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Abstract

We consider the orbits {pu(n1+γ)|n ∈ N} in Γ\PSL(2,R), where Γ is a non-

uniform lattice in PSL(2,R) and {u(t)} is the standard unipotent one-parameter

subgroup in PSL(2,R). Under a Diophantine condition on the intial point p, we can

prove that the trajectory {pu(n1+γ)|n ∈ N} is equidistributed in Γ\PSL(2,R) for

small γ > 0, which generalizes a result of Venkatesh [V10]. In Chapter 2, we will

compute Hausdorff dimensions of subsets of non-Diophantine points in Γ\PSL(2,R),

using results of lattice counting problem. In Chapter 3 we will use the exponential

mixing property of a semisimple flow to prove the effective equidistribution of horo-

spherical orbits. In Chapter 4, we will give a definition of Diophantine points of type

γ for γ ≥ 0 in a homogeneous space Γ\G and compute the Hausdorff dimension of

the subset of points which are not Diophantine of type γ when G is a semisimple

Lie group of real rank one. As an application, we will deduce a Jarnik-Besicovitch

Theorem on Diophantine approximation in Heisenberg groups.
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Chapter 1

Sparse Equidistribution of Unipotent Orbits in Γ\PSL(2,R)

1.1 Introduction

The theory of equidistribution of unipotent flows on homogeneous spaces has been

studied extensively over the past few decades. Furstenberg [F73] first proved that the

unipotent flow on Γ\PSL(2,R), where Γ is a uniform lattice, is uniquely ergodic.

In [D78] Dani classified ergodic invariant measures for unipotent flows on finite vol-

ume homogeneous spaces of PSL(2,R), and using this result Dani and Smillie [DS84]

proved that any non-periodic unipotent orbit is equidistributed on Γ\PSL(2,R) for

any lattice Γ. The proof of the Oppenheim Conjecture due to Margulis [M89] by

proving a special case of Raghunathan’s conjecture drew a lot of attention to this

subject. Soon afterwords, Ratner published her seminal work [R90a, R90b, R91a]

proving measure classification theorem for unipotent actions on homogeneous spaces

as conjectured by Raghunathan and Dani [D81]. Using these results, Ratner [R91b]

proved that any unipotent orbit in a finite volume homogeneous space is equidis-

tributed in its orbit closure; see also Shah [Sh91] for the case of Rank-1 semisimple

groups.

Ratner’s work has led to many new extensions and number theoretic applications

of ergodic theory of unipotent flows. One of these results, which is related to this

paper, was the work by Shah [Sh94]. In that paper, Shah asked whether {pu(n2)|n ∈

N} is equidistributed in a sub-homogeneous space of PSL(2,Z)\PSL(2,R), where
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u : R→ PSL(2,R) is the standard unipotent 1-parameter subgroup

u(t) =

 1 t

0 1

 .

In this direction, Venkatesh published a result about sparse equidistribution ([V10],

Theorem 3.1). There he introduced a soft technique of calculations by using a dis-

crepancy trick, and proved that if Γ is a cocompact lattice in PSL(2,R) and γ > 0

is a small number depending on the spectral gap of the Laplacian on Γ\PSL(2,R),

then for any point p ∈ Γ\PSL(2,R) we have

1

N

N−1∑
n=0

f(pu(n1+γ))→
∫

Γ\PSL(2,R)

fdµ.

In other words, in the case of Γ\PSL(2,R) being compact, the equidistribtion holds

for the sparse subset {n1+γ|n ∈ N}. It is worth noting that recently Tanis and Vishe

[TV15] improve some results of Venkatesh [V10] and they obtain an absolute constant

γ > 0 which does not depend on the spectral gap.

In this paper, we will consider the sparse subset {n1+γ|n ∈ N} and orbits of

{u(n1+γ)|n ∈ N} in Γ\PSL(2,R), where Γ is a non-uniform lattice. We want to

prove a sparse equidistribution theorem similar to Shah’s conjecture [Sh94] and the

work of Venkatesh [V10] and that of Tanis and Vishe [TV15]. To deal with the

complexity caused by initial points of unipotent orbits, we introduce a Diophantine

condition for points in Γ\PSL(2,R) as follows.

Let G = PSL(2,R) and we consider the Siegel sets NΩAαK where

NΩ =


 1 t

0 1

∣∣∣t is in a bounded subset Ω ⊂ R


2



Aα =


 s 0

0 s−1

∣∣∣s ≥ α


and K = SO(2). For the non-uniform lattice Γ, there exist σj ∈ G and bounded

intervals Ωj ⊂ R (1 ≤ j ≤ k) with the following property ([GR70], [DS84])

1. For some α > 0, G =
k⋃
j=1

ΓσjNΩjAαK.

2. σ−1
j Γσj ∩N is a cocompact lattice in N .

3. NΩj is a fundamental domain of σ−1
j Γσj ∩N\N .

We will fix σj (1 ≤ j ≤ k) in such a way that in the upper half plane H, each σj

corresponds to a cusp ηj, i.e. limt→∞ σj ·it = ηj, and η1, η2, . . . , ηk are the inequivalent

cusps of Γ\H. Let Γj = Γ ∩ σjNσ−1
j . Let πj be the covering map

πj : Γj\G→ Γ\G.

Now consider the usual action of G on R2 and let e1 =

 1

0

. For each j, we can

define a map

mj : Γj\G→ R2/±

by

mj(q) = g−1σje1

for q = Γjg ∈ Γj\G, where R2/± means that we identify every v ∈ R2 with its

opposite −v. In this way, we obtain k maps mj (j = 1, 2, . . . , k) whose images are all

in R2/±. Using these notations, we can give the following definition of Diophantine

condition of a point p ∈ Γ\G.

3



Definition 1.1.1. Let p ∈ Γ\G. We say that p is Diophantine of type (κ1, κ2, . . . , κk)

for some κj > 0 (j = 1, 2, . . . , k) if for each j, there exist µj, νj > 0 such that for

every point

 a

b

 ∈ mj(π
−1
j (p)), we have either |b| ≥ µj or |a|κj |b| ≥ νj.

Remark 1.1.1. This notion of Diophantine type on p ∈ Γ\G has been studied well in

an equivalent form; it can be connected to the excursion rate of the geodesic orbit

{gt(p)}t>0. We will prove this in section 1.3.

It is straightforward to verify that if g ∈ AN then the Diophantine types of

p and pg are the same; although the choices of µj, νj > 0 in the above definition

may differ. The hausdorff dimension of the complement of the set of points of the

Diophantine type (κ1, κ2, . . . , κk) will be discussed in section 1.7. We will see that

almost every point satisfies the Diophantine condition of type (κ1, κ2, . . . , κk) when

κ1, κ2, . . . , κk > 1. When min{κ1, κ2, . . . , κk} = 1, the set of points of the Diophantine

type (κ1, κ2, . . . , κk) has zero Haar measure but has full Hausdorff dimension.

Now we state the main theorem in this paper.

Theorem 1.1.1 (Main theorem). Let Γ be a non-uniform lattice in PSL(2,R) and

k the number of inequivalent cusps of Γ\PSL(2,R). Suppose that p ∈ Γ\PSL(2,R)

is Diophantine of type (κ1, κ2, . . . , κk). Then there exists a constant γ0 > 0 such that

for any 0 < γ < γ0, we have

1

N

N−1∑
n=0

f(pu(n1+γ))→
∫

Γ\PSL(2,R)

fdµ.

Here the constant γ0 depends on κ1, κ2, . . . , κk and Γ, and f is any bounded continuous

function on Γ\PSL(2,R).

4



Remark 1.1.2. From the proof of the main theorem, we will see that the constant

γ0 = min

{
s2

(s+ 4)(κj + 4)

∣∣∣j = 1, 2, . . . , k

}
.

Here s is defined as follows: if we let λ > 0 denote the smallest eigenvalue in the

discrete spectrum of the Laplacian ∆ on Γ\H then

s =


1−
√

1−4λ
2

, if 0 < λ < 1
4
;

1
2
, otherwise.

Now let Γ be a subgroup of finite index of PSL(2,Z). Then we have the following

corollary of the main theorem, which will be explained in section 1.3.

Corollary 1.1.1. Let Γ be a subgroup of finite index of PSL(2,Z). Let p = Γg ∈

Γ\PSL(2,R) with

g =

 a b

c d

 .

If a/c ∈ R is a Diophantine number of type ζ; that is, there exists C > 0 such that

for all m/n ∈ Q, we have

|n|ζ
∣∣∣n · (a

c

)
−m

∣∣∣ ≥ C,

then the orbit {pu(n1+γ)|n ∈ N} is equidistributed in Γ\PSL(2,R) for 0 < γ < γ0 :=

s2

(4+s)(ζ+4)
.

To prove the main theorem, we shall use the technique of Venkatesh in [V10] and

Strömbergsson’s result in [S13] about effective version of Dani and Smillie’s result

[DS84] on Γ\PSL(2,R). In fact, an immediate consequence of the technique of [V10]

and result of [S13] is obtained in the following theorem. Before stating the theorem,

we need some notations. For f ∈ Ck(Γ\G) we let ‖f‖p,k be the Sobolev Lp-norm

5



involving all the Lie derivatives of order ≤ k of f . Note that ‖f‖∞,0 is the supremum

norm of f . We know that G acts on the upper half plane H by the action

 a b

c d

 · z =
az + b

cz + d

and we have the standard projection of Γ\G to the fundamental domain of Γ in H

π : Γ\G→ Γ\H

by sending Γg to Γg(i). We define the geodesic flow on Γ\G by

gt(Γg) = Γg

 et/2 0

0 e−t/2

 .

Fix, once for all, a point p0 ∈ Γ\H. For p ∈ Γ\G let

dist(p) = dH(p0, π(p))

where dH(·, ·) is the hyperbolic distance on Γ\H.

Theorem 1.1.2 (Cf.[V10] Theorem 3.1). Let T > K > 2 and f ∈ C∞(Γ\G) satis-

fying
∫

Γ\G fdµ = 0 and ‖f‖∞,4 < ∞. Suppose that q ∈ Γ\G satisfies r = r(q, T ) =

T · e−dist(glog T (q)) ≥ 1. Then we have

∣∣∣∣∣∣∣∣
1

T/K

∑
j∈Z

0≤Kj<T

f(qu(Kj))

∣∣∣∣∣∣∣∣�
K

1
2 ln

3
2 (r + 2)

r
β
2

‖f‖∞,4

for β = sκ
2(8+κ)

. Here κ is the constant in the mixing property of the unipotent flow

6



(see Theorem 1.2.1 and Remark 1.2.1) and s is defined as in Remark 1.1.2.

This theorem gives an estimate for the average of the unipotent action along an

arithmetic progression with gap K, which is crucial in our proof of the main theorem.

This was proved first in [V10] and later in [TV15], both in the case of Γ\G being

compact.

The strategy of the paper is the following: note that the bound in Theorem 1.1.2

depends on the initial point, and hence when we combine the results with different

arithmetic progressions and different initial points, the outcomes would get out of

control. To overcome this difficulty, we need the Diophantine condition. With the

help of this Diophantine condition along with the notion of (C, α; ρ, ε0)-good functions,

we will be able to control the rates of these effective results. In section 1.2, we list

the concepts and theorems that we need in this paper. In section 1.3, we study

the Diophantine condition and deduce Corollary 1.1.1 from the main theorem. In

section 1.4, we will study dynamics of a special class of orbits in Γ\G. The dynamical

properties of these orbits will help us control the rates of the effective results in this

paper. Since we are dealing with the noncompact case of Γ\G, and also for the sake

of completeness, we include the technique of [V10] and prove Theorem 1.1.2 in section

1.5. We will finish the proof of the main theorem in section 1.6. Further discussions

will be included in section 1.7.

It may be interesting to explore the relation between the techniques used in this

work and those developed in the work of Sarnak and Ubis [SU15], where they have

described the limiting distribution of horocycles at primes.

7



1.2 Prerequisites

Throughout this note, if there exists an absolute constant C > 0 such that f ≤ Cg,

then we write f � g. If f � g and g � f , then we use the notation f ∼ g. We

denote G = PSL(2,R) and Γ a non-uniform lattice in G. Let

N = {u(t)|t ∈ R}, A =


 s 0

0 s−1

∣∣∣s ∈ R+

 .

For any element a ∈ A, we denote α(a) = s.

One of the ingredients in our calculations is the effective version of the mixing

property of unipotent flows in Γ\G. The following effective version is proved by

Kleinbock and Margulis [KM99].

Theorem 1.2.1 (Kleinbock and Margulis [KM99]). There exists κ > 0 such that for

any f, g ∈ C∞(Γ\G), we have

∣∣∣∣∫
Γ\G

f(xu(t))g(x)dµ(x)−
∫

Γ\G
f

∫
Γ\G

g

∣∣∣∣� (1 + |t|)−κ‖f‖∞,1‖g‖∞,1.

Here µ is the Haar measure on Γ\G.

Remark 1.2.1. Note that when G = PSL(2,R), we can calculate κ explicitly. Indeed,

let λ > 0 denote the smallest eigenvalue in the discrete spectrum of the Laplacian ∆

on Γ\H, then it follows from [V10] formula (9.7) and the technique of Lemma 2.3 in

[R87] that κ = 2s− ε for any ε > 0. Here s is defined as in Remark 1.1.2.

Another ingredient in the calculations is the effective version of Dani and Smillie’s

result [DS84] proved by Strömbergsson [S13].

8



Theorem 1.2.2 (Strömbergsson [S13]). For all p ∈ Γ\G, T ≥ 10, and all f ∈

C4(Γ\G) such that ‖f‖∞,4 <∞ we have

∣∣∣∣ 1

T

∫ T

0

f(pu(t))dt−
∫

Γ\G
fdµ

∣∣∣∣ ≤ O(‖f‖∞,4)r−s ln3(r + 2)

provided that r ≥ 1. Here s > 0 is a number depending on the spectrum of the

Laplacian on Γ\H and r = r(p, T ) = T · e−dist(glog T (p)). The implied constants depend

only on Γ and p0.

Remark 1.2.2. Here we can take s as in Remark 1.1.2, i.e., let λ > 0 be the smallest

eigenvalue in the discrete spectrum of the Laplacian ∆ on Γ\H, and

s =


1−
√

1−4λ
2

, if 0 < λ < 1
4
;

1
2
, otherwise.

Readers may refer to [S13] for more details. We will prove a weaker version of this

theorem in Chapter 3 using only mixing property, and Theorem 1.1.1 could be proved

by using techniques only from dynamical systems for many Diophantine points (at

least for a subset of full Haar measure).

1.3 The Diophantine Condition

First we deduce Corollary 1.1.1 from the main theorem.

Proof of Corollary 1.1.1. If Γ is a subgroup of finite index of PSL(2,Z), then we can

pick σj ∈ PSL(2,Z) (1 ≤ j ≤ k). Now let p = Γg ∈ Γ\G with

g =

 a b

c d

 .

9



Note that for each mj, we have

mj(π
−1
j (p)) ⊆ g−1Z2 \ {0} =


 dm− bn

−cm+ an

∣∣∣
 m

n

 ∈ Z2 \ {0}

 .

If there exist constants ζ > 0, µ, ν > 0 such that for any (m,n) ∈ Z2 \ {0}

|an− cm| ≥ µ or |dm− bn|ζ |an− cm| ≥ ν, (1.1)

then p is Diophantine of type (ζ, . . . , ζ) by the definition above. In particular, if

a/c ∈ R is a Diophantine number of type ζ, i.e. there exists C > 0 such that for

m/n ∈ Q,

|n|ζ
∣∣∣n · a

c
−m

∣∣∣ ≥ C,

then condition (1.1) holds because when |an− cm| is sufficiently small,

|dm− bn| = |cdm− bcn|
c

=
|cdm− (ad− 1)n|

c
=
|d(cm− an) + n|

c
∼ |n|.

Hence, Corollary 1.1.1 follows from the main theorem.

In order to prove the main theorem, we have to analyze the map mj : Γj\G →

R2/± for each j. The following lemma is well known. The reader may refer to [DS84].

We will denote Bd the ball of radius d around the origin in R2.

Lemma 1.3.1 ([DS84] Lemma 2.2). For each j with the maps πj : Γj\G→ Γ\G and

mj : Γj\G → R2/±, there exists a constant dj > 0 such that for any p ∈ Γ\G there

exists at most one point of mj(π
−1
j (p)) which lies in Bdj .

Remark 1.3.1. We will fix these dj’s for j = 1, 2, . . . , k throughout this note.

10



Lemma 1.3.2. If p ∈ Γ\G is Diophantine of type (κ1, κ2, . . . , κk), then the orbit

{gt(p)|t ≥ 0} is non-divergent.

Proof. Suppose that {gt(p)|t ≥ 0} is divergent. Let ηj be the cusp where {gt(p)|t ≥ 0}

diverges. By Lemma 11.29 in [EW10], we know that {gt(p)|t ≥ 0} is divergent if and

only if {pu(t)} is periodic in Γ\G. Combined with Lemma 2.1 in [DS84], this would

imply that there is a point

 x

y

 ∈ mj(π
−1
j (p)) lying on the x-axis in R2, i.e.

y = 0, which contradicts the Diophantine condition. Therefore, {gt(p)|t ≥ 0} is

non-divergent.

Definition 1.3.1. For p ∈ Γ\G, we define

‖p‖j := min


∥∥∥∥∥∥∥
 a

b


∥∥∥∥∥∥∥
∣∣∣
 a

b

 ∈ mj(π
−1
j (p))


where ‖ · ‖ denotes the standard Euclidean norm in R2. Moreover, we define

d(p) = min{‖p‖j|j = 1, 2, . . . , k}.

Lemma 1.3.3. For any p ∈ Γ\SL(2,R), we have

edist(p) ∼ 1

d(p)2
.

Proof. Recall that ηj (1 ≤ j ≤ k) are the inequivalent cusps of Γ\H. For each

1 ≤ j ≤ k, we fix a small neighborhood Cj of ηj in Γ\G such that C1, C2, . . . , Ck are

pairwise disjoint. Also we fix a point qj ∈ Cj for each 1 ≤ j ≤ k. We observe that

it suffices to prove the lemma for p ∈ Cj (j = 1, 2, . . . , k) since the complement of⋃
Cj is compact. Let p ∈ Cj for some j ∈ {1, 2, . . . , k}. Let αj > 0 be such that

11



πj maps σjNΩjAαjK isomorphically to Cj. Then we can pick a representative for p

in σjNΩAαjK, say σjnpapkp, i.e. p = Γσjnpapkp = πj(Γjσjnpapkp). By definition we

know that

d(p) = ‖p‖j = ‖k−1
p a−1

p e1‖ = α(ap)
−1.

On the other hand, in the fundamental domain of Γ\H, the point corresponding to

p = πj(Γjσjnpapkp) ∈ Cj is equal to

Γσjnpapkp · i = Γσj(npap · i) = Γσj(np · (α(ap)
2i)).

Since σj is fixed and np is in the compact set NΩj of N , we obtain

|dH(π(qj), π(p))− lnα(ap)
2| ≤ Cj

for some constant Cj > 0. Since qj is fixed, we have

| dist(p)− dH(π(qj), π(p))| ≤ C ′j

for some C ′j > 0. Therefore we get

| dist(p)− lnα(ap)
2| ≤ C

for C = max{C1 + C ′1, C2 + C ′2, . . . , Ck + C ′k} and hence

edist(p) = e(dist(p)−lnα(ap)2)+lnα(ap)2 ∼ elnα(ap)2 = α(ap)
2 =

1

d(p)2
.

