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Abstract

Many large-scale systems were designed with the assumption that I/O is the bottleneck,
but this assumption has been challenged in the past decade with new trends in hardware
capabilities and workload demands. The computational power of CPU cores has not im-
proved proportional to the performance of disks and network interfaces in the past decade,
but the demand for computational power in various workloads has grown out of proportion.

GPUs outperform CPUs for various workloads such as query processing and machine
learning workloads. When such workloads runs on a single computer, the data processing
systems must use GPUs to stay competitive. But GPUs have never been studied for large-
scale data analytics systems. To maximize GPUs performance, core assumptions about
the behavior of large-sclale systems should be shaken and the whole systems should be
redesigned.

In this report, we used Apache Spark as a case to study the performance benefits of
using GPUs in a large-scale, distributed, in-memory, data analytics system. Our system,
Spark-GPU, exploits the massively parallel processing power of the GPUs in a large-scale,
in-memory system and accelerates crucial data analytics workloads. Spark-GPU minimizes
memory management overhead, reduces the extraneous garbage collection, minimizes in-
ternal and external data transfers, converts data into a GPU-friendly format, and provides
batch processing. Spark-GPU detects GPU-friendly tasks based on predefined patterns in

computation and automatically schedules them on the available GPUs in the cluster.

ii



We have evaluated Spark-GPU with a set of representative data analytics workloads
to show its effectiveness. The results show that Spark-GPU significantly accelerates data
mining and statistical analysis workloads, but provides limited performance speedup for

traditional query processing workloads.
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Chapter 1: Introduction

Data is a vital organ in the anatomy of the global economy. Without data, decisions
to enhance productivity, to keep customers satisfied, and to increase growth are difficult
or impossible to make. Until the beginning of the 21st century, we were producing limited
amount of data and the scale-up model was responding to the increase in computational
demand. Each year more powerful computers with faster CPUs were being manufactured.
If your current system was slow to process your data, all you needed to do was to buy a new
computer with the latest CPU. After the chip-manufacturing industry hit its limits and the
improvements in the CPU frequencies stalled, the scale-up model was not responding to the
ever increasing demand for more computational power. Around the same time, the amount
of data and how we use it changed seismically We started flooding an endless stream of
data into virtually every aspect of our lives.

To respond to the explosion of data and stall in CPU clock improvements, a new model
is needed. Today, we create 2.5 Quintillion Bytes of data each day. That is more than
200,000,000 email, 2,000,000 million Facebook shares, 200,000 tweets, 20,000 Skype conver-
sation, and 4,000,000 Google search queries each minute [51, 48], which all will be obsolete
measurements in one year from now.

Take the Google case for example. Google served less than 10,000 search queries each

day in 1998. In 2014 this number grew to more than 5,740,000,000 a day [41]. The insight



that Google gets from analyzing this stream of data drives its 56.4 billion dollar advertising
business.

With all the changes in the technology and market, the ability to process big data is
not an advantage anymore, it is a necessity. To have an advantage over the competitors,
companies need to process data quickly or even in real time. Detecting fraud should return
results in a few minutes, otherwise it is too late, and detecting customer churn should be
in real time. High frequency trading needs decisions to be made in milliseconds.

Analyzing the massive influx of data and turning it into value is a new technical chal-
lenge. The scale-out model emerged to respond to this challenge with frameworks such as
MapReduce [12], Hadoop [46], Hive [43], Flume [8], Dremel [29] , Impala [14], and many
more. Instead of using one powerful system, the scale-out model uses many commodity
systems to process the data. This model made it possible to store and analyze data on
orders of magnitude higher, which in turn created new businesses and companies such as
Twitter, Facbook, and LinkedIn.

Apache Spark is one of the most popular scale-out framework for processing big data. It
scales out to thousands of nodes and performs fast compared to other big-data processing
frameworks. Spark clusters have up to 8000 nodes at Tencents, crunch up to 1 Peta byte
of data in a single job at Alibaba.com, and process up to 1 Tera byte of data per hour at
Janelia Farm. It also broke the world record for sort the algorithm beating Hadoop with
fewer cores.

The main advantage of Apache Spark over previous frameworks is that it keeps and
processes data in the main memory and avoids disk accesses. In Hadoop jobs, disk access
time and network bandwidth are bottlenecks, but CPU is the bottleneck in Apache Spark.

This is particularly true if worker nodes have arrays of SSDs and fast network cards, which



are common in clusters. With CPU being the bottleneck, any improvement in the execution
time of a job can significantly benefit Apache Spark.

Apache Spark rarely optimizes the tasks and relies on the Java virtual machine for low
level optimizations even though there is considerable room in Apache Spark for optimiza-
tions. It has a very strict computation model, which makes most of the data immutable
and allows only certain operations to be performed on the data. These restrictions allow
further optimizations on Sprak jobs that are not available to a Java virtual machine.

In this project we introduce two optimizations to Apache Spark:

1. the data layout of objects in the Java virtual machine.

2. the GPU as an available but unused recourse.

When the two optimizations are used together, they improve the performance of many
Spark jobs. We describe each optimization shortly here and detail them in chapter 3.

All objects in a Java virtual machine need headers. Bookkeeping and management
of object headers adds non-negligible overhead to the computation of a Spark job. This
overhead is the extra memory needed for storing the headers and the extra time needed for
garbage collection. Using a columnar format for object layout can eliminate most of this
overhead, but this is not the only benefit of a columnar data layout. A columnar layout also
1) makes data serialization/deserialization easier and faster, and 2) suits the computation
model of a GPU.

While Spark can use all the CPU cores on a node, it neglects available GPUs. GPUs
particularly suit the Spark computation model-executing the same set of instructions on a

massive amount of data. In this report we explain the changes we made to Apache Spark



to make it utilize GPU. We also measure performance of various workloads and investigate

how they benefit from our changes.

