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ABSTRACT

In this paper, we discuss the perturbations of the Harmonic Oscillator and
Parabolic Cylinder Operators by an odd pair of point interactions. We prove that
there is a convenient formula for the eigenvalues, and show that if the point interac-
tions are purely imaginary in addition to being odd, that nonreal eigenvalues exist as

the size of the perturbation grows.
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CHAPTER 1
INTRODUCTION

The harmonic oscillator operator is the unbounded, densely-defined, closed, self-

adjoint, positive, compact-resolvent operator denoted by

D (L) = {u € H*(R) : z’u € L*(R)} (1.0.1a)

Liow(z) := —w"(z) + 2*w(z), w €D (L), (1.0.1b)

where H™(R) = W™2(R) is the set of L? functions with distributional derivatives up
to the mth order in L?, and w” is interpreted as a distributional derivative.

Since L{j is an operator of compact resolvent, its spectrum is entirely composed
of eigenvalues. Indeed, the form of the eigenvalues and eigenfunctions are well-known
(see, e.g., Folland’s real analysis text [Fol99, Exercise 8.23, pp. 256-257|): defining

the Hermite polynomials
n x? dn —z2
H,(z) :=(—1)"e e <e ) , neNy:=NU{0} (1.0.2)
x
and the Hermite functions

ho(z) = ———e " ?H,(z), neN, (1.0.3)



we have that

Lyoh, = (2n+ 1)h,, n€N,. (1.0.4)

Since the Hermite functions form an orthonormal basis of L*(R) (e.g., [Fol99, Exercise

8.23(g), p. 257]), and Ly, is self-adjoint, the spectrum Sp(LYq) is understood:

SP(L%O) = {2n + 1}20:0

and any eigenfunction for eigenvalue 2n + 1, n € Ny, is a scalar multiple of h,(z).
Several papers — B. Mityagin’s and P. Siegl’s text [MS13|, B. Mityagin’s preprint

[Mit14] and paper [Mit15], and the work of Haag, Cartarius, and Wunner in [HCW14]

— discuss the perturbation of L}, by a pair of point interactions; e.g., they define

the closed operator
Luo(¢, B)w = Ljow + Acg(z)w, B>0, (e€C
where

Acs(x) =([6(x—B)—d(x+pB)], B>0, (€C.

(The interpretation on the point-mass multiplication is given by

d(x—plu(x) =ulp)d(xr—p), peR, wueCR); (1.0.5)

evaluation at a point is justified because the operator is defined on a subset of H*(R),
and every f € H*(R) has a continuous representative fo, i.e., there exists fo € C(R)
such that f = fy Lebesgue-a.e. on R [Fol99, Thm. 9.17, pp. 303-4].)

The sum is interpreted as a form-sum as guaranteed by the KLMN Theorem,

as shown in T. Kato’s text [Kat95, Section VI.2|. The operator is shown to be of



compact resolvent (essentially, [Kat95, Chapter VI, Section 4.2, Thm. 4.3, p. 396|),
and the behavior of the eigenvalues are studied. A particular result is that when z is
purely imaginary, i.e., z = ir for r € R, the number of nonreal eigenvalues is finite
and bounded in terms of |r|. The question we seek to answer is if for z = ir, r real,
any eigenvalues are nonreal, and more generally, what else can be said about the
behaviour of the eigenvalues.

When attempting to study this question in more depth, however, we reach a
practical difficulty. It is not hard to show that any eigenfunction of Lyo((, ), with
eigenvalue ), is not only continuous on R, but also C™° on the intervals (—oo, —b),

(=b,b), and (b, 00), because it must be a solution of the differential equation
—— +zw(z) = Aw(z) (1.0.6)

on each of the aforementioned intervals. Although the L?*(R) requirement enforces
decay conditions as © — 400, a priori any solution could be the solution on (—b,b),
regardless of its growth or decay at co — in particular, since two linearly independent
solutions must exist on any interval (as found in any differential equation text; in
particular, in F. Olver’s asymptotics text at [Olv74, Thm. 5.1.1, p. 139]), it could be
any combination of any given basis of solutions. It would therefore be useful to have
a known basis of solutions for each A € C. We do not know of any such explicitly
computed list for the above differential equation, but we do have one for the Weber
parabolic cylinder equation, one of whose guises is

—% + %y(m) = (V + 1) y(x), (1.0.7)



which is quite similar: indeed, we will prove that the conversion

w(z) =y <:E\/§>

A=2r 4+ 1.

(1.0.8)

transforms solutions of (1.0.7) to solutions of (1.0.6), invertibly (on appropriate in-
tervals).

We prefer, however, to rewrite (1.0.7) as

>y 2?1
e e ! (10.9)
and we therefore define
D (LYc) ={ue H*R): z*ue L*(R)} (=2 (L{o)) (1.0.10a)
" 1 1
Loy = —y"(z) + (Zﬁ - 5) y(z), yeD(Lc). (1.0.10b)

Then we can formally write the eigenvalue problem as

|5 =g =, e o).

so that the parameter v can be taken to be synonymous with the eigenvalue.

Also, it will follow that
Sp Ly = Ny := NU {0}, (1.0.11)

and that the corresponding normalized eigenfunction is —=h,, —) The collection

ﬁ(\/?

1 oo
of eigenfunctions {—h (i) } is again an orthonormal basis.

V2 T \V2

n=0



Thus, analogously to the above, we will define the perturbation of L by

x? 1

Lpc(z,b)y(z) = —y"(z) + [Z — 5} y(z)+z[0(x —b)—d(x—b)], b>0, z2€C

(1.0.12)

and search for its eigenvalues; the formal conversion is as follows.

Proposition 1 (Folklore). Fiz b > 0 and z € C. Let Sz = 22 denote the linear
transformation on R, and let Tf(x) = f o S(z) denote its extension to a bounded

operator on L*(R). Then we have that

1 b 1
ch(Z, b) = §T_l o LHO (Z\/ﬁ, E) ol — 5[ (1013)

In particular,

Sp(ch(Z, b)) = 5

(1.0.14)

Hence, answering questions about the eigenvalues of Lpc(z,b) will enable us to
discuss the eigenvalues of Lyo((, ).

In the case z = ir, r real, the eigenvalues of Lpc(z,b) were discussed by E.
Demiralp in the paper [Dem05]|. (Demiralp takes the weight on the point-mass at —b
to be the conjugate of the weight on the point-mass at b, but in the case z = ir, his
convention and ours coincide.) In particular, [Dem05] gives the following formula for

v & Ny to be an eigenvalue of Lpc(ir, b):

ol
1+ ng(b) (DZ(=b) — D(b)) =0, (1.0.15)
where D, (x) is the parabolic cylinder function that is a standard solution to (1.0.7)

decaying as * — oo (see [Olv74, Chapter 6, Section 6, pp. 206-208]), and W =
Wr [D,, D,(—-)] (b) = Wr[D,, D,(—-)] (=b) is the Wronskian of D,(z) and D,(—x)

3



in = at the point b (or —b). It is known (see N. Temme’s contribution to the Digital
Library of Mathematical Functions, in particular [Tem14, Section 12.2(iii), (12.2.11)])
that

V2m

W = EmL (1.0.16)

so the failure of the formula for v € Ny is caused by a term I'*(—v) implicit in the
second term on the left-hand side of (1.0.15).

We are now in position to state the new results of this dissertation. Our first result
is a small extension of the critical formula in (1.0.15), that works for all z € C and all
v € C. The formula uses the fact that (1.0.7) has a distinguished even solution and
a distinguished odd solution, called y;(v;z) and ys(v; x), respectively. More details

about these solutions are in Section 3.1.

Theorem 1. Fiz b > 0, and z € C. Then v € C is an eigenvalue of Lpc(z,b) if and

only if
ﬁ 212 . AN
VAT () — 22D (b)y1(v; b)y2(v; b) = 0. (1.0.17)

In particular, we find that after appropriate changes of variables, (1.0.17) and

212 (v)

™

(1.0.15) are the same up to a factor of

— primarily because
Dy (=b) = Dy(b) = — (D3 (b) = Dy(=0)) - (D (b) + D,(=))

is essentially the evaluation at b of an even solution and an odd solution to (1.0.7)

by linearity of the differential equation. Hence, it is a (v-dependent) multiple of
1

y1(v;b)y2(v; b); moreover, the constant multiple contains a factor of ———, which

P(=v)’

effectively cancels one of the I'(—v) factors in (1.0.15). We have:



Theorem 2. Fizb >0, z€ C, and v € C\Ny. Then v € Sp Lpc(z,b) if and only if
1— 2>M(v;b) =0, (1.0.18)

where
(—v)V2
LS

Alternatively, for z # 0, (5.4.7) can be rewritten as

M(v;b) == D} (b)yy (v; b)ya(v3 ). (1.0.19)

M(v;b) = = (1.0.20)

which allows us to separate the variable z out if it is nonzero.

The variation (1.0.20) has several advantages. First, if for v € No, M (v;b) = 0,
then v is not itself an eigenvalue of Lpc(z,b); however, as |z| — oo, é — 0, so the
(noninteger) zeroes of v — M (v;b) become relevant. The second technical advantage
is reducing the powers of I' in the numerator. This aids our recognition of the fact
that if, say, v — D,(b) has a zero at v = n € Ny, v — M(v;b) has a removable
discontinuity, and in fact the extended function has a zero at v = n. We can treat
the extended equation much like the original, so at the cost of doing the work twice,
we may remove certain genericity condtions and get the following absolute result,

answering the question posed on page 2.

Theorem 3. Fiz b > 0. Then for sufficiently large r > 0, Lpc(ir,b) has nonreal
eigenvalues. Moreover, if N'(r) is the counting-function for the number of nonreal
eigenvalues of Lpc(ir,b), then

lim N (r) = oc. (1.0.21)

=00



The rest of the paper is organized as follows. Chapter 2 reminds the reader of some
background theory and some technical lemmas. Chapter 3 constructs the differential
equation and operators we will need, though most of the constructions are hardly
original, emanating from [Kat95|, [MS13], and S. Albeverio et al’s book [Alb+05].
For completeness, Chapter 4 deals with the proof of Proposition 1, although the
proof is elementary. Chapter 5 deals with the proof of Theorem 1 and Theorem 2.
Chapter 6 concerns the proof of Theorem 3. Chapter 7 discusses some partial results

towards how the non-real eigenvalues are created.



CHAPTER 2
TECHNICAL PRELIMINARIES

In this chapter we recall various definitions and theorems that will be useful in the

sequel.

2.1 Fourier Transforms, Tempered Distributions, and Sobolev

Spaces

Our convention on the Fourier Transform is that for f € L'(R),

FINE) = = [ e s 2.11)

~

We abbreviate F[f](£) by f(£) when appropriate.

Similarly, the Inverse Fourier Transform is that for g € L'(R),
1 .
F gz = Flgl(—z) = —/ e ¢ 2.1.2
9] 9l(=2) = o= / 9(§) S (2.1.2)

and we abbreviate F~'[g]z by §(z). We know (see, e.g., [Fol99, Thm. 8.29, p. 252]
that the Fourier Transform on L'(R)N L*(R) extends uniquely to an isomorphism on
L*(R), denoted with the same variables.

We also recall the theory of Tempered Distributions and the Fourier Transform;



see, e.g., [RS72, Section V.3, pp. 133-134] and [RS75, Section IX.1|. The tempered
distributions in R are the dual space of S; we denote the pairing between a tempered

distribution F' and a test-function ¢ € S by

(F, ‘P>3/,s- (2.1.3)

We know that for all F' € &, the nth distributional derivative F™ satisfies

—

F) = (i) F, (2.1.4)

which leads to the consequence that F™ € L2(R) if and only if £"F € L*(R).
We also recall the definition of the L?-Sobolev spaces. For s € R, we define the

L*-Sobolev space H*(R) to be the set of tempered distributions such that

(1+ €22 f(€) € LA(R);

the inner product and norm are defined by

P9y = [ 1+ € FOTE de 2.15)
- 1/2
e = | [+ EPIFOR de| (2.150)

It is known (see, e.g., [F0l99, p. 302[) that (-, ). ) gives H*(R) the structure of
a Hilbert space, and if t < s, H*(R) is a dense subspace of H'(R) in H'(R) norm.
Also, H°(R) = L*(R) by the Plancherel Theorem, so for s > 0, H*(R) is composed

of L? functions.

10



2.2 Hermite Polynomials and Hermite Functions

We remark on some properties of Hermite polynomials, following Szegd’s text [Sze75].
Proposition 2.2.1 (Properties of the Hermite Polynomials).

Orthogonal Polynomials. The Hermite Polynomials are orthogonal with respect

to the weight-function 6_352; i€,

ifj # k. j, k € No, / H, () Hy(2)e ™/ d = 0. (2.2.1)

R
For more details, see [Szel5, Section 11.2.4].

Recurrence Relation. The Hermite polynomials can be computed by the following

initial conditions and recurrence relation:

Hy(x) =1, (2.2.2a)
H(x) = 2z, (2.2.2b)
H,1(x) =2zH,(x) —2nH, 1(x), neN. (2.2.2¢)

Multiplication-by-z. Certainly, multiplication by x gives that
1
xHy(x) =2 = §H1(x),
and for n € N, rewriting (2.2.2c) gives that
1
xH,(z) = §H”+1(I) +nH, 1(x), neN. (2.2.3)
Note that (2.2.3) holds even for n = 0, if we define H_i(x) to be the zero

polynomial, for simplicity.
11



Parity. Being orthogonal polynomials on an interval symmetric with respect to the
origin, according to a weight-function symmetric with respect to the origin, a

Hermite polynomials is an even function (resp. odd function) if their index is

even (resp. odd); i.e.,

H,(—2) = (~1)"Hy,(z), neNU{0} (2.2.4)

Moreover, H,(x) only contains those powers of x which are congruent to n

modulo 2. For both of these results, see [Sze75, Section 11.2.3.2, p. 28].

We now note some other properties of the Hermite Functions:

Proposition 2.2.2 (Properties of the Hermite functions).

Orthonormality. The Hermite functions form an orthonormal basis of L*(R), as

noted in [Fol99, Exercise 8.23, pp. 256-"7] and elsewhere.

Fourier Transform. Under our convention on the Fourier Transform, the Hermite

Functions are eigenfunctions of the Fourier transform (e.g., [Fol99, Exercise

8.25h, p. 257)):

—

h(€) = (=) "hn(&),m € Ny (2.2.5)

Schwarz Class. For alln € Ny, h,(x) € S, the class of rapidly-decaying C™ func-

tions on R. This follows since for all N € Ny, (1 + 2*)Vh,(z) is a polynomial

times e_x2/4, hence is bounded, and differentation preserves the class of func-

tions that are polynomials times e~ "4,

12



Multiplication by powers of x. Starting with (2.2.2¢), multiplying both sides by

e~/ and normalizing as in (1.0.3), we see that
n+1 vn
zhy(x) = ———hpi1(x) + —=h,_1(x),n € N. 2.2.6
)= (o) + Lo 226
. . 1 L 4 4
Of course, if n = 0, one verifies that xho(x) = —=hy(x), which is again consis-

V2

tent with (1.0.3) under the convention h_1(z) = 0. As we have z* appearing in

our operators, we go ahead and calculate the effects of multiplication by x°:

(2.2.7)
+ whn_g(x), n>2necN,

where again the formulas extend to n = 1 and n = 0 under the convention

h_1(x) = h_s(x) = 0.

x2/2

Parity. Of course, e 18 even, and positive constants do not change oddness or

evenness, so hy,(x) is odd or even according to whether n is odd or even.

2.3 Unbounded Operators, Quadratic Forms

We review some simple facts from the theory of unbounded linear operators on Hilbert
spaces; see, e.g., |[RS72, Chapter 8| or |[Kat95, Chapter V, Section 3| In particular, we
wish to remind the reader that even if A is unbounded, for any bounded invertible
operator B, B~'AB shares most of the properties of B. This will be useful once we

have (1.0.13), as it will allow us to transfer what we need.

Lemma 2.3.1. Let A: D (A) — H be a closed, densely defined (possibly unbounded)
linear operator with ® (A) C H, and let B : H — H be a bounded, invertible linear

operator. Then AB, BA, and B™'*AB are also closed and densely defined.
13



Lemma 2.3.2. Let A: D (A) — H be a closed, densely defined, and unbounded linear
operator on a domain ® (A) C H, and let B : H — H be a bounded, invertible linear

operator. Then:
e SpA=SpB'AB
o A has compact resolvent if and only if B~YAB has compact resolvent.
o A is self-adjoint if and only if B"*AB is.

In addition to writing operators as conjugates of known operators, we will create
operators from quadratic forms. We here note some of the theory from, e.g., [Kat95,

Chapter VI, Sections 1 — 3]

Definition 2.3.3. Fix H a Hilbert space, and £ a linear manifold in H. A sesquilinear
quadratic form on L is a map t : L x L — H, linear in the first argument and
conjugate-linear in the second argument. Often, we omit the word “sesquilinear”
and explicit reference to the domain, and talk about quadratic forms when we mean
sesquilinear quadratic forms on a linear manifold £. Also, we may use the alternative

notation © (t) for L.

We defer most of the quadratic-form theory to Appendix 3, where it is used in
the formal construction of the operators Lpc(z,b), but we mention one result coming

from this theory in particular.

Lemma 2.3.4. There exists a positive, self-adjoint square root of LY, which we call

(LY)Y2. Moreover, © ((L%O)lﬂ) =9, where
D, ={f eH'(R): zf € L*(R)}. (2.3.1)

Moreover,
(L%0) Y2 hi(z) = V2K + 1hy(z). (2.3.2)
14



2.4 Decay Lemmata

We now show that to some extent, the decay of the operators is embedded in the

decay of the Hermite functions.

Definition 2.4.1. Let ¢, denote L?(Ny), with the implied measure being counting
measure. We define the space £y, N € Ny, to be the space of square-summable

functions on N with weight (1 + k)N/2:

Ly = {(cw?;o Y 1+ E)Vel < OO}

k=0

= {(cn)y : (KPcr)ie, € L*(Ng) for all j € {0,1,...,N}}.

(2.4.1)

Of course, {5 = £y, and for all N € Ny, £y,1 C L.

Definition 2.4.2. We define the domains Dy, N € Ny, to be the space of H" (R)

functions whose (inverse) Fourier transform is also in H™ (R):

~

Dy = {f(z) e H(R) : f(€) € H(R)}
= {f(z) € L’(R) : (14 2*)"?f(x) € L*(R), (1 + &)V [(€) € L*(R)} (242)
= {f(z) € L*(R) : 2/ f(z) € L*(R) for all j € {0,1,...,N},

§F(¢) € LA(R) for all h € {0,1,..., N}}
Of course, Dy = L*(R), and D1 C Dy.
Since we will need it later, we interpose a quick lemma.

Lemma 2.4.3. For all N € Ny, S C Dy.

Proof. We note that the Schwartz class S is a subset of every Sobolev space H*(R),

s € R. Morever, the (inverse) Fourier transform is a bijection on S. Hence, for all

v €S, and any N € Ny, ¢ € HV(R) and 3(¢) € HY(R), s0 ¢ € Dy. O
15



Now we prove the desired lemma connecting the decay of the Hermite-function-
basis coefficients to the decay of the functions.
Lemma 2.4.4. Let v denote the isomorphism ly — L*(R) given by
(i) = cuhu(x). (2.4.3)
k=0
For N € {0,1,2}, «(£n) = Dn.
Proof, ®n C 1(£x). The case N = 0 merely reiterates that ¢ is an isomorphism. It

behooves us to next prove the case N = 2. Suppose f € Ds. Then f € D (L%O), SO

L% f € L?. Yet by Parseval, and by L%, symmetric, if f = Z crhy, then

LOHOf = Z(L%Of’ hk)LQ(R)hk
k=0

Z(f? L%Ohk)LQ(R)hk

o (2.4.4)
= Z<f7 (2k + 1)hk>L2(R)hk
k=0
k=0
and hence
ILS6 17 = (2K +1)%|ex]*. (2.4.5)
k=0

Hence, if f € Dy, then {(2k + 1)cp ooy € €2, 50 {(k+ 1)cx}rey € €2, 50 f € 1(L).
Now we prove the case N = 1. Fortunately, by Lemma A.1.9, we have the positive,

self-adjoint operator (LY)"? with domain ©1; moreover, by (2.3.2), (L% )"/? satisfies

(LYo) e = V2K + 1y,

16



Hence, for any f € ®y, (L%o)"*f € L*(R), so if f(z chhk

(LOHO)l/zf = ;((L%O)l/z.ﬂ hk)LQ(R)hk

= (6 (10 )

k=0

=Y (hvaETIng b

k=0

(2.4.6)

8

= Z CrLV 2k + 1hk,
k=0

Hence, {c;V2k + 1},2, € %, so {cpVk + 1}, € €7, s0 [ € 1(£y). O

Proof, 1(£x) € ©x. The case N = 0 again follows from ¢ being an isomorphism
between (* and L*(R), so let us assume N = 1. Fix f(z) € «(£,), so that f(z) =
ickhk(x) with (\/H——kck) —o € ?*. For J € Ny, let S; denote the orthogonal
p?gjection onto span(hg(z), hi(z),... hs(x)).

For any J € Ny, S;f € ® (M,), since by (2.2.6),

J

M,Sy(f) = cxMohy(x)

k=0

} (x )+§J;ck (ﬁhk+l(x)+£hk_l(x)> (2.47)
kZJ: Fh,m +ch[hk o

We wish to justify that multiplication-by-z is well-described by the Hermite-function

basis, i.e., we wish to show that Jlim M,S;(f) = M,f. Fortunately, it is clear that
—00

17



for any P,Q € N, 2 < P < @, we have that by (2.4.7),

HM:cSQf - MxSPin?(R

/k+1
:‘ Z Ck hk+1 Z Ck;\/ihk 1
k=P+1 k=P+1 L2(R)
k+1 < k
S Z Ck hk+1 + Z Ck, §hk71(x)
k=P+1 2 k=P+1 LQ(R)
Q 2 (2.4.8)
<2 chk%—lh + Zc Eh (x)
S k k1 (2 K\ 51
k=P+1 k=P+1 L2(R)
Q Q
k+1
_ 2
=2 Z |ck| 5 T Z |Ck|§>
k=P+1 k=P+1
9 Q
_ 2
=23 > (k+Dlal” |,
k=P+1

where of course if P = @, the sum is empty. Now by f € «(£;), Z (k+1)|er]* < o,
k=0

so it is clear that

Q 00
Y k+Dlal < Y (k+ ]l (2.4.9)
k=P+1 k=P+1

ans as P — oo, the right-hand side of (2.4.9) tends to 0. By the Squeeze Theorem,

as min{ P, Q} — oo, ||M.Sof — MmSprQLQ(R) tends to 0. In other words,
(M.S;f)7, is Cauchy in L*(R). (2.4.10)

Since L*(R) is complete, then clearly {M,S;f(x)}7, is a convergent sequence, so
there exists

g(x) = }1_)H()10 M,S;f(x).. (2.4.11)

Moreover, M, is a self-adjoint operator, hence closed (see, e.g., Reed /Simon Volume

18



I, specifically [RS72, Section VIIL.3, Proposition 1, pp. 259-260]). We of course have
Jlim S;f(x) = f(z) in L*(R), and (2.4.11) holds, so by closure of M,, f € © (M,)
— 00
and

zf(x) =M, f(x) = }1_)11010 M,S;f(z), (2.4.12)

so xf(x) € L*(R). We note that by (2.2.5),

o0

= (=) ephi(x (2.4.13)

k=0

and of course ((—i)'cy V1 + k)2, € €2 if and only if (cxv/1 + k)i, € £2, so by similar
logic, one shows that ff(f) € L*(R). Hence, f € 4, as required. This works for all
feuL),so () CD;.

