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ABSTRACT

In this paper, we discuss the perturbations of the Harmonic Oscillator and

Parabolic Cylinder Operators by an odd pair of point interactions. We prove that

there is a convenient formula for the eigenvalues, and show that if the point interac-

tions are purely imaginary in addition to being odd, that nonreal eigenvalues exist as

the size of the perturbation grows.
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CHAPTER 1

INTRODUCTION

The harmonic oscillator operator is the unbounded, densely-de�ned, closed, self-

adjoint, positive, compact-resolvent operator denoted by

D
(
L0
HO

)
= {u ∈ H2(R) : x2u ∈ L2(R)} (1.0.1a)

L0
HOw(x) := −w′′(x) + x2w(x), w ∈ D

(
L0
HO

)
, (1.0.1b)

where Hm(R) =Wm,2(R) is the set of L2 functions with distributional derivatives up

to the mth order in L2, and w′′ is interpreted as a distributional derivative.

Since L0
HO is an operator of compact resolvent, its spectrum is entirely composed

of eigenvalues. Indeed, the form of the eigenvalues and eigenfunctions are well-known

(see, e.g., Folland's real analysis text [Fol99, Exercise 8.23, pp. 256�257]): de�ning

the Hermite polynomials

Hn(x) := (−1)nex
2 dn

dxn

(
e−x

2
)
, n ∈ N0 := N ∪ {0} (1.0.2)

and the Hermite functions

hn(x) :=
1√

2nn!
√
π
e−x

2/2Hn(x), n ∈ N0 (1.0.3)
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we have that

L0
HOhn = (2n+ 1)hn, n ∈ N0. (1.0.4)

Since the Hermite functions form an orthonormal basis of L2(R) (e.g., [Fol99, Exercise

8.23(g), p. 257]), and L0
HO is self-adjoint, the spectrum Sp(L0

HO) is understood:

Sp(L0
HO) = {2n+ 1}∞n=0

and any eigenfunction for eigenvalue 2n+ 1, n ∈ N0, is a scalar multiple of hn(x).

Several papers � B. Mityagin's and P. Siegl's text [MS13], B. Mityagin's preprint

[Mit14] and paper [Mit15], and the work of Haag, Cartarius, and Wunner in [HCW14]

� discuss the perturbation of L0
HO by a pair of point interactions; e.g., they de�ne

the closed operator

LHO(ζ, β)w = L0
HOw +Aζ,β(x)w, β > 0, ζ ∈ C

where

Aζ,β(x) = ζ[δ (x− β)− δ (x+ β)], β > 0, ζ ∈ C.

(The interpretation on the point-mass multiplication is given by

δ (x− p)u(x) = u(p)δ (x− p) , p ∈ R, u ∈ C(R); (1.0.5)

evaluation at a point is justi�ed because the operator is de�ned on a subset of H2(R),

and every f ∈ H2(R) has a continuous representative f0, i.e., there exists f0 ∈ C(R)

such that f = f0 Lebesgue-a.e. on R [Fol99, Thm. 9.17, pp. 303�4].)

The sum is interpreted as a form-sum as guaranteed by the KLMN Theorem,

as shown in T. Kato's text [Kat95, Section VI.2]. The operator is shown to be of

2



compact resolvent (essentially, [Kat95, Chapter VI, Section 4.2, Thm. 4.3, p. 396]),

and the behavior of the eigenvalues are studied. A particular result is that when z is

purely imaginary, i.e., z = ir for r ∈ R, the number of nonreal eigenvalues is �nite

and bounded in terms of |r|. The question we seek to answer is if for z = ir, r real,

any eigenvalues are nonreal, and more generally, what else can be said about the

behaviour of the eigenvalues.

When attempting to study this question in more depth, however, we reach a

practical di�culty. It is not hard to show that any eigenfunction of LHO(ζ, β), with

eigenvalue λ, is not only continuous on R, but also C∞ on the intervals (−∞,−b),

(−b, b), and (b,∞), because it must be a solution of the di�erential equation

−d
2w

dx2 + x2w(x) = λw(x) (1.0.6)

on each of the aforementioned intervals. Although the L2(R) requirement enforces

decay conditions as x→ ±∞, a priori any solution could be the solution on (−b, b),

regardless of its growth or decay at∞ � in particular, since two linearly independent

solutions must exist on any interval (as found in any di�erential equation text; in

particular, in F. Olver's asymptotics text at [Olv74, Thm. 5.1.1, p. 139]), it could be

any combination of any given basis of solutions. It would therefore be useful to have

a known basis of solutions for each λ ∈ C. We do not know of any such explicitly

computed list for the above di�erential equation, but we do have one for the Weber

parabolic cylinder equation, one of whose guises is

−d
2y

dx2 +
x2

4
y(x) =

(
ν +

1

2

)
y(x), (1.0.7)

3



which is quite similar: indeed, we will prove that the conversion

w(x) := y
(
x
√

2
)

λ := 2ν + 1.

(1.0.8)

transforms solutions of (1.0.7) to solutions of (1.0.6), invertibly (on appropriate in-

tervals).

We prefer, however, to rewrite (1.0.7) as

−d
2y

dx2 +

[
x2

4
− 1

2

]
y(x) = νy(x), (1.0.9)

and we therefore de�ne

D
(
L0
PC

)
= {u ∈ H2(R) : x2u ∈ L2(R)} (= D

(
L0
HO

)
) (1.0.10a)

L0
PCy := −y′′(x) +

(
1

4
x2 − 1

2

)
y(x), y ∈ D

(
L0
PC

)
. (1.0.10b)

Then we can formally write the eigenvalue problem as

−y′′ +
[
x2

4
− 1

2

]
y(x) = νy(x), y ∈ D

(
L0
PC

)
,

so that the parameter ν can be taken to be synonymous with the eigenvalue.

Also, it will follow that

SpL0
PC = N0 := N ∪ {0}, (1.0.11)

and that the corresponding normalized eigenfunction is
1
4
√

2
hn

(
x√
2

)
. The collection

of eigenfunctions

{
1
4
√

2
hn

(
x√
2

)}∞
n=0

is again an orthonormal basis.

4



Thus, analogously to the above, we will de�ne the perturbation of L0
PC by

LPC(z, b)y(x) = −y′′(x) +

[
x2

4
− 1

2

]
y(x) + z[δ (x− b)− δ (x− b)], b > 0, z ∈ C

(1.0.12)

and search for its eigenvalues; the formal conversion is as follows.

Proposition 1 (Folklore). Fix b > 0 and z ∈ C. Let Sx = x
√

2 denote the linear

transformation on R, and let Tf(x) = f ◦ S(x) denote its extension to a bounded

operator on L2(R). Then we have that

LPC(z, b) =
1

2
T−1 ◦ LHO

(
z
√

2,
b√
2

)
◦ T − 1

2
I. (1.0.13)

In particular,

Sp(LPC(z, b)) =
SpLHO

(
z
√

2, b√
2

)
− 1

2
. (1.0.14)

Hence, answering questions about the eigenvalues of LPC(z, b) will enable us to

discuss the eigenvalues of LHO(ζ, β).

In the case z = ir, r real, the eigenvalues of LPC(z, b) were discussed by E.

Demiralp in the paper [Dem05]. (Demiralp takes the weight on the point-mass at −b

to be the conjugate of the weight on the point-mass at b, but in the case z = ir, his

convention and ours coincide.) In particular, [Dem05] gives the following formula for

ν 6∈ N0 to be an eigenvalue of LPC(ir, b):

1 +
|r|2

W 2
D2
ν(b)

(
D2
ν(−b)−D2

ν(b)
)

= 0, (1.0.15)

where Dν(x) is the parabolic cylinder function that is a standard solution to (1.0.7)

decaying as x → ∞ (see [Olv74, Chapter 6, Section 6, pp. 206�208]), and W =

Wr [Dν , Dν(−·)] (b) = Wr [Dν , Dν(−·)] (−b) is the Wronskian of Dν(x) and Dν(−x)

5



in x at the point b (or −b). It is known (see N. Temme's contribution to the Digital

Library of Mathematical Functions, in particular [Tem14, Section 12.2(iii), (12.2.11)])

that

W =

√
2π

Γ(−ν)
, (1.0.16)

so the failure of the formula for ν ∈ N0 is caused by a term Γ2(−ν) implicit in the

second term on the left-hand side of (1.0.15).

We are now in position to state the new results of this dissertation. Our �rst result

is a small extension of the critical formula in (1.0.15), that works for all z ∈ C and all

ν ∈ C. The formula uses the fact that (1.0.7) has a distinguished even solution and

a distinguished odd solution, called y1(ν;x) and y2(ν;x), respectively. More details

about these solutions are in Section 3.1.

Theorem 1. Fix b > 0, and z ∈ C. Then ν ∈ C is an eigenvalue of LPC(z, b) if and

only if √
π√

2Γ(−ν)
− z2D2

ν(b)y1(ν; b)y2(ν; b) = 0. (1.0.17)

In particular, we �nd that after appropriate changes of variables, (1.0.17) and

(1.0.15) are the same up to a factor of
2Γ2(ν)

π
� primarily because

D2
ν(−b)−D2

ν(b) = −
(
D2
ν(b)−Dν(−b)

)
· (Dν(b) +Dν(−b))

is essentially the evaluation at b of an even solution and an odd solution to (1.0.7)

by linearity of the di�erential equation. Hence, it is a (ν-dependent) multiple of

y1(ν; b)y2(ν; b); moreover, the constant multiple contains a factor of
1

Γ(−ν)
, which

e�ectively cancels one of the Γ(−ν) factors in (1.0.15). We have:

6



Theorem 2. Fix b > 0, z ∈ C, and ν ∈ C \N0. Then ν ∈ SpLPC(z, b) if and only if

1− z2M(ν; b) = 0, (1.0.18)

where

M(ν; b) :=
Γ(−ν)

√
2√

π
D2
ν(b)y1(ν; b)y2(ν; b). (1.0.19)

Alternatively, for z 6= 0, (5.4.7) can be rewritten as

M(ν; b) =
1

z2
, (1.0.20)

which allows us to separate the variable z out if it is nonzero.

The variation (1.0.20) has several advantages. First, if for ν 6∈ N0, M(ν; b) = 0,

then ν is not itself an eigenvalue of LPC(z, b); however, as |z| → ∞,
1

z2
→ 0, so the

(noninteger) zeroes of ν 7→M(ν; b) become relevant. The second technical advantage

is reducing the powers of Γ in the numerator. This aids our recognition of the fact

that if, say, ν 7→ Dν(b) has a zero at ν = n ∈ N0, ν 7→ M(ν; b) has a removable

discontinuity, and in fact the extended function has a zero at ν = n. We can treat

the extended equation much like the original, so at the cost of doing the work twice,

we may remove certain genericity condtions and get the following absolute result,

answering the question posed on page 2.

Theorem 3. Fix b > 0. Then for su�ciently large r > 0, LPC(ir, b) has nonreal

eigenvalues. Moreover, if N (r) is the counting-function for the number of nonreal

eigenvalues of LPC(ir, b), then

lim
r→∞
N (r) =∞. (1.0.21)

7



The rest of the paper is organized as follows. Chapter 2 reminds the reader of some

background theory and some technical lemmas. Chapter 3 constructs the di�erential

equation and operators we will need, though most of the constructions are hardly

original, emanating from [Kat95], [MS13], and S. Albeverio et al's book [Alb+05].

For completeness, Chapter 4 deals with the proof of Proposition 1, although the

proof is elementary. Chapter 5 deals with the proof of Theorem 1 and Theorem 2.

Chapter 6 concerns the proof of Theorem 3. Chapter 7 discusses some partial results

towards how the non-real eigenvalues are created.

8



CHAPTER 2

TECHNICAL PRELIMINARIES

In this chapter we recall various de�nitions and theorems that will be useful in the

sequel.

2.1 Fourier Transforms, Tempered Distributions, and Sobolev

Spaces

Our convention on the Fourier Transform is that for f ∈ L1(R),

F [f ](ξ) =
1√
2π

∫
R

f(x)e−iπx·ξ dx. (2.1.1)

We abbreviate F [f ](ξ) by f̂(ξ) when appropriate.

Similarly, the Inverse Fourier Transform is that for g ∈ L1(R),

F−1[g]x = F [g](−x) =
1√
2π

∫
R

g(ξ)eiπξ·x dξ, (2.1.2)

and we abbreviate F−1[g]x by qg(x). We know (see, e.g., [Fol99, Thm. 8.29, p. 252]

that the Fourier Transform on L1(R)∩L2(R) extends uniquely to an isomorphism on

L2(R), denoted with the same variables.

We also recall the theory of Tempered Distributions and the Fourier Transform;

9



see, e.g., [RS72, Section V.3, pp. 133-134] and [RS75, Section IX.1]. The tempered

distributions in R are the dual space of S; we denote the pairing between a tempered

distribution F and a test-function ϕ ∈ S by

〈F, ϕ〉S′,S . (2.1.3)

We know that for all F ∈ S ′, the nth distributional derivative F (n) satis�es

F̂ (n) = (iξ)nF̂ , (2.1.4)

which leads to the consequence that F (n) ∈ L2(R) if and only if ξnF̂ ∈ L2(R).

We also recall the de�nition of the L2-Sobolev spaces. For s ∈ R, we de�ne the

L2-Sobolev space Hs(R) to be the set of tempered distributions such that

(1 + ξ2)s/2f̂(ξ) ∈ L2(R);

the inner product and norm are de�ned by

(f, g)Hs(R) :=

∫
R

(1 + ξ2)sf̂(ξ)ĝ(ξ) dξ (2.1.5a)

‖f‖Hs(R) :=

∫
R

(1 + ξ2)s|f̂(ξ)|2 dξ

1/2

. (2.1.5b)

It is known (see, e.g., [Fol99, p. 302]) that (·, ·)Hs(R) gives H
s(R) the structure of

a Hilbert space, and if t < s, Hs(R) is a dense subspace of Ht(R) in Ht(R) norm.

Also, H0(R) = L2(R) by the Plancherel Theorem, so for s ≥ 0, Hs(R) is composed

of L2 functions.

10



2.2 Hermite Polynomials and Hermite Functions

We remark on some properties of Hermite polynomials, following Szeg®'s text [Sze75].

Proposition 2.2.1 (Properties of the Hermite Polynomials).

Orthogonal Polynomials. The Hermite Polynomials are orthogonal with respect

to the weight-function e−x
2

; i.e.,

ifj 6= k, j, k ∈ N0,

∫
R

Hj(x)Hk(x)e−x
2/2 dx = 0. (2.2.1)

For more details, see [Sze75, Section II.2.4].

Recurrence Relation. The Hermite polynomials can be computed by the following

initial conditions and recurrence relation:

H0(x) = 1, (2.2.2a)

H1(x) = 2x, (2.2.2b)

Hn+1(x) = 2xHn(x)− 2nHn−1(x), n ∈ N. (2.2.2c)

Multiplication-by-x. Certainly, multiplication by x gives that

xH0(x) = x =
1

2
H1(x),

and for n ∈ N, rewriting (2.2.2c) gives that

xHn(x) =
1

2
Hn+1(x) + nHn−1(x), n ∈ N. (2.2.3)

Note that (2.2.3) holds even for n = 0, if we de�ne H−1(x) to be the zero

polynomial, for simplicity.

11



Parity. Being orthogonal polynomials on an interval symmetric with respect to the

origin, according to a weight-function symmetric with respect to the origin, a

Hermite polynomials is an even function (resp. odd function) if their index is

even (resp. odd); i.e.,

Hn(−x) = (−1)nHn(x), n ∈ N ∪ {0} (2.2.4)

Moreover, Hn(x) only contains those powers of x which are congruent to n

modulo 2. For both of these results, see [Sze75, Section II.2.3.2, p. 28].

We now note some other properties of the Hermite Functions:

Proposition 2.2.2 (Properties of the Hermite functions).

Orthonormality. The Hermite functions form an orthonormal basis of L2(R), as

noted in [Fol99, Exercise 8.23, pp. 256�7] and elsewhere.

Fourier Transform. Under our convention on the Fourier Transform, the Hermite

Functions are eigenfunctions of the Fourier transform (e.g., [Fol99, Exercise

8.23h, p. 257]):

ĥn(ξ) = (−i)nhn(ξ), n ∈ N0 (2.2.5)

Schwarz Class. For all n ∈ N0, hn(x) ∈ S, the class of rapidly-decaying C∞ func-

tions on R. This follows since for all N ∈ N0, (1 + x2)Nhn(x) is a polynomial

times e−x
2/4, hence is bounded, and di�erentation preserves the class of func-

tions that are polynomials times e−x
2/4.
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Multiplication by powers of x. Starting with (2.2.2c), multiplying both sides by

e−x
2/2, and normalizing as in (1.0.3), we see that

xhn(x) =

√
n+ 1√

2
hn+1(x) +

√
n√
2
hn−1(x), n ∈ N. (2.2.6)

Of course, if n = 0, one veri�es that xh0(x) =
1√
2
h1(x), which is again consis-

tent with (1.0.3) under the convention h−1(x) = 0. As we have x2 appearing in

our operators, we go ahead and calculate the e�ects of multiplication by x2:

x2hn(x) =

√
(n+ 1)(n+ 2)

2
hn+2(x) +

(2n+ 1)

2
hn(x)

+

√
n(n− 1)

2
hn−2(x), n ≥ 2, n ∈ N,

(2.2.7)

where again the formulas extend to n = 1 and n = 0 under the convention

h−1(x) = h−2(x) = 0.

Parity. Of course, e−x
2/2 is even, and positive constants do not change oddness or

evenness, so hn(x) is odd or even according to whether n is odd or even.

2.3 Unbounded Operators, Quadratic Forms

We review some simple facts from the theory of unbounded linear operators on Hilbert

spaces; see, e.g., [RS72, Chapter 8] or [Kat95, Chapter V, Section 3] In particular, we

wish to remind the reader that even if A is unbounded, for any bounded invertible

operator B, B−1AB shares most of the properties of B. This will be useful once we

have (1.0.13), as it will allow us to transfer what we need.

Lemma 2.3.1. Let A : D (A)→ H be a closed, densely de�ned (possibly unbounded)

linear operator with D (A) ⊆ H, and let B : H → H be a bounded, invertible linear

operator. Then AB, BA, and B−1AB are also closed and densely de�ned.
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Lemma 2.3.2. Let A : D (A)→ H be a closed, densely de�ned, and unbounded linear

operator on a domain D (A) ⊆ H, and let B : H → H be a bounded, invertible linear

operator. Then:

• SpA = SpB−1AB

• A has compact resolvent if and only if B−1AB has compact resolvent.

• A is self-adjoint if and only if B−1AB is.

In addition to writing operators as conjugates of known operators, we will create

operators from quadratic forms. We here note some of the theory from, e.g., [Kat95,

Chapter VI, Sections 1 � 3]

De�nition 2.3.3. FixH a Hilbert space, and L a linear manifold inH. A sesquilinear

quadratic form on L is a map t : L × L → H, linear in the �rst argument and

conjugate-linear in the second argument. Often, we omit the word �sesquilinear�

and explicit reference to the domain, and talk about quadratic forms when we mean

sesquilinear quadratic forms on a linear manifold L. Also, we may use the alternative

notation D (t) for L.

We defer most of the quadratic-form theory to Appendix 3, where it is used in

the formal construction of the operators LPC(z, b), but we mention one result coming

from this theory in particular.

Lemma 2.3.4. There exists a positive, self-adjoint square root of L0
HO, which we call

(L0
HO)1/2. Moreover, D

(
(L0

HO)1/2
)

= D1, where

D1 := {f ∈ H1(R) : xf ∈ L2(R)}. (2.3.1)

Moreover,

(L0
HO)1/2hk(x) =

√
2k + 1hk(x). (2.3.2)
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2.4 Decay Lemmata

We now show that to some extent, the decay of the operators is embedded in the

decay of the Hermite functions.

De�nition 2.4.1. Let `2 denote L2(N0), with the implied measure being counting

measure. We de�ne the space LN , N ∈ N0, to be the space of square-summable

functions on N with weight (1 + k)N/2:

LN :=

{
(ck)

∞
k=0 :

∞∑
k=0

(1 + k)N |ck|2 <∞

}

=
{

(ck)
∞
k=0 : (kj/2ck)

∞
k=0 ∈ L

2(N0) for all j ∈ {0, 1, . . . , N}
}
.

(2.4.1)

Of course, `2 = L0, and for all N ∈ N0, LN+1 ⊆ LN .

De�nition 2.4.2. We de�ne the domains DN , N ∈ N0, to be the space of HN(R)

functions whose (inverse) Fourier transform is also in HN(R):

DN := {f(x) ∈ HN(R) : qf(ξ) ∈ HN(R)}

= {f(x) ∈ L2(R) : (1 + x2)N/2f(x) ∈ L2(R), (1 + ξ2)N/2f̂(ξ) ∈ L2(R)}

=
{
f(x) ∈ L2(R) : xjf(x) ∈ L2(R) for all j ∈ {0, 1, . . . , N},

ξj f̂(ξ) ∈ L2(R) for all h ∈ {0, 1, . . . , N}
}

(2.4.2)

Of course, D0 = L2(R), and DN+1 ⊆ DN .

Since we will need it later, we interpose a quick lemma.

Lemma 2.4.3. For all N ∈ N0, S ⊆ DN .

Proof. We note that the Schwartz class S is a subset of every Sobolev space Hs(R),

s ∈ R. Morever, the (inverse) Fourier transform is a bijection on S. Hence, for all

ϕ ∈ S, and any N ∈ N0, ϕ ∈ HN(R) and qϕ(ξ) ∈ HN(R), so ϕ ∈ DN .
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Now we prove the desired lemma connecting the decay of the Hermite-function-

basis coe�cients to the decay of the functions.

Lemma 2.4.4. Let ι denote the isomorphism `2 → L2(R) given by

ι ((ck)
∞
k=0) :=

∞∑
k=0

ckhk(x). (2.4.3)

For N ∈ {0, 1, 2}, ι(LN) = DN .

Proof, DN ⊆ ι(LN). The case N = 0 merely reiterates that ι is an isomorphism. It

behooves us to next prove the case N = 2. Suppose f ∈ D2. Then f ∈ D
(
L0
HO

)
, so

L0
HOf ∈ L2. Yet by Parseval, and by L0

HO symmetric, if f =
∑

ckhk, then

L0
HOf =

∞∑
k=0

(
L0
HOf, hk

)
L2(R)

hk

=
∞∑
k=0

(
f, L0

HOhk
)
L2(R)

hk

=
∞∑
k=0

(f, (2k + 1)hk)L2(R)hk

=
∞∑
k=0

(2k + 1)ckhk,

(2.4.4)

and hence

‖L0
HOf‖2 =

∞∑
k=0

(2k + 1)2|ck|2. (2.4.5)

Hence, if f ∈ D2, then {(2k + 1)ck}∞k=0 ∈ `
2, so {(k + 1)ck}∞k=0 ∈ `

2, so f ∈ ι(L2).

