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Abstract

In this thesis, we discuss the fundamental concepts of the Bergman projection and
kernel. In particular, we prove that the Bergman kernel on a given domain €2 can be
characterized in terms of an orthonormal basis of A%(€2). This result is central to the
theory of the Bergman kernel and will therefore be shown in full detail. We calculate
the Bergman kernel on several domains such as the unit disk, the unit ball in C? and
C", and the annulus. In addition, we show that given two conformally equivalent
domains 21,5 C C, one can represent the Bergman kernel of {2; in terms of the

Bergman kernel of €2,.
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Chapter 1: Motivation

We start by stating our topic of study: integral operators and their associated
kernels over C (and later we will look into those over C"). In particular we begin
with the Cauchy integral formula. A list of notation used in this thesis appears at

the end of this chapter.

Theorem 1.1. Let Q C C be a bounded domain with piecewise smooth boundary. If
f is holomorphic on 2 and f extends smoothly to the boundary of 2, then

f2) = = (W) g (1.1)

21 Jogq w — 2

for any point z € Q. [1, p. 113]

The Cauchy integral formula is an amazing fact and the very thing that piqued
this author’s interest into complex analysis. We ask ourselves “what else can be said
about this?” For one thing, it turns out for each f € C(0€2), the Cauchy integral is

holomorphic in €2, which we’ll show in Corollary 1.3 below.

Theorem 1.2. Let F(z,s) be defined for (z,s) € Q x [0,1], where Q is an open set

in C. Suppose F' satisfies the following properties:
(i) F(z,s) is holomorphic in z for each s.

(ii) F is continuous on 2 x [0, 1].



Then the function defined on ) by

is holomorphic. [3, p. 56]

Corollary 1.3. Let Q C C be a bounded open subset with smooth boundary and let

f € C(09). Then the Cauchy transform of f,

() == [ LW g, (12)

211 Joq w — 2

1s holomorphic in 2.

Thus the Cauchy transform, C, can be thought of as an integral operator with
1

associated kernel C(z,w) = Smilw—2)"
milw —

Proof: Let v: [0,1] — 09 be a smooth parameterization of 02 and let z € 2. Then,

by setting w = (t) in (1.2),

1 f(w) y I

C = = — F(z,t)dt 1.3
(NG =57 [ I dw= oz [ PGna (1.9
t
where F'(z,t) = P‘yf((tf)y(_)l'y'(t) We claim that F' is holomorphic in z for each ¢ and

that F' is continuous on €2 x [0, 1] in order to apply Theorem 1.2.

Notice that for any ¢ € [0,1], z # ~(t) for all z € Q. For if so, then there exists
to € [0,1] such that z = v(ty) € 9. This would imply that z ¢ 2°. Since Q is open,
we would therefore have z ¢ ). Hence we have a contradiction. And so, v(t) —z # 0
for all t € [0,1] and z € Q.
f6@)

0 7'(t) is holomorphic in z. Further,
y(t) — 2

as f € C(09), F(z,t) is continuous on € x [0,1]. Thus, by Theorem 1.2, C(f)(z) is

Therefore, for each t € [0,1], F(z,t) =

holomorphic. [



With all the wonderful results that complex analysis holds we have to ask ourselves
several questions. Was the Cauchy integral formula a fluke or are there more equations
like this? If so, what properties do they possess? In addition, are they generalizable?

We plan to address each of these questions. In the coming chapters we will discuss
the latter two, but for now we draw our attention to the first. Before doing so we

recall two classic results in complex analysis mentioned below.

Theorem 1.4. Let f be a holomorphic function on an open set 2 C C. Then for

any z, € 2 and 0 < r < dist(zy, 09)

L™ r 4 re®) do = i/ F(2) AV (2). (1.4)
Dy (20)

f(z0) = 27 J, r?
The first equality of (1.4) is the mean value property for circles and the second
is the mean value property for disks. We will utilize the latter in the proof of an

important result in chapter 2. Whereas, for our purposes, the former will only be

used in obtaining the property for the disk.

Proof: Let f be a holomorphic function on an open set 2 C C and let 2y € €2. Then

for any 0 < r < dist(zp, 092), D,(z0) € . Hence, by the Cauchy integral formula,

L gw
f(#0) /8]]%(20) dw. (1.5)

- 2mi w — 2
By the substitution w = 2y + re? for 0 < 6 < 27, dw = ire® and

L[ flzo+7e?) . [ 0
f(z) = i ) pew T df = 5~ i f(zo + 7€) db (1.6)



thereby establishing the first equality. Next, by setting z = 25 + se for 0 < s < r

and 0 < 8 < 27 we have

1 1 r 2 0
s oy OV =5 [ [ Sk scys o
/ f(z0)s ds (1.7)

—f(Zo)(2>

Note that the middle equality was due to the mean value property for circles es-
tablished in (1.6). Therefore, by dividing by r?/2, we obtain the second equality.

O

The answer to the first question is that “no, this wasn’t some fluke.” There are
many different equations like the Cauchy integral formula. In particular, we will

explore one in detail but do note that there are others to be studied as well.

Theorem 1.5 (The Bergman kernel on the unit disk). For all f € A*(D) and z € D,

f(z) =2 / (J”Ll av (w). (18)

7 Jp (1 — zw)?
Notice that the integral defined above is a convergent integral. Indeed, as
|z| < 1and |w| <1, |2w| = |z||w| < |z| and 1 — |z| > 0. Then, by the reverse triangle

inequality, |1 — zw| > 1 — |zw| > 1 — |z|. Thus,

2

dV(w) <

2

! dV(w) < o0, (1.9)

p| (L —zw)?

-
p|(1—|z])?

and we have the convergence of (1.8) by means of the Cauchy-Schwarz inequality.

Proof: Let f € A?(D) and fix » € D. By setting w = re with 0 < r < 1 and

0 <6 < 2w, we have dV (w) = dxdy = rdrdf. Hence,

/(1‘]:(% // 1_Zm 20 L dfdr. (1.10)



. . —id ,
Since w = re?, dw = ire"dd = iwdl. Therefore df = ! w’ e = =, and

27 —id
// 7 Td@dr—// (w) 57 der
(1— zre—Z op (1 — zT— w
/ / _”fz, d (1.11)
op (¥=22) u’fr
/ / —zrwf 2 dwdr
8]]]) — 2T

—irw f(w)
(w — zr?)?
zr? € D. By residue calculus, the inside integral of our last equality in (1.11) becomes

/m —irwf(w) dw = 27i - Res [M zrg} : (1.12)

(w— 2r2)? (w— 2r2)?’

Notice that as |z| < 1 and r < 1, |2r?| < 1. Thus has a double pole at

2 is a double pole,

o [0 ] _ (et

22 — 22
w
(w — zr?) S22 dw (w — zr?)

Since zr

_ w{%%( irw f (w)) )

= lim (—irf(w) — irwf (w))

w—rzr?
= —irf(zr®) —ir’zf'(2r?).

This calculation transforms (1.12) into

M w = 2mi(—ir f(zr?) —irdz ' (zr?
| dw = 2 (rt) — i (1) -

= 7m(2rf(2r?) + 22r° f'(21?)).
At this stage we notice that 2r f(zr?) + 2203 f'(2r%) = 4 (r2 f(2r?)). Hence,

/ / erf dwdr = /1 m(2r f(2r?) + 2213 f'(2r?)) dr
op ( 0

I Ay (1.15)
—/o Lrm (r*f(2r?)) dr
=nf(2).

Therefore f(z) = %/ﬂ)% dV(z). O



The function B(z,w) = is called the Bergman kernel for the unit

(1~ 2w)?
disk. We note that B(z,w) is a conjugate symmetric function which is holomorphic
in z and anti-holomorphic in w. Further, the integral operator corresponding to B
reproduces holomorphic functions. These facts turn out to be true in a generalized
setting as well and we will discuss this in the next chapter.

The properties of the Bergman kernel are well known. However, in our opinion
there does not seem to be a suitable reference which goes through the proofs of
these properties in full detail. In particular, the proof of the result we present in
Theorem 2.16 will require several preliminary results that we intend to highlight. As
such, it is our goal in Chapter 2 to carefully show and prove many of the results
corresponding to the Bergman kernel.

