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Abstract

Many large-scale systems were designed with the assumption that I/O is the bottleneck,

but this assumption has been challenged in the past decade with new trends in hardware

capabilities and workload demands. The computational power of CPU cores has not im-

proved proportional to the performance of disks and network interfaces in the past decade,

but the demand for computational power in various workloads has grown out of proportion.

GPUs outperform CPUs for various workloads such as query processing and machine

learning workloads. When such workloads runs on a single computer, the data processing

systems must use GPUs to stay competitive. But GPUs have never been studied for large-

scale data analytics systems. To maximize GPUs performance, core assumptions about

the behavior of large-sclale systems should be shaken and the whole systems should be

redesigned.

In this report, we used Apache Spark as a case to study the performance benefits of

using GPUs in a large-scale, distributed, in-memory, data analytics system. Our system,

Spark-GPU, exploits the massively parallel processing power of the GPUs in a large-scale,

in-memory system and accelerates crucial data analytics workloads. Spark-GPU minimizes

memory management overhead, reduces the extraneous garbage collection, minimizes in-

ternal and external data transfers, converts data into a GPU-friendly format, and provides

batch processing. Spark-GPU detects GPU-friendly tasks based on predefined patterns in

computation and automatically schedules them on the available GPUs in the cluster.
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We have evaluated Spark-GPU with a set of representative data analytics workloads

to show its effectiveness. The results show that Spark-GPU significantly accelerates data

mining and statistical analysis workloads, but provides limited performance speedup for

traditional query processing workloads.
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Chapter 1: Introduction

Data is a vital organ in the anatomy of the global economy. Without data, decisions

to enhance productivity, to keep customers satisfied, and to increase growth are difficult

or impossible to make. Until the beginning of the 21st century, we were producing limited

amount of data and the scale-up model was responding to the increase in computational

demand. Each year more powerful computers with faster CPUs were being manufactured.

If your current system was slow to process your data, all you needed to do was to buy a new

computer with the latest CPU. After the chip-manufacturing industry hit its limits and the

improvements in the CPU frequencies stalled, the scale-up model was not responding to the

ever increasing demand for more computational power. Around the same time, the amount

of data and how we use it changed seismically We started flooding an endless stream of

data into virtually every aspect of our lives.

To respond to the explosion of data and stall in CPU clock improvements, a new model

is needed. Today, we create 2.5 Quintillion Bytes of data each day. That is more than

200,000,000 email, 2,000,000 million Facebook shares, 200,000 tweets, 20,000 Skype conver-

sation, and 4,000,000 Google search queries each minute [51, 48], which all will be obsolete

measurements in one year from now.

Take the Google case for example. Google served less than 10,000 search queries each

day in 1998. In 2014 this number grew to more than 5,740,000,000 a day [41]. The insight
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that Google gets from analyzing this stream of data drives its 56.4 billion dollar advertising

business.

With all the changes in the technology and market, the ability to process big data is

not an advantage anymore, it is a necessity. To have an advantage over the competitors,

companies need to process data quickly or even in real time. Detecting fraud should return

results in a few minutes, otherwise it is too late, and detecting customer churn should be

in real time. High frequency trading needs decisions to be made in milliseconds.

Analyzing the massive influx of data and turning it into value is a new technical chal-

lenge. The scale-out model emerged to respond to this challenge with frameworks such as

MapReduce [12], Hadoop [46], Hive [43], Flume [8], Dremel [29] , Impala [14], and many

more. Instead of using one powerful system, the scale-out model uses many commodity

systems to process the data. This model made it possible to store and analyze data on

orders of magnitude higher, which in turn created new businesses and companies such as

Twitter, Facbook, and LinkedIn.

Apache Spark is one of the most popular scale-out framework for processing big data. It

scales out to thousands of nodes and performs fast compared to other big-data processing

frameworks. Spark clusters have up to 8000 nodes at Tencents, crunch up to 1 Peta byte

of data in a single job at Alibaba.com, and process up to 1 Tera byte of data per hour at

Janelia Farm. It also broke the world record for sort the algorithm beating Hadoop with

fewer cores.

The main advantage of Apache Spark over previous frameworks is that it keeps and

processes data in the main memory and avoids disk accesses. In Hadoop jobs, disk access

time and network bandwidth are bottlenecks, but CPU is the bottleneck in Apache Spark.

This is particularly true if worker nodes have arrays of SSDs and fast network cards, which
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are common in clusters. With CPU being the bottleneck, any improvement in the execution

time of a job can significantly benefit Apache Spark.

Apache Spark rarely optimizes the tasks and relies on the Java virtual machine for low

level optimizations even though there is considerable room in Apache Spark for optimiza-

tions. It has a very strict computation model, which makes most of the data immutable

and allows only certain operations to be performed on the data. These restrictions allow

further optimizations on Sprak jobs that are not available to a Java virtual machine.

In this project we introduce two optimizations to Apache Spark:

1. the data layout of objects in the Java virtual machine.

2. the GPU as an available but unused recourse.

When the two optimizations are used together, they improve the performance of many

Spark jobs. We describe each optimization shortly here and detail them in chapter 3.

All objects in a Java virtual machine need headers. Bookkeeping and management

of object headers adds non-negligible overhead to the computation of a Spark job. This

overhead is the extra memory needed for storing the headers and the extra time needed for

garbage collection. Using a columnar format for object layout can eliminate most of this

overhead, but this is not the only benefit of a columnar data layout. A columnar layout also

1) makes data serialization/deserialization easier and faster, and 2) suits the computation

model of a GPU.

While Spark can use all the CPU cores on a node, it neglects available GPUs. GPUs

particularly suit the Spark computation model–executing the same set of instructions on a

massive amount of data. In this report we explain the changes we made to Apache Spark
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to make it utilize GPU. We also measure performance of various workloads and investigate

how they benefit from our changes.

1.1 Introduction to GPU Programming

In mid 1990s, the demand for applications with 3D graphics grew. To respond to this

demand, companies such as NVIDIA and ATI released affordable graphic cards that could

perform lighting and transform computations directly on the graphic processor. The high

throughput of these graphic processors attracted researches to use graphic hardware for

computation. But until mid 2000s, the only way to offload any computation to the graphic

hardware was expressing the computation as a rendering task, which tricked the graphic

hardware into thinking that it was rendering a 3D scene. Offloading intensive computations

to the graphic hardware unleashed the potential in GPUs but programming them remained

a difficult task for two reasons. First, programmers had to learn a shading language such

as OpenGPL or DirectX to express their computation. Second, GPUs lacked the necessary

tools for testing and debugging programs.

In 2006, NVIDIA released the first GPU with components for general purpose computing—

the GeForce 3 series. The release of programmable GPUs attracted many researchers to use

graphics hardware for more than rendering. By 2010, GPUs were used in many applications,

including Database Management Systems and processing SQL queries [5, 8, 7].

1.1.1 GPU Architecture and Execution Model

Each modern GPU has three component: a global scheduler, a set of streaming multi-

processors (SMs), and the global memory. Streaming multiprocessors are the basic building

blocks of computation units. Each streaming multiprocessor typically has 32 SIMD cores

and can mange its cores and schedule thousands of resident threads independent from other
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Block (0,0)

Shared Memory

Registers
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Registers
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Figure 1.1: The architecture of a GPU and the execution model of a program on it. The host
application dispatches the kernel on the GPU device. Working threads on the GPU device
are grouped into blocks and access the data from the device’s global memory. Working
threads can use the shared memory or their registers, which are faster compared to the
global memory, as a cache. Once the kernel is executed, the host application can copy the
results to its main memory.
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streaming multiprocessors. The global memory serves as the shared memory among all

threads.

To run a program on a GPU, a host program on a CPU should initiate it. The GPU

program is called a kernel. The host program allocates required buffers on the GPU and

launches the kernel. After the execution, the host program frees the allocated buffers and

terminates the GPU session. Figure 1.1 shows this process.

1.1.2 Thread Hierarchy in GPUs

GPU threads are uniquely identified with a one-dimensional, two-dimensional, or three-

dimensional thread index. There is a limit to maximum the number of threads that can be

identified with a thread index, which is the maximum number of resident threads that a

streaming multiprocessor can mange (maximum number of resident threads depends on the

hardware specification of each GPU). For kernels that need more threads, the host program

should group and break down the threads into blocks. Each block can have up to maximum

number of threads and is uniquely identified with a one-dimensional, two-dimensional, or

three-dimensional thread index.

1.1.3 Memory Hierarchy in GPUs

GPUs lack the cache hierarchy of CPUs but they benefit from high memory bandwidth.

When the characteristics of the GPU memory are exploited, it can yield to high throughput.

Figure 1.1 shows the memory hierarchy of a typical GPU.

The DDR memory in a GPU serves as the global memory for all threads. Each SM has

a small amount of shared memory per block that is accessible to all threads in the block.

Finally each thread has a limited number of registers.
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Mesos/Yarn/Spark Standalone Cluster

JVM JVM JVM

Spark Core

REPL Spark SQL GraphX Streamming R

Figure 1.2: Spark Architecture. Spark core runs on Java Virtual Machines and schedules
tasks on the underlying cluster. Other componenrts of Spark such as Spark SQL, use Spark
Core to run jobs.

1.2 Introduction to Spark

Apache Spark [50] started as a project in University of California, Berkeley. It is a

distributed computing framework that runs on a cluster and is designed to be scalable, fault

tolerant, easy to use, and fast. Apache Spark uses a strict programming model to achieve

scalability and fault tolerance. Any computation in Apache Spark is strictly defined by a set

of operators on immutable datasets. If the computation fails an any point, Apache Spark

recomputes the intermediate results up to a previous checkpoint. Apache Spark is also easy

to use because it offers high level APIs in a verity of popular programming languages such

as Python, Java, SQL, Scala, and R.