Now we prove the case N = 1. Fortunately, by Lemma A.1.9, we have the positive,

self-adjoint operator (L0
HO)1/2 with domainD1; moreover, by (2.3.2), (L0

HO)1/2 satis�es

(L0
HO)1/2hk =

√
2k + 1hk.
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Hence, for any f ∈ D1, (L0
HO)1/2f ∈ L2(R), so if f(x) =

∑
ckhk(x),

(L0
HO)1/2f =

∞∑
k=0

(
(L0

HO)1/2f, hk
)
L2(R)

hk

=
∞∑
k=0

(
f, (L0

HO)1/2hk
)
L2(R)

hk

=
∞∑
k=0

(
f,
√

2k + 1hk

)
L2(R)

hk

=
∞∑
k=0

ck
√

2k + 1hk,

(2.4.6)

Hence, {ck
√

2k + 1}∞k=0 ∈ `
2, so {ck

√
k + 1}∞k=0 ∈ `

2, so f ∈ ι(L1).

Proof, ι(LN) ⊆ DN . The case N = 0 again follows from ι being an isomorphism

between `2 and L2(R), so let us assume N = 1. Fix f(x) ∈ ι(L1), so that f(x) =
∞∑
k=0

ckhk(x) with (
√

1 + kck)
∞
k=0 ∈ `2. For J ∈ N0, let SJ denote the orthogonal

projection onto span〈h0(x), h1(x), . . . hJ(x)〉.

For any J ∈ N0, SJf ∈ D (Mx), since by (2.2.6),

MxSJ(f) =
J∑
k=0

ckMxhk(x)

= c0
1√
2
h1(x) +

J∑
k=1

ck

(√
k + 1

2
hk+1(x) +

√
k

2
hk−1(x)

)

=
J∑
k=0

ck

√
k + 1

2
hk+1(x) +

J∑
k=1

ck

√
k

2
hk−1(x).

(2.4.7)

We wish to justify that multiplication-by-x is well-described by the Hermite-function

basis, i.e., we wish to show that lim
J→∞

MxSJ(f) = Mxf . Fortunately, it is clear that

17



for any P,Q ∈ N, 2 ≤ P ≤ Q, we have that by (2.4.7),

‖MxSQf −MxSPf‖2
L2(R)

=

∥∥∥∥∥
Q∑

k=P+1

ck

√
k + 1

2
hk+1(x) +

Q∑
k=P+1

ck

√
k

2
hk−1(x)

∥∥∥∥∥
2

L2(R)

≤

∥∥∥∥∥
Q∑

k=P+1

ck

√
k + 1

2
hk+1(x)

∥∥∥∥∥
L2(R)

+

∥∥∥∥∥
Q∑

k=P+1

ck

√
k

2
hk−1(x)

∥∥∥∥∥
L2(R)

2

≤ 2

∥∥∥∥∥
Q∑

k=P+1

ck

√
k + 1

2
hk+1(x)

∥∥∥∥∥
2

L2(R)

+

∥∥∥∥∥
Q∑

k=P+1

ck

√
k

2
hk−1(x)

∥∥∥∥∥
2

L2(R)


= 2

(
Q∑

k=P+1

|ck|2
k + 1

2
+

Q∑
k=P+1

|ck|
k

2

)

= 2 · 2

2

(
Q∑

k=P+1

(k + 1)|ck|2
)
,

(2.4.8)

where of course if P = Q, the sum is empty. Now by f ∈ ι(L1),
∞∑
k=0

(k+ 1)|ck|2 <∞,

so it is clear that
Q∑

k=P+1

(k + 1)|ck|2 ≤
∞∑

k=P+1

(k + 1)|ck|2, (2.4.9)

ans as P → ∞, the right-hand side of (2.4.9) tends to 0. By the Squeeze Theorem,

as min{P,Q} → ∞, ‖MxSQf −MxSPf‖2
L2(R) tends to 0. In other words,

(MxSJf)∞J=0 is Cauchy in L2(R). (2.4.10)

Since L2(R) is complete, then clearly {MxSJf(x)}∞J=0 is a convergent sequence, so

there exists

g(x) := lim
J→∞

MxSJf(x).. (2.4.11)

Moreover, Mx is a self-adjoint operator, hence closed (see, e.g., Reed/Simon Volume
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I, speci�cally [RS72, Section VIII.3, Proposition 1, pp. 259-260]). We of course have

lim
J→∞

SJf(x) = f(x) in L2(R), and (2.4.11) holds, so by closure of Mx, f ∈ D (Mx)

and

xf(x) = Mxf(x) = lim
J→∞

MxSJf(x), (2.4.12)

so xf(x) ∈ L2(R). We note that by (2.2.5),

f̂(ξ) =
∞∑
k=0

(−i)kckhk(x), (2.4.13)

and of course ((−i)lck
√

1 + k)∞k=0 ∈ `
2 if and only if (ck

√
1 + k)∞k=0 ∈ `

2, so by similar

logic, one shows that ξf̂(ξ) ∈ L2(R). Hence, f ∈ D1, as required. This works for all

f ∈ ι(L1), so ι(L1) ⊆ D1.

The case N = 2 is similar. Of course, L2 ⊆ L1 and ι(L2) ⊆ ι(L1) = D1, so

xf(x) ∈ L2(R) and ξf̂(ξ) ∈ L2(R) for all f(x) ∈ ι(L2). To show x2f(x) ∈ L2(R),

one replaces the use of (2.2.6) by (2.2.7), but essentially the same proof shows that

x2SJf(x)
L2(R)−−−→ x2f(x) for f(x) ∈ ι(L2). Again, the Fourier transform shows that

ξ2f̂(ξ) ∈ L2(R) in the same way. We leave the details to the interested reader.

2.5 Theory of Linear Homogeneous ODEs of Second Order

In this section, we remind the reader of various facts in the theory of ordinary di�er-

ential equations. Our presentation follows Chapter 5 of F. Olver's text [Olv74].

The results are stated for holomorphic functions over open sets in the complex

plane; analogous statements for continuous functions (with appropriate numbers of

derivatives) on open intervals of the real line follow in the same way.
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Proposition 2.5.1 ([Olv74, Chap. V, Thm. 3.1, p. 145]). Let f(x) and g(x) be

holomorphic in a simply connected domain Ω. Then the equation

d2w

dx2 + f(x)
dw

dx
+ g(x)w = 0 (2.5.1)

has an in�nity of solutions which are holomorphic in Ω. If the values of w and dw/dζ

are prescribed at any point, then the solution is unique.

In addition, we have the following enhancement of the previous proposition to the

case of a parameter.

Proposition 2.5.2 ([Olv74, Chap. V., Thm. 3.2, p. 146�7]). Fix Ω and U open,

simply connected subsets of C, and de�ne f, g ∈ Hol(U × Ω), and consider, for each

u ∈ U , the di�erential equation

d2w

dx2 + f(u, x)
dw

dx
+ g(u, x)w = 0, x ∈ Ω. (2.5.2)

Suppose that at some �xed x0 ∈ Ω, the values of w and
∂w

∂z
are holomorphic functions

of u in U . Then at each x ∈ Ω, the solution w(u, x) of (2.5.2) and its �rst two partial

x derivatives are holomorphic functions of u.

Recall that given two functions f, g ∈ Hol(Ω) for some open, simply connected

subset Ω of C, we de�ne their Wronskian Wr [f, g] (x) : Ω→ C by

Wr [f, g] (x) := f(x)
dg

dx
(x)− g(x)

df

dx
(x), x ∈ Ω. (2.5.3)

The elementary properties of the Wronskian are listed below for completeness.

Lemma 2.5.3. Fix Ω an open, simply connected subset of C. Then:

20



1. The Wronskian is linear in each argument: for f, ϕ, g, ψ ∈ Hol(Ω), c, d ∈ C,

and x ∈ Ω,

Wr [cf + ϕ, g] (x) = cWr [f, g] (x) + Wr [ϕ, g] (x) , and (2.5.4a)

Wr [f, dg + ψ] (x) = dWr [f, g] (x) + Wr [f, ψ] (x) . (2.5.4b)

2. The Wronskian is an alternating function at every point: for f, g ∈ Hol(Ω) and

x ∈ Ω,

Wr [g, f ] (x) = −Wr [f, g] (x) (2.5.5)

In particular, Wr [f, f ] (x) = 0 for all f ∈ Hol(Ω).

The Wronskian is useful for determining linear independence of solutions to a

second-order, linear, homogeneous ODE as discussed below.

Proposition 2.5.4 ( [Olv74, Thm. 5.1.2, pp. 141�143, and p. 146]). Let Ω be

an open, simply connected subset of C, and let w1 and w2 be two solutions of the

di�erential equation

−d
2y

dx2 + f(x)
d1y

dx1 + g(x)y(x) = 0, f(x), g(x) holomorphic over Ω (2.5.6)

Then the following three statements are equivalent.

1. Any solution w of (2.5.6) is a linear combination of w1 and w2.

2. The Wronskian Wr [w1, w2] (x) does not vanish at any x ∈ Ω. In particular, if

f(x) is the zero-function, then the Wronskian is a constant function on Ω.

3. w1 and w2 are linearly independent on Ω.

Similar statements hold for open, connected subsets of the real line, where f , g need

only be continuous.
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We �nish the section by explicitly recalling the e�ects of rescaling the input of

functions on their derivatives and Wronskians; the proof is left to the reader.

Lemma 2.5.5. Fix f, g ∈ Hol(C), and for some c ∈ C, de�ne f, g ∈ Hol(C) by

f(x) := f(cx), x ∈ C

gx := g(cx), x ∈ C.

Then the following statements hold.

1. For all n ∈ N0,

dnf

dxn

∣∣∣∣
x=x0

= cn
dnf

dxn

∣∣∣∣
x=ax0

, n ∈ N ∪ {0}. (2.5.7)

2.

Wr [f, g] (x) = cWr [f, g] (cx) , x ∈ C (2.5.8)

2.6 Zeroes of Analytic Functions of One Variable

Here we remind the reader of some details of zeroes of functions of one complex vari-

able. We mostly follow S. Lang's complex analysis text, speci�cally [Lan85, Chapter

2, Section 5].

In the theory of functions of one complex variable, there is a theorem as follows:

Proposition 2.6.1 (e.g., J. B. Conway's text, [Con78, Thm. IV.7.4, pp. 98�99];

L. Ahlfors's text, [Ahl78, Thm. 4.11, p. 131]). Suppose that f(ζ) is analytic in a

neighborhood of ζ = α, f(ζ) = β, and f(ζ) − β has a zero of order m at ζ = α. If

ε > 0 is su�ciently small, there exists a corresponding δ > 0 such that for all γ with

|γ − β| < δ, the equation f(ζ) = γ has exactly m roots in the disk |z − α| < ε.

Since Dν(b), y1(ν; b) and y2(ν; b) are holomorphic in ν, and
1

Γ(−ν)
is meromorphic
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in ν with poles at the nonnegative integers, it is clear from (1.0.20) that one can apply

the theorem to the map ν 7→M(ν; b) for any b > 0. The following corollary is clear.

Corollary 2.6.2. Fix b > 0. Suppose that µ ∈ C \ N0 satis�es M(µ; b) = 0, and

let m be the degree of the zero in ν. Then there exists C = C(ν0; b) > 0 such that

|z| > C implies that (5.4.9) has m solutions in a neighborhood of µ; equivalently, by

Theorem 2, LPC(z, b) has m eigenvalues in an neighborhood of µ.

Thus, whenever we will �nd zeros of ν 7→ M(ν; b), we will discern the long-term

behavior of some of the eigenvalues of LPC(z, b), as |z| → ∞.

Corollary 2.6.2 is too weak for our purposes, however. First, it takes some work

(using, e.g., the Maximum Modulus Principle) to show that as |z| → ∞, i.e., as∣∣∣∣ 1

z2

∣∣∣∣ → 0, that the eigenvalues tend to ν0. Moreover, as our sources, e.g., [Mit15],

are interested in the reality or non-reality of the eigenvalues as z = ir, |r| → ∞, we

need some information about the asymptotic direction of approach. Standard proofs

of Proposition 2.6.1, e.g., [Con78, p. 98�99] are obtained by various zero-counting

theorems employing line integrals over contours wrapping around the zero; it is not

easy to extract information about the phase/argument of the zeros from this setting.

Therefore, we use the Lagrange interpolation Theorem, as in [Lan85, Chapter II,

Sections 1�5] or to discuss the power-series approach to Proposition 2.6.1, to allow

us to �nd a relevant asymptotic. Our results are as follows.

Proposition 2.6.3. Fix α ∈ C, U open in C with α ∈ U , and let f ∈ Hol(U) such

that α is a zero of order m of f(ζ). Let the power-series centered at α be given by

f(ζ) =
∞∑
j=m

aj(ζ − α)j, am 6= 0. (2.6.1)

Then if γ ∈ C with |γ| > 0 small enough , then there exist exactly m solutions

{ζk}m−1
k=0 = {ζk(γ)}m−1

k=0 to f(ζ) = γ for ζ in some neighborhood of α. Moreover,
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if γ = reiθ and am = ρeiψ, r, ρ ∈ R+, θ, ψ ∈ [−π, π), then let c = r1/meiθ/m and

a = ρ1/neiψ/m be speci�c mth roots of γ and am, respectively. Then the leading-order

expansion of the ζk is

ζk = α +
c

a
exp

(
2πik

m

)
− c2

ma2

am+1

am
exp

(
4πik

m

)
+O

(
c3
)
, 0 ≤ k ≤ m− 1. (2.6.2)

In particular, as |γ| → 0, ζk → 0 for all k, 0 ≤ k ≤ m− 1; indeed,

|ζk(γ)| = Θ(|γ|1/m), 0 ≤ k ≤ m (2.6.3)

(recall that for u, g positive functions, u(t) = Θ(g(t)) as t → 0 if and only if there

exists 0 < c < C such that for t small enough,

cg(t) < u(t) < Cg(t).) (2.6.4)

If θ is �xed and r → 0,

lim
r→0+

ζk − α
|ζk − α|

= exp

(
i(θ − ψ + 2πk)

m

)
, 0 ≤ k ≤ m− 1 (2.6.5)

We further have use to note that the inversion of a real series for real inputs is

real.

Lemma 2.6.4. Fix α ∈ R, U open in C with α ∈ U , and let f ∈ Hol(U) such that α

is a zero of order 1 of f(ζ). Let the power-series at ζ = α have real coe�cients; i.e.,

f(ζ) =
∞∑
j=1

aj(ζ − α)j, aj ∈ R for all j ∈ N, a1 6= 0. (2.6.6)
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Then if γ ∈ R, |γ| small enough, then the unique solution ζ0 to f(ζ) = γ, as guaran-

teed by Proposition 2.6.3, is real.

Proof. Since
df

dζ

∣∣∣∣
ζ=α

6= 0 by α a zero of order 1, and since α is real, and f(ζ) = 0, we

may simply use the real Inverse Function Theorem to say that for all γ ∈ R su�ciently

close to 0, there exists f−1 mapping a neighborhood of 0 back to a neighborhood of α.

Since γ and α are real, and all the coe�cients in (2.6.6) are real, the inverse function

must give real values.
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CHAPTER 3

CONSTRUCTION OF THE OPERATOR

3.1 The Weber Parabolic Cylinder Equation and its Proper-

ties

The Weber parabolic cylinder equation is given under either of the variations

−d
2y

dx2 +

(
1

4
x2 −

[
ν +

1

2

])
y(x) = 0, x ∈ C, ν ∈ C, (3.1.1a)

−d
2y

dx2 +

(
1

4
x2 + a

)
y(x) = 0, x ∈ C, a ∈ C. (3.1.1b)

These variations are obviously equivalent under the rule

a = −ν − 1

2
(3.1.2)

and (3.1.2) is assumed throughout the rest of the paper. We will primarily use

(3.1.1a), as it will be the choice of coordinates used by the relevant reference [Dem05],

and because of this clearer connection of this set of coordinates to the harmonic

oscillator, as stated above. We mention (3.1.1b) because of the frequent use of this

variation in the literature (e.g., [Olv74, Section 6.6], [Tem14], and [Dea66]).

Lemma 3.1.1 (Symmetries of Weber parabolic cylinder equation). The Weber

parabolic cylinder equation obeys the following symmetries.
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Rotation by
π

2
. If for some µ ∈ C, y0(x) is a solution to the ν = µ case of

(3.1.1a), then y(x) := y0(ix) is a solution to the ν = −µ− 1 case of (3.1.1a).

Rotation by − π
2
. If for some µ ∈ C, y0(x) is a solution to the ν = µ case of

(3.1.1a), then we claim that y−(x) := y0(−ix) is a solution to the ν = −µ − 1

case of (3.1.1a).

Re�ection. If for some µ ∈ C, y0(x) is a solution to the ν = µ case of (3.1.1a),

then the re�ection ỹ0(x), de�ned by ỹ0(x) := y(−x), is a solution of the ν = µ

case of (3.1.1a).

Conjugation. If for some µ ∈ C, y0(x) ∈ Hol(C) is a solution to the ν = µ case

of (3.1.1a), then y(x) := y0(x) is a solution to (3.1.1a) with ν = µ.

Proof, Rotation by
π

2
. Suppose that for some µ ∈ C, y0(x) is a solution to the ν = µ

case of (3.1.1a). We wish to show that y(x) := y0(ix) is a solution to the ν = −µ− 1

case of (3.1.1a). For if the above holds, i.e,

−d
ny0

dxn
+

[
x2 −

(
µ+

1

2

)]
y(x) = 0, (3.1.3)

then evaluating at x = ia, a ∈ C gives that

− d2y0

dx2

∣∣∣∣
x=±ia

+

[
(ia)2 −

(
µ+

1

2

)]
y(±ia) = 0

− d2y0

dx2

∣∣∣∣
x=±ia

+

[
−a2 −

(
µ+

1

2

)]
y(a) = 0.

(3.1.4)

Yet by Lemma 2.5.5, part 1

d2y

dx2

∣∣∣∣
x=a

= (i)2 d
2y0

dx2

∣∣∣∣
x=ia
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and since i2 = −1, we may substitute for − d2y0

dx2

∣∣∣∣
x=ia

in (3.1.4), and get

d2y

dx2

∣∣∣∣
x=a

+

[
−a2 −

(
µ+

1

2

)]
y(a) = 0.

Multiplying by −1, we get

− d2y

dx2

∣∣∣∣
x=a

+

[
a2 +

(
µ+

1

2

)]
y(a) = 0.

Finally, we note that

µ+
1

2
= −

(
−µ− 1

2

)
= −

(
− [−µ− 1] +

1

2

)
,

so this becomes

− d2y

dx2

∣∣∣∣
x=a

+

[
a2 −

(
[−µ− 1] +

1

2

)]
y(a) = 0. (3.1.5)

This works for all a ∈ C, so the the y = y, ν = −µ−1 case of (3.1.1a) is satis�ed.

The proof for rotation by − π
2
follows analogously, so we proceed to the proof of

the re�ective symmetry.

Proof of Re�ection Symmetry. Fix µ ∈ C, such that y0(x) is a solution to the ν = µ

case of (3.1.1a). We wish to show that the re�ection ỹ0, de�ned by ỹ0(x) := y(−x),

is a solution of the ν = µ case of (3.1.1a). This follows because (−x)2 = x2, and

because by Lemma 2.5.5,

d2ỹ0

dx2

∣∣∣∣
x=a

= (−1)2 d
ny

dxn

∣∣∣∣
x=−a

, (3.1.6)

so the second derivative will retain its sign. [This could also have been done be
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repeating either of the above rotation symmetries, as the map µ 7→ −µ − 1 is an

involution.]

Proof of Conjugation Symmetry. Suppose that for some µ ∈ C, y0(x) ∈ Hol(C) is

a solution to the ν = µ case of (3.1.1a). We wish to show that y(x) := y0(x) is a

solution to (3.1.1a) with ν = µ. For evaluating at x = a, a ∈ C,

− d2y0

dx2

∣∣∣∣
x=a

+

(
a2 −

[
µ+

1

2

])
y(a) = 0 (3.1.7)

and then conjugating both sides,

− d
2y0

dx2

∣∣∣∣
x=a

+

(
a2 −

[
µ+

1

2

])
y(a) = 0

− d
2y0

dx2

∣∣∣∣
x=a

+

(
a2 −

[
µ+

1

2

])
y(a) = 0.

(3.1.8)

The only point left is to show that

d2y

dx2

∣∣∣∣
x=a

=
d2y0

dx2

∣∣∣∣
x=a

(3.1.9)

This is best shown with power-series expansions. If we have that in the expansion

about x = a,

y0(x) =
∞∑
k=0

ck(x− a))k, ck ∈ C (3.1.10)
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then we have that

y0(x) =
∞∑
k=0

ck(x− a)k

y0(x) =
∞∑
k=0

ck(x− a)k

y0(x) =
∞∑
k=0

ck(x− a)k

y(x) =
∞∑
k=0

ck(x− a)k.

(3.1.11)

Moreover, by the standard theory of functions of one complex variable, we know that

if for some f ∈ Hol(C), if the power series around some α ∈ C is written as

f(ξ) =
∞∑
j=0

tj(ξ − α)j,

then
djf

dξj

∣∣∣∣
ξ=α

= j!tj; (3.1.12)

see, e.g., [Con78, Prop. III.2.5(c), p. 35] or [Lan85, p. 84].

Thus, we have that by (3.1.10), resp. (3.1.11),

d2y0

dx2

∣∣∣∣
x=a

= 2! · c2

d2y

dx2

∣∣∣∣
x=a

= 2! · c2,

(3.1.13)

from whence (3.1.9) follows smoothly. Thus, for any a ∈ C,

− d2y

dx2

∣∣∣∣
x=a

+

(
a2 −

[
µ+

1

2

])
y(a) = 0. (3.1.14)

Since this holds for all a ∈ C, the y = y, ν = µ case of (3.1.1a) is satis�ed.
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In either of its forms, (3.1.1a) or (3.1.1b), the Weber parabolic cylinder equa-

tion, being a perfectly good second-order di�erential equation with analytic�over�C

coe�cients, the Weber parabolic cylinder equation has two linearly independent holo-

morphic solutions over C, by Proposition 2.5.1. Moreover, if the initial conditions at

a �xed point are holomorphic in the parameter ν, the solutions are holomorphic in

both x and ν, by Proposition 2.5.2. There are several ways to choose a reasonable

pair of linearly independent solutions, as we discuss below.

A solution with good asymptotics at∞, and a guaranteed linearly indepen-

dent complement. It is known from standard theory (e.g., [Olv74, Section

6.6.1] that there exist solutions of (3.1.1a) as x → ∞ with leading asymptotic

xνe−x
2/4 and x−ν−1ex

2/4, respectively. The solution Dν(x) (or U(a, x), under

the convention (3.1.2)) is speci�ed by the requirement that Dν(x) ∼ xνe−x
2/4

as x→∞ (here, p(x) ∼ q(x) means that lim
x→∞

p(x)

q(x)
= 1).

Since the map ν 7→ −ν − 1 is an involution on C, we see by the above rotation

symmetries that either of D−ν−1(±ix) will form a linearly independent set with

Dν(x); indeed, it is known (see [Tem14, Section 2.iii, (12.2.12)]) that

Wr [Dν , D−ν−1(±i·)] (x) = ∓ie∓iνπ, x ∈ C (3.1.15)

which guarantees the linear independence of the sets {Dν(x), D−ν−1(ix)} and

{Dν(x), D−ν−1(−ix)} by Proposition 2.5.4.

A solution with good asymptotics at −∞, and a guaranteed linearly inde-

pendent complement. It is clear that since Dν(x) decays as x→∞, Dν(−x)

decays as x → −∞. To �nd a linearly independent complement, we may use
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the c = −1 case of Lemma 2.5.5, part 2, and we have that by (3.1.15),

Wr [Dν(−·), D−ν−1(±i·)] (x) = −Wr [Dν , D−ν−1(∓i·)] (−x)

= ±ie±iνπ, x ∈ C.
(3.1.16)

By Proposition 2.5.4, the sets {Dν(−x), D−ν−1(ix)} and {Dν(−x), D−ν−1(−ix)}

are also linearly independent.

