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Abstract

Choice models and decision tools are broadly used in marketing to understand

what consumers prefer and inform product development and product line optimiza-

tion. However, explaining preference, understanding what drives consumer prefer-

ences, remains a challenge. Knowing why consumers prefer what they do helps inform

targeting and promotion activities. In this dissertation, we address two related issues

to improve our ability to explain preference in choice modeling. First, we incorpo-

rate variables describing the motivating state of the consumer and their beliefs about

brands to identify which offerings are relevant to them and what effect this relevance

has on choice. Second, we augment a choice model with a grade of membership model

to account for high-level interactions among the drivers of preference to improve our

ability to explain heterogeneity across consumer preferences. Together, these im-

provements help provide a way forward in terms of identifying the variables that

describe the drivers of preference along with modeling how these variables interact.
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Chapter 1: Introduction

Choice models are used extensively in marketing to understand what consumers

prefer. These insights have been leveraged in product development, allowing firms

to create what consumers want. However, explaining preference, understanding why

consumers prefer what they do and what drives their interest in particular products

and product features, continues to be a challenge. Such insights are used for targeting

and promotion, activities that are becoming increasingly important as firms seek to

differentiate their products. In this dissertation, we look at two avenues to improve

explaining preference in choice modeling. First, we incorporate variables describing

product relevance. Second, we develop a method to improve our ability to explain

preference heterogeneity.

In Essay 1 (Chapter 2), we account for the staged process of choice through an

extended model of behavior and measure the effect of product relevance. A product is

relevant if a respondent perceives it as being able to address his or her needs, where

needs describe the motivating state of the individual. We investigate the effect of

product relevance on choice through two mechanisms, the first in relation to preference

coefficients directly and the second with respect to preference certainty. We find

evidence that the effect of product relevance is manifest through preference certainty

rather than its level.
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In Essay 2 (Chapter 3), we address the issue of finding covariates for a model

of preference heterogeneity that explain cross-sectional variation in the part-worths.

We augment the choice model with a grade of membership model, part of the mixed

membership class of models, to account for interactions among discrete variables

that describe drivers of preference. We find improvement in model fit and inference

using the covariates generated with the proposed model over competing models using

standard discrete covariates.

Together, these essays improve our ability to explain preference using choice mod-

els and thus the ability of marketers to target and promote effectively. With increasing

access to large-scale individual data, we need to both identify the variables that can

improve our ability to explain preference as well as develop the methodology to han-

dle the size and form of these variables. New data can help describe the current state

of individuals and thus better inform what motivates them to engage in a market to

begin with. The form of this new data, including text, is typically discrete, prime for

the application of mixed membership models. In this regard, this dissertation pro-

vides a way forward in terms of both identifying the variables describing the drivers

of preference and modeling the high-dimensional interactions among these variables.
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Chapter 2: An Extended Model of Brand Choice:

Incorporating Product Relevance and Perceived Efficacy

2.1 Introduction

Consumers proceed through a variety of stages prior to purchasing a product,

including recognizing they have needs that may benefit from marketplace solutions,

searching for appropriate offerings, and evaluating whether the offerings will help ad-

dress the issues they face. Extended models of behavior that account for a staged

decision process have been lauded theoretically, but have not been commonly exe-

cuted. In this paper, we develop an extended model of behavior and investigate the

role of relevance in utility formation and choice.

Extended models of behavior are difficult to implement because choice is a cen-

sored realization of the decision process, thus it is impossible to employ an extended

model without additional data on the preceding stages. Extended models of behav-

ior are often characterized by the principle of conditional independence, where two

variables A and C are independent conditional on a third variable B. The simplest

of these models employs conditional distributions to describe the joint distribution of

the data. For example, π(A,B,C) = π(A)× π(B|A)× π(C|B), which can be visual-

ized as A→ B→ C where B acts as a mediating variable from A to C (Chandukala
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et al., 2011a). These types have been widely used in explaining the effects of adver-

tising with variables as attention, interest, learning, and conviction as antecedents to

purchase likelihood (Strong, 1925; Lavidge and Steiner, 1961; Vakratsas and Ambler,

1999). However, many models of choice involve relationships that are not easily fac-

tored into a series of conditional likelihoods, particularly when the variables in the

extended model are related to other variables in a non-linear manner.

We develop an extended model of choice using data from two conjoint experiments

in the pre-packaged dinner category. The first conjoint experiment has alternatives

composed of benefit bundles and the second conjoint experiment is a brand-price

tradeoff. Our goal is to investigate the role of product relevance on preferences and

brand choice, where relevance is measured in terms of the benefits sought by an

individual and their belief that the brand is capable of providing the benefit. The

brand belief data is used with the benefit importances to form the brand intercept

in the second conjoint experiment. Thus, our extended model of behavior employs

brand belief data to both model brand choice and to identify relevant brands.

We examine two mechanisms of how product relevance might effect choice. The

first mechanism specifies the effect of product relevance on preference. Depending

on whether the product is relevant or not, respondents are expected to have high

or low preference, respectively. The second mechanism specifies the effect of product

relevance on preference certainty by modifying the scale of the random utility model’s

error term. This mechanism allows for an individual to be more or less certain about

the preferences they form for a given product based on whether or not the product is
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relevant. We find evidence for the second mechanism. In other words, asking respon-

dents about their preferences for things they don’t need leads to noisier responses,

not responses that indicate consistently low preference.

The intended contribution of our paper is fourfold. First, we develop an extended

model of behavior and demonstrate its application. Second, we add to the literature

on the importance of motivating conditions, or needs, in models of choice using stated

preference data. Third, we add another behavioral explanation to the literature

on heteroscedastic errors. Fourth, our analysis indicates that traditional screening

criteria, where candidate respondents are identified based on category participation,

may not be sufficient for product research.

The remainder of the paper will be organized as follows. We develop our extended

model in Section 2.2. Section 2.3 provides details on our empirical application. In

Section 2.4, we compare results from our proposed extended model and alternative

extended models. Concluding remarks and research extensions are offered in Section

2.5.

2.2 Model Development

Consumers value products for the benefits they provide, and seek out products

with benefits they believe will address their needs – i.e., products that are relevant

(Gutman, 1982; Griffin and Hauser, 1993; Kim et al., 2009). The benefits each

product provides depends on consumer beliefs. We assume that a product is relevant

to an individual if it is perceived as being able to address their needs. We measure

needs as the concerns and interests of a respondent engaged in behaviors related to
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a product category, and use brand belief data to determine which brands are viewed

as efficacious, or relevant.

Before we can more fully describe our model, we first need to consider two mech-

anisms through which product relevance might effect choice in terms of the random

utility model. We then develop our extended model for brand choice, and conclude

the section with a validation of the proposed model using a simulation experiment.

2.2.1 Product Relevance and Choice

Marketing is concerned with understanding the needs of consumers and developing

products that people will want to buy. Failing to understand the needs of individuals

as they enter a market provides an incomplete picture regarding how products, offer-

ings, and promotions should be designed. We examine the role of needs, or benefits

sought by consumers, using the framework described in Fennell and Allenby (2014)

and used by Chandukala et al. (2011b) to examine unmet demand, and Yang et al.

(2002) to study the role of environmental context on choice. As illustrated below, we

measure needs in specific, concrete terms that correspond to specific beliefs about the

brands (cf. Bagozzi and Dholakia, 1999; van Osselaer and Janiszewski, 2012).

We investigate two mechanisms by which product relevance might impact brand

choice. Consider the random utility model:

Ujh = Vjh + εjh. (2.1)

The utility respondent h has for alternative j consists of two components. The de-

terministic component is often modeled as Vjh =
∑M

m=1 βmhxmj, a function of the M

attributes xj and the associated M coefficients βh. The random component εjh is

thought to arise from unobservables. It is typically assumed that εjh is independent
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and identically distributed EV (0, σ). This scale parameter for the random compo-

nent represents overall preference certainty. Note that Ujh is a function of both the

preferences βh and the scale of the error term σ. This σ is a model parameter, though

it is typical to set σ = 1 (Swait and Louviere, 1993).

The first mechanism specifies the effect of product relevance on preference as

measured by the part-worths βh. This is accomplished within the deterministic com-

ponent of the random utility model by allowing the part-worths to be cross-sectionally

related to a set of covariates through a random-effects model:

βh = ∆′zh + ξh. (2.2)

If these zh covariates consist of a binary vector indicating active needs for respondent

h, it is expected that some elements of the ∆ coefficient matrix would be positive and

would predict large positive coefficients in βh when the associated needs are addressed.

The matrix of coefficients ∆ in Equation (2.2) maps cross-sectional variation in the

variable zh to variation in the coefficients βh, and provides a flexible model describing

correlates of preference.

The inclusion of covariates in the random-effects model after this fashion is com-

monplace. Allenby and Ginter (1995b) specify zh as the demographic variables of

age, income, and gender and examine their relationship to part-worths in a conjoint

analysis. Rossi et al. (1996) examine the information contents of demographics in

general. Lenk et al. (1996) examine the role of expertise and other variables on per-

sonal computer purchases. Chandukala et al. (2011b) examine the role of needs in

explaining variation in βh. In practice, the influence of zh on explaining heterogeneity

in βh has not met with much success. Rossi et al. (1996) show that the inclusion of
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demographic variables as covariates only explains between 7 and 33% of the vari-

ability in βh. Horsky et al. (2006) only see a 5% improvement in the log-marginal

density when moving from an intercept model to a model that includes covariates, as

in Equation (2.2). Similarly, Chandukala et al. (2011b) only see a 1% improvement

of the log-marginal density when moving from an intercept model to a model that

includes covariates. Heterogeneity in model coefficients has largely been explained by

unobservable factors (i.e., ξh) rather than observable factors (i.e., ∆′zh).

The second mechanism specifies the effect of product relevance on preference cer-

tainty by modifying the scale term σ. This is accomplished within the random com-

ponent of the random utility model by specifying the scale parameter for alternative

j and respondent h as a function of i) the presence of the respondent’s needs and ii)

the belief that the brand for alternative j is able to address those needs:

σjh = exp

[
γ · I

(
M∑
m=1

zmh ≥ 1

)
· I

(
M∑
m=1

bmjhzmh =
M∑
m=1

zmh

)]
. (2.3)

The covariates zh are again a binary vector indicating active needs. Bh is a binary

matrix of respondent h’s brand beliefs regarding benefits, where bjh is the vector from

that matrix for beliefs about brand j. We assume an a priori one-to-one mapping

between the M needs and M benefits, thus for every need included in the analysis

there is a corresponding benefit that satisfies it. The indicator functions specify that

when respondent h has active needs and that the product in question has a brand that

the respondent believes is able to address all of their needs, γ will measure the effect of

relevance on preference certainty. We exponentiate the expression in Equation (2.3)

to ensure that the scale term is positive. If either of the indicator functions don’t hold

then σjh = 1 as is typically assumed. A negative value of γ would produce a small
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σjh and thus indicate that relevance leads to more preference certainty. We expect

choices among relevant options to be associated with greater preference certainty,

therefore we expect the estimate of γ to be negative.

With the scale term specific to respondents and alternatives, the random com-

ponent in the random utility model is no longer identically distributed (i.e., it is

heteroscedastic). Extant research employs heteroscedastic errors to account for un-

specified factors influencing choice probabilities (Allenby and Ginter, 1995a), to alle-

viate the IIA property (Bhat, 1995), to facilitate the combination of multiple data sets

(Swait and Louviere, 1993; Louviere et al., 2002), and to account for other sources

of heterogeneity (Fiebig et al., 2010). Modeling the scale of the error in the random

utility model isn’t as commonplace. The work that models the scale parameter as

a function of observables focuses largely on heteroscedasticity as a behavioral phe-

nomenon in terms of how choice experiments are conducted (Louviere et al., 2002;

Salisbury and Feinberg, 2010; Dellaert et al., 2012). Our model provides another

behavioral interpretation by specifying the unobserved variability of the scale param-

eter in terms of the effect of product relevance on preference consistency within the

framework of an extended model of behavior.

2.2.2 An Extended Model of Brand Choice

Our extended model has to account for both mechanisms through which product

relevance might effect choice. Without assuming identically distributed error terms,

the standard multinomial logit model used for discrete choice no longer has a closed

form expression. Additionally, we expect that in the conjoint survey the relevant

choices will be the ones that are picked first. To ensure that we have enough data
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to identify γ, we anticipate using ranked data rather than first-choice only. To make

use of ranked data, we employ the exploded multinomial logit model (Chapman and

Staelin, 1982). The exploded multinomial logit decomposes each choice task with

K alternatives into K − 1 independent choice tasks, each with successively fewer

alternatives. Ranking the Kth alternative is deterministic given the previous K − 1.

With ranked data, we are now interested in the probability that the first ranked

alternative, denoted by U(1), has a utility expression that is greater than or equal to

the second ranked alternative, U(2), and so on. Thus the random utility components

for the ith ranked alternative are denoted V(i)h and ε(i)h. The exploded multinomial

logit assumes that individuals rank their most preferred alternative first, their second

preferred alternative second, and so on, and that the choice probabilities for each

ranking are independent. The probability of a single observed sequence of choices

from K alternatives is:

Pr(U(1) > U(2) > · · · > U(K))h

=
K−1∏
i=1

Pr
(
V(i)h + ε(i)h > V(k)h + ε(k)h for k = i+ 1, . . . , K

)
=

K−1∏
i=1

∫ ∞
−∞

[
K∏
k=i

F ([V(i)h − V(k)h + ε(i)h]/σ)

]
f(ε(i)h/σ)dε(i)h

=
K−1∏
i=1

exp[V(i)h/σ]∑K
k=i exp[V(k)h/σ]

.

