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Abstract

Abstract:

Evaluating the capacity value of solar PV plants can pose significant chal-

lenges due to their dependence on geographic and climatic conditions,

which are highly variable and uncertain. Also, the way the data are

recorded gives a significant variation in capacity value estimates. In this

dissertation, different capacity value metrics are reviewed, several case

studies are summarized and capacity value using the Effective Load Carry-

ing Capability (ELCC) metric is estimated for 100 MW PV plants located

across North America. ELCC estimates using hourly and minute-based

solar data are compared, ELCCs are computed after shifting the load data

ahead and behind by one hour to account for the sloppiness in reporting

load data, and ELCC estimates using modeled and measured solar data

are compared.
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Chapter 1: Introduction

Electricity is a commodity in which supply must be balanced with demand instan-

taneously at all times. The system delivers energy to its consumers but if at any time

there is insufficient generating capacity to meet demand, then the demand must be

reduced to ensure system stability. Thus electric generation facilities provide value

by supplying energy, but they also deliver value through their capacity contribution.

Capacity value (or capacity credit) measures the contribution of a facility or a group

of facilities to the reliability of the overall electrical supply system. This is usually

assessed with respect to system adequacy (whether there is sufficient capacity avail-

able to meet the demand at all times), rather than system security (the ability of the

system to withstand sudden faults or disturbances) [3, 13, 22, 6].

Over the past decade, the United States and other countries are restructuring

their power sectors and framing policies to utilize generating resources to reliably

meet electricity demand. This is a major problem faced by power system planners.

Generator outages can occur due to mechanical failures, planned maintenance, or

lack of generating resource. Such failures may leave a power system with insufficient

generating capacity to meet demand. Though there are a variety of generation tech-

nologies to choose from, there has been an increasing interest in the use of renewables.
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The issue faced in capacity planning with renewable is because of the variable and

uncertain nature of their real-time output. Thus, accurate estimates of capacity value

of such resources are vital [3, 13, 22, 6].

Previous analyses estimate the capacity value of wind, photovoltaics, and concen-

trating solar power (CSP) resources. They show that these resources have non-zero

capacity values that can range from 5% - 95% of maximum generating capacity. This

range reflects the effect of technology, geography, demand patterns, and the coin-

cidence between real-time generation and demand. It also reflects the decreasing

capacity value of additional renewable generators [13, 19, 11, 14, 18]. All these anal-

yses use a mix of reliability-based and statistical approximation techniques. These

techniques estimate the probability that a power system experiences an outage event,

which is an event when the available generating capacity is less than the demand.

The capacity value is determined based on the contribution of a generator towards

reducing this probability [14].

In this study, we estimate the capacity value of solar PV plants using the capacity

value estimation metric - effective load carrying capability (ELCC). The ELCC of 100

MW PV plant varies from 5 MW to 42 MWbased on the location. We compare the

ELCCs computed using hourly solar data and subhourly solar data for PV plants,

and we find that the absolute difference can go upto 16% (Table: 5.1) for a PV plant

located in Montana in the year 2005. This shows that using hourly solar data can

introduce significant errors in estimating ELCCs for a particular year. Though, this

error smooths out when we use multiple years of data to estimate the ELCCs.
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We also compare the ELCCs computed using the original load data with ELCCs

computed using load data shifted one hour ahead and one hour behind. This is to see

if ELCCs are sensitive to the sloppiness in the reported load data. We find that the

ELCCs are highly sensitive to these load shifts for solar PV plants. ELCCs for solar

PV plants, computed using original load data differ in the range of -37% to +42%

from ELCCS computed using the shifted load data (Table: 5.2). The large error is

persistent throughout the years studied for each location and it does not smooth out.

This thesis also compares ELCCs computed using measured and modeled solar

data. We have access to satellite data which is the modeled data for locations on

a 4km2 grid across North America. It is difficult and expensive to get real-time

measured data for these many locations. Thus, we want to see if modeled data does

justice in estimating the ELCCs. From the results, we find that the maximum error in

certain cases such as PV located in Mississippi and Pennsylvania can go up to 104%

and 71% respectively (Table: 5.3) which shows that ELCC estimates using modeled

solar radiation data may not give accurate results.

The rest of this thesis is organized as follows:

In Chapter 2, we review the different capacity value techniques being used today.

Chapter 3 summarizes the different case studies on capacity value estimation for

Solar Photovoltaic and discusses the results. Chapter 4 presents case study on ELCC

estimates for Solar PV plants across North America and outlines the data and model

used to estimate the ELCCs. Chapter 5 gives the results of this case study on ELCC

estimates of PV plants. Chapter 6 concludes this thesis.
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Chapter 2: Literature Survey

This chapter reviews different capacity value estimation techniques, which are

being used today, and summarizes different case studies on capacity value estimation

for solar and wind power.

To discuss the different capacity value estimation techniques, we define the fol-

lowing nomenclature as follows:

T Time index set

T ′ subset of hours used in capacity factor-based approximation

pt Loss of Load Probability

Lt Hour-t load

Gt Generation capacity at time t

ε Loss of Load Expectation (LOLE) of base system without PV

εELCC LOLE with PV in effective load carrying capability (ELCC) calculation

εPV LOLE with PV in equivalent conventional power (ECP) calculation

εB LOLE with benchmark unit added in ECP calculation

Vt Generating capacity available from PV plant in hour-t

L̄ Constant loaded added in each hour in ELCC calculation

4



Bt Generating capacity available from benchmark unit in hour t in ECP

calculation

wt Hour-t weight used in capacity factor-based approximation

V̄ Rated capacity of PV plant

Ḡ Nameplate conventional generating capacity

m System characteristic

πω Probability PV plant is in state ω

Vω PV capacity unavailable in state ω

Z Z statistic

Ω Index set for PV plant states in multi-state ELCC approximation

St Hour-t surplus generation capacity

µS Mean of St

µPV Mean hourly generating capacity available from PV plant

σS Standard deviation of St

σPV Standard deviation of hourly generating capacity available from PV plant

2.1 Reliability-Based Methods

There are a number of techniques which are used to evaluate the capacity value of

conventional as well as renewable generators. Reliability-based methods are among

the most robust and widely accepted of all of these because they fully account for

the effect of a generator on the reliability of a power system [13, 11, 14, 18, 7, 15,

