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Abstract 

 

Sedimentary basins are emerging candidates for geothermal deployment due to their 

widespread presence in the subsurface, large storage capacity, and high temperatures. 

These geothermal systems rely on the temperature of the reservoir—and thus the 

temperature of the extraction fluid produced to the surface—but these temperatures can 

decrease if the rate at which heat is extracted from the reservoir exceeds the rate at which 

the natural geothermal heat flux increases the temperature. In this context, sustainability is 

often synonymous with extracting heat at a rate that maintains the temperature of the 

production fluid at a desired level. This perspective of sustainability focuses on the 

physical/environmental performance of the geothermal reservoir. But preserving heat in 

the reservoir may not be economically viable. Environmental and economic performance 

are interconnected, and systems must consider both of these metrics when determining an 

optimal operation strategy to conserve both the longevity of the resource and the associated 

economic profit. Natural resource economics focuses on developing strategies for resource 

management and/or allocation that weighs the environmental and economic benefits of a 

system.  

 

The following thesis presents a natural resource economics model for the optimal 

management of a geothermal resource using conventionally used water or carbon dioxide 
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(CO2) as a heat extraction fluid. I investigated the performance of a sedimentary basin 

geothermal resource under a variety of scenarios, parameterized those results to accurately 

predict change in geothermal performance, and implemented those results in a natural 

resource economic model. The Non-isothermal Unsaturated- saturated Flow and Transport 

(NUFT) code simulates a sedimentary basin geothermal reservoir under a range of geologic 

conditions and was used to understand and parameterize geothermal performance. I 

combined the simulation outputs from all the scenarios by normalizing the production 

temperature and energy that is extracted to create a reduced form representation of this 

relationship. This reduced form serves as an input into the natural resource economic model 

that uses Microsoft Excel’s Optimization Solver to determine the optimal mass flowrate 

time path to extract heat given the profit that can be made and the natural rate at which the 

reservoir temperature renews. 

  

The reservoir simulation results show that the relationship between normalized temperature 

of the produced fluid and normalized energy that is extracted is the Richard’s curve (i.e. a 

generalized logistic curve). The regeneration rate of the reservoir, the rate at which 

temperature renews within a reservoir, is considerably smaller than the rate of economic 

growth. As such, results from the natural resource economic model suggest it is often 

optimal to drawdown the temperature of the reservoir to gain the quickest payback of 

investment.   
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Chapter 1: Geothermal Energy Background 

 

This chapter discusses the global energy challenge addressed by the use of geothermal 

energy, an alternative to non-renewable resources that can exacerbate global climate 

change. An inherent shortcoming of geothermal energy is the decrease in temperature of 

the produced fluid over time if the rate of extraction exceeds the rate of renewability. As 

such, a sustainable heat extraction management strategy should consider both 

environmental and economic performance of geothermal energy. Natural resource 

economics provides the approach for determining such a strategy.   

   

The Global Energy Challenge 

The global energy challenge is to mitigate the effects of climate change caused by heat-

trapping gases that are released into the atmosphere such as carbon dioxide (CO2) and 

methane, primarily through the burning of non-renewable energy sources (e.g. coal, 

petroleum, and oil). As of 2014, the global average temperature had increased by 0.69°C 

(1.24°F) above the 20th century average of 13.9°C (59.0°F) (NOAA National Centers for 

Environmental Information, 2015). The global temperature is expected to continue 

increasing unless drastic measures are not taken. Research on climate change surfaced in 

the late nineteenth century (Sawyer, 1972), but it was not until recently that national 

governments, the energy sector, and the general public took initiative to alleviate its on-set 
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(Bolin, 2007). These initiatives ranged from carbon taxes and new fuel economy standards 

to campaigns that encourage citizen-level effort to use alternative energy sources and 

individual consciousness of energy use (de Moor, 2001; Walker, 1995). For example, in 

December 2015, countries gathered in Paris France and decided to take initiates that will 

maintain the global temperature change below 2°C (United Nations, 2015). The United 

States will need to make drastic changes in the sources of energy used if the country is to 

materialize this vision. 

 

Emission reductions in the United States will occur when there is a shift in energy 

dependency from fossil fuels to sources with little to no greenhouse gas emissions (Figure 

1). Nuclear energy is a “cleaner” source of energy with lifecycle emissions ranging from 

30 to 60 grams CO2/kWh (Sovacool, 2008). But, the radioactive waste associated with 

nuclear energy is highly hazardous and difficult to dispose of due to potential harmful 

health effects (Bowman et al., 1992; Ewing et al., 1995). Other renewable energy resources 

that are used to produce electricity—namely wind and solar—are inherently variable and 

naturally fluctuate throughout the day, season, and year. In contrast, the operator of a 

geothermal energy facility can control the rate at which heat is extracted because the 

geothermal heat flux does not vary, providing flexibility in energy supply that can match 

the oscillations in energy demand. A shift in the sources of energy currently used will 

require extensive research to improve and increase the energy conversion efficiency of 

renewable resources. Until the specific limitations surrounding renewable energy sources 
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are not addressed, renewable energy will not be able to replace the current dependency on 

non-renewable energy. 

 

Geothermal Energy Resources 

Geothermal energy is the use of heat found within the earth’s crust. The use of geothermal 

energy has increased over the last decade, yet, as Figure 1 shows, makes up only 0.4% of 

the total United States electricity generation as of March 2015 (Bertani, 2012; Institute for 

Energy Reserach, 2015).  

 

Figure 1: Percent of Total United States Electricity Consumption (Source: Institute of 

Energy Research) 

 

This is a small use of the approximated 1013
 EJ stored within the earth’s subsurface 

(Rybach, 2007). To put this magnitude into perspective, it would take over 109 years of 

relying solely on geothermal energy to meet the world’s energy demand to fully cool down 
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the earth (Rybach, 2007). Even if this is limited to the amount of energy in the upper five 

kilometers of the crust, there is still approximately 1.4x108 EJ of energy available for use 

(WEC, 1998). The source of this energy is the molten metal within the earth’s core and the 

steady exothermic decay of radioactive material because of which there is a constant heat 

flux moving through the earth, making geothermal energy a renewable resource. As such, 

the temperature of the ground increases as you move deeper into the earth. 

 

Depending on the temperature of the resource, geothermal energy can be used directly or 

indirectly (i.e. for electricity production). A condensed overview of geothermal energy is 

presented in Figure 2. This list is by no means exhaustive and is explicit to relevant 

geothermal resource types. Direct use of geothermal energy is extracted from shallow 

resources, with depths of 50m to 100m, and often intermediate resources, with depths of 

100m to four kilometers (Olasolo et al., 2016). Direct-use geothermal energy using heat 

exchangers is used for heating and cooling purposes, such as district heating, greenhouses, 

swimming pools, industrial use, and agricultural use. Directly harnessing geothermal 

energy, from geysers for example, has been a long-standing practice worldwide, and thus, 

these low to intermediate temperature resource systems have been more extensively 

implemented compared to indirect use of geothermal energy. Particularly, there was a 43% 

increase in direct geothermal use from 1999 to 2004 (Fridleifsson et al., 2008). 

Nonetheless, indirect use of geothermal energy has proven to be a reliable resource for the 

generation of electricity (Arslan, 2010; Franco and Vaccaro, 2012; Kose, 2007). Many 

systems have emerged to extract deep, high-temperature geothermal energy, including 
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conventional hydrothermal systems, enhanced geothermal systems (EGS), and 

sedimentary basin geothermal energy systems.  

 

 

Figure 2: Abbreviated Taxonomy of Geothermal Energy Resources 

 

Conventional hydrothermal energy systems use water in liquid or vapor form to extract 

heat from faults and fractures. While it can be implemented as a direct heating source, 

hydrothermal energy can be used for electricity generation under the appropriate 

conditions. Such conditions are commonly found near volcanic activity, tectonic plate 

boundaries, or hot spot anomalies (Goldstein et al., 2011). This makes hydrothermal energy 

for the purpose of electricity generation geographically limited.  
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The development of EGS was a successful attempt to expand the geographic application 

of geothermal energy by making use of impervious formations in the subsurface. The 

system fractures impermeable rock to create artificial permeability (Sanyal et al., 2007). 

EGS, like hydrothermal systems, also use water as the working fluid, though researchers 

are considering CO2 for a variety of added benefits including CO2 sequestration (Olasolo 

et al., 2016; Xu et al., 2015). Unlike hydrothermal, EGS systems are predominantly used 

for electricity generation. While the system is efficient in terms of energy extraction, the 

large drilling and fracturing costs of EGS make commercial implementation economically 

risky (Johnston et al., 2011). 

 

Sedimentary Basin Geothermal Energy 

Sedimentary basins are emerging as candidates for geothermal deployment using water or 

combining CO2 sequestration and geothermal heat extraction in a CO2 capture, utilization, 

and storage (CCUS) application (Cacace et al., 2010; Fridleifsson et al., 2008; Randolph 

and Saar, 2011). Compared to EGS resources, sedimentary basins have a widespread 

presence in the subsurface, large storage capacity, high temperatures, and natural 

permeability. These basins are generally filled with brine, and the depth ranges from one 

to six kilometers (Anderson, 2013). The general process of obtaining geothermal energy 

from a sedimentary basin consists of injecting a cold fluid, allowing the fluid to flow 

through the naturally porous and permeable reservoir. Heat transfer between the fluid and 

subsurface takes place, and hot fluid is produced from a nearby production well. Several 

processes in the power plant remove the heat from the produced fluid and the now cold 
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fluid is reinjected into the reservoir to repeat the heat extraction process. The discounted 

sum of net revenue from electricity generation must be larger than the high initial costs 

associated with geothermal energy for electricity production from the building of power 

plants for the system to be economically viable. This concept is significant in decision-

making and policy as it considers the perspective of multiple stake-holders and disciplines.   

 

Geothermal Renewability and Sustainability 

An innate shortcoming of geothermal energy is the potential temperature decrease of 

produced fluid over time if the rate of energy that is extracted is greater than the natural 

rate at which temperature renews due to the constant heat flux of the earth. Temperature 

drawdown can be seen geothermal projects over time (e.g. Nesjavellir, Iceland reservoir, 

Olkaria, Kenya reservoir, Wairakei-Tauhara system), particularly where one resource is 

being tapped by multiple users (O’Sullivan et al., 2010; Rybach et al., 2000). For this 

reason, there was initially debate as to whether geothermal energy can be considered a 

renewable resource (Ledingham, 1998). After further inquiry, researchers determined 

geothermal energy is renewable because it renews on a societal time scale rather than a 

geologic one. Renewability is a property that describes the nature of the resource. But, the 

decreasing temperature of the produced fluid is a question of sustainability, an idea that 

describes how to use the resource (Stefansson, 2000). The concept of sustainability and 

sustainable development has evolved significantly from its original definition presented by 

the Brundtland Commission that defined it as “development that meets the needs of the 

present without compromising the ability of future generations to meet their own needs” 
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(Brundtland Comission, 1987). Sustainability is most commonly viewed as integrating 

three pillars: social, economic, and environmental. Again, this definition begets further 

questions as what factors each of these pillars consists of. The ambiguity of this definition 

has led to research that defines sustainability in a more explicit way and for specific 

applications.  

