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Abstract

In this thesis we will show that perfect numbers can be used as a medium for

conveying fundamental ideas from school mathematics. Guided by the Common Core

Standards, we present activities designed for students from pre-kindergarten through

high school. Additionally, we show how perfect numbers can be used in college level

courses. These activities aim for students to gain a deeper understanding of the

different mathematical concepts that are related to perfect numbers. This will bring

students closer to unsolved problems in mathematics.
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Chapter 1: Introduction

A natural number is called perfect if it equals the sum of its positive proper

divisors. Euclid was the first person who discussed perfect numbers in his book The

Elements. In his book, he proved the following: If n is perfect, then n = 2p−1(2p− 1)

where (2p − 1) is a prime and p ∈ N.

This thesis is designed for advanced high school teachers. The purpose of this

thesis is to show how perfect numbers can be used as a medium for conveying funda-

mental ideas that arise in school mathematics. We do this by designing activities for

different school levels: Pre-Kindergarten through Third grade, Fourth through Ninth

grade, Seventh grade through High School, and College.

Our activities cover the ideas of finding divisors, adding divisors, finding prime

factorization, and other skills. We work with both natural numbers and polynomials

depending on the level of students and the corresponding common core standards

[11]. We have four chapters of activities in this thesis. These activities are based on

common core standards relevant to the appropriate grade level.

• Chapter three of this thesis is for students from pre-kindergarten to third grade.

Activities in this chapter make students work with objects to practice counting.

We also introduce students to different categories of numbers depending on the

different ways students can organize the objects in different shapes.
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• Chapter four is for students from fourth to ninth grade. The activities in this

chapter cover the idea of using multiplication and division in order to find

divisors. Students also practice addition.

• Chapter five is for students from seventh grade to high school. Students work

with the sum of the divisors function and are introduced to theorems and proofs.

• Chapter six is designed for college students. The activities walk students

through the proof of Euclid formula and covers the idea of perfect polynomials.

In this thesis, we also discuss perfect polynomials in Z2[x], as introduced by

Canady in his Ph.D thesis The Sum of The Divisors of a Polynomial [3]. A per-

fect polynomial in Z2[x] is one that is the sum of its divisors.

Example 1.0.1. The polynomial x2 + x is a perfect in Z2[x].

Answer. The factors of x2 + x are

1, x, x+ 1, x2 + x.

Summing these in Z2[x] we find

1 + x+ x+ 1 + x2 + x ≡ x2 + x (mod 2)

In this thesis, we use perfect numbers to motivate ways for students to gain a

deeper understanding for school mathematics. We also show the connection between

perfect numbers and perfect polynomials in Z2[x] and the parallels between the differ-

ent theorems and proofs, to show how higher level mathematical topic can be taught

by analogies.
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Chapter 2: Perfect Numbers and Perfect Polynomials over

Z2[x]

2.1 Perfect Numbers

The set of natural numbers

N = {1, 2, 3, 4, 5, . . . }

is the set of positive whole numbers. Natural numbers can be partitioned into three

categories: perfect, deficient, or abundant. These three categories and other definitions

are described below.

Definition. We call d ∈ N a divisor of the number c ∈ N if there exist a number

b ∈ N such that c = b× d. In this case, both d and b are divisors of c.

Example 2.1.1. {1, 2, 3, 4, 6, 12} are the divisors of 12.

Definition. A proper divisor of n ∈ N is any divisor of n, other than n itself.

Example 2.1.2. {1, 2, 3, 4, 6} are the proper divisors of 12.

Definition. A natural number is called composite if it has at least one positive

divisor other than 1 and the number itself.

Example 2.1.3. {8, 15, 30, 46, 63, . . . } are some examples of composite numbers.

3



Definition. A natural number is called prime if it only has two positive divisors; 1

and the number itself. It has exactly one proper divisor, and every non-prime number

has at least two proper divisors.

Example 2.1.4. {2, 3, 5, 7, 11, . . . } are the first five positive prime numbers.

Definition. The number 1 is neither a prime nor a composite. It is called a unit.

Definition. A natural number is called deficient, if the sum of its proper divisors

is less than the number.

Example 2.1.5. {4, 8, 9, 15, . . . } are some examples of deficient numbers. Indeed,

the proper divisors of 4 are 1 and 2 and 1 + 2 < 4.

Definition. A natural number is called abundant, if the sum of its proper divisors

is greater than the number.

Example 2.1.6. {12, 18, 20, 24, . . . } are some examples of abundant numbers.

Indeed, the proper divisors of 12 are {1, 2, 3, 4, 6} and 1 + 2 + 3 + 4 + 6 = 16 > 12.

Definition. A natural number is called perfect, if the number equals the sum of its

proper divisors. All even perfect numbers have the form 2n−1(2n − 1) where n ∈ N

and n ≥ 2. In fact, by 2016 there were only 49 known perfect numbers. The last

known perfect number was discovered by (Cooper, Woltman, Kurowski, Blosser, et

al.) and has 44, 677, 235 digits [19].

Example 2.1.7. {6, 28, 496, 8128, 33550336, 8589869056, 137438691328,

2305843008139952128, 265845599156...615953842176, . . . } are some examples of per-

fect numbers.
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Indeed, the proper divisors of 6 are 1, 2, 3 and 1 + 2 + 3 = 6.

Lemma 2.1.1 (Bezout’s Identity). If a, b ∈ Z such that a, b are not both zero, and

gcd (a, b) = d. Then there exist x, y ∈ Z such that ax+ by = d.

Proof. Let a, b ∈ Z such that a, b are not both zero. Let

M = {n ∈ Z, n > 0 : n = ax+ by : x, y ∈ Z} where M 6= ∅

M has a least element let it d. Then

d = au+ bv for some u, v ∈ Z

By the division theorem. Let n ∈M

n = qd+ r where 0 < r < d.

Suppose that d 6 |n. But there exist x, y ∈ Z such that n = ax+ by and we have

r = n− qd

= ax+ by − q(au+ bv)

= ax− qau+ by − qbv

= a(x− qu) + b(y − qv)

This means that r ∈ M and r < d contradicting the fact that d is the least element

in M .
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Therefore ∀n ∈ M : d|n, this means that d|a and d|b. So 1 ≤ d ≤ gcd (a, b). But

gcd (a, b)|a and gcd (a, b)|b. Therefore

gcd (a, b)|au+ bv = d

gcd (a, b) ≤ d

gcd (a, b) = d

gcd (a, b) = d = au+ bv

Lemma 2.1.2 (Euclid’s Lemma).

If p is a prime number and p|ab where a, b, p ∈ N, then p|a or p|b (or both).

Proof. Suppose that p 6 |a, then gcd (a, p) = 1 by (Bezout’s Identity 2.1.1,) there are

r and s so that

pr + as = 1.

Multiply both sides by b

pbr + abs = b.

The term pbr is divisible by p, and the term abs is divisible by ab which by hypothesis

is divisible by p. Therefore their sum, b, is also divisible by p.

Theorem 2.1.1. (Unique Factorization in the natural numbers.)([9]) Every

natural number larger than 1 can be factored into a product of prime numbers that is

unique upto the order of the prime factors.

Proof. Seeking a contradiction, suppose there is a number greater than 1 that cannot

be factored into primes. Let
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B = { all natural numbers that cannot be factored into primes.}

Note B ⊆ N and by assumption B 6= ∅.

Hence by the Well-Ordering Principle B has a least element, call it b.

First, note b is not prime, else it cannot be in B.

Then, note b must be composite, as it is larger than 1 and it is not prime.

∴ b = x · y where x, y ∈ N and x, y /∈ B

thereforex = p1 · p2 · . . . pn

y = q1 · q2 · . . . qm

x · y = p1 · p2 . . . pn · q1 · q2 . . . qm = b

This is a prime factorization of b. Contradiction.

We now show that the prime factorization is unique. Let

T = {a > 1 : a has at least two different prime factorization}.

If T 6= ∅, let a0 be the smallest element of T . Take two distinct prime factorization

a0 = p1 . . . pn = p′1 . . . p
′
r

where all pi and p′j are positive primes. Since p1 . . . pn|a0 and a0 = p′1 . . . p
′
r, then

p1 . . . pn|p′1 . . . p′r =⇒ pi = p′j for some i, j

p1|p′1 . . . p′r =⇒ p1 = p′j for some j (Lemma 2.1.2)

If we reorder or re-number the p′i we can assume p1 = p′1. Cancel them =⇒

p2 . . . pn = p′2 . . . p
′
r = a0

p1
= b0. But 1 < b0 < a0 =⇒ b0 /∈ T it has a prime

factorization that is unique.

p2 . . . pn = p′2 . . . p
′
r =

a0
p1

= b0

7



=⇒ r = n and the p2 . . . pn = p′2 . . . p
′
r =

a0
p1

up to ordering.

=⇒ The factorization of a0 were the same. Contradiction.

Definition. A geometric series is a series with a constant ratio between successive

terms.

Lemma 2.1.3.

1 + r + r2 + r3 + r4 + r5 + · · ·+ rn =
rn+1 − 1

r − 1

Proof. Note that this is a geometric series. The ratio between successive terms is r.

Proof by induction. First if n = 0, then

r0 =
r − 1

r − 1
= 1

Assuming that
k∑

i=1

ri =
rk+1 − 1

r − 1

we need to show
k+1∑
i=1

ri =
rk+2 − 1

r − 1
.

Adding rk+1 and multiplying we obtain:

k∑
i=1

ri + rk+1 =
rk+1 − 1

r − 1
+ rk+1

k+1∑
i=1

ri =
rk+1 − 1 + rk+1(r − 1)

r − 1

=
rk+1 − 1 + rk+2 − rk+1

r − 1

=
rk+2 − 1

r − 1

8



Therefor, for all n ∈ N ,
n∑

i=1

ri =
rn+1 − 1

r − 1
.

Euclid was the first person to write about perfect numbers. In his book The

Elements around 300BCE he stated [5]:

If as many numbers as we please beginning from a unit be set out contin-
uously in double proportion, until the sum of all becomes a prime, and if
the sum multiplied into the last make some number, the product will be
perfect[5].

Let’s see if we can understand what Euclid was telling us.

set out . . . in double proportion Starting with 1, create a sequence by doubling

the number each time.

20 = 1, 21, 22, 23, . . .

until the sum of all becomes a prime Consider the sum of the sequence above,

and keep adding terms until the sum becomes a prime number.

20 + 21 + 22 + 23 + · · · = a prime

Building off of Euclid’s Thm, our next question is: When is

n−1∑
k=0

2k prime?

We need the following lemma:

Lemma 2.1.4. If (2n − 1) is prime for some integer n ≥ 2 , then n is prime.

9



Proof. Let’s prove the contrapositive. We want to show that if n ≥ 2 is not prime,

then 2n − 1 also not prime. Suppose n ≥ 2 is not a prime, then there exist r, s ∈ N

with r, s > 1 such that n = rs. Write

2n − 1 = 2rs − 1

= (2s − 1)(2s(r−1) + 2s(r−2) + · · ·+ 2s·2 + 2s·1 + 1)

so we see that (2s − 1) divides 2n − 1. Since s > 1, then (2s − 1) > 1. Also since

r > 1, then

(2s − 1) < (2r·s − 1) = (2n − 1).

This means that (2s−1) is a proper divisor for (2n−1), and thus (2n−1) is composite.

The converse of the Lemma is not true. For example, n = 11 is a prime , but

211 − 1 = 2, 047 = 23 · 89 is not a prime.

and if sum multiplied into the last make some number multiply the prime

number (the result of adding double proportions) by the largest term in the sum.

This product will be perfect.

Example 2.1.8. Lets add double proportions to get a prime.

20 + 21 + 22 = 1 + 2 + 4 = 7.

Now we multiply the largest term in the sum, 4, by the prime to find 28. Since

28 = 1 + 2 + 4 + 7 + 14.

28 is a perfect number.

10



Now we will write Euclid’s statement in modern notation and give a proof.

Theorem 2.1.2. ([8]) If 2p − 1 is a prime number, then 2p−1(2p − 1) is a perfect

number.

Proof. Let q = 2p − 1 be a prime. We need to check that 2p−1q is a perfect number.

The proper divisors of 2p−1q are:

1, 2, 4, 8, . . . , 2p−1, and, q, 2q, 4q, 8q, . . . , 2p−2q.