1.2.1 Apache Spark Architecture

Figure 1.2 shows the architecture of Apache Spark. The underlying cluster consists

of a master node and a set of worker nodes. The master node keeps track of the worker
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nodes and their available resources. The node that schedules the job is called the driver

node and is not necessarily the same node as the master node. Different Apache Spark

configurations allow the master node to do the scheduling of jobs even though that is not

the default configuration. The Spark Core component, among other things, schedules tasks

on the underlying cluster, manages resources, retries failed tasks, and communicates with

the underlying cluster. Other components in Apache Spark, such as SQL, GraphX, and

MLLib, use Spark Core to schedule and run jobs.

1.2.2 Apache Spark Programming Model

Each Spark application is a sequence of operation that transforms an input dataset to

an output dataset. These datasets, along with the operations that transforms them, form

a lineage graph where each dataset has one or more parent dataset and may have one or

more children.

Spark datasets are immutable, and are strongly and statically typed. Values in a dataset

are computed lazily and can be cached in the main memory of the worker nodes as long as

they fit into the collective main memory of the cluster. In Sparks terminology, these datasets

are called Resilient Distributed Datasets (RDD) Child datasets recursively compute their

parents before computing their own. If the parents’ data is available in the cache or at

a checkpoint, the child process uses it, otherwise, Spark schedules tasks to compute the

missing input data. In Spark, the DAG-scheduler breaks down the lineage graph into task-

sets and schedules them on the underlying cluster. At the cluster level, a master node

receives the task-sets and assigns them to available workers. As workers completed their

assigned tasks, they notify the master node and they may receive new tasks to run from

the master node.
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Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned
with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 14,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [17], allowing it to share resources with Hadoop,
MPI and other applications. Each Spark program runs as
a separate Mesos application, with its own driver (mas-
ter) and workers, and resource sharing between these ap-
plications is handled by Mesos.
Spark can read data from any Hadoop input source

(e.g., HDFS or HBase) using Hadoop’s existing input
plugin APIs, and runs on an unmodified version of Scala.
We now sketch several of the technically interesting

parts of the system: our job scheduler (§5.1), our Spark
interpreter allowing interactive use (§5.2), memory man-
agement (§5.3), and support for checkpointing (§5.4).
5.1 Job Scheduling

Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4.
Overall, our scheduler is similar to Dryad’s [19], but

it additionally takes into account which partitions of per-

7Note that our union operation does not drop duplicate values.
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Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

sistent RDDs are available in memory. Whenever a user
runs an action (e.g., count or save) on an RDD, the sched-
uler examines that RDD’s lineage graph to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality using delay scheduling [32]. If a task needs to
process a partition that is available in memory on a node,
we send it to that node. Otherwise, if a task processes
a partition for which the containing RDD provides pre-
ferred locations (e.g., an HDFS file), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks to
compute the missing partitions in parallel. We do not yet
tolerate scheduler failures, though replicating the RDD
lineage graph would be straightforward.

Finally, although all computations in Spark currently
run in response to actions called in the driver program,
we are also experimenting with letting tasks on the clus-
ter (e.g., maps) call the lookup operation, which provides
random access to elements of hash-partitioned RDDs by
key. In this case, tasks would need to tell the scheduler to
compute the required partition if it is missing.

Figure 1.3: Narrow and wide dependencies in Spark. A wide dependency is where data
needs to be shuffled on the network [50].

Spark uses a very simple mechanism for fault tolerance: it lets the tasks fail and restarts

them on failure. If a subtask on a worker node fails, Spark scheduler knows how to recompute

the data because all dependencies between parent and child datasets are known to the Spark

scheduler. Spark provides different levels of storage and replication. Each RDD in Spark

can be stored at one of the three available storage levels: Memory-Only, Disk-Only, and

Memory-And-Disk. Moreover, each RDD can have a different level of replication (1, 2, 3,

. . . ) to make it more resilient to failures and make recoveries from failures faster.

Each job in Apache Spark is a set of operations that creates a new RDD from one or

more input RDDs. Spark scheduler breaks each job into one or more stages based on the

operations on the RDDs. Spark scheduler furthermore breaks down each stage into tasks

and dispatches tasks to the worker nodes in the cluster. Because Apache Spark uses a very

constrained programming model, each worker nodes knows exactly how to get the input for

its assigned task, how to generate the output for it, and where to store the output. If a

task only needs to get its input from the same worker node, then Spark scheduler does not

need to shuffle data on the network. In this case, Spark scheuler forms a linear dependency
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1 val textFile = spark.textFile("hdfs://...")
2 val counts = textFile.flatMap(line => line.split(" "))
3 .map(word => (word, 1))
4 .reduceByKey{ case (count1, count2) => count1 + count2 }
5 counts.saveAsTextFile("hdfs://...")

Figure 1.4: A sample word count program in Apache Spark

between the task and its parent; and pipelines the operations of the two task. But if the

input of a task depends on the output of a tasks on different worker nodes, Spark scheduler

forms a wide dependency (or shuffle dependency) between the task and its parents, ends

the boundary for this stage, and creates a new stage in the job execution. When tasks in a

stage with wide dependency are scheduled, their input should be shuffled on the network.

Spark scheduler cannot pipeline shuffled dependencies and has to wait for the output of

the previous stage before it starts the current stage. Figure 1.3 depicts the two types of

dependencies in Apache Spark.

As an example consider the simple Spark program in figure 1.4, which is taken from

the sample programs shipped with Apache Spark. Line 1 reads an input text file and splits

each line into an array of words. Line 2 maps each word to a tuple (word, 1). In this

tuple the word has an assigned value 1. Line 3 adds up all the assigned numbers to each

word. Finally line 4 writes the results back to the file system. In this snippet, Spark

operations are flatMap, map, and reduceByKey. The flatMap and map operations form a

narrow dependency but the reduceByKey operation forms a wide dependency.

1.3 Organization of this Thesis

In this chapter, we discussed the benefits that GPUs can bring to computationally

intensive workloads. We also discussed the benefits that Apache Spark, as a framework
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for processing big data, brings. In Chapter 2, we discuss the characteristics of the current

workloads for big data and will show that CPU is the bottleneck for many workloads.

We also propose that GPUs can be used in big-data processing frameworks to speed up

CPU bound computations. In chapter 3 we show how to integrate GPUs into big-data

processing frameworks. We also explore the challenges that this solution faces. Chapter 4

presents the experiment results and gives pointers to future research that can be based on

this work. Chapter 5 surveys the related work for both large-scale analytics systems and

GPU-enabled high performance systems. Chapter 6 summarizes the contributions of this

thesis and concludes the work.
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Chapter 2: Background and Motivation

Apache Spark is a significant improvement over the MapReduce programming model

[12]. It simplifies programming and speeds up the computation but it has its own drawbacks.

In this chapter we identify two of the limitations of Apache Spark, particularly when Spark

is used for CPU-bound computations. The first limitation is that the current data model in

Apache Spark is wasteful and does not suit the computation model of a GPU. The second

limitation is that Apache Spark is oblivious to the GPU resources in the cluster. Apache

Spark ignores GPU resources despite the fact that its massive parallel computation model

suits GPUs.

2.1 Object Layout and Data Format

Spark’s iterator model processes one element at a time. Elements that Spark processes

are Java objects with a header and fields that are pointers to other objects. Neither the

one-elemet-at-a-time execution model nor the Java object layout are efficient for GPU pro-

cessing because they underutilize GPU resources. Batch processing continuous data without

headers or pointers is the suitable model for GPUs.

To use GPUs in Apache Spark, the data format and the execution model should be

amended. Even though it is unrealistic to completely rewrite the current Spark’s execution

12



|hdr|data|data|data|data|data|

|hdr|data|hdr|data|hdr|data|hdr|data|hdr|data|hdr|

|hdr|compressed data|
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Figure 2.1: Java Object model is unsuitable for GPU. a) Object headers impose significant
overhead, make data access patterns cache unfriendly, and are inefficient for standard com-
pression algorithms b) Most of the objects in an RDD have the same type and lifespan.
There is no need to repeat the header for each object. c) If object headers are stripped,
data compression algorithms are more effective on the header-stripped data.

model, Spark RDDs have properties that makes use of a GPU feasible. We discuss these

properties in this section here.

RDDs in Spark are strongly and statically typed, which means all the objects in an RDD

have the same type. Moreover, objects in an RDD have the same lifespan, that is they are

created, used, and garbage collected all together at the same time. The Java object model

is general purpose and is designed to work for any object in any application. Apache Spark

can use a simplified object model that incurs less overhead. We outline the design of this

simplified object model in this section.

In the Java object model, an object has a header part and a data part. The data

part stores data associated with the object, but the header is transparent to programmers.

Implementation of the object headers varies from JVM to JVM, but at least the following

information is stored in the object header in all major JVMs.

Object type information: Most JVM implementations have a pointer in the object header

that points to the class descriptor that defines the object [26, 3].

Object reachability: In a managed language such as Java, the garbage collector needs to

know which objects are still in use and which are available to be freed and collected.
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All major JVM implementations store reachability status of on object in its header

[39].

Synchronization and Locking status: Modern JVMs use more sophisticated algorithms,

such as biased locking, for locking and synchronization. JVMs store the extra infor-

mation about the owner thread and the status of the lock in the object header [25, 36].

Identity hash code: Most modern JVMs use the physical address of the object as its

identity hash code. But Java garbage collection constantly moves objects around

in the memory and, hence, changes the object’s physical address. JVMs store the

object’s identity hash code in its header when the object is moved for the first time

[6].

This general purpose object model serves well in many applications, but in Spark it adds

significant overhead without being used. For example, Objects in RDDs are rarely locked

or synchronized, which means that the synchronization information in the object header

is extraneous and useless. As another example, one object header per partition usually

suffices in Spark because all the objects in an RDD have the same type.

Not only is Java object model inefficient for processing data on GPUs it also makes data

compression and serialization inefficient. Figure 2.1 shows the problems with the Java object

model and how a continuous data format is more efficient for serialization, compression, and

GPU processing.