Now we prove that the Diophantine condition on p ∈ Γ\G can be defined by

12



the excursion rate of the geodesic orbit {gt(p)}t>0. We need some notations. As in

the proof of Lemma 1.3.3, let η1, η2, . . . , ηk be the inequivalent cusps of Γ\H and we

choose the neighborhood Cj of ηj (1 ≤ j ≤ k) in Γ\G such that C1, C2, . . . , Ck are

pairwise disjoint. For each 1 ≤ j ≤ k, we define a function on Γ\G by

dist(j)(p) =


dist(p), if p ∈ Cj;

0, otherwise.

Lemma 1.3.4. A point p ∈ Γ\G has Diophantine type (κ1, κ2, . . . , κk) if and only if

κj ≥ 1 and

lim sup
t→∞

(
dist(j)(gt(p))−

κj − 1

κj + 1
t

)
<∞

for each j ∈ {1, 2, . . . , k}.

Proof. As in the proof of Lemma 1.3.3, we know that there exists αj > 0 such that πj

maps σjNΩjAαjK isomorphically to Cj. Also using the same argument in the proof

of Lemma 1.3.3, we can get that for any q ∈ Cj,

edist(j)(q) ∼ 1

‖q‖2
j

. (1.2)

If p ∈ Γ\G is Diophantine of type (κ1, κ2, . . . , κk), then for each j, any

 a

b

 ∈
mj(π

−1
j (p)) satisfies

|b| ≥ µj or |a|κj |b| ≥ νj.

13



Since

mj(π
−1
j (gt(p))) =

 e−t/2 0

0 et/2

mj(π
−1
j (p)), (1.3)

this implies that any

 x

y

 ∈ mj(π
−1
j (gt(p))) satisfies

|y| ≥ et/2µj or |x|κj |y| ≥ νje
(1−κj)t/2. (1.4)

Note that this holds for all t > 0.

By Lemma 1.3.2, we know that {gt(p)|t ≥ 0} is nondivergent. So there exists a

compact subset S ⊂ Γ\G such that gti(p) remains in S for infinitely many ti → ∞.

By the compactness of S, we can find a constant C0 > 0 such that for each ti, there

exists

 xi

yi

 ∈ mj(π
−1
j (gti(p))) satisfying

∥∥∥∥∥∥∥
 xi

yi


∥∥∥∥∥∥∥ ≤ C0.

This implies via equation (1.4) that κj ≥ 1. Now fix t and for any

 x

y

 ∈

mj(π
−1
j (gt(p))) we have

‖(x, y)‖ ≥ |y| ≥ et/2µj or ‖(x, y)‖ ≥ max{|x|, |y|} ≥ |x|
κj
κj+1 |y|

1
κj+1 ≥ ν

1
κj+1

j e
1−κj
1+κj

t
2 .

Therefore, ‖gt(p)‖j ≥ et/2µj or ν
1

κj+1

j e
1−κj
1+κj

t/2
. By equation (1.2) and κj ≥ 1, we get
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that

lim sup
t→∞

(
dist(j)(gt(p))−

κj − 1

κj + 1
t

)
<∞.

Conversely, if the above inequality holds for each j with κj ≥ 1, then by equation

(1.2) there exists a constant C > 0 such that for all t > 0 we have

‖gt(p)‖j ≥ Ce
1−κj
1+κj

t
2 .

This implies via equation (1.3) that for any

 a

b

 ∈ mj(π
−1
j (p)) we have

e−ta2 + etb2 ≥ Ce
1−κj
1+κj

t
. (1.5)

By discreteness of mj(π
−1
j (p)) in R2, there exists a constant µj > 0 such that if a

b

 ∈ mj(π
−1
j (p)) satisfies |b| < µj, then |b| < |a|. Now for such

 a

b

, we take

t > 0 such that e−ta2 = etb2. By equation (1.5), this implies that |b| ≥
√

C
2
e
−

κj
1+κj

t

and hence

|a|κj |b| = |etb|κj |b| ≥

(√
C

2

)κj+1

.

This implies that p is Diophantine of type (κ1, κ2, . . . , κk).

1.4 (C, α; ρ, ε0)-Good Functions in Presence of Diophantine

Condition

This section will be important in the proof of the main theorem. First, we need a

modified version of the concept of (C, α)-good functions (see [KM98] for the definition

of (C, α)-good functions).
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Definition 1.4.1. A function f(x) is said to be (C, α; ρ, ε0)-good if for any 0 < ε < ε0

and any I = (x1, x2) ⊂ [1,∞) with |f(x1)| = ρ, we have

m({x ∈ I||f(x)| ≤ ε}) ≤ C

(
ε

ρ

)α
m(I)

where m denotes the Lebesgue measure on R.

Now we shall begin to study a special class of functions and prove that they are

(C, α; ρ, ε0)-good for some C, α, ρ and ε0 > 0. Note that we restrict these functions

to the domain [1,∞).

Lemma 1.4.1. Let κ, µ, ν > 0 and 0 < γ < 1
κ+4

. Let

 a

b

 ∈ R2 \ {0} be such that

|b| ≥ µ or |a|κ|b| ≥ ν.

Then there exist C, ε0 > 0 such that

f(x) = (bx
3
4

+γ − ax−
1
4 )2(x

1
4
− 1
κ+4 )2 + (bx

1
4 )2(x

1
4
− 1
κ+4 )2

is (C, 1
2
; ρ, ε0)-good on [1,∞), where ρ is any fixed constant ≤ f(1). Here the constants

C, ε0 depend only on ρ, κ, µ, ν and γ.

Proof. We observe that if |b| ≥ µ, then f(x) ≥ (bx
1
4 )2(x

1
4
− 1
κ+4 )2 ≥ b2 ≥ µ2 and f(x)

is automatically (C, α; ρ, ε0)-good for any C, α, ρ and ε0 = µ2/2. Therefore, in the

following we assume that |b| < µ and hence |a|κ|b| ≥ ν. We have two cases: ab < 0

and ab > 0.
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Case 1: ab < 0. Our function f(x) then becomes

f(x) = (|b|x
3
4

+γ + |a|x−
1
4 )2(x

1
4
− 1
κ+4 )2 + (bx

1
4 )2(x

1
4
− 1
κ+4 )2.

We have

f(x) ≥
(

(|b|x
3
4

+γ + |a|x−
1
4 )x

1
4
− 1
κ+4

)2

≥
(

max{|b|x1+γ− 1
κ+4 , |a|x−

1
κ+4}

)2

≥
(

(|b|x1+γ− 1
κ+4 )

1
κ+1 (|a|x−

1
κ+4 )

κ
κ+1

)2

≥
(

(|b||a|κx1+γ−κ+1
κ+4 )

1
κ+1

)2

≥ ν
2

κ+1 .

This implies that f(x) is (C2, α2; ρ, ε0)-good for any C2, α2 > 0 and ε0 = 1
2
ν

2
κ+1 .

Case 2: ab > 0. Without loss of generality, we assume that a > 0, b > 0. Now let

I = (x1, x2) ⊂ [1,∞) be an interval (x1, x2) where f(x1) = ρ. Since f(x1) = ρ, we

know that

either (bx
3
4

+γ

1 − ax−
1
4

1 )2(x
1
4
− 1
κ+4

1 )2 ≥ ρ

2
or (bx

1
4
1 )2(x

1
4
− 1
κ+4

1 )2 ≥ ρ

2
.

If (bx
1
4
1 )2(x

1
4
− 1
κ+4

1 )2 ≥ ρ/2, then there is nothing to prove because f(x) ≥ ρ/2 for all

x ≥ x1.

Otherwise, we have

(bx
3
4

+γ

1 − ax−
1
4

1 )2(x
1
4
− 1
κ+4

1 )2 ≥ ρ

2
.
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Note that

{x ∈ I||f(x)| ≤ ε} ⊆ {x ∈ I|(bx
3
4

+γ − ax−
1
4 )2(x

1
4
− 1
κ+4 )2 ≤ ε}.

Therefore, to finish the proof of the lemma, it suffices to show that there exist C, ε0 > 0

depending only on ρ, κ, µ, ν, γ such that for any 0 < ε < ε0 we have

1

x2 − x1

m({x ∈ (x1, x2)
∣∣|g(x)| ≤

√
ε}) ≤ C

(
ε

ρ

) 1
2

(1.6)

where g(x) = (bx
3
4

+γ − ax−
1
4 )x

1
4
− 1
κ+4 = bx1+γ− 1

κ+4 − ax−
1

κ+4 . Note that g(x) is

increasing and |g(x1)| ≥
√
ρ/2. Without loss of generality, we may assume that

|g(x1)| =
√
ρ/2. If g(x1) =

√
ρ/2, since g(x) is increasing, the (C, α; ρ, ε0)-good

property automatically holds in this case with ε0 = 1
2

√
ρ/2. Therefore we assume

that g(x1) = −
√
ρ/2. In this case, we will prove that the inequality (1.6) holds with

ε0 = 1
2

√
ρ/2.

Let 0 < ε < ε0. Since g(x) is increasing with g(x1) = −
√
ρ/2, if we fix x1 and let

x2 vary as a variable, then the ratio

1

x2 − x1

m({x ∈ (x1, x2)
∣∣|g(x)| ≤

√
ε})

would attain its maximum when g(x2) =
√
ε. So we will assume that g(x2) =

√
ε. To

compute this maximal ratio, let z ∈ (x1, x2) such that g(z) = −
√
ε, and then by the

mean value theorem we obtain

1

x2 − x1

m({x ∈ (x1, x2)
∣∣|g(x)| ≤

√
ε})

=
x2 − z
x2 − x1

=
g′(ξ2)

g′(ξ1)
· g(x2)− g(z)

g(x2)− g(x1)
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=
g′(ξ2)

g′(ξ1)
· 2

√
ε

√
ε+

√
ρ/2

(1.7)

where ξ1 is between x2 and z, ξ2 is between x1 and x2.

Let x3 ∈ [1,∞) such that g(x3) =
√
ρ/2. Then (x1, x2) ⊂ (x1, x3). According to

equation (1.7), to prove formula (1.6), it suffices to prove that for any x, y ∈ (x1, x3)

the ratio

g′(x)

g′(y)

is bounded above by constants depending only on ρ, κ, µ, ν and γ. Observe that

g′(x) =

(
1 + γ − 1

κ+ 4

)
bxγ−

1
κ+4 +

a

κ+ 4
x−

κ+5
κ+4

is decreasing since γ < 1
κ+4

. Therefore, to get an upper bound for g′(x)/g′(y) (x, y ∈

(x1, x3)), we only need to estimate g′(x1)/g′(x3). By the condition that g(x1) =

−
√
ρ/2 and g(x3) =

√
ρ/2, we have

g′(x1)

g′(x3)
=

(
1 + γ − 1

κ+4

)
bx

γ− 1
κ+4

1 + a
κ+4

x
−κ+5
κ+4

1(
1 + γ − 1

κ+4

)
bx

γ− 1
κ+4

3 + a
κ+4

x
−κ+5
κ+4

3

=

(
1 + γ − 1

κ+4

)
(ax

− 1
κ+4

1 −
√
ρ/2)/x1 + a

κ+4
x
−κ+5
κ+4

1(
1 + γ − 1

κ+4

)
(ax

− 1
κ+4

3 +
√
ρ/2)/x3 + a

κ+4
x
−κ+5
κ+4

3

≤
(
1 + γ − 1

κ+4

)
ax
− 1
κ+4

1 /x1 + a
κ+4

x
−κ+5
κ+4

1(
1 + γ − 1

κ+4

)
ax
− 1
κ+4

3 /x3 + a
κ+4

x
−κ+5
κ+4

3

=

(
x3

x1

)κ+5
κ+4

.

Now let x0 ∈ (x1, x3) such that g(x0) = 0. (x0 = (a/b)
1

1+γ by solving the equation

g(x) = 0). We set x1 = δ1x0 and x3 = δ2x0 for some δ1, δ2. Then δ1, δ2 satisfy the

following equation

|b(x0δ)
1+γ− 1

κ+4 − a(x0δ)
− 1
κ+4 | =

√
ρ

2

19



since |g(x1)| = |g(x3)| =
√
ρ/2. By the fact that bx

1+γ− 1
κ+4

0 = ax
− 1
κ+4

0 and baκ ≥ ν,

this equation becomes

|ax−
1

κ+4

0 δ1+γ− 1
κ+4 − ax−

1
κ+4

0 δ−
1

κ+4 | =
√
ρ

2

|δ1+γ− 1
κ+4 − δ−

1
κ+4 | =

√
ρ

2

x
1

κ+4

0

a
=

√
ρ

2

(aκ+1/baκ)
1

(1+γ)(κ+4)

a

≤
√
ρ

2

1

ν
1

(1+γ)(κ+4)

a
κ+1

(1+γ)(κ+4)

a
.

Here κ+1
(1+γ)(κ+4)

< 1. Since b ≤ µ and hence a ≥ κ
√
ν/µ, the above inequality becomes

|δ1+γ− 1
κ+4 − δ−

1
κ+4 | ≤

√
ρ

2

1

ν
1

(1+γ)(κ+4)

(
κ

√
ν

µ

) κ+1
(1+γ)(κ+4)

−1

which holds for δ = δ1 and δ2. This shows that δ1, δ2 are bounded above and below

by constants depending only on ρ, κ, µ, ν and γ. Therefore

g′(x1)

g′(x3)
≤
(
x3

x1

)(κ+5)/(κ+4)

=

(
δ2

δ1

)(κ+5)/(κ+4)

is bounded above by a constant depending only on ρ, κ, µ, ν and γ. This completes

the proof of the lemma.

For the rest of this section, we turn to the dynamics on Γ\G. For later use, we

give the following definition.

Definition 1.4.2. For any δ > 0 and any j ∈ {1, 2, . . . , k}, we define the subset of
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Γ\G

Sj,δ := {q ∈ Γ\G
∣∣‖q‖j ≤ δ}.

Moreover, we define

Sδ :=
⋃
j

Sj,δ = {q ∈ Γ\G
∣∣d(q) ≤ δ}.

Lemma 1.4.2. Let p ∈ Γ\G be Diophantine of type (κ1, κ2, . . . , κk). We fix j ∈

{1, 2, . . . , k} and let 0 < γ < 1/(κj + 4). Then for sufficiently small ε > 0 and T ≥ 1,

we have

1

T
m


x ∈ [1, T ]

∣∣∣p
 x

1
4 x

3
4

+γ

0 x−
1
4

 ∈ S
j,εx
− 1

4+ 1
κj+4


 ≤ Cε

where C is a constant only depending on p and γ.

Proof. We will use the notations, the maps mj and πj in section 3. Then the image

of π−1
j

p
 x

1
4 x

3
4

+γ

0 x−
1
4


 under mj is equal to

 x
1
4 x

3
4

+γ

0 x−
1
4


−1

mj(π
−1
j (p))

=


 x−

1
4 −x 3

4
+γ

0 x
1
4


 a

b


 =


 ax−

1
4 − bx 3

4
+γ

bx
1
4




where

 a

b

 runs over all points in mj(π
−1
j (p)). By definition, what we need to
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prove is equivalent to the following

m


x ∈ [1, T ]

∣∣∣
∥∥∥∥∥∥∥p
 x

1
4 x

3
4

+γ

0 x−
1
4


∥∥∥∥∥∥∥
j

≤ εx
− 1

4
+ 1
κj+4


 ≤ CεT.

which is equivalent to the following

m


x ∈ [1, T ]

∣∣∣∃ a point in mj

π−1
j

p
 x

1
4 x

3
4

+γ

0 x−
1
4





with length ≤ εx
− 1

4
+ 1
κj+4

})
≤ CεT.

Let ρ = min

d
p
 1 1

0 1


 , d1, d2, . . . , dk

, where dj’s are as in Remark 1.3.1.

We denote by P the subset mj(π
−1
j (p)). For (a, b) ∈ P , let I l(a,b)(l = 1, 2, . . . ) be all

the maximal connected subintervals in [1, T ] such that for any x ∈ I l(a,b) the point of

π−1
j

p
 x

1
4 x

3
4

+γ

0 x−
1
4


 corresponding to (a, b); that is

 x
1
4 x

3
4

+γ

0 x−
1
4


−1 a

b

 =

 ax−
1
4 − bx 3

4
+γ

bx
1
4



has norm ≤ ρx
− 1

4
+ 1
κj+4 . Since x ≥ 1, Lemma 1.3.1 implies that all the intervals

{I l(a,b)|(a, b) ∈ P, l = 1, 2, . . . }
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are pairwise disjoint. Therefore, we have

m


x ∈ [1, T ]

∣∣∣∃a point in mj

π−1
j

p
 x

1
4 x

3
4

+γ

0 x−
1
4





with length ≤ εx
− 1

4
+ 1
κj+4

})
=

∑
(a,b)∈P

∑
l

m

x ∈ I l(a,b)∣∣∣
∥∥∥∥∥∥∥
 ax−

1
4 − bx 3

4
+γ

bx
1
4


∥∥∥∥∥∥∥ ≤ εx

− 1
4

+ 1
κj+4


Because of this, to prove the lemma, it suffices to prove the following

m


x ∈ I l(a,b)

∣∣∣
∥∥∥∥∥∥∥
 ax−

1
4 − bx 3

4
+γ

bx
1
4


∥∥∥∥∥∥∥ ≤ εx

− 1
4

+ 1
κj+4


 ≤ Cεm(I l(a,b)),

for some C, ε0 with 0 < ε < ε0, or to prove that the function

f(x) = (bx
3
4

+γ − ax−
1
4 )2(x

1
4
− 1
κj+4 )2 + (bx

1
4 )2(x

1
4
− 1
κj+4 )2

has (C ′, 1/2; ρ2, ε20)-good property for some C ′ = Cρ. This follows immediately from

Lemma 1.4.1.

To conclude this section, we give the following proposition, which is crucial in our

proof of the main theorem. It is the discrete version of Lemma 1.4.2.

Proposition 1.4.1. Let p ∈ Γ\G be Diophantine of type (κ1, κ2, . . . , κk). Let 0 <

γ < min{1/(κj + 4) : j = 1, 2, . . . , k}. Then there exists a constant C0 > 0 depending
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only on p and γ such that for sufficiently small ε > 0 and any N ∈ N,

1

N

∣∣∣∣∣∣∣
n ∈ [1, N ] ∩ N

∣∣∣p
 n

1
4 n

3
4

+γ

0 n−
1
4

 ∈ Sθ(n,ε)

∣∣∣∣∣∣∣ ≤ C0ε

where

θ(x, ε) = εmin{x−
1
4

+ 1
κj+4 |j = 1, 2, . . . , k}. (1.8)

Proof. By the definition of Sδ, it suffices to prove that there exists a constant C0 > 0

depending only on p and γ such that for each j and any ε > 0,

1

N

∣∣∣∣∣∣∣
n ∈ [1, N ] ∩ N

∣∣∣p
 n

1
4 n

3
4

+γ

0 n−
1
4

 ∈ S
j,εn
− 1

4+ 1
κj+4


∣∣∣∣∣∣∣ ≤ C0ε.

We compute that for any δ ∈ (−1, 1) and n ≥ 1

 n
1
4 n

3
4

+γ

0 n−
1
4


−1 (n+ δ)

1
4 (n+ δ)

3
4

+γ

0 (n+ δ)−
1
4


=

 n−
1
4 −n 3

4
+γ

0 n
1
4


 (n+ δ)

1
4 (n+ δ)

3
4

+γ

0 (n+ δ)−
1
4


=

 (1 + δ/n)
1
4 n−

1
4 (n+ δ)

3
4

+γ − n 3
4

+γ(n+ δ)−
1
4

0 (1 + δ/n)−
1
4


=

 (1 + δ/n)
1
4 ((n+ δ)1+γ − n1+γ)(n(n+ δ))−

1
4

0 (1 + δ/n)−
1
4


which lies in a compact neighborhood U of identity in PSL(2,R). Let

L = max{‖g‖|g ∈ U}
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where ‖g‖ denotes the operator norm of g on R2. Then by the computations above,

we know that

1

N

∣∣∣∣∣∣∣
n ∈ [1, N ] ∩ N

∣∣∣p
 n

1
4 n

3
4

+γ

0 n−
1
4

 ∈ S
j,εn
− 1

4+ 1
κj+4


∣∣∣∣∣∣∣

≤ 1

N
m


x ∈ [1, N ]

∣∣∣p
 x

1
4 x

3
4

+γ

0 x−
1
4

 ∈ S
j,Lεx

− 1
4+ 1

κj+4


 .