The case N = 2 is similar. Of course, £5 C £ and ¢(£2) C «(£y) = Dy, so
rf(r) € L*(R) and 5]?(5) € L*(R) for all f(z) € 1(£,). To show 2*f(x) € L*(R),
one replaces the use of (2.2.6) by (2.2.7), but essentially the same proof shows that

228 f(x) LR, 2f(z) for f(z) € 1(£,). Again, the Fourier transform shows that

'S f(f) € L*(R) in the same way. We leave the details to the interested reader. [

2.5 Theory of Linear Homogeneous ODEs of Second Order

In this section, we remind the reader of various facts in the theory of ordinary differ-
ential equations. Our presentation follows Chapter 5 of F. Olver’s text |Olv74|.

The results are stated for holomorphic functions over open sets in the complex
plane; analogous statements for continuous functions (with appropriate numbers of

derivatives) on open intervals of the real line follow in the same way.
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Proposition 2.5.1 (|[Olv74, Chap. V, Thm. 3.1, p. 145]). Let f(x) and g(x) be

holomorphic in a simply connected domain 2. Then the equation

d? d
g @)+ gleyw =0 (2.5.1)

has an infinity of solutions which are holomorphic in ). If the values of w and dw/d¢

are prescribed at any point, then the solution is unique.

In addition, we have the following enhancement of the previous proposition to the

case of a parameter.

Proposition 2.5.2 (|Olv74, Chap. V., Thm. 3.2, p. 146-7|). Fiz Q and U open,
simply connected subsets of C, and define f,g € Hol(U x Q), and consider, for each
u € U, the differential equation

d*w

d
7 + f(ug:)% +g(u,z)w =0, xé€Q. (2.5.2)

Suppose that at some fized xo € €2, the values of w and 8_w are holomorphic functions
z
of u in U. Then at each x € Q, the solution w(u,x) of (2.5.2) and its first two partial

x deriwatives are holomorphic functions of u.

Recall that given two functions f,g € Hol({2) for some open, simply connected

subset Q of C, we define their Wronskian Wr [f, g (z) : @ — C by

ar

Wil ] (2) = f() 2 (2) — o)L

0 (x), x €. (2.5.3)

The elementary properties of the Wronskian are listed below for completeness.

Lemma 2.5.3. Fiz Q an open, simply connected subset of C. Then:
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1. The Wronskian is linear in each argument: for f,¢,g,% € Hol(Q?), ¢,d € C,

and x € (Q,
Wref +¢,9] () = cWr [f,g] (z) + Wr [, g] (z), and (2.5.4a)
Wr [f,dg + ] (z) = dWr [f, g] (z) + Wr [f, 4] (). (2.5.4b)

2. The Wronskian is an alternating function at every point: for f,g € Hol(f2) and

x €,

In particular, Wr [f, f] () =0 for all f € Hol(Q2).

The Wronskian is useful for determining linear independence of solutions to a

second-order, linear, homogeneous ODE as discussed below.

Proposition 2.5.4 ( [Olv74, Thm. 5.1.2, pp. 141-143, and p. 146]). Let Q be
an open, simply connected subset of C, and let wy; and wy be two solutions of the
differential equation

d*y

—@4#8@)

1
% +g9(x)y(z) =0, f(x),g(x) holomorphic over Q (2.5.6)
x

Then the following three statements are equivalent.

1. Any solution w of (2.5.6) is a linear combination of wy and ws.

2. The Wronskian Wr [wy, ws] (z) does not vanish at any x € Q. In particular, if

f(x) is the zero-function, then the Wronskian is a constant function on .

3. wy and wy are linearly independent on ).

Similar statements hold for open, connected subsets of the real line, where f, g need

only be continuous.
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We finish the section by explicitly recalling the effects of rescaling the input of

functions on their derivatives and Wronskians; the proof is left to the reader.

Lemma 2.5.5. Fiz f,g € Hol(C), and for some ¢ € C, define f, g € Hol(C) by

f(x) .= f(cx),xz € C

gz = g(cz),z € C.

Then the following statements hold.

1. For all n € Ny,

ar dn

d_xi T=x0 - d_xi T=axo ey {0} (257)
2.

Wr[f, 9] () = cWr|[f,g](cx), xz€C (2.5.8)

2.6 Zeroes of Analytic Functions of One Variable

Here we remind the reader of some details of zeroes of functions of one complex vari-
able. We mostly follow S. Lang’s complex analysis text, specifically |[Lan85, Chapter
2, Section 5|.

In the theory of functions of one complex variable, there is a theorem as follows:

Proposition 2.6.1 (e.g., J. B. Conway’s text, [Con78, Thm. IV.7.4, pp. 98-99];
L. Ahlfors’s text, [Ahl78, Thm. 4.11, p. 131|). Suppose that f(C) is analytic in a
neighborhood of ( = a, f(¢) = B, and f(¢) — B has a zero of order m at ( = a. If
e > 0 1s sufficiently small, there exists a corresponding 0 > 0 such that for all v with

|7 — B] < 0, the equation f(C) =~ has exactly m roots in the disk |z — a| < e.

Since D, (b), y1(v; b) and yo(v; b) are holomorphic in v, and is meromorphic

b
L(-v)
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in v with poles at the nonnegative integers, it is clear from (1.0.20) that one can apply

the theorem to the map v +— M(v;b) for any b > 0. The following corollary is clear.

Corollary 2.6.2. Fiz b > 0. Suppose that pn € C\ Ny satisfies M(p;b) = 0, and
let m be the degree of the zero in v. Then there exists C = C(vo;b) > 0 such that
|z| > C implies that (5.4.9) has m solutions in a neighborhood of u; equivalently, by

Theorem 2, Lpc(z,b) has m eigenvalues in an neighborhood of .

Thus, whenever we will find zeros of v — M (v;b), we will discern the long-term
behavior of some of the eigenvalues of Lpc(z,0), as |z| — oo.
Corollary 2.6.2 is too weak for our purposes, however. First, it takes some work

(using, e.g., the Maximum Modulus Principle) to show that as |z| — oo, i.e., as

22

— 0, that the eigenvalues tend to 1. Moreover, as our sources, e.g., [Mit15],
are interested in the reality or non-reality of the eigenvalues as z = ir, |r| — oo, we
need some information about the asymptotic direction of approach. Standard proofs
of Proposition 2.6.1, e.g., [Con78, p. 98-99| are obtained by various zero-counting
theorems employing line integrals over contours wrapping around the zero; it is not
easy to extract information about the phase/argument of the zeros from this setting.
Therefore, we use the Lagrange interpolation Theorem, as in [Lan85, Chapter II,
Sections 1-5] or to discuss the power-series approach to Proposition 2.6.1, to allow

us to find a relevant asymptotic. Our results are as follows.

Proposition 2.6.3. Fiz a € C, U open in C with a« € U, and let f € Hol(U) such

that «v is a zero of order m of f(C). Let the power-series centered at v be given by

o0

fQ) = Z a;(( —a), an#0. (2.6.1)

J=m

Then if v € C with |y| > 0 small enough , then there exist exactly m solutions

{Ck}zgl = {G((7v) Z:ol to f(¢) = v for C in some neighborhood of o. Moreover,
23



if v = e and an = pe¥, r,p € RT, 0,4 € [—n,7), then let ¢ = /™™ and
a = p/"e™!™ be specific mth roots of v and a,,, respectively. Then the leading-order

expansion of the ( is

271 2 g)
Qk:a+§exp( Mk)— © amﬂexp( Zk>+0(03),0§k§m—1. (2.6.2)

m maz a,,
In particular, as |y| — 0, ( — 0 for all k, 0 < k <m — 1; indeed,

Gl =O(y[V™), 0<k<m (2.6.3)

(recall that for u, g positive functions, u(t) = O(g(t)) as t — 0 if and only if there

exists 0 < ¢ < C such that for t small enough,
cg(t) < u(t) < Cy(t).) (2.6.4)

If 0 s fived and r — 0,

G —« _ <i(9—1/1—|—27rk:)

),ogkgm—l (2.6.5)
m

We further have use to note that the inversion of a real series for real inputs is

real.

Lemma 2.6.4. Fiz a € R, U open in C with o € U, and let f € Hol(U) such that o

is a zero of order 1 of f(C). Let the power-series at ( = a have real coefficients; i.e.,
f(¢) = Zaj(g —a), a; €R forallj €N a, #0. (2.6.6)

Jj=1
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Then if v € R, |y| small enough, then the unique solution (y to f(C) =, as guaran-

teed by Proposition 2.6.3, is real.

d
Proof. Since d—Jg # 0 by « a zero of order 1, and since « is real, and f({) = 0, we
(=«
may simply use the real Inverse Function Theorem to say that for all v € R sufficiently
close to 0, there exists f~! mapping a neighborhood of 0 back to a neighborhood of a.

Since v and « are real, and all the coefficients in (2.6.6) are real, the inverse function

must give real values. O]
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CHAPTER 3
CONSTRUCTION OF THE OPERATOR

3.1 The Weber Parabolic Cylinder Equation and its Proper-

ties

The Weber parabolic cylinder equation is given under either of the variations

d? 1 1
_d_;;+ (Zgﬁ_ {y+§:|)y($) =0, z€C, vecC, (3.1.1a)
d*y L,
—3 + (7% t+a y(z) =0, 2€C, aecC. (3.1.1b)

0= —v—— (3.1.2)

and (3.1.2) is assumed throughout the rest of the paper. We will primarily use
(3.1.1a), as it will be the choice of coordinates used by the relevant reference [Dem05],
and because of this clearer connection of this set of coordinates to the harmonic
oscillator, as stated above. We mention (3.1.1b) because of the frequent use of this

variation in the literature (e.g., [Olv74, Section 6.6, [Tem14], and [Dea66]).

Lemma 3.1.1 (Symmetries of Weber parabolic cylinder equation). The Weber

parabolic cylinder equation obeys the following symmetries.
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Rotation by g If for some € C, yo(z) is a solution to the v = u case of

(3.1.1a), then y(x) := yo(iz) is a solution to the v = —p — 1 case of (3.1.1a).

Rotation by — g If for some pu € C, yo(z) is a solution to the v = u case of
(3.1.1a), then we claim that vy_(x) := yo(—iz) is a solution to the v = —p — 1

case of (3.1.1a).

Reflection. If for some p € C, yo(x) is a solution to the v = p case of (3.1.1a),
then the reflection yo(x), defined by yo(x) := y(—x), is a solution of the v = p
case of (3.1.1a).

Conjugation. If for some p € C, yo(x) € Hol(C) is a solution to the v = j case

of (3.1.1a), then y(x) := yo(T) is a solution to (3.1.1a) with v = L.

Proof, Rotation by g Suppose that for some p € C, yo(z) is a solution to the v = p
case of (3.1.1a). We wish to show that n(z) := yo(iz) is a solution to the v = —p — 1

case of (3.1.1a). For if the above holds, i.e,

el

then evaluating at = = ia, a € C gives that

d? 1
— _y20 + {(m)? — (/L + —)] y(Lia) =0
dx r==ia 2
: (3.1.4)
_ —l—{—aQ—(,u-l—l)} p(a) =0
dxz r==ia 2 '

Yet by Lemma 2.5.5, part 1

d*y

o A%y
de = (2)2 _0

dz?

r=aqa r=ia
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2

. : d
and since 72 = —1, we may substitute for — —y20
x

in (3.1.4), and get

r=ia

e

d*y
dz?

Multiplying by —1, we get

_ &
da?

. + [aQ + (u + %)} p(a) = 0.

Finally, we note that

so this becomes

- + [az — ([—u — 1]+ %)} n(a) = 0. (3.1.5)

This works for all a € C, so the the y =y, v = —pu—1 case of (3.1.1a) is satisfied. [

The proof for rotation by — g follows analogously, so we proceed to the proof of

the reflective symmetry.

Proof of Reflection Symmetry. Fix u € C, such that yo(x) is a solution to the v = p

case of (3.1.1a). We wish to show that the reflection gy, defined by yo(x) := y(—2x),

is a solution of the v = u case of (3.1.1a). This follows because (—z)? = 2% and
because by Lemma 2.5.5,
d*yo

7| =D o , (3.1.6)

r=a r=—a

so the second derivative will retain its sign. [This could also have been done be
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repeating either of the above rotation symmetries, as the map y — —p — 1 is an

involution.| O

Proof of Conjugation Symmetry. Suppose that for some pu € C, yo(x) € Hol(C) is
a solution to the v = p case of (3.1.1a). We wish to show that y(z) := y(7) is a
solution to (3.1.1a) with v = 1. For evaluating at x =@, a € C,

d2y0
dx?

+ (52 - lu + %D y(@ =0 (3.1.7)

r=a

and then conjugating both sides,

d? 1\ ——
—d—yQO —I—(az—[ﬁ—ké})yﬁ):O
€T -
e 3.1.8
_d2y0 T (a?— —+1 (a) =0 ( )
e . rryg pla) =U.
The only point left is to show that
] ) (3.1.9)
dxz r=qa - dxz r=a .

This is best shown with power-series expansions. If we have that in the expansion

about z = a,

w(z) = alz—a)*, ¢ eC (3.1.10)

k=0
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then we have that .

(@) = (@ —a)
uo(®) = ex(r —a)t
+=0 (3.1.11)

w(@) =) lx—a)

px) =Y ez —a).

Moreover, by the standard theory of functions of one complex variable, we know that

if for some f € Hol(C), if the power series around some « € C is written as
f© =2 _t¢—a),
=0

then
df

i it (3.1.12)

=

see, e.g., [Con78, Prop. II1.2.5(c), p. 35| or [Lan85, p. 84].
Thus, we have that by (3.1.10), resp. (3.1.11),

d2

AL R T,

dz? |

2ol (3.1.13)
el

from whence (3.1.9) follows smoothly. Thus, for any a € C,

o <a2 - {/7+ %D y(a) = 0. (3.1.14)

Since this holds for all @ € C, the y =, v = p case of (3.1.1a) is satisfied. O
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In either of its forms, (3.1.1a) or (3.1.1b), the Weber parabolic cylinder equa-
tion, being a perfectly good second-order differential equation with analytic-over-C
coefficients, the Weber parabolic cylinder equation has two linearly independent holo-
morphic solutions over C, by Proposition 2.5.1. Moreover, if the initial conditions at
a fixed point are holomorphic in the parameter v, the solutions are holomorphic in
both x and v, by Proposition 2.5.2. There are several ways to choose a reasonable

pair of linearly independent solutions, as we discuss below.

A solution with good asymptotics at oo, and a guaranteed linearly indepen-
dent complement. It is known from standard theory (e.g., [Olv74, Section
6.6.1] that there exist solutions of (3.1.1a) as x — oo with leading asymptotic

/e /* and 17 "'e” /4, respectively. The solution D, (z) (or U(a,z), under

the convention (3.1.2)) is specified by the requirement that D, (z) ~ z”e~*/*
plx)
as x — oo (here, p(z) ~ ¢(x) means that lim =1).
(here, p() ~ q(x) Jim 280 )

Since the map v — —v — 1 is an involution on C, we see by the above rotation
symmetries that either of D_,_;(&ix) will form a linearly independent set with

D, (x); indeed, it is known (see [Tem14, Section 2.iii, (12.2.12)]) that

Wr [D,, D_,_1(%i-)] () = FieT"™, x€C (3.1.15)

which guarantees the linear independence of the sets {D,(x), D_,_1(iz)} and

{D,(z),D_,_1(—ix)} by Proposition 2.5.4.

A solution with good asymptotics at —oo, and a guaranteed linearly inde-
pendent complement. It is clear that since D, (z) decays as © — 0o, D, (—x)

decays as ©* — —oo. To find a linearly independent complement, we may use
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the ¢ = —1 case of Lemma 2.5.5, part 2, and we have that by (3.1.15),

Wt [Dy(—), D_y_1(%i)] (x) = — Wr [Dy, D (Fi-)] (—2)
(3.1.16)

= +iet" e C.
By Proposition 2.5.4, the sets { D, (—z), D_, 1 (ixz)} and {D,(—z), D_,_1(—ix)}

are also linearly independent.

A solution with good asymptotics at +o0o, and a solution with good asymp-
totics at —oo. We again start with D,(x) as the first solution; however, by
the reflection-symmetry noted in Lemma 3.1.1, D,(—x) is also a solution to

(3.1.1a), and it is known that

W [D,, Dy(—)] (z) = zeC (3.1.17)

[Tem14, Section 2.iii], where I' denotes the standard Gamma function. Since the

1 P 1
only has zeros at the nonpositive integers, —— only has
I'(v) I(=v)

zeros at the nonnnegative integers. Therefore, by Proposition 2.5.4, D, (z) and

entire function

D, (—zx) are linearly independent functions of « if and only if their Wronskian
is nonzero, which happens if and only if v € Ny. Thus, for v not a nonnegative

integer, D, (z) and D,(—x) are linearly independent.

Power-Series Solutions. Given the reflection symmetry of the linear differential
equation (3.1.1a), there are presumably even and odd solutions to (3.1.1a). To
prove this, and given the asymptotics of solutions at oo above, one may try the

—x2/4

change-of-variable y = e to, and equation (3.1.1a) becomes



o0
This is quite amenable to a power series solution to(z) = chxk; formally

k=0
manipulating, the recurrence relation for the coefficients is

—v+k
= k>
Ck4-2 (k+1)(k+2) Ck, =

This recurrence notably skips over cx.1, and so choosing ¢y = 1, ¢; = 0 gives an
even solution to (3.1.18), and ¢y = 0, ¢; = 1 gives an odd solution to (3.1.18).
(The proof that the series actually converge everywhere in C is left as an tedious
exercise.) Converting back to terms of the original y, we have that (3.1.1a) has

the solutions
24 z? zt
y1(v;x) ==e 1+ (—v) =+ () (—v+2)—+--- (3.1.19a)
24 3 z°
yo(v;z) :=e z+ (—v+1) 30 +(—v+1)(—v+3) = +---|. (3.1.19b)
For future reference, we note that from (3.1.19a) and (3.1.19b), one sees that

9 (i)

yl(V,O) = 1, 3_;1;
9
ox

=0 (3.1.20a)
=0

y2(v;0) =0,

(2(v;2))| =1 (3.1.20b)

=0

Thus, y1(v; x) and yo(v; x) are linearly independent, since it follows that

Wr [y1(v; ), y2(v;)] (0)=1-1—-0-0=1, (3.1.21)

and we may invoke Proposition 2.5.4.
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The equation (3.1.20) also allows us to determine the relationship of D, (z) to the
odd and even solutions; as noted in [Tem14, (12.2.6-7) and Section 4], we see that

21//2\/% 2(V+1)/2 T

myl(u;x) — WyQ(y;x). (3.1.22)

D,(z) =

From (3.1.22) we may recover (3.1.17). We also note that for v € NU {0}, D,(z) is
unbounded as x — —oo; this essentially follows from formula 12.2.15 of [Tem14].

We note one last property of y;(v;b) and y»(v;b).

Lemma 3.1.2. Fiz b > 0. Then for all v € C, y;(v;b) and y2(v;b) are not simulta-

neously 0.

Proof. First, we note that if two solutions wu;(z), us(x) to a linear, second-order,
homogeneous ODE have a common zero, then they have a zero Wronskian at that

point, for if x = a is the common zero, then

Wr [ur, ug] (a) = ui(a) du;ia:) o el d“;f;”) a=a (3.1.23)
_ dus(x) dua(z) = R
=0 dr |, . -0 de |,_ -0

By the contrapositive, y;(v;b) and yo(v;b), being solutions to (3.1.1a), cannot be
simultaneously zero, since by (3.1.21) their Wronskian is nonzero at a point, and by
Proposition 2.5.4 it is nonzero at all points. O

3.2 Construction of Unperturbed Operator

The construction of Z%C or LYq is quite akin to that of LY. ®, is a natural space

in which both —y” and z%y(x) are defined, since f € @, implies 2%f(z) € L*(R)
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and f € H*(R), so f’(x) € L*(R). Certainly, on ©, one may define, as in the

introduction,
D (ch) — D, (3.2.1a)
~ y 1 ~
Loy = —y"(@) + 12%(@), yeD (I8e), (3:2.1b)
and
D (Lpc) =D, (3.2.2a)
) 1, 1 -
Loy = —y/(x) + (Zﬁ - 5) y@), yeD (Ihe). (3:2.2b)

~ 1
and of course Ly = Lo — 5[, and these operators are densely defined.
To check the other properties of these operators — closure, self-adjointness, etc. —

we use the fact to be proven later (see (4.2.11))

_ 1

LY = 57 'LoT (3.2.3a)
1, 1

LYo = 57 LT — 5[. (3.2.3b)

By Lemma 2.3.1, T~ ' LY, T is closed, and by Lemma 2.3.2, T~ *L$,T is self-adjoint,
has compact resolvent, and the same spectrum as the unperturbed operator. Since
multiplication by % and subtraction of a real multiple of the identity has no effect on
the closure, self-adjointess, etc., and has a clear effect on the spectrum, we have the

following.
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Proposition 3.2.1. Z(}C and L%C are closed, self-adjoint, and have compact resol-

vent. In addition

Sp LY = {n+ %} : (3.2.4a)
n=0
Sp(Lpc) = {n}sy- (3.2.4b)

1~
A normalized eigenfunction for the eigenvalue n + 3 of L%, orn of L%, n € Ny, is
7 ()
V2 T \v2)’

Therefore, appropriately stretched Hermite functions are indeed solutions to the
equation (3.1.1a), and eigenfunctions of L%. Indeed, we have that for n € Ny,

D,(z) = 2771/26712/4[‘[71 (i>

@ N

=\/nl/7T - hy <i

(3.2.5)
7))

n € Ny,

(see, e.g., [Tem14, Section 7.i]), and so D, (x) is a (non-normalized) eigenfunction of
L%C with eigenvalue n, n € Ny. Hence, the exceptional behavior of the nonnegative
integers in the Wronskian (3.1.17) no longer surprises us; as the Hermite polynomials
are odd or even depending on the parity of n, H,(—z) = (—1)"H,(x), the reflec-
tion operators give back a multiple of the original function. We restate this parity

condition very explicitly for use later:

D, (—z) = (=1)"Dy(z), neNy,, ze€C (3.2.6)
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3.3 Construction of Perturbed Operator, and Characteriza-
tion of Eigenfunctions
Our operator is constructed as follows.

Proposition 3.3.1. Fiz b > 0 and z € C. There exists a closed, densely defined

operator Lpo(z,b) with compact resolvent, where

K (ch(z, b)) = :Dl (331&)
Lrof0y(a) = —'(0) + |5 = 3] o .

+ z[u(b)d (x — b) — u(—=b)d (x — b)]

The eigenvalues of Lpc(z,b) are contained in some shifted sector opening to the right,

of aperture less than g i.e., for some T in R and § € (0, %),
Sp (Lpe(z,b)) Cc{peC: |arg(pu—71)| < d} (3.3.2)

If z is real, however, Lpc(z,b) is self-adjoint and semibounded below.

We note that the details of the construction do not affect the later work, save
the specification of the domain in (3.3.1a). Nor is the proof particularly original;
such operators have been constructed, for example, in [MS13|. Hence, we defer the
construction to Appendix 3.

