapter 3 we will use the exponential
mixing property of a semisimple flow to prove the effective equidistribution of horo-
spherical orbits. In Chapter 4, we will give a definition of Diophantine points of type
v for v > 0 in a homogeneous space I'\G and compute the Hausdorff dimension of
the subset of points which are not Diophantine of type v when G is a semisimple
Lie group of real rank one. As an application, we will deduce a Jarnik-Besicovitch

Theorem on Diophantine approximation in Heisenberg groups.
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Chapter 1

Sparse Equidistribution of Unipotent Orbits in I'\ PSL(2, R)

1.1 Introduction

The theory of equidistribution of unipotent flows on homogeneous spaces has been
studied extensively over the past few decades. Furstenberg [F73] first proved that the
unipotent flow on I'\ PSL(2,R), where I' is a uniform lattice, is uniquely ergodic.
In [D78] Dani classified ergodic invariant measures for unipotent flows on finite vol-
ume homogeneous spaces of PSL(2,R), and using this result Dani and Smillie [DS84]
proved that any non-periodic unipotent orbit is equidistributed on I'\ PSL(2,R) for
any lattice I'. The proof of the Oppenheim Conjecture due to Margulis [M89] by
proving a special case of Raghunathan’s conjecture drew a lot of attention to this
subject. Soon afterwords, Ratner published her seminal work [R90a, R90b, R91a]
proving measure classification theorem for unipotent actions on homogeneous spaces
as conjectured by Raghunathan and Dani [D81]. Using these results, Ratner [R91b]
proved that any unipotent orbit in a finite volume homogeneous space is equidis-
tributed in its orbit closure; see also Shah [Sh91] for the case of Rank-1 semisimple
groups.

Ratner’s work has led to many new extensions and number theoretic applications
of ergodic theory of unipotent flows. One of these results, which is related to this
paper, was the work by Shah [Sh94]. In that paper, Shah asked whether {pu(n?)|n €

N} is equidistributed in a sub-homogeneous space of PSL(2,Z)\ PSL(2,R), where



u: R — PSL(2,R) is the standard unipotent 1-parameter subgroup

In this direction, Venkatesh published a result about sparse equidistribution ([V10],
Theorem 3.1). There he introduced a soft technique of calculations by using a dis-
crepancy trick, and proved that if I' is a cocompact lattice in PSL(2,R) and v > 0
is a small number depending on the spectral gap of the Laplacian on I'\ PSL(2, R),

then for any point p € I'\ PSL(2, R) we have

=z

flpu(n'7)) — fdp.

1
N I'\ PSL(2,R)

3
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o

In other words, in the case of I'\ PSL(2, R) being compact, the equidistribtion holds
for the sparse subset {n!™|n € N}. It is worth noting that recently Tanis and Vishe
[TV15] improve some results of Venkatesh [V10] and they obtain an absolute constant
~v > 0 which does not depend on the spectral gap.

In this paper, we will consider the sparse subset {n'*™’|n € N} and orbits of
{u(n'™)|n € N} in I'\ PSL(2,R), where I' is a non-uniform lattice. We want to
prove a sparse equidistribution theorem similar to Shah’s conjecture [Sh94] and the
work of Venkatesh [V10] and that of Tanis and Vishe [TV15]. To deal with the
complexity caused by initial points of unipotent orbits, we introduce a Diophantine
condition for points in I'\ PSL(2, R) as follows.

Let G = PSL(2,R) and we consider the Siegel sets NoA,K where

Nq = t is in a bounded subset 2 C R



A, = s>«

and K = SO(2). For the non-uniform lattice I', there exist o; € G and bounded

intervals ; C R (1 < j < k) with the following property ([GR70], [DS84])

k
1. For some a > 0, G = |J 'o;Ng, A K.
j=1
2. aj_lljaj N N is a cocompact lattice in V.

3. Ng, is a fundamental domain of a]-_IFJj N N\N.

We will fix 0; (1 < j < k) in such a way that in the upper half plane §), each o
corresponds to a cusp 7;, i.e. limy_,o 07t = n;, and 1y, M2, . . ., i are the inequivalent

cusps of I'\$). Let I'; =T'N ajNaj_l. Let m; be the covering map

Tt FJ\G — F\G

Now consider the usual action of G on R? and let ¢; = . For each 7, we can

define a map

m;: F]\G —>R2/:|:

m;(q) = g~ oje1

for ¢ = T;g € T,\G, where R?/+ means that we identify every v € R? with its
opposite —v. In this way, we obtain k maps m; (j =1,2,...,k) whose images are all
in R?/+. Using these notations, we can give the following definition of Diophantine

condition of a point p € T'\G.



Definition 1.1.1. Let p € I'\G. We say that p is Diophantine of type (k1, k2, ..., Kg)

for some k; > 0 (j = 1,2,...,k) if for each j, there exist p;,; > 0 such that for

a
every point € m;(m; ' (p)), we have either [b| > p; or |a|™|b] > v;.
b

Remark 1.1.1. This notion of Diophantine type on p € I'\G has been studied well in
an equivalent form; it can be connected to the excursion rate of the geodesic orbit

{9:(p) }+=0. We will prove this in section 1.3.

It is straightforward to verify that if ¢ € AN then the Diophantine types of
p and pg are the same; although the choices of pj,7; > 0 in the above definition
may differ. The hausdorff dimension of the complement of the set of points of the
Diophantine type (k1, kg, ..., ki) will be discussed in section 1.7. We will see that
almost every point satisfies the Diophantine condition of type (k1, k2, ..., Kg) when
K1, K2, ..., kg > 1. When min{ky, ko, ..., Kk} = 1, the set of points of the Diophantine
type (K1, Ka, ..., k) has zero Haar measure but has full Hausdorff dimension.

Now we state the main theorem in this paper.

Theorem 1.1.1 (Main theorem). Let I' be a non-uniform lattice in PSL(2,R) and
k the number of inequivalent cusps of I'\ PSL(2,R). Suppose that p € I'\ PSL(2,R)
is Diophantine of type (K1, ks, ..., kk). Then there exists a constant vy > 0 such that

for any 0 < v < 9, we have

=

-1

Flpu(n'™)) — fp.

1
N I'\ PSL(2,R)

i
o

Here the constant g depends on K1, ks, ...,k and ', and f is any bounded continuous

function on I'\ PSL(2,R).



Remark 1.1.2. From the proof of the main theorem, we will see that the constant

52

Yo = 1min { (s +4)(r; + 4)

j:1,2,...,k}.

Here s is defined as follows: if we let A > 0 denote the smallest eigenvalue in the
discrete spectrum of the Laplacian A on I'\$) then

1—/i—ax )

Y if 0< A < le,

% , otherwise.

Now let I" be a subgroup of finite index of PSL(2,7Z). Then we have the following

corollary of the main theorem, which will be explained in section 1.3.

Corollary 1.1.1. Let I be a subgroup of finite index of PSL(2,Z). Letp = I'g €
'\ PSL(2,R) with

If a/c € R is a Diophantine number of type (; that is, there exists C' > 0 such that
for all m/n € Q, we have

i (0) ]2

then the orbit {pu(n'™)|n € N} is equidistributed in T'\ PSL(2,R) for 0 < v < 7o :=

s2

(d+s)(¢+4)”

To prove the main theorem, we shall use the technique of Venkatesh in [V10] and
Strombergsson’s result in [S13] about effective version of Dani and Smillie’s result
[DS84] on I'\ PSL(2, R). In fact, an immediate consequence of the technique of [V10]
and result of [S13] is obtained in the following theorem. Before stating the theorem,

we need some notations. For f € C*(\G) we let ||f]|,» be the Sobolev LP-norm

5



involving all the Lie derivatives of order < k of f. Note that || f||cc,0 is the supremum

norm of f. We know that G acts on the upper half plane $) by the action

a b az+b
oz =
d cz+d

and we have the standard projection of I'\G to the fundamental domain of I" in $)
7:I\G —-T'\$
by sending I'g to I'g(7). We define the geodesic flow on I'\G by

et’2 0
9:(g) =Tg
0 e—t/?

Fix, once for all, a point py € I'\$). For p € T'\G let

dist(p) = dg(po, 7(p))

where dg(+, ) is the hyperbolic distance on I'\$.

Theorem 1.1.2 (Cf.[V10] Theorem 3.1). Let T > K > 2 and f € C*(I'\G) satis-
fying fF\G fdp =0 and ||f|lcca < 00. Suppose that ¢ € I'\G satisfies r = r(q,T) =

T - e~ %istlgoe7(0) > 1. Then we have

Nl

K22 (r +2)
B

[l

r

T > k)| <

J
0<Kj<T

for B = 2(;’,‘”;5). Here k is the constant in the mixing property of the unipotent flow



(see Theorem 1.2.1 and Remark 1.2.1) and s is defined as in Remark 1.1.2.

This theorem gives an estimate for the average of the unipotent action along an
arithmetic progression with gap K, which is crucial in our proof of the main theorem.
This was proved first in [V10] and later in [TV15], both in the case of I'\G being
compact.

The strategy of the paper is the following: note that the bound in Theorem 1.1.2
depends on the initial point, and hence when we combine the results with different
arithmetic progressions and different initial points, the outcomes would get out of
control. To overcome this difficulty, we need the Diophantine condition. With the
help of this Diophantine condition along with the notion of (C, «; p, €9)-good functions,
we will be able to control the rates of these effective results. In section 1.2, we list
the concepts and theorems that we need in this paper. In section 1.3, we study
the Diophantine condition and deduce Corollary 1.1.1 from the main theorem. In
section 1.4, we will study dynamics of a special class of orbits in I'\G. The dynamical
properties of these orbits will help us control the rates of the effective results in this
paper. Since we are dealing with the noncompact case of I'\G, and also for the sake
of completeness, we include the technique of [V10] and prove Theorem 1.1.2 in section
1.5. We will finish the proof of the main theorem in section 1.6. Further discussions
will be included in section 1.7.

It may be interesting to explore the relation between the techniques used in this
work and those developed in the work of Sarnak and Ubis [SU15], where they have

described the limiting distribution of horocycles at primes.



1.2 Prerequisites

Throughout this note, if there exists an absolute constant C' > 0 such that f < Cg,
then we write f < ¢g. If f < g and ¢ < f, then we use the notation f ~ g. We

denote G = PSL(2,R) and I" a non-uniform lattice in G. Let
0
N={u(t)|teR}, A= se Ry

For any element a € A, we denote a(a) = s.

One of the ingredients in our calculations is the effective version of the mixing
property of unipotent flows in I'\G. The following effective version is proved by

Kleinbock and Margulis [KM99].

Theorem 1.2.1 (Kleinbock and Margulis [KM99]). There ezists k > 0 such that for
any f,g € C*(I'\G), we have

L (L+ )" fllseallglloo.r-

f(wu(t)) g(x)dp(z) - / i

G ne Jrne

Here  is the Haar measure on I'\G.

Remark 1.2.1. Note that when G = PSL(2,R), we can calculate k explicitly. Indeed,
let A > 0 denote the smallest eigenvalue in the discrete spectrum of the Laplacian A
on I'\$, then it follows from [V10] formula (9.7) and the technique of Lemma 2.3 in

[R87] that k = 2s — € for any € > 0. Here s is defined as in Remark 1.1.2.

Another ingredient in the calculations is the effective version of Dani and Smillie’s

result [DS84] proved by Strombergsson [S13].



Theorem 1.2.2 (Strombergsson [S13]). For all p € T\G, T > 10, and all f €
CHT\G) such that || f|ls.a < 00 we have

I s
7 s [ s < Oy 1 +2

provided that v > 1. Here s > 0 is a number depending on the spectrum of the
Laplacian on T\$) and r = r(p,T) = T - e~ 90s7()) - The implied constants depend

only on I' and py.

Remark 1.2.2. Here we can take s as in Remark 1.1.2, i.e., let A > 0 be the smallest

eigenvalue in the discrete spectrum of the Laplacian A on I'\$, and

VR i< A< L
S =

% , otherwise.

Readers may refer to [S13] for more details. We will prove a weaker version of this
theorem in Chapter 3 using only mixing property, and Theorem 1.1.1 could be proved
by using techniques only from dynamical systems for many Diophantine points (at

least for a subset of full Haar measure).

1.3 The Diophantine Condition

First we deduce Corollary 1.1.1 from the main theorem.

Proof of Corollary 1.1.1. If T" is a subgroup of finite index of PSL(2,Z), then we can

pick o; € PSL(2,Z) (1 < j <k). Now let p=Tg € I'\G with



Note that for each m;, we have

dm — bn m
my(m;(p)) € g~ 2\ {0} = € 22\ {0}

—cm + an n

If there exist constants ¢ > 0, u, v > 0 such that for any (m,n) € Z*\ {0}
lan — em| > p or |dm — bn|*lan — em| > v, (1.1)

then p is Diophantine of type ((,...,() by the definition above. In particular, if

a/c € R is a Diophantine number of type (, i.e. there exists C' > 0 such that for
m/n € Q,

|n|c‘n-g—m‘ > C,
c

then condition (1.1) holds because when |an — e¢m| is sufficiently small,

dim — bn| = lcdm — ben| _ lcdm — (ad — 1)n| _ |d(em — an) + n| ~ .
c c c
Hence, Corollary 1.1.1 follows from the main theorem. O

In order to prove the main theorem, we have to analyze the map m; : I';\G —
R?/+ for each j. The following lemma is well known. The reader may refer to [DS84].

We will denote By the ball of radius d around the origin in R2.

Lemma 1.3.1 ([DS84] Lemma 2.2). For each j with the maps ; : I';\G — I'\G and
m; : T;\G — R?*/%, there exists a constant d; > 0 such that for any p € T\G there

exists at most one point of m;(w; (p)) which lies in By, .

Remark 1.3.1. We will fix these d;’s for j = 1,2,..., k throughout this note.

10



Lemma 1.3.2. If p € T\G is Diophantine of type (K1, Ka,...,kKg), then the orbit

{g:(p)|t > 0} is non-divergent.

Proof. Suppose that {g.(p)|t > 0} is divergent. Let n; be the cusp where {g;(p)|t > 0}
diverges. By Lemma 11.29 in [EW10], we know that {g:(p)|t > 0} is divergent if and

only if {pu(t)} is periodic in I'\G. Combined with Lemma 2.1 in [DS84], this would

x
imply that there is a point € m;(m; '(p)) lying on the z-axis in R?, i.e.

Yy
y = 0, which contradicts the Diophantine condition. Therefore, {g;(p)|t > 0} is

non-divergent. O]

Definition 1.3.1. For p € I'\G, we define
‘ a a .
[pll; == min € m;(m; (p))
b b

where || - || denotes the standard Euclidean norm in R%. Moreover, we define

d(p) = min|lp[;|j = 1,2,..., k}.

Lemma 1.3.3. For any p € I'\SL(2,R), we have

Proof. Recall that n; (1 < j < k) are the inequivalent cusps of I'\$). For each
1 < j <k, we fix a small neighborhood C; of n; in I'\G such that Cy,Cy, ..., Cj are
pairwise disjoint. Also we fix a point ¢; € C; for each 1 < j < k. We observe that
it suffices to prove the lemma for p € C; (j = 1,2,..., k) since the complement of

UC; is compact. Let p € C; for some j € {1,2,...,k}. Let a; > 0 be such that

11



m; maps 0;Ng, Ay, K isomorphically to C;. Then we can pick a representative for p
in 0;NoAo, K, say ojnpapk,, ie. p = Tomnyask, = 7;(;0nya,k,). By definition we

know that

d(p) = llpll; = Ik, "a, es]l = aay) "

On the other hand, in the fundamental domain of '\ ), the point corresponding to

p =m;(I'jonya,k,) € C; is equal to
Lojnpapky, - i = Toj(nya, - i) = Toy(n, - (aay)*)).