Now the proposition follows immediately from Lemma 1.4.2.

1.5 Calculations

In this section, we shall apply the technique of Venkatesh to obtain some effective

results about averaging over arithmetic progressions. It is very similar to [V10],

where Venkatesh proved the sparse equidistribution theorem for Γ being cocompact.

Since in our setting Γ is non-uniform, and for the sake of self-containedness, we

include the details of the calculations in this section. We will follow the notations in

[V10]. Throughout this section, we fix an arbitrary point q ∈ Γ\G. For a character

ψ : R→ S1, we define

µT,ψ(f) =
1

T

∫ T

0

ψ(t)f(qu(t))dt

for f on Γ\G.

Lemma 1.5.1 (Cf. [V10, Lemma 3.1]). There exists a constant β > 0 which only

depends on Γ such that for any f ∈ C∞(Γ\G) satisfying ‖f‖∞,4 <∞ and
∫

Γ\G fdµ =

0, any character ψ : R→ S1, any T ≥ 1 and any q ∈ Γ\G satisfying

r = r(q, T ) = T · e− dist(glog T (q)) ≥ 1, (1.9)
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we have

|µT,ψ(f)| � r−β ln3(r + 2)‖f‖∞,4

and the implicit constant is independent of ψ.

Proof. The proof is almost the same as that of [V10, Lemma 3.1] combined with

[S13]. We define

σH(f)(x) =
1

H

∫ H

0

ψ(s)f(xu(s))ds.

First it is easy to get that |µT,ψ(f) − µT,ψ(σH(f))| ≤ H
T
‖f‖∞,0 ≤ H

r
‖f‖∞,0. Now we

estimate µT,ψ(σH(f)). By Cauchy-Shwartz inequality, we have

|µT,ψ(σH(f))| ≤ 1

T

(∫ T

0

|ψ(t)|2dt
) 1

2
(∫ T

0

|σH(f)(qu(t))|2dt
) 1

2

≤
(

1

T

∫ T

0

|σH(f)(qu(t))|2dt
) 1

2

≤
(

1

H2

∫ H

0

∫ H

0

∣∣∣∣ 1

T

∫ T

0

f yf z(qu(t))dt

∣∣∣∣ dydz)
1
2

.

Here f y and f z denote the right translation of f by u(y) and the right translation

of f by u(z), respectively. Therefore, by Strombergsson’s effective equidistribution

Theorem 1.2.2, we have

|µT,ψ(σH(f))| ≤
(

1

H2

∫ H

0

∫ H

0

O(‖f yf z‖∞,4)r−s ln3(r + 2)dydz

+
1

H2

∫ H

0

∫ H

0

∣∣(f y−z, f)
∣∣ dydz) 1

2

.

for some s > 0 depending only on Γ (the spectral gap) and r is as in (1.9) (see

Theorem 1.2.2).

26



By mixing property of unipotent flows (Theorem 1.2.1), we know that

|(fh, f)| � (1 + |h|)−κ‖f‖2
∞,1.

Also by product rule and chain rule in Calculus (see [V10] Lemma 2.2 for details),

we know that

O(‖f yf z‖∞,4)� O(‖f y‖∞,4‖f z‖∞,4)� y4z4O(‖f‖2
∞,4).

Therefore, combining all the computations above, we obtain

|µT,ψ(f)| ≤ |µT,ψ(f)− µT,ψ(σH(f))|+ |µT,ψ(σH(f))|

� H

r
‖f‖∞ + (H8r−s ln3(r + 2) +H−κ)

1
2‖f‖∞,4.

Let H = r
s

8+κ and we get β = sκ/2(8 + κ). This completes the proof of the lemma.

We deduce Theorem 1.1.2 from Lemma 1.5.1. It will be crucial in the proof of the

main theorem in section 1.6.

Proof of Theorem 1.1.2. The proof is almost the same as that of [V10, Theorem 3.1].

Let δ > 0 and gδ(x) = max{δ−2(δ − |x|), 0}. Let

g(x) =
∑
j∈Z

gδ(x+Kj).
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On the one hand, since g(x) has most mass on the points {Kj|j ∈ Z}, we know that

∣∣∣∣∣∣∣∣
∫ T

0

g(t)f(qu(t))dt−
∑
j∈Z

0≤Kj<T

f(qu(Kj))

∣∣∣∣∣∣∣∣ ≤ 2‖f‖∞ +
T

K
δ‖f‖∞,1.

On the other hand, since g(x) is periodic, we have the Fourier expansion

g(x) =
∑
k∈Z

ake
2πikx/K .

A simple calculation shows that

∑
k∈Z

|ak| = |g(0)| = 1

δ
.

By Lemma 1.5.1 with characters ψk = e2πikx/K , we have

∣∣∣∣∫ T

0

g(t)f(qu(t))dt

∣∣∣∣ ≤ ∑
k∈Z

|ak|
∣∣∣∣∫ T

0

e2πikt/Kf(qu(t))dt

∣∣∣∣� T ln3(r + 2)

δrβ
‖f‖∞,4.

Combining the calculations above, we have

∣∣∣∣∣∣∣∣
1

T/K

∑
j∈Z

0≤Kj<T

f(qu(Kj))

∣∣∣∣∣∣∣∣�
(
K

T
+ δ +

K ln3(r + 2)

δrβ

)
‖f‖∞,4.

Note that K < T , r ≤ T and β < 1. Let δ =

√
K ln3(r+2)

rβ
and we complete the proof

of the theorem.
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1.6 Proof of the Main Theorem

Proof of the main theorem. By a standard approximation argument, we may assume

that f ∈ C∞(Γ\G) with ‖f‖∞,4 <∞ and

∫
Γ\G

fdµ = 0.

We want to find γ0 > 0 depending on κ1, . . . , κk such that for any 0 < γ < γ0, the

main theorem holds. Note that by Taylor expansion, for any M ∈ N and k ∈ N,

(M + k)1+γ = M1+γ + (1 + γ)Mγk +O(Mγ−1k2).

Therefore, if M is sufficiently large and γ < 1/2, then the sequence

{
(M + k)1+γ

∣∣∣ 0 ≤ k ≤ 1

1 + γ
M

1
2
−γ(k ∈ N)

}

is approximately equal to the arithmetic progression

{
M1+γ + (1 + γ)Mγk

∣∣∣ 0 ≤ k ≤ 1

1 + γ
M

1
2
−γ(k ∈ N)

}

since

O(Mγ−1k2) ≤ O(Mγ−1(M
1
2
−γ)2) = O(M−γ)→ 0

as M →∞.
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By Proposition 1.4.1, we know that for any ε > 0 and any N > 0,

1

N

∣∣∣∣∣∣∣
n ∈ [1, N ]

∣∣∣p
 n

1
4 n

3
4

+γ

0 n−
1
4

 ∈ Sθ(n,ε)

∣∣∣∣∣∣∣ ≤ C0ε,

where θ(n) = εmin{n−
1
4

+ 1
κj+4 |j = 1, 2, . . . , k}. Set

B =

n ∈ N
∣∣∣p
 n

1
4 n

3
4

+γ

0 n−
1
4

 ∈ Scθ(n,ε)
 .

We proceed as follows. Fix ε > 0. We pick the first element M1 ∈ N which lies in B.

Then we take

P1 =

{
M1 + k

∣∣∣∣∣ 0 ≤ k ≤ 1

1 + γ
M

1
2
−γ

1 (k ∈ N)

}
.

Next we pick the first element M2 ∈ N which appears after P1 and lies in B, and we

take

P2 =

{
M2 + k

∣∣∣ 0 ≤ k ≤ 1

1 + γ
M

1
2
−γ

2 (k ∈ N)

}
.

Then we pick the first element M3 ∈ N which appears after P2 and lies in B, and so

on. In this manner, we get pieces P1, P2, . . . in N and by our choices of M1,M2, . . . ,

we know that

B ⊂ P1 ∪ P2 ∪ . . .

and hence for any N > 0

1

N
|[1, N ] \ (P1 ∪ P2 ∪ . . . )| ≤ C0ε. (1.10)

Now we consider each of the pieces Pi. From the discussion above, we know that

30



{n1+γ|n ∈ Pi} is approximated by the arithmetic progression

P̃i =

{
M1+γ

i + (1 + γ)Mγ
i k
∣∣∣ 0 ≤ k ≤ 1

1 + γ
M

1
2
−γ

i (k ∈ N)

}
.

We would like to apply Theorem 1.1.2 with T = M
1/2
i , K = (1 + γ)Mγ

i and

q = qi := pu(M1+γ
i ) for sufficiently large i. So first we have to check that ri :=

r(qi,M
1
2
i ) ≥ 1 for sufficiently large i. We compute that

g(logMi)/2(qi) = p

 1 M1+γ
i

0 1


 M

1
4
i 0

0 M
− 1

4
i

 = p

 M
1
4
i M

3
4

+γ

i

0 M
− 1

4
i

 ∈ Scθ(Mi,ε)
,

by our choice of Mi ∈ B. By definition 1.4.2 and equation (1.8) , we have

d(g(logMi)/2(qi)) ≥ θ(Mi, ε) = εmin{M
− 1

4
+ 1
κj+4

i |j = 1, 2, . . . , k}.

By Lemma 1.3.3, e− dist(q) ∼ d(q)2. Hence

ri = M
1/2
i e−dist(g(logMi)/2(qi)) � ε2 min{M2/(κj+4)

i |j = 1, 2, . . . , k}. (1.11)

This implies that ri →∞ as i→∞, since Mi →∞ by our choices of Mi’s.

By Theorem 1.1.2 with T = M
1/2
i , K = (1 + γ)Mγ

i , qi = pu(M1+γ
i ) and ri =

r(M
1
2
i , qi), we have

∣∣∣∣∣∣ 1

|P̃i|

∑
n∈P̃i

f(pu(n))

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1

bM1/2
i /(1 + γ)Mγ

i c

∑
0≤(1+γ)Mγ

i k<M
1
2
i

f(qiu((1 + γ)Mγ
i k))

∣∣∣∣∣∣∣
� ((1 + γ)Mγ

i )
1
2 ln

3
2 (ri + 2)

r
β
2
i

‖f‖∞,4. (1.12)
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Since Mi →∞, according to inequalities (1.11) and (1.12), as long as

γ < min{2β/(κj + 4)|j = 1, 2, . . . , k},

we have ∣∣∣∣∣∣ 1

|P̃i|

∑
n∈P̃i

f(pu(n))

∣∣∣∣∣∣→ 0

and hence by the fact that {n1+γ|n ∈ Pi} is approximated by P̃i, i.e., for 0 ≤ k ≤
1

1+γ
M

1
2
−γ

i ,

|f((Mi + k)1+γ)− f(M1+γ
i + (1 + γ)Mγ

i k)| �M−γ
i ‖f‖∞,1

and ‖f‖∞,1 <∞ we obtain

∣∣∣∣∣ 1

|Pi|
∑
n∈Pi

f(pu(n1+γ))

∣∣∣∣∣→ 0 (1.13)

as i→∞. By formula (1.10), the proportion in [1, N ] which is not covered by Pi’s is

small relative to N . Also observe that for the Pi’s which intersect [1, N ], their lengths

are small relative to N . Therefore, by (1.13) we have

lim sup
N→∞

∣∣∣∣∣ 1

N

N−1∑
n=0

f(pu(n1+γ))

∣∣∣∣∣
≤ lim sup

N→∞

∣∣∣∣∣∣ 1

N

∑
n∈[1,N ]\(

⋃
Pi)

f(pu(n1+γ))

∣∣∣∣∣∣+ lim sup
N→∞

∣∣∣∣∣∣ 1

N

∑
n∈[1,N ]∩(

⋃
Pi)

f(pu(n1+γ))

∣∣∣∣∣∣
≤ lim sup

N→∞

∣∣∣∣∣∣ 1

N

∑
n∈[1,N ]\(

⋃
Pi)

f(pu(n1+γ))

∣∣∣∣∣∣+ lim sup
N→∞

∣∣∣∣∣∣ 1

N

∑
[1,N ]∩Pi 6=∅

∑
n∈Pi

f(pu(n1+γ))

∣∣∣∣∣∣
≤ C0ε‖f‖∞,0 + 0 = C0ε‖f‖∞,0.
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Let ε → 0 and we complete the proof of the main theorem with γ0 = min{2β/(κj +

4)|j = 1, 2, . . . , k}.

1.7 Further Discussions

In the introduction, we have defined Diophantine points in Γ\PSL(2,R). Let

Sκ1,κ2,...,κk = {p ∈ Γ\PSL(2,R)|p is Diophantine of type (κ1, κ2, . . . , κk)}.

Then we can calculate the Hausdorff dimension of the complement of Sκ1,κ2,...,κk . In

fact, we have the following

Theorem 1.7.1. We have

dimH S
c
κ1,κ2,...,κk

= 2 +
2

min{κj + 1|1 ≤ j ≤ k}
.

If min{κ1, κ2, . . . , κk} = 1, then Sκ1,κ2,...,κk has zero Lebesgue measure but has full

Hausdorff dimension.

Remark 1.7.1. Note that the Diophantine type remains constant on any weak unstable

leaf of {gt}t>0. Therefore the set of non Diophantine points on any strong stable leaf

has zero Hausdorff dimension. We will give a different proof of this theorem in Chapter

2.

Proof. For each cusp ηj (1 ≤ j ≤ k), we define Sj,κ to be the subset of points

p ∈ Γ\PSL(2,R) satisfying the condition that there exist µ, ν > 0 such that for every

point

 a

b

 ∈ mj(π
−1
j (p)), either |b| ≥ µ or |a|κ|b| ≥ ν. Here µ and ν depend on p.
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Then by definition, we have

Sκ1,κ2,...,κk = S1,κ1 ∩ S2,κ2 ∩ · · · ∩ Sk,κk

and hence

Scκ1,κ2,...,κk = Sc1,κ1 ∪ S
c
2,κ2
∪ · · · ∪ Sck,κk .

Let κ0 = min{κ1, κ2, . . . , κk}. Note that by Lemma 1.3.4,

Sκ0,κ0,...,κ0 ⊂ Sκ1,κ2,...,κk .

Therefore we get

k⋂
j=1

Scj,κ1 ∪
k⋂
j=1

Sc2,κ2 ∪ · · · ∪
k⋂
j=1

Sck,κk ⊂ Scκ1,κ2,...,κk ⊂ Scκ0,κ0,...,κ0 .

By Theorem 2 and Theorem 3 in [MP93], for any κ ≥ 1 we have

dimH S
c
κ,κ,...,κ = 2 +

2

κ+ 1
and dimH

k⋂
j=1

Scj,κ = 2 +
2

κ+ 1
.

This implies that

dimH S
c
κ1,κ2,...,κk

= dimH S
c
κ0,κ0,...,κ0

= max

{
dimH

k⋂
j=1

Scj,κi

∣∣∣1 ≤ i ≤ k

}

= 2 +
2

κ0 + 1
= 2 +

2

min{κj + 1|1 ≤ j ≤ k}
.

For the second statement, if min{κ1, κ2, . . . , κk} = 1, then by Lemma 1.3.4 and

the ergodicity of the geodesic flow on Γ\PSL(2,R), we know that Sκ1,κ2,...,κk has zero
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Haar measure. Since

S1,1,...,1 ⊂ Sκ1,κ2,...,κk

and by Theorem 1.1 in [KM96] S1,1,...,1 has full Hausdorff dimension, this implies that

Sκ1,κ2,...,κk has full Hausdorff dimension.

Finally, using the same argument as in section 4, we can actually prove that if p

is Diophantine of type (κ1, κ2, . . . , κk) with all κj < 3 and 0 ≤ γ < 1/4, then for any

ε > 0, there exists a compact subset Kε ⊂ Γ\PSL(2,R) such that for all T ≥ 0,

1

T

x ∈ [1, T ]
∣∣∣p
 x

1
4 x

3
4

+γ

0 x−
1
4

 ∈ Kε

 ≥ 1− ε.

Then using the arguments of [DS84] and [Sh94, Proposition 4.1], we get

Theorem 1.7.2. If p is Diophantine of type (κ1, κ2, . . . , κk) with all κj < 3 and

0 ≤ γ < 1/4, then the trajectory

p
 x

1
4 x

3
4

+γ

0 x−
1
4

∣∣∣x ≥ 1


is equidistributed in Γ\PSL(2,R).
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Chapter 2

Hausdorff Dimension of Diophantine Points in Γ\PSL(2,R)

2.1 Introduction and Preliminaries

Here we will give a a different proof of Theorem 1.7.1 using results of lattice

counting problem, that is,

Theorem 2.1.1.

dimH S
c
κ1,κ2,...,κk

= 2 +
2

min{κj + 1|1 ≤ j ≤ k}
.

To prove Theorem 2.1.1 we need some preliminaries. Readers may refer to [KM96].

Let X be a Riemannian manifold, m a volume form and E a compact subset of X.

We will denote the diameter of a set E by diam(E). A countable collection A of

compact subsets of E is said to be tree-like if A is the union of finite subcollections

Aj such that

1. A0 = {E}.

2. For any j and A,B ∈ Aj, either A = B or A ∩B = ∅.

3. For any j and B ∈ Aj+1, there exists A ∈ Aj such that B ⊂ A.

4. dj(A) := supA∈Aj diam(A)→ 0 as j →∞.
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We write Aj =
⋃
A∈Aj A and define A∞ =

⋂
j∈N Aj. Moreover, we define

∆j(A) = inf
B∈Aj

m(Aj+1 ∩B)

m(B)
.

The following theorem gives a way to estimate the Hausdorff dimension of A∞.

Theorem 2.1.2 ([M87], [U91] or [KM96]). Let (X,m) be a Riemannian manifold.

Assume that there exist constants D > 0 and k > 0 such that

m(B(x, r)) ≤ Drk

for any x ∈ X. Then for any tree-like collection A of subsets of E

dimH(A∞) ≥ k − lim sup
j→∞

∑j
i=0 log( 1

∆i(A)
)

log( 1
dj+1(A)

)

2.2 Some Properties of Lattices Points in R2

In this section, we will show some lemmas which will be used in the proof of

Theorem 2.1.1. For each cusp ηj (1 ≤ j ≤ k), we define Sj,κ to be the subset of points

p ∈ Γ\PSL(2,R) satisfying the condition that there exist µ, ν > 0 such that for every

point

 a

b

 ∈ mj(π
−1
j (p)), either |b| ≥ µ or |a|κ|b| ≥ ν. Here µ and ν depend on p.

Then by definition, we have

Sc
κ1,κ2,...,κk

= Sc
1,κ1
∪ Sc

2,κ2
∪ · · · ∪ Sc

k,κk

and hence

dimH S
c
κ1,κ2,...,κk

= max{dimH S
c
j,κj
|1 ≤ j ≤ k}.
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Therefore, to prove Theorem 2.1.1, it suffices to prove

dimH S
c
j,κj

= 2 +
2

κj + 1
.

In the rest of this part, we will consider Sc
j,κ for a fixed cusp ηj. Without loss of

generality, we may assume that σj = e, ηj = i∞ and that

 1 1

0 1

 ∈ Γ.