A solution with good asymptotics at +∞, and a solution with good asymp-

totics at −∞. We again start with Dν(x) as the �rst solution; however, by

the re�ection-symmetry noted in Lemma 3.1.1, Dν(−x) is also a solution to

(3.1.1a), and it is known that

Wr [Dν , Dν(−·)] (x) =

√
2π

Γ(−ν)
, x ∈ C (3.1.17)

[Tem14, Section 2.iii], where Γ denotes the standard Gamma function. Since the

entire function
1

Γ(ν)
only has zeros at the nonpositive integers,

1

Γ(−ν)
only has

zeros at the nonnnegative integers. Therefore, by Proposition 2.5.4, Dν(x) and

Dν(−x) are linearly independent functions of x if and only if their Wronskian

is nonzero, which happens if and only if ν 6∈ N0. Thus, for ν not a nonnegative

integer, Dν(x) and Dν(−x) are linearly independent.

Power-Series Solutions. Given the re�ection symmetry of the linear di�erential

equation (3.1.1a), there are presumably even and odd solutions to (3.1.1a). To

prove this, and given the asymptotics of solutions at∞ above, one may try the

change-of-variable y = e−x
2/4w, and equation (3.1.1a) becomes

−d
2w

dx2 + x
dw

dx
− νw(x) = 0 (3.1.18)
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This is quite amenable to a power series solution w(x) =
∞∑
k=0

ckx
k; formally

manipulating, the recurrence relation for the coe�cients is

ck+2 =
−ν + k

(k + 1)(k + 2)
ck, k ≥ 0.

This recurrence notably skips over ck+1, and so choosing c0 = 1, c1 = 0 gives an

even solution to (3.1.18), and c0 = 0, c1 = 1 gives an odd solution to (3.1.18).

(The proof that the series actually converge everywhere in C is left as an tedious

exercise.) Converting back to terms of the original y, we have that (3.1.1a) has

the solutions

y1(ν;x) := e−x
2/4

[
1 + (−ν)

x2

2!
+ (−ν) (−ν + 2)

x4

4!
+ · · ·

]
(3.1.19a)

and

y2(ν;x) := e−x
2/4

[
x+ (−ν + 1)

x3

3!
+ (−ν + 1) (−ν + 3)

x5

5!
+ · · ·

]
. (3.1.19b)

For future reference, we note that from (3.1.19a) and (3.1.19b), one sees that

y1(ν; 0) = 1,
∂

∂x
(y1(ν;x))

∣∣∣∣
x=0

= 0 (3.1.20a)

y2(ν; 0) = 0,
∂

∂x
(y2(ν;x))

∣∣∣∣
x=0

= 1 (3.1.20b)

Thus, y1(ν;x) and y2(ν;x) are linearly independent, since it follows that

Wr [y1(ν; ·), y2(ν; ·)] (0) = 1 · 1− 0 · 0 = 1, (3.1.21)

and we may invoke Proposition 2.5.4.
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The equation (3.1.20) also allows us to determine the relationship of Dν(x) to the

odd and even solutions; as noted in [Tem14, (12.2.6�7) and Section 4], we see that

Dν(x) =
2ν/2
√
π

Γ
(
−ν

2
+ 1

2

)y1(ν;x)− 2(ν+1)/2
√
π

Γ
(
−ν

2

) y2(ν;x). (3.1.22)

From (3.1.22) we may recover (3.1.17). We also note that for ν 6∈ N ∪ {0}, Dν(x) is

unbounded as x→ −∞; this essentially follows from formula 12.2.15 of [Tem14].

We note one last property of y1(ν; b) and y2(ν; b).

Lemma 3.1.2. Fix b > 0. Then for all ν ∈ C, y1(ν; b) and y2(ν; b) are not simulta-

neously 0.

Proof. First, we note that if two solutions u1(x), u2(x) to a linear, second-order,

homogeneous ODE have a common zero, then they have a zero Wronskian at that

point, for if x = a is the common zero, then

Wr [u1, u2] (a) = u1(a)
du2(x)

dx

∣∣∣∣
x=a

− u2(a)
du1(x)

dx

∣∣∣∣
x=a

= 0
du2(x)

dx

∣∣∣∣
x=a

− 0
du1(x)

dx

∣∣∣∣
x=a

= 0.

(3.1.23)

By the contrapositive, y1(ν; b) and y2(ν; b), being solutions to (3.1.1a), cannot be

simultaneously zero, since by (3.1.21) their Wronskian is nonzero at a point, and by

Proposition 2.5.4 it is nonzero at all points.

3.2 Construction of Unperturbed Operator

The construction of L̃0
PC or L0

PC is quite akin to that of L0
HO. D2 is a natural space

in which both −y′′ and x2y(x) are de�ned, since f ∈ D2 implies x2f(x) ∈ L2(R)

34



and f ∈ H2(R), so f ′′(x) ∈ L2(R). Certainly, on D2 one may de�ne, as in the

introduction,

D
(
L̃0
PC

)
= D2 (3.2.1a)

L̃0
PCy := −y′′(x) +

1

4
x2y(x), y ∈ D

(
L̃0
PC

)
, (3.2.1b)

and

D
(
L0
PC

)
= D2 (3.2.2a)

L0
PCy := −y′′(x) +

(
1

4
x2 − 1

2

)
y(x), y ∈ D

(
L̃0
PC

)
, (3.2.2b)

and of course L0
PC = L̃0

PC −
1

2
I, and these operators are densely de�ned.

To check the other properties of these operators � closure, self-adjointness, etc. �

we use the fact to be proven later (see (4.2.11))

L̃0
PC =

1

2
T−1L0

HOT (3.2.3a)

L0
PC =

1

2
T−1L0

HOT −
1

2
I. (3.2.3b)

By Lemma 2.3.1, T−1L0
HOT is closed, and by Lemma 2.3.2, T−1L0

HOT is self-adjoint,

has compact resolvent, and the same spectrum as the unperturbed operator. Since

multiplication by
1

2
and subtraction of a real multiple of the identity has no e�ect on

the closure, self-adjointess, etc., and has a clear e�ect on the spectrum, we have the

following.
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Proposition 3.2.1. L̃0
PC and L0

PC are closed, self-adjoint, and have compact resol-

vent. In addition

Sp L̃0
PC =

{
n+

1

2

}∞
n=0

, (3.2.4a)

Sp(L0
PC) = {n}∞n=0. (3.2.4b)

A normalized eigenfunction for the eigenvalue n+
1

2
of L̃0

PC, or n of L0
PC, n ∈ N0, is

1
4
√

2
hn

(
x√
2

)
.

Therefore, appropriately stretched Hermite functions are indeed solutions to the

equation (3.1.1a), and eigenfunctions of L̃0
PC. Indeed, we have that for n ∈ N0,

Dn(x) = 2−n/2e−x
2/4Hn

(
x√
2

)
=

√
n!
√
π · hn

(
x√
2

)
, n ∈ N0,

(3.2.5)

(see, e.g., [Tem14, Section 7.i]), and so Dn(x) is a (non-normalized) eigenfunction of

L0
PC with eigenvalue n, n ∈ N0. Hence, the exceptional behavior of the nonnegative

integers in the Wronskian (3.1.17) no longer surprises us; as the Hermite polynomials

are odd or even depending on the parity of n, Hn(−x) = (−1)nHn(x), the re�ec-

tion operators give back a multiple of the original function. We restate this parity

condition very explicitly for use later:

Dn(−x) = (−1)nDn(x), n ∈ N0, x ∈ C (3.2.6)
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3.3 Construction of Perturbed Operator, and Characteriza-

tion of Eigenfunctions

Our operator is constructed as follows.

Proposition 3.3.1. Fix b > 0 and z ∈ C. There exists a closed, densely de�ned

operator LPC(z, b) with compact resolvent, where

D (LPC(z, b)) := D1 (3.3.1a)

LPC(z, b)y(x) := −y′′(x) +

[
x2

4
− 1

2

]
y(x)

+ z[u(b)δ (x− b)− u(−b)δ (x− b)]
. (3.3.1b)

The eigenvalues of LPC(z, b) are contained in some shifted sector opening to the right,

of aperture less than
π

2
: i.e., for some τ in R and δ ∈ (0,

π

4
),

Sp (LPC(z, b)) ⊂ {µ ∈ C : | arg(µ− τ)| ≤ δ} (3.3.2)

If z is real, however, LPC(z, b) is self-adjoint and semibounded below.

We note that the details of the construction do not a�ect the later work, save

the speci�cation of the domain in (3.3.1a). Nor is the proof particularly original;

such operators have been constructed, for example, in [MS13]. Hence, we defer the

construction to Appendix 3.

More importantly for us is the following characterization of the eigenvalues of

LPC(z, b):

Proposition 3.3.2 (Folklore). Fix b > 0 and z ∈ C. Then y ∈ D (LPC(z, b)) is
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an eigenfunction of LPC(z, b) with eigenvalue ν ∈ C if and only if it is continuous,

satis�es the di�erential equation

− d2y

dt2

∣∣∣∣
t=x

+

[
x2

4
− 1

2

]
y(x) = νy(x) (3.3.3)

on the intervals (−∞,−b), (−b, b), and (b,∞) [hence is C∞ on these intervals], and

satis�es the jump conditions

y′(−b+)− y′(−b−) = −zy(−b), (3.3.4a)

y′(b+)− y′(b−) = zy(b), (3.3.4b)

where for p ∈ R, y′(p+) (resp. y′(p−)) denotes lim
x→p+

y′(x) (respectively, lim
x→p−

y′(x)).

These conditions for point-perturbations of the operators associated to di�erential

equations are not particularly surprising; for real weights on perturbations of the

Laplacian, they appear in [Alb+05, Chapter I.3, Thm. 3.1.1, pp. 76, and Chapter

II.2, p. 142], and of course [Dem05] uses this to get his criterion. Again, we provide

a proof, but again defer to a later appendix, speci�cally Appendix B.
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CHAPTER 4

COMPARISON OF PARABOLIC CYLINDER AND

HARMONIC OSCILLATOR OPERATORS

We now wish to prove Proposition 1, which compares the operators

LHO(ζ, β)w(x) = −w′′(x) + x2w(x) + ζw(β)δ (x− β)− ζw(−β)δ (x+ β) , (4.0.1a)

L̃PC(z, b)y(x) = −y′′(x) +
x2

4
y(x) + zy(b)δ (x− b)− zy(−b)δ (x+ b) , (4.0.1b)

LPC(z, b)y(x) = −y′′(x) +

(
x2

4
− 1

2

)
y(x) + zy(b)δ (x− b)− zy(−b)δ (x+ b) .

(4.0.1c)

Of course,

LPC(z, b) = L̃PC(z, b)− 1

2
I,

so the only issue is how to compare LHO(ζ, β) and L̃PC(z, b).

To do so, we �rst discuss the comparison in the case of the di�erential equations,

then bootstrap to the comparison between the unperturbed operators L0
HO and L0

PC,

then �nally come back to LHO(ζ, β) and LPC(z, b).
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4.1 Comparison of Di�erential Equations

We now discuss the relationship between the di�erential equations

−d
2y

dx2 +
1

4
x2y(x) =

(
ν +

1

2

)
y(x), x ∈ (a, c) (4.1.1a)

and

−d
2w

dx2 + x2w(x) = λw(x), x ∈ (α, γ); (4.1.1b)

where −∞ ≤ a < c ≤ ∞ and −∞ ≤ α < γ ≤ ∞. Of course, by Proposition 2.5.1,

there are C∞ solutions on the appropriate intervals.

Proposition 4.1.1. The solutions of (4.1.1a) (equivalently, (3.1.1a)) and (4.1.1b)

correspond via the correspondence

w(x) = y
(
x
√

2
)

λ = 2ν + 1

α =
a√
2

γ =
c√
2

(4.1.2)

In other words, if y(x) is a C∞(a, c) solution to (4.1.1a), k ≥ 2, then w(x) = y
(
x
√

2
)

is a C∞(α, γ) solution to (4.1.1b) with λ = 2ν + 1, α =
a√
2
, γ =

c

sqrt2
. Similarly, if

w(x) is a C∞(α, γ) solution to (4.1.1a), then y(x) = w

(
x√
2

)
is a C∞(R) solution

to (4.1.1a) with ν =
λ− 1

2
, a = α

√
2, c = γ

√
2. Equivalent statements hold with

C∞(a, c) replaced by Hol(C).
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Proof. We demonstrate the path from solutions of (4.1.1a) to solutions of (4.1.1b);

the other direction is similar.

We evaluate (4.1.1a) at some p ∈ (a, c), but we let p = q ·
√

2, so q ∈
(
α√
2
,
γ√
2

)
;

we get

− d2y

dx2

∣∣∣∣
x=q
√

2

+
1

2
q2y(q

√
2) =

(
ν +

1

2

)
y(q
√

2). (4.1.3)

Now, let w(x) := y(x
√

2), for x ∈
(
α√
2
,
γ√
2

)
; then by Lemma 2.5.5, part 1, we have

that
d2w

dx2

∣∣∣∣
x=q

= (
√

2)2 d
2y

dx2

∣∣∣∣
x=q
√

2

(4.1.4)

or, turning it around,
d2y

dx2

∣∣∣∣
x=q
√

2

=
1

2

d2w

dx2

∣∣∣∣
x=q

.

Thus, substituting into (4.1.3),

−1

2

d2w

dx2

∣∣∣∣
x=q

+
1

2
q2w(q) =

(
ν +

1

2

)
w(q), (4.1.5)

− d2w

dx2

∣∣∣∣
x=q

+ q2y(q) = (2ν + 1)w(q). (4.1.6)

Since this works for all q ∈ (α, γ) :=

(
α√
2
,
γ√
2

)
, we have that

−d
2w

dx2 + x2w(x) = [2ν + 1]w(x), x ∈ (α, γ),

so w(x) is a solution to (4.1.1b) on (α, γ) with λ = 2ν + 1.

Of course, in Hol(C), the analogous proof works as well.

We wish to go over the proof again, in the case that y, w ∈ L2(R) ∩ C∞(R),

α = a = −∞, and γ = c = ∞. We do so to use the formalism S, T used in the

statement of Proposition 1. As a reminder, Sx = x
√

2 is a linear operator on R, and
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Tf(x) = f(Sx) = f(x
√

2) de�nes an operator on L2(R), clearly bounded with norm
1
4
√

2
: for all f ∈ L2(R),

∫
R

|Tf(x)|2 dx =

∫
R

|f(x
√

2)|2 dx, (4.1.7)

and making the substitution t = x
√

2, dt =
√

2dx, we get

1√
2

∫
R

|f(t)|2 dt, (4.1.8)

so ‖Tf‖2
L2(R) =

1√
2
‖f‖2

L2(R). Also, of course, T
−1f(x) = f

(
x√
2

)
is also a bounded

operator on L2(R).

Now, suppose y ∈ L2(R) ∩ C∞(R) is a solution to (4.1.1a). Then letting w(x) =

[Ty](x), (4.1.3) is essentially applying T to the entire equation, so we have

−T (y′′(x)) + T

(
x2

4
y(x)

)
= T

[(
ν +

1

2

)
y(x)

]
−T (y′′(x)) +

x2

2
[Ty](x) =

(
ν +

1

2

)
[Ty](x).

(4.1.9)

By the Chain Rule, however, we have that

d2

dx2

[
y(x
√

2)
]

= (
√

2)2y′′(x
√

2)

d2

dx2
[Ty](x) = 2Ty′′(x),

(4.1.10)

so we have that

−1

2

d2[Ty](x)

dx2 +
x2

2
[Ty](x) =

(
ν +

1

2

)
[Ty](x). (4.1.11)
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Multiplying both sides by 2,

−d
2[Ty](x)

dx2 + x2[Ty](x) = (2ν + 1)[Ty](x), (4.1.12)

so de�ning w(x) = Ty(x) and λ = 2ν + 1, we are done. This gives us an idea of how

to extend to the operator case.

4.2 Comparison of Unperturbed Operators

We now wish to compare the unperturbed operators

D
(
L0
HO

)
= D2 (4.2.1a)

L0
HOw(x) := −w′′(x) + x2w(x), w ∈ D

(
L0
HO

)
, (4.2.1b)

and

D
(
L̃0
PC

)
= D2 (4.2.2a)

L̃0
PCy := −y′′(x) +

1

4
x2y(x), y ∈ D

(
L̃0
PC

)
, (4.2.2b)

An observation makes the comparison much easier. Namely, we note that T extends

naturally to a linear operator on S ′, with (see [Fol99, p.285])

〈TF, ϕ〉S′,S =
1√
2

〈
F, T−1ϕ

〉
S′,S (4.2.3)

Standard calculations with distributions give the following rules to move di�erentia-

tion and multiplication-by-x past T , con�rming that intuition holds in these cases.

Lemma 4.2.1 ([Fol99, p. 284�285, 295]). For all F ∈ S ′, T [xF ] =
√

2xTF , (TF )′ =
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√
2T (F ′), F [TF ] =

1√
2
T−1ϕ̂. In particular, for all u ∈ L2(R), Txu(x) =

√
2xTu(x),

(Tu)′(x) =
√

2T [u′](x), and F [u(
√

2·)](ξ) =
1√
2
û

(
ξ√
2

)
.

Corollary 4.2.2. For all N ∈ N0, T restricts to a bijection on DN .

Proof. The case N = 0 merely restates that T is a bijection on L2(R), so assume N ∈

N0. We now show that if for some j ∈ N, xjf(x) ∈ L2(R), then xj(Tf)(x) ∈ L2(R).

Yet this is simple, since

xjTf(x) = xjf(x
√

2)

=
1

2j/2

(
x
√

2
)j
f(x
√

2)

=
1

2j/2
Tg(x), g(x) := xjf(x)

(4.2.4)

and since g(x) ∈ L2(R) by hypothesis, so is xjTf(x). Hence, T maps {u ∈ L2(R) :

xju ∈ L2(R)} inside itself; since similar logic works for T−1, T is a linear, continuous

bijection on {u ∈ L2(R) : xju ∈ L2(R)}. In particular, for any N ∈ N, T is a linear,

continuous bijection on

{u ∈ L2(R) : xju ∈ L2(R) for all j ∈ {0, 1, . . . , N}}. (4.2.5)

Moreover, for all u ∈ L2(R), we mentioned that F [Tu] =
1√
2
T−1û, so to show that

if ξj f̂(ξ) ∈ L2(R), ξjF [Tf ] ∈ L2(R), we repeat with T−1 instead of T :

ξjF [Tf ](x) = ξj
1√
2
f̂

(
ξ√
2

)
= 2(j−1)/2

(
ξ√
2

)j
f̂

(
ξ√
2

)
= 2(j−1)/2T−1

(
ξj f̂(ξ)

) (4.2.6)

44



and since T , hence T−1, preserves L2, we see that ξjF [Tf ](ξ) ∈ L2(R) if and only if

ξj f̂(ξ) ∈ L2(R). In particular, for any N ∈ N, T is a linear, continuous bijection on

{u ∈ L2(R) : ξjû(ξ) ∈ L2(R) for all j ∈ {0, 1, . . . , N}}. (4.2.7)

Since DN is the intersection of the domains in (4.2.5) and (4.2.7), we are done.

Proposition 4.2.3. As closed operators with domain D2,

L0
HO ◦ T = 2T ◦ L̃0

PC (4.2.8)

Proof. First, a comment on the domains. Certainly D
(

2T ◦ L̃0
PC

)
= D

(
L̃0
PC

)
= D2,

since 2T is a bounded operator on all of L2(R). D
(
L0
HO ◦ T

)
is automatically

T−1 D
(
L0
HO

)
, since u ∈ D

(
L0
HO ◦ T

)
if and only if Tu ∈ D

(
L0
HO

)
, but by Corol-

lary 4.2.2, Tu ∈ D
(
L0
HO

)
= D2 if and only if u ∈ D

(
L0
HO

)
, so there is no issue letting

the domain be D2. So D
(
L0
HO ◦ T

)
= D

(
2T ◦ L̃0

PC

)
= D2.

To verify the equality, we start with the left-hand-side: for all y ∈ D2,

Ty ∈ D2 by Corollary 4.2.2, so we may write

L0
HO ◦ Ty(x) = −[Ty]′′(x) + x2[Ty](x). (4.2.9)

Yet by repeated use of Lemma 4.2.1, −[Ty]′′(x) = −2T [y′′](x), and by (4.2.4),
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x2[Ty](x) =
1

2
T [x2y(x)]. Therefore, we have

L0
HO ◦ Ty(x) = −[Ty]′′(x) + x2[Ty](x)

= −2T [y′′(x)] +
1

2
T [x2y(x)]

= 2T

[
−y′′(x) +

x2

4
y(x)

]
= 2T ◦ L̃0

PCy(x).

(4.2.10)

This holds for all y ∈ D2, so we have the equality on D2.

As for closure, suppose that yn(x) ∈ D2, yn(x)
L2(R)−−−→ y(x) and L0

HO◦T [yn](x)
L2(R)−−−→

w(x). Then since T is bounded, surely un(x) := T [yn](x)
L2(R)−−−→ u(x) := T [y](x), and

so L0
HO[un](x)

L2(R)−−−→ w(x). L0
HO, being self-adjoint, is closed, so u ∈ D

(
L0
HO

)
= D2

and L0
HOun(x)

L2(R)−−−→ u(x), or L0
HO ◦ Tyn(x)

L2(R)−−−→ L0
HO ◦ Ty(x). Hence, L0

HO ◦ T is

closed.

We note the following consequence. Post-composing both sides of (4.2.8) by
1

2
T−1,

we have that

L̃0
PC =

1

2
T−1L0

HOT, (4.2.11)

or, noting that L0
PC = L̃0

PC −
1

2
I,

L0
PC =

1

2
T−1L0

HOT −
1

2
I. (4.2.12)
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4.3 Comparison of Perturbed Operators

We now discuss the comparison between the operators

LHO(ζ, β)w(x) = −w′′(x) + x2w(x) + ζw(β)δ (x− β)− ζw(−β)δ (x+ β) , (4.3.1a)

L̃PC(z, b)y(x) = −y′′(x) +
x2

4
y(x) + zy(b)δ (x− b)− zy(−b)δ (x+ b) , (4.3.1b)

LPC(z, b)y(x) = −y′′(x) +

(
x2

4
− 1

2

)
y(x) + zy(b)δ (x− b)− zy(−b)δ (x+ b) .

(4.3.1c)

Again,

LPC(z, b) = L̃PC(z, b)− 1

2
I,

so the only issue is how to compare LHO(ζ, β) and L̃PC(z, b).

Of course, by Proposition 4.1.1, a solution to (4.1.1a) on (−b, b) translates to a

solution to (4.1.1b) on

(
− b√

2
,
b√
2

)
. Therefore, the correspondence β =

b√
2
suggests

itself. What is less obvious is what the correspondence between ζ and z should be.