(2.4)

Relaxing the assumption of homoscedastic errors leads to the heteroscedastic exploded

multinomial logit model. The probability of a single observed sequence of choices from

K alternatives no longer has a closed form:

10



Pr(U(1) > U(2) > · · · > U(K))h

=
K−1∏
i=1

Pr
(
V(i)h + ε(i)h > V(k)h + ε(k)h for k = i+ 1, . . . , K

)
=

K−1∏
i=1

∫ ∞
−∞

[
K∏
k=i

F ([V(i)h − V(k)h + ε(i)h]/σ(k)h)

]
f(ε(i)h/σ(i)h)dε(i)h

(2.5)

where each σ(k)h follows the notation for ranked alternatives:

σ(k)h = exp

[
γ · I

(
M∑
m=1

zmh ≥ 1

)
· I

(
M∑
m=1

bm(k)hzmh =
M∑
m=1

zmh

)]
. (2.6)

We now have the components needed to specify our extended model of brand

choice. Both needs zh and brand beliefs Bh are included as additional data in our

model. The benefit evaluation (i.e., the first likelihood or L1) utilizes the exploded

multinomial logit as detailed in Equation (2.4). For S observed choice sequences from

J alternatives, the likelihood is:

L1(βzh|XL1 , zh) =
S∏
s=1

J−1∏
i=1

exp[
∑M

m=1 βmzhx
L1

m(i)s]∑J
j=i exp[

∑M
m=1 βmzhx

L1

m(j)s]
(2.7)

where the resulting part-worths βzh are benefit-specific such that dim(βzh) = dim(zh)

= M . The brand-price evaluation (i.e., the second likelihood or L2) utilizes the

heteroscedastic exploded multinomial logit as detailed in Equation (2.5) with the

structured scale term as detailed in Equation (2.6). To create an extended model, we

use brand beliefs to provide a bridge from the benefit evaluation L1 to the brand-price

tradeoff L2 so that:

L2(β0h, βph, γ|XL2 , βzh, zh, Bh) where β0(j)h =
M∑
m=1

βmzhbm(j)h. (2.8)

The resulting parameters include the brand intercepts β0h, the price coefficient βph,

and the measure of the effect of product relevance on preference certainty γ. The
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brand intercepts are a sum of the benefit part-worths βzh from the benefits respondent

h believes each brand provides as indicated by their brand beliefs Bh. The complete

likelihood expression is:

L(β0h, βzh, βph, γ|XL1 , XL2 , zh, Bh) = L1(βzh|XL1 , zh)

× L2(β0h, βph, γ|XL2 , βzh, zh, Bh).
(2.9)

To be clear, we are making the following assumptions. We have a one-to-one

mapping between needs and benefits. The brand intercepts or overall liking of each

brand for each respondent is determined by the benefits each brand is perceived to

provide. For an alternative to be relevant, the respondent must have one or more

needs and the associated brand must be perceived as being able to address those

needs. Relevance only applies when making a choice in the brand-price tradeoff

data (L2), not when evaluating benefits (L1). Finally, this model is identified because

respondents have different beliefs about each brand, making
∑M

m=1 βmzhbm(j)h different

for each ranked alternative.

We use a diffuse normal prior for γ and diffuse standard conjugate priors for a mul-

tivariate normal distribution of heterogeneity on β′h = [β0h, βzh, βph]. The extended

model can be expressed as a sequence of conditional distributions:

yL1
h |X

L1 , βzh, zh ∼ Exploded MNL

yL2
h |X

L2 , β0h, βzh, βph, γ, zh, Bh ∼ Heteroscedastic Exploded MNL

βh|W,∆, Vβ ∼ MVN(∆W,Vβ)

vec(∆|Vβ,∆, A∆) ∼ Normal(vec(∆), Vβ ⊗ A−1
∆ )

Vβ|ν, V ∼ IW(ν, V )

γ|γ, σ2
γ ∼ Normal(γ, σ2

γ)

(2.10)

The variables used in the extended model are summarized in Table 2.1.
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Table 2.1: Extended Model Variable Descriptions

Variables Description

M number of needs and benefits.

N number of brands.

Bh N ×M matrix of indicating respondent h’s brand beliefs.

zh M -dim vector of binary variables indicating respondent h’s needs.

βh vector of part-worths for respondent h where β′h = [β0h, βzh, βph].

β0h N -dim vector of brand intercepts as defined in Equation (2.8).

βzh M -dim vector of benefit part-worths.

βph 1-dim price part-worth.

γ 1-dim coefficient measuring the effect of product relevance.

W covariates for the random effects distribution.

∆ W ×M + 1 mean matrix of the random effects distribution.

Vβ M+1×M+1 covariance matrix of the random effects distribution.

∆ mean for normal prior on ∆.

A∆ precision matrix for normal prior on ∆.

ν degrees of freedom for IW prior on Vβ.

V scale matrix for IW prior on Vβ.

γ mean for normal prior on γ.

σ2
γ variance for normal prior on γ.
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2.2.3 Simulation Experiment

We validate our extended model of behavior by generating data according to

the model and recovering parameters using a random-walk Metropolis-Hastings es-

timation algorithm. We employ Simpson’s rule to numerically integrate for the het-

eroscedastic exploded multinomial logit. The simulation experiment matches the

dimensions used in our empirical application: a single γ and 31 βh’s for each of 567

respondents. Details on generating data and the estimation procedure are provided

in Appendices A and B.

We can see in Figure 2.1 that after 60,000 iterations the Markov chain converges

to the true stationary (i.e., posterior) distribution. In Table 2.2 we demonstrate that

we have recovered the true parameter values for γ and the mean of the model of

heterogeneity over βh, where each parameter estimate is within or near the bounds

of a 95% credible interval.

2.3 Empirical Application

We employ data from a national survey of preferences for pre-packaged dinners

conducted by a major packaged goods manufacturer. Because of the proprietary

nature of the data, we are restricted from revealing information about the specific

brands studied in the survey. A total of 567 respondents provided information on

needs, benefits sought, brand beliefs, and preferences expressed in two conjoint ex-

periments. One of the authors was involved with the sponsoring company in designing

the survey and conjoint studies to be able to explore the kind of issues we address in

this paper. In particular, the exploratory work that was employed to generate needs

14
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Figure 2.1: Simulation Experiment Traceplots
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Table 2.2: Simulation Results and 95% Credible Intervals

Parameter True Value Posterior Mean Lower Upper

γ -0.30 -0.11 -0.36 0.16

δ1 2.50 2.64 2.46 2.84

δ2 2.25 2.36 2.11 2.56

δ3 2.10 2.24 1.99 2.45

δ4 2.00 2.08 1.85 2.30

δ5 1.90 2.05 1.88 2.23

δ6 1.80 1.84 1.63 2.07

δ7 1.75 1.79 1.61 1.97

δ8 1.63 1.57 1.40 1.75

δ9 1.50 1.47 1.23 1.69

δ10 1.15 1.26 1.08 1.43

δ11 1.00 1.10 0.91 1.28

δ12 0.75 0.77 0.61 0.91

δ13 0.50 0.71 0.52 0.89

δ14 0.35 0.34 0.15 0.52

δ15 0.20 0.16 -0.04 0.40

δ16 0.10 0.12 -0.16 0.34

δ17 0.05 0.05 -0.16 0.26

δ18 0.01 -0.07 -0.23 0.09

δ19 -0.08 0.05 -0.14 0.27

δ20 -0.40 -0.63 -0.86 -0.41

δ21 -0.52 -0.66 -0.88 -0.46

δ22 -0.95 -0.91 -1.11 -0.68

δ23 -1.05 -1.27 -1.45 -1.08

δ24 -1.15 -1.08 -1.28 -0.90

δ25 -1.28 -1.20 -1.42 -0.97

δ26 -1.40 -1.48 -1.70 -1.25

δ27 -1.45 -1.42 -1.58 -1.22

δ28 -1.50 -1.46 -1.67 -1.24

δ29 -1.52 -1.66 -1.83 -1.47

δ30 -1.60 -1.51 -1.72 -1.28

δ31 -2.30 -2.39 -2.57 -2.22
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and map them to benefits makes it an ideal setting to study the effect of product

relevance on choice within an extended model framework.

Prior to the conjoint experiments, respondents rated 30 potential motivating con-

ditions or needs associated with pre-packaged dinners on a 5-point rating scale, from

Not at All (1) to Completely (5) describing the respondent. We operationalize active

needs for a respondent by their providing a top-box indication of the need (e.g., a

“5” on a 5-point scale). We conducted a sensitivity analysis and found no difference

between a top box and a top-two box indicator.

Table 2.3 lists each of the 30 needs and the 30 corresponding benefits. The needs

are concrete and specific to the given purchase context without being category or

even brand-specific. The needs are generated within the motivational classification

framework discussed in Fennell and Allenby (2014). The class structure helps to

identify qualitatively distinct types of motivating conditions within the given context.

There are 7 different classes within the framework, with overarching groups of classes

representing moving away from an undesirable state (classes 1 through 3), moving

toward the source of motivation (classes 4 and 5), and avoiding expected excessive

cost or harm (classes 6 and 7). The framework is used only to generate candidate

items for inclusion in the survey. Once the needs data are collected, the general

framework is not used and analysis proceeds with the responses alone.
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Table 2.3: Needs and Corresponding Benefits

No. Needs Benefits

1 I was worried that I hadn’t anything available to make a dinner. On your shelf, always available to make a dinner.

2 I was pressed for time to make dinner. Helps make dinner when you’re pressed for time.

3 It was a day when I just didn’t feel like making dinner. Makes dinner on days when you don’t feel like making dinner.

4 I was worried that I was running out of menu ideas. Ready to hand, when you’ve run out of menu ideas.

5 I was too rushed/pressured preparing dinner to enjoy eating it. Makes a dinner you can enjoy, even when you’re too rushed to hope to

enjoy eating it.

6 I felt it a strain to have no relief from being the person to plan/cook

dinner.

Shares the burden of being the one person responsible to plan/cook

dinner.

7 I felt I’d be letting myself/my family down if I didn’t provide a nutri-

tious dinner.

Reassures me I’m providing nutritious dinners.

8 I felt I’d be letting myself/my family down if I didn’t provide a tasty

dinner.

Reassures me I’m providing tasty dinners.

9 I felt that preparing dinner is one way I show I’m a good family person. Reassures me I’m a good family person by preparing family dinner.

10 I felt I’d be letting myself/my family down if I didn’t give each family

member their choice of what to eat for dinner.

Reassures me I’m giving each family member their choice of what to

eat for dinner.

11 I felt I’d be letting myself/my family down if I didn’t provide a sub-

stantial dinner.

Reassures me I’m providing substantial dinners.

12 I felt I’d be letting myself/my family down if I didn’t provide a dinner

that includes salad/veggies.

Reassures me I’m providing dinners that include veggies/salads.

13 I felt I’d be letting myself/my family down if I didn’t provide a home

cooked dinner.

Reassures me I’m providing home cooked dinners.

14 I felt I’d be letting myself/my family down if I didn’t provide a dinner

that includes meat.

Reassures me I’m providing dinners that include meat.

15 I felt I’d be letting myself/my family down unless everyone including

my kids and spouse loved what I’d make.

Reassures me I’m providing dinners that everyone–kids and spouse–

love.

16 I felt that preparing weekday dinner is just a matter of routine. Suits my view that preparing weekday dinner is just a routine matter.

17 I felt that the conversation around the table at dinner would interest

me.

Allows me appreciate dinner table conversation that interests me.

18 It interested me to make a dinner from different kinds of food, day to

day.

Supports my interest in making many different kinds of food for dinner.

19 It interested me to tweak favorite family dinner recipes. Supports my interest in tweaking favorite family dinner recipes.

20 I was enjoying making dinner with foods of different textures. Allows me provide different textures of food for dinner.

21 I was relishing the added enjoyment of appetizing smells from a home

prepared dinner.

Allows appetizing smells add to the enjoyment of dinner prepared at

home.

22 I was concerned that my family would leave the dinner uneaten. Helps ensure my family won’t leave the dinner uneaten.

23 I was concerned that the kids would complain and refuse to eat dinner. Helps ensure that kids don’t complain and refuse to eat dinner.

24 I was concerned about burdensome clean-up afterwards. Ensures there’s no burdensome clean-up for me.

25 I was concerned about the burden of complicated or lengthy prepara-

tion.

Assures me I’m not burdened by complicated or lengthy preparation.

26 High cost kept me from serving a better dinner. Allows me serve better dinners without high cost.

27 I was concerned about the problem too much salt in food would cause

me/my family.

Guards against my family getting too much salt .