Since Γ ∩ N 6= {e}, this implies that Γe1 is a discrete subset in R2. The following

lemmas concern some properties of lattice points in Γe1 ⊂ R2.

Lemma 2.2.1. There exists a constant C > 0 such that for any (α, β) ∈ Γe1 we have

|β| ≥ C or β = 0.

Proof. We know that Γe1 is discrete in R2. So there is a constant C > 0 such that

for any point (α, β) ∈ Γe1 we have

‖(α, β)‖ ≥ 2C

where ‖ · ‖ is the standard Euclidean norm. Suppose that there exists (α0, β0) ∈ Γe1

with 0 < |β0| < C. Then there exists an integer n ∈ Z such that

|α0 + nβ0| < β0.
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Since

 1 1

0 1

 ∈ Γ, we have

 1 n

0 1


 α0

β0

 =

 α0 + nβ0

β0

 ∈ Γe1

and

‖(α0 + nβ0, β0)‖ ≤
√

2C < 2C

which contradicts the definition of C. This completes the proof of the lemma.

Lemma 2.2.2. There exists a constant C > 0 such that for any two distinct points

(α1, β1) and (α2, β2) in Γe1 we have

|α1β2 − α2β1| ≥ C.

Proof. Now let γ1, γ2 ∈ Γ be such that

γ1 =

 α1 ∗

β1 ∗

 γ2 =

 α2 ∗

β2 ∗

 .

Then we have

γ−1
1 γ2e1 =

 ∗

α1β2 − α2β1

 .

Note that (α1, β1) and (α2, β2) are distinct and hence α1β2 − α2β1 6= 0. By Lemma

2.2.1, we conclude that

|α1β2 − α2β1| ≥ C

for some C > 0.
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Remark 2.2.1. We will fix this constant C for later use. Note that by the definition

of C, for any point (α, β) ∈ Γe1 we have ‖(α, β)‖ ≥ 2C.

Definition 2.2.1. For l > 0 and 0 ≤ θ1 ≤ θ2 < 2π, we define the subset of R2

S(l, θ1, θ2) := {(x, y) ∈ R2|l ≤ r ≤ 2l, θ1 < θ < θ2}

where (r, θ) are the polar coordinates of (x, y).

Theorem 2.2.1 ([EM93], [GOS10]). We have |Γe1 ∩ S(l, θ1, θ2)| ∼ l2(θ2 − θ1) as

l→∞.

Lemma 2.2.3. Fix C > 0 as in Lemma 2.2.2 and let κ ≥ 1. There exists a con-

stant C0 > 0 with the following property: for any (α, β) ∈ Γe1 with 0 < α
β
< 1,

there exists a large constant L(α,β) > 0 such that for any l > L(α,β) the interval[
α
β
− C

18
· 1
βκ+1 ,

α
β

+ C
18
· 1
βκ+1

]
contains at least C0l

2/βκ+1 many disjoint subintervals[
α̃
β̃
− C

18
· 1
β̃κ+1 ,

α̃
β̃

+ C
18
· 1
β̃κ+1

]
where (α̃, β̃) ∈ Γe1 ∩ S(l, π

4
, π

2
).

Proof. Suppose that
[
α
β
− C

18
· 1
βκ+1 ,

α
β

+ C
18
· 1
βκ+1

]
contains two subintervals

[
α̃

β̃
− C

18
· 1

β̃κ+1
,
α̃

β̃
+
C

18
· 1

β̃κ+1

]
and

[
γ̃

δ̃
− C

18
· 1

δ̃κ+1
,
γ̃

δ̃
+
C

18
· 1

δ̃κ+1

]

where (α̃, β̃) and (γ̃, δ̃) are two distinct points in Γe1 ∩ S(l, π
4
, π

2
). By Lemma 2.2.2,

we have

∣∣∣∣ α̃β̃ − γ̃

δ̃

∣∣∣∣ =
|α̃δ̃ − β̃γ̃|
|β̃δ̃|

≥ C

|β̃δ̃|
≥ C

4l2

=
C

16

(
1

(l/
√

2)2
+

1

(l/
√

2)2

)
≥ C

16

(
1

β̃2
+

1

δ̃2

)
≥ C

16

(
1

β̃κ+1
+

1

δ̃κ+1

)
.
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This implies that any two such subintervals are disjoint, and hence to prove the lemma

it suffices to prove that in the interval
[
α
β
− C

18
· 1
βκ+1 ,

α
β

+ C
18
· 1
βκ+1

]
there are at least

C0l
2/βκ+1 many points of the form α̃/β̃ where (α̃, β̃) ∈ Γe1 ∩ S(l, π

4
, π

2
). We have

α̃

β̃
∈
[
α

β
− C

18
· 1

βκ+1
,
α

β
+
C

18
· 1

βκ+1

]
⇐⇒ arg(α̃, β̃) ∈

[
arccot

(
α

β
+
C

18
· 1

βκ+1

)
, arccot

(
α

β
− C

18
· 1

βκ+1

)]
.

Since
∣∣∣arccot

(
α
β

+ C
18
· 1
βκ+1

)
− arccot

(
α
β
− C

18
· 1
βκ+1

)∣∣∣ ∼ 1
βκ+1 , by Theorem 2.2.1 we

know that the number of points in S
(
l, arccot

(
α
β

+ C
18
· 1
βκ+1

)
, arccot

(
α
β
− C

18
· 1
βκ+1

))
is asymptotically equal to l2/βκ+1 up to a constant. Note that the implicit constant

is absolute since 0 < α/β < 1. This completes the proof of the lemma.

2.3 Hausdorff Dimension

In this section, we will give a proof of Theorem 2.1.1. We need some preparations.

Definition 2.3.1. We say that x ∈ R is Diophantine of type κ with respect to Γe1 if

there exists a constant C̃ > 0 such that for any (α, β) ∈ Γe1 with β 6= 0 we have

|β|κ|xβ − α| ≥ C̃.

We denote by Sκ the subset of R of all Diophantine numbers of type κ with respect

to Γe1.

Lemma 2.3.1. Let p = Γ

 a b

c d

 ∈ Γ\PSL(2,R) with c 6= 0. Then p ∈ Sc
j,κ if

and only if a/c ∈ Sc
κ.
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Proof. We have

mj(π
−1
j (p)) =

 d −b

−c a

Γe1 =


 dα− bβ

−cα + aβ

∣∣∣∣
 α

β

 ∈ Γe1

 .

By the definition of Sj,κ, if p ∈ Sc
j,κ, then there exist infinitely many (α, β) ∈ Γe1 such

that

|aβ − cα| → 0 and |dα− bβ|κ|aβ − cα| → 0.

By the discreteness of Γe1, this implies that |β| → ∞. Note that

|dα− bβ| = |cdα− cbβ|
|c|

=
|cdα− (ad− 1)β|

|c|
=
|d(cα− aβ) + β|

|c|
.

Therefore we have |dα − bβ| ∼ |β| and a/c ∈ Sc
κ. Here the implicit constant in ∼

depends on p.

Conversely, if a/c ∈ Sc
κ, then there exist infinitely many (α, β) ∈ Γe1 with β 6= 0

such that

|β|κ
∣∣∣a
c
β − α

∣∣∣→ 0.

By Lemma 2.2.1, this implies that

|aβ − cα| → 0

and consequently

|β| → ∞ and |dα− bβ| = |d(cα− aβ) + β|
c

∼ |β|.

Hence we have

|aβ − cα| → 0, |dα− bβ|κ|aβ − cα| → 0
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and p ∈ Sc
j,κ. This completes the proof of the lemma.

Proof of Theorem 2.1.1. From the discussions above, we know that in order to prove

Theorem 2.1.1 it is enough to show that

dimH S
c
j,κ = 2 +

2

κ+ 1
.

By Lemma 1.4.1 and the fact that the subset

Γ

 a b

0 a−1

∣∣∣a, b ∈ R

 ⊂ Γ\PSL(2,R)

has dimension 2, it suffices to prove that

dimH S
c
κ =

2

κ+ 1
.

In the rest of this section we will prove this formula.

Since

 1 1

0 1

 ∈ Γ, for any n ∈ Z we have

Sc
κ ∩ (n, n+ 1) = n+ Sc

κ ∩ (0, 1).

Therefore, we only need to compute the Hausdorff dimension of Sc
κ ∩ (0, 1). For the

upper bound, by the definition of Sκ, we can construct an open cover

{
I(α,β) =

(
α

β
− 1

βκ+1
,
α

β
+

1

βκ+1

) ∣∣∣∣∣(α, β) ∈ Γe1, α/β ∈ (0, 1)

}
⊇ Sc

κ ∩ (0, 1).
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For δ > 0 by Theorem 2.2.1 we have

∑
(α,β)∈Γe1
α/β∈(0,1)

diam(I(α,β))
δ

�
∞∑
n=1

∑
(α,β)∈Γe1∩S(2nC,π

4
,π
2

)

1

βδ(κ+1)

�
∞∑
n=1

22n

2nδ(κ+1)
=
∞∑
n=1

1

2n(δ(κ+1)−2)
.

If δ > 2/(κ + 1), then
∑

(α,β)∈Γe1
α/β∈(0,1)

diam(I(α,β))
δ converges and hence by properties of

Hausdorff dimension we have

dimH S
c
κ ∩ (0, 1) ≤ 2

κ+ 1
.

For the lower bound, let ε > 0 be fixed and we construct a tree-like set in Sc
κ∩(0, 1)

as the intersection of closed subsets in [0, 1] by induction. Let A0 = {[0, 1]} and

A0 = [0, 1]. Let l1 be a sufficiently large number and define

A1 =

{[
α

β
− C

18
· 1

βκ+ε+1
,
α

β
+
C

18
· 1

βκ+ε+1

] ∣∣∣∣∣(α, β) ∈ Γe1 ∩ S(l1,
π

4
,
π

2
)

}

and A1 =
⋃
A1. Suppose that we find l1 < l2 < · · · < lj and construct families

Aj,Aj−1, . . . ,A0 and closed subsets Aj ⊆ Aj−1 ⊆ · · · ⊆ A1 ⊆ A0. Now by Lemma

2.2.3, we can find a sufficiently large lj+1 > 0 such that

1. log lj+1 ≥ j2 log(ljlj−1 . . . l1).

2. For every
[
α
β
− C

18
· 1
βκ+ε+1 ,

α
β

+ C
18
· 1
βκ+ε+1

]
∈ Aj, it contains at least C0

l2j+1

lκ+ε+1
j

subintervals (since β ∼ lj) of the form
[
α̃
β̃
− C

18
· 1
β̃κ+ε+1 ,

α̃
β̃

+ C
18
· 1
β̃κ+ε+1

]
with

(α̃, β̃) ∈ Γe1 ∩ S(lj+1,
π
4
, π

2
).
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We denote the family of all these new subintervals by Aj+1 as

[
α

β
− C

18
· 1

βκ+ε+1
,
α

β
+
C

18
· 1

βκ+ε+1

]

runs through all the intervals in Aj and let Aj+1 =
⋃
Aj+1. Here C and C0 are as in

Lemma 2.2.3.

Now we take A∞ =
⋂∞
j=0 Aj and A =

⋃∞
j=0Aj. From the construction of Aj’s

and the definition of Sκ, we know that A∞ ⊆ Sc
κ ∩ (0, 1). Also we have

∆j(A) ∼
l2j+1

lκ+ε+1
j

· 1

lκ+ε+1
j+1

and dj(A) ∼ 1

lκ+ε+1
j

.

Therefore by Theorem 2.1.2, we have

dimH S
c
κ ∩ (0, 1)

≥ dimH A∞

≥ 1− lim sup
j→∞

−
∑j

i=1 log(l2i+1/(lili+1)κ+ε+1)

log lκ+ε+1
j+1

= 1− lim sup
j→∞

(κ+ ε+ 1) log l1 +
∑j

i=2 2(κ+ ε) log li + (κ+ ε− 1) log lj+1

(κ+ ε+ 1) log lj+1

= 1− κ+ ε− 1

κ+ ε+ 1
=

2

κ+ ε+ 1
.

Since this is true for any ε > 0, we obtain that

dimH S
c
κ ∩ (0, 1) ≥ 2

κ+ 1
.

This completes the proof of Theorem 2.1.1.
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Chapter 3

Effective Equidistribution of Abelian Horospherical Orbits

3.1 Introduction

In this part, we will consider the effective equidistribution of horospherical orbits

in homogeneous spaces. This topic has been studied well, and the present work is

motivated by [S13] and [V10]. To be precise, let {at} = {exp(tX)}t∈R be a one

parameter R-diagonalizable subgroup in a semisimple Lie group G, Γ a lattice in G

and µ the Haar measure on Γ\G. Let Ad(g) be the adjoint action of G on Lie(G)

induced by the action of conjugation x 7→ gxg−1(x ∈ G). Let U be the horospherical

subgroup of {at}, i.e.

U = {g ∈ G|a−tgat → e}.

The decomposition of Lie(U) with respect to {at} under the adjoint action is

Lie(U) = gα1 ⊕ gα2 ⊕ · · · ⊕ gαn

where αi are the roots of {at} in U , that is,

Ad(at)Xi = αi(at)Xi

for any Xi ∈ gαi . Without loss of generality, we can assume that each gαi is one-

dimensional and some of these αi’s may be identical. We denote the exponential map
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from Lie(G) to G by exp and we fix a norm ‖ · ‖ on the Lie algebra g. For each i, fix

vi ∈ gαi with norm 1 and let B(T1, T2, . . . , Tn) be the parametrized box in U , i.e.

B(T1, T2, . . . , Tn) = {exp(t1v1 + t2v2 + · · ·+ tnvn)|0 ≤ ti ≤ Ti(1 ≤ i ≤ n)}.

For any t > 0 we can find a number α > 0 such that for any t > 0

eαt = α1(at)α2(at) · · ·αn(at)

and then

tα = α1(aln t)α2(aln t) · · ·αn(aln t).

Also we define

B(t) : = B(α1(aln t), α2(aln t), · · · , αn(aln t))

= aln tB(1, 1, . . . , 1)a− ln t.

We will denote by Br the open ball of radius r > 0 around e in G. Here the distance

on G is induced by the norm ‖ · ‖. Also we will write BC∞l (Γ\G) for the set of

bounded smooth functions on Γ\G with bounded Lie derivatives up to order l.

Definition 3.1.1. For any x ∈ Γ\G, we define the injectivity radius at x by the

largest number η > 0 with the property that the map

Bη → xBη ⊂ Γ\G

by sending g ∈ Bη to xg ∈ Γ\G is injective. We will denote the injectivity radius at

x by η(x).
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We will follow the proof of Lemma 9.5 in [V10] and prove the following theorem.

Theorem 3.1.1. Suppose that U is abelian. There exist constants a, b > 0 such that

for any f ∈ BC∞l (Γ\G), we have

∣∣∣∣ 1

Tα

∫
B(T )

f(xu)du−
∫

Γ\G
fdµ

∣∣∣∣� 1

T aηb
‖f‖∞,l

for some large constant l > 0. Here η = η(alnTx) is the injectivity radius at alnTx

and ‖ · ‖∞,l is the L∞-Sobolev norm involving Lie derivatives of orders up to l. The

implicit constant depends only on Γ\G.

Remark 3.1.1. We will always assume that ‖f‖∞,l is defined and finite, and l is large

enough so that all the theorems and arguments in this note would hold. Readers may

refer to [KM99] for more details about the Sobolev norm and the number l.

Remark 3.1.2. Theorem 3.1.1 is weaker than the theorem proved by Strömbergsson

[S13] in the case of Γ\PSL(2,R). But the proof would involve only mixing property

of a semisimple flow and give a result for a general homogeneous space. Readers may

compare Tη
b
a and the r-factor in the main theorem of [S13].

Using the same arguments as in the proof of Theorem 3.1.1, we can prove the

following

Theorem 3.1.2. Suppose that U is abelian. Let h(u) be a compactly supported smooth

function on U . Then there exist constants a, b > 0 such that for any f ∈ BC∞l (Γ\G)

we have

∣∣∣∣ 1

Tα

∫
U

f(xu)h(a− lnTualnT )du−
∫

Γ\G
fdµ

∫
U

h(u)du

∣∣∣∣� 1

T aηb
‖f‖∞,l.

Here η, l and ‖·‖∞,l are the same as in Theorem 3.1.1. The implicit constant depends

only on h(u) and Γ\G.
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Definition 3.1.2. A point p ∈ Γ\G is called Diophantine of type µ (µ ∈ R) with

respect to {at} if there exists a constant C > 0 such that

η(pat) ≥ Ce−µt

for all t > 0. Also we say that an orbit {pat}t≥0 in Γ\G is non-divergent of order µ

if there exists a constant C > 0 such that

η(patk) ≥ Ce−µtk

for infinitely many tk →∞.

The following is an immediate corollary of Theorem 3.1.1 and [Sh94].

Corollary 3.1.1. Assume the conditions in Theorem 3.1.1. If x is Diophantine of

type µ < a/b with respect to {at}, or {xat}t≥0 is non-divergent of order µ < a/b, then

1

Tα

∫
B(T )

f(xu)du→
∫
fdµ.

Here the constants a, b and the function f are as in Theorem 3.1.1.

Acknowledgement. I would like to thank Professor Andreas Strömbergsson and

Samuel Edwards for many discussions. I was told that they had results about the

effective equidistribution of horocycle orbits in homogeneous spaces using number

theoretic tools. Here what we prove in Theorem 3.1.1 is much weaker than [S13] and

our purpose is just to show how to use mixing property only to get such results.
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3.2 Preliminaries

In the proof of Theorem 3.1.1, we will need the following exponential mixing

property.

Theorem 3.2.1 (Kleinbock and Margulis [KM99]). There exists κ > 0 such that for

any f, g ∈ BC∞(Γ\G), we have

∣∣∣∣(at · f, g)−
∫

Γ\G
f

∫
Γ\G

g

∣∣∣∣� e−κt‖f‖∞,l‖g‖∞,l.

Here (at · f)(x) = f(xa−t) is the right translation of f by at and ‖ · ‖∞,l is the same

Sobolev norm as in Theorem 3.1.1.

Throughout this chapter, we will assume that U and U+ are abelian.

3.3 Some Lemmas

In this section, we will use the same arguments in the proof of Lemma 9.5 in

[V10] and prove some lemmas which will be used in the proof of Theorem 3.1.1 and

Theorem 3.1.2.

Lemma 3.3.1. Let x be any point in Γ\G. Then for every point y ∈ xB(1) we have

η(y) ∼ η(x).

Here the implicit constant depends only on G. Generally, if y ∈ xB for some bounded

subset B ⊂ U , then the same result holds with the implicit constant depending only

on B and G.

Proof. This follows from the compactness of B(1).
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Now we fix a positive compactly supported smooth function g(x) with integral

one on R, and for any n ∈ N, γ > 0 and δ > 0 define

gδ,n,γ(u)

=
1

δn

∫ γ

0

∫ γ

0

· · ·
∫ γ

0

g

(
u1 − t1
δ

)
g

(
u2 − t2
δ

)
. . . g

(
un − tn

δ

)
dt1dt2 . . . dtn

for u ∈ Rn. The following lemma is an immediate consequence from calculations.

Lemma 3.3.2. We have

1.
∫
Rn gδ,n,γ(u)du = γn.

2. gδ,n,γ(u) is supported in a neighborhood of the box [0, γ]× [0, γ]× · · · × [0, γ].

3.
∫
Rn |gδ,n,γ(u)− χ[0,γ]n(u)|du� δ(γ + δ)n−1.

Lemma 3.3.3. Let y ∈ Γ\G and f ∈ C∞(Γ\G). Assume that
∫

Γ\G fdµ = 0. Then

there exist constants a, b > 0 such that for any t > 0 and γ < η(y)
2

we have

∣∣∣∣∫
B(γ,γ,...,γ)

f(yua−t)du

∣∣∣∣� 1

eatγb
‖f‖∞,l.