The remainder of this chapter is dedicated to notation that will be used through-

out.

Notation:
1. N={0,1,...}.
2. dV(z) denotes Lebesgue measure in C".
3. Rop={reR|r>0}and R%, = {(r,...,r) € R" | r; >0 forall 1 <i<n}.

4. (-,-y3y : H x H — C denotes the inner product on a given Hilbert space, H. If
the space is clear from the context, we will omit the subscript and simply write
(+,+). Note that this inner product is linear in the first argument and conjugate

linear in the second.



10.

11.

12.

13.

14.

|- |3 : H — [0,00) denotes the norm on a given Hilbert space, H. If the space

is clear from the context, we will omit the subscript and simply write. || - ||

.Dy(a) ={2€C||z—a|] <r} witha € Cand r € Ry, For the unit disk

centered at the origin we use D.

A2 ={zeClo<|z|<p}with0 <o <p<oo.

Br={zeC"||z| <1}

C(Q)={f:Q— C| fis continuous}.
OQ) ={f:Q— C| f is holomorphic}.
L3(Q) = {f:Q%C’/QU(z)FdV(z) <oo}.

A2Q) = {f € L*(Q) | f € O(Q)} is the subspace of L*(2) of holomorphic

functions.
D (a) = Dy, (a1) x --- x D, (a,) with a € C" and r € RZ,,.

T(a,r) = 0D, (a1) X --- x D, (a,) with a € C* and r € RZ,,.

Multi-index notation:

For the n-tuple (ay,...,a,) € N", we write
L. a=(a,...,0p)
2. lal=a1+ ... +ay,
3. al=aoy! o)
For z = (21,...,2n),w = (w1, ..., w,) € C" and n-tuples a, we write

7



a _ o1 «
1. 2% =2"---20m

2. (z,w) = zyw1 + ... + zwy,

3. z—w= (2 —wy) (2, — wy)



Chapter 2: The Bergman Projection and Kernel

In this chapter we develop some of the theory of the Bergman projection and its
associated integral kernel in one complex variable. In particular, we intend to develop
the theory in an arbitrary domain and utilize these results to calculate the Bergman
kernel for the unit disk in a different manner than in Theorem 1.5. The two complex
variable and the n-complex variable cases will be addressed in the next chapter. For
this chapter we will work solely with functions from A?(Q2) (or A*(D) depending on
the situation).

Evidently A%(Q) is a subspace of L*(€2), which follows immediately from the lin-
earity of differentiation. Indeed, if f, g are holomorphic and «, 8 € C, then af 4+ £g
is also holomorphic. Further, a.f + (¢ is square integrable since L?*(f2) is a Hilbert
space. In fact, we will show below that A%(Q) is a closed subspace of L*(£2). In order

to do so we will require the following estimate.

Lemma 2.1. Let f € A%(Q). Then for all z € Q, |f(2)| < \/%? : disté,ﬂc) NN fllz2@)-

Proof: Let f € A%(Q)) and zp €  and set r = dist(29, Q2¢). Then D,(z) C Q and by

the mean value property for disks in Theorem 1.4,

1
Y PRCLE

! F)dV(2).

2
mr Dy (20)

|f(20)] =

(2.1)

IN

9



By applying the Cauchy-Schwarz inequality to (2.1), we see

= # (/Dr(zw e dv(z)>1/z </]D>r(zo) 1 dV(Z)>1/2

- </D,.<zo> 1F(2) dV(z))l/Q (mr?)1/2 (2.2)

Note that since |f(z)|> > 0 and D,(z) C Q,

1
ﬁTHfHLZ(Q)-

<! L
— /r dist(z,Q°) L2(@)

Hence, as f € A%(Q) and zy € Q were arbitrary, |f(z)]

for every f € A%(Q) and 2 € Q. O

This estimate is crucial to the proof of Theorem 2.3 below. The following fact is

a basic result in the theory of holomorphic functions.

Theorem 2.2. If {f,} is a sequence of holomorphic functions on Q0 and f, — f

uniformly on compact subsets of 0, then f is holomorphic on Q. [3, p. 53]

Theorem 2.3. Let Q C C be an open set. Then A?(Q) is a closed subspace of L*(2).

Proof: Let {f,} C A%*(Q) such that f,, — f for some f € L?(Q). We wish to show
that f € A*(Q). As f, is convergent in L?(Q), f,, must also be Cauchy in L*(Q).
Further, as {f,} C A*(Q), fn— fm € A%(Q) for all m,n € N. Let E C Q be a compact
subset and observe that for all z € E, 0 < dist(FE,Q°) < dist(z, 2°).

Let € > 0. Since {f,} is Cauchy in L?(£2), we must have the existence of an N € N
such that || f, — fullr2@) < e(v/7 - dist(E,Q°)) for all n,m > N. By Lemma 2.1, we

10



have that for all z € £ and n,m > N,

1
£u(2)  Ful2)] < —\de(z 5l Fnllse
1 2.4
_\/_dlst(E QC)an Fmllz2e) 24

< €.

Thus, f, — f uniformly on E. As E was arbitrary, we have by Theorem 2.2 that f

is holomorphic. Hence, f € A%(Q) and A?(Q) must be a closed subspace of L*(Q2). [J

Remark 1. It is important to note the following implication from the proof above:
convergence in A*(Q) implies pointwise convergence in C. That is, if {fn} is a se-
quence of functions in A*(Q) such that {f,} converges in the norm, then {f.} con-

verges pointwise as a function in C.

Since A%(Q) is a closed subspace, we have L*(Q) = A%(Q) & A*(Q)* and there
exists an orthogonal projection onto A%(€). This is called the Bergman projection,
which we will denote by B. It will turn out that the integral operator defined by
the Bergman kernel is equal to the Bergman projection, where an integral operator

is defined as follows:

Definition 2.1. Suppose Ty : L*(2) — L*(Q) is a linear operator given by the

formula
/sz w) dV (w) (2.5)

for f € L*(Q) and z € Q. We call T an integral operator and K is its associated

(integral) kernel. [}, p. 187]

In order to prove that the two Bergman operators actually coincide we will first
construct the Bergman kernel and establish several of its key properties. This will
require the following theorem.

11



Theorem 2.4 (The Riesz representation theorem). Let £ be a continuous linear func-

tional on a Hilbert space H. Then there exists a unique g € ‘H such that

0 f)={f,g)n for all f € H.
Moreover, ||l||3 = ||gll. [4, p- 182]

Lemma 2.5. Let 2 C C be an open subset. Then for each fixed z € S, there exists

a unique g, € A%(Q) such that f(z) = (f, g.) for all f € A*(2).

Proof: Fix 2 € Q and consider the linear operator ¢, : A*(Q) — C defined by
0.(f) = f(z) for all f € A%(Q2). Notice that for any f € A?*(),

1.(f)] = [f(2)] < CLl|fll2() by Lemma 2.1 and so £ is therefore bounded. Thus
¢, is a continuous linear functional. Hence, by Theorem 2.4, there exists a unique

g. € A%(Q) such that £,(f) = (f,g.) for all f € A%(Q). But £.(f) = f(z). Thus

f(z2) =({f,gz). O

Lemma 2.6. Set K(z,w) = g,(w), where g, is as defined above. Then K is conjugate
symmetric and is a reproducing kernel for A%2(Q2). That is, for all f € A%(Q) and

z € Q,

/ K (2, w) f(w) dV (w). (2.6)

Proof: If K(z,w) = g.(w), then for each f € A?(Q) we have from Lemma 2.5,

£(2) = (f. g2) = /f w)ga (@) dV (w /sz YaVw).  (27)

Next, let w € Q be fixed. We claim that K (w,-) € A%(Q). To show this, notice that

K(w,") = (g,(")) = gu(-) € A%(Q). Hence, by Lemma 2.5,

K(waz> = gw(Z) = <gw79z> = <gzagw> = gz(w> = K(zaw)

12



and so K is conjugate symmetric. [

Thus by virtue of the Riesz representation theorem, we have created an integral
kernel on A?(Q2). We show next that this function is the only such function which

satisfies the hypotheses of the following lemma.

Lemma 2.7. Assume K(-,w) € A*(Q) for each w € Q, K(z,w) is a reproducing

kernel, and that K is conjugate symmetric. Then K = K.