2.2 GPU’s Execution Characteristics

GPU kernels should be launched with a large number of GPU threads to hide GPU

memory access latency. They also should access coalesced data to fully utilize GPU mem-

ory’s high bandwidth. Data accesses are coalesced if consecutive threads read consecutive
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GPU threads

GPU memory

GPU threads

GPU memory

GPU threads

GPU memory

Figure 2.2: a) Stride access is not coalesced. b) Random access is not coalesced. c) Coalesced
access.

addresses. This data access pattern is inefficient for CPU threads because it leads to many

cache misses, but it is the best access pattern for GPU threads. Figure 2.2 contrasts coa-

lesced vs. consecutive data access patterns. If data is coalesced, GPU can read the whole

chunk in one transaction and feed the data to the GPU threads. For non-coalesced data,

GPU has to access its memory more than once. The performance difference between ac-

cessing coalesced data and non-coalesced data is an order of magnitude.

Data accesses are coalesced in columnar format. To integrate GPU into Apache Spark,

the data should already be in columnar format or should be converted to columnar format.

Apache Spark already supports a variety of columnar formats such as Parquet [29], and

RCFile [20] format.
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Table 2.1: Hardware trends in disk, network, and CPUs from 2005 to 2015.

2005 2015 Speedup

CPU Core Frequency (GHz) 3 3 –

Disk Speed (MB/s) 50 500 ∼ 10X

Network Speed (Gbps) 1 10 ∼ 10X

2.3 Potential for Improvement

Ousterhout et al. [33] observed that most of the work to improve performance of large-

scale data analytics systems was focused on mitigating the network bottleneck, the disk

bottleneck, or the straggler tasks. But in reality network optimizations can improve the job

performance by at most 2%, disk access optimization can improve the performance by at

most 19%, and optimizing stragglers can improve the the performance by at most 10%.

In the past decade the speed of network connections grew from 100 Mbps to 1 Gbps or

even 10 Gbps. The disk speed grew from 50 MBps in HDDs to 500 MBps in the cutting

edge SSDs. But the speed of CPU cores stagnated around 3GHz. Table 2.1 shows the

trends. The emerging non-volatile byte-addressable memory technologies [17], and optic

interconnect networks will amplify the trend.

In todays workloads, CPU cores are the new bottleneck. This is particularly true for

in-memory data analytics systems such as Apache Spark. For in-memory data analytics

systems, simple operations such as data compression or serialization can easily saturate

the CPU. Any system that runs on a cluster has overhead at many layers. The cluster

management, task scheduling, replication, failure recovery, and marshaling data burden
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the CPUs with extraneous computation. We are interested in identifying this extraneous

computations and eliminating them.

To estimate the amount of extraneous work that in Apache Spark, we compared its

performance to two other efficient system: an single-node DBMS, and an efficient distributed

DBMS. We selected YDB [49] as the single-node system. and Impala [14] as the distributed

system.

YDB does not add the overheads associated with a distributed system such as commu-

nication costs. The performance of YDB give us an estimate on how much we can improve

performance of Spark even though this estimate is optimistic and difficult to achieve in

reality. We also compared the performance of Apache Spark to Impala. Since Impala

only runs SQL queries it can avoids extraneous work that would be necessary for a more

general purpose system. Hence Impala’s overhead is minimal compared to Apache Spark.

We estimated the overhead of Apache Spark by comparing its performance to Impala’s

performance. The difference between Impala’s performance and YDB’s performance is an

estimate of the overheads caused by the distributed nature of Impala.

We compared Impala and Spark SQL using query 1.1 from the SSB benchmark on three

different file formats: flat files, uncompressed Parquet files, and compressed Parquet files.

Parquet [2] is a columnar file format and is wildly used in the Hadoop ecosystem. YDB

uses its own columnar file format, which not supported by Impala or Spark SQL. We did

the experiments under two configurations. In the first configuration, we kept the operating

system caches across iterations, but for the second configuration we did not.

Figure 2.3 Shows the results. Examining This figure leads us to three conclusions.

• As expected, YDB outperform both Impala and Apache Spark. YDB’s better perfor-

mance shows the inherent overhead of running a distributed system.
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Figure 2.3: Spark SQL performance vs. Impala performance vs. YDB

• Impala performs poorly on flat files, particularly when the system is cold, but the flat

files are rarely use with Impala in practice.

• Impala outperforms Spark SQL on Columnar File Formats, Since both Impala and

Apache Spark execute the same job, access the same amount of data, and produce

the same amount of results, the extra execution time in Apache Spark has to be

the internal overhead of Spark, In this report, we are interested in identifying and

eliminating the extraneous overhead of Apache Spark.
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In this chapter we examined Apache Spark as a popular large-scale data analytics system

and identified two limitations. We argued that supporting columnar storage in Apache

Spark not only decreases the overhead of the program, but also helps integrating GPUs

to Spark. We showed that the overhead of Apache Spark compared to other large-scale

systems, particularly Impala, is high and there is room for speeding up the execution. We

showed that during the past decade, CPUs have become the bottleneck for many large-scale

applications. With CPU cores as the new bottleneck, large-scale systems should minimize

all the overhead as much as possible and should exploit computational resources in their

cluster to mitigate the bottleneck. Next chapter discusses how to mitigate the current

limitations of the large-scale systems.
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Chapter 3: Implementation

In chapter 2 we discussed two limitations of using GPUs in Apache Spark. In this

chapter, we discuss how we extended and modified Apache Spark to solve its limitations.

We added 3 components to Apache Spark to integrate GPUs into it. We call our modified

version Spark-GPU.

• We added an API to Apache Spark for batch processing data on GPUs. We call this

API the batch processing API.

• We extended Apache Spark RDDs and added five sample operations to the RDDs

interface that run on GPUs. Our added operations are filter, join, map, aggregate, and

sort, which are five common operations in Spark. They use reflection to automatically

infer type of objects in RDDs and convert the data layout to the columnar format,

which is the most suitable format for GPUs. We call this API, the reflection based

API.

• We extended the SparkSQL component and added operations that run on the GPU.

For example this component adds a join operation that runs on GPUs. Based on the

cost and order of operations, our extension decides which operations to offload to the

GPUs and which to keep on the CPU. We call this component SparkSQL-GPU.
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Our implementation was 5,000 lines of Scala code, 1600 line of C code, and 7000 lines

of CUDA code. In the following sections we discuss how we implemented each component.

3.1 Reflection Based API

The type of an object in a statically typed language like Java or Scala is partially known

at compile time, but the Java virtual machine keeps checks and assertions ensure certain

properties about the type at runtime. One common optimization in Java and Scala is to

erase type checks when they are unnecessary. Scala by default does many type erasure

optimizations, but it also provides mechanisms to keep type information when asked by the

programmer. One such mechanism in Scala is TypeTags. We used Scala TypeTags to keep

compile time information about the type of RDD and use them at Runtime. If objects in

an RDD have complex types (e.g. tuples), we use the type tag information to infer and

break down the type into multiple primitive types. The data in the RDD then is converted

into columnar format and based on the inferred primitive types.

The Reflection Based API provides five basic operations that work on the columnar

data: filter, map, join, aggregate, and sort. It also provides utility functions that take an

iterator from Spark, partitions it into chunks, and convert each chunk into columnar format.

Each chunk is small enough to fit into GPU memory but large enough to get the benefits

of massive parallel processing from GPU.

Each operation works at the partition level and can be combined with other operations

to express more complex computations. Because each operation works at the partition

level, extra work is needed to make operations that work across all partitions. For filter and

map operations, this is not an issue because dependencies between a filter operation to its

parent and a map operation to its parent in Spark are narrow and do not need the data to
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Figure 3.1: (a): Java virtual machine layout vs. (b) Columnar layout.

be shuffled. Aggregate and sort operations also work within a partition, but do not cause

a problem in practice because the result of the aggregate and the sort operations are small

enough to fit into one partition.

The join operation is useful when one side of the join is small to enough fit into one

partition and can be used in a broadcast joins. Joining RDDs that do not fit into memory

requires the programmer to implement a nested loop join.

3.1.1 Data Format

We changed the data layout of Spark to make it columnar. As shown in Figure 3.1, we

decompose each object into its fields and store the same field of all objects in one buffer.

To reconstruct the object, we take each field from its corresponding buffer and put them

back together.

Columnar storage puts a field of all objects on consecutive memory offsets, which makes

it easy for bulk transfer to GPU. Without columnar storage, each field of each object should

be transferred to GPU separately.

If the buffer becomes larger than a specific predefined limit, we partition it into smaller

buffers. The size of GPU memory dictates this predefined limit.
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Our strategy is to keep data in the GPU memory only when needed because other parts

of the program may need the GPU memory for their computation. When data is needed for

a computation on GPU, we transfer the data to GPU, do the computation, and evacuate

the data from the GPU memory. This policy is conservative, but it makes “out of memory”

exceptions less likely. It also lets us select a bigger maximum size for partitions. The

drawback is that if some data is needed for consecrative computations and enough GPU

memory is available, we transfer data between GPU and CPU multiple times.

Once data is in columnar format and is partitioned, we use the original Spark computing

model, i.e. RDDs (Resilient Distributed Datasets). In the design of Reflection Based

API, instead of shuffling data, we broadcast data (the amount of data we need to send

is relatively small in practice form many workloads). Avoiding data shuffles makes the

design of Spark+GPU simpler because columnar data cannot be shuffled without object

reconstruction.

We extended the existing RDDs to exploit GPU computation power. These RDDs are

particularly designed to execute common operations in SQL queries. We added customized

RDDs for selection, projection, join, and aggregation on top of the basic operations. All

computations are represented by a directed-acyclic-graph (DAG) of our customized RDDs.

To run a given SQL query, we manually parse the query and make an execution plan. Nodes

in the execution plan directly translates into Spark-GPU RDDs and dependencies between

nodes in the execution plan translate into dependencies between parent-child RDDs.