The implicit constant depends only on Γ\G.

Proof. Now let U+ be the unstable horospherical subgroup of {at} and Z = Z(at) be

the central subgroup of {at} in G. Then we know that

Lie(U)⊕ Lie(U+)⊕ Lie(Z) = Lie(G).

Let dimU = dimU+ = n and dimZ(at) = m. By Lemma 3.3.2 and the same
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arguments as in Lemma 9.5 of [V10] we have

∫
B(γ,γ,...,γ)

f(yua−t)du

=

∫
Lie(U)

f(y exp(u)a−t)gδ,n,γ(u)du+O(‖f‖∞,l)δ(γ + δ)n−1

=
1

δmγn

∫∫∫
Lie(U)×Lie(Z)×Lie(U+)

f(y exp(u)a−t)gδ,n,γ(u)gδ,m,δ(z)gδ,n,γ(v)dudzdv

+O(‖f‖∞,l)δ(γ + δ)n−1

=
1

δmγn

∫∫∫
Lie(G)

f(y exp(u) exp(z) exp(v)a−t)gδ,n,γ(u)gδ,m,δ(z)gδ,n,γ(v)dudzdv

+O(‖f‖∞,l)(δ(γ + δ)n−1 + γn max{δ, γ/eqt})

=
1

δmγn

∫
Γ\G

f(xa−t)gδ,y(x)dµ(x) +O(‖f‖∞,l)(δ(γ + δ)n−1 + γn max{δ, γ/eqt})

=
1

δmγn
(at · f, gδ,y) +O(‖f‖∞,l)(δ(γ + δ)n−1 + γn max{δ, γ/eqt}).

Here q > 0 is a positive constant. Also we know that there exists a function depending

only on G such that

dµ = F (u, z, v)dudzdv

and gδ,y is the function

gδ,y(y exp(u) exp(z) exp(v)) = gδ,n,γ(u)gδ,m,δ(z)gδ,n,γ(v)F (u, z, v)

supported on the ball of radius η(y) at y in Γ\G. Note that all injectivity radii have

a common upper bound depending only on Γ\G. By the definition of Lie derivatives,

we can compute ‖gδ,y‖∞,l and there exists a constant p > 0 such that

‖gδ,y‖∞,l � 1/δp.
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Therefore, by exponential mixing of semisimple flow (Theorem 3.2.1), we have

∣∣∣∣∫
B(γ,γ,...,γ)

f(yua−t)du

∣∣∣∣
� 1

δmγn
1

eκtδp
‖f‖∞,l + ‖f‖∞,l(δ(γ + δ)n−1 + max{δ, γ/eqt}).

Let δ = γe−εt < γ for some small ε > 0 and this completes the proof of the lemma.

Lemma 3.3.4. Assume the conditions in Lemma 3.3.3. Let h(u) be a smooth com-

pactly supported function on U . Then there exist constants a, b > 0 such that for any

t > 0 and γ < η(y)
2

we have

∣∣∣∣∫
B(γ,γ,...,γ)

f(yua−t)h(u)du

∣∣∣∣� 1

eatγb
‖f‖∞,l‖h‖∞,l.

Here ‖h(u)‖∞,l is the L∞-Sobolev norm involving partial derivatives of orders up to l

on U . The implicit constant depends only on Γ\G.

Proof. By Lemma 3.3.2, we have

∫
B(γ,γ,...,γ)

f(yua−t)h(u)du

=

∫
Lie(U)

f(y exp(u)a−t)h(exp(u))gδ,n,γ(u)du+O(‖f‖∞,l‖h‖∞,l)δ(γ + δ)n−1.

Now the lemma follows from the same arguments as in Lemma 3.3.3. (In this case,

we have ‖gδ,y‖∞,l � 1/δp‖h‖∞,l for some p > 0.)

3.4 Effective Equidistribution of Abelian Horospherical Or-

bits

In this section, we will prove Theorem 3.1.1 and Theorem 3.1.2.
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Proof of Theorem 3.1.1. Without loss of generality, assume that
∫
fdµ = 0. We know

that

1

Tα

∫
B(T )

f(xu)du =

∫
B(1)

f(xalnTua− lnT )du.

By Lemma 3.3.1 and the assumption that U is abelian, we can find γ > 0 with the

following properties

1. We can devide B(1) into small boxes {Bj}. For each j, there exists yj ∈ B(1)

such that Bj = yjB(γ, γ, . . . , γ).

2. For each j, we have γ < η(xalnTyj)/2.

3. γ ∼ η(xalnT ) and the implicit constant in ∼ depends only on Γ\G.

In fact, we can take such γ by first taking the infimum of {η(xalnTy)/2|y ∈ B(1)}

and then modifying it so that 1/γ is an integer. Note that the number of these boxes

Bj is 1/γn. Now by Lemma 3.3.3 we have

∣∣∣∣ 1

Tα

∫
B(T )

f(xu)du

∣∣∣∣ =

∣∣∣∣∫
B(1)

f(xalnTua− lnT )du

∣∣∣∣
≤

∑
j

∣∣∣∣∣
∫
Bj

f(xalnTua− lnT )du

∣∣∣∣∣
=

∑
j

∣∣∣∣∫
B(γ,...,γ)

f((xalnTyj)ua− lnT )du

∣∣∣∣
� 1

γn
1

T aγb
‖f‖∞,l �

1

T aη(xalnT )b+n
‖f‖∞,l.

This completes the proof of Theorem 3.1.1.

Proof of Theorem 3.1.2. The proof is similar to that of Theorem 3.1.1. We assume
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that
∫
fdµ = 0. We have

1

Tα

∫
U

f(xu)h(a− lnTualnT )du

=

∫
U

f(xalnTua− lnT )h(u)du =

∫
B

f(xalnTua− lnT )h(u)du

for some box B ⊂ U since h(u) is compactly supported. Using the same arguments

as in the proof of Theorem 3.1.1, we can find γ > 0 with the following properties

1. We can devide B into small boxes {Bj}. For each j, there exists yj ∈ B such

that Bj = yjB(γ, γ, . . . , γ).

2. For each j, we have γ < η(xalnTyj)/2.

3. γ ∼ η(xalnT ) and the implicit constant in ∼ depends only on B and Γ\G.

By Lemma 3.3.4, we obtain that

∣∣∣∣ 1

Tα

∫
U

f(xu)h(a− lnTualnT )du

∣∣∣∣ =

∣∣∣∣∫
B

f(xalnTua− lnT )h(u)du

∣∣∣∣
≤

∑
j

∣∣∣∣∣
∫
Bj

f(xalnTua− lnT )h(u)du

∣∣∣∣∣
=

∑
j

∣∣∣∣∫
B(γ,...,γ)

f((xalnTyj)ua− lnT )h(yju)du

∣∣∣∣
�

∑
j

1

T aγb
‖f‖∞,l‖h‖∞,l �

Vol(B)

γn
1

T aγb
‖f‖∞,l‖h‖∞,l

� 1

T aη(xalnT )b+n
‖f‖∞,l.

Here the implicit constant depends on h(u). This completes the proof of Theorem

3.1.2.
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Chapter 4

Diophantine Points in Rank One Homogeneous Spaces

4.1 Introduction

The Diophantine approximation of numbers is a well-developed subject. One of

the classical theorems in this subject is Jarnik-Besicovitch Theorem, which gives a

formula for the Hausdorff dimensions of Diophantine numbers of different orders.

Later, this theorem was generalized by Dodson [D92], which describes Hausdorff

dimensions of Diophantine matrices of different orders.

It turns out that numbers and matrices with Diophantine conditions are closely

related to points in homogeneous spaces with excursion rates under semisimple flows.

A detailed description of this connection could be found in [K01]. For example,

by reformulation, Dodson’s work in [D92] actually gives a formula for Hausdorff di-

mensions of points with different excursion rates under the semisimple flow at =

diag(et/m, . . . , et/m, e−t/n, . . . , e−t/n) on PSL(m + n,R)/PSL(m + n,Z). Also Melián

and Pestana [MP93] get a formula for Hausdorff dimensions of points with different

geodesic excursion rates in a hyperbolic manifold. As a consequence, their result

implies a generalized version of Jarnik-Besicovitch Theorem on Diophantine approxi-

mation by numbers in some number fields of degree 2. In [D85], Dani associates badly

approximable m× n matrices with bounded orbits under

at = diag(et/m, . . . , et/m, e−t/n, . . . , e−t/n)
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on PSL(m+n,R)/PSL(m+n,Z) and shows that the subset of points with bounded

orbits under this flow has full Hausdorff dimension. In this direction, Dani [D86]

also shows that such result holds for a non-quasiunipotent flow on G/Γ where G is a

semisimple Lie group of rank one and Γ is a lattice in G. Finally in [KM96], Kleinbock

and Margulis give a complete proof of this result for a non-quasiunipotent flow on

any homogeneous space.

Moreover, this topic has also been developed in the case of negatively curved

manifolds. For example, in [HP01], they define a Diophantine condition for geodesics

starting from a point p and exponentially acculmulating at another point q. Then

they get a sharp estimate on Hausdorff dimensions of such Diophantine geodesics.

Later in [HP04] they study the case of q = ∞ and obtain a Kintchine-Sullivan-type

theorem about such Diophantine geodesics. Readers may also refer to [HP02A] and

[HP02B] for more details.

In this note, we will consider a similar question in the homogeneous space G/Γ

where G is a semisimple Lie group of real rank one and Γ is a non-uniform lattice in

G. Let {at} denote a semisimple flow (i.e., every element in {at} is Ad-semisimple)

on the homogeneous space G/Γ. We will define Diophantine points in G/Γ and we

would like to obtain a formula similar to Jarnik-Besicovitch Theorem. In the last

section, we will see that the Diophantine condition defined in this paper is equivalent

to that in the hyperbolic case [MP93] and that in the complex hyperbolic case in

[HP02B].

Before stating the main theorem, we need some notations. For any p ∈ G/Γ, we

will denote by Stab(p) the stabilizer of p in G. If p = gΓ, then Stab(p) = gΓg−1 is a

lattice conjugate to Γ. We will fix a norm ‖ · ‖g on the Lie algebra g of G and denote

by d(·, ·)G and d(·, ·)G/Γ the induced distances on G and G/Γ respectively. We will

denote by a the Lie algebra of the one parameter subgroup {at}.
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For the semisimple Lie group G of rank one, we can write the Cartan decomposi-

tion with respect to a Cartan involution θ by

g = k⊕ p

where k and p are the 1-eigenspace and (−1)-eigenspace of θ respectively, and we may

assume that a ⊂ p is a maximal abelian subalgebra of p. Let K be the maximal

compact subgroup with the Lie algebra k. We write the root space decompostion of

g with respect to the adjoint action of {at} as

g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α.

Here α is a simple root, but we will think of this simple root as a positive number via

the identification

a∗ ∼= R.

In other words, we have α > 0 and

Adat(v) = eαtv (∀v ∈ gα), Adat(v) = e2αtv (∀v ∈ g2α)

Adat(v) = e−αtv (∀v ∈ g−α), Adat(v) = e−2αtv (∀v ∈ g−2α).

Note that the root spaces g−2α and g2α may be empty.

Definition 4.1.1. For any p ∈ G/Γ, we define the injectivity radius at p by

η(p) = inf
v∈Stab(p)\{e}

d(v, e)G.

Definition 4.1.2. A point p ∈ G/Γ is Diophantine of type γ if there exists a constant
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C > 0 such that

η(atp) ≥ Ce−γt for all t > 0.

We will denote by Sγ the subset of all Diophantine points of type γ in G/Γ, and by

Scγ the complement of Sγ in G/Γ.

Remark 4.1.1. Note that by [D86] and [KM96], the subset S0 has full Hausdorff

dimension.

Now we can state the main theorem in this chapter.

Theorem 4.1.1 (Main Theorem). If g2α = ∅, then the Hausdorff dimension of Scγ

(0 ≤ γ < α) is

dim g−α + dim g0 +
α− γ
α

dim gα.

If g2α 6= ∅, then the Hausdorff dimension of Scγ (0 ≤ γ < 2α) is

dim g−2α + dim g−α + dim g0 +
4α− γ

4α
dim gα +

2α− γ
2α

dim g2α.

Remark 4.1.2. We will see in section 8 that the definition of Scγ is equivalent to

the Diophantine condition in [MP93], and Theorem 4.1.1 generalizes Theorem 1 in

[MP93].

Here we obtain an exact formula for the Hausdorff dimension of Scγ which, to the

best of the author’s knowledge, was only known in the case of hyperbolic manifold,

i.e. G = SO(n, 1) (e.g. [MP93]). Also, our proof is based on the theories of Lie

groups and dynamical systems. So this note would be a new proof in the hyperbolic

case. (See section 8 for more details.)

The following theorem is a finer version of Theorem 4.1.1. First we need some

notations. Let ξ1, . . . , ξk be the inequivalent cusps of G/Γ, and we fix sufficiently
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small neighborhoods Yi of ξi in G/Γ (1 ≤ i ≤ k) such that these Yi’s are pairwise

disjoint.

Definition 4.1.3. A point p ∈ G/Γ is Diophantine of type (γ1, . . . , γk) if there exists

a constant C > 0 such that for any i ∈ {1, 2, . . . , k} and any t > 0, we have

η(atp)χYi(atp) ≥ Ce−γitχYi(atp).

We will denote by Sγ1,...,γk the subset of Diophantine points of type (γ1, . . . , γk), and

by Scγ1,...,γk the complement of Sγ1,...,γk in G/Γ.

Remark 4.1.3. This definition measures different excursion rates γi of the orbit {atp}

near the cusps ξi (1 ≤ i ≤ k).

Theorem 4.1.2. If g2α = ∅, then the Hausdorff dimension of Scγ1,...,γk (0 ≤ γi <

α, 1 ≤ i ≤ k) is

dim g−α + dim g0 +
α−min1≤i≤k γi

α
dim gα.

If g2α 6= ∅, then the Hausdorff dimension of Scγ1,...,γk (0 ≤ γi < α, 1 ≤ i ≤ k) is

dim g−2α + dim g−α + dim g0

+
4α−min1≤i≤k γi

4α
dim gα +

2α−min1≤i≤k γi
2α

dim g2α.

Remark 4.1.4. We will show that Theorem 4.1.2 generalizes Theorem 1.7.1 in Chapter

1.

As an application, we will deduce a Jarnik-Besicovitch Theorem on Diophantine

approximation in Heisenberg groups in the setting of [HP02B]. We will follow the

definitions and notations in [HP02B], which readers may refer to for more details.

The real Heisenberg group H2n−1(R) is the manifold Cn−1×R in which the group
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multiplication is given by

(ζ, v)(ζ ′, v′) = (ζ + ζ ′, v + v′ + 2=
(
ζ · ζ ′

)
)

where ζ, ζ ′ ∈ Cn−1 and v, v′ ∈ R. We write dH2n−1(R) for the right invariant distance

on H2n−1(R). H2n−1(R) is the R-points of a connected algebraic group H2n−1 defined

over Q with Q-pointsH2n−1(Q) ∼= Q[i]n−1×Q. For any r ∈ H2n−1(Q), the height h(r)

of r is defined as the absolute value of the least common multiple of the denominators

of the rationals in the components of r. Let | · | : H2n−1(R)→ R be defined by

|(ζ, v)| =
(
|ζ|4 + v2

) 1
4

and the Cygan distance on H2n−1(R) is defined by

dCyg((ζ, v), (ζ ′v′)) = |(ζ, v)(ζ ′, v′)−1|.

Note that this distance is invariant under the right multilplication of H2n−1(R). See

[G99] and [HP02B] for more details.

Definition 4.1.4. A point α ∈ H2n−1(R) is Diophantine of type γ (γ ∈ R) if there

exists a constant C > 0 such that

dCyg(α, r) ≥ C

(h(r))γ

for any r ∈ H2n−1(Q). We will denote by Lγ the subset of all Diophantine points of

type γ in H2n−1(R), and by Lcγ the complement of Lγ in H2n−1(R).

Remark 4.1.5. Note that by Theorem 3.4 in [HP02B], we have γ ≥ 1.
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Theorem 4.1.3. The Hausdorff dimension of Lcγ (γ ≥ 1) with respect to the right

invariant distance dH2n−1(R) is equal to

γ + 1

γ
n− 1.

Remark 4.1.6. Note that Hersonsky and Paulin give a Kintchine-Sullivan type theo-

rem on Diophantine Approximation in Heisenberg groups (Theorem 3.5 in [HP02B]).

Here Theorem 4.1.3 can be thought of as a Jarnik-Besicovitch theorem in this setting.

In the proof of Theorem 4.1.1, the counting problem (see section 4.5) will be

crucial which involves the mixing property of {at} acting on G/Γ. Actually it will

play an important role in calculating both the upper bound and the lower bound of

the Hausdorff dimension. In section 4.2, we will list concepts and theorems needed

in this paper. In section 4.3, we will reduce Theorem 4.1.1 (see Theorem 4.3.1). In

section 4.4, we will give some Lie group facts which will be used often throughout this

note. In section 4.5, we will give a definition of rational points in G/Γ and define the

denominator of a rational point. With the help of the mixing property of {at}, we

will be able to count the rational points with their denominators between two large

numbers. This counting result will be used to calculate the Hausdorff dimension of

a tree-like subset. In section 4.6, we will closely study the meaning of a point in

G/Γ being Diophantine and give sufficient condition and necessary condition for it.

Combining all the results in this paper, we will give the proof of Theorem 4.1.1 in

section 4.7. The necessary condition in section 4.6 will be used for the upper bound of

the Hausdorff dimension and the sufficient condition will be used for the lower bound.

In section 4.8, we will prove Theorem 4.1.2. In the last section, we will discuss the

relations between Theorem 4.1.1 and [MP93], Theorem 4.1.2 and [Z16], and give a

proof of Theorem 4.1.3.
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4.2 Notations and Preliminaries

Let exp be the exponential map from g to G. For any Lie subgroup H ⊆ G, we

will denote by Lie(H) the Lie subalgebra of H and µH the Haar measure on H.

Let

n+ = gα ⊕ g2α, n− = g−α ⊕ g−2α

and N+ and N− be the corresponding unipotent subgroups. We will denote by A =

{at} and

As1,s2 = {at ∈ A : s1 ≤ t ≤ s2}

and

N+(S) = {n ∈ N+ : n ∈ S} N−(S) = {n ∈ N− : n ∈ S}

for any subset S ⊂ N+ or N−. We will fix two bases in gα and g2α, and we will write

Bgα(r) and Bg2α(r)

for the open cubes along these bases of equal side length r in gα and g2α respectively

If g2α = ∅, we have that n+ = gα and n− = g−α. We will denote by

BN+(r) = exp(Bgα(r))

the open cube centered at e with side length r in N+. If g2α 6= ∅, then n+ = gα⊕ g2α

and we will denote by

BN+(r1, r2) = exp(Bgα(r1) + Bg2α(r2))

for the open box centered at e with length r1 in gα-direction and r2 in g2α-direction.
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The Bruhat decomposition in the real rank one case has the following simple form

G = MAN− ∪MAN−ωMAN−

where M is the centralizer of a in K and ω is a representative of the non-trivial

element in the Weyl group.

In the following, we will need Theorem 2.1.2 to compute Hausdorff dimension.

For convenience, we list it here.

Theorem 4.2.1 ([M87], [U91] or [KM96]). Let (X,m) be a Riemannian manifold.