More importantly for us is the following characterization of the eigenvalues of

Lpc(z,b):

Proposition 3.3.2 (Folklore). Fiz b > 0 and z € C. Then y € © (Lpc(z,b)) is
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an eigenfunction of Lpc(z,b) with eigenvalue v € C if and only if it is continuous,
satisfies the differential equation

d’y
dt?

e {%2 - %} y(x) = vy(z) (3.3.3)

on the intervals (—oo, —b), (=b,b), and (b,00) [hence is C™ on these intervals], and

satisfies the jump conditions

y'(=b+) =y (=b—) = —zy(=b), (3.3.4a)

Y (b+) =y (b=) = 2y(b), (3.3.4b)

where for p € R, y'(p+) (resp. y'(p—)) denotes lim y'(x) (respectively, lim y'(z)).
T—p T—p~

These conditions for point-perturbations of the operators associated to differential

equations are not particularly surprising; for real weights on perturbations of the

Laplacian, they appear in [Alb+05, Chapter 1.3, Thm. 3.1.1, pp. 76, and Chapter

1.2, p. 142], and of course [Dem05| uses this to get his criterion. Again, we provide

a proof, but again defer to a later appendix, specifically Appendix B.
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CHAPTER 4
COMPARISON OF PARABOLIC CYLINDER AND
HARMONIC OSCILLATOR OPERATORS

We now wish to prove Proposition 1, which compares the operators

Luo (¢, B)w(z) = —w"(x) + z*w(x) + (w(B)d (x — B) — Cw(—B)5 (z + ), (4.0.1a)

Lre(z,b)y(@) = —y"(x) + —y(x) + 2y(0) (x — b) — 2y(=b)S (x +b),  (4.0.1b)

4
Lrel0)y(a) = =5/0) + (] = 3 ) o) + 2000 (2 =) = sy~ 2+ ),

(4.0.1c)

Of course,

~ 1
LPC(Za b) = LPC(va) - §]a

so the only issue is how to compare Lyo(C, 8) and Lpc(z, b).
To do so, we first discuss the comparison in the case of the differential equations,
then bootstrap to the comparison between the unperturbed operators L, and L,

then finally come back to Lyo(¢, 5) and Lpc(z,b).
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4.1 Comparison of Differential Equations

We now discuss the relationship between the differential equations

dy 1, 1
-0 + 77 y(z) = (V + 5) y(x), x € (a,c) (4.1.1a)
and
dw
— + 2*w(z) = \w(z), x € (a,7); (4.1.1b)

where —oco < a < c¢c < oo and —oo < a < v < oo. Of course, by Proposition 2.5.1,

there are C* solutions on the appropriate intervals.

Proposition 4.1.1. The solutions of (4.1.1a) (equivalently, (3.1.1a)) and (4.1.1b)

correspond via the correspondence

w(z) =y (:L‘\/§>

A=2v+1
. (4.1.2)
Oé_ﬁ
_
LG

In other words, if y(x) is a C*(a, c) solution to (4.1.1a), k > 2, then w(z) =y (xx/ﬁ)

is a C(a,7y) solution to (4.1.1b) with A =2v+1, a = %, v= sqit2' Similarly, if
w(z) is a C™(a,7y) solution to (4.1.1a), then y(z) = w (%) is a C*°(R) solution

to (4.1.1a) with v = ,a=aVv2, c= 7\/5. Equivalent statements hold with

2
C*>(a,c) replaced by Hol(C).
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Proof. We demonstrate the path from solutions of (4.1.1a) to solutions of (4.1.1b);
the other direction is similar.

We evaluate (4.1.1a) at some p € (a, c), but we let p = ¢- V2, 50 ¢ € (

ff)

we get
d?y

da?

AT 2@ *y(qv2) = < ) y(qV2). (4.1.3)

Now, let w(z) := y(zv/2), for z € (

; then by Lemma 2.5.5, part 1, we have

)

that
d? d?
| =g (4.1.4)
dz dz”|,_,va
or, turning it around,
d?y 1 dPw
dz* q\/§_ 2 da? x:q‘
Thus, substituting into (4.1.3),
1 dPw 1, 1
- Z = = 4.1.5
|ty = (v ) u) (4.05)
d*w
-z Tay(@) = 2+ Dulg). (4.1.6)
ol P
Since this works for all ¢ € («,7) (a 7) e have that
in is wor r a,y):=|—,—= |, we hav
q Y V2 B
d2
—— tatw(e) = v+ lu(), € (@),
x
so w(z) is a solution to (4.1.1b) on («, ) with A = 2v + 1.
Of course, in Hol(C), the analogous proof works as well. O

We wish to go over the proof again, in the case that y,w € L*(R) N C°(R),
a=a=—00, and v = ¢ = co. We do so to use the formalism S,7T used in the

statement of Proposition 1. As a reminder, Sz = 2v/2 is a linear operator on R, and
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Tf(z) = f(Sz) = f(zv/2) defines an operator on L*(R), clearly bounded with norm

1
. for all f € L*(R),

/|Tf(x)|2dx _ /|f(x\/§)\2dx, (4.1.7)

R

and making the substitution ¢ = V2, dt = V2dx, we get,

% /|f(t)|2dt, (4.1.8)

2 1 2 - T .
50 (| Tf|72m) = %HfHLQ(R). Also, of course, T f(x) = f 7 is also a bounded
operator on L*(R).
Now, suppose y € L*(R) N C*®(R) is a solution to (4.1.1a). Then letting w(x) =

[Ty](x), (4.1.3) is essentially applying T to the entire equation, so we have

1)+ 7 (Su@)) = | (v 5) o)

) (4.1.9)
1) + ) = (v 3 ) o)
By the Chain Rule, however, we have that
VD) = (V2R (@v2)
d2 (4.1.10)
S Ty(e) = 2Ty (),
so we have that
—%d [Z;gl(‘”) + S ITy)(z) = (y + %) [Ty)(x). (4.1.11)
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Multiplying both sides by 2,

_EITy)(x) [Z{i(“’) + 22[Tyl(x) = (20 + D)[Ty](2), (4.1.12)

so defining w(z) = Ty(x) and A\ = 2v + 1, we are done. This gives us an idea of how

to extend to the operator case.

4.2 Comparison of Unperturbed Operators

We now wish to compare the unperturbed operators

D (LYo) =D (4.2.1a)
Liow(z) == —w"(z) + 2*w(z), we D (L), (4.2.1b)
and
9 (Ihc) = 2 (4.2.22)
~ y 1 ~
Lpcy = —y"(2) + 7o°y(@), y €D (L%c> : (4.2.2b)

An observation makes the comparison much easier. Namely, we note that T" extends

naturally to a linear operator on &', with (see [Fol99, p.285])

1 )
(TF,¢)s s = E<F’T "V)sr s (4.2.3)

Standard calculations with distributions give the following rules to move differentia-

tion and multiplication-by-x past 7', confirming that intuition holds in these cases.

Lemma 4.2.1 ([Fol99, p. 284-285, 295]). For all F € S', T[xF] = V22TF, (TF) =
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1
V2T(F'), FITF] = ET_I@ In particular, for allu € L*(R), Tzu(z) = V22Tu(z),

(T4 () = VETT]e), and FlulvB))(6) = = (%)

Corollary 4.2.2. For all N € Ny, T restricts to a bijection on Dy.

Proof. The case N = 0 merely restates that T is a bijection on L*(R), so assume N €
Ng. We now show that if for some j € N, 2/ f(x) € L*(R), then 2/(Tf)(z) € L*(R).

Yet this is simple, since

T f(x) = 2 f(xV/2)
! (:m/i)J Fzv2) (4.2.4)

1 .
= WTQ(@, g(@) ==’ f(z)
and since g(z) € L*(R) by hypothesis, so is /T f(x). Hence, T maps {u € L*(R) :
z/u € L*(R)} inside itself; since similar logic works for 77", T is a linear, continuous
bijection on {u € L*(R) : z/u € L*(R)}. In particular, for any N € N, T is a linear,

continuous bijection on
{u € L*(R) : 2’u € L*(R) for all j € {0,1,...,N}}. (4.2.5)

1 ~
Moreover, for all u € L*(R), we mentioned that F[Tu] = ET’lu, so to show that
if 7€) € LA(R), ¢ F[Tf] € L*(R), we repeat with 7" instead of T

SFITf](x) = é%f (%)
ey e

= 20071 (¢ (g))
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and since T, hence T, preserves L?, we see that & F[T f](¢) € L*(R) if and only if

Ejf(f) € L*(R). In particular, for any N € N, T is a linear, continuous bijection on
{u € L*(R) : &7(¢) € L*(R) for all j € {0,1,...,N}}. (4.2.7)

Since Dy is the intersection of the domains in (4.2.5) and (4.2.7), we are done.  [J

Proposition 4.2.3. As closed operators with domain 9,
LYyoT =2T o LY, (4.2.8)

Proof. First, a comment on the domains. Certainly © <2T o ZOPC> =9 (E%C> =9,
since 27 is a bounded operator on all of L*(R). D (L%O oT) is automatically
T7'® (Ljo), since u € D (LYo o T) if and only if Tu € D (L}), but by Corol-
lary 4.2.2, Tu € D (L) = D; if and only if u € D (Ljp), so there is no issue letting
the domain be D,. S0 D (LYo 0 T) =D (2T 0 ch) — D,

To verify the equality, we start with the left-hand-side: for all y € D,

Ty € ®y by Corollary 4.2.2, so we may write
Ly 0 Ty(z) = —[Ty)"(x) + 2*[Ty)(2). (4.2.9)

Yet by repeated use of Lemma 4.2.1, —[T'y]"(z) = —2T[y"](x), and by (4.2.4),

45



1
2[Ty|(x) = ET[ny(a:)] Therefore, we have

Ly o Ty(z) = —[Ty|" (z) + 2*[Ty)(x)
1

= —2T[y"(2)] + 5Tl ()]
g (4.2.10)
=2T |—y"(z) + Zy(if)

=2To Z%Cy(x).

This holds for all y € 5, so we have the equality on Ds,.
L*(R)

As for closure, suppose that y,,(x) € Da, y,(x) L®, y(x) and LYo oT [y, (z) ——
w(x). Then since T is bounded, surely wu,(z) := T[y,](x) 0N u(z) = T[y|(x), and

so Lo [un](z) &), w(z). Lo, being self-adjoint, is closed, so u € D (L{jp) = D2

0 L*(R) 0 L*R) ¢ 0 .
and Lyoun,(x) — u(x), or Lyo o Ty, (v) — Lyg o Ty(x). Hence, Lyg o T is

closed. O

1
We note the following consequence. Post-composing both sides of (4.2.8) by ET_l’
we have that

~ 1
Lo = 5T—IL%OT, (4.2.11)
~ 1
or, noting that L% = Ly — 5],

1 1
Lo = 5T—lL%OT -3l (4.2.12)
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4.3 Comparison of Perturbed Operators

We now discuss the comparison between the operators

Luo (¢, Bw(x) = —w"(z) + 2*w(z) + Cw(B)6 (x — B) — Cw(—B)d (z + B), (4.3.1a)

Lpe(2,b)y(@) = —y"(x) + —y(x) + 2y(0)8 (x — b) — 2y(=b)S (x +b),  (4.3.1b)

4
Lrel)y(a) = =5/(0) + (7 = 3 ) ) + 20000 (2 =) = (-3 o+ ),

(4.3.1c)

Again,

~ 1
ch(Z, b) = ch(z,b) — 5],

so the only issue is how to compare Lyo(C, 8) and Lpc(z, b).
Of course, by Proposition 4.1.1, a solution to (4.1.1a) on (—b,b) translates to a

b
solution to (4.1.1b) on ( ) Therefore, the correspondence = —= suggests

b b
V2R V2
itself. What is less obvious is what the correspondence between ¢ and z should be.
To build intuition, we have several reasonable avenues, but the easiest is probably to

start with the criterion of Proposition 3.3.2. If y(x) is an eigenfunction for ch(z, b),

i.e. a solution to

2

—y"(x) + %y(l’) +2y(0)0 (z — b) — zy(=0)6 (x + b) = vy(b),

then the jump condition at x = b, (3.3.4), is that

y'(b+) — i (b—) = zy(b). (4.3.2)
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Letting w(z) = y(v2x), by (2.5.5) we know that

w'(z) = V2y' (V2a),

and evaluating at x =

(4.3.3)

Since the same logic will apply to the one-sided limits, we apply the above to (3.3.4b)

and get that

(\]

“(54) () ()
RN 7
()~ (55) =2 ()

Since the transformation from y to w is precisely what we used in Proposition 4.1.1

(4.3.4)

[\]

to convert solutions of (4.1.1a) to (4.1.1b), it suggests the correspondence ¢ = V22
in addition to § = —. This is indeed the case; to prove it, however, we note a less

V2

obvious property of the map 7" and distributions.

1 p
Lemma 4.3.1. Forallpe R, To(x —p)=—=6 |z — —= ).
V2 V2
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Proof. Tt follows from the standard computation: for any ¢(z) € S,

(T4 (z = p), e(@))g,s = (0 (@ —p), T p(2))g

(4.3.5)
-5(5)
-5 (=) ),
0

L

Proposition 4.3.2. Fizb > 0 and z € C. Then Lyo (Z\/§, 7

) oT and ToLpc(z,b)

have the same domain, and
Lo (Z\/i i) oT = 2T o Lpc(z,b). (4.3.6)
V2

Proof. Take any w € H'(R). Then we discuss the distribution that would formally

be Lyo (zﬂ %) o T(w(x)), namely,

— (Tw)"(z) + 2*Tw(z)

+ 2V2[Tw] (%) b (g; — % (4.3.7)

(o)

As expressed in the proof of Proposition 4.2.3, [Tw]"(x) = 2T[w" (x)] and 2*[Tw](z) =
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2
x b
2T {—w(x)}, so these terms convert as before. As for the weight at — we see that

i V2
()

= 2v2w(b)s <x - %) (4.3.8)

—2:00) 50 (- )

and by Lemma 4.3.1 this is simply
22w (b)TS (x — b) = 2T[zw(b)6 (z — b)]. (4.3.9)
Similarly, we have that

VAT (_\%> 5 (3: + %) 9T sw(—b)5 (z + b) (4.3.10)

Altogether, then, we have that for all w € H'(R), as elements of S,

~(Tw)'(x) + #*Tu(r) (@) + )
rovarel (<)o (o= o) boord sty ¢ 3D
| —avalTw) <_%) 5 <x + %) ) —ow(—b)6 (z + b)

Now, we know by Proposition 3.3.1 that © (EPc(z, b)) CD; CHY(R), and by T

bounded invertible,

D <2T o Leo(z, b)) =D (ch(z, b)) C D, C H\(R). (4.3.12)
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o

Similarly, we know that © ( L V2,
’ ( < V2

)) C ®; C H'(R); since T preserves D,

by Lemma 2.4.4, it follows that

) (LHO <Z\/§, > oT) C D C HY(R). (4.3.13)

b

V2
Therefore, ® (L (Z\/§ L
) HO ) \/§

side of (4.3.11) is in L*(R), and hence the right-hand side of (4.3.11) is in L*(R) as
b

well. Hence, Lyo <zx/§, —

) o T) is the set of w € H'(R) for which the left-hand

V2

holds. Thus, the operators are equal. O

) oT C 2T o Lpc(z,b). Similarly, the reverse inclusion

1
Post-composing §T_l to both sides of (4.3.6), we have that
L (zb)—leloL 2, ot (4.3.14)
PC\~#, - 9 HO 7\/5 ) v

~ 1 1
and recalling that Lpc(z,b) = Lpc(z,b) — 5], subtracting 5] from both sides,

1
-1, (4.3.15)

1 b
LPC(Z,b) = §T_1 @) LHO (Z\/ﬁ, E) ol — 9

i.e., (1.0.13) holds. Thus, the main part of Proposition 1 is proven. Our objective

is now to show that the expected relation on the spectrum holds. Fortunately, by

b
Lemma 2.3.2, in the case A = Lyo (2\/5, E), B =T, we have that
Sp (TlLHO (Z\/i i) T) = Sp Luo <Z\/§, i) . (4.3.16)
V2 V2
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1 1 1 1
Noting that Sp(EA) =3 Sp A and Sp(A — 5[) = Sp(A) — 3

Sp (LHO (zﬁ %)) —1

Sp (Lpc(z,0)) = 5 ,

i.e., (1.0.14) holds. Proposition 1 is proven.
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CHAPTER 5
CRITERION FOR EIGENVALUES

We now attempt to use Propositions 3.3.1 and 3.3.2 to discuss when v € C is an

eigenvalue of Lpc(z,b).

5.1 L? Requirement

We know from Proposition 3.3.2 that eigenfunctions must be solutions to the Weber
parabolic cylinder equation (3.3.3) on various subintervals; yet eigenfunctions must
be L*(R) functions by construction, so we see what the L*(R) constraint does for us.

To begin, we have the following lemma.
Lemma 5.1.1. Fiz b > 0 and v € C.

(a) If for some y(x) € Hol(C), {D,(z),y(z)} is a linearly independent pair of
solutions to (3.1.1a) over C, then y(z) & L*((b,0)).

(b) If for some y(x) € Hol(C), {D,(—xz),y(x)} is a linearly independent pair of
solutions to (3.1.1a) over C, then y(x) & L*((—oo, —b)).

Proof. To prove part (a), suppose that for some b > 0, v € C, and y(x) € Hol(C),

{D,(z),y(x)} is a linearly independent set of solutions to (3.1.1a). We know that
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D, (z) is that solution that must decay as z”e */* as # — oo, and that another

—V—1€$2/4

solution, call it V(x), must be proportional to x as r — 00, in the sense that

lim V(z)

200 v~ ler?/4

= 1. (5.1.1)

By the distinct asymptotic behaviours {D,(z), B(x)} is a linearly independent set of
solutions to (3.1.1a) on some interval of the form (M, o), M > 0, and so y must be

a linear combination of D, and V; say,
y(x) = 1D, (z) + oV (x), x> M. (5.1.2)

Note that by {D,,y} a linearly independent set of solutions on all of C, ¢y # 0. Then

of course, since D, decays as x — o0,

D, . V
lim ——l;y—(f)sz = ¢ lim —_V_l(xx)QM + ¢ lim —_V_(lxiZM
T—00 U € Tr—0o0 U € T—00 U € (513)
201-0—1—02-1262
Since it follows that
: y()
| mmrerm| =l £
then for some M; > M,
y(r) |
x_y_lex2/4 Z 7 (514)
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Therefore, we have that for My = max{M;,b+ 1},

[ w@parz [P

Mo

> / ’021,—1/—16332/4|2 dz
Mo (5.1.5)

0 em2/2
> |CQ|2/ de‘
— 242
My T

:OO,

and so y is not square-integrable on (b, 00).

To prove part (b), we reduce to part (a). For if {D,(—z),y(x)} is a linearly
independent set of solutions to (3.1.1a), then {D,(z), —y(—=z)} is certainly a set of
solutions to (3.1.1a) by the refleciton symmetry, and we claim that it is a linearly

independent set of solutions, since if

a1D,(x) + ay(—x) =0, z€C (5.1.6)

then letting t = —x, we have that

a1D,(t) + ay(—t) =0, teC (5.1.7)

Yet by linear independence of D, and y(—-), a; = a2 = 0. Hence, D,(z) and y(—=x)
are linearly independent over C. By part (a), then, y(—x) is not square-integrable

on (b, 00), which means that y is not square-integrable on (—oo, —b). ]
We now show that any eigenvector of Lpc(z, b) must be of a particular fixed form.

Corollary 5.1.2. Fiz b >0, z € C, and v € C\ Ny. Then if y is an eigenfunction
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of Lpc(z,b) with eigenvalue v, then it must be of the form

(

(@) = Yy (v,2) + dya(v,z), —b<z<b- (5.1.8)
Q/DV<$>7 x Z b

Proof. By Proposition 3.3.1, we know that any eigenfunction must satisfy (3.3.3) on
(—o0, =b), (—=b,b), and (b, 00). It remains to choose an appropriate fundamental basis
of solutions on each interval. On the basis of our discussion in Section 3.1, we now

choose a basis of solutions to (3.3.3) on each interval, working right-to-left.

(b, 00). Since we want to use the proof independent of the condition of whether
or not v € Ny, we choose the guaranteed basis of {D,(z), D_,_1(ixz)} on this

interval.

(—b,b). To take maximal advantage of the symmetry in the domain, it makes sense

to use {y1(v;x),y2(v; )} as our basis here.

(—o0, —b). Again, to put the appropriately decaying function in our domain, and
a guaranteed complement, we choose the basis of {D,(—x), D_,_1(ix)} on this

interval.

Since the above fundamental sets of solutions are solutions over C, their restrictions
to any open subinterval of R satisfy (3.3.3) on that subinterval. By Proposition 3.3.1,

eigenfunctions of Lpc(z, b) must satisfy (3.3.3) on (—oo, —b), (—b,b), and (b, 00), and

26



must be continuous on R. Hence, any eigenfunction must be of the form

/

BD,(—z) +tD_,_4(ix), =< -b

y(z) = vy (v;x) + 0y (v; ), —b<ax<b- (5.1.9)

aD,(x)+sD_,_1(ix), x>b
\

Suppose, by way of contradiction, that s # 0. Then since {D,(x), D_,_1(iz)} is
a linearly independent set of solutions to (3.1.1a), and s # 0, {D,(—x),aD,(z) +
sD_,_1(ixz)} is a linearly independent set of solution to (3.1.1a). By Lemma 5.1.1,
part (a), aD,(x)+ sD,(—x) is not square-integrable on (—oo, —b), so y(z), restricted
to (b,00), is not in L*((b,o0)). Yet y(x) is an eigenfunction of Lpc(z,b), an operator
defined on a subset of L*(R), so the restriction of y(x) to (b, c0) must be in L*(b, c0).

Contradiction. Thus, s = 0. Similarly, using Lemma 5.1.1, part (b), t = 0. ]

5.2 Jump Conditions Requirement

Fix b >0, 2z € C, and v € C\ Ny. We now discuss the remaining conditions for y as

in (5.1.8) to be a v-eigenfunction of Lpc(z,b).

Continuity at x = £b. The continuity condition at x = b is

y(b=) =y(b+), or

(5.2.1)
VY1 (v;b) + Sy2(v;b) = aD,(D)
Similarly, the continuity condition at z = —b is
y(=b=) = y(=b+), or
(5.2.2)

BD,(—[~b]) = yy1(v; —b) + dy2(v; —b)

57



and since y; (v, x) is even in x and yo(v; ) is odd in iz, this becomes
BD,(b) = vy (v;b) — dy2(v; b) (5.2.3)

Jump conditions on the derivative. In light of (5.1.8), the left-hand side of,
say, (3.3.4b) becomes

dl

dD,
+9 T (y2(v; 7))

adx

( T i)

dat

x:z) (5.2.4)

r=b

By (5.2.1), however, the right-hand side of (3.3.4b) becomes
2y(b) = zaD,(b).

Hence, altogether, (3.3.4b) becomes

dD,
@ dx

+9 g (y2(v; x)) ) = zaD,(b) (5.2.5)

b ox

- (7 % (v1(v;2))

Similarly, (3.3.4a) becomes

(75 tmlad| 4057 (aloia)

)

—b Ox
p = —2y(—b) (5.2.6)
—B-—D,(—
f —Du(=a) .
Yet by the ¢ = —1 case of Lemma 2.5.5,part 1 we know that for all even
differentiable functions f(t) € C*(R),
df d
&l " (f(=2)) L
J (5.2.7)
=- (f(x)) » by f even.




Therefore,

0 0
5 (o) i (1 (v; @) » (5.2.8)
Similarly, if g(t) € C'(R) is an odd function,
dg dg
— = = 5.2.9
dx z=—b dx x:b’ ( )
and hence
L) = 2 () (5.210)
oz 2\ ey Oz b2\ b o
Again by the ¢ = —1 case of Lemma 2.5.5, part 1,
0 D,
— (D, (— = — . 2.11
b Duea)| == (5.211)
Therefore, (5.2.6) becomes
0 0 dD,
v L (v 2 (v — —2BoDy(—[-b]).
(v ge )| 0 )| )+ = —sDu(—(-b)
(5.2.12)

Combining, and recollecting the terms in (5.2.2),(5.2.1), (5.2.12), and (5.2.5), we see

by Proposition 3.3.1 that v ¢ Ny is an eigenvalue of Lpc(z,b) if and only if

BD,(b) — yyr(v; b) 4 0ya(v;0) = 0,  (5.2.13a)

¥D,(b) + 6D, (~b) — aD,(b) =0, (5.2.13b)

e I B aCE)

dx

5 2 (o)

=0 5.2.13
b ax ? ( C)

r=b

x:b) =0. (5.2.13d)

5 (zmb) ¥

r=b

6o (v )

dD,
D,(b) —
z:b—l—a <z (b) T

v a% (y1(v; 7))

r=b
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Equivalently, creating the shorthands

T = o ()

W= I (i)

we have that

if and only if v € Sp Lpc(z,b). More precisely, we have the following.