28 I was concerned not to prepare a depressing same old dinner. Fights depressing same old thing dinner every time.

29 I was upset to think of having dinner food left over. Reassures me there won’t be food left over to upset me.

30 I was upset to think there wouldn’t be enough food for dinner. Reassures me there will be enough food.
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Classes 1 through 3 represent moving away from an undesirable state currently

being experienced (e.g., need 5, “I was too rushed/pressured preparing dinner to enjoy

eating it”), an undesirable state in the future (e.g., need 11, “I felt I’d be letting

myself/my family down if I didn’t provide a substantial dinner”), and a “default”

undesirable state (e.g., need 16, “I felt that preparing weekday dinner is just a matter

of routine”). Classes 4 and 5 represent an interest in mental exploration (e.g., need

19, “It interested me to tweak favorite family dinner recipes”) and sensory enjoyment

(e.g., need 20, “I was enjoying making dinner with foods of different textures”).

Classes 6 and 7 represent avoiding expected excessive cost (e.g., need 26, “High cost

kept me from serving a better dinner”) and expected dissatisfaction (e.g., need 30, “I

was upset to think there wouldn’t be enough food for dinner”). The items included

as needs in the study were generated from focus groups and packaging claims in the

pre-packaged dinner category, using the above classification system as a guide. It is

important to note, as show in Table 2.3, that the needs relate to the person while

the benefits relate to the product. Once the items are generated, the structure used

to guide their elicitation is ignored. Details of the motivational classes and their

elicitation are provided in Fennell and Allenby (2014).

After rating the 30 needs, each respondent completed 10 choice tasks each with 4

alternatives, where alternatives were benefit bundles. The alternatives were ranked,

with 1 being the most preferred alternative. We thus explode the rank ordering to a

depth of 3, which is at the recommended limit in Chapman and Staelin (1982). The

“brand” of the pre-packaged dinners was fixed across choice tasks, so only the benefits

changed. Only 3 of the 30 attributes were active for each of the 4 alternatives in each

choice task. See Figure 2.2 for an example of a single benefit-bundle choice task.
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ATTRIBUTES AND BENEFITS CONJOINT SECTION 
 
     q17 – 17 Again, please continue to think about the last time you prepared dinner from a dry packaged dinner kit 

or mix [INSERT TIME FROM PRIOR QUESTION.]  Let’s assume you could design a custom made dry packaged 
dinner product for this dinner occasion just for you. If you could choose among the four dry packaged dinner 
products described below, please indicate which would be your most preferred choice by writing a “1” in the box 
below that one. Then choose your next most preferred and write a “2” below that and so on, marking a 
“4”beneath your least preferred choice. Assume all features not listed are the same across the choices. 
 
 Now you will see several more sets of four descriptions.  Again, please rank the four descriptions according to 
MOST and LEAST PREFERRED product you would have chosen the last time you prepared dinner from a dry 
packaged dinner kit or mix [INSERT TIME FROM PRIOR QUESTION]  if it were available to you. 
 
[Continue through Question 10 for 10 sets of scenarios.] 
 
(Rank order pre-packaged dinners from "1" to "4") 

 

       
     ! Pre-packaged dinner 53  
 ! Pre-packaged dinner 28  
 ! Pre-packaged dinner 31  
 ! Pre-packaged dinner 75  
     
     Now you will see several more sets of four descriptions.  Again, please rank the four descriptions according to 

MOST and LEAST PREFERRED product you would have chosen the last time you prepared dinner from a dry 
packaged dinner kit or mix [INSERT TIME FROM PRIOR QUESTION]  if it were available to you. 
 
[Continue through Question 10 for 10 sets of scenarios.] 
 
(Rank order pre-packaged dinners from "1" to "4") 

 

     
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Pre-Packaged Dinner  
53 

 
•  On my shelf, always 
available to make a 
dinner.  
  
•  Makes a dinner I can 
enjoy, even when I’m too 
rushed to hope to enjoy 
eating it. 
 
•  Reassures me I'm a 
good family person by 
preparing family dinner. 

 

Pre-Packaged Dinner 
28   

 

•  Helps make dinner 
when I’m pressed for 
time. 
 
•  Shares the burden of 
being the one person 
responsible for 
planning/cooking dinner. 
 
•  Reassures me I'm 
giving each family 
member their choice of 
what to eat for dinner. 

Pre-Packaged Dinner  
31    

 
•  Makes dinner on days 
when I don't feel like 
making dinner. 
  
•  Reassures me I'm 
providing nutritious 
dinners.  
 
•  Reassures me I'm 
providing substantial 
dinners. 
 
 

Pre-Packaged Dinner 
75  

 
•  Ready to hand, when 
you've run out of menu 
ideas. 
 
•  Reassures me I'm 
providing tasty dinners.  
  
•  Reassures me I'm 
providing dinners that 
include veggies/salads. 
 
 
 

Figure 2.2: Example Benefit-Bundle Choice Task

Respondents then indicated their beliefs regarding 6 brands in the pre-packaged

dinner category. They indicated in a pick any/J format whether each brand provided

each of the same 30 benefits used in the benefit-bundle conjoint, which also map one-

to-one to the needs as shown in Table 2.3. After indicating their brand beliefs, each

respondent completed 8 choice tasks each with 3 to 6 alternatives, depending on which

brands they had either purchased or indicated were part of their consideration set.

Each alternative in this second conjoint was a pair of one of the 6 brands and price.

The alternatives were again ranked, with 1 being the most preferred alternative. We

again explode the rank ordering to a depth of 3, the recommended limit in Chapman

and Staelin (1982).

Following the structure specified in Equation (2.6), σ(j)h = exp(γ) if the respon-

dent perceives the brand for the jth ranked alternative as being able to provide the

benefits that address their needs, with σ(j)h = 1 otherwise. For example, and using

Table 2.3 as reference, if a respondent only stated that the third need was applicable
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Table 2.4: Model-Free Evidence

Rank Proportion of Relevant Choices

1 0.089

2 0.066

3 0.058

4 0.027

to him the last time he used a pre-packaged meal (i.e., he ranked “It was a day when

I just didn’t feel like making dinner” as the only need Completely (5) describing him)

and he believes that the alternative’s brand is able to provide the corresponding ben-

efit – “Makes dinner on days when you don’t feel like making dinner” – than that

alternative would be relevant.

We offer the following model-free evidence for using our model in the context

of this empirical application. If needs matter for preference certainty, as described

above, one would expect the proportion of relevant choices for respondents with one or

more needs should be largest for those items ranked first. We include the proportion

of relevant choices for each rank in Table 2.4. Not only is the proportion of relevant

choices highest for the first rank, but the next-largest proportions match for each

subsequent rank as well. These proportions are small because of our strict definition

of relevance, where a product is relevant only when it is perceived to address all of

a respondent’s active needs. Less strict definitions of relevance (e.g., a product is

relevant when it is perceived to address one or more of a respondent’s active needs)

lead to larger proportions. However, such definitions risk polluting the interpretation

of the estimated effect with concerns about which needs are being addressed, with
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some needs potentially more important than others. We use the strict definition of

relevance and cover all active needs to ensure the meaning of the estimated effect is

clear.

2.4 Results

Our results indicate differences in preference certainty within the extended model

framework for responses where needs are addressed versus responses where needs are

not addressed. We compare three models. First, we estimate a standard exploded

multinomial logit model, without including consumer needs, to serve as a baseline

comparison. Second, we estimate an exploded multinomial logit model with the

needs included as covariates in the random-effects specification of heterogeneity, as

in Equation (2.2). This upper-level model tests the first mechanism for the effect of

product relevance on choice. We mean-center the covariates in this model so that

the intercept of ∆ can be interpreted as the part-worths for the average respondent,

making it comparable to the posterior means from the proposed model. Third, we

estimate the proposed heteroscedastic exploded multinomial logit model with a fixed-

effect γ to test the second mechanism for the effect of product relevance on choice.

For each model, we reserved the last choice task for out-of-sample fit. We ran each

model for 80,000 iterations, using the final 4,000 iterations for inference.

Model fit is detailed in Table 2.5. Log-marginal density is a Bayesian measure of

in-sample model fit. Hit probability is the posterior mean of the predicted probability

for the observed ranking in the brand-price tradeoff hold-out data (see Appendix

C). The proposed heteroscedastic exploded multinomial logit model outperforms the

baseline and upper-level models in that it has the smallest absolute value log-marginal
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Table 2.5: Model Fit

In-Sample Hit Probabilities

Model γ LMD L2

Baseline (σ = 1) - -16,107.39 0.431

Upper-Level (σ = 1, βh = ∆′zh + ξh) - -16,144.37 0.429

Heteroscedastic (σ(j)h = exp(γ) or 1) -0.378 (0.157) -15,895.56 0.435

density and the largest hit probability. The baseline model also performs better than

the upper-level model. Both serve as evidence that the mechanism through which

product relevance impacts choice is indeed with respect to preference certainty rather

than part-worth heterogeneity. Additionally, Table 2.5 includes the estimate of γ

for the heteroscedastic model. The effect is negative, as expected. Thus product

relevance leads to greater preference certainty.

To illustrate how product relevance leads to greater preference certainty, note

that we are comparing two groups of responses. We have responses where the part-

worths are scaled by σ(j)h = 1 and responses where the part-worths are scaled by

σ(j)h = exp(−0.378) = 0.685. Responses with σ(j)h = 0.685 exhibit greater preference

certainty since a smaller scale term gives more weight to the deterministic component

of random utility. Responses where σ(j)h = 1 exhibit less preference certainty since a

larger scale term gives more weight to the random component of random utility.

We plot the posterior means of the random-effects distributions in pairwise com-

parisons of the proposed heteroscedastic model with the baseline and upper-level

models. We can see in Figure 2.3 that in both pairwise comparisons the estimates

are highly correlated. This is expected. Highly correlated estimates between the
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Figure 2.3: Comparison of Posterior Means

proposed and alternative models help confirm that the effect of product relevance is

in terms of preference certainty and not the part-worths themselves. The high cor-

relation between the baseline and heteroscedastic models provides evidence that the

effect of product relevance is truly kept to the scale of random utility. Moreover, the

benefit conjoint data (L1) provides the majority of information for the determination

of part-worth estimates plotted in Figure 2.3. The difference is model fit reported in

Table 2.5 is primarily due to the brand-price tradeoff data (L2). This illustrates the

importance of using an extended model of behavior rather than simply assuming that

the estimated part-worths can accurately predict demand for marketplace offerings.

Table 2.6 provides additional comparison of model estimates.
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Table 2.6: Comparison of Model Estimates

Baseline Upper-Level Heteroscedastic

Parameter Mean SD Mean SD Mean SD

δ1 1.11 0.15 1.35 0.15 1.23 0.19

δ2 0.51 0.11 0.74 0.13 0.62 0.19

δ3 1.52 0.14 1.59 0.17 1.53 0.12

δ4 0.59 0.08 0.73 0.09 0.40 0.12

δ5 0.27 0.09 0.46 0.08 0.26 0.10

δ6 -0.24 0.18 -0.10 0.12 -0.26 0.16

δ7 0.37 0.07 0.65 0.13 0.44 0.11

δ8 0.93 0.12 0.75 0.10 1.15 0.13

δ9 0.69 0.15 0.41 0.10 0.70 0.16

δ10 0.81 0.12 0.62 0.06 0.89 0.11

δ11 0.64 0.10 0.54 0.10 0.73 0.14

δ12 -0.32 0.09 -0.15 0.08 -0.28 0.12

δ13 0.29 0.11 0.41 0.12 0.44 0.15

δ14 0.25 0.18 0.24 0.14 0.32 0.15

δ15 1.08 0.10 0.73 0.10 1.02 0.13

δ16 -0.32 0.27 -0.41 0.12 -0.23 0.19

δ17 0.74 0.09 0.43 0.09 0.79 0.12

δ18 -0.37 0.14 -0.17 0.13 -0.35 0.14

δ19 0.45 0.15 0.70 0.08 0.69 0.14

δ20 0.73 0.11 0.71 0.07 0.50 0.10

δ21 0.16 0.17 0.52 0.11 -0.09 0.23

δ22 1.32 0.15 1.29 0.10 1.15 0.14

δ23 -0.64 0.13 -0.34 0.09 -0.83 0.13

δ24 -0.03 0.12 0.21 0.10 0.03 0.11

δ25 0.16 0.10 0.53 0.09 0.28 0.09

δ26 1.39 0.13 1.42 0.09 1.28 0.14

δ27 -0.03 0.12 0.11 0.08 -0.24 0.13

δ28 0.70 0.14 0.82 0.10 0.45 0.20

δ29 -0.15 0.12 -0.07 0.07 -0.38 0.09

δ30 -0.19 0.13 0.13 0.08 -0.02 0.10

δ31 -2.33 0.21 -2.43 0.17 -2.22 0.18

25



2.5 Discussion

In this paper we demonstrate within an extended model framework that respon-

dents are less certain stating what they want when considering things they don’t need.

We accomplish this by developing an extended model of brand choice that allows us

to estimate the effect of product relevance, when a product is perceived as being

able to address a respondent’s needs, on choice. Our results indicate that the effect of

product relevance is manifest through the scale of random utility and not its location.

The effect of product relevance on preference certainty reaffirms both the construction

of extended models and the inclusion of needs, which describe where consumers are

coming from, in models of choice. The proposed model also adds another behavioral

explanation to the literature on heteroscedastic errors in choice models.