Assume that there exist constants D > 0 and k > 0 such that

m(B(x, r)) ≤ Drk

for any x ∈ X and any ball B(x, r) of radius r around x. Then for any tree-like

collection A of subsets of E

dimH(A∞) ≥ k − lim sup
j→∞

∑j
i=0 log( 1

∆i(A)
)

log( 1
dj+1(A)

)

We also need the following theorem about the fundamental domain of a non-

uniform lattice in G of real rank one. We write the Siegel set

Ω(s, V ) = KAs,∞N−(V )

for some s ∈ R and some compact subset V ⊂ N−.

Theorem 4.2.2 ([GR70], [D84]). There exist s0 > 0, a compact subset V0 of N and

a finite subset Σ of G such that the following assertions hold:

1. G = Ω(s0, V0)ΣΓ.
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2. For all σ ∈ Σ, Γ ∩ σ−1N−σ is a cocompact lattice in σ−1N−σ.

3. For all compact subsets V of N the set

{γ ∈ Γ|Ω(s0, V )Σγ ∩ Ω(s0, V ) 6= ∅}

is finite.

4. Give a compact subset V of N containing V0, there exists s1 ∈ (0, s0) such that

whenever σ, τ ∈ Σ are such that Ω(s0, V )σγ ∩Ω(s1, V )τ is non-empty for some

γ then σ = τ and σγσ−1 ∈ (K ∩ Z) ·N− ⊂ P .

Here Z is the centralizer of A = {at} and P = ZN−.

Remark 4.2.1. Note that the subset Σ corresponds to the cusp set {ξ1, . . . , ξk}.

4.3 Reductions

By the property of Hausdorff dimension, to prove Theorem 4.1.1, it suffices to

prove that for any point x = gΓ and any small open neighborhood BG(r)x ⊂ G/Γ

of x = gΓ with a sufficiently small r < η(x), the subset Scγ ∩ BG(r)x has the same

Hausdorff dimension as that in the main theorem. Furthermore, for any element g in

BG(r), we can write

g = n−an+

for some n− ∈ N−, a ∈ A and n+ ∈ N+. By definition, g ∈ Sγ if and only if n+ ∈ Sγ,

and hence it is enough to prove that for any small open ball U0 at e in N+ we have

dimH S
c
γ ∩ U0x =


α−γ
α

dim gα if g2α = ∅
4α−γ

4α
dim gα + 2α−γ

2α
dim g2α if g2α 6= ∅

.
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Replacing the lattice Γ by gΓg−1, we can assume without loss of generality that

x = eΓ and hence to prove the main theorem, it suffices to prove the following

Theorem 4.3.1. Let U0 be a small open ball at e in N+ of radius r < η(eΓ). Then

we have

dimH S
c
γ ∩ U0(eΓ) =


α−γ
α

dim gα if g2α = ∅
4α−γ

4α
dim gα + 2α−γ

2α
dim g2α if g2α 6= ∅

.

Here 0 ≤ γ < α if g2α = ∅ and 0 ≤ γ < 2α if g2α 6= ∅.

In the following sections, we will fix this open ball U0 ⊂ N+ and study the problem

of Diophantine points in the space U0(eΓ) instead of G/Γ. Since U0 is isomorphic to

U0(eΓ), we will still write µN+ for the N+-invariant measure on U0(eΓ), i.e.

µN+(B(eΓ)) = µN+(B)

for any Borel subset B ⊂ U0 ⊂ N+, and for any point n+ ∈ U0, the subset BN+(r)n+Γ

or BN+(r1, r2)n+Γ will be an open box at n+Γ ∈ U0(eΓ). In other words, we will use

the notations in U0 and U0(eΓ) interchangeably.

4.4 Some Lie Group Facts

In this section, we will prove some Lie group facts which will be used often in this

note.

Proposition 4.4.1. For any u ∈ n− \ {0} and v ∈ n+ \ {0} we have

‖[u, v]‖g ∼ ‖u‖g‖v‖g.
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Here the implicit constant depends only on G.

Proof. It suffices to prove that for any u ∈ n− \ {0} and v ∈ n+ \ {0}

[u, v] 6= 0

and this follows immediately from Lemma 3.4 in [BZ16].

Proposition 4.4.2. Let u ∈ G be a unipotent element. Then there exists a unique

element n in N+ ∪ {ω} such that Adn(u) ∈ N−. Moreover, if u /∈ N+, then this

n ∈ N+.

Proof. We know that there is an element g ∈ G such that Adg(u) ∈ N−. By the

Bruhat decomposition, g is either man̄ω or man̄n for some m ∈ M,a ∈ A, n ∈ N+

and n̄ ∈ N−. Since man̄ stablizes N−, we have either Adω(u) ∈ N− or Adn(u) ∈ N−.

Suppose that there are two elements n1, n2 ∈ N+ ∪ {ω} such that Adni(u) ∈ N−.

Then Adn2n
−1
1 N− ∩ N− 6= {0}. By Lemma 3.4 in [BZ16], this implies that n2n

−1
1 ∈

MAN− and hence by the Bruhat decomposition, n1 = n2. The second part follows

immediately from the first. This completes the proof of the proposition.

Proposition 4.4.3. Suppose that g−2α 6= ∅. Then for any σ ∈ Σ, we have σΓσ−1 ∩

exp(g−2α) is a lattice in exp(g−2α).

Proof. Let u ∈ g−α \ {0}. By Lemma 7.73 (a) in [K02], we know that the map

ad(u) : g−α → g−2α

is surjective and hence

[g−α, g−α] = g−2α.
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This implies that

[N−, N−] = exp(g−2α).

On the other hand, since σΓσ−1 ∩N− is a lattice in N−, by Corollary 1 of Theorem

2.3 in [R87], we know that σΓσ−1 ∩ [N−, N−] is a lattice in [N−, N−]. This completes

the proof of the proposition.

4.5 Counting Rational Points

In this section, we will define rational points in G/Γ and their denominators. Then

we will count rational points, which will be crucial to the study of Diophantine points

in the following sections.

Definition 4.5.1. A point p ∈ G/Γ is called rational if Stab(p) ∩N− 6= {e}.

Note that if p is rational, then η(atp) → 0 and {atp} diverges as t → ∞. By

Corollary 6.2 in [D85], we immediately get the following

Proposition 4.5.1 (Corollary 6.2 [D85]). p ∈ G/Γ is rational if and only if p ∈⋃
σ∈ΣMAN−σΓ.

Definition 4.5.2. A point p is called σ-rational for some σ ∈ Σ if p ∈MAN−σΓ.

Proposition 4.5.2. Let p ∈ G/Γ be σ-rational and suppose that p = m1a1n1σΓ =

m2a2n2σΓ. Then a1 = a2.

Proof. Since m1a1n1σΓ = m2a2n2σΓ, the lattices of N−

m1a1n1σΓσ−1n−1
1 a−1

1 m−1
1 ∩N−, m2a2n2σΓσ−1n−1

2 a−1
2 m−1

2 ∩N−

coincide and hence they have the same co-volume in N . This implies that a1 = a2.
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Definition 4.5.3. We define the σ-denominator of a σ-rational point p ∈ G/Γ by

dσ(p) = e−αt0

where p = mat0nσΓ for some t0 ∈ R.

Remark 4.5.1. Note that by Proposition 4.5.2, this definition is well-defined.

Definition 4.5.4. For any U ⊂ N+, we will denote by Sσ(U(eΓ), l1, l2) the subset of

σ-rational points in U(eΓ) whose σ-denominators are between l1 and l2.

Proposition 4.5.3. Suppose that g2α = ∅. Then for any open subset U ⊂ U0 ⊂ N+,

we have that Sσ(U(eΓ), l1, l2) is finite and

|Sσ(U(eΓ), C/2, C)| ∼ µN+(U)Cdim gα

for any sufficiently large C > 0. Here the implicit constant depends only on G and Γ.

Proof. Since g2α = ∅, we have that n+ = gα and n− = g−α. Recall that BN+(r)

denotes the open box centered at e with length r in N+.

Let n+Γ ∈ N+Γ be a σ-rational point and there exist m ∈M,at0 ∈ A and n ∈ N−

such that n+Γ = mat0nσΓ. By definition, the σ-denominator of n+Γ being between

C/2 and C is equivalent to the condition that

C/2 ≤ e−αt0 ≤ C.

This implies that alnC/αnΓ ∈MA− ln 2/α,0N(Ω)σΓ.

Since MA− ln 2/α,0N(Ω)σΓ is compact, we can find δ > 0 such that

δ < η(y)
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for any y ∈MA− ln 2/α,0NΩσΓ. Now by thickening the subset MA− ln 2/α,0NΩσΓ along

the N+ direction, we would like to study the following integral

∫
U

χBN+
(δ)MA− ln 2/α,0N(Ω)σΓ(alnC/αnΓ)dµN+(n). (4.1)

On the one hand, by the mixing property of the action at, integral (4.1) is asymptot-

ically equal to

µN+(U)

∫
G/Γ

χBN+
(δ)MA− ln 2/α,0N(Ω)σΓ(g)dµG(g) ∼ µN+(U)δdim gα . (4.2)

On the other hand, if nqΓ is a σ-rational point in U(eΓ), then any nΓ ∈ BN+(δ/C)nqΓ

satisfies the following

alnC/αnΓ ∈ BN+(δ)MA− ln 2/α,0N(Ω)σΓ.

Conversely, if a point nΓ ∈ U(eΓ) satisfies

alnC/αnΓ ∈ BN+(δ)MA− ln 2/α,0NΩσΓ,

then there is a point nqΓ with

nqΓ ∈ BN+(δ/C)nΓ

such that

alnC/αnqΓ ∈MA− ln 2/α,0N(Ω)σΓ

which means that nq is a σ-rational point. This implies that integral (4.1) is also
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asymptotically equal to

|Sσ(U,C/2, C)|(δ/C)dim gα . (4.3)

Hence, by comparing equations (4.2) and (4.3), we know that

|Sσ(U,C/2, C)| ∼ µN+(U)δdim gα/(δ/C)dim gα = µN+(U)Cdim gα .

This completes the proof of the proposition

Proposition 4.5.4. Suppose that g2α 6= 0. Then for any open subset U ⊂ U0 ⊂ N+,

we have that Sσ(U(eΓ), l1, l2) is finite and

|Sσ(U(eΓ), C/2, C)| ∼ µ(U)Cdim gα+2 dim g2α

for any sufficiently large C > 0. Here the implicit constant depends only on G and Γ.

Proof. In this case, the proof is almost identical to that in the case of g2α = 0 but

computations involved will be more complicated. Recall that BN+(r1, r2) denotes the

open box centered at e with length r1 in gα-direction and r2 in g2α-direction.

Let nΓ ∈ N+Γ be σ-rational and there exist m ∈M , at0 ∈ A and n ∈ N− such that

nΓ = mat0n̄σΓ. The σ-denominator of nΓ being between C/2 and C is equivalent to

the condition that

C/2 ≤ e−αt0 ≤ C.

This implies that alnC/αnΓ ∈MA− ln 2/α,0N(Ω)σΓ.

Since MA− ln 2/α,0N(Ω)σΓ is compact, we can find δ > 0 such that

δ < η(y)

for any y ∈ MA− ln 2/α,0N(Ω)σΓ. Now by thickening the subset MA− ln 2/α,0N(Ω)σΓ
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along the N+ direction, we would like to study the following integral

∫
U

χBN+
(δ,δ)MA− ln 2/α,0N(Ω)σΓ(alnC/αnΓ)dn. (4.4)

On the one hand, by the mixing property of the action at, integral (4.4) is asymptot-

ically equal to

µN+(U)

∫
G/Γ

χBN+
(δ,δ)MA− ln 2/α,0N(Ω)σΓ(g)dg ∼ µN+(U)δdim gα+dim g2α . (4.5)

On the other hand, if nqΓ is a σ-rational point in U(eΓ), then any

nΓ ∈ BN+(δ/C, δ/C2)nqΓ

satisfies the following

alnC/αnΓ ∈ BN+(δ, δ)MA− ln 2/α,0N(Ω)σΓ.

Conversely, if a point nΓ ∈ U(eΓ) satisfies

alnC/αnΓ ∈ BN+(δ, δ)MA− ln 2/α,0N(Ω)σΓ,

then there is a point nqΓ with

nΓ ∈ BN+(δ/C, δ/C2)nqΓ

such that

alnC/αnqΓ ∈MA− ln 2/α,0N(Ω)σΓ
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which means that nqΓ is a σ-rational point. This implies that integral (4.4) is also

asymptotically equal to

|Sσ(U,C/2, C)|(δ/C)dim gα(δ/C2)dim g2α . (4.6)

Hence, by comparing equations (4.5) and (4.6), we know that

|Sσ(U,C/2, C)| ∼ µN+(U)δdim gα+dim g2α/(δ/C)dim gα(δ/C2)dim g2α

= µN+(U)Cdim gα+2 dim g2α .

This completes the proof of the proposition

Definition 4.5.5. We define the denominator of a rational point p by

d(p) = inf
v∈Stab(p)∩exp(g−β)\{e}

‖v‖
α
β

where β = α if g2α = ∅ and β = 2α if g2α 6= ∅.

Remark 4.5.2. Note that by Proposition 4.4.3, Stab(p) ∩ exp(g−2α) 6= {e} is a lattice

in exp(g−2α) if g2α 6= ∅ and so d(p) is well-defined.

Definition 4.5.6. For any U ⊂ N+, we will denote by S(U(eΓ), l1, l2) the subset in

U(eΓ) of rational points whose denominators are between l1 and l2.

Proposition 4.5.5. Let p ∈ G/Γ be a rational point. Then

d(p) ∼ dσ(p)

whenever p is a σ-rational point for some σ ∈ Σ. Here the implicit constant depends

only on G and Γ.

73



Proof. Let p = mat0nσΓ for some σ ∈ Σ. Suppose that g2α = ∅. Then

Stab(p) ∩ g−α = at0(Stab(mnσΓ) ∩ g−α)a−1
t0
.

Since m,n, σ are all in compact subsets in G, this implies that

d(p) ∼ e−αt0 = dσ(p).

The proof in the case g2α 6= ∅ is similar. This completes the proof of the proposition.

Proposition 4.5.6. Let U ⊂ U0 ⊂ N+ be an open box in N+. For any sufficiently

large C > 0 we have that S(U(eΓ), C/2, C) is finite and

1. if g2α = ∅, then

|S(U(eΓ), C/2, C)| ∼ µN+(U)Cdim gα .

2. if g2α 6= ∅, then

|S(U(eΓ), C/2, C)| ∼ µN+(U)Cdim gα+2 dim g2α .

Here the implicit constants depend only on G and Γ.

Proof. This follows immediately from Proposition 4.5.1, Proposition 4.5.3, Proposi-

tion 4.5.4 and Proposition 4.5.5.

4.6 Diophantine Points

In this section, we will study the Diophantine points and prove some propositions

which will be used in the proof of Theorem 4.3.1.

74



Proposition 4.6.1. Let p ∈ G/Γ be a non-rational point. If p is not Diophantine of

type γ, then there exists a sequence tn →∞ satisfing the following conditions

1. for each tn > 0, there is a vn ∈ Stab(atnp) such that vn is unipotent and

d(vn, e)G = Cpe
−γtn for some constant Cp > 0 depending only on p

2. for each tn > 0, there exists εn > 0 such that for any t ∈ (0, εn), we have

d(Ad(a−t)vn, e)G > Cpe
−γ(tn−t).

Proof. By definition, we know that if p is not Diophantine of type γ, then there exist

a constant Cp > 0 and a sequence tn →∞ such that

η(atnp) = Cpe
−γtn

and for each tn > 0, there exists εn > 0 such that for any t ∈ (0, εn) we have

η(atn−tp) > Cpe
−γ(tn−t).

This implies that there exists vn ∈ Stab(atnp) such that

d(vn, e)G = Cpe
−γtn , d(Ad(a−t)vn, e)G > Cpe

−γ(tn−t)(∀t ∈ (0, εn)).

It follows from Corollary 11.18 in [R87] that vn is unipotent for sufficiently large

tn > 0. This completes the proof of the proposition.

Proposition 4.6.2. Suppose that g2α = ∅. Let p ∈ U0(eΓ) ⊂ G/Γ be non-rational,

t0 ∈ R+ a sufficiently large number and v0 ∈ Stab(at0p) such that t0 and v0 satisfy

the conditions in Proposition 4.6.1. Then there is a rational point q ∈ U0(eΓ) with
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d(q) ∼ e(α−γ)t0 (the implicit constant depending only on p) such that

p ∈ BN+(Cd(q)−
α

α−γ )q

for some constant C > 0 depending only on p.

Proof. Since {at0} expands N+, the condition 2 in Proposition 4.6.1 implies that

v0 /∈ N+. Let v0 = exp(v) for some v ∈ g. By Proposition 4.4.2, there is a unique

n ∈ N+ such that

Adn(v) = z ∈ n−.

Now set n−1 = exp(u) for some u ∈ n+. Then we have

z + [u, z] + [u, [u, z]]/2 = v

z ∈ n−, [u, z] ∈ g0, [u, [u, z]] ∈ n+.

Since ‖v‖g ∼ d(v0, e)G = Cpe
−γt0 for some Cp as in Proposition 4.6.1, by the condition

2 in Proposition 4.6.1, we have

‖z‖g ∼ Cpe
−γt0 , ‖[u, z]‖g ≤ Cpe

−γt0

and by Proposition 4.4.1, this implies that u and n are bounded.

Now by definition, we know that nat0p is rational and hence a−t0nat0p is rational.

Let q = (a−t0nat0)p and we have that

d(a−t0nat0 , e)G ≤ ‖a−t0uat0‖g � e−αt0 .
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Also we have that

d(nat0p) ∼ Cpe
−γt0 ,

and hence the denominator of q = a−t0nat0p is equal to

d(q) = eαt0d(nat0p) ∼ Cpe
(α−γ)t0

and hence

d(a−t0nat0 , e)G ≤ Cd(q)−
α

α−γ

for some constant C > 0. Note that C depends only on p. This completes the proof

of the proposition.

Proposition 4.6.3. Suppose that g2α = ∅. Let p ∈ U0(eΓ) ⊂ G/Γ be a non-rational

point. If p is not Diophantine of type γ, then there exist a constant C > 0 and a

sequence of distinct rational points qn ∈ U0(eΓ) with d(qn)→∞ such that

p ∈ BN+(Cd(qn)−
α

α−γ )qn.

Proof. Suppose that p ∈ U0(eΓ) is not Diophantine of type γ. By Proposition 4.6.1,

there exist infinitely many tn → ∞ and vn ∈ Stab(atnp) satisfying the conditions in

Proposition 4.6.1 and hence by Proposition 4.6.2, there exist infinitely many rational

points qn ∈ U0(eΓ) with d(qn) ∼ e(α−γ)tn such that

p ∈ B(Cd(qn)−
α

α−γ )qn

for some constant C depending only on p. This completes the proof of the proposition.

Proposition 4.6.4. Suppose that g2α = ∅. Let p ∈ U0(eΓ) and let ε > 0 be a
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sufficiently small number. If there exist a constant C > 0 and a sequence qn ∈ U0(eΓ)

of distinct rational points with d(qn)→∞ such that

p ∈ BN+(Cd(qn)−
α

α−(γ+ε) )qn,

then p is not Diophantine of type γ.

Proof. Suppose that there exist a constant C > 0 and a sequence qn ∈ G/Γ of rational

points converging to p such that

p ∈ BN+(Cd(qn)−
α

α−(γ+ε) )qn.

Let tn = ln d(qn)
1

α−(γ+ε) . Then we have that

d(atnqn, atnp)G/Γ ≤ C

and

η(atnqn) ∼ d(qn)/eαtn = e−(γ+ε)tn .

This implies that

η(atnp) ≤ C ′e−(γ+ε)tn

for some constant C ′ > 0 and infinitely many tn → ∞. Hence by definition p is not

Diophantine of type γ.