1.1 Introduction to GPU Programming

In mid 1990s, the demand for applications with 3D graphics grew. To respond to this
demand, companies such as NVIDIA and ATT released affordable graphic cards that could
perform lighting and transform computations directly on the graphic processor. The high
throughput of these graphic processors attracted researches to use graphic hardware for
computation. But until mid 2000s, the only way to offload any computation to the graphic
hardware was expressing the computation as a rendering task, which tricked the graphic
hardware into thinking that it was rendering a 3D scene. Offloading intensive computations
to the graphic hardware unleashed the potential in GPUs but programming them remained
a difficult task for two reasons. First, programmers had to learn a shading language such
as OpenGPL or DirectX to express their computation. Second, GPUs lacked the necessary
tools for testing and debugging programs.

In 2006, NVIDIA released the first GPU with components for general purpose computing—
the GeForce 3 series. The release of programmable GPUs attracted many researchers to use
graphics hardware for more than rendering. By 2010, GPUs were used in many applications,

including Database Management Systems and processing SQL queries [5, 8, 7].

1.1.1 GPU Architecture and Execution Model

Fach modern GPU has three component: a global scheduler, a set of streaming multi-
processors (SMs), and the global memory. Streaming multiprocessors are the basic building
blocks of computation units. Each streaming multiprocessor typically has 32 SIMD cores

and can mange its cores and schedule thousands of resident threads independent from other
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Figure 1.1: The architecture of a GPU and the execution model of a program on it. The host
application dispatches the kernel on the GPU device. Working threads on the GPU device
are grouped into blocks and access the data from the device’s global memory. Working
threads can use the shared memory or their registers, which are faster compared to the
global memory, as a cache. Once the kernel is executed, the host application can copy the

results to its main memory.




streaming multiprocessors. The global memory serves as the shared memory among all
threads.

To run a program on a GPU, a host program on a CPU should initiate it. The GPU
program is called a kernel. The host program allocates required buffers on the GPU and
launches the kernel. After the execution, the host program frees the allocated buffers and

terminates the GPU session. Figure 1.1 shows this process.

1.1.2 Thread Hierarchy in GPUs

GPU threads are uniquely identified with a one-dimensional, two-dimensional, or three-
dimensional thread index. There is a limit to maximum the number of threads that can be
identified with a thread index, which is the maximum number of resident threads that a
streaming multiprocessor can mange (maximum number of resident threads depends on the
hardware specification of each GPU). For kernels that need more threads, the host program
should group and break down the threads into blocks. Each block can have up to maximum
number of threads and is uniquely identified with a one-dimensional, two-dimensional, or

three-dimensional thread index.

1.1.3 Memory Hierarchy in GPUs

GPUs lack the cache hierarchy of CPUs but they benefit from high memory bandwidth.
When the characteristics of the GPU memory are exploited, it can yield to high throughput.
Figure 1.1 shows the memory hierarchy of a typical GPU.

The DDR memory in a GPU serves as the global memory for all threads. Each SM has
a small amount of shared memory per block that is accessible to all threads in the block.

Finally each thread has a limited number of registers.
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Figure 1.2: Spark Architecture. Spark core runs on Java Virtual Machines and schedules
tasks on the underlying cluster. Other componenrts of Spark such as Spark SQL, use Spark
Core to run jobs.

1.2 Introduction to Spark

Apache Spark [50] started as a project in University of California, Berkeley. It is a
distributed computing framework that runs on a cluster and is designed to be scalable, fault
tolerant, easy to use, and fast. Apache Spark uses a strict programming model to achieve
scalability and fault tolerance. Any computation in Apache Spark is strictly defined by a set
of operators on immutable datasets. If the computation fails an any point, Apache Spark
recomputes the intermediate results up to a previous checkpoint. Apache Spark is also easy
to use because it offers high level APIs in a verity of popular programming languages such

as Python, Java, SQL, Scala, and R.

1.2.1 Apache Spark Architecture

Figure 1.2 shows the architecture of Apache Spark. The underlying cluster consists

of a master node and a set of worker nodes. The master node keeps track of the worker



nodes and their available resources. The node that schedules the job is called the driver
node and is not necessarily the same node as the master node. Different Apache Spark
configurations allow the master node to do the scheduling of jobs even though that is not
the default configuration. The Spark Core component, among other things, schedules tasks
on the underlying cluster, manages resources, retries failed tasks, and communicates with
the underlying cluster. Other components in Apache Spark, such as SQL, GraphX, and

MLLib, use Spark Core to schedule and run jobs.

1.2.2 Apache Spark Programming Model

Each Spark application is a sequence of operation that transforms an input dataset to
an output dataset. These datasets, along with the operations that transforms them, form
a lineage graph where each dataset has one or more parent dataset and may have one or
more children.

Spark datasets are immutable, and are strongly and statically typed. Values in a dataset
are computed lazily and can be cached in the main memory of the worker nodes as long as
they fit into the collective main memory of the cluster. In Sparks terminology, these datasets
are called Resilient Distributed Datasets (RDD) Child datasets recursively compute their
parents before computing their own. If the parents’ data is available in the cache or at
a checkpoint, the child process uses it, otherwise, Spark schedules tasks to compute the
missing input data. In Spark, the DAG-scheduler breaks down the lineage graph into task-
sets and schedules them on the underlying cluster. At the cluster level, a master node
receives the task-sets and assigns them to available workers. As workers completed their
assigned tasks, they notify the master node and they may receive new tasks to run from

the master node.
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Figure 1.3: Narrow and wide dependencies in Spark. A wide dependency is where data
needs to be shuffled on the network [50].

Spark uses a very simple mechanism for fault tolerance: it lets the tasks fail and restarts
them on failure. If a subtask on a worker node fails, Spark scheduler knows how to recompute
the data because all dependencies between parent and child datasets are known to the Spark
scheduler. Spark provides different levels of storage and replication. Each RDD in Spark
can be stored at one of the three available storage levels: Memory-Only, Disk-Only, and
Memory-And-Disk. Moreover, each RDD can have a different level of replication (1, 2, 3,
...) to make it more resilient to failures and make recoveries from failures faster.