 

According to Axelsson et al. (2004), sustainable production of a geothermal heat consists 

of extracting heat at the same rate as heat renewal to maintain a consistent level of 

production for a long time (Axelsson et al., 2004; Bromley et al., 2006). Figure 3 is a 

theoretical schematic of this idea. There is an optimal level of production that is sustainable 

for an indefinite amount of time. Energy production above this level is excessive and will 

cause temperature drawdown. Energy production below this level is underutilization of the 

resource. 
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Figure 3: A Schematic of Sustainable Geothermal Production Presented by Axelsson et al. 

(2004) 

 

The rate of renewability is important to consider from an environmental perspective, 

particularly in sensitive systems such as a fishery where overexploitation leads to crashes 

in the population and ultimately extinction. Yet, pure application of environmental 

sustainability can create market inefficiency by restricting the economic gain of that 

resource. On the other hand, deployment of geothermal systems requires the business to be 

profitable. There is a large financial risk associated with the geothermal business because 

of the large initial costs of building a power plant and drilling wells associated with 

geothermal energy for electricity generation. A fast return on investment can reduce this 

risk and give financial success for the owner this system (Murphy and Niitsuma, 1999). 

Both these perspectives suggest contrasting management strategies. While increasing the 

rate of extraction yields faster profit, this also means depletion of the resource itself. Such 

a management strategy limits the longevity of the system and, in the long run, can even 
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hinder future profit. As such, there is an inherent trade-off between environmental and 

economic sustainability, both of which need to be considered. An optimal management 

strategy then requires maximizing the value of selling heat subject to changes in the 

magnitude of heat that is extracted. 

 

Natural Resource Economics 

Natural resource economics is an integrated approach to resource management that 

considers the interaction between environmental processes, most often with reduced form 

representations, and economics. Examples include mining, fishery, and forestry, all of 

which have been used to describe geothermal energy. 

 

Conceptual Analogies  

Many researchers have used analogies of other resources or processes to describe an aspect 

of geothermal energy. Heat mining in a geothermal system is a common term used in the 

field because it captures the idea of extracting a valuable resource from within the 

subsurface of the earth (Fox et al., 2013; Xu et al., 2015). This analogy can be misleading 

in that a mining process refers to the extraction of a nonrenewable resource such as coal or 

ore. A comparison is made between geothermal heat and fish stocks in terms of 

renewability (Fridleifsson et al., 2008; Rybach, 2003; Stefansson, 2000). Fish populations 

decrease in size if the rate of fish harvest exceeds the natural population growth rate. 

Natural resource economic models for fishery determine an optimal path of extraction of 

fish by balancing the natural regeneration of fish stocks that are not harvested with the 
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profit from the sale of the fish that are harvested. Yet, the time-scale of regeneration of 

geothermal heat more closely imitates the growth of timber (Lei and Zhang, 2004; Sanyal, 

2005). These approaches have been extensively studied for managing natural resources, 

such as fisheries and forests (Bonfil, 2005; Weitzman, 2003), but a natural resource 

economic approach has never been applied to determine a management strategy for 

geothermal heat extraction that I am aware of.  

 

Natural Resource Economics Model 

Natural resource economics typically uses extensions of calculus of variations, namely the 

Lagrangian or Hamiltonian methods, to solve resource allocation and optimization 

problems for a variety of problem types, including discrete time, continuous time, finite 

time horizons, and infinite time horizons (Conrad, 1999). These analytical solutions 

provide insight into the economic mechanisms of the system in question. But, calculus of 

variations follows the narrow formulation rules of unconstrained optimization. An 

alternative formulation and solution method has gained ground. Optimal control theory, a 

generalized version of calculus of variations, covers a wider range of applications in 

business, physics, and resource management because of its ability to be formulated for 

constraints and controls (Weitzman, 2003). Both calculus of variations and optimal control 

theory have been applied to the resource management of fisheries and forests (Gordon, 

1954; Mitra and Wan, 1986; Tahvonen et al., 2010). 
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Overview of Methodology 

The presented model applies the natural resource economic approach to a sedimentary 

basin geothermal resource used for electricity generation. Reservoir modeling simulates 

geothermal heat extraction to investigate the performance of the reservoir in terms of 

temperature of the produced fluid (Chapter 2 and 3). Subsequently, the results are 

processed to develop a reduced-form representation of heat flow into the reservoir and 

temperature drawdown of the produced fluid. The natural resource economic model in 

Chapter 4 uses this representation to determine the optimal heat extraction strategy that 

will maximize present value of benefits over time (Figure 4). The results of both are 

discussed in the final chapter, Chapter 5. 
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Figure 4: Overview of Methodology 

 

The Nature of Computer Models  

Computer models are substitutes for highly complex real world systems. Computer 

programming and modeling offers a simplified and interactive version of reality to develop 

intuition on how individuals and processes of a system interact, and, moreover, on how to 

best manage these systems (Sterman, 2000). They are tools that can be used to model across 
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time, space, and even between disciplines, such as the environment and the economy. This 

model can clarify the nature of trade-offs made between present/future value of 

profit/natural capital to operators and policy-makers. This is the motivation for developing 

the presented model. But, like with any model, assumptions and simplification are made 

because it is impossible to capture every aspect of a real system. Modeling in this sense is 

an iterative process that builds a model through slowly adding layers of complexity (Ford, 

2010). As such, it is important to remember that the model presented in the next few 

chapters has made many assumptions in part because it is interdisciplinary. Each part of 

the model has the potential to be further explored to better capture the performance of 

geothermal heat during extraction. 
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Chapter 2: Reservoir Modeling Using NUFT Simulation 

 

This chapter discusses the role of subsurface simulation in order to develop a reduced form 

representation of temperature drawdown in sedimentary basin geothermal reservoirs. The 

NUFT code simulates the performance of a sedimentary basin geothermal reservoir under 

a variety of geothermal conditions and operational scenarios using an R-z well 

configuration for the injection and production of water and supercritical CO2. 

 

NUFT Code 

The Non-isothermal Unsaturated-saturated Flow and Transport (NUFT) code, created by 

Lawrence Livermore National Laboratory, simulates the flow and transport of multiphase, 

multicomponent fluids in porous media (Hao et al., 2011). NUFT integrates the finite 

difference method, spatial discretization, and the Newton-Raphson method to solve the 

conservation of mass and energy equations for each element of the mesh at each time step 

for output variables such as pressure, temperature, and concentration. The code contains 

distinct modules for (a) unconfined/confined flow, (b) single phase unsaturated flow, (c) 

single component unsaturated flow, and (d) multi-phase, multi-component flow with a 

thermal option (Nitao and Sun, 2015). The NUFT simulations use option (d) to have fluid 

parameters that vary with temperature and examine the changes in temperature during 

geothermal heat extraction.  
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This model has been used to examine the performance of subsurface reservoirs for nuclear 

waste disposal, CO2 storage in sedimentary basins, groundwater remediation, and 

enhanced petroleum recovery (Buscheck et al., 2003; Johnson et al., 2005; Mansoor et al., 

2015; Nitao and Sun, 2015; Rechard et al., 2014; Sahni et al., 2000; Sun et al., 2000). 

NUFT has been tested for field validation of groundwater remediation, particularly using 

soil-vapor extraction (Nitao et al., 2000). Similarly, NUFT has extensively been applied to 

examine radioactive waste disposal and waste container degradation in Yucca Mountain to 

the point of complete failure due to thermal and chemical processes (Rechard et al., 2014). 

As such, this work uses the NUFT code to study temperature drawdown during geothermal 

heat extraction under different geologic and operational scenarios. 

 

Description of Simulation Reservoir 

I implemented a two dimensional, cylindrical mesh in NUFT. The radially symmetric R-z 

model contains a vertical column of elements that represent a perforated central injection 

well and an element that represents a perforated radial production well (Figure 5). The 

injection well and the production well are separated by a radial distance of 700m. Similar 

R-z configurations have been used in previous modeling studies that simulate the 

performance of sedimentary basin geothermal reservoirs (Adams et al., 2015, 2014; 

Garapati et al., 2015, 2014b; Saar et al., 2015). The injection well covers the thickness of 

the reservoir with a radius of 0.5m. The production well has a length of five meters from 
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the top of the reservoir and has a width of 0.5m as seen in Figure 5. The reservoir was 

divided into 23 radial cells and 11 vertical cells.  

 

Figure 5: Model of the Radial Well System Used in this Study 

 

The porous and permeable reservoir was modeled as a laterally unconfined aquifer, with 

the mesh extending out to approximately 82,000m beyond the reservoir.  The reservoir is 

vertically confined by an impervious caprock above the reservoir and an impervious 

bedrock below the reservoir, with the basement 4,000m below the reservoir. The basement 

is 6,600m below the surface. The properties of the caprock and bedrock are similar to 

typical sandstones and have been used in previous papers that investigated CO2 injection 
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into deep saline aquifers for sequestration from the atmosphere and for geothermal energy 

production using CO2 and native brine (Table 1) (Birkholzer et al., 2009; Buscheck et al., 

2013). Figure 5 shows a model of radial well system used in this study, where the element 

mesh is to scale. 

 

Each simulation used a distinct combination of fluid, depth to the top of the reservoir, 

reservoir thickness, reservoir permeability, geothermal temperature gradient, and mass 

flowrate (Table 1 and Table 2). The parameters chosen for the simulations cover a range 

of the characteristics of sedimentary basins in the United States, and have been investigated 

in previous studies of sedimentary basin geothermal energy production and CO2 storage 

(Anderson, 2013; Cacace et al., 2010).  