Now lets add up the proper divisors of 2p−1q

p−1∑
n=0

2n +

p−2∑
n=0

2nq = (2p − 1) + q(2p−1 − 1) (Lemma 2.1.3)

= (2p − 1) + q(2p−1 − 1)

= q + q(2p−1 − 1)

= q(2p−1)

= 2p−1(2p − 1)

This means that if (2p − 1) a prime , then 2p−1(2p − 1) is perfect.

2.1.1 The Sigma Function

Definition. The sum of the positive divisors function is denoted by:

σ(n) = sum of all positive divisors of n (including 1 and n).

σ(n) =
∑
d|n

d

Then clearly we have,

11



if n is perfect, then σ(n) = 2n.

Theorem 2.1.3. If p is a prime and k is a natural number with k ≥ 1, then

σ(p) = p+ 1.

σ(pk) =
pk+1 − 1

p− 1
.

Proof. if p is a prime then p has only two divisors which are 1 , p, this means that

σ(p) = 1 + p.

Now the divisors of a prime power pk are:

d = 1, p, p2, p3, . . . , pk−1, pk

σ(pk) =
∑
d|pk

d

= 1 + p+ p2 + p3 + ...+ pk−1 + pk =
pk+1 − 1

p− 1
(Lemma 2.1.3)

Theorem 2.1.4. If gcd(m,n) = 1, then

σ(m · n) = σ(m) · σ(n)

Proof. If gcd (m,n) = 1

σ(nm) =
∑
d|mn

d

Since gcd (m,n) = 1 then d can be written d = r · s where r|m and s|n∑
d|mn

d =
∑
rs|mn

(rs)

=
∑

r|m,s|n

(rs)

=
∑
r|m

r ·
∑
s|n

s (gcd (r, s) = 1)

= σ(m) · σ(n)

12



The following theorem shows that all the even perfect numbers have the form of

(Theorem 2.1.3).

Theorem 2.1.5. ([8]) If n is an even perfect number, then

n = 2p−1(2p − 1)

where 2p − 1 is a prime.

Proof. Let n = 2km an even perfect number, where k ≥ 1 and m is odd. Now

compute

σ(n) = σ(2km)

= σ(2k)σ(m), gcd(2k,m) = 1

= (2k+1 − 1)σ(m), (Theorem 2.1.3)

But since n is also perfect then σ(n) = 2n = 2k+1m. Now we have two different

expressions for σ(n) that are equal

2k+1m = (2k+1 − 1)σ(m)

The number 2k+1 − 1 is odd. This means that 2k+1 divides σ(m) , thus

σ(m) = 2k+1a

for some number a. But

2k+1m = (2k+1 − 1)σ(m) = (2k+1 − 1)2k+1a

Canceling 2k+1 we will get m = (2k+1 − 1)a. Now we have

m = (2k+1 − 1)a and σ(m) = 2k+1a

13



We need to show that a = 1 by contradiction. Assume that a > 1 , then m =

(2k+1 − 1)a . This means that m have for sure the distinct factors 1, a, m. Where

a and m are different sine n was even and k ≥ 1. Also m can be divisible by many

other this means that

σ(m) ≥ 1 + a+m =

= 1 + a+ (2k+1)a

= 1 + 2k+1a

However, σ(m) = 2k+1a, so

2k+1c ≥ 1 + 2k+1a

Contradiction, since 0 ≤ 1 which shows that c = 1. Now we have

m = (2k+1 − 1)

and

σ(m) = m+ 1

But from (Thmeorem 2.1.3) ( if p is a prime, then σ(p) = p + 1). This means that

m = (2k+1 − 1) is a prime number.

n = 2km = 2k(2k+1 − 1)

Where (2k+1 − 1) is a prime. And n is perfect . By (Lemma 2.1.4) this means that

k+ 1 is a prime let us call it p = k+ 1. So every even perfect number can be written

in the form n = 2p−1(2p − 1) with (2p − 1) is prime.

2.1.2 Mersenne Primes

Definition. A Mersenne primes is a prime of the form 2n − 1 where n ∈ N and

n ≥ 2.

14



The appearance and interest in Mersenne primes came because of their association

with perfect numbers. “Every Mersenne prime gives rise to a perfect number. The

historical justification for this nomenclature seems rather weak, since several perfect

numbers and their corresponding primes have been known since antiquity and occur

in almost every medieval numerological speculation.” [12]

Proposition 2.1.1. If an − 1 is prime for some numbers a ≥ 2 and n ≥ 2, then a

must be 2 and n is prime.

Proof. lets look at different cases for a

1. If a is odd, then an − 1 is even, so it cannot be a prime.

2. It is always true that an − 1 is divisible by (a − 1), and it is proved by using

geometric series.

1 + a+ a2 + a3 + a4 + · · ·+ an−1 =
an − 1

a− 1

(1 + a+ a2 + a3 + a4 + · · ·+ an−1)(a− 1) = an − 1

This means that an − 1 is always composite unless a − 1 = 1, that is, unless

a = 2. Then 2n − 1 is prim if n is prim (Lemma 2.1.4).

3. If a = 2, the number 2n − 1 can be a prime or a composite. let n = m.k then

2n = (2m)k

2n − 1 = (2m)k − 1

= [(2m − 1)][(2m)k−1 + (2m)k−2 + · · ·+ (2m)2 + (2m) + 1] geometric series

This shows that if n is composite then 2n − 1 is composite.
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Let us look at the following table:

n 1 2 3 4 5 6 7 8 9 10 . . .
2n − 1 1 3 7 35 31 32 × 7 127 3× 5× 17 7× 73 3× 11× 31 . . .

This table suggest the following:

1. When n is even, the number 2n − 1 is divisible by 3.

2. When n is divisible by 3, the number 2n − 1 is divisible by 7.

3. When n is divisible by 5, 2n − 1 is divisible by 31.

“Father Marin Mersenne was one who discovered the fact of Mersenne numbers

and they were called after him. It is not known how Mersenne discovered these facts.

In 1644 he listed all primes less than 258 that makes 2p − 1 be a prime. His list was

p = 2, 3, 5, 7, 13, 17, 19, 31, 67, , 127, 257.

This list was not correct. The complete list of primes less than 10000 for which

2p − 1 is Mersenne prime is:

p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279,

2203, 2281, 3217, 4253, 4423, 9689, 9941.”

[8]

“It was only with the advent of computing machines that it became possible to

check numbers with hundreds of digits for primality. Indeed, it was not until 1876

that E. Lucas proved conclusively that 2127−1 is prime [8].” Recently the “GIMPS” is

a project where a group of mathematicians uses soft wares in order to find Mersenne

primes [19].
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2.1.3 Perfect Numbers Are Triangular and Hexagonal.

Definition. A triangular number is a number that can be written on the form

k(k + 1)

2
. This number is called triangular because it can be represented in a trian-

gular form when arranged in rows of 1, 2, 3, . . . points that starts with a point and

each subsequent row contains one more element than the previous one [10].

Example 2.1.9. The first few triangular numbers are:

{1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91,

105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, . . . }

Theorem 2.1.6. Every even perfect number is a triangular number.

Proof. Let

Tk =
k(k + 1)

2

be a triangular number. If we let

k = 2n − 1

for any positive integer n, then

k + 1 = 2n

Tk =
(2n − 1)2n

2
= 2n−1(2n − 1)

which is Euclid’s form for perfect numbers.
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One may ask “Is every triangular number a perfect number?” This is not true

since in particular 3 is a triangular number but 3 is not a perfect number.

Definition. A hexagonal number is a number that can be written on the form

k(2k− 1). This number is called hexagonal because it can be represented with points

that consist the outlines of hexagons [14].

Example 2.1.10. The first few hexagonal numbers are:

{1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378,

435, 496, 561, 630, 703, 780, 861, 946, . . . }

Theorem 2.1.7. Every even perfect number is a hexagonal number.

Proof. Let

Hk = k(2k − 1)

be a hexagonal number. let

k = 2n−1.

Then

(2k − 1) = (2n − 1).

Hk = 2n−1(2n − 1)

which is Euclid’s form for perfect numbers.

18



We can also prove that a hexagonal number is also a triangular number.

Proof. Let

m = 2k then k =
m

2
,

also

(2k − 1) = (m− 1).

Now the hexagonal number

Hk = k(2k − 1) =
m(m− 1)

2

which is a triangular number.

But not every triangular number is a hexagonal number. The same not

every hexagonal number is a perfect number.

2.1.4 The Reciprocals of the Divisors of a Perfect Number

For a perfect number when we are adding the reciprocals of the divisors; we are

adding different unit fractions and we are always getting 2.

Theorem 2.1.8. If n is a perfect number, then

∑
d|n

1

d
= 2.

Proof. To start, we claim ∑
d|n

1

d
=

∑
d|n

d

n
.

To see this it suffices to show that if X = {1
d

: d|n} and Y = { d
n

: d|n}, then X = Y .

We will do this by showing X ⊆ Y and X ⊆ Y .
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(X ⊆ Y ) Consider 1
d
∈ X. Since d|n, n = dq. So

1

d
=

q

d · q
=
q

n
∈ Y.

(X ⊇ Y ) Consider d
n
∈ Y . Since d|n, n = dq. So

d

n
=

d

d · q
=

1

q
∈ X.

Now, if n is perfect, then σ(n) =
∑

d|n d = 2n. Write

2 =
1

n

∑
d|n

d

=
∑
d|n

d

n

=
∑
d|n

1

d
.

One may ask “ What is the relation between the sum of the reciprocals of the

divisors of a perfect number and the Egyptian Fractions?”

Definition. A unit fraction is the reciprocal of a natural number, 1
n

where n ∈ N.

Definition. An Egyptian fraction is a fraction represented by a finite sum of unit

fractions where all unit fractions are each distinct.

2.1.5 Odd Perfect Numbers

All the theorems and formulas for perfect numbers suggest that perfect numbers

are only even. Does this means that there are no odd perfect numbers?

Although the technology and the different softwares that mathematitions are using

to find perfect numbers, to this day they have found none [13].
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2.2 Perfect Polynomials over Z2[x]

After we introduced perfect numbers and Mersenne primes in the set of natural

numbers, we are going to introduce similar ideas in the set of polynomials in Z2[x].

Definition. We denote by Z2[x] the ring of all polynomials with coefficients in Z2.

This means that the coefficients are 0 or 1, and addition and multiplication are done

modulo 2.

Example 2.2.1. (x+ 1)2 = x2 + 2x+ 1 ≡ x2 + 1 (mod 2)

Definition. A set F equipped with two operators, denoted +, ·, is a field if:

1. F is closed under +, ·.

2. +, · are both associative and commutative operations.

3. There is 0 ∈ F such that a+ 0 = a.

4. There is 1 ∈ F such that a · 1 = a.

5. For all a ∈ F, there is −a ∈ F such that a+ (−a) = 0.

6. For all a ∈ F− 0, there is a−1 such that a · a−1 = 1.

7. a(b+ c) = ab+ ac.

Definition. A polynomial in Z2[x] is called reducible if the polynomial can be

factored as a product of nonconstant polynomials in Z2[x].

Example 2.2.2. x2 + 1 is reducible in Z2[x]. If x = 1, then x2 + 1 ≡ 0 (mod 2)

Definition. A polynomial over Z2[x] is called irreducible or prime if the polyno-

mial cannot be factored in Z2[x] into polynomials of lower degree.
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Example 2.2.3. x2 + x+ 1 is an irreducible polynomial is Z2[x].

Let us agree in this thesis to call a polynomial over Z2[x] even if it has roots in

Z2 and odd other wise [7].

Lemma 2.2.1 (Bezout’s identity). Let a(x), b(x) ∈ F[x] such that a(x), b(x) are

not both zero, and gcd (a(x), b(x)) = d(x). Then there exist n(x),m(x) ∈ F[x] such

that a(x)n(x) + b(x)m(x) = d(x).

Proof. Let a(x), b(x) ∈ F[x] such that a(x), b(x) are not both zero. Let

D = {z(x) ∈ F[x], deg(z(x)) ≥ 1 : z(x) = a(x)n(x) + b(x)m(x) : n(x),m(x) ∈ F[x]}

where D 6= ∅. D has a least element let it d(x). Then

d(x) = a(x)u(x) + b(x)v(x) for some u(x), v(x) ∈ F[x]

By the division theorem

z(x) = q(x)d(x) + r(x) where 0 < deg r(x) < deg d(x).

