
Probabilistic approaches for verification of unlikely inserted errors in 

Hardware Description Languages  
 

 

THESIS 

 

Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in 

the Graduate School of The Ohio State University 

 

By 

Venkata Sai Manoj Pasupuleti, B.E. 

Graduate Program in Electrical and Computer Engineering 

 

The Ohio State University 

2016 

Master's Examination Committee: 

Prof. Steven Bibyk, Advisor 

Prof. Wladimiro Villarroel 

 

 

 



Copyright by 

Venkata Sai Manoj Pasupuleti 

2016 



ii 
 

Abstract 

 
     With technology becoming more advanced each day and CMOS scaling being done 

proportionately to accommodate the size, speed and advancement in technology, more 

transistors are packed on to the same chip, thereby making fault tolerance, reliability and 

error detection an increasingly important design specification for processors. 

Unfortunately, for all practical purposes it is not possible to test the functionality of many 

digital integrated circuits chips exhaustively, since they can involve billions of 

components. Thus, there are no guarantees that all possible errors in the chip design and 

manufacture can be found.   Therefore, random test vectors are usually generated which 

would help to test the functionality for most parts of the IC design. This leads to hardware 

being vulnerable to the insertion of malicious errors, similar to the problem of software 

viruses embedded into large software programs.  Hence, in this thesis, prior and posteriori 

probabilities are    developed to explore code in Hardware Description Language (HDL) 

designs of digital entities that are most vulnerable to errors.  

     This thesis develops a probabilistic approach which is based on the assumption that 

lines of code with very low probabilities of execution are the best place to insert malicious 

errors, such as a Hardware Trojan. To explore this idea, two versions of 16bit ALU’s, one 

a Golden ALU (error Free) and second a Modified ALU (which has errors inserted into it) 

are used.  



iii 
 

     From the designed ALU entities, the probability of execution of each ALU section is 

determined to be as follows  

 𝑃(AND-XOR) < 𝑃 (AND-OR) < 𝑃 (SUM-XOR) < 𝑃 (SUM-OR) < 𝑃 (No error loop).And the 

vulnerabilities associated with each of these loops was found to be 

(AND-XOR)> (AND-OR)> (SUM-XOR)> (SUM-OR)> (No-Error). 

     By design, the exhaustive testing probabilities are derived as priori probabilities in this 

thesis. However, these results have been verified against posteriori probabilities for discrete 

finite test cases. The results showed that loops with low probability (e.g., SUM-XOR loop, 

has probabilities very close to 1.3*10−4 ) are consistent in priori and posteriori values, 

while high probability loops (e.g., No-error, has probabilities around 0.99) are not. The 

recommendation section in this thesis outlines the next step to improve the result 

consistencies. These test vectors used on DUT had a Fault detection accuracy of 0.8, with 

scope of improvement.  



iv 
 

Dedication 

Dedicated to Amma, Nanna, Akka and Bava 



v 
 

Acknowledgments 
 

I am hugely indebted to my advisor, Prof. Steven Bibyk, for providing me the opportunity 

to work under him. His constant support, precious advice and generous guidance motivated 

me immensely in my research at The Ohio State University.  

I am also grateful to Prof Wladimiro Villarroel for serving on my thesis committee and for 

his questions and suggestions. I would also like to thank Adam Kimura for his valuable 

suggestions and guidance throughout my project.  

I would like to thank Altera Inc., for their Model Sim Software which had helped me 

throughout this project. 

Finally, I would like to thank my sister and brother-in-law for their unconditional support 

and guidance during my Master’s Program. I am immensely grateful to my parents for their 

love, affection and confidence in me. 

 



vi 
 

Vita 
 

May, 2011……………………….. Bachelors of Engineering. 

                                                         Electrical and Electronics Engineering, 

                                                         Manipal Institute of Technology, India. 

July 2011- July 2014……………   Senior Engineer, 

                                                         Larsen & Tourbo,                                       

August, 2014 - present ……………Graduate Student, 

                                                          Electrical and Computer Engineering,  

                                                         The Ohio State University 

August, 2015 - present ……………Graduate Teaching Associate,  

                                                          Geography Department,  

                                                          The Ohio State University 

 

 

Fields of Study 

 

Major Field:  Electrical and Computer Engineering 

   



vii 
 

 

 

Table of Contents 

Abstract ......................................................................................................................... ii 

Dedication .................................................................................................................... iv 

Acknowledgments ..........................................................................................................v 

Vita ............................................................................................................................... vi 

Table of Contents ........................................................................................................ vii 

List of Tables .................................................................................................................x 

List of Figures .............................................................................................................. xi 

Chapter-1 Introduction .................................................................................................1 

1.1 Problem Statement ...............................................................................................1 

1.2 Objective of Thesis ...............................................................................................2 

1.3 Requirement Specification ...................................................................................3 

1.4 Organization of Thesis .........................................................................................3 

Chapter -2 Literature Survey........................................................................................4 

2.1 Trojan Classification ............................................................................................4 

2.2 Trojan Detection Methodologies ..........................................................................8 

2.2.1 Trojan Detection Using Side-Channel Power-Based Analysis ................................ 8 



viii 
 

2.2.3 Trojan Detection Using Side-Channel Timing-Based Analysis ............................. 13 

2.3 Trojan Activation Methods ................................................................................ 15 

2.4 Design for Hardware Trust ................................................................................ 19 

2.5 Technical Background ....................................................................................... 20 

2.5.1 Need For RTL Coding ............................................................................................ 21 

2.5.2 Behavioral Modeling............................................................................................... 22 

2.5.3 Probability of any Line of Code ............................................................................. 23 

2.5.4 Test Bench ............................................................................................................... 26 

2.6 Summary ............................................................................................................ 29 

Chapter 3 Mathematical Model and Tech Bench Setup ............................................ 31 

3.1 Mathematical Model .......................................................................................... 31 

3.2 Test Setup ........................................................................................................... 33 

3.3 Test Vector Generation ...................................................................................... 35 

Chapter-4 Experimental Results and Simulation ....................................................... 36 

4.1 Modified ALU probabilities of execution .......................................................... 36 

4.2 DUT Simulation .................................................................................................. 44 

Chapter-5 Conclusion & Future Work ....................................................................... 53 

5.1 Advantages and Conclusion ............................................................................... 55 

5.2 Future Scope of Work ........................................................................................ 55 

References .................................................................................................................... 57 



ix 
 

Appendix A: Golden ALU ........................................................................................... 60 

Appendix B: Modified ALU ........................................................................................ 62 

Appendix C: Test Bench .............................................................................................. 66 

Appendix D: Test Vectors Generation Code .............................................................. 71 

 



x 
 

List of Tables 
 

 

Table 1   Summary of possible values of num1 and num2. ............................................. 25 

Table 2.  Summary of Key Trojan detection methods  .................................................... 27 

Table 3  Summary of ALUCOUNT and Corresponding Operations  .............................. 32 

Table 4.  Summary of Probabilities of various loops  ..................................................... 39 

Table 5   Summary of number of events in favor of of execution of each loop Sample                                               

Space  : 400,000  ........................................................................................................... 40 

Table 6   Summary of number of events in favor of of execution of each loop Sample                                               

Space  : 4,000,000  ........................................................................................................ 40 

Table 7   Summary of number of events in favor of of execution of each loop Sample                                               

Space  : 20,000,000 ....................................................................................................... 40 

Table 8   Exhaustive Testing Probabilities(Priori) and Posteriori  ................................... 40 

Table 9   Exhaustive Testing Probabilities(Priori) and Posteriori .................................... 40 

 

 



xi 
 

List of Figures 
 

Figure 2.1 Detailed Taxonomy showing physical, activation and action characteristics ....5 

Figure 2.2 Three components of a hardware Trojan Horse (HTH) ....................................7 

Figure 2.3 Design flow of HTH .......................................................................................7 

Figure 2.4 Simple Power Analysis of Trojan Circuits..................................................... 10 

Figure 2.5 Current Charge Integration Method ............................................................... 11 

Figure 2.6 Path delay measurement architecture using a Shadow Register ..................... 13 

Figure 2.7 Ring Oscillator Temperature Monitor ........................................................... 14 

Figure 2.8 Illustration of the concept of Region and Radius in a circuit .......................... 17 

Figure 2.9 Pseudo Code to Isolate Gate having Trojan activity ...................................... 18 

Figure 2.10 Voltage Inversion Scheme for Trojan Detection .......................................... 20 

Figure 2.11 Analog Waveform....................................................................................... 21 

Figure 2.12  Digital Waveform ...................................................................................... 22 

Figure 2.13 Full Adder behavioral Code ........................................................................ 23 

Figure 2.14 Comparator Code ........................................................................................ 24 

Figure 2.15 Architecture of Test Bench ......................................................................... 24 

Figure 2.16 Pseudo code for reading Input Test Vectors ................................................ 24 

Figure 3.1 ALU Overview ............................................................................................. 31 

Figure 3.2 Pseudo Code for Golden ALU ...................................................................... 35 

Figure 3.3 Pseudo Code for Modified ALU ................................................................... 36 



xii 
 

Figure 4.1 Pseudo Code for AND-XOR loop in Modified ALU  .................................... 38 

Figure 4.2 Pseudo Code for AND-OR loop in Modified ALU ........................................ 39 

Figure 4.3 Pseudo Code for AND-XOR loop in Modified ALU ..................................... 40 

Figure 4.4 Pseudo Code for SUM-OR loop in Modified ALU ........................................ 41 

Figure 4.5 Pseudo Code for NO-Error loop in Modified ALU ........................................ 43 

Figure 4.6 Simulation results for number of events in favor of execution of each loop 

                  Sample Space: 400,000 ................................................................................ 45 

Figure 4.7 Simulation results for number of events in favor of execution of each loop 

                  Sample Space: 4,000,000.............................................................................. 45 

Figure 4.8 Simulation results for number of events in favor of execution of each loop 

                  Sample Space: 20,000,000 ............................................................................ 45 

Figure 5.1 Flow diagram for Error detection using probabilistic approach...................... 49



1 
 

Chapter-1 Introduction 

1.1 Problem Statement 

Economic and market conditions are forcing most of the manufacturers to outsource their 

IC fabrication to cheaper fabrication facilities abroad [3]. With the globalization of chip 

manufacturing industries IC’s are becoming more and more vulnerable to malicious 

activities such as inclusion of Trojans. These Trojans are designed to be hard to detect by 

normal testing procedures. This has raised serious concerns regarding possible threats to 

military systems, financial infrastructures, transportation, security and even household 

appliances. An adversary can introduce a Trojan to either disable or destroy a system at 

some point in the future or the Trojan might be used to leak confidential information 

secretly to an adversary.  

     Unfortunately the detection of these Trojans is difficult for several reasons including 

the following: The nanometer IC feature sizes and system complexity made detection 

through physical inspection and destructive reverse engineering difficult and costly. 

Secondly, Trojan circuits are by design activated under very specific conditions, which 

makes it difficult to fully activate them using random and functional stimuli. Moreover the 

existing automatic test pattern generation (ATPG) methods used in manufacturing tests for 

detecting defects do so by Operating on the net list of the Trojan free circuit specifications. 

Therefore existing ATPG algorithms cannot target Trojan activation directly. [4] 



2 
 

     Although there has been a significant amount of work done on testing circuits for Trojan 

detection and prevention, no systematic approach has been developed to assess a circuit’s 

susceptibility to Trojan insertions. Adversaries usually target sections in the circuit with 

low controllability and observability and implant stealthy Trojans. This necessitates a 

thorough circuit analysis to identify potential Trojan locations. Furthermore, there has been 

little or no work done on creating a metric to determine the difficulty of detecting a Trojan 

in a circuit. Therefore a comprehensive vulnerability analysis at the behavioral level is 

required to quantify the difficulty of activation of each circuit portion.  