= ys(v;b),

P -R U 0

0 R U —P
P+Q =T W 0

0 T W

= Du<b>7

dD,
dx ’

r=b

= yl(y; b)7

2P —Q

«

0

(5.2.14a)

(5.2.14b)

(5.2.14c)

(5.2.14d)

(5.2.14¢)

(5.2.14f)

(5.2.15)

Proposition 5.2.1. Fiz b >0, z € C, and v € C, and let L, denote the v-eigenspace

of Sp Lpc(z,b) (which can be {0}). Then defining P,..., W as in (5.2.14), and

defining

A(v; z;b) ==

P -R U
0 R U
P+Q =T W
0 T W

0
P
0
ZP—Q

(5.2.16)

there is a linear bijection from ker A(v; z;b) (regarded as a subspace of R*) to L,
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defined by

g
5 = Yrsa = Y vy (v ) + Sye(vs), —b<z<b- (5.2.17)
o \OéD,/(QZ'), x Z b

Proof. Fix b > 0, z € C, and v € C. Then by Corollary 5.1.2, any element of
L, must be for the form yg. 5. for some 3,v,6,a € C. Moreover, we have shown
that Y554 € L, if and only if (8,7,5,a)" € ker A(v; z;b), so the map in (5.2.17)
exists and is a surjection. We now argue that the map is an injection. Suppose that
(B,7,0,a)" # (b,¢,0,a)" are elements of ker A(v; z;b). Then the vectors disagree
in some index. If B # b, then Y50 # Yo.c0.a O0 (—00, —b). Similarly, if o # a,
the functions disagree on (b,00). If v # ¢, or § # 0, we know by (3.1.21) and

Proposition 2.5.4 that y; (v, ) and y(v; x) are linearly independent functions of z, so

yy1(v; @) + 0ye(v; x) # cyr(v; ) + 0ya(v; ). (5.2.18)

Finally, since summation of functions is linear, linearity is assured. ]

5.3 The Algebraic Criterion

For any b > 0 and z € C, by Proposition 5.2.1 it is clear that v € C is an eigen-
value of Lpc(z,0) if and only if ker A(v; 2;b) # {0}. Yet a nontrivial kernel implies
that A(v; z;b) is noninvertible, and hence that det A(v;z;b) = 0. Calculating this

determinant, one arrives at

det A(v;z;0) =2 [(RQ — TP)(UQ — WP) — 2*P*RU] . (5.3.1)
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We now rewrite the terms in parentheses: recalling what P, etc. mean,

dD g,
RQ—TP=uy(vib) ——=| —Du(b) - (1n(v.2))
Az oy Oz v=b (5.3.2)
= Wr [y1(v;+), Do (b)
and similarly,
UQ — WP = Wrly(v;-), D,] (b) (5.3.3)

Altogether, then, we have that

det A(vs 23 b) = 2 [Wr [ya(v5-), D] (8) - W [ya(wi ), D] (b) — 22D2(b)ys (vs bYya (3 b))
(5.3.4)
We now simplify those Wronskians. First, by Lemma 2.5.3, the Wronskian is bilinear,

so given (3.1.22),

Wr [y (v;-), D] ()

2u/2\/7_1. 2(V+1)/2\/7_T

Wi [y1 (v3 ), 2 (v; )] (b) — T Wr fy1(v:-), 425 )1 (0) (5.3.5)

S T(-5+3)
2(1/+1)/2ﬁ

= ————— Wr [y (v; ), y2(v; )] (D).
T Wl ()l

Similarly, since we know the Wronskian is alternating (see Lemma 2.5.3),

Wr fya(v;-), D] (0)

v = v+1)/2 /7
:Téﬁémmwmww@f {WMMMMN@@M>

(=3
2V/2ﬁ
F(=5+3)

Wr [y1(v; ), 92 (5 )] (B) -
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Then the product of the Wronskians becomes

Wr [y1(v;+), Do) () Wr [y2(v; ), D] (b)

S 1), 1205 )] () o
= V ,, Wr 1 (v; ), g2 (w5 )] (b
L(=5)T(-5+3)
This simplifies, however, thanks to the formula
1
r)r (g + 5) = 2W/D=20/971(2¢), ¢ € C\ —Ng; (5.3.8)

see [Sze75, (1.7.3), p. 14] or [Con78, Exercise VIL.7.3, p. 183]. Using the case ( = —g

of (5.3.8), then, (5.3.7) becomes

Wr [yl(y; ')’ DV] (b) Wr [yQ(V; ')a Du] (b)
(5.3.9)

NZ3

V2L

” Wr [y1(v; +), ya(v;-)] (D)

Since yy(v;x) and yo(v;x) are solutions to (3.1.1a), a second order linear, homoge-
neous differential equation with no first-derivative term, the Wronskian function is

constant; see [Olv74, Chap. V, (1.10), p. 142|. Therefore,

Wr [y1 (V3 ), y2 (v )] () = Wr [y1 (v; ), y2(v; +)] (0) (5.3.10)

Recall from (3.1.21), it follows that

Wr [y (v; ), y2(v;-)] (0) = 1. (5.3.11)
Thus, finally,
o — ﬁ _ 22 2 v v
det A(v; z;0) =2 VT () D;(b)y1(v;b)y2(v;b) | . (5.3.12)
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Since the presence of eigenvalues is asking whether this determinant is 0, and 2 # 0,

we know that v € Sp Lpc(z,0) if and only if

VT D2 (v (v b) —
N e Dy () (v; b)ya (3 b) = 0 (5.3.13)

i.e., we have proven Theorem 1.

5.4 Reconciliation with Demiralp’s work, and another alge-

braic criterion

Our objective is to reconcile the above formula with the work of [Dem05| mentioned
above. In his work, in the case z = ir, he uses the basis of solutions {D,(z), D, (—x)},

which restricts him to the case v & Ny, and his results are essentially as follows.

Lemma 5.4.1 ([Dem05, p. 3|). Fizb > 0,r € R, andv € C\Ny. Thenv € Lpc(ir,b)
if and only iof
|r[*

1+ WD,%(Z)) (DZ(=b) — D(b)) =0, (5.4.1)

where W = Wr [D,,, D, (—)] (b) = Wr [D,,, D, (—)] (=b).
V21

Our objective is to reconcile these values. First, by (3.1.17), W = = Since
—v
|r|> = r? = —2? under the identification z = ir, we have
r?(—
1 - 22¥D3(b) (D2(=b) — D2(b)) =0 (5.4.2)
m

Moreover, we may simplify the D?(—b) — D?(b) term. First, we note that by the

difference—of—squares formula,

Dy(=b) = Dy(b) = (Dy(=b) + D, (b)) (D (—b) — Dy (b)) (5.4.3)

64



Since the unperturbed equation (3.1.1a) is linear and homogeneous, it is clear that
this is the evaluation at b of an odd and an even solution for (3.1.1a). However, we
already know from (3.1.22) the precise factorization of D, (b) into an odd and an even

solution; from (3.1.22) we get that

22, [z

D,(=b)+ D,(b) =2- T2+ -1 (v;b) (5.4.4a)
(v+1)/2 T
Dy(—b) — Dy(b) = 2- %yg(u;b) (5.4.4b)

Plugging (5.4.4) into (5.4.3), and again using (5.3.8) to simplify, we have that

232\ /m

D} (—b) — D3(b) = myl(wb)?ﬁ(’/; b). (5.4.5)

Therefore, with this improvement, we may rewrite (5.4.2) as

1- Zg%l?i(b)yl(w b)ya(v;b) = 0 (5.4.6)

2I'(—v)

We see that the only difference between (5.3.13) and (5.4.6) is a factor of ;
m

certainly, for v € Ny, I'(—v) # 0 and hence both forms are indeed valid. In short, we
have proven Theorem 2; i.e., for b > 0, z € C, and v € C\ Ny, v € Sp Lpc(z,b) if and
only if

1 — 2>M(v;b) =0, (5.4.7)

where
I'(—v)V2

M(v;b) = NG

D} (b)yr (v; b)ya(v; ). (5.4.8)
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Again, for z # 0, (5.4.7) can be rewritten as
M(v;b) = —. (5.4.9)
This is useful for many reason, in particular, the following restrictions on eigenvalues

of LPC (V7 b) .

Lemma 5.4.2. Fixb > 0, z € C, and v € C\ No. If M(v;b) = 0, then v ¢

Sp LPC’(Za b) :

Proof. Fix b > 0, z € C, and v & Ny, so that I'(—v) is defined. If M(v;b) = 0, then

(5.4.7) to become 1 = 0, which is never true. O

Before finishing the section, we note that the product-factorization of M (v;b) in

(5.4.8) has the following consequence.

Lemma 5.4.3. Fizb > 0 andv € C\Ny. Then M (v;b) = 0 if and only if y,(v;b) = 0,
ya(v;b) = 0, or D, (b) = 0.

Proof. We are working in C, so a product is zero if and only if one of the factors
2 1
is 0. Certainly — is nonzero. Since —— is entire, it has no poles, so I'({), hence

VT ()

v — I'(—v), has no zeroes. The statement follows. O

5.5 Integer eigenvalues, and related observations

Before continuing, we use the general equation (5.3.13) to the question of whether

or not for z # 0, v = n € Ny can be an eigenvalue of Lpc(z,b). Of course, for

v=mn € Ny, = 0 and hence (5.3.13) reduces to the case of

1
['(—v)
—22D,, (b)y1(n, b)ya(n, b) = 0. (5.5.1)
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Hence, a nonnegative integer n is an eigenvalue of Lpc(z,b) for z # 0 if and only if

one of D, (b), y1(n;b), and yo(n;b) is 0. Hence, as a corollary to Theorem 1, we have:

Corollary 5.5.1. Fiz b > 0, and n € Ng. Then if at least one of

Dy (b) =0, (5.5.2a)
y1(n;b) =0, (5.5.2b)
y2(n;b) = (5.5.2¢)

holds, then n € Lpc(z,b) for all z € C. If none of the statements in (5.5.2) hold,

then for all z #0, n & Lpc(z,b).

Ezample 5.5.2. We note that the equations in (5.5.2) can be satisfied. For an explicit
example, we note that the second Hermite polynomial is Hy(x) = 42® — 2, and by

(3.2.5), Dy(z) has as a factor

i, (%) =922 —2=2(2%— 1) =2(z + 1)(z — 1),

so Dy(1) = 0; similarly, one may see from (3.1.19a) that y;(2;1) = 0.

We must note that in a sense, (5.5.2) contains redundancies. This is because,
recalling (3.2.6),
Dy (=z) = (=1)"Dn(z), n € N,

it follows that D, (z) is an even function for n even and an odd function for n odd;

hence it must be a multiple of y;(n; ) or ys(n; x), respectively. More specifically, by
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(3.1.22),

2k /T

D2k<ﬂj‘) = myl(Qk,I), k e NQ, (553&)
2
2k+1 T

D2k+1(1’) = ﬁyg(Qk + 1, x), ke No. (553b)
2

Therefore, (5.5.2) is indeed redundant. Yet emphasizing the possibility for v +—
M (v;b) has possible zeroes at nonnegative integers provides the following technical

value. Suppose n € Ny is a zero of v — D(v;b) of order m. Then defining
M(v;b) := [D,(b)]> 1 (v: b)ya(v: D), (5.5.4)

v — M(v;b) has a zero of order at least 2m + 1 at n, since v — [D, (b)]? has a zero
of order 2m, and either y;(n,b) or yo(n,b) must also be zero, contributing at least

one additional zero. The expression in (5.5.4), of course, is up to constant factors
M(v;b)
I(—v)
the theory of functions of one complex variable (e.g., [Con78, Chapter V, Section 1]),

, and the I'(—v) term only has a pole of order 1 at v = n. Therefore, by

v — M (v;b) can be analytically extended to n and its vicinity; we write the extension
as M(v;b) for clarity. Of course, this holds for any integer zero of v — D(v;b). We

state this as a lemma/corollary pair for future reference.

Lemma 5.5.3. Fiz b > 0. Suppose that for somen € Ny, the map v — M(V; b) has a
zero of order m+1, m > 0, at v = n. Then the function v — M (v;b) has a removable
singularity at v = n. Denoting the analytic extension by M(v;b), v +— M(v;b) has a

zero of order m > 0 at v = n.

Corollary 5.5.4. Fiz b > 0. Suppose that v — D, (b) has a nonnegative integer zero

v=mn,n e Ny, of orderm >1. Then v — ]\7(1/; b) has a zero of order at least 2m + 1
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at v =mn, sov— M(v;b) has a removable singularity at v = n, and the extension

v — M(v;b) has a zero of order at least 2m.

5.6 Numerical Evidence for Behavior of the Eigenvalues

We now present some numerical computations using Mathematica to find the eigen-

values of Lpc(z,2). (Our code is in Appendix We used both (5.3.13) and (5.4.9) to find

the eigenvalues. In each of Figures 5.1, 5.2, and 5.3, the eigenvalues of Lpc (rew, 2)
1 T

are shown, for r € {5, 10} and 0 € {O, T 5}

According to the diagrams, we certainly confirm that for z real, the eigenvalues
are real, and the results suggest that for z = ir, certainly many eigenvalues appear
to become nonreal. To suggest a solution, we add to our diagrams the (numerically
computed) degree-1 and degree-2 zeroes of v +— M(v;2), and the zeroes of the first
v-derivative of v — M(v;2) that are not zeroes of v — M(v;2). The results are in
Figures 5.4, 5.5, and 5.6.

It appears that the zeroes of M (v;b) attract eigenvalues of Lpc(z,2) regardless of
the argument of z, and that for z = ir, the zeroes of the v-derivative of M (v;2) that
are not zeroes of M (v;2) have a role in determining when the eigenvalues of Lpc(ir, 2)

coalesce into complex-conjugate pairs as r increases. We discuss the former in great

detail in Chapter 6, and discuss some issues of the latter in Chapter 7.
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CHAPTER 6
EXISTENCE OF NONREAL EIGENVALUES

In this section, we prove Theorem 3. To do so, we pay particular attention to the

criterion for eigenvalues from Theorem 2,

M) = = (6.0.1)

)
22

where
I'(—v)V2
\/E

We first show some basic properties of M (v;b) and its component functions.

M(v;b) = D2(b)y1 (v; b)y2 (v b). (6.0.2)

6.1 Preliminary Properties of M (v;b)

We start with the proof that we are dealing with a nonconstant function.

Lemma 6.1.1. For allb > 0, the function v — M (v;b) is holomorphic on the domain
C\ Ny, and meromorphic on C. Moreover, v — M (v;b) is nonconstant on any open

subset of its domain.

Proof. Fix b > 0. By (6.0.2), and the fact that v — D,(b), v — v:1(v;b), and

v — ya(v; b) are holomorphic by Proposition 2.5.2,

v M(v)b = [D,(b)2y: (v; b)y2(v; )
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is holomorphic on C. Since

M(v;b) = F(_—Mﬁ(y)b,

VT

and ['(—v) is meromorphic on C with poles at every n € Ny, it follows that M (v;b)
is holomorphic on C\ Ny and meromorphic on C, with poles at a subset of Nj.

To demonstrate that M (v;b) is nonconstant, we will show that y1(0,b), y2(0,0)
and Dy(b) are all nonzero, and so by (6.0.2), there is no cancellation of the pole of
I'(—v) at v = 0, so v — M(v;b) will have a pole at v = 0. By the rules of poles,
then (e.g., [Con78, Chapter V, Defn. 1.3, p. 105], it follows that ll/1_r)r(1) |M (v;b)| = o0,

so M(v;b) cannot possibly be a constant function in a punctured neighborhood of 0.

y1(0,b) # 0. By (3.1.19a),

yl(o’b)_1+(0>Z_2!+<0)(2>Z_T+"'_17é0' (6.1.1)
y2(0,0) # 0. Similarly, by (3.1.19b),
b3 b

Dy(b) # 0. By (3.2.5),it follows that
Dy(x) = r/4e=?/4

which is clearly nonzero for any x € C, hence for z = b.

Hence, v +— M(v;b) is nonconstant in a punctured neighborhood centered at v = 0.

Yet the domain of M (v;b), C\ Ny and hence is connected and path-connected; hence,
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by the Identity Principle (e.g., [Con78, Chapter IV, Thm. 3.7 and Cor. 3.8, p. 79])

M (v;b) is not constant on any open set in C\ Np. O

Corollary 6.1.2. Suppose v — M(v;b) has a removable singularity at some n € N.

Then the analytic extension M(v;b) is nonconstant.
We also make the following observations.

Lemma 6.1.3. Fiz b > 0 and v € R (as opposed to C). Then y,(v;b), ya(v;b),
and D, (b) are real. If in addition, v ¢ Ny, I'(—v) and M(v;b) are real. Also, if
M (v;b) analytically continues to any n € N, the analytic extension M(v;b) satisfies

M(n;b) € R.

Proof. Fix b € R and v € R. Note that by (3.1.19a) and (3.1.19b), y;(v;b) and
1
y2(v; b) are real-valued by v and b being real. By the product definition of ——, as

I'(¢)
in, e.g., B. Ya. Levin’s text [Lev96, Lecture 5, p. 32|,

1 ge%ﬁ (1 + g) e~ (6.1.3)

where 7 is the Euler-Mascheroni constant, a real constant. Thus, for ( real, ﬁ is
a product of real numbers and hence is real. Since the transformations v +— — % and
Vi — g + % preserve the real line, it is clear from (3.1.22) that D, (b) is real-valued
by v, b real.

If v ¢ Ny, by (6.1.3), I'(—v) is therefore real-valued by v € R\ Ny. Thus, by
(6.0.2), M(v;b) is real-valued.

Finally, if v — M (v; b) has a removable singularity at v = n, the extended function
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M(v; b) is of course real-valued for v € R \ Ny, and by continuity of the extension,

M(n;b) = lim M(n + €;b)
e

= lim M(n+¢;b)
e—0t
e>0

(6.1.4)

and thus M(n;b) is the limit of real values and hence is real. O

Corollary 6.1.4. Fiz b > 0. Any power-series expansion for M(v;b) centered at any
v € R\ Ny must have real coefficients. The same is true for any analytic extension

M(v;b) at any real number in its domain of analyticity.

6.2 Zeroes outside Ny of v +— M(v;b)

We now show that the existence of zeroes of v — M (v;b), more specifically of v —

D, (b), solves the problem.

Proposition 6.2.1. Fix b > 0. If there emists p € C such that p is a zero of
v D,(b), then p € RT = (0,00) and the zero is simple. Moreover, for sufficiently

large r > 0, Lpc(ir,b) has 2 nonreal eigenvalues in a neighborhood of v.

For technical reasons, however, we choose to split the proof into the case of zeroes
of M(v;b) (including D, (b)), and zeroes of the extension at any nonnegative integers.
We handle the first case here. First, for any fixed u € C\ Ny with M (u;0) = 0, we

may apply Proposition 2.6.3 to the function v +— M (v;b) at the point u, and get:

Proposition 6.2.2. Let b > 0, and fix z € C\ {0}; let z = re”, r € RY, § € [—m, 7).
Suppose . € C\ Ny is a zero of M(v;b) of order m, m € N. Suppose the power-series

expansion of M(v;b) in v centered at v = u is given as

o0

M(v;b) = Z cj(v —p), (6.2.1)

j=m
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where ¢, # 0 ; hence, let ¢, = pe'’, p € RY, ¢ € [—7, 7).
We take particular roots of z and c,, as follows. Let z = r*/™e®/™ denote a

—2/me—219/m7

1
particular nth root of z; we note that an mth root of — is — =r and

22 72
the other mth roots are the above figure mutliplied by e2mkm =1, ., n—1. Also,
let ¢ = p'/™e™/™ denote a particular mth root of cp,.

Then for r large enough, there exists m solutions {vi.}1— = {vi(2)}p—y to (6.0.1),

1.€.,

M(v;b) = 1

)
22

for v in some neighborhood of u, with leading-order expansion given by

, 1 2mik
ve(re®) = pu+ —= exp< ) +0 (z_4/m)
z’c m

- IR exp (z {—29 — Y+ 27m'k}) 1o (rm), (6.2.2)

r2/mpl/m m

k=0,1,...m—1.
In particular, as r — oo, vy — 0 for all k; indeed,

1
v — ] :G(W)’ k=0,1,...m—1. (6.2.3)

As r — o0, for fired 0, we have that

_ 90— +2
lim —F “:exp(z‘[ b-9+ ”kD k=01,...m—1. (6.2.4)

r—o0 [ — il m

6.2.1 Restrictions From Real 2z

Applying Proposition 6.2.2 to the z real case, we discover the following statements

about the zeroes of M (v;b).

Lemma 6.2.3. Fiz b> 0. If p € C\ Ny is a zero of v — M(v;b) then p € R\ Np.
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Proof. Fix b > 0, and let y € C\ Ny be a zero of v + M(v;b), of order m. As a
positive real parameter r tends to oo along the positive real axis, by Proposition 6.2.2,
there exists an solution vy = vy(r) to (6.0.1) satisfying (6.2.3). Fix R > 0 such that

we can find positive constants ¢, C' so that by (6.2.3), for all » > R,

c C
Let {r;};2, be defined by
rj=2R, jeN (6.2.6)
Then define
v = (). (6.2.7)

By (6.2.5), we have that for j € N,

(3 _
|V0 M| < RQ/nQJ/n

so by the Squeeze Theorem,

lim |v§) — | =0,
J—00

ie.,

lim v = p. (6.2.8)

J—00

Yet v\ are solutions to the z = r; case of (6.0.1), so by Theorem 2, they must be
eigenvalues of Lpc(r;,b0). Yet by the r; real, u(()j) must be real by Proposition 3.3.1.

Thus, u, being the limit of real numbers, must be real. O]

Thus, the simple fact that the eigenvalues of Lpc(z,b) approach the zeroes of
v +— M(v;b) as |z| — oo, when applied to z real, forces the zeroes real. We now
demonstrate that the zeros are positive real.
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Lemma 6.2.4. Fiz b > 0. The zeroes of v — D,(b), v — y1(v;b), and v — ya(v; b)

are in RT. Also, the zeroes of vi— M(v;b) are in R,

Proof. Fix b > 0. We know by Lemma 5.4.3 that any zero of v — y;(v;b), v +—
y2(v;b), or v — D,(b) that is not in Ny must be a zero of v — M(v;b). By
Lemma 6.2.3, such zeroes must be real. Of course, any zero of v — y;(v;b), v —
y2(v;b), or v — D,(b) which is in Ny is real; hence, the zeroes of v — D,(b),
v = y1(v;b), and v — yo(v; b) are in R.

We now show that these functions are positive on the nonpositive real v-axis, for

b> 0.

v yi(v;b). Since for v < 0,0 < (—v) < (—v+2) < (—v+4) <---, by (3.1.193)

it is clear that for any v < 0 and any real b, y;(v;b) > 1.

v ya(v;b). Similarly, for v < 1,0 < (—v+1) < (—v+1)(—v+3) <---, and by
2j+1

b>0, 7 >0, 50 by (3.1.19b), ya(v;b) > b > 0.

(25 +1)
v D,(b). If v = 0, then again, by (3.2.5), Dy(x) is a nonzero constant multiple

of e/ 50 for any b > 0, Dy(b) is positive real.

For v < 0, by (3.1.2) and [Tem14, Section 12.5(i), (12.5.1)], we have that

2 o
b= / pr e b gy (6.2.9)
L(=v) Jo

and hence it follows that D, (b) is the integral of a nonnegative integrand, strictly
2

1
positive for t > 0, multiplied by the positive exp [— Z} and ﬁ

—v
implies —v > 0 so that I'(—v) is positive and finite. Thus, for ¥ < 0, any real

, where v < 0

b, D,(b) is positive.