Suppose that d(x) 6 |z(x). But there exist n(x),m(x) ∈ Z such that

z(x) = a(x)n(x) + b(x)m(x)

and we have

r(x) = z(x)− q(x)d(x)

= a(x)n(x) + b(x)m(x)− q(x)(a(x)u(x) + b(x)v(x))

= a(x)n(x)− q(x)a(x)u(x) + b(x)m(x)− q(x)b(x)v(x)

= a(x)(n(x)− q(x)u(x)) + b(x)(m(x)− q(x)v(x))
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This means that r(x) ∈ D and 0 < deg r(x) < deg d(x) contradicting the fact that

d(x) is the least element in D.

Therefore ∀z(x) ∈ D : d(x)|z(x), this means that d(x)|a(x) and d(x)|b(x). So 1 ≤

d(x) ≤ gcd (a(x), b(x)). But gcd (a(x), b(x))|a(x) and gcd (a(x), b(x))|b(x). Therefor

gcd (a(x), b(x))|a(x)u(x) + b(x)v(x) = d(x)

gcd (a(x), b(x)) ≤ d(x)

gcd (a(x), b(x)) = d(x)

gcd (a(x), b(x)) = d(x)

= a(x)u(x) + b(x)v(x)

Lemma 2.2.2. [Euclid’s Lemma] If a(x), b(x), p(x) ∈ Z2[x], and p(x) is an irre-

ducible polynomial such that p(x)|a(x)b(x). Then p(x)|a(x) or p(x)|b(x).

Proof. Let p(x)|a(x)b(x), and assume that a(x) and p(x) be relatively prime. By

Bezout’s identity, there are r(x) and s(x) making

r(x)p(x) + s(x)a(x) = 1.

Multiply both sides by b(x):

r(x)p(x)b(x) + s(x)a(x)b(x) = b(x).

The term r(x)p(x)b(x) is divisible by p(x), and the term s(x)a(x)b(x) is divisible by

a(x)b(x) which by hypothesis is divisible by p(x). Therefore their sum, b(x), is also

divisible by p(x).
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Theorem 2.2.1. (Unique Factorization in F[x]) Every polynomial f(x) ∈ F [x]

with degree f ≥ 1 can be written uniquely as a finite product of irreducible polynomials.

Proof. Seeking a contradiction, suppose there is a polynomial f(x) that cannot be

written as a finite product of irreducible polynomials. Let

B = {g(x) ∈ F [x] : deg(g) ≥ 1 and g is not the product of irreducible polynomials}

By assumption, B 6= ∅ .

Let

D = {d = deg(g) : g(x) ∈ B} ⊂ N so D 6= ∅

by the well-ordering principle, D has a smallest element, so B has an element of

smallest degree, let it be h(x). Then h(x) is not irreducible since h(x) ∈ B. So h(x)

factors non-trivially as

h(x) = a(x)b(x)

where deg(a) ≥ 1 and deg(b) ≥ 1. Then

deg(h) = deg(a) + deg(b)

so

1 ≤ deg(a) < deg(h) and 1 ≤ deg(b) < deg(h)

This means a(x), b(x) /∈ B. So they factor as a product of irreducible polynomials in

Z2[x]

a(x) = p1(x) . . . pr(x) with irreducible pi(x)

b(x) = q1(x) . . . qs(x) with irreducible qj(x)

Then

h(x) = a(x) · b(x) = p1(x) . . . pi(x) · q1(x) . . . qj(x)
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has a factorization into irreducible polynomials. So h(x) /∈ B. This is a contradiction.

So every polynomial f(x) ∈ F [x] with degree f ≥ 1 can be written as a finite product

of irreducible polynomials

To show that the factorization is unique, let

T = {a(x) ∈ F [x] : deg(a) ≥ 1 and a has at least two different prime factorization}.

T 6= ∅, let a0(x) be the smallest element of T . Take two distinct prime factorization

a0(x) = p1(x) . . . pn(x) = p′1(x) . . . p′r(x)

where all pi(x) and pj(x) are irreducible polynomials in F [x]. Then by (lemma 2.2.2)

pi(x)|p′1(x) . . . p′r(x) for some i let it be 1

with out lose of generosity let i = 1

p1(x)|p′1(x) . . . p′r(x) for some j

If we reorder or re-number the p′i(x) we can assume p1(x) = p′1(x). Cancel them

p2(x) . . . pr(x) = p′2(x) . . . p′n(x) =
a0(x)

p1(x)
= b0(x).

But 1 ≥ deg(b0(x)) < deg(a0(x)) then b0(x) /∈ T it has a prime factorization that is

unique.

p2(x) . . . pr(x) = p′2(x) . . . p′n(x) =
a0(x)

p1(x)
= b0(x)

r = n and the p2(x) . . . pr(x) = p′2(x) . . . p′n(x) =
a0(x)

p1(x)

up to ordering.

The factorization of a0(x) were the same. Contradiction.

Thus, T = ∅ and the factorization is unique.
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If we recall the proof of unique factorization in natural numbers, we can see that

we are using the same technique and the same steps in proving unique factorization

in Z2[x].

Definition. The sum of the divisors of a polynomial A(x) is given by

σ(A(x)) =
∑

D|A(x)

D.

Proposition 2.2.1. The σ function is multiplicative in the sense that whenever

gcd(A(x), B(x)) = 1 we have

σ(A(x)B(x)) = σ(A(x))× σ(B(x))

Proof. By the definition of σ,

σ(A(x)B(x)) =
∑

D|A(x)B(x)

D

but gcd (A(x), B(x)) = 1. This means that D can be written as D = r(x) ·s(x) where

r(x)|A(x) and s(x)|B(x)∑
D|A(x)B(x)

D =
∑

r(x)s(x)|A(x)B(x)

(r(x)s(x))

=
∑

r(x)|A(x), s(x)|B(x)

(r(x)s(x))

=
∑

r(x)|A(x)

r(x) ·
∑

s(x)|B(x)

s(x) (gcd (r(x), s(x)) = 1)

= σ(A(x)) · σ(B(x))

Note, this is the same proof for σ being multiplicative over the natural numbers.

Definition. If A(x) = σ(A(x)) where A(x) ∈ Z2[x] we call A(x) a perfect polyno-

mial over Z2[x].
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Definition. A polynomial over Z2[x] is called Mersenne polynomials if it can be

written in the form xa(x + 1)b + 1. An irreducible Mersenne polynomial is called

Mersenne prime polynomial [6].

Example 2.2.4. Why is xa(x+ 1)b + 1 a Mersenne polynomials?

Answer. Because this is the only form that give us irreducible polynomials (mod 2)

when we raise the polynomial to a power like n. Polynomials in Z2[x] can have the

following forms:

xa, (x+ 1)b, xa(x+ 1)b, xa(x+ 1)b + 1

and if we look at the first three forms, they are always reducible in Z2[x] when raised

to a power. The only form that can make irreducible polynomials in Z2[x] is the form

xa(x+ 1)b + 1.

The first few Mersenne primes in Z2[x] are [6]:

M1 = 1 + x+ x2, M2 = 1 + x+ x3, M3 = 1 + x2 + x3,

M4 = 1 + x+ x2 + x3 + x4, M5 = 1 + x3 + x4.

If we look closely at these Mersenne prime polynomials and plug in x = 2, we see the

following:

M1 = 1 + x+ x2 ←→ 7 ←→ (23 − 1) Mersenne prime

M2 = 1 + x+ x3 ←→ 11 ←→ not Mersenne prime

M3 = 1 + x2 + x3 ←→ 13 ←→ not Mersenne prime

M4 = 1 + x+ x2 + x3 + x4 ←→ 31 ←→ (25 − 1) Mersenne prime

M5 = 1 + x3 + x4 ←→ 25 ←→ not Mersenne prime
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So two of these Mersenne prime polynomials correspond to two Mersenne primes

in the natural numbers, which are (23 − 1) and (25 − 1). And if we look at the rest

they correspond to odd numbers and some of them are primes. If we recall Euclid’s:

“If as many numbers as we please beginning from a unit be set out continuously in

double proportion, until the sum of all becomes a prime” in M1 and M4 we are just

adding powers of 2 continuously this is why they matched Mersenne primes in N.

The study of perfect polynomials over Z2[x] was first introduced by Canaday in

his Ph.D. thesis The Sum of The Divisors of a Polynomial [3]. He treated only

polynomials that split into linear factors over Z2[x].

Definition. A trivial perfect polynomial is an even perfect polynomial over Z2[x]

with exactly two prime divisors. Those polynomials are of the form (x(x + 1))2
n−1

for some n ∈ N [6].

The first trivial perfect polynomial is x(x + 1) and if we plug x = 2 then this

polynomial correspond to 6 which is the first perfect number in N.

Example 2.2.5. The polynomial A(x) = (x(x+ 1))3 is perfect in Z2[x]. Write

σ(x(x+ 1))3 = σ(x3)× σ((x+ 1)3)
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since gcd(x, x+ 1) = 1 and A(x) factors in Z2[x] in to linear factors we write

σ(x3)× σ((x+ 1)3) = (x3 + x2 + x+ 1)((x+ 1)3 + (x+ 1)2 + (x+ 1) + 1)

= (x3 + x2 + x+ 1)((x3 + 3x2 + 3x+ 1) + (x2 + 2x+ 1)

+ (x+ 1) + 1)

= (x3 + x2 + x+ 1)((x3 + x2 + x+ 1) + (x2 + 2x+ 1)

+ (x+ 1) + 1)

= (x3 + x2 + x+ 1)(x3 + 2x2 + 4x+ 4) (mod 2)

= (x+ 1)3 · x3 (mod 2)

= A(x)

Definition. A nontrivial (sporadic) perfect polynomial in Z2[x] is a polyno-

mial in Z2[x] that has factorization with Mersenne primes as odd divisors [6].

Canady discovered 11 nontrivial even perfect polynomials [7]. Nine of them have

four or fewer prime factors. The following are the nontrivial even perfect polynomials

with their correspondence values after plugging x = 2

x(x+ 1)2(x2 + x+ 1) = 126, x2(x+ 1)(x2 + x+ 1) = 84,

x3(x+ 1)4(x4 + x3 + 1) = 16200, x4(x+ 1)3(x4 + x3 + x2 + x+ 1) = 13392,

x(x+ 1)2(x2 +x+ 1)2(x4 +x+ 1) = 16758, x2(x+ 1)(x2 +x+ 1)2(x4 +x+ 1) = 1596,

x3(x+1)6(x3+x+1)(x3+x2+1) = 833976, x6(x+1)3(x3+x+1)(x3+x2+1) = 247104,

x4(x+ 1)4(x4 + x3 + 1)(x4 + x3 + x2 + x+ 1) = 51706512,

and 2 of the nontrivial even perfect polynomials have 5 prime factors

x4(x+ 1)6(x3 + x+ 1)(x3 + x2 + 1)(x4 + x3 + x2 + x+ 1) = 48370608
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x6(x+ 1)4(x3 + x+ 1)(x3 + x2 + 1)(x4 + x3 + 1) = 18532800

We can see that all of the 11 nontrivial perfect polynomials have even values after

plugging x = 2.

I am going to use the following lemma with out proving it.

Lemma 2.2.3. (See [6, Lemma 2.6] and [3, Theorem 8]) Let n ∈ N. If any irreducible

factor of 1 + x+ · · ·+ x2n is of the form xa(x+ 1)b + 1, then n ∈ {1, 2, 3}.

Lemma 2.2.4. (See [6, Lemma 3.1]) Let A = xa(x+1)b
∏r

i=1 P
hi
i be an even perfect

polynomial in Z2[x], where each Pi is a Mersenne prime and hi = 2ni − 1, ni ∈ N.

Then:

1. if a is even, a ∈ {2, 4, 6}.

2. if a is odd a is of the form 2tu− 1, where u ∈ {1, 3, 5, 7}.

Proof. 1. If A is perfect

A = σ(A),

hence A and σ(A) have the same factor.

We know

σ(xa) = 1 + x+ · · ·+ xa

And since x, (x + 1), Pi are all relatively prime we see that one of these must

divide σ(xa).

However, nither x nor (x+ 1) divide σ(xa).