1.2 Objective of Thesis 

     The motivation behind this thesis is to develop a Probabilistic approach for error 

detection, which overcomes the drawbacks of existing methods. This thesis develops a 

mathematical model to determine the difficulty of finding an insertion error in any line/loop 

of code, by using a probabilistic approach. With the help of this mathematical model one 

can point to the locations where a stealthy error can be introduced. In order to ensure the 

code is error free extra random vectors are generated to validate the lines of code specified 

by the model



3 
 

1.3 Requirement Specification 

 This thesis aims to address the following requirements. It develops a mathematical model 

which can be used to detect the lines of code which are vulnerable to errors. This 

mathematical model is then tested with the help of few Simulations to check if the results 

are in line with our expectations. In these experiments, a 16-bit Golden ALU (Trojan free) 

and a Modified 16-bit ALU (which has Trojans) are used to verify if an Insertion-error 

could be detected in the lines of code which have the least probability.  

1.4 Organization of Thesis 

     This thesis is organized as follows.  

1) An insight on established research work done on Trojan detection and prevention 

is covered in Chapter 2. At the end of this chapter, a brief technical background on 

the need for RTL Coding, behavior modeling and how to calculate probability of a 

given line of code, which will provide a context for the subject research.  

2) Following this in chapter 3, a mathematical model is derived to associate the 

vulnerability of a line of code to its Probability, and a Test Bench has been setup to 

test this model. 

3) In chapter 4, Experimental results and Simulations are discussed. 

4) Finally the thesis is concluded in chapter 5, with a brief summary and 

recommendations for future scope.



4 
 

Chapter -2 Literature Survey 
 

2.1 Trojan Classification 

This literature survey presents the current state of knowledge on Trojan detection schemes 

and designing methodologies for improving Trojan detection techniques. At the end of this 

chapter various detection methods are compared and analyzed based on their effectiveness 

in detecting various Trojans.  

     Wang, Tehranipoor and Plusquellic [1] have developed the first detailed taxonomy for 

the hardware Trojans. They have decomposed the taxonomy into three main categories (see 

in figure 2.1) according to their physical activation and action characteristics. They further 

divided Trojans into six types, of which four are physical, one activation and one action 

attribute. It is also possible for Trojans to be of hybrid in nature e.g., having more than one 

activation characteristic. This taxonomy helps us in understanding elemental 

characteristics of Trojans and thereby helps us in detecting these Trojans [1] [13]. 

     The physical characteristics category describes the various hardware manifestations of 

Trojans. The type category divides Trojans into functional and parametric classes.  



5 
 

Trojan 
Characteristics

Physical 
Characteristics

Activation 
Characteristics

Action 
Characteristics

Type Size StructuralDistribution

Functional

Parametric

Small

Large

Tight

Loose

Layout 
change

Same Layout

Externally 
Activated

Internally 
Activated

Always On

Condition 
Based

Modify 
Specification

Modify 
function

Transmit Info

Antenna

Sensor

SensorLogic

Figure 2.1: Detailed Taxonomy showing physical, activation and action characteristics [1] 

 

The functional class includes Trojans that are realized either by addition, deletion of 

transistors or gates, whereas parametric class refers to Trojans that are realized through 

modification of existing wires and logic e.g., thinning of a wire, weakening of a transistor 

etc. The size category counts for the number of transistors that are either added or deleted 

from the circuit. The distribution category describes the location of the Trojans on the chip. 

It can be further classified as tight distribution wherein all the Trojan components are close 

to each other in the layout, whereas loose distribution describes a Trojan whose 

components are distributed across the layout of the chip. The structure category refers to a 

scenario in which by addition of Trojan there is a change in the dimension of the chip. This 



6 
 

change in physical layout can easily affect the delay and power characteristics of the chip 

[1] [13].  

    Action characteristics refer to the criteria that cause the Trojan to become active and 

carry out its disruptive function. Trojan activation characteristics can be broadly divided 

into Externally-activated and Internally-activated. In externally-activated category the 

Trojan gets activated because of external sources like antenna. And internally-activated 

can be further classified as always-on and condition-based. Always-on Trojans are 

implemented by modifying the geometrics of the chip such that certain nodes or paths have 

a higher susceptibility for failure. The condition based Trojans are usually inactive until a 

specific condition is met. The activation conditions can be an output of a sensor or 

environmental conditions or internal logic state [1] [13]. 

    Action Characteristics identify the types of disruptive behavior introduced by the Trojan. 

As shown in the figure 2.1, this category can be further classified into three types- modify 

function, modify specification and transmit information. The modify function class refers 

to the type of Trojans that change the chip’s function by either adding new logic or by 

removing or by passing existing logic. The modify specification class refers to the Trojans 

that focus on changing the chip’s properties like delay, power. Finally the transmit info 

class refers to Trojans that transmit key information to an adversary [1] [13].  

     According to Alkabani and Koushanfar [2] the components needed for a Hardware 

Trojan Horse (HTH) is divided in to three categories: trigger, storage and driver. A trigger 

incites the planned HTH. Once the trigger is initiated, the action to be taken place can be 



7 
 

stored in the memory or a sequential circuit. Finally, the driver implements the action to be 

performed after the Trojan has been triggered.  

 

 

Figure 2.2: Three components of a hardware Trojan Horse (HTH) [2] 

 

     Alkabani and Koushanfar presented a systematic approach to insertion of hardware 

Trojan into the IC. Figure 2.3 shows an abstracted view of the design process. The Trojan 

designer composes a high level description of the computation model of the circuit that a 

Finite State Machine (FSM) can represent. HTH can be inserted into the FSM by adding 

new states.  



8 
 

 

Figure 2.3: Design flow of HTH [2] 

 

2.2 Trojan Detection Methodologies 

     Several Trojan methodologies have been developed over the past few years. They can 

be broadly classified as either side-channel analysis or Trojan activation [13]. According 

to M. Tehranipoor, F. Koushanfaride [13] Side-channel analysis of any circuit looks for 

change in performance characteristics like timing and power. Trojans typically change 

circuit characteristics thereby changing power or delay characteristics of wires and gates. 

Power based side-channel signals help us understand the internal structure and activities 

within the IC thereby enabling detection of Trojans without fully activating them. Timing-

based side-channel analysis can detect a Trojan’s presence if the chip is tested using delay 

test that are sensitive to small changes in the circuit delay. 

 2.2.1 Trojan Detection Using Side-Channel Power-Based Analysis 

Trojan detection theory: 

Consider an IC I, that executes a calculation C and consumes power M for this 

computation. The power trace obtained in this measurement, r(t; I; C; M)  can be modeled 

as consisting of four components, the mean power consumption p(t; C), the process noise 

np(t; I; C), the measurement noise nm(t; M) and the Trojan power leakage noise 𝜏(t; I ; C). 

The total power trace is given by, 



9 
 

rG(t; I ; C; M) = p(t; C) + np (t; I; C) + nm(t; M)                                       (1) 

The total power trace in an trojan IC is given by, 

rT(t; I; C; M) = p(t; C) + np(t; I; C) + nm(t; M) + 𝜏(t; I ; C)                              (2) 

The measurement noise nm(t; M) is a random noise and would vary with each measurement. 

This can be eliminated by averaging over a large number of measurements and therefore 

equation (1) and (2) can be simplified into  

rG(t; I ; C) = p(t; C) + np (t; I; C)                                                                  (3) 

rT(t; I; C) = p(t; C) + np(t; I; C) + 𝜏(t; I ; C)                                               (4) 

The process noise np (t; I; C) can be eliminated by having access to multiple genuine ICs 

and hence the mean power consumption p (t; C) can be calculated, that occurs during the 

calculation C. Since the mean power consumption is common among the power traces 

obtained from both the genuine and the Trojan ICs, it can also be subtracted from all the 

power traces and the Trojan power consumption can be calculated as below. 

rG(t; I ; C) = np (t; I; C)              (5) 

rT(t; I; C) = np(t; I; C) + 𝜏(t; I ; C)                           (6) 

1. Simple Power Analysis      

Agrawal et al. [3] were the first to use side-channel based finger printing methodology for 

detecting Trojan contribution to circuit power consumptions. This approach does not 

require any changes to current processes and practices regarding the design and fabrication 

ICs and most importantly this would not require trusted fabrications to obtain the power 



10 
 

signature of Trojan-free (i.e. Golden) ICs, random patterns were applied and power 

measurement if performed. The power consumption of the circuit which was measured 

consists of measurement noise, process variation and Trojan contribution. These patterns 

are applied on a selected few ICs that are randomly selected from a family of ICs which 

are reverse-engineered to ensure they are Trojan free. Once the reference signature is 

obtained, the same random patterns are applied to other ICs under authentication (IUA). If 

the IUAs power signature is different form the golden IC, it is considered suspicious and 

might contain a Trojan. If the Trojan size is comparable to the size of the circuit then its 

impact on the circuit transient current will be significant and could be measured easily. 

However, if the Trojan size is very small when compared to the size of the circuit its effect 

is easily masked because of process variations [3] [13].  

 

 

Figure 2.4: Simple Power Analysis of Trojan Circuits 

Genuine (green/gray) and Trojan (blue/black) AES signals at 100MHz (left) and 500KHz(right) [3] 



11 
 

P = ( 
1

2
  . C . VDD

2 + Qse . VDD) . f . N + Ileak . VDD 

Dynamic Power = ( 
1

2
  . C . VDD

2 + Qse . VDD) . f . N ; 

Leakage Power = Ileak . VDD 

2. Current Integration Method 

According to Wang et al. [4] most Trojans inserted into the chip require power supply and 

ground to operate. The authors developed a multi supply transient current integration 

methodology to detect a hardware Trojan. A Trojan when inserted on a chip would 

consume power. However the Trojans contribution to the total power consumption would 

depend on its size and type. Fully activation of a Trojan using structural and functional 

patterns would be extremely challenging and prohibitively expensive. Hence partial 

activation of Trojans would be an effective way for Trojan detection using transient current 

based side-channel analysis methods similar to current integration method [4] [13].  

 

 

Figure 2.5: Current Charge Integration Method [4] 



12 
 

  The amount of current which a Trojan draws can be so small that it can be submerged 

into an envelope of noise and process variation effects and thus not be detected by 

conventional methods. However Trojan detection capabilities are greatly enhanced by 

measuring currents locally and from multiple power ports/pads. Figure 4 shows our current 

(charge) integration methodology presented by Wang et al. for detecting hardware Trojans. 

The die includes four power ports. The golden die can be selected after subjecting it to 

exhaustive number of test cases. If the same results are obtained for all the cases, the chip 

can assumed as Trojan free. After identifying the golden chips, the worst case will be 

obtained for a particular test vector. The worst case is considered because of the process 

variations in any of the genuine IC’s [4] [13].     

     Now the Trojan infected IC, is subjected to n number of current waveform patterns as 

shown in the figure, the charge variations for all the current waveforms with time is 

obtained after applying the test patterns. Qn(t) denotes the charge accumulation after 

applying n test patterns. Qthr is the threshold charge to detect a Trojan. When applying the 

test patterns, the increase in charge is continuously compared with the worst case charge 

calculated for the golden chips. Once the difference between the two curves, ∆𝑄 is greater 

than Qthr , a Trojan is detected. If Itrojan_free(t) and Itrojan_inserted(t) denote the instantaneous 

supply current drawn by Trojan free and Trojan inserted circuit at time t respectively, then 

the integrated current at time t for Trojan free and Trojan inserted (Qtrojan_free(t), 

Qtrojan_inserted(t)) can be expressed by equations (1) and (2). 

dq = I . dt 

Qtrojan_free(t) = ∫ 𝐼𝑡𝑟𝑜𝑗𝑎𝑛𝑓𝑟𝑒𝑒  (𝑡) 𝑑𝑡                                            (7) 



13 
 

Qtrojan_inserted(t) = ∫ 𝐼𝑡𝑟𝑜𝑗𝑎𝑛𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑 (𝑡) 𝑑𝑡 = ∫ (𝐼𝑡𝑟𝑜𝑗𝑎𝑛𝑓𝑟𝑒𝑒(𝑡) + 𝐼𝑡𝑟𝑜𝑗𝑎𝑛  ) 𝑑𝑡       (8) 

Where Itrojan(t) denotes the current drawn by Trojan. The difference between the two 

currents Itrojan_free(t) and Itrojan_inserted(t) is equal to the additional current drawn by the Trojan 

gates and the changes in the circuit current due to process variations [4] [13].  