Remark 2. For simplicity of notation and clarity we will sometimes denote f((~,w)

or K(-,w) by Ky(-) or K, (-), respectively, for fived w € Q.

Proof: Suppose K is as described above. Since K(z,w) € A2%(Q) for each fixed

w € (2, we see that by Lemma 2.5

K(sz) = Kw(z) = <[~(w>gz>

- | K¢ waicaveo). 2
But g.(¢) = K(z,() by definition. So (2.8) becomes
/ R w)K(2,0) dV(Q)
(2.9)

K K(2,.0) dv(¢).

By assumption K is conjugate symmetric. Thus, as K is an integral kernel and

K(z,() is holomorphic in (,

_ ) (2.10)

and K = K. O

13



We now have the machinery necessary to show that the Bergman projection is
identified by the Bergman kernel. Indeed, the four properties of K (holomorphic in the
first variable, a reproducing kernel, conjugate symmetry, and uniqueness) mentioned

above will prove sufficient.

Theorem 2.8. Let Ty : L*(2) — L*(Q) denote the integral operator with associated
kernel K, given by Lemma 2.6. Then Tx = B, where B : L*(Q) — L*(Q) denotes the

Bergman projection.

Proof: To show equality it suffices to show that Ty is an orthogonal projection
onto A*(Q). For if so, we have by uniqueness that Tx = B. To begin we note
that by Lemma 2.6, K reproduces square integrable holomorphic functions. Thus, if
f e A%2(Q), then Tk (f)(2) = f(z) for all z € Q. Next we show that Tk (g) = 0 for all
ge A%(Q)*.

Let g € A2(Q)* and fix z € Q. Then

Tre(9)(z) = / K
= [ g(

),

by the conjugate symmetry of K (as shown in Lemma 2.6). By definition of the inner

z,w)g(w) dV (w)
(2.11)

(
w)K (w, z) dV (w)

production on L?(Q) we see from above that Tk (g)(z) = (g, K.). Since
K, = K(-,2) € A%(Q), we must have that Tk(g)(z) = 0. Thus, as z € Q was
arbitrary, g = 0.

Now, let f € L*(2). Since A%() is a closed subspace f = fi+ f» where f; € A%(Q)

and f, € A%2(Q)*. Then, by the linearity of Tk,

Tr(f) =T (fr + f2) = T (f1) + T (f2) = f1. (2.12)

14



As this f € L*(Q) was arbitrary we see from (2.12) that Im(Tx) = A?*(Q). We

additionally have that for all f € L?(Q),

Tx(Tk(f)) =Tk (f1) = f1 = T(f). (2.13)

Thus Tk is a projection onto A%(€2) and the only thing left to verify is that Ty is self-
adjoint. However, this is immediate. Indeed, recall that the kernel of T} is K(w, z).
However, by the conjugate symmetry of K, K(w,z) = K(z,w). Thus Tx and T}

are identified by the same kernel and we have Tx = T};. Hence, Tk is an orthogonal

projection onto A?(2) and we have T = B. [

So far we have only described K abstractly. Now we will give an explicit way of
calculating K given an orthonormal basis of A?(£2) as in Theorem 2.16 below. In order
to do so will require some results about sequences of functions which are uniformly
bounded. The next four items are taken from [3, pp. 225-227] (though the notation

will be changed in some cases).

Definition 2.2. A sequence {E,}5°, of compact subsets of Q@ C C is called an ex-

haustion if:

(i) E, C E,

g1 Joralln =1,2,. ..

(i1) Any compact set E C Q is contained in E, for some n. In particular,

n=1

If such a sequence {E,}2° , exists we say that 2 has an exhaustion.

Lemma 2.9. Any open subset 2 C C has an exhaustion.

15



Remark 3. The proof amounts to examining two cases: whether 2 C C is bounded or
unbounded. When Q is bounded, set E, = {z € Q| dist(z,0Q) > 1/n}. In the event
that Q0 is unbounded, set E, = {z € Q | dist(z,0Q) > 1/n and |z| < n}. However,
this restriction to C is not necessary since the same argument holds in the case where

Q C C™. Therefore, any open set 2 C C" has an exhaustion.

Definition 2.3. A family F of holomorphic functions on § is said to be normal
if every sequence in F has a subsequence that converges uniformly on every compact

subset K C ().

Theorem 2.10 (Montel’s theorem). Suppose F is a family of holomorphic functions

on ) C C that is uniformly bounded on compact subsets of 2. Then:

(i) F is equicontinuous on every compact subset of ).
(i1) F is a normal family.

We include a few details of the proof as they will be relevant in a moment. For the
full proof, see page 226 of [3]. Now, to prove equicontinuity requires a clever argument
involving the Cauchy integral formula. Indeed if £ C €2 is a compact subset, then

there exists r > 0 so that for z,w € E with |z —w| <,

| 1 1
f(z) = f(w) = %/BDzr(w)f(C) <§ —z (- w> d(' (2.14)
< LQW(QT)C 12 — w|
=or o2 F ’

where Cg is the uniform bound of F on E. Therefore, for any ¢ > 0, choose § > 0

so that § < min {7’,5—6}. Then (2.14) implies that |f(z) — f(w)| < € whenever
E

|z — w| < 6, thereby proving equicontinuity.

16



To prove F is a normal family requires two diagonalization arguments. During the
first digaonalization argument, we choose a sequence {w;} which is dense in . With
this dense subset, we inductively construct subsequences {f;,}nen so that f;,(wy)
converges for all £ < j. We extract the diagonal subsequence {g,} = { fnn }tnen, which
will converge uniformly on a compact subset E of {2 (equicontinuity is essential to
prove this). To create the subsequence which converges uniformly on every compact
subset of {2 requires pairing this result and Lemma 2.9 with a somewhat similar

diagonalization argument.

Remark 4. As mentioned in Remark 3, every open 2 C C™ also has an exhaustion.
Therefore, proving that a family, F, of holomorphic functions defined on 2 C C™ is
normal only amounts to proving equicontinuity. To the point, this means that Montel’s
theorem 1is true in n-dimensions as well. As we will require this generalization for
Corollary 2.14, we present the argument to show equicontinuity below. To do so will

require the use of the Cauchy integral formula in n-dimensions.

Theorem 2.11 (The Cauchy integral formula for the polydisc). Let

f(z) = f(z1,...,2n) be continuous on Q@ C C" and holomorphic with respect to each

variable separately. Then for every closed polydisc D*(a) C €,

1 f(©)
fz) = (2mi)™ /T(a,r) (G —21) - (G — 20) A (2.15)

for all z € D(a). [2, p. 7]

We must also prove a small algebraic result before moving forward with the n-
dimensional case of Montel’s theorem. As it will improve readability (at least in our

opinion), we will use the following notation: For (,z,w € C", i < j and k <, set

A" = (G 2) (G ) (G — ) - (G — ). (2.16)

%

17



. ’ll)l UJO
In the event that z or w does not occur, we write A 5 or AP

g respectively. In
0 i

! !

addition, if ¢+ > j, then we set A:Jj’“ = A;UO’“. For the following lemma, recall the
i 0

multi-index notation z —w = (23 — wy) - - - (2, — w,) mentioned in Chapter 1 (item

3).

Lemma 2.12. Let (,z,w € C". Then

1 o
(—z (—w
w? wl w2 w !
Ay (s —wi) + A (2 —wa) + ...+ A (2am1 — wpa) + Azgl (2, — wp)
N A" '
21
(2.17)
Proof: Let (,z,w € C". Then
wl w?
1 11 1 Ay Ay
(—z C—w A" A% AW
4 Z 2]
AU AY 4 AY A
_ _ % 2= ! (2.18)
AZJI}
w w ’UJO UJO
B A 81(A 82 — Azg?) + Azé)(Zl — wl)
a A
21
Notice that
AY A A AU LA A
38 25 z8 24 23 25 (2 19)
0 0
Hence, (2.18) expands to
w? wh w? wl w?
Azgl (AZ83 — Azé?) + Az§ (,22 — 'UJQ) —+ Az§<21 — U}l) (2 20)
AT . )
27

wy w)
Inductively we iterate the process done in (2.19) to A & — A for each k < n.
0

That is, for each k£ < n,

wi wg _ AWR wy wf wg
Ay —Bp =0y —Ap +Ax —A

(2.21)

E o n w0 w0
= A"F(AF AV ALY (2 — wyg).
0 (A ) A (e — w)
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Upon doing so, we will obtain our desired result. [

Corollary 2.13. If F is a family of holomorphic functions on £ C C" that is uni-
formly bounded on compact subsets of (), then F is equicontinuous on every compact

subset of 1.