Our results also suggest that traditional screening criteria may be insufficient

when studying aspects of an offering that might not be relevant to all respondents

engaged in activities related to a product category. A study of outboard marine en-

gines, for example, might focus on people owning boats for pleasure and recreation,

and would naturally include features such as horsepower, acceleration, and fuel effi-

ciency. Concerns about durability, however, might be more prevalent among people

engaged in fishing where running over submerged logs is more likely. Obtaining accu-

rate measures of preference for durability requires respondents for whom the issue of

durability is relevant in their pursuits. Furthermore, traditional screening based on

category participation may simply exclude consumers that may need what the cate-

gory provides but are simply not currently engaged with the category. Researchers

should consider identifying the needs of particular category prospects and using those

needs to help screen qualified respondents. We estimated the proposed model again
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after screening respondents who didn’t have any of the 30 needs and saw a marginal

improvement in predictive fit.

Research extensions include determining whether it is possible to fix or condition

upon needs within a conjoint study like we currently fix purchase occasion, study-

ing the relationship between the current state of consumers (i.e., needs) and their

imagined desired state (i.e., goals) within the context of choice, and determining how

consumer needs are mapped to perceived benefits. This last item relates to the litera-

ture regarding the construction of “meta-attributes” – bundles of physical attributes

that together define subjective characteristics or perceived benefits (Luo et al., 2008;

Netzer et al., 2008; Kim et al., 2014). Our model assumes that needs are matched to

perceived efficacy in terms of brand beliefs. However, if attributes other than brand

are included, we need to be clear how they effect perceptions of efficacy. Furthermore,

there is no reason to expect that the mapping between needs and benefits must al-

ways be one-to-one, as we have assumed, or that needs are consistent across purchase

occasions. Future research can help resolve these issues by both identifying perceived

benefits and mapping needs to these benefits.

We find that an extended model of behavior is needed to translate part-worth

estimates from a benefit-based conjoint study to predict demand for branded prod-

ucts. Product relevance and perceived brand efficacy are shown to play important

roles in the translation. As research progresses in the area of extended choice models,

similar constructs requiring additional data will need to be incorporated into models

of choice.
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Chapter 3: Explaining Preference Heterogeneity with Mixed

Membership Modeling

3.1 Introduction

The fact that consumers are heterogeneous in their preferences gives rise to mar-

keting as a discipline and an industry. Choice models and associated decision tools

that account for this heterogeneity allow firms to better understand what consumers

prefer and have become a standard for product development and product line opti-

mization. However, explaining preference heterogeneity remains an elusive problem.

In this paper we develop an expanded choice model that improves our ability to

explain preference heterogeneity by employing a novel approach to model discrete

data, including binary and ratings survey data, that describe the drivers of consumer

preference.

Choice modeling is an effective tool for determining what product attributes in-

dividuals prefer but it has proven less successful at explaining the heterogeneity in

consumer preferences. Explaining preference heterogeneity includes identifying co-

variates that serve as drivers of preference and enable targeting and promotion activi-

ties. The use of hierarchical Bayes in choice modeling allows for both individual-level
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attribute part-worth utilities and aggregate-level preference heterogeneity parame-

ters. Part-worth estimates tell us what attributes consumers prefer. Parameters

describing preference heterogeneity are conditioned on covariates that help explain

cross-sectional variation in the part-worths.

Finding covariates that are predictive of part-worths has proven difficult. The

primary benefit when using a random effect distribution of heterogeneity has been

accounting for unexplained heterogeneity. Using discrete variables describing possi-

ble drivers of preference, such as demographics and psychographics, as covariates is

standard. However, survey data are typically used as covariates where the number of

covariates makes it impractical to include interactions. Additionally, we have growing

access to new sources of discrete multivariate data outside of surveys, including text,

that we expect will be a rich source of information for explaining choice yet incorpo-

rating it isn’t obvious. We propose modeling this discrete multivariate data as part

of the choice model in order to uncover covariates that can better explain preference

heterogeneity.

In this paper we develop an expanded hierarchical Bayesian choice model where co-

variates for the upper level are from a grade of membership model (Woodbury et al.,

1978; Erosheva et al., 2007). The grade of membership model is related to latent

Dirichlet allocation, which serves as a touchstone within topic modeling (Blei et al.,

2003). Both are part of a larger class of models known as mixed membership models

that provide individual-level, low-dimensional representations of discrete multivari-

ate data by accounting for interactions or co-occurrence (Airoldi et al., 2014). We

propose modeling discrete variables describing potential drivers of preference where

interaction among drivers will help further explain preference heterogeneity. We apply
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our model within the robotic vacuums category and find we can both explain prefer-

ence heterogeneity and predict choice better than traditional models using observed

covariates directly.

This paper contributes to efforts at using mixed membership models to improve

marketing models. The application of this class of models to marketing contexts is still

in its infancy. Extant research has focused on latent Dirichlet allocation (LDA), using

product reviews and online forums to inform market structure (Lee and Bradlow,

2011; Netzer et al., 2012) and to identify preferences for product features (Archak

et al., 2011). Most recently, Tirunillai and Tellis (2014) use LDA to conduct brand

analysis while Büschken and Allenby (2016) develop a sentence-constrained LDA

to better predict review ratings. However, mixed membership models have yet to

be employed in the context of choice modeling. We believe this paper provides an

important first step in this regard.

The remainder of the paper will be organized as follows. We specify our model

in Section 3.2. We detail our empirical application in Section 3.3. In Section 3.4, we

compare results from our proposed model, with covariates uncovered using the grade

of membership model, and alternative models where standard discrete covariates are

used. We discuss implications of and extensions to this research in Section 3.5.

3.2 Model Specification

3.2.1 Hierarchical Bayesian Choice Model

Hierarchical Bayesian choice models allow for the estimation of both individual

and aggregate-level preference parameters, even in the presence of few observations

per individual (Rossi and Allenby, 2003; Rossi et al., 2005). Decision tools associated
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with choice modeling make use of individual-level preference parameter estimates

to forecast the results of various product policies while aggregate-level parameter

estimates are employed to explain the source of individual preferences.

The likelihood in hierarchical Bayesian choice modeling is typically assumed to be

a multinomial logit model such that the probability of individual n choosing product

alternative j is a function of the attributes xj that compose the given alternative and

the part-worths or individual-level preferences βn for the attributes:

Pr(yn = j|βn) =
exp (x′jβn)∑P
p=1 exp (x′pβn)

(3.1)

where there are a total of P alternatives to consider. The distribution of heterogeneity,

or upper level, models preference heterogeneity in the individual-level βn’s. The

distribution of heterogeneity is typically assumed to be multivariate normal and is

characterized as:

βn = Γ′zn + ξn, ξn ∼ N(0, Vβ) (3.2)

where zn is a vector of covariates for individual n and Γ is a matrix of coefficients that

maps variation in zn to variation in βn. The mean of the distribution of heterogeneity

Γ′zn is where the analyst can specify individual-specific covariates zn that explain

variation in the part-worths. Information is shared through the estimates of Γ and

the heterogeneity covariance matrix Vβ to estimate individual-level βn’s (Rossi et al.,

2005).

The directed acyclic graph (DAG) in Figure 3.1 provides a visual representation

of the hierarchical Bayesian choice model. The DAG utilizes plate notation, where

a plate represents replication for the enclosed variables. In the DAG, white nodes
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represent parameters to be estimated, grey nodes represent fixed hyper-parameters,

and black nodes represent observed data.

βn

zn

yn

Vβ

Γ

ν, V

Γ, A

N

Figure 3.1: Hierarchical Bayesian Choice Model

From the use of plate notation in Figure 3.1, we can see that the hierarchical

Bayesian choice model has both aggregate and individual levels. To be clear, at the

aggregate level, Γ is the mean and A is the precision matrix for a conjugate normal

prior on Γ and ν and V are the degrees of freedom and scale matrix for a conjugate

inverse Wishart prior on Vβ. At the individual level, yn is a vector of observed

choices and zn are the observed covariates for individual n. We can see that the

covariates {zn}Nn=1 are chosen independent of the model specification. As discussed,

the covariates {zn}Nn=1 are the key to our ability to explain preference heterogeneity.

We will use DAGs, beginning with Figure 3.1, to help motivate the proposed model.
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Following Figure 3.1, the joint posterior distribution of the standard hierarchical

Bayes choice model is:

p({βn}Nn=1,Γ, Vβ|{yn}Nn=1,Γ, A, ν, V )

∝

[
N∏
n=1

p(yn|βn)p(βn|Γ, Vβ)

]
p(Γ|Vβ,Γ, A)p(Vβ|ν, V )

(3.3)

where
∏N

n=1 p(yn|βn) is the likelihood,
∏N

n=1 p(βn|Γ, Vβ) is the distribution of het-

erogeneity, and p(Γ|Vβ,Γ, A) and p(Vβ|ν, V ) are the priors (Rossi et al., 2005). The

known design matrix X and covariates {zn}Nn=1 are suppressed in Equation (3.3).

A variety of covariates have been employed to explain preference heterogeneity

in the choice modeling literature. For example, Allenby and Ginter (1995b) used

demographic variables, Lenk et al. (1996) included expertise, and Chandukala et al.

(2011b) specified consumer needs to explain variation in βn. However, explaining

preference heterogeneity has not met with much success generally (Rossi et al., 1996;

Horsky et al., 2006).

One unresolved issue is that discrete covariates are often employed without a

practical way to include interactions. The problem is one of dimensionality. The

number of interaction terms is J choose M , where J is the number of covariates and

M is the number of desired interactions. For example, with J = 30 covariates and

M = 2, there are 435 possible two-way interactions, to say nothing of higher-level

interactions where M > 2. While Chandukala et al. (2011b) employ variable selection

to determine which covariates matter, we are interested in a model general enough

to account for interactions from traditional survey data as well as accommodate new

sources of discrete data.

We propose using a non-standard model that accounts for the interaction or co-

occurrence of variables to uncover covariates from discrete multivariate data for use
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in a choice model’s random effect distribution of heterogeneity. Specifically, we pro-

pose combining a hierarchical Bayesian choice model with a grade of membership

model to uncover covariates that account for interactions in order to explain prefer-

ence heterogeneity better than using observed covariates directly. We first detail the

grade of membership and the class of mixed membership models before specifying

our expanded choice model.

3.2.2 The Grade of Membership Model

The grade of membership (GoM) model was developed to classify disease patterns

using discrete patient-level clinical data (Woodbury et al., 1978; Clive et al., 1983).

It has since been applied to modeling survey data (Erosheva et al., 2007; Gross and

Manrique-Vallier, 2014). In these applications, each respondent answers a battery of

survey questions with categorical responses. The research interest is to identify the

patterns of interaction or co-occurrence in the categorical responses across respon-

dents along with how each respondent relates to the patterns of co-occurrence. The

GoM model characterizes these patterns of co-occurrence as profiles of archetypal re-

spondents. Each respondent is a partial member of each of the profiles based on how

similar their responses are to each pattern of co-occurrence.

Assume we have a collection of J discrete variables each with nj categorical re-

sponses. The probability of respondent n selecting the lth category for question j is

a function of the profiles λ describing the patterns of response co-occurrence across

respondents and respondent n’s membership vector gn describing their partial mem-

bership in each profile:

Pr(wn,j = l|gn, λ) =
K∑
k=1

gn,kλj,k(l) (3.4)
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where there are K profiles and K is specified by the analyst. The membership vector

gn for the nth respondent is constrained so that each element is non-negative and∑K
k=1 gn,k = 1. The λ is composed of J · K total vectors λj,k each of length nj

that specify how likely each categorical response l is for question j for a hypothetical

respondent that is only a member of profile k. Each λj,k is also constrained with

non-negative elements so that
∑nj

l=1 λj,k(l) = 1.

To illustrate, consider responses to a battery of select-all-that-apply questions

(i.e., pick any/J) such that nj = 2 for all J = 30. Each respondent selects or

indicates a subset of the J = 30 statements or items that apply to them in answer

to the question: “What benefits does cereal provide that are important to you?”

Figure 3.2(a) displays the items selected (i.e., wn,j = 1) for a given respondent n

together with their membership vector gn. Figure 3.2(b) displays λj,k(1) describing

K = 3 aggregate-level profiles in terms of the likelihood of selecting each of the

J = 30 items. Note that since nj = 2 for all J = 30, each λj,k is a vector with two

elements such that λj,k(0) is the complement of the values listed in Figure 3.2(b).

Thus λj,k(0) + λj,k(1) = 1 for each λj,k.

Using Figure 3.2, we can see how profiles emerge based on what items co-occur.