By Lemma 5.4.3, v — M (v;b) is therefore nonzero on the negative real axis, and by

the proof of Lemma 6.1.1, M (v;b) has a pole at 0. Hence, any real zero of v +— M (v;b)
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is positive real. By Lemma 6.2.3, every zero of v +— M(v;b) is real, so by the above,

every zero of v — M(v;b) is positive real. O

Now, we use the angles of approach, as guaranteed in (6.2.4), to limit the orders

of the zeros.

Lemma 6.2.5. Fiz b > 0, and suppose that i € RY \ Ny is a zero of v — M(v;b)
of order m. Then m < 2. Moreover, if m = 2, then in the power-series expansion at

v=p,ie (6.2.1), ca > 0.

Proof. Fix b > 0, and let u € R" \ Ny be a zero of v — M(v;b), of order m.
By Proposition 6.2.2, for z = r > 0, r large enough, we have solutions {Vk}Z:Ol =
{v(r) ¥, to (6.0.1) satisfying (6.2.4).

We first claim that for r large enough, the v, are real. For v, satisfies the z = r
case of (6.0.1), equivalently (1.0.18), so by Theorem 2, the vy (r) are eigenvalues of
Lpc(r,b). Yet by Proposition 3.3.1, since r is real, all eigenvalues of Lpc(r,b) are

real.

Hence, in (6.2.4), i.e.,

— —20 — 27k
lim —%—# :exp(il v+ WD E=0,1,...m—1, (6.2.10)
iy P "
for each k € {0,1,...,m — 1}, m—_’ﬂ is a real expression by both v (r) and u
vi(r) — 1
real, so by the limits of real functions being real,
—20 — 27k
exp(z'[ Y+ 2m D k=0,1,...,m—1. (6.2.11)
n
In other words,
—20 — 2
b—vt2mk g k—01....m—1. (6.2.12)

n
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Yet we may simplify (6.2.12). For one thing, since z = r is positive real, § = 0.
Moreover, since we now know p € R, we may use Corollary 6.1.4 to note that in the

power-series expansion for M (v;b) at v = p, i.e.,
M(vib) = c;j(v —py, (6.2.13)
j=m

all ¢; are real. In particular, ¢, is real, so ¢ € {—m,0}. We have two cases.

Case 1: ¢ = 0. Then we have that

2k
T enZ, k=0,1,...m—1.
m

If m = 1, we have a zero of order 1. Else, m > 2, and the k = 1 case is available,
SO
2w 2

—en4, or — €L
m m

Since m is a positive integer, the only possibility is m = 2.

Case 2: iy = —m. Then we have that

2wk —
m

enZ, k=0,1,....,m—1.

From the £ = 0 case we have that

and by m a nonnegative integer, the only possibility is m = 1.

In all cases, m < 2, and in the case m = 2, ¢, < 0 cannot occur. O]
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6.2.2 Consequences for Imaginary 2

Proposition 6.2.6. Fiz b > 0, and suppose that u € RT\Ny is a zero of v — M (v;b)

of order 2. Then asr — oo, r > 0,

has 2 nonreal zeroes in a neighborhood of L.

Proof. Fix b > 0, and suppose that p € RT \ Ny is a zero of v — M (v;b) of order 2.

in/2 n

Then for z = ir = re"™*, we have that in the language of Proposition 6.2.2, § = 5

Moreover, in the power-series expansion at f,

M(vib) = ¢i(v —p), (6.2.14)

Jj=2

co > 0 by Lemma 6.2.5, so ¢ = 0. Then by Proposition 6.2.2, we have that the two

1 1
guaranteed solutions of M(v;b) = — = — — satisfy (in this case § = g)
z r
lim 220 =1 ('[ Ty k}) k=01 (6.2.15)
im ———— =exp(i |[—= + 7k|), =0,1. 2.
r—oo (v (ir) — p 2

The right-hand side is simply (—1)*(—i), k—0, 1. Thus, since the ratio between vy —
and its absolute value is approximately +i, eventually arg(vy — p) is at least Z away
from any integer multiple of 7, so vy = vy — p + p is the sum of a nonreal number

vy — o and a real number p, hence is nonreal. Similarly for 1. O
Adding in Theorem 2, we have:

Corollary 6.2.7. Fiz b > 0, and suppose that p € R* \ Ny is a zero of v — M(v;b)
of order 2. Then for r > 0, r sufficiently large, Lpc(ir,b) has 2 nonreal eigenvalues

in a neighborhood of .
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To restrict the discussion from v — M(v;b) to the case v +— D, (b), we require a

lemma.

Lemma 6.2.8. Fiz b > 0, and suppose that for some p € C\ Ny, D,(b) = 0. Then

y1(p;b) # 0 and ya(p;0) # 0.

Proof. First, we recall from Lemma 3.1.2 that y;(v;b) and y»(v; b) cannot be simulta-
neously zero. Now suppose, by way of contradiction, that D,(b) =0 and y;(x;6) =0
for y ¢ Ny. Then by (3.1.22),

ou+1)/2 /o
0= y2(1; b)
r(=%)
1
Yet certainly —2W+D/2/r +£ 0, and since p & Ny, —’g ¢ Ny and so EANTAY # 0.
r(-3)
2

Therefore, ya(11;6) = 0. Thus, y;(u;b) = 0 and yo(p, b) = 0. Contradiction.
Thus, for p ¢ Ny, D,(b) and y;(y;b) cannot be simultaneously 0. Similarly, if

p & No, D, (b) and yo(p1;b) cannot be simultaneously 0. O

We now prove that a simple case of finding zeroes of v — M(v;b) is finding

noninteger zeroes of v +— D, (b).

Corollary 6.2.9. Fiz b > 0. Then if p € R* \ Ny is a zero of v~ D, (b), then the
zero is simple. In addition, if r 1s large enough, then there are two nonreal eigenvalues

of Lpc(ir,b) in a neighborhood of .

Proof. Fix b > 0, and suppose that u € RT \ Ny is a zero of v — D, (b) of order m,
m > 1. Then we know that v + [D,(b)]* is a factor of M(v;b) as in (6.0.2), and
M (v;b) is analytic except for the (possible) poles at Ny. Thus, v — M (v;b) has a
zero at p of order 2m. Yet by Lemma 6.2.5, we know that any zero of v — M (v;b) is

of order at most 2. Hence, m = 1 and the zero is simple. Moreover, by Lemma 6.2.8,
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y1(p;0) # 0 and yo(p;0) # 0, and of course the Gamma function times a constant
has no zeroes. Hence, v — M(v;b) has a zero of order exactly 2 at u. We may
invoke Corollary 6.2.7 to show the existence of the nonreal eigenvalues of Lpc(ir, )

in a neighborhood of p. O]

We therefore have almost proven Proposition 6.2.1, except that we still have the

case of positive integer zeroes.

6.3 Zeroes in N of v +— M(v;b)

We now consider the case when v — M (v;b) has a removable singularity at v = n in
Ny: by Lemma 6.1.1, of course we cannot make the extension at n = 0, so we may
restrict to n € N. By our work in Section 5.5, we know that the singularity at v =n

is removable whenever

—~

M (v;b) = [D,(0))" g1 (v; 0)ya(v; 1) (6.3.1)

has a zero at n, but by Lemma 5.5.3 we need n to be a zero of v — M(V; b) of order
m + 1 to force the analytic extension v — M(v;b) of v — M(v;b) to have a zero of
order m. In such a case, by Corollary 6.1.2, the analytic extension is nonconstant in
a neighborhood of n € N, and by Corollary 6.1.4, in the power-series expansion of
M(v;b) at v = n,

Z cj(v—mn)’ (6.3.2)

j=m
all ¢, are real-valued. We thus have the analogue of Proposition 6.2.2, which follows

purely from the properties of zeroes of analytic functions.

Proposition 6.3.1. Let b > 0, and fix z € C\ {0}; let z = re”, r e RY, § € [—m, 7).
Suppose that n € Ny is such that v — M(u; b) has a zero of order m+ 1, m > 1, at
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v =n; hence M(v;b) is defined and analytic in a neighborhood of v = n, with a zero
of order m. Suppose the power-series expansion of M(v;b) in v centered at v = n
is given as in (6.3.2), so that ¢,, # 0 ; hence, let ¢,, = pe'’, p € RY, ¢ € {—x,0}.

Moreover, let ¢ = p/™e™/™ denote a particular mth root of co,.

Then for r large enough, there exists m distinct solutions {Vk};”:_ol = {Vk(2>};n:_01
to
‘ 1
M(vib) = — (6.3.3)

for v in some punctured neighborhood of n, with leading-order expansion given by

1 2mik
v, =n+ Texp( m ) +0 (z—4/m)
z2c m

B | [=26 — 4 + 2mik ) g
_n+Wexp(z{ - })+@(r ), k=0,1,...n—1.
(6.3.4)
In particular, as r — oo, vy — n for all k; indeed,
1
| — n| :®(m), k=0,1,...m—1. (6.3.5)

Asr — o0, for fired 0, we have that

_ 90 — b + 27k
Jim " :exp(z[ Y+ D =01, .m—1 (6.3.6)

r—00 |yk—n| m

The constraint (6.3.5) is quite important, for it reminds us that the vy, k =
0,1,...m—1 are not equal to n, yet close enough to n not to be another integer. Yet
1
for v in a punctured disk of radius, say, 5 around n, M(v;b) = M(v;b), so we have

that the vy, being non-Nj solutions to (6.3.3), are also non-Nj solutions to (5.4.9),
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1.e.

M(v;b) = ot

Hence, Theorem 2 informs us that the v are indeed eigenvalues of Lpc(z,0).

Corollary 6.3.2. Let b > 0, and suppose n € Ny is such that v > ]\7(1/;6) has a
zero of order m+ 1, m > 1, at v = n; hence M(v;b) is defined and analytic in a
neighborhood of v = n, with a zero of order m. Then for z = re®, 0 € [—m, 7)), r > 0
and large enough, the solutions {Vk(Z)}::_& are solutions to (6.3.3), guaranteed by
Proposition 6.3.1, are not in Ng. Hence, they are also solutions to (6.0.1), equivalently

(1.0.20), and hence by Theorem 2 they are eigenvalues of Lpc(z,b).

6.3.1 Restrictions from Real 2

Corollary 6.3.2 allows us to get the analogue of Lemma 6.2.5.

Lemma 6.3.3. Fiz b > 0, and suppose that there exists n € Ny such that v — M(V; b)
has a zero of order m+1, m > 1, at v = n, so that M(v;b) is defined and analytic in
a neighborhood of v = n, and M(v;b) has a zero of order m at v =n. Then m < 2;

if in fact m = 2, and the power-series expansion at v =n is

Z c;j(v—n) (6.3.7)
k=2

then co > 0.

Proof. Fix b > 0, and suppose n € Ny is such that v — ]T/[/(u; b) has a zero of order
m+ 1, m > 1, at v = n; hence M(v;b) is defined and analytic in a neighborhood of
v = n, with a zero of order m. By Proposition 6.3.1, for z = r > 0, r large enough,
we have solutions {1 }7 g = {vx(r)}7'2) to (6.0.1) satisfying (6.3.6).

We note for r large enough, the v (r) are real. By Corollary 6.3.2, for r large
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enough the v(r) are eigenvalues of Lpc(r,b). Yet by Proposition 3.3.1, since r is
real, all eigenvalues of Lpc(r,b) are real.

Hence, in (6.3.6), i.e.,

. 90 — o + 2k
lim 22— " :exp(z[ Y+ 2 D E=01,...m—1, (6.3.8)

r—$00 ‘Vk —n‘ m

for each k € {0,1,...,m — 1}, M is a real expression by both v (r) and n
vi(r) — 7l
real, so by the limits of real functions being real,
—20 — 2k
exp(z{ Y+ 2 D E=01,....m—1 (6.3.9)
m

In other words, (6.2.12) holds. The remainder of the proof proceeds as in the proof
of Lemma 6.2.5. O
6.3.2 Consequences for Imaginary z

We now have the analogues of Section 6.2.2.

Proposition 6.3.4. Fiz b > 0, and suppose n € Ny is such that v +— M(V; b) has a
zero of order 3 at v = n; hence M(v;b) is defined and analytic in a neighborhood of

v =mn, with a zero of order 2. Then as r — oo, r > 0,

M(I/;b):i:—i

52
has 2 nonreal zeroes in a neighborhood of L.

Proof. Fix b > 0, and suppose that n € Ny is such that v +— ]\7(1/; b) has a zero of

order 3 at v = n, hence M(v;b) is defined and analytic in a neighborhood of v = n,
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with a zero of order 2. Let z = ir = re’™? for r > 0; we have that in the language of

.. s . . .
Proposition 6.3.1, 0 = 5 Moreover, in the power-series expansion at n,

A4(y;b):::£:c3(u——70j, (6.3.10)

Jj=2

cs > 0 by Lemma 6.2.5, so 1» = 0. Then by Proposition 6.3.1, we have that the two

1 1
guaranteed solutions of M(v;b) = — = — — satisfy
z r
lim 1) =1 ([ L ﬂ) k=0,1 (6.3.11)
im ———— =exp(i|—=+7 =0,1. 3.
oo (i) —n] VT2 ! ’

The right-hand side is simply (—1)*(—i), k—0, 1. Thus, since the ratio between vy —
T

and its absolute value is approximately +i, eventually arg(vy — ) is at least 1 away

from any integer multiple of 7, so vy = vy — n + n is the sum of a nonreal number

Vg — n and the integer n, hence nonreal. Similarly for 1. O]
Adding in Corollary 6.3.2, we have:

Corollary 6.3.5. Fiz b > 0, and suppose n € Ny is such that v — M(V; b) has a
zero of order 3 at v = n; hence M(v;b) is defined and analytic in a neighborhood of
v =mn, with a zero of order 2. Then for r > 0, r sufficiently large, Lpc(ir,b) has 2

nonreal eigenvalues in a neighborhood of yu.
We again show that it suffices to restrict attention to (integer) zeroes of v — D, (b).

Corollary 6.3.6. Fiz b > 0. Then if n € N is a zero of v+ D, (b), then the zero is
simple. Moreover, for r > 0 large enough, Lpc(ir,b) has two nonreal eigenvalues in

a neighborhood of n, in addition to the eigenvalue at n guaranteed by Corollary 5.5.1.

Proof. Fix b > 0, and suppose that n € N is a zero of v +— D, (b) of order m, m > 1.

Then by Corollary 5.5.4, the analytic extension in a neighborhood of n, M(v;b), has
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a zero of order at least 2m at m = n. Yet by Lemma 6.3.3, the zero of v — M(v;b)
can be of order at most 2, so m = 1; in other words, the zero of v +— D, (b) is simple.

Moreover, by Lemma 3.1.2, y;(n, b) and y2(n, b) cannot both be 0, but by D,,(b) =
0 and (5.5.3), at least one of them is 0, so exactly one of them is 0. Suppose n is even
so that y;(n,b) = 0. The order of the zero of v — y;(v,b) at ¥ = n must be exactly
1, otherwise the order of the zero of v — M(u; b) would be at least 2+2 = 4, and the
order of v — M(V; b) at v = n would be at least 3, violating Lemma 6.3.3. Similarly
if n is odd.

Hence, the order of the zero of v — M(V; b) at v = n is exactly 3, and the zero
of v+— M(v;b) at v = n is of order exactly 2. We may invoke Corollary 6.3.5 to get

the two nonreal eigenvalues in a neighborhood of n. O

Combining Lemma 6.2.4, Corollary 6.2.9, and Corollary 6.3.6, we have Proposi-

tion 6.2.1.

Ezxample 6.3.7. To demonstrate how this works in practice, we recall the example
that Do(1) = y1(2,1) = 0. Hence, in the b = 1 case, there is an eigenvalue at v = 2
by Corollary 5.5.1, and there are also 2 eigenvalues approaching v = 2 as |z| — oc.
Numerically, it appears that for the case z = ir, the perturbations of the v = 0 and

v = 1 eigenvalues approach v = 2, as shown in Figure 6.1
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6.4 Existence of zeroes of v — D, (b)

To unconditionally show the existence of nonreal eigenvalues for Lpc(ir, b) with r > 0
large enough, by Proposition 6.2.1, we must show that for all b > 0, there exists v
with D, (b) = 0. To show the existence of zeroes of v — D, (b), we note a paper
of Dean, [Dea66|, which studies the zeroes of the parabolic cylinder functions and

states:

Proposition 6.4.1 (|Dea66, pp. 281-2|). There exist countably many functions
{gn(@)}iey, gk 2 [0,00) = RT, such that for all x € R and k € Ny, Dy, ()(x) =0 and

gk(O) = 2/{3 + 1.

Dean’s paper [Dea66| is quite terse, however, so we give a complete proof in
Appendix C.

To prove the full extent of Theorem 3, we also need the following:

Lemma 6.4.2. For all b > 0, for all j,k € Ny, g;(b) = gr(b) if and only if j = k;

hence, for each b > 0 there are countably many zeroes of v — M (v;b).

Proof. Suppose that for some b > 0, and for some j, k € Ny, g;(b) = gi(b). Then by
the Implicit Function Theorem applied in the vicinity of (b, g;(b)), there is a unique
function g(x) such that Dy (x) = 0 for x near b, and g(b) = g;(b) = gx(b). In other
words, g¢;(z) = gr(x) in a neighborhood of b, call it (a,c). By Lemma C.1.4, g(x)
extends uniquely to a function on (—e, c¢) for some € > 0. Yet by uniqueness of the

extension, g(z) = gj(x) = gr(x) on [0, ¢), so

9;(0) = gx(0)
2j +1=2k+1 (6.4.1)

j=k.
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]

Proof of Theorem 8. Fix b > 0. By Proposition 6.4.1, there are countably many
numbers {gi(b)},o, with gi(b) = 0. Fix N € N, and consider the subcollection
{gk(b)}szo for some N € N. Then for each gx(b), there exists Ry = Ry(b) such that for
r > Ry, Lpc(ir, b) has two nonreal eigenvalues in a neighborhood of +¢;(b). Then for
R*(N) := Jnax Ri(b), r > R* implies that there are 2(/N + 1) nonreal eigenvalues of
Lpc(ir,b). {N; denoted the counting-function of the non-real eigenvalues of Lpc(ir, b)
by N (r), so

r > R*(N) implies N'(r) > 2(N + 1). (6.4.2)

This works for all N € Ny, so N (r) is unbounded above as r — oc. O
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CHAPTER 7
CREATION OF NONREAL EIGENVALUES: PARTIAL
RESULTS

We now know that for z = ir, r — oo, the number of nonreal eigenvalues becomes
unbounded. What is less clear from the above results is how the eigenvalues become

nonreal.

7.1 An observation characterizing real eigenvalues

We first make the following observation, a sort of converse to Lemma 5.4.2.

Lemma 7.1.1. Fiz b > 0, and v € C\ Ny. Suppose in addition that M(v;b) # 0.
Then v € Sp(Lpc(z,b)) for exactly two z € C; namely, if m is a square root of
M (v;b), then

1

=+—. 7.1.1
=t (71.1)

Proof. M(v;b) is defined for b > 0 and v ¢ Ny. Hence, if M(v;b) # 0, from (6.0.1),

M(v:b) = % (7.1.2)
5 1
2= oD (7.1.3)



1
it is thus necessary and sufficient that z = £—, for m a square root of M (v;b). O
m

Corollary 7.1.2. Suppose b > 0, v € R\Ny. Then if M(v;b) > 0, then v € Lpc(r,b)

for some r € RY, and if M(v;b) <0, then v € Lpg(ir,b) for some r € R*.

Proof. By Lemma 6.1.3, for b > 0 and v € R\ Ny, M (v;b) is real. If M(v;b) > 0, it
has a positive square root, and if M(v;b) < 0, it has a purely imaginary square root,

so the rest follows from Lemma 7.1.1. ]

7.2 Demonstration of the Necessity of the Zero-Derivative

Condition

We first need a technical lemma.

1
Lemma 7.2.1. Fizro > 0. Then forr close enough to 1o, in particular |r—ro| < =r,

2
1 1
7‘2 —% :@<‘7’—T0|), (721)
with the implicit constant depending on rg.
Proof. Fix rq > 0. We calculate:
I
ool (7.2.2)
T+ Ty
= |r — 1ol

We wish to show that the coeflicient of |r—r¢| is small. If we suppose that the relative
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1
error is small, i.e., that |r — ro| < 370 then we have that

3
To T+ 70 570
2,2 = 9.9 ’ 2
TaT, T4 2 (1
0’0 0 g (27“0) (7.2.3)
1 T+ 79 1
S ax S0
rH rers ro

Since we let the constants depend on 7, we let ¢ = c(rg) = 75> and C' = C(rg) = 61 °,

1
and we have that if |[r — rg| < 570 plugging back (7.2.3) into (7.2.2),

< Clr —rol. (7.2.4)

clr —ro| <

2 2
Ty T
[l

We now argue that for z real or pure imaginary and nonzero, under a certain

hypothesis, real eigenvalues remain real in a vicinity of the eigenvalue.

Proposition 7.2.2. Fiz b > 0, fiz z = ro (respectively, z = iry) for ro € R\ {0}, and
fix p € R\ Ny with u € Sp(Lpe(z,b)); in particular, by Lemma 5.4.2, M(v;b) # 0.

Suppose in addition that 82 (D, (b)) # 0. Then for r sufficiently close to ro,
v

V=L

there exists a unique eigenvalue vy = vo(r) of Lpc(r,b) (respectively, Lpc(ir,b)) in a

neighborhood of i, and vy(r) is real.

Proof. Fix b > 0, and for the first case, fix z = ry for 1o € R\ {0}. Suppose that

p € Sp(Lpc(ro, b)), and g (D, (b))

# 0. By Theorem 2,
ov
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Then consider the function

fv) == M(v;b) = M(p;b) = M(v;b) — (7.2.5)

1
r3’
; by the hypothesis, f(v) has a zero of order 1 at v = p. Then for r sufficiently close

1 1
to ro; by Lemma 7.2.1, — is close enough to — to invoke Proposition 2.6.3, with v
r

o
in the role of ( and

1 1
e 7.2.6
r2 2 ( )

in the role of 7. Therefore, there exists a unique vy = vy(r) in a vicinity of u, (in

particlar, such that vy € Ny) satisfying

flvo) == — =, (7.2.7)

2
r o

ie.,

M(vp:b) — —. (7.2.8)

2
By Theorem 2, 1y(r) is the unique eigenvalue of Lpc(r, b) in a neighborhood of p.

Moreover, pu is real, so by Corollary 6.1.4, the power-series expansion of M (v;b)

at u has real coefficients; hence, so does f(v). By Lemma 2.6.4, vy(r) is real, for r

close to rq.
, 1 1 D
In the case z = irg, we have — = ——, which is still real. The proof works
z U
1
similarly, replacing — by —— , and similarly for r2. O
To Ty

Thus, for © € R\ Ny, by Corollary 7.1.2, M(u;b) # 0 is enough to ensure that
p € Sp(Lpc(r,b)) or Sp(Lpc(ir,b)) for some r € R*. Yet if the v-derivative of

M (v;b) at v = u is nonzero, by Proposition 7.2.2 nearby values of r still have a real
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eigenvalue. It suggests to us that to have a coalesence of real eigenvalues into complex
eigenvalues, we need M (v;b) # 0, but the first v-derivative equal to 0.
0
Hence, suppose that v € R\ Ny satisfies M (v;b) # 0 and — (M (v; b)) =

v
V=Vcrit
0. We know by Lemma 6.1.1 that M (v;b) is nonconstant, so there exists a minimal
O"M(v;x ) L
m > 2 with % # 0. Then the power-series expansion in v at
Vm

V=Vcrit,T=b

UV = Ve Can be written
M(v;b) =co+ Y en(v = veir)’; o = M(verit, b # 0) # 0, ¢ # 0. (7.2.9)
k=m

7.3 Restrictions from real 2

We now show that the self-adjointness of Lpc(r, b) gives us a restriction on the relevant

power-series expansions.