To build intuition, we have several reasonable avenues, but the easiest is probably to

start with the criterion of Proposition 3.3.2. If y(x) is an eigenfunction for L̃PC(z, b),

i.e. a solution to

−y′′(x) +
x2

4
y(x) + zy(b)δ (x− b)− zy(−b)δ (x+ b) = νy(b),

then the jump condition at x = b, (3.3.4), is that

y′(b+)− y′(b−) = zy(b). (4.3.2)
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Letting w(x) = y(
√

2x), by (2.5.5) we know that

w′(x) =
√

2y′(
√

2x),

and evaluating at x =
b√
2
,

w′
(

b√
2

)
=
√

2y(b)

w′
(

b√
2

)
√

2
=
√

2y(b)

(4.3.3)

Since the same logic will apply to the one-sided limits, we apply the above to (3.3.4b)

and get that

w′
(

b√
2

+

)
√

2
−
w′
(

b√
2
−
)

√
2

= zw

(
b√
2

)
w′
(

b√
2

+

)
− w′

(
b√
2
−
)

=
√

2zw

(
b√
2

) (4.3.4)

Since the transformation from y to w is precisely what we used in Proposition 4.1.1

to convert solutions of (4.1.1a) to (4.1.1b), it suggests the correspondence ζ =
√

2z

in addition to β =
b√
2
. This is indeed the case; to prove it, however, we note a less

obvious property of the map T and distributions.

Lemma 4.3.1. For all p ∈ R, Tδ (x− p) =
1√
2
δ

(
x− p√

2

)
.
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Proof. It follows from the standard computation: for any ϕ(x) ∈ S,

〈Tδ (x− p) , ϕ(x)〉S′,S =
1√
2

〈
δ (x− p) , T−1ϕ(x)

〉
S′,S

=
1√
2

〈
δ (x− p) , ϕ

(
x√
2

)〉
S′,S

=
1√
2
ϕ

(
p√
2

)
=

1√
2

〈
δ

(
x− p√

2

)
, ϕ(x)

〉
S′,S

(4.3.5)

Proposition 4.3.2. Fix b > 0 and z ∈ C. Then LHO

(
z
√

2,
b√
2

)
◦T and T ◦L̃PC(z, b)

have the same domain, and

LHO

(
z
√

2,
b√
2

)
◦ T = 2T ◦ L̃PC(z, b). (4.3.6)

Proof. Take any w ∈ H1(R). Then we discuss the distribution that would formally

be LHO

(
z
√

2,
b√
2

)
◦ T (w(x)), namely,

− (Tw)′′(x) + x2Tw(x)

+ z
√

2[Tw]

(
b√
2

)
δ

(
x− b√

2

)
− z
√

2[Tw]

(
− b√

2

)
δ

(
x+

b√
2

) (4.3.7)

As expressed in the proof of Proposition 4.2.3, [Tw]′′(x) = 2T [w′′(x)] and x2[Tw](x) =
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2T

[
x2

4
w(x)

]
, so these terms convert as before. As for the weight at

b√
2
we see that

z
√

2[Tw]

(
b√
2

)
δ

(
x− b√

2

)
= z
√

2w(b)δ

(
x− b√

2

)
= 2zw(b)

1√
2
δ

(
x− b√

2

) (4.3.8)

and by Lemma 4.3.1 this is simply

2zw(b)Tδ (x− b) = 2T [zw(b)δ (x− b)]. (4.3.9)

Similarly, we have that

−z
√

2[Tw]

(
− b√

2

)
δ

(
x+

b√
2

)
= 2T [−zw(−b)δ (x+ b) (4.3.10)

Altogether, then, we have that for all w ∈ H1(R), as elements of S ′,


−(Tw)′′(x) + x2Tw(x)

+z
√

2[Tw]

(
b√
2

)
δ

(
x− b√

2

)
−z
√

2[Tw]

(
− b√

2

)
δ

(
x+

b√
2

)


= 2T


−w′′(x) +

x2

4
w(x)

+zw(b)δ (x− b)

−zw(−b)δ (x+ b)

 (4.3.11)

Now, we know by Proposition 3.3.1 that D
(
L̃PC(z, b)

)
⊆ D1 ⊆ H1(R), and by T

bounded invertible,

D
(

2T ◦ L̃PC(z, b)
)

= D
(
L̃PC(z, b)

)
⊆ D1 ⊆ H1(R). (4.3.12)
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Similarly, we know that D

(
LHO

(
z
√

2,
b√
2

))
⊆ D1 ⊆ H1(R); since T preserves D1

by Lemma 2.4.4, it follows that

D

(
LHO

(
z
√

2,
b√
2

)
◦ T
)
⊆ D1 ⊆ H1(R). (4.3.13)

Therefore, D

(
LHO

(
z
√

2,
b√
2

)
◦ T
)
is the set of w ∈ H1(R) for which the left-hand

side of (4.3.11) is in L2(R), and hence the right-hand side of (4.3.11) is in L2(R) as

well. Hence, LHO

(
z
√

2,
b√
2

)
◦ T ⊆ 2T ◦ L̃PC(z, b). Similarly, the reverse inclusion

holds. Thus, the operators are equal.

Post-composing
1

2
T−1 to both sides of (4.3.6), we have that

L̃PC(z, b) =
1

2
T−1 ◦ LHO

(
z
√

2,
b√
2

)
◦ T, (4.3.14)

and recalling that LPC(z, b) = L̃PC(z, b)− 1

2
I, subtracting

1

2
I from both sides,

LPC(z, b) =
1

2
T−1 ◦ LHO

(
z
√

2,
b√
2

)
◦ T − 1

2
I, (4.3.15)

i.e., (1.0.13) holds. Thus, the main part of Proposition 1 is proven. Our objective

is now to show that the expected relation on the spectrum holds. Fortunately, by

Lemma 2.3.2, in the case A = LHO

(
z
√

2,
b√
2

)
, B = T , we have that

Sp

(
T−1LHO

(
z
√

2,
b√
2

)
T

)
= SpLHO

(
z
√

2,
b√
2

)
. (4.3.16)
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Noting that Sp(
1

2
A) =

1

2
SpA and Sp(A− 1

2
I) = Sp(A)− 1

2
,

Sp (LPC(z, b)) =

Sp

(
LHO

(
z
√

2,
b√
2

))
− 1

2
,

i.e., (1.0.14) holds. Proposition 1 is proven.
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CHAPTER 5

CRITERION FOR EIGENVALUES

We now attempt to use Propositions 3.3.1 and 3.3.2 to discuss when ν ∈ C is an

eigenvalue of LPC(z, b).

5.1 L2 Requirement

We know from Proposition 3.3.2 that eigenfunctions must be solutions to the Weber

parabolic cylinder equation (3.3.3) on various subintervals; yet eigenfunctions must

be L2(R) functions by construction, so we see what the L2(R) constraint does for us.

To begin, we have the following lemma.

Lemma 5.1.1. Fix b > 0 and ν ∈ C.

(a) If for some y(x) ∈ Hol(C), {Dν(x), y(x)} is a linearly independent pair of

solutions to (3.1.1a) over C, then y(x) 6∈ L2((b,∞)).

(b) If for some y(x) ∈ Hol(C), {Dν(−x), y(x)} is a linearly independent pair of

solutions to (3.1.1a) over C, then y(x) 6∈ L2((−∞,−b)).

Proof. To prove part (a), suppose that for some b > 0, ν ∈ C, and y(x) ∈ Hol(C),

{Dν(x), y(x)} is a linearly independent set of solutions to (3.1.1a). We know that
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Dν(x) is that solution that must decay as xνe−x
2/4 as x → ∞, and that another

solution, call it V (x), must be proportional to x−ν−1ex
2/4 as x→∞, in the sense that

lim
x→∞

V (x)

x−ν−1ex2/4
= 1. (5.1.1)

By the distinct asymptotic behaviours {Dν(x), B(x)} is a linearly independent set of

solutions to (3.1.1a) on some interval of the form (M,∞), M > 0, and so y must be

a linear combination of Dν and V ; say,

y(x) = c1Dν(x) + c2V (x), x > M. (5.1.2)

Note that by {Dν , y} a linearly independent set of solutions on all of C, c2 6= 0. Then

of course, since Dν decays as x→∞,

lim
x→∞

y(x)

x−ν−1ex2/4
= c1 lim

x→∞

Dν(x)

x−ν−1ex2/4
+ c2 lim

x→∞

V (x)

x−ν−1ex2/4

= c1 · 0 + c2 · 1 = c2

(5.1.3)

Since it follows that

lim
x→∞

∣∣∣∣ y(x)

x−ν−1ex2/4

∣∣∣∣ = |c2| 6= 0,

then for some M1 ≥M , ∣∣∣∣ y(x)

x−ν−1ex2/4

∣∣∣∣ ≥ |c2|
2
. (5.1.4)
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Therefore, we have that for M2 = max{M1, b+ 1},

∫ ∞
b

|y(x)|2 dx ≥
∫ ∞
M2

|y(x)|2 dx

≥
∫ ∞
M2

|c2x
−ν−1ex

2/4|2 dx

≥ |c2|2
∫ ∞
M2

ex
2/2

x2ν+2
dx

=∞,

(5.1.5)

and so y is not square-integrable on (b,∞).

To prove part (b), we reduce to part (a). For if {Dν(−x), y(x)} is a linearly

independent set of solutions to (3.1.1a), then {Dν(x),−y(−x)} is certainly a set of

solutions to (3.1.1a) by the re�eciton symmetry, and we claim that it is a linearly

independent set of solutions, since if

a1Dν(x) + a2y(−x) ≡ 0, x ∈ C (5.1.6)

then letting t = −x, we have that

a1Dν(t) + a2y(−t) ≡ 0, t ∈ C (5.1.7)

Yet by linear independence of Dν and y(−·), a1 = a2 = 0. Hence, Dν(x) and y(−x)

are linearly independent over C. By part (a), then, y(−x) is not square�integrable

on (b,∞), which means that y is not square�integrable on (−∞,−b).

We now show that any eigenvector of LPC(z, b) must be of a particular �xed form.

Corollary 5.1.2. Fix b > 0, z ∈ C, and ν ∈ C \ N0. Then if y is an eigenfunction
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of LPC(z, b) with eigenvalue ν, then it must be of the form

y(x) =


βDν(−x), x ≤ −b

γy1(ν, x) + δy2(ν, x), −b ≤ x ≤ b

αDν(x), x ≥ b

. (5.1.8)

Proof. By Proposition 3.3.1, we know that any eigenfunction must satisfy (3.3.3) on

(−∞,−b), (−b, b), and (b,∞). It remains to choose an appropriate fundamental basis

of solutions on each interval. On the basis of our discussion in Section 3.1, we now

choose a basis of solutions to (3.3.3) on each interval, working right-to-left.

(b,∞). Since we want to use the proof independent of the condition of whether

or not ν ∈ N0, we choose the guaranteed basis of {Dν(x), D−ν−1(ix)} on this

interval.

(−b, b). To take maximal advantage of the symmetry in the domain, it makes sense

to use {y1(ν;x), y2(ν;x)} as our basis here.

(−∞,−b). Again, to put the appropriately decaying function in our domain, and

a guaranteed complement, we choose the basis of {Dν(−x), D−ν−1(ix)} on this

interval.

Since the above fundamental sets of solutions are solutions over C, their restrictions

to any open subinterval of R satisfy (3.3.3) on that subinterval. By Proposition 3.3.1,

eigenfunctions of LPC(z, b) must satisfy (3.3.3) on (−∞,−b), (−b, b), and (b,∞), and
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must be continuous on R. Hence, any eigenfunction must be of the form

y(x) =


βDν(−x) + tD−ν−1(ix), x ≤ −b

γy1(ν;x) + δy2(ν;x), −b ≤ x ≤ b

αDν(x) + sD−ν−1(ix), x ≥ b

. (5.1.9)

Suppose, by way of contradiction, that s 6= 0. Then since {Dν(x), D−ν−1(ix)} is

a linearly independent set of solutions to (3.1.1a), and s 6= 0, {Dν(−x), αDν(x) +

sD−ν−1(ix)} is a linearly independent set of solution to (3.1.1a). By Lemma 5.1.1,

part (a), αDν(x) +sDν(−x) is not square-integrable on (−∞,−b), so y(x), restricted

to (b,∞), is not in L2((b,∞)). Yet y(x) is an eigenfunction of LPC(z, b), an operator

de�ned on a subset of L2(R), so the restriction of y(x) to (b,∞) must be in L2(b,∞).

Contradiction. Thus, s = 0. Similarly, using Lemma 5.1.1, part (b), t = 0.

5.2 Jump Conditions Requirement

Fix b > 0, z ∈ C, and ν ∈ C \ N0. We now discuss the remaining conditions for y as

in (5.1.8) to be a ν-eigenfunction of LPC(z, b).

Continuity at x = ±b. The continuity condition at x = b is

y(b−) = y(b+), or

γy1(ν; b) + δy2(ν; b) = αDν(b)

(5.2.1)

Similarly, the continuity condition at x = −b is

y(−b−) = y(−b+), or

βDν(−[−b]) = γy1(ν;−b) + δy2(ν;−b)
(5.2.2)
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and since y1(ν, x) is even in x and y2(ν;x) is odd in ix, this becomes

βDν(b) = γy1(ν; b)− δy2(ν; b) (5.2.3)

Jump conditions on the derivative. In light of (5.1.8), the left-hand side of,

say, (3.3.4b) becomes

α
dDν

dx

∣∣∣∣
x=b

−
(
γ
d1

dx1 (y1(ν;x))

∣∣∣∣
x=b

+ δ
d1

dx1 (y2(ν;x))

∣∣∣∣
x=b

)
(5.2.4)

By (5.2.1), however, the right-hand side of (3.3.4b) becomes

zy(b) = zαDν(b).

Hence, altogether, (3.3.4b) becomes

α
dDν

dx

∣∣∣∣
x=b

−
(
γ
∂

∂x
(y1(ν;x))

∣∣∣∣
x=b

+ δ
∂

∂x
(y2(ν;x))

∣∣∣∣
x=b

)
= zαDν(b) (5.2.5)

Similarly, (3.3.4a) becomes

(
γ
∂

∂x
(y1(ν;x))

∣∣∣∣
x=−b

+ δ
∂

∂x
(y2(ν;x))

∣∣∣∣
x=−b

)
−β d

dx
Dν(−x)

∣∣∣∣
x=−b

= −zy(−b) (5.2.6)

Yet by the c = −1 case of Lemma 2.5.5,part 1 we know that for all even

di�erentiable functions f(t) ∈ C1(R),

df

dx

∣∣∣∣
x=−b

= − d

dx
(f(−x))

∣∣∣∣
x=b

= − d

dx
(f(x))

∣∣∣∣
x=b

by f even.

(5.2.7)
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Therefore,
∂

∂x
(y1(ν;x))

∣∣∣∣
x=−b

= − ∂

∂x
(y1(ν;x))

∣∣∣∣
x=b

(5.2.8)

Similarly, if g(t) ∈ C1(R) is an odd function,

dg

dx

∣∣∣∣
x=−b

=
dg

dx

∣∣∣∣
x=b

, (5.2.9)

and hence
∂

∂x
(y2(ν;x))

∣∣∣∣
x=−b

=
∂

∂x
(y2(ν;x))

∣∣∣∣
x=b

. (5.2.10)

Again by the c = −1 case of Lemma 2.5.5, part 1,

∂

∂x
(Dν(−x))

∣∣∣∣
x=−b

= − dDν

dx

∣∣∣∣
x=b

. (5.2.11)

Therefore, (5.2.6) becomes

(
−γ ∂

∂x
(y1(ν;x))

∣∣∣∣
x=b

+ δ
∂

∂x
(y2(ν;x)

∣∣∣∣
x=b

)
+ β

dDν

dx

∣∣∣∣
x=b

= −zβ0Dν(−[−b]).

(5.2.12)

Combining, and recollecting the terms in (5.2.2),(5.2.1), (5.2.12), and (5.2.5), we see

by Proposition 3.3.1 that ν 6∈ N0 is an eigenvalue of LPC(z, b) if and only if

βDν(b)− γy1(ν; b) + δy2(ν; b) = 0, (5.2.13a)

γDν(b) + δDν(−b)− αDν(b) = 0, (5.2.13b)

β

(
zDν(b) +

dDν

dx

∣∣∣∣
x=b

)
− γ ∂

∂x
(y1(ν;x))

∣∣∣∣
x=b

+ δ
∂

∂x
(y2(ν;x)

∣∣∣∣
x=b

= 0, (5.2.13c)

γ
∂

∂x
(y1(ν;x))

∣∣∣∣
x=b

+ δ
∂

∂x
(y2(ν;x))

∣∣∣∣
x=b

+ α

(
zDν(b)−

dDν

dx

∣∣∣∣
x=b

)
= 0. (5.2.13d)
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Equivalently, creating the shorthands

P := Dν(b), (5.2.14a)

Q :=
dDν

dx

∣∣∣∣
x=b

, (5.2.14b)

R := y1(ν; b), (5.2.14c)

T :=
∂

∂x
(y1(ν;x))

∣∣∣∣
x=b

(5.2.14d)

U := y2(ν; b), (5.2.14e)

W :=
∂

∂x
(y2(ν;x))

∣∣∣∣
x=b

(5.2.14f)

we have that 

P −R U 0

0 R U −P

zP +Q −T W 0

0 T W zP −Q


·



β

γ

δ

α


=



0

0

0

0


(5.2.15)

if and only if ν ∈ SpLPC(z, b). More precisely, we have the following.

Proposition 5.2.1. Fix b > 0, z ∈ C, and ν ∈ C, and let Lν denote the ν-eigenspace

of SpLPC(z, b) (which can be {0}). Then de�ning P , . . . ,W as in (5.2.14), and

de�ning

A(ν; z; b) :=



P −R U 0

0 R U −P

zP +Q −T W 0

0 T W zP −Q


(5.2.16)

there is a linear bijection from kerA(ν; z; b) (regarded as a subspace of R4) to Lν
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de�ned by



β

γ

δ

α


7→ yβ,γ,δ,α :=


βDν(−x), x ≤ −b

γy1(ν;x) + δy2(ν;x), −b ≤ x ≤ b

αDν(x), x ≥ b

. (5.2.17)

Proof. Fix b > 0, z ∈ C, and ν ∈ C. Then by Corollary 5.1.2, any element of

Lν must be for the form yβ,γ,δ,α for some β, γ, δ, α ∈ C. Moreover, we have shown

that yβ,γ,δ,α ∈ Lν if and only if (β, γ, δ, α)T ∈ kerA(ν; z; b), so the map in (5.2.17)

exists and is a surjection. We now argue that the map is an injection. Suppose that

(β, γ, δ, α)T 6= (b, c, d, a)T are elements of kerA(ν; z; b). Then the vectors disagree

in some index. If β 6= b, then yβ,γ,δ,α 6= yb,c,d,a on (−∞,−b). Similarly, if α 6= a,

the functions disagree on (b,∞). If γ 6= c, or δ 6= d, we know by (3.1.21) and

Proposition 2.5.4 that y1(ν, x) and y2(ν;x) are linearly independent functions of x, so

γy1(ν;x) + δy2(ν;x) 6= cy1(ν;x) + dy2(ν;x). (5.2.18)

Finally, since summation of functions is linear, linearity is assured.

5.3 The Algebraic Criterion

For any b > 0 and z ∈ C, by Proposition 5.2.1 it is clear that ν ∈ C is an eigen-

value of LPC(z, b) if and only if kerA(ν; z; b) 6= {0}. Yet a nontrivial kernel implies

that A(ν; z; b) is noninvertible, and hence that detA(ν; z; b) = 0. Calculating this

determinant, one arrives at

detA(ν; z; b) = 2
[
(RQ− T P)(UQ−WP)− z2P2RU

]
. (5.3.1)
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We now rewrite the terms in parentheses: recalling what P , etc. mean,

RQ− T P = y1(ν; b)
dDν

dx

∣∣∣∣
x=b

−Dν(b)
∂

∂x
(y1(ν, x))

∣∣∣∣
x=b

= Wr [y1(ν; ·), Dν ] (b)

(5.3.2)

and similarly,

UQ−WP = Wr [y2(ν; ·), Dν ] (b) (5.3.3)

Altogether, then, we have that

detA(ν; z; b) = 2
[
Wr [y1(ν; ·), Dν ] (b) ·Wr [y2(ν; ·), Dν ] (b)− z2D2

ν(b)y1(ν; b)y2(ν; b)
]
.

(5.3.4)

We now simplify those Wronskians. First, by Lemma 2.5.3, the Wronskian is bilinear,

so given (3.1.22),

Wr [y1(ν; ·), Dν ] (b)

=
2ν/2
√
π

Γ
(
−ν

2
+ 1

2

) Wr [y1(ν; ·), y2(ν; ·)] (b)− 2(ν+1)/2
√
π

Γ
(
−ν

2

) Wr [y1(ν; ·), y2(ν; ·)] (b)

= −2(ν+1)/2
√
π

Γ
(
−ν

2

) Wr [y1(ν; ·), y2(ν; ·)] (b) .

(5.3.5)

Similarly, since we know the Wronskian is alternating (see Lemma 2.5.3),

Wr [y2(ν; ·), Dν ] (b)

=
2ν/2
√
π

Γ
(
−ν

2
+ 1

2

) Wr [y2(ν; ·), y1(ν; ·)] (b)− 2(ν+1)/2
√
π

Γ
(
−ν

2

) Wr [y2(ν; ·), y2(ν; ·)] (b)

= − 2ν/2
√
π

Γ
(
−ν

2
+ 1

2

) Wr [y1(ν; ·), y2(ν; ·)] (b) .

(5.3.6)
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Then the product of the Wronskians becomes

Wr [y1(ν; ·), Dν ] (b) Wr [y2(ν; ·), Dν ] (b)

=
2ν+ 1

2π

Γ
(
−ν

2

)
Γ
(
−ν

2
+ 1

2

) Wr [y1(ν; ·), y2(ν; ·)] (b) .
(5.3.7)

This simpli�es, however, thanks to the formula

Γ(ζ)Γ

(
ζ +

1

2

)
= 2(1/2)−2ζ

√
2πΓ(2ζ), ζ ∈ C \ −N0; (5.3.8)

see [Sze75, (1.7.3), p. 14] or [Con78, Exercise VII.7.3, p. 183]. Using the case ζ = −ν
2

of (5.3.8), then, (5.3.7) becomes

Wr [y1(ν; ·), Dν ] (b) Wr [y2(ν; ·), Dν ] (b)

=

√
π√

2Γ(−ν)
Wr [y1(ν; ·), y2(ν; ·)] (b)

(5.3.9)

Since y1(ν;x) and y2(ν;x) are solutions to (3.1.1a), a second order linear, homoge-

neous di�erential equation with no �rst-derivative term, the Wronskian function is

constant; see [Olv74, Chap. V, (1.10), p. 142]. Therefore,

Wr [y1(ν; ·), y2(ν; ·)] (b) = Wr [y1(ν; ·), y2(ν; ·)] (0) (5.3.10)

Recall from (3.1.21), it follows that

Wr [y1(ν; ·), y2(ν; ·)] (0) = 1. (5.3.11)

Thus, �nally,

detA(ν; z; b) = 2

[ √
π√

2Γ(−ν)
− z2D2

ν(b)y1(ν; b)y2(ν; b)

]
. (5.3.12)
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Since the presence of eigenvalues is asking whether this determinant is 0, and 2 6= 0,

we know that ν ∈ SpLPC(z, b) if and only if

√
π√

2Γ(−ν)
− z2D2

ν(b)y1(ν; b)y2(ν; b) = 0 (5.3.13)

i.e., we have proven Theorem 1.