 

Reservoir Parameters 

The mass flowrate of the injection well was set equal to the mass flowrate of the production 

well in every scenario to allow the analysis to focus on the temperature of the produced 

fluid as the primary determinant of the use of the geothermal resource as opposed to 

pressure. Moreover, equalizing injection and production mass flowrates avoids potential 

geo-mechanical effects from overpressure (Garapati et al., 2014a; Holloway, 2005). The 

physical parameters for the reservoir and the confining unit for the scenarios simulated in 

NUFT are provided in Table 1.  
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Table 1: Reservoir Parameters 

Parameter  Parameter Value 

Permeability [m2]: 

   Reservoir, κr  

   Confining Unit, κc 

 

10-11, 10-12, 10-13, 5x10-14, 10-14, 5x10-15 

10-18
 

Porosity: 

   Reservoir, ϕr 

   Confining Unit, ϕc 

 

0.10 

0.10 

Density [kg/m3]: 

   Reservoir, ρr 

   Confining Unit, ρc  

 

920 

920 

Compressibility [Pa-1]: 

   Reservoir, βr 

   Confining Unit, βc 

 

4.5x10-10 

4.5x10-10 

Specific Heat: [kJ/kg-K] 

   Reservoir, cp,r 

   Confining Unit, cp,r 

 

2.8 

2.8 

Thermal Conductivity [W/m-K]: 

   Reservoir, kr 

   Confining Unit, kc  

 

2.0 

2.0 

Reservoir Dimensions [m] 

   Top Depth, z 

   Thickness, Δz 

 

2500, 3500, 5000 

50, 100 

Temperature Gradient, G [°C/km] 35, 50 

 

 

Fluid Parameters 

The heat extraction fluid in all the simulations was either water or CO2. Pre-existing brine 

or water are the conventional working fluids used in geothermal heat extraction, while CO2 

has recently been studied as a working fluid because of the added benefit of sequestration 

(Atrens et al., 2009; Brown, 2000; Garapati et al., 2015). The use of CO2 as the working 

fluid is advantageous compared to water because of higher mobility, higher conversion 

efficiency in the power plant, and less pumping requirements due to density differences 
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between pre-existing fluid and CO2 known as the thermosiphon effect (Adams et al., 2014). 

Furthermore, CO2 is a low cost fluid that is readily available for use.  

 

Relevant thermo-physical properties of a geo-fluid are density, specific heat capacity, 

thermal conductivity, and viscosity. The critical point of CO2 is at 304.25K (31.10°C) and 

7.39 MPa (1,071 psi) (Burgess, 2016). As such, CO2 is in the supercritical phase within the 

reservoir (sCO2). In the supercritical state, CO2 has the viscosity of a gas and the density 

of a fluid, both of which increase with pressure (Ouyang, 2011). When comparing the two 

fluids, water is denser than sCO2. Specific heat capacity is a measure of the ability of a 

substance to store heat, and a factor in determining the amount of energy that is extracted 

from a reservoir. The specific heat of water is approximately double the specific heat of 

sCO2 at the conditions of the reservoir, which means water can store more heat than CO2. 

Also, CO2 has a lower viscosity than water at the conditions of the reservoir.  

 

The fluid properties of the water that is injected into the reservoir are determined from the 

American Society of Mechanical Engineers (ASME) steam tables built into the NUFT 

code, using the pressure and temperate of the element in the mesh. The density of water at 

a given pressure is calculated using the linear relationship of a reference pressure and 

density, assuming a compressibility of 3.5x10-10
 Pa-1, and a reference pressure and density 

of 1x105 Pa and 1,000 kg/m3, respectively. NUFT uses the Span and Wagner (1996) tables 

to calculate the density and enthalpy of CO2, and the equations in Fenghour, Wakeham, 

and Vesovic (1998) to calculate viscosity. 
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The pressure at the injection well increases as fluid is injected into the reservoir and 

decreases as fluid is produced from the reservoir. The change in pressure that occurs 

depends on fluid flow. Permeability is a measure of the ease at which fluid moves through 

the reservoir. A reservoir with low permeability and large mass flowrates could cause high 

pressure at the injection well and low pressure at the production well. As such, the injection 

and production mass flowrate chosen for each scenario vary by the specified permeability 

of the reservoir (Table 2).  

 

Table 2: Mass Flowrate Specifications for CO2 and water for Each Permeability; *for CO2 

only 

Reservoir 

Permeability

r [m
2]: 

Mass Flowrate, 𝒎̇ [kg/s] 

 5 10 15 20 25 40 50 75 100 150 200 250 275 300 

1x10-11 X X   X  X X X X X X   

1x10-12 X X   X  X X X X X X X* X* 

1x10-13 X X   X  X X X X X X   

5x10-14 X X  X  X X X       

1x10-14 X X X X X X X        

5x10-15 X X X X           

 

The mass flowrates specified for CO2 and water are the same, but the maximum mass 

flowrate that is possible to simulate for a given permeability differs for water and CO2. The 

high mobility of CO2 allows for larger mass flowrates than water. For example, for the 

reservoir given in Figure 5 with a permeability of 1x10-14 m2, the maximum injection 
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production mass flowrate possible to simulation in NUFT without inducing unrealistically 

high or low pressure for water is 50 kg/s and 150 kg/s for CO2. 

 

The surface temperature (at z = 0 m) was set to 15 oC, and the model was initialized for one 

million years so that the elements in the mesh were in thermal and hydrostatic equilibrium 

for the given geothermal temperature gradient, reservoir depth, and reservoir thickness 

prior to simulating the injection and production of fluid. The injection temperature of both 

water and sCO2 was between 35°C and 45°C over all of the simulations conducted 

determined using temperature outputs from NUFT at the injection well. This injection 

temperature range ensures the phase of injected water is liquid and the phase of injected 

CO2 is supercritical. In the input file, the enthalpy of the fluid that is injected through the 

injection well is specified to be 200 kJ/mole and -225 kJ/mole for water and CO2, 

respectively. The NUFT model determines the temperature (Tinj) of this injected fluid that 

corresponds to the enthalpy specified for the pressure at the injection well and thermos-

physical properties of the fluid. 

 

Solution Parameters 

The NUFT model uses the iterative Newton-Raphson method to calculate the values of 

each output variable (i.e., temperature, pressure, and concentration) that is recorded for 

each time step. The Newton-Raphson convergence tolerance is the maximum change 

necessary between approximations to calculate the output variable at a given time. NUFT 

uses a dynamic time step to reduce computational time. This means the times at which 
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NUFT is calculating the magnitude of the output variables depends on the current time 

step. The initial time step is set to one minute, which will increase to a maximum time step 

of ten years as long as the absolute and relative tolerances are not reached (Table 3).  

 

Table 3: NUFT Output Variable Tolerances 

 Convergence 

Tolerance 

Absolute 

Tolerance 

Relative Tolerance 

Temperature 0.001°C 15°C 20% 

Pressure 100 Pa 1 MPa 10% 

Concentration 1x10-3
 mole fraction 0.1 mole fraction 10% 

 

The absolute tolerance is maximum allowable change in a variable from one time step to 

the next, and the relative tolerance is the maximum allowable percent change in a variable 

from one time step to the next. The convergence tolerance, absolute tolerance, and relative 

tolerance for temperature, pressure, and concentration of each cell at each time step are 

given in Table 3. The simulation will stop running if there are more than 30,000 time steps, 

which ensures that the time step does not continuously decrease if a tolerance is not met. 

A continuously decreasing time step occurs when there is an unrealistic physical aspect in 

the simulation. These tolerances have been used to previous studies using NUFT. 
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Chapter 3: Processing Simulation Results 

 

This chapter presents the equations used to develop the reduced form representation for 

temperature drawdown and energy that is extracted. Temperature of the produced fluid 

and energy that is extracted from all the simulations are normalized for different 

parameters to collapse the data onto a single curve. The Richards’ curve (i.e. the 

generalized logistic curve) is fitted to this data to accurately predict the drawdown using 

the reduced form for the two working fluids, water and CO2.  

  

Generalized Logistic Curve 

For a given combination of reservoir parameters, the temperature of the fluid being 

produced from the reservoir (Tprod,t) will change over time as a function of how much heat 

has been extracted from the reservoir through the production well (Qt) and how much heat 

has been added to the reservoir from the natural geothermal heat flux (Qin). The energy that 

is extracted at time t from the reservoir is calculated based on the enthalpy extracted from 

the reservoir during a period of time, Δt: 

tTTcmQ tinjtprodtptt  )( ,,,
       (1) 

Where Qt is the energy that is extracted in a single time period [kJ], 𝑚̇𝑡 is the mass flowrate 

of the fluid per unit of time [kg/s], t that is produced from the reservoir at time t [s], 𝑐𝑝,𝑡 

is the specific heat of the produced fluid [kJ/kg-K], 𝑇𝑝𝑟𝑜𝑑,𝑡 is the temperature of the 
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produced fluid at time t [K], and Tinj,t is the temperature of the injected fluid at time t [K]. 

The temperature of the injected fluid is constant for each simulation after initial fluctuation. 

As such, the injection temperature is assumed to be constant for the follow calculations 

(Tinj). Specific heat, cp, changes with temperature and pressure. Since these changes are 

small, specific heat is assumed to be constant at the values given in Table 4 for this analysis. 

The value of specific heat used to calculate energy that is extracted from the reservoir is an 

average over a range of temperatures for isobaric conditions obtained from the NIST 

Webbook (Burgess, 2016). The pressure assumed for isobaric conditions is the hydrostatic 

pressure at the top of the reservoir (Table 4). The geothermal temperature gradient is a 

function of the natural heat flux (q) and the thermal conductivity of the rock (krock) given 

in Table 1: q = krock G.   

 

Table 4: Average Specific Heat Capacity in Isobaric Conditions 

Depth 

[m] 

Hydrostatic 

Pressure at Top 

of Reservoir 

[MPa] 

Range of 

Temperature 

[°C] 

Average Specific 

Heat of CO2 

[kJ/kg-K] 

Average Specific 

Heat of Water 

[kJ/kg-K] 

2500 24.5  35 - 140 2.11 4.16 

3500 34.3 35 - 190 1.83 4.18 

5000 49.0 35 - 265 1.65 4.23 

 

 

In order to produce a model that is generalizable across various geologic settings and 

operational decisions, the results of the 300 reservoir simulations per working fluid were 

collapsed by fitting a generalized logistic curve to dimensionless normalizations of the 

temperature of the produced fluid (𝑇̅) and of the energy that is extracted from the reservoir 



 

26 

 

(𝑄̅). This logistic curve of the form in equation 2, also known as Richards’ curve (Birch, 

1999; Richards, 1959), thus serves as a reduced form representation of the performance of 

a sedimentary basin geothermal reservoir for a range of reservoir parameters and 

operational decisions: 


1

)( )1( MQxAe

UL
UT




       (2) 

The coefficients U, L, A, x, M, and  are parameters of the logistic curve. The parameter U 

is the upper asymptote of the curve, and L is the lower asymptote of the curve, for the 𝑇̅ 

axis. The parameter M represents a shift along the 𝑄̅ axis and could be considered to 

represent the sensitivity of the change in temperature of the produced fluid to the energy in 

the reservoir, whereas the parameters A, x, and  indicate the steepness and curvature of 

the logistic curve and thus represent the sensitivity of the change in temperature due to the 

extraction of heat from the reservoir. 