2.2.3 Trojan Detection Using Side-Channel Timing-Based Analysis 

     Li and Lach [5] proposed a new method for IC authentication and HTH detection based 

on delay characteristics. This delay based model uses physical unclonable function (PUF) 

for hardware Trojan detection. This method uses a sweeping-clock-delay measurement 

technique to measure selected register to register path delays. This method was originally 

developed to characterize the process variations. Trojans can be detected when one or more 

path delay measurements are beyond the threshold limit. The figure 2.6 shows the path 

delay measurement architecture [5] [13]. 

 

 

Figure 2.6: Path delay measurement architecture using a Shadow Register [5] 

 



14 
 

                As shown in the Figure 2.6, the main circuit is a one register-to-register 

combinational path delay that is to be characterized and the registers on this path are 

triggered by the main system clock (CLK1). The components outside the box are part of 

the testing circuitry. The shadow register takes the same input as the destination register, 

but is triggered by the shadow clock (CLK2), which runs at the same frequency as main 

system clock, but with a controlled phase offset. The results latched by the destination 

register and the shadow register is compared during every clock period until a discrepancy 

is identified. If the comparison result is unequal, the path delay is characterized with the 

precision of the skew step size [5] [13].  

     In the technique described above, the functionality of the main circuit is not affected by 

the delay characterization testing. This main feature enables to test at-speed without adding 

extra complexity to the testing process [5] [13]. 

     An issue arises when nonfunctional characteristics like delay and power are used for IC 

authentication, is that they are dependent on temperature and voltage variations. To 

overcome this problem, this method employs an on die temperature monitor to overcome 

the problem of temperature affecting the path delay. As shown in the figure, the monitor 

uses a ring oscillator as the clock input of a counter to measure operating temperature.  

 

 

 Figure 2.7: Ring Oscillator Temperature Monitor [5] 



15 
 

    Because the oscillator, is embedded within the main circuitry, and its switching 

frequency is temperature dependent, the authenticator can calculate the effective response 

from the reported temperature and delay signature [5] [13].  

     Jin and Makris [6] proposed a new fingerprint generating method using the path delay 

information of the entire chip. A chip has many delay paths and each representing one part 

of the whole circuit. The timing features in this model can generate a series of path delay 

fingerprints. The entire testing process includes three steps 

1. Path delay gathering of nominal chips – In this step, many chips are selected 

from an IC design. High coverage input patterns are run on the sample chips and 

high dimension path delay information is collected. Then these chips are checked 

via reverse engineering to ensure they are genuine circuits [6] [13]. 

2. Fingerprint generation – According to path delays, a series of delay fingerprints 

are generated and mapped to a lower dimension space [6] [13].  

3. Trojan Detection – All the other chips are checked under the same test patterns 

and their delay information is reduced to a low dimension when compared to the 

delay fingerprints [6] [13].  

2.3 Trojan Activation Methods 

     According to M.Tehranipoor, F.Koushanfar [13] Trojan activation strategies can 

accelerate Trojan detection process. If a portion of the Trojan circuitry is activated, the 

Trojan circuit will consume more dynamic power, which will further help in 

differentiating the power traces of Trojan inserted and Trojan free circuits. The Trojan 

activation schemes can be classified as Region free Trojan activation and Region aware 

Trojan activation.  



16 
 

Region free Trojan activation: 

     These methods do not rely on the region but depend on accidental or systematic 

activation of Trojans. According to Jha & Jha [7], a randomization based probabilistic 

approach can be used to Trojans. They showed that it is possible to construct a unique 

probabilistic signature of a circuit on the basis of a specific probability for patterns 

applied to its inputs. They apply input patterns based on the specific probability to the 

IUA and compare its output with the original circuit. If there are differences in the 

outputs, a Trojan is present [7] [13]. 

Region aware Trojan activation: 

     Banga and Hsiao [8] developed a two stage test generation technique that targets 

magnifying the difference between IUA and the genuine design power waveforms. In 

the first stage (circuit partitioning), a region aware pattern helps to identify the potential 

Trojan insertion regions. To detect a Trojan, the activity in a particular region is 

magnified and for the rest of the circuit is simultaneously minimized. In the next stage 

(activity magnification), new test patterns are applied to magnify the differences 

between original and the Trojan inserted circuits [8] [13].  

     In the figure given below, the circuit is partitioned into five regions. Its radius 

defines the extent of a region. For a single gate region, the radius is zero, the immediate 

fan in and fan out gates connected to it will have a radius of one (G1, G2, G3, G4, FF1, 

G6 and G7) and so on.  



17 
 

                    

 

Figure 2.8: Illustration of the concept of Region and Radius in a circuit [8] 

 

F = max (In-Region activity – Out-Region activity) 

     If the behavior of a Trojan is perceivable only if the difference in the activity of the 

Trojan infected chip and the genuine chip is above the process variation. 

     Banga and Hsiao [9] discussed magnifying Trojan contributions by minimizing a 

circuit activity. Different portions of the circuit can be explored by changing input 

vectors to localize a Trojan. At the same time, each gate is equipped with two counters, 



18 
 

Trojan count and Non-Trojan count. With each vector, if the number of transitions at 

the gates’ output exceeds a specific threshold, its Trojan count would increase and vice 

versa.  

.  

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 2.9: Pseudo Code to Isolate Gate having Trojan activity [9] 

Require: GenuineCkt,TrojanCkt,InputVector 

Ensure: Plot of gate weights corresponding to their probability of Trojan association 

PowerDifferentialThreshold<=5.0 

TrojanCount<=0 

NonTrojanCount<=0 

ToggledGateList<=Simulate(GenuineCkt,InputVector) 

PowerNumbers(GenuineCkt)=PowerSimulate(GenuineCkt,InputVector) 

PowerNumbers(TrojanCkt)=PowerSimulate(TrojanCkt,(InputVector)) 

for all(Vi,Vi+1)ЄInputVector d  

%PowerDifferential<=(abs

(
𝑃𝑜𝑤𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟𝑠(𝑇𝑟𝑜𝑗𝑎𝑛𝐶𝑘𝑡,(𝑉𝑖,𝑉𝑖+1)−𝑃𝑜𝑤𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟𝑠(𝐺𝑒𝑛𝑢𝑖𝑛𝑒𝐶𝑘𝑡,(𝑉𝑖,𝑉𝑖+1))))

𝑃𝑜𝑤𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟𝑠(𝐺𝑒𝑛𝑢𝑖𝑛𝑒𝐶𝑘𝑡,(𝑉𝑖,𝑉𝑖+1))
) ∗ 100 

     If %PowerDifferential>PowerDifferentialThreshold then 

           IncrementWeight(TrojanCount,ToggledGateLIst(Vi,Vi+1) 

    else 

         IncrementWeight(NonTrojanCount,ToggledGateList(Vi,Vi+1) 

   end if 

end for 

 

 

 

 

BuildPowerProfilePlots(PowerNumbers(GenuineCkt),PowerNumbers(TrojanCkt)) 

For all giЄGenuineCkt do 

𝐺𝑎𝑡𝑒𝑊𝑒𝑖𝑔ℎ𝑡 =
𝑇𝑟𝑜𝑗𝑎𝑛𝐶𝑜𝑢𝑛𝑡(𝑔𝑖)

𝑁𝑜𝑛𝑇𝑟𝑜𝑗𝑎𝑛𝐶𝑜𝑢𝑛𝑡(𝑔𝑖)
 

end for  



19 
 

 A high gate weight ratio means that the gate has been considerably been impacted by a 

Trojan. 

2.4 Design for Hardware Trust 

     According to M.Tehranipoor and F.Kaushanfar [13], the current design practices do 

not support effective side channel signal analysis or pattern generation for Trojan 

detection. Hence the methods proposed by hardware security and trust community to 

improve Trojan detection and isolation by changing the design flow should be given a 

closer look. These methods are called as Design for Hardware Trust [12] [13].  

     Banga and Hsiao [12], proposed an inverted voltage scheme to magnify the Trojan 

activity. Because the Trojan is assumed to be active only under certain rare conditions, 

IC inputs can be changed so that rare combinations are created to activate the Trojan.  

 

 

Figure 2.10: (a) Trojan logic under normal Voltage supply (b) Only the Trojan gate is effected by voltage inversion (c) 

both Trojan and Payload are affected by voltage Supply [12] 



20 
 

This approach is based on two principles, 

1. Gate Logic Inversion – This creates a frequent triggering scenario for the Trojan 

gate [12] [13]. 

2. Sustained Vector Simulation – This decreases overall circuit activity and magnifies 

the extra toggles created by the Trojan [12] [13].  

     For a random gate g, if the logical value  L ( L ∈ {0 , 1}) appears more frequently than 

the other logical value 𝐿̅ under a test vector set T, then L is called as the majority value and 

value 𝐿̅ is called as the minority value for g under T. The majority value for an AND gate 

is 0 and minority value is 1, similarly majority value for an OR gate is 1 and minority value 

is 0  [12] [13]. 

     For example, in the figure above, for the AND gate with four inputs, the rare 

condition would be when all the four inputs are 1 (probability is 1/16). The goal of this 

process is to remove this rare condition. This can be achieved by reversing the gates’ power 

supply voltage (VDD) and ground (GND). Thus the AND gate is changed into a NAND 

gate and 1 at the output of the NAND gate is never a rare value (as the probability is now 

15/16). 

P(trigger) = ∏ 𝑃[𝑖]𝑁𝐶
𝑖=𝑛
𝑖=0                                                                                    (9) 

2.5 Technical Background 

    This section provides a technical background by giving a brief overview on the need for 

RTL coding, how behavioral modeling done and finally how the probability of a given line 



21 
 

of code is calculated. After establishing these basics we can, we can dive into deriving a 

mathematical model for this thesis. 

2.5.1 Need For RTL Coding 

RTL stands for Register Transfer level. Typically a IC which we manufacture has two 

sections 

1. Analog: This section of the IC interacts which all sections of the outer world and 

uses all voltage levels. 

 

 

Figure 2.11: Analog Waveform 

 

2. Digital: This section forms the core part of IC and deals with only two voltage 

levels 0 and 1. All data transfer between various sections, data processing and all 

computations are accomplished using digital design. 

 

 

Figure 2.12: Digital Waveform 



22 
 

 RTL description is a lower level abstraction than behavioral model but higher level 

abstraction than netlist description of a circuit. The RTL description of a circuit can be 

written using any of the HDL (Hardware Descriptive Language)  

Like VHDL or Verilog. In RTL description, the circuit is described in terms of registers 

and data is transferred between them using logical operations and hence the name Register 

Transfer Level. 

     RTL is the first real dig at the detailed circuit design. All the subsequent steps in the 

design process would depend on the quality of the RTL design. Better the quality of RTL, 

the quicker the design can be sent into the market. 

     I have used VHDL for RTL design in my thesis. VHDL was first published as IEEE 

standard in 1987 and since then revised versions have been launched in 1994, 2000, 2002 

and 2009. 

2.5.2 Behavioral Modeling 

      Behavioral Modeling is the highest form of abstraction possible with the HDL. It is 

mainly used for system analysis, simulation and partition stage. Behavioral model cannot 

be synthesized into logic gates automatically like in RTL. 

     Behavioral modeling of any circuit mainly has processes, sequential statements. 

Processes run code sequentially. Subprograms is another behavioral construct which 

allows us to reuse the code. Packages are another important component in VHDL they 

contain subprograms, constants definitions to be used through one or more design items.  



23 
 

 

Figure 2.13: Full Adder behavioral Code 

 

2.5.3 Probability of any Line of Code 

     Probability is a branch of mathematics which deals with the calculation of the likelihood 

of occurrence of an event. It is the ratio of number cases favorable towards the occurrence 

of an event to the total number of all possible cases. 