∴ One of the Mersenne polynomials Pi|σ(xa)

By (Lemma 2.2.3) a ∈ {2, 4, 6}.
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2. If a is odd, then a+ 1 is even. Put a+ 1 = 2tu, with u odd and t ≥ 1. We have

σ(xa) = 1 + x+ · · ·+ xa

= (1 + x)2
t−1(1 + x+ · · ·+ xu−1)2

t

.

If u ≥ 3, then by part (a), u− 1 must be {2, 4, 6}

Lemma 2.2.5. ([6, Corollary 3.2]) If A = xa(x+ 1)b
∏hi

i=1 P
hi
i is perfect, with each

Pi Mersenne prime and hi ∈ 1, 3, then a is even or b is even.

Proof. If a and b are both odd, then by (Lemma 2.2.4), a = 2tu− 1, b = 2sv − 1 for

some t, s ∈ N and u, v ∈ {1, 3, 5, 7}. Hence

σ(xa) = (x + 1)2
t−1(1 + x + . . . + xu−1)2

t

σ((x+ 1)b) = x2
s−1(1 + (x+ 1) + . . . + (x+ 1)v−1)2

s

Furthermore, for any i, j, Pi does not divide σ(P
hj

j ) = (1 + Pj)
hj .

If u ≥ 3 and if some Pi|1 + x + . . . +xu−1 and Pi 6 |1 + (x+1) + . . . + (x+1)v−1

then 2t = hi = 2ni − 1, which is impossible.

If Pi|1 + x + . . . + xu−1 and Pi|1 + (x + 1) + . . . + (x + 1)v−1 then

2t + 2s = hi = 2ni − 1, which is also impossible.

So u = 1 and the same v = 1.

it follows that

σ(xa) = (x + 1)a , σ((x+ 1)b) = xb.

Also a = b and xa(x + 1)b is perfect. This means that
∏r

i=1 P
hi
i is also perfect. This

is a contradiction since P hi
i is a Mersenne prime.
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Proposition 2.2.2. ([6]) If A(x) is an even perfect polynomial over Z2[x] such that

the number of prime factors are 2, then A = (x(x+ 1))2
n−1 for some n ∈ N.

Proof. Let A = (x(x+ 1))2
n−1 where n ∈ N

σ(A) = σ((x(x+ 1))2
n−1)

= σ(x2
n

) · σ((x+ 1)2
n−1) since gcd (x, x+ 1) = 1.

Since 2n − 1 is odd, then by (lemma 2.2.5)

= (x+ 1)2
n−1x2

n−1

= A
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Chapter 3: Pre-Kindergarten to Third Grade

This chapter contains activities aim to introduce pre-kindergarten to third grade

students to the idea of perfect numbers. These activities address skills that the stu-

dents are familiar with like counting, addition and the very basic division. Appendix

A contains an unsolved version of these activities.

Our goal in designing these activities is to meet the common core standards.

3.1 Making Rectangles

This activity is designed to introduce students to prime numbers, separated into

two parts. The first part is to have students count and build rectangles out of squares

for composite numbers. The second part is to have students count and build rectan-

gles out of squares for prime numbers. After working through both parts, the goal is

to have students see that there are two types of numbers: those with only 1 represen-

tation, and those with more than 1. Thus, students gain an intuitive understanding

of the difference between prime (one representation) and composite numbers (more

than one representation).
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Given the following 12 squares:

{Part 1}

This part is designed for pre-Kindergarten through first grade. Students in this

stage are still learning how to count and are learning about basic shapes. The re-

sponses for the following questions might depend on students; some will consider a

vertical line and horizontal line of the same length to be one representation, and others

will consider it to be two. However, we should encourage students to consider these

as the same rectangle so that the difference between prime and composite numbers

will be clear after part 2.

Example 3.1.1. Take 4 squares. Arrange them into a rectangle. How many different

rectangles can you make?

One rectangle:

Another rectangle:
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Answer. We can make 2 rectangles.

1) Take 6 squares. Arrange them in to a rectangle. How many different rectangles

can you make?

Answer. There are 3 rectangles.

2) Take 10 squares. Arrange them in to a rectangle. How many different rectangles

can you make?

Answer. There are 3 rectangles.

{ Part 2 }

This part is more appropriate for students in first through third grade. Students

at this level are able to apply more reasoning skills.

3) Take 2 squares. Try to put them in a rectangular form. How many different

rectangles can you make?

Answer. There is only one representation.

4) Take 3 squares. Try to put them in a rectangular form. How many different

rectangles can you make?

Answer. There is only 1 representation.

5) How many different rectangles can you make if you have 5 squares?

Answer. There is only 1 representation.

6) How many different rectangles can you make if you have 7 squares?

Answer. There is only 1 representation.
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7) How many different rectangles can you make if you have 9 squares?

Answer. There are 2 representations.

8) How many different rectangles can you make if you have 11 squares?

Answer. There is 1 representation.

9) How many different rectangles can you make if you have 12 squares?

Answer. There are 3 representations.

10) Which numbers had only 1 representation?

Answer. {2, 3, 5, 7, 11}.

11) Why do these numbers have only 1 representation?

Answer. They only have two divisors; 1 and the number itself.

12) which numbers had more than one representation?

Answer. 4 , 6 , 8 , 9 , 10 , 12. These numbers are called Composite numbers.

This activity adresses the following common core standers:

CCSS.MATH.CONTENT.K.CC.A.2

Count forward beginning from a given number within the known sequence (in-

stead of having to begin at 1).

If we go back to our activity we can see that this is addressed when we ask students

to count squares.
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CCSS.MATH.CONTENT.K.CC.A.3

Write numbers from 0 to 20. Represent a number of objects with a written

numeral 0− 20 (with 0 representing a count of no objects).

When students connect counting to object, it is easier on them to see how many

units are there.

CCSS.MATH.CONTENT.K.CC.B.4.B

Understand that the last number name said tells the number of objects counted.

The number of objects is the same regardless of their arrangement or the order

in which they were counted.

This is addressed when students are asked to count 5 squares. They start with

one square, until they reach the number five they will stop taking squares. The last

number counted (5) means that they have 5 total squares.

CCSS.MATH.CONTENT.K.CC.B.4.C

Understand that each successive number name refers to a quantity that is one

larger.

This is addressed When we ask students first to take 2 squares, and then we ask

them to take 3 squares for the next question. They already have 2, so they will take

1 more square only.

CCSS.MATH.CONTENT.K.CC.C.6

Identify whether the number of objects in one group is greater than, less than,

or equal to the number of objects in another group.
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When students are asked to make rectangles they will trying to break the squares

into equal groups. So if they are working with 5 squares and try to arrange them into

two groups, they will always have a group with more square in it.

CCSS.MATH.CONTENT.K.OA.A.1

Represent addition and subtraction with objects, fingers, mental images, draw-

ings, sounds (e.g., claps), acting out situations, verbal explanations, expressions,

or equations.

When we ask students first to take 2 squares, then we ask them to take 4 squares

on the following question, they already have 2 squares so they add 2 more squares to

get 4 squares.

CCSS.MATH.CONTENT.K.OA.A.3

Decompose numbers less than or equal to 10 into pairs in more than one way,

e.g., by using objects or drawings, and record each decomposition by a drawing

or equation (e.g., 5 = 2 + 3 and 5 = 4 + 1).

This appears when we ask students: “Take 10 squares. Arrange them into a

rectangle. How many different rectangles can you make?”

CCSS.MATH.CONTENT.K.G.B.6

Compose simple shapes to form larger shapes. For example, ”Can you join these

two triangles with full sides touching to make a rectangle?”

Approximately all the problems in this activity are asking to compose squares in

order to make rectangles.

CCSS.MATH.CONTENT.1.OA.A.2

Solve word problems that call for addition of three whole numbers whose sum is
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less than or equal to 20, e.g., by using objects, drawings, and equations with a

symbol for the unknown number to represent the problem.

When students are asked to arrange 6 squares into a rectangle, they will make

groups and add the squares in each group to make sure that they have 6 = 2 + 2 + 2.

CCSS.MATH.CONTENT.1.OA.B.3

Apply properties of operations as strategies to add and subtract 2. Examples:

If 8 + 3 = 11 is known, then 3 + 8 = 11 is also known. (Commutative property

of addition.) To add 2 + 6 + 4, the second two numbers can be added to make a

ten, so 2 + 6 + 4 = 2 + 10 = 12. (Associative property of addition.)

Add 1’s 6 times. Add 2’s three times. Add 3’s two times all of them are represen-

tations for 6.

CCSS.MATH.CONTENT.1.OA.C.5

Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).

This is addressed in problems when students are asked to count a number of

squares then are asked to count more squares.

CCSS.MATH.CONTENT.1.G.A.2

Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-

circles, and quarter-circles)

Help to find prime numbers. Prime numbers have only one representation which

is a line of squares.

CCSS.MATH.CONTENT.3.OA.A.1

Interpret products of whole numbers, e.g., interpret 5× 7 as the total number of
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objects in 5 groups of 7 objects each. For example, describe a context in which

a total number of objects can be expressed as 5× 7.

Making sense that 6 can be represented in 2 rows ×3 columns, 3 rows ×2 columns,

1 rows ×6 columns, and 6 rows ×1 columns
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3.2 How many ways

This activity is designed to introduce students to the factors of a number using

multiplication properties.

1) How many ways can you write the number 4 as a product of two numbers?

Answer. There are 3 ways.

1× 4 = 4

2× 2 = 4

4× 1 = 4

2) How many way can you write the number 6 as a product of two numbers?

Answer. There are 4 ways.

1× 6 = 6

2× 3 = 6

3× 2 = 6

6× 1 = 6

3) How many way can you write the number 7 as a product of two numbers?

Answer. There are 2 ways.

1× 7 = 7

7× 1 = 7

4) How many way can you write the number 8 as a product of two numbers?
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Answer. There are 4 ways:

1× 8 = 8

2× 4 = 8

4× 2 = 8

8× 1 = 8

5) How many way can you write the number 9 as a product of two numbers?

Answer. There are 3 ways:

1× 9 = 9

3× 3 = 9

9× 1 = 9

6) How many way can you write the number 10 as a product of two numbers?

Answer. There are 4 ways:

1× 10 = 10

2× 5 = 10

5× 2 = 10

10× 1 = 10

7) How many ways can you write the number 12 as a product of two numbers?
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Answer. There are 6 ways:

1× 12 = 12

2× 6 = 12

3× 4 = 12

4× 3 = 12

6× 2 = 12

12× 1 = 12

Now can you write down all the numbers in order, without repeating any, and

when you multiply them together they give you the following:

Number Ordered products
4 1 , 2, 4
6 1 , 2, 3 , 6
7 1 , 7
8 1, 2, 4, 8
9 1 , 3 , 9
10 1, 2, 5, 10
12 1, 2, 3, 4, 6, 12

8) Two factors of 20 are 1 and 20, because 1× 20 = 20.

Find four more factors of 20.

Answer. The other four factors are: {2, 4, 5, 10}

The common core standers that are addressed in the activity is:

CCSS.MATH.CONTENT.3.OA.A.1

Interpret products of whole numbers, e.g., interpret 5× 7 as the total number of

objects in 5 groups of 7 objects each. For example, describe a context in which

a total number of objects can be expressed as 5× 7.
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Making sense that 6 can be represented in 2 rows ×3 columns, 3 rows ×2 columns,

1 rows ×6 columns, and 6 rows ×1 columns

CCSS.MATH.CONTENT.3.OA.B.5

Apply properties of operations as strategies to multiply and divide. Examples:

If 6 × 4 = 24 is known, then 4 × 6 = 24 is also known. (Commutative property

of multiplication.) 3 × 5 × 2 can be found by 3 × 5 = 15, then 15 × 2 = 30,

or by 5 × 2 = 10, then 3 × 10 = 30. (Associative property of multiplication.)

Knowing that 8 × 5 = 40 and 8 × 2 = 16, one can find 8 × 7 as 8 × (5 + 2) =

(8× 5) + (8× 2) = 40 + 16 = 56. (Distributive property.)

When we ask students to find factors of a number.
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3.3 Pick a Number

This activity is designed for students to practice multiplication and division, aim-

ing to find the divisors of any number, keeping in mind that multiplication is the

inverse operation of division.