Our implementation of reflection based API is based on Spark 1.3. We particularly used

Spark 1.3 because we needed two new features available in Apache Spark 1.3:

1. We needed to serialize/deserialize the types of fields and tuples, which was not avail-

able in previous version because of a bug in Scala-2.10.
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2. We wanted to measure how much the new code generation feature in Spark SQL 1.3

improves the performance of our benchmarks.

We also used OpenCL[30] to implement GPU operations because it is available on a

broader set of GPUs. The interface between Scala/Java and OpenCL uses Java bindings

for OpenCL [21].

Currently we only support primitive type fields (int, float, char, etc.) that are put

together in a tuple. Tuples in Scala are represented with the Product class, which takes

a type parameter T. We require this T to be a subtype of TypeTag because it allows us

to use Scala/Java reflection to decompose it into its primitive types with the API in the

scala.reflect.runtime package. Scala type erasure by default removes any type infor-

mation that is not needed at runtime, but a type tag forces the Scala compiler to generate

code to keep the type information.

The base class for our implementation is GpuPartition. Each customized RDD in the

Reflection Based API holds GpuPartition[T]s, where T is the underlying type of items in

the RDD. For example an RDD of type GpuPartition[[Int, String, Float]] contains

tuples with three fields, the first field is Int, the second one is String, and the third one is

Float.

Buffer Management

Each GpuPartition has an array of buffers for each primitive type, which it initializes

lazily and uses to store fields (each buffer is used for one field only). In our previous

example, GpuPartition[[Int, String, Float]], one Int buffer, one String buffer, and

one Float buffer are used. String buffers are implemented as Byte buffers because Strings

are not primitive types in Scala/Java.
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The maximum size of each buffer is determined based on a predefined parameter. If the

total size of the data is more than this limit, we partition the data such that each partition

fits into the GPU memory. In our implementation, we could use buffers with 228 elements

before overflowing the integer offset of items in the buffers.

In our initial implementation, we allocated these buffers from Java heap memory, but

because these buffers are huge, they burden the virtual machine’s memory management

and garbage collection. We changed the implementation and used direct buffers to avoid

exhausting the Java heap using ByteBuffer.allocateDirect(). Direct buffers addition-

ally allow us to copy data from Java virtual machine to GPU without extra steps. Without

direct byte buffers, data should be copied to GPU in two steps: 1) from Java heap to

VM/OS buffers 2) and then from VM/OS buffers to the GPU. The downside, however, is

that garbage collection does not manage and reclaim direct buffers and we have to explicitly

release them after use.

Byte Ordering

Scala/Java has a big-endian byte ordering system, but C/OpenCL is platform depen-

dent. Our implementation targets x86 64 platforms, which use a little-endian byte ordering.

To avoid converting data back and forth between little-endian and big-endian systems, we

keep data in Java direct buffers in little-endian as well. Data sitting in direct buffers rarely

needs to be accessed in Scala/Java because the majority of the computation on buffers is

done in C/OpenCL code. Scala/Java may access a buffer’s data only at the end of the

computation to get the final results. Since the final results are usually limited in practice,

the cost of converting data into big-endian byte order is not negligible.
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3.1.2 Reading Columnar Files

GpuPartition and its subclasses can read data from in memory Java/Scala data struc-

tures or from columnar files using to custom RDDs that we added. InMemoryGpuRDD

reads Java/Scala data structures and converts them to columnar format upon reading.

ColumnarFileGpuRDD reads from columnar files. Our columnar file format saves each buffer

in a separate file. The file has a header that describes the type of the data in the file, the

total number of partitions in the file, and the total number of elements in each partition.

After the header, all the data is stored in binary format with little-endian byte ordering.

We do not compress columnar files. This file format is a simplified version of the file format

supported by YDB [49].

3.1.3 GPU Physical Operations

We added the following special RDDs to our Reflection Based API.

1. A ScanRDD that reads columnar data from a (distributed) files system.

2. A FilteredRDD that has one parent and one criterion. It checks the given criterion on

its parent’s data and selects the part that passes the criterion. For example a criterion

can be values more than 50. Users can chain simpler criteria to make more complex

criteria.

3. A JoinRDD that has a left parent and a right parent. This RDD joins its parents

data based on a specified join column.

4. An AggregationRDD that has one parent and a set of functions. Each function either

groups or summarizes data in one or more columns.
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Figure 3.2: Design of RDDs and their corresponding partitions in Reflection Based API

5. A ProjectionRDD that has one parent and returns only projected data items from its

parent. This RDD is useful for dropping columns that are not needed after a certain

point in the query execution. For example, if a column is used only at the first stage

of a query plan in a FilteredRDD, that column can be dropped from the query after

the Filter operation finishes.

6. A SortRDD that has one parent and sorts its parent’s data.

All the customized RDDs for Reflection Based API and their corresponding GPU-

partitions are shown in Figure 3.2.

Scan Implementation

The scan operation runs only on CPU and does not use GPU and we implemented

two versions of it: 1) to scan data from Java/Scala data structures 2) to scan data from a

columnar file.
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The first scan operation is particularly useful for converting original Spark RDDs into

columnar RDDs.

The columnar file scan is useful when data is already in columnar format on disk. It

eliminates the cost of converting data to columnar format, which can be significant for large

datasets.

Filter Implementation

The filter operation is implemented in GpuFilteredPartition and GpuFilteredRDD

The filter operator starts by sending the filter column to the GPU. A work group of GPU

cores are assigned to scan the column. The work group size is 264 at the moment.

The filter operation on GPU has three stages. First stage marks all the elements that

match the criterion.

In the second stage, each GPU core counts the number of elements before it computes

the offset in the output buffer where it should start putting its results. In the third stage,

other columns for selected rows are copied to the results.

Join Implementation

The join operation is implemented in GpuJoinPartition and GpuJoinRDD Join imple-

mentation is based on the assumption that one side of the join is small enough to fit into

the GPU memory (We always assume that the right parent of the join is small enough to fit

into the GPU memory and to be broadcast). This is true for SSB queries because they have

a star schema. This assumption allows us to broadcast the small side of the join instead of

shuffling it.
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The join implementation is a hash join and is done in five stages. After sending the

data to GPU, the join operation hashes the join column of the right parent and counts the

number of unique hash values. Then it creates a hash table for the join columns.

In the second stage, the left parent probes the hash table and sets a bitset if there is

a match for the join column. In the third stage, each GPU core counts the number of

join results to find the output buffer offset it should use. In the forth stage, all columns

needed for the join result are transferred to GPU and based on the constructed bitset map,

all the columns from right parent are materialized, In the last stage, all columns from the

left parent are materialized as well. Finally all the results are transferred from the GPU

memory to the CPU memory.

Aggregation Implementation

The aggregation operation is implemented in GpuAggregationPartition and Gpu-

AggregationRDD Aggregation implementation summarizes the data in each partition sep-

arately from other partitions, i.e. if data does not fit into one partition, one summary

per partition is generated. In SSB queries, we found that by the time an aggregation is

executed, the data is small enough to fit into one partition.

Each aggregation partition takes a parent partition, a set of columns to group by and a

set of functions to aggregate data. Currently we support MAX, MIN, AVERAGE, and SUM

functions on Byte, Char, Short, Boolean, Int, Float data. Data types that take 64-

bit or more (like Double, Long) are not supported yet because most GPUs lack atomic

operation support for 64-bit data.

Aggregation starts by sending the group-by columns to the GPU memory. Then a hash

table of group-by columns is created. Aggregation uses this hash table to find the total

number of groups needed and the number of data items in each group.
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Then each GPU core counts the number of results. Extra columns that are needed for

aggregation are sent to the GPU. The GPU summarizes the data in each column based on

the specified aggregation operation.

Sort Implementation

The sort operation is implemented in GpuSortPartition and GpuSortRDD and can sort

data based on up to two keys. Sort implementation sorts each partition independent of

other partitions, but in the SSB queries, we found that by the time a sort operation is

required in the query execution plan, dataset is small enough to fit into one partition.

Sort operation starts with sending the first sort key column to the GPU memory. Then

it counts the number of unique sort keys and number of elements for each unique sort key.

Then it gathers all the second sort columns and buckets them with one bucket for each

first key. Then each bucket is sorted based on the value of the second key. Finally all the

columns are gathered, materialized, and sent back to the CPU.

3.1.4 Limitations Reflection Based API

We added implemented Reflection Based API to demonstrate that we can automatically

convert RDDs into columnar format. But our implementation has a few limitations, which

are mostly because of the limitations in the underlying programming languages—Java and

Scala—or the underlying hardware–NVIDIA and ATI graphic processors. We discuss the

limitations here.

Full Type Inference

The reflection based API can correctly infer the number and the type of the columns

based on the compile time type of the RDDs. For FilterDDD and SortRDD, it can infer the

type based on the type of the parent RDD and the programmer does not need to specify the
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type. For example if we have a columnar RDD with the type [Int, String, Float], and

we run a filter operation or a sort operation on it, the type of the result RDD will remain

[Int, String, Float]. But for ProjectRDD, JoinRDD, and AggregateRDD, the type of

result RDD should be specified by the programmer.

Support for Complex Aggregation Operations

Right now we support aggregation operations that are composed of at most two sub-

expressions. We decided to support only two sub-expressions because our benchmarks had

mostly simple aggregations. Supporting more than two sub-expression bloats the imple-

mentation but it does not add a valuable feature.

Aggregation on Double and Long Types

Many mainstream GPU processors do not support atomic operations on 64-bit words.

Implement atomic operations on data with any arbitrary length is possible via locking

mechanisms but it bloats the code. Newer versions of the GPU processors are equipped

with 64bit atomic operations.