Each job in Apache Spark is a set of operations that creates a new RDD from one or
more input RDDs. Spark scheduler breaks each job into one or more stages based on the
operations on the RDDs. Spark scheduler furthermore breaks down each stage into tasks
and dispatches tasks to the worker nodes in the cluster. Because Apache Spark uses a very
constrained programming model, each worker nodes knows exactly how to get the input for
its assigned task, how to generate the output for it, and where to store the output. If a
task only needs to get its input from the same worker node, then Spark scheduler does not

need to shuffle data on the network. In this case, Spark scheuler forms a linear dependency



QU W N~

val textFile = spark.textFile("hdfs://...")
val counts = textFile.flatMap(line => line.split ("."))

.map (word => (word, 1))

.reduceByKey{ case (countl, count2) => countl + count2 }
counts.saveAsTextFile ("hdfs://...")

Figure 1.4: A sample word count program in Apache Spark

between the task and its parent; and pipelines the operations of the two task. But if the
input of a task depends on the output of a tasks on different worker nodes, Spark scheduler
forms a wide dependency (or shuffle dependency) between the task and its parents, ends
the boundary for this stage, and creates a new stage in the job execution. When tasks in a
stage with wide dependency are scheduled, their input should be shuffled on the network.
Spark scheduler cannot pipeline shuffled dependencies and has to wait for the output of
the previous stage before it starts the current stage. Figure 1.3 depicts the two types of
dependencies in Apache Spark.

As an example consider the simple Spark program in figure 1.4, which is taken from
the sample programs shipped with Apache Spark. Line 1 reads an input text file and splits
each line into an array of words. Line 2 maps each word to a tuple (word, 1). In this
tuple the word has an assigned value 1. Line 3 adds up all the assigned numbers to each
word. Finally line 4 writes the results back to the file system. In this snippet, Spark
operations are flatMap, map, and reduceByKey. The flatMap and map operations form a

narrow dependency but the reduceByKey operation forms a wide dependency.

1.3 Organization of this Thesis

In this chapter, we discussed the benefits that GPUs can bring to computationally

intensive workloads. We also discussed the benefits that Apache Spark, as a framework

10




for processing big data, brings. In Chapter 2, we discuss the characteristics of the current
workloads for big data and will show that CPU is the bottleneck for many workloads.
We also propose that GPUs can be used in big-data processing frameworks to speed up
CPU bound computations. In chapter 3 we show how to integrate GPUs into big-data
processing frameworks. We also explore the challenges that this solution faces. Chapter 4
presents the experiment results and gives pointers to future research that can be based on
this work. Chapter 5 surveys the related work for both large-scale analytics systems and
GPU-enabled high performance systems. Chapter 6 summarizes the contributions of this

thesis and concludes the work.
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Chapter 2: Background and Motivation

Apache Spark is a significant improvement over the MapReduce programming model
[12]. It simplifies programming and speeds up the computation but it has its own drawbacks.
In this chapter we identify two of the limitations of Apache Spark, particularly when Spark
is used for CPU-bound computations. The first limitation is that the current data model in
Apache Spark is wasteful and does not suit the computation model of a GPU. The second
limitation is that Apache Spark is oblivious to the GPU resources in the cluster. Apache
Spark ignores GPU resources despite the fact that its massive parallel computation model

suits GPUs.

2.1 Object Layout and Data Format

Spark’s iterator model processes one element at a time. Elements that Spark processes
are Java objects with a header and fields that are pointers to other objects. Neither the
one-elemet-at-a-time execution model nor the Java object layout are efficient for GPU pro-
cessing because they underutilize GPU resources. Batch processing continuous data without
headers or pointers is the suitable model for GPUs.

To use GPUs in Apache Spark, the data format and the execution model should be

amended. Even though it is unrealistic to completely rewrite the current Spark’s execution

12



a) ||hdr|data|hdr|data|hdr|data|hdr|data|hdr|data|hdr||

b) ||hdr|data|data|data|data|datall

c) |lhdr[compressed datal|

Figure 2.1: Java Object model is unsuitable for GPU. a) Object headers impose significant
overhead, make data access patterns cache unfriendly, and are inefficient for standard com-
pression algorithms b) Most of the objects in an RDD have the same type and lifespan.
There is no need to repeat the header for each object. c¢) If object headers are stripped,
data compression algorithms are more effective on the header-stripped data.

model, Spark RDDs have properties that makes use of a GPU feasible. We discuss these
properties in this section here.

RDDs in Spark are strongly and statically typed, which means all the objects in an RDD
have the same type. Moreover, objects in an RDD have the same lifespan, that is they are
created, used, and garbage collected all together at the same time. The Java object model
is general purpose and is designed to work for any object in any application. Apache Spark
can use a simplified object model that incurs less overhead. We outline the design of this
simplified object model in this section.

In the Java object model, an object has a header part and a data part. The data
part stores data associated with the object, but the header is transparent to programmers.
Implementation of the object headers varies from JVM to JVM, but at least the following

information is stored in the object header in all major JVMs.

Object type information: Most JVM implementations have a pointer in the object header

that points to the class descriptor that defines the object [26, 3].

Object reachability: In a managed language such as Java, the garbage collector needs to

know which objects are still in use and which are available to be freed and collected.

13



All major JVM implementations store reachability status of on object in its header

[39].

Synchronization and Locking status: Modern JVMs use more sophisticated algorithms,
such as biased locking, for locking and synchronization. JVMs store the extra infor-

mation about the owner thread and the status of the lock in the object header [25, 36].