Since o is fixed and n,, is in the compact set Ng, of N, we obtain

|ds(7(g;), 7(p)) — Ina(a,)?| < C;
for some constant C; > 0. Since g; is fixed, we have

| dist(p) — do(7(g;), 7(p))| < Cj
for some C” > 0. Therefore we get

| dist(p) — Ina(a,)?| < C

for C = max{C, + C},Cy + C%,...,C + C.} and hence

6dist(p) _ e(dist(p)—lna(ap)2)+lna(ap)2 ~ elna(ap)2 _ Oé((lp)z _

d(p)*
O

Now we prove that the Diophantine condition on p € I'\G can be defined by

12



the excursion rate of the geodesic orbit {g:(p)}+=0. We need some notations. As in
the proof of Lemma 1.3.3, let 71,12, ..., m be the inequivalent cusps of I'\$) and we
choose the neighborhood C; of n; (1 < j < k) in I'\G such that Cy,Cy,...,C} are

pairwise disjoint. For each 1 < j < k, we define a function on I'\G by

, dist(p), ifpe Cy;
dist(J)(p) = ’

0, otherwise.

Lemma 1.3.4. A point p € I'\G has Diophantine type (K1, Ka, ..., kg) if and only if

kj > 1 and

. ki — 1
lim sup ( dist"? — t) < 00
wsup (a0 ) — ]

for each j € {1,2,...,k}.

Proof. As in the proof of Lemma 1.3.3, we know that there exists a;; > 0 such that ;
maps 0;Ng, Aa; K isomorphically to C;. Also using the same argument in the proof

of Lemma 1.3.3, we can get that for any ¢ € Cj,

dist@) (q) 1 (
e ~ 1.2)
lqll?

a
If p € I'\G is Diophantine of type (k1, k2, ..., ki), then for each j, any €

b

m;(m; ! (p)) satisfies

bl > 1y or lal o] > vy

13



Since

1 et 0 1
m;(m; (9:(p))) = m;(m; (), (1.3)
0 6t/2
x
this implies that any € my(m; ' (g:(p))) satisfies
)
9] 2 /2 or [2]|y] 2 wyel= 2 (1.4)

Note that this holds for all ¢ > 0.
By Lemma 1.3.2, we know that {g;(p)|t > 0} is nondivergent. So there exists a
compact subset S C I'\G such that g;,(p) remains in S for infinitely many ¢; — oo.

By the compactness of S, we can find a constant Cy > 0 such that for each ¢;, there

Z;
exists € my(m; ' (g:,(p))) satisfying

Yi

X
< (.
Yi

T
This implies via equation (1.4) that x; > 1. Now fix ¢ and for any €

m; (W{l(gt(p))) we have

1 lfmj

"5 1 Py
1zl = lyl = €2p; or || (z,y)l| > max{|z], [y[} > |25 [y] 57 > v e

M

Foes "
Therefore, ||g:(p)||; > e*/?u; or u;'7+1el+“f "2, By equation (1.2) and x; > 1, we get

14



that

. 1
lim sup [ dist N t] < .
t—)oop ( (gt(p)> l€j + 1

Conversely, if the above inequality holds for each j with x; > 1, then by equation

(1.2) there exists a constant C' > 0 such that for all ¢ > 0 we have

171€j

lg:()ll; = Ce

t
2

a
This implies via equation (1.3) that for any €Em; (7Tj_1(p)) we have
b
2 2 Tkt
e ta® +e'b* > Ce'ti, (1.5)

By discreteness of mj(m;'(p)) in R?, there exists a constant p; > 0 such that if

a a
€ m;(m; ' (p)) satisfies [b] < p;, then |b] < |a|. Now for such , we take
b b

P

—_—J
t > 0 such that e7a? = e'b®. By equation (1.5), this implies that |b] > \/ge e

Kj+1
[al"s[b] = [e'b]"|o] > (V %> |

This implies that p is Diophantine of type (k1, K2, ..., Kg)- O

and hence

1.4 (C,a;p,e))-Good Functions in Presence of Diophantine

Condition

This section will be important in the proof of the main theorem. First, we need a
modified version of the concept of (C, ar)-good functions (see [KM98] for the definition

of (C, a)-good functions).

15



Definition 1.4.1. A function f(x) is said to be (C, a; p, €y)-good if for any 0 < € < €

and any I = (x1,25) C [1,00) with |f(z1)| = p, we have

m({z € [|f(@)| <) < C (f)amm

p
where m denotes the Lebesgue measure on R.

Now we shall begin to study a special class of functions and prove that they are
(C, a5 p, €9)-good for some C,a, p and €y > 0. Note that we restrict these functions

to the domain [1, 00).

a
Lemma 1.4.1. Let &, pu,v >0 and 0 <y < 5. Let € R?\ {0} be such that

|b| > 1 or |al®|b] > v.
Then there exist C,eq > 0 such that
fla) = (bei™ — az~1)2(a17%)2 4 (bat)?(x 1w )?

is (C, %; p, €0)-good on [1,00), where p is any fived constant < f(1). Here the constants

C,eq depend only on p, k, i, v and 7.

Proof. We observe that if [b] > g, then f(z) > (brT)2(z3 %)% > b2 > 2 and f(z)
is automatically (C,a; p,€p)-good for any C,a, p and ¢y = pu?/2. Therefore, in the
following we assume that |b| < p and hence |a|*|b] > v. We have two cases: ab < 0

and ab > 0.
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Case 1: ab < 0. Our function f(z) then becomes

1

fl@) = (bl + Jala™ 1) (@t 77)? + (be

INE
~—
N
—~
8
[
|
x
F
IS
~—
[\

We have

flx) = <|b|$4+7+|a|x 4)x4 n+4>
> (max{jble 75, Jafa~w) )
R ———
> ( bl mm)?
>

This implies that f(x) is (Ca, ag; p, €)-good for any Cy, ap > 0 and €y = %w%l
Case 2: ab > 0. Without loss of generality, we assume that a > 0,6 > 0. Now let

I = (z1,25) C [1,00) be an interval (x1,z2) where f(z1) = p. Since f(z1) = p, we

know that

3 1
either (banJr’y —az, *)(x

=
x
-
'S
~—
[}
vV
N
o
]
—~
S
]
[ N[E
~—
[}
—~
[l NEH
X
' N
'
~—
[N}
vV
N\ et

1
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Note that

1 1

{z € I||f(z)] <€} C{xeI|(bai™ —az1)2(zi 7r1)2 < €}

Therefore, to finish the proof of the lemma, it suffices to show that there exist C, ey > 0

depending only on p, k, 4, v,y such that for any 0 < € < ¢y we have

m({a € (@1,29)|l9(2)] < V&) < C ( ) (1.6)

1 €
p

Lo — 1

where g(z) = (bztt — ax_i)xifﬁ — bg'" % — az #ri. Note that g(x) is
increasing and |g(x1)| > \/p/2. Without loss of generality, we may assume that
lg(x1)| = +/p/2. If g(z1) = /p/2, since g(x) is increasing, the (C,a;p, €y)-good
property automatically holds in this case with ¢y, = % p/2. Therefore we assume

that g(x1) = —+/p/2. In this case, we will prove that the inequality (1.6) holds with
€0 = 3/p/2.
Let 0 < € < €. Since g(x) is increasing with g(z1) = —/p/2, if we fix x; and let

xo vary as a variable, then the ratio

1

To —T1

m({z € (z1,22)|lg(x)| < Ve})

would attain its maximum when g(z2) = /€. So we will assume that g(z2) = 1/e. To
compute this maximal ratio, let z € (x1,x5) such that g(z) = —y/¢, and then by the

mean value theorem we obtain

s i e (z1,22)|lg(2)] < V/e})

v—z _g(&) g(@) —g(2)
ro—x1 (&) g(w2) —g(x1)

18



9(&) Ve+/p/2 ’

where &; is between x5 and z, & is between x; and .

Let x3 € [1,00) such that g(z3) = \/p/2. Then (z1,x9) C (x1,23). According to
equation (1.7), to prove formula (1.6), it suffices to prove that for any x,y € (xy, z3)

the ratio

1 1 a K+5
! = — | b wra =i
g() < i /<;+4) v A
is decreasing since v < —. Therefore, to get an upper bound for ¢'(x)/¢'(y) (z,y €

(x1,23)), we only need to estimate ¢'(x1)/¢'(z3). By the condition that g(z,) =
p/2 and g(x3) = \/p/2, we have

__1 _ k45
n+4_'_ a T Kk+4

~
1

— _ K45
4 4
3 K+ + a T K+

_ k+5

)
)
) <ax;~*+4 — o) o+
O
)
)

az, N + \/_ /2)/xs + -2 i ,

_ K45 t5

"t+a 4 ==
ax, e /x1+n+4 nt <x3>~+4

IN

K+5

T k+4 X1

Now let zg € (x1,x3) such that g(zg) = 0. (zy = (a/b)ﬁ by solving the equation
g(x) = 0). We set 1 = d1x¢ and x3 = daxg for some 1, d2. Then Iy, Jy satisfy the
following equation

[b(200) T — a(wgd) wH | = g
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1 1
since |g(x1)| = |g(z3)| = \/p/2. By the fact that bx(l)ﬂ = az, """ and ba" > v,

this equation becomes

1 clty——L — T - L p
axy, "t AL — oy TR = [ ¢
2
1 1
K44 rk+1 K\ 159 (rd)
g e = fRT0 _ [plel o) T
2 a 2 a
k+1
p 1 a T+ (r+4)
S 5 1
G (r+4) a

Here % < 1. Since b < p and hence a > {/v/u, the above inequality becomes

+1
. \ \ o1 ANGRGORE
|07 T — | <y e | )=
2, T %

which holds for 6 = 6; and d5. This shows that d;, o are bounded above and below

by constants depending only on p, k, u, v and . Therefore

gl(iﬁ) - (x?)) (k+5)/(k+4) _ (52) (k+5)/(r+4)

q'(xs3) — 117_1 5_1

is bounded above by a constant depending only on p, s, i, v and . This completes
the proof of the lemma.

]

For the rest of this section, we turn to the dynamics on I'\G. For later use, we

give the following definition.

Definition 1.4.2. For any § > 0 and any j € {1,2,...,k}, we define the subset of

20



G

Sjs = {g € T\G||lqll; < o}

Moreover, we define

Sy = USM = {q € I\G|d(q) < 6}.

J

Lemma 1.4.2. Let p € T\G be Diophantine of type (K1, Ko, ..., k). We fix j €
{1,2,...,k} and let 0 < v < 1/(k; +4). Then for sufficiently smalle >0 and T > 1,
we have

where C' is a constant only depending on p and .

Proof. We will use the notations, the maps m; and 7, in section 3. Then the image

1 3
xs ity
of 7'(';1 P under m; is equal to
0 z1
‘ -1
zi git .
) m; (7Tj ()
0 a1
)
71 —gity a az~i — brity
0 i b bai
\
a . . 1 .-
where runs over all points in m;(7; " (p)). By definition, what we need to
b
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prove is equivalent to the following

1 3
x1i gity 1, 1
m | Sz ell,T]|||p <exr * it < CeT.
0 a1
J
which is equivalent to the following
zi git
m x € [1,T1]|3 a point in m; 7T;1 P )
0 a1
1,1
with length < ex * "it! })
< Ce€T.
11
Let p=min<d | p ,di,dy, ... dy p, where d;’s are as in Remark 1.3.1.
0 1

We denote by P the subset mj;(m; ' (p)). For (a,b) € P, let Iéa,b)(l =1,2,...) be all
the maximal connected subintervals in [1, 7T such that for any z € [ éa’b) the point of

r1 g1t
| p corresponding to (a, b); that is

-1

S R
has norm < px 175 Since o > 1, Lemma 1.3.1 implies that all the intervals

{I{,pl(a,b) e P 1=1,2,...}

22



are pairwise disjoint. Therefore, we have

I 34y
xi pa
m [1,T] ‘Ela point in m; X
0 a1
with length < ex it }
3
axr~1 — bxaty 1,1
= ZZm xefab’ ) <er * ot
(a,b)eP 1 bxi

Because of this, to prove the lemma, it suffices to prove the following

1 3
z ar~1 — brat? 14 l
m | Q@€ L,y <ex * ot < Cem(I(,p),
bx

NI

for some C ¢g with 0 < € < €y, or to prove that the function

1 1 1

DAt (b))

f@) = (bt — a2 (at

has (C’,1/2; p?, €2)-good property for some C’ = Cp. This follows immediately from
Lemma 1.4.1.
O

To conclude this section, we give the following proposition, which is crucial in our

proof of the main theorem. It is the discrete version of Lemma 1.4.2.

Proposition 1.4.1. Let p € T\G be Diophantine of type (K1, Ko, ..., kg). Let 0 <

vy <min{l/(k; +4):j=1,2,...,k}. Then there exists a constant Cy > 0 depending
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only on p and ~y such that for sufficiently small € > 0 and any N € N,

1 ni nity
— nG[l,N]ﬂNp ES@(nﬁ) < Cpe
N _1 ’
0 n1
where
it
O(z,€) = emin{zr * ~™|j=1,2,... k}. (1.8)

Proof. By the definition of Sy, it suffices to prove that there exists a constant Cy > 0

depending only on p and v such that for each j and any € > 0,

1 ni nity
N nE[l,N]ﬂNp n ESlen,%jLleJr4 SO()G.
0 ns J
We compute that for any § € (—1,1) and n > 1
-1
18y 1 3,
n+ nat (n+4d)1 (n+0)st
0 ns 0 (n+6)"i
n"i —pity (n+8)i (n+48)it
0 ni 0 (n+06)1

(L+6/n)1 n7i(n+6)T —niti(n+0)71

0 (1+6/n)"4

S

(146/m)1 ((n—+86)" —n'*)(n(n+68))~
0 (1+6/n)"4

which lies in a compact neighborhood U of identity in PSL(2,R). Let

L =max{|lg]llg € U}
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where ||g|| denotes the operator norm of g on R?. Then by the computations above,

we know that

)

1 34
1 ni naty
NI € [1,N]ﬂN‘p - GSJGM%“J‘I*“
Vs
i oot W
= V[ T | es
< = e, ‘ es
N R [1, Nl|p N iLew TMJ

Now the proposition follows immediately from Lemma 1.4.2.

1.5 Calculations

In this section, we shall apply the technique of Venkatesh to obtain some effective
results about averaging over arithmetic progressions. It is very similar to [V10],
where Venkatesh proved the sparse equidistribution theorem for I being cocompact.
Since in our setting I' is non-uniform, and for the sake of self-containedness, we
include the details of the calculations in this section. We will follow the notations in
[V10]. Throughout this section, we fix an arbitrary point ¢ € I'\G. For a character
R — St we define

o) =7 [ o0 tqute)a

for f on I'\G.

Lemma 1.5.1 (Cf. [V10, Lemma 3.1]). There ezists a constant > 0 which only
depends on T such that for any f € C*(T\G) satisfying || f||coa < 00 and fF\G fdp =

0, any character v : R — S, any T > 1 and any q € T\G satisfying

r=r(q,T)="T- e~ dist(g057(0) > 1 (1.9)
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we have

e ()] <710 (1 + 2)] flloo,a

and the implicit constant is independent of 1.