For example, if item 11 “I want to make sure my family has breakfast in the morning”

and item 3 “My kids will eat cereal for breakfast” are selected together frequently

across respondents, this pattern may be part of a profile describing concern with

breakfast for children. In Figure 3.2(a), the membership vector gn describes the

partial membership respondent n has in each of the K = 3 profiles – “Kids Breakfast,”

“Healthy Snack,” and “Source of Fiber” – where the number of profiles K = 3 has

been specified by the analyst and the weight given to each profile is determined by how
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(a) Respondent n’s Responses and Membership Vector gn

What benefits does cereal provide that are important to you?
Item 1: It’s a helpful way to get a serving of milk at the same time
Item 2: Cereal is a good source of fiber
Item 3: My kids will eat cereal for breakfast
Item 4: Cereal isn’t just for breakfast, it’s a good snack anytime
Item 11: I want to make sure my family has breakfast in the morning
Item 15: Cereal is easy to prepare
gn “Kids Breakfast” 0.60 “Healthy Snack” 0.20 “Source of Fiber” 0.20

(b) Aggregate-Level Profiles Defined by the Probability of Each Item λj,k(1)

λj,k(1) “Kids Breakfast” “Healthy Snack” “Source of Fiber”
Item 1 0.67 0.70 0.34
Item 2 0.22 0.85 0.95
Item 3 0.97 0.13 0.04
Item 4 0.32 0.92 0.10

...
...

...
...

Item 30 0.04 0.13 0.14

Figure 3.2: Modeling Pick Any/J Data with a GoM Model
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similar respondent n’s response pattern matches each of the aggregate-level profiles.

For this particular respondent, they are primarily a member of the “Kids Breakfast”

profile, with a weight of 0.60, while still being a partial member of the remaining two

profiles. The membership vector gn has non-negative elements and is constrained to

equal 1.

The aggregate-level values λj,k(1) in Figure 3.2(b) describe how likely it is for each

item to occur within each profile. The profiles are composed of all J = 30 items with

the item that is most likely within each profile in bold. Based on common response

patterns across respondents, the profiles describe archetypal or extreme respondents,

ones that in this case are either concerned wholly with cereal for “Kids Breakfast,”

a “Healthy Snack,” or a “Source of Fiber,” where the profile names have been de-

termined by the analyst based on which items differentiate each profile. Thus each

membership vector gn describes where a respondent n is located within a convex hull

defined by the profiles. These profiles account for the co-occurrence or interaction of

the discrete items while reducing the dimensionality from J to K.

With this illustration in mind, we can apply Equation (3.4) to show that the

probability of respondent n selecting item 1 “It’s a helpful way to get a serving of

milk at the same time” is a function of gn, their partial membership in each profile,

and λ1,k(1), how likely it is for item 1 to be selected in each profile. This results in a

probability of (0.60)(0.67)+(0.20)(0.70)+(0.20)(0.34) = 0.61. Erosheva et al. (2007)

use this relationship to introduce a latent profile assignment for each item.
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Assuming that the J responses are conditionally independent given each member-

ship vector gn, the GoM likelihood is:

p({wn}Nn=1|{zn}Nn=1, λ)p({zn}Nn=1|{gn}Nn=1) =
N∏
n=1

J∏
j=1

K∏
k=1

g
I(zn,j=k)
n,k λj,k(wn,j)

I(zn,j=k)

(3.5)

where zn is a J-dimensional vector of latent profile assignments for respondent n,

following notation typical to data augmentation (Tanner and Wong, 1987; Rossi and

Allenby, 2003). Note that the latent variables zn in Equation (3.5) are different from

the observed covariates specified in Equation (3.2). Both p({wn}Nn=1|{zn}Nn=1, λ) and

p({zn}Nn=1|{gn}Nn=1) are multinomial distributions.

α gn zn,j wn,j λj,k τJ
N

K
J

Figure 3.3: The Grade of Membership Model

The DAG in Figure 3.3 provides a visual representation of the GoM model. The

plate notation demonstrates the three model levels: item, respondent, and aggregate.

The aggregate-level λ describing profiles is homogeneous while the respondent-level

membership vectors gn are heterogeneous. To be clear, α and τ are both hyper-

parameters for conjugate Dirichlet priors on gn and λ. Following Figure 3.3, the joint

38



posterior distribution of the grade of membership model is:

p({zn}Nn=1, {gn}Nn=1, λ|{wn}Nn=1, α, τ) ∝

[
N∏
n=1

p(wn|zn, λ)p(zn|gn)p(gn|α)

]
p(λ|τ)

(3.6)

where
∏N

n=1 p(wn|zn, λ)p(zn|gn) is the likelihood and
∏N

n=1 p(gn|α) and p(λ|τ) are

priors.

In the marketing literature, it has been argued that identifying extreme responses

is important for designing and promoting successful new products (Allenby and Gin-

ter, 1995b). For example, extreme response behavior can be used to more efficiently

target prospects with a high probability of adopting an innovation. Conceptualizing

consumer heterogeneity as a continuous distribution of preferences has been shown

to aid in the identification of extreme responses (Allenby et al., 1998; Allenby and

Rossi, 1998). The GoM model represents discrete response behavior as a continu-

ous proximity to a limited number of extreme profiles. Given that marketers often

search for a limited number of product offerings for reasons of efficiency or resource

limitations, a concept of heterogeneity that expresses differences among consumers

in the space of a small number of extreme response profiles is appealing. We uti-

lize the GoM model given this characterization of heterogeneity, which includes the

respondent-level membership vectors gn, in the development of our proposed model.

Relationship with Finite Mixture Models

Having a respondent-level membership vector gn that consists of non-negative,

real-valued latent variables that sum to one is the distinctive feature of mixed mem-

bership models, the class of models that includes the GoM and LDA. Contrast this
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with the general form of a finite mixture model (Kamakura and Russell, 1989):

p(xn) =
K∑
k=1

gkpk(xn) (3.7)

where xn is response data for respondent n. We see that the finite mixture model

has a membership vector gk at the aggregate level while the GoM model in Equation

(3.4) has a membership vector gn,k at the individual level. This feature is common

to all mixed membership models and illustrates why they are often referred to as

individual-level mixture models.

Finite mixture models are a special case of mixed membership models (Erosheva

et al., 2007; Galyardt, 2014). However, our use of the GoM within the class of mixed

membership models is different than the typical use of finite mixture models in choice

modeling. Instead of specifying a mixture of distributions of heterogeneity, we are

interested in using the respondent-level membership vector gn to serve as covariates

that can further explain preference heterogeneity.

Relationship with Factor Analysis

Factor analysis is another related model and has long been a standard approach

in marketing for dimension reduction (Stewart, 1981). The basic assumption is that

a set of variables can be reduced to one or more latent constructs called factors. The

data are assumed to arise in the following fashion:

xn,j = cj +
K∑
k=1

ζn,kλj,k + ηn,j, ηn,j ∼ N(0, 1) (3.8)

where cj is a constant vector, ζn,k is a respondent-level vector of factor scores, and the

collection of λj,k is a matrix of aggregate-level regression coefficients known as factor

loadings. The form of factor analysis in Equation (3.8) is similar to that of the GoM
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model in Equation (3.4), with factor scores in place of the membership vector and

factor loadings in place of the profiles. Erosheva (2002) even demonstrates that the

GoM model is equivalent to a binary factor analysis with an identity link function.

However, there are key differences in the two approaches.

Factor analysis and GoM models differ in terms of their underlying assumptions,

modeling objectives, and the type of data each method can process (Manton et al.,

1994; Marini et al., 1996). First, standard factor analysis, as demonstrated in Equa-

tion (3.8), assumes continuous data. Even using a cut-point model, which assumes

the observed data are discrete indicators of latent continuous variables, the underly-

ing constructs (i.e., factors) are still considered to be continuous. On the other hand,

the GoM model assumes both discrete data and discrete underlying constructs (i.e.,

profiles).

Second, the objective of factor analysis is to uncover latent constructs underly-

ing a set of variables. The objective of the GoM model is to both uncover profiles

representing extreme characterizations of respondents and measure each respondent’s

proximity to these profiles. In other words, the GoM model has the description of

respondents and respondent heterogeneity as the objects of inference. Finally, unlike

factor analysis, the GoM model can handle a combination of multinomial, ordinal,

and other discrete multivariate data. For more detail on the comparison between

factor analysis and the GoM model, see Appendix D.

3.2.3 Hierarchical Bayesian Choice Model with a GoM Model

The proposed model combines a hierarchical Bayesian choice model with a GoM

model in order to use discrete multivariate data to uncover covariates that explain
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preference heterogeneity. A related concept is presented in the form of a supervised

latent Dirichlet allocation (sLDA). In the sLDA topic model, each collection of discrete

data (i.e., document, in the context of topic modeling) is paired with and used to be

predictive of a response, such as using movie reviews to predict movie ratings (Blei

and McAuliffe, 2007). We employ the same kind of pairing between a collection of

discrete data and response, however our response is part-worth utility parameters and

the collection of discrete data is from a battery of survey questions.

The individual-level choice model remains multinomial logit, as specified in Equa-

tion (3.1), and the distribution of heterogeneity remains multivariate normal as in

Equation (3.2). Since there is a separate gn for each respondent in the GoM model in

Equation (3.4), we use these membership vectors as covariates to explain heterogene-

ity in the part-worths βn (i.e., βn = Γ′gn + ξn). Thus the likelihood of the combined

model is:

p({yn}Nn=1, {wn}Nn=1|{βn}Nn=1,Γ, Vβ, {zn}Nn=1, {gn}Nn=1, λ)

=
N∏
n=1

p(yn|βn)p(βn|gn,Γ, Vβ)p(wn|zn, λ)p(zn|gn).
(3.9)

Figure 3.4 illustrates the proposed hierarchical Bayesian choice model with a GoM

model. From the DAG we can see that the proposed model is a three-level model

where only the categorical responses wn and choices yn for each respondent are ob-

served. The homogeneous profiles λ account for the interaction or co-occurrence

among items and provide for the dimension reduction we need to use this collection

of discrete data as covariates in the model of preference heterogeneity.

Figure 3.4 combines the DAGs in Figure 3.1 and Figure 3.3 to illustrate that

the membership vector gn serves as the link between the choice model and the GoM

model. Thus gn is informed by both the categorical responses wn and the chosen
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Figure 3.4: Hierarchical Bayesian Choice Model with a GoM Model

alternatives yn. The proposed model is more complete than a model where gn is

estimated separately from choice since estimating all the parameters in the expanded

model allows us to properly account for the uncertainty in gn. Because gn is identified

when informed by wn alone in the GoM model, gn is also identified in the proposed

model when identified by both wn and yn.

Following Figure 3.4, the joint posterior distribution of the proposed model is:

p({βn}Nn=1,Γ, Vβ,{zn}Nn=1, {gn}Nn=1, λ|{yn}Nn=1,Γ, A, ν, V, {wn}Nn=1, α, τ)

∝

[
N∏
n=1

p(yn|βn)p(βn|gn,Γ, Vβ)p(wn|zn, λ)p(zn|gn)p(gn|α)

]
× p(Γ|Vβ, Γ̄, A)p(Vβ|ν, V )p(λ|τ)

(3.10)

where
∏N

n=1 p(yn|βn)p(βn|gn,Γ, Vβ)p(wn|zn, λ)p(zn|gn) is the likelihood and∏N
n=1 p(gn|α), p(Γ|Vβ, Γ̄, A), p(Vβ|ν, V ), and p(λ|τ) are the priors. A complete list of

the variables in Equation (3.10) are detailed in Table 3.1.
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Table 3.1: Variables in Hierarchical Bayesian Choice Model with a GoM Model

Choice Variables Description

N number of respondents

H number of choice tasks for each respondent n

P number of alternatives in each choice task

L number of attribute levels in each choice task

yn H-dim vector of choices for respondent n

βn L-dim vector of part-worths for respondent n

Γ K × L matrix representing the mean of the random

effects distribution of heterogeneity

Vβ L×L covariance matrix of the random effects distri-

bution of heterogeneity

GoM Variables Description

K number of profiles

J number of categorical questions

nj number of categorical responses for question j

wn J-dim vector of respondent n’s categorical responses

zn J-dim vector of respondent n’s profile assignments

gn K-dim membership vector for respondent n

λ collection of probability distributions λj,k over the nj

response options for each question j and profile k
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We validated our proposed model by generating data where K = 2, N = 200,

J = 13, nj = 2 for all J , H = 50, P = 4, and L = 5 and recovering parameter values.

Details on generating data and the estimation procedure are provided in Appendices

E and F. Each true parameter value was within or near the bounds of a 95% credible

interval. We display the aggregate-level posterior means of Γ and λ in Figure 3.5.

The posterior means line up along the diagonal, indicating parameter recovery. Note

that the λ estimates are constrained to be within the 0− 1 bounds.
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Figure 3.5: Simulation Study Results
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3.3 Empirical Application

We use data from a national survey of preferences regarding robotic vacuums. A

total of 332 respondents were carefully screened to ensure that the product options

under consideration were relevant to them. In particular, qualified respondents had

to own a robotic vacuum, currently be shopping for their first robotic vacuum, or

might consider a robotic vacuum sometime in the next five years.

Before the conjoint experiment, respondents were asked to detail why the product

was relevant to them or anyone in their household by selecting from a list of 11

statements on cleaning that robotic vacuums might help address. Respondents were

also asked to select from among a list of 7 statements that described problems with

robotic vacuums. The combined list of 18 statements regarding cleaning and robotic

vacuums is provided in Table 3.2. Thus our discrete data consists of two possible

categories (i.e., nj = 2 for all J = 18) where not selecting an item is coded as a 0 and

selecting an item is coded as a 1.