5.4 Reconciliation with Demiralp's work, and another alge-

braic criterion

Our objective is to reconcile the above formula with the work of [Dem05] mentioned

above. In his work, in the case z = ir, he uses the basis of solutions {Dν(x), Dν(−x)},

which restricts him to the case ν 6∈ N0, and his results are essentially as follows.

Lemma 5.4.1 ([Dem05, p. 3]). Fix b > 0, r ∈ R, and ν ∈ C\N0. Then ν ∈ LPC(ir, b)

if and only if

1 +
|r|2

W 2
D2
ν(b)

(
D2
ν(−b)−D2

ν(b)
)

= 0, (5.4.1)

where W = Wr [Dν , Dν(−·)] (b) = Wr [Dν , Dν(−·)] (−b).

Our objective is to reconcile these values. First, by (3.1.17), W =

√
2π

Γ(−ν)
. Since

|r|2 = r2 = −z2 under the identi�cation z = ir, we have

1− z2 Γ2(−ν)

2π
D2
ν(b)

(
D2
ν(−b)−D2

ν(b)
)

= 0 (5.4.2)

Moreover, we may simplify the D2
ν(−b)−D2

ν(b) term. First, we note that by the

di�erence�of�squares formula,

D2
ν(−b)−D2

ν(b) = (Dν(−b) +Dν(b))(Dν(−b)−Dν(b)). (5.4.3)
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Since the unperturbed equation (3.1.1a) is linear and homogeneous, it is clear that

this is the evaluation at b of an odd and an even solution for (3.1.1a). However, we

already know from (3.1.22) the precise factorization of Dν(b) into an odd and an even

solution; from (3.1.22) we get that

Dν(−b) +Dν(b) = 2 · 2ν/2
√
π

Γ
(
−ν

2
+ 1

2

) · y1(ν; b) (5.4.4a)

Dν(−b)−Dν(b) = 2 · 2(ν+1)/2
√
π

Γ
(
−ν

2

) y2(ν; b) (5.4.4b)

Plugging (5.4.4) into (5.4.3), and again using (5.3.8) to simplify, we have that

D2
ν(−b)−D2

ν(b) =
23/2
√
π

Γ(−ν)
y1(ν; b)y2(ν; b). (5.4.5)

Therefore, with this improvement, we may rewrite (5.4.2) as

1− z2

√
2Γ(−ν)√

π
D2
ν(b)y1(ν; b)y2(ν; b) = 0 (5.4.6)

We see that the only di�erence between (5.3.13) and (5.4.6) is a factor of
2Γ(−ν)

π
;

certainly, for ν 6∈ N0, Γ(−ν) 6= 0 and hence both forms are indeed valid. In short, we

have proven Theorem 2; i.e., for b > 0, z ∈ C, and ν ∈ C \N0, ν ∈ SpLPC(z, b) if and

only if

1− z2M(ν; b) = 0, (5.4.7)

where

M(ν; b) :=
Γ(−ν)

√
2√

π
D2
ν(b)y1(ν; b)y2(ν; b). (5.4.8)
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Again, for z 6= 0, (5.4.7) can be rewritten as

M(ν; b) =
1

z2
. (5.4.9)

This is useful for many reason, in particular, the following restrictions on eigenvalues

of LPC(ν, b).

Lemma 5.4.2. Fix b > 0, z ∈ C, and ν ∈ C \ N0. If M(ν; b) = 0, then ν 6∈

SpLPC(z, b).

Proof. Fix b > 0, z ∈ C, and ν 6∈ N0, so that Γ(−ν) is de�ned. If M(ν; b) = 0, then

(5.4.7) to become 1 = 0, which is never true.

Before �nishing the section, we note that the product-factorization of M(ν; b) in

(5.4.8) has the following consequence.

Lemma 5.4.3. Fix b > 0 and ν ∈ C\N0. ThenM(ν; b) = 0 if and only if y1(ν; b) = 0,

y2(ν; b) = 0, or Dν(b) = 0.

Proof. We are working in C, so a product is zero if and only if one of the factors

is 0. Certainly

√
2√
π
is nonzero. Since

1

Γ(ζ)
is entire, it has no poles, so Γ(ζ), hence

ν 7→ Γ(−ν), has no zeroes. The statement follows.

5.5 Integer eigenvalues, and related observations

Before continuing, we use the general equation (5.3.13) to the question of whether

or not for z 6= 0, ν = n ∈ N0 can be an eigenvalue of LPC(z, b). Of course, for

ν = n ∈ N0,
1

Γ(−ν)
= 0 and hence (5.3.13) reduces to the case of

−z2Dn(b)y1(n, b)y2(n, b) = 0. (5.5.1)
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Hence, a nonnegative integer n is an eigenvalue of LPC(z, b) for z 6= 0 if and only if

one of Dn(b), y1(n; b), and y2(n; b) is 0. Hence, as a corollary to Theorem 1, we have:

Corollary 5.5.1. Fix b > 0, and n ∈ N0. Then if at least one of

Dn(b) = 0, (5.5.2a)

y1(n; b) = 0, (5.5.2b)

y2(n; b) = 0 (5.5.2c)

holds, then n ∈ LPC(z, b) for all z ∈ C. If none of the statements in (5.5.2) hold,

then for all z 6= 0, n 6∈ LPC(z, b).

Example 5.5.2. We note that the equations in (5.5.2) can be satis�ed. For an explicit

example, we note that the second Hermite polynomial is H2(x) = 4x2 − 2, and by

(3.2.5), D2(x) has as a factor

H2

(
x√
2

)
= 2x2 − 2 = 2(x2 − 1) = 2(x+ 1)(x− 1),

so D2(1) = 0; similarly, one may see from (3.1.19a) that y1(2; 1) = 0.

We must note that in a sense, (5.5.2) contains redundancies. This is because,

recalling (3.2.6),

Dn(−x) = (−1)nDn(x), n ∈ N0,

it follows that Dn(x) is an even function for n even and an odd function for n odd;

hence it must be a multiple of y1(n;x) or y2(n;x), respectively. More speci�cally, by
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(3.1.22),

D2k(x) =
2k
√
π

Γ
(
−k − 1

2

)y1(2k, x), k ∈ N0, (5.5.3a)

D2k+1(x) =
2k+1
√
π

Γ
(
−k − 1

2

)y2(2k + 1, x), k ∈ N0. (5.5.3b)

Therefore, (5.5.2) is indeed redundant. Yet emphasizing the possibility for ν 7→

M(ν; b) has possible zeroes at nonnegative integers provides the following technical

value. Suppose n ∈ N0 is a zero of ν 7→ D(ν; b) of order m. Then de�ning

M̃(ν; b) := [Dν(b)]
2 y1(ν; b)y2(ν; b), (5.5.4)

ν 7→ M̃(ν; b) has a zero of order at least 2m + 1 at n, since ν 7→ [Dν(b)]
2 has a zero

of order 2m, and either y1(n, b) or y2(n, b) must also be zero, contributing at least

one additional zero. The expression in (5.5.4), of course, is up to constant factors
M(ν; b)

Γ(−ν)
, and the Γ(−ν) term only has a pole of order 1 at ν = n. Therefore, by

the theory of functions of one complex variable (e.g., [Con78, Chapter V, Section 1]),

ν 7→M(ν; b) can be analytically extended to n and its vicinity; we write the extension

as M(ν; b) for clarity. Of course, this holds for any integer zero of ν 7→ D(ν; b). We

state this as a lemma/corollary pair for future reference.

Lemma 5.5.3. Fix b > 0. Suppose that for some n ∈ N0, the map ν 7→ M̃(ν; b) has a

zero of order m+1, m ≥ 0, at ν = n. Then the function ν 7→M(ν; b) has a removable

singularity at ν = n. Denoting the analytic extension by M(ν; b), ν 7→M(ν; b) has a

zero of order m ≥ 0 at ν = n.

Corollary 5.5.4. Fix b > 0. Suppose that ν 7→ Dν(b) has a nonnegative integer zero

ν = n, n ∈ N0, of order m ≥ 1. Then ν 7→ M̃(ν; b) has a zero of order at least 2m+1
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at ν = n, so ν 7→ M(ν; b) has a removable singularity at ν = n, and the extension

ν 7→M(ν; b) has a zero of order at least 2m.

5.6 Numerical Evidence for Behavior of the Eigenvalues

We now present some numerical computations using Mathematica to �nd the eigen-

values of LPC(z, 2). (Our code is in Appendix We used both (5.3.13) and (5.4.9) to �nd

the eigenvalues. In each of Figures 5.1, 5.2, and 5.3, the eigenvalues of LPC

(
reiθ, 2

)
are shown, for r ∈

[
1

2
, 10

]
and θ ∈

{
0,
π

4
,
π

2

}
.

According to the diagrams, we certainly con�rm that for z real, the eigenvalues

are real, and the results suggest that for z = ir, certainly many eigenvalues appear

to become nonreal. To suggest a solution, we add to our diagrams the (numerically

computed) degree-1 and degree-2 zeroes of ν 7→ M(ν; 2), and the zeroes of the �rst

ν-derivative of ν 7→ M(ν; 2) that are not zeroes of ν 7→ M(ν; 2). The results are in

Figures 5.4, 5.5, and 5.6.

It appears that the zeroes of M(ν; b) attract eigenvalues of LPC(z, 2) regardless of

the argument of z, and that for z = ir, the zeroes of the ν-derivative of M(ν; 2) that

are not zeroes ofM(ν; 2) have a role in determining when the eigenvalues of LPC(ir, 2)

coalesce into complex-conjugate pairs as r increases. We discuss the former in great

detail in Chapter 6, and discuss some issues of the latter in Chapter 7.
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CHAPTER 6

EXISTENCE OF NONREAL EIGENVALUES

In this section, we prove Theorem 3. To do so, we pay particular attention to the

criterion for eigenvalues from Theorem 2,

M(ν; b) =
1

z2
, (6.0.1)

where

M(ν; b) =
Γ(−ν)

√
2√

π
D2
ν(b)y1(ν; b)y2(ν; b). (6.0.2)

We �rst show some basic properties of M(ν; b) and its component functions.

6.1 Preliminary Properties of M(ν; b)

We start with the proof that we are dealing with a nonconstant function.

Lemma 6.1.1. For all b > 0, the function ν 7→M(ν; b) is holomorphic on the domain

C \N0, and meromorphic on C. Moreover, ν 7→M(ν; b) is nonconstant on any open

subset of its domain.

Proof. Fix b > 0. By (6.0.2), and the fact that ν → Dν(b), ν → y1(ν; b), and

ν → y2(ν; b) are holomorphic by Proposition 2.5.2,

ν 7→ M̃(ν)b = [Dν(b)]
2y1(ν; b)y2(ν; b)
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is holomorphic on C. Since

M(ν; b) =
Γ(−ν)

√
2√

π
M̃(ν)b,

and Γ(−ν) is meromorphic on C with poles at every n ∈ N0, it follows that M(ν; b)

is holomorphic on C \ N0 and meromorphic on C, with poles at a subset of N0.

To demonstrate that M(ν; b) is nonconstant, we will show that y1(0, b), y2(0, b)

and D0(b) are all nonzero, and so by (6.0.2), there is no cancellation of the pole of

Γ(−ν) at ν = 0, so ν 7→ M(ν; b) will have a pole at ν = 0. By the rules of poles,

then (e.g., [Con78, Chapter V, Defn. 1.3, p. 105], it follows that lim
ν→0
|M(ν; b)| =∞,

so M(ν; b) cannot possibly be a constant function in a punctured neighborhood of 0.

y1(0, b) 6= 0. By (3.1.19a),

y1(0, b) = 1 + (0)
b2

2!
+ (0)(2)

b4

4!
+ · · · = 1 6= 0. (6.1.1)

y2(0, b) 6= 0. Similarly, by (3.1.19b),

y2(0, b) = b+ (1)
b3

3!
+ (1)(3)

b5

5!
+ · · · > b > 0. (6.1.2)

D0(b) 6= 0. By (3.2.5),it follows that

D0(x) = π1/4e−x
2/4

which is clearly nonzero for any x ∈ C, hence for x = b.

Hence, ν 7→ M(ν; b) is nonconstant in a punctured neighborhood centered at ν = 0.

Yet the domain ofM(ν; b), C\N0 and hence is connected and path-connected; hence,
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by the Identity Principle (e.g., [Con78, Chapter IV, Thm. 3.7 and Cor. 3.8, p. 79])

M(ν; b) is not constant on any open set in C \ N0.

Corollary 6.1.2. Suppose ν 7→ M(ν; b) has a removable singularity at some n ∈ N.

Then the analytic extension M(ν; b) is nonconstant.

We also make the following observations.

Lemma 6.1.3. Fix b > 0 and ν ∈ R (as opposed to C). Then y1(ν; b), y2(ν; b),

and Dν(b) are real. If in addition, ν 6∈ N0, Γ(−ν) and M(ν; b) are real. Also, if

M(ν; b) analytically continues to any n ∈ N, the analytic extension M(ν; b) satis�es

M(n; b) ∈ R.

Proof. Fix b ∈ R and ν ∈ R. Note that by (3.1.19a) and (3.1.19b), y1(ν; b) and

y2(ν; b) are real-valued by ν and b being real. By the product de�nition of
1

Γ(ζ)
, as

in, e.g., B. Ya. Levin's text [Lev96, Lecture 5, p. 32],

1

Γ(ζ)
= ζeγζ

∞∏
j=1

(
1 +

ζ

j

)
e−ζ/j, (6.1.3)

where γ is the Euler-Mascheroni constant, a real constant. Thus, for ζ real,
1

Γ(ζ)
is

a product of real numbers and hence is real. Since the transformations ν 7→ − ν
2
and

ν 7→ − ν
2

+
1

2
preserve the real line, it is clear from (3.1.22) that Dν(b) is real-valued

by ν, b real.

If ν 6∈ N0, by (6.1.3), Γ(−ν) is therefore real-valued by ν ∈ R \ N0. Thus, by

(6.0.2), M(ν; b) is real-valued.

Finally, if ν 7→M(ν; b) has a removable singularity at ν = n, the extended function
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M(ν; b) is of course real-valued for ν ∈ R \ N0, and by continuity of the extension,

M(n; b) = lim
ε→0+
ε>0

M(n+ ε; b)

= lim
ε→0+
ε>0

M(n+ ε; b)

(6.1.4)

and thus M(n; b) is the limit of real values and hence is real.

Corollary 6.1.4. Fix b > 0. Any power-series expansion for M(ν; b) centered at any

ν ∈ R \ N0 must have real coe�cients. The same is true for any analytic extension

M(ν; b) at any real number in its domain of analyticity.

6.2 Zeroes outside N0 of ν 7→M(ν; b)

We now show that the existence of zeroes of ν 7→ M(ν; b), more speci�cally of ν 7→

Dν(b), solves the problem.

Proposition 6.2.1. Fix b > 0. If there exists µ ∈ C such that µ is a zero of

ν 7→ Dν(b), then µ ∈ R+ = (0,∞) and the zero is simple. Moreover, for su�ciently

large r > 0, LPC(ir, b) has 2 nonreal eigenvalues in a neighborhood of ν.

For technical reasons, however, we choose to split the proof into the case of zeroes

ofM(ν; b) (including Dν(b)), and zeroes of the extension at any nonnegative integers.

We handle the �rst case here. First, for any �xed µ ∈ C \ N0 with M(µ; b) = 0, we

may apply Proposition 2.6.3 to the function ν 7→M(ν; b) at the point µ, and get:

Proposition 6.2.2. Let b > 0, and �x z ∈ C\{0}; let z = reiθ, r ∈ R+, θ ∈ [−π, π).

Suppose µ ∈ C\N0 is a zero of M(ν; b) of order m, m ∈ N. Suppose the power-series

expansion of M(ν; b) in ν centered at ν = µ is given as

M(ν; b) =
∞∑
j=m

cj(ν − µ)j, (6.2.1)

79



where cm 6= 0 ; hence, let cm = ρeiψ, ρ ∈ R+, ψ ∈ [−π, π).

We take particular roots of z and cm as follows. Let z = r1/meiθ/m denote a

particular nth root of z; we note that an mth root of
1

z2
is

1

z2
= r−2/me−2iθ/m, and

the other mth roots are the above �gure mutliplied by e2πik/m, k = 1, . . . , n− 1. Also,

let c = ρ1/meiψ/m denote a particular mth root of cm.

Then for r large enough, there exists m solutions {νk}m−1
k=0 = {νk(z)}m−1

k=0 to (6.0.1),

i.e.,

M(ν; b) =
1

z2
,

for ν in some neighborhood of µ, with leading-order expansion given by

νk(re
iθ) = µ+

1

z2c
exp

(
2πik

m

)
+O

(
z−4/m

)
= µ+

1

r2/mρ1/m
exp

(
i

[
−2θ − ψ + 2πik

m

])
+ Θ

(
r−4/m

)
,

k = 0, 1, . . .m− 1.

(6.2.2)

In particular, as r →∞, νk → 0 for all k; indeed,

|νk − µ| = Θ(
1

r2/m
), k = 0, 1, . . .m− 1. (6.2.3)

As r →∞, for �xed θ, we have that

lim
r→∞

νk − µ
|νk − µ|

= exp

(
i

[
−2θ − ψ + 2πk

m

])
, k = 0, 1, . . .m− 1. (6.2.4)

6.2.1 Restrictions From Real z

Applying Proposition 6.2.2 to the z real case, we discover the following statements

about the zeroes of M(ν; b).

Lemma 6.2.3. Fix b > 0. If µ ∈ C \ N0 is a zero of ν 7→M(ν; b) then µ ∈ R \ N0.
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Proof. Fix b > 0, and let µ ∈ C \ N0 be a zero of ν 7→ M(ν; b), of order m. As a

positive real parameter r tends to∞ along the positive real axis, by Proposition 6.2.2,

there exists an solution ν0 = ν0(r) to (6.0.1) satisfying (6.2.3). Fix R > 0 such that

we can �nd positive constants c, C so that by (6.2.3), for all r > R,

c

r2/n
< |ν0(z)− µ| < C

r2/n
. (6.2.5)

Let {rj}∞j=1 be de�ned by

rj = 2jR, j ∈ N. (6.2.6)

Then de�ne

ν
(j)
0 := ν0(rj). (6.2.7)

By (6.2.5), we have that for j ∈ N,

|ν(j)
0 − µ| <

C

R2/n2j/n

so by the Squeeze Theorem,

lim
j→∞
|ν(j)

0 − µ| = 0,

i.e.,

lim
j→∞

ν
(j)
0 = µ. (6.2.8)

Yet ν(j)
0 are solutions to the z = rj case of (6.0.1), so by Theorem 2, they must be

eigenvalues of LPC(rj, b). Yet by the rj real, ν
(j)
0 must be real by Proposition 3.3.1.

Thus, µ, being the limit of real numbers, must be real.

Thus, the simple fact that the eigenvalues of LPC(z, b) approach the zeroes of

ν 7→ M(ν; b) as |z| → ∞, when applied to z real, forces the zeroes real. We now

demonstrate that the zeros are positive real.

81



Lemma 6.2.4. Fix b > 0. The zeroes of ν 7→ Dν(b), ν 7→ y1(ν; b), and ν 7→ y2(ν; b)

are in R+. Also, the zeroes of ν 7→M(ν; b) are in R+.

Proof. Fix b > 0. We know by Lemma 5.4.3 that any zero of ν 7→ y1(ν; b), ν 7→

y2(ν; b), or ν 7→ Dν(b) that is not in N0 must be a zero of ν 7→ M(ν; b). By

Lemma 6.2.3, such zeroes must be real. Of course, any zero of ν 7→ y1(ν; b), ν 7→

y2(ν; b), or ν 7→ Dν(b) which is in N0 is real; hence, the zeroes of ν 7→ Dν(b),

ν 7→ y1(ν; b), and ν 7→ y2(ν; b) are in R.

We now show that these functions are positive on the nonpositive real ν-axis, for

b > 0.

ν 7→ y1(ν; b). Since for ν ≤ 0, 0 ≤ (−ν) ≤ (−ν + 2) ≤ (−ν + 4) ≤ · · · , by (3.1.19a)

it is clear that for any ν ≤ 0 and any real b, y1(ν; b) ≥ 1.

ν 7→ y2(ν; b). Similarly, for ν ≤ 1, 0 ≤ (−ν + 1) ≤ (−ν + 1)(−ν + 3) ≤ · · · , and by

b > 0,
b2j+1

(2j + 1)!
> 0, so by (3.1.19b), y2(ν; b) ≥ b > 0.

ν 7→ Dν(b). If ν = 0, then again, by (3.2.5), D0(x) is a nonzero constant multiple

of e−x
2/4, so for any b > 0, D0(b) is positive real.

For ν < 0, by (3.1.2) and [Tem14, Section 12.5(i), (12.5.1)], we have that

Dν(b) =
e−b

2/4

Γ(−ν)

∫ ∞
0

t−νe−
1
2
t2−bt dt (6.2.9)

and hence it follows thatDν(b) is the integral of a nonnegative integrand, strictly

positive for t > 0, multiplied by the positive exp

[
− b

2

4

]
and

1

Γ(−ν)
, where ν < 0

implies −ν > 0 so that Γ(−ν) is positive and �nite. Thus, for ν < 0, any real

b, Dν(b) is positive.

By Lemma 5.4.3, ν 7→M(ν; b) is therefore nonzero on the negative real axis, and by

the proof of Lemma 6.1.1,M(ν; b) has a pole at 0. Hence, any real zero of ν 7→M(ν; b)
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is positive real. By Lemma 6.2.3, every zero of ν 7→M(ν; b) is real, so by the above,

every zero of ν 7→M(ν; b) is positive real.

Now, we use the angles of approach, as guaranteed in (6.2.4), to limit the orders

of the zeros.

Lemma 6.2.5. Fix b > 0, and suppose that µ ∈ R+ \ N0 is a zero of ν 7→ M(ν; b)

of order m. Then m ≤ 2. Moreover, if m = 2, then in the power-series expansion at

ν = µ, i.e. (6.2.1), c2 > 0.

Proof. Fix b > 0, and let µ ∈ R+ \ N0 be a zero of ν 7→ M(ν; b), of order m.

By Proposition 6.2.2, for z = r > 0, r large enough, we have solutions {νk}m−1
k=0 =

{νk(r)}m−1
k=0 to (6.0.1) satisfying (6.2.4).

We �rst claim that for r large enough, the νk are real. For νk satis�es the z = r

case of (6.0.1), equivalently (1.0.18), so by Theorem 2, the νk(r) are eigenvalues of

LPC(r, b). Yet by Proposition 3.3.1, since r is real, all eigenvalues of LPC(r, b) are

real.

Hence, in (6.2.4)� i.e.,

lim
r→∞

νk − µ
|νk − µ|

= exp

(
i

[
−2θ − ψ + 2πk

n

])
, k = 0, 1, . . .m− 1, (6.2.10)

for each k ∈ {0, 1, . . . ,m − 1}, νk(r)− µ
|νk(r)− µ|

is a real expression by both νk(r) and µ

real, so by the limits of real functions being real,

exp

(
i

[
−2θ − ψ + 2πk

n

])
, k = 0, 1, . . . ,m− 1. (6.2.11)

In other words,
−2θ − ψ + 2πk

n
∈ πZ, k = 0, 1, . . . ,m− 1. (6.2.12)
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Yet we may simplify (6.2.12). For one thing, since z = r is positive real, θ = 0.