Proof: Let F' C (2 be a compact subset and let f € F. Choose r > 0 sufficiently
small so that T,,(z,3r) C Q for all z € F' (here 3r = (3r,...,3r) € R" and

T (z,3r) = 0D3,.(21) X ... x OD3,(2,)). Let z,w € F so that |z —w| < r and consider
T, (w,2r). Then |z;—w;| < rfor1 <i <n (since max{|z;—w;| | 1 <i<n} <|z—wl).
Further, if ¢ € T,,(w, 2r), then |(; — w;| = 2r and r < |(; — z;| < 3r for any 1 < i < n.

Therefore by the Cauchy integral formula on the polydisc (Theorem 2.11), we have

16 = sl =z [ 10 ( - 25)
1 1

(2m)" /Tn(w,Qr) 70) 'C i 2 (- w‘ @

1 o (Br)"tzy —wi| + ...+ (3r)" 7z, — wy v
e (2r)rrn

IN

(T (w, 2r)),
(2.22)

where V(T (w,2r)) denotes the volume of T,,(w,2r) and Cr is the uniform bound
of F on F. Note the last inequality was due to Lemma 2.12 and the fact that
|G — zil, |G — w;| < 3rfor any 1 <i <mn.

Since
|21 —wi| + ..+ |z — wp| <n(max{]z; —w;| |1 <i<n})<nlz—w|, (2.23)

we have from (2.22) that

ot Cr (3r)"n Nl — w
1) = Fw) < GGy Y EWe2)|z =) (2.24)
= CH,Z —w|.
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Thus, if € > 0, we may choose § < min{ } so that |f(z) — f(w)| < € whenever

€
r, C_},
|z —w| < §. Therefore F is an equicontinuous family. [

Thus we have the n-dimensional case of Montel’s theorem. As such, we obtain a

very useful corollary.

Corollary 2.14. Let Q C C" be an open subset and { f,,} be a sequence of holomorphic
functions converging pointwise to a function f : Q — C. Suppose {f,} is uniformly

bounded on every compact subset E C Q). Then f, — f uniformly on compact subsets

of €.

Proof: Let Q2 C C" be an open set and {f,,} be as defined above. Further let £ C Q
be compact and { f,,, } be a subsequence of {f,,}. Since {f,} is uniformly bounded on
compact subsets, so must be {f,, }. Therefore, by Corollary 2.13 and our remark to
Theorem 2.10, {f,,} is a normal family. Hence, there exists a subsequence of {f, }
of {f,,} such that fn;, — g uniformly on E for some g. However, as f, — f pointwise
we must have that g = f by uniqueness. Thus f,; — f uniformly on E.

Since {f,,} was an arbitrary subsequence, it follows that every subsequence of
{fn} has a sub-subsequence converging uniformly to f. Now, to show that f, — f
uniformly on E, we suppose to the contrary. Then there exists ¢g > 0 and 2y € E such
that for every M € N, there exists a ny; > N such that |f,,,(20) — f(20)| > €. Then
{fn, } defines a subsequence of { f,,} which does not converge to f. This would mean
that {f,,,} could not have a subsequence converging uniformly to f, which leads us
to a contradiction. Hence f,, — f uniformly on FE. As this £ C ) was arbitrary,

fn = f uniformly on compact subsets of 2. [
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Below we will show that, given an orthonormal basis {¢,} C A%*(Q2), K can be

oo
represented as the series Z &n(2)dn(w), which will converge uniformly on compact
n=0
subsets of ©Q x Q. Considering this, we see the necessity for Corollary 2.14 (since
K depends on more than one complex variable). The pointwise convergence of the

series above will almost be immediate. However, to prove that the series is uniformly

bounded will require a different expression of the inner product on L?(2).

Lemma 2.15. Let H be a Hilbert space. Then for all g € H,

lglln = Hfsuupzl{|<f, 9)ul}

Proof: Let g € H. If g = 0, the result is immediate. So suppose g € H such that
g # 0. Let f € H such that ||f||x = 1. Then, by the Cauchy-Schwarz inequality,

I(fy )l < IIflls - llgll = llgl|s- Therefore, by taking the supremum over all f € H

suc that | = Lwesee. sup {107 9)ul} < ol Second. s 0.5t =
flln=1
Then ||f||% = 1 and
(F, gl = ]<Lg> _allE e (2.25)
T %)~ Tloll

Hence, sup {|{f,9)n|} > ||g||x and we have equality. OJ
1 £ll2=1

The lemma above gives us an alternate characterization of the norm in any given
Hilbert space. This will prove useful when we consider the fact that |(f, g.)| = |f(2)]
for the g, as described in Lemma 2.5.

Now we are finally ready to characterize K with respect to an orthonormal basis.
Theorem 2.16. For any choice of orthonormal basis {¢,} of A%(Q),
K(z,w) = ¢u(2)dn(w), (2.26)
n=0

which converges uniformly and absolutely on compact subsets F' C €2 x §Q.
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Proof: Notice that as A%() is a closed subspace of L*(Q2) and L?*(Q) is a Hilbert
space, A%(Q) must also be a Hilbert space. As such, A%()) admits at least one

orthonormal basis. Let {¢,} be such an orthonormal basis and fix w € €. Therefore,

since K (-,w) € A%(Q),

K(-w) =Y (K (w), éal-)én()- (2.27)

However, notice that (K (-,w), p,(-)) = (¢n(-), K(-,w)) = ¢n(w) by Lemma 2.7.

That is to say,

=3 6u(Jou(w) (2.28)

for fixed w € Q and so K(-,w) converges in the norm. Recall that pointwise con-
vergence is dominated by L?(2) convergence in A%(§2). Therefore K (-,w) converges
pointwise to i ¢n(-)dp(w). Thus, in accordance with Corollary 2.14, it suffices to
show that our summation in (2.26) is uniformly bounded on compact subsets of €.

Next, we note that

1 Cow)lFa@y = D 10a(), K(w)) P =) Ida(w)[. (2.29)

Now, by Lemma 2.15 and the conjugate symmetry of K,
1K Cw)llez@ = 1K (w, 2@ = 190020

= sup  {[(f, g0)[} (2.30)

HfHL2(Q):1

= sup  {|f(w)]},

Hf”]ﬁ(g):l

where the last equality is due to Lemma 2.5. Therefore, by Lemma 2.1 we must have

1K w2 = sup {[f(w)[}

£l 20y =1

< { o e Ml |

= D = Tiet(w 0oy 2@ 2.31
12—t LV dist(w, Q°) () (2.31)
1 1

/o dist(w, Q°)°
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Thus, if F is a compact subset of €2, then there exists a constant C'r > 0 so that
[ K (-, w)|| 2 < Cp for all w € E. From (2.29) this implies that
> o lon(w)|* < C%. Therefore, on compact subsets F' C  x 0, we have by the

Cauchy-Schwarz inequality, that

o 1/2 /o 1/2
S(ZI%(Z)F) (ZI%(U})F) <Cr. (2.32)

That is, >~ 2, ¢n(2)Pn(w) is uniformly bounded on compact subsets of Q x Q. Note

> Eu(2)da(w)

that we may not apply Corollary 2.14 since this series is not holomorphic on € x €.
However if we make the following observation, we will obtain our result.

Let Q* = {w | w € Q} and for each m € N define f,,, : 2 x Q* — C by

fn(z,w) =) du(2)6n(W) (2.33)

Then {f,} is a sequence of holomorphic functions that is uniformly bounded and
converges pointwise to K (z,w) by the arguments presented above. Therefore, by
Corollary 2.14, {f,} converges uniformly to K on compact subsets F' C Q x Q*.