Proposition 7.3.1. Suppose that there exists Ve € R\ Ng with M (ver; ) # 0 and

(‘% (M(v; b)) =0. Then M(verit; b) < 0.

V=Vcrit

Proof. Suppose, by way of contradiction, that there existed vy € R\ Ny with
M (Vig; ) > 0 and 2 (M(v;b))

ov -
(r real) case of (5.4.9) can be rewritten with the help of (7.2.9) as

= 0. Then the critical equation for the z = r

- 1
co + cp(v — Vcrit)k =
k=n r
Z (V= Verit)” = — — Co (7.3.1)
k=n r
> 1
ch(V—ch) 5 |col,
k=n
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with ¢g > 0, n > 2, ¢, # 0. Therefore, defining

1
Terit i= 47— € RY (7.3.2)
ol

it is clear that when r = re;, the right-hand side of the last line in (7.3.1) is 0, and
1

for r near to ren, — — lco| = 0. Therefore, for r sufficiently close to re, we may
r

apply Proposition 2.6.3 to

f(v) == M(v;b) — M(Veyit; b), (7.3.3)
1 )
, and we have that there are m solutions {1 }7—_, to (7.3.1). We let z := ——Co = ret|
r
1 .
r € R", 0 € [—n,m); since 5 is real, & € {—m,0}. We also fix ¢, = pe',

—7m < 1 < m; by Lemma 6.1.3, M (v;b) is real-valued on the real line, so all ¢, are

real and so ¢ € {—x,0}. Thus, (2.6.5) gives

lim
T—Terit

V(1) = Verig _ eXp(@'(e — )+ 27k)

Vk(r> - Vcrit| m

>, 0<k<m-—1. (7.3.4)

Yet since vy € R, by Lemma 6.1.3 we know that the v, are real for all k£ €
{0,1,...,n—1}; hence, so are the vy — Ve, since ey is real; thus, moreover, vy # Ve,

even by the weaker Proposition 2.6.1. Hence,

Vk<r) — Verit
|Vk<r) - Vcrit‘

is real and nonzero for all real r close enough to ryi. Hence, the limit of such

expressions is real-valued, so

(6 — )+ 2
exp(l(e s ”k)) €R forall k,0 <k <m— 1. (7.3.5)
m
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Thus,
(0 — ¢ +27k)

enZforall k,0<k<n-—1. (7.3.6)
m

Now, 7Z is a group under addition, so the difference of any two such expressions is

in the set as well. Hence, taking the difference of the £k = 0 and k£ = 1 case,

2
—7T€7TZ,
m

2
so — € Z. Since m > 2, the only consistent possibility is m = 2.
m
1
Case 1: ¢;;, = ¢2 > 0; L.e., ¢ = 0. Then for r slightly greater than re.it, — —co <0
r

so # = —m. Hence, from the k = 2 case of (7.3.6),
7T
—5 + 7k e nZ, ke{0,1},

T
but ) is not an integer multiple of 7. Contradiction.
Case 2: ¢, = ¢ < 0; i.e., v = —7w. Then for r slightly smaller than r;,

1
— — o > 050 0 =0. Hence, from the k = 2 case of (7.3.6),
r

+g v rkenZ, ke{01},

s
but again, 5 is not an integer multiple of 7. Contradiction.
Since ¢, is real and nonzero by hypothesis, all cases lead to contradiction. Thus,

co = M (veit; b) is not greater than 0. O

7.4 Consequences for Imaginary z

0
Hence, if vy € R\Ng, M (Verit; b) # 0, and £ (M(v; b)) =0, then M (v b) <
v =Vcrit

0. We now wish to apply this to the case of z = ir, and we wish to consider, in a
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neighborhood of v, the equation

M(v;b) = — (7.4.1)

f(v) = M(v;b) — M (Veie; b) = 3 M (Veyig; b). (7.4.2)
Using the power-series expansion (7.2.9), we have
cot ) (V= Veir)" = ——
k=n "
Z Ck(y - Vcrit) = —Cy — ﬁ (743)
k=n
S 1
ch<y - Vcrit) — |CO - ﬁ
k=n
We now (re)define
1
rit - = T 7.4.4
Terit |CO‘ ( )
1 . . i
and note that |co| ——— = 0. As in the previous case, for r # rey we let z = re”, r €

crit

1
R¥, 6 € [—m,7); since |co] —— € R, we have that § € {—m,0}. Similarly, we again set
r
cm = pe'¥; again, the c; are real by the assumption that vy is real, and Lemma 6.1.3,
so ¢ € {—m,0}. Applying Proposition 2.6.3 to the map v — M (v;b) — M (Verit; b), we

get the following.

Proposition 7.4.1. Suppose that there exists Ve € R\ Ng with M (Vepir; ) < 0 and
0

— (M (v;b
2 (1)

= 0, and let m be the smallest index greater than or equal to 2

V=Vcrit
m

such that a—m(M(V; b))

5 # 0. Then for r sufficiently close to re.y € (7.4.4), but
v

V=Vcrit
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not equal to it, then there ewist exactly m solutions {vy }p—y to M(v;b) — M (Veris; b) =
—le — MUz h). If 2 = r/me?m and ¢ = pY"me™!™ be specific mth roots of
Z = —ﬁ—M(ch; b) = |CO|_T_12 and c,, respectively, then the leading-order expansions
are given by

Z  (2nik
e = U+ 2 eXp( ik ) +O(r — raal?™), 0<k<m-—1, (7.4.5)
C m

where the constants in the O|r — rcm|2/m term depend on |M (vepy; b)|. Moreover, as

T = Terit, Uk — Verit — 0 for all k, 0 < k < n —1; indeed,

v —v| = O(r — rea|V™), 0<k<m-—1 (7.4.6)
Also,
- Veri (0 — 2
lim M:exp<z(0 vt ﬂk)), 0<k<m-—1. (7.4.7)
r—=rerit |Vg(T) — Ve m

Proof. The only issues left to show are the asymptotic size of the error terms in (7.4.5)

1

and (7.4.6). Fortunately, since M (Vi;b) = co = ——, this follows from Lemma 7.2.1;
crit

using 79 = Teit, we get that Indeed, we know from (2.6.2) that the error is of order

1 1
Z? and Z is an nth root of |co| — x yet by definition of re;, |co| = ——. Hence,
crit
1 1 1
ol -+ =L 1 748
== e )

1
so by Lemma 7.2.1, we have that for r > 0, |r — req| < 5 ity

1 1
3—|7" — Terit] < o T 3 < 6|3—|7" — Terit) (7.4.9)
Terit crit r crit
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, or, by definition of 7y,

11
= | < 6lel”?r — e (7.4.10)

crit

|00’3/2’7" — Teit] <

1
Hence, the discrepancy |—— — — | is O(|r — ret|), and hence
crit

1 1/n
121 = leol ~ 5

1/n

|1 (7.4.11)

rgrit r?

= ®(|T - Tcrit|>1/n

and so, the error in the leading-order expansion (7.4.5), of order |Z|* by Proposi-

tion 2.6.3, is really O(|r — rcrit])Z/". We are done. O

7.4.1 Application to the case m = 2

To explain the behaviour shown in Figure 5.6, we take the case m = 2, or alterna-
2

0 27k
tively, the condition W(M(V; b)) # 0, and note that ™% _ 7k in this case.
v m

V=Vcrit

Moreover, in the power-series expansion (7.2.9), ¢, is real by M (v;b) real-valued for
v, b, real, so ¢ € {—m,0}. We split into cases depending on the sign of cs.
co > 0. Hence, v = 0.

1
Then for 0 < r < reiy, 2 = |co| — — > 0,060 =0. For r close enough t0 ¢,
r

(7.4.7) gives that

lim ()~ Verie exp(2”1k> = (=% k=01 (7.4.12)

T—Terit |V (7’) — Vcrit| N

Hence, for r < rqi, by veq real, the eigenvalues are real to leading order.

Indeed,.
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1
For r > re, 2 = |co] — — < 0,80 0 = —7. For r close enough to rei, (7.4.7)
T

gives that

lim ——————— = exp
T—Terit Vk<7’) — Vcrit‘

V(1) = Vi (—7T + 27?2'/{:)

Hence, for » > 7. and close enough, by v.i real, the eigenvalues are v
plus an adjustment that is pure-imaginary to leading order, hence certainly
nonreal. Hence, for r > 7., if the eigenvalues were real before, they have

become nonreal.

co < 0. Hence, ) = —.

1
Then for 0 < r < rei, 2 = |co| — — >0, s0 0 = 0. For r close enough to 7.,
T

(7.4.7) gives that

— Veri 2mik .
lim M—exp(ﬂ—m> —i(-1)f, k=0,1  (7.4.14)

T—Terit |Vk (7’) — Vcrit| a

S0 V(7)) = Veris + (Vk(T) — Viig) 1s the sum of v, and a leading-order-imaginary

term.
1
For r > ret, 2 = |co] — — <0, s0 8 = —7. For r close enough to e, (7.4.7)
T
gives that
o U(7) = Verit 2mik K
| _—t = = (-1 k=0,1 7.4.15
Tﬁlglrit l/k(T’) — Vcrit‘ eXp( 2 ( ) ’ ( )

Hence, for r > req, v(r) is real, at least asymptotically. Thus, as r increases
through 7., the eigenvalues transition from surely nonreal to approximately

real.
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To see that both cases occur (at least if the calcuations are accurate), we refer to
Figures 7.1 and 7.2, which show the calculated eigenvalues starting from the unper-
turbed eigenvalues of 19, 20, 21, 22, 23. In particular, the eigenvalues from 19 and 20
appear to pass through a zero of the derivative and become purely complex in the
(19,20) interval, and re-coalesce to the real line inbetween 22 and 23. Then one of
the eigenvalues returned to the real line becomes complex again after colliding with
the descendant of the v = 23 unperturbed eigenvalue.

Therefore, the zeros of the derivative seem to dictate the switch from real to
non-real eigenvalues.

We do not have, however, any proof that if the first v-derivative of M (v;b) is zero,
the second v-derivative is nonzero. In theory, if M (Veit,b) < 0, many succeeding v-
derivatives could be zero at v = v, — though not all of them, by M (v, b) nonconstant
in v. Also, Lemma 2.6.4 is not quite strong enough to prove that the inverses above

are real. More work is needed here.
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Behavior of Eigenvalues v under Perturbation by i r (&(x - 2) - &(x + 2)), rin [10, 20]
Im w

06F »
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o2l . an—
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=003
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Figure 7.2: A close-up of the right-hand side of the previous figure, plotting the evo-
lution of the v = 19, v = 20, and v = 23 eigenvalues of Lpc(ir,2) as r
increases. The second and third diagrams explicitly graph M (v;2) and
its first v-derivative.
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Appendix A
CONSTRUCTION OF THE PERTURBED OPERATOR

A.1 Background: Theory of Sectorial Quadratic Forms

Only certain quadratic forms will be useful for creating operators — the densely defined,
sectorial, and closed quadratic forms. “Densely defined” is self-evident — © (t) should

be densely defined. We now discuss sectoriality.

Definition A.1.1 ([Kat95, Chapter VI, Section 1.2, pp. 310-311]). Fix H a Hilbert
space, with norm |||, and let t : £ x £ — C be a quadratic form on a linear

submanifold £ of H. The numerical range of t is the set
N(t) = {t(u,u) :uec L, |ul|y=1}. (A.1.1)
The form t is called sectorial if 9U(t) is a subset of a sector of the form
larg(¢ — )| <6, 0<0< g, 7 real. (A.1.2)

Sectoriality is also a sensible concept for operators.

Definition A.1.2 (|[Kat95, Chapter V, Sections 2.2 and 3.10, pp. 267-268, 278-280]).
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Fix H a Hilbert space, with inner product (-, )% and norm || - ||, and T" a (possibly

unbounded) operator on a domain ® (T) C H. The numerical range of T is the set
N(T) :={(Tu,u)y :u € D(T) : ||lul|ly =1}. (A.1.3)

T is called sectorial if M(T') is a subset of a sector of the form in (A.1.2). T is called
m-sectorial if it is sectorial, and there is no proper extension T of T such that T is

sectorial, or even obeys the weaker criterion
m(f) C{CeC:ReC>c}, ceR (A.1.4)

Again, the form T is called bounded below if M(T) C [y,00) for some v € R, or

equivalently,

(Tu,u) > Ml 7 €R. (A.15)
Before continuing, we note certain special types of sectorial forms and operators.

Definition A.1.3 ([Kat95, Chapter 6, Sections 1.1-2, pp. 309-310]). Fix H a Hilbert
space, with inner product (-,-); and norm || - |3, and t: £ x £ — H a sesquilinear
quadratic form on a linear submanifold £ of H. t is called symmetric if for all

u,v € D (1),

t(v,u) =t(u,v). (A.1.6)

We call a symmetric form bounded below if DM(t) C [y, 00) for some v € R; or equiva-
lently
t(u,u) > y|lull?>, veR. (A.L.7)

If (A.1.7) holds, we say that t > .

Definition A.1.4 ([Kat95, Chapter V, Sections 3.3 and 3.10, pp. 269, 278|). Fix H a
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Hilbert space, with inner product (-, )3 and norm ||-||3, and T a (possibly unbounded)
linear operator on a linear submanifold © (T') of H. T is called symmetric if for all
u,v €D (T),

(Tu,v)y = u, Tvy,. (A.1.8)

We call a symmetric operator bounded below if M(T') C [v,00) for some v € R; or
equivalently

(Tu,uw)y > yllul®>, v R (A.1.9)

Clearly, symmetric forms (resp. operators) that are bounded below are sectorial
form (resp. operators).

We now define closedness of a quadratic form.

Definition A.1.5 (|[Kat95, Chapter VI, Section 1.3, p. 313]). Fix H a Hilbert space,
L a linear manifold in #H, and t a sesquilinear quadratic form on £. A sequence

{un} 2, in L is called t-convergent to u € H if and only if

lim w, = u, (A.1.10a)
n—oo
t (uy — U, Uy, — Up,) — 0 a8 MM — 00, (A.1.10Db)

. t
In symbols, we write u,, — u.

The form t is closed if, whenever u,, BN u, we have that

wuelL =29, (A.1.11a)

lim ¢ (u, —u,u, —u) =0. (A.1.11D)

n—oo

Since it will be used later, we also define the closure of a quadratic form and the

concept of a core.
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Definition A.1.6 ([Kat95, Chapter 6, Section 1.4, pp. 315-317]). A sectorial form
t is said to be closable if it has a closed extension. If closed extensions exists, the
closure t is the smallest closed extension.

Suppose that t is a closed sectorial form on a linear manifold £, and let £’ be a
linear sub-manifold. £’ is called a core of t if the restriction t' of t to £ x L' has

closure t.

Once we have the closed, densely defined, sectorial sesquilinear form, the existence

of a corresponding operator is guaranteed with the first representation theorem.

Proposition A.1.7 ([Kat95, Thm. 2.1, Cor. 2.4, and Thm. 2.6, pp. 322-323|). Let
t(u,v) be a densely defined, closed, sectorial sesquilinear form in a Hilbert space H,
with inner product denoted (-, -),, and induced norm ||-||». There exists an m-sectorial

operator T such that:

i) D(T) CD(t) and
t(u,v) = (Tu,v)y (A.1.12)

for allu € © (T) and v € D (t).
ii) ©(T) is a core of t, and
i) ifue®(t), weH and
t(u,v)y = (w,v)y (A.1.13)
for all v in a core of t, then u € D (T) and Tu = w.

The m-sectorial operator T is uniquely determined by the condition i). Moreover, we

have the following.

a) If S is an operator with © () C D (t), and

t(u,v) = (Su,v), (A.1.14)
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for every u € © (S) and every v belonging to a core of © (t), then S C T.

b) If t is symmetric and bounded from below, then T is selfadjoint and bounded

from below.

We also have the second representation theorem, for self-adjoint operators. We

need some definitions, however.

Proposition A.1.8 (|[Kat95, Chapter VI, Thm. 2.23, pp. 331-332|). Let b be a
densely defined, closed symmetric form, h > 0, and let H = H; be the associated

selfadjoint operator. Then we have © (HI/Q) =9 (t) and
t(u,v) = (H?u, HY?v). (A.1.15)

Of course, a classic example of the use of Proposition A.1.8 is an application to
the harmonic oscillator itself. We now prove Lemma 2.3.4; in fact we prove something

stronger.

Lemma A.1.9. There exists a positive, self-adjoint square root of LY; we write it

as (L%)'2. Moreover, ® ((L%0)"?) =D (t%4) = D1, and for all u,v € D,

€0 (ul@). v(x)) = ((L30)*u(x). (L) *0(2)) 1age, (A.1.16)

In particular, we note that

(L%0) 2 hi(z) = V2K + 1hi(z). (A.1.17)
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Proof. We note that for all u(z),v(z) € D (L)),

(Lhou(@),v(x)) oy = (—u(2) + 2uz), v(2)) 1

(A.1.18)

(—u"(2),v(2)) 2y + (#°u(), v(2)) 12 )

Each inner product in the last line of (A.1.18) simplifies. For the second one, by x

real, T = x, so we have that

zu(z)zv(x) de (A.1.19)

= (vu(z), 20(2)) 2 g)

Next, it is known (see, e.g., [Fol99, Exercises 8.8-9, p. 246, and Exercise 9.31, p.
308]) that u € H*(R) for some k € N implies that u(x), v/(x), v(z), and v'(z) are
absolutely continuous; therefore, integration-by-parts works, and hence by (2.1.4), we

note that

(" (2), 0(2)) gy = (4 (2), ' (2)) g (A1.20)

(This can also be justified with the Fourier Transform through (2.1.4) and (A.1.19)).

Altogether, then,

(L%OU(JZ), U(ZE))LQ(R) = (—’LLH(.T), U(x))LQ(]R) + (ajzu(x)’ ’U(m))Lz(R)

(A.1.21)
= (U/(x)yvl(x))m(m + (SUU(17)>5UU(~’U))L2(R)~
Yet the final expression in (A.1.21) is clearly defined for u, v in the set
D, ={f e H'R) : zf(x) € L*(R)}. (A.1.22)
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We therefore define the quadratic form t%o on ®; x ®; by setting

tho (u,v) = (u/(2),v'(2)) oy + (vu(2), 20(2)) 12 (A.1.23)

Manifestly, t%o is densely defined, sesquilinear, and symmetric, and
2 2
to (u,u) = Hul(x)HLQ(R) + qu(@HB(R) > 0,

so tfjo > 0; hence, tj, is certainly sectorial. The closure of tj}, follows along the
same lines as the closure of the form t,; discussed below, so we omit the proof.
By the first representation theorem (Proposition A.1.7), there exists an operator H
coming from the quadratic form ), self-adjoint by part b), and by part a), it is clear
that L{;, € H. Yet since LY, and H are both self-adjoint, with domains contained
in © (t%o) = ©;, by standard uniqueness theorems (e.g., Reed/Simon volume 2,
specifically [RS75, Thm. X.23, p.177]) it follows that L%, = H.

Then by the second representation theorem (Proposition A.1.8), we have the state-
ment that D ((L{o)"?) = D;.

The only thing left to show is that (L%o)"? has the expected effect on Hermite

functions, i.e,

(LYo) 2Ry (z) = V2K + 1hy(z). (A.1.24)

Yet of course, by the (hy(x)),—, an orthonormal-basis, and the properties of the

Harmonic Oscillator Operator, and the Second Representation Theorem, we have for
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all j, k € N,

(25 + 1) = (25 + 1)(hy(2), hi(2)) 2y
= (L%ohj@),hk(x))m(m (A.1.25)

= ((L%O>1/2hj($)7 (L%O)l/Qhk(‘T))LQ(R)a

so in particular,

|(L8o)"?ha() =2k +1, keN,. (A.1.26)

HLz(R)

Moreover, we have that for all j, k € Ny, by (L% )"? self-adjoint, [(L%o)Y%% = LY,

and properties of the Hermite Functions,

((Liio) 2y (), ha()) 1. L2R) ~ ok 4+ 1 ( (Lho)'/hy(x), (2k + 1)hk(m))L2(R)

1_1_ (L) ?hi(x L%Ohk(x>)L2(R)
— 1+ ((Lyo) V2h(x (L%O)l/Q(L%O)l/Qhk<x))L2(R)
_ 1+ ((L%o) V2(L%o)?hi(x), (L%O)I/Qhk(x)>L2(R)
— 2k1+ (Liohi (@), (L) *hy(x ))L2(R)
= ;éii(h] (LYo) ?hyy(x ))LQ(R)
_ 2] + 1( L) h; (2 hk(;p))LQ(R),

(A.1.27)

so if ((L{o)"?h;(x), hi(2)) poggy # 0 2 +1 =2k +1, 50 j = k. Hence, (L%o)?h;(x)
must be a multiple of h;(x). Combined with nonnegativity of (L%)"/? by definition,
and (A.1.26), (A.1.24) follows. O
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A.2 Application to the perturbed Parabolic Cylinder Opera-

tor

To apply the theory of the previous section, we use the quadratic form defined by

@ (tz,b> = @1

l(uw),v(x))m(m (A.2.1)

e (,0) 1= (0 (2), 0 () gy + (o), 202 gy —

+ zu(b)v(b) — zu(=b)v(=b), wu,v € D,
By Lemma 2.4.3, S C ©; = D (t,;), so we immediately have that t,; is densely
defined. To use the first representation theorem, Proposition A.1.7, we must show

that t,; is sectorial and closed. We start with the proof of sectoriality, which uses a

definition and a lemma.

Definition A.2.1. For f a bounded continous function on R, let || f||unir denote the

uniform norm or sup-norm over R:

[ {lunie = ilelgf(fﬂ)!- (A.2.2)

Lemma A.2.2. For all € > 0, there exists M = M(e) such that for all f € H'(R),

1/ llunis < €||U/($)||L2(R) + MHu(:E)”LZ(]R)‘ (A.2.3)

Proof. We first note that by u € H'(R), u is absolutely continuous on any finite
interval (for the second part, see [Fol99, Exercise 8.9, p.246, and Exercise 9.31, p.
308]). We know that the product of absolutely continuous functions on an interval
is absolutely continuous on the same interval, with the expected integration-by-parts

formula (see, e.g., [Fol99, Exercise 3.35, p. 108]). Thus, we have that for a, ¢, —0co <
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a < c< oo,

u?(c) — u*(a) = /C 2u(x)u (z) dx (A.2.4)

Yet by u € H'(R), u(x) and u/(x) are in L*(R), so 2u(x)u/(x) € L'(R). Hence, we
know by the Dominated Convergence Theorem that

[

agrjloo(u2(c) —u*(a)) = aEIEloo 2u(x)u(z) dx

. e (A.2.5)
= / 2u(x)u'(z) d.

—0o0

In particular then, we know that lim u*(a) exists, so lim |u®(a)| exists. Yet this
a——00 a—r—00

latter limit must be zero: if lim |u®(a)| = C # 0, then there exists M > 0 such that
a—r—00

for a < —M,
‘|u2(a)| - C’| < %
(A.2.6)
()] > <
2
and so the set
{r €R: |u*(x)| > %} (A.2.7)

has infinite measure, containing the interval (—oo, —M). Yet this would force

0 2 -M
/ |u(m)\2dx2%/ ldzx = oo,

contradicting u € L*(R).

Hence, lim |u*(a)| =0, so by (A.2.5),

a—r—00

w¥(c) = / " du(e)d(2) do

—00
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and thus

(o) < ‘ / Oo 2u(z ) (z) do
< 2/00 () (z)| da (A.2.8)

< 2/00 \u(z)u' (z)| de = 2||u(z)u' (z)|| L1 (r)-

oo

By Cauchy-Schwartz, this is bounded by 2|[u(2)|| j2gllt/ (%) || L2y We may rewrite

this, for any € > 0, as

2 (6||u’(x)||L2(R)> : (%Hu(w)llm))

By the standard estimate 2o < o + 3 for real «, 3, we have that

1 , 1
2 (W@l - (o ) < (0@ + 0 )

Finally, we know for positive a, 3 that o® + 3> < (a + 3)?, so we have

) 1 1 2
e (@) 72y + S lul@) e | < el () 2wy + —llu(@) 2wy | - (A2.9)
® T2 (R) .