Identity hash code: Most modern JVMs use the physical address of the object as its
identity hash code. But Java garbage collection constantly moves objects around
in the memory and, hence, changes the object’s physical address. JVMs store the
object’s identity hash code in its header when the object is moved for the first time

[6].

This general purpose object model serves well in many applications, but in Spark it adds
significant overhead without being used. For example, Objects in RDDs are rarely locked
or synchronized, which means that the synchronization information in the object header
is extraneous and useless. As another example, one object header per partition usually
suffices in Spark because all the objects in an RDD have the same type.

Not only is Java object model inefficient for processing data on GPUs it also makes data
compression and serialization inefficient. Figure 2.1 shows the problems with the Java object
model and how a continuous data format is more efficient for serialization, compression, and

GPU processing.

2.2 GPU’s Execution Characteristics

GPU kernels should be launched with a large number of GPU threads to hide GPU
memory access latency. They also should access coalesced data to fully utilize GPU mem-
ory’s high bandwidth. Data accesses are coalesced if consecutive threads read consecutive

14
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Figure 2.2: a) Stride access is not coalesced. b) Random access is not coalesced. c¢) Coalesced
access.

addresses. This data access pattern is inefficient for CPU threads because it leads to many
cache misses, but it is the best access pattern for GPU threads. Figure 2.2 contrasts coa-
lesced vs. consecutive data access patterns. If data is coalesced, GPU can read the whole
chunk in one transaction and feed the data to the GPU threads. For non-coalesced data,
GPU has to access its memory more than once. The performance difference between ac-
cessing coalesced data and non-coalesced data is an order of magnitude.

Data accesses are coalesced in columnar format. To integrate GPU into Apache Spark,
the data should already be in columnar format or should be converted to columnar format.
Apache Spark already supports a variety of columnar formats such as Parquet [29], and

RCFile [20] format.
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Table 2.1: Hardware trends in disk, network, and CPUs from 2005 to 2015.

2005 2015 Speedup

CPU Core Frequency (GHz) 3 3 -
Disk Speed (MB/s) 50 500 ~ 10X
Network Speed (Gbps) 1 10 ~ 10X

2.3 Potential for Improvement

Ousterhout et al. [33] observed that most of the work to improve performance of large-
scale data analytics systems was focused on mitigating the network bottleneck, the disk
bottleneck, or the straggler tasks. But in reality network optimizations can improve the job
performance by at most 2%, disk access optimization can improve the performance by at
most 19%, and optimizing stragglers can improve the the performance by at most 10%.

In the past decade the speed of network connections grew from 100 Mbps to 1 Gbps or
even 10 Gbps. The disk speed grew from 50 MBps in HDDs to 500 MBps in the cutting
edge SSDs. But the speed of CPU cores stagnated around 3GHz. Table 2.1 shows the
trends. The emerging non-volatile byte-addressable memory technologies [17], and optic
interconnect networks will amplify the trend.

In todays workloads, CPU cores are the new bottleneck. This is particularly true for
in-memory data analytics systems such as Apache Spark. For in-memory data analytics
systems, simple operations such as data compression or serialization can easily saturate
the CPU. Any system that runs on a cluster has overhead at many layers. The cluster

management, task scheduling, replication, failure recovery, and marshaling data burden
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the CPUs with extraneous computation. We are interested in identifying this extraneous
computations and eliminating them.

To estimate the amount of extraneous work that in Apache Spark, we compared its
performance to two other efficient system: an single-node DBMS, and an efficient distributed
DBMS. We selected YDB [49] as the single-node system. and Impala [14] as the distributed
system.

YDB does not add the overheads associated with a distributed system such as commu-
nication costs. The performance of YDB give us an estimate on how much we can improve
performance of Spark even though this estimate is optimistic and difficult to achieve in
reality. We also compared the performance of Apache Spark to Impala. Since Impala
only runs SQL queries it can avoids extraneous work that would be necessary for a more
general purpose system. Hence Impala’s overhead is minimal compared to Apache Spark.
We estimated the overhead of Apache Spark by comparing its performance to Impala’s
performance. The difference between Impala’s performance and YDB’s performance is an
estimate of the overheads caused by the distributed nature of Impala.

We compared Impala and Spark SQL using query 1.1 from the SSB benchmark on three
different file formats: flat files, uncompressed Parquet files, and compressed Parquet files.
Parquet [2] is a columnar file format and is wildly used in the Hadoop ecosystem. YDB
uses its own columnar file format, which not supported by Impala or Spark SQL. We did
the experiments under two configurations. In the first configuration, we kept the operating
system caches across iterations, but for the second configuration we did not.

Figure 2.3 Shows the results. Examining This figure leads us to three conclusions.

e As expected, YDB outperform both Impala and Apache Spark. YDB’s better perfor-

mance shows the inherent overhead of running a distributed system.
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Figure 2.3: Spark SQL performance vs. Impala performance vs. YDB

e Impala performs poorly on flat files, particularly when the system is cold, but the flat

files are rarely use with Impala in practice.

e Impala outperforms Spark SQL on Columnar File Formats, Since both Impala and
Apache Spark execute the same job, access the same amount of data, and produce
the same amount of results, the extra execution time in Apache Spark has to be
the internal overhead of Spark, In this report, we are interested in identifying and

eliminating the extraneous overhead of Apache Spark.
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In this chapter we examined Apache Spark as a popular large-scale data analytics system
and identified two limitations. We argued that supporting columnar storage in Apache
Spark not only decreases the overhead of the program, but also helps integrating GPUs
to Spark. We showed that the overhead of Apache Spark compared to other large-scale
systems, particularly Impala, is high and there is room for speeding up the execution. We
showed that during the past decade, CPUs have become the bottleneck for many large-scale
applications. With CPU cores as the new bottleneck, large-scale systems should minimize
all the overhead as much as possible and should exploit computational resources in their
cluster to mitigate the bottleneck. Next chapter discusses how to mitigate the current

limitations of the large-scale systems.
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Chapter 3: Implementation