Consider the following:

10

1× 10 = 10

2× 5 = 10

5× 2 = 10

10× 1 = 10

10÷ 1 = 10

10÷ 2 = 5

10÷ 5 = 2

10÷ 10 = 1

Here the numbers 1, 2, 5 and 10 are called the divisors of the number 10.

1) List all the divisors of the number 6

Answer. The divisors are 1, 2 , 3 and 6.

2) Can you give a number that has only two positive divisors?

Answer. 2, 3, 5, . . . All prime numbers have only two divisors, which are one and

the number itself.
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3) Give me a number that has four positive divisors?

Answer. 6 has four divisors which are 1, 2, 3, and 6. 8 has four divisors which are

1, 2, 4, and 8

4) Can you find the number between 1 and 50 that has the greatest number of positive

divisors?

Answer. 48 is the number between 1 and 50 that has the greatest number of divisors.

The divisors of 48 are 1, 2, 3, 4, 6, 8, 12, 16, 24 and 48

5) Can you find two numbers that have the same positive divisors?

Answer. No, due to unique factorization.

6) Can you find two numbers that have the same number of positive divisors?

Answer. Yes 6 and 8 have the same number of divisors.

7) Can you find a number that is equal to the sum of its divisors?

Answer. No, we can not find a number that is equal to the sum of all divisors.

8) Can you find a number that is equal to half the sum of its divisors?

Answer. Yes. 6 and 28 both are equal to half the sum of their divisors.

9) Can you find a number that is greater than the sum of its divisors?

Answer. No. We can not find a number that is greater than the sum of all divisors,

since we are adding the number to at least 1, which makes the sum of the divisors

always greater than the number itself; n < n+ 1.
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CCSS.MATH.CONTENT.3.OA.B.6

Understand division as an unknown-factor problem. For example, find 32÷ 8 by

finding the number that makes 32 when multiplied by 8. Multiply and divide

within 100.

All the exercises in this activity are asking to use multiplication and division to

find the factors of any number less than 100.

CCSS.MATH.CONTENT.3.OA.C.7

Fluently multiply and divide within 100, using strategies such as the relationship

between multiplication and division (e.g., knowing that 40÷5 = 8) or properties

of operations. By the end of Grade 3, know from memory all products of two

one-digit numbers.

In this activity we are using properties of multiplication and division to find the

factors of any number. For example, when we ask students to find the factors of 12,

they should know that 12 ÷ 4 = 3 and 2 × 6 = 12. So by using multiplication or

division, students are able to find the divisors.
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3.4 Sharing cookies

This activity is a brief overview of division. It covers the concept of sharing in

equal amounts. Our goal is that students at the end will be able to find divisors and

proper divisors. Another goal for this activity is to introduce students to the different

categories of numbers depending on the sum of their divisors.

You have some cookies that you want to share with your friends.

1. You must offer each of your friends more than one whole cookie.

2. You must offer each of your friends an equal number of whole cookies.

3. None of the cookies can be cut into parts.

1) Suppose you have 3 cookies. How many different friends could you share these

cookies with?

Answer. One friend.You can only give one friend because you can not give one cookie

to a friend.

2) Suppose you have 4 cookies. How many different friends could you share these

cookies with?

Answer. One or two friends. The proper divisors of 4 are 1 or 2 since 1× 4 = 4 and

2× 2 = 4

3) Suppose you have 5 cookies. How many different friends could you share these

cookies with?

Answer. One friend only. The only way we can give each friend an equal amount of

whole cookies with each receiving more than one cookie is to give all five cookies to

one friend.
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4) Suppose you have 6 cookies. How many different friends could you share these

cookies with?

Answer. We can give cookies to one, two or three friends.

1 friend× 6 cookies = 6

2 friends× 3 cookies = 6

3 friends× 2 cookies = 6

5) Suppose you have 7 cookies. How many different friends could you share these

cookies with?

Answer. One friend for the same reason as question 3 (7 is a prime number).

6) Suppose you have 8 cookies. How many different friends could you share these

cookies with?

Answer. One, two and four friends.

1 friend× 8 cookies = 8

2 friends× 4 cookies = 8

4 friends× 2 cookies = 8

Let’s record these facts in the table below.

Number of cookies Number of friends to share with
2 1
3 1
4 1 or 2
5 1
6 1 or 2 or 3
7 1
8 1 or 2 or 4
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For this table our goal is for students to apply what they learned in finding divisors

and practice their skills in adding numbers.

Now try to complete the following table.

Number of cookies Add possible numbers of friends
6 1 + 2 + 3 = 6
8 1 + 2 + 4 = 7
9 1 + 3 = 4
10 1 + 2 + 5 = 8
12 1 + 2 + 3 + 4 + 6 = 16
15 1 + 3 + 5 = 9
16 1 + 2 + 4 + 8 = 15
20 1 + 2 + 4 + 5 + 10 = 22
22 1 + 2 + 11 = 14
25 1 + 5 = 6
28 1 + 2 + 4 + 7 + 14 = 28
30 1 + 2 + 3 + 5 + 6 + 10 + 15 = 42

7) Sally noticed if you add the proper divisors they are always less than the number

itself, while Kim noticed that value is always larger. Can you help me to figure out

which one of them is right?

Answer. Neither are correct. As we can see from our table, for some numbers

of cookies if we add all possible friends, we may have the same number of cookies

6 = 1 + 2 + 3. For some other numbers, the sum of the divisors is less than the

number: for example, the sum of the divisors of 9 is 4. For other numbers, the sum

of the divisors is greater than the number: for example, the sum of the divisors of 12

is 16

8) Does the sum of all possible numbers of friends ever equal the number of cookies?

Answer. Yes. look at 6 = 1 + 2 + 3 also 28 = 1 + 2 + 4 + 7 + 14. We call these

numbers “Perfect Numbers”
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The common core standers that are addressed in this activity:

CCSS.MATH.CONTENT.1.OA.B.3

Apply properties of operations as strategies to add and subtract 2. Examples:

If 8 + 3 = 11 is known, then 3 + 8 = 11 is also known. (Commutative property

of addition.) To add 2 + 6 + 4, the second two numbers can be added to make a

ten, so 2 + 6 + 4 = 2 + 10 = 12. (Associative property of addition.)

Students are asked to add more than two numbers, so they use associative prop-

erty.

CCSS.MATH.CONTENT.1.OA.A.2

Solve word problems that call for addition of three whole numbers whose sum is

less than or equal to 20, e.g., by using objects, drawings, and equations with a

symbol for the unknown number to represent the problem.

CCSS.MATH.CONTENT.2.OA.B.2

Fluently add and subtract within 20 using mental strategies. By end of Grade

2, know from memory all sums of two one-digit numbers.

In all the exercises, students are asked to add divisors.

CCSS.MATH.CONTENT.3.OA.A.2

Interpret whole-number quotients of whole numbers, e.g., interpret 56÷ 8 as the

number of objects in each share when 56 objects are partitioned equally into 8

shares, or as a number of shares when 56 objects are partitioned into equal shares

of 8 objects each. For example, describe a context in which a number of shares

or a number of groups can be expressed as 56÷ 8.
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Here we have cookies and we asked students to partition them among their friends

under some constraints.
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Chapter 4: Fourth to Ninth Grade

This chapter contains activities for students from fourth through ninth graders.

Answers for these activities are also provided in this chapter. These activities intro-

duce students to perfect numbers.

Appendix B contains an unsolved version of these activities.

4.1 Prime Numbers

The goal of this activity is to introduce students to prime and composite numbers.

Students needs to know prime numbers to be able to apply Euclid’s formula.

Finding Primes. Look at the following table

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 50
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Given that 2 is a prime number, cross out every other number.

1) Is 3 crossed out or not? If 3 is crossed out then move to the next number. If 3 is

not crossed out, 3 is a prime, so circle it and cross out every third number.
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Answer. Yes 3 is a prime.

2) Is 4 crossed out or not? If 4 is crossed out, then move to the next number. If 4 is

not crossed out, 4 is a prime, so circle it and cross out every fourth number.

Answer. 4 is already crossed out, so it is not prime.

3) Repeat the process until you get all the prime numbers between 1 and 100. List

all of the prime numbers found between 1 and 100. How many are there?

Answer. After this process you will get the set of all 25 prime numbers between 1

and 100, which is:

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, . . .

47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}

This activity addresses the following common core standards:

CCSS.MATH.CONTENT.4.OA.B.4

Find all factor pairs for a whole number in the range 1 − 100. Recognize that

a whole number is a multiple of each of its factors. Determine whether a given

whole number in the range 1 − 100 is a multiple of a given one-digit number.

Determine whether a given whole number in the range 1− 100 is prime or com-

posite.

When students are crossing out the numbers in this activity, they are trying to

factor each number and ask themselves does it have more than two factors or not? Is

it composite or prime?
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4.2 Divisors

The goal of this activity is for students to practice properties of multiplication and

division to be able to find the divisors of a number. This helps students understand

the idea of the sigma function. Also, the activity introduces students to different

categories of numbers: perfect, deficient, and abundant.

1) Find all the divisors of the following numbers:

Number Divisors

4 1, 2, 4
6
8
9
12
15
17
20
22
25
28
32
100
202
236
496
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Answer.

Number Divisors

4 1, 2, 4
6 1, 2, 3, 6
8 1, 2, 4, 8
9 1, 2, 3, 9
12 1, 2, 3, 4, 6, 12
15 1, 3, 5, 15
17 1, 17
20 1, 2, 4, 5, 10, 20
22 1, 2, 11, 22
25 1, 5, 25
28 1, 2, 4, 7, 14, 28
32 1, 2, 4, 8, 16, 32
100 1, 2, 4, 5, 10, 20, 25, 50, 100
202 1, 2, 101, 202
236 1, 2, 4, 59, 118, 236
496 1, 2, 4, 8, 16, 31, 62, 124, 248, 496

The proper divisors of a number are all the divisors except the number itself.

2) Add the proper divisors for each number in the previous exercise.

Number Sum of Proper Divisors

4 1 + 2 = 3
6
8
9
12
15
17
20
22
25
28
32
100
202
236
496
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Answer.

Number Divisors

4 1 + 2 = 3
6 1 + 2 + 3 = 6
8 1 + 2 + 4 = 7
9 1 + 3 = 4
12 1 + 2 + 3 + 4 + 6 = 16
15 1 + 3 + 5 = 9
17 1 = 1
20 1 + 2 + 4 + 5 + 10 + 20 = 42
22 1 + 2 + 11 = 14
25 1 + 5 = 6
28 1 + 2 + 4 + 7 + 14 = 28
32 1 + 2 + 4 + 8 + 16 = 31
100 1 + 2 + 4 + 5 + 10 + 20 + 25 + 50 = 117
202 1 + 2 + 101 = 104
236 1 + 2 + 4 + 59 + 118 = 184
496 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 = 496

3) Which numbers have the sum of their proper divisors less than the number itself?

Answer.

{4, 8, 9, 15, 17, 22, 25, 32, 202, 236}

4) Which numbers have the sum of their proper divisors equal to the number itself?

Answer.

{6, 28, 496}

5) Which numbers have the sum of their proper divisors greater than the number

itself?

Answer.

{12, 20, 100}

This activity addresses the following common core standards:
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CCSS.MATH.CONTENT.4.OA.A.1

Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5× 7 as

a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent

verbal statements of multiplicative comparisons as multiplication equations.

This will appear when students are trying to find the divisors of any number.

CCSS.MATH.CONTENT.4.OA.C.5

Generate a number or shape pattern that follows a given rule. Identify apparent

features of the pattern that were not explicit in the rule itself. For example,

given the rule ”Add 3” and the starting number 1, generate terms in the resulting

sequence and observe that the terms appear to alternate between odd and even

numbers. Explain informally why the numbers will continue to alternate in this

way.

This appears when students find the sum of proper divisors.

CCSS.MATH.CONTENT.4.NBT.B.5

Multiply a whole number of up to four digits by a one-digit whole number,

and multiply two two-digit numbers, using strategies based on place value and

the properties of operations. Illustrate and explain the calculation by using

equations, rectangular arrays, and/or area models.

This appears when students are asked to find the divisors of large numbers like

202.

CCSS.MATH.CONTENT.5.NBT.B.6

Find whole-number quotients of whole numbers with up to four-digit dividends
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and two-digit divisors, using strategies based on place value, the properties of

operations, and/or the relationship between multiplication and division. Illus-

trate and explain the calculation by using equations, rectangular arrays, and/or

area models.