Proof. The proof is almost the same as that of [V10, Lemma 3.1] combined with

[S13]. We define
1 H
rulhle) = 37 [ vsu)s

First it is easy to get that |ury(f) — prwlon(f))] < £l fllco < Ll flloco. Now we

estimate pr(op(f)). By Cauchy-Shwartz inequality, we have

prstonthl < 7 (f |w<t>\2dt)é ([ \OH(f)((JU(t))Pdt);
(7 IUH(f)(qU(t))Pdt)%
<@l

Here fY and f* denote the right translation of f by u(y) and the right translation

IN

T 2
%/0 ﬁfz(qu(t))dt‘dydz> :

of f by wu(z), respectively. Therefore, by Strombergsson’s effective equidistribution

Theorem 1.2.2, we have

H H
urstontnl < (g [ [ OUF Pl 1w + 21ty

1 [H oH 3
+m/0 /0 }(fy_z,f)|dydz) )

for some s > 0 depending only on I' (the spectral gap) and r is as in (1.9) (see

Theorem 1.2.2).

26



By mixing property of unipotent flows (Theorem 1.2.1), we know that

(N1 < L+ RD T 11

Also by product rule and chain rule in Calculus (see [V10] Lemma 2.2 for details),

we know that

Ol f*loca) < OV lscall £ llo0a) < 32 Ol f 115 )-

Therefore, combining all the computations above, we obtain

ey (Dl < e (f) = pry (o ()] + |prg(ou(f))]

H
< M lloo + Hr* W (r +2) + H )2 | fllsoa.
Let H = r&= and we get 5 = sk/2(8 + k). This completes the proof of the lemma.
[l

We deduce Theorem 1.1.2 from Lemma 1.5.1. It will be crucial in the proof of the

main theorem in section 1.6.

Proof of Theorem 1.1.2. The proof is almost the same as that of [V10, Theorem 3.1].
Let § > 0 and g5(x) = max{6~2(6 — |z|),0}. Let

g(x) =Y gs(x + Kj).

jET
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On the one hand, since g(z) has most mass on the points {Kj|j € Z}, we know that

T T
/Og(t)f(QU(t))dt— > flqu(Kj)) < 2/l flloe + 7200 llos.r-
jEZ
0<Kj<T

On the other hand, since g(x) is periodic, we have the Fourier expansion

g(.’L’) _ ZCL}CGQW%I/K.

kez
A simple calculation shows that
1
5 lael = lg(0) = .
kez
By Lemma 1.5.1 with characters ¢, = e2™**/K e have

Tn®(r + 2)

T
/ €2m’kt/Kf(qu(t))dt| < 55

0

/ Tg(t)f(qu(t))dt‘ < Yl

kEZ

[ lloo,a-

Combining the calculations above, we have

e o i) < (o SEEED

JEZ
0<Kj<T

Note that K < T, r <T and f < 1. Let 6 =4/ W and we complete the proof

of the theorem.
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1.6 Proof of the Main Theorem

Proof of the main theorem. By a standard approximation argument, we may assume

that f € C*°(I'\G) with || f|lecs < 00 and

fdp =0.
G

We want to find 79 > 0 depending on Ky, ..., K, such that for any 0 < v < 7, the

main theorem holds. Note that by Taylor expansion, for any M € N and k£ € N,
(M + k)™ = M™ + (1 +9) Mk + O(M" k).

Therefore, if M is sufficiently large and v < 1/2, then the sequence

1
0<k<—M: (ke N)}

M + k)7
{( k) T 14y

is approximately equal to the arithmetic progression

1 .
{M“7 ()M 0 <k < T — M (ke N)}
g

since

OM™™ k) < O(M*™ " (M2 = O(M™) = 0

as M — oo.
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By Proposition 1.4.1, we know that for any € > 0 and any N > 0,

1 3
1 ni nit?

N n e [17 N] p € S@(n,e) S 0067

We proceed as follows. Fix € > 0. We pick the first element M; € N which lies in B.
Then we take

Plz{M1+]€

11,
0<k< —M? (EeN)».
<ks Ll e

Next we pick the first element My € N which appears after P, and lies in B, and we
take

1 1
Py =M k‘ <k<— Mk .
o) {2+ 0< =114 2 (GN)}

Then we pick the first element M3 € N which appears after P, and lies in B, and so
on. In this manner, we get pieces P;, P, ... in N and by our choices of My, M, ...,

we know that

BCcPURU...
and hence for any N > 0
1

Now we consider each of the pieces P;. From the discussion above, we know that
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{n'*7|n € B;} is approximated by the arithmetic progression

~ 1 1_
P = {MiHv‘f‘(l‘f‘V)M?k 0<k< rMiQ fy(k < N)}
Y

We would like to apply Theorem 1.1.2 with T = Mil/Q, K = (14 )M, and
q=q = pu(MZ-HV) for sufficiently large 7. So first we have to check that r; :=
r(gi, M?) > 1 for sufficiently large i. We compute that

Ve N (O VAR MEoMY

g(IOgMi)/2(qi) =P < Sg(Mz‘:f)’

0 1 0 M 0 M ¢
by our choice of M; € B. By definition 1.4.2 and equation (1.8) , we have

1 1
“ite

d(girog 1) 12(¢:)) = 0(M;, €) = emin{ M, =12, k}
By Lemma 1.3.3, e~ 449 ~ d(¢)?. Hence
ry = M Pem tos 20 s @ min (MY =12, kY. (1.11)

This implies that r; — 0o as © — 00, since M; — oo by our choices of M;’s.
By Theorem 1.1.2 with T = MZ-I/Q, K= (14+vM, ¢ = pu(M™") and r; =

1
r(M?,q;), we have

)

1 1
=] N ai(1+7) M)k
|Pi|,§pif(p (n)) LMil/z/(l""Y)MgJ 2 %f(q (14+7) )
0< (14) M k< M;
< ((1+7)Mj)§ 1n§(ri+2)!\f|!oo,4. o)
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Since M; — oo, according to inequalities (1.11) and (1.12), as long as
3 < min{28/(x; + I = 1,2,...., K},

we have

1
7l =
and hence by the fact that {n'*7|n € P} is approximated by P, i.e., for 0 < k <
1 M%_W

1+y~ 2

(M + B)) = FOME + (1 9)MTR)| < M flloe

and || f|leo1 < 0o we obtain

\Jid 3 f(pu(n1+7))| L0 (1.13)

n

as i — oo. By formula (1.10), the proportion in [1, N] which is not covered by P;’s is
small relative to V. Also observe that for the P;’s which intersect [1, N], their lengths

are small relative to N. Therefore, by (1.13) we have

1 N-1
limsup |~ 3 f(pu(n'*))
N—o0 N n—0
1 1
< limsup|— Fpu(n )| +tmsup |~ S fpu(n'*)
N—o0 N N—o00 N
ne[L, N\(U F) n€[L,N]N(U F)
1 1
< tmswp|v >0 fpu™)|+tmsw |+ S ST fpu(ntt)
ne[LN\(U F) [1,N]NP;#0 neP;

< Coel| flloo0 + 0 = Coel| 1] o,0-
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Let € — 0 and we complete the proof of the main theorem with vy = min{25/(x; +
)7 =1,2,...,k}.

0
1.7 Further Discussions
In the introduction, we have defined Diophantine points in I'\ PSL(2,R). Let
Sermome = 1P € I'\ PSL(2,R)|p is Diophantine of type (K1, kg, ..., k) }-
Then we can calculate the Hausdorff dimension of the complement of Sy, 4, x.. In

fact, we have the following

Theorem 1.7.1. We have

2
dimy S° —2 :
M Dy = 2 T[T < 5 < K)

If min{k1, Ko, ..., Kk} = 1, then S, x,.. s has zero Lebesque measure but has full

11111

Hausdorff dimension.

Remark 1.7.1. Note that the Diophantine type remains constant on any weak unstable
leaf of {g;}+~0. Therefore the set of non Diophantine points on any strong stable leaf
has zero Hausdorff dimension. We will give a different proof of this theorem in Chapter

2.

Proof. For each cusp n; (1 < j < k), we define S, to be the subset of points

p € I'\ PSL(2, R) satisfying the condition that there exist u, v > 0 such that for every
. a 1 .
point € m;(m; " (p)), either [b] > i or [a|*[b| > v. Here y and v depend on p.
b
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Then by definition, we have
51-617%2,---7/% = Sl,m N SZ@ M---N Sk,ﬁk

and hence

s¢ — S, USs, U---USE, .

K1,K2,..KK T 1K1 2,k2

Let kg = min{k1, Ko, ..., ki }. Note that by Lemma 1.3.4,

Sﬁoﬁo,---,f@o - Sm#m---ﬁzc'

Therefore we get

k k k
C C C C C
m Sj,m U ﬂ S2,N2 U---u m Skﬁk - SN1,/€2,-~~7N1€ - Sﬂo,ﬁo,m,ﬁo'
j=1 j=1 j=1

By Theorem 2 and Theorem 3 in [MP93], for any x > 1 we have

k
2 2
dimp S° =2 d di S .
IME Oy e + 1 an 1merJ1 I + 1
This implies that
k
dimy S¢, . . = dimygSS . . =max {dimH (561 <i< k;}
j=1
2 2

= 92 =2 .
Tl minfm rUl<j <A}

For the second statement, if min{ky, Kg,...,kx} = 1, then by Lemma 1.3.4 and

the ergodicity of the geodesic flow on I'\ PSL(2,R), we know that S,, x,.. ., has zero
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Haar measure. Since

and by Theorem 1.1 in [KM96] S; ;.1 has full Hausdorff dimension, this implies that

77777

Sk k..., has full Hausdorft dimension. O

.....

Finally, using the same argument as in section 4, we can actually prove that if p
is Diophantine of type (k1, k2, ..., k) with all k; < 3 and 0 <y < 1/4, then for any

€ > 0, there exists a compact subset K. C I'\ PSL(2,R) such that for all "> 0,
T ze[1,T]p eK.p>1—e

Then using the arguments of [DS84] and [Sh94, Proposition 4.1}, we get

Theorem 1.7.2. If p is Diophantine of type (K1, ko, ...,Kkx) with all K; < 3 and

0 <~y < 1/4, then the trajectory

&
W=
&
N
+
=2

is equidistributed in I'\ PSL(2,R).
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Chapter 2

Hausdorff Dimension of Diophantine Points in I'\ PSL(2, R)

2.1 Introduction and Preliminaries

Here we will give a a different proof of Theorem 1.7.1 using results of lattice

counting problem, that is,

Theorem 2.1.1.

di g¢ 24+ 2
m = ’
H 2k g min{x; + 1|1 < j < k}

To prove Theorem 2.1.1 we need some preliminaries. Readers may refer to [KM96].
Let X be a Riemannian manifold, m a volume form and E a compact subset of X.
We will denote the diameter of a set E by diam(E). A countable collection A of
compact subsets of E is said to be tree-like if A is the union of finite subcollections

Aj; such that
1. Ay ={E}.
2. For any j and A, B € Aj, either A= B or ANB = .
3. For any j and B € Aj4,, there exists A € A; such that B C A.

4. d;(A) := sup e 4, diam(A) — 0 as j — oo.
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We write A; = UAeAj A and define A, =,y A;. Moreover, we define

The following theorem gives a way to estimate the Hausdorff dimension of A ..

Theorem 2.1.2 ([M87], [U91] or [KM96]). Let (X, m) be a Riemannian manifold.

Assume that there exist constants D > 0 and k > 0 such that
m(B(z,r)) < DrF

for any x € X. Then for any tree-like collection A of subsets of

7o log(54)
dimg(As) > k — limsup = lAl(A)
oo log(gm)

2.2 Some Properties of Lattices Points in R?

In this section, we will show some lemmas which will be used in the proof of
Theorem 2.1.1. For each cusp n; (1 < j < k), we define S, ,; to be the subset of points

p € T'\ PSL(2, R) satisfying the condition that there exist p, v > 0 such that for every
a

point ) € mj(wjl(p)), either |b| > p or |a|®|b| > v. Here p and v depend on p.

Then by definition, we have

S =55, USS, U USE,

K1,K2,.-, 1K1 2,k2

and hence

: (¢
dlmH Sﬂlﬁz ~~~~~ Kk

= max{dimpy 57, [1 < j < k}.
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Therefore, to prove Theorem 2.1.1, it suffices to prove

. 2
dimy S5, =2+ P

In the rest of this part, we will consider S5, for a fixed cusp 7;. Without loss of

generality, we may assume that o; = e, 7; = 700 and that

el

Since I' ' N # {e}, this implies that T'e; is a discrete subset in R?. The following

lemmas concern some properties of lattice points in I'e; C R

Lemma 2.2.1. There ezists a constant C' > 0 such that for any («, B) € T'e; we have

8] = C or 8= 0.

Proof. We know that T'e; is discrete in R?. So there is a constant C' > 0 such that

for any point (a, ) € I'e; we have

(e, B)I| = 2C

where || - || is the standard Euclidean norm. Suppose that there exists (ap, 5y) € T'ey

with 0 < |fy| < C. Then there exists an integer n € Z such that

‘CK[) -+ nﬂo‘ < ﬁo.
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Since € I', we have
0 1
1 n o ag +nby
= S Pel
01 Bo Bo
and

I(cro + 1o, o)l < V2C < 2C
which contradicts the definition of C'. This completes the proof of the lemma. O

Lemma 2.2.2. There exists a constant C' > 0 such that for any two distinct points

(a1, 1) and (aw, B2) in Tey we have

lay e — a1 > C.

Proof. Now let 71,7, € T" be such that

[OAE Qg k
M= Yo =
B1 * Ba  *
Then we have
-1 *
Y1 V261 =
CYlﬁQ - azﬂl

Note that (aq, 1) and (ag, f2) are distinct and hence o182 — agffy # 0. By Lemma
2.2.1, we conclude that

lay B — anfy| > C

for some C' > 0. [l
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Remark 2.2.1. We will fix this constant C' for later use. Note that by the definition

of C, for any point («, 3) € TI'e; we have ||(a, B)|| > 2C.

Definition 2.2.1. For [ > 0 and 0 < 6; < 6, < 27, we define the subset of R?
8(1,6’1,92) = {((L’,y) S R2|l <r<2,6 <0< 02}

where (r,0) are the polar coordinates of (z,v).

Theorem 2.2.1 ([EM93], [GOS10]). We have |Te; N S(1,60y,05)] ~ 1>(62 — 60;) as

[ — oo.

Lemma 2.2.3. Fiz C > 0 as in Lemma 2.2.2 and let & > 1. There exists a con-
stant Cy > 0 with the following property: for any («,B) € ey with 0 < 5 <1
there exists a large constant L, > 0 such that for any | > Lp) the interval

[% -£. 7 5 T 18 = 5n1+1] contains at least Col?/B many disjoint subintervals

[%_%'W’_"'Ts 5:+1] where (& 5)6F61ﬂ5(1,4,2)

Proof. Suppose that [— — 1% G 5 S+ 1% . #} contains two subintervals

a C 1 o C 1
{B 18 Fr ﬁ+1_8'6f~+1]

SCIE S SO
5 18 SnJrl

where (&,B) and (¥, 5) are two distinct points in I'e; N S(I, 7, 5). By Lemma 2.2.2,

we have

¢ _lw-pl, o ¢
N

_ Q( L ) L+i)

S \ve2 o /v2R) T\
C( 1 1 )

> — | = =

- 16 Bn—i—l Hrt+l



This implies that any two such subintervals are disjoint, and hence to prove the lemma

it suffices to prove that in the interval [% — 1—08 . #, % + % . # there are at least

Col? /35! many points of the form &/ where (&, 3) € Te; N S(I, 2, %). We have

a Q C 1 a C 1
EE[B_E'W’WEWH]

— arg(a,p) e {arccot (2 + ¢ 1 ) , arccot (g _ o L)] .
B 18 prtl B 18 Bt

Since |arccot (% + % : ﬁn—lﬂ) — arccot (% = 1—% . 5~1+1)’ ~ #, by Theorem 2.2.1 we

know that the number of points in S (l, arccot (% + 1% . #) , arccot (% — 1% . Bn—lﬂ)>
is asymptotically equal to (?/8%"! up to a constant. Note that the implicit constant
is absolute since 0 < o/ < 1. This completes the proof of the lemma. n
2.3 Hausdorff Dimension

In this section, we will give a proof of Theorem 2.1.1. We need some preparations.