 P(X) = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑣𝑜𝑟𝑏𝑎𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
                                                        (10) 

 where X is a random event. 

     The sum of the probabilities all possible outcomes is one. 

            ∑ 𝑃(𝑋𝑘)𝑁
𝑘=1  = 1                        (11) 



24 
 

  

Figure 2.14: Comparator Code 

     

 For the code given above we have two input signals num1 and num2 and three output 

signals first, second and equal.  

 

Signal Possible Outcomes No.of Outcomes 

num1 000,001,010,011 4 

num2 000,001,010,011 4 

first 0,1 2 

second 0,1 2 

equal 0,1 2 

Table 1: Summary of possible values of num1 and num2. 



25 
 

     From the table above we can see that num1 & num2 each have four possible values.  

Let"𝑋1” be the event of “num1>num2”. 

Number of possible outcomes of event 𝑋1 ={(011,000), (011,001), (011,010), (010,000), 

(010,001), (001,000)} 

Let"𝑋2” be the event of “num2>num1”. 

Number of possible outcomes of event 𝑋2= {(011,000), (011,001), (011,010), (010,000), 

(010,001), (001,000)} 

Let"𝑋3” be the event of “num1=num2”. 

Number of possible outcomes of event 𝑋3= {(011,011), (010,010), (001,001), (000,000)} 

     Therefore from the definition of probability we can see that, the probability of 

occurrence of event "𝑋1"  is  

 P (𝑋1)=
6

16
= 0.375 

Similarly, the probability of occurrence of event "𝑋2"  is  

 P (𝑋2)=
6

16
= 0.375 

The probability of entering the loop “𝑋3” is 

 P (𝑋3)=
4

16
= 0.25 

 

 

 



26 
 

2.5.4 Test Bench  

 

A test bench is used to simulate this design. To simulate, the test bench provides the Design 

Under Test (DUT) and the stimulus. The test bench is the HDL code, which generates the 

stimulus and applies this stimulus to the DUT and generates the output responses. These 

output responses are compared to the expected values to check for errors. 

 

Verify Results

Apply 
Stimulus

Entity to be 
Tested

Test Bench 
 

Figure 2.15 Architecture of Test Bench 

 

     The basic building blocks of any test bench are scheduler, driver, receiver, UUT 

interfaces and text I/O sub programs. The scheduler acts as the heart of the test bench. Its 

functions include reading stimulus and expected response files. The driver acts as a 

message queuing ENTITY. It receives messages and control information from the 

scheduler and queues messages to the appropriate UUT input. The receiver entity 

monitors the output of the UUT, and reports activity to the scheduler and to the result file. 

The UUT interfaces format the data passed to and from the UUT [14].  

            The text I/O sub programs are shared routines that format input and output 

information and interface them directly with the standard VHDL STD.TEXTIO routines. 

The Text I/O interfaces carry text information into and out of the test bench. The 

interface between the scheduler and the Text I/O routines contains two paths. The first is 



27 
 

the input scheduler path consisting of Text I/O routines which pass the scheduler data 

from the stimulus/response file. This data is of standard type STD.TEXTIO.LINE, and is 

read using standard procedure STD.TEXTIO.READLINE [14].  

The scheduler parses the line using the standard procedure STD.TEXTIO.READ 

Figure 2.16 Pseudo code for Reading Input Test Vectors 

 

Test vectors generation 

            With the advent of VLSI technology and increasing the complexity of VLSI 

chips, ensuring correctness of behavioral models before they are released for synthesis 

and logic design phase is essential to achieve a high quality product with tight deadlines. 

The current state of testing complex behavioral models for bugs is a tedious process. 

Millions or even billions of test vectors are applied to behavioral model before they are 

shipped. This test-it-to-death approach is wasteful and does not direct limited resources 

effectively to potential buggy portions of the model. Most designers still use a manual 

test generation process that typically provides test coverage of between 50% and 70% of 

the potential faults. If highest coverage is desired, the time and cost for developing the 

test vectors would increase exponentially [14]. 

file test_vectors: TEXT open read_mode is "C:\Modeltech_pe_edu_10.4a\examples\work\Cleaned_Vectors.txt"; 

 

WHILE (NOT ENDFILE(test_vectors)) LOOP 

READLINE (test_vectors, current_line); 

READ(current_line, a_input_test); 

READ(current_line, b_input_test); 



28 
 

     Various statistical techniques have been used to determine the number of test vectors 

needed to achieve a particular test objective. Stopping rules can be used to save testing 

time and costs while still maintaining the expected quality of the model. There are 

various models proposed to find an efficient and economical stopping rules, like 

Bayesian stopping rule which uses Poisson counting process compounded with 

logarithmic series distribution (LSD). These stopping rule methods are complex and are 

difficult to apply to all the models [14]. 

Fault coverage 

     Fault coverage is an important concept in VLSI test. Fault coverage is used to evaluate 

the efficiency of the test, the efficiency of different test structures, different test 

algorithms and different test strategies in terms of fault coverage [16]. 

     People usually intend to pursue high fault coverage to achieve high chip quality. 

𝐹𝑎𝑢𝑙𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐹𝑎𝑢𝑙𝑡𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑢𝑙𝑡𝑠
 

 

     Different Stopping rules evaluation methods are very complex and are difficult to 

apply for all the behavioral model structures. Therefore, random vector generation 

process is used to test the Modified ALU in this thesis. Although the test vectors 

randomly are generated manually, the Fault coverage value with these test vectors is 

maintained very high. For this purpose we are generated around 400,000 test vectors 

which gave us a fault coverage value of 0.8. 



29 
 

2.6 Summary 

     In this chapter, several Trojan detection methodologies which have been developed over 

the past years have been discussed. Power and timing based side channel signal analysis, 

have been analyzed. After which, various Trojan activation methods including Region free 

and Region aware Trojan activation techniques and their advantages have been examined. 

Finally, the need for Hardware Trust and methodology which helps us in achieving this has 

been surveyed. Although we have spoken about the ways by which the models help us 

detect Trojans, they do have their own drawbacks as listed below. 

1. Power Based Analysis - In modern Nano scale technology based ICs, the amount of 

parameter variation can be much more than 7.5% whereas, the Trojan circuit area can 

be as low as 0.01%. In which case, the power generation would be too small [77]. In 

the current integration method that has been discussed, the amount of current drawn by 

a Trojan can be at times so small that it can be submerged into an envelope of noise 

and process variation effects and thus be undetectable by conventional measuring 

equipment. [13]. 

2. Timing Based Analysis – In the model proposed by Li and Lach [5], the model would 

require large considerable area overhead when targeting today’s large designs with 

millions of parts especially the short ones would not be practical.[13] 

Trojan Activation Methods – In order to activate any particular Trojan instance, we must 

trigger it. Thus the generation of the optimal set of test vectors will remain an important 

problem [11]. Along with these, the test engineer would not knowing the Trojan type or 

size initially, hence both region free and region aware methods would be needed. If the 



30 
 

Trojan input comes from a part of the circuit, which are functionally dependent, then region 

aware method would be effective else region free method would be more effective. 

 

S.No Paper Test Modality Drawbacks 

1 
Agarwal           

et al.[3] 

Transient Power        

(Simple Power 

Analysis) 

Would not work if size of Trojan is very 

small compared to the size of circuit 

2 Wang et al [4] 
Transient Power       

(Current Integration) 

Would not work if size of Trojan is very 

small compared to the size of circuit 

3 
Li and Lach 

[5] 
Delay 

Would require large overhead and would 

be difficult to find delay for all the million 

paths in the circuit to develop fingerprint 

4 
Jin and        

Markis [6] 
Delay 

Would require large overhead and would 

be difficult to find delay for all the million 

paths in the circuit to develop fingerprint 

5 
Banga and 

Hsiao[8][9] 

Transient power and 

pattern generation 

Generation of optimal set of test vectors to 

activate a particular Trojan would be 

difficult 

6 
Banga and 

Hsiao[12] 

Design for Trust and 

transient power 

Switching Power Supply Voltage for each 

power supply Voltage and ground would 

be difficult 

Table 2: Summary of Key Trojan detection methods 

 All these models have limitations be it with Side-channel analysis, whose effectiveness 

reduces with decreasing Trojan size and increasing process induced parameter variations. 

Logic testing loses its effectiveness in circuits with multi-millions of transistors, because 

one has to generate the exact input condition to activate the trigger function that causes 

the alteration in logic value. It can be very challenging to generate such input conditions, 

and none of these methods explain methods of Trojan detection at the behavioral level as 

most of these methods can be applied to the circuits post manufacturing. Hence we need 

an alternate approach which would help us detect the Trojans right at the behavioral 

level.  



31 
 

Chapter 3 Mathematical Model and Tech Bench Setup 

     In this chapter, a mathematical model is developed to associate, the probability of a 

given line of code to the vulnerability of that line of code. The correctness of this model is 

verified by implementing this model in an experimental setup. In this setup, the 

mathematical model is applied to two 16-bit ALU’s, one a Golden ALU (error free) and 

second a Modified ALU (has Insertion-errors). 

3.1 Mathematical Model 

     Two random variables A&B are defined, each with‘d’ bits of length and would take 

values from  0 to 𝟐𝒅. 

 “A” is a discrete uniform random variable with parameter 𝑁𝑎 = 2𝑑 

Where P (A=a) = 
1

𝑁𝑎
  and a=0, 1, 2, 3……𝟐𝒅 

Similarly, 

“B” is a discrete uniform random variable with parameter 𝑁𝑏 = 2𝑑 + 1 

Where P (A=b) = 
1

𝑁𝑏
  and b=0, 1, 2, 3……𝟐𝒅 

Let 𝑋1 be a Bernoulli random variable denoting occurrence of a loop, and Q & R denote 

the set of values which A&B take for this particular loop 𝑋1. i.e, this loop gets executed if 

“A” takes values from set Q and B takes values from set R. 



32 
 

𝑁𝑄- denotes the number of values in set Q, and  

𝑁𝑅- denotes the number of values in set R. 

P (𝑋1=1) = 𝑃1, and 

P (𝑋1=0) = 1 − 𝑃1 

Where 𝑃1 is the probability "𝑋1" occurring. 

𝑃1 = 𝑃( 𝐴 𝑎𝑛𝑑 𝐵) 

Since A & B are two independent events  

𝑃( 𝐴 𝑎𝑛𝑑 𝐵) = 𝑃(𝐴) ∗ 𝑃(𝐵)            (12)  

          =
𝑁𝑄

𝑁𝐴
∗

𝑁𝑅

𝑁𝐵
                            (13) 

Another function H is defined where 

H= {i:  𝑃𝑖 = min (𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5} , where 𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5 denote the probability of 

occurrence of loop 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5                         (14) 

And assume that H would give the loop which is the most vulnerable towards Insertion-

errors. 

This is a very generic mathematical model, which can be used for any number of loops and 

inputs vectors of any size. 



33 
 

 3.2 Test Setup 

The Test setup uses two 16 bit ALUs, one Golden version and other Modified Version. 

These 16-bit ALUs take two Vectors A&B, each of 16-bits in length, and ALUCOUNT, 3 

bits in length, as inputs and performs different functions on A&B based on the value of 

ALUCOUNT. The output of the ALU is the RESULT vector which is again 16-bits in 

length. 

 

16 Bit ALU

Input A
16bits

Input B
16 Bits

ALU count
3bits

Result
16 Bits

 

Figure 3.1: ALU Overview 

 

3.2.1 Golden ALU 

The following are the different operations which are performed on A&B based on 

the value of ALUCOUNT in the Golden ALU. 

 

 

 



34 
 

S.No ALUCOUNT Corresponding Operation 

1 000 OR 

2 001 AND 

3 010 XOR 

4 011 SUM 

                   

                 Table 3: Summary of ALUCOUNT and Corresponding Operations 

 

 

 

 

 

Figure 3.2 Pseudo Code for Golden ALU. 

Note: Complete Code is attached in the appendix section. 