17]. These techniques are based on a standard reliability metric - the loss of load
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probability (LOLP). Loss of load occurs when the system load exceeds the generating

capacity available for use. Thus, LOLP is defined as the probability that generator

or transmission outages leave the system with insufficient capacity to serve the load

in a given period of time.

pt = Prob(Gt < Lt) (2.1)

Another reliability index, loss of load expectation (LOLE) is usually used with

the LOLP. It is defined as the sum of LOLPs over a planned time period and it gives

the expected number of outage periods within that time period. The LOLP is given

by:

ε =
∑
t∈T

pt (2.2)

Other reliability metrics, such as loss of energy probability, loss of energy expecta-

tion, loss of load frequency, and loss of load duration can also be used. These metrics

are less common. In estimating the capacity value of renewables, LOLE-based meth-

ods are widely used. LOLPs are usually modeled on hourly time steps and LOLEs are

computed over a year. Conventional generator and transmission outages are modeled

using equivalent forced outage rate (EFORs) which capture the probability of a fail-

ure at any given time. Reliability based methods include the effective load carrying

capability (ELCC), equivalent conventional power (ECP) and equivalent firm power

(EFP).

6



2.1.1 Effective Load Carrying Capability (ELCC)

The ELCC of a generator is defined as the amount by which the system’s loads

can increase, when the generator is added to the system while maintaining the same

reliability index (as measured by LOLE). The ELCC of PV is calculated by first

calculating the total loss of load probability (LOLP) given by equation 2.1 of the

original system without the PV. This is typically done keeping the time period of one

year. This probability function accounts for generator and other failures. Generator

failures are often modeled using an equivalent forced outage rate (EFOR). The LOLE

is then calculated, which is given by equation 2.2 above. The system is then modified

to give a standard LOLE of 1 day in 10 years. This does not give a true measure of

the adequacy of the system because the true LOLE is different. However, it allows

for PV’s contribution to be assessed and compared against other system that use this

standard value. Next, the PV plant is added to generator mix and a fixed load, L̄, is

added to each hour, giving a new LOLE:

εELCC =
∑
t∈T

Prob(Gt + Vt < Lt + L̄) (2.3)

where the probability function also accounts for the probability of real-time solar

availability. The fixed load added to each hour is iteratively adjusted until the LOLE

of the system with the PV and added loads is the same as that of the base system

i.e.

ε = εELCC (2.4)

The PV plant’s ELCC is defined as the value of L̄ that achieves condition 2.4.
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2.1.2 Equivalent Conventional Power (ECP)

The ECP of a generator, g, is defined to be the capacity of a benchmark unit,

which is assumed to have a positive EFOR, that can replace g while maintaining

the same LOLE. In this method, the renewable generator’s capacity value can be

benchmarked against a conventional resource. For example a 100 MW PV plant may

have a capacity value equivalent to a 30 MW natural gas fired combustion turbine.

The ECP of a PV generator is calculated by first computing the LOLE of the system

when the PV is added as:

εPV =
∑
t∈T

Prob(Gt + Vt < Lt) (2.5)

The LOLE of the system when only the benchmark plant (i.e. without the PV)

is added is also computed as:

εB =
∑
t∈T

Prob(Gt +Bt < Lt) (2.6)

Here the probability function takes into consideration the likelihood of the conven-

tional generator (benchmark unit) failing by using its EFOR. The nameplate capacity

of the benchmark unit is iteratively adjusted until the LOLE of the system with the

benchmark unit is the same as that with the PV plant, or until

εPV = εB (2.7)

The PV plant’s ECP is defined as the nameplate capacity of the benchmark unit

that achieves equality 2.7 [13, 14, 2].
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2.1.3 Equivalent Firm Capacity (EFC)

The EFC of a generator, g, is defined to be the capacity of a fully reliable gen-

erator (i.e., with an EFOR of 0%) that can replace g while maintaining the same

LOLE. A generator’s ELCC and EFC may differ, because changing the generation

mix changes the distribution of the available capacity in a given hour whereas ad-

justing the loads will not. ECP is similar to EFC except that the generator against

which g is benchmarked is not fully reliable, which means it has a positive EFOR

[23, 13, 14].

2.2 Approximation Methods

Reliability-based methods are widely accepted and considered to be robust and

accurate in giving capacity value estimations. However, they require expensive iter-

ative LOLP calculations, which can be time consuming. Due to seasonal and annual

weather patterns, several years’ data are required to accurately estimate long-run

capacity values of renewables.

Because of these challenges of using reliability-based techniques, approximation

techniques are often used to estimate capacity values. Among the approximation

methods are capacity-factor based methods [16], Garver’s ELCC approximation [7],

and the Z method [5]. These methods reduce the computational effort by either

approximating the relationship between capacity added and the LOLPs or by focusing

on some subset of hours, which are considered to be high risk when the system is likely

to experience loss of load. There have been several studies to examine the accuracy

of these approximation techniques in estimating the capacity values of wind, CSP,

and PV. Milligan and Parsons [16] use three different techniques to estimate the
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capacity value of wind. Their first method calculates the capacity factor as the ratio

of average output to the total output for the hours during the utility system peak

(top 30% hourly peak loads). The second method uses hours in which the risk of not

meeting the load is highest i.e. highest LOLP (of the base system without wind).