Standard models using this discrete data as observed covariates in the random

effects distribution of heterogeneity don’t have a practical way to include interactions,

even though interactions should be expected. For example, we would expect that

respondents who select statement 5 “I worry about germs and dirt on my floor and

carpet” also select statement 10 “I spend over two hours per week cleaning” and that

this interaction would have an impact on explaining preferences in the random effects

distribution of heterogeneity. However, if we were to include two-way interactions,

we would add an additional 153 covariates, to say nothing of the dimensionality

introduced by higher-level interactions.

46



Table 3.2: Statements on Cleaning and Robotic Vacuums

No. Item

1 I enjoy coming home to a clean house.

2 I don’t feel relaxed when I know my home isn’t clean.

3 I worry about pet hair and dander in the home.

4 I have trouble keeping the floor beneath my furniture clean.

5 I worry about germs and dirt on my floor and carpet.

6 I get anxious about having guests when my home is dirty.

7 I don’t like going to someone’s home that is dirty.

8 I don’t like touching dirty things.

9 I don’t spend much time cleaning.

10 I spend over two hours per week cleaning.

11 I have a cleaning person who cleans for me.

12 Robotic vacuums are too expensive.

13 Robotic vacuums are too complicated to program, set up, and operate.

14 Robotic vacuums often need to be “rescued” because they get stuck.

15 Robotic vacuums need to have their trash containers changed too often.

16 Robotic vacuums don’t do a good enough job cleaning the floor and carpet.

17 Robotic vacuums don’t spend enough time on really dirty spots on the floor.

18 Robotic vacuums scare household pets.
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Figure 3.6: Example Choice Task

After selecting from applicable statements on cleaning and robotic vacuums, re-

spondents proceeded through a series of 16 choice tasks where they were asked to

select which of five product alternatives they most preferred, including an outside

option to not select any of the given alternatives. Figure 3.6 is a screenshot of one of

these choice tasks. Each alternative was composed of seven separate attributes for a

total of 12 estimable attribute levels, excluding the reference levels in red detailed in

Table 3.3.

Besides brand and price, we see that the attributes were defined in terms of

features, including the vacuum’s performance (i.e., what percentage of dirt and debris

it picks up), capacity (i.e., how often it needs to be emptied), the type of navigation

(i.e., does it change directions by just bumping into things or is it “smart” and able

to scan and determine an optimal path), where it can be programmed, and whether
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Table 3.3: Attribute Levels

Attributes Levels

Brand Outside Option Neato iRobot Samsung Black & Decker

Performance 70% 85%

Capacity Every use Every 2-3 uses

Navigation Random Smart

Programming Base unit App

Virtual Borders No Yes

Price $299 $399 $499 $599

Table 3.4: Data Summary

Choice Variables Description

N = 332 total number of respondents

H = 16 number of choice tasks for each respondent n

P = 5 number of alternatives in each choice task

L = 12 number of attribute levels in each choice task

GoM Variables Description

J = 18 number of categorical questions

nj = 2 number of categorical responses for each question j

or not virtual borders can be set to keep the robotic vacuum away from certain areas

of the home. A summary of the data using model notation is provided in Table 3.4.

3.4 Results

We report the results of three models. The Intercept model only includes an

intercept in the upper level model (i.e., βn = γ + ξn) and serves as a baseline. The

Binary Covariates model includes all 18 dummy-coded statements from Table 3.2 as

covariates in the upper level model (i.e., βn = Γ′zn + ξn) and represents the typical
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way these discrete covariates would be used in practice. Finally, the Membership

Vector model is our proposed model, which uses the membership vectors gn from the

grade of membership model as covariates for K = 5 profiles (i.e., βn = Γ′gn + ξn).

The number of profiles K is determined by the analyst. Following the review

on model selection criteria by Joutard et al. (2007), we ran an isolated GoM model

on the 18 statements in Table 3.2 and compared two measures of fit. The first is

the Newton-Raftery approximation of the log marginal density (LMD) (Newton and

Raftery, 1994), a standard Bayesian measure. The second is the deviance information

criterion (DIC), developed by Spiegelhalter et al. (2002). Values closer to zero indicate

improvement in fit for both measures. Figure 3.7 includes charts for the values of both

LMD and DIC for models with K = 2 to K = 18. According to the LMD, K = 5

is best. According to the DIC, K = 7 is best. With the range of possible models

narrowed, we ran the proposed model for K = 5 to K = 7. Comparing results to find

profiles that are sufficiently differentiated and non-repeating, the model with K = 5

was deemed best.

The final 75 respondents were reserved as a hold-out sample, leaving 257 respon-

dents for calibration. In addition, one choice task was held out from each respondent

in the calibration sample for an additional measure of predictive fit. We ran each

model for 50,000 iterations, saving every 50th draw, and using the final 20,000 it-

erations for inference. We checked for but found no substantial evidence of label

switching.

Choice model LMD is used for in-sample fit. Out-of-sample fit is provided in

terms of hit probabilities. A hit probability is the average posterior probability of a

set of observed choices given a specific model. The hit probability is averaged over a
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Figure 3.7: Specifying K

set of respondents N∗, observations H∗, and post-burn-in MCMC draws R∗. The hit

probability for a given model M is:

HP(M) =
1

N∗

N∗∑
n∗=1

[
1

H∗

H∗∑
h∗=1

(
1

R∗

R∗∑
r∗=1

Pr(j|βMn∗,r∗ , Xh∗)n∗

)]
(3.11)

where j is the observed choice from the design matrix Xh∗ for each observed choice

task H∗ and βMn∗,r∗ are respondent n∗’s estimated coefficients for each of the R∗ post-

burn-in MCMC draws for model M . The two hit probabilities of interest are for

the hold-out tasks from the calibration sample and the hold-out sample, respectively.

For the calibration hold-out task hit probability, N∗ = 257, H∗ = 1, R∗ = 401, and

βMn∗,r∗ are available from each model M . For the hold-out sample hit probability,

N∗ = 75, H∗ = 16, R∗ = 401, and βMn∗,r∗ is drawn from the distribution of heterogene-

ity, N(ΓMr∗
′
zMn , V

M
β,r∗) for the two alternative models and N(ΓMr∗

′
gMn∗,r∗ , V

M
β,r∗) for the
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proposed model. However, the covariates in the proposed model gMn∗ are generated as

part of the model and thus are not available for the hold-out sample.

To address this, the observed choices yn∗ for the respondents in the hold-out sample

were withheld while their observed categorical responses wn∗ were included to produce

the covariates gMn∗ needed to compute the hit probability. Following Gelman et al.

(2013), we treat the withheld observed choices yn∗ for the hold-out sample respondents

as missing data and employ data augmentation to impute the missing observations

at each iteration in the MCMC chain. This allows us to produce covariates gMn∗ for

the hold-out sample that are informed by the complete model, including the hold-out

sample’s observed categorical responses wn∗ and the calibration sample’s observed

choices yn and categorical responses wn, and thus draw βMn∗,r∗ to compute the hit

probability. We perform this data augmentation for the hold-out sample respondents

for each of the reported models.

Table 3.5 demonstrates that, across all measures of model fit, covariates uncovered

with mixed membership modeling have more explanatory and predictive power than

standard models using discrete covariates. Another alternative to the proposed model

would be to include interactions directly. However, in running this alternative model,

problems manifested themselves with only two-way interactions. First, the flexibility

of the model induced by including so many covariates clearly allowed for overfitting.

As we increased the number of iterations in the Markov chain, we continued to see

an improvement in in-sample fit with no change in predictive fit and no sign of

convergence. Second, the number of interactions would make interpretation infeasible.

For these reasons we don’t report the results of this model.
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Table 3.5: Model Fit

In-Sample Out-of-Sample

Model LMD Hit Prob.1 Hit Prob.2

Intercept βn = γ + ξn -2,441.048 0.654 0.371

Binary Covariates βn = Γ′zn + ξn -2,424.537 0.651 0.300

Membership Vector βn = Γ′gn + ξn -2,307.619 0.670 0.451
1 Using calibration respondent hold-out tasks.

2 Using hold-out sample respondents where βMn∗,r∗ ∼ N(ΓMr∗
′
zMn , V

M
β,r∗) or N(ΓMr∗

′
gMn∗,r∗ , V

M
β,r∗).

The proposed model also improves inference regarding the drivers of preference

heterogeneity. To illustrate, let’s consider the posterior means of Γ from the Binary

Covariates model. Table 3.6 displays the complete Γ matrix. The attribute levels are

on the left and each column in the matrix is associated with the intercept or one of the

statements from Table 3.2. The posterior means highlighted in red and green are more

than two standard deviations below and above zero, respectively. This matrix should

inform a marketer concerning the drivers of preference for promotion and targeting

strategies. However, making sense of the significant values or considering how these

items may interact is cumbersome.
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Table 3.6: Binary Covariates Model Γ Estimates

Attribute Levels Int. S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18

Neato 1.52 0.03 0.22 -0.05 -0.31 2.19 -1.36 -0.78 -2.18 -0.74 -0.29 3.75 -1.03 1.65 -0.83 -0.66 0.56 -1.25 -0.17

iRobot 2.76 0.26 0.79 -0.31 -0.50 2.41 -1.73 -1.65 -2.53 -0.26 -0.26 3.27 -0.84 1.80 -0.95 -0.24 0.52 -0.69 0.22

Samsung 2.96 -0.46 0.42 -0.19 -0.23 2.27 -1.53 -1.02 -1.82 -0.76 -0.39 3.69 -0.95 1.37 -1.38 -0.83 1.00 -0.77 -0.27

Black & Decker 2.69 -0.42 0.21 -0.53 -0.10 1.99 -0.86 -1.70 -1.85 -0.55 -0.05 4.23 -1.81 2.77 -0.60 -0.58 0.82 -1.18 -0.07

Performance: 85% 0.91 0.43 0.29 0.47 0.68 -1.17 0.10 0.93 0.68 -0.25 0.21 -0.43 0.92 -0.31 0.83 0.34 0.92 -0.15 0.61

Capacity: Every 2-3 uses 0.47 -0.22 0.24 0.09 0.26 -0.02 0.21 0.07 0.03 -0.36 -0.15 -0.07 0.02 0.19 -0.10 0.14 0.43 -0.19 -0.14

Smart Navigation 0.25 0.47 -0.32 0.30 0.14 0.21 0.40 0.18 0.06 0.21 0.11 -0.34 -0.21 -0.14 -0.14 -0.22 -0.74 0.31 -0.38

App Programming -0.50 0.14 0.48 -0.07 -0.12 0.57 -0.07 -0.10 -0.12 0.63 0.22 -1.15 0.05 0.34 -0.29 0.16 -0.38 -0.04 -0.21

Virtual Borders 1.01 -0.22 -0.29 0.23 0.23 -0.10 0.07 -0.40 0.12 0.02 -0.03 -0.18 -0.08 -1.18 0.30 0.21 -0.63 0.04 0.44

$399 -1.10 -0.22 0.07 -0.36 -0.40 0.43 0.82 -1.11 0.73 -1.43 0.03 1.90 -1.16 -0.71 -0.07 0.65 -0.22 -0.28 -0.41

$499 -3.04 -0.87 0.37 0.13 -1.29 1.22 1.14 -1.97 1.02 -2.54 -0.30 3.22 -2.93 -1.48 0.07 1.57 -0.87 0.33 -0.60

$599 -4.83 -0.96 0.81 0.61 -1.41 0.77 0.76 -1.75 0.90 -2.69 -0.29 4.28 -3.41 -2.56 -0.71 2.04 -1.64 0.16 -0.43
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For example, we can use Table 3.6 to infer that respondents who are concerned

about germs and dirt (i.e., statement 5 “I worry about germs and dirt on my floor

and carpet”) prefer any brand of robotic vacuum relative to the outside good while

not being concerned about getting the highest level of performance. We might expect

this is because they are cleaning frequently (e.g., statement 10 “I spend over two

hours per week cleaning”) and having a robotic vacuum is simply one part of a larger

cleaning solution. Without a way to properly account for interactions, we aren’t able

to understand these more detailed explanations of preference heterogeneity.

The proposed model accounts for such interactions by identifying differentiated

respondent profiles. Table 3.7 details the profiles as described by the estimates of

λj,k(1). Since the respondents were qualified by owning or being interested in a

robotic vacuum, it isn’t surprising that every profile has statement 1 “I enjoy coming

home to a clean house” occurring with high probability. Profile 1 is differentiated from

the other models by statement 2 “I don’t feel relaxed when I know my home isn’t

clean,” statement 10 “I spend over two hours per week cleaning,” and statement 5 “I

worry about germs and dirt on my floor and carpet” occurring with high probability

and statement 11 “I have a cleaning person who cleans for me” occurring with the

lowest probability. We name this profile “Constantly Cleaning.”

Profile 2 is differentiated by statement 12 “Robotic vacuums are too expensive,”

statement 9 “I don’t spend much time cleaning,” and statement 10 “I spend over two

hours per week cleaning” occurring with high probability and statement 13 “Robotic

vacuums are too complicated to program, set up, and operate” occurring with the

lowest probability. We name this profile “Price Sensitive with Little Cleaning.” Profile

3 is differentiated by statement 2 “I don’t feel relaxed when I know my home isn’t
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Table 3.7: Membership Vector Model λj,k(1) Estimates

No. Statements λj,1(1) λj,2(1) λj,3(1) λj,4(1) λj,5(1)

1 I enjoy coming home to a clean house. 0.75 0.65 0.87 0.89 0.96

2 I don’t feel relaxed when I know my home isn’t

clean.