In chapter 2 we discussed two limitations of using GPUs in Apache Spark. In this
chapter, we discuss how we extended and modified Apache Spark to solve its limitations.
We added 3 components to Apache Spark to integrate GPUs into it. We call our modified

version Spark-GPU.

e We added an API to Apache Spark for batch processing data on GPUs. We call this

API the batch processing API.

e We extended Apache Spark RDDs and added five sample operations to the RDDs
interface that run on GPUs. Our added operations are filter, join, map, aggregate, and
sort, which are five common operations in Spark. They use reflection to automatically
infer type of objects in RDDs and convert the data layout to the columnar format,
which is the most suitable format for GPUs. We call this API, the reflection based

APL

e We extended the SparkSQL component and added operations that run on the GPU.
For example this component adds a join operation that runs on GPUs. Based on the

cost and order of operations, our extension decides which operations to offload to the

GPUs and which to keep on the CPU. We call this component SparkSQL-GPU.
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Our implementation was 5,000 lines of Scala code, 1600 line of C code, and 7000 lines

of CUDA code. In the following sections we discuss how we implemented each component.

3.1 Reflection Based API

The type of an object in a statically typed language like Java or Scala is partially known
at compile time, but the Java virtual machine keeps checks and assertions ensure certain
properties about the type at runtime. One common optimization in Java and Scala is to
erase type checks when they are unnecessary. Scala by default does many type erasure
optimizations, but it also provides mechanisms to keep type information when asked by the
programmer. One such mechanism in Scala is TypeTags. We used Scala TypeTags to keep
compile time information about the type of RDD and use them at Runtime. If objects in
an RDD have complex types (e.g. tuples), we use the type tag information to infer and
break down the type into multiple primitive types. The data in the RDD then is converted
into columnar format and based on the inferred primitive types.

The Reflection Based API provides five basic operations that work on the columnar
data: filter, map, join, aggregate, and sort. It also provides utility functions that take an
iterator from Spark, partitions it into chunks, and convert each chunk into columnar format.
Each chunk is small enough to fit into GPU memory but large enough to get the benefits
of massive parallel processing from GPU.

Each operation works at the partition level and can be combined with other operations
to express more complex computations. Because each operation works at the partition
level, extra work is needed to make operations that work across all partitions. For filter and
map operations, this is not an issue because dependencies between a filter operation to its

parent and a map operation to its parent in Spark are narrow and do not need the data to
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Figure 3.1: (a): Java virtual machine layout vs. (b) Columnar layout.

be shuffled. Aggregate and sort operations also work within a partition, but do not cause
a problem in practice because the result of the aggregate and the sort operations are small
enough to fit into one partition.

The join operation is useful when one side of the join is small to enough fit into one
partition and can be used in a broadcast joins. Joining RDDs that do not fit into memory

requires the programmer to implement a nested loop join.

3.1.1 Data Format

We changed the data layout of Spark to make it columnar. As shown in Figure 3.1, we
decompose each object into its fields and store the same field of all objects in one buffer.
To reconstruct the object, we take each field from its corresponding buffer and put them
back together.

Columnar storage puts a field of all objects on consecutive memory offsets, which makes
it easy for bulk transfer to GPU. Without columnar storage, each field of each object should
be transferred to GPU separately.

If the buffer becomes larger than a specific predefined limit, we partition it into smaller

buffers. The size of GPU memory dictates this predefined limit.
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Our strategy is to keep data in the GPU memory only when needed because other parts
of the program may need the GPU memory for their computation. When data is needed for
a computation on GPU, we transfer the data to GPU, do the computation, and evacuate
the data from the GPU memory. This policy is conservative, but it makes “out of memory”
exceptions less likely. It also lets us select a bigger maximum size for partitions. The
drawback is that if some data is needed for consecrative computations and enough GPU
memory is available, we transfer data between GPU and CPU multiple times.

Once data is in columnar format and is partitioned, we use the original Spark computing
model, i.e. RDDs (Resilient Distributed Datasets). In the design of Reflection Based
API, instead of shuffling data, we broadcast data (the amount of data we need to send
is relatively small in practice form many workloads). Avoiding data shuffles makes the
design of Spark+GPU simpler because columnar data cannot be shuffled without object
reconstruction.

We extended the existing RDDs to exploit GPU computation power. These RDDs are
particularly designed to execute common operations in SQL queries. We added customized
RDDs for selection, projection, join, and aggregation on top of the basic operations. All
computations are represented by a directed-acyclic-graph (DAG) of our customized RDDs.
To run a given SQL query, we manually parse the query and make an execution plan. Nodes
in the execution plan directly translates into Spark-GPU RDDs and dependencies between
nodes in the execution plan translate into dependencies between parent-child RDDs.

Our implementation of reflection based API is based on Spark 1.3. We particularly used

Spark 1.3 because we needed two new features available in Apache Spark 1.3:

1. We needed to serialize/deserialize the types of fields and tuples, which was not avail-

able in previous version because of a bug in Scala-2.10.
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2. We wanted to measure how much the new code generation feature in Spark SQL 1.3

improves the performance of our benchmarks.

We also used OpenCL[30] to implement GPU operations because it is available on a
broader set of GPUs. The interface between Scala/Java and OpenCL uses Java bindings
for OpenCL [21].

Currently we only support primitive type fields (int, float, char, etc.) that are put
together in a tuple. Tuples in Scala are represented with the Product class, which takes
a type parameter T. We require this T to be a subtype of TypeTag because it allows us
to use Scala/Java reflection to decompose it into its primitive types with the API in the
scala.reflect.runtime package. Scala type erasure by default removes any type infor-
mation that is not needed at runtime, but a type tag forces the Scala compiler to generate
code to keep the type information.