Definition 2.3.1. We say that x € R is Diophantine of type x with respect to ['e; if

there exists a constant C' > 0 such that for any («, 8) € T'ey with 8 # 0 we have
1B]"|z5 —al > C.

We denote by S, the subset of R of all Diophantine numbers of type x with respect

to Fel.

a b
Lemma 2.3.1. Letp =T € I'\PSL(2,R) with ¢ # 0. Then p € S§, if

and only if a/c € S¢.
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Proof. We have

. d —b da —bp Q
m;(m; " (p)) = Tey = ele
—c a —ca +af 15}

By the definition of S ., if p € S5

]7’<”

then there exist infinitely many (a, 8) € I'e; such
that

laf — ca| — 0 and |da — bB|"|af — ca| — 0.
By the discreteness of T'eq, this implies that |5| — oo. Note that

ledow — cbfs| _ lcdac — (ad — 1)B]

|d(ca — af) + ,6|'

da — b5 =
B B B

Therefore we have |da — b3| ~ |5| and a/c € S¢. Here the implicit constant in ~
depends on p.
Conversely, if a/c € S¢, then there exist infinitely many («, 3) € I'ey with 5 # 0

such that

181"

g5—04‘—>0.
c

By Lemma 2.2.1, this implies that
laf — cal = 0

and consequently

d(ca —ap)+ 8]
C

18| = o0 and |da — bf| = 15

Hence we have

laf —cal = 0, |da—bB|*|af —cal =0
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and p € 55 ,.. This completes the proof of the lemma. O]

Proof of Theorem 2.1.1. From the discussions above, we know that in order to prove

Theorem 2.1.1 it is enough to show that

2
lelHSJC’K:2+ Ii—l—l.

By Lemma 1.4.1 and the fact that the subset
b
r a,be R Cc I'\ PSL(2,R)

has dimension 2, it suffices to prove that

2
dimpg S¢ = ——.
1M gy K L 1

In the rest of this section we will prove this formula.

11
Since eI, for any n € Z we have

01

SiN(n,n+1)=n+S.N(0,1).

Therefore, we only need to compute the Hausdorff dimension of S¢ M (0,1). For the

upper bound, by the definition of S., we can construct an open cover

Q 1 « 1
{W) (575 7)

(o, B) € Tey,a/f € (0,1)} 2 5:N(0,1).

43



For 0 > 0 by Theorem 2.2.1 we have

Z diam(l(aﬁ))‘s

(a,8)€Ter
a/Be(0,1)

- 1
<2 > Zamw

n=1 (a,B)el'e1NS(2"C, T g)

00 22n 0o
< Z 2n6 (k+1) Z 6(k+1)—
n=1 n=1

If § > 2/(k+1), then > (4 )ere, diam(l(45))° converges and hence by properties of
a/Be(0,1)
Hausdorft dimension we have

2

dimgy S, N (0,1) < :
lme{ (’)_K,—i_l

For the lower bound, let € > 0 be fixed and we construct a tree-like set in S¢N(0, 1)
as the intersection of closed subsets in [0,1] by induction. Let A4, = {[0,1]} and

Ay =[0,1]. Let l; be a sufficiently large number and define

4’2

a C 1 a C 1 T
A= {[B—Ewag—Fl—SW} (o, B) € Tex NSy, — _)}
and A; = |JA;. Suppose that we find l; < Il < --- < [; and construct families
Aj, Aj—q, ..., Ag and closed subsets A; C A;_; € --- C A} € Ayg. Now by Lemma

2.2.3, we can find a sufficiently large [;; > 0 such that

1. lOg lj—i—l 2 j2 log(ljlj_l c. ll)

. . 2
2. For every [% — 18 e 5 S+ = 18 B,Hlﬁq} € A;, it contains at least Col,«,i—t}rl
J

subintervals (since 8 ~ [;) of the form [Q -£. L ¢4 0. ﬁ] with

fo 18 prrety
(@ B) € Ter N S(lj11, =, 5).
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We denote the family of all these new subintervals by A;;; as

a C 1 a C 1

6 18 5H+E+1 ’ B + E ) 6n+e+1

runs through all the intervals in A; and let A1 =|JA;;;. Here C and Cj are as in
Lemma 2.2.3.
Now we take A, = (172, A; and A = [J;Z,A;. From the construction of A;’s

and the definition of S, we know that A, C S¢S N (0,1). Also we have

Do o1 1
AJ(A> ~ l'.ii€+1 . l“_t? and d](A) it W
J J J

Therefore by Theorem 2.1.2, we have

dimg S¢ N (0, 1)

— SV og(i2, /Ll )Eret!
> 1 —limsup i1 log( Z+1+ (+1 +1) )
j—00 log I}
= 1 —limsup (k+e+1Dlogh +375 ,2(k +¢€)logl; + (k+€—1)log i
J—roo (KJ—’—E—F ].) loglj+1
k+e—1 2

k+e+1 k+e+1

Since this is true for any € > 0, we obtain that

2
k+1

dimy ¢ N (0,1) >

This completes the proof of Theorem 2.1.1. n
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Chapter 3

Effective Equidistribution of Abelian Horospherical Orbits

3.1 Introduction

In this part, we will consider the effective equidistribution of horospherical orbits
in homogeneous spaces. This topic has been studied well, and the present work is
motivated by [S13] and [V10]. To be precise, let {a;} = {exp(tX)}icr be a one
parameter R-diagonalizable subgroup in a semisimple Lie group G, I' a lattice in G
and p the Haar measure on I'\G. Let Ad(g) be the adjoint action of G on Lie(G)
induced by the action of conjugation x + grg~(x € G). Let U be the horospherical
subgroup of {a,}, i.e.

U={g € Gla_tga; — e}.

The decomposition of Lie(U) with respect to {a,} under the adjoint action is

Lle(U) :gal @gag@@gan

where «; are the roots of {a;} in U, that is,

Ad(at)Xl = ozi(at)XZ'

for any X; € go,- Without loss of generality, we can assume that each g,, is one-

dimensional and some of these a;’s may be identical. We denote the exponential map

46



from Lie(G) to G by exp and we fix a norm || - || on the Lie algebra g. For each i, fix

V; € go, With norm 1 and let B(73,T5,...,T,) be the parametrized box in U, i.e.

B(T1, T, ..., T,) = {exp(tivy + tava + - - - + £,0,)|0 < t; < T;(1 <i < n)}.

For any ¢ > 0 we can find a number o > 0 such that for any ¢t > 0

e = ay(a;)az(as) - - - an(ay)

and then
t* = (@) 2(@ng) - - - 0 (@ing).
Also we define

B(t) = B(Oél(alnt);a2(alnt)a T 7an(alnt))

= CllntB(l, 17 ey ].)Cl_lnt.

We will denote by B, the open ball of radius r > 0 around e in G. Here the distance
on G is induced by the norm | - |. Also we will write BC°(I'\G) for the set of

bounded smooth functions on I'\G with bounded Lie derivatives up to order .

Definition 3.1.1. For any = € I'\G, we define the injectivity radius at x by the

largest number 1 > 0 with the property that the map

B, = zB, Cc I'\G

by sending g € B, to zg € I'\G is injective. We will denote the injectivity radius at

z by n(z).
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We will follow the proof of Lemma 9.5 in [V10] and prove the following theorem.

Theorem 3.1.1. Suppose that U is abelian. There exist constants a,b > 0 such that

for any f € BC?(I'\G), we have

1/ 1
— f:l:udu—/ fdu‘<<—foo,
o [ die [ g < ey

for some large constant | > 0. Here n = n(amrx) is the injectivity radius at ay,rx
and || + ||ooy s the L*>®-Sobolev norm involving Lie derivatives of orders up to l. The

implicit constant depends only on T'\G.

Remark 3.1.1. We will always assume that || f||oo; is defined and finite, and [ is large
enough so that all the theorems and arguments in this note would hold. Readers may

refer to [KM99] for more details about the Sobolev norm and the number [.

Remark 3.1.2. Theorem 3.1.1 is weaker than the theorem proved by Strombergsson
[S13] in the case of I'\ PSL(2,R). But the proof would involve only mixing property
of a semisimple flow and give a result for a general homogeneous space. Readers may

compare Tns and the r-factor in the main theorem of [S13].
Using the same arguments as in the proof of Theorem 3.1.1, we can prove the

following

Theorem 3.1.2. Suppose that U is abelian. Let h(u) be a compactly supported smooth
function on U. Then there exist constants a,b > 0 such that for any f € BC(I'\G)

we have

1 1
— h(a_, nr)du — d h(u)d —— || floo.t-
e |, Srto vy [ i [ bdu] < e

Heren, l and ||-||oo; are the same as in Theorem 3.1.1. The implicit constant depends

only on h(u) and T\G.
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Definition 3.1.2. A point p € I'\G is called Diophantine of type u (@ € R) with

respect to {a,} if there exists a constant C' > 0 such that
n(par) = Ce™

for all ¢ > 0. Also we say that an orbit {pa;};>o in I'\G is non-divergent of order p

if there exists a constant C' > 0 such that
n(pay,) > Ce M

for infinitely many ¢, — oo.
The following is an immediate corollary of Theorem 3.1.1 and [Sh94].

Corollary 3.1.1. Assume the conditions in Theorem 3.1.1. If x is Diophantine of

type p < a/b with respect to {a,}, or {xa;}i>o is non-divergent of order p < a/b, then

1
— )f(xu)du%/fdu.

T Jpr
Here the constants a,b and the function f are as in Theorem 3.1.1.

Acknowledgement. I would like to thank Professor Andreas Strombergsson and
Samuel Edwards for many discussions. I was told that they had results about the
effective equidistribution of horocycle orbits in homogeneous spaces using number
theoretic tools. Here what we prove in Theorem 3.1.1 is much weaker than [S13] and

our purpose is just to show how to use mixing property only to get such results.
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3.2 Preliminaries

In the proof of Theorem 3.1.1, we will need the following exponential mixing

property.

Theorem 3.2.1 (Kleinbock and Margulis [KM99]). There exists k > 0 such that for
any f,g € BC®(I'\G), we have

(@ f.g) / f g\ < e floodllglloos-
ne Jne

Here (a; - f)(z) = f(za_y) is the right translation of f by a; and || - ||, is the same

Sobolev norm as in Theorem 3.1.1.

Throughout this chapter, we will assume that U and U™ are abelian.

3.3 Some Lemmas

In this section, we will use the same arguments in the proof of Lemma 9.5 in
[V10] and prove some lemmas which will be used in the proof of Theorem 3.1.1 and

Theorem 3.1.2.

Lemma 3.3.1. Let x be any point in I'\G. Then for every point y € xB(1) we have

n(y) ~ n(z).

Here the implicit constant depends only on G. Generally, if y € xB for some bounded
subset B C U, then the same result holds with the implicit constant depending only
on B and G.

Proof. This follows from the compactness of B(1). O
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Now we fix a positive compactly supported smooth function g(x) with integral

one on R, and for any n € N, v > 0 and 0 > 0 define

5.7 (1)
. 1 /’Y v /7 Uy — tl Ug — tg
= o A ; ; g 5 g 5 ... g

for u € R". The following lemma is an immediate consequence from calculations.

_ ¢
(u” - "> dtydty .. dt,

Lemma 3.3.2. We have
1. fRn Gon~(w)du = ~".
2. gsn~(w) is supported in a neighborhood of the box [0,~] x [0,7] x --- x [0,7].
8. Jan 1950y (W) = X0y (w)]|du < 6(y +6)" L.

Lemma 3.3.3. Let y € I'\G and f € C®(I'\G). Assume that fF\G fdu =0. Then

there exist constants a,b > 0 such that for anyt > 0 and v < @ we have

/ f(yua)du| < —— | flloor-
B(v,Y,-yY)

€at")/b
The implicit constant depends only on I'\G.

Proof. Now let U™ be the unstable horospherical subgroup of {a;} and Z = Z(a;) be

the central subgroup of {a;} in G. Then we know that
Lie(U) @ Lie(U") @ Lie(Z) = Lie(G).

Let dimU = dimU* = n and dim Z(a;) = m. By Lemma 3.3.2 and the same
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arguments as in Lemma 9.5 of [V10] we have

/ f(yua_q)du
B(y75v7)

- /L F(yexp(u)a—t)gsn (w)du + O(| flloe)d(y + )"

5m f(yexp(u)a—i)gsn(w)gsm,s(2) g5, (v)dudzdv
Lie(U)xLie(Z)xLie(U%)

+O(I| flloo)d(y +0)"

- gmayn ///L - f(yexp(u) exp(z) exp(v)a_¢)gsn (1) gsm.,s(2) g5y (v)dudzdv
FO([| fllooa) (8(y + 0)" ™+~ max{d, v/e*})

- 5ml n f(@a_y)gsy(@)dp(z) + O(|| flloon) (6(y + 8)" " 4+ 7" max{d,~/e”})
7 JIn\a
- 5m1,-yn (ar- f,954) + O flloc) (8(y + 6)" " + " max{d, y/e”}).

Here ¢ > 0 is a positive constant. Also we know that there exists a function depending
only on G such that
dp = F(u, z,v)dudzdv

and g;, is the function

9o.5(y exp(u) exp(2) exp(v)) = Gsny () gs.m.s(2)gon (V) F(u, 2,0)

supported on the ball of radius 7(y) at y in T'\G. Note that all injectivity radii have
a common upper bound depending only on I'\G. By the definition of Lie derivatives,

we can compute ||gsy |l and there exists a constant p > 0 such that

195,y |00y < 1/07.
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Therefore, by exponential mixing of semisimple flow (Theorem 3.2.1), we have

/ flyua_y)du
B(y:vse7)

L Flloot [ Flloo(6(y + 67 + max{s, v/e®'}).

<
5m7n emf(;p

Let 0 = ve~* < ~ for some small € > 0 and this completes the proof of the lemma. [

Lemma 3.3.4. Assume the conditions in Lemma 3.3.3. Let h(u) be a smooth com-

pactly supported function on U. Then there exist constants a,b > 0 such that for any

t>0and7<@wehave

1
- [[f ool Al oo.r-

6at

/ flyua_y)h(u)du| <
B(v,75-7)

Here ||h(u)||ooy is the L®-Sobolev norm involving partial derivatives of orders up to

on U. The implicit constant depends only on I'\G.

Proof. By Lemma 3.3.2, we have

/ flyua_s)h(u)du
B(y:757)

— /L o Fyexp(u)a_y)h(exp(u))gsnq(w)du + O(|| fllosl|Pllocs)d (v + )" L.

Now the lemma follows from the same arguments as in Lemma 3.3.3. (In this case,

we have [|gsy|cos < 1/0P||h]|s, for some p > 0.) O
3.4 Effective Equidistribution of Abelian Horospherical Or-
bits

In this section, we will prove Theorem 3.1.1 and Theorem 3.1.2.
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Proof of Theorem 3.1.1. Without loss of generality, assume that [ fdu = 0. We know

that

1
—/ flzu)du = f(xayrua_,r)du.
T Jpm B(1)

By Lemma 3.3.1 and the assumption that U is abelian, we can find v > 0 with the

following properties

1. We can devide B(1) into small boxes {B;}. For each j, there exists y; € B(1)

such that B; = y;B(7,7,...,7).
2. For each j, we have v < n(zamry;)/2.
3. v ~ n(za,r) and the implicit constant in ~ depends only on I'\G.