 

Data Normalization 

Equation 3 is the calculation for the normalized temperature of the produced (T). It is the 

difference between the temperature of the produced fluid and of the injected fluid divided 

by the difference between the initial temperature of the produced fluid and the temperature 

of the injected fluid,  
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where Tprod,t=0 is the initial temperature of the reservoir [°C], Tprod,t is the current 

temperature of the reservoir which is represented by the temperature of the produced fluid 

[°C], and Tinj is the average injection temperature over the entire simulation [°C]. The initial 

temperature of the produced fluid is a function of the depth of the top of the reservoir (z), 

the geothermal temperature gradient (G), and surface temperature (Ts): Tprod,t=0 = Ts + zG. 

Since the temperature of the produced fluid at any point in time can never exceed its initial 

temperature or be below the injection temperature, 0 ≤ T ≤ 1. The upper asymptote of the 

logistic curve in equation 2, U, was set to one, because the normalization of temperature 

(𝑇̅) cannot be greater than one. While this normalization has a lower bound of zero, the 

lower asymptote, L, of the logistic curve may not be zero because there is residual heat in 

the reservoir between the injection well and the production well. Also, the increase in heat 

due to the constant background geothermal heat flux during each time step increases the 

temperature of the fluid between the injection well and the production well. 

 

The cumulative amount of energy that has been extracted from the reservoir was calculated 

using Qt in equation 1 for each time increment is normalized by the total amount of energy 

that could have been extracted from the reservoir (Qtot,t). Since the cumulative amount of 

energy that is extracted from the reservoir cannot be greater than the total amount of energy 

that could be extracted from the reservoir, 0 ≤ 𝑄 ≤ 1. 
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where Qres,t=0 is the initial amount of energy that is in the reservoir at t=0 [kJ], and Qin,t is 

the net amount of energy that enters the reservoir due to the natural geothermal heat flux 

during each time step at time t [kJ].  The initial amount of energy that is in the reservoir at 

t=0 is the energy stored in the rock and naturally-present fluid, 

 
fpfrrprrtravetres ccTzrQ ,,0,,

2

0, )1(      (5) 

where r is the radius of the geothermal reservoir [m], Δz is the thickness of the reservoir 

[m], θr is the porosity [dim], r and f are the densities of the reservoir rock and the fluid 

in the pores of the reservoir, respectively [kg/m3], cp,r and cp,f are the heat capacities of the 

reservoir rock and the fluid in the pores of the reservoir, respectively [kJ/kg-K], and Tave,r,t=0 

is the average temperature in the reservoir at t=0:  








 


2
0,

z
zGTT stave       (6) 

where Ts is the surface temperature [K], G is the temperature gradient [K/m], Δz is the 

thickness of the reservoir, and z is the depth to the top of the reservoir [m]. 

 

Regeneration of Heat in the Reservoir 

Heat transfer is in itself a complex process. Understanding and quantifying multiple heat 

transfer processes taking place simultaneously adds additional layers of complexity 

because of changing and often unknown properties (e.g. convective heat transfer 
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coefficient) over time and space. Figure 6 illustrates the different processes that take place 

during geothermal heat extraction, where the variable q represents a heat transfer process. 

The figure assumes a geometric CO2 plume. Specifically, these are:  

1) q1 = conduction through the rock of the reservoir   

2) q2 = convection of the water outside the CO2 plume and the reservoir rock 

3) q3 = convection of CO2 and the reservoir rock 

4) q4 = convection of the water to CO2 plume 

5) q5 = convection of the rock surrounding the reservoir to the water inside the 

reservoir 

6) q6 = convection of CO2 in the plume 

7) q7 = convection of water within and outside the reservoir 

The variables above correspond to the variables in Figure 6. For the case with only water, 

q3, q4, and q6 do not apply.  
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Figure 6: Reservoir Animation of a CO2-Plume within a Reservoir Highlighting Heat 

Transfer Processes 

 

The heat that enters the reservoir depends on a variety of reservoir characteristics and 

operational decisions, such as the history of heat extraction and the resulting distributions 

of temperature and pressure in the reservoir, the physical attributes of the reservoir, and the 

type and size of the production system (expanded from Rybach (2007)).  

 

There will be no net heat transfer into the reservoir from the geothermal heat flux at t=0 

because the reservoir is in thermal equilibrium at the beginning of the simulation.  The 

geothermal heat flux will add heat to the reservoir when the temperature in the reservoir 

decreases due to the injection of fluid that is colder than the reservoir (Tinj < Tr) and fluid 

that has been heated in the reservoir is produced from the production well. The net amount 

of heat that enters the reservoir at a point in time, Qin,t, depends on the difference in 

temperature between each element on the inside boundary of the reservoir and the 

neighboring element(s) on the outside boundary of the reservoir (Figure 7(a)). When heat 
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is extracted from the reservoir, the temperature of the elements inside the reservoir will 

decrease below the state at which they are in thermal equilibrium with the surrounding 

rock.  As such, reservoir temperature recharge from the geothermal heat flux will occur 

only when heat has been extracted from the reservoir. Since the temperature of the reservoir 

varies within the reservoir, the heat flow will vary at different areas of the reservoir, where 

there will be more heat flow at colder areas (i.e., the injection well). As such, NUFT outputs 

the net heat flow into the reservoir for each cell around the reservoir, a schematic is given 

in Figure 7(a). This consists of heat entering from above, below, and from the sides of the 

reservoir, each contributing a portion of the total heat flow into the reservoir. The sum of 

each cell is the total heat flow into the reservoir at a given time (Qin,t) . An example of this 

is shown in Figure 7(b).  
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Figure 7: (a) Schematic of Reservoir Cells and (b) Example of Heat Flow into Reservoir 

for Simulation using Water with Parameters: Permeability(κ) = 10-13 m2, Depth(z) = 

2,500m, Temperature Gradient(G) = 50°C/km, Thickness(Δz) = 100m, Mass Flowrate(𝑚̇) 

= 200 kg/s  
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Figure 8 shows total heat flow into the reservoir over time for water and CO2 for mass 

flowrates 100 kg/s and 250 kg/s. The heat flow into the reservoir for the simulations using 

water is larger because the temperature drawdown is greater in these scenarios. The peak 

of heat flow changes between scenarios, where this peak occurs later when using a smaller 

mass flowrate. Subsequently, the heat flow into the reservoir steadily decreases over time 

because the rock surrounding the reservoir has cooled. Once the heat flow into the reservoir 

begins to decrease, the temperature in the reservoir will take longer to recharge because a 

larger volume of the rock has lost heat. This cooling of the surrounding reservoir rock is 

an important component of the natural resource economics model because it dictates how 

quickly the temperature of the produced fluid decreases as energy is extracted. 



 

34 

 

 

Figure 8: Heat flow into Reservoir for Water and CO2 using a Mass Flowrate of 100 kg/s 

and 250 kg/s with Parameters: Permeability(κ) = 10-11 m2, Depth(z) = 3,500m, Temperature 

Gradient(G) = 35°C/km, and Thickness(Δz) = 100m 

 

The natural resource economic model that is presented in the next chapter requires a 

function to calculate the cumulative heat flow into the reservoir in order to determine the 

temperature drawdown as energy is extracted from the reservoir. As such, two 

parameterization analyses were performed on the data generated by NUFT to estimate the 

parameters in equation 8 that relate Qin,t to Qt for water and CO2 using STATA. The 

analysis was a maximum-likelihood estimation panel regressions in order to produce a 

reduced form representation of Qin,t. The advantage of a panel regression is that it accounts 

for effects between multiple simulations instead of as individual data points and tends to 
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be a more robust analysis technique (Hu et al., 1998). The regression is of the form,
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where β1, β2, β3, β4, β5, β6, β7, β8, and β9 are the parameters that were estimated by the 

regression. The nonlinear regression reflects the nonlinear shape of heat flow into the 

reservoir as seen in Figure 8. The equation is transformed as a log-linear function: 
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 (8) 

 Each term of the equation captures how the different variables, permeability, depth, 

thickness, mass flowrate, temperature gradient, cumulative energy that is extracted, energy 

that is extracted in a given time period, time, and initial energy in the reservoir, affect heat 

flow into the reservoir over time.  

 

Table 5 provides the regression results to determine the net heat entering the reservoir.  
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Table 5: STATA Regression Results for Heat Flow into Reservoir for Water and CO2 

Working fluid: Water CO2 

Regression 

Coefficient  
Qin Qin 

      

β1 0.0534*** 0.0513*** 

 (0.00458) (0.0120) 
β2 -0.713*** -1.093*** 

 (0.0599) (0.139) 
β3 -0.510*** -0.661*** 

 (0.0433) (0.113) 
β4 -0.820*** -1.586*** 

 (0.0174) (0.0247) 
β5 -0.675*** -1.687*** 

 (0.0756) (0.186) 
β6 0.837*** 1.523*** 

 (0.0203) (0.0107) 
β7 1.132*** 0.955*** 

 (0.00463) (0.00208) 
β8 -0.0699*** -0.750*** 

 (0.0167) (0.00954) 
β9 -0.423*** -0.111* 

 (0.0247) (0.0623) 
   

Observations 22,907 199,519 

Number of 

Simulations 
300 300 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Though both regressions comprise of 300 simulations each, the number of observations 

depends on the dynamic time step in NUFT discussed in an earlier chapter. As such, the 

number of observations for water scenarios (i.e. 22,907 observations) are not equal for CO2 

scenarios (i.e. 199,519 observations). All the variables in equation 7 were significant 

(p<0.05), except the initial energy in the reservoir for CO2.  
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While permeability was significant for both water and CO2, the effect of permeability is 

more drastic for CO2 than water. Permeability affects the formation of this plume and the 

total time fluid spends in reservoir as seen in Figure 9.  

 

Figure 9: Change in Temperature of Produced Fluid over Time for Different Permeabilities 

with Parameters: Depth(z) = 5,000m, Temperature Gradient(G) = 50°C/km, Thickness(Δz) 

= 100m, and Mass Flowrate(𝑚̇) = 100 kg/s 

 

According to the simulation results, different permeabilities does not affect the change in 

temperature of the produced water, but the temperature of produced CO2 increases with a 

smaller permeability. A more permeable reservoir (e.g., 10-11
 m

2) will form a narrower 

CO2-plume, and the fluid will easily flow, decreasing the total time fluid spends in 

reservoir. As such, the temperature of the produced fluid quickly drops over time. On the 
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other hand, the scenario using CO2 at a permeability of 10-13 m2 maintains a higher 

produced fluid temperature. The results of the STATA regression for water and CO2 were 

subsequently implemented into the natural resource economics model presented in the 

following chapter.  
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Chapter 4: Dynamic Optimization Model 

 

This chapter presents the dynamic optimization model that uses a natural resource 

economic approach coupled with NUFT simulation results. The formulation of the model 

is broken down into six parts and discussed in detail: stages, state variables, decision 

variables, constraints, state-transition functions, and the objective-contribution function. 