The base class for our implementation is GpuPartition. Each customized RDD in the
Reflection Based API holds GpuPartition[T]s, where T is the underlying type of items in
the RDD. For example an RDD of type GpuPartition[[Int, String, Float]] contains
tuples with three fields, the first field is Int, the second one is String, and the third one is

Float.

Buffer Management

Each GpuPartition has an array of buffers for each primitive type, which it initializes
lazily and uses to store fields (each buffer is used for one field only). In our previous
example, GpuPartition[[Int, String, Float]], one Int buffer, one String buffer, and
one Float buffer are used. String buffers are implemented as Byte buffers because Strings

are not primitive types in Scala/Java.
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The maximum size of each buffer is determined based on a predefined parameter. If the
total size of the data is more than this limit, we partition the data such that each partition

228 elements

fits into the GPU memory. In our implementation, we could use buffers with
before overflowing the integer offset of items in the buffers.

In our initial implementation, we allocated these buffers from Java heap memory, but
because these buffers are huge, they burden the virtual machine’s memory management
and garbage collection. We changed the implementation and used direct buffers to avoid
exhausting the Java heap using ByteBuffer.allocateDirect(). Direct buffers addition-
ally allow us to copy data from Java virtual machine to GPU without extra steps. Without
direct byte buffers, data should be copied to GPU in two steps: 1) from Java heap to
VM/OS buffers 2) and then from VM/OS buffers to the GPU. The downside, however, is

that garbage collection does not manage and reclaim direct buffers and we have to explicitly

release them after use.

Byte Ordering

Scala/Java has a big-endian byte ordering system, but C/OpenCL is platform depen-
dent. Our implementation targets x86_64 platforms, which use a little-endian byte ordering.
To avoid converting data back and forth between little-endian and big-endian systems, we
keep data in Java direct buffers in little-endian as well. Data sitting in direct buffers rarely
needs to be accessed in Scala/Java because the majority of the computation on buffers is
done in C/OpenCL code. Scala/Java may access a buffer’s data only at the end of the
computation to get the final results. Since the final results are usually limited in practice,

the cost of converting data into big-endian byte order is not negligible.
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3.1.2 Reading Columnar Files

GpuPartition and its subclasses can read data from in memory Java/Scala data struc-
tures or from columnar files using to custom RDDs that we added. InMemoryGpuRDD
reads Java/Scala data structures and converts them to columnar format upon reading.
ColumnarFileGpuRDD reads from columnar files. Our columnar file format saves each buffer
in a separate file. The file has a header that describes the type of the data in the file, the
total number of partitions in the file, and the total number of elements in each partition.
After the header, all the data is stored in binary format with little-endian byte ordering.
We do not compress columnar files. This file format is a simplified version of the file format

supported by YDB [49].

3.1.3 GPU Physical Operations

We added the following special RDDs to our Reflection Based API.

1. A ScanRDD that reads columnar data from a (distributed) files system.

2. A FilteredRDD that has one parent and one criterion. It checks the given criterion on
its parent’s data and selects the part that passes the criterion. For example a criterion
can be values more than 50. Users can chain simpler criteria to make more complex

criteria.

3. A JoinRDD that has a left parent and a right parent. This RDD joins its parents

data based on a specified join column.

4. An AggregationRDD that has one parent and a set of functions. Each function either

groups or summarizes data in one or more columns.
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Figure 3.2: Design of RDDs and their corresponding partitions in Reflection Based API

5. A ProjectionRDD that has one parent and returns only projected data items from its
parent. This RDD is useful for dropping columns that are not needed after a certain
point in the query execution. For example, if a column is used only at the first stage
of a query plan in a FilteredRDD, that column can be dropped from the query after

the Filter operation finishes.

6. A SortRDD that has one parent and sorts its parent’s data.

All the customized RDDs for Reflection Based API and their corresponding GPU-

partitions are shown in Figure 3.2.

Scan Implementation

The scan operation runs only on CPU and does not use GPU and we implemented
two versions of it: 1) to scan data from Java/Scala data structures 2) to scan data from a

columnar file.
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The first scan operation is particularly useful for converting original Spark RDDs into
columnar RDDs.

The columnar file scan is useful when data is already in columnar format on disk. It
eliminates the cost of converting data to columnar format, which can be significant for large

datasets.

Filter Implementation

The filter operation is implemented in GpuFilteredPartition and GpuFilteredRDD
The filter operator starts by sending the filter column to the GPU. A work group of GPU
cores are assigned to scan the column. The work group size is 264 at the moment.

The filter operation on GPU has three stages. First stage marks all the elements that
match the criterion.

In the second stage, each GPU core counts the number of elements before it computes
the offset in the output buffer where it should start putting its results. In the third stage,

other columns for selected rows are copied to the results.

Join Implementation

The join operation is implemented in GpuJoinPartition and GpuJoinRDD Join imple-
mentation is based on the assumption that one side of the join is small enough to fit into
the GPU memory (We always assume that the right parent of the join is small enough to fit
into the GPU memory and to be broadcast). This is true for SSB queries because they have
a star schema. This assumption allows us to broadcast the small side of the join instead of

shuffling it.
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The join implementation is a hash join and is done in five stages. After sending the
data to GPU, the join operation hashes the join column of the right parent and counts the
number of unique hash values. Then it creates a hash table for the join columns.

In the second stage, the left parent probes the hash table and sets a bitset if there is
a match for the join column. In the third stage, each GPU core counts the number of
join results to find the output buffer offset it should use. In the forth stage, all columns
needed for the join result are transferred to GPU and based on the constructed bitset map,
all the columns from right parent are materialized, In the last stage, all columns from the
left parent are materialized as well. Finally all the results are transferred from the GPU

memory to the CPU memory.

Aggregation Implementation

The aggregation operation is implemented in GpuAggregationPartition and Gpu-
AggregationRDD Aggregation implementation summarizes the data in each partition sep-
arately from other partitions, i.e. if data does not fit into one partition, one summary
per partition is generated. In SSB queries, we found that by the time an aggregation is
executed, the data is small enough to fit into one partition.