3.2 Batch Processing API

To support batch processing on the iterator model, we introduced a new type of RDD,

GPU-RDD, along with a data structure, GpuRecord, into the system. GPU-RDD serves

as a batching operator during the execution. It batches the data and converts them into

columnar format. The GpuRecord data structure represents the batched data.

A GpuRecord batches one partition of date and contains both the columnar data and

the metadata information. The metadata information includes number of elements, column

types, and column sizes. Data in a GpuRecord can be stored in a continuous memory region

for all columns all together or separately. Storing each column separately is beneficial for
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workloads that use a subset of data. For example, most SQL queries use a subset of the

columns. Storing all columns together is beneficial when number of columns are very large.

For example many machine learning workloads work on data with thousands or even millions

of features.

GpuRecord stores the data in the native memory, not in the Java/JVM heap memory.

Data in the native memory can be directly copied to the GPU memory without using

intermediate OS level buffers. It also does not burden the garbage collector and the memory

management system of the JVM. Storing all the batched data in the Java Heap increases

memory usage, which leads to frequent garbage collections. This can significantly degrade

a task’s performance.

GpuRecord releases the native memory when its corresponding RDD is garbage collected

by JVM. Unfortunately Java language specification does not give any guarantee on when

garbage collection is invoked. This means that a GpuRecord may stay alive and occupy

memory longer even if the GpuRecord is not used anymore. The second problem with

this schema is that the demand for Java heap is not proportional to the demand for the

native memory and we may run out of the native memory before we run out of Java heap.

We also added an interface to explicitly release the memory but in our experience with

the benchmarks, this was not a real issue, particularly when the size of each partition was

selected carefully .

A GPU-RDD can be created from a Spark RDD or other GPU-RDDs. We extended the

interface for Spark RDDs to add a toGpuRDD() method, which converts the RDD’s data

into GpuRecords.
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3.2.1 Batch Processing Interface

To offload computation to GPUs, users need to create a GPU-RDD from an existing

RDD. Since we targeted this implementation for running SQL queries, we require the schema

of the data when an GPU-RDD is created. After a GPU-RDD is created, any function can

be applied to it as long as it accepts a GpuRecord.

GPU functions can be implemented in any language, including C/CUDA, but they need

a wrapper function written in Java/JNI. In our implementation, wrapper functions call the

CUDA kernels inside the JNI wrapper code. The wrapper function is responsible for passing

the information about the GpuRecord to the GPU function. This information mostly is the

address of buffers, their sizes, and number of elements in each buffer.

Users need to compile their GPU-Functions before using them, but we modified Apache

Spark to ship the compiled libraries to all worker nodes. If worker nodes in the cluster have

different architectures, the GPU functions should be compiled into a static library. We also

modified Spark to automatically load the library. This requires the users to provide the

compiled library when they submit their Spark application.

To explain the GPU batch processing interface, consider the code snippet in Figure 3.3,

which shows how a filter operation can be offloaded to the GPU. The Scala wrapper only

defines the signature of the method. The actual implementation is in C and calls a GPU

kernel written in CUDA at line 5.

3.2.2 Batch Processing Overhead

Supporting batch processing on top of the Apache Spark execution model is not free.

It introduces extra data movements for data analytics applications that wish to use GPUs.
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1 // native function: Implements a filter operation on the GPU
2 JNIEXPORT jobject JNICALL
3 JAVA filter(JNIEnv ∗, jobj) {
4 ...
5 filter kernel<<<>>>();
6 ...
7 }

1 // Scala wrapper for the native function
2 object GpuFilter(data: GpuRecord) {
3 @native def filter(data: GpuRecord)
4 }

Figure 3.3: A sample filter operation implemented on GPU.
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We analyzed the overhead of the data movement for batch processing, which can help decide

whether to offload an operation to GPUs or not.

In this section we will use the filter operation in figure 3.3 as an example to illustrate

extra data movements in the GPU. The data movements and format transformation process

is shown in Figure 3.4. We assume that the input data is in HDFS in a columnar format

such as Parquet, RC file, or ORC. First the input data should be loaded into the native

memory and then copied to the Java heap. Then it should be parsed and stored in either

columnar format or row-wise format. To process the data on GPU, a GPU-RDD is required,

which copies the data from Java heap to the native memory. If the data is not in columnar

format, GPU-RDD will convert it to columnar format. When the GPU function is called

on the GPU-RDD, the columnar data is transferred from the native memory to the GPU

memory through the PCIe bus. The GPU function then processes the data on the GPU and

transfers the results back to the native memory in the columnar format. Finally columns

are copied back to the Java heap and stitched together to form Java objects, and rows.

Offloading the filter operation needs 6 data movements and transforms the data format

twice. None of these operations are free and they add extra overhead to the execution.

Data movements are expensive and should be avoided when possible. Considering the extra

cost of data movements and transformations, an operation should be offloaded to the GPU

only when it is computation-intensive. Consecutive GPU operations on the same data also

can be chained together to make a computation-intensive workload.

3.2.3 Resource Management of Batch Jobs

We changed the Spark scheduling algorithm to handle nodes with GPUs and nodes

without GPUs differently. When a worker node joins the Spark cluster, it communicates the

number of GPUs it has to the resource manager to the cluster. We also added a customized

35



RDD, GPU-RDD. All the tasks for a GPU-RDD will be scheduled on the worker nodes

with GPUs. If an RDD does not need GPU but one of its parent RDDs with a narrow

dependency needs the GPU, Spark schedules all of them on worker nodes with GPUs to

avoid shuffling data over the network. But if the dependency is wide and needs a shuffle,

our modified scheduler can schedule the task on any worker node in the cluster.

The GPUs on a worker node are shared among all the tasks that are running concurrently

on the worker node—a worker node with m CPU cores concurrently runs m tasks that share

the GPUs.

We implemented utility methods that efficiently convert data in Spark RDDs to colum-

nar format, which is suitable for GPU, and back to row-wise format after the computation

is done. The GPU-RDD implementation has a toColumnarRDD and a toRowRDD.

We implemented two popular machine learning algorithms to demonstrate the usability

of our API: K-Means and the Logistic Regression.

3.3 Processing Queries on GPUs

We implemented a set of GPU query operators to accelerate processing SQL queries on

Apache Spark. We also extended the SparkSQL’s Catalyst to build query execution plans

with both CPU and the GPU operators. In this section we describe how we implemented

these query operators.

3.3.1 Native Database Primitives

SparkSQL requires all query operators to implement a doExecute method, which returns

and RDD of rows. The method will be called when the operator is executed on the worker

nodes. We added a set of GPU query operators to extend SparkSQL. Each operator has a

Scala wrapper and a native function. The Scala wrapper connects the GPU query operator
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to other query operators and implements the doExecute method. The body of the wrapper

method calls a native method that implements a database primitive. The database primitive

we implemented are scan, join, aggregation, and sort. Our database primitives all accept the

input in GpuRecord format and run on the GPU. The wrapper method converts the results

to row format and releases the GPU memory. Our database primitives can be chained to

build a wide range of SQL queries. They can be combined with SparkSQL primitives that

run on the CPU. We will discuss our database primitives in rest of this section.

Native Scan

The scan primitive accepts a set of predicates and columnar data as input and returns

all the tuples that satisfy the predicates. The returned tuples are in columnar format. The

primitive first evaluates the predicates one by one and maintains a 0/1 vector. To avoid

synchronization and data races, each GPU threads should know what part of the output it

should write its results to. After predicate evaluation, a prefix sum is calculated on the 0/1

vector to find the start writing position for GPU threads.

Native Join

The join primitive is implemented as a primary key foreign key join. Our native join

implements a hash join because it performs well on GPUs. The primitive accepts columnar

data from a build table and a probe table and calculates the join results in two phases: a

build phase and a probe phase.

The build phase passes the build column twice and generate a hash table without syn-

chronization. In the first pass, each GPU thread counts the number of tuples it will write

to each hash bucket Based on these counts, a prefix sum is calculated to decide the start
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writing position in each bucket for each GPU thread. In the second pass, each GPU thread

simply fills the hash table.

The probe phase generates a 0/1 vector to mark the tuples that should be projected in

the join result. Then it calculates a prefix sum on the 0/1 vector such that the results can

be generated without synchronization.

Native Aggregation

The aggregation primitive also uses a hash aggregation. It accepts its input data in

columnar format. Our aggregation primitive first calculates a hash value for each group by

key. Then it counts the number of groups based on the hash values, scans the input data,

and applies the aggregate functions to each group. We used the standard GPU atomic

instructions to synchronize GPU threads when calculating aggregation results. Because

many GPUs do not support atomic operations on 64-bit words, we convert long and double

values to float before carrying the primitive operations.

Native Sort

The sort primitive implements the bitonic sort. Since sort is usually executed after

aggregation, the number of the tuples to sort is relatively small and GPU’s shared memory

can be use for sorting. Our sort primitive first sorts the keys for all the order by columns.

After keys are sorted, our sort primitive generates the result with a gather operation.

3.3.2 GPU Query Operators

Using the native database primitive we described, we implemented five GPU physical

operators: 1) GPU in-memory scan, 2) GPU broadcast join, 3) GPU hash join, and 4) GPU

aggregation. Each query operator returns its results as an iterator of rows. We discuss these

operators in detail here.
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GPU In-Memory Scan

The in-memory scan works on columnar cached data that is stored on Java Heap. This

operator simply passes the data, the schema, and the predicates to the native scan, which

runs on the GPUs.

GPU Broadcast Join

The broadcast join joins two table in three phases. First it assigns the smaller table as

the build table and the larger table as the probe table. Then, it broadcasts the build table

to all worker nodes. Finally, worker nodes call the native join primitive on the GPUs for

probe table’s partitions and join them with the build table.

GPU Hash Join

The hash join operator first repartitions the data based on the join keys. Then for each

part of the partitioned data, the operator batches the data into a GpuRecord and calls the

native join on the GPUs.

GPU Aggregation

The aggregation operator is implemented in two phases: a partial phase and a global

phase. The partial phase locally aggregates the results for partitions on worker nodes.