The model uses Solver in Microsoft Excel, commonly used in dynamic programming, to 

solve for the optimal mass flowrate over time given a time horizon, reservoir parameters, 

and economic parameters. 

 

Description of Model Objective 

The goal of this model, known as the objective function, is to determine the mass flowrate 

over time that maximizes the net present profit of extracting heat from the reservoir and 

using it for economic gain:  


 




s

s

s

s

Q

1 )1(
max




       (9) 

where   is the present value of net profit over the time horizon [$], δ is the discount rate 

[%] and  is net profit per unit of energy that is extracted from the reservoir [$/kJ]: 
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)( tpw cp         (10) 

where ηw is a factor that represents the efficiency by which the energy of the fluid that is 

produced from the reservoir is maintained through the production well [dim], p is the 

efficiency of the power plant that converts heat into electricity [dim], p is the selling price 

of energy [$/kJ], and c is the levelized cost of energy (LCOE) as a function of energy that 

is extracted [$/kJ]:  

)( ,
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t
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
       (11) 

where Ct=0 is the initial investment cost [$]. As the amount of energy that is extracted 

decreases due to, for example, temperature drawdown in the reservoir, the LCOE increases. 

The investment cost of geothermal energy depends on power plant type (e.g., binary or dry 

steam), resource type (e.g., sedimentary basin or EGS), drilling costs, and number of wells. 

The cost of geothermal power can vary depending on operation and maintenance cost, 

resource characteristics (e.g., depth and temperature gradient), and well productivity 

(Sanyal, 2004). The efficiencies are hereafter represented by a single efficiency factor (η). 

Furthermore, the natural resource economics model assumes a constant efficiency, selling 

price of electricity, and investment cost. The function   in equation 9, the present value 

of net benefits of energy that is extracted [$], is the state of the system that the dynamic 

program in the following section seeks to maximize. This function is subject to changes 

over time as decisions are made because of changes in the temperature of the produced 

fluid as energy is extracted.  
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Decision and State Variables 

The optimization problem uses equal time steps, Δ𝜏, in contrast to the dynamic time step 

in the NUFT model, Δ𝑡. A decision period is the length of time over which a decision is 

made. The duration of which is:  





          (12) 

where  is the planning horizon [years] and  is the total number of decisions that will be 

made [dim]. A decision variable is controlled and decided by an operator. In the following 

optimization model, the decision variable is the mass flowrate of the injected and produced 

fluids, which are assumed to be equal for the same reasons they were equalized in the 

NUFT simulations (see Chapter 2). This decision variable is bounded by a lower and upper 

bound of the mass flowrate, which depends on the reservoir characteristics: 

fff mmm           (13) 

The objective function depends on state variables. The state of a system changes as 

decisions are made. There is a single state in this system: the temperature of the produced 

fluid at any given time. Temperatures used within the model are in Kelvin to ensure that 

all states are positive.  

 

The state-transition function describes how the state of a system changes as decisions are 

made, where s denotes the current decision period. The state transition function in this 
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model uses the logistic function presented in equation 4 to determine the temperature of 

the produced fluid as energy is extracted: 
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where Qs is the normalized energy that is extracted using: 
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where  

   )( 1,,1 injsprodpfss TTcmQQ      (16) 

 

The natural resource economic model assumes that in the case with CO2 injection and 

production, the CO2 plume has already formed and the fluid being produced from the 

production well is CO2. As such, the initial energy in the reservoir for water is: 

   fpfrprinjsravesres ccTTzrQ ,,1,,

2

1, )1(     (17) 

and, for CO2:  
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          (18) 

where r is the distance between the wells [m], Δz is the thickness of the reservoir [m], ρ is 

the density [m3], cp is the specific heat [kJ/kg-K], and θ is the porosity.   
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Input, Output, and Fixed Parameters 

The injection temperature of the working fluid (Tinj) is assumed to be constant over time at 

35°C to ensure CO2 is in the supercritical phase within the reservoir.  The model assumes 

the rock properties of the reservoir to be 920 kg/m3, 2.8 kJ/kg-C, and 2.0 W/m-C for 

density, specific heat, and thermal conductivity, respectively. From these inputs, the model 

determines specific heat of the fluid at the given depth (see Table 4). The porosity and well 

distance is fixed at 0.1 and 700m. These are the same parameters used in the NUFT 

simulations. 

 

The user input variables of the model are presented in Table 6. The density and specific 

heat are given in Table 4. The output variables are given in Table 7. 
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Table 6: Input Parameters of Natural Resource Economic Model 

Input Parameter Unit 

Planning Horizon, Ω Years 

Total Number of Stages, ω - 

Extraction Fluid, f - 

Reservoir Depth, z m 

Reservoir Thickness, Δz m 

Permeability, κ m2 

Temperature Gradient, G K/km 

Temperature of Injection Fluid, Tinj K 

Mass Flowrate Boundaries, ṁ kg/s 

Selling Price of Energy, p $/kJ 

Investment Cost, Ct=0 $ 

Discount Rate, δ % 

Power Plant and Wellbore Efficiency, η % 

 

 

Table 7: Output Parameters of Optimal Path 

Output Parameter Unit 

Mass flowrate, ṁf,s kg/s 

Temperature of Produced Fluid, Tprod,s K 

Present Value of Net Profit, Ξs $ 
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Solution Method 

The natural resource economic model was set-up in Microsoft Excel and solved using the 

Solver add-in. The program was set to use Generalized Reduced Gradient (GRG) Nonlinear 

as the solving method since the objective function is nonlinear. It requires three 

specifications: objective cell, decision cell(s), and constraint(s). The program requires 

initial guesses be set for the decision variables, known as seeding, and adjusts them to 

maximize the objective and to satisfy the limits on any constraints set. The program returns 

a solution if one is found or returns that the problems is infeasible, meaning that there is 

no possible solution to the given problem. While this is a great problem for smaller 

problems, the program is limited in terms of how many decision variables a problem can 

have. Moreover, there have been known issues with solutions being biased to the initial 

guess since the initial guess is a departure point for the solution. Though seeding is not 

always an issue, it is necessary to be aware of it when analyzing solution results.   
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Chapter 5: Results 

 

This chapter presents results for NUFT simulations using water and CO2, the regression 

analysis of the heat flow into the reservoir (Qin) data for water and CO2, and the optimal 

decision path over time using the dynamic optimization model.  

 

Geothermal Reservoir Performance 

Geothermal reservoir performance depends on the temperature of the produced fluid, 

which is a function of the amount of heat that is extracted from the reservoir. Figure 10 

shows an example of the results from a NUFT simulation using water as the working fluid 

for a reservoir with one of the combinations of reservoir parameters studied. Figure 10(a) 

shows the change in temperature of produced fluid over time for three mass flowrates: 25 

kg/s, 100 kg/s, and 200 kg/s.  The temperature of the produced fluid decreases over time 

as cool fluid is injected into, and warm fluid is produced from, the reservoir.  For any mass 

flowrate, the temperature of the produced fluid will decrease over time until the energy that 

is extracted from the reservoir by that produced fluid equals the energy that is added to the 

reservoir by the natural geothermal heat flux.  Holding everything else constant, a higher 

mass flowrate will extract more energy than a lower mass flowrate, so that the temperature 

of the produced fluid decreases more and earlier in time for higher mass flowrates.  This 

effect is shown in Figure 10(a), which also shows that the decrease in the temperature of 
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the produced fluid reaches an asymptote, and the temperature of the produced fluid is 

relatively constant over time for the scenarios with a mass flowrate of 100 kg/s and 200 

kg/s. While the scenario with 25 kg/s seems that will also reach an asymptote, it has not in 

the figure.   

 

 

Figure 10: Example Reservoir Simulations Results Using Water from NUFT with 

Parameters: Permeability(κ) = 10-11 m2, Depth(z) = 3,500m, Temperature Gradient(G) = 

35°C/km, Thickness(Δz) = 100m, and (a) Varying Mass Flowrate and (b) Mass 

Flowrate(𝑚̇) = 100 kg/s 

 

The asymptote will be lower for higher mass flowrates because more energy is being 

extracted from the reservoir. Figure 10(b) shows the temperature distribution of a cross 

section of the subsurface, including the sedimentary geothermal reservoir, after 50 years of 

continuous fluid injection and continuous fluid production for a mass flowrate of 100 kg/s. 

The coldest portion of the reservoir is clearly next to the injection well, where fluid is being 

injected into a reservoir that is hotter than the injected fluid, and the temperature profile 

from cool to warm in the reservoir extends laterally and slightly upward toward the 



 

48 

 

production well, where energy is being extracted from the reservoir. The initial temperature 

of the produced fluid in this scenario was 137.5oC, but continuous heat extraction from the 

reservoir has cooled off the surrounding temperature to at most 110oC.  

 

CO2 Fluid Production 

In the scenarios using CO2 as the working fluid, the fluid being produced from the 

production well is water that is naturally present within the reservoir. Breakthrough is the 

term given to the point in time when injected CO2 reaches the production well. This time 

varies depending on mass flowrate and other reservoir conditions, ranging from one month 

to five years (Figure 11). The sensitivity of breakthrough time depending on mass flowrate 

is larger with smaller flowrates and the breakthrough time is more similar for large mass 

flowrates. Figure 11 shows the time of breakthrough, defined as when the mole fraction of 

CO2 reaches 0.09. 
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Figure 11: Breakthrough Time for Varying Mass Flowrates with Parameters: 

Permeability(κ) = 10-13 m2, Depth(z) = 2,500m, Temperature Gradient(G) = 35°C/km, 

Thickness(Δz) = 100m, and Average Mole Fraction of CO2 in the Production Well at 

Breakthrough Time: 0.09 

 

After some time, CO2 production from the production well reaches approximately 97-99% 

with the remaining fluid being residual water. The residual water is an effect of CO2 

solubility that depends on a variety of conditions including temperature and pressure 

(Pistone and Horne, 2011). Residual water in the production fluid will change the thermo-

physical properties of the fluid, such as specific heat capacity and thermal conductivity. A 

scenario with a permeability of 10-11 m2 and mass flowrate of 100 kg/s has a mole fraction 

of 99% CO2 in the production well at ~32 days. A second scenario with a permeability of 

5x10-15 m2 and a mass flowrate of 20 kg/s has a mole fraction of 99% CO2 at ~1762 days 

(~4.83 years). Figure 12 shows an example of the change in the temperature of the 

produced fluid over time and a cross section of the CO2 plume as breakthrough and CO2 

production occur. The temperature of the produced fluid drops when breakthrough occurs 
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and steadily increases. This effect is due to the high buoyancy of CO2 that causes the fluid 

to rush to the top of reservoir and sweep heat from the top of the reservoir where the 

temperature is cooler compared to the bottom of the reservoir. As more fluid is injected 

and the plume widens, the CO2 sweeps heat from lower parts of the reservoir where the 

temperature is higher (Buscheck et al., 2016).    