Each aggregation partition takes a parent partition, a set of columns to group by and a
set of functions to aggregate data. Currently we support MAX, MIN, AVERAGE, and SUM
functions on Byte, Char, Short, Boolean, Int, Float data. Data types that take 64-
bit or more (like Double, Long) are not supported yet because most GPUs lack atomic
operation support for 64-bit data.

Aggregation starts by sending the group-by columns to the GPU memory. Then a hash
table of group-by columns is created. Aggregation uses this hash table to find the total

number of groups needed and the number of data items in each group.
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Then each GPU core counts the number of results. Extra columns that are needed for
aggregation are sent to the GPU. The GPU summarizes the data in each column based on

the specified aggregation operation.

Sort Implementation

The sort operation is implemented in GpuSortPartition and GpuSortRDD and can sort
data based on up to two keys. Sort implementation sorts each partition independent of
other partitions, but in the SSB queries, we found that by the time a sort operation is
required in the query execution plan, dataset is small enough to fit into one partition.

Sort operation starts with sending the first sort key column to the GPU memory. Then
it counts the number of unique sort keys and number of elements for each unique sort key.
Then it gathers all the second sort columns and buckets them with one bucket for each
first key. Then each bucket is sorted based on the value of the second key. Finally all the

columns are gathered, materialized, and sent back to the CPU.

3.1.4 Limitations Reflection Based API

We added implemented Reflection Based API to demonstrate that we can automatically
convert RDDs into columnar format. But our implementation has a few limitations, which
are mostly because of the limitations in the underlying programming languages—Java and
Scala—or the underlying hardware-NVIDIA and ATI graphic processors. We discuss the

limitations here.

Full Type Inference

The reflection based API can correctly infer the number and the type of the columns
based on the compile time type of the RDDs. For FilterDDD and SortRDD, it can infer the

type based on the type of the parent RDD and the programmer does not need to specify the

30



type. For example if we have a columnar RDD with the type [Int, String, Float], and
we run a filter operation or a sort operation on it, the type of the result RDD will remain
[Int, String, Float]. But for ProjectRDD, JoinRDD, and AggregateRDD, the type of

result RDD should be specified by the programmer.

Support for Complex Aggregation Operations

Right now we support aggregation operations that are composed of at most two sub-
expressions. We decided to support only two sub-expressions because our benchmarks had
mostly simple aggregations. Supporting more than two sub-expression bloats the imple-

mentation but it does not add a valuable feature.

Aggregation on Double and Long Types

Many mainstream GPU processors do not support atomic operations on 64-bit words.
Implement atomic operations on data with any arbitrary length is possible via locking
mechanisms but it bloats the code. Newer versions of the GPU processors are equipped

with 64bit atomic operations.

3.2 Batch Processing API

To support batch processing on the iterator model, we introduced a new type of RDD,
GPU-RDD, along with a data structure, GpuRecord, into the system. GPU-RDD serves
as a batching operator during the execution. It batches the data and converts them into
columnar format. The GpuRecord data structure represents the batched data.

A GpuRecord batches one partition of date and contains both the columnar data and
the metadata information. The metadata information includes number of elements, column
types, and column sizes. Data in a GpuRecord can be stored in a continuous memory region

for all columns all together or separately. Storing each column separately is beneficial for
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workloads that use a subset of data. For example, most SQL queries use a subset of the
columns. Storing all columns together is beneficial when number of columns are very large.
For example many machine learning workloads work on data with thousands or even millions
of features.

GpuRecord stores the data in the native memory, not in the Java/JVM heap memory.
Data in the native memory can be directly copied to the GPU memory without using
intermediate OS level buffers. It also does not burden the garbage collector and the memory
management system of the JVM. Storing all the batched data in the Java Heap increases
memory usage, which leads to frequent garbage collections. This can significantly degrade
a task’s performance.

GpuRecord releases the native memory when its corresponding RDD is garbage collected
by JVM. Unfortunately Java language specification does not give any guarantee on when
garbage collection is invoked. This means that a GpuRecord may stay alive and occupy
memory longer even if the GpuRecord is not used anymore. The second problem with
this schema is that the demand for Java heap is not proportional to the demand for the
native memory and we may run out of the native memory before we run out of Java heap.
We also added an interface to explicitly release the memory but in our experience with
the benchmarks, this was not a real issue, particularly when the size of each partition was
selected carefully .

A GPU-RDD can be created from a Spark RDD or other GPU-RDDs. We extended the
interface for Spark RDDs to add a toGpuRDD() method, which converts the RDD’s data

into GpuRecords.
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3.2.1 Batch Processing Interface

To offload computation to GPUs, users need to create a GPU-RDD from an existing
RDD. Since we targeted this implementation for running SQL queries, we require the schema
of the data when an GPU-RDD is created. After a GPU-RDD is created, any function can
be applied to it as long as it accepts a GpuRecord.

GPU functions can be implemented in any language, including C/CUDA, but they need
a wrapper function written in Java/JNI. In our implementation, wrapper functions call the
CUDA kernels inside the JNI wrapper code. The wrapper function is responsible for passing
the information about the GpuRecord to the GPU function. This information mostly is the
address of buffers, their sizes, and number of elements in each buffer.

Users need to compile their GPU-Functions before using them, but we modified Apache
Spark to ship the compiled libraries to all worker nodes. If worker nodes in the cluster have
different architectures, the GPU functions should be compiled into a static library. We also
modified Spark to automatically load the library. This requires the users to provide the
compiled library when they submit their Spark application.

To explain the GPU batch processing interface, consider the code snippet in Figure 3.3,
which shows how a filter operation can be offloaded to the GPU. The Scala wrapper only
defines the signature of the method. The actual implementation is in C and calls a GPU

kernel written in CUDA at line 5.