We use division to find the divisors of numbers; for example find the divisors of

242.

CCSS.MATH.CONTENT.6.NS.B.2

Fluently divide multi-digit numbers using the standard algorithm.

Using this strategies to find the divisors of large numbers.

CCSS.MATH.CONTENT.6.EE.A.2.B

Identify parts of an expression using mathematical terms (sum, term, product,

factor, quotient, coefficient); view one or more parts of an expression as a single

entity. For example, describe the expression 2(8 + 7) as a product of two factors;

view (8 + 7) as both a single entity and a sum of two terms.

Using multiplication to find factors.
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4.3 The sum of the reciprocal divisors of a number

1) If d is a divisor of a number, find the sum of the reciprocal of all divisors of the

following numbers:

1. n = 2.

Answer.

d = 1, 2.∑
(1/d) = 1 +

1

2
=

3

2

2. n = 3.

Answer.

d = 1, 3.∑
(1/d) = 1 +

1

3
=

4

3
= 1

1

3

3. n = 4.

Answer.

d = 1, 2, 4.∑
(1/d) = 1 +

1

2
+

1

4
=

7

4
= 1

3

4

4. n = 6.

Answer.

d = 1, 2, 3, 6.∑
(1/d) = 1 +

1

2
+

1

3
+

1

6
=

12

6
= 2
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5. n = 8.

Answer.

d = 1, 2, 4, 8.∑
(1/d) = 1 +

1

2
+

1

4
+

1

8
=

15

8
= 1

7

8

6. n = 28.

Answer.

d = 1, 2, 4, 7, 14, 28.∑
(1/d) = 1 +

1

2
+

1

4
+

1

7
+

1

14
+

1

28
=

56

28
= 2

7. n = 496.

Answer.

d = 1, 2, 4, 8, 16, 31, 62, 124, 248, 496.∑
(1/d) = 1 +

1

2
+

1

4
+

1

8
+

1

16
+

1

31
+

1

62
+

1

124
+

1

248
+

1

496
=

992

496
= 2

2) If you know that 6, 28 and 496 are perfect numbers, can you see a relation between∑
(1/d) and a perfect number?

Answer. Yes, there is a relation
∑

(1/d) for a perfect number always equals 2

3) What is the relation between the sum of the divisors of n and the sum of the

reciprocal of the divisors of n, if n is a perfect number?

Answer. Yes there is a relation. Look at

σ(n) = 2n
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∑
(1/d) = 2

so if we multiply
∑

(1/d) by n we get that

σ(n) = n
∑

(1/d)

This activity addresses the following common core standards:

CCSS.MATH.CONTENT.5.OA.A.2

Write simple expressions that record calculations with numbers, and interpret

numerical expressions without evaluating them. For example, express the cal-

culation ”add 8 and 7, then multiply by “2” as 2 × (8 + 7). Recognize that

3 × (18932 + 921) is three times as large as 18932 + 921, without having to

calculate the indicated sum or product.

CCSS.MATH.CONTENT.5.NF.A.1

Add and subtract fractions with unlike denominators (including mixed numbers)

by replacing given fractions with equivalent fractions in such a way as to produce

an equivalent sum or difference of fractions with like denominators. For example,

2/3 + 5/4 = 8/12 + 15/12 = 23/12. (In general, a/b + c/d = (ad + bc)/bd.)

Practice finding the greatest common divisor in order to make the denominators

the same for all fractions in order to add them.

CCSS.MATH.CONTENT.6.EE.A.2.B

Identify parts of an expression using mathematical terms (sum, term, product,

factor, quotient, coefficient); view one or more parts of an expression as a single

entity. For example, describe the expression 2(8 + 7) as a product of two factors;

view (8 + 7) as both a single entity and a sum of two terms.
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Be able to use the function
∑

1
d

fluently.

CCSS.MATH.CONTENT.7.NS.A.1

Apply and extend previous understandings of addition and subtraction to add

and subtract rational numbers; represent addition and subtraction on a horizon-

tal or vertical number line diagram.

This is addressed when students add the reciprocal of the divisors of a number;

they are adding rational numbers.
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4.4 Number of Factors

Jessica is a clever student. The teacher asked her to find the number of divisors

of the number 23 × 32 × 7. So she started as following:

7

30 31 3230 31 32

20 21 22 23 20 21 22 23 20 21 22 23

Consider the diagram she made:

1) Find the number of divisors of the number 23 × 32 × 7.

Answer. By counting the divisors from the diagram, the number of divisors is 24.

2) Can you write the divisors of the number 23 × 32 × 7?

Answer.

1, 2, 22, 23, 3, 32, 7, 2× 3, 22 × 3, 23 × 3, 2× 32, 22 × 32,

23 × 32, 2× 7, 22 × 7, 23 × 7, 3× 7, 32 × 7, 2× 3× 7,

22 × 3× 7, 23 × 3× 7, 2× 32 × 7, 22 × 32 × 7, 23 × 32 × 7.

3) Can you help Jessica find an easier way to find the number of divisors?

Answer. The number of divisors =
∏n

i=1(ni + 1) where ni is the power of the ith

term.

The number of divisors of 23 × 32 × 7 = (3 + 1)× (2 + 1)× (1 + 1) = 24.
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4) Can you make a similar diagram for 48 and find the number of divisors?

Answer.

48 = 24 × 3

3

20 21 22 23 24

The number of divisors is (4 + 1)× (1 + 1) = 10.

5) Find the number of divisors of 240.

Answer.

240 = 24 × 3× 5

the number of divisors = 5× 2× 2 = 20.

6) If p is a prime number, find the number of divisors of pn.

Answer. The number of divisors is (n+ 1).

7) If p is a prime. Find the number of divisors of 2p5.

Answer. The number of divisors 2× 6 = 12.

This activity addresses the following common core standards:

CCSS.MATH.CONTENT.6.NS.B.4

Find the greatest common factor of two whole numbers less than or equal to 100

and the least common multiple of two whole numbers less than or equal to 12.

Use the distributive property to express a sum of two whole numbers 1−100 with

a common factor as a multiple of a sum of two whole numbers with no common

factor. For example, express 36 + 8 as 4(9 + 2).
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Try to follow the tree in order to find all factors.

CCSS.MATH.CONTENT.8.EE.A.1

Know and apply the properties of integer exponents to generate equivalent nu-

merical expressions. For example, 32 × 3−5 = 3−3 = 1/33 = 1/27.

Being able to work with expressions like 2n and know how to find divisors of

numbers written in the following expression form 23 × 32 × 7.

CCSS.MATH.CONTENT.HSA.SSE.A.1.A

Interpret parts of an expression, such as terms, factors, and coefficients.

Find the factors of any number.

CCSS.MATH.CONTENT.HSA.SSE.A.1.B

Interpret complicated expressions by viewing one or more of their parts as a

single entity. For example, interpret P (1 + r)n as the product of P and a factor

not depending on P .

Being able to find all the factors and find an expression or a rule that allows

students to find the numbers of factors.
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Chapter 5: Seventh to Twelfth Grade

This chapter contains activities to introduce student seventh grade through high

school to perfect numbers. The answers and the common core standards are also

included.

Appendix C contains an unsolved version of these activities.

5.1 (“σ” Function)

The goal of this activity is for students to practice factoring, using functions and

trying to prove some small statements like sigma function being multiplicative.

1) If σ(6) = 1 + 2 + 3 + 6 = 12. Find the following:

1. σ(2) = 1 + 2 = 3.

2. σ(3) = 1 + 3 = 4.

3. σ(4) = 1 + 2 + 4 = 7.

4. σ(5) = 1 + 5 = 6.

5. σ(8) = 1 + 2 + 4 + 8 = 15.

6. σ(9) = 1 + 3 + 9 = 13.
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7. σ(10) = 1 + 2 + 5 + 10 = 18.

8. σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28.

9. σ(20) = 1 + 2 + 4 + 5 + 10 + 20 = 42.

10. σ(25) = 1 + 5 + 25 = 31.

11. σ(28) = 1 + 2 + 4 + 7 + 14 + 28 = 56

2) Look a σ(10) does it equal σ(2)× σ(5)?

Answer. They are equal

σ(10) = 18

σ(2) · σ(5) = 3× 6

= 18

so they are equal.

3) Does σ(12) equals σ(3)× σ(4)?

Answer. Lets see

σ(12) = 28

σ(3)× σ(4) = 4× 7

= 28

so σ(12) = σ(3)× σ(4) are equal.

4) What about σ(20) does it equal σ(4)× σ(5)?
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Answer. Let’s see

σ(20) = 42

σ(4)× σ(5) = 7× 6

= 42

so they are equal.

5) If m, n are two different integers can we say that σ(m.n) = σ(m)× σ(n)?

Answer. If gcd(m,n) = 1, then σ(m · n) = σ(m)× σ(n). (Theorem 2.1.3)

6) If your answer was yes look at σ(4) does it equal σ(2)× σ(2)

Answer. Since gcd(2, 2) 6= 1, then σ(4) = 7 6= σ(2)× σ(2) = 9.

7) If the gcd (a, b) = 1 and σ(a) = 5 , σ(b) = 9. Find σ(a · b).

Answer. since gcd (a, b) = 1 them

σ(a · b) = σ(a)× σ(b)

= 5× 9

= 45

This activity addresses the following common core standards:

CCSS.MATH.CONTENT.7.EE.A.1

Apply properties of operations as strategies to add, subtract, factor, and expand

linear expressions

Being able to apply the sigma function.
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CCSS.MATH.CONTENT.8.EE.A.1

Know and apply the properties of integer exponents to generate equivalent nu-

merical expressions. For example, 32 × 3−5 = 3−3 = 1/33 = 1/27.

Being able to apply sigma function and find some of its properties.

CCSS.MATH.CONTENT.HSF.BF.A.1.A

Determine an explicit expression, a recursive process, or steps for calculation

from a context.

All the problems in this activity apply this standard in order to find the value of

σ(n).

CCSS.MATH.PRACTICE.MP1

Make sense of problems and persevere in solving them.

Making sense when proving that the sigma function is multiplicative.
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5.2 Perfect Numbers Formula

The following activity helps students walk through the proof of Euclid’s formula:

2n−1(2n − 1).

The following are perfect numbers:

6 = 1 + 2 + 3 = 20 + 21 + 3

28 = 1 + 2 + 4 + 7 + 14

= 20 + 21 + 22 + 7 + 7× 2

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248

= 20 + 21 + 22 + 23 + 24 + 31 + 31× 2 + 31× 22 + 31× 23

1) Do you see any pattern?

Answer. There is a pattern which is adding powers of 2’s until you reach a prime

number.

2) Complete the following table

Sum Prime Calculation Perfect Number
1 + 2 3 Prime 2× 3 6
1 + 2 + 4
1 + 2 + 4 + 8 15 not a Prime - -

Answer.
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Sum Prime Calculation Perfect Number
1 + 2 3 Prime 2× 3 6
1 + 2 + 4 7 Prime 4× 7 28
1 + 2 + 4 + 8 15 not a Prime - -
1+2+4+8+16 31 Prime 31× 16 496
1+2+4+8+16+32 63 not Prime - -
1+2+4+8+16+32+ 64 127 Prime 127× 128 16256
1+2+4+8+16+32+64+128 255 not Prime - -

While you were adding up the powers of 2, did you observe any pattern in the

sequence of sums obtained? It may be more obvious if we express each number in

terms of powers of 2, as we shall see in the follow table.

3) Complete the table.

Series Sum Prime
1 + 21 22 − 1 prime
1 + 21 + 22

1 + 21 + 22 + 23 not prime
1 + 21 + 22 + 23 + 24

1 + 21 + 22 + 23 + 24 + 25

1 + 21 + 22 + 23 + 24 + 25 + 26

1 + 21 + 22 + 23 + 24 + 25 + 26 + 27

Answer.