However, for all (z,w) € Q x Q and for each m € N,

Y En(2)dn(w) = fnlz,0), (2.34)

which converges uniformly to K (z,w) = K(z,w). Hence, > 2 | ¢, (2)dn(w) converges

uniformly to K (z,w) on compact subsets F' C 2 x Q. O

Thus (2.26) provides a formula for the integral kernel on any bounded open set
) C C. However, we note that in general this can prove quite cumbersome to write
explicitly depending on the domain €2 we reside in. We do not go into details in this
chapter but even for “nice” domains, such as an annulus, or an ellipse centered at the
origin, the Bergman kernel turns out to be difficult to calculate.
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For most domains, it is not possible to determine an explicit orthonormal basis.
Even when we can find an orthonormal basis, it is usually difficult to say whether
or not the summation defined in (2.26) will simplify to a simple equation. However,
when Q = D the result does turn out to be simple as we saw in Theorem 1.5. We
will now calculate the Bergman kernel by means of Theorem 2.16 above, which will

require finding an orthonormal basis for A%(D).

Theorem 2.17. Let ‘H be a Hilbert space. The following properties of an orthonormal

set {pn} are equivalent:
(1) Finite linear combinations of elements in {¢,} are dense in H.
(ii.) If f € H and (f, d,) =0 for all n, then f = 0.

(iii.) If f € H and Sn(f) = Son_oandn, where a, = (f, ¢,), then Sx(f) — f as

N — o0 in the norm.
(iv.) If an = (f, én), then ||f|]* = 3070 lanl®. [4, p. 165]
Lemma 2.18. Let ¢,,(2) = (/™22" for alln > 0. Then {¢,} is an orthonormal

basis for A*(D).

For this proof if will be important to recall that for m,n € Z,

27
/ elm=mo g — {0 m#n (2.35)
0

21 m=n.

Proof: We begin by showing the orthonormality of the set {¢,}. For distinct

m,n € N,

(Dns Om) = /D <\/<n FU(m 1)> 2"F™ AV (2). (2.36)

™
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Setting z = re for 0 <r <1 and 0 < 6 < 27, (2.36) becomes

(Dns Om) = /01 /027T <\/(n T 1(m 1)> e ?rmem rdfdr

™

_ / 1/ VDD i ginmo g,
0 Jo m

With (2.35) in mind, we see that (¢n, ¢m) = 0 if n # m. However, if n = m, then

(2.37)

(2.36) becomes
1 2
<¢m (bn) = / / —n i 17,2n+1 dOdr
o Jo T

1
= / 2(n + 1)r*" dr (2.38)
0

=1

Thus {¢,} forms an orthonormal set and it remains to show that this set forms a
basis for A*(ID).

Let f € A%*(D) and suppose (f,¢,) = 0 for all n. Note that as f € A*(D),
f € O(D) as well. Thus, f has a unique power series representation, f = > >~ ap2"

with a; € C for all k. Fix n € N. Then, by converting to polar,

0 = (f.6)) — / F(2)on(2) dV (2)

= / f(re®Yop(re®)r dodr

o Jo
1 p2r [ o ' 1 , 2.39
= / E agrte? nrl re= ™ | r dfdr (2:39)
o Jo — n

k=0
1 1 ©© 27 ]
_ n+ / ZakrnJrkJrl/ =9 o
™ Jo 15 0

However, as seen in (2.35), all terms of the summation will vanish save for the n®

term of the power series. So, continuing with the calculation,

1 !
0="{(f,dn) =4/ n: /O 2ra,r*t dr
n+1 =«
:a,n
T n+1

25
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So by necessity, a, = 0. As n € N was arbitrary, it follows from (2.40) that a, = 0
for all n. That is, f = 0. Thus by Theorem 2.17, {¢,} forms an orthonormal basis

for A2(D). O

If we may make a small remark, the calculations done in the proof above provide
us with a sufficient condition to determine whether a given holomorphic function on

D will be square integrable.

|an?

Theorem 2.19. Let f € O(D). Then f € A*(D) if the series Z is convergent,

n=0
where a,, represent the coefficients of the power series representation of f.

n +

Proof: Let f € O(D). The f has a power series representation, f = Zanz", which
n=0

converges uniformly on compact subsets of D. In order for f € A%(D), we require

/ |f(2)]> dV(2) < co. Then, by converting to polar,
D

/D FEPR V() = / () dv(2)

1 por [ ‘ %0 ‘ (2.41)
= / / Z a,r"e™? Z ar™e™ ™0 | r dodr.
0 0 n=0

m=0

Recalling (2.35) we see that all terms of the (2.41) vanish save for when n = m.

Hence,

1 27 oo o0 1 2w OO
/ / Z anrneinG Z mrme—imO dV(Z) _ / / Z |(ln|27"2n+1 dOdr
0 0 n=0 m=0 0 0 pn=o
1 o
— 27r/ Z |an|?r*"t dr.
0 n=0

(2.42)
Since |a,|*> > 0 for all n € N, we have by Tonelli’s theorem that
1 o © 1
27T/ Z |a, [2r?*" T dr = 271'2/ |, |*r?" T dr
0 n=0 n=0 "0
(2.43)

Y.
n:On—i—l'
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|an|2

That is, /D|f(z)|2d\/(z) o

1 Thus, if f € O(D), then it is sufficient to
n=0

2

< oo in order for f € A*(D). O

o0
. |ay|
require that g
—n +1

Continuing on, we recall that for |z| < 1, the function f(z) =

is holomorphic

and has power series representation

> 1
n— . 2.44
D= (244)

n=0

Then we may differentiate this series term by term to obtain the following lemma.

1
(1—-2)*

Lemma 2.20. If |z| < 1, then Z(n +1)2" =

n=0

We are now ready to calculate the Bergman kernel on D by means of Theorem 2.16.

Indeed, if we use the orthonormal basis found in Lemma 2.18 we see that

Blz,w) = 3 6u(2)0(w) =Z( ”jlzn) (\/ ”jlw>

"= (2.45)
1
== (n+1)(zm)"
T
n=0
Therefore, by Lemma 2.20, we have precisely that
Blzw) = —— (2.46)
Z, W S i we .

Notice that in our construction of the Bergman kernel, there was nothing that
required €2 to be specifically a subset of C. In fact, our argument is generalizable for
) C C™. Thus, as alluded to in the beginning of the chapter we will now calculate the
Bergman kernel on the unit ball for the two complex variable and n-complex variable

case.
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Chapter 3: The Bergman Kernel in C?> and C"

In this chapter we will construct the Bergman kernel on A?(B?) and then on
A%(B"). In each case we will create an orthonormal basis and utilize Theorem 2.16.
For the two dimensional case, we note that {2725}, neny form an orthogonal basis
on A%(B?), but it is not orthonormal. Thus, we must find coefficients ¢,,, € C so
that {cnnz725" }imnen forms an orthonormal basis, which we will require calculating

2725 || L2(B2). Before doing so, we recall the Beta function which is defined by:

Blx,y) = /0 1=ty tdt = % (3.1)

where I' denotes the Gamma function and x,y > 0. We will utilize this function on
several occasions in calculating the integrals below, especially when we investigate
the n-dimensional case.

Let m,n € N. Then,

351 mn = [ a2 leal™” V(e}V ()

(3.2)
= 21 2m 29 2n dv 29 dV 21).
/|‘zl|§1 ’ ’ </|:22§ 1_|Z1|2 ‘ | ( )) ( )
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First set zo = r9e?2 for 0 < ry < /1 — |21]2 and 0 < 0y < 27, Then the inner integral

2n _ o ol 2n
|22| dV(ZQ) = 7“2 rgdr2d92
|22|<y/1—(21? 0 0

Vilal ont1
n—+
/ 5 dro

0 (3.3)
N=rr:

becomes

=27

21

_ 2n+2
2n + 27|,
o i n+1
S n+1 (1= 12"
Thus, the equation in (3.2) becomes
m . n ™ m n+1
||27" 25 H%Q(B?) = ntl /| - ’2’1|2 (1 - |Zl\2) dV (z1). (3.4)
211

Next by setting z; = 7€ with 0 <7 <1 and 0 < 6, < 2,

27
/ o | 21| ™ (1 — || )n+1 (21) / / r)™(1 — 7)™t ridridy
2T
/ / t™(1 — )"+ dtd, (3.5)

—7r/ t"(1 —¢)"* dt.
0
Note that the second equality above came from making a change of variables with

t = r? (and hence, dt = 2r;dry and 0 <t < 1). Therefore,

Fm+1)I'(n+2)
I'(m+n+3)

/1tm(1—t)"“ dt =B(m+1,n+2) = (3.6)
0

Thus, by combining (3.4), (3.5), and the result directly above, we have

el = (g ) (). (3.7)

n+1 I'(m+n+3)

Recalling that for all n € N, I'(n 4+ 1) = n!, we have

om0 2 7r ml(n + 1)!
AR = T
1“2 11L2(B%) n+1 (m+n+2)!

m2m!n!
(m+n+2)"
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Thus we have found our constants c,,, and our corresponding orthonormal basis

{bmn(z1, 22) }m.nen, where for each m,n € N,

(m+n+2)! . ., (3.9)

Pmn (21, 22) = 21 Zg.

m2mlin!