In fact, we can take such ~ by first taking the infimum of {n(zanry)/2|ly € B(1)}
and then modifying it so that 1/ is an integer. Note that the number of these boxes

B; is 1/9". Now by Lemma 3.3.3 we have

/ f(rayrua_,r)du
B(1)

1
— d
Ta /B(T)f(xu) u

S Z / f(zalnTua_lnT)du
i |/ Bi
= Z / f(zawry;)ua_mr)du
j B(v,...yy)
1 1 1
< FT‘WbeHOO’l < T“n(xamT)bJr”HfHOO’l.
This completes the proof of Theorem 3.1.1. O]

Proof of Theorem 3.1.2. The proof is similar to that of Theorem 3.1.1. We assume
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that [ fdu = 0. We have

1
ﬁ/f(mu)h(a_lnTualnT)du
U
= / flramrua_mr)h(u)du = / flramrua_mr)h(uw)du
U B
for some box B C U since h(u) is compactly supported. Using the same arguments

as in the proof of Theorem 3.1.1, we can find v > 0 with the following properties

1. We can devide B into small boxes {B,}. For each j, there exists y; € B such

that B; = y;B(7,7,...,7)-

2. For each j, we have v < n(zamry;)/2.
3. 7 ~ n(xayr) and the implicit constant in ~ depends only on B and I'\G.

By Lemma 3.3.4, we obtain that

1
ﬁ/l]f(xu)h(a—lnTualnT)du
2
= 2

J

/B f(rawmrua_ymr)h(u)du

IN

/B | flramrua_mr)h(uw)du

.....

Vol(B) 1

1
< e 1 f ool Plloos K —— = | fllcot 1 Pll o,
zj: Ta,yb ,yn Ta,yb
< ]
Ton(zap )t ol

Here the implicit constant depends on h(u). This completes the proof of Theorem

3.1.2. [l

95



Chapter 4

Diophantine Points in Rank One Homogeneous Spaces

4.1 Introduction

The Diophantine approximation of numbers is a well-developed subject. One of
the classical theorems in this subject is Jarnik-Besicovitch Theorem, which gives a
formula for the Hausdorff dimensions of Diophantine numbers of different orders.
Later, this theorem was generalized by Dodson [D92], which describes Hausdorff
dimensions of Diophantine matrices of different orders.

It turns out that numbers and matrices with Diophantine conditions are closely
related to points in homogeneous spaces with excursion rates under semisimple flows.
A detailed description of this connection could be found in [K01]. For example,
by reformulation, Dodson’s work in [D92] actually gives a formula for Hausdorff di-
mensions of points with different excursion rates under the semisimple flow a; =
diag(e!/™, ... et/™ et/m . e7/") on PSL(m + n,R)/PSL(m + n,Z). Also Melidn
and Pestana [MP93] get a formula for Hausdorff dimensions of points with different
geodesic excursion rates in a hyperbolic manifold. As a consequence, their result
implies a generalized version of Jarnik-Besicovitch Theorem on Diophantine approxi-
mation by numbers in some number fields of degree 2. In [D85], Dani associates badly

approximable m x n matrices with bounded orbits under

a, = diag(et/™, ... et/™ o7t et
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on PSL(m +n,R)/PSL(m + n,Z) and shows that the subset of points with bounded
orbits under this flow has full Hausdorff dimension. In this direction, Dani [D86]
also shows that such result holds for a non-quasiunipotent flow on G/I" where G is a
semisimple Lie group of rank one and T is a lattice in G. Finally in [KM96], Kleinbock
and Margulis give a complete proof of this result for a non-quasiunipotent flow on
any homogeneous space.

Moreover, this topic has also been developed in the case of negatively curved
manifolds. For example, in [HP01], they define a Diophantine condition for geodesics
starting from a point p and exponentially acculmulating at another point ¢. Then
they get a sharp estimate on Hausdorff dimensions of such Diophantine geodesics.
Later in [HP04] they study the case of ¢ = oo and obtain a Kintchine-Sullivan-type
theorem about such Diophantine geodesics. Readers may also refer to [HP02A] and
[HP02B] for more details.

In this note, we will consider a similar question in the homogeneous space G /I’
where G is a semisimple Lie group of real rank one and I" is a non-uniform lattice in
G. Let {a;} denote a semisimple flow (i.e., every element in {a;} is Ad-semisimple)
on the homogeneous space G/I". We will define Diophantine points in G/T" and we
would like to obtain a formula similar to Jarnik-Besicovitch Theorem. In the last
section, we will see that the Diophantine condition defined in this paper is equivalent
to that in the hyperbolic case [MP93]| and that in the complex hyperbolic case in
[HP02B].

Before stating the main theorem, we need some notations. For any p € G/I", we
will denote by Stab(p) the stabilizer of p in G. If p = gT', then Stab(p) = gl'g~! is a
lattice conjugate to I'. We will fix a norm || - || on the Lie algebra g of G and denote
by d(-,-)¢ and d(-,-)g/r the induced distances on G and G/I" respectively. We will

denote by a the Lie algebra of the one parameter subgroup {a;}.
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For the semisimple Lie group G of rank one, we can write the Cartan decomposi-

tion with respect to a Cartan involution 6 by

g=tdp

where € and p are the 1-eigenspace and (—1)-eigenspace of 0 respectively, and we may
assume that a C p is a maximal abelian subalgebra of p. Let K be the maximal
compact subgroup with the Lie algebra €. We write the root space decompostion of

g with respect to the adjoint action of {a;} as

0=020DPg-aDPgoD ga D 92a-

Here « is a simple root, but we will think of this simple root as a positive number via

the identification

Q*
I
=

In other words, we have o« > 0 and

Adas(v) = v (Vv € ga), Ada,(v) = v (Vv € gaa)

Aday(v) = e v (Vv € g_4), Ada;(v) = e 2y (Vv € g_s4).
Note that the root spaces g_s, and go, may be empty.

Definition 4.1.1. For any p € G/I', we define the injectivity radius at p by

= inf d(v,e)q.
n<p) veStab(p)\{e} ( )G

Definition 4.1.2. A point p € G/T is Diophantine of type - if there exists a constant
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C > 0 such that

n(a;p) > Ce " for all t > 0.

We will denote by S, the subset of all Diophantine points of type v in G/T, and by

S¢ the complement of S, in G/T.

Remark 4.1.1. Note that by [D86] and [KM96], the subset Sy has full Hausdorff

dimension.

Now we can state the main theorem in this chapter.

Theorem 4.1.1 (Main Theorem). If goo = 0, then the Hausdorff dimension of SS

0<y<a)is
OZ_Pydimgoé.
a

dimg_, + dim gy +
If g2a # 0, then the Hausdorff dimension of S5 (0 < v < 2a) is

4o — 7y a—y

2
dim g, + dim g9,

dimg 5, +dimg_, + dimgy +

Remark 4.1.2. We will see in section 8 that the definition of SY is equivalent to
the Diophantine condition in [MP93], and Theorem 4.1.1 generalizes Theorem 1 in
[MP93].

Here we obtain an exact formula for the Hausdorff dimension of S5 which, to the
best of the author’s knowledge, was only known in the case of hyperbolic manifold,
ie. G = 50(n,1) (e.g. [MP93]). Also, our proof is based on the theories of Lie
groups and dynamical systems. So this note would be a new proof in the hyperbolic
case. (See section 8 for more details.)

The following theorem is a finer version of Theorem 4.1.1. First we need some

notations. Let &,...,& be the inequivalent cusps of G/I', and we fix sufficiently
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small neighborhoods Y; of & in G/I" (1 < i < k) such that these Y;’s are pairwise

disjoint.

Definition 4.1.3. A point p € G/T" is Diophantine of type (71, ...,7yx) if there exists

a constant C' > 0 such that for any i € {1,2,...,k} and any ¢ > 0, we have

n(ap)xyi(ap) = Ce™ " xy, (arp).

We will denote by S,, . -, the subset of Diophantine points of type (v, ...,7), and

,,,,,

by S5 .4

-----

Remark 4.1.3. This definition measures different excursion rates ; of the orbit {a;p}

near the cusps & (1 <i <k).

Theorem 4.1.2. If gy, = (), then the Hausdorff dimension of S5 0 <y <

"""" Tk
a,1 <i<k)is

dim g_, + dim go + O — MIN <3<k Vi

dim g,.

If goo # 0, then the Hausdorff dimension of S5 0<vy<al<i<k)is

dimg o, + dimg_,+ dimgg

dov — miny <<k Y
4o

200 — ming << Vi
200

dim g, + dim go,.

Remark 4.1.4. We will show that Theorem 4.1.2 generalizes Theorem 1.7.1 in Chapter
1.

As an application, we will deduce a Jarnik-Besicovitch Theorem on Diophantine
approximation in Heisenberg groups in the setting of [HP02B]. We will follow the
definitions and notations in [HP02B], which readers may refer to for more details.

The real Heisenberg group Ha,_1(R) is the manifold C*~! x R in which the group
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multiplication is given by

) V) =+ o+ +25(¢- ()

where (,¢’ € C" ! and v,v" € R. We write dy,, ,m®) for the right invariant distance
on Hap 1(R). Hay_1(R) is the R-points of a connected algebraic group Ha, 1 defined
over Q with Q-points Ha, 1(Q) = Q[i]" ' x Q. For any r € Ha,,_1(Q), the height h(r)
of r is defined as the absolute value of the least common multiple of the denominators

of the rationals in the components of r. Let | - | : Ha,—1(R) — R be defined by

(¢ 0)] = (1" + )

and the Cygan distance on Hs,,_1(R) is defined by

deyg((G,v), (¢0) = 1(C )¢, v) 7.

Note that this distance is invariant under the right multilplication of Hs, 1(R). See
[G99] and [HP02B] for more details.

Definition 4.1.4. A point a € Ha,—1(R) is Diophantine of type v (v € R) if there

exists a constant C' > 0 such that

dCyg(O‘a r) >

(h(r))

for any r € Hs,—1(Q). We will denote by L, the subset of all Diophantine points of

type v in Ha,_1(R), and by Lg the complement of L7 in Hon_1(R).

Remark 4.1.5. Note that by Theorem 3.4 in [HP02B], we have v > 1.
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Theorem 4.1.3. The Hausdorff dimension of LS (v > 1) with respect to the right

invariant distance dy,, ,(r) 1S equal to

v+1
v

n — 1.

Remark 4.1.6. Note that Hersonsky and Paulin give a Kintchine-Sullivan type theo-
rem on Diophantine Approximation in Heisenberg groups (Theorem 3.5 in [HP02B]).

Here Theorem 4.1.3 can be thought of as a Jarnik-Besicovitch theorem in this setting.

In the proof of Theorem 4.1.1, the counting problem (see section 4.5) will be
crucial which involves the mixing property of {a,;} acting on G/T'. Actually it will
play an important role in calculating both the upper bound and the lower bound of
the Hausdorff dimension. In section 4.2, we will list concepts and theorems needed
in this paper. In section 4.3, we will reduce Theorem 4.1.1 (see Theorem 4.3.1). In
section 4.4, we will give some Lie group facts which will be used often throughout this
note. In section 4.5, we will give a definition of rational points in G/I" and define the
denominator of a rational point. With the help of the mixing property of {a;}, we
will be able to count the rational points with their denominators between two large
numbers. This counting result will be used to calculate the Hausdorff dimension of
a tree-like subset. In section 4.6, we will closely study the meaning of a point in
G /T being Diophantine and give sufficient condition and necessary condition for it.
Combining all the results in this paper, we will give the proof of Theorem 4.1.1 in
section 4.7. The necessary condition in section 4.6 will be used for the upper bound of
the Hausdorff dimension and the sufficient condition will be used for the lower bound.
In section 4.8, we will prove Theorem 4.1.2. In the last section, we will discuss the
relations between Theorem 4.1.1 and [MP93|, Theorem 4.1.2 and [Z16], and give a

proof of Theorem 4.1.3.
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4.2 Notations and Preliminaries

Let exp be the exponential map from g to G. For any Lie subgroup H C G, we
will denote by Lie(H) the Lie subalgebra of H and uy the Haar measure on H.

Let

Ny =00 DP2a;, N-=0-aDF24

and N, and N_ be the corresponding unipotent subgroups. We will denote by A =
{a;} and

Ag sy ={ar € A s1 <t < s}

and

N, (S)={neN,:neS} N (S)={neN_:neS}

for any subset S C N, or N_. We will fix two bases in g, and gs,, and we will write

By, (1) and By, (7)

for the open cubes along these bases of equal side length r in g, and gs, respectively

If goo = 0, we have that n, = g, and n_ = g_,. We will denote by

By, (r) = exp(Bg, (1))

the open cube centered at e with side length r in N,. If go, # 0, then ny = g, & goa

and we will denote by

By (r1,72) = exp(By, (r1) + By, (12))

for the open box centered at e with length r; in g,-direction and ry in gs,-direction.
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The Bruhat decomposition in the real rank one case has the following simple form

G=MAN_UMAN_wMAN_

where M is the centralizer of a in K and w is a representative of the non-trivial
element in the Weyl group.
In the following, we will need Theorem 2.1.2 to compute Hausdorff dimension.

For convenience, we list it here.

Theorem 4.2.1 ([M87], [U91] or [KM96]). Let (X, m) be a Riemannian manifold.

Assume that there exist constants D > 0 and k > 0 such that

m(B(z,r)) < Dr*

for any x € X and any ball B(x,r) of radius r around x. Then for any tree-like

collection A of subsets of E

Lo log(x1)
dimg(A) > k — limsup — IAZ(A)
j—o0 log(de(A))

We also need the following theorem about the fundamental domain of a non-

uniform lattice in G of real rank one. We write the Siegel set

Q(s,V) = KA, o N_(V)

for some s € R and some compact subset V' C N_.

Theorem 4.2.2 (|[GR70], [D84]). There ezist sg > 0, a compact subset Vo of N and

a finite subset ¥ of G such that the following assertions hold:
1. G =Q(sg, Vo)2XT.
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2. Forallo € X, TNo " 'N_o is a cocompact lattice in 0 ' N_o.

3. For all compact subsets V' of N the set
{7 € TQ(s0, V)Zy N Q(s0, V) # 0}

1s finite.

4. Give a compact subset V of N containing Vy, there exists s; € (0,59) such that
whenever o,7 € X are such that Q(so, V)oy N Q(s1, V)T is non-empty for some

v then o =7 and oyo~' € (KNZ)-N_ C P.
Here Z is the centralizer of A = {a;} and P = ZN_.

Remark 4.2.1. Note that the subset ¥ corresponds to the cusp set {&1, ..., &}

4.3 Reductions

By the property of Hausdorff dimension, to prove Theorem 4.1.1, it suffices to
prove that for any point x = gI" and any small open neighborhood Bg(r)z C G/T
of z = gI' with a sufficiently small » < n(x), the subset S N Bg(r)z has the same
Hausdorff dimension as that in the main theorem. Furthermore, for any element g in
Bg(r), we can write

g=n_any

for some n_ € N_, a € A and ny € N,. By definition, g € S, if and only if ny € 5,

and hence it is enough to prove that for any small open ball Uy at e in N, we have

o2 dim g, if 20 = 0
dimy S¢ N Upz = -
2a—y

1977 dim gy + 227 dim gag if goa # 0
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Replacing the lattice I" by gI'¢!, we can assume without loss of generality that

x = el’ and hence to prove the main theorem, it suffices to prove the following

Theorem 4.3.1. Let Uy be a small open ball at e in Ny of radius r < n(el'). Then

we have

27 dim g, if G20 = 0
dimy S¢ N Up(el) = a M9 I o2

18 dim go + 2552 dim goa if o0 # 0
Here 0 <y < aifgoa =0 and 0 < v < 2a if goo # 0.