Moreover, since we now know µ ∈ R, we may use Corollary 6.1.4 to note that in the

power-series expansion for M(ν; b) at ν = µ, i.e.,

M(ν; b) =
∞∑
j=m

cj(ν − µ)j, (6.2.13)

all cj are real. In particular, cm is real, so ψ ∈ {−π, 0}. We have two cases.

Case 1: ψ = 0. Then we have that

2πk

m
∈ πZ, k = 0, 1, . . . ,m− 1.

If m = 1, we have a zero of order 1. Else, m ≥ 2, and the k = 1 case is available,

so
2π

m
∈ πZ, or

2

m
∈ Z.

Since m is a positive integer, the only possibility is m = 2.

Case 2: ψ = −π. Then we have that

2πk − π
m

∈ πZ, k = 0, 1, . . . ,m− 1.

From the k = 0 case we have that

−π
m
∈ πZ, or

−1

m
∈ Z,

and by m a nonnegative integer, the only possibility is m = 1.

In all cases, m ≤ 2, and in the case m = 2, c2 < 0 cannot occur.
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6.2.2 Consequences for Imaginary z

Proposition 6.2.6. Fix b > 0, and suppose that µ ∈ R+\N0 is a zero of ν 7→M(ν; b)

of order 2. Then as r →∞, r > 0,

M(ν; b) =
1

z2
= − 1

r2

has 2 nonreal zeroes in a neighborhood of µ.

Proof. Fix b > 0, and suppose that µ ∈ R+ \ N0 is a zero of ν 7→ M(ν; b) of order 2.

Then for z = ir = reiπ/2, we have that in the language of Proposition 6.2.2, θ =
π

2
.

Moreover, in the power-series expansion at µ,

M(ν; b) =
∞∑
j=2

cj(ν − µ)j, (6.2.14)

c2 > 0 by Lemma 6.2.5, so ψ = 0. Then by Proposition 6.2.2, we have that the two

guaranteed solutions of M(ν; b) =
1

z2
= − 1

r2
satisfy (in this case θ =

π

2
)

lim
r→∞

νk(ir)− µ
|νk(ir)− µ|

= exp(i
[
−π

2
+ πk

]
), k = 0, 1. (6.2.15)

The right-hand side is simply (−1)k(−i), k−0, 1. Thus, since the ratio between ν0−µ

and its absolute value is approximately ±i, eventually arg(ν0− µ) is at least
π

4
away

from any integer multiple of π, so ν0 = ν0 − µ + µ is the sum of a nonreal number

ν0 − µ and a real number µ, hence is nonreal. Similarly for ν1.

Adding in Theorem 2, we have:

Corollary 6.2.7. Fix b > 0, and suppose that µ ∈ R+ \ N0 is a zero of ν 7→M(ν; b)

of order 2. Then for r > 0, r su�ciently large, LPC(ir, b) has 2 nonreal eigenvalues

in a neighborhood of µ.

85



To restrict the discussion from ν 7→ M(ν; b) to the case ν 7→ Dν(b), we require a

lemma.

Lemma 6.2.8. Fix b > 0, and suppose that for some µ ∈ C \ N0, Dµ(b) = 0. Then

y1(µ; b) 6= 0 and y2(µ; b) 6= 0.

Proof. First, we recall from Lemma 3.1.2 that y1(ν; b) and y2(ν; b) cannot be simulta-

neously zero. Now suppose, by way of contradiction, that Dµ(b) = 0 and y1(µ; b) = 0

for µ 6∈ N0. Then by (3.1.22),

0 = −2(µ+1)/2
√
π

Γ
(
−µ

2

) y2(µ; b)

Yet certainly −2(µ+1)/2
√
π 6= 0, and since µ 6∈ N0, −

µ

2
6∈ N0 and so

1

Γ
(
−µ

2

) 6= 0.

Therefore, y2(µ; b) = 0. Thus, y1(µ; b) = 0 and y2(µ, b) = 0. Contradiction.

Thus, for µ 6∈ N0, Dµ(b) and y1(µ; b) cannot be simultaneously 0. Similarly, if

µ 6∈ N0, Dµ(b) and y2(µ; b) cannot be simultaneously 0.

We now prove that a simple case of �nding zeroes of ν 7→ M(ν; b) is �nding

noninteger zeroes of ν 7→ Dν(b).

Corollary 6.2.9. Fix b > 0. Then if µ ∈ R+ \ N0 is a zero of ν 7→ Dν(b), then the

zero is simple. In addition, if r is large enough, then there are two nonreal eigenvalues

of LPC(ir, b) in a neighborhood of µ.

Proof. Fix b > 0, and suppose that µ ∈ R+ \ N0 is a zero of ν 7→ Dν(b) of order m,

m ≥ 1. Then we know that ν 7→ [Dν(b)]
2 is a factor of M(ν; b) as in (6.0.2), and

M(ν; b) is analytic except for the (possible) poles at N0. Thus, ν 7→ M(ν; b) has a

zero at µ of order 2m. Yet by Lemma 6.2.5, we know that any zero of ν 7→M(ν; b) is

of order at most 2. Hence, m = 1 and the zero is simple. Moreover, by Lemma 6.2.8,
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y1(µ; b) 6= 0 and y2(µ; b) 6= 0, and of course the Gamma function times a constant

has no zeroes. Hence, ν 7→ M(ν; b) has a zero of order exactly 2 at µ. We may

invoke Corollary 6.2.7 to show the existence of the nonreal eigenvalues of LPC(ir, b)

in a neighborhood of µ.

We therefore have almost proven Proposition 6.2.1, except that we still have the

case of positive integer zeroes.

6.3 Zeroes in N of ν 7→M(ν; b)

We now consider the case when ν 7→M(ν; b) has a removable singularity at ν = n in

N0: by Lemma 6.1.1, of course we cannot make the extension at n = 0, so we may

restrict to n ∈ N. By our work in Section 5.5, we know that the singularity at ν = n

is removable whenever

M̃(ν; b) = [Dν(b)]
2 y1(ν; b)y2(ν; b) (6.3.1)

has a zero at n, but by Lemma 5.5.3 we need n to be a zero of ν 7→ M̃(ν; b) of order

m + 1 to force the analytic extension ν 7→M(ν; b) of ν 7→ M(ν; b) to have a zero of

order m. In such a case, by Corollary 6.1.2, the analytic extension is nonconstant in

a neighborhood of n ∈ N, and by Corollary 6.1.4, in the power-series expansion of

M(ν; b) at ν = n,

M(ν; b) =
∞∑
j=m

cj(ν − n)j, (6.3.2)

all ck are real-valued. We thus have the analogue of Proposition 6.2.2, which follows

purely from the properties of zeroes of analytic functions.

Proposition 6.3.1. Let b > 0, and �x z ∈ C\{0}; let z = reiθ, r ∈ R+, θ ∈ [−π, π).

Suppose that n ∈ N0 is such that ν 7→ M̃(ν; b) has a zero of order m + 1, m ≥ 1, at
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ν = n; hence M(ν; b) is de�ned and analytic in a neighborhood of ν = n, with a zero

of order m. Suppose the power-series expansion of M(ν; b) in ν centered at ν = n

is given as in (6.3.2), so that cm 6= 0 ; hence, let cm = ρeiψ, ρ ∈ R+, ψ ∈ {−π, 0}.

Moreover, let c = ρ1/meiψ/m denote a particular mth root of cm.

Then for r large enough, there exists m distinct solutions {νk}m−1
j=0 = {νk(z)}m−1

j=0

to

M(ν; b) =
1

z2
(6.3.3)

for ν in some punctured neighborhood of n, with leading-order expansion given by

νk = n+
1

z2c
exp

(
2πik

m

)
+O

(
z−4/m

)
= n+

1

r2/mρ1/m
exp

(
i

[
−2θ − ψ + 2πik

m

])
+ Θ

(
r−4/m

)
, k = 0, 1, . . . n− 1.

(6.3.4)

In particular, as r →∞, νk → n for all k; indeed,

|νk − n| = Θ(
1

r2/m
), k = 0, 1, . . .m− 1. (6.3.5)

As r →∞, for �xed θ, we have that

lim
r→∞

νk − n
|νk − n|

= exp

(
i

[
−2θ − ψ + 2πk

m

])
, k = 0, 1, . . .m− 1. (6.3.6)

The constraint (6.3.5) is quite important, for it reminds us that the νk, k =

0, 1, . . .m−1 are not equal to n, yet close enough to n not to be another integer. Yet

for ν in a punctured disk of radius, say,
1

2
around n, M(ν; b) = M(ν; b), so we have

that the νk, being non-N0 solutions to (6.3.3), are also non-N0 solutions to (5.4.9),
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i.e.

M(ν; b) =
1

z2
.

Hence, Theorem 2 informs us that the νk are indeed eigenvalues of LPC(z, b).

Corollary 6.3.2. Let b > 0, and suppose n ∈ N0 is such that ν 7→ M̃(ν; b) has a

zero of order m + 1, m ≥ 1, at ν = n; hence M(ν; b) is de�ned and analytic in a

neighborhood of ν = n, with a zero of order m. Then for z = reiθ, θ ∈ [−π, π), r > 0

and large enough, the solutions {νk(z)}n−1
j=0 are solutions to (6.3.3), guaranteed by

Proposition 6.3.1, are not in N0. Hence, they are also solutions to (6.0.1), equivalently

(1.0.20), and hence by Theorem 2 they are eigenvalues of LPC(z, b).

6.3.1 Restrictions from Real z

Corollary 6.3.2 allows us to get the analogue of Lemma 6.2.5.

Lemma 6.3.3. Fix b > 0, and suppose that there exists n ∈ N0 such that ν 7→ M̃(ν; b)

has a zero of order m+ 1, m ≥ 1, at ν = n, so that M(ν; b) is de�ned and analytic in

a neighborhood of ν = n, and M(ν; b) has a zero of order m at ν = n. Then m ≤ 2;

if in fact m = 2, and the power-series expansion at ν = n is

M(ν; b) =
∞∑
k=2

cj(ν − n)j, (6.3.7)

then c2 > 0.

Proof. Fix b > 0, and suppose n ∈ N0 is such that ν 7→ M̃(ν; b) has a zero of order

m + 1, m ≥ 1, at ν = n; hence M(ν; b) is de�ned and analytic in a neighborhood of

ν = n, with a zero of order m. By Proposition 6.3.1, for z = r > 0, r large enough,

we have solutions {νk}m−1
k=0 = {νk(r)}m−1

k=0 to (6.0.1) satisfying (6.3.6).

We note for r large enough, the νk(r) are real. By Corollary 6.3.2, for r large
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enough the νk(r) are eigenvalues of LPC(r, b). Yet by Proposition 3.3.1, since r is

real, all eigenvalues of LPC(r, b) are real.

Hence, in (6.3.6), i.e.,

lim
r→∞

νk − n
|νk − n|

= exp

(
i

[
−2θ − ψ + 2πk

m

])
, k = 0, 1, . . .m− 1, (6.3.8)

for each k ∈ {0, 1, . . . ,m − 1}, νk(r)− n
|νk(r)− n|

is a real expression by both νk(r) and n

real, so by the limits of real functions being real,

exp

(
i

[
−2θ − ψ + 2πk

m

])
, k = 0, 1, . . . ,m− 1. (6.3.9)

In other words, (6.2.12) holds. The remainder of the proof proceeds as in the proof

of Lemma 6.2.5.

6.3.2 Consequences for Imaginary z

We now have the analogues of Section 6.2.2.

Proposition 6.3.4. Fix b > 0, and suppose n ∈ N0 is such that ν 7→ M̃(ν; b) has a

zero of order 3 at ν = n; hence M(ν; b) is de�ned and analytic in a neighborhood of

ν = n, with a zero of order 2. Then as r →∞, r > 0,

M(ν; b) =
1

z2
= − 1

r2

has 2 nonreal zeroes in a neighborhood of µ.

Proof. Fix b > 0, and suppose that n ∈ N0 is such that ν 7→ M̃(ν; b) has a zero of

order 3 at ν = n, hence M(ν; b) is de�ned and analytic in a neighborhood of ν = n,
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with a zero of order 2. Let z = ir = reiπ/2 for r > 0; we have that in the language of

Proposition 6.3.1, θ =
π

2
. Moreover, in the power-series expansion at n,

M(ν; b) =
∞∑
j=2

cj(ν − n)j, (6.3.10)

c2 > 0 by Lemma 6.2.5, so ψ = 0. Then by Proposition 6.3.1, we have that the two

guaranteed solutions of M(ν; b) =
1

z2
= − 1

r2
satisfy

lim
r→∞

νk(ir)− n
|νk(ir)− n|

= exp(i
[
−π

2
+ πk

]
), k = 0, 1. (6.3.11)

The right-hand side is simply (−1)k(−i), k−0, 1. Thus, since the ratio between ν0−µ

and its absolute value is approximately ±i, eventually arg(ν0− µ) is at least
π

4
away

from any integer multiple of π, so ν0 = ν0 − n + n is the sum of a nonreal number

ν0 − n and the integer n, hence nonreal. Similarly for ν1.

Adding in Corollary 6.3.2, we have:

Corollary 6.3.5. Fix b > 0, and suppose n ∈ N0 is such that ν 7→ M̃(ν; b) has a

zero of order 3 at ν = n; hence M(ν; b) is de�ned and analytic in a neighborhood of

ν = n, with a zero of order 2. Then for r > 0, r su�ciently large, LPC(ir, b) has 2

nonreal eigenvalues in a neighborhood of µ.

We again show that it su�ces to restrict attention to (integer) zeroes of ν 7→ Dν(b).

Corollary 6.3.6. Fix b > 0. Then if n ∈ N is a zero of ν 7→ Dν(b), then the zero is

simple. Moreover, for r > 0 large enough, LPC(ir, b) has two nonreal eigenvalues in

a neighborhood of n, in addition to the eigenvalue at n guaranteed by Corollary 5.5.1.

Proof. Fix b > 0, and suppose that n ∈ N is a zero of ν 7→ Dν(b) of order m, m ≥ 1.

Then by Corollary 5.5.4, the analytic extension in a neighborhood of n, M(ν; b), has
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a zero of order at least 2m at m = n. Yet by Lemma 6.3.3, the zero of ν 7→M(ν; b)

can be of order at most 2, so m = 1; in other words, the zero of ν 7→ Dν(b) is simple.

Moreover, by Lemma 3.1.2, y1(n, b) and y2(n, b) cannot both be 0, but by Dn(b) =

0 and (5.5.3), at least one of them is 0, so exactly one of them is 0. Suppose n is even

so that y1(n, b) = 0. The order of the zero of ν 7→ y1(ν, b) at ν = n must be exactly

1, otherwise the order of the zero of ν 7→ M̃(ν; b) would be at least 2 + 2 = 4, and the

order of ν 7→ M̃(ν; b) at ν = n would be at least 3, violating Lemma 6.3.3. Similarly

if n is odd.

Hence, the order of the zero of ν 7→ M̃(ν; b) at ν = n is exactly 3, and the zero

of ν 7→M(ν; b) at ν = n is of order exactly 2. We may invoke Corollary 6.3.5 to get

the two nonreal eigenvalues in a neighborhood of n.

Combining Lemma 6.2.4, Corollary 6.2.9, and Corollary 6.3.6, we have Proposi-

tion 6.2.1.

Example 6.3.7. To demonstrate how this works in practice, we recall the example

that D2(1) = y1(2, 1) = 0. Hence, in the b = 1 case, there is an eigenvalue at ν = 2

by Corollary 5.5.1, and there are also 2 eigenvalues approaching ν = 2 as |z| → ∞.

Numerically, it appears that for the case z = ir, the perturbations of the ν = 0 and

ν = 1 eigenvalues approach ν = 2, as shown in Figure 6.1
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6.4 Existence of zeroes of ν 7→ Dν(b)

To unconditionally show the existence of nonreal eigenvalues for LPC(ir, b) with r > 0

large enough, by Proposition 6.2.1, we must show that for all b > 0, there exists ν

with Dν(b) = 0. To show the existence of zeroes of ν 7→ Dν(b), we note a paper

of Dean, [Dea66], which studies the zeroes of the parabolic cylinder functions and

states:

Proposition 6.4.1 ([Dea66, pp. 281�2]). There exist countably many functions

{gk(x)}∞k=0, gk : [0,∞)→ R+, such that for all x ∈ R and k ∈ N0, Dgk(x)(x) = 0 and

gk(0) = 2k + 1.

Dean's paper [Dea66] is quite terse, however, so we give a complete proof in

Appendix C.

To prove the full extent of Theorem 3, we also need the following:

Lemma 6.4.2. For all b > 0, for all j, k ∈ N0, gj(b) = gk(b) if and only if j = k;

hence, for each b > 0 there are countably many zeroes of ν 7→M(ν; b).

Proof. Suppose that for some b > 0, and for some j, k ∈ N0, gj(b) = gk(b). Then by

the Implicit Function Theorem applied in the vicinity of (b, gj(b)), there is a unique

function g(x) such that Dg(x)(x) = 0 for x near b, and g(b) = gj(b) = gk(b). In other

words, gj(x) = gk(x) in a neighborhood of b, call it (a, c). By Lemma C.1.4, g(x)

extends uniquely to a function on (−ε, c) for some ε > 0. Yet by uniqueness of the

extension, g(x) = gj(x) = gk(x) on [0, c), so

gj(0) = gk(0)

2j + 1 = 2k + 1

j = k.

(6.4.1)
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Proof of Theorem 3. Fix b > 0. By Proposition 6.4.1, there are countably many

numbers {gk(b)}∞k=0 with gk(b) = 0. Fix N ∈ N, and consider the subcollection

{gk(b)}Nk=0 for some N ∈ N. Then for each gk(b), there exists Rk = Rk(b) such that for

r > Rk, LPC(ir, b) has two nonreal eigenvalues in a neighborhood of ±gk(b). Then for

R∗(N) := max
0≤k≤n

Rk(b), r > R∗ implies that there are 2(N + 1) nonreal eigenvalues of

LPC(ir, b). We denoted the counting-function of the non-real eigenvalues of LPC(ir, b)

by N (r), so

r > R∗(N) implies N (r) ≥ 2(N + 1). (6.4.2)

This works for all N ∈ N0, so N (r) is unbounded above as r →∞.
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CHAPTER 7

CREATION OF NONREAL EIGENVALUES: PARTIAL

RESULTS

We now know that for z = ir, r → ∞, the number of nonreal eigenvalues becomes

unbounded. What is less clear from the above results is how the eigenvalues become

nonreal.

7.1 An observation characterizing real eigenvalues

We �rst make the following observation, a sort of converse to Lemma 5.4.2.

Lemma 7.1.1. Fix b > 0, and ν ∈ C \ N0. Suppose in addition that M(ν; b) 6= 0.

Then ν ∈ Sp(LPC(z, b)) for exactly two z ∈ C; namely, if m is a square root of

M(ν; b), then

z = ± 1

m
. (7.1.1)

Proof. M(ν; b) is de�ned for b > 0 and ν 6∈ N0. Hence, if M(ν; b) 6= 0, from (6.0.1),

M(ν; b) =
1

z2
, (7.1.2)

or

z2 =
1

M(ν; b)
(7.1.3)
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it is thus necessary and su�cient that z = ± 1

m
, for m a square root of M(ν; b).

Corollary 7.1.2. Suppose b > 0, ν ∈ R\N0. Then if M(ν; b) > 0, then ν ∈ LPC(r, b)

for some r ∈ R+, and if M(ν; b) < 0, then ν ∈ LPC(ir, b) for some r ∈ R+.

Proof. By Lemma 6.1.3, for b > 0 and ν ∈ R \ N0, M(ν; b) is real. If M(ν; b) > 0, it

has a positive square root, and if M(ν; b) < 0, it has a purely imaginary square root,

so the rest follows from Lemma 7.1.1.

7.2 Demonstration of the Necessity of the Zero-Derivative

Condition

We �rst need a technical lemma.

Lemma 7.2.1. Fix r0 > 0. Then for r close enough to r0, in particular |r−r0| <
1

2
r0,

∣∣∣∣ 1

r2
− 1

r2
0

∣∣∣∣ = Θ (|r − r0|) , (7.2.1)

with the implicit constant depending on r0.

Proof. Fix r0 > 0. We calculate:

∣∣∣∣ 1

r2
0

− 1

r2

∣∣∣∣ =

∣∣∣∣r2 − r2
0

r2r2
0

∣∣∣∣
= |r − r0| ·

r + r0

r2r2
0

.

(7.2.2)

We wish to show that the coe�cient of |r−r0| is small. If we suppose that the relative

97



error is small, i.e., that |r − r0| <
1

2
r0, then we have that

r0

r2
0r

2
0

≤ r + r0

r2r2
0

≤ ·
3
2
r0

r2
0

(
1
2
r0

)2

1

r3
0

≤ ·r + r0

r2r2
0

≤ 6
1

r3
0

(7.2.3)

Since we let the constants depend on r0, we let c = c(r0) = r−3
0 and C = C(r0) = 6r−3

0 ,

and we have that if |r − r0| <
1

2
r0, plugging back (7.2.3) into (7.2.2),

c|r − r0| ≤
∣∣∣∣ 1

r2
0

− 1

r2

∣∣∣∣ ≤ C|r − r0|. (7.2.4)

We now argue that for z real or pure imaginary and nonzero, under a certain

hypothesis, real eigenvalues remain real in a vicinity of the eigenvalue.

Proposition 7.2.2. Fix b > 0, �x z = r0 (respectively, z = ir0) for r0 ∈ R\{0}, and

�x µ ∈ R \ N0 with µ ∈ Sp(LPC(z, b)); in particular, by Lemma 5.4.2, M(ν; b) 6= 0.

Suppose in addition that
∂

∂ν
(Dν(b))

∣∣∣∣
ν=µ

6= 0. Then for r su�ciently close to r0,

there exists a unique eigenvalue ν0 = ν0(r) of LPC(r, b) (respectively, LPC(ir, b)) in a

neighborhood of µ, and ν0(r) is real.

Proof. Fix b > 0, and for the �rst case, �x z = r0 for r0 ∈ R \ {0}. Suppose that

µ ∈ Sp(LPC(r0, b)), and
∂

∂ν
(Dν(b))

∣∣∣∣
ν=µ

6= 0. By Theorem 2,

M(µ; b) =
1

r2
0

.
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Then consider the function

f(ν) := M(ν; b)−M(µ; b) = M(ν; b)− 1

r2
0

. (7.2.5)

; by the hypothesis, f(ν) has a zero of order 1 at ν = µ. Then for r su�ciently close

to r0; by Lemma 7.2.1,
1

r2
is close enough to

1

r2
0

to invoke Proposition 2.6.3, with ν

in the role of ζ and
1

r2
− 1

r2
0

(7.2.6)

in the role of γ. Therefore, there exists a unique ν0 = ν0(r) in a vicinity of µ, (in

particlar, such that ν0 6∈ N0) satisfying

f(ν0) =
1

r2
− 1

r2
0

, (7.2.7)

i.e.,

M(ν0; b) =
1

r2
. (7.2.8)

By Theorem 2, ν0(r) is the unique eigenvalue of LPC(r, b) in a neighborhood of µ.

Moreover, µ is real, so by Corollary 6.1.4, the power-series expansion of M(ν; b)

at µ has real coe�cients; hence, so does f(ν). By Lemma 2.6.4, ν0(r) is real, for r

close to r0.

In the case z = ir0, we have
1

z2
= − 1

r2
0

, which is still real. The proof works

similarly, replacing
1

r2
0

by − 1

r2
0

, and similarly for r−2.