The third method is the weighted average of capacity value during the highest-load

hours of the year, using LOLPs as weights. Madaeni et al. [15, 14, 13] compare the

capacity factor-based and reliability-based methods applied to CSP and PV showing

that these methods can provide relatively accurate approximations.

2.2.1 Capacity Factor Based Approximations

This method approximates the capacity value of a generator as its average capacity

factor over a subset of risky periods [14, 17, 16]. This method approximates the

capacity value by first determining a subset of hours, T ′, with the highest loads,

over which the capacity factor is averaged. The weights used in each hour are then

computed as:

wt =
pt∑

t∈T ′ pt
(2.8)

Where the p′ts are the LOLPs of the base system, without added PV, and are

calculated using equation 2.1. The capacity value of the PV plant is approximated

as:

∑
t∈T wt.Vt
V̄

(2.9)

Aguirre et al. [1] approximate the capacity value of wind using LOLP at time

of annual peak demand instead of LOLP for each hour. The definition of ELCC for
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peak load calculation remains the same as for a year round calculation, except that

LOLP used is at time of annual peak demand [1, 11]. Thus, probability distributions

for demand and available wind capacity at time of annual peak load are required

(the distribution for conventional generation is derived from the COPT calculation,

as in the reliability-based ELCC calculation method). To determine the probability

distribution of wind capacity either a histogram of hourly load factors for the entire

peaking season or a histogram of load factors from hours where demand is within a

certain percentage of that year’s peak is used. The former has a disadvantage since

many days may not be close to annual peak demand whereas the latter ensures greater

relevance to peak demand [11].

This is similar to the Time/Season Window (TSW) method, which calculates

capacity credits across predefined hours, months, and/or seasons. It is often referred

to as the ERCOT method, named after the practice to assign capacity value to wind

generators operating in the ERCOT regional reliability council. It is also used by

MAPP [19].The disadvantages of annual peak calculation and TSW method are that

there is no obvious way to capture the effect of different grid penetration levels, loss of

load at other times of the year outside the selected peak time window are disregarded,

and the peak time window may possibly exclude high-risk load hours. Furthermore,

it is difficult to obtain a probability distribution of wind or PV at annual peak, and

also for the peak load [19, 11].

2.2.2 Garver approximation based methods:

Garver proposed a simplified graphical based approach to calculate the ELCC of

an additional generator [7]. This is one of the most widely used methods of capacity
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value calculation. The paper proposes ELCC approximation using the exponential

risk function:

ε ≈
∑
t∈T

B · exp(−Ḡ− Lt

m
) (2.10)

The parameter m is called the system characteristic load and represents the

amount of additional load, in MW, that gives an LOLE that is e times greater than

before, where e is the base of the system of natural logarithms. The values of B and

m are typically estimated by conducting multiple LOLE calculations using equations

2.1 and 2.2 and fitting their values in the data.

The PV plant is added to the system and a fixed load is added to each hour,

giving the new approximated LOLE:

εELCC ≈
∑
t∈T

B · exp(−Ḡ+ Vt − Lt − L̄

m
) (2.11)

Both equations are equated to give the ELCC:

L̄ = m · log(

∑
t∈T exp(

Lt

m
)∑

t∈T exp(
Lt−Vt

m
)
) (2.12)

D’Annunzio and Santoso [4] generalize Garver’s approximation to multi-state gen-

erators. They focus on approximating ELCC of wind, which is multi-state since dif-

ferent weather condition result in different real-time output. Thus, this method can

be useful in approximating ELCC for other renewables with weather-related resource

constraints. It can also be applied to conventional generators, which experience differ-

ent outage states. This method assumes that probabilities with which the generator

being analyzed can be in different possible states is time-invariant. It relies on the

same exponential risk function used by Garver that relates LOLEs to the system’s
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excess generating capacity. They derive the closed form capacity value for multistate

generator:

− 1

m
log[

∑
ω∈Ω

πω · exp(m · (Vω − V̄ ))], (2.13)

to approximate the ELCC of such plants [11, 14, 7, 4].

2.2.3 Z-Method:

Z method focuses on the difference between available generating capacity and load:

St = Gt − Lt, (2.14)

during peak hours.

Dragoon and Dvortsov [5] say that in a large power system, S, would approach a

normal distribution due to the Central Limit Theorem. In these cases, LOLPs can be

directly found using the Z-statistics. They also say that adding any more generators,

the distribution of S remains normal. Thus, they estimate the ELCC of the generator

as the load that must be added in each hour to maintain the same Z-value when the

generator is added to the system. Adding a fixed load, L̄, in each hour and a PV

plant changes the mean and standard deviation of St to µS +µPV −L̄ and
√
σ2
S + σ2

PV ,

respectively. Thus, maintaining the same Z-statistic after the load and PV are added

requires:

−µS

σS
=
L̄+ µS − µPV√

σ2
S + σ2

PV

(2.15)

Solving for L̄ gives:
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L̄ = µPV + Z(
√
σ2
S + σ2

PV − σS) (2.16)

which is simplified to:

L̄ ≈ µPV + Z
σ2
PV

2σS
, (2.17)

by applying a first-order Taylor approximation in σ2
PV to the radical term in

equation 2.16.

The Z-method relies on the assumption that the distribution of St remains normal

when new generators and loads are added [14].

2.3 Other Methods

There are other methods, which were proposed at a PV Capacity Workshop held

during the Solar Power 2007 conference [19]. The methodologies fall into four broad

categories:

1. Methodologies that measure capacity value based on the concept of loss of load

probability: The Effective Load Carrying Capability (ELCC) which has already

been discussed above.

2. Methodologies based on the analysis of load duration curves: Load Duration

Capacity (LDC) and Demand Time Matching (DTIM).