Series Sum Prime
1 + 21 22 − 1 prime
1 + 21 + 22 23 − 1 prime
1 + 21 + 22 + 23 24 − 1 not prime
1 + 21 + 22 + 23 + 24 25 − 1 prime
1 + 21 + 22 + 23 + 24 + 25 26 − 1 not a prime
1 + 21 + 22 + 23 + 24 + 25 + 26 27 − 1 prime
1 + 21 + 22 + 23 + 24 + 25 + 26 + 27 28 − 1 not a prime

4) Use the table you just completed to compute the following sums:

1 + 21 + 22 + 23 + 24 + · · ·+ 28

1 + 21 + 22 + 23 + 24 + · · ·+ 28 + 29

1 + 21 + 22 + 23 + 24 + · · ·+ 29 + 210

1 + 21 + 22 + 23 + 24 + · · ·+ 210 + 211
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Answer.

1 + 21 + 22 + 23 + 24 + · · ·+ 28 = 29 − 1

1 + 21 + 22 + 23 + 24 + · · ·+ 28 + 29 = 210 − 1

1 + 21 + 22 + 23 + 24 + · · ·+ 29 + 210 = 211 − 1

1 + 21 + 22 + 23 + 24 + · · ·+ 210 + 211 = 212 − 1

5) Can you find a formula for finding the sums of 2′s?

Answer. The formula is 2n − 1.

6) Can you find a relation between n and the formula you found?

Answer. If n is not a prime, then (2n − 1) is not a prime.

7) What values of n make the sum of 2′s a prime number?

Answer. Prime values

This activity addresses the following common core standards:

CCSS.MATH.CONTENT.7.EE.B.4.A

Solve word problems leading to equations of the form px+q = r and p(x+q) = r,

where p, q, and r are specific rational numbers. Solve equations of these forms

fluently.

CCSS.MATH.CONTENT.8.EE.A.1

Know and apply the properties of integer exponents to generate equivalent nu-

merical expressions. For example, 32 × 3−5 = 3−3 = 1/33 = 1/27.

Students need to know how to find sums of double proportions 20 + 21 + 22 =

1 + 2 + 4 = 7
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CCSS.MATH.CONTENT.HSA.SSE.A.1.B

Interpret complicated expressions by viewing one or more of their parts as a

single entity. For example, interpret P (1 + r)n as the product of P and a factor

not depending on P .

To know how to find the divisors of 2p−1q given that q is a prime.

CCSS.MATH.CONTENT.HSA.SSE.A.1.A

Interpret parts of an expression, such as terms, factors, and coefficients.

To understand what is a divisor, and to be able to find divisors of different numbers

and expressions.

CCSS.MATH.CONTENT.HSA.SSE.B.3.C

Use the properties of exponents to transform expressions for exponential func-

tions.

To show that some observations are true. For example, if n is even then 2n − 1 is

not prime.

let n = m · k then 2n = (2m)k let n = m · k then 2n = (2m)k

2n − 1 = (2m)k − 1

= [(2m − 1)][(2m)k−1 + (2m)k−2 + · · ·+ (2m)2 + (2m) + 1] geometric series

CCSS.MATH.CONTENT.HSA.SSE.B.4

Derive the formula for the sum of a finite geometric series (when the common

ratio is not 1), and use the formula to solve problems.
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It is always true that an − 1 is divisible by (a − 1), and it is proved by using

geometric series.

1 + a+ a2 + a3 + a4 + · · ·+ an−1 =
an − 1

a− 1

(1 + a+ a2 + a3 + a4 + · · ·+ an−1)(a− 1) = an − 1
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5.3 Find Perfect Numbers

The goal is to walk students through the proof of Euclid’s formula, and find perfect

numbers.

Complete the following table

Series Sum Sum× last 2n−1 in the series
1 + 21 22 − 1 3× 21 = 6
1 + 21 + 22

1 + 21 + 22 + 23

1 + 21 + 22 + 23 + 24

1 + 21 + 22 + 23 + 24 + 25

1 + 21 + 22 + 23 + 24 + 25 + 26

1 + 21 + 22 + 23 + 24 + 25 + 26 + 27

1) Find a pattern.

Answer. Since we are multiplying the sum, which we figured out in the previous

activity is 2n−1 by the last in the series, which is 2n−1. Then the pattern is 2n−1n(2n−

1)

2) Find perfect numbers.

Answer. When

n = 2⇒ 22−1(22 − 1) = 6

n = 3⇒ 23−1(23 − 1) = 28

both 6 and 28 are perfect numbers.

3) Can you give a formula to find perfect numbers?

Answer. To get a perfect number, n should be prime.
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4) Are all perfect numbers even, odd, or both?

Answer. All the perfect numbers that we found are even.

This activity addresses the following common core standards:

CCSS.MATH.CONTENT.HSA.SSE.A.1

Interpret expressions that represent a quantity in terms of its context

CCSS.MATH.CONTENT.HSA.SSE.A.1.B

Interpret complicated expressions by viewing one or more of their parts as a

single entity. For example, interpret P (1 + r)n as the product of P and a factor

not depending on P .

To know how to find the divisors of 2p−1q given that q is a prime.

CCSS.MATH.CONTENT.HSA.SSE.A.2

Use the structure of an expression to identify ways to rewrite it. For example,

see x4−y4 as (x2)2− (y2)2, thus recognizing it as a difference of squares that can

be factored as (x2 − y2)(x2 + y2).

To be familiar with ways to factor a polynomial and find its divisors.

CCSS.MATH.CONTENT.HSA.APR.C.5

Know and apply the Binomial Theorem for the expansion of (x+y)n in powers of

x and y for a positive integer n, where x and y are any numbers, with coefficients

determined for example by Pascal’s Triangle.1

Students should be able to use Binomial Theorem to prove some parts of theorems

like:

“If (2n − 1) is prime for some integer n ≥ 2 , then n is prime.”
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Chapter 6: College

This chapter contains activities to introduce college students to perfect numbers

and polynomials. These activities are easy to follow. They are provided with a key

answer and followed by some standards that we wish a student to accomplish by going

through these activities. Appendix 4 of this paper contains an unsolved version of

these activities.

6.1 Even Perfect Numbers

The goal of this activity is to walk students through the proof of Euclid’s formula

for perfect numbers.
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Consider:

20 = 1 = 21 − 1

20 + 21 = 3 = 22 − 1

20 + 21 + 22 = 7 = 23 − 1

1 + 21 + 22 + 23 = 15 = 24 − 1

1 + 21 + 22 + 23 + 24 = 31 = 25 − 1

1 + 21 + 22 + 23 + 24 + 25 = 63 = 26 − 1

1 + 21 + 22 + 23 + 24 + 25 + 26 = 127 = 27 − 1

Use the equations above to answer the following questions:

1) When is 2n − 1 a prime?

Answer. 2n − 1 is prime when n = 2, 3, 5, 7.

2) When 2n − 1 is a prime number, we call it Mersenne prime. Can you give me the

first 3 Mersenne primes?

Answer. The First three Mersenne primes are 3, 7 ,31.

3) When is 2n − 1 is composite?

Answer. when n = 4, 6.

4) Look at the following table:

(n verses 2n − 1)

79



1 2 3 4 5 6 7 8 9 10 11 · · · n

1 3 7 15 31 63 127 255 511 1, 023 2, 047 · · · 2n − 1

5) Write 28 in the form 2n−1(2n − 1). Then write all the factors of 28.

Answer.

28 = 22(23 − 1)

The factors of 28 are

1, 2, 22, (23 − 1), 2(23 − 1), 22(23 − 1).

6) Write 496 in the form 2n−1(2n − 1). Then write all the factors of 496.

Answer.

496 = 24(25 − 1)

The factors are

1, 2, 22, 23, 24, (25 − 1), 2(25 − 1), 22(25 − 1), 23(25 − 1), 24(25 − 1).

7) Write 8128 in the form 2n−1(2n − 1). Then write all the factors of 8128.

Answer.

8128 = 26(27 − 1)

The factors are

1, 2, 22, 23, 24, 25, 26, (27 − 1), 2(27 − 1), 22(27 − 1), . . .

23(27 − 1), 24(26 − 1), 25(27 − 1), 26(27 − 1)
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8) Each Mersenne prime give rise to a perfect number. Can you show how? And can

you give the three perfect numbers associated with the first three Mersenne primes?

Answer. After looking at the table and the exercises, we can see that a perfect

number is given by 2n−1(2n − 1) where (2n − 1) is a Mersenne prime. So the first 3

perfect numbers are 6, 28, 496.

9) Let p have the form 2n−1(2n − 1) where (2n − 1) is a prime. Write all the factors

of p.

Answer. The factors are:

1, 2, 22, ..., (2n − 1), 2(2n − 1), ..., 2n−1(2n − 1)

10) Add the factors of p.

Answer.

(1 + 2 + 22 + 23 + ...+ 2n−1) + (2n − 1)(1 + 2 + 22 + 23 + ...+ 2n−2)

(1 + 2 + 22 + 23 + ...+ 2n−1)(1 + 2n − 1) = 2n(1 + 2 + 22 + 23 + ...+ 2n−1)

= 2.2n−1(1 + 2 + 22 + 23 + ...+ 2n−1) = 2p

11) Since the sum of the divisors of p equals 2p, what do we call p?

Answer. p is called a perfect number. This means any number with the form

2n−1(2n − 1) where (2n − 1) is prime is called a perfect number.

These activities address the following standards:

CCSS.MATH.PRACTICE.MP1

Make sense of problems and persevere in solving them.
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CCSS.MATH.PRACTICE.MP2

Reason abstractly and quantitatively.

CCSS.MATH.PRACTICE.MP3

Construct viable arguments and critique the reasoning of others.

CCSS.MATH.PRACTICE.MP5

Use appropriate tools strategically.

CCSS.MATH.PRACTICE.MP6

Attend to precision.

CCSS.MATH.PRACTICE.MP7

Look for and make use of structure.

CCSS.MATH.PRACTICE.MP8

Look for and express regularity in repeated reasoning.
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6.2 Perfect polynomials (mod 2)

1) Find all real zeros of the polynomial, and write the polynomial in factored form:

1. x2 + x

Answer. x2 + x = x(x+ 1)

The zeros are 0, 1.

2. x4 + x2

Answer. x4 + x2 = x2(x2 + 1)

The is only one real zero which is 0 with multiplicity 2.

3. x4(x+ 1)4

Answer. x4(x+ 1)4 = x · x · x · x(x+ 1)(x+ 1)(x+ 1)(x+ 1)

There are two zeros, 0 and 1, with multiplicity 4 for each zero.

2) If you know that σ(A(x)) is the sum of all the factors of the polynomial A(x),

what is σ(A(x)) of the previous polynomials if we are summing mod 2, or Z2[x].

Answer. 1.

σ(x2 + x) = σ((x)(x+ 1)) (mod 2)

Since gcd((x), (x+ 1)) = 1

= σ(x) · σ(x+ 1) (mod 2)

= (x+ 1)((x+ 1) + 1) (mod 2)

= (x+ 1)(x+ 2) (mod 2) (x+ 2) ≡ x (mod 2)

≡ (x+ 1)x (mod 2)

83



2.

σ(x4 + x2) = σ((x2)(x2 + 1)) (mod 2)

Since gcd((x2), (x2 + 1)) = 1

= σ(x2) · σ(x2 + 1) (mod 2)

= ((x2) + 1)((x2 + 1) + 1) (mod 2)

= (x2 + 1)(x2) (mod 2)

3.

σ(x4(x+ 1)4)

Since gcd((x), (x+ 1)) = 1,

= σ(x4) · σ((x+ 1)4) (mod 2)

= (x+ 1)4(x)4 (mod 2)

3) If a Mersenne prime polynomial is a polynomial of the form xa(x+ 1)b + 1 that is

irreducible, can you give a polynomial that is a Mersenne prime polynomial?

Answer. Some Mersenne priem polynomials are 1 + x+ x2 , 1 + x+ x3.

4) Do all perfect polynomials have a Mersenne prime polynomial as a factor?

Answer. Perfect polynomials are two types. One is called trivial perfect polynomial

and it does not have Mersenne prime polynomials in them like the first two of the

examples in this activity. Another type is called a nontrivial perfect polynomial and it

has Mersenne prime polynomials as an odd divisor. There are only 11 polynomials of

the nontrivial perfect polynomials. Thus, not all perfect polynomials have a Mersenne

prime polynomial as a divisor.
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5) Give an example of a perfect polynomial that does not have a Mersenne prime as

a factor.

Answer. All polynomials on the form (x(x+ 1))2
n−1 where n ∈ N are trivial perfect

polynomials. Thus, the first two polynomials of the first question does not have a

Mersenne prime as a factor.