3.2.2 Modified ALU 

The Modified ALU is modified by changing the functionality of the Golden ALU. 

For e.g., Instead of performing “AND” operation when ALUCOUNT is one, the 

modified ALU will perform “OR” function etc. 

 

Golden ALU: 

Switch alucount(2 downto 0) 

case 1: result <= a and b; 

case 2: result <= a or b ; 

case 3: result <= a xor b ; 

case 4: result <=  sum; 

end Switch; 



35 
 

 

Figure 3.3 Pseudo Code for Modified ALU. 

3.3 Test Vector Generation 

 

Random vector generation process is used to test the Modified ALU in this 

thesis. Although the test vectors are generated randomly, the Fault coverage value 

with these test vectors is maintained very high (0.8). We have generated three sets 

of uniform random vectors with sample spaces of four hundred thousand test 

vectors , four million and twenty million[15]. 

Since, we are using 32 bit vectors (both A&B combined), the total number of 

test vectors to be generated for exhaustive testing is 232 = 4.2 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠.  

Although 4.2billion is a small quantity to test, this exhaustive testing would 

becomes prohibitive if the number of bits becomes more like 256, in which case 

the case the number of test vectors to be generated would be 2256. Therefore we 

have generated random uniform test vectors.  



36 
 

Chapter-4 Experimental Results and Simulation 
 

     By using the concepts detailed in the mathematical model, the probability of execution 

and the number of events in favor of execution of each loop are considered in this 

chapter. In this chapter, simulations are run on the Modified ALU code to find out the 

number of events in favor of execution each loop and the relation between probability for 

a given line of code and the vulnerability associated with detecting errors in that line of 

code is found for a given set of input test vectors. 

     The Modified ALU consisting of five loops has been setup such the probabilities of 

each loop ranges from 0 to 1. These loops have errors inserted into them at different 

locations. Since we have a prior knowledge on the data distribution before making 

inferences on the probabilities obtained from each of these loops these probabilities are 

calculated for the Modified ALU are priori probabilities.      

4.1 Modified ALU probabilities of execution 

 Loop1: AND-XOR loop: In this loop “and” and “xor” operations are 

interchanged and this loop gets executed only if the values of A&B are equal to  

"FFFEh" and every time this loop gets executes and xor_count value gets 

incremented by one. The following pseudo code best describes the loop.



37 
 

 

 

 

 

 

Figure 4.1 Pseudo Code for AND-XOR loop in Modified ALU. 

 

𝑋1 = 𝑇ℎ𝑒 𝐸𝑣𝑒𝑛𝑡 𝑜𝑓 "AND-XOR " 𝑙𝑜𝑜𝑝 𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑. 

𝑁𝐴 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝐴 𝑐𝑎𝑛 𝑡𝑎𝑘𝑒 = 216 = 65356. 

𝑁𝐵 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝐴 𝑐𝑎𝑛 𝑡𝑎𝑘𝑒 = 216 = 65356. 

𝑁𝑞 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝐴 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑒𝑣𝑒𝑛𝑡=1 

𝑠𝑖𝑛𝑐𝑒, 𝑡ℎ𝑖𝑠 𝑙𝑜𝑜𝑝 𝑔𝑒𝑡𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑓𝑜𝑟 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐴  

𝑁𝑟 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝐵 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑒𝑣𝑒𝑛𝑡 = 1 

𝑠𝑖𝑛𝑐𝑒, 𝑡ℎ𝑖𝑠 𝑙𝑜𝑜𝑝 𝑔𝑒𝑡𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑓𝑜𝑟 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐵 

𝑃(𝑋1) = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑁𝐷 − 𝑋𝑂𝑅 𝑙𝑜𝑜𝑝 

𝑃(𝑋1) = 𝑃(AND-XOR) =
1

65356
∗  

1

65356
= 2.34 ∗ 10−10 

AND-XOR loop: 

if (a=" FFFEh" and b=" FFFEh") then 

Switch (alucount): 

and_xor_count= and_xor_count+1; 

case 1: result <= a xor b ; 

case 2: result <= a or b  ; 

case 3: result <= a and b ;  

case 4: result <=  sum ;     



38 
 

Loop2: AND-OR loop: In this loop “and” and “or” operations are interchanged and 

this loop is executed only if the values of A&B lie in between  "FFFFh" and “FFF0h” 

and every time this loop gets executes and_or_count value gets incremented by one. 

The following pseudo code best describes the loop. 

 

 

 

 

 

 

Figure 4.2: Pseudo Code for AND-OR loop in Modified ALU. 

 

𝑋2 = 𝑇ℎ𝑒 𝐸𝑣𝑒𝑛𝑡 𝑜𝑓 "AND-OR " 𝑙𝑜𝑜𝑝 𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑. 

𝑁𝐴 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝐴 𝑐𝑎𝑛 𝑡𝑎𝑘𝑒 = 216 = 65356. 

𝑁𝐵 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝐴 𝑐𝑎𝑛 𝑡𝑎𝑘𝑒 = 216 = 65356. 

𝑁𝑞 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝐴 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑒𝑣𝑒𝑛𝑡=16 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎 = FFFFh,   

Minimum value of 𝑎 for this loop is =FFF0h 

AND-OR loop: 

if (a<" FFFFh" a>" FFF0h" )and (b<" FFFFh" b>" FFF0h")  then 

Switch (alucount) 

and_or_count=and_or_count+1;  

case 1: result <= a or b; 

case 2: result <= a and b; 

case 3: result <= a xor b ;  

case 4: result <=  sum ;      



39 
 

𝑅𝑎𝑛𝑔𝑒 𝑜𝑓𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑎 𝑤ℎ𝑖𝑐ℎ 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑡ℎ𝑖𝑠 𝑙𝑜𝑜𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑎𝑟𝑒  

FFFFh-FFF0h=16 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦,  𝑁𝑟 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝐵 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑒𝑣𝑒𝑛𝑡 = 16 

𝑃(𝑋2) = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑁𝐷 − 𝑂𝑅 𝑙𝑜𝑜𝑝 

𝑃(𝑋2) = 𝑃(AND-OR) =
16

65356
∗

16

65356
= 5.97 ∗ 10−8 

Loop3: SUM-XOR loop: In this loop “sum” and “xor” operations are interchanged and 

this loop is executed only if the values of A&B lie in between “FFF0h" and “FF00h” 

and every time this loop gets executes sum_xor_count value gets incremented by one. 

The following pseudo code best describes the loop. 

 

 

 

 

 

 

Figure 4.3 Pseudo Code for AND-XOR loop in Modified ALU. 

 

 

SUM-XOR loop: 

if (a<" FFF0h" a>" FF00h" )and (b<" FFF0h" b>" FF00h")  then 

Switch (alucount) 

sum_xor_count=sum_xor_count+1;  

case 1: result <= a and b; 

case 2: result <= a or b; 

case 3: result <= sum ;  

case 4: result <= a xor b ;      



40 
 

𝑋3 = 𝑇ℎ𝑒 𝐸𝑣𝑒𝑛𝑡 𝑜𝑓 "SUM-XOR " 𝑙𝑜𝑜𝑝 𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑. 

𝑁𝐴 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝐴 𝑐𝑎𝑛 𝑡𝑎𝑘𝑒 = 216 = 65356. 

𝑁𝐵 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝐴 𝑐𝑎𝑛 𝑡𝑎𝑘𝑒 = 216 = 65356. 

𝑁𝑞 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝐴 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑒𝑣𝑒𝑛𝑡=240 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎 = FFF0h.   

Minimum value of 𝑎 for this loop is =FF00h 

𝑅𝑎𝑛𝑔𝑒 𝑜𝑓𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑎 𝑤ℎ𝑖𝑐ℎ 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑡ℎ𝑖𝑠 𝑙𝑜𝑜𝑝 𝑐𝑜𝑛𝑖𝑑𝑖𝑡𝑖𝑜𝑛 𝑎𝑟𝑒  

FFF0h − FF00h=256 

𝑂𝑓 𝑡ℎ𝑒𝑠𝑒 512, 32 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑟𝑒 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑙𝑜𝑜𝑝 𝑠𝑜 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑜𝑛𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑟𝑒  

256 − 16 = 240 

𝑁𝑟 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝐵 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑒𝑣𝑒𝑛𝑡 = 240 

𝑃(𝑋3) = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑆𝑈𝑀 − 𝑋𝑂𝑅 𝑙𝑜𝑜𝑝 

𝑃(𝑋3) = 𝑃(SUM-XOR) =
240

65356
∗

240

65356
= 1.3 ∗ 10−4 

Loop4: SUM-OR loop: In this loop “sum” and “or” operations are interchanged and 

this loop is executed only if the values of A&B lie in between  "FF00h" and “F000h” 

and every time this loop gets executes “sum_or_count” value gets incremented by one. 

The following pseudo code best describes the loop. 



41 
 

 

 

 

 

 

Figure 4.4 Pseudo Code for SUM-OR loop in Modified ALU. 

 

𝑋4 = 𝑇ℎ𝑒 𝐸𝑣𝑒𝑛𝑡 𝑜𝑓 "SUM-OR " 𝑙𝑜𝑜𝑝 𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑. 

𝑁𝐴 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝐴 𝑐𝑎𝑛 𝑡𝑎𝑘𝑒 = 216 = 65356. 

𝑁𝐵 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝐴 𝑐𝑎𝑛 𝑡𝑎𝑘𝑒 = 216 = 65356. 

𝑁𝑞 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝐴 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑒𝑣𝑒𝑛𝑡=3840 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎 = 𝐹𝐹00ℎ,   

Minimum value of 𝑎 for this loop is =F000h 

𝑅𝑎𝑛𝑔𝑒 𝑜𝑓𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑎 𝑤ℎ𝑖𝑐ℎ 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑡ℎ𝑖𝑠 𝑙𝑜𝑜𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑎𝑟𝑒  

FF00h − F000h=3840 

𝑂𝑓 𝑡ℎ𝑒𝑠𝑒 3840, 256 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑟𝑒 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡𝑤𝑜 𝑙𝑜𝑜𝑝𝑑 𝑠𝑜 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑜𝑛𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑟𝑒  

3840 − 256 = 3584 

Similarly, 𝑁𝑟 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝐵 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑒𝑣𝑒𝑛𝑡 = 3584 

SUM-OR loop: 

if (a<" FF00h" a>" F000h" )and (b<" FF00h" b>" F000h")  then 

Switch (alucount) 

sum_or_count=sum_or_count+1; 

case 1: result <= a and b; 

case 2: result <= sum ; 

case 3: result <= a and b ;  

case 4: result <=  or ;     

   



42 
 

𝑃(𝑋4) = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑆𝑈𝑀 − 𝑂𝑅 𝑙𝑜𝑜𝑝 

𝑃(𝑋4) = 𝑃(SUM-OR) =
3584

65356
∗

3584

65356
= 0.003 

Loop5: No error loop: This loop is same as the Golden ALU and no operations are 

interchanged and this loop is executed for all other values of A&B and every time this loop 

gets executes “no_error_count” value gets incremented by one. The following pseudo 

code best describes the loop.  

 

 

 

 

 

 

Figure 4.5 Pseudo Code for NO-Error loop in Modified ALU. 

 

𝑋5 = 𝑇ℎ𝑒 𝐸𝑣𝑒𝑛𝑡 𝑜𝑓 "SUM-OR " 𝑙𝑜𝑜𝑝 𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑. 

𝑁𝐴 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝐴 𝑐𝑎𝑛 𝑡𝑎𝑘𝑒 = 216 = 65356. 

NO Error: 

If (( a>”0000Eh” and a<”FFFFh”) or ( b>”0000Eh” and b<”FFFFh”) 

 and  ! ((a=" FFFEh" and b=" FFFEh")) 

and ! ((a<" FF00h" a>" F000h" )and (b<" FF00h" b>" F000h")  ) 

and ! ((a<" FFF0h" a>" FF00h" )and (b<" FFF0h" b>" FF00h")) 

and !( (a<" FFFFh" a>" FFF0h" )and (b<" FFFFh" b>" FFF0h")) 

Switch alucount(2 downto 0) 

no_error_count=no_error_count+1; 

case 1: result <= a and b; 

case 2: result <= a or b ; 

case 3: => result <= a xor b ; 

case 4: => result <=  sum; 

end Switch; 

    



43 
 

𝑁𝐵 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝐴 𝑐𝑎𝑛 𝑡𝑎𝑘𝑒 = 216 = 65356. 