 

 

Figure 12: Example of (a) CO2 Breakthrough and (b) 99% Mole Fraction of CO2 at 

Production Well with Parameters: Permeability(κ) = 10-11 m2, Depth(z) = 3,500m, 

Temperature Gradient(G) = 35°C/km, Thickness(Δz) = 100m, and Mass Flowrate(𝑚̇) = 

100 kg/s 
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Comparing Temperature Drawdown of Water and CO2 

While the temperature of the produced fluid is central to the magnitude of heat a power 

plant can extract, this temperature reflects the temperature distribution within the reservoir 

itself.  

 

Figure 13: Temperature Drawdown in the Reservoir Using Water and CO2 with 

Parameters: Permeability(κ) = 10-12 m2, Depth(z) = 5,000m, Temperature Gradient(G) = 

50°C/km, Thickness(Δz) = 100m, and Mass Flowrate(𝑚̇) = 100 kg/s 

 

As the reservoir cools down, the temperature of the produced fluid decreases, and the time 

it would take to restore the reservoir to its original temperature increases. The temperature 
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distribution within a reservoir varies for the two extraction fluids used as seen in Figure 13 

at 20 and 50 years. As seen in Table 4, water has approximately double the specific heat 

capacity of CO2, where the average specific heat is 1.86 kg/km-C and 4.19 kg/km-C for 

water and CO2, respectively. This means it takes approximately twice the amount of energy 

to raise one gram of water by 1°C compared to sCO2. The magnitude of the specific heat 

explains why a larger portion of the reservoir cools down when using water. Nonetheless, 

CO2 has a larger mobility compared to water so larger mass flowrates can be used with 

CO2 than with water, allowing more heat to be extracted (Adams et al., 2014). This increase 

in mass flowrate of CO2 offsets the smaller specific heat associated with CO2.  

 

Normalization Results 

The temperature data that were generated in every NUFT simulation were used to 

determine 𝑇̅ and 𝑄̅.  Figure 14 and Figure 15 shows these data for individual depths and all 

data on a single curve. A MATLAB code was written to estimate the parameters that fit 

the generalized logistic curve in equation 2 to the normalized data, which is shown in red. 

This code is given in the appendix. 
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Figure 14: Normalization of the Temperature of the Production Fluid as a Function of the 

Energy that is Extracted from the Reservoir for NUFT Simulations Using Water 

 

Table 8 shows the logistic curve coefficients estimated for curve fit in Figure 14.  

 

Table 8: Coefficients of the Logistic Curve Fit to the Normalized Temperature and Heat 

Extraction Data Using Water 

Coefficient 2,500 m 3,500 m 5,000 m All Depths 

L 0.1315 0.1220 0.1160 0.1318 

A 22.31 47.07 38.35 42.46 

x 38.78 82.25 63.53 49.50 

M 0.3642 0.4420 0.4481 0.3986 

ν 3.262 7.252 4.931 4.100 

r2 0.98109 0.99033 0.99421 0.97931 

Standard 

Error 
0.0458 0.0371 0.0283 0.0564 
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The state-transition function in the dynamic program for water thus becomes:  
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The normalized data for water has a smaller spread with increasing depth. The normalized 

data for each depth trace out the same general trend, regardless of the depth of the reservoir, 

but the width of the envelope in which these normalized data fall decreases as the depth of 

the reservoir increases.   

 

Figure 15: Normalization of the Temperature of the Production Fluid as a Function of the 

Energy that is Extracted from the Reservoir for NUFT Simulations Using CO2 

 

Table 9 shows the logistic curve coefficients estimated for the curve fit in Figure 15.  
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Table 9: Coefficients of the Logistic Curve Fit to the Normalized Temperature and Heat 

Extraction Data Using CO2 

Coefficient 2,500 m 3,500 m 5,000 m All Depths 

L 7.0562e-9 5.4652e-8 3.3253e-8 4.2653e-7 

A 2.6265 0.31339 0.8728 0.32039 

x 8.506 8.4286 9.2164 8.2254 

M 0.12378 0.37542 0.33208 0.97957 

ν 0.48782 0.48645 0.69899 0.48049 

r2 0.91327 0.92271 0.93229 0.92311 

Standard 

Error 
0.0806 0.0842 0.0800 0.0831 

 

The state-transition function in the dynamic program for CO2 thus becomes:  
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The logistic fit is better for results using water than CO2, in part due to permeability. The 

following figures (Figure 16 and Figure 17) further explore the reason for the large width 

of Figure 15. Figure 16 parts the simulations by three permeabilties, 1x10-11 m2, 1x10-12 

m2, and 1x10-13 m2, and plots the normalization of the temperature of the produced fluid as 

a function of the energy that is extracted from the reservoir.  
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Figure 16: Normalization of the Temperature of the Production Fluid as a Function of the 

Energy that is Extracted from the Reservoir for NUFT Simulations Using CO2 Parted by 

Permeability (κ): 1x10-11
 m

2 (79 Simulations), 1x10-12
 m

2 (77 Simulations), 1x10-13
 m

2 (72 

Simulations) 

 

Figure 17: Normalization of the Temperature of the Production Fluid as a Function of the 

Energy that is Extracted from the Reservoir for NUFT Simulations Using CO2 Parted by 

Mass Flowrate (𝑚̇): 100 kg/s (39 Simulations), 150 kg/s (34 Simulations), 200 kg/s (34 

Simulations), 250 kg/s (33 Simulations) 
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Figure 17 separates the simulations by four mass flowrates, 100 kg/s, 150 kg/s, 200 kg/s, 

and 250 kg/s, and plots the normalization of the temperature of the produced fluid as a 

function of the energy that is extracted from the reservoir. While the mass flowrate does 

not change the spread of the data, the temperature drawdown of the production fluid 

increases with mass flowrate. It is worthwhile to further investigate the spread of Figure 

15 to better collapse the data onto a single curve, specifically understanding the role 

permeability plays in how temperature of the produced fluid changes.  

 

When using water the as working fluid, it is expected that the production temperature will 

be constant initially, but then will quickly decrease until it reaches a temperature close to, 

but not exactly, the injection temperature. In the case of CO2, the temperature of the 

produced fluid gradually decreases as energy is extracted. Because water extracts more 

energy due to its large specific heat than CO2 at the same mass flowrate, movement along 

the x-axis is faster for water than movement along the x-axis for CO2. Another noticeable 

difference between the normalizations is the lower asymptote. The lower asymptote of 

normalized temperature of produced water, U, is 0.1318, while the lower asymptote of 

normalized temperature of produced CO2 approaches zero. This indicates that when using 

water as the working fluid, the lowest temperature of the produced fluid will approximately 

13% larger than the injection temperature. The constant heat flux moving through the earth 

regenerates enough heat to maintain the reservoir at that temperature. On the other hand, 

using CO2 reaches production temperatures much closer to the injection temperature. 
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Comparison of Normalization Results using NUFT Data and STATA Regression 

While the figures above use raw NUFT Data for the heat flow into the reservoir, the natural 

resource economic model will use the previously presented STATA regression to calculate 

heat flow into the reservoir. The following equations are the results of the regression for 

water (equation 17) and CO2 (equation 18).  
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In order to study the implications of the reduced-form representation, the equations were 

applied to the normalization and plotted (Figure 18). The overall trend of the data is 

captured, but there are abnormalities seen towards the end of certain simulations in the 

form of backward curvature. These abnormalities are seen more distinctly in the water 

scenario. It takes place in the simulations with smaller mass flowrates. The reason for this 

curvature is that the STATA regression over calculate the heat flow into the reservoir for 

cases with small mass flowrates after a large portion of heat has been extracted. While it is 

worthy to further explore this in order to more accurately parameterize heat flow into the 

reservoir for extreme cases, this regression is sufficient for the scenarios that will be 

explored though the natural resource economic model. In other words, the simulations 

capture 200 years of heat flow, while the natural resource economics model will simulate 

much smaller time horizons.  
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Figure 18: Normalization of the Temperature of the Production Fluid (Water and CO2) as 

a Function of the Energy that is Extracted from the Reservoir for NUFT Simulations Using 

STATA Regression 

 

Optimal Operation of a Geothermal Reservoir 

The results of the fitted generalized logistic curve and the STATA regression on cumulative 

net heat into the reservoir are parts for the natural resource economic model. The following 

optimization results of the natural resource economics model use the parameters provided 

in Table 10 unless specified otherwise. The investment cost used for these results is taken 

from an estimation by Stefánsson (2002) for two wells and a 20MW power plant. This 

estimation is for a specific geothermal field and power plant parameters and will change 

depending on the given power plant and resource type. But, since the investment cost is 

not the focus of this study, this value is taken as an assumption for the investment cost in 

this model.   
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Table 10: Input Parameters Used for Following Results Unless Specified Otherwise 

Input Variable Value 

Planning Horizon, Ω 50 years 

Total Number of Stages, ω 50 

Mass Flowrate Boundaries, Water 0 ≤ ṁ ≤ 250 kg/s 

Mass Flowrate Boundaries, CO2 0 ≤ ṁ ≤ 350 kg/s 

Fluid Injection Temperature, Tinj 308.15 K (35°C) 

Selling Price of Energy, p $2.78e-6/kJ 

Investment Cost, Ct=0 $2,500,000 

Power Plant and Wellbore Efficiency, η 0.1 

Discount rate, δ 5% 

 

For scenarios using water and CO2, Figure 19 and Figure 21, respectively, show the optimal 

mass flowrate over time determined by the natural resource economic model for the given 

parameters. The maximum mass flowrate for CO2 is set higher than the maximum mass 

flowrate for water because of differences in viscosity. For both fluid scenarios, it is optimal 

to extract energy at the maximum mass flowrate for the entire time horizon. For water, the 

temperature of the produced fluid and, in turn, the net benefits decrease over time (Figure 

20). Still, the decrease in the temperature can be compensated for by a large mass flowrate. 