Thee global phase combines and aggregates all the local aggregations to compute the final

results. The partial aggregation phase batches the data into GpuRecords and calls the native

aggregation on GPU. Partial aggregation returns the results as an iterator of rows. The

global aggregation first shuffles data and then aggregates the results on the CPUs.
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1 FROM lineorder, supplier
2 WHERE lo suppkey = s suppkey
3 AND s region = ’ASIA’
4 AND lo discount < 5

Figure 3.5: A sample SQL query based on query 1.1 in the SSB benchmark.

3.3.3 Optimizations

To achieve optimal query performance, we should carefully place the query operators

on the cluster CPUs or GPUs. CPU operators outperform GPU operators when data is

small or is in row format. GPU operators perform best when the input data is large and

in columnar format. To explain how data format and size effects performance of query

operators, consider the following query.

This query first scans a large table, lineorder, and a small table, supplier, and joins the

tuples that satisfy the scan predicates. When executed on the GPUs, this query can be

processed with two GPU in-memory scans followed by a GPU broadcast join. The GPU

in-memory scan on the lineorder table copies the results from the native memory to Java

heap and materializes them into columnar format. The GPU broadcast join fetches the

tuples from Spark’s iterator interface, batches the data into columnar format, and copies

the data from Java heap to the native memory. The join operation runs on the GPU. It

is unnecessary to copy tuples in the lineorder table that satisfy the join condition because

they are already in columnar format and can be directly used in the GPU broadcast join.

The problem is that the Spark interface expects the input and output of each SQL

operation in row format. To solve the problem, we added a new method, gpuDoExcecute(),

to the interface of all GPU operators. The gpuDoExecute() method executes the operator

on GPUs and returns the results in columnar format in the native memory. After adding
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the gpuDoExecute() interface, GPU operators check their input data. If their input data

is generated by another GPU operator, they directly call gpuDoExecute() and gets their

input in columnar format. Otherwise they call the doExecute() and bactch the data into

columnar format before processing them on GPUs.

The doExecute() method in GPU operators calls the gpuDoExecute() method and

returns the results as an iterator over rows. The row iterator in a GPU operator lazily

materializes the data when the row is needed. With the gpuDoExecute() interface, our

GPU operators can avoid many unnecessary data copies between GPU and CPU.

3.3.4 GPU-Aware Catalyst

We extended SparkSQL’s Catalyst to generate queries execution plans with both CPU

operators and GPU operators. Catalyst is the query optimizer in SparkSQL. Given an SQL

query, Catalyst first uses a set of rules to generate the optimized logical plan and then

generates the physical execution plans with a set of strategies. Curently, catalyst does not

have a cost model to estimate the performance of physical plans. Therefore it simply picks

the first physical plan to execute the query.

Catalyst is extensible. To make Catalyst GPU-aware, we added our GPU strategies

that generate physical plans with GPU operators. Spark-GPU guarantees that the physical

plan with GPU query operators is the first physical plan among all plans and, thus, will

be used to run the query. The overall structure of Catalyst remains unchanged. Figure 3.6

shows the optimization process.

The GPU strategies decide whether a query operator should be executed on GPUs. The

following GPU strategies are added to Catalyst.
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Figure 3.6: Architecture of GPU-aware Catalyst

• Join operators are offloaded to GPUs. If the size of one table is smaller than Spark’s

broadcast join threshold, GPU broadcast join is used, otherwise GPU hash join is

used.

• The children of a broadcast join are offloaded to the GPUs whenever possible.

• If an aggregation can be divided to a partial aggregation and a aglobal aggregation,

both the partial aggregation and its children are offloaded to GPUs.

We offload the operators to GPUs if there is a chain of GPU operators that process

the same columnar data before converting the data back to row format. Additionally,

each operator should benefit from running on the GPUs. Otherwise we do not offload the

operators to the GPUs. Having a chain of operators to offload to the GPUs is crucial

because otherwise converting the data back and forth to columnar format would impose

high overhead. For example, the performance of the join operator is bound by memory

accesses on the CPU. It can benefit from GPU’s high bandwidth, thus it will be offloaded

to GPUs. But if a query contains only a scan operator, it will be executed on the CPUs.

Scan will be offloaded to GPUs if it is followed by a GPU broadcast join, a GPU aggregation,

or a GPU sort, where at least two GPU operators can work on the columnar data.
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3.4 GPU Resouce Management

A straightforward approach to manage the GPUs in a cluster is to treat a GPU as a CPU

core. When a task requires a GPU, a GPU will be exclusively given to the task until the

task finishes. This coarse-grained management approach has been adopted in MapReduce

Hadoop systems (e.g. [18]) even though it underutilizes GPU resources, which degrades the

performance of GPU applications.

To illustrate the problem, we implemented a synthetic GPU workload on Apache Spark

and measured its performance with different configurations. We changed the number of

tasks that concurrently run on the GPU. The workload transfers the data to the GPU

memory, reads it a number of times, and generates a constant number of results. We

control the number of times that data is read to control the computation to PCIe transfer

ratio. We used three different computation/PCIe ratios: 1:1, 10:1, and 100:1. We conducted

the experiment on a 16-core node with one GPU. The maximum number of concurrent GPU

tasks in our experiment was 16 (one per CPU core). The input data were partitioned into 16

partitions and was stored on HDFS. The size of each partition was 128MB. We normalized

the experiment results to the configuration with one concurrent GPU task as the baseline.

The execution results are shown in Figure 3.7.

Two observations can be obtained from Figure 3.7. First, GPU sharing improves the

performance. When computation/PCIe ratio is 1:1, performance improves more than 2X.

Second, increasing computation/PCIe ratio has diminishing returns. The fundamental

factor that determines the benefits of CPU sharing is the amount of work that can be

executed in parallel when running tasks on GPUs. To offload an operation to GPUs, we

cook the data into GpuRecords, transfer data between native memory and GPU device

memory through the PCIe bus, and execute kernel GPU on GPUs.
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Figure 3.7: Effect of computation to PCIe transfer on the performance of GPU

Among these operations, only two combinations are executed serially. First, kernel exe-

cutions can hardly be executed in parallel due to GPU’s LEFTOVER resource management

policy [34]. Second, PCIe data transfer in the same direction must be executed serially due

to hardware limitations. All other combinations of operations can be overlapped and thus

benefit from sharing GPUs.

GPU Memory Management

For a general purpose data analytics system such as Apache Spark, sharing GPUs is

essential to speed up as many workloads as possible. The major obstacle for sharing GPUs

in the cluster is that operating system and existing GPU drivers do not support virtual

memory. As a result, when a GPU is shared by multiple tasks, GPU can run out of

memory and task can crash. Some task crashes can be avoided by tuning the partition size
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in the cluster, but the system needs to manage GPU’s memory to concurrently execute GPU

tasks. [44] Prior research such as [22, 44, 44] addresses the this problem. We implemented

a user level GPU memory management library based in the framework proposed in [44]

because GPU management in Apache Spark should be transparent to the GPU program

and the operating system.

The library works as a layer between the GPU and the standard GPU library. It

intercepts all GPU memory related system calls—GPU memory allocations, free, and kernel

launches—from the task running on the node. The library creates regions to manage GPU

memory. A region contains a GPU buffer and a CPU buffer. The CPU buffer is created

lazily and stores the data in the GPU buffer when the library spills the data out of the

GPU memory. When there is not enough GPU memory for new allocations, the library

swap outs an existing region into the CPU memory.

Each worker node in the cluster needs to load the GPU memory management library

when it starts. With the GPU memory management library, each GPU task has the illusion

that it can use the whole GPU memory even though the GPU is shared.

GPU Task Scheduling

We modified Apache Spark to use and share available GPUs in the cluster. Our imple-

mentation abstracts each GPUs into multiple logical GPUs. Each logical GPU can run one

GPU task at a time. GPU sharing granularity is configurable. Users need to explicitly set

the number of available GPUs on each node. They also need to set how many tasks are

allowed to be executed concurrently on each GPU provided that the total number of GPU

tasks do not exceed the total number of CPU cores on the node.

Our implementation schedules tasks based on the RDD lineage graph. The scheduler

checks if a stage contains any RDD that is created by GPU operators. If a stage contains
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such operator, it will only be scheduled to nodes that have GPUs and that have at least

one available CPU core.
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Chapter 4: Experiments

In this chapter we evaluate the performance of our implementation to highlight the

strengths and limitations of using GPUs for processing big-data. The experiments have

demonstrated that:

• Batching data for GPUs incurs overhead that can be prohibitively high and diminish

the benefits of offloading heavy tasks to GPUs.

• Performance of SQL queries improves by 2.23X and performance of data mining and

statistical workloads improves by up to 12.28X when GPUs are utilized in the system.

• Sharing GPUs marginally improves the performance of data mining and statistical

workloads, but it can improve the performance of SQL queries further by up to 1.53X.

We first describe the experimental environment and the workloads used in the experi-

ments. Then we represent the experimental results.

4.1 Experimental Environment and Workloads

We conducted all the experiments on a cluster with 9 nodes on Amazon EC2 instance

type of g2.x2large. Each node has 8 CPU cores, 15GB memory and one NVIDIA GPU with

4GB of GPU device memory. The OS on each node was Ubuntu 14.04, with NVIDIA driver
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320.48 and CUDA 6.5. We configured the cluster to have one dedicated master node for

Spark and HDFS. The remaining 8 nodes were configured as worker nodes.

We measured the overhead of batch processing and examined performance of our im-

plementation for machine learning workloads. For machine learning workloads, we used

K-Means ad logistic regression. The dataset of logistic regression had 2 million data points

with 1024 features per data item. We implemented both K-Means and logistic regression

using the GPU-RDD API. We also used SQL queries from the Star Schema Benchmark [32]

and the TPC-H benchmark [11]. We set the scale factor to 50 for both benchmarks.