In the following sections, we will fix this open ball Uy C N, and study the problem
of Diophantine points in the space Uy(el') instead of G/T". Since Uy is isomorphic to

Uo(el'), we will still write puy, for the N -invariant measure on Uy(el'), i.e.

pin, (B(el') = pn, (B)

for any Borel subset B C Uy C N, and for any point n, € Uy, the subset By, (r)n, I’
or By, (r1,72)n4I" will be an open box at niI' € Uy(el'). In other words, we will use
the notations in Uy and Up(el") interchangeably.

4.4 Some Lie Group Facts

In this section, we will prove some Lie group facts which will be used often in this

note.

Proposition 4.4.1. For any uw € n_\ {0} and v € ny \ {0} we have

T v]llg ~ [lullgllll,-
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Here the implicit constant depends only on G.

Proof. 1t suffices to prove that for any v € n_\ {0} and v € n; \ {0}

[u,v] #0

and this follows immediately from Lemma 3.4 in [BZ16]. O

Proposition 4.4.2. Let u € G be a unipotent element. Then there exists a unique
element n in Ny U {w} such that Adn(u) € N_. Moreover, if u ¢ Ny, then this

n e N;.

Proof. We know that there is an element g € G such that Adg(u) € N_. By the
Bruhat decomposition, ¢ is either manw or mann for some m € M,a € A,n € N,
and 7 € N_. Since man stablizes N_, we have either Adw(u) € N_ or Adn(u) € N_.

Suppose that there are two elements ny,ny € Ny U {w} such that Adn;(u) € N_.
Then Adnyn;'N_ N N_ # {0}. By Lemma 3.4 in [BZ16], this implies that nyn;* €
MAN_ and hence by the Bruhat decomposition, n; = ns. The second part follows

immediately from the first. This completes the proof of the proposition. n

Proposition 4.4.3. Suppose that g_oo # 0. Then for any o € 3, we have ol'o~! N

exp(g-_2q) @s a lattice in exp(g_2a)-

Proof. Let u € g_, \ {0}. By Lemma 7.73 (a) in [K02], we know that the map

ad(u) : g—o = §-2a4

is surjective and hence

[g—om g—a] = g—2a-
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This implies that

[N, N_] = exp(g_2a).

On the other hand, since cI'c™! N N_ is a lattice in N_, by Corollary 1 of Theorem
2.3 in [R87], we know that cT'o~*N[N_, N_] is a lattice in [N_, N_]. This completes

the proof of the proposition. O

4.5 Counting Rational Points

In this section, we will define rational points in G/I" and their denominators. Then
we will count rational points, which will be crucial to the study of Diophantine points

in the following sections.
Definition 4.5.1. A point p € G/I" is called rational if Stab(p) N N_ # {e}.

Note that if p is rational, then n(a;p) — 0 and {a;p} diverges as t — oco. By

Corollary 6.2 in [D85], we immediately get the following

Proposition 4.5.1 (Corollary 6.2 [D85]). p € G/T" is rational if and only if p €
Uyess MAN_oT.

Definition 4.5.2. A point p is called o-rational for some o0 € X if p € MAN_oT.

Proposition 4.5.2. Let p € G/T' be o-rational and suppose that p = mya;niol’ =

maaonool’. Then a; = as.

Proof. Since myayniol’ = moagnyol’, the lattices of N_

mlalnlaFa’lnflaflmfl NN_, m2a2n201j071”271a271m271 NN_

coincide and hence they have the same co-volume in N. This implies that a; = ay. [
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Definition 4.5.3. We define the o-denominator of a o-rational point p € G/I" by

where p = may,nol for some ¢, € R.
Remark 4.5.1. Note that by Proposition 4.5.2, this definition is well-defined.

Definition 4.5.4. For any U C N, , we will denote by S,(U(el'), [y, l2) the subset of

o-rational points in U(el') whose o-denominators are between /1 and ls.
Proposition 4.5.3. Suppose that gs, = 0. Then for any open subset U C Uy C Ny,
we have that S, (U(el'), 11, 1l2) is finite and

1S, (U(eT), C/2,C)| ~ ., (U)CHm0e

for any sufficiently large C > 0. Here the implicit constant depends only on G and I'.

Proof. Since ga, = 0, we have that ny = g, and n_ = g_,. Recall that By, (r)
denotes the open box centered at e with length r in N,.

Let n,I' € N, I' be a o-rational point and there exist m € M, a;,, € Aandn € N_
such that n, ' = may,nol. By definition, the o-denominator of n I' being between

C/2 and C' is equivalent to the condition that

C/2 <e ™ < (.

This implies that ai, c/onl’ € MA_119/a0N ()0l

Since M A_1,2/0,0N(Q)oT" is compact, we can find 6 > 0 such that

6 <n(y)
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for any y € M A_1,2/0,0Naol’. Now by thickening the subset M A_y,9/4,0Nqol along

the N, direction, we would like to study the following integral

/ XB, ()MA_ 120 oN(@)oT (A c/anD)dpin, (1) (4.1)
U

On the one hand, by the mixing property of the action a;, integral (4.1) is asymptot-

ically equal to

pn, (U) /G/ XBN+(J)MA_IDQ/Q’ON(Q)UF(g)d:uG(g) ~ MN+(U)5dimga- (4.2)
r

On the other hand, if n,I" is a o-rational point in U(el"), then any nI' € By, (6/C)n,I"

satisfies the following
amc/anl’ € By, (0)MA_112/0,0N(2)0T.
Conversely, if a point nI" € U(el") satisfies
amc/anl’ € By, (0)MA_112/a0Na0T,
then there is a point n,I" with
ng" € By, (6/C)nl’

such that

QAln C/aan S MA_ In 2/a70N(Q)0F

which means that n, is a o-rational point. This implies that integral (4.1) is also
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asymptotically equal to
|S5(U,C/2,C)|(8/C)m e (4.3)

Hence, by comparing equations (4.2) and (4.3), we know that

|SU(U’ 0/2’ C)l ~ MN+(U)6dimga/(5/C)dimga = MN+(U)Cdimg°‘.

This completes the proof of the proposition O]

Proposition 4.5.4. Suppose that goo, # 0. Then for any open subset U C Uy C Ny,
we have that S, (U(el'), 11, 12) is finite and

1S,(U(el), C/2,C)| ~ p(U)Cdimgat2dimenn

for any sufficiently large C > 0. Here the implicit constant depends only on G and I'.

Proof. In this case, the proof is almost identical to that in the case of go, = 0 but
computations involved will be more complicated. Recall that By, (r1,7r2) denotes the
open box centered at e with length ry in g,-direction and r5 in go,-direction.

Let nI" € N, I be o-rational and there exist m € M, a;, € A and n € N_ such that
nl' = may,nol’. The o-denominator of nI" being between C'/2 and C' is equivalent to
the condition that

C/2<e 0 < (.

This implies that amc/anl’ € MA_1n2/6,0N ()0l

Since M A_1n2/6,0N(Q)oT" is compact, we can find 6 > 0 such that

6 <n(y)

for any y € MA_1,9/0,0N(Q2)oT. Now by thickening the subset MA_,9/q0,0N(Q2)oT
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along the N, direction, we would like to study the following integral

/ XBN+ (6,0)MA_y, g/a’oN(Q)O'F (aln C/anr)dn (44)
U

On the one hand, by the mixing property of the action a;, integral (4.4) is asymptot-

ically equal to
pn, (U) /G/F XBy, (5.5)MA_ lnz/a)ON(Q)aF(g)dg ~ MN+(U)5dimga+dimma- (4.5)
On the other hand, if n,I" is a o-rational point in U(el'), then any
nl' € By, (§/C,5/C%)n,T
satisfies the following
amc/anl’ € By, (0,0)MA_1n2/6,0N(Q)ol.
Conversely, if a point nI" € U(el") satisfies
amc/anl’ € By, (0,0)MA_1,2/0,0N(Q)oT,
then there is a point n,I" with
nl' € By, (§/C,5/C%)n,T
such that

Ay C/aan e MA_y, 2/a70N(Q)JF
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which means that n,I" is a o-rational point. This implies that integral (4.4) is also

asymptotically equal to

[S7(U, C/2,C)|(6/C)m e (6/C)m 820

Hence, by comparing equations (4.5) and (4.6), we know that

So(U,CLO) e, ()50 e (5 Cytimae (5 G2t
— ,uNJr (U) Cdim ga+2dim gan )
This completes the proof of the proposition

Definition 4.5.5. We define the denominator of a rational point p by

d(p) = inf o]l

veStab(p)Nexp(g—g)\{e}

where 8 = a if go, = 0 and 5 = 2« if ga,, # 0.

(4.6)

Remark 4.5.2. Note that by Proposition 4.4.3; Stab(p) Nexp(g_2,) # {€} is a lattice

in exp(g_sq) if 2o # 0 and so d(p) is well-defined.

Definition 4.5.6. For any U C N, we will denote by S(U(el'),l;,l5) the subset in

U(el') of rational points whose denominators are between [; and ls.

Proposition 4.5.5. Let p € G/T" be a rational point. Then

d(p) ~ do(p)

whenever p is a o-rational point for some o € 3. Here the implicit constant depends

only on G and I.
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Proof. Let p = mag,nol for some o € ¥. Suppose that gs, = (). Then

Stab(p) N g_a = as, (Stab(mnol) Ng_q)a, "

Since m,n, o are all in compact subsets in G, this implies that

d(p) ~ e~ = d,(p).

The proof in the case go, # () is similar. This completes the proof of the proposition.

]

Proposition 4.5.6. Let U C Uy C N, be an open box in Ny. For any sufficiently
large C' > 0 we have that S(U(el'),C/2,C) is finite and

1. if goa =0, then
|S(U(el),C/2,C)| ~ py, (U)CH™ 8,

2. if goo # 0, then

|S<U(€F), C’/Z7 C)| ~ MN+(U)Cdimgo‘+2dim920“

Here the implicit constants depend only on G and T'.

Proof. This follows immediately from Proposition 4.5.1, Proposition 4.5.3, Proposi-

tion 4.5.4 and Proposition 4.5.5. O

4.6 Diophantine Points

In this section, we will study the Diophantine points and prove some propositions

which will be used in the proof of Theorem 4.3.1.
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Proposition 4.6.1. Let p € G/T be a non-rational point. If p is not Diophantine of

type vy, then there exists a sequence t, — 0o satisfing the following conditions

1. for each t, > 0, there is a v, € Stab(a;,p) such that v, is unipotent and

d(vn, €)g = Cpe™ ™ for some constant C, > 0 depending only on p

2. for each t,, > 0, there exists €, > 0 such that for anyt € (0,¢,), we have

d(Ad(a_)vy, €)g > Cpe V=),

Proof. By definition, we know that if p is not Diophantine of type «, then there exist

a constant C}, > 0 and a sequence ¢,, — oo such that

n(ay,p) = Cpe "™
and for each t,, > 0, there exists €, > 0 such that for any ¢ € (0,¢,) we have
n(ag, _¢p) > C’peﬂ(t"_t).
This implies that there exists v, € Stab(a,, p) such that
d(vn,e)a = Cpe M d(Ad(a_;)v,, €)g > Cpe =DVt € (0,¢,)).

It follows from Corollary 11.18 in [R87] that v, is unipotent for sufficiently large

t, > 0. This completes the proof of the proposition. O

Proposition 4.6.2. Suppose that goo, = 0. Let p € Up(el') C G/T" be non-rational,
to € Ry a sufficiently large number and vy € Stab(a,p) such that ty and vy satisfy

the conditions in Proposition 4.6.1. Then there is a rational point q € Uy(el) with
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d(q) ~ el =% (the implicit constant depending only on p) such that

p € By, (Cd(q) 7 )q

for some constant C' > 0 depending only on p.

Proof. Since {a;} expands N,, the condition 2 in Proposition 4.6.1 implies that
vo ¢ Ny. Let vg = exp(v) for some v € g. By Proposition 4.4.2; there is a unique
n € N, such that

Adn(v) =z en_.

1

Now set n="' = exp(u) for some u € ny. Then we have

z 4+ [u, 2] + [u, [u, 2]] /2 = v

zen., [u,z] €go, [u,lu,z]]€ny.

Since ||v||g ~ d(vo, €)g = Cpe " for some C), as in Proposition 4.6.1, by the condition

2 in Proposition 4.6.1, we have
Izllg ~ Cpe™™, [[u, 2]llg < Cpe™™

and by Proposition 4.4.1, this implies that v and n are bounded.
Now by definition, we know that na,,p is rational and hence a_;,na;,p is rational.

Let g = (a_ynay,)p and we have that

d(a—tonatm e)G < Ha—touatoug < e_ato‘
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Also we have that

d(nay,p) ~ Cpe’”to ,

and hence the denominator of ¢ = a_,na.p is equal to

d(q) = e*™d(nay,p) ~ Cpe@ Mt

and hence

@

d(a_y,nay,e)q < Cd(q)” =
for some constant C' > 0. Note that C' depends only on p. This completes the proof
of the proposition. O

Proposition 4.6.3. Suppose that gao, = 0. Let p € Uy(el') C G/T" be a non-rational
point. If p is not Diophantine of type v, then there exist a constant C > 0 and a

sequence of distinct rational points g, € Uy(el') with d(g,) — oo such that

@

pE BN+ (C{d<(]n)_a77’Y )Qn-

Proof. Suppose that p € Uy(el') is not Diophantine of type . By Proposition 4.6.1,
there exist infinitely many ¢, — oo and v,, € Stab(a,, p) satisfying the conditions in
Proposition 4.6.1 and hence by Proposition 4.6.2, there exist infinitely many rational

points g, € Up(el') with d(g,) ~ e~ such that

p € B(Cd(gn) 57 )gn

for some constant C' depending only on p. This completes the proof of the proposition.

]
Proposition 4.6.4. Suppose that goo = 0. Let p € Uy(el') and let € > 0 be a
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sufficiently small number. If there ezist a constant C > 0 and a sequence g, € Uy(el)

of distinct rational points with d(q,) — oo such that

p € By, (Cd(gn)” 5059 ) gy,

then p is not Diophantine of type ~.

Proof. Suppose that there exist a constant C' > 0 and a sequence ¢, € G/T" of rational

points converging to p such that

pE BNJr(Od((Jn)_&_((f/-‘—E))(In‘

Let t,, = In d(qn)ﬂ—<1W+f>. Then we have that

d<athn> atnp)G/F < C

and

T]<athTL) ~ d(qn>/€atn = 67(7+6)tn

This implies that

n(ag,p) < C'e” (0t

for some constant C’ > 0 and infinitely many ¢, — co. Hence by definition p is not

Diophantine of type ~. [

Proposition 4.6.5. Suppose that gs,, # 0. Let p € Ug(el') C G/T be non-rational,
to € Ry a sufficiently large number and vy € Stab(ay,p) such that ty and vy satisfy the

conditions in Proposition 4.6.1. Then there exists n € N, such that

Adn(vg) € exp(g_2q)-
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Proof. By Theorem 4.2.2, we write

a,p = kasnol’

for some k € K, as € A, ng € N_(Vp) and o € . Since

vy € Stab(ay,p) = kasng(oTo )ngta k™! and d(vo, e)q = Ce o

we know that s is a sufficiently large number. Also note that k, ng and o are all in
compact subsets and by Proposition 4.4.3, cT'o~ ' Nexp(g_24) is a lattice in exp(g_o4)-

Therefore, we have that

vy € kagno(oTo ™ Nexp(g_oa))ng ta_sk .