Proposition 4.6.5. Suppose that g2α 6= ∅. Let p ∈ U0(eΓ) ⊂ G/Γ be non-rational,

t0 ∈ R+ a sufficiently large number and v0 ∈ Stab(at0p) such that t0 and v0 satisfy the

conditions in Proposition 4.6.1. Then there exists n ∈ N+ such that

Adn(v0) ∈ exp(g−2α).
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Proof. By Theorem 4.2.2, we write

at0p = kasnσΓ

for some k ∈ K, as ∈ A, n0 ∈ N−(V0) and σ ∈ Σ. Since

v0 ∈ Stab(at0p) = kasn0(σΓσ−1)n−1
0 a−sk

−1 and d(v0, e)G = Cpe
−γt0

we know that s is a sufficiently large number. Also note that k, n0 and σ are all in

compact subsets and by Proposition 4.4.3, σΓσ−1∩exp(g−2α) is a lattice in exp(g−2α).

Therefore, we have that

v0 ∈ kasn0(σΓσ−1 ∩ exp(g−2α))n−1
0 a−sk

−1.

In other words, we can find n ∈ G such that

Adn(v0) ∈ exp(g−2α). (4.7)

By Proposition 4.4.2 (or repeating the proof of Proposition 4.4.2), we can assume,

without loss of generality, that n ∈ N+ ∪{ω}. Since {at} expands N+, condition 2 in

Proposition 4.6.1 implies that v0 /∈ N+, and hence by equation (4.7), we have n ∈ N+.

This completes the proof of the proposition.

Proposition 4.6.6. Suppose that g2α 6= ∅. Let p ∈ U0(eΓ) ⊂ G/Γ be non-rational,

t0 ∈ R+ a sufficiently large number and v0 ∈ Stab(at0p) such that t0 and v0 satisfy

the conditions in Proposition 4.6.1. Then there is a rational point q ∈ U0(eΓ) with
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d(q) ∼ e(2α−γ)t0/2 (the implicit constant depending only on p) such that

p ∈ BN+(Cd(q)−
2α

2α−γ , Cd(q)−
4α

2α−γ )q

for some constant C > 0 depending only on p.

Proof. By Proposition 4.6.5, we know that there exists n ∈ N+ such that

Ad(n)(v0) ∈ exp(g−2α).

Let v0 = exp(v) for some v ∈ g. Then we have

Adn(v) = z ∈ g−2α.

Now set n−1 = exp(u) for some u = u1 + u2 ∈ n+ with u1 ∈ gα and u2 ∈ g2α. Then

we have

z + [u1, z] + ([u2, z] + [u1, [u1, z]]/2)

+ ([u1, [u1, [u1, z]]]/6 + [u1, [u2, z]]/2 + [u2, [u1, z]]/2) + · · · = v

a = [u1, z] ∈ g−α, b = [u2, z] + [u1, [u1, z]]/2 ∈ g0

c = [u1, [u1, [u1, z]]]/6 + [u1, [u2, z]]/2 + [u2, [u1, z]]/2

= [u1, [u1, [u1, z]]]/6 + [u2, [u1, z]]

= [u1, [u1, [u1, z]]]/6 + [u1, [u2, z]]

= −[u1, [u1, [u1, z]]]/3 + [u1, b] ∈ gα.
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Since ‖v‖g ∼ d(v0, e)G = Cpe
−γt0 , we have

‖a‖g, ‖b‖g, ‖c‖g � Cpe
−γt0

and by the condition 2 in Proposition 4.6.1, we have

either ‖z‖g ∼ Cpe
−γt0 or ‖a‖g = ‖[u1, z]‖g ∼ Cpe

−γt0 .

If ‖z‖g ∼ Cpe
−γt0 , then we have

‖u1‖g‖z‖g � ‖a‖g ≤ Cpe
−γt0 , ‖u1‖g ≤ C1

for some constant C1 > 0 and

‖u2‖g‖z‖g � ‖b‖g + ‖u1‖2
g‖z‖g � Cpe

−γt0 , ‖u2‖g ≤ C2

for some constant C2 > 0.

If ‖a‖g ∼ Cpe
−γt0 , then

‖a‖g � ‖u1‖g‖z‖g ≤ ‖u1‖gCpe−γt0 , ‖u1‖g ≥ C3

for some constant C3 > 0 and

‖u1‖2
g‖a‖g � ‖u1‖g‖b‖g + ‖c‖g, ‖u1‖g � 1 +

1

‖u1‖g
≤ C4

for some constant C4 > 0 and

‖u2‖g‖a‖g � ‖c‖g + ‖u1‖3
g‖z‖g, ‖u2‖g ≤ C5
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for some constant C5 > 0. Either case, we have that u and n are bounded.

Now by definition, we have that nat0p is rational and hence a−t0nat0p is rational.

Let q = (a−t0nat0)p and we have that

a−t0nat0 ∈ BN+(C6e
−αt0 , C6e

−2αt0)

for some constant C6 > 0. By definition we know that

d(nat0p) ∼ (Cpe
−γt0)

1
2

and hence the denominator of q = a−t0nat0p is equal to

d(q) = eαt0d(nat0p) ∼ C
1
2
p e

(2α−γ)t0/2.

So we have that

a−t0nat0 ∈ BN+(Cd(q)−
2α

2α−γ , Cd(q)−
4α

2α−γ )

for some C > 0. Note that C depends only on p. This completes the proof of the

proposition.

Proposition 4.6.7. Suppose that g2α 6= ∅. Let p ∈ U0(eΓ) be a non-rational point.

If p is not Diophantine of type γ, then there exist a constant C > 0 and a sequence

qn ∈ U(eΓ) of distinct rational points with d(qn)→∞ such that

p ∈ BN+(Cd(qn)−
2α

2α−γ , Cd(qn)−
4α

2α−γ )qn.

Proof. Suppose that p ∈ U(eΓ) is not Diophantine of type γ. Then there exist

infinitely many tn →∞ and vn ∈ Stab(atnp) satisfying the conditions in Proposition

4.6.1 and hence by Proposition 4.6.6, there exist infinitely many rational points qn ∈
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U(eΓ) with d(qn) ∼ e(2α−γ)tn/2 such that

p ∈ BN+(Cd(qn)−
2α

2α−γ , Cd(qn)−
4α

2α−γ )qn

for some constant C > 0 depending only on p. This completes the proof of the

proposition.

Proposition 4.6.8. Suppose that g2α 6= ∅. Let p ∈ U0(eΓ) and let ε > 0 be a

sufficiently small number. If there exist a constant C > 0 and a sequence qn ∈ U0(eΓ)

of distinct rational points with d(qn)→∞ such that

p ∈ BN+(Cd(qn)−
2α

2α−(γ+ε) , Cd(qn)−
4α

2α−(γ+ε) )qn,

then p is not Diophantine of type γ.

Proof. Suppose that there exist a constant C > 0 and a sequence qn ∈ G/Γ of rational

points converging to p such that

p ∈ BN+(Cd(qn)−
2α

2α−(γ+ε) , Cd(qn)−
4α

2α−(γ+ε) )qn.

Let tn = ln d(qn)
2

2α−(γ+ε) . Then we have that

d(atnqn, atnp)G/Γ ≤ C

and

η(atnqn) ∼ d(qn)2/e2αtn = e−(γ+ε)tn .

This implies that

η(atnp) ≤ C ′e−(γ+ε)tn
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for some constant C ′ > 0 and infinitely many tn → ∞. Hence by definition p is not

Diophantine of type γ.

4.7 Proof of Theorem 4.3.1

Before we prove Theorem 4.3.1, we need the following propositions.

Proposition 4.7.1. Suppose that g2α = ∅. There exist r0 and C0 > 0 with the

following property: for any rational point q ∈ U0(eΓ), there exists a large con-

stant Lq > 0 such that for any l > Lq the open box BN+(r0d(q)−
α

α−γ )q contains at

least C0l
dim gαµN+(BN+(r0d(q)−

α
α−γ )q) many disjoint sub open boxes BN+(r0d(q̃)−

α
α−γ )q̃

where q̃’s are rational points with denominator between l and 2l.

Proof. We fix a sufficiently small r0 > 0. By Proposition 4.5.6, for the open box

BN+(r0d(q)−
α

α−γ )q, there exists a large constant Lq such that for l > Lq there are

at least C0l
dim gαµN+(BN+(r0d(q)−

α
α−γ )q) many rational points in BN+(r0d(q)−

α
α−γ )q

with denominator between l and 2l for some absolute constant C0 > 0. For each

such rational point q̃, we construct an open box BN+(r0d(q̃)−
α

α−γ )q̃ around q̃, and

to prove the proposition, we only need to prove that these open boxes are disjoint.

Let q1 and q2 be two such rational points. Suppose that BN+(r0d(q1)−
α

α−γ )q1 and

BN+(r0d(q2)−
α

α−γ )q2 are not disjoint. Then there exists an element n ∈ N+ such that

nq1 = q2 and n ∈ BN+(r0d(q1)−
α

α−γ + r0d(q2)−
α

α−γ ).

By applying at0 with t0 = ln(l/r0)/α on both sides, we have

(at0na−t0)at0q1 = at0q2 (4.8)
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and by calculations, we have that

d(at0q1) ∼ d(at0q2) ∼ r0 and d(at0na−t0 , e)G � l−
γ

α−γ .

Since r0 is sufficiently small and at0na−t0 is bounded, from the equation (4.8) we know

that there exist nonzero elements u1 ∈ Stab(at0q1) ∩ n− and u2 ∈ Stab(at0q2) ∩ n−

such that

Ad(at0na−t0)u1 = u2

and hence

Ad(at0na−t0)n− ∩ n− 6= {0}.

So by Lemma 3.4 in [BZ16], we have at0na−t0 = e, n = e and q1 = q2. This completes

the proof of the proposition.

Proposition 4.7.2. Suppose that g2α 6= ∅. There exist r0 and C0 > 0 with the

following property: for any open box U(eΓ) ⊂ U0(eΓ), there exists a large constant L >

0 such that for any l > L the open box U(eΓ) contains at least C0l
dim gα+2 dim g2αµN+(U)

many disjoint sub open boxes of the form BN+(r0d(q)−
2α

2α−γ , r0d(q)−
4α

2α−γ )q where q’s

are rational points with denominator between l and 2l.

Proof. We fix a sufficiently small r0 > 0. By Proposition 4.5.6, for any U(eΓ), there

exists a large constant L such that for l > L there are at least C0l
dim gα+2 dim g2αµN+(U)

many rational points in U(eΓ) with denominators between l and 2l for some abso-

lute constant C0 > 0. For each such rational point q, we construct an open box

BN+(r0d(q)−
2α

2α−γ , r0d(q)−
4α

2α−γ )q around q, and to prove the proposition, we only need

to prove that these open boxes are disjoint. Let q1 and q2 be two such rational points.
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Suppose that

BN+(r0d(q1)−
2α

2α−γ , r0d(q1)−
4α

2α−γ )q1 and BN+(r0d(q2)−
2α

2α−γ , r0d(q2)−
4α

2α−γ )q2

are not disjoint. Then there exists an element n ∈ N+ such that nq1 = q2 and

n ∈ BN+(r0d(q1)−
2α

2α−γ + r0d(q2)−
2α

2α−γ ,

r0d(q1)−
4α

2α−γ + r0d(q2)−
4α

2α−γ + r0d(q1)−
2α

2α−γ r0d(q2)−
2α

2α−γ ).

By applying at0 with t0 = ln(l/r
1
2
0 )/α on both sides, we have

(at0na−t0)at0q1 = at0q2 (4.9)

and by calculations, we have that

d(at0q1) ∼ d(at0q2) ∼ r
1
2
0 and d(at0na−t0 , e)G � l−

γ
2α−γ .

Then the rest of the proof is identical to that in Proposition 4.7.1.

Proof of Theorem 4.3.1 in the case of g2α = ∅. By Proposition 4.6.3, we can construct

an open cover of Scγ ∩ U0(eΓ)

Scγ ∩ U0(eΓ) = Scγ ∩ U0(eΓ) ∩
⋃
q

⋃
C

{BN+(Cd(q)−
α

α−γ )q}

=
⋃
C

(
Scγ ∩ U0(eΓ) ∩

⋃
q

{BN+(Cd(q)−
α

α−γ )q}

)

where q runs through all rational points in U0(eΓ) and C runs through all the positive

rational numbers. By the countability of the set of rational numbers, to get an upper
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bound for the Hausdorff dimension of Scγ ∩ U0(eΓ), it suffices to get an upper bound

for the Hausdorff dimension of

Scγ ∩ U0(eΓ) ∩
⋃
q

{BN+(Cd(q)−
α

α−γ )q}

for each C ∈ Q+. Fix C > 0 and let δ > 0. By Proposition 4.5.6, we have that

∑
q

diamδ(BN+(Cd(q)−
α

α−γ )q)

=
∑
q

(Cd(q))−δ
α

α−γ

∼
∑
n∈N

∑
2n≤d(q)≤2n+1

d(q)−δ
α

α−γ

∼
∑
n∈N

(2n)dim gα(2n)−δ
α

α−γ

=
∑
n∈N

(2n)dim gα−δ α
α−γ .

This implies that the Hausdorff dimension of

Scγ ∩ U0(eΓ) ∩
⋃
q

{BN+(Cd(q)−
α

α−γ )q}

is less than or equal to α−γ
α

dim gα for each C ∈ Q+, and hence

dimScγ ∩ U0(eΓ) ≤ α− γ
α

dim gα.

For the lower bound, we fix a sufficiently small ε > 0 and construct a tree-like

set in U0(eΓ) by induction. Let A0 = {U0(eΓ)} and A0 = U0(eΓ). Let r0 be as in
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Proposition 4.7.1 and pick a sufficiently large number l1. Define

A1 =

{
BN+(r0d(q)−

α
α−(γ+ε) )q

∣∣∣∣∣q ∈ S(U, l1/2, l1)

}

and A1 =
⋃
A1. Suppose that we find l1 < l2 < · · · < lj and construct families

Aj,Aj−1, . . . ,A0 and subsets Aj ⊆ Aj−1 ⊆ · · · ⊆ A1 ⊆ A0. Now by Proposition

4.7.1, we can find a sufficiently large lj+1 > 0 such that

1. log lj+1 ≥ j2 log(ljlj−1 . . . l1).

2. For every BN+(r0d(q)−
α

α−(γ+ε) )q ∈ Aj, it contains at least

C0l
dim gα
j+1 µN+(BN+(r0d(q)−

α
α−(γ+ε) )q)

sub-open boxes of the form BN+(r0d(q̃)−
α

α−(γ+ε) )q̃ with

q̃ ∈ S(BN+(r0d(q)−
α

α−(γ+ε) )q, lj+1/2, lj+1).

We denote the family of all these new sub-open boxes by Aj+1 as

BN+(r0d(q)−
α

α−(γ+ε) )q

runs through all the open boxes in Aj and let Aj+1 =
⋃
Aj+1.

Now we take A∞ =
⋂∞
j=0 Aj and A =

⋃∞
j=0Aj. By the construction of Aj’s and

Proposition 4.6.4, we know that A∞ ⊂ Scγ. Also we have that

∆j(A) ∼ ldim gα
j+1 l

− α
α−(γ+ε)

dim gα

j+1 and dj(A) = r0l
− α
α−(γ+ε)

j .
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By Theorem 4.2.1, we know that

dimH(A∞) ≥ dim gα − lim sup
j→∞

∑j
i=0 log

(
1

l
− γ+ε
α−(γ+ε)

dim gα

i+1

)

log

(
1

l
− α
α−(γ+ε)

j+1

) = dim gα

(
1− γ + ε

α

)
.

Let ε→ 0 and we have

dimH S
c
γ ∩ U0(eΓ) ≥ dimH(A∞) ≥ α− γ

α
dim gα.

This completes the proof of the theorem if g2α = ∅.

Proof of Theorem 4.3.1 in the case of g2α 6= 0. By Proposition 4.6.7, we can build an

open cover of Scγ ∩ U0(eΓ)

Scγ ∩ U0(eΓ) = Scγ ∩ U0(eΓ) ∩
⋃
C

⋃
q

{BN+(Cd(q)−
2α

2α−γ , Cd(q)−
4α

2α−γ )q}

=
⋃
C

(
Scγ ∩ U0(eΓ) ∩

⋃
q

{BN+(Cd(q)−
2α

2α−γ , Cd(q)−
4α

2α−γ )q}

)

where q runs through all rational points in U0(eΓ) and C runs through all the positive

rational numbers. By the countability of the set of rational numbers, to get an upper

bound for the Hausdorff dimension of Scγ ∩ U0(eΓ), it suffices to get an upper bound

for the Hausdorff dimension of

Scγ ∩ U0(eΓ) ∩
⋃
q

{BN+(Cd(q)−
2α

2α−γ , Cd(q)−
4α

2α−γ )q}
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for each C ∈ Q+. Fix C ∈ Q+. For each rational q ∈ U0(eΓ), we devide

BN+(Cd(q)−
2α

2α−γ , Cd(q)−
4α

2α−γ )q

into small cubes of equal sides of length Cd(q)−
4α

2α−γ , and there are (d(q)
2α

2α−γ )dim gα

such small cubes. Let FC be the collection of all these small cubes of equal sides of

length Cd(q)−
4α

2α−γ where q runs through all rational points in U0(eΓ). For any δ > 0,

by Proposition 4.7.2, we have that

∑
B∈FC

diam(B)δ

∼
∑
q

d(q)−δ
4α

2α−γ (d(q)
2α

2α−γ )dim gα

=
∑
n∈N

∑
2n≤d(q)≤2n+1

d(q)−δ
4α

2α−γ (d(q)
2α

2α−γ )dim gα

∼
∑
n∈N

(2n)dim gα+2 dim g2α(2n)−δ
4α

2α−γ ((2n)
2α

2α−γ )dim gα

=
∑
n∈N

(2n)
4α−γ
2α−γ dim gα+2 dim g2α−δ 4α

2α−γ .

This implies that the Hausdorff dimension of

Scγ ∩ U0(eΓ) ∩
⋃
q

{BN+(Cd(q)−
2α

2α−γ , Cd(q)−
4α

2α−γ )q}

is less than or equal to 4α−γ
4α

dim gα + 2α−γ
2α

dim g2α for each C ∈ Q+, and hence

dimScγ ∩ U0(eΓ) ≤ 4α− γ
4α

dim gα +
2α− γ

2α
dim g2α.

For the lower bound, we fix a sufficiently small ε > 0 and construct a tree-like set

in U0 by induction. Let A0 = {U0(eΓ)} and A0 = U0(eΓ). Let r0 be as in Proposition
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4.7.2 and pick a sufficiently large number l1. Define

A′1 =

{
BN+(r0d(q)−

2α
2α−(γ+ε) , r0d(q)−

4α
2α−(γ+ε) )q

∣∣∣∣∣q ∈ S(U0(eΓ), l1/2, l1)

}
.

For each q ∈ S(U0(eΓ), l1/2, l1), we devide BN+(r0d(q)−
2α

2α−(γ+ε) , r0d(q)−
4α

2α−(γ+ε) )q in

A′1 into small cubes of equal sides of length r0d(q)−
4α

2α−(γ+ε) . Let A1 be the family of

all these small cubes and A1 =
⋃
A1. Suppose that we find l1 < l2 < · · · < lj and

construct families Aj,Aj−1, . . . ,A0 and subsets Aj ⊆ Aj−1 ⊆ · · · ⊆ A1 ⊆ A0. Now

by Proposition 4.7.2, we can find a sufficiently large lj+1 > 0 such that

1. log lj+1 ≥ j2 log(ljlj−1 . . . l1).