On the other hand, the CO2 scenario has little to no temperature drawdown over the time 

horizon, and the temperature begins to increase after approximately 25 years. The 

temperature drawdown of CO2 is not being captured adequately by the natural resource 

economics model and the results shown have a high level of uncertainty. It will be 

important to investigate the cause of this to reduce uncertainty in the results of the model. 

The cost multiplier is a function of mass flowrate, temperature of produced fluid, and the 
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specific heat. It shows how the cost of electricity will increase as the temperature of the 

produced fluid increases. This is the economic tradeoff being made in the model.  

 

 

Figure 19: Optimal Mass Flowrate Time Path for Water using the Natural Resource 

Economics Model with Parameters: Permeability (κ) = 10-13 m2, Depth (z) = 3,500m, 

Temperature Gradient (G) = 35°C/km, and Thickness (Δz) = 100m 

 

 

Figure 20: Economic Benefits and Cost Multiplier for Water using the Natural Resource 

Economics Model with Parameters: Permeability (κ) = 10-13 m2, Depth (z) = 3,500m, 

Temperature Gradient (G) = 35°C/km, and Thickness (Δz) = 100m 
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Figure 21: Optimal Mass Flowrate Time Path for CO2 using the Natural Resource 

Economics Model with Parameters: Permeability (κ) = 10-13 m2, Depth (z) = 3,500m, 

Temperature Gradient (G) = 35°C/km, and Thickness (Δz) = 100m 

 

 

 

 

Figure 22: Economic Benefits and Cost Multiplier for CO2 using the Natural Resource 

Economics Model with Parameters: Permeability (κ) = 10-13 m2, Depth (z) = 3,500m, 

Temperature Gradient (G) = 35°C/km, and Thickness (Δz) = 100m 
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The optimal mass flowrate time path result shown in the previous figures is the result for 

varying reservoir depths, thickness, permeability, and temperature gradient. This implies 

that the model is not sensitive to the temperature drawdown of the reservoir. While there 

is a loss in net benefits, a large mass flowrate can compensate for this. The cost equation 

used in the current model is an assumption of how the LCOE changes with the amount of 

energy that is extracted. With a different type of assumption, i.e., a different cost function, 

the result of the natural resource economics will change accordingly.     
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Chapter 6: Future Research and Conclusion 

The implications of these results are discussed, and the chapter concludes with a 

discussion of the future directions this research can take. 

 

Suggestions for Further Research 

Developing a model is an iterative process, and there is a large scope for further research 

on the presented model. There are assumptions made at each step of the methodology, some 

of which are discussed here. Each assumption adds a level of uncertainty to the results of 

the model and are worth exploring to reduce this level of uncertainty. 

 

There is a potential for additional analysis on the normalization method used to develop a 

reduced form representation of production temperature for water and CO2. A geothermal 

system using CO2 is in reality a mixed-fluid system because of the initial production of 

naturally occurring brine within the reservoir. Because breakthrough occurs at different 

times for different scenarios, it would be interesting to see how this and permeability effect 

the normalization. Furthermore, it would be beneficial to study an extreme case, increasing 

the mass flow past 250 kg/s and/or increasing the time of extraction past 200 years, when 

the temperature of the working fluid reaches the injection temperature, particularly in the 

case of CO2. Such an extreme case can reveal how well the fitted curve reflects NUFT 

simulations.  
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The natural resource economics approach requires a cost function that depends on the 

energy that is extracted from the reservoir. Research that determines a function that 

captures how the cost changes will directly affect the results of the model, particularly 

when the LCOE is high enough to make it too expensive to extract energy. While this thesis 

has a larger focus on the reservoir performance, additional work can explore the economics 

of geothermal power generation from sedimentary basins.  

 

A system dynamics approach, the study of information feedback through causal links, can 

be used to understand the effects of reservoir parameters on production temperature can 

expose interconnections between variables. System Dynamics can aid in parameterizing 

energy that is extracted and heat flow into the reservoir by identifying and highlighting 

important variables and interactions that affect them. A system dynamics approach may be 

particularly beneficial when using CO2 as the geofluid as this system is more complex than 

water. There are also many assumptions made to maintain simplicity of the model, such as 

an equal mass flowrate for injection and production well and a homogenous reservoir. But, 

there is a potential for research to remove these assumptions and add layers of complexity 

to the model. For example, plant and reservoir efficiency are assumed to be constant. This 

is not the case in a real power plant that generally loses efficiency as the temperature of the 

produced fluid decreases. Karvounis (2013) discusses how thermal efficiency of binary 
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plants operate under conditions similar to geothermal plants, and uses the following 

equation to calculate the net electrical energy production.  

100

3266.20935.0 , 


tprodT
       (23) 

A changing efficiency, like equation 18, adds an economic cost of temperature drawdown 

and is likely to change the optimal mass flowrate time path, particularly for scenarios with 

large temperature drawdown. 

 

Future modeling simulations could investigate the performance of sedimentary basin 

geothermal reservoirs when the mass flowrates for the injection well(s) and the production 

well(s) differ, and thus changes in reservoir pressure could affect the performance of the 

geothermal reservoir. Furthermore, since sedimentary basin geothermal resources do not 

require faulted and fracture systems, which are localized, and instead use widespread 

porous and permeable sedimentary layers with presence in states such as Utah, Colorado, 

and Texas, one could imagine an array of sedimentary basin geothermal facilities, where 

heat extraction in one location may also drain heat from a neighboring location. Such an 

externality may have to be negotiated by an institutional process like unitization that occurs 

in the oil and gas industry, or if all of the neighboring sites are operated by the same utility, 

lead to an optimal rotation of sites. 
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Conclusion 

Geothermal heat is a renewable resource that can benefit society if it is extracted and used 

in a cost-effective manner. In a sedimentary basin, heat from the produced fluid is 

converted to electricity for a profit. Although the temperature of a reservoir will naturally 

regenerate, extracting heat over long periods of time can drawdown this temperature if the 

extraction rate exceeds the regeneration rate. As such, this drawdown can limit the long-

term performance of the reservoir, while a high rate of heat extraction can produce a large 

economic gain from selling the energy that is extracted. The model uses a natural resource 

economics approach to develop a model that determines the optimal extraction strategy 

given the depreciation of the resource. Results suggest that drawing down the temperature 

of a reservoir can be the optimal path if the rate at which the natural capital (i.e., heat) 

grows is less than the rate at which the financial capital (i.e., profit) grows. Though the 

natural resource economic model is specific to a sedimentary basin using a radial 

production well and vertical injection well system, the natural resource economic approach 

and model can be expanded for any type of geothermal resource using the same 

methodology. Such models can provide economically viable extraction strategies. This will 

reduce the economic risk associated with the deployment of geothermal resources, the use 

of which will combat global climate change.   
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Variable Description Units 

Tprod Temperature of production fluid K 

Tt=0 Initial temperature of the reservoir K 

Tinj Injection temperature of fluid K 

Ξ Present value of net benefits $ 

ξ Net profit per unit of extracted energy $/kJ 

p Selling price of electricity $/kJ 

Ct=0 Investment cost $ 

η Power plant and wellbore efficiency factor % 

δ Discount rate % 

L, A, x, M, ν Logistic curve regression coefficients - 

t Time s 

Δt Time step s 

Ω Planning horizon years 

ω Total number of decision periods - 

s Current decision period - 

τs Time elapsed at the end of current decision period years 

Δτ Time of decision period years 

k Thermal conductivity W/m-K 

ρ Density kg/m3 

cp Specific heat capacity kJ/(K-kg) 

β Compressibility Pa-1 
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G Temperature gradient  K/km 

Ts Temperature of the surface  K 

z Reservoir depth from surface m 

Δz Reservoir thickness  m 

r Distance from injection well to production well m 

κ Permeability m2 

ϕ Porosity - 

Qt Energy that is extracted kJ 

Qtot Total energy that could have been extracted kJ 

Qres,t=0 Initial energy in reservoir at t=0 kJ 

Qin Net energy entering the reservoir kJ 

ṁ Mass flow rate kg/s 

Q Normalized energy extracted - 

T Normalized production temperature - 
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The following code is for developing the normalization figures with a fitted curve for 

water. A duplicate code was used for the data using CO2 (MATLab).  

 

% LOGISTIC CURVE DATA FIT 

% The following code calculates the normalized production 

temperature and 

% normalized energy extracts, plots it, and fits the 

generalized logistic 

% curve to the data.  

  

close all 

%% Raidal Well with Brine Injection %% 

  

radius = 700; %distance b/w injection and production well 

poro = 0.1; %porosity 

k_rock = 2; %W/m-C 

cp_rock = 2.8; %kJ/kg-C 

rho_rock = 920; %kg/m^3 

  

Tempinj   %reads the injection temperature from the 

T_inj_history file 

FluxCalc 

ReadRuns 

  

%% Read temperature from history files %% 

File = dir(fullfile('Radial Well Brine','*')); %list all 

contents in Radial Well Folder 

numF = length(File);    %number of content in the Radial 

Well Folder 

cd('Radial Well Brine')   % change current folder to Radial 

Well 

% legen = {}; 

QFall = []; 

TFall = []; 

  

for i = 1:numF % loop for all the files in Radial Well 

Folder 

    if (File(i).isdir == 0) % if content is a file 

        A = File(i).name; 

        [time,T] = textread(File(i).name,'%f 

%f','headerlines',11); %read in prod temp data 
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        a = regexp(A,'Run','split'); b = 

regexp(a{2},'.T','split'); %Reading run number from file 

name 

        Run = str2double(b{1}); 

%         legen = vertcat(legen,{strcat('Run 

',[num2str(Run,'%2.0i')])}); 

        T_initial = max(T); % initial temperature of 

production well 

        T_bottom = 15 + 

(Tgrad(Run)/1000)*(depth(Run)+thickness(Run)); 

         %% depth specific fluid characteristics 

        if depth(Run)==2500  

            cp_brine = 4.16; %kJ/kg-C 

            rho_brine = 954; %kg/m^3 

        elseif depth(Run)==3500 

            cp_brine = 4.18; %kJ/kg-C 

            rho_brine = 928; %kg/m^3 

        elseif depth(Run)==5000 

            cp_brine = 4.23; %kJ/kg-C 

            rho_brine = 864; %kg/m^3 

        end 

        %% Calculate TF 

        TempF = (T - Tinj(Run))/(T_initial - Tinj(Run)); 

%temperature fraction 

        Vol = thickness(Run)*pi*(radius^2);         

        %% Initialize variables 

        QF = zeros(size(TempF)); 

        Q_total = zeros(size(TempF)); 