In other words, we can find n € G such that

Adn(vg) € exp(g—2q)- (4.7)

By Proposition 4.4.2 (or repeating the proof of Proposition 4.4.2), we can assume,
without loss of generality, that n € N, U{w}. Since {a;} expands N, condition 2 in
Proposition 4.6.1 implies that vy ¢ N, , and hence by equation (4.7), we have n € N,.

This completes the proof of the proposition. n

Proposition 4.6.6. Suppose that ga,, # 0. Let p € Ug(el') C G/T be non-rational,
to € Ry a sufficiently large number and vy € Stab(a,p) such that ty and vy satisfy

the conditions in Proposition 4.6.1. Then there is a rational point q € Uy(el') with
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d(q) ~ ePa=M%/2 (the implicit constant depending only on p) such that

2 4o
-

p € By, (Cd(q) 2—7,Cd(q) > )q

for some constant C' > 0 depending only on p.

Proof. By Proposition 4.6.5, we know that there exists n € N, such that

Ad(n)(vo) € exp(g-2a)-

Let vy = exp(v) for some v € g. Then we have

Adn(v) = 2 € g_24-

1

Now set n~! = exp(u) for some u = u; + uy € ny with u; € g, and us € goo. Then

we have

2+ w2 (fug, 2] + [ug, [wa, 2]]/2)

+  ([ug, [ug, [ug, 2]]]/6 + [uq, [us, 2]]/2 + [ug, [u1, 2]]/2) + -+ =

a=[uy,z] € g_o,b=[ug, 2] + [ug, [u, 2]]/2 € go

¢ = [ul) [uh [ula Zm/6 + [ul) [u27 Z“/2 + [uQv [ulv ZH/Q
= [uh [uh [ula Zm/6 + [u27 [ub Z“
= [uh [uh [ula Zm/6 + [uh [u27 ZH

— —[ul, [ul, [ul, Zm/3 + [Ul, b] € ga-

80



Since ||v]lg ~ d(vo, €)c = Cpe™ ", we have
lallg, [[bllg, llelly < Cpe™™
and by the condition 2 in Proposition 4.6.1, we have
cither [|zlly ~ Cpe™ or llally = lfus, Al ~ Cpe ™.
If [|z|l; ~ Cpe ™, then we have
lullgllzllg < llally < Coe™, Jluallg < €4
for some constant C; > 0 and
luallgllzllg < 11Bllg + lJuallglizlly < Cpe™, fluzlly < Co

for some constant Cy > 0.

If |al|y; ~ Cpe ™, then
lally < flurllgllzllg < lluallgCpe™,  Jlually = Cs
for some constant C5 > 0 and
lurllFllally < Ilunllglblly + llellg,  Nlually < 1+ m <y
for some constant Cy > 0 and

luzllgllally < llellg + luallglizllg:  llually < Cs
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for some constant C5 > 0. Either case, we have that v and n are bounded.
Now by definition, we have that na,,p is rational and hence a_;,na;,p is rational.

Let g = (a_ynay,)p and we have that
a_ynay, € By, (Cge™ ", Cge200)
for some constant Cg > 0. By definition we know that
d(nag,p) ~ (Cpe’m)%
and hence the denominator of ¢ = a_;,na,p is equal to
1
d(q) = e®™d(nayp) ~ CgePet/2,

So we have that

2a e

A_t,Na, € BN+ (Od(q)f%ﬁq , C’d(q>*2a7,\/)

for some C' > 0. Note that C' depends only on p. This completes the proof of the

proposition. O

Proposition 4.6.7. Suppose that gon # 0. Let p € Uy(el') be a non-rational point.
If p is not Diophantine of type v, then there exist a constant C' > 0 and a sequence

qn € U(el') of distinct rational points with d(g,) — oo such that

4o

p € By, (Cd(g,) %=, Cd(g,)” % ) g

Proof. Suppose that p € U(el') is not Diophantine of type . Then there exist
infinitely many ¢, — oo and v,, € Stab(a,,p) satisfying the conditions in Proposition

4.6.1 and hence by Proposition 4.6.6, there exist infinitely many rational points ¢, €

82



U(eTl') with d(g,) ~ e?*=1%/2 guch that

4o

pe BN+ (Cd(Qn)iﬁ, Cd(qn)i%ﬁv)qn

for some constant C' > 0 depending only on p. This completes the proof of the

proposition. ]

Proposition 4.6.8. Suppose that goo # 0. Let p € Uy(el') and let € > 0 be a
sufficiently small number. If there exist a constant C > 0 and a sequence g, € Upy(el)

of distinct rational points with d(g,) — oo such that
p € B, (Cd(g,) ™79, Cd(q,)” ™7 )gp,

then p is not Diophantine of type 7.

Proof. Suppose that there exist a constant C' > 0 and a sequence ¢, € G/T" of rational

points converging to p such that
p € B, (Cd(qn) 7659, Cd(g,)” =07 )g,.
2

Let t,, = Ind(q,)?=0+9. Then we have that

d(as, Gn, a,p)ayr < C

and

n(athn) ~ d(qn>2/€2atn — 6_(’7+E)tn‘

This implies that

n(ag,p) < C'e” (0ot
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for some constant C’ > 0 and infinitely many ¢, — co. Hence by definition p is not

Diophantine of type 7.

4.7 Proof of Theorem 4.3.1

Before we prove Theorem 4.3.1, we need the following propositions.

Proposition 4.7.1. Suppose that gsn, = 0. There exist 7o and Cy > 0 with the
following property: for any rational point q € Uy(el'), there exists a large con-
stant Ly > 0 such that for any | > L, the open box By, (rod(q)fa%w)q contains at
least ColP™ 9 1, (B, (rod(q)” a7 )q) many disjoint sub open bozes By, (rod(q) " =7)§

where q’s are rational points with denominator between | and 21.

Proof. We fix a sufficiently small rq > 0. By Proposition 4.5.6, for the open box
BN+(rod(q)7aaj)q, there exists a large constant L, such that for [ > L, there are
at least Col¥™8«yy (By, (rod(q) a7 )g) many rational points in By, (rod(q) =7 )q
with denominator between [ and 2! for some absolute constant Cy > 0. For each
such rational point ¢, we construct an open box BN+(rod(c])7aaj)c] around ¢, and
to prove the proposition, we only need to prove that these open boxes are disjoint.
Let ¢ and ¢, be two such rational points. Suppose that By, (Tod(Q1)7%ﬂ>q1 and

By, (rod(g2) "7 )go are not disjoint. Then there exists an element n € N, such that
ngi = 2 and n € By, (rod(q1)” 57 + rod(g2) 7).
By applying a;, with ¢, = In(l/r¢)/a on both sides, we have
(atona_ty)at, 1 = A1yq2 (4.8)
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and by calculations, we have that
.
d(at,q1) ~ d(a,q2) ~ ro and d(ana_y,, e)g <K 1.

Since r is sufficiently small and a;,na_q, is bounded, from the equation (4.8) we know
that there exist nonzero elements u; € Stab(a;,qi) N n_ and uy € Stab(ay,q2) Nn_
such that

Ad(ag,na_y, )uy = ug

and hence

Ad(ai,na_¢,)n- Nun_ # {0}.

So by Lemma 3.4 in [BZ16], we have a;na_t, = ¢, n = e and ¢; = ¢o. This completes

the proof of the proposition. n

Proposition 4.7.2. Suppose that gsn # 0. There exist rq and Cy > 0 with the
following property: for any open box U(el') C Uy(el'), there exists a large constant L >
0 such that for any | > L the open box U(el') contains at least Coldm™9e+2dimoza . (1)
many disjoint sub open bozes of the form By, (rod(q)_%,rod(q)_%)q where q’s

are rational points with denominator between [ and 21.

Proof. We fix a sufficiently small 7o > 0. By Proposition 4.5.6, for any U(el'), there

exists a large constant L such that for [ > L there are at least Cpldm8aF2dime2a, (1))

many rational points in U(el') with denominators between [ and 2! for some abso-

lute constant Cy > 0. For each such rational point ¢, we construct an open box
2

By, (rod(q)_ﬁ, rod(q)_%)q around ¢, and to prove the proposition, we only need

to prove that these open boxes are disjoint. Let ¢; and ¢y be two such rational points.
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Suppose that

2a 4o 20 %eY

Bn, (rod(q1) 2=, 10d(q1)” 22=7)q1 and By, (rod(g2) 22—, 10d(q2) 2= )2

are not disjoint. Then there exists an element n € N, such that ng; = ¢ and

2a

n € By, (rod(q1) "= + rod(gs) 27,

4 2

rod(qr) "2 + rod(q2) T + rod(qr) T rod(ge) T ).

1
By applying a;, with ¢y = In(l/r¢)/a on both sides, we have
(atyna—t,)an, g1 = ar,qe (4.9)
and by calculations, we have that
1 b
d(at,q1) ~ d(aw,q2) ~ ¢ and d(ag,na_y,e)a <K 1”27,

Then the rest of the proof is identical to that in Proposition 4.7.1. m

Proof of Theorem 4.3.1 in the case of goo, = (). By Proposition 4.6.3, we can construct

an open cover of S5 M Up(el')
85N U(el) = 550 Us(el) N[ JUHBw, (Cdla)=)a}
q C

= U (55 N Up(el') N U{BM(Cd(Q)_a:)q})

C

where ¢ runs through all rational points in Uy(el') and C runs through all the positive

rational numbers. By the countability of the set of rational numbers, to get an upper
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bound for the Hausdorft dimension of S5 N Uy (el'), it suffices to get an upper bound

for the Hausdorff dimension of
S¢ N Up(el) N {Bw, (Cd(q)"=7)q}
q
for each C' € Q.. Fix C' > 0 and let § > 0. By Proposition 4.5.6, we have that

Zdiam‘s(Bm(Cd(Q)_aaj)Q)
= ) (Cd(g)) =
~ Y Y deEE

neN 2n<d(q)<2n+!

Syt () e

neN
_ Z(2n)dimga—6ﬁ‘
neN
This implies that the Hausdorff dimension of

S¢ N Up(eD) N {Bw, (Cdl(q) =7 )q}

q

is less than or equal to “—* dim g,, for each C' € Q, and hence

e a— .
dim S5 N Up(el') < aydlmga.

For the lower bound, we fix a sufficiently small ¢ > 0 and construct a tree-like

set in Up(el') by induction. Let Ay = {Up(el')} and Ay = Up(el'). Let 1o be as in
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Proposition 4.7.1 and pick a sufficiently large number /;. Define

A = {Bm(rod(Q)_Q_&“) )q

qES(U,ll/Q,ll)}

and A; = |JA;. Suppose that we find [; < Iy < --- < [; and construct families
A A1, ..., Ao and subsets A; C A C --- C A; C Ay. Now by Proposition

4.7.1, we can find a sufficiently large [;;1 > 0 such that
1. lOg lj+1 Z j2 log(l]l],l c. ll)

2. For every By, (rod(q)”+=0Fa)q € Aj;, it contains at least

Col™9 iy, (Bw, (rod(q) "6 )q)

sub-open boxes of the form BN+(r0d(q)_a—@+e) )q with
G € S(Bw, (rod(q) a079)q, 1j41/2, 111).
We denote the family of all these new sub-open boxes by A, as

By, (Tod(Q)_a_&“) )q

runs through all the open boxes in A; and let A1 = |JAj1.
Now we take Ay = (1725 A; and A = U2, A;. By the construction of A;’s and

Proposition 4.6.4, we know that A, C S5. Also we have that

dim go

Aj(A) ~ (Fm0e] 57070 and d;(A) = rol, * 7.

J+1 Jjt+1
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By Theorem 4.2.1, we know that

Z;O log ﬁ

. . . D) . vt

dimpy(A) > dim g, — limsup s =dimg, | 1— )
a

Jj—00 1
log | —=—
a9
j+1

Let € — 0 and we have

a—y

dimg S5 N Up(el') > dimy (Ay) > dim g,.

This completes the proof of the theorem if go, = 0. O

Proof of Theorem 4.3.1 in the case of gan # 0. By Proposition 4.6.7, we can build an

open cover of S5 N Up(el')

SenUs(el) = 55N Ug(el) n| (B, (Cdlg) =, Cd(q) 2 )q}
¢ q

- | (s; N Uo(eD) N {Bu, (Cd(g)" =, (Jd(q)zé‘“v)q}>

c

where ¢ runs through all rational points in Uy(el') and C runs through all the positive
rational numbers. By the countability of the set of rational numbers, to get an upper
bound for the Hausdorff dimension of S5 N Up(el'), it suffices to get an upper bound

for the Hausdorff dimension of

4o

S¢ A Up(el) N |_{Bw. (Cd(q) 5, Cd(q)" = )q}
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for each C' € Q. Fix C' € Q. For each rational ¢ € Uy(el), we devide

2 4o
-

By, (Cd(q) 7= ,Cd(q)" > )q

into small cubes of equal sides of length C’d(q)fﬁ%ﬂ and there are (d(q)%)dimga
such small cubes. Let Fo be the collection of all these small cubes of equal sides of
length Cd(q)fﬁ%v where ¢ runs through all rational points in Uy(eI’). For any § > 0,

by Proposition 4.7.2, we have that

2a

~ Y dlg) " (d(g) R )
=Y 3 d(q) 07 (d(g) 7o )dim o

neN 2n<d(q)<2n+!

2

o Yy () U5 ()
neN
_ Z(Qn) 32::: dim go+2dim gog—6 Q;ff,y '

neN

This implies that the Hausdorff dimension of

2a 4o
-

S’? N Uo(er) N U{BN+ (Cd(q)i%ﬁv , Cd(q)72a

q

)a}

40{4;7 dim g, + 26;;7 dim gy, for each C' € Q,, and hence

is less than or equal to

-7

4 2
dim S¢ N Up(el') < dim g + “> 7 dim go,.

o—7
o

For the lower bound, we fix a sufficiently small ¢ > 0 and construct a tree-like set

in Uy by induction. Let Ay = {Up(eI')} and Ay = Uy(el'). Let rg be as in Proposition
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4.7.2 and pick a sufficiently large number [;. Define
2o _ 4o
Aj = {Bm (rod(q) 22079, rod(q) 2079 )q|q € S<UO(€F)7Z1/27Z1)} '

For each ¢ € S(Uy(el'),l1/2,11), we devide BN+(r0d(q)_#%,Tod(q)_ﬁi+e>)q in
A’ into small cubes of equal sides of length rod(q)fﬁ. Let A; be the family of
all these small cubes and A; = [J.A;. Suppose that we find [; < ly < --- < ; and
construct families A;, A;_4,..., Ap and subsets A; C A;_; C--- C Ay C Ay. Now

by Proposition 4.7.2, we can find a sufficiently large ;1 > 0 such that
1. log lj+1 Z j2 log(ljlj_l . ll)

2. For every B € A;, it contains at least

dim go+2 dim g2
Colj-i-l N (B)

sub-open boxes of the form BN+(r0d(cj)_2a—2(i+€> : Tod(q~)_2&—4&+f) )G with
qe S(Ba lj+1/27 lj+1)‘

For each ¢ € S(B,lj11/2,1;41), we devide B]\u(rgd(qﬁ_ﬁ,rod(cj)_ﬁ)q~ into

small cubes of equal sides of length rod(g)fﬁ. We denote the family of all these

small cubes by A;.; as B runs through all the cubes in A; and let A, = |JAj11.
Now we take Ao = (2 A; and A = [J;Z, A;. By the construction of A;’s and

Proposition 4.6.8, we know that A, C S5. Also we have that

dim go+2dimgoa 7~ 2(172(:4»5) dim ga ,— 2oc:1((');+5) dim g2 B 2(174((?‘{+E>
Aj(A) ~ 15 i i and d;(A) = rol; :
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By Theorem 4.2.1, we know that

> dimg, + dim ga,

2 s 4 s
7 1 ldlm ga+2dim gQal72a7((’¥Y+6) dim ga172a7((§/+5) dim g2
i=0 108 | tiy1 i+1 i+1

— lim sup

j—00
’ log (+&>
l. 2a—(v+e)
G+1
_ (1 _ —7“) dim gon + (1 - —7“) dim g,
2x 4o

Let € — 0 and we have

dimg S5 N Up(el") > dimpy A

(1 - l) dim gao, + (1 . l) dim g,.
2cv 4oy

v

This completes the proof of the theorem.