0.56 0.14 0.82 0.48 0.89

3 I worry about pet hair and dander in the home. 0.36 0.14 0.58 0.47 0.82

4 I have trouble keeping the floor beneath my

furniture clean.

0.28 0.14 0.44 0.67 0.83

5 I worry about germs and dirt on my floor and

carpet.

0.50 0.11 0.77 0.49 0.83

6 I get anxious about having guests when my

home is dirty.

0.46 0.28 0.79 0.53 0.93

7 I don’t like going to someone’s home that is

dirty.

0.19 0.18 0.80 0.51 0.91

8 I don’t like touching dirty things. 0.16 0.12 0.75 0.18 0.87

9 I don’t spend much time cleaning. 0.09 0.31 0.11 0.44 0.06

10 I spend over two hours per week cleaning. 0.51 0.26 0.65 0.41 0.87

11 I have a cleaning person who cleans for me. 0.07 0.04 0.14 0.04 0.08

12 Robotic vacuums are too expensive. 0.36 0.63 0.28 0.92 0.60

13 Robotic vacuums are too complicated to pro-

gram, set up, and operate.

0.09 0.04 0.08 0.23 0.19

14 Robotic vacuums often need to be “rescued”

because they get stuck.

0.21 0.26 0.25 0.35 0.86

15 Robotic vacuums need to have their trash con-

tainers changed too often.

0.27 0.17 0.21 0.15 0.50

16 Robotic vacuums don’t do a good enough job

cleaning the floor and carpet.

0.16 0.06 0.22 0.22 0.40

17 Robotic vacuums don’t spend enough time on

the really dirty spots on the floor.

0.15 0.26 0.18 0.20 0.18

18 Robotic vacuums scare household pets. 0.17 0.17 0.23 0.26 0.42
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Table 3.8: Profile Names

No. Profile Names

1 Constantly Cleaning

2 Price Sensitive with Little Cleaning

3 Anxious about Cleanliness

4 Price Sensitive with Difficulty Cleaning

5 Anxious and Suspicious

clean,” statement 7 “I don’t like going to someone’s home that is dirty,” and statement

6 “I get anxious about having guests when my home is dirty” occurring with high

probability. We name this profile “Anxious about Cleanliness.”

Profile 4, like profile 2, has statement 12 “Robotic vacuums are too expensive”

occurring with high probability, but is further differentiated by statement 4 “I have

trouble keeping the floor beneath my furniture clean” and statement 14 “Robotic vac-

uums often need to be ‘rescued’ because they get stuck.” We name this profile “Price

Sensitive with Difficulty Cleaning.” Finally, profile 5, like profile 3, has statements 6,

7, and 2 occurring with high probability – statements describing being anxious about

cleanliness – as well as, like profile 4, a high probability of statements 14 and 4, which

describe difficulty cleaning along with a belief that robotic vacuums get stuck. We

name this profile “Anxious and Suspicious.”

Table 3.9 displays the matrix of estimated coefficients Γ that maps variability in

the membership vectors to variability in the part-worths. Again, the posterior means

highlighted in red and green are more than two standard deviations below and above

zero, respectively. Note that the size of the coefficients is in part a function of the

size of K and the sum-to-one constraint on gn. As K increases in size, each element
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Table 3.9: Membership Vector Model Γ Estimates

Attribute Levels P1 P2 P3 P4 P5

Neato 26.49 -16.13 0.27 9.04 -20.17

iRobot 27.52 -11.49 1.84 9.86 -20.75

Samsung 24.28 -14.70 8.57 9.18 -21.94

Black & Decker 25.96 -15.93 4.19 10.59 -21.59

Performance: 85% -1.19 -0.68 -2.15 2.00 20.47

Capacity: Every 2-3 uses 1.93 -0.62 0.18 0.19 1.70

Smart Navigation 0.27 3.10 -1.12 -0.01 2.04

App Programming 1.49 0.77 -1.23 -1.33 -0.06

Virtual Borders 0.00 4.87 -1.38 -1.17 1.31

$399 1.84 -0.30 3.51 -16.36 1.07

$499 3.26 -0.32 4.70 -36.66 0.37

$599 3.09 -0.93 8.40 -53.50 -2.58

of the membership vector gn gets smaller and the coefficients of Γ get larger to map

to the part-worth estimates.

Even taking this constraint into account, the coefficients are still larger than those

produced by the standard model as represented in Table 3.6. This is because partial

membership in these extreme profiles allows the distribution of preferences to move

into the extremes. To illustrate, Figure 3.8 provides the marginal posterior distribu-

tions of heterogeneity following Equation (3.2) for the robotic vacuum brands in the

study. The densities on the left correspond to each of the models in Table 3.5. M3,

the proposed model, is different from M1 and M2 for all four brands. However, this

difference results in more variance rather than a shift in the marginal posteriors. The

densities on the right correspond to the five profiles from the proposed model, where

each respondent has been assigned to the profile with the largest posterior weight
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gn,k. The pattern of the densities on the right demonstrate why we have an increased

variance in the densities for M3 on the left – they are shifted away from zero in such

a way so that when they are combined they compose a single distribution with longer

tails. That said, the focus in interpreting the coefficients in Table 3.9 remains on

their relative sign and magnitude.

As with Table 3.6, the matrix in Table 3.9 should inform a marketer concerning

the drivers of preference for promotion and targeting strategies. However, using the

proposed model, we are able to explain preferences in terms of the extreme profiles.

For example, profile 1, “Anxious about Cleanliness” includes statements 5 “I worry

about germs and dirt on my floor and carpet” and 10 “I spend over two hours per

week cleaning” with high probability. With this profile we can answer what was only

suggested from Table 3.6, that the more an individual is aligned with this profile,

the more they prefer any brand of robotic vacuum while caring about a high-capacity

robotic vacuum rather than one that performs the best. In other words, since they are

cleaning often, they want a robotic vacuum with high capacity in order to effectively

assist but not replace other cleaning efforts.

We can better inform targeting and promotion strategies using the proposed

model. We can use the estimate of Γ as a roadmap for targeting by matching what re-

spondents prefer with a more detailed explanation of what is driving those preferences.

For example, for consumers above a certain threshold in their partial membership in

profile 4 “Price Sensitive with Difficulty Cleaning,” we know that pricing promotions

should be especially effective since they have a need for robotic vacuums but are

incredibly price sensitive. The dimension-reduction provided by employing a GoM

model makes this plausible with the 12 × 5 Γ matrix in Table 3.9 compared with a
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Figure 3.8: Marginal Posterior Distributions of Heterogeneity
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similar task using the 12× 19 Γ matrix in Table 3.6 from the alternative model or an

even larger Γ matrix that includes interactions directly.

Accounting for the co-occurrence or interactions among items is akin to segmenting

the market. The blocks of significant attribute level coefficients in Table 3.9 are

reminiscent of such segmentation solutions. Unlike mixture models, which are typical

in clustering applications, where a respondent is assigned to a single category, mixed

membership models like the GoM allow for the more realistic description of each

respondent being a partial member of each profile. In our empirical application,

it makes sense that consumers interested in robotic vacuums are not going to be

constantly cleaning, anxious about cleanliness, skeptical of robotic vacuums, or price

sensitive exclusively. Rather, each individual is a mix of all the profiles, with weights

determined heterogeneously. Accounting for such differences improves our ability to

conduct inference.

3.5 Discussion

In this paper we show that modeling interactions among discrete multivariate data

does more to explain consumer preferences than the discrete covariates on their own.

This is accomplished by combining a grade of membership model, part of the class

of mixed membership models, with choice modeling to estimate membership vectors

for use in a hierarchical Bayesian random effects distribution of heterogeneity.

Choice modeling remains an essential fixture of marketing research. However,

finding covariates that are explanatory of preference heterogeneity has proven difficult.

Our proposed model provides a novel way to account for interactions, and provide

dimension reduction, for survey data that explain variation in part-worth utilities.
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The empirical application utilizes typical survey response data to demonstrate the

use of the proposed model. However, with growing access to unstructured collections

of discrete data, we see this approach as an important step to utilizing such data,

including text, to improve choice modeling.

Latent Dirichlet allocation, as another kind of mixed membership model, performs

in a similar way to the GoM. Text data results in the same kind of sparse matrix as the

multinomial data used in the GoM model, with LDA proceeding with words instead

of items or statements and a single document for each individual. The dimension

reduction using text is even more dramatic when starting with potentially thousands

of unique words in the count matrix. However, the amount of data needed to run LDA

with words composing the collection of discrete data is significant due to the large

number of words in any given vocabulary. Without enough data, there are a variety

of developments in topic modeling that are ripe for application within marketing,

including using Dirichlet process priors (Ferguson, 1973; Antoniak, 1974) as a kind of

distribution of heterogeneity over topic proportions. We leave the practical problems

of using text in the place of traditional survey questions as an extension to this

research.

Another extension relates to estimating the optimal size of K. While there isn’t a

consensus as to which measure of model fit provides the gold standard for determining

the size of K, there are a number of extant methods for navigating across possible

model dimensions that could be employed to include K as a parameter in the model

(Green, 1995; Green et al., 2015). The technical details of how to incorporate such

methods into the proposed model is left for future research.
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More generally, we see the use of mixed membership models as a model-based

approach to classifying consumers that yields a more realistic description of the in-

dividual as being a mixture of various extreme consumer profiles. This paper serves

as a step toward fulfilling a broader need to provide more complete descriptions and

explanations of consumer preference heterogeneity.
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Appendix A: Generating Data for Chapter 2

We generate data using the extended model of brand choice to demonstrate pa-

rameter recovery in a simulation experiment. First, set the true values of ∆, Vβ, and

γ. Then, for each respondent h:

1. Generate a vector of M needs zh by rounding random draws from a continuous

uniform distribution.

2. Generate a matrix of N ×M brand beliefs Bh by rounding random draws from

a continuous uniform distribution.

3. Draw βh ∼ MVN(∆′wh, Vβ). Recall that β′h = [βzh, βph].

4. Compute a brand intercept for each alternative j β0jh =
∑M

m=1 βmzhbmjh.

5. Create β0ph by concatenating β0h and βph.

6. For each benefit choice task s = 1, . . . , S:

(a) Generate the design matrix XL1
s .

(b) Compute latent utility for each alternative: Ush = XL1
s βzh + εsh where

εsh ∼ EV (0, 1) and is generated by − log(− log(Unif(0, 1))).

(c) Rank each alternative according to latent utility.

7. For each brand-price choice task t = 1, . . . , T :
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(a) Generate the design matrix XL2
t with full-rank alternative-specific con-

stants for the N brands.

(b) Calculate:

σjh = exp

[
γ · I

(
M∑
m=1

zmh ≥ 1

)
· I

(
M∑
m=1

bmjhzmh =
M∑
m=1

zmh

)]
.

(c) Compute latent utility for each alternative: Uth = XL2
t β0ph + εth where

εth ∼ EV (0, σjh) and is generated by − log(− log(Unif(0, 1))) · σjh.

(d) Rank each alternative according to latent utility. Account for the possibil-

ity that up to three of theN brands aren’t in the respondent’s consideration

set and so aren’t included in XL2
t .
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Appendix B: Estimation Procedure for Chapter 2

Extended models of behavior are characterized by conditional independence. We

employ two likelihoods that are connected with the definition of the brand intercepts

as the conditioning argument. It is also important to note that βh is heterogeneous

and γ is homogeneous. We proceed with estimation using a random-walk Metropolis-

Hastings algorithm as follows. For each iteration in the Markov chain:

1. Initialize the log likelihood value at 0 for the given iteration.

2. Draw the candidate value γc where the old value γd is initialized at 0 and

γc = γd + ε, ε ∼ Normal(0, sγ), where sγ is the step-size specified for γ.

3. For each respondent h = 1, . . . , H:

(a) Draw the candidate values βch where the old values βdh are initialized at 0

and βch = βdh + ε, ε ∼ MVN(0, sβ · Vβ), where sβ is the step-size specified

for all βh.

(b) Compute each candidate brand intercept βc0(j)h =
∑M

m=1 β
c
mzhbm(j)h.

(c) Create the candidate coefficient vector for the brand-price tradeoff βc0ph by

concatenating βc0h and βcph.

(d) Compute the log likelihood of the benefit evaluation L1 with the exploded

multinomial logit with yL1h and XL1 for βdzh and βczh using Equation (2.4).
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(e) Compute the log likelihood of the brand-price evaluation L2 with the ex-

ploded multinomial logit with yL2h, X
L2 , and γd for βd0ph and βc0ph. For

responses where σjh 6= 1, we no longer have a closed form and must solve

for the choice probabilities using numerical integration as in Equation (2.5).

We employ the composite Simpson’s rule (i.e., three-point quadrature):

Pr(j)h ≈
∫ cσjh

−cσjh

[
K∏
k=1

F ([Vjh − Vkh + εjh]/σkh)

]
f(εjh/σjh)dεjh

≈ ∆εjh
3

(
y1 + 4

N∑
n=2,4,...

yn + 2
N−1∑

n=3,5,...

yn + yN+1

)
.