3. Methodologies that build on the synergies that exist between short term stor-

age/load control and PV generation: Solar Load Control Capacity (SLC) and

Minimum Buffer Energy Storage Capacity (MBESC)
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4. Peak-Period Capacity Factor Methodologies.

LDC: LDC is a direct analysis of the load duration curve. The LDC is defined

as the mean PV output for all loads greater than a threshold defined as the utility’s

peak load L, minus the installed PV capacity X as illustrated in Figure 2.1, where p

is the PV penetration fraction, defined as X/L.

Figure 2.1: Illustration of LDC method.

DTIM: DTIM may be explained simply as the reduction in the highest net demand

(i.e. demand minus available renewable capacity) when the PV is added, over a given

evaluation period (Hansen [8] applies this over 10-s dispatch cycle time intervals).

The capacity value is based on the worst-case difference between the load duration
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curves sampled at the dispatch cycle rate over the selected evaluation period. As

illustrated in Figure 2.2, the capacity value may be expressed as DTIM = Z/X,

where Z = (L − L′), with L representing the highest point on the load duration

curve for the evaluation period being considered and the selected sampling rate and

L′ representing the top of the same duration curve minus coincident PV output [6].

Figure 2.2: Illustration of the Demand-Time Interval Matching (DTIM) method.

SLC: The SLC metric is illustrated in Figure 2.3. SLC aims to answer the fol-

lowing question: Given a certain amount of Demand Response (DR) available to

a utility, how much more guaranteed load reduction is possible if PV is deployed?
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Figure 2.3: Illustration of SLC method.

Given a penetration p = X/L, the effective capacity is given by: SLC = (X−Y )/X,

where Y is the amount of load reduction achieved in the absence of PV with the same

cumulative amount of load control needed to guarantee a load reduction equal to X

with PV.

MBESC: The MBESC metric is comparable to the SLC metric, but is determined

by the storage needed to guarantee firm peak reduction the minimum buffer energy

storage, MBES, concept [7, 15] - rather than cumulative DR requirements. As in

the case of SLC, the metric is an answer to a certain question, in this case: Given a

certain amount of dispatchable storage available to a grid or substation operator, If

PV is deployed how much more guaranteed load reduction is possible? Given a PV
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penetration of p = X/L, the method computes the minimum amount of energy stor-

age necessary to guarantee that PV-plus-storage meets all loads above the threshold

defined in the previous sections for the LDC and SLC metrics. The MBESC capac-

ity is obtained from: MBESC = (X − Y ′)/X, where Y ′ is the peak load achieved

using the same amount of storage but without PV. Both SLC and MBESC intend to

calculate how the capacity value should vary with different penetration levels. Also

these methodologies might be regarded as somewhat esoteric quantities which are

associated with storage/demand response as well as the solar.

The LDC, MBESC, SLC and DTIM methods take into account the physical mea-

sure of PV penetration. They give similar approximations of capacity credit in the

case study done by Hoff et al. [19] whereas the TSW metric which does not take

into account the effect of PV penetration provides a considerably different measure

of capacity credit.
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Chapter 3: Case Studies

A summary of several case studies are presented in this section. Most of these

studies are based on methodologies described in Chapter 2.

Madaeni et al. [14] compare the capacity value estimation techniques for photo-

voltaic solar power. They take 14 locations in the WECC footprint for their analysis.

They use 100 MW nameplate capacity PV power plants for their analysis. The EL-

CCs are in the range of 52% to 70% and their ECPs are in the range of 56% to 75%.

The ELCCs are lower because the PV is benchmarked against a generator with a

positive EFOR in the ECP method. In the ELCC method, PV is compared to a

constant load which is similar to a fully reliable generator with a 0% EFOR. Their

analysis uses the same load pattern for all locations so the different capacity values

are solely due to regional variations in the solar resource across the locations. They

also show how generation during peak hours has a direct impact on capacity value

by taking the example of PV in Los Angeles, which has a lower capacity value than

that in Congress, AZ because the PV generation is more coincident with the loads

than the generation in Los Angeles. Here the correlation between local loads and

PV generation is not captured as the analysis takes the WECC-wide footprint for

their loads. They also study the interannual variation in capacity values between the
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years studied. The ECP of PV in Congress, AZ varies from 48% in 1999 to 85% in

2002. This is explained by variable solar availability patterns from year to year. This

is also due to the PV output being less coincident with the load pattern in 1999.

This indicates that several years of data are required for a robust analysis. They

also compare the ELCC and ECP analysis with the approximation based methods.

The paper finds that the capacity factor based method is most accurate. The other

methods also give close approximation of capacity values.

Pelland and Abboud [18] study the photovoltaic capacity values for the city of

Toronto. They calculate capacity factor using Garver approximation for loads within

a given percentage deviation from the peak and they also calculate capacity factor

during summer peak time. They conduct their analysis for the years 2000-2006 and

for a grid penetration level of 2%, 5%, 10% and 20%. They also study the effects of ori-

entation of PV in southerly, southwesterly, and westerly directions. Using the Garver

approximation, they find that the capacity value decreases as the grid penetration

increases. The best capacity value was found for a 2% grid penetration level. In their

second method, for the peak loads, the SW and W orientation give higher mean PV

outputs than the S orientation, which has a higher yearly capacity factor. The mean

PV output over hours within 10% of the peak is found to be approximately 35% for

all orientations. The mean PV values by method 3 for summer period between 11am

5pm are around 43% for all orientations. The approximate capacity values in this pa-

per are within the range of PV capacity values as computed in other analyses [14, 20].
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Perez and Hoff [10] conduct energy and capacity valuation of photovoltaic power

generation in New York for Solar Alliance and The New York Solar Energy Industry

Association. Their results also show that the capacity credit of PV in New York is

high but it decreases with increasing grid penetration. One of the regions (Long Is-

land) has greater resilience of capacity credit at high penetration because it is highly

summer peaking. A similar analysis is carried out for PV capacity values in Min-

nesota [12]. The results are similar to the NY analysis. Perez et al. [21] also conduct

a US-wide utility analysis to calculate PV capacity by ELCC. The PV in the south-

western US exhibits the highest capacity values, followed by PV in the Central US

and mid-Atlantic regions. The lowest ELCCs are found in the North Pacific coast,

the northern fringes of the Great Lakes and New England, and to a lesser extent,

Florida. The Perez et al. study provides considerably more insight on the effects of

PV penetration. With fixed optimized PV arrays, the national average for ELCC at

low penetration is nearly 55%, reaching 65%+ in the best cases. ELCC erodes down

to ∼ 35% nationwide at 20% penetration reaching 45% in the best cases.