𝑁𝑞 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝐴 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑒𝑣𝑒𝑛𝑡:- 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎 = FFFFh,   

Minimum value of 𝑎 for this loop is =0000ℎ 

𝑅𝑎𝑛𝑔𝑒 𝑜𝑓𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓  𝑤ℎ𝑖𝑐ℎ 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑡ℎ𝑖𝑠 𝑙𝑜𝑜𝑝 𝑐𝑜𝑛𝑠𝑖𝑑𝑖𝑡𝑜𝑛 𝑎𝑟𝑒  

FFFFh − 0000h=65356 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, 𝑁𝑟 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝐵 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑒𝑣𝑒𝑛𝑡 =

65356. 

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑣𝑒𝑛𝑡𝑠 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑙𝑜𝑜𝑝 𝑡𝑜 𝑔𝑒𝑡 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑖𝑠

=  65356 ∗ 65356 = 4294967296 

Of these 4294967296 events, 1 event gets used up in loop AND-XOR, 16 in loop 

AND-OR, 240 in SUM-XOR, 3840 in SUM-OR. 

 Therefore the remaining events executed in No-Error loop are 

=4294967296-(1+16+240+3840)=4294963199 

𝑃(𝑋5) = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑁𝑜 𝑒𝑟𝑟𝑜𝑟 𝑙𝑜𝑜𝑝 

𝑃(𝑋5) = 𝑃(No Error) =
4294963199

(65356 ∗ 65356)
= 0.999 

 

 



44 
 

The priori probabilities of different loops can be summarized as follows. 

 

Loops Probabilities 

𝑃(𝑋1) = 𝑃(AND-XOR)  2.34 ∗ 10−10 

𝑃(𝑋2) = 𝑃 (AND-OR) 5.97 ∗ 10−8 

𝑃(𝑋2) = 𝑃 (SUM-XOR) 1.3 ∗ 10−4 

𝑃(𝑋4) = 𝑃 (SUM-OR) 0.003 

𝑃(𝑋5) = 𝑃 (No error loop)         0.999 
Table 4: Summary of Probabilities of various loops 

 

From the table:  

 𝑃(𝑋1) < 𝑃(𝑋2) < 𝑃(𝑋3) < 𝑃(𝑋4) < 𝑃(𝑋5), or  

𝑃(AND-XOR) < 𝑃 (AND-OR) < 𝑃 (SUM-XOR) < 𝑃 (SUM-OR) < 𝑃 (No error loop)   (15) 

4.2 DUT Simulation 

The number of events which are in favor of execution of each loop in the Design under 

Test (Modified ALU) for each set of input test vectors can be found by passing the input 

test vector sets with the help of Golden_TB (Test Bech) using ModelSim.  

Here Golden_TB, supplies three sets of input test stimuli to the DUT (Modified ALU). One 

set containing 400,000 test vectors, other 4 million and the last set contains 20millions test 

vectors each of 32bits in length (Vectors A&B) [15]. 

The probability of execution of each loop will have posteriori probabilities and can be 

calculated using our Simulation results. The test vectors have been generated using uniform 

distribution have “a priori” estimations associated with them.  



45 
 

a. Total Sample Space= 400,000 vectors. 

In the first case we supply 400,000 test vectors as inputs to the DUT. The Simulation below 

gives us the count of number of events favorable towards execution of each loop for the 

given randomly generated test vectors. 

 

 

Figure 4.6 Simulation results for number of events in favor of execution of each loop 

Sample Space: 400,000. 

 

The following are the results obtained from the simulation of the DUT against the Test 

Vectors. 

 

S.No Loop Name 

Number of events in 

favor of execution of 

each loop(in Hex) 

Number of events in favor 

of execution of each 

loop(in Decimal) 

1 AND-XOR 0 0 

2 AND-OR 0 0 

3 SUM-XOR 59 89 

4 SUM-OR 1191 4497 

5 No Error 6089A 395418 

                    Table 5: Summary of number of events in favor of execution of each loop Sample Space: 400,000 



46 
 

 From our simulation table,  

Nearly 400,000 randomly generated test vectors which have uniform distribution have been 

supplied as inputs to the test bench.  

The number of events which are in favorable for execution of loop “AND-XOR” are “0”.  

Therefore, the estimated probability of execution of this loop would be 
0

400000
= 0 

Similarly, The number of events which are favorable towards execution of loop           

“AND-OR” are “5”.  

Therefore, the probability of execution of this loop would be 
0

400000
= 0 

Similarly, The number of events which are favorable towards execution of loop           

“SUM-XOR” are “41”.  

Therefore, the probability of execution of this loop would be 
89

400000
=0.0002225 

 

Similarly, The number of events which are favorable towards execution of loop           

“SUM-OR” are “5813”.  

Therefore, the probability of execution of this loop would be 
4497

400000
=0.0112425 

 

Similarly, The number of events which are favorable towards execution of loop                 

“No-Error” are “394132”.  



47 
 

Therefore, the probability of execution of this loop would be 
395418

400000
=0.988545 

Experiment-2 

Total Sample Space= 4,000,000 Test Vectors 

The number of events favorable towards the execution of each of these loops are  

 

 

Figure 4.7 Simulation results for number of events in favor of execution of each loop 

Sample Space: 4,000,000. 

 

The results from simulation can be summarized as follows. 

 

S.No Loop Name 

Number of events in 

favor of execution of 

each loop(in Hex) 

Number of events in 

favor of execution of each 

loop(in Decimal) 

1 AND-XOR 0 0 

2 AND-OR 5 5 

3 SUM-XOR 369 873 

4 SUM-OR BC89 48265 

5 No Error 3C490E 3950862 

Table 6: Summary of number of events in favor of execution of each loop Sample Space: 4,000,000 



48 
 

The number of events which are in favorable for execution of loop “AND-XOR” are “0”.  

Therefore, the probability of execution of this loop would be 
0

4000000
= 0 

Similarly, The number of events which are favorable towards execution of loop           

“AND-OR” are “5”.  

Therefore, the probability of execution of this loop would be 
5

4000000
= 1.25 ∗ 10−6 

Similarly, The number of events which are favorable towards execution of loop           

“SUM-XOR” are “873”.  

Therefore, the probability of execution of this loop would be 
873

4000000
= 2.18 ∗ 10−4 

Similarly, The number of events which are favorable towards execution of loop           

“SUM-OR” are “48265”.  

Therefore, the probability of execution of this loop would be 
48265

4000000
= 0.012 

Similarly, The number of events which are favorable towards execution of loop                 

“No-Error” are “3937054”.  

Therefore, the probability of execution of this loop would be 
3950862

4000000
= 0.9877 

Experiment-3: 

 

Total Sample Space= 20,000,000. 

The number of events favorable towards the execution of each of these loops are  



49 
 

 

Figure 4.8 Simulation results for number of events in favor of execution of each loop 

Sample Space: 20,000,000. 

 

 

S.No Loop Name 

Number of events in 

favor of execution of 

each loop(in Hex) 

Number of events in favor 

of execution of each 

loop(in Decimal) 

1 AND-XOR 0 0 

2 AND-OR 11 17 

3 SUM-XOR 106D 4205 

4 SUM-OR 3A851 239697 

5 No Error 12D7436 19756086 

Table 7: Summary of number of events in favor of execution of each loop Sample Space: 

20,000,000 

 

 

The number of events which are in favorable for execution of loop “AND-XOR” are “0”.  

Therefore, the probability of execution of this loop would be 
0

20000000
= 0 

Similarly, The number of events which are favorable towards execution of loop           

“AND-OR” are “17”.  

Therefore, the probability of execution of this loop would be 
17

20000000
=0.00000085 



50 
 

Similarly, The number of events which are favorable towards execution of loop           

“SUM-XOR” are “4205”.  

Therefore, the probability of execution of this loop would be 
4205

20000000
= 0.00021025 

Similarly, The number of events which are favorable towards execution of loop           

“SUM-OR” are “239697”.  

Therefore, the probability of execution of this loop would be 
239697

20000000
= 0.01198485 

Similarly, The number of events which are favorable towards execution of loop                 

“No-Error” are “19756086”.  

Therefore, the probability of execution of this loop would be 
19756086

20000000
= 0.98739 

Summarizing the priori probabilities and the posteriori probabilities for the mathematical 

model and the DUT. 

 

Loops 

Probabilities 

(using 

exhaustive 

testing) 

Probabilities 

using 

400,000 test 

vectors 

Probabilities 

using 

4,000,000 

test vectors 

Probabilities 

using 

20,000,000 

test vectors 

𝑃(𝑋1) = 𝑃(AND-

XOR)  
2.34 ∗ 10−10 

0 0 0 

𝑃(𝑋2) = 𝑃 (AND-

OR) 
5.97 ∗ 10−8 

0 

 
1.25*10−6 8.7∗ 10−7 

𝑃(𝑋2) = 𝑃 (SUM-

XOR) 
1.3 ∗ 10−4 

2.2∗ 10−4 2.1*10−4 2.1∗ 10−4 

𝑃(𝑋4) = 𝑃 (SUM-

OR) 
0.003 

0.011 0.012 0.0119 

𝑃(𝑋5) = 𝑃 (No 

error loop) 
        0.999 

0.9885 0.9877 0.9878 

Table 8: Exhaustive Testing Probabilities (Priori) and Posteriori Probabilities. 



51 
 

In our test cases, we have established the results with priori and posteriori probabilities. It 

is important to note that the priori and posteriori probabilities of a given data set at 

different instances of time will not be identical because the distribution is always normal 

and random. Let Ppr be the priori probability and Ppo be the posteriori probability then 

the condition  

Ppr=Ppo+∆ P where “∆ P” can either be a measurement error or be a case in which the 

loop is not executed due to random generation, or due to the design of the loops itself. So 

a more practical way to determine the convergence will be to get the results from priori 

probability and then do different experiments for random data sets at different instances 

of time. This will give a way for us reduce the error in measurement. 

From the table we can see that 

The number of events in favor of execution of the following loops is in increasing order as 

follows 

(AND-XOR) < (AND-OR) < (SUM-XOR) < (SUM-OR) < (No-Error)            (16) 

If the number of events in favor of execution of any loop is zero, it means that the loop 

never gets executed and it would not get tested for the given set of randomly generated test 

vectors. It means it’s the best place to place an error, as it would never get detected. 

Therefore the order of increasing Vulnerability of each loop from the above simulation 

results would be as follows: 

(AND-XOR)> (AND-OR)> (SUM-XOR)> (SUM-OR)> (No-Error)       (17) 



52 
 

From equations (15) and (17) it’s clearly understood that   

The loops of code, which have lowest probability, are most vulnerable towards errors. This 

statement is in line with the mathematical model, which has been developed. In the next 

chapter we will discussing about the priori probabilities and posteriori probabilities. 

 

 

 

 

 

 

 



53 
 

Chapter-5 Conclusion & Future Work 
 

     In this thesis, a mathematical model developed which helps in detecting parts of code 

that are most vulnerable to errors. This thesis assumes that lines of code which have lower 

probabilities are the places that are most vulnerable. To check this mathematical model we 

have used two ALU’s, one Golden ALU (which is error free) and the other Modified ALU 

(which has errors inserted into it). The modified ALU has five loops. The probability of 

execution of execution of each loop is determined manually and the vulnerabilities 

associated with each loop can be found out using the Simulation results generated using 

ModelSim.    

𝑃(𝑋1) < 𝑃(𝑋2) < 𝑃(𝑋3) < 𝑃(𝑋4) < 𝑃(𝑋5), or  

𝑃(AND-XOR) < 𝑃 (AND-OR) < 𝑃 (SUM-XOR) < 𝑃 (SUM-OR) < 𝑃 (No error loop) 

It was observed that, the vulnerability associated with each of these loops is in increasing 

order as follows.  