Thus, for µ ∈ R \ N0, by Corollary 7.1.2, M(µ; b) 6= 0 is enough to ensure that

µ ∈ Sp(LPC(r, b)) or Sp(LPC(ir, b)) for some r ∈ R+. Yet if the ν-derivative of

M(ν; b) at ν = µ is nonzero, by Proposition 7.2.2 nearby values of r still have a real
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eigenvalue. It suggests to us that to have a coalesence of real eigenvalues into complex

eigenvalues, we need M(ν; b) 6= 0, but the �rst ν-derivative equal to 0.

Hence, suppose that νcrit ∈ R\N0 satis�es M(ν; b) 6= 0 and
∂

∂ν
(M(ν; b))

∣∣∣∣
ν=νcrit

=

0. We know by Lemma 6.1.1 that M(ν; b) is nonconstant, so there exists a minimal

m ≥ 2 with
∂mM(ν;x)

∂νm

∣∣∣∣
ν=νcrit,x=b

6= 0. Then the power-series expansion in ν at

ν = νcrit can be written

M(ν; b) = c0 +
∞∑
k=m

ck(ν − νcrit)k; c0 = M(νcrit, b 6= 0) 6= 0, cn 6= 0. (7.2.9)

7.3 Restrictions from real z

We now show that the self-adjointness of LPC(r, b) gives us a restriction on the relevant

power-series expansions.

Proposition 7.3.1. Suppose that there exists νcrit ∈ R \ N0 with M(νcrit; b) 6= 0 and

∂

∂ν
(M(ν; b))

∣∣∣∣
ν=νcrit

= 0. Then M(νcrit; b) < 0.

Proof. Suppose, by way of contradiction, that there existed νcrit ∈ R \ N0 with

M(νcrit; b) > 0 and
∂

∂ν
(M(ν; b))

∣∣∣∣
ν=νcrit

= 0. Then the critical equation for the z = r

(r real) case of (5.4.9) can be rewritten with the help of (7.2.9) as

c0 +
∞∑
k=n

ck(ν − νcrit)k =
1

r2

∞∑
k=n

ck(ν − νcrit)k =
1

r2
− c0

∞∑
k=n

ck(ν − νcrit)k =
1

r2
− |c0|,

(7.3.1)
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with c0 > 0, n ≥ 2, cn 6= 0. Therefore, de�ning

rcrit :=

√
1

|c0|
∈ R+ (7.3.2)

it is clear that when r = rcrit, the right-hand side of the last line in (7.3.1) is 0, and

for r near to rcrit,
1

r2
− |c0| ≈ 0. Therefore, for r su�ciently close to rcrit, we may

apply Proposition 2.6.3 to

f(ν) := M(ν; b)−M(νcrit; b), (7.3.3)

, and we have that there arem solutions {νk}n−1
k=0 to (7.3.1). We let z :=

1

r2
−c0 = reiθ,

r ∈ R+, θ ∈ [−π, π); since
1

r2
− c0 is real, θ ∈ {−π, 0}. We also �x cn = ρeiψ,

−π ≤ ψ < π; by Lemma 6.1.3, M(ν; b) is real-valued on the real line, so all ck are

real and so ψ ∈ {−π, 0}. Thus, (2.6.5) gives

lim
r→rcrit

νk(r)− νcrit
|νk(r)− νcrit|

= exp

(
i(θ − ψ + 2πk)

m

)
, 0 ≤ k ≤ m− 1. (7.3.4)

Yet since νcrit ∈ R, by Lemma 6.1.3 we know that the νk are real for all k ∈

{0, 1, . . . , n−1}; hence, so are the νk−νcrit, since νcrit is real; thus, moreover, νk 6= νcrit,

even by the weaker Proposition 2.6.1. Hence,

νk(r)− νcrit
|νk(r)− νcrit|

is real and nonzero for all real r close enough to rcrit. Hence, the limit of such

expressions is real-valued, so

exp

(
i(θ − ψ + 2πk)

m

)
∈ R for all k, 0 ≤ k ≤ m− 1. (7.3.5)
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Thus,
(θ − ψ + 2πk)

m
∈ πZ for all k, 0 ≤ k ≤ n− 1. (7.3.6)

Now, πZ is a group under addition, so the di�erence of any two such expressions is

in the set as well. Hence, taking the di�erence of the k = 0 and k = 1 case,

2π

m
∈ πZ,

so
2

m
∈ Z. Since m ≥ 2, the only consistent possibility is m = 2.

Case 1: cm = c2 > 0; i.e., ψ = 0. Then for r slightly greater than rcrit,
1

r2
−c0 < 0

so θ = −π. Hence, from the k = 2 case of (7.3.6),

−π
2

+ πk ∈ πZ, k ∈ {0, 1},

but −π
2
is not an integer multiple of π. Contradiction.

Case 2: cm = c2 < 0; i.e., ψ = −π. Then for r slightly smaller than rcrit,
1

r2
− c0 > 0 so θ = 0. Hence, from the k = 2 case of (7.3.6),

+
π

2
+ πk ∈ πZ, k ∈ {0, 1},

but again,
π

2
is not an integer multiple of π. Contradiction.

Since c2 is real and nonzero by hypothesis, all cases lead to contradiction. Thus,

c0 = M(νcrit; b) is not greater than 0.

7.4 Consequences for Imaginary z

Hence, if νcrit ∈ R\N0,M(νcrit; b) 6= 0, and
∂

∂ν
(M(ν; b))

∣∣∣∣
ν=νcrit

= 0, thenM(νcrit; b) <

0. We now wish to apply this to the case of z = ir, and we wish to consider, in a
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neighborhood of νcrit, the equation

M(ν; b) =
1

(ir)2
(7.4.1)

We reduce it to a question of a zero by rewriting as

f(ν) := M(ν; b)−M(νcrit; b) = − 1

r2
−M(νcrit; b). (7.4.2)

Using the power-series expansion (7.2.9), we have

c0 +
∞∑
k=n

ck(ν − νcrit)k = − 1

r2

∞∑
k=n

ck(ν − νcrit)k = −c0 −
1

r2

∞∑
k=n

ck(ν − νcrit)k = |c0| −
1

r2

(7.4.3)

We now (re)de�ne

rcrit :=

√
1

|c0|
(7.4.4)

and note that |c0|−
1

r2
crit

= 0. As in the previous case, for r 6= rcrit we let z = reiθ, r ∈

R+, θ ∈ [−π, π); since |c0|−
1

r2
∈ R, we have that θ ∈ {−π, 0}. Similarly, we again set

cm = ρeiψ; again, the cj are real by the assumption that νcrit is real, and Lemma 6.1.3,

so ψ ∈ {−π, 0}. Applying Proposition 2.6.3 to the map ν 7→M(ν; b)−M(νcrit; b), we

get the following.

Proposition 7.4.1. Suppose that there exists νcrit ∈ R \ N0 with M(νcrit; b) < 0 and

∂

∂ν
(M(ν; b))

∣∣∣∣
ν=νcrit

= 0, and let m be the smallest index greater than or equal to 2

such that
∂m

∂νm
(M(ν; b))

∣∣∣∣
ν=νcrit

6= 0. Then for r su�ciently close to rcrit ∈ (7.4.4), but
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not equal to it, then there exist exactly m solutions {νk}m−1
k=0 to M(ν; b)−M(νcrit; b) =

− 1

r2
− M(νcrit; b). If Z = r1/meiθ/m and c = ρ1/meiψ/m be speci�c mth roots of

z = − 1

r2
−M(νcrit; b) = |c0|−

1

r2
and cm respectively, then the leading-order expansions

are given by

νk = νcrit +
Z
c

exp

(
2πik

m

)
+ Θ(|r − rcrit|2/m), 0 ≤ k ≤ m− 1, (7.4.5)

where the constants in the Θ|r − rcrit|2/m term depend on |M(νcrit; b)|. Moreover, as

r → rcrit, νk − νcrit → 0 for all k, 0 ≤ k ≤ n− 1; indeed,

|νk − ν| = Θ(|r − rcrit|1/m), 0 ≤ k ≤ m− 1 (7.4.6)

Also,

lim
r→rcrit

νk(r)− νcrit
|νk(r)− νcrit|

= exp

(
i(θ − ψ + 2πk)

m

)
, 0 ≤ k ≤ m− 1. (7.4.7)

Proof. The only issues left to show are the asymptotic size of the error terms in (7.4.5)

and (7.4.6). Fortunately, sinceM(νcrit; b) = c0 =
1

r2
crit

, this follows from Lemma 7.2.1;

using r0 = rcrit, we get that Indeed, we know from (2.6.2) that the error is of order

Z2, and Z is an nth root of |c0| −
1

r2
; yet by de�nition of rcrit, |c0| =

1

r2
crit

. Hence,

|c0| −
1

r2
=

1

r2
crit

− 1

r2
, (7.4.8)

so by Lemma 7.2.1, we have that for r > 0, |r − rcrit| <
1

2
rcrit,

1

r3
crit

|r − rcrit| ≤
∣∣∣∣ 1

r2
crit

− 1

r2

∣∣∣∣ ≤ 6| 1

r3
crit

|r − rcrit|, (7.4.9)
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, or, by de�nition of rcrit,

|c0|3/2|r − rcrit| ≤
∣∣∣∣ 1

r2
crit

− 1

r2

∣∣∣∣ ≤ 6|c0|3/2|r − rcrit| (7.4.10)

Hence, the discrepancy

∣∣∣∣ 1

r2
crit

− 1

r2

∣∣∣∣ is Θ(|r − rcrit|), and hence

|Z| =
∣∣∣∣|c0| −

1

r2

∣∣∣∣1/n
=

∣∣∣∣ 1

r2
crit

− 1

r2

∣∣∣∣1/n
= Θ(|r − rcrit|)1/n

(7.4.11)

and so, the error in the leading-order expansion (7.4.5), of order |Z|2 by Proposi-

tion 2.6.3, is really Θ(|r − rcrit|)2/n. We are done.

7.4.1 Application to the case m = 2

To explain the behaviour shown in Figure 5.6, we take the case m = 2, or alterna-

tively, the condition
∂2

∂ν2
(M(ν; b))

∣∣∣∣
ν=νcrit

6= 0, and note that
2πk

m
= πk in this case.

Moreover, in the power-series expansion (7.2.9), c2 is real by M(ν; b) real-valued for

ν, b, real, so ψ ∈ {−π, 0}. We split into cases depending on the sign of c2.

c2 > 0. Hence, ψ = 0.

Then for 0 < r < rcrit, z = |c0| −
1

r2
> 0, so θ = 0. For r close enough to rcrit,

(7.4.7) gives that

lim
r→rcrit

νk(r)− νcrit
|νk(r)− νcrit|

= exp

(
2πik

2

)
= (−1)k, k = 0, 1 (7.4.12)

Hence, for r < rcrit, by νcrit real, the eigenvalues are real to leading order.

Indeed,.
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For r > rcrit, z = |c0| −
1

r2
< 0, so θ = −π. For r close enough to rcrit, (7.4.7)

gives that

lim
r→rcrit

νk(r)− νcrit
|νk(r)− νcrit|

= exp

(
−π + 2πik

2

)
= (−i)(−1)k, k = 0, 1 (7.4.13)

Hence, for r > rcrit and close enough, by νcrit real, the eigenvalues are νcrit

plus an adjustment that is pure-imaginary to leading order, hence certainly

nonreal. Hence, for r > rcrit, if the eigenvalues were real before, they have

become nonreal.

c2 < 0. Hence, ψ = −π.

Then for 0 < r < rcrit, z = |c0| −
1

r2
> 0, so θ = 0. For r close enough to rcrit,

(7.4.7) gives that

lim
r→rcrit

νk(r)− νcrit
|νk(r)− νcrit|

= exp

(
π + 2πik

2

)
= i(−1)k, k = 0, 1 (7.4.14)

so νk(r) = νcrit + (νk(r)− νcrit) is the sum of νcrit and a leading-order-imaginary

term.

For r > rcrit, z = |c0| −
1

r2
< 0, so θ = −π. For r close enough to rcrit, (7.4.7)

gives that

lim
r→rcrit

νk(r)− νcrit
|νk(r)− νcrit|

= exp

(
2πik

2

)
= (−1)k, k = 0, 1 (7.4.15)

Hence, for r > rcrit, νk(r) is real, at least asymptotically. Thus, as r increases

through rcrit, the eigenvalues transition from surely nonreal to approximately

real.
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To see that both cases occur (at least if the calcuations are accurate), we refer to

Figures 7.1 and 7.2, which show the calculated eigenvalues starting from the unper-

turbed eigenvalues of 19, 20, 21, 22, 23. In particular, the eigenvalues from 19 and 20

appear to pass through a zero of the derivative and become purely complex in the

(19, 20) interval, and re-coalesce to the real line inbetween 22 and 23. Then one of

the eigenvalues returned to the real line becomes complex again after colliding with

the descendant of the ν = 23 unperturbed eigenvalue.

Therefore, the zeros of the derivative seem to dictate the switch from real to

non-real eigenvalues.

We do not have, however, any proof that if the �rst ν-derivative ofM(ν; b) is zero,

the second ν-derivative is nonzero. In theory, if M(νcrit, b) < 0, many succeeding ν-

derivatives could be zero at ν = νcrit � though not all of them, byM(ν, b) nonconstant

in ν. Also, Lemma 2.6.4 is not quite strong enough to prove that the inverses above

are real. More work is needed here.

108



Figure 7.2: A close-up of the right-hand side of the previous �gure, plotting the evo-
lution of the ν = 19, ν = 20, and ν = 23 eigenvalues of LPC(ir, 2) as r
increases. The second and third diagrams explicitly graph M(ν; 2) and
its �rst ν-derivative.
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Appendix A

CONSTRUCTION OF THE PERTURBED OPERATOR

A.1 Background: Theory of Sectorial Quadratic Forms

Only certain quadratic forms will be useful for creating operators � the densely de�ned,

sectorial, and closed quadratic forms. �Densely de�ned� is self-evident � D (t) should

be densely de�ned. We now discuss sectoriality.

De�nition A.1.1 ([Kat95, Chapter VI, Section 1.2, pp. 310�311]). Fix H a Hilbert

space, with norm ‖·‖H, and let t : L × L → C be a quadratic form on a linear

submanifold L of H. The numerical range of t is the set

N(t) := {t (u, u) : u ∈ L, ‖u‖H = 1}. (A.1.1)

The form t is called sectorial if N(t) is a subset of a sector of the form

| arg(ζ − γ)| ≤ θ, 0 ≤ θ <
π

2
, γ real. (A.1.2)

Sectoriality is also a sensible concept for operators.

De�nition A.1.2 ([Kat95, Chapter V, Sections 2.2 and 3.10, pp. 267�268, 278�280]).
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Fix H a Hilbert space, with inner product (·, ·)H and norm ‖ · ‖H, and T a (possibly

unbounded) operator on a domain D (T ) ⊆ H. The numerical range of T is the set

N(T ) := {(Tu, u)H : u ∈ D (T ) : ‖u‖H = 1}. (A.1.3)

T is called sectorial if N(T ) is a subset of a sector of the form in (A.1.2). T is called

m-sectorial if it is sectorial, and there is no proper extension T̃ of T such that T̃ is

sectorial, or even obeys the weaker criterion

N
(
T̃
)
⊆ {ζ ∈ C : Re ζ ≥ c}, c ∈ R. (A.1.4)

Again, the form T is called bounded below if N(T ) ⊆ [γ,∞) for some γ ∈ R, or

equivalently,

(Tu, u)H ≥ γ‖u‖2
H, γ ∈ R. (A.1.5)

Before continuing, we note certain special types of sectorial forms and operators.

De�nition A.1.3 ([Kat95, Chapter 6, Sections 1.1�2, pp. 309-310]). Fix H a Hilbert

space, with inner product (·, ·)H and norm ‖ · ‖H, and t : L × L → H a sesquilinear

quadratic form on a linear submanifold L of H. t is called symmetric if for all

u, v ∈ D (t),

t (v, u) = t (u, v). (A.1.6)

We call a symmetric form bounded below if N(t) ⊆ [γ,∞) for some γ ∈ R; or equiva-

lently

t (u, u) ≥ γ‖u‖2, γ ∈ R. (A.1.7)

If (A.1.7) holds, we say that t ≥ γ.

De�nition A.1.4 ([Kat95, Chapter V, Sections 3.3 and 3.10, pp. 269, 278]). Fix H a
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Hilbert space, with inner product (·, ·)H and norm ‖·‖H, and T a (possibly unbounded)

linear operator on a linear submanifold D (T ) of H. T is called symmetric if for all

u, v ∈ D (T ),

(Tu, v)H = u, TvH. (A.1.8)

We call a symmetric operator bounded below if N(T ) ⊆ [γ,∞) for some γ ∈ R; or

equivalently

(Tu, u)H ≥ γ‖u‖2, γ ∈ R. (A.1.9)

Clearly, symmetric forms (resp. operators) that are bounded below are sectorial

form (resp. operators).

We now de�ne closedness of a quadratic form.

De�nition A.1.5 ([Kat95, Chapter VI, Section 1.3, p. 313]). Fix H a Hilbert space,

L a linear manifold in H, and t a sesquilinear quadratic form on L. A sequence

{un}∞n=0 in L is called t-convergent to u ∈ H if and only if

lim
n→∞

un = u, (A.1.10a)

t (un − um, un − um)→ 0 as m,n→∞, (A.1.10b)

In symbols, we write un
t−→ u.

The form t is closed if, whenever un
t−→ u, we have that

u ∈ L = D (t) , (A.1.11a)

lim
n→∞

t (un − u, un − u) = 0. (A.1.11b)

Since it will be used later, we also de�ne the closure of a quadratic form and the

concept of a core.
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De�nition A.1.6 ([Kat95, Chapter 6, Section 1.4, pp. 315�317]). A sectorial form

t is said to be closable if it has a closed extension. If closed extensions exists, the

closure t̃ is the smallest closed extension.

Suppose that t is a closed sectorial form on a linear manifold L, and let L′ be a

linear sub-manifold. L′ is called a core of t if the restriction t′ of t to L′ × L′ has

closure t.

Once we have the closed, densely de�ned, sectorial sesquilinear form, the existence

of a corresponding operator is guaranteed with the �rst representation theorem.

Proposition A.1.7 ([Kat95, Thm. 2.1, Cor. 2.4, and Thm. 2.6, pp. 322�323]). Let

t (u, v) be a densely de�ned, closed, sectorial sesquilinear form in a Hilbert space H,

with inner product denoted (·, ·)H and induced norm ‖·‖H. There exists an m-sectorial

operator T such that:

i) D (T ) ⊆ D (t) and

t (u, v) = (Tu, v)H (A.1.12)

for all u ∈ D (T ) and v ∈ D (t).

ii) D (T ) is a core of t, and

iii) if u ∈ D (t), w ∈ H and

t (u, v)H = (w, v)H (A.1.13)

for all v in a core of t, then u ∈ D (T ) and Tu = w.

The m-sectorial operator T is uniquely determined by the condition i). Moreover, we

have the following.

a) If S is an operator with D (S) ⊆ D (t), and

t (u, v) = (Su, v)H (A.1.14)
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for every u ∈ D (S) and every v belonging to a core of D (t), then S ⊆ T .

b) If t is symmetric and bounded from below, then T is selfadjoint and bounded

from below.

We also have the second representation theorem, for self-adjoint operators. We

need some de�nitions, however.

Proposition A.1.8 ([Kat95, Chapter VI, Thm. 2.23, pp. 331-332]). Let h be a

densely de�ned, closed symmetric form, h ≥ 0, and let H = Ht be the associated

selfadjoint operator. Then we have D
(
H1/2

)
= D (t) and

t (u, v) = (H1/2u,H1/2v). (A.1.15)

Of course, a classic example of the use of Proposition A.1.8 is an application to

the harmonic oscillator itself. We now prove Lemma 2.3.4; in fact we prove something

stronger.

Lemma A.1.9. There exists a positive, self-adjoint square root of L0
HO; we write it

as (L0
HO)1/2. Moreover, D

(
(L0

HO)1/2
)

= D
(
t0HO
)

= D1, and for all u, v ∈ D1,

t0HO (u(x), v(x)) =
(
(L0

HO)1/2u(x), (L0
HO)1/2v(x)

)
L2(R)

(A.1.16)

In particular, we note that

(L0
HO)1/2hk(x) =

√
2k + 1hk(x). (A.1.17)
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Proof. We note that for all u(x), v(x) ∈ D
(
L0
HO

)
,

(
L0
HOu(x), v(x)

)
L2(R)

=
(
−u′′(x) + x2u(x), v(x)

)
L2(R)

= (−u′′(x), v(x))L2(R) +
(
x2u(x), v(x)

)
L2(R)

(A.1.18)

Each inner product in the last line of (A.1.18) simpli�es. For the second one, by x

real, x = x, so we have that

(
x2u(x), v(x)

)
L2(R)

=

∫
R

x2u(x)v(x) dx

=

∫
R

xu(x)xv(x) dx

= (xu(x), xv(x))L2(R)

(A.1.19)

Next, it is known (see, e.g., [Fol99, Exercises 8.8�9, p. 246, and Exercise 9.31, p.

308]) that u ∈ Hk(R) for some k ∈ N implies that u(x), u′(x), v(x), and v′(x) are

absolutely continuous; therefore, integration-by-parts works, and hence by (2.1.4), we

note that

(−u′′(x), v(x))L2(R) = (u′(x), v′(x))L2(R) dx (A.1.20)

(This can also be justi�ed with the Fourier Transform through (2.1.4) and (A.1.19)).

Altogether, then,

(
L0
HOu(x), v(x)

)
L2(R)

= (−u′′(x), v(x))L2(R) +
(
x2u(x), v(x)

)
L2(R)

= (u′(x), v′(x))L2(R) + (xu(x), xv(x))L2(R).

(A.1.21)

Yet the �nal expression in (A.1.21) is clearly de�ned for u, v in the set

D1 = {f ∈ H1(R) : xf(x) ∈ L2(R)}. (A.1.22)
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We therefore de�ne the quadratic form t0HO on D1×D1 by setting

t0HO (u, v) := (u′(x), v′(x))L2(R) + (xu(x), xv(x))L2(R) (A.1.23)

Manifestly, t0HO is densely de�ned, sesquilinear, and symmetric, and

t0HO (u, u) = ‖u′(x)‖2
L2(R) + ‖xu(x)‖2

L2(R) ≥ 0,

so t0HO ≥ 0; hence, t0HO is certainly sectorial. The closure of t0HO follows along the

same lines as the closure of the form tz,b discussed below, so we omit the proof.

By the �rst representation theorem (Proposition A.1.7), there exists an operator H

coming from the quadratic form t0HO, self-adjoint by part b), and by part a), it is clear

that L0
HO ⊆ H. Yet since L0

HO and H are both self-adjoint, with domains contained

in D
(
t0HO
)

= D1, by standard uniqueness theorems (e.g., Reed/Simon volume 2,

speci�cally [RS75, Thm. X.23, p.177]) it follows that L0
HO = H.

Then by the second representation theorem (Proposition A.1.8), we have the state-

ment that D
(
(L0

HO)1/2
)

= D1.