Now, before we move on we recall Lemma 2.20 and realize that this formula can
actually be generalized. The proof follows immediately from induction on k and we
therefore omit it.

k!

Lemma 3.1. If |z] < 1, then Z(n +1)---(n+ k)" W
—z

n=0

This lemma will prove useful in our calculations of the Bergman kernel in both

the two dimensional case and the n-dimensional case.

Theorem 3.2. The Bergman kernel on B? is given by the equation

2
B(z,w) = B(z1, 20, w1, wy) = .
(z,w) (21, 22, Wy, w2) 7r2(1—(z1w_1+z2w_2))3 (3.10)

for z = (21, 22),w = (w1, ws) € B C C%

Proof: Let ¢,,, € A?(B?) be as defined in (3.9). Then {&;n}maen forms an or-

thonormal basis for A?(B?). Therefore, by Theorem 2.16,

B(z,w) = Z ¢mn(21,22)¢mn(w17w2)
m,neN

(m+n+2)!

— Z ~—

A 22 (W ") (3.11)

m,neN

(W) (22w)"

m,neN

Now, we may rewrite (3.11) by indexing as follows:

Z > i nt2) (le_l)m(zzw_z)"- (3.12)

m2m!n!
k=0 m+n=~k
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We note that we may represent n in terms of k and m, which transforms (3.12) to

ook
Blzyw) =) ) %<le—l)m(z2w_2)km

2m!
kozoo m=0 ) (3.13)
k+2)(k+1 k! —\m(, —\k—m
g3 e (Z i — 1) 02) ) |

with the last equality due to the inner sum depending on m. But the inside summation
is precisely the binomial expansion of (217 + 20W3)*. Hence, by Lemma 3.1 and this

observation,

B(z,w) = Z (k+2) k+ 1)(z1w_1+z2w_2)"’

k=0 3.14
) (3.14)

72(1 — (2101 + 20W03))*

and we have our desired result. [

It is natural and pleasantly surprising to see some similarity between the Bergman
kernel on D and on B2. In fact, this will continue on to B™ as well. However, notice
that this notation will only become more complex (pun intended!) as we move to the
n-dimensional case. Indeed, B(zy,...,z,,ws,...,w,) becomes painful to read and
write! As such, we will use the multi-index notation as mentioned in Chapter 1 when
necessary.

Using multi-index notation, the orthonormal basis in (3.9) can be written as
{da}aenz, where

bulz) = /U2 o (3.15)

m2al

This can of course be extended to N for any n, and we do so below.
Much like in the two complex variable case, {z*}4ene Will form an orthogonal
basis on A?(B"). So, once again we find ¢, to normalize this basis. We will proceed

in the same fashion as before - by computing ||2%||2n). When relevant we shall use
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the following notation: for k > 1, z = (21,..., 2,) € B" we denote

Ar = +/1— |1 — ... — |z_1/*. Further, notice that
A2 = A7 | — |z_1|? for all k> 2. (3.16)

For o« € N"™ we have

121122 @y = ] 2> dV(2)

:/ \21|2a1/ / a2 AV (2) - - AV (21)
|z1]<1 |22| <Az |zn|<An

2 An
_ / 2 20 / / / P20t g 46, dV (2 1) - - AV (21),
|z1|<1 |z2|<A2 0 0
(3.17)

where the conversion to polar z, = rp,e? with 0 < r, < A4, and 0 < 6, < 27
was made in the last step. Hence, the inner integral (with respect to z,_;) in (3.17)

becomes

m 2an-1( A2 _ 2yan+l g1/

which by setting z,_1 = rp_1€?%1 with 0 < r,_1 < A,_; and 0 < 0,1 < 27, will

yield

i A it g2 2 +1
n= A — o dr,_1d0,_1. 3.19
an+1/0 A T ( n—1 Tn—l) Tn—1 1 ( )

Now we make a substitution again. This time weset r, 1 = A, juwith 0 < u < 1.

Then dr,_; = A,_1du and (3.19) becomes

2 2 1
e / AL pon A2 A2 2 A, du,  (3.20)
n 0
which simplifies to
2 ' 2an+an—1+2)/ 2 2 1
=T / A an12) ( 2yan 1 (1 _ g 2yontd gy (3.21)
n 0
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If we set t = u? and recall the Beta function in (3.1), we are left with

2

. 2 A2(antan—1+2)
A
™ / A2(ocn+an_1+2)tocn_1(1 _ t)an+1 dt = n-l
0

/B(an—l ‘|’ 17 (079 ‘I‘ 2)

n—1

o T 1 an +1
_ A2epten D pog 4 DT (g, + 2)
o, 1 1 [(o + a1 + 3)
B Vit lo 2(an+om—1+2)

(v + g +2)17
_ n_lAQ(Oéin-f—an,l-i-Q)
(3.22)

2o o,

Going back to (3.17), we have reduced our integral to

Cht / |22 / / |2_g|20m =2 A2t ona k) gy Y dV (7).
|z1|<1 |z2|<A2 |zn—2|<An_2

(3.23)

where C,,_; =

If we recall (3.16), then we have A2 | = A2 , — |z, 5|*>. Thus, the inner integral of

(3.23) becomes
/ » | 2o "2 (AL — |2nma] ) FOn T2 AV (2, 5) (3.24)
zn—2|<Ap_2

and now we see a pattern forming. Indeed, the conversion to polar z,_o = r,_se"—2

with 0 < 7, 2 < A, 5 and 0 < 6,,_» < 27 converts (3.24) to

21 Ap_2
/ / 7“,210_”{2H(A721_2 - 7“30_2)0‘”0‘"‘1Jr2 dry,_odB,,_5. (3.25)
o Jo

Set 7o = Ap_ou with 0 < u < 1. Then dr,_o = A, _odu and (3.25) is equivalent
to

1
27?/ AZomeetlyZan-atl(f2 A2 g 2yenten—it2 A oy, (3.26)
0
which simplifies to
n—2

1
27r/ A2(a”+a"*l+a"’2+3)(u2)a"*2(1 — ) tan—142 g dy, (3.27)
0
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By setting t = u? and utilizing the Beta function again, this integral is equivalent to

WAi(f5+an71+an—2+3)5(an72 + 1,0, +a,1+3) =

2 (on + 1 + o + 3)1

Thus, we have reduced (3.23)

Cn 2/ ‘Z |2a1/ / |Zn7 |2an 3( _ ‘2n73‘2)a"+an—1+an—2+3
‘Z1|<1 |22‘<A2 |Zn 3|<An 5

dV(Zn_g) e dV(Zl),
(3.29)

31 | |
ToOy Oy —1 0y —2! . . . .
L - . Iterating this process, we continue until we

here C,,_o =
v 2 (an + a1 + g + 3)!

reach

T o, !
(o + -+ az+ (n—1))!

/ |21 (1 = |z )Tt gy (). (3.30)
|21|<1

Then, by doing one last conversion to polar with z; = 7€', we are left with

2m
(an + - —|—a +(n—1)) // (L =)ottty dr gy (3.31)
Ty

Last we set t = r2 with 0 < ¢ < 1 and dt = 2rdr, which takes our double integral to

1
71./v tal(l _ t)an+...+a2+(n—1) dt = Wﬂ(al + 1,00+ -+ ag+ n)
0

~ wl(oq + DIy + -+ - +ag +n)

3.32
Fan+---4+a+(n+1)) (3:32)

~ mal(an + - rap + (n—1))!