Altogether, then,

1 2
ol < (el + )

(A.2.10)
1
[u(e)] < ellw’ (@) g2y + (@)l 2 y-
. , 1
This works for all ¢ € R, so letting M (e) = —, we are done. [
€

DO | —

2
With this estimate, one straightforwardly adapts the p(z) = 1, ¢(x) = % —
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r(x) = s(x) = 0, a = —b case of Example 1.7 of Chapter VI on pp. 312-313 of

[Kat95] to show:

Lemma A.2.3. t.; is sectorial; indeed, the aperture of the sector in which N(t. ) is

contained can be made arbitrarily small if the offset v is taken large enough.
We now must show that t,; is closed. We use a lemma.

Lemma A.2.4. Suppose that (u,)}~, is a sequence in L*(R) such that for some
continuous function ¢ : R — C, o(z)u,(z) € L*(R) for all n € N. Further suppose
that there exist u, ® € L*(R) with u,(x) L), u(z) and o(x)u, () L&), ®(x). Then
o(x)u(z) € L*(R) and ®(z) = o(z)u(x) almost everywhere (with respect to Lebesgue

measure).

2
Proof. Since u,(z) Lr®, u(z), we have by the standard theory of integration, e.g.,

[Fol99, Cor. 2.32, p. 62], that there exists a subsequence (ny),-, with w,, — u point-
wise almost everywhere (with respect to Lebesgue measure). (Hereinafter, “almost
everywhere,” is assumed to refer to Lebesgue measure and is abbreviated a.e..) Then,

of course, multiplying by ¢,

o(x)ty, () = p(x)u(x) forae zeR (A.2.11)

L*(R)
e

Yet we know that ¢(x)u,(x) (), so since subsequences have the same limits

as the full sequences,
Jim p(2)un, () = B() i L3(R),
—00
and hence by the standard theory again, there exists a further subsequence (ng,) -,
with
lim @(z)un,, (v) = ¢(x) forae z€R (A.2.12)

l—00
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Yet again, by subsequences having the same limits as the full sequences, we have that

lim ¢(z)un,, (r) = p(z)u(z) forae zeR (A.2.13)

{—00

Therefore, p(z)u(x) and ®(x) are the same functions pointwise a.e., so @(x)u(zx) €
L*(R) and
e(x)u(z) = &(x) for a.e. x € R, (A.2.14)

and hence, by ® € L*(R), ¢(x)u(z) € L*(R). O

Corollary A.2.5. If (u,)> | is a sequence in H'(R), and there exist functions u, ¥ €
L2(R) du, L2(R) du

L*(R) such that v, — u and - W, then u € H'(R) and ¥ = e
x T

Proof. Let (u,)°”, is a sequence in H'(R), such that the functions u, ¥ in L*(R)

L*(R) duy,

. L*(R . .
exist such that u, —— wu and L> V. Then taking the Fourier Transform,

x
and applying the norm-preservation of the Fourier transform and the inequality (IX.1)

of |[RS75, p.2|, we know that

w(6) 25 a(e) (A.2.153)
and
icim(€) 25 (e (A.2.15D)

Applying Lemma A.2.4 with x = £, ¢(§) = i and ®(§) = \/1\1(5), it follows that
i€(€) € L*(R) and i€u(¢) = U a.e. In particular, u € H'(R). Taking the inverse
Fourier Transform, it follows that

du, L2Rr) du

— 5 A.2.16
dx dzx ( )
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Lemma A.2.6. t.; is closed.

Proof. Suppose that there exists (u,)>-, € D (t.;) and u € L*(R) such that the

conditions

L2(R)

t.p (Un — U, Uy, — Up,) — 0 a8 MM — 00, (A.2.17h)

u(z), (A.2.17a)

hold. First, note that by the definition of t,p,

du,  du,, 2

dx dx

tz,b (un — Um, Up — um) = ‘
L2(R)

(A.2.18)

case of Lemma A.2.2, we have

1
Also, note by u,, and wu,, in © (t, ), by the e =
4y/12]
that
|21 (b) = w0 (b)] = 2|t (=) — (=) ||

< [l - un(b) = um (B)* = 2] - [1n(=b) — um(=0)|*

2

S 2 P — +M un xT) — U/m x

| |(4 Bl P 4 () ()”L2<R>> (A.2.19)

1 ||du du,, ||?

<4 t_ n M2 n - Um ;
< 42| (16|z| o s . + M*||uy(z) —u (ZE)HL2(R)>

1 dun dum 2 2 2
o ok ISR R
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where in the next-to-last line we used the inequality for nonnegative constants «, 3,
(a+p)* < 2(a® + 7).
Therefore, we have by (A.2.18) that

’tf%b (uﬂ — Um, Up — um) ’ Z

2

S du, du, + 4 H2

—_—— — —xw, — zUum||;2
|| dx dx [2(R) 4 L2(R)

1 2

- §Hun - umHLQ(R)

— ‘z|un(—b) — Uy (—D)|? — 2|up(—b) — um(—b)|2‘ (A.2.20)

3\dun,  du ||?
> Z||ZZn o 2Tm
— 4| dx dx L2(R)

2
+ o = 2o

1 2
= (54432 ) T = e

Bounding Zqun - mumHig(R) below by 0, and rearranging, we have

du,  du, 2

dx dx

4
S 5 (|tz,b (un — Uy, Up — um) |+
L2(R) (A.2.21)

1 2
+ [5 + 4|Z!M2} [y, — Um”LZ(R))

By the hypothesis (A.2.17b), we know that as n,m — 00, [t,p (Un — U, Uy — Up,) | —
0. Yet we know by (A.2.17a) that u, converges to u in L*(R), and hence (u,)>; is

Cauchy in H, so as n,m — o0,

[[tn — umHL?(R) — 0.
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Hence, by the Squeeze Theorem,

— 0 (A.2.22)

du, \ ™. . : .
ie., (dL> is Cauchy in the Hilbert space L*(R), hence convergent: there exists
x

duy, :
some W(x) € L*(R) such that di — W(z). By Corollary A.2.5, it follows that
T

n=1

u € H'(R) and
du, r2®r) du
h

— —. A.2.23
dx dzx ( )

On the other hand, if we start with (A.2.20) and bound the derivative norm below

by 0, we have that , we have that

|tZ,b (’LLn — Um, Up — um) | >

> qun - wum”iZ(R) (A.2.24)

1 2
— <§ + 4|Z|M2> ||l un, — um||L2(R)'

R

Rearranging,

qun - xumH22 S 4|tz,b (un — Um, Up — um) |
P (A.2.25)

2
+ (2 + 16[2|M)||u, — umHL?(R)

Yet again, both terms on the right-hand side become arbitrarily small for m, n large
enough, and hence we see that (zu,(z))’", is Cauchy in L?*(R), hence convergent.

By Lemma A.2.4, with ¢(z) = z, it follows that zu(z) € L*(R) and

Uy () LGN zu(x). (A.2.26)
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Thus, v € ® (t,,); moreover, we see that by definition of t,,

tp (up — u, up — u) (A.2.27a)

_ ‘ duy _du]” (A.2.27h)
dr  dz ||z,

+ iﬂmzn(x) — :Eu(x)HQLQ(R) (A.2.27¢)

— ) = () g (A2.274)

+ 2| (b) — u(b) > — 2|un(—b) — u(—b)|? (A.2.27e)

By (A.2.23), the norm in (A.2.27b) tends to 0 as n — oco. By (A.2.26), the term in
(A.2.27¢) tends to 0 as n — oo. By (A.2.17a), the term (A.2.27d) converges to 0 as
n — oo. Replacing u,, by v in (A.2.19), and using both (A.2.23) and (A.2.17a), the

terms in (A.2.27¢) converge to 0 as n — oco. All in all, we see that

lim ¢, (u, —u,u, —u) =0, (A.2.28)
n—oo
as required. t,; is indeed closed. O

Remark A.2.7. By similar arguments, one may indeed show that 3,5 is closed, as

we indicated earlier.

Before continuing, we need a technical lemma, stating essentially that stating the

effect on the Schwartz class S is enough to describe the quadratic form above.
Lemma A.2.8. S is a core for t,;.

Proof. In fact, we will show that finite linear combinations of Hermite functions are
a core for t,;; the Hermite functions are in S by Proposition 2.2.2, hence finite linear

combinations of them are.
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The trick is to use Lemma 2.4.4 and its proof. For any u(z), v(z) in ©;, then by

Lemma 2.4.4, we have that u(x), v(z) are in ¢(£;), i.e., we have that

u(a) = exh(), (ck)ios (Ve + 1), € 2 (A.2.29a)
v(r) = iakhk(:ﬁ), (ar)rey, (axVEk + 1), € 12 (A.2.29b)

J
us(x) =Y exhp(z), JEN, (A.2.30a)
k=0
J
vy(x) = Zakhk(x), J € Ny, (A.2.30b)
k=0

then zu,(x) L®, zu(z), and similarly for zv;(x); moreover, for all J € Ny, u;(z)

and v;(z) are in S. Therefore, by a consequence of the Schwarz Inequality (see, e.g,

[Fol99, Prop. 5.21, p. 173])

i (a1 (2) 05 (2)) e = (), 20(a)) gy (A231)
. —~ L2(R) . —~ L2(R) , . . .
Similarly, we have that {uy(§) —— u(€) and &0y(§) —= v(§), which implies by
L2(R) L*(R)

(2.1.4) that u/;(z) — u/(x) and v/;(x) —= v'(x). Hence,

lim () (@), 05 (2) oy = (20(2), 20(2)) 2 ey (A.2.32)
2
Finally, by Lemma A.2.2 and the more immediate fact that u;(x) ®, u(z) and

2
vy () LN v(x), we know that Jlim uy(b) = u(b) and Jlim vy(b) = v(b), similarly for
—00 —00
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—b. Hence,

lim zuy(b)vy(b) — zuy(—=b)vs(—=b) = zu(b)v(b) — zu(—b)v(—b). (A.2.33)

J—00

Combining (A.2.31), (A.2.32), and (A.2.33), we have that
Tim top (ug(2),v5(2)) = tap (u(@), 0(2)), (A.2.34)

for all u(z),v(z) € ©;. The u; and v; are finite linear combinations of Hermite
functions and hence are in §. Thus, the closure of fz,b’3 contains t,;. Since t, is

closed, the reverse inclusion holds. Hence, S is a core of t, . O

Now we may invoke the first representation theorem, and construct a closed,
densely-defined operator — call it L (2, b) — from the application of Proposition A.1.7.
The question is why Lpq(z,b) has anything to do with the operator Lpc(z, b) defined
in (3.3.1).

Proposition A.2.9. For allb> 0 and z € C, LL(2,b) C Lpc(z,b).

Proof. For any y € © (Lllpc(z, b)), Lo(z,b)y € L*(R) by definition. Recall that any

L? function f forms a tempered distribution under the rule

' o)s s = / f(@)o(a) dz, o(z) € S. (A.2.35)

Note that we have that for f € L*(R),

(f, ) rem) = /f(w)so(:v) dr = (f,D)s s (A.2.36)
R
but since the Schwartz class is closed under conjugation, this causes no essential

difficulty.
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Now, suppose u € D (Lp(z,b)), so that Lps(z,b)u € L*(R). On the one hand,

by (A.2.36), we have that for all p € S,

(Lbc(2,b)u,0) ey = (Lbc(2,b)u, B) g, s (A.2.37)

On the other hand, by property a), we know that for all p(x) € S, which are certainly
iIl @ (tz,b)7

(LIIZ’C<Z7 b)uv 90) L2(R) = tz,b (u7 SD) (A238)

and writing this out, we have

(u'(2), ¢'(%)) 2y (A.2.39a)
+ (o), () o (A.2.390)
— S (u(a), 9()) oy (42390
+ zu(b)p(b) — zu(b)p(—b) (A.2.39d)

We convert these to distributional form. For (A.2.39a), by (A.2.36), we have that

(t(2). (@) oy = (P @)) | (A.2.40)

Yet by the rules of (tempered) distributions and derivatives, this simply becomes

—<u"(x),m>8/78. (A.2.41)

For (A.2.39b), we apply (A.2.36) and then move the x over to the other side, since
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forr e R, 7 =ux:

r*u(z)o(z) de (A.2.42)

S,S

For (A.2.39¢), a straightforward application of (A.2.36) holds. Finally, for (A.2.39d),

we have that

2u(b)p(®) = 2u(D){5 (x —0) 2w)) = (zu(®)s(x=0).0@)) . (A243)
and similarly for —zu(b)p(—b). Putting it all together, we have

(Llli’C(zv b)“v 90) L2(R) =

_ <_u~(x) ¥ gu(a) — Sulx) + 2u(b)d (o —b) — (A.2.44)

—zu(—b)3 (z + b) ’m>5,,3

Comparing with (A.2.37), and noting that conjugation preserves the Schwartz class,

we see that Lpq(z,b)u(r) and

_u(z) + ixQu(x) - %u(x) +2u(B)S (2 — b) — 2u(—b)d (z + b) (A.2.45)

are identical as distributions. Yet Lpo(z,b)u is an L*(R) function, so it follows that
(A.2.45) is an L*(R) function. In other words, u € ® (Lpc(z,b)) and Lpo(z,b)u =
Lpc(z,b)u. This works for all u € D (Lpc(z,b)), so Lpa(z,0) € Lpc(z,b). O

Proposition A.2.10. For all b > 0 and z € C, Lpc(z,b) C Lpg(z,b).
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Proof. Fix b > 0, z € C, and y € D (Lpc(z,b)). Then Lpc(z,b)y(z) € L*(R), so by

(A.2.36) we can write, for any ¢ € S,

(Lec(zb)y(@). ©) 12 = (Lre(z By(@), o@)) | (A.2.46)
and by writing out and separating the terms, this works out to

—(y'(2).v@))
= %<y(x),@>&s (A.2.47)
+2yO)(8 (= b).p(@))

— 2y(=0)(8 (x + ), o(@))

S8

Yet reversing the work of the previous section, this simply becomes

1
+ Z<:z:y(x), w(x)>5,7$ (A.2.48)

) Sp(gg)>3/7$ +2y(b)p(b) — zy(b)p(-b)

Moreover, for all y € D (Lpc(z,b)), ¥ () € L*(R) and zy(x) € L*(R), so we can
convert (A.2.48) to (A.2.39) by (A.2.36). In other words, for all y € ® (Lpc(z,b)),

and all ¢ € S, we have that

(Lpc(2,b)y(2), 9()) o) = tp (y(@), (7)) - (A.2.49)

This works for all y(z) in © (Lpc(z,b)) and all p(z) in S, which by Lemma A.2.8 is

a core of t,,. Hence, by part a) of Proposition A.1.7, Lpc(z,b) C Lpc(z, b). O
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To finish the proof of Propostion 3.3.1, we now must establish certain remaining

properties.
Lemma A.2.11. For allr € R and b > 0, Lpc(r,b) is self-adjoint.

Proof. The main idea is to use part b) of the first representation theorem, Prop. A.1.7.
We must show that Lpc(r, b) is symmetric or bounded below. To show symmetry, we

must show that for b > 0 and r real,

tp (v(2),u(z)) = t.p (u(z),v(x)). (A.2.50)

Yet by the inner product (u,v);- (r) havind the desired symmetry, the individual terms
(W' (2),V'(2)) 2y (@), 20(2)) 2Ry u(b)v(b), and u(—b)v(—b) are quadratic forms
with the desired symmetry, and by r real, they are multiplied by real weights, and so
the whole expression has the desired symmetry.

We already showed that Lpc(r,b) is sectorial, which in particular implies that
MN(t,.,) is contained in a half-plane of the form {¢ € C: Re( > ~v}. Since symmetric

forms have numerical range on the real line, we have that Lpc(r, b) is bounded below.

We may now use part b) of Prop. A.1.7. O
Lemma A.2.12. For allb > 0 and z € C, Lpc(z,b) has compact resolvent.

Proof. We first show that for any fixed b > 0, the family {t.;, : z € C} of forms is
a holomorphic family of quadratic forms of type (a) in the sense of Kato ([Kat95,
Chapter VII, Section 4.2, p. 395]). This means that all of the forms have the same
domain, and for any w(z) in that domain, t,, (u(z),u(x)) varies holomorphically in
z. Of course, t,;, was defined on ©; independently of z, and for fixed b > 0 and
u(x) € D1, top (w(x),u(z)) is linear in 2! Thus, the requirement is satisfied.

It follows that for fixed b > 0, the family {t.; : 2 € C} is a holomorphic family of

quadratic forms of type (a) in the sense of Kato ([Kat95, Chapter VII, Section 4.2, p.
135



395]). The family of associated operators {Lpq(z,b) : 2 € C} = {Lpc(z,b) : z € C}
is called a holomorphic family of quadratic forms of type (B) in the sense of Kato
(|[Kat95, Chapter VII, Section 4.2, p. 395]). This is valuable because by [Kat95,
Chapter VII, Section 4.2, Thm. 4.3, p. 396|, the members of a holomorphic family of
type (B) either all have compact resolvent, or none do. Yet by Proposition 3.2.1, L
has compact resolvent, and for any b > 0, it is clear from (3.3.1b) that Lpc(0,b) =
LY. Therefore, we may indeed conclude that for any b > 0, for all z € C, Lpc(z,b)

has compact resolvent. O

This finishes the proof of Proposition 3.3.1.
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Appendix B
PROOF OF CONTINUITY AND JUMP CONDITIONS ON
EIGENFUNCTIONS

B.1 Reminders on Distributions

In this section, we give the promised proof on the jump conditions on eigenfunctions,

namely Proposition 3.3.2. To do so, we remind ourselves of the “regular” distributions.

Definition B.1.1. Fix © open in R. Let C_7

epet (§2) denote the set of C'™° functions

compactly supported in Q2. A distribution on € is a continuous linear functional on €.
We denote the space of distributions on 2 by D'(£2). We denote the pairing between
(2) by

a distribution F and a test-function ¢ € Cg,

(F\0) priay, .. ()" (B.1.1)

cpct

Lemma B.1.2 (Locally integrable functions and distributions; e.g., [Fol99, p.283]).
The analogues of (A.2.35) and (A.2.36) hold for “regular” distributions; i.e., we have
that for all f € L*(R) all Q open in R, and all o € C, (%),

cpct

cpct

(f,0) by, o= () :/f(x)cp(m) dzx. (B.1.2)
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Moreover,

(fs @) 2w = /f(f)mdf = ([, P) o). oz, (B.1.3)

R

B.2 The Proof

Proof of Proposition 3.3.2. Fix b > 0 and z € C. Suppose that y(z) € © (Lpc(z,b))
is an eigenfunction of Lpc(z, b). We first show that y(z), restricted to (b, 00), is C™° on
(b,0); the infinite differentiability on the other intervals will follow similarly. First,
since y € D (Lpc(2,0)) € D (t.p) = D1 € H'(R), it is continuous, in L*(R), and
satisfies Lpc(z,b)y(r) € L*(R), so both Lpc(z,b)y(x) and vy(x) form distributions

n (b,00) in the manner of (B.1.2). Yet of course, for any ¢ € C, ((b,00)), we have

cpct

that ¢(b) = 0 and p(—b) =0, so

<LPC(va)y(:E)790(37)>D’((b,oo)) C39e ((b,00))

" 2 1
={ '@+ 7 5 )y) e
D/((bvoo)) cpct((b OO))

+ (zy(0)d (x — b) — 2y(—=b)d (z + D), 80(37»13/((1;,00)) 0524 ((b,00))

" |
=(—y'(z)+ 73 y(x), ¢(x) +0,
D/((b,50)), O, ((b,09))

Cpct(

(B.2.1)

since of course the point masses at +b do not affect functions that are 0 at them. Yet

since y is a v-eigenvector, of Lpc(z,b), it follows that

(vy(z), 80(1‘)>Df((b,oo)), C39 ((b,00))

= (Lpc(2,0)y(2), 9(2)) pr((h,00)), C32.0 (b.00) : € Copet ((b,00))

" 2 1
-y (x) + T2 y(x), o(x)
D' ((b,00)), C&5et ((b,00))

(B.2.2)
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or

<—y"(w) 4 <%2 _ [u + %D y(x), go(x)>D/((b,oo))ycoo W= (B.2.3)

cpet

for all ¢ € C2

epct ((0,00)). In other words, defining the differential operator

Ly:=—y" + (%2 - {u + 1D y(x), (B.2.4)

, for all eigenfunctions y of Lpc(z,b), Ly is indistinguishable from the 0 perturba-
tion as a distribution on (b, 00). Moreover, L is an second-order elliptic differential

operator, since its principal symbol is

P2($7§) - _527
which clearly satisfies

Py(x,€) # 0 unless £ =0,z € RR.

2
x
Because of the ” term in the zero-order term, all we can say is that L has C*° coeffi-

cients. By the Local Regularity Theorem and its corollaries (see Folland, Introduction
to Partial Differential Fquations, in particular|Fol76, Thm. 6.30 and Cor. 6.31, pp.
269 — 270]), it follows that since Ly = 0 in D’((b,0)), and since 0 is C*°, then y is
C*(b, 00).
We now show that y satisfies (3.3.3) on (b, 00), i.e., “weak solutions with sufficient
regularity are classical solutions.” First, we note that by that —y”(z) on (b, o0) can
2

now be considered the classical, and continuous, derivative —d—‘z(x), the left-hand
T

element of the distribution pair (B.2.3) is now continuous, hence locally integrably,
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so for all ¢ € Cgy (b, 00)),

" x? 1
0={—y"(x)+ T |vt3 y(z),
D/((5,60)), €24 ((b:50))

- [{-5w+ (5[] v }ewras

For any o, 3 in R, b < a < 8 < oo, we can take a series o, (x) of Cg5. ((b,00))

(B.2.5)

functions , uniformly supported in (o — €, 5 + €) for some € > 0, approximating the

step function

1
W(ap in L*((b,00)) norm. Hence, by Cauchy-Schwartz, for all
-«

d? 2 1
b < a < [ < oo, replacing the continous function —d—g(x) + (% - {y + 5]) y(x)
x

by its truncation to (a — ¢, 3 + ¢) for L*-estimates,

0= lm
= lim bw{—%(x) + (%2 -~ [v + %D y(m)}sﬂn(l‘) dx (B.2.6)

zﬁia/j_%(xw (%2— lu+%Dy(z)dx.

Yet we know that for any g(x) continuous on an interval (o, 3), for any ¢ € (a, ),

we have by averaging arguments that

lim 1 /CJrEg(:I:) dzr = g(c); (B.2.7)

see, e.g., [Fol99, Proof of Thm. 3.18, p. 97]. Hence, for any ¢ € (b,o0), we have by
(B.2.6) that




i.e., (3.3.3) holds at = ¢. This works for all ¢ € (b, 00), so (3.3.3) holds on (b, c0).
Similarly, (3.3.3) will hold on the intervals (—oo, —b) and (—b,b).

Now we must show that (3.3.4) holds; we show that (3.3.4b) holds, and (3.3.4a)
will hold Now, y is continuous. Also, since y(z) is a solution to (3.3.3) on (—oo, —b),
(=b,b) and (b, o), but by Proposition 2.5.1, any solution to (3.3.3) will freely extend
to an analytic function on C, we certainly have that the limits 3'(b+) and y'(b—),
and y'(—b+) and y'(—b—) exist. Then by iteration of [Fol99, Exercise 9.5, p. 289,

the distributional derivative y” satisfies on (0, c0)
/! d2y / / / /
y'(a) = 5 + ' (b+) =y (b=))d (& = b) + (¢ (=b+) — y'(=0=))d (z +b), (B.2.9)

but by hypothesis, y is an eigenvector of ® (Lpc(z,b)), hence is in L*(R) N C(R) and

satisfies

—y"(x) + (x—Q - 1) y(@) +zy(0)8 (x = b) — 2y(=0)d (x +b) € L*(R).