Hoff et al. [9] conduct ELCC calculations for PV generation in Austin, Texas.

They study the effects of different types of PV systems (1-axis tracking and fixed

axis) with different orientations and angles. Their ELCCs are in the range of 30% -

65% and the best result is for a single-axis system with a 30 degree tilt. Similar kind

of sensitivity analysis is done by Madaeni et al. [14], who find that capacity values

with single-axis and double-axis tracking are higher than fixed-axis PV.
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Perez et al. [19] carry out case studies to examine the effectiveness of the other

methods described in Section II. Three utilities are examined - Nevada Power (NP),

Rochester Gas & Electric (RG&E) and Portland General (PG) for the case studies and

one year of load and PV generation data are analyzed for each. All the methodologies

are applied to the data and the results from each methodology are compared. It is

found that for all the methodologies that are based on a physical measure of PV

penetration (ELCC, LDMC, MBESC, SLC and DTIM), all measures of capacity

value are comparable (when comparing capacity value metrics as a function of PV

penetration). However methodologies that are based on defining a peak demand time

frame lead to different results [6].
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Chapter 4: Data and Model

In this study, we estimate the capacity value of PVat 10 sites spread across the

United States. These sites are chosen to represent a mix of locations that have

summer peaking loads, winter peaking loads, good/bad solar resource, and availability

of both measured and modeled solar data. The capacity value is estimated for hourly

as well as subhourly PV and wind for years from 1998 to 2013 contingent upon

availability of conventional generator, load, and solar data at these locations. Our

analysis considers small 100 MW PV plants at each location. Our capacity value

estimates are for marginal PV installations and do not account for the diminishing

marginal capacity value that occurs with higher PV penetration. The capacity value

at these locations are computed in isolation, thus avoiding spatial correlation of solar

availability between locations that may occur otherwise.

4.1 Photovoltaic Data and Model

There are 2 types of solar data sources chosen in our study one in which solar

data are actually measured on the ground physically and the other in which the solar

data are modeled using satellite data. Measured solar data sources are the ‘surfrad’

and ‘midc’ whereas ‘nsrdb’ is the modeled data source.
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Table 4.1: Location information
Location Coordinates Years
Nevada Energy, Nevada (NE)

1 36.09N -115.07W 2006
2 36.09N -115.15W 2006
3 36.61N -116.03W 1992-2002, 2004-2013

Public Service Company Colorado, Colorado (PSCC)
4 39.74N -105.18W 2005-2006
5 40.13N -105.23W 1999-2002, 2004-2013

NorthWestern Energy, Montana and South Dakota (NWE)
6 48.33N -105.11W 1998-1999, 2002-2005, 2007-2013
7 43.73N -96.63W 1998-1999, 2002-2003

Southern Mississippi Electric Power Association, Mississippi (SMEA)
8 34.25N -89.87W 1998-2013

Southern Illinois Power Cooperative, Illinois (SIPC)
9 40.05N -88.39W 1998-2007

West Penn Power, Pennsylvania (WPP)
10 40.73N -77.95W 1999, 2002-2003, 2007-2013

PV generation is modeled using PVWatts version 5 of the National Renewable

Energy Laboratory’ Solar Advisory Model (SAM) Software Development Kit (SDK).

This model takes weather data, including solar irradiation, temperature, and wind

speed as inputs and simulates hourly net AC electrical output of a PV plant. It

accounts for losses and other parasitic loads. Our analysis assumes fixed-axis PV

panels oriented southward with an azimuth angle of 180 and a tilt angle equal to the

site’s latitude.

4.2 Conventional Generators

Each generator’s rated capacity is obtained from Form 860 data filed with the

United States Department of Energy’s Energy Information Administration (EIA).

We estimate EFORs of the existing generators using the North American Electricity
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Reliability Corporation’s Generator Availability Data System (GADS). The GADS

specifies historical annual average generator EFORs based on capacity and technology.

We combine this with EIA Form 860 data, which specify generator prime mover

and generating fuel, to estimate EFORs, average generating capacity and number of

generating units. We do this for each utility, based on the PV site location.

Generator outages are modeled using the EFORs. LOLPs are estimated by com-

puting the system’s capacity outage probability table (COPT). In this table, all com-

binations of available and unavailable generating units are presented in tabular form

with the calculated system availability.

4.3 Load Data

Hourly historical load data for each year are obtained from Form 714 filings with

the Federal Energy Regulatory Commission (FERC). The FERC data include reports

for nearly all of the load-serving entities and utilities. We consider the loads of only

a subset of these utilities which operate in the region of our PV sites. Each hourly

load is repeated 60 times to get the load data in subhourly format. Since the system

loads and conventional generation capacity vary over the study period, we adjust the

hourly load profiles in each year individually so that the LOLPs of the base system

in each year sum to 144. This corresponds to the standard planning target of one

outage-day every ten years. This load adjustment is done by scaling all of the hourly

loads by a fixed percentage ranging between 0.01% and 5% in the different years.
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Table 4.2: Utility load data (GW)

Utility Average Summer Peak Winter Peak

NE 1.9-3 4-6.3 2.2-4
PSCC 2.8-4.8 4.5-8.2 4.0-6.8
NWE 0.3-1.1 0.4-1.5 0.4-1.5
SMEA 0.2-1.7 0.2-2.7 0.4-2.9
SIPC 1.8-5.5 3.2-9.4 2.5-7.2
WPP 4.5-8.1 6.4-13.8 6.8-10.9

4.4 Example: Compute ELCC of 35 MW Solar PV plant

Suppose there are two conventional generators in the model - 2 units of 20 MW

capacity with an EFOR of 0.1 and 1 unit of 30 MW capacity with EFOR of 0.2 as

given in table 4.3.