 (AND-XOR)> (AND-OR)> (SUM-XOR)> (SUM-OR)> (No-Error) . 

     To test this Modified ALU we have calculated priori and posteriori probabilities of each 

loop and tried understanding the vulnerability associated with each of these loops. We have 

generated three sets of uniform random test vectors. The first set has 400,000 vectors in its



54 
 

 sample space, the second set has 4,000,000 vectors in its sample space and the third set 

has 20,000,000 vectors in its sample space. We have obtained a fault coverage of 0.8 with 

the help of these test vectors which is acceptable as per industry standards. 

The following table summarizes the probabilities of each loop obtained from exhaustive 

testing which has priori probabilities against randomly generated test vectors have 

posteriori probabilities. 

Loops 

Probabilities 

(using 

exhaustive 

testing) 

Probabilities 

using 

400,000 test 

vectors 

Probabilities 

using 

4,000,000 

test vectors 

Probabilities 

using 

20,000,000 

test vectors 

𝑃(𝑋1) = 𝑃(AND-

XOR)  
2.34 ∗ 10−10 

0 0 0 

𝑃(𝑋2) = 𝑃 (AND-

OR) 
2.23 ∗ 10−7 

1.25*10−5 

 

1.25*10−6 0.25∗ 10−6 

𝑃(𝑋2) = 𝑃 (SUM-

XOR) 
5.3 ∗ 10−5 

1.02∗ 10−4 5.5*10−5 6.285∗ 10−5 

𝑃(𝑋4) = 𝑃 (SUM-

OR) 
1.36 ∗ 10−2 

0.14 0.15 0.15 

𝑃(𝑋5) = 𝑃 (No error 

loop) 
        0.999 

0.98533 0.98426 0.98439 

 

Table 9: Exhaustive Testing Probabilities (Priori) and Posteriori Probabilities 

From the table we can say that the loops that have lower probabilities have their priori and 

posteriori values converged and for the loops which have higher probabilities the priori and 

posteriori values do not converge. It is important to note that the priori and posteriori 

probabilities of a given data set at different instances of time will not be identical because 

the distribution is always normal and random. 

 The “∆ P” difference in the two probabilities can be due to a measurement error or be a 

case in which the loop is not executed because of the particular set of random generation 



55 
 

of test vectors, or due to the design of the loops itself. So a more practical way to 

determine the convergence and an absolute value of  “∆ P “, will be to get the results from 

priori probability and then do different experiments for random data sets at different 

instances of time. This will give a way for us to reduce the error in measurement. 

5.1 Advantages and Conclusion 

     This thesis developed a new probabilistic approach for determining the vulnerability of 

a line of code. Probability of execution of a given line of code would help in estimating the 

vulnerability associated to that line of code.  

     This model overcomes the difficulties faced in previous methodologies in regards to 

determining parts of code which are most vulnerable. Since, model does not use any power-

based or time-based analysis, the method remains effective irrespective the size of Trojan 

or the number of paths in circuit. Another advantage with this method is, this methodology 

can be used to test for the presence Trojans at any stage during the manufacturing process, 

whereas other methodologies require the chip to be completely manufactured first to check 

for the presence of Trojans. 

5.2 Future Scope of Work 

    Although this model gives a good place to start using probabilistic approach for 

determining parts of code which are most vulnerable, this methodology can be extended 

further to make the error detection process more robust.  

1. Automate the Process of Finding the probability.  

In this thesis, the probability of each line of code has been manually calculated. This 

process can be automated by using different scripting or programming languages. This 



56 
 

would help us in speeding up the process and at the same time it would help us in using 

this methodology for bigger circuits and more vulnerable circuits. 

2. Generate Test Vectors Automatically for the loops which have low probability 

     This thesis has been confined to determining parts of code which are more 

vulnerable towards Insertion-errors. It would be very useful if new test vectors can be 

automatically generated for the lines of code whose probability is less than the 

threshold value set. This process would help in making the entire testing process more 

robust. The following flow diagram below can help in understand the same more 

clearly. 

 

Figure 5.1: Flow diagram for error detection using probabilistic approach 

Generate 
Random

Test Vectors

Modified ALU

Calculate 
Probability of each 

line of code

Compare the 
Probability of a 

given line of line 
with threshold 

value

Generate additional 
Test Vectors for 

loops whose 
probability values is 

less than the 
threshold

Add these new test vectors 
To the Initial Randomly generated

Test Vectors Golden ALU

Result Set(I)

Result Set(II)

Compare 
Resultant 

Output 
Vectors and 

generate 
Error Signals

Raise error Flags



57 
 

 

 

 

References 

[1] X. Wang, M. Tehranipoor, and J. Plusquellic, ‘‘Detecting Malicious Inclusions in Secure 

Hardware: Challenges and Solutions,’’ Proc. IEEE Int’l Workshop Hardware- Oriented 

Security and Trust (HOST 08), IEEE CS Press, 2008, pp. 15-19. 

[2] Y. Alkabani and F. Koushanfar, ‘‘Extended Abstract:Designer’s Hardware Trojan Horse,’’ 

Proc. IEEE Int’lWorkshop Hardware-Oriented Security and Trust (HOST 08), IEEE CS 

Press, 2008, pp. 82-83. 

[3] D. Agrawal et al., ‘‘Trojan Detection Using IC Fingerprinting,’’ Proc. IEEE Symp. 

Security and Privacy (SP 07), IEEE CS Press, 2007, pp. 296-310. 

[4]  X. Wang et al., ‘‘Hardware Trojan Detection and Isolation Using Current Integration and 

Localized Current Analysis,’’ Proc. IEEE Int’l Symp. Defect and Fault Tolerance of VLSI 

Systems (DFT 08), IEEE CS Press, 2008, pp. 87-95. 

[5] J. Li and J. Lach, ‘‘At-Speed Delay Characterization for IC Authentication and Trojan 

Horse Detection,’’ Proc. IEEE Int’l Workshop Hardware-Oriented Security and Trust 

(HOST 08), IEEE CS Press, 2008, pp. 8-14. 

[6] Y. Jin and Y. Makris, ‘‘Hardware Trojan Detection Using Path Delay Fingerprint,’’ Proc. 

IEEE Int’l Hardware-Oriented Security and Trust (HOST 08), IEEE CS Press, 2008, pp. 

51-57. 



58 
 

[7] S. Jha and S.K. Jha, ‘‘Randomization Based Probabilistic Approach to Detect Trojan 

circuits,’’ Proc. 11th IEEE High Assurance Systems Engineering Symp., IEEE CS Press, 

2008, pp. 117-124. 

[8] M. Banga and M. Hsiao, ‘‘A Region Based Approach for the Identification of Hardware 

Trojans,’’ Proc. IEEE Int’lWorkshop Hardware-Oriented Security and Trust (HOST 08), 

IEEE CS Press, 2008, pp. 40-47. 

[9] M. Banga and M. Hsiao, ‘‘A Novel Sustained Vector Technique for the Detection of 

Hardware Trojans,’’ Proc. 22nd Int’l Conf. VLSI Design, IEEE CS Press, 2009, pp. 327-

332. 

[10] I. Verbauwhede and P. Schaumont, ‘‘Design Methods for Security and Trust,’’ Proc. 

Design, Automation and Test in Europe Conf. (DATE 07), EDA Consortium, pp. 672-677. 

[11] G. Bloom, B. Narahari, and R. Simha, ‘‘OS Support for Detecting Trojan Circuit Attacks,’’ 

Proc. IEEE Int’l Workshop Hardware-Oriented Security and Trust (HOST 09), IEEE CS 

Press, 2009, pp. 100-103. 

[12] M. Banga and M. Hsiao, ‘‘VITAMIN: Voltage Inversion Technique to Ascertain Malicious 

Insertion in ICs,’’Proc. 2nd IEEE Int’l Workshop Hardware-Oriented Security and Trust 

(HOST 09), IEEE CS Press, 2009, pp. 104-107. 

[13] M. Tehranipoor, F.Koushanfar,” A Survey of Hardware Trojan Taxonomy and Detection,” 

in IEEE Design and Test of Computers, 2010, vol., no.,27 ,issue number 1, Pages 10-25. 

[14] Phil May, “A Flexible VHDL Test Bench Architecture,” Motorola Inc., Government 

Electronics Group, Tactical Secure Communications Office. 

[15] Communications with Adam Kimura. 



59 
 

[16] S.Moazzeni, S. Poormozaffari , A. Emami, “An Optimized Simulation-based Fault 

Injection and Test Vector Generation Using VHDL to Calculate Fault Coverage”, 10th 

International Workshop on Microprocessor Test and Verification. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 



60 
 

 

 

 

Appendix A: Golden ALU 
 

------------------------------------------------------------------- 

--  Test Article 8-bit MIPS ALU GOLDEN   

--  Adam Kimura & Venkata Sai Manoj 

--  Department of Electrical & Computer Engineering 

--  The Ohio State University 

--  July 24, 2014 

------------------------------------------------------------------- 

library IEEE;  

use IEEE.STD_LOGIC_1164.all;  

use IEEE.STD_LOGIC_ARITH.all;  

use IEEE.STD_LOGIC_UNSIGNED.all; 

------------------------------------------------------------------- 

-- Entity Declarations 

------------------------------------------------------------------- 

entity alu is -- Arithmetic/Logic unit with add/sub, AND, OR, set less than 

    generic(width: integer :=8); 

    port(a, b:    in  STD_LOGIC_VECTOR(width-1 downto 0); 

            alucont: in  STD_LOGIC_VECTOR(2 downto 0); 

            result:  out STD_LOGIC_VECTOR(width-1 downto 0)); 

end; 

 

 

 



61 
 

------------------------------------------------------------------- 

-- Architecture Declarations 

------------------------------------------------------------------- 

architecture synth of alu is 

    signal b2, sum: STD_LOGIC_VECTOR(width-1 downto 0); 

begin 

    b2 <= not b when alucont(2) = '1' else b; 

    sum <= a + b2 + alucont(2); 

 Process(a,b,alucont)  

 begin 

   case alucont(2 downto 0) is  

    when "000" => result <= a and b ; 

    when "001" => result <= a or b  ; 

    when "011" => result <= a xor b  ;  

    when "010" => result <=  sum ;     

   end case;   

 End Process; 

end; 

 

 

 

 

 

 

 

 

 



62 
 

 

 

 

Appendix B: Modified ALU 

 

--  Test Article 8-bit MIPS ALU GOLDEN   

--  Adam Kimura & Manoj 

--  Department of Electrical & Computer Engineering 

--  The Ohio State University 

--  July 24, 2014 

------------------------------------------------------------------- 

library IEEE;  

use IEEE.STD_LOGIC_1164.all;  

use IEEE.STD_LOGIC_ARITH.all;   

use IEEE.STD_LOGIC_UNSIGNED.all; 

------------------------------------------------------------------- 

-- Entity Declarations 

------------------------------------------------------------------- 

entity Modified_ALU is -- Arithmetic/Logic unit with add/sub, AND, OR, set less than 

    generic(width: integer :=16); 

    port(a, b:    in  STD_LOGIC_VECTOR(width-1 downto 0); 

            alucont: in  STD_LOGIC_VECTOR(2 downto 0); 

            result:  out STD_LOGIC_VECTOR(width-1 downto 0); 

            and_xor_count,and_or_count,sum_xor_count,sum_or_count,no_error_count: out        

integer ); 

END Modified_ALU; 

------------------------------------------------------------------- 

-- Architecture Declarations 

------------------------------------------------------------------- 



63 
 

architecture synth of Modified_ALU is 

    signal b2, sum, slt: STD_LOGIC_VECTOR(width-1 downto 0); 

  

begin 

    b2 <= not b when alucont(2) = '1' else b; 

    sum <= a + b2 + alucont(2); 