We cached the data in the cluster memory for all workloads. For each workload, we

measured the performance on Spark 1.4.0, and with 1, 2, 4, and 8 concurrent task on a

GPU. We repeated each experiment 5 times and report the median results.

4.2 Batching Overhead

Batching overhead stems from two parts: 1) batching objects and rows into GpuRecords,

2) converting GpuRecords back to rows and objects. To measure the batching overhead,

we used a micro benchmark that batches sets of rows into GpuRecords and then converts

GpuRecords back to rows. We set the total number of rows to 2 million and used fixed-length

string columns of with length 16. We used the string type because creating string object in

Java heap is expensive. We varied the number of columns and measured the execution time

of the micro benchmark. For comparison, we also reported the execution time of directly

projecting all the rows in Spark. The results are show in Figure 4.1.

The micro benchmark demonstrated that the batching operation is expensive. The

overhead increases with the size of batched data. With 8 string columns in a row, the

execution time of batching rows is 18.3X longer than projecting the rows. The execution
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Figure 4.1: The overhead of batching data into columnar format

time of converting the GpuRecords to rows is 10.5X longer. Batching overhead is high

because a Java String Object cannot be directly copied to the native memory. The string

object must first be converted to a byte array and then can be copied byte by byte to

the native memory. This micro benchmark also corroborates that if an operation is not

”computation-expensive”, it should not be offloaded to the GPUs.

4.3 Data Mining

K-Means is a popular clustering algorithm. We implemented it both on Spark and

Spark-GPU to study its performance. The algorithm has two steps: 1) find the closest

center to each data point, 2) update the cluster centers using the data from step 1. We

initially used the GpuRecord API to implement K-Means on GPU, but this implementation

was inefficient because our dataset had a large number of columns (1024 columns in our
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Figure 4.2: Performance results of executing one iteration of K-Means on Spark with dif-
ferent GPU sharing configurations.

experiments). To copy each column to the GPU device memory, a separate GPU memory

command copy is needed. Instead, we allocated one continuous buffer for all data points in

columnar format in GPU. With a continuous buffer, only one GPU copy command is needed

to transfer the data to the GPU device memory. For each iteration of the computation,

we offload the operation of calculating the closest centers to the GPUs. A GPU kernel is

launched to find the closest center for each data point in one partition and aggregates on

the centers locally. Then a global aggregation updates the centers.

Figure 4.2 shows the performance results. K-Means on Spark-GPU significantly out-

performs K-Means on Spark without GPU. The largest improvement is 3.82X, which is

significant because K-Means is computation-intensive and it shuffles a limited amount of
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data. It only shuffles centers in each iteration. The dominant operation in K-Means is

finding the closest center for each point, which is suitable for running on the GPUs.

Sharing GPUs for K-Means only improves the overall performance by up to 7%. The

reason is that the performance of K-Means is bounded by kernel execution—and GPU

kernels rarely run concurrently.

4.4 Statistical Analysis

Logistic regression is a commonly used classification method in statistical analysis. The

algorithm finds the hyper-plane p that divides a dataset the best. If the hypothesis for the

classification is given with

hθ(x) =
1

1 + exp(−θTx)
(4.1)

where x, θ ∈ Rn+1, the normal vector for p has is proportional to θ. The objective in Logistic

Regression is to find the best θ in formula 4.1. Even though there are exact mathematical

solutions to find θ, they are too expensive to be used in practice. The most common way to

find θ is through an iterative algorithm that incrementally drives θ to the best value. In each

iteration of the computation, the gradient of the current hypothesis should be calculated to

adjust the value for θ. Computing the gradient is expensive because it requires computing

the lengthy sum

∇θl(θ) =

m∑
i=1

(
yi − hθ(x(i))

)
x
(i)
j (4.2)

over all data points in the dataset. This part of the computation is CPU-thirsty and can

be accelerated on the GPUs.

Similar to the K-Means algorithm, we stored all the data points in columnar format in

one continuous buffer for each partition.
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Figure 4.3: Performance results of executing one iteration of logistic regression on Spark
with different GPU sharing configurations.

Figure 4.2 shows the performance results, which are similar to the results for K-Means.

Offloading operations to GPU can improve performance of logistic regression on Spark up

to 12.28X. The logistic regression algorithm needs to calculate the partial derivative The

performance of logistic regression is bound by calculation in each data point, Sharing GPUs

marginally improves the workload performance.

4.5 Shuffle-Rare Query

The Star Schema Benchmark (S.S.B.) has one fact table, lineorder, and four dimension

tables, date, part, supplier, and customer. We used query 3.1 from the benchmark, which

has the longest execution time, to study Spark performance with GPU.
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1 SELECT c nation,s nation,d year,SUM(lo revenue) AS revenue
2 FROM customer,lineorder,supplier,ddate
3 WHERE lo custkey = c custkey
4 AND lo suppkey = s suppkey
5 AND lo orderdate = d datekey
6 AND c region = ’ASIA’
7 AND s region = ’ASIA’
8 AND d year >=1992 AND d year <= 1997
9 GROUP BY c nation,s nation,d year

10 ORDER BY d year ASC,revenue DESC;

Figure 4.4: S.S.B query 3.1

Query 3.1 joins three dimension tables with the fact table, groups by, and sorts the

results. Since all dimension tables are much smaller than the fact table, the best way to

execute the joins is using broadcast join. Since SparkSQL cannot accurately estimate the

join selectivity, it uses shuffle hash join, which performs slower than broadcast join for query

3.1. We manually set the query plan to be broadcast join in the experiment. The overall

join selectivity is 3.4%. The query execution time is dominated by the join operations.

Figure 4.5 shows the physical plan for query 3.1.

Apache Spark performs better when the query is executed on GPUs. The performance

was optimum with 2.28X speed up when GPUs were configured to run 4 concurrent tasks.

GPUs exploit two characteristics of this query to gain significant performance benefits.

First, a large portion of the query execution time is spent on the joins, which significantly

benefits from running on the GPUs. This is despite the fact that shuffle operations, broad-

cast operations, global aggregations, and global sorts do not use the GPUs. Second, the

output of each GPU operator can be used by the next GPU operator without converting

the data back to row format, which eliminates overhead of converting intermediate data

back and forth to columnar and row-wise format.
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Figure 4.5: The physical execution plan for SSB 3.1 query. Rectangle nodes are input
tables. White nodes are executed on the CPU and shaded nodes are executed on the GPU.
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Figure 4.6: Performance results of executing SSB query 3.1 on Spark with different GPU
sharing configurations.

The experiment also demonstrates that sharing GPUs can improve the performance of

GPU workloads. Compared to running one concurrent GPU task, running 4 concurrent

GPU tasks increases the performance by 1.53X. But when a GPU is shared among 8 con-

current tasks, the performance degrades to the level of using only 1 concurrent GPU task.

This degradation is to be blamed on current GPU drivers, which manage GPU resources

poorly. This results shows that we should avoid oversubscribing GPU resources.

4.6 Shuffle-Intensive Query

The TPC-H benchmark has a snowflake schema. Queries in the benchmark have more

complex behavior than the star schema queries. We used query 3 from the benchmark to

examine the performance of Spark with GPU.
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1 SELECT
2 l orderkey,
3 SUM(l extendedprice ∗ (1 − l discount)) AS revenue,
4 o orderdate,
5 o shippriority
6 FROM
7 customer,
8 orders,
9 lineitem

10 WHERE
11 c mktsegment = ’MACHINERY’
12 AND c custkey = o custkey
13 AND l orderkey = o orderkey
14 AND o orderdate < ’1995−03−26’
15 AND l shipdate > ’1995−03−26’
16 GROUP BY
17 l orderkey,
18 o orderdate,
19 o shippriority
20 ORDER BY
21 revenue DESC,
22 o orderdate

Figure 4.7: TPC-H query 3

Query 3 joins three tables, orders, customer, and lineitem, and aggregates and sorts the

join results. Since none of these table are small enough for broadcast joins, we used shuffle

join. Figure 4.8 shows the queries physical plan. When executed on Spark-GPU, joins and

the aggregation were offloaded to GPUs. The scans were executed on CPUs.

Figure 4.9 shows the results. Using GPU can improve the query performance for all

GPU configurations, with the biggest improvement at 1.23X with 8 concurrent GPU tasks.

The performance benefits of the TPC-H query are less compared to the SSB query because

the data shuffle operation in the shuffle join dominates the query execution time. A data

shuffle operation writes the data to disks before data shuffling and reads from the disk

before joins. Disk I/O is expensive and cannot be accelerated by GPUs.
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Figure 4.8: The physical execution plan for TPC-H 3 query. Rectangle nodes are input
tables. White nodes are executed on the CPU and shaded nodes are executed on the GPU.

Sharing GPU’s does not help improve the query performance. All GPU sharing config-

urations have similar performance since GPU operations do not dominate the execution.
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Figure 4.9: Performance results of executing TPC-H query 3 on Spark with different GPU
sharing configurations.
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Chapter 5: Related Work

In this chapter we examine two bodies of related work: work on building scalable, fault-

tolerant data analytics systems, and work on using GPUs to speed up applications.

5.1 Large Scala Systems

The body of research on making large-scale systems is both broad and deep. Any

aspect of a large-scale system, such as security, check-pointing, load balancing, scheduling,

voting, fault-tolerance, is a challenge and has been studied extensively. In this report we

are interested in two aspects of a large-scale system: the storage layer, and the execution

engine. The storage layer interests us because we have expanded the storage format of

Apache Spark to add columnar format support. Section 5.1.1 discusses large-scale storage

systems.

The large-scale execution engines interest us because we have extended the execution

engine of Apache Spark to offload computation-intensive queries to the GPUs. We are

particularly interested in execution engines that support SQL or RDBMS like operations.

Section 5.1.2 discusses large-scale data analytics systems.