Table 4.3: Example: conventional generators available
Capacity (MW) 20 30

Units 2 1
EFOR 0.1 0.2

The COPT for these generators is explained by table 4.4
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Table 4.4: Example: Capacity Outage Probability Table (COPT)
Capacity Out Capacity In Prob of Cap In Cumulative Prob

70 0 0.12 ∗ 0.2 = 0.002 0.002
50 20 2 ∗ 0.9 ∗ 0.1 ∗ 0.2 = 0.036 0.038
40 30 0.8 ∗ 0.12 = 0.008 0.046
30 40 0.2 ∗ 0.92 = 0.162 0.208
20 50 2 ∗ 0.9 ∗ 0.8 ∗ 0.1 = 0.144 0.352
0 70 0.8 ∗ 0.92 = 0.648 1

After we get the COPT table, base case LOLE is computed using equation 2.1

and 2.2 as shown in table 4.5.
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Table 4.5: Example: LOLE computed for the base case
Lt LOLP
16 0.002
24 0.038
30 0.038
41 0.208
56 0.352
68 0.352
76 1
67 0.352
40 0.046
32 0.046
26 0.038
5 0.002

LOLE (ε)= 2.474

Once we get the base case LOLE, the ELCC of 35 MW solar PV plant is computed

by changing L̄ iteratively such that εELCC is equal to ε as given in equation 2.4. This

is computed in table 4.6.
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Table 4.6: Example: ELCC computed for 35 MW solar PV plant
Lt PVt Lt − PVt + L̄(16) LOLP
16 0 32 0.046
24 0 40 0.046
30 5 41 0.208
41 15 42 0.208
56 25 47 0.208
68 30 54 0.352
76 35 57 0.352
67 22 61 0.352
40 12 44 0.208
32 2 46 0.208
26 0 42 0.208
5 0 21 0.038

LOLE (εELCC)= 2.434
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Chapter 5: Results: Case Study across North America -

Solar PV

We use the ELCC metric described in Chapter 2 to compute the capacity value

of solar PV plants in our study for 10 locations as given in table 4.1. The first two

locations in Nevada have only mean absolute difference because ELCC is estimated

only for one year.

The ELCCs estimated using hourly solar data are compared with the ELCCs

estimated using subhourly solar data in table 5.1. The ELCCs in this table are

averaged over the years for that particular location. We see that there is an absolute

difference as high as 8.2% between the ELCCs computed using hourly and subhourly

data for PV plant located in Nevada. This difference is only for one year and as we

have higher number of years in our analysis, the average smooths out. The maximum

difference in ELCC goes upto 16% for PV plant situated in Montana in the year

2005, which shows that using hourly solar data can introduce significant errors in

estimating ELCCs for a particular year.

We compare the ELCCs computed using the original load data with ELCCs com-

puted using load data shifted one hour ahead and one hour behind. This is to see if

ELCCs are sensitive to the sloppiness in the reported load data. This is summarized

in table 5.2. Positive difference means ELCC estimated using shifted load is higher
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Table 5.1: Average Hourly and Subhourly ELCCs and Absolute Value of Differences
in ELCCs Estimated Using Hourly and Subhourly Solar Data

Mean Difference Maximum Difference

Location Hourly
ELCC

Subhourly
ELCC

MW % MW %

1 31.10 30.40 0.70 2.30
2 28.40 26.25 2.15 8.20
3 24.46 24.21 0.26 1.25 1.65 9.27
4 24.30 23.10 1.2 5.04 1.60 5.97
5 24.48 24.19 0.33 1.33 1.00 2.42
6 16.49 16.60 0.43 2.23 3.56 15.51
7 12.67 12.35 0.32 3.94 0.47 9.87
8 25.66 25.53 0.17 0.64 0.45 1.51
9 27.21 26.98 0.30 1.13 1.40 4.98
10 21.16 20.94 0.22 1.07 0.46 2.89

compared to ELCC estimated using the original load. For all the locations, shifting

the load one hour back gives an average increase in the ELCC estimates, whereas

shifting the load one hour forward gives a decrease in the ELCC estimates. The error

in ELCC estimates is more than 30% in certain cases which shows that ELCCs are

highly sensitive to the interpretation of load data.

We also compare the ELCCs estimated using measured and modeled solar radi-

ation data. The table 5.3 shows that modeled solar data can introduce significant

errors in ELCC estimates. A positive difference means that ELCC estimated using

modeled data is higher than the ELCC estimated using measured data. The first two

locations only have the average difference because the ELCC were estimated for a

single year. From the results, we see that the maximum error in certain cases such as

PV located in Mississippi and Pennsylvania can go up to 104% and 71% respectively,
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Table 5.2: Average Differences in ELCCs Estimated Using Load Shifted One Hour
Backward and Forward One Hour and Original Load Data

Shifted Backward Shifted Forward

Location Difference Abs Value Difference Abs Value

1 31.32 31.32 -31.38 31.38
2 29.64 29.64 -30.38 30.38
3 41.61 41.61 -37.17 37.17
4 36.85 36.85 -34.66 34.66
5 34.59 34.59 -31.59 31.59
6 3.10 6.76 -4.16 7.23
7 30.12 30.12 -29.25 29.25
8 16.19 20.81 -17.58 21.75
9 17.93 17.93 -19.85 19.85
10 4.68 5.35 -5.01 9.77

which shows that ELCC estimates using modeled solar radiation data may not give

accurate results. We have excluded years which have missing data for measured solar

radiation. Missing data may be due to possible instrument or data recording failures.