     Process(a,b,alucont) 

 variable counter_1,counter_2,counter_3,counter_4,counter_5: integer;  

 begin 

  if (a="1111111111111110" and b="1111111111111110") then 

    counter_1:=counter_1+1; 

    and_xor_count<= counter_1; 

           case alucont(2 downto 0) is  

    when "000" => result <= a xor b ; 

    when "001" => result <= a or b  ; 

    when "011" => result <= a and b  ;  

    when "010" => result <=  sum ;     

    when others => result <= slt ; 

     end case;   

              

  elsif ((a<"1111111111111111" and a>"1111111111110000") and 

(b<"1111111111111111" and b>"1111111111110000")) then 

   counter_2:=counter_2+1;  

   and_or_count<=counter_2+1; 

   case alucont(2 downto 0) is  

    when "000" => result <= a and b ; 

    when "001" => result <= a or b  ; 

    when "011" => result <= a and b  ;  

    when "010" => result <=  sum ;     

    when others => result <= slt ; 



64 
 

     end case;  

 

  elsif (a<"1111111111110000" and a>"1111111100000000") and 

(b<"1111111111110000" and b>"1111111100000000") then 

   counter_3:=counter_3+1; 

   sum_xor_count<=counter_3+1; 

   case alucont(2 downto 0) is  

    when "000" => result <= a xor b ; 

    when "001" => result <= a or b  ; 

    when "011" => result <= a and b  ;  

    when "010" => result <=  sum ;     

    when others => result <= slt ; 

    end case;  

 

  elsif (a> "1111000000000000" and a<"1111111100000000")  and                    

(b<"1111111100000000" and b>"1111000000000000") then 

   counter_4:=counter_4+1; 

   sum_or_count<=counter_4+1; 

   case alucont(2 downto 0) is  

   when "000" => result <= a xor b ; 

   when "001" => result <= a or b  ; 

   when "011" => result <= a and b  ;  

   when "010" => result <=  sum ;     

   when others => result <= slt ; 

  end case;  

   

  else if ((a>"0000000000000000" and a<"1111111111111111") or (     

b>"0000000000000000" and  b<"1111111111111111"))  

       and !(((a<"1111111111111111" and a>"1111111111110000") and 

(b<"1111111111111111" and b>"1111111111110000")) 



65 
 

       and !((a<"1111111111110000" and a>"1111111100000000") and 

(b<"1111111111110000" and b>"1111111100000000")) 

       and !((a> "0000000000000000" and a<"1111111100000000")  and 

(b<"1111111100000000" and b>"0000000000000000")) 

       and !((a="1111111111111110" and b="1111111111111110")) 

   counter_5:=counter_5+1; 

   no_error_count<=counter_5+1; 

   case alucont(2 downto 0) is  

    when "000" => result <= a or b ; 

    when "001" => result <= a and b  ; 

    when "011" => result <= a xor b  ;  

    when "010" => result <=  sum ;     

    when others => result <= slt    ; 

    end case; 

  end if; 

 End Process; 

 

end; 

 
 

 

 

 

 

 

 

 



66 
 

 

 

 

Appendix C: Test Bench 
------------------------------------------------------------------- 

--   

--  Adam Kimura & Venkata Sai Manoj 

--  Department of Electrical & Computer Engineering 

--  The Ohio State University 

------------------------------------------------------------------- 

 

library IEEE; 

library STD; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.NUMERIC_STD.ALL; 

use STD.TEXTIO.ALL;  

 

entity ALU_TB is 

    generic(width: integer :=16);  

end ALU_TB; 

 

architecture Testbench of ALU_TB is 

    signal A_TB, B_TB: STD_LOGIC_VECTOR (width-1 DOWNTO 0); 

    signal alucont_TB: STD_LOGIC_VECTOR(2 DOWNTO 0); 

    signal error :  integer range 0 to 1; 

    signal result_TB:  STD_LOGIC_VECTOR(width-1 DOWNTO 0); 

    signal test_number, vector_number : integer := 0; 



67 
 

    signal and_xor_loop_frequncy, and_or_loop_frequncy, sum_xor_loop_frequncy, 

sum_or_loop_frequncy, no_error_loop_frequncy: integer; 

 

component Modified_ALU is -- Arithmetic/Logic unit with add/sub, AND, OR, set less 

than 

    generic(width: integer :=16); 

    port(a, b:    in  STD_LOGIC_VECTOR(width-1 downto 0); 

            alucont: in  STD_LOGIC_VECTOR(2 downto 0); 

            result:  out STD_LOGIC_VECTOR(width-1 downto 0); 

  and_xor_count,and_or_count,sum_xor_count,sum_or_count,no_error_count: out 

integer 

 ); 

end component; 

 

BEGIN 

-- Instatiating the Device Under Test (DUT) 

DUT:Modified_ALU port map(A_TB, B_TB, alucont_TB, result_TB, 

and_xor_loop_frequncy, and_or_loop_frequncy, sum_xor_loop_frequncy, 

sum_or_loop_frequncy, no_error_loop_frequncy); 

 

Vector_injection: PROCESS  

 

    -- Specifying the file which will read the test vectors via STD.TEXTIO.vhdl package      

    file test_vectors: TEXT open read_mode is 

"C:\Modeltech_pe_edu_10.4a\examples\work\Cleaned_Vectors.txt";   

     

    -- Specifying the file which will write the expected output vectors via 

STD.TEXTIO.vhdl package      

    file expected_result: TEXT open write_mode is 

"C:\Modeltech_pe_edu_10.4a\examples\work\Expected_Result(1).txt";   

     

    variable current_line : LINE; 

    variable a_input_test, b_input_test : BIT_VECTOR (width-1 DOWNTO 0); 



68 
 

    variable output : BIT_VECTOR (width-1 DOWNTO 0); 

    variable test_number_int, vector_number_int, error_number : integer := 0;  

     

    BEGIN  

    WHILE (NOT ENDFILE(test_vectors)) LOOP  -- Going through the entire Test Vector 

File to read in 

     

        -- Acquiring the next test vector line 

        READLINE (test_vectors, current_line); 

        READ(current_line, a_input_test); 

        READ(current_line, b_input_test); 

         

        -- Tracking the Vector number  

        vector_number_int := vector_number_int +1; 

        vector_number <= vector_number_int; 

         

         

        -- Converting the A and B input vectors from BIT_VECTOR type to 

STD_LOGIC_VECTOR before assigning it to the ENTITY inputs.  

        A_TB <= to_stdlogicvector(a_input_test); 

        B_TB <= to_stdlogicvector(b_input_test); 

     

        -- Talley of the number of input vector combinations being used. 

        alucont_TB <= "000";    -- Testing the Logical AND Operation 

        test_number_int := test_number_int + 1; 

        test_number <= test_number_int;     

        wait for 25 ns; 

        WRITE(current_line, bit_vector'(to_bitvector(result_TB)));   

        WRITELINE(expected_result, current_line); 

        wait for 25 ns; 



69 
 

 

         

        -- Tracking the Vector number  

        vector_number_int := vector_number_int +1; 

        vector_number <= vector_number_int; 

         

         

        -- Converting the A and B input vectors from BIT_VECTOR type to 

STD_LOGIC_VECTOR before assigning it to the ENTITY inputs.  

        A_TB <= to_stdlogicvector(a_input_test); 

        B_TB <= to_stdlogicvector(b_input_test);     

         

        alucont_TB <= "001";    -- Testing the Logical OR Operation 

        test_number_int := test_number_int + 1; 

        test_number <= test_number_int;     

        wait for 25 ns;     

        WRITE(current_line, bit_vector'(to_bitvector(result_TB))); 

        WRITELINE(expected_result, current_line); 

        wait for 25 ns; 

 

        -- Tracking the Vector number  

        vector_number_int := vector_number_int +1; 

        vector_number <= vector_number_int; 

         

         

        -- Converting the A and B input vectors from BIT_VECTOR type to 

STD_LOGIC_VECTOR before assigning it to the ENTITY inputs.  

        A_TB <= to_stdlogicvector(a_input_test); 

        B_TB <= to_stdlogicvector(b_input_test);   

          



70 
 

        alucont_TB <= "010";    -- Testing the sum Operation 

        test_number_int := test_number_int + 1; 

        test_number <= test_number_int;      

        wait for 25 ns;   

        WRITE(current_line, bit_vector'(to_bitvector(result_TB))); 

        WRITELINE(expected_result, current_line); 

        wait for 25 ns; 

 

 -- Tracking the Vector number  

        vector_number_int := vector_number_int +1; 

        vector_number <= vector_number_int; 

         

         

        -- Converting the A and B input vectors from BIT_VECTOR type to 

STD_LOGIC_VECTOR before assigning it to the ENTITY inputs.  

        A_TB <= to_stdlogicvector(a_input_test); 

        B_TB <= to_stdlogicvector(b_input_test);   

          

        alucont_TB <= "011";    -- Testing the sum Operation 

        test_number_int := test_number_int + 1; 

        test_number <= test_number_int;      

        wait for 25 ns;   

        WRITE(current_line, bit_vector'(to_bitvector(result_TB))); 

        WRITELINE(expected_result, current_line); 

        wait for 25 ns; 

     

    END LOOP; 

END PROCESS; 

         

end Testbench; 



71 
 

 
 

 

 

Appendix D: Test Vectors Generation Code 
------------------------------------------------------------------------------------------------------------ 

# Written by Adam Kimura 

# Aprl 22, 2015 

# Department of Electrical & Computer Engineering 

# The Ohio State University 

# 

# This script will generate a set of two N-bit random test vectors.  This is ideal for going 

into a 2-input ALU or 

# 2-input Floating Point Adder Unit.  The script will prompt the user to enter the number 

of bits that each vector 

# should contain and the number of random test vector sets that should be generated. 

 

 

#----------------------------------------------------------------------------------------------------------

-------- 

## Function for generating the test vectors 

 

def Vector_Generation(Number_of_Test_Vectors, N): 

    from random import randint 

    Generated_Test_Vectors = open("Generated_Test_Vectors.txt", 'wb')           # Creating 

TXT file to save vectors into 

    vector_A = []       # Initializing empty Vector A Array 

    vector_B = []       # Initializing empty Vector B Array 

    for x in range (0,Number_of_Test_Vectors):  # Selecting the vector number that loop is 

creating 

        for i in range (0,N):                   # Selecting the bit in the selected vector to write 



72 
 

            vector_A.append(randint(0,1))       # random 0 or 1 selection for vector A 

            vector_B.append(randint(0,1))       # random 0 or 1 selection for vector B 

 

        print (vector_A, vector_B)       # Printing to the monitor to be cute 

        print >> Generated_Test_Vectors, vector_A,     vector_B     # Saving the vectors to 

the file 

        vector_A = []                           # Re-initializing Vector A to empty for the next vector 

creation 

        vector_B = []                           # Re-initializing Vector B to empty for the next vector 

creation 

 

 

 

#----------------------------------------------------------------------------------------------------------

---------- 

## Function for cleaning the array list of the generated test vectors in order to translate it 

into a format that can 

## be read into the VHDL Architecture Model 

 

def clean_text(line): 

        line = line.replace("[", "") 

        line = line.replace("]", "") 

        line = line.replace(", ", "") 

        return line 

 

 

#----------------------------------------------------------------------------------------------------------

---------- 

## Main Program 

 

# Specifying the number of bits each vector should have 

N = int(input('Specify the number of bits that each Test Vector should have:  ')) 



73 
 

 

## Input the number of test vectors that need to be generated for each inputs A and B 

Number_of_Test_Vectors = int(input('Specifying the number of Test Vectors to be 

generated:  ')) 

 

Vector_Generation(Number_of_Test_Vectors,N)         # Generate the test vectors based 

upon the user information 

 

# Opening up the Generated Test Vectors in order to clean them with the cleaning script 

with open("Generated_Test_Vectors.txt", 'rt') as vector_file: 

    Cleaned_Vectors = open("Cleaned_Vectors.txt", "w") 

    for line in vector_file: 

        line = clean_text(line) 

        print >> Cleaned_Vectors, line, 