5.1.1 Large-Scale Storage Systems

Google File System [15] started a paradigm shift in the designing large-scale systems.

It relied on using inexpensive commodity hardware to build high throughput systems. In
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this new paradigm, component failure is not rare, it is the norm and should be addressed

in the system design. Google File System avoided complicated fault tolerance solutions

and opted for a simple and straightforward design. In their design, they replicated data on

three nodes. If a task fails on a node, they restart the task on a replicate node. This core

design decision was followed in the MapReduce model [12], and many other large-scale data

analytics systems. We will discuss some of these systems in this section.

BigTable [9], is another large-scale storage system from Google, which is built on top of

Google File System. It is designed to serve both batch-processing jobs and real time jobs.

BigTable users can request the data to be stored either on the disk or tin the main memory.

All entries in BigTable are addressed with a row name, a column name, and a timestamp.

The timestamp is to keep multiple versions of the data. To achieve low latency, BigTable

provides strong atomic and consistency guarantees at the row level and weaker guarantees

across rows, which makes it ill-suited for applications with strong consistency requirements.

It also keeps the latest event logs in the main memory, which it calls a memtable, and writes

it to the disk periodically. The persisted event logs on the disk are compacted and merge

to clean up disk and to make recovery from failure quick.

Megastore [4] extends the BigTable guarantees to provide ACID semantics within fine-

grained partitions of data but weaker guarantees across partitions. If users select partitions

carefully, the weak cross-partition guarantees of Megastore will be enough for most appli-

cations even though the read throughput of Megastore is not comparable to BigTable.

Spanner [10] is another extension to BigTable that provides low-latency reads and ex-

ternal consistency across multiple datacenters. Spanner uses the wall clock to timestamp
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writes and orders the commits based on the timestamps, which makes providing exter-

nal consistency across datacenters practical. Using timestamps that represent actual time,

Spanner can order commits and events without resorting to complex solutions.

Amazon uses Dynamo [13] to store users shopping data. Dynamo is a key-value stor-

age system and guarantees consistency at key-value pair level, but it relaxes consistency

guarantees across pairs to achieve high availability. Facebook’s Cassandra [27] is based on

Dynamo with added features, such as memtables and compaction, from BigTable [9].

5.1.2 Large-Scale Data Analytics Systems

MapReduce [12] was the first large-scale framework made of commodity hardware. Each

job in MapReduce is made of a map phase followed by a reduce phase. In the map phase,

each input element is transformed into a key-value pair. In the reduce phase, all the

values with the same key are combined to get the final results. More than one set of map

reduce phases can be chained together to do more complex computations. The MapReduce

framework writes the output of each phase to the disk to make recovery from failures easy,

but it makes MapReduce slow compared to other large-scale data analytics systems.

The design decisions behind MapReduce made it affordable for many organization. For

example, New York Times scanned its 1851–1980 archive into PDF files using Hadoop [46],

the most popular implementation of MapReduce, in less than 24 hours. The cost of scanning

all the archive would have been too high on any system prior to MapReduce.

Dremel [29] is an interactive data analytics system for read-only data. It can extract

the schema for complex objects with nested data structures and convert them to columnar

format. Its query execution engine schedules tasks based on the locality of the data. Unlike

Apache Hive [43] and Latin Pig [31], it executes native queries without translating them into
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MapReduce jobs, which are slow because they access disk at each Map/Reduce operation.

Dremel can achieve low latency performance by avoiding unnecessary accesses to the disk.

F1 [40] is a data analytics system with strong schema enforcement, high availability,

and strong consistency. F1 is build on top of Spanner[10] and has a high write latency, but

batching reads/writes and using hierarchical schemas can hide most of the latencies. F1

servers are spread geographically across datacenters and they communicate with each other

but no F1 server communicates with the worker nodes in another datacenter. To achieve

high availability and quick recovery from failure, F1 servers are mostly stateless. The query

execution engine of F1 runs the queries either in a centralized form or a distributed form.

F1 distributes query executions only when the estimated increase in parallelism yields more

benefits than the latency of distributed execution.

Impala [14] is also an SQL query engine that translates queries to native code using

LLVM [28]. Impala’s I/O sub-system and pipelined query execution are highly optimized

for running queries on columnar storage format. Moreover it does not pay the scheduling

overhead and data materialization overhead that MapReduce based systems impose. For

the I/O bound workloads, Impala is 3X faster than Hive. Queries that need multiple

MapReduce phases in Hive are 45X faster in Impala. Impala’s performance benefits over

Hive widens to to 90X when the workloads working set fits in the main memory.

Apache Spark [50] is a general purpose data analytics framework that, unlike its pre-

decessors, support iterative dataflow models. It keeps datasets in the main memory and

reuses them for efficiency. Apache Spark has separate components to process SQL queries,

graphs, and machine learning, but the core component of Spark can run any application

written to manipulate data. We discussed Apache Spark in detail in chapter 2.
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5.2 GPUs in Non-Graphic Applications

In the previous section, we discussed some of the most important large-scale data ana-

lytics systems, some of which are used at web-scale by big companies. In this section we will

discuss work that uses GPUs to accelerate applications. GPUs have been used to accelerate

many applications and to survey all of them is beyond the scope of this report, but we are

particularly interested in using GPUs for accelerating query processing and data analytics

systems.

5.2.1 GPUs in Query Processing Systems

Database management systems have studied and used GPUs to accelerate query execu-

tion. To accelerate join operations, Kaldewey et al. [23] have used zero-copy accesses and

saturated the PCIe bandwidth. Their join implementation gains maximum PCIe bandwidth

that is within 2% of the theoretical limit. Bingsheng He et al. [19] have implemented a set

of highly tuned and aggressively optimized primitives and used them to accelerated joins on

GPUs. They achieved 2X-7X speed up over optimized CPU-based join implementations.

Satish et al. [37] have exploited the high bandwidth of GPU and have improved the

performance of both comparison and non-comparison based sorts. They have implemented

two GPU-based sorts: a radix sort that performs well for smaller sets and a merge sort

that performs better for larger sets. TeraSort [16] have used the numerous GPU cores to

implement a parallel bitonic sort. Their TeraSort sort on mid-range GPUs is competitive

with sort algorithms on high-end CPUs and handles datasets that do not fit into the GPU

memory or the main memory and scales to billions of records. Other studies have shown

that performance of aggregation and selection operations can be improved using GPUs [24].
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Finding the optimal query plan is an NP-Hard problem and is a new bottleneck in

real-time data analytics systems. Sen et al. have used GPUs to speed up query planning

[38].

Wu et al. [47] have used a technique called kernel fusion that reduces data movements

between the main memory and the GPU memory. They have identified a set of common

patterns in GPU kernels which can be fused together. They have proposed a compiler

framework that automatically fuses relational algebra operators and eliminates redundant

data movements. Using their compiler framework, they gained more than 2X speed up in

kernel execution and PCIe transfer time.

All this body of research accelerates individual operators using GPUs, but they all focus

on improving individual computational tasks. Yuan et al. [49] have integrated GPUs to fully

functional RDBMS and have studied the performance benefits of using GPUs under differ-

ent architectures and system designs. They have studied various optimization techniques,

hardware architectures, and compression algorithms, and how they impact the performance

of the RDBMS.

Wang et al. [45] have studied the benefits and limitations of sharing GPUs among

concurrent tasks for query processing systems. In a different work [44], they have proposed

a user user library for automatically managing GPU memory among concurrent tasks.

None of the related work so far is applicable in large-scale data analytics systems. Dan-

delion is a system that aims at running large-scale data analytics systems on GPUs. It is

a compiler and runtime system that generates code to run on both CPUs and GPUs [35].

Programs in Dandelion are written in LINQ [42] and are translated to CUDA code for a

subset of C# programs. Dandelion’s CUDA code generation is restricted to method that

do not dynamically allocated memory.
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Facebook’s Torch [1] is a large-scale system for machine learning. Developers script

their programs in LuaJIT for Torch, which will be automatically translated to C/CUDA

and will be executed on the underlying cluster. Unlike any other system that we have

discussed so far, which all are query processing engines, Torch mainly targets machine

learning algorithms such as neural networks. The main downside with torch is the sharp

learning curve for LuaJIT.
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Chapter 6: Conclusion and Future Work

In this report, we discussed the limitations of large-scale systems. We showed that

current trends in workload features and hardware capabilities are making CPUs the bot-

tleneck in the system. We implemented a system on top of Apache Spark that wisely uses

the columnar storage format to reduce the unnecessary work assigned to the CPU cores.

We also used the same columnar format to integrate GPUs as a computational resource to

Apache Spark and discussed its challenges.

We evaluated our implementation for 4 different workloads and assessed suitability of

our implementation in each workload. We used a query processing workload that mostly

accesses data locally on the worker nodes and a query processing workload that needs

to accessed data on other worker nodes. We also used two machine learning workloads

that are computationally intensive and CPU-thirsty. We showed that for all the workloads,

columnar storage and GPUs can improve the performance. The performance improvement is

significant for machine learning workloads, but it is marginal for query processing workloads.

For future work, we plan to integrate GPUs into more components of the large-scale

systems. Many large-scale systems, including Apache Spark and Hadoop, use common

“primitives” during job execution. One such primitive is sort-based shuffle. We want to

extend our implementation to speed up such common “primitives”.
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Our Reflection-Based-API automatically infers the columns for an RDD based on the

RDD type, but the developer needs to explicitly specify the RDD type in many cases.

Specifying the type of an RDD can become very tedious and error-prone, particularly for

RDDs that use complex expressions. For example joining two RDDs on a key can easily

take 50 lines of Scala code. We want to extend our Reflection-Based-API to infer the

RDD type automatically based on the RDD’s parents and expressions. Scala has extensive

support for type inference at compile time, but the type inference system falls short for

more complex types. We want to use the more advanced features of Scala, such as virtual

Scala and macros, to add automatic type inference to our Reflection-Based-API to make it

more usable.
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