(y + -+ a1 +n)!
Hence, in accordance with our multi-index notation,
ol "ol

ny = - 3.33
HZ HLQ(IB% ) <|OJ‘+H)' ( )

Thus, we have found our constants ¢, and our orthonormal basis for B" is

{¢a }aEN” ) where

bo = (Jof + ”)!Za (3.34)

"l
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and we are finally ready to calculate the Bergman kernel in the n-dimensional case.

Before we begin we recall the multinomial theorem.

Theorem 3.3. For any positive integer m and nonnegative integer n,

(a1t tam)" = ) (ab . n 7%) 2% (3.35)

|a|=n
n n!
where = —.
Q1yeeny Qp a!

Theorem 3.4. The Bergman kernel on B™ is given by the equation

B(z,w) = YT Zim)nﬂ (3.36)

for z,w € B" C C™.

Proof: Let ¢, € A*(B") be as defined in (3.34). Then {4 }aen» forms an orthonor-

mal basis for A%(B"). Hence, by Theorem 2.16, for z,w € B"

B(z,w) = Z Pa(2)Pa(w)

aeN”

s~ fal+nt o (3:37)
N aeNn m"al
We then re-index as follows:
S (lof +n)t
B = @
() =30 3 P )
k=0 |a|=k
S e Gl LR
= Z ] (zw) (3.38)
k=0 |a|=k
~(k+1)-(k+n) k',
= n > — (20)
k=0 |a|=k
Thus, by the multinomial theorem in conjunction with Lemma 3.1
1 o0
Blz,w) = — > (k+1) - (k +n){z,m)"
k=0 (3.39)

n!
N (1 — (z,w) )"+’

which is our desired result. [
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Chapter 4: The Bergman Kernel and Conformal Mappings

In this chapter we shall calculate the Bergman kernel on several other domains.
We mentioned previously that finding and explicit formula for the Bergman kernel can
be a daunting task. This is mostly due to the difficulty in obtaining an orthonormal
basis for a given domain. In some circumstances however, we may bypass this neces-
sity altogether. The concept revolves around conformal mappings and the Riemann

mapping theorem, which we will state below.

Definition 4.1. Let U,V C C. A bijective holomorphic function f: U — V is called
a conformal map and we say that U and V' are conformally equivalent. [3, p.

206]

The simplest examples of conformal mappings are translations (f(z) = z + a for
some a € C) and dilations (f(z) = cz for some ¢ € C\{0}). Take for example the

function f : D, — D defined by

f(z) = =2, (4.1)

r

where 7 > 0. Then f is a conformal mapping with inverse f~'(z) = rz.
It is useful to note that if f : U — V is a conformal map, then f'(z) # 0 for all
z € U. Further, we also have that f~! must also be a conformal map. They will be

of particular use to us because we will show that the existence of a conformal map
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between two domains allows you to write the Bergman kernel of one domain in terms

of the other.

Theorem 4.1. Let 21,85 C C and suppose there exists a conformal map

f:Q — Q. Then for all (z,w) € Qy X Q4

Ko, (z,w) = f'(2)Ka,(f(2), f(w)) f'(w), (4.2)

where Kq, and Kq, represent the Bergman kernels on €y and Qq, respectively.

Proof: Let {¢,} be an orthonormal basis for A%(€);). For each n € N and 2 € Qy,
set ¥, (2) = f/(2)(én o f)(2). We show that {¢,} is an orthonormal basis for A%(€);).
For if so, then we will have our result immediately from Theorem 2.16.

First let m,n € N. Then

(Uns Ym) a2(00) = . Un(2)¥m(2) dV (2)

= [ @@ NEFEGNEVE (43
= [ ou(FERTENIF () av (),

We make the change of variables w = f(z). Since f is bijective and f’(z) # 0 for any

z € Q, dV(w) = |f'(2)|*dV(z) and

i On(f(2))0m(f(2)) 1f'(2)]* AV (2) = i Pn (W) (w) dV (w)

(4.4)
= <¢m ¢m>A2(Qg)-
Since {¢,} is an orthonormal basis, we therefore have
0 m#n
<wn7wm>A2(Ql) = { 7& (45)
1 m=n,

meaning {t, } is an orthonormal set in A?(£);).
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Next suppose g € A?(€4) such that (g, 1¥,) a2(0,) = 0 for all n € N. Then

/Q 9(2) (@m0 F)(2) dV(2) = 0. (4.6)

By making the same change of variables as (4.4) we have w = f(z) and
dV (w) = |f'(2)|?dV (z). Further, as f is bijective, f~!(w) = 2. Thus,

| o FEIGn e N V() = /< ><w>y<( 3553‘

TR I
/92<f' ) () V()

gof” 1
= (oo o
gof™ 0 for all . .
. T On = 0 for all n € N. Since {¢,} is an orthonormal
f f A2(QQ)

-1
basis for A?(€)), we must have that ?’Z{Cfl = 0. Thus, (gof ") (w) = g(f(w)) =0

for every w € Q. Therefore, as f is bijective, g(z) = 0 for all z € ;. That is, g = 0.

Pn(w) dV (w)

(4.7)

Therefore <

As g was arbitrary under this assumption we must have that {1} is an orthonormal
basis for A%(£2;).

By Theorem 2.16,

Ko, (z,w) = ) u(2)tn(w)
=D ['(2) (60 )= (@ 0 f)(w) f(w) (4.8)
= /() (Z ¢>n(f(2))¢n(f(w))) f'(w).

However, as {¢,} is an orthonormal basis for A?(€2,), Ko, (z,w) Z On(z gbn

Theorem 2.16 once again. Hence,

Ko, (z,w) = f'(2)Ka,(f(2), f(w))f'(w). O (4.9)
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For a simple example of Theorem 4.1 we recall f : D, — D defined (4.1). Then

1
f'(2) = — and we therefore have, for all z,w € D,
r

Ky, (z,w) = f'(2)Kn(f(2), f(w)) [ (w)
1 1 1
BACTEE (4.10)

r

7w(r?2 — zw)?

Thus in some occasions we may forgo finding an orthonormal basis to compute
the Bergman kernel. Indeed, if we have an explicit formula for the Bergman kernel
of 2y and a conformal mapping f : 2 — €25, then we immediately have an explicit
formula for the Bergman kernel of €2;. Of course finding a conformal mapping can be
difficult, but it at least opens up another method of calculating the Bergman kernel.

Considering that we know the formula for the Bergman kernel on D, Theorem 4.1

becomes even more valuable when we consider the Riemann mapping theorem.

Theorem 4.2 (The Riemann mapping theorem). Suppose Q@ C C is proper and
simply connected. If zq € €0, then there exists a unique conformal map F : Q2 — D

such that F(z9) =0 and F'(z9) > 0. [3, p. 224]

Thus if we know 2 C C is proper and simply connected, then there must exists a
conformal map between 2 and D. So calculating the Bergman kernel on {2 amounts
to finding a conformal map between 2 and ID. In many cases the conformal maps are

known explicitly.

Corollary 4.3 (The Bergman kernel for the upper half plane). The Bergman kernel

on the upper half plane H = {z € C | Im(z) > 0} is given by the equation

Ky(z,w) = w(%lw (4.11)
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for z,w € H.

is a conformal

Proof: Notice that the function f : H — D defined by f(z) = Z:LZ
i+ z

1 —
map with inverse f~1(z) =i (1 n Z) . For a proof of this, we suggest [3] on pg. 208.
z
2 and f'(z) 2 Thus, by Th 4.1
—— an z) = ————. Thus eorem 4.
(i + 2)? (—i+7%)?2 Y ’

Ku(z,w) = f'(2) Kp(f(2), [ (w)) f'(w)

() (m - i>) (=) "

Carrying out the simplification we see

Then f'(z) =

—21 1 21
Ku(z,w) = ; —
u(z,w) ((z + z)2> - <(i+z)(—i+w)—(i—z)(—i—w))2 ((—z + w)2)

(i+2)(—itw)
(2 1 2i (4.13)
C\@+22) | < —2i(—w) )2 (—i +w)?
(i+2) (—itw)
B 1
- —m(z—w)?*
—1
H K; = —70:. U
ence, Kg(z,w) T

Corollary 4.4 (The Bergman kernel for a sector). Let n € N and
S={2e€C|0< arg(z) < m/n} denote a sector in the complex plane. Then the

Bergman kernel on S is given by the equation
_,’,LQ(ZE)TL*I

Ks(z,w) = P

(4.14)
for z,w e S.