Table 5.3: Average, Maximum and Minimum Difference in ELCC Estimates using
Measured and Modeled Solar Radiation Data.

Location Average Minimum Maximum

1 -1.13
2 10.42
3 -20.92 11.78 -42.18
4 3.18 4.95 1.41
5 -0.63 21.09 -24.02
6 -5.97 41.20 -27.27
7 24.43 48.02 6.10
8 13.04 104.17 -10.40
9 8.24 33.91 -0.62
10 20.49 71.01 7.85
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Depending on location, the ELCC of PV can range between 5 MW and 42 MW

which corresponds to 6% and 50% of the 83 MW ac nameplate capacity of the PV

plants studied. The ELCC values are lower compared to the study by Madaeni et

al. [14]. This may be due to the fact that Madaeni et al. consider load for the

entire WECC footprint whereas here, load is considered in smaller regions. Thus,

the difference in ELCC between the locations is primarily due to differences in the

coincidence between PV generation and system loads. It is known from past studies

that capacity value largely depend on the amount of PV generation during the peak

load time of the day, and PV generation during high load days of the year [14, 19, 22].

Some of the results for the following cases are explained using visuals for PV

generation and load profiles for time of the day and highest load days of the year:

1. Comparison of ELCCs computed using the measured hourly and subhourly

data.

2. Comparison of ELCCs computed after shifting loads 1 hour ahead and back.

3. Comparison of ELCCs computed using measured solar and modeled solar data.
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5.1 Comparison of ELCCs computed using hourly and sub-
hourly solar data

In power system planning, the norm has been to estimate capacity value using

hourly data. Solar and other renewables which have uncertain real-time output due

to weather conditions can be sensitive to minute based changes in weather. In this

section, by comparing ELCC estimates using hourly and subhourly solar data, we

want to see if the ELCC estimates using hourly solar data is as accurate as the ELCC

estimates using subhourly data.

The result for the difference in capacity value estimates using hourly and subhourly

solar radiation data are summarized in table 5.1.

Our results show that for some locations, ELCC computed using hourly data

overestimates ELCC computed using subhourly data. For example, PV located in

Nevada (36.09, -115.15), in the year 2006 has loads peaking late in the day when

hourly PV generation is higher compared to subhourly PV generation. This can be

seen in Fig 5.1. The highest load day, which is on 18th July, has a higher hourly

PV generation during the peak load times of the day compared to subhourly PV

generation (5.2) explaining the overestimation of ELCC computed using hourly data

compared to ELCC computed using subhourly data.

In some cases, such as a PV plant located in Montana (location 6), in the year 2005,

ELCC calculated using hourly solar radiation underestimates the ELCC compared

to ELCC using subhourly solar radiation. From Fig 5.3, we can see that subhourly

solar radiation data gives a higher average PV output. Also, The highest load day

for MPC, which is the utility in that region, is on 13th July. The PV output and

load graph (Fig 5.4) on that day shows that subhoury PV has a higher average PV
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output compared to the hourly PV output. This explains the underestimation of

ELCC computed using hourly data compared to ELCC computed using subhourly

data.

There are other cases, such as a PV plant located in Nevada (36.61, -116.03) which

give negligible or zero difference between the ELCCs computed using hourly data and

ELCCs computed using subhourly data for the year 2007. As seen from Fig 5.5 and

Fig 5.6, the hourly PV output and subhourly PV output overlap. This explains the

zero difference between ELCC estimated using hourly and subhourly data.

Figure 5.1: Nevada(2006) - Average load, average hourly PV output and average
minute based PV output for hours of the day for all the days of the year.
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Figure 5.2: Nevada(2006) - Load, hourly PV output and subhourly PV output on the
highest load day.

36



Figure 5.3: Montana(2005) - Average load, average hourly PV output and average
minute based PV output for hours of the day for all the days of the year.
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Figure 5.4: Montana(2005) - Load, hourly PV output and subhourly PV output on
the highest load day.
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Figure 5.5: Nevada(2007) - Average load, average hourly PV output and average
minute based PV output for hours of the day for all the days of the year.
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Figure 5.6: Nevada(2007) - Load, hourly PV output and subhourly PV output on the
highest load day.
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5.2 Comparison of ELCC computed using original load data
and ELCC computed after load data is shifted one hour
ahead and behind

The load data is reported in hourly intervals. The question is whether this load is

instantaneous at that hour or is it the average of the previous hour or is it the average

of the next hour? The other major question is whether the data reported takes into

account day light saving times. We want to know how sensitive ELCC estimation is

to sloppiness of the reported load data. We can see this by computing ELCCs after

shifting the load data one hour ahead an one hour behind and compare it with the

ELCC computed using original reported load data. The results are summarized in

Table 5.2. A few worst case scenarios are explained in this section.

With the summer peaking loads, for example consider a PV plant location in

Nevada (36.61, -116.03). The peak load occurs on 24th August. Also, the loads peak

late in the day when it is hot and sunny. During this time, the PV output is high

as well. When the load is shifted one hour behind, there is more PV output giving

a higher ELCC compared to ELCC computed without shifting the load. When the

load is shifted one hour ahead, the load peak occurs later in the day when the PV

output is lower as seen from Fig 5.7 and 5.8, thus giving lower ELCC compared to

ELCC computed without shifting the load.