In particular, the point-masses must cancel, and the point-masses on the left-hand

side add up to

[zy(b) — (/' (0+) — ¥/ (0=))] 6 (x = b) + [—2y(b) — (¥ (—b+) — ¥/ (=b=))] 6 (z + D)
so to cancel the point mass at © = b

2y(b) — (i (b+) —y'(b=)) = 0

zy(b) = (¥ (b+) — ¥/ (b-));

(B.2.10)

i.e., (3.3.4b) holds. Similarly, (3.3.4a) holds. O
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Appendix C
IMPLICIT FUNCTIONS: PROOF OF DEAN’S RESULT

C.1 Preliminary Properties of any Implicit Function

Proposition 6.4.1 declares the existence of C' functions gi(z) : R — R such that
Dy, (myx = 0; i.e., we define v = g () as an implicit function of z. In this section, we
briefly note some properties that any implicit function on any subinterval of R must

satisfy. For our first result, we require a few lemmas.
Lemma C.1.1. D,(0) =0 if and only if v € 2Ng + 1.

Proof. Tt is known (e.g., [Tem14, Section 2, (12.2.6)] that

21//2
D,(0) = ﬁ—, (C.1.1)
T _Z + 1
(5+3)
and hence, exponentials being nonzero, it follows that D,(0) = 0 if and only if
1 1

(— g + 5) is one of the poles of the Gamma Function; i.e., <— g + 5) = —n for

some n € Ny. In other words,
D,(0) =0 if and only if v € 2Ny + 1. (C.1.2)
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Lemma C.1.2. Suppose that for some xy € R and vy € C, D, (xg) = 0. Then

% (D, (x)) #0. If xog >0, then 2 (D,(x)) £ 0.

ov

r=x0,V=V0 V=, L=xQ

Proof. Suppose, by way of contradiction, that for some xy € R and vy € C. D, (xy) =
0
0 and — (D,(x))

8ZE r=x0,V=V0

(3.1.1a), with initial conditions all 0, it follows by Proposition 2.5.1 that D, (x) = 0.

= 0. Then since D,,(x) is a solution to the v = 1 case of

Yet D, (z) was defined so that

D
lim w(?)

T—00 ;L‘Voe_x2/4

= 1. (C.1.3)

In particular, for x large enough, D, (x) # 0. Contradiction. Hence, if D,,(zo) = 0,

9 (D) 40,

ox

In the pﬁ(:)zzsl./s: y(())f proving Proposition 6.2.1, in particular the proof of Corol-
lary 6.2.9, we showed that for zp > 0, the zeroes of v — D,(xg), outside Ny
were simple and on the positive real v-axis. The exceptional case of zeroes of
v+ D,(z9) in N was handled in the proof of Corollary 6.3.6 (and again, Dy(z) # 0
for all x, being essentially an exponential). Hence, for all zo > 0, if D, (x¢) = 0,
9 (p, (@) £0.

It remairils::(gj}:lg;ondle the case xy = 0. Differentiating (C.1.1) with respect to v,

ov

and using the Product Rule and Chain Rule,

B VT2Y2 log V2
v=rv=uy r (_g + %)

v () 2 (o)

Yet D,(0) = 0 if and only if v = 2k + 1, k € Ny, by Lemma C.1.1. In this case,

(C.1.4)

z=(1-v)/2

the first term on the right-hand side in (C.1.4) zeroes, being a multiple of

1 d 1
Moreover, m has only a simple pole at z = —k, so 7 (m)
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other factors of the second term on the right-hand side of (C.1.4) are nonzero, hence

= (D, (0)) £0, keN, (C.1.5)

We now note a result about the implicit functions, at least on (0, 00).

Corollary C.1.3. Suppose that on any finite or infinite interval (a,c) C (0,00),
there exists a C* function g : (a,c¢) = RY with Dy, (z) = 0. Then ¢'(z) is never 0
on (a,c). In fact, ¢'(x) has a consistent sign on (a,c), so g is either increasing or

decreasing on (a, c).

Proof. Let (a,c) C (0,00) be an open interval, and suppose that there exists ¢ :
(a,¢) = R" be such that Dy (z) = 0. Fix b € (a,c). Then by the rules of implicit

differentiation, we have that

pp (Dy(z)) oy + 5, (Dy(z)) e g'(b) =0, (C.1.6)
" 2 (D)), .
’ _ 0= x=b,v=g(b)
g (b) = 7 (Dy($>>‘yzg(b)7x:b. (C.1.7)

By Lemma C.1.2, neither numerator nor denominator is 0, so ¢'(b) # 0. More impor-

tantly, since the map

b 2 (Dyeo()

8m z=b,v=g(b)

is real-valued and continuous on (a,c) (by the joint continuity of D, (z) in v and x),
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and is never 0 by Lemma C.1.2, it follows that it must be of one sign on (a, c) by the

Intermediate Value Theorem. Similarly,

b 2 (D)

v=g(b),x=b

is of one sign on (a,c). Hence, by (C.1.7), ¢'(b) is of one sign on all of (a,c). By

standard real analysis, e.g., O

Now, we show that g can be extended in whatever direction it is decreasing, at

least to a neighborhood of 0 on the left.

Lemma C.1.4. Suppose that on any finite or infinite interval (a,c) C (0,00), there
exists a C' function g : (a,c¢) — RY with Dyy(z) = 0. If g is increasing, then
g extends to a C* function on (—e,c) for some € > 0, still with the property that
Dy (x) = 0. If g is decreasing, then g extends to a function on (a,00), still with the

property that Dy (x) = 0.

Proof. We prove the case that g is increasing; the case that g is decreasing is similar.
Suppose, then, that on any finite or infinite interval (a,c) C (0,00), there exists an

increasing function g : (a,c) — RY with Dy, (x) = 0. Let

Ao :={d < a: g extends to a C" function on (d,c) with Dy (z) = 0.}, : )
C.1.8

ag := inf Ap.

a € Ay by hypothesis, so ag < a. Suppose, by way of contradiction, that ag > 0.
Then by ag being the infimum, for € > 0 arbitrarily small, then there exists a(e) € Ay,
ap < a(€) < ap + ¢, so in particular, g extends to a C' function on (ag + €,c¢) with
Dy(z)(z) = 0. This works for all € > 0, so g extends to a function on (ag,c) with

Dy(z)(z) = 0. Since g was increasing on (a, c), it follows from Corollary C.1.3 that g
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1
is increasing on (ag, ¢). Hence, g (ao -+ —) is a decreasing sequence in R. Yet Dy(x)
n
is never 0, so the sequence is bounded below by 0. A decreasing sequence, bounded
below, must have a limit; hence,

1
L:= lim g <a0 + —> exists and is > 0.
n

n—o0

We now show that L = lim+ g(x): on the one hand, for all z > ag, there exists n € N
x—>a0

1 .
with ay + — < z, so by decreasingness of the sequence and the function g,
n

1
L<yg (ao+ﬁ> < g(@); (C.1.9)
Hence,
liminf g(x) > L. (C.1.10)
x%aa‘

1
On the other hand, for all n € N, eventually x < ag + —, so
n

1
limsup g(z) < g (ao + —) , (C.1.11)
n

+
ZL'%(ZO

and this holds for all n € N; hence,

1
limsup g(x) < lim ¢ (ao + —) = L. (C.1.12)
z—agd nree n
Hence,
L = lim g(z), (C.1.13)
z—ad

as required.
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Moreover, D, (z) is jointly continuous in x and v, so

Dy(ap) = lim Dy (q) (x)
I—>a0

(C.1.14)
= lim 0=0.

+
x_>a/0

In particular, L # 0 since Dy(z) # 0 for all z, being a multiple of an exponential;

hence, L > 0. Moreover, by ag > 0, we have by Lemma C.1.2 that

= (Du(2)) 70,

v=L,r=ag

so by the Implicit Function Theorem, there exists a unique C*(R) function g(z) in a

neighborhood of ag such that Dgyz = 0; by uniqueness and L = lim+ g(x), it follows
a:—>a0

that g(z) and g(z) agree on their common domain, an interval of the form (ag, ag+€)

for some € > 0. By shrinking € if necessary, we also have that g(z) is defined on

(ag — €,a0 + €). Hence, we may define the function

gﬁaj), ag — € < x < ag+ €,
g1(z) = (C.1.15)

g(z),a0 +e <z <c,

and so g(z) extends to a C'(ag — €,¢) function g;(z). Hence, ap — ¢ € A, Yet

ag = inf Ay, so ag < ag — € for some e > 0; contradiction. Therefore, ag < 0. ]

Our next argument will show that g(z) must be increasing. To do so, we need an

argument that uniformizes the rule (C.1.3).

Lemma C.1.5. There ezists to > 0 such that for all v € [0, 00),

x> toV2v+1 implies D,(x)#0. (C.1.16)
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Proof. We adjust the arguments of [Olv74, Chapter 6, Section 6.6]. We make the

change of variables

u:1/+% (C.1.17a)

= (2u)"*t =tvV2v + 1 (C.1.17Db)

to convert (3.1.1a) into
d*w 9.9
1
Note that v > 0 implies u > 2 and 2u > 1; hence, for t > 2, t2—1 > 3. Then by the
standard error estimates in [Olv74, Chapter 6, Section 6.2, Thm. 2.1, p. 183], the

decaying solution at ¢ — oo has an expansion
1
w(u,t) = (2 — 1) " exp{—u&(t)} (1 + e(u,t)), u> 2 t>2, (C.1.19)

where £(t) is an antiderivative of V2 — 1 in the domain of validity of the expansion;

1 3
in particular, we require ¢ > 2 and u > ) so that u?(t* — 1) > 3 > 0.

Moreover, since D, _1 ((2u)*/?t) is decaying (recessive) in the same regime, we have

that it is a (nonzero) multiple of this w(u,t).

1
Our goal is to show that uniformly in v > > there exists t > ty such that

1
e(u,t) < 3" Then w(u,t) € (C.1.19) would be nonzero, by

1 1
1 e t)] > 1] = Je(w, )] 21— 2 =

1
Vi —1

w(u,t) to D, 1((2u)"?t) being nonzero.

1
2

positive, the exponential obviously nonzero, and the constant factor between

By the standard theory (e.g., [Olv74, Chapter 6, Section 6.2, Thm. 2.1, p. 183])
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the error term e(u,t), in terms of f(u,t) = u*(t* — 1), for t > 2, say, is bounded by

e (o)

With some effort, this becomes

ds (C.1.20)

1 [ 242

The integrand is in L1[2,oo), of course: for s > 2, s> +2 < s> + s < 2s?, and
5

(s> —1)%/% > [(s — 1)2]5/2 =(s—1)°> %, so the integral on [2, 00) is bounded above

[e'e) 26
by / — ds, which is of course finite. Theretore,
5 S
[ele} 2 2
im [ ——° _gs—o, (C.1.22)

t—oo J, (32 — 1)5/2

and hence there is ¢ty such that ¢t > ¢, implies that

/°° s+ 2 p <1
—_— S —
@ty

1 1 1 1 1
and l;y i 3 724 = 5-2y+1 < 2 for v > 0, we see that for t > ty, uniformly in
>
u_2,
le(u t)\<1
€ —.
’ -2

?

N | =

In particular, for t > ¢y, u >

Du_%((Qu)l/zt) # 0, 0r

(C.1.23)
D,(x) #0.
In particular, this holds for x > tv/2v + 1, by (C.1.17). O
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Corollary C.1.6. Suppose that on some finite interval (a,c) C (0,00), there ezists

a C' function g : (a,c) = RY such that Dy (z) = 0. Then g(z) is increasing.

Proof. Suppose that on some finite interval (a, c) C (0, 00), there exists a C* function
g : (a,¢) — RT such that Dy = 0. Suppose by way of contradiction that g is
decreasing. Then by Lemma C.1.4, g extends to a function on (a, 00), still satisfying
Dy(z)(z) = 0, which by Corollary C.1.3 must be decreasing on all of (a,00). Then
in particular, for + > ¢, g(x) < g(¢). Then for ¢, as defined in Lemma C.1.5,
x> max{c,tor/29(c) + 1}, g(z) < gle) so ton/2g(c) + 1 > tor/2g(z) + 1. Hence,
for x > max{c, to\/2g(c) + 1}, & > to\/2g(x) + 1, so by Lemma C.1.5 and (C.1.16),

Dy # 0. Yet Dy (z) = 0 by definition of g (and its extension). Contradiction. [

C.2 Induction Argument

We now use the theory of the zeroes of the Hermite Polynomials to start creating
our gi(x). We remind the reader of some properties of the zeroes of the Hermite

Polynomials.
Lemma C.2.1 (Properties of the Zeroes of the Hermite Polynomials).

Reality, Simplicity. The nth Hermite Polynomial’s zeroes are all real and simple.
This follows from the standard theory of orthogonal polynomials, e.g. [Sze75,
Thm. 3.5.1, p. 43].

Symmetry. As the Hermite Polynomials are either odd or even, H,(x) = 0 if and
only if H,(—x) =0, n € Ny, z € R.

Number of Positive Zeros. Combining the above statements, H,(x) has ezactly

L§J strictly positive zeroes.
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Interpolation. Ifxq > x; > -+ > x,_ are the zeroes of H,(x), then in each inter-
val [Tp_j, Tn—j_1], 1 < j < n, there exists exactly one zero of H,.1(x). More-
over, there exists exactly one zero of Hy1(x) in [z, 00) and (—oo, —x¢]. Again,
this follows from the general theory of orthogonal polynomials, e.g. [Sze75, Thm.
3.3.2, p. 45]

Behavior of largest zero. It is known that there exists a positive constant C' and

N € N such that for n > N, the largest positive zero x((]n) of H,(z) satisfies

—_ O .
61/5(2n + 1)1/5°

C+1 .
V2n +1 i <zl < V2 +1

- G 1 (C.2.1)

see, e.g., [Sze75, Chapter VI, Section 6.32, Thm. 6.32, pp. 127-128]. (C
is actually the first positive zero of one of the Airy functions, but this is not

important). In particular,

lim xén) = 00. (C.2.2)
and
2 = o(n) (C.2.3)

Density. Combining (C.2.3) and the reflective symmetry of the zeroes of the Her-
mite Polynomial, we see that the zero of greatest modulus of H,(x) is o(n).
Since the weight-function w(x) = e is positive and continuous everywhere on
R, we may use [Sze75, Chapter 6, Section 6.1, Thms. 6.1.1 and 6.1.2, pp. 107
— 108] to show that for any closed, finite interval [a,c] C R of nonzero length,
there exists N = N([a,c|) such that n > N implies that at least one zero of

H,(z) lies in |a,c|.

Of course, most of the results of Lemma C.2.1 are qualitiative enough to also
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x
occur for the zeroes of H, (—), which is the zero-contributing factor to D, (x) by

V2

(3.2.5). We rewrite the results that we shall need.
Corollary C.2.2 (Properties of the zeroes of D, (z), n € N).
Reality, Simplicity. For n € N, the zeroes of x — D, (z) are real and simple.

Number of Positive Zeros. For n € N, x — D,(x) has ng strictly positive

Zeroes.

Interpolation. Fizn € N. Ifby > by > --- > b,_ are the zeroes of x — D,(x),
then in each interval [b,_;,bn — j — 1], 1 < j < n, there ezists ezxactly one zero
of © +— Dyy1(x). Moreover, there exists exactly one zero of x — D, 1(x) in

[bo, OO) and (—OO, —bo]

Behavior of largest zero. [t is known that if b(()n) denotes the largest zero of x +—
Dy (z)
lim b = oo. (C.2.4)

n—o0

Therefore, for n € N, k € {0,1,...,n — 1}, let b,(gn) denote the zeroes of the nth

rescaled Hermite polynomial H,, (i) (equivalently, of D, (z)) in decreasing order:

V2
ARSI AN 0 (C.2.5)
By our comments on the positive zeroes,
b >0>6"% ) n>2
L3]° !

3)-1

where equality holds in the second inequality if and only if n is odd.
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Of course, as noted in [Dea66|, Doy41(0) = 0 for all k& € Ny, and by Lemma C.1.2,

v=2k+1,2=0

so by the Implicit Function Theorem, for all k € Ny, there exists a C* function g, (z),

defined for x in a neighborhood of 0, satisfying

ng(I) (QZ) =0

(C.2.6)
5.
Similarly, for n > 2, for the positive zeroes {b,gTL)}kZQO of v — D, (z), Lemma C.1.2

again assures us that

2 (D, (x)) £0, n>2 0<k<|2]-1.
v=2k+1,2=b\") 2
so again by the Implicit Function Theorem, there exists a C'(R) function g, x(z),

defined in a neighborhood of b,(cn), satisfying

D, .(x) =0
o) (C.2.7)

gn,k<b§cn)) =n.

Moreover, by Corollary C.1.6, g,k is an increasing function in a neighborhood of b,(C")7
and by Lemma C.1.4, g, extends to a function defined on an open interval containing
[0,b], still satisfying Dy (x) = 0. Yet by Lemma C.1.1, by Dy ,)(0) = 0,
gnk(0) = 25 + 1 for some j € Ny. In particular, then, by the Uniqueness part of the
Implicit Function Theorem, g, x(x) extends g;(x). The only thing left to show is that
the indexation was chosen correctly.
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Proposition C.2.3. Forn > 2, and 0 < k < ng — 1, gni(x) extends gi(x) to an

open interval containing [0, b,(gn)]; i.€., in the notation above, j = k.

Proof. We induct on n. For base cases, we consider both n = 2 and n = 3. For n = 2,
of course g is increasing, so g20(0) < g2,0<b(()2)> = 2, yet go satisfies g20(0) € 2Ny+1
by Lemma C.1.1, so we must have ¢o¢(0) = 1 and gao(x) extends go(z). Similarly,
for n = 3, g30(0) < 93701783) =3, but Dy, ,(0)(0) = 0, so by Lemma C.1.1, g3,(0) = 1,
s0 g3 0(x) extends go(x). Now suppose the statement is true for n = m > 3; we wish
to prove it for n = m + 1.

Case 1: m is odd. Then m = 254+ 1, m+ 1 = 25 + 2 for some 57 € N. Then
D4;41(0) = 0, so by the interpolation property in Corollary C.2.2, the positive zeros
of Dyji1(z) and Dyjio(x) are related by

b§2j+1) _0< b§2j+2) < b§2_j1+1) - b§2_j1+2) o b§2j+1) - b§2j+2) - bé2j+1) - b82j+2)
(C.2.8)
The positive zero closest to x = 0 of Dyjio(x) is b§2j+2). We wish to show that

G2j+2.j(x) does not extend go(x), g1(x), ... gj—1(x). By (C.2.8), b§-2j+2) < pHFY

;=1 so for

all r € Ng, 0 < r <7, b§-2j+2) < bgj“) for all », 0 < r < j — 1. In particular, then,
by the inductive hypothesis, g,(x) has been defined on [0,5**Y], and hence by the
g, increasing by Corollary C.1.6,

- (0)) < g (0FHV) = goja (0P = 2j +1 < 25 + 2, (C.2.9)

r

so the graph of g.(z) does not pass through the point (b§-2j+2), 2j +2). Hence, gaj12]
does not extend g, (z) for 0 <r < j—1, yet it must extend some g,(z) with 2p+1 <
m+1 = 2j + 2, so it must extend g;(z). We now induct on ¢, 0 < ¢ < j, the

statement, “gs;42 j—q extends g;_q, 0 < g < £.7 We have just proven the statement for
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¢ = 0. If true for £ = £y, then for £ = {y + 1, we see that gaj 2 ;_(¢,+1) cannot extend
gj—q for 0 < g < {y, since the fact that all such implicit functions are increasing by
Corollary C.1.6, and by the inductive hypothesis, gj_q(bgz_jf)) =274+2, g < ¥y, so

we cannot have gj_q(bgijai)eo)) = 2j + 2 as well. Yet equally, by (C.2.8), if ¢y # 7+ 1.

b(2j+2)

Iy < DD << L) (C.2.10)

J—(lo+2)

so for 0 <r < j — (¢y + 2), again by increasingness of the implicit functions and the

inductive hypothesis,

2j+2 2j+1,r ; . .
) < ) = g () =2 41 <202, (€21
SO gr(bﬁjai)go)) is too small to touch goji2 - (114)) (b J;MO)) = 2j + 2. Hence, we have

that goj 12 j—(144,) does not extend g,(x) for 0 < r < j— ({y+2). Hence, gajt2,j—(1+40)
must interpolate some g,(x) with 2p+1 <2542, but p < j— ({p+2) and p > j— ¥4,
are both removed, so p = j — (1 4 /) is the only possibility. Hence, gaji2;—(1+4)
extends g;_(14¢,). Hence, the statement is true for £ = {;+1. By this inner induction,
we have, that g0 extends g for 0 <k <j = {mTHJ -1

Case 2: m is even. Then m = 25, m+ 1 = 25 + 1 for some 7 € N. Then
D,;+1(0) = 0, so by interpolation, the positive zeros of Dyj(x) and Dyjiq(x) are
related by
B =0 < B < 0P < p) < B << b < Y < D < pfHY

(C.2.12)

The zero closest to 2 = 0 of Dyj () is b§2 A , the jth largest zero. We wish to show
that gaj11,(z) does not extend go(z),g1(x),...gj—2(z). By (C.2.12), b@_ﬁrl < 1)52]2,

soforallre Ny, 0 <r<j53—2,0b 231“ < b(zj for all » < 7 — 2. In particular, then,
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by the inductive hypothesis, g,(z) has been defined on [0,5”], and hence by the g,
increasing by Corollary C.1.6,

g (OF) < g (0) = 9oy (0) = 25 < 2 + 1, (C.2.13)

— — r

so the graph of g,(x) does not pass through the point (bgfl), 2j+1). Hence, gaj11,j-1

does not extend g, (z) for 0 <r < j—1, yet it must extend some g,(z) with 2p+1 <
m+1=2j+1, so it must extend g;_1(x).

We now induct on ¢, 0 < ¢ < j — 1, the statement, “gs;41 ;14 extends g;_1_,
0 < g < ¢” We have just proven the statement for ¢ = 0. If true for £ = ¢y < j — 1,
then for £ = {y + 1, we see that gaji2;-1-(¢y+1) cannot extend g;_1_, for 0 < g < 4y,
since the fact that all such implicit functions are increasing by Corollary C.1.6, and
gj,l,q(bgz_jf_lg) = gng’j,l,q(bf_jf_l;) = 2j + 1, so we cannot have gj,q(bf_jf_l()HZO)) =
27 + 1 as well. Yet equally, by (C.2.12), if o+ 1 < j — 1.

DT Ly < DEHTITEHED RIS (200) (C.2.14)

)

sofor 0 <r <j—1—(¢y+2), again by increasingness of the implicit functions and

the inductive hypothesis,

2j+1 ; ; . .
gr (B0 ) < 9o (0) = o (03) = 2j < 25 + 1 (C.2.15)
SO gr(bf_j;r_l()goﬂ)) is too small to touch ggj+27j_1_(go+1)(b;z_jff()&)_’_l)) = 25 + 1. Hence,

ggj+27j_1_(g0+1) does not extend gT<I) for 0 S T S j—l—(€0+2) Hence, 925+42,j—1—(Lo+1)
must interpolate some g,(x) with 2p +1 < 2j +2, but p < 5 —1 — (¢y + 2) and

p > j—1—4{y are both removed, so p = j — 1 — ({y + 1) is the only possibility. Hence,
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92j+1,j—1—(to+1) extends g;_1_(¢41). Hence, the statement is true for £ = {,+1. By this
m+1

inner induction, we have, that go; 2% extends g, for 0 <k <j—1= {TJ — 1.

In all cases, we are done; the statement for n = m implies the statement for

n=m-+ 1. O
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