Proof: The function g : S — H defined by g(z) = 2" is a conformal map with inverse

g (2) = z"/™. Then, by Theorem 4.1 and Corollary 4.3,
Ks(z,w) = g'(2)Ku(g9(2), g(w))g' (w)
1 - (4.15)
)? '



Thus, KS(Z,U}) = m

O

We finish with an example which showcases the fact the Bergman kernel is not
always given by a simple formula. In particular, we will now compute the Bergman
kernel for an arbitrary annulus (centered at the origin). Indeed, let 0 < 0 < p < o0
and consider the annulus A?. Note that A? is not simply connected and therefore
we cannot utilize the Riemann mapping theorem to our advantage. Instead we must
find an orthonormal basis.

For each k € Z define ¢ (2) = ¢;,2", where
\/ﬂ(pz(mf)—tlaz(kﬂ)) k 3& —1

1 b=

27In(2)

(4.16)

Cr —

Note that if k < —1, then k+1 < 0. However, as 0 < p, we will have p?*+1)—g2(:+D <

when k£ < —1. Thus ¢;, is well defined for k& < —1.

Theorem 4.5. The set {¢y }rez defined above forms an orthonormal basis for A*(AP).

Proof: We first show that {¢}rez forms an orthonormal set. Indeed, for distinct
k.l eZ,
(Pr: Pr) :/ 22 dV(2). (4.17)
AP

Setting z = re? with 0 <r < p and 0 < 6§ < 27 yields

/ 2" 2 dV (2 / / PRI g0y, (4.18)
AP

However, since k # [, we have from (2.35) that (¢, ¢;) = 0. Next we show normality.

We have two cases to consider. First suppose k # —1. Then

k + 1 2k+1
16172 (A%) / / P2 02(k+1))r dfdr

2(k +1) o1 4.19
- p2(k+1) _ 02(k+1)/ r dr ( )

=1
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Second, suppose k = —1. Then

P 2w 1
2 _ —1
161 |agus) = / / s

_ L My (4.20)
R AR

[

=1.
Thus, ||¢r||r2az) = 1 for all k € Z, thereby proving the orthonormality of {¢}rez.
Next we prove that {¢;}rez forms a basis for A%(A?), which will require the use of
Laurent series.
Suppose f € A%(A?) such that (f,¢y) = 0 for all k € Z. Then, as f € A?(A?),
f € O(A?). Thus f has a Laurent series expansion, f(z) = i @y, 2™, which converges

uniformly within A?. Fix k € Z and let € > 0 such that ¢ + € < p —e. Then, by

converting to polar,

(Z am2m> ek dV (2)
o+e o+te —

p—e ,
/ / <Z a,r'e Zme) cer®e ™™ rdodr.

Since f will converge uniformly on A”_¢ to its Laurent series, we have

p—e 2w [ X ] p—e X 27
/ / amrme””e crFe % rdfdr = / E Ay Ce rm+k+1/ R dhdr.
o+e JO _ 0

(4.22)

[ semEae - [
(4.21)

By (2.35) all terms vanish save for when m = k and we are left with

/ / akckr%ﬂ dfdr = 27mkck/ r2E L gy
+e (4.23)

_ TakCk ((p _ 6)2(k+1) — (o + 6)2(k+1)) '

k+1
Note that in the event that £ = —1, we will instead have 27rakck1n('0 __'_ e). In any
o+e€
case, as € > () was arbitrary, we may take ¢ — 0 to have
TagCk 2(k+1) _ ~2(k+1) k -1
— k+1 (p o ) 7& 4 24
(f: ¢k>A2(Ag> {ZWakckln(f) k= —1. (4:24)
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By assumption (f, ¢x) a2(azy = 0, which implies ax = 0. As k € Z was arbitrary, it
follows that ay = 0 for all k € Z. Thus f = 0 and {¢y }xez is an orthonormal basis

for A2(A®). O

Therefore, by Theorem 2.16,

K (z,w) =y el w (4.25)

keZ

where z,w € A? and the ¢, are as defined in (4.16). By looking at this summation it
is very difficult to determine whether or not this can simplify to “nice” equation such
as on D or any of the other domains we have computed previously. While it may not
be as elegant as the unit disk, there is a way to represent the Bergman kernel for the
annulus in a clever way. The first step will utilize conformal mappings.

Given any annulus A7, there exists 7 > 0 such that A? is conformally equivalent
to A7. Indeed, set 7 = g and define f : AT — A? by f(z) = o0z. Then f is a
conformal mapping between the two annuli. Thus given any annulus, we may assume
without loss of generality that it has inner radius 1

Therefore our constants ¢ reduce to

= = S £ —1
(A1)

Cp = 1 b — _1’ (426)
27in(p)

which will simplify calculations slightly. Next we break up our summation into parts.

Namely,

)
Kizw) = ) om0+ gt Qﬂn +k§_;7r s ) )

k=—o0
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For the first summation, we add and subtract + to obtain
T
—2 —2
k+1 kE+1 E+1 k+1 vk
k—Z: m (2D — Z m(p2+D — 1) - ) (zw)
T o (4.28)
—2 k‘+1) A —2 k _|_ 1 A
Z ( 2(k+1 )(Zw) - —(ew)".
=—00 k=—00

Notice that

—2 —2

k;%w)k_ 5 —kﬂ—l(%)‘k_i’f;(%)k, (4.29)

k=—o0 k=—00

1
Then, as z,w € AY, |z|,|w| > 1. Thus | < 1 and we have by Lemma 2.20 that
270

E—1/1\" S k+1/1\"
2. (%) =2 (_w)

k=2 k=0

00 k
= (k+1) 4.30
Z ; ( ) (4.30)
1 1
(7o (1= L)

zZw

To make a small computational aside, we note that

1 1 1
ﬂ(z@)Q (1 B L)Q - 7T<1 _ Zw)27 (431)

2W

which is the same formula for the Bergman kernel on the unit disk only now applied

11
to z,w € Af. In any case, since z,w € A}, —, — € D. Thus we have from (4.30) that
2 w

—2
k 1 1 11
- g o (zw)* = ——Kp| -, — (4.32)
= ~ (2w)? zw
and our first summation in (4.27) is equivalent to
-2
1 11 (k+1)p2t+0

(zw 2w (2

=—00

44



k+1
For the second summation in (4.27), we add and subtract AL to obtain

7 p2(h D)
’; m(p2+D) )(zw) = kz; <ﬂ_(p2(k+1) ") T wp2lern) + sz(kﬂ)) (zw)
kt1 Skt 1 )
- Z o) (20 T) “+ ; 2D
(4.34)
However, note that
— k+1 —klook—l—l a0 \"\ 1

; Tp2+1) (zw)" = 0 (kz:% p (F) ) 3 (4.35)

As z,w € Af, < 1. In addition, we also have that z,w € I),. Recalling the

7~

Bergman kernel on D, mentioned in (4.10), we utilize Lemma 2.20 again to see that

1 ik+1(zw)’“ 1 1 1 1
P\is ™\ Jpp W<1_@>2 p (4.36)

= KDp(Z7 ’U))

Thus our second summation in (4.27) is equivalent to

k+1 o
Kp,(z,w +Z7rp ) (20 1)(zw) : (4.37)
k=0

To bring everything together we now have that for all z,w € A}

1 11
KAT(Z’ U)) = WKD (;7 E) + KDp(z7 U)) + R(Z, U)), (438)
where
-2
1 (k+1)p ’f+1> ) k+1 o
R(z,w) = 2nln(p) 2w T k;w m (2D — 2w)* + Z 20h+1) (p2(h+1) — 1) (2w)".

(4.39)
Unfortunately, the series in R cannot be summed explicitly. However, R(z,w) has

a few important properties. For example, each of the three pieces in the sum is
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bounded. Therefore, there exists C' > 0 such that |R(z,w)| < C for all z,w € A?. So
R can be thought of as a “remainder” of sorts. To the point, this implies that the
Bergman kernel on the annulus Af is directly related to the Bergman kernels on the

unit disk and disk of radius p.
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