4.8 Proof of Theorem 4.1.2

In this section we will prove Theorem 4.1.2. Let

S(i,7) = {p € G/T|3C > 0 s.t. n(ap)xy;(a:p) > Ce ™ xy, (arp) (Vt > 0)}.

Then by definition, we know that
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and hence

= max dimpy S(7, V).

dlmH SC
Y153 Vk 1<i<k

So in order to prove Theorem 4.1.2, it is enough to prove the following

Theorem 4.8.1. Let i € {1,...,k}. If goo = 0, then the Hausdor[f dimension of

S(,7) (0 <y <a)is

) dim g,.
«

dimg_, + dimgo +

If goo # 0, then the Hausdorff dimension of S(i,7)¢ (0 < v < 2a) is

4o — 200 —
a vdimga—k —

dimg_ o, +dimg_, + dim gy + dim goy.

Now we will fix a cusp &; for some i € {1,...,k} and let o; € ¥ be the element

corresponding to &;.

Proof of Theorem 4.8.1. The proof for S(i,v)¢ is almost identical to the proof of
Theorem 4.1.1 (or equivalently Theorem 4.3.1), except that we replace rational points
by o;-rational points, denominators by o;-denominators. In fact, our discussion in
section 5 is cuspwise, and we can use Proposition 4.5.3 and Proposition 4.5.4 to
count o;-rational points instead of Proposition 4.5.6. Hence Proposition 4.7.1 and
Proposition 4.7.2 holds also for o;-rational points with o;-denominators. The same
happens in Proposition 4.6.4 and Proposition 4.6.8. The only thing we need to do is
to prove that after replacing by o;-rational points and ¢;-denominators in Proposition
4.6.2 and Proposition 4.6.6 with the assumption that p € S(i,7)¢, the rational ¢ €
Up(el') we obtain is actually a o;-rational point. We will prove this for the case of

g2o = 0. The case of ga, # 0 is similar.
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Now assume that go, = () and p € S(i,v)¢. By the proof of Proposition 4.6.2, we

know that

natop = atoq

for some bounded n € N, , and we have a;,p € Y;. This implies that

n(at,q) ~ n(ag,p) ~ Cpe™ 7%

and the rational point a;q € Y/ for a small neighborhood Y] of & in G/I'. This

happens if and only if ¢ is a g;-rational point. This completes the proof of Theorem

4.8.1. [l

4.9 Further Discussions

4.9.1 The Hyperbolic Case

In this subsection, we will discuss the relation between the definition of Diophan-
tine points in this paper and the work by Melidn and Pestana [MP93] where they
deal with the hyperbolic case. We will assume G = SO(d + 1,1). First, we need
some notations in [MP93]. Let M = H"! /T be a complete non-compact Rie-
mannian manifold of constant negative curvature and of finite volume, where IT" is
a non-uniform lattice in G. Denote by dga+1 the distance on M9l For any point
r € M1 let S(x) be the unit ball in the tangent space of Mt at x. Let g,(t) be

the geodesic starting from z in the direction of v € S(z). For any v > 0, we write

E,(z) = {U € S(z) : limsup A (90(1). ) > 7} :

t—o0 t
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Note that the maximal compact subgroup K = SO(d + 1), M = SO(d) and {a;} is
the geodesic flow on G/I". Note that here the speed of the geodesic flow o = 1. We
will denote by 7 the projection from G/T to M4t = K\G/T" and 7, the projection

from G/T to T* M = M\G/T. Let xg = mx(el') € ML

Proposition 4.9.1. For any p € G/T" we have

fr](p) ~ e_de+1 (WK(p)va) X

Here the implicit constant depends only on G and I

Proof. By Theorem 4.2.2, for any p € G/I', we can write

p = kay,nol’

for some k € K = SO(n), a;, € A with t5 > sp, n € N_(Vp) and ¢ € ¥£. On
the one hand, since A contracts N_ and k,n,o are all in compact subsets of G, by

calculations, we have

n(p) ~e 0 =e".

On the other hand, since k,n, o are all in compact subsets of GG, by calculations, we
have

|dgga+1 (T (p), x0) — to] < C

for some constant C' > 0. This implies that

fr](p) ~ e_de+1 (WK(p)va) X

Note that all the implicit constants here depend only on G and I' according to The-

orem 4.2.2. This completes the proof of the proposition. O

95



Remark 4.9.1. Note that we can prove a similar version for any semisimple Lie group

of rank one.

Proposition 4.9.2. Fiz x = mg(p) with p € G/T and x € M. For any e > 0, we

have

T (KpNSS) C{(w,v):ve By (v)} Cru(KpnSs ).

Proof. Let p' € KpN S¢S, Let my(p) = (x,') for o' € T} M. By definition, there

exist a constant C; > 0 and a sequence t,, — oo such that
n(a,,p’) < Ce ",
By Proposition 4.9.1, this implies that
dyga1 (g (tn), xo) > ytn + Co

for ¢, — oo and some constant Cy and hence v" € E.(z). This proves the first
inclusion.

Now we prove the second inclusion. Let v € E,(z). Let p’ € G/T" with mpy(p') =
(x,v). Then p’ € Kp. Since v € E,(z), for any € > 0, there exists a sequence t,, — 0o

such that

digass (9, (t,).2) = (7= 5 )t

and hence there exists a constant C5 such that

€
dygass (go(t), 70) > (’y _ 5) t, + Cs.
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By Proposition 4.9.1, there exists a constant Cy > 0 such that
n(aw') < Ce” 07D = (Cemain)e i,

Therefore p’ € S5_,. This completes the proof of the proposition. O

Now we show that in the case of hyperbolic spaces, our theorem coincides with

Theorem 1 in [MP93].

Theorem 4.9.1 (Melidn and Pestana, Theorem 1 in [MP93]). We have
dimy E,(z) = (1 —~v)d.

Proof. Let x = mx(py) € M for some py € G/T. By the discussions in section 3

and Theorem 4.3.1, we know that for any p € G/I" and any small neighborhood W
of ein G

dimp ((Wp) N SS) = dimg_, +dimgo + (1 — ) dim g,
Now let W, be a neighborhood of e in K and W,y_ a neighborhood of e in AN_.
Then Wan_ Wi is a neighborhood of e in G, and hence

dimp (Wan_Wgkp) N S5) = dimg_, + dim go + (1 — ) dim gq.

Since {a;} commutes with A and contracts N_, by definition, a point (hk)p with
h € Wan_ and k € Wg belongs to S, if and only if kp belongs to S,. Therefore we
have

(WAN_ WKp) N S,CY = Wan_ ((WKp) N Sf;) .
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This implies that

dimg(Wxpn S5) = dim M + (1 — ) dim g,,.

Let p vary in the K-orbit Kpg, we get

dimp (Kpo N SS) = dim M + (1 — v) dim g,

and by Proposition 4.9.2, we have

dimy B, (z) = (1 —~v)dim g, = (1 — v)d.

This completes the proof of Theorem 1 in [MP93]. O

4.9.2 The Case of PSL(2,R)

In this subsection, we discuss the relation between Theorem 4.1.2 and Theorem
1.7.1 in Chapter 1. Suppose that G = PSL(2,R) and the speed of the geodesic flow

a = 1. We will reuse the notations in the previous subsection.

Proof of Theorem 1.7.1. By Proposition 4.9.1, we know that p € G/I" is Diophantine

of type (71,...,v) if and only if for each i € {1,...,k} we have

lim sup (dge (7x (a:p), Zo) — 7it) Xy, (ap) < o0

t—o0

or equivalently

lim sup (du2(7x (a:p), o)Xy, (a:p) — 7it) < 0.

t—o00

By Lemma 1.3.4 in Chapter 1, this is equivalent to say that p is Diophantine of type
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(K1,...,Kx) in the sense of Definition 1.1.1 in Chapter 1. Here

. R; — 1
Yi = Rt 1
Then we complete the proof of Theorem 1.7.1 by applying Theorem 4.1.2. O]

4.9.3 Diophantine Approximation in Heisenberg Groups

In this subsection, we will give an application to Diophantine approximation in
Heisenberg groups. We will follow the notations and results in [HP02B].

Let G = SU(n,1) and I' = G(Z[i]). Let M = K\G/T" =2 H{/I" where K is the
maximal compact subgroup of GG. Here we use the model of Siegel domain for H
(see section 3.8 in [HP02B]). Note that M is not of constant curvature. Let {a;} be
the geodesic flow on G/T". For simplicity, we will assume that M has only one cusp
& = oo; for general case, we only need to replace rational points by o-rational points
in the following arguments as we do in section 8 and apply Theorem 4.8.1. Also we
will assume that the orbit {a;(eI')} diverges to the cusp £ = oo in OHE as t — —o0.
We will denote by 7 the projection from G/T" to M and by 7, the projection from
G/I' to M\G/T'. Let g = mx(el’) and Uy C Ny be a small open subset. The speed of
the geodesic flow is the simple root a@ = 1. Note that N, = Hs, 1 (R) acts naturally
on 0Hen (see section 3.10 in [HP02B]). We will write

Beyg(a, R) = {B € Hzu-1(R) : doyg (B, ) < R}

We recall some definitions and notations from [HP02B]. The geodesic lines starting
from ¢ = oo and diverging to itself in M are called rational lines, and the geodesic

lines starting from & = oo but not diverging to it are called irrational lines. Here we
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can identify the geodesic lines starting from £ = oo with OHZ \ {oo} = Ha,—1(R), and
the rational lines starting from £ = oo with rational points in a subset of Ha,_1(Q)
(see section 3.10 in [HP02B]). The height function 5 on M, the Hamenstédt distance
doo on OHE = Hap, 1 (R) U {oo} and the depth D(r) of a rational geodesic line r in
M are defined in section 2 in [HP02B]. For simplicity, we will not list these concepts
here. Readers may refer to [HP02B]| for more details. Note that by Proposition 3.14

in [HP02B], we have
1

E dCyg .

Also note that by our assumption, for any p € Up(el'), mx(aip) is a geodesic line

D(r) =1Inh(r) and do, =

starting from £ = oo which could be identified with a point in the Heisenberg group.

Proposition 4.9.3. Let p € Uy(el'). Then p is rational if and only if the geodesic

line Tk (a;p) is rational.

Proof. Suppose that p is rational. Then by definition, a;p diverges in G/I" to the
cusp £ = 00 as t — oo and hence so does 7 (a;p) in M. Since a;(el) diverges to
the cusp £ = oo as t — —oo and p € Up(el'), we know that a;p also diverges to the
cusp as t — —oo. This implies that 7k (a;p) is a rational geodesic line in the sense of
[HP02B].

Conversely, if mx(a;p) is a rational line, then a;p diverges to the cusp as t — oo
and hence by Corollary 6.2 in [D85] and Proposition 4.5.1, we know that p is rational.

This completes the proof of the proposition. n

Remark 4.9.2. This proposition implies that the rational points in Uy(el') are in
Han—1(Q) via the identification. See section 3.10 in [HP02B].

Proposition 4.9.4. Let p € Uy(el') be rational. Then we have

h(p) ~ d(p).



Here we consider p as a rational point in He,_1(Q) and the implicit constant depends

only on Uy and G/T.

Proof. We will consider the rational line 7k ({a;p}) and its depth D(7x ({a:p})). Fix
a level set 371(I) C M for some [. Then there exists a constant ¢ > 0 such that for
any p’ € ' (874(1)) we have

n(p') ~ e

Let so > 0 be the last time such that as,p € 7' (871(1)). Then by definition, we have

€ ~ n(as,p) ~ e d(p)>. (4.10)

On the other hand, since a,(el") diverges as t — —oo, there exists to > 0 such that ¢,

is the largest number with a_y, (el') € 7' (371(1)) and we have

€ ~ n(a_g(el)) ~ e*o. (4.11)

As p € Up(el') and a_; contracts N, as t — 00, a_4,p is near the subset 7" (371(1)).
By definition of the depth function, this implies that there exists a constant C; > 0

such that

|D(7x ({arp})) = (so +to)| < C1.

Also by equations (4.10) and (4.11), we know that

d<p)2 ~ 62(50+t0) )

So there exists a constant C' > 0 such that

d(p) ~ ePrx({ap}))
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This implies that

d(p) ~ h(p).

Note that the implicit constant depends only on Uy and G/I". This completes the

proof of the proposition. O

Proposition 4.9.5. Let p € Uy(el') with p = gI' for some g € Uy and let € > 0 be a
sufficiently small number. If there exist a constant C > 0 and a sequence q; € Up(el')

of distinct rational points with d(g;) — oo such that
p € By, (Cd(q;)”"9, Cd(q;)*0%)g,

then g € Ny = Ha,1(R) is not Diophantine of type .

Proof. By the definition of the Cygan distance, Proposition 4.9.3 and Proposition
4.9.4, the condition in the proposition is equivalent to the condition that there exist
a constant C' > 0 and a sequence of rational points r; € Uy C Ny = Ha,—1(R) with

h(r;) — oo such that

C
dCyg(g7 TJ) S h(

By definition, this implies that g is not Diophantine of type 7. O]

Proof of Theorem 4.1.3. The proof is similar to that in Theorem 4.1.1. For the upper
bound of the Hausdorff dimension of L, it is enough to get an upper bound for L2 NUy
for every small open subset Uy in N, = Hso, 1(R). Now fix a small open subset Uj.

By definition, we can construct an open cover of L N Uy as follows

LinUy = (UU Beyg(r, Ch—v(r))> NLENUy
r C

= (U By, C’h‘”(r))) N LS N .

C
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where C' runs through all the positive rational numbers and r runs through all the
rational points in Hs,_1(Q). So it is enough to get an upper bound for the Hausdorff

dimension of

(U Beyg(r, Oh‘”(r))) N LN Uy.

For each rational r, the Beyg(r, Ch™7(r)) could be thought of as a box with lengths
Ch™(r) in the first 2(n — 1) real coordinates and length C*hL~27(r) in the last co-
ordinate, with respect to the right invariant distance dy,, ,(r). So we can devide
Beyy(r, Ch™7(r)) into small cubes of equal sides of length C?h~*Y(r), and there are
(h(r)?/C)*~2 such small cubes. Let F¢ be the collection of all these small cubes of

equal sides of length
C?h(r)~2

where 7 runs through all rational points in Ha,_1(Q).

Fix C' > 0 and let 6 > 0. By Theorem 3.7 in [HP02B], we have

= Z h(r)~ 2 h(ry 2

JEN 25-1<h(r) <2

< Z 92nj9—2j679jv(2n—2)

JeEN

This implies that

1
dimg LC < ﬂn — 1.
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For the lower bound of the Hausdorff dimension, by Proposition 4.9.5, we only

need to repeat the proof in Theorem 4.1.1, and we can get

) I+~v+e 1
dimyg LENUy > ———2(n—1) +
TR Sy "= 2(v+e ( ) V€
for any € > 0. Let ¢ — 0 and we have
1
dimy LS > — L (n—1) + -
Y Y
This completes the proof of Theorem 4.1.3. O
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