Each y represents the height of the corresponding point in the support:

yn =

[
K∏
k=1

F ([Vjh − Vkh + xnjh]/σkh)

]
f(xnjh/σjh) for all k 6= j

where the EV (0, σ) CDF and PDF are:

F (x/σ) = exp

[
− exp

(
−x
σ

)]
f(x/σ) =

1

σ
exp

[
−x
σ
− exp

(
−x
σ

)]
.

The integer c determines how much of the support we cover, N is an even

integer, and ∆εjh = (cσjh + cσjh)/N is the fixed width of each subinterval.

After conducting a sensitivity analysis, we set c = 10 and N = 50. Apply-

ing this to the heteroscedastic exploded multinomial logit, and taking into

account that we only need to use numerical integration when σ(i)h 6= 1, we

have:

Pr(U(1) > U(2) > · · · > U(K))h
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≈
K−1∏
i=1

∫ cσjh

−cσjh

[
K∏
k=i

F ([V(i)h − V(k)h + ε(i)h]/σ(k)h)

]
f(ε(i)h/σ(i)h)dε(i)h

≈
K−1∏
i=1

[
exp[V(i)h]∑K
k=i exp[V(k)h]

]φ

×

[
∆ε(i)h

3

(
y1 + 4

N∑
n=2,4,...

yn + 2
N−1∑

n=3,5,...

yn + yN+1

)]1−φ

where φ = I(σ(i)h = 1) and each y now takes into account the rank of the

data:

yn =

[
K∏
k=i

F ([V(i)h − V(k)h + xn(i)h]/σ(k)h)

]
f(xn(i)h/σ(i)h) for all k 6= i .

Note that Chapman and Staelin (1982) recommend an exploded depth of

3. Therefore, even if K > 4, only consider up to K = 4. Finally, normalize

the choice probabilities for the given choice task to ensure the probabilities

sum to 1 before selecting the choice probability for the chosen alternative

to use in computing the likelihood.

(f) Compute the log of the distribution of heterogeneity over all βdh and βch

according to Equation (2.8), which we denote as p(βdh) and p(βch).

(g) Accept βch with probability (after exponentiation the log likelihoods and

the log of the random-effects distributions):

α = min

(
1,
L1(βczh)× L2(βc0ph, γ

d)× p(βch)
L1(βdzh)× L2(βd0ph, γ

d)× p(βdh))

)
.

(h) Compute the total log likelihood for γc by summing the log likelihood of the

benefit evaluation with βdzh using Equation (2.4) and the log likelihood of
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the brand-price evaluation with yL2h, X
L2 , and βd0ph for γc using Equation

(2.5).

4. Draw ∆ and Vβ using Bβd
h

= W∆ + η where η ∼ MVN(0, Vβ).

5. Accept γc with probability (after exponentiating the total log likelihoods):

α = min

(
1,

Total Likelihood(γc)× p(γc)
Total Likelihood(γd)× p(γd)

)

where the Normal prior on γ is denoted p(γ). Note that the total likelihood of

γd is equivalent to the total likelihood from the respondent-level step. In other

words, we accept γc only if it leads to an improvement in the likelihood of the

model overall.

6. Print the acceptance rate every 5 iterations for βch, the number of accepted

candidate draws of βh divided by the number of respondents, and for γc, the

number of accepted candidate draws of γ divided by 5. The acceptance rate for

γc resets after every 5 iterations.

7. The step sizes sβ and sγ will be tuned during the first third of iterations if the

acceptance rates are greater than .60 or less than .20.
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Appendix C: Hit Probabilities for Ranked Data

Hit probabilities are the average predicted choice probabilities of making the ob-

served choices in the hold-out sample given a specific model. These predicted prob-

abilities are averaged over respondents H, hold-out observations S, and post-burn-in

MCMC draws R∗. The hit probability for model M is:

HP(M) =
1

H

H∑
h=1

[
1

S

S∑
s=1

(
1

R∗

R∗∑
r=1

P (j|βMhr , Xs)h

)]

where j is the observed choice from the design Xs for each choice scenario S in the

hold-out sample and βMhr are respondent h’s estimated coefficients for each of the R∗

post-burn-in MCMC draws for model M .

Applying this to ranked data, the observed choice becomes a sequence of choices:

HP(M) =
1

H

H∑
h=1

[
1

S

S∑
s=1

(
1

R∗

R∗∑
r=1

Pr(U(1) > U(2) > · · · > U(K)|βMhr , Xs)h

)]
.
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Appendix D: Comparing Factor Analysis and the GoM

To detail the differences between factor analysis and the grade of membership

(GoM) model, it is useful to write down a factor analytic model for binary data in

the form of a cut-point model (Lee, 2007). In this model, observed responses from

respondent n, wn, are generated as follows:

wn,j = 1 if zn,j > 0 ∀j ∈ {1, . . . , J}, zn ∼ N(Λζn,Σ) (D.1)

where wn is a J × 1 vector of observed binary responses, zn is a J × 1 vector of

latent continuous responses, ζn is a K × 1 vector of factor scores, the J ×K matrix

Λ indicates factor loadings, Σ indicates a J × J covariance matrix of the z’s, and

the threshold 0 is a fixed, arbitrarily chosen cut-point. The model in Equation (D.1)

can easily be extended to ordinal data via additional cut-points (Johnson and Albert,

2006). Apart from the normal errors specification of this model and the subsequent

need for identification constraints because of its scale invariance, this is a standard

factor model and equivalent to a model in which multiple observed responses are

regressed on unobserved factor scores.
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The probability of observing a single response wn,j, given this specification, can

be expressed as an integral over the z space:

Pr(wn,j = 1|ζn,Λ) =

∫ ∞
0

p(zn,j|{zn,−j}, ζn,Λ,Σ)dz

=

∫ ∞
0

N(ζ ′n,kγj,k, σ
2
n,j)dz

Pr(wn,j = 0|ζn,Λ) = 1−
∫ ∞

0

N(ζ ′n,kγj,k, σ
2
n,j)dz

(D.2)

where σ2
n,j is the univariate variance of zn,j, conditional on {zn,−j}. In the case of

conditionally independent regression errors, σ2
n,j = σ2

n. Equation (D.2) expresses the

probability of observing a given response as the integral over the latent z space trun-

cated at 0, given unobserved unit-level factor scores and across-unit factor loadings.

The GoM model expresses the probability of observing response l as an individual-

level, multinomial mixture model of K profiles in which each response option for each

question has profile-specific multinomial choice probabilities that are mixed over unit-

specific weights (Erosheva et al., 2007):

Pr(wn,j = l|gn, λ) =
K∑
k=1

gn,kλj,k(l) (D.3)

in which the gn indicate respondent-level weights of the profiles and λj,k(l) is the

probability of observing response l to question j given exclusive membership to profile

k. As with every mixture model, the GoM model imposes the following constraints

on the weights: 0 ≤ gn,k ≤ 1 and
∑K

k=1 gn,k = 1. In the case of binary responses, the
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GoM model is simply:

Pr(wn,j = 1|gn, λ) =
K∑
k=1

gn,kλj,k(1)

Pr(wn,j = 0|gn, λ) =
K∑
k=1

gn,k(1− λj,k(1))

(D.4)

where the gn are subject to the same constraints.

Comparing the factor model in Equation (D.2) to the GoM model in Equation

(D.4) reveals several differences between the two models. First, the GoM model is an

individual-level mixture model of K latent profiles. The factor model is essentially

a linear multivariate regression model. This leads to a different interpretation of

gn, compared to the latent factor scores ζn. The gn represent convex weights over a

multidimensional latent space whereas the factor scores are the set of latent sources

of observed responses, each of which is unidimensional and which contribute to the

observed responses in a linear fashion. The important difference lies in what the

underlying construct is. In the GoM model, a profile is defined as a set of response

probabilities across all J questions and their response options. In factor analysis, a

factor is assumed to exist independently from the measurements.

Second, and because of its mixture model property, the GoM model allows us to

capture response heterogeneity in two ways. First, it allows for unit-level latent scores

gn, which captures differences among respondents. Second, it captures heterogeneity

in responses through profile-specific response probabilities λj,k. Individual response

behavior is described in terms of the similarity of individual and profile-specific re-

sponse probabilities. An individual’s response behavior more similar to one of the

profiles across all responses is expressed by a higher weight of that profile for that

individual.
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Third, factor analysis makes specific assumptions concerning the distribution of

observed responses. More specifically, factor analysis assumes that for the data in

Equation (D.2), the z are distributed multivariate normal. The GoM model, in

comparison, makes no assumption about the joint distribution of observed responses.

This suggests that whether or not the GoM model is to be preferred over a factor

model is essentially a question of which model is an adequate description of respondent

heterogeneity in a particular application. The GoM model describes heterogeneity as

similarity between individuals and extreme profiles. The number of extreme profiles

in the GoM model is defined a priori and can be used to reduce the dimensionality of

the response space. Factor analysis is often used for the same purpose, but it lacks

the property of locating individuals in the convex space spanned by extreme response

behavior.
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Appendix E: Generating Data for Chapter 3

We generate data using the proposed hierarchical Bayesian choice model with a

GoM model to demonstrate parameter recovery in a simulation experiment. First, fix

the number of profiles K, the number of respondents N , the number of categorical

questions J , and the categorical levels for each question nj (e.g., nj = 2 for all J in

the case of pick any/J data), the number of choice tasks H, the number of alternatives

in each choice task P , and the number of attribute levels L. Next, set the true values

of Γ, Vβ, and λ. We set α and τ to be vectors of 1 for the Dirichlet priors, creating

a uniform distribution on the respective simplex to mirror our lack of information

regarding partial membership and profile composition.

For each respondent n, we proceed as follows:

1. Draw gn ∼ Dirichlet(α), the membership vector.

2. For each of the j = 1, . . . , J questions:

(a) Draw zn,j ∼ Multinomial(gn), a profile assignment.

(b) Draw wn,j ∼ Multinomial(λj,k=zn,j
(1), . . . , λj,k=zn,j

(nj)), a categorical re-

sponse drawn from the appropriate entry in λj,k indexed by j and k = zn,j.

3. Draw βn ∼ Normal(Γ′gn, Vβ).

4. For each of the h = 1, . . . , H choice tasks:
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(a) Generate a design matrix Xn,h.

(b) Compute latent utility for each alternative p:

Un,h,p = Xn,h,pβn + εn,h,p; p = 1, . . . , P

where εn,h,p ∼ EV(0, 1).

(c) Let yn,h = arg maxp
(
{Un,h,p}Pp=1

)
.

81



Appendix F: Estimation Procedure for Chapter 3

We employ a Markov chain Monte Carlo estimation procedure with both random-

walk Metropolis-Hastings and Gibbs steps. A Gibbs sampler similar to that detailed

in Erosheva et al. (2007) is used to estimate the GoM portion of the proposed model.

However, since gn is included in the distribution of preference heterogeneity, we use

a random-walk Metropolis-Hastings algorithm to estimate gn’s that are predictive of

the part-worths. The remaining choice model portions of the proposed model utilize

standard estimation methods. We proceed with estimation as follows for R iterations:

1. For each of the n = 1, . . . , N respondents:

(a) For each of the j = 1, . . . , J questions, draw zn,j using gn,k, the partial

membership respondent n has in each profile k, and λj,k(wn,j), the proba-

bility of the chosen response wn,j for each profile k:

zn,j = arg max
k

(Multinomial(p1, . . . , pK)) , where pk ∝ gn,kλj,k(wn,j).

(b) Draw gnewn using a random-walk Metropolis-Hastings step where goldn is

initialized at 1/K for all K elements and gnewn = Dirichlet(goldn ×sp), where

sp is the specified step size. The larger sp is, the closer gnewn will be to goldn .
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(c) Accept gnewn with probability

αaccept = min

1,

[∏J
j=1 p(zn,j |gnewn )

]
p(gnewn |α)p(βoldn |gnewn ,Γ, Vβ)p(goldn |gnewn )[∏J

j=1 p(zn,j |goldn )
]
p(goldn |α)p(βoldn |goldn ,Γ, Vβ)p(gnewn |goldn )


where the random-walk proposal density p(goldn |gnewn ) and p(gnewn |goldn ) ∼

Dirichlet.

(d) Draw βnewn using a random-walk Metropolis-Hastings step where βoldn is

initialized at 0 and βnewn = βoldn + ε, ε ∼ N(0, Vβ × sβ), where sβ is the

specified step size. The smaller sβ is, the closer βnewn will be to βoldn .

(e) Accept βnewn with probability

αaccept = min

(
1,
p(yn|Xn, β

new
n )p(βnewn |goldn ,Γ, Vβ)

p(yn|Xn, βoldn )p(βoldn |goldn ,Γ, Vβ)

)

where the multivariate normal random-walk proposal density cancels out.

2. Draw Γ and Vβ using B = Γ′G+ Ξ where G is a matrix with each goldn as a row

vector, B is a matrix with each βn as a row vector, and Ξ ∼ N(0, Vβ).

3. Draw λ using counts of the augmented variable z:

λj,k ∼ Dirichlet(pk,1, . . . , pk,nj
), where pk,l ∝ 1 +

N∑
n=1

I(zn,j = l)

for j = 1, . . . , J and k = 1, . . . , K.
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