3.2.2 Batch Processing Overhead

Supporting batch processing on top of the Apache Spark execution model is not free.

It introduces extra data movements for data analytics applications that wish to use GPUs.
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// native function: Implements a filter operation on the GPU
JNIEXPORT jobject JNICALL
JAVA_filter (JNIEnv %, jobj) {

filter_kernel<<<>>>();

// Scala wrapper for the native function

object GpuFilter (data: GpuRecord) {
@native def filter (data: GpuRecord)

}

Figure 3.3: A sample filter operation implemented on GPU.

Figure 3.4: Data movements in Apache Spark when data is stored on the Java Heap.
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We analyzed the overhead of the data movement for batch processing, which can help decide
whether to offload an operation to GPUs or not.

In this section we will use the filter operation in figure 3.3 as an example to illustrate
extra data movements in the GPU. The data movements and format transformation process
is shown in Figure 3.4. We assume that the input data is in HDFS in a columnar format
such as Parquet, RC file, or ORC. First the input data should be loaded into the native
memory and then copied to the Java heap. Then it should be parsed and stored in either
columnar format or row-wise format. To process the data on GPU, a GPU-RDD is required,
which copies the data from Java heap to the native memory. If the data is not in columnar
format, GPU-RDD will convert it to columnar format. When the GPU function is called
on the GPU-RDD, the columnar data is transferred from the native memory to the GPU
memory through the PCle bus. The GPU function then processes the data on the GPU and
transfers the results back to the native memory in the columnar format. Finally columns
are copied back to the Java heap and stitched together to form Java objects, and rows.

Offloading the filter operation needs 6 data movements and transforms the data format
twice. None of these operations are free and they add extra overhead to the execution.
Data movements are expensive and should be avoided when possible. Considering the extra
cost of data movements and transformations, an operation should be offloaded to the GPU
only when it is computation-intensive. Consecutive GPU operations on the same data also

can be chained together to make a computation-intensive workload.
3.2.3 Resource Management of Batch Jobs
We changed the Spark scheduling algorithm to handle nodes with GPUs and nodes

without GPUs differently. When a worker node joins the Spark cluster, it communicates the

number of GPUs it has to the resource manager to the cluster. We also added a customized
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RDD, GPU-RDD. All the tasks for a GPU-RDD will be scheduled on the worker nodes
with GPUs. If an RDD does not need GPU but one of its parent RDDs with a narrow
dependency needs the GPU, Spark schedules all of them on worker nodes with GPUs to
avoid shuffling data over the network. But if the dependency is wide and needs a shuffle,
our modified scheduler can schedule the task on any worker node in the cluster.

The GPUs on a worker node are shared among all the tasks that are running concurrently
on the worker node—a worker node with m CPU cores concurrently runs m tasks that share
the GPUs.

We implemented utility methods that efficiently convert data in Spark RDDs to colum-
nar format, which is suitable for GPU, and back to row-wise format after the computation
is done. The GPU-RDD implementation has a toColumnarRDD and a toRowRDD.

We implemented two popular machine learning algorithms to demonstrate the usability

of our API: K-Means and the Logistic Regression.

3.3 Processing Queries on GPUs

We implemented a set of GPU query operators to accelerate processing SQL queries on
Apache Spark. We also extended the SparkSQL’s Catalyst to build query execution plans
with both CPU and the GPU operators. In this section we describe how we implemented

these query operators.
3.3.1 Native Database Primitives

SparkSQL requires all query operators to implement a doExecute method, which returns
and RDD of rows. The method will be called when the operator is executed on the worker

nodes. We added a set of GPU query operators to extend SparkSQL. Each operator has a

Scala wrapper and a native function. The Scala wrapper connects the GPU query operator
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to other query operators and implements the doExecute method. The body of the wrapper
method calls a native method that implements a database primitive. The database primitive
we implemented are scan, join, aggregation, and sort. Our database primitives all accept the
input in GpuRecord format and run on the GPU. The wrapper method converts the results
to row format and releases the GPU memory. Our database primitives can be chained to
build a wide range of SQL queries. They can be combined with SparkSQL primitives that

run on the CPU. We will discuss our database primitives in rest of this section.

Native Scan

The scan primitive accepts a set of predicates and columnar data as input and returns
all the tuples that satisfy the predicates. The returned tuples are in columnar format. The
primitive first evaluates the predicates one by one and maintains a 0/1 vector. To avoid
synchronization and data races, each GPU threads should know what part of the output it
should write its results to. After predicate evaluation, a prefix sum is calculated on the 0/1

vector to find the start writing position for GPU threads.

Native Join

The join primitive is implemented as a primary key foreign key join. Our native join
implements a hash join because it performs well on GPUs. The primitive accepts columnar
data from a build table and a probe table and calculates the join results in two phases: a
build phase and a probe phase.

The build phase passes the build column twice and generate a hash table without syn-
chronization. In the first pass, each GPU thread counts the number of tuples it will write

to each hash bucket Based on these counts, a prefix sum is calculated to decide the start
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writing position in each bucket for each GPU thread. In the second pass, each GPU thread
simply fills the hash table.

The probe phase generates a 0/1 vector to mark the tuples that should be projected in
the join result. Then it calculates a prefix sum on the 0/1 vector such that the results can

be generated without synchronization.

Native Aggregation

The aggregation primitive also uses a hash aggregation. It accepts its input data in
columnar format. Our aggregation primitive first calculates a hash value for each group by
key. Then it counts the number of groups based on the hash values, scans the input data,
and applies the aggregate functions to each group. We used the standard GPU atomic
instructions to synchronize GPU threads when calculating aggregation results. Because
many GPUs do not support atomic operations on 64-bit words, we convert long and double

values to float before carrying the primitive operations.

Native Sort

The sort primitive implements the bitonic sort. Since sort is usually executed after
aggregation, the number of the tuples to sort is relatively small and GPU’s shared memory
can be use for sorting. Ou