        Ecum = zeros(size(TempF)); 

        F_total_c = squeeze(F_total(:,Run)); 

        F_total_r = F_total_c(F_total_c~=0); 

        if length(TempF) ~= length(F_total_r) 

            F_flow = zeros(size(TempF)); 

            F_flow(2:end) = F_total_r; 

        else  

            F_flow = F_total_r; 

        end 

        F_in = zeros(size(TempF)); 

        Flow = zeros(size(TempF)); 

        Qex = zeros(size(TempF)); 

        Q_stored =(Vol*(1-

poro)*rho_rock*cp_rock*(T_initial)) + 

(Vol*poro*rho_brine*cp_brine*(T_initial)); % [kJ] 

        Q_total(1) = Q_stored;  

        Qex(1)=0; 
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        %% Calculate QF 

        for k = 2:length(T) 

            F_in(k) = F_in(k-1) + (F_flow(k)*(time(k)-

time(k-1)))/1000;  %kJ 

            Flow(k) = (F_flow(k)*(time(k)-time(k-1)))/1000; 

            Ecum(k) = (mrate(Run)*cp_brine*(T(k)-

Tinj(Run))*(time(k)-time(k-1))); %kJ 

            Qex(k) = Qex(k-1) + Ecum(k); 

            Q_total(k) = Q_stored + F_in(k)+Qex(k); 

            QF(k) = Qex(k)/Q_total(k); 

        end 

        QFall = vertcat(QFall,QF); 

        TFall = vertcat(TFall,TempF); 

    %% Plot Data 

    hold on 

        plot(QF,TempF,'ko-')%,'MarkerEdgeColor',[0.5 0.5 

0.5],'Color',[0.5 0.5 0.5]) 

%     end 

    end 

end 

% legend(legen) 

axis([0 1 0 1]) 

cd .. 

%% LOGISTIC CURVE  

LowerBound = [0 0 0 0 0]; 

UpperBound = [Inf Inf Inf Inf Inf]; 

Seed = [1 1 1 1 1]; 

ft = fittype('LogisticFit( x, alpha, beta, k, M, m)'); 

[FO,GOF] = 

fit(QFall,TFall,ft,'Lower',LowerBound,'Upper',UpperBound,'S

tartPoint',Seed); 

h = plot(FO); set(h,'LineWidth',2); 

parameters = coeffnames(FO); values = coeffvalues(FO); 

startx = 0.1; starty = 0.4; ad = 

ones(1,numel(parameters))*0.04; 

text(startx,starty,['y = LogisticFit']); 

text(startx,starty,['y = ' formula(FO)]); 

    

    for idx = 1:numel(parameters) 

         text(startx,starty-

(ad(idx)*idx),strcat(parameters(idx), {' = '}, 

num2str(values(idx)))); 

    end 

text(startx,starty-sum(ad)-ad(1),strcat({'r^2 = '}, 

num2str(GOF.rsquare))); 
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title('Radial Well; Geofluid: Water; Depth: 3500m') 

xlabel('Normalized Energy Extracted [dim]') 

ylabel('Normalized Production Temperature [dim]') 

  

 

The following code is for the separated code and functions used the normalization code 

(MATLab). 

% Read injection temperature for every run  

  

cd('Radial Well Brine') 

File = dir(fullfile('T_inj_history','*')); %list all 

contents in Radial Well Folder 

numF = length(File);    %number of content in the Radial 

Well Folder 

cd('T_inj_history')   % change current folder to Radial 

Well 

Tinj = zeros(size(numF-2)); 

for i=1:numF 

    if (File(i).isdir == 0) % if content is a file 

        A = File(i).name; 

        a = regexp(A,'Run','split'); b = 

regexp(a{2},'.T','split'); %Reading run number from file 

name 

        Run = str2double(b{1}); 

        [time,T_injread] = textread(File(i).name,'%f 

%f','headerlines',10); 

        Tinj(Run) = min(T_injread); 

    end 

end 

cd .. 

cd .. 

 

 

close all 

tic 

ReadRuns 

  

%looking at flux files 
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File = dir(fullfile('Radial Well Brine Flux','*')); %list 

all contents in Folder 

numF = length(File);    %number of content in Folder 

cd('Radial Well Brine Flux')   % change current folder 

%% Hard coded numbers 

tstep = 250; 

numsim = 300; 

F_top = zeros(tstep,23,numsim); 

F_bottom = zeros(tstep,23,numsim); 

F_side = zeros(tstep,11,numsim); 

% Tprod = zeros(a,numsim); 

time_run = zeros(tstep,numsim); 

% Ecum = zeros(a,numsim); 

%% Put Data into matricies 

for i = 1:numF %loop over all files 

    if (File(i).isdir == 0) % if content is a file 

    A = File(i).name; 

    a = regexp(A,'_','split');  

    b = regexp(a{3},'.Cond','split'); 

bb=regexp(b{1},'Run','split');%Reading run number from file 

name 

    Run = str2double(bb{2}); 

    xLoc = str2double(a{4}); 

    if (size(b{2},2) == size('top',2)) 

        if (b{2} == 'top') 

            [t1,F] = textread(File(i).name,'%f 

%f','headerlines',13); %read in prod temp data 

            len = length(F); 

            F_top(1:len,xLoc,Run) = F; 

        end 

    elseif (size(b{2},2) == size('bottom',2)) 

        if (b{2} == 'bottom') 

            [t1,F] = textread(File(i).name,'%f 

%f','headerlines',13); %read in prod temp data 

            len = length(F); 

            F_bottom(1:len,xLoc,Run) = F; 

        end 

    elseif (size(b{2},2) == size('side',2)) 

         if (b{2} == 'side') 

            [t1,F] = textread(File(i).name,'%f 

%f','headerlines',13); %read in prod temp data 

            len = length(F); 

            F_side(1:len,xLoc,Run) = F; 

        end  

    end 
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    time_run(1:len,Run) = t1; 

    end 

end 

  

%% Sum data for each run 

[t,xdir,Runsim] = size(F_top); 

F_total = zeros(t,Runsim); 

fluxsumtop  = 0; 

fluxsumbottom = 0; 

fluxsumside =0; 

for k = 1:Runsim 

    Ftoprun = sum(squeeze(F_top(:,:,k)),2); 

    Fbotrun = sum(squeeze(F_bottom(:,:,k)),2); 

    Fsidrun = sum(squeeze(F_side(:,:,k)),2); 

    F_total(:,k) = Ftoprun + Fbotrun + Fsidrun; 

end 

cd .. 

  

%% Injection temperature 

File = dir(fullfile('R Brine Flux Inj T','*')); %list all 

contents in Folder 

numF = length(File); 

cd('R Brine Flux Inj T')   % change current folder to 

Radial Well 

Tinj = zeros(100,1); 

for i=1:numF 

    if (File(i).isdir == 0) % if content is a file 

        A = File(i).name; 

        a = regexp(A,'Run','split'); b = 

regexp(a{2},'.T','split'); %Reading run number from file 

name 

        Run = str2double(b{1}); 

        [time,T_injread] = textread(File(i).name,'%f 

%f','headerlines',11); 

        Tinj(Run) = mean(T_injread(20:end)); 

    end 

end 

cd .. 

%% Production temperature and Energy extracted 

File = dir(fullfile('R Brine Flux Prod T','*')); %list all 

contents in Folder 

numF = length(File); 

cd('R Brine Flux Prod T')   % change current folder to 

Radial Well 
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for i=1:numF 

    if (File(i).isdir == 0) % if content is a file 

        A = File(i).name; 

        a = regexp(A,'Run','split'); b = 

regexp(a{2},'.T','split'); %Reading run number from file 

name 

        Run = str2double(b{1}); 

        [time,T_prodread] = textread(File(i).name,'%f 

%f','headerlines',11); 

        len = length(T_prodread); 

        Tprod(1:len,Run) = T_prodread; 

%         time_run(1:len,Run) = time; 

        if depth(Run)==2500  

            cp_brine = 4.2; %kJ/kg-C 

        elseif depth(Run)==3500 

            cp_brine = 4.3; %kJ/kg-C 

        elseif depth(Run)==5000 

            cp_brine = 4.4; %kJ/kg-C 

        end 

        Es = zeros(1,length(time)); 

        for k = 2:length(time) 

            Es(k) = Es(k-

1)+(mrate(Run)*cp_brine*(T_prodread(k)-Tinj(Run))*(time(k)-

time(k-1))); 

        end 

        Ecum(1:len,Run) = Es; 

    end 

end 

cd .. 

 

 

% read from Runs Tracker 

  

% Read Excel Sheet with Run Data 

Perm = xlsread('Runs Tracker','Radial Well 

Brine','C2:C301');         % Permeability of run [m^2] 

depth = xlsread('Runs Tracker','Radial Well 

Brine','D2:D301');          %depth [m] 

Tgrad = xlsread('Runs Tracker','Radial Well 

Brine','E2:E301');          %temperature gradient [C/km] 

thickness = xlsread('Runs Tracker','Radial Well 

Brine','F2:F301');               % thickness of reservoir 

[m] 
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mrate = xlsread('Runs Tracker','Radial Well 

Brine','G2:G301');          % mass flowrate [kg/s] 

 

function [ y ] = LogisticFit( x, alpha, beta, k, M, m ) 

%LogisticFit is a curve fitting for a Generalied Logistic 

Function 

%   Written by Iti Patel 

  

y = zeros(size(x)); 

  

for i = 1:length(x) 

    y(i) = 1 + (alpha-1) / ( ( 1 + beta*exp(-k*(x(i)-M)) 

)^(1/m) ) ; 

end 

  

end  

 

 

The following code is for the STATA regression analysis (.do file). 

 

clear 

cd "C:\Users\patel.1166\Documents\STATA" 

use "Data for STATA Water.dta" 

 

rename Permeabilitym2 k 

rename Depthm z 

rename TemperatureGradientCkm G 

rename Thicknessm dz 

rename MassFlowratekgs mr 

rename Times t 

rename QinkJ Qin 

rename ΣQexkJ CQex 

rename QexkJ Qex 

rename QstoredkJ Qs 

 

gen b1 = ln(k) 

gen b2 = ln(z) 

gen b3 = ln(dz) 
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gen b4 = ln(mr) 

gen b5 = ln(G) 

gen b6 = ln(CQex) 

gen b7 = ln(Qex) 

gen b8 = ln(t) 

gen b9 = ln(Qs) 

gen ln_Qin = ln(Qin) 

 

xtset RunID 

xtreg ln_Qin b1 b2 b3 b4 b5 b6 b7 b8 b9, mle nocon 

outreg2 using QinRegression, excel replace 