For cases where peak loads occur early in the day, ELCC of PV plant is underes-

timated when computed using load shifted one hour behind and overestimated when

computed using load shifted one hour ahead. We take the case of ELCC of PV plant

located in Mississippi (34.25, -89.87) for the year 2003. When the load is shifted an

hour ahead, there is higher PV output during the peak load compared to when the
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load is shifted an hour behind (Fig 5.9). This observation is reiterated in the peak

load day for the same utility in 2003 (Fig 5.10).

It is interesting to note that load curve is not specific to location but it varies from

year to year as well. Like in the case of Mississippi and Montana, the load curves

vary from year to year which makes it a summer peaking system during some years

whereas a winter peaking system during the others. Thus, we have ELCCs which are

either overestimated or underestimated by shifting the loads one hour ahead or one

hour behind.

There are also certain cases where there is negligible difference in the ELCC

computed using load shifted one hour ahead or one hour behind. This may occur

when the load is almost constant throughout the day, especially when there is PV

generation. This happens for a case in Pennsylvania (40.73, -77.95). As we see from

Fig 5.11, the load lines are overlapping each other at the time of PV generation.

Considering the highest load day, which occurs on 16th Jan, we can see that there is

negligible change in the load plots after shifting the loads (Fig 5.12). This explains

the negligible difference in ELCC computed using the shifted load data and ELCC

computed using the actual load data.
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Figure 5.7: Nevada(2011) - Average load, average load shifted 1 hour back, average
load shifted 1 hour ahead and average hourly PV output for hours of the day for all
the days of the year.
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Figure 5.8: Nevada(2011) - Load, load shifted 1 hour back, load shifted 1 hour ahead
and hourly PV output on the highest load day.
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Figure 5.9: Mississippi(2003) - Average load, average load shifted 1 hour back, average
load shifted 1 hour ahead and average hourly PV output for hours of the day for all
the days of the year.
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Figure 5.10: Mississippi(2003) - Load, load shifted 1 hour back, load shifted 1 hour
ahead and hourly PV output on the highest load day.
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Figure 5.11: Pennsylvania(2009) - Average load, average load shifted 1 hour back,
average load shifted 1 hour ahead and average hourly PV output for hours of the day
for all the days of the year.
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Figure 5.12: Pennsylvania(2009) - Load, load shifted 1 hour back, load shifted 1 hour
ahead and hourly PV output on the highest load day.
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5.3 Comparison of ELCC computed using measured (surfrad)
data and ELCC computed using modeled (nsrdb) data

The access to satellite data, which is the modeled data is for locations on a 4km2

grid across North America. It is difficult and expensive to get real-time measured

data for these many locations. Thus, we want to see if the modeled data does justice

to the ELCC estimation. To do so, we compare the ELCCs estimated using actual

measured (surfrad) solar data and ELCCs estimated using modeled (nsrdb) solar data

and explain the findings in this section. Table 5.3 summarizes the results.

From the result, we can see that cases such as a PV plant located in Nevada (36.61,

-116.03) in the year 2012, overestimates ELCC when computed using measured data.

It is seen from Fig 5.13 that the measured data has higher average output than the

modeled data when the load peaks. The measured data has higher PV output on

the highest load day which explains the overestimation of ELCC computed using

measured data This is clearly shown in Fig 5.14.

Cases, such as a PV plant located in Mississippi (34.25, -89.87) for the year 2013

underestimate ELCC computed using measured data. Modeled data has a higher PV

output than the measured data during the high load times of the day as seen in Fig

5.15. Looking at the highest load day of the year (Fig 5.16), we can see that measured

data has a higher PV output but this output is during the time of the day when the

load is lower. Modeled data has a higher output during the higher load times of the

day. This can explain the underestimation of ELCC computed using measured data

compared to ELCC computed using modeled data.

We get a few cases where the ELCC computed using measured and modeled data

show no difference. One such example is for PV located in Colorado (40.13, -105.23)
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for the year 2009. From Fig 5.17, we can see that though the average PV output for

measured solar data is higher than the average PV output for modeled solar data, the

peak PV output for measured solar data is during the time when load is low. The PV

output during the highest load day for measured data and modeled data is almost

coincident in Fig 5.18. This can explain the same ELCC estimation computed using

both these data sets.

Figure 5.13: Nevada(2012) - Average load, average PV output from measured and
modeled radiation data for hours of the day for all the days of the year.
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Figure 5.14: Nevada(2012) - Load and PV output on the highest load day.
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Figure 5.15: Mississippi(2013) - Average load, average PV output from measured and
modeled radiation data for hours of the day for all the days of the year.
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Figure 5.16: Mississippi(2013) - Load and PV output on the highest load day.
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Figure 5.17: Colorado(2009) - Average load, average PV output from measured and
modeled radiation data for hours of the day for all the days of the year.
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Figure 5.18: Colorado(2009) - Load and PV output on the highest load day.
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Chapter 6: Conclusion and Future Work

The first part of this thesis reviews the current methodologies used for evaluating

the capacity value of a solar power plant, and summarizes previous studies which use

these capacity value techniques.

For our research, we study the effect of potential data issues on ELCC estimation.

We find that hourly solar radiation data may not be as accurate as subhourly solar

radiation data in estimating capacity value of a solar PV plant when we consider

a single year under our study. Though, this error does smooth out when we use

multiple years of data for our analysis. Errors in ELCC estimates derived from errors

in recording or interpreting load data does not show a similar trend as in the case of

ELCC estimates using hourly solar data. These errors do not smooth out by using

multiple years of data. We also find that modeled solar radiation data introduce

significant errors in capacity value estimates. We find that there are certain cases

where data is missing for measured solar radiation data. This is another issue which

has a drastic effect on the ELCC estimates. We have excluded these years from our

analysis. Thus, our analysis shows that capacity value estimates for PV plants are

highly sensitive to data issues.

For further study, it is possible to study the effect of such data issues on wind

plants.
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