2. For every B ∈ Aj, it contains at least

C0l
dim gα+2 dim g2α
j+1 µN+(B)

sub-open boxes of the form BN+(r0d(q̃)−
2α

2α−(γ+ε) , r0d(q̃)−
4α

2α−(γ+ε) )q̃ with

q̃ ∈ S(B, lj+1/2, lj+1).

For each q̃ ∈ S(B, lj+1/2, lj+1), we devide BN+(r0d(q̃)−
2α

2α−(γ+ε) , r0d(q̃)−
4α

2α−(γ+ε) )q̃ into

small cubes of equal sides of length r0d(q̃)−
4α

2α−(γ+ε) . We denote the family of all these

small cubes by Aj+1 as B runs through all the cubes in Aj and let Aj+1 =
⋃
Aj+1.

Now we take A∞ =
⋂∞
j=0 Aj and A =

⋃∞
j=0Aj. By the construction of Aj’s and

Proposition 4.6.8, we know that A∞ ⊂ Scγ. Also we have that

∆j(A) ∼ ldim gα+2 dim g2α
j+1 l

− 2α
2α−(γ+ε)

dim gα

j+1 l
− 4α

2α−(γ+ε)
dim g2α

j+1 and dj(A) = r0l
− 4α

2α−(γ+ε)

j .
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By Theorem 4.2.1, we know that

dimH(A∞)

≥ dim gα + dim g2α

− lim sup
j→∞

∑j
i=0 log

(
ldim gα+2 dim g2α
i+1 l

− 2α
2α−(γ+ε)

dim gα

i+1 l
− 4α

2α−(γ+ε)
dim g2α

i+1

)
log

(
1

l
− 4α

2α−(γ+ε)
j+1

)

=

(
1− γ + ε

2α

)
dim g2α +

(
1− γ + ε

4α

)
dim gα.

Let ε→ 0 and we have

dimH S
c
γ ∩ U0(eΓ) ≥ dimH A∞

≥
(

1− γ

2α

)
dim g2α +

(
1− γ

4α

)
dim gα.

This completes the proof of the theorem.

4.8 Proof of Theorem 4.1.2

In this section we will prove Theorem 4.1.2. Let

S(i, γ) = {p ∈ G/Γ|∃C > 0 s.t. η(atp)χYi(atp) ≥ Ce−γtχYi(atp) (∀t > 0)}.

Then by definition, we know that

Sγ1,...,γk = S(1, γ1) ∩ · · · ∩ S(k, γk)
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and hence

dimH S
c
γ1,...,γk

= max
1≤i≤k

dimH S(i, γi)
c.

So in order to prove Theorem 4.1.2, it is enough to prove the following

Theorem 4.8.1. Let i ∈ {1, . . . , k}. If g2α = ∅, then the Hausdorff dimension of

S(i, γ)c (0 ≤ γ < α) is

dim g−α + dim g0 +
α− γ
α

dim gα.

If g2α 6= ∅, then the Hausdorff dimension of S(i, γ)c (0 ≤ γ < 2α) is

dim g−2α + dim g−α + dim g0 +
4α− γ

4α
dim gα +

2α− γ
2α

dim g2α.

Now we will fix a cusp ξi for some i ∈ {1, . . . , k} and let σi ∈ Σ be the element

corresponding to ξi.

Proof of Theorem 4.8.1. The proof for S(i, γ)c is almost identical to the proof of

Theorem 4.1.1 (or equivalently Theorem 4.3.1), except that we replace rational points

by σi-rational points, denominators by σi-denominators. In fact, our discussion in

section 5 is cuspwise, and we can use Proposition 4.5.3 and Proposition 4.5.4 to

count σi-rational points instead of Proposition 4.5.6. Hence Proposition 4.7.1 and

Proposition 4.7.2 holds also for σi-rational points with σi-denominators. The same

happens in Proposition 4.6.4 and Proposition 4.6.8. The only thing we need to do is

to prove that after replacing by σi-rational points and σi-denominators in Proposition

4.6.2 and Proposition 4.6.6 with the assumption that p ∈ S(i, γ)c, the rational q ∈

U0(eΓ) we obtain is actually a σi-rational point. We will prove this for the case of

g2α = ∅. The case of g2α 6= ∅ is similar.
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Now assume that g2α = ∅ and p ∈ S(i, γ)c. By the proof of Proposition 4.6.2, we

know that

nat0p = at0q

for some bounded n ∈ N+, and we have at0p ∈ Yi. This implies that

η(at0q) ∼ η(at0p) ∼ Cpe
−γt0

and the rational point at0q ∈ Y ′i for a small neighborhood Y ′i of ξi in G/Γ. This

happens if and only if q is a σi-rational point. This completes the proof of Theorem

4.8.1.

4.9 Further Discussions

4.9.1 The Hyperbolic Case

In this subsection, we will discuss the relation between the definition of Diophan-

tine points in this paper and the work by Melián and Pestana [MP93] where they

deal with the hyperbolic case. We will assume G = SO(d + 1, 1). First, we need

some notations in [MP93]. Let Md+1 = Hd+1/Γ be a complete non-compact Rie-

mannian manifold of constant negative curvature and of finite volume, where Γ is

a non-uniform lattice in G. Denote by dHd+1 the distance on Md+1. For any point

x ∈Md+1, let S(x) be the unit ball in the tangent space of Md+1 at x. Let gv(t) be

the geodesic starting from x in the direction of v ∈ S(x). For any γ ≥ 0, we write

Eγ(x) =

{
v ∈ S(x) : lim sup

t→∞

dHd+1(gv(t), x)

t
≥ γ

}
.
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Note that the maximal compact subgroup K ∼= SO(d + 1), M ∼= SO(d) and {at} is

the geodesic flow on G/Γ. Note that here the speed of the geodesic flow α = 1. We

will denote by πK the projection from G/Γ toMd+1 = K\G/Γ and πM the projection

from G/Γ to T 1Md+1 = M\G/Γ. Let x0 = πK(eΓ) ∈Md+1.

Proposition 4.9.1. For any p ∈ G/Γ we have

η(p) ∼ e−dHd+1 (πK(p),x0).

Here the implicit constant depends only on G and Γ.

Proof. By Theorem 4.2.2, for any p ∈ G/Γ, we can write

p = kat0nσΓ

for some k ∈ K = SO(n), at0 ∈ A with t0 ≥ s0, n ∈ N−(V0) and σ ∈ Σ. On

the one hand, since A contracts N− and k, n, σ are all in compact subsets of G, by

calculations, we have

η(p) ∼ e−αt0 = e−t0 .

On the other hand, since k, n, σ are all in compact subsets of G, by calculations, we

have

|dHd+1(πK(p), x0)− t0| ≤ C

for some constant C > 0. This implies that

η(p) ∼ e−dHd+1 (πK(p),x0).

Note that all the implicit constants here depend only on G and Γ according to The-

orem 4.2.2. This completes the proof of the proposition.
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Remark 4.9.1. Note that we can prove a similar version for any semisimple Lie group

of rank one.

Proposition 4.9.2. Fix x = πK(p) with p ∈ G/Γ and x ∈Md+1. For any ε > 0, we

have

πM(Kp ∩ Scγ) ⊂ {(x, v) : v ∈ Eγ(x)} ⊂ πM(Kp ∩ Scγ−ε).

Proof. Let p′ ∈ Kp ∩ Scγ. Let πM(p′) = (x, v′) for v′ ∈ T 1
xMd+1. By definition, there

exist a constant C1 > 0 and a sequence tn →∞ such that

η(atnp
′) ≤ Ce−γtn .

By Proposition 4.9.1, this implies that

dHd+1(gv′(tn), x0) ≥ γtn + C2

for tn → ∞ and some constant C2 and hence v′ ∈ Eγ(x). This proves the first

inclusion.

Now we prove the second inclusion. Let v ∈ Eγ(x). Let p′ ∈ G/Γ with πM(p′) =

(x, v). Then p′ ∈ Kp. Since v ∈ Eγ(x), for any ε > 0, there exists a sequence tn →∞

such that

dHd+1(gv(tn), x) ≥
(
γ − ε

2

)
tn

and hence there exists a constant C3 such that

dHd+1(gv(tn), x0) ≥
(
γ − ε

2

)
tn + C3.
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By Proposition 4.9.1, there exists a constant C4 > 0 such that

η(atp
′) ≤ C4e

−(γ− ε
2

)tn = (Ce−
ε
2
tn)e−(γ−ε)tn .

Therefore p′ ∈ Scγ−ε. This completes the proof of the proposition.

Now we show that in the case of hyperbolic spaces, our theorem coincides with

Theorem 1 in [MP93].

Theorem 4.9.1 (Melián and Pestana, Theorem 1 in [MP93]). We have

dimH Eγ(x) = (1− γ)d.

Proof. Let x = πK(p0) ∈ Md+1 for some p0 ∈ G/Γ. By the discussions in section 3

and Theorem 4.3.1, we know that for any p ∈ G/Γ and any small neighborhood W

of e in G

dimH((Wp) ∩ Scγ) = dim g−α + dim g0 + (1− γ) dim gα.

Now let WK be a neighborhood of e in K and WAN− a neighborhood of e in AN−.

Then WAN−WK is a neighborhood of e in G, and hence

dimH((WAN−WKp) ∩ Scγ) = dim g−α + dim g0 + (1− γ) dim gα.

Since {at} commutes with A and contracts N−, by definition, a point (hk)p with

h ∈ WAN− and k ∈ WK belongs to Sγ if and only if kp belongs to Sγ. Therefore we

have

(WAN−WKp) ∩ Scγ = WAN−

(
(WKp) ∩ Scγ

)
.
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This implies that

dimH(WKp ∩ Scγ) = dimM + (1− γ) dim gα.

Let p vary in the K-orbit Kp0, we get

dimH(Kp0 ∩ Scγ) = dimM + (1− γ) dim gα

and by Proposition 4.9.2, we have

dimH Eγ(x) = (1− γ) dim gα = (1− γ)d.

This completes the proof of Theorem 1 in [MP93].

4.9.2 The Case of PSL(2,R)

In this subsection, we discuss the relation between Theorem 4.1.2 and Theorem

1.7.1 in Chapter 1. Suppose that G = PSL(2,R) and the speed of the geodesic flow

α = 1. We will reuse the notations in the previous subsection.

Proof of Theorem 1.7.1. By Proposition 4.9.1, we know that p ∈ G/Γ is Diophantine

of type (γ1, . . . , γk) if and only if for each i ∈ {1, . . . , k} we have

lim sup
t→∞

(dH2(πK(atp), x0)− γit)χYi(atp) <∞

or equivalently

lim sup
t→∞

(dH2(πK(atp), x0)χYi(atp)− γit) <∞.

By Lemma 1.3.4 in Chapter 1, this is equivalent to say that p is Diophantine of type
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(κ1, . . . , κk) in the sense of Definition 1.1.1 in Chapter 1. Here

γi =
κi − 1

κi + 1
.

Then we complete the proof of Theorem 1.7.1 by applying Theorem 4.1.2.

4.9.3 Diophantine Approximation in Heisenberg Groups

In this subsection, we will give an application to Diophantine approximation in

Heisenberg groups. We will follow the notations and results in [HP02B].

Let G = SU(n, 1) and Γ = G(Z[i]). Let M = K\G/Γ ∼= Hn
C/Γ where K is the

maximal compact subgroup of G. Here we use the model of Siegel domain for Hn
C

(see section 3.8 in [HP02B]). Note that M is not of constant curvature. Let {at} be

the geodesic flow on G/Γ. For simplicity, we will assume that M has only one cusp

ξ =∞; for general case, we only need to replace rational points by σ-rational points

in the following arguments as we do in section 8 and apply Theorem 4.8.1. Also we

will assume that the orbit {at(eΓ)} diverges to the cusp ξ =∞ in ∂Hn
C as t→ −∞.

We will denote by πK the projection from G/Γ toM and by πM the projection from

G/Γ to M\G/Γ. Let x0 = πK(eΓ) and U0 ⊂ N+ be a small open subset. The speed of

the geodesic flow is the simple root α = 1. Note that N+
∼= H2n−1(R) acts naturally

on ∂HCn (see section 3.10 in [HP02B]). We will write

BCyg(α,R) = {β ∈ H2n−1(R) : dCyg(β, α) < R}.

We recall some definitions and notations from [HP02B]. The geodesic lines starting

from ξ = ∞ and diverging to itself in M are called rational lines, and the geodesic

lines starting from ξ =∞ but not diverging to it are called irrational lines. Here we
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can identify the geodesic lines starting from ξ =∞ with ∂Hn
C\{∞} ∼= H2n−1(R), and

the rational lines starting from ξ = ∞ with rational points in a subset of H2n−1(Q)

(see section 3.10 in [HP02B]). The height function β onM, the Hamenstädt distance

d∞ on ∂Hn
C
∼= H2n−1(R) ∪ {∞} and the depth D(r) of a rational geodesic line r in

M are defined in section 2 in [HP02B]. For simplicity, we will not list these concepts

here. Readers may refer to [HP02B] for more details. Note that by Proposition 3.14

in [HP02B], we have

D(r) = lnh(r) and d∞ =
1√
2
dCyg.

Also note that by our assumption, for any p ∈ U0(eΓ), πK(atp) is a geodesic line

starting from ξ =∞ which could be identified with a point in the Heisenberg group.

Proposition 4.9.3. Let p ∈ U0(eΓ). Then p is rational if and only if the geodesic

line πK(atp) is rational.

Proof. Suppose that p is rational. Then by definition, atp diverges in G/Γ to the

cusp ξ = ∞ as t → ∞ and hence so does πK(atp) in M. Since at(eΓ) diverges to

the cusp ξ = ∞ as t → −∞ and p ∈ U0(eΓ), we know that atp also diverges to the

cusp as t→ −∞. This implies that πK(atp) is a rational geodesic line in the sense of

[HP02B].

Conversely, if πK(atp) is a rational line, then atp diverges to the cusp as t → ∞

and hence by Corollary 6.2 in [D85] and Proposition 4.5.1, we know that p is rational.

This completes the proof of the proposition.

Remark 4.9.2. This proposition implies that the rational points in U0(eΓ) are in

H2n−1(Q) via the identification. See section 3.10 in [HP02B].

Proposition 4.9.4. Let p ∈ U0(eΓ) be rational. Then we have

h(p) ∼ d(p).
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Here we consider p as a rational point in H2n−1(Q) and the implicit constant depends

only on U0 and G/Γ.

Proof. We will consider the rational line πK({atp}) and its depth D(πK({atp})). Fix

a level set β−1(l) ⊂ M for some l. Then there exists a constant ε > 0 such that for

any p′ ∈ π−1
K (β−1(l)) we have

η(p′) ∼ ε.

Let s0 > 0 be the last time such that as0p ∈ π−1
K (β−1(l)). Then by definition, we have

ε ∼ η(as0p) ∼ e−2s0d(p)2. (4.10)

On the other hand, since at(eΓ) diverges as t→ −∞, there exists t0 > 0 such that t0

is the largest number with a−t0(eΓ) ∈ π−1
K (β−1(l)) and we have

ε ∼ η(a−t0(eΓ)) ∼ e2t0 . (4.11)

As p ∈ U0(eΓ) and a−t contracts N+ as t→∞, a−t0p is near the subset π−1
K (β−1(l)).

By definition of the depth function, this implies that there exists a constant C1 > 0

such that

|D(πK({atp}))− (s0 + t0)| ≤ C1.

Also by equations (4.10) and (4.11), we know that

d(p)2 ∼ e2(s0+t0).

So there exists a constant C > 0 such that

d(p) ∼ eD(πK({atp})).
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This implies that

d(p) ∼ h(p).

Note that the implicit constant depends only on U0 and G/Γ. This completes the

proof of the proposition.

Proposition 4.9.5. Let p ∈ U0(eΓ) with p = gΓ for some g ∈ U0 and let ε > 0 be a

sufficiently small number. If there exist a constant C > 0 and a sequence qj ∈ U0(eΓ)

of distinct rational points with d(qj)→∞ such that

p ∈ BN+(Cd(qj)
−(γ+ε), Cd(qj)

−2(γ+ε))qj,

then g ∈ N+
∼= H2n−1(R) is not Diophantine of type γ.

Proof. By the definition of the Cygan distance, Proposition 4.9.3 and Proposition

4.9.4, the condition in the proposition is equivalent to the condition that there exist

a constant C > 0 and a sequence of rational points rj ∈ U0 ⊂ N+
∼= H2n−1(R) with

h(rj)→∞ such that

dCyg(g, rj) ≤
C

h(rj)γ+ε
.

By definition, this implies that g is not Diophantine of type γ.

Proof of Theorem 4.1.3. The proof is similar to that in Theorem 4.1.1. For the upper

bound of the Hausdorff dimension of Lcγ, it is enough to get an upper bound for Lcγ∩U0

for every small open subset U0 in N+
∼= H2n−1(R). Now fix a small open subset U0.

By definition, we can construct an open cover of Lcγ ∩ U0 as follows

Lcγ ∩ U0 =

(⋃
r

⋃
C

BCyg(r, Ch−γ(r))

)
∩ Lcγ ∩ U0

=
⋃
C

(⋃
r

BCyg(r, Ch−γ(r))

)
∩ Lcγ ∩ U0.
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where C runs through all the positive rational numbers and r runs through all the

rational points in H2n−1(Q). So it is enough to get an upper bound for the Hausdorff

dimension of (⋃
r

BCyg(r, Ch−γ(r))

)
∩ Lcγ ∩ U0.

For each rational r, the BCyg(r, Ch−γ(r)) could be thought of as a box with lengths

Ch−γ(r) in the first 2(n − 1) real coordinates and length C2h−2γ(r) in the last co-

ordinate, with respect to the right invariant distance dH2n−1(R). So we can devide

BCyg(r, Ch
−γ(r)) into small cubes of equal sides of length C2h−2γ(r), and there are

(h(r)γ/C)2n−2 such small cubes. Let FC be the collection of all these small cubes of

equal sides of length

C2h(r)−2γ

where r runs through all rational points in H2n−1(Q).

Fix C > 0 and let δ > 0. By Theorem 3.7 in [HP02B], we have

∑
B∈FC

diamδ(B)

∼
∑

r∈H2n−1(Q)

h(r)−2δγh(r)γ(2n−2)

=
∑
j∈N

∑
2j−1≤h(r)≤2j

h(r)−2δγh(r)γ(2n−2)

�
∑
j∈N

22nj2−2jδγ2jγ(2n−2)

This implies that

dimH L
c
γ ≤

1 + γ

γ
n− 1.
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For the lower bound of the Hausdorff dimension, by Proposition 4.9.5, we only

need to repeat the proof in Theorem 4.1.1, and we can get

dimH L
c
γ ∩ U0 ≥

1 + γ + ε

2(γ + ε)
2(n− 1) +

1

γ + ε

for any ε > 0. Let ε→ 0 and we have

dimH L
c
γ ≥

1 + γ

γ
(n− 1) +

1

γ
.

This completes the proof of Theorem 4.1.3.
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[S13] A.Strömbergsson, On the deviation of ergodic averages for horocycle flows, J.
Mod. Dyn., 7(2), 291-328, 2013

[TV15] Tanis and Vishe, Uniform bounds for period integrals and sparse equidistri-
bution, arXiv:1501.05228

[U91] M. Urbanski, The Hausdorff dimension of the set of points with nondense orbit
under a hyperbolic dynamical system, Nonlinearity 2, 385-397, 1991

[V10] A.Venkatesh, Sparse equidistribution problems, period bounds, and subconvex-
ity, Ann. of Math., 172(2), 989-1094, 2010

[Z16] C.Zheng, Spare equidistribution of unipotent orbits in finite-volume homoge-
neous spaces, J. Mod. Dyn., 10(2), 1-21, 2016

107