CCSS.MATH.PRACTICE.MP2

Reason abstractly and quantitatively.

Make reason about the pattern and why or why not Mersenne prime polynomial

is a factor of a perfect polynomials or not.

CCSS.MATH.PRACTICE.MP3

Construct viable arguments and critique the reasoning of others.

Do all perfect polynomials have a Mersenne prime polynomial as a factor? Why

or why not

CCSS.MATH.PRACTICE.MP6

Attend to precision.

Factoring and finding zeros.

CCSS.MATH.PRACTICE.MP7

Look for and make use of structure.

Make sense of the last two problems.

CCSS.MATH.PRACTICE.MP8

Look for and express regularity in repeated reasoning.

Last two questions.
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Appendix A: Pre-Kindergarten to Third Grade Activities

In this appendix we give our activity collection for pre-kindergarten to third Grade

students.
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A.1 Making Rectangles

Given the following 12 squares:

{Part 1}

1) Take 4 squares. Arrange them in to a rectangle. How many different rectangles

can you make?

2) Take 6 squares. Arrange them in to a rectangle. How many different rectangles

can you make?

3) Take 10 squares. Arrange them in to a rectangle. How many different rectangles

can you make?

{ Part 2 }

4) Count 2 squares. Try to put them in a rectangular form. How many different

rectangles can you make?

5) Count 3 squares. Try to put them in a rectangular form. How many different

rectangles can you make?

6) How many different rectangles can you make if you have 5 squares?

7) How many different rectangles can you make if you have 7 squares?
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8) How many different rectangles can you make if you have 9 squares?

9) How many different rectangles can you make if you have 11 squares?

10) How many different rectangles can you make if you have 12 squares?

11) Which numbers had only 1 representation?

12) Why do these numbers have only 1 representation?

13) Which numbers had more than one representation?
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A.2 How many ways

1) How many ways can you write the number 4 as a product of two numbers?

2) How many way can you write the number 6 as a product of two numbers?

3) How many way can you write the number 7 as a product of two numbers?

4) How many way can you write the number 8 as a product of two numbers?

5) How many way can you write the number 9 as a product of two numbers?

6) How many way can you write the number 10 as a product of two numbers?

7) How many ways can you write the number 12 as a product of two numbers?

Now can you write down all the numbers in order, without repeating any, and

when you multiply them together they give you the following:

The Number Ordered products
4 1 , 2, 4
6
7
8
9
10
12
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A.3 Pick a Number

Consider the following:

10

1× 10 = 10

2× 5 = 10

5× 2 = 10

10× 1 = 10

10÷ 1 = 10

10÷ 2 = 5

10÷ 5 = 2

10÷ 10 = 1

Here the numbers 1, 2, 5 and 10 are called the divisors of the number 10.

1) List all the divisors of the number 6.

2) Can you give a number that has only two positive divisors?

3) Give me a number that has four positive divisors?

4) Can you find the number between 1 and 50 that has the greatest number of positive

divisors?

5) Can you find two numbers that have the same positive divisors?

6) Can you find two numbers that have the same number of positive divisors?
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7) Can you find a number that is equal to the sum of its divisors?

8) Can you find a number that is equal to half the sum of its divisors?

9) Can you find a number that is greater than the sum of its divisors?
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A.4 Sharing cookies

You have some cookies that you want to share with your friends.

1. You must give each of your friends more than one whole cookie.

2. You must give each of your friends an equal number of whole cookies.

3. Non of the cookies can be cut into parts.

1) Suppose you have 3 cookies. How many different friends could you share these

cookies with?

2) Suppose you have 4 cookies. How many different friends could you share these

cookies with?

3) Suppose you have 5 cookies. How many different friends could you share these

cookies with?

4) Suppose you have 6 cookies. How many different friends could you share these

cookies with?

5) Suppose you have 7 cookies. How many different friends could you share these

cookies with?

6) Suppose you have 8 cookies. How many different friends could you share these

cookies with?

Let’s record these facts in the table below.
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Number of cookies Number of friends to share with
2
3
4 1 or 2
5
6
7
8

For this table our goal is for students to apply what they learned in finding divisors,

and practice their skills in adding numbers.

Now try to complete the following table

Number of cookies Add possible numbers of friends
6
8
9
10
12
15
16
20
22
25
28
30

7) Sally noticed if you add the proper divisors they are always less than the number

itself, while Kim noticed that value is always larger. Can you help me to figure out

which one of them is right?

.

8) Does the sum of all possible numbers of friends ever equal the number of cookies?

.
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Appendix B: Fourth to Ninth Grade Activities

This appendix contains activities for students from fourth grade to ninth grade
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B.1 Prime Numbers

Finding Primes. Look At the following table.

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 50
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Given that 2 is two a prime number, cross out every other number.

1) Is 3 crossed out or not? If 3 is crossed out then move to the next number. If 3 is

not crossed out, 3 is a prime, so circle it and cross out every third number.

2) Is 4 crossed out or not? If 4 is crossed out, then move to the next number. If 4 is

not crossed out, 4 is a prime, so circle it and cross out every fourth number.

3) Repeat the process until you get all the prime numbers between 1 and 100. List

all of the prime numbers found between 1 and 100. How many are there?
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B.2 Divisors

1) Find all the divisors of the following numbers:

Number Divisors

4 1, 2, 4
6
8
9
12
15
17
20
22
25
28
32
100
202
236
496

The proper divisors of a number are all the divisors except the number itself.

2) Add the proper divisors for each number in the previous exercise.

Number Sum of Proper Divisors

4 1 + 2 = 3
6
8
9
12
15
17
20
22
25
28
32
100
202
236
496
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3) Which numbers have the sum of their proper divisors less than the number itself?

4) Which numbers have the sum of their proper divisors equal to the number itself?

5) Which numbers have the sum of their proper divisors greater than the number

itself?
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B.3 The sum of the reciprocal divisors of a number

1) If d is a divisor of a number, find the sum of the reciprocal of all divisors of the

following numbers:

1. n = 2.

2. n = 3.

3. n = 4.

4. n = 6.

5. n = 8.

6. n = 28.

7. n = 496.

2) If you know that 6, 28 and 496 are perfect numbers, can you see a relation between∑
(1/d) and a perfect number?

3) What is the relation between the sum of the divisors of n and the sum of the

reciprocal of the divisors of n, if n is a perfect number?
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B.4 Number of Factors

Jessica is a clever student. The teacher asked her to find the number of divisors

of the number 23 × 32 × 7. So she started as following:

7

30 31 3230 31 32

20 21 22 23 20 21 22 23 20 21 22 23

Consider the diagram she made:

1) Find the number of divisors of the number 23 × 32 × 7.

2) Can you write the divisors of the number 23 × 32 × 7?

3) Can you help Jessica find an easier way to find the number of divisors?

4) Can you make a similar diagram for 48 and find the number of divisors?

5) Find the number of divisors of 240.

6) If p is a prime number, find the number of divisors of pn.

7) If p is a prime. Find the number of divisors of 2p5
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Appendix C: Seventh to Twelfth Grade Activities

This appendix contains activities for students from seventh grade to high school.
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C.1 “σ” Function

If σ(6) = 1 + 2 + 3 + 6 = 12, so σ is a function that adds up all the divisors of a

function. Find the following:

1. σ(2)

2. σ(3)

3. σ(4)

4. σ(5)

5. σ(8)

6. σ(9)

7. σ(10)

8. σ(12)

9. σ(20)

10. σ(25)

11. σ(28)

1) Now look at σ(10) does it equal σ(2)× σ(5)?

2) Dose σ(12) equal σ(3)× σ(4)?

3) What about σ(20) does it equal σ(4)× σ(5)?

4) If m, n are two different natural numbers can we say that σ(m.n) = σ(m)×σ(n)?
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5) If your answer was yes for the previous questions, look at σ(4) does it equal

σ(2)× σ(2)

6) If the gcd (a, b) = 1 and σ(a) = 5 , σ(b) = 9. Find σ(a · b).
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C.2 Perfect Numbers Formula

A perfect number is a positive integer number, that equals to the sum of it’s

proper divisors. The following are perfect numbers

6 = 1 + 2 + 3

28 = 1 + 2 + 4 + 7 + 14

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248

8128 = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064

1) Do you see any pattern?

Complete the following table

Sum Prime Calculation Perfect Number
1 + 2 3 Prime 2× 3 6
1 + 2 + 4
1 + 2 + 4 + 8 15 not a Prime - -

While you were adding up the powers of two, did you observe any pattern in the

sequence of sums obtained? It may be more obvious if we express each number in

terms of powers of two, as we shall see in the follow table:

Series Sum Prime
1 + 21 22 − 1 prime
1 + 21 + 22

1 + 21 + 22 + 23 not prime
1 + 21 + 22 + 23 + 24

1 + 21 + 22 + 23 + 24 + 25

1 + 21 + 22 + 23 + 24 + 25 + 26

1 + 21 + 22 + 23 + 24 + 25 + 26 + 27
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2) Use the table you just completed to compute the following sums:

1 + 21 + 22 + 23 + 24 + · · ·+ 28

1 + 21 + 22 + 23 + 24 + · · ·+ 28 + 29

1 + 21 + 22 + 23 + 24 + · · ·+ 29 + 210

1 + 21 + 22 + 23 + 24 + · · ·+ 210 + 211

3) Can you find a formula for finding the sums of 2′s?

4) Can you find a relation between n and the formula you found?

5) What values of n make the sum of 2′s a prime number?
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C.3 Find Perfect Numbers

Complete the following table

Series Sum Sum× last 2n in the series
1 + 21 22 − 1 3× 21 = 6
1 + 21 + 22

1 + 21 + 22 + 23

1 + 21 + 22 + 23 + 24

1 + 21 + 22 + 23 + 24 + 25

1 + 21 + 22 + 23 + 24 + 25 + 26

1 + 21 + 22 + 23 + 24 + 25 + 26 + 27

1) Find a pattern.

2) Find perfect numbers.

3) Can you give a formula to find perfect Numbers?

4) Are all perfect numbers even, odd, or both?
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Appendix D: College

In this appendix we give our activity collection for college students.
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D.1 Even Perfect Numbers

Consider:

20 = 1 = 21 − 1

20 + 21 = 3 = 22 − 1

20 + 21 + 22 = 7 = 23 − 1

1 + 21 + 22 + 23 = 15 = 24 − 1

1 + 21 + 22 + 23 + 24 = 31 = 25 − 1

1 + 21 + 22 + 23 + 24 + 25 = 63 = 26 − 1

1 + 21 + 22 + 23 + 24 + 25 + 26 = 127 = 27 − 1

Use the equations above to answer the following questions:

1) When is 2n − 1 a prime?

2) When 2n − 1 is a prime number, we call it Mersenne prime. Can you give me the

first 3 Mersenne primes?

3) When is 2n − 1 is composite?

4) Look at the following table:

(n verses 2n − 1)

1 2 3 4 5 6 7 8 9 10 11 · · · n

1 3 7 15 31 63 127 255 511 1, 023 2, 047 · · · 2n − 1
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5) Write 28 in the form 2n−1(2n − 1). Then write all the factors of 28.

6) Write 496 in the form 2n−1(2n − 1). Then write all the factors of 496.

7) Write 8128 in the form 2n−1(2n − 1). Then write all the factors of 8128.

8) Each Mersenne prime give rise to a perfect number. Can you show how? And can

you give the three perfect numbers associated with the first three Mersenne primes?

9) Let p have the form 2n−1(2n − 1) where (2n − 1) is a prime. Write all the factors

of p.

10) Add the factors of p.

11) Since the sum of the divisors of p equals 2p, what do we call p?
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D.2 Perfect polynomials (mod 2)

1) Find all real zeros of the polynomial, and write the polynomial in factored form:

1. x2 + x

2. x4 + x2

3. x4(x+ 1)4

2) If you know that σ(A(x)) is the sum of all the factors of the polynomial A(x),

what is σ(A(x)) of the previous polynomials if we are summing mod 2, or Z2[x].

3) If a Mersenne prime polynomial is a polynomial of the form xa(x+ 1)b + 1 that is

irreducible, can you give a polynomial that is a Mersenne prime polynomial?

4) Do all perfect polynomials have a Mersenne prime polynomial as a factor?

5) Give an example of a perfect polynomial that does not have a Mersenne prime as

a factor.
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