The only thing left to show is that (L0
HO)1/2 has the expected e�ect on Hermite

functions, i.e,

(L0
HO)1/2hk(x) =

√
2k + 1hk(x). (A.1.24)

Yet of course, by the (hk(x))∞k=0 an orthonormal-basis, and the properties of the

Harmonic Oscillator Operator, and the Second Representation Theorem, we have for
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all j, k ∈ N0,

(2j + 1)δjk = (2j + 1)(hj(x), hk(x))L2(R)

=
(
L0
HOhj(x), hk(x)

)
L2(R)

=
(
(L0

HO)1/2hj(x), (L0
HO)1/2hk(x)

)
L2(R)

,

(A.1.25)

so in particular, ∥∥(L0
HO)1/2hk(x)

∥∥
L2(R)

= 2k + 1, k ∈ N0. (A.1.26)

Moreover, we have that for all j, k ∈ N0, by (L0
HO)1/2 self-adjoint, [(L0

HO)1/2]2 = L0
HO,

and properties of the Hermite Functions,

(
(L0

HO)1/2hj(x), hk(x)
)
L2(R)

=
1

2k + 1

(
(L0

HO)1/2hj(x), (2k + 1)hk(x)
)
L2(R)

=
1

2k + 1

(
(L0

HO)1/2hj(x), L0
HOhk(x)

)
L2(R)

=
1

2k + 1

(
(L0

HO)1/2hj(x), (L0
HO)1/2(L0

HO)1/2hk(x)
)
L2(R)

=
1

2k + 1

(
(L0

HO)1/2(L0
HO)1/2hj(x), (L0

HO)1/2hk(x)
)
L2(R)

=
1

2k + 1

(
L0
HOhj(x), (L0

HO)1/2hk(x)
)
L2(R)

=
2j + 1

2k + 1

(
hj(x), (L0

HO)1/2hk(x)
)
L2(R)

=
2j + 1

2k + 1

(
(L0

HO)1/2hj(x), hk(x)
)
L2(R)

,

(A.1.27)

so if
(
(L0

HO)1/2hj(x), hk(x)
)
L2(R)

6= 0, 2j+ 1 = 2k+ 1, so j = k. Hence, (L0
HO)1/2hj(x)

must be a multiple of hj(x). Combined with nonnegativity of (L0
HO)1/2 by de�nition,

and (A.1.26), (A.1.24) follows.
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A.2 Application to the perturbed Parabolic Cylinder Opera-

tor

To apply the theory of the previous section, we use the quadratic form de�ned by

D (tz,b) := D1

tz,b (u, v) := (u′(x), v′(x))L2(R) +
1

4
(xu(x), xv(x))L2(R) −

1

2
(u(x), v(x))L2(R)

+ zu(b)v(b)− zu(−b)v(−b), u, v ∈ D1

(A.2.1)

By Lemma 2.4.3, S ⊂ D1 = D (tz,b), so we immediately have that tz,b is densely

de�ned. To use the �rst representation theorem, Proposition A.1.7, we must show

that tz,b is sectorial and closed. We start with the proof of sectoriality, which uses a

de�nition and a lemma.

De�nition A.2.1. For f a bounded continous function on R, let ‖f‖unif denote the

uniform norm or sup-norm over R:

‖f‖unif := sup
x∈R
|f(x)|. (A.2.2)

Lemma A.2.2. For all ε > 0, there exists M = M(ε) such that for all f ∈ H1(R),

‖f‖unif ≤ ε‖u′(x)‖L2(R) +M‖u(x)‖L2(R). (A.2.3)

Proof. We �rst note that by u ∈ H1(R), u is absolutely continuous on any �nite

interval (for the second part, see [Fol99, Exercise 8.9, p.246, and Exercise 9.31, p.

308]). We know that the product of absolutely continuous functions on an interval

is absolutely continuous on the same interval, with the expected integration-by-parts

formula (see, e.g., [Fol99, Exercise 3.35, p. 108]). Thus, we have that for a, c, −∞ <
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a < c <∞,

u2(c)− u2(a) =

∫ c

a

2u(x)u′(x) dx (A.2.4)

Yet by u ∈ H1(R), u(x) and u′(x) are in L2(R), so 2u(x)u′(x) ∈ L1(R). Hence, we

know by the Dominated Convergence Theorem that

lim
a→−∞

(u2(c)− u2(a)) = lim
a→−∞

∫ c

a

2u(x)u′(x) dx

=

∫ c

−∞
2u(x)u′(x) dx.

(A.2.5)

In particular then, we know that lim
a→−∞

u2(a) exists, so lim
a→−∞

|u2(a)| exists. Yet this

latter limit must be zero: if lim
a→−∞

|u2(a)| = C 6= 0, then there exists M > 0 such that

for a < −M ,

∣∣|u2(a)| − C
∣∣ < C

2

|u2(a)| > C

2

(A.2.6)

and so the set

{x ∈ R : |u2(x)| > C

2
} (A.2.7)

has in�nite measure, containing the interval (−∞,−M). Yet this would force

∫ ∞
−∞
|u(x)|2 dx ≥ C2

4

∫ −M
−∞

1 dx =∞,

contradicting u ∈ L2(R).

Hence, lim
a→−∞

|u2(a)| = 0, so by (A.2.5),

u2(c) =

∫ c

−∞
2u(x)u′(x) dx
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and thus

|u(c)|2 ≤
∣∣∣∣∫ c

−∞
2u(x)u′(x) dx

∣∣∣∣
≤ 2

∫ c

−∞
|u(x)u′(x)| dx

≤ 2

∫ ∞
−∞
|u(x)u′(x)| dx = 2‖u(x)u′(x)‖L1(R).

(A.2.8)

By Cauchy-Schwartz, this is bounded by 2‖u(x)‖L2(R)‖u
′(x)‖L2(R). We may rewrite

this, for any ε > 0, as

2
(
ε‖u′(x)‖L2(R)

)
·
(

1

ε
‖u(x)‖L2(R)

)

By the standard estimate 2αβ ≤ α2 + β2 for real α, β, we have that

2
(
ε‖u′(x)‖L2(R)

)
·
(

1

ε
‖u(x)‖L2(R)

)
≤
(
ε2‖u′(x)‖2

L2(R) +
1

ε2
‖u(x)‖2

L2(R)

)
.

Finally, we know for positive α, β that α2 + β2 ≤ (α + β)2, so we have

(
ε2‖u′(x)‖2

L2(R) +
1

ε2
‖u(x)‖2

L2(R)

)
≤
(
ε‖u′(x)‖L2(R) +

1

ε
‖u(x)‖L2(R)

)2

. (A.2.9)

Altogether, then,

|u(c)|2 ≤
(
ε‖u′(x)‖L2(R) +

1

ε
‖u(x)‖L2(R)

)2

|u(c)| ≤ ε‖u′(x)‖L2(R) +
1

ε
‖u(x)‖L2(R).

(A.2.10)

This works for all c ∈ R, so letting M(ε) =
1

ε
, we are done.

With this estimate, one straightforwardly adapts the p(x) = 1, q(x) =
x2

4
− 1

2
,
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r(x) = s(x) = 0, a = −b case of Example 1.7 of Chapter VI on pp. 312�313 of

[Kat95] to show:

Lemma A.2.3. tz,b is sectorial; indeed, the aperture of the sector in which N(tz,b) is

contained can be made arbitrarily small if the o�set γ is taken large enough.

We now must show that tz,b is closed. We use a lemma.

Lemma A.2.4. Suppose that (un)∞n=1 is a sequence in L2(R) such that for some

continuous function ϕ : R → C, ϕ(x)un(x) ∈ L2(R) for all n ∈ N. Further suppose

that there exist u,Φ ∈ L2(R) with un(x)
L2(R)−−−→ u(x) and ϕ(x)un(x)

L2(R)−−−→ Φ(x). Then

ϕ(x)u(x) ∈ L2(R) and Φ(x) = ϕ(x)u(x) almost everywhere (with respect to Lebesgue

measure).

Proof. Since un(x)
L2(R)−−−→ u(x), we have by the standard theory of integration, e.g.,

[Fol99, Cor. 2.32, p. 62], that there exists a subsequence (nk)
∞
k=1 with unk

→ u point-

wise almost everywhere (with respect to Lebesgue measure). (Hereinafter, �almost

everywhere,� is assumed to refer to Lebesgue measure and is abbreviated a.e..) Then,

of course, multiplying by ϕ,

ϕ(x)unk
(x)→ ϕ(x)u(x) for a.e. x ∈ R (A.2.11)

Yet we know that ϕ(x)un(x)
L2(R)−−−→ Φ(x), so since subsequences have the same limits

as the full sequences,

lim
k→∞

ϕ(x)unk
(x) = Φ(x) in L2(R),

and hence by the standard theory again, there exists a further subsequence (nk`)
∞
`=1

with

lim
`→∞

ϕ(x)unk`
(x) = Φ(x) for a.e. x ∈ R (A.2.12)
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Yet again, by subsequences having the same limits as the full sequences, we have that

lim
`→∞

ϕ(x)unk`
(x) = ϕ(x)u(x) for a.e. x ∈ R (A.2.13)

Therefore, ϕ(x)u(x) and Φ(x) are the same functions pointwise a.e., so ϕ(x)u(x) ∈

L2(R) and

ϕ(x)u(x) = Φ(x) for a.e. x ∈ R, (A.2.14)

and hence, by Φ ∈ L2(R), ϕ(x)u(x) ∈ L2(R).

Corollary A.2.5. If (un)∞n=1 is a sequence in H1(R), and there exist functions u,Ψ ∈

L2(R) such that un
L2(R)−−−→ u and

dun
dx

L2(R)−−−→ Ψ, then u ∈ H1(R) and Ψ =
du

dx
.

Proof. Let (un)∞n=1 is a sequence in H1(R), such that the functions u, Ψ in L2(R)

exist such that un
L2(R)−−−→ u and

dun
dx

L2(R)−−−→ Ψ. Then taking the Fourier Transform,

and applying the norm-preservation of the Fourier transform and the inequality (IX.1)

of [RS75, p.2], we know that

ûn(ξ)
L2(R)−−−→ û(ξ) (A.2.15a)

and

iξûn(ξ)
L2(R)−−−→ Ψ̂(ξ) (A.2.15b)

Applying Lemma A.2.4 with x = ξ, ϕ(ξ) = iξ and Φ(ξ) = Ψ̂(ξ), it follows that

iξû(ξ) ∈ L2(R) and iξû(ξ) = Ψ̂ a.e. In particular, u ∈ H1(R). Taking the inverse

Fourier Transform, it follows that

dun
dx

L2(R)−−−→ du

dx
. (A.2.16)
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Lemma A.2.6. tz,b is closed.

Proof. Suppose that there exists (un)∞n=1 ∈ D (tz,b) and u ∈ L2(R) such that the

conditions

un(x)
L2(R)−−−→ u(x), (A.2.17a)

tz,b (un − um, un − um)→ 0 as m,n→∞, (A.2.17b)

hold. First, note that by the de�nition of tz,b,

tz,b (un − um, un − um) =

∥∥∥∥dundx − dum
dx

∥∥∥∥2

L2(R)

+
1

4
‖xun − xum‖2

L2(R)

− 1

2
‖un − um‖2

L2(R)

+ z|un(b)− um(b)|2 − z|un(−b)− um(−b)|2

(A.2.18)

Also, note by un and um in D (tz,b), by the ε =
1

4
√
|z|

case of Lemma A.2.2, we have

that

∣∣z|un(b)− um(b)|2 − z|un(−b)− um(−b)|2
∣∣

≤ |z| · |un(b)− um(b)|2 − |z| · |un(−b)− um(−b)|2

≤ 2|z|

(
1

4
√
|z|

∥∥∥∥dundx − dum
dx

∥∥∥∥
L2(R)

+M‖un(x)− um(x)‖L2(R)

)2

≤ 4|z|

(
1

16|z|

∥∥∥∥dundx − dum
dx

∥∥∥∥2

L2(R)

+M2‖un(x)− um(x)‖2
L2(R)

)

=
1

4

∥∥∥∥dundx − dum
dx

∥∥∥∥2

L2(R)

+ 4|z|M2‖un(x)− um(x)‖2
L2(R),

(A.2.19)
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where in the next-to-last line we used the inequality for nonnegative constants α, β,

(α + β)2 ≤ 2(α2 + β2).

Therefore, we have by (A.2.18) that

|tz,b (un − um, un − um) | ≥

≥
∥∥∥∥dundx − dum

dx

∥∥∥∥2

L2(R)

+
1

4
‖xun − xum‖2

L2(R)

− 1

2
‖un − um‖2

L2(R)

−
∣∣z|un(−b)− um(−b)|2 − z|un(−b)− um(−b)|2

∣∣
≥ 3

4

∥∥∥∥dundx − dum
dx

∥∥∥∥2

L2(R)

+
1

4
‖xun − xum‖2

L2(R)

−
(

1

2
+ 4|z|M2

)
‖un − um‖2

L2(R).

(A.2.20)

Bounding
1

4
‖xun − xum‖2

L2(R) below by 0, and rearranging, we have

∥∥∥∥dundx − dum
dx

∥∥∥∥2

L2(R)

≤ 4

3
(|tz,b (un − um, un − um) |+

+

[
1

2
+ 4|z|M2

]
‖un − um‖2

L2(R)

) (A.2.21)

By the hypothesis (A.2.17b), we know that as n,m→∞, |tz,b (un − um, un − um) | →

0. Yet we know by (A.2.17a) that un converges to u in L2(R), and hence (un)∞n=1 is

Cauchy in H, so as n,m→∞,

‖un − um‖L2(R) → 0.
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Hence, by the Squeeze Theorem,

lim
n,m→∞

∥∥∥∥dundx − dum
dx

∥∥∥∥2

L2(R)

= 0; (A.2.22)

i.e.,

(
dun
dx

)∞
n=1

is Cauchy in the Hilbert space L2(R), hence convergent: there exists

some Ψ(x) ∈ L2(R) such that
dun
dx
→ Ψ(x). By Corollary A.2.5, it follows that

u ∈ H1(R) and
dun
dx

L2(R)−−−→ du

dx
. (A.2.23)

On the other hand, if we start with (A.2.20) and bound the derivative norm below

by 0, we have that , we have that

|tz,b (un − um, un − um) | ≥

≥ 1

4
‖xun − xum‖2

L2(R)

−
(

1

2
+ 4|z|M2

)
‖un − um‖2

L2(R).

(A.2.24)

Rearranging,

‖xun − xum‖2
L2(R) ≤ 4|tz,b (un − um, un − um) |

+ (2 + 16|z|M)‖un − um‖2
L2(R)

(A.2.25)

Yet again, both terms on the right-hand side become arbitrarily small for m, n large

enough, and hence we see that (xun(x))∞n=1 is Cauchy in L2(R), hence convergent.

By Lemma A.2.4, with ϕ(x) = x, it follows that xu(x) ∈ L2(R) and

xun(x)
L2(R)−−−→ xu(x). (A.2.26)
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Thus, u ∈ D (tz,b); moreover, we see that by de�nition of tz,b,

tz,b (un − u, un − u) (A.2.27a)

=

∥∥∥∥dundx − du

dx

∥∥∥∥2

L2(R)

(A.2.27b)

+
1

4
‖xun(x)− xu(x)‖2

L2(R) (A.2.27c)

− 1

2
‖un(x)− u(x)‖2

L2(R) (A.2.27d)

+ z|un(b)− u(b)|2 − z|un(−b)− u(−b)|2 (A.2.27e)

By (A.2.23), the norm in (A.2.27b) tends to 0 as n → ∞. By (A.2.26), the term in

(A.2.27c) tends to 0 as n → ∞. By (A.2.17a), the term (A.2.27d) converges to 0 as

n→∞. Replacing um by u in (A.2.19), and using both (A.2.23) and (A.2.17a), the

terms in (A.2.27e) converge to 0 as n→∞. All in all, we see that

lim
n→∞

tz,b (un − u, un − u) = 0, (A.2.28)

as required. tz,b is indeed closed.

Remark A.2.7. By similar arguments, one may indeed show that t0HO is closed, as

we indicated earlier.

Before continuing, we need a technical lemma, stating essentially that stating the

e�ect on the Schwartz class S is enough to describe the quadratic form above.

Lemma A.2.8. S is a core for tz,b.

Proof. In fact, we will show that �nite linear combinations of Hermite functions are

a core for tz,b; the Hermite functions are in S by Proposition 2.2.2, hence �nite linear

combinations of them are.
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The trick is to use Lemma 2.4.4 and its proof. For any u(x), v(x) in D1, then by

Lemma 2.4.4, we have that u(x), v(x) are in ι(L1), i.e., we have that

u(x) =
∞∑
k=0

ckhk(x), (ck)
∞
k=0, (ck

√
k + 1)∞k=0 ∈ `

2, (A.2.29a)

v(x) =
∞∑
k=0

akhk(x), (ak)
∞
k=0, (ak

√
k + 1)∞k=0 ∈ `

2. (A.2.29b)

Moreover, by the proof of ι(L1) ⊆ D1, we know that if

uJ(x) :=
J∑
k=0

ckhk(x), J ∈ N0, (A.2.30a)

vJ(x) :=
J∑
k=0

akhk(x), J ∈ N0, (A.2.30b)

then xuJ(x)
L2(R)−−−→ xu(x), and similarly for xvJ(x); moreover, for all J ∈ N0, uJ(x)

and vJ(x) are in S. Therefore, by a consequence of the Schwarz Inequality (see, e.g,

[Fol99, Prop. 5.21, p. 173])

lim
J→∞

(xuJ(x), xvJ(x))L2(R) = (xu(x), xv(x))L2(R). (A.2.31)

Similarly, we have that ξûJ(ξ)
L2(R)−−−→ ξû(ξ) and ξv̂J(ξ)

L2(R)−−−→ ξv̂(ξ), which implies by

(2.1.4) that u′J(x)
L2(R)−−−→ u′(x) and v′J(x)

L2(R)−−−→ v′(x). Hence,

lim
J→∞

(u′J(x), v′J(x))L2(R) = (xu(x), xv(x))L2(R). (A.2.32)

Finally, by Lemma A.2.2 and the more immediate fact that uJ(x)
L2(R)−−−→ u(x) and

vJ(x)
L2(R)−−−→ v(x), we know that lim

J→∞
uJ(b) = u(b) and lim

J→∞
vJ(b) = v(b), similarly for
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−b. Hence,

lim
J→∞

zuJ(b)vJ(b)− zuJ(−b)vJ(−b) = zu(b)v(b)− zu(−b)v(−b). (A.2.33)

Combining (A.2.31), (A.2.32), and (A.2.33), we have that

lim
J→∞

tz,b (uJ(x), vJ(x)) = tz,b (u(x), v(x)) , (A.2.34)

for all u(x), v(x) ∈ D1. The uJ and vJ are �nite linear combinations of Hermite

functions and hence are in S. Thus, the closure of tz,b|S contains tz,b. Since tz,b is

closed, the reverse inclusion holds. Hence, S is a core of tz,b.

Now we may invoke the �rst representation theorem, and construct a closed,

densely-de�ned operator � call it L1
PC(z, b) � from the application of Proposition A.1.7.

The question is why L1
PC(z, b) has anything to do with the operator LPC(z, b) de�ned

in (3.3.1).

Proposition A.2.9. For all b > 0 and z ∈ C, L1
PC(z, b) ⊆ LPC(z, b).

Proof. For any y ∈ D
(
L1
PC(z, b)

)
, L1

PC(z, b)y ∈ L2(R) by de�nition. Recall that any

L2 function f forms a tempered distribution under the rule

〈f, ϕ〉S′,S =

∫
f(x)ϕ(x) dx, ϕ(x) ∈ S. (A.2.35)

Note that we have that for f ∈ L2(R),

(f, ϕ)L2(R) =

∫
R

f(x)ϕ(x) dx = 〈f, ϕ〉S′,S , (A.2.36)

but since the Schwartz class is closed under conjugation, this causes no essential

di�culty.
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Now, suppose u ∈ D
(
L1
PC(z, b)

)
, so that L1

PC(z, b)u ∈ L2(R). On the one hand,

by (A.2.36), we have that for all ϕ ∈ S,

(
L1
PC(z, b)u, ϕ

)
L2(R)

=
〈
L1
PC(z, b)u, ϕ

〉
S′,S . (A.2.37)

On the other hand, by property a), we know that for all ϕ(x) ∈ S, which are certainly

in D (tz,b), (
L1
PC(z, b)u, ϕ

)
L2(R)

= tz,b (u, ϕ) (A.2.38)

and writing this out, we have

(u′(x), ϕ′(x))L2(R) (A.2.39a)

+
1

4
(xu(x), xϕ(x))L2(R) (A.2.39b)

− 1

2
(u(x), ϕ(x))L2(R) (A.2.39c)

+ zu(b)ϕ(b)− zu(b)ϕ(−b) (A.2.39d)

We convert these to distributional form. For (A.2.39a), by (A.2.36), we have that

(u′(x), ϕ′(x))L2(R) =
〈
u′, ϕ′(x)

〉
S′,S

(A.2.40)

Yet by the rules of (tempered) distributions and derivatives, this simply becomes

−
〈
u′′(x), ϕ(x)

〉
S′,S

. (A.2.41)

For (A.2.39b), we apply (A.2.36) and then move the x over to the other side, since
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for x ∈ R, x = x:

1

4
(xu(x), xϕ(x))L2(R) =

1

4

∫
R

xu(x)xϕ(x) dx

=
1

4

∫
R

x2u(x)ϕ(x) dx

=
1

4

〈
x2u(x), ϕ(x)

〉
S′,S

(A.2.42)

For (A.2.39c), a straightforward application of (A.2.36) holds. Finally, for (A.2.39d),

we have that

zu(b)ϕ(b) = zu(b)
〈
δ (x− b) , ϕ(x)

〉
S′,S

=
〈
zu(b)δ (x− b) , ϕ(x)

〉
S′,S

, (A.2.43)

and similarly for −zu(b)ϕ(−b). Putting it all together, we have

(
L1
PC(z, b)u, ϕ

)
L2(R)

=

=

〈
−u′′(x) +

1

4
x2u(x)− 1

2
u(x) + zu(b)δ (x− b)−

−zu(−b)δ (x+ b) , ϕ(x)
〉
S′,S

(A.2.44)

Comparing with (A.2.37), and noting that conjugation preserves the Schwartz class,

we see that L1
PC(z, b)u(x) and

−u′′(x) +
1

4
x2u(x)− 1

2
u(x) + zu(b)δ (x− b)− zu(−b)δ (x+ b) (A.2.45)

are identical as distributions. Yet L1
PC(z, b)u is an L2(R) function, so it follows that

(A.2.45) is an L2(R) function. In other words, u ∈ D (LPC(z, b)) and L1
PC(z, b)u =

LPC(z, b)u. This works for all u ∈ D (LPC(z, b)), so L1
PC(z, b) ⊆ LPC(z, b).

Proposition A.2.10. For all b > 0 and z ∈ C, LPC(z, b) ⊆ L1
PC(z, b).
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Proof. Fix b > 0, z ∈ C, and y ∈ D (LPC(z, b)). Then LPC(z, b)y(x) ∈ L2(R), so by

(A.2.36) we can write, for any ϕ ∈ S,

(LPC(z, b)y(x), ϕ)L2(R) =
〈
LPC(z, b)y(x), ϕ(x)

〉
S′,S

, (A.2.46)

and by writing out and separating the terms, this works out to

−
〈
y′′(x), ϕ(x)

〉
S′,S

+
1

4

〈
x2y(x), ϕ(x)

〉
S′,S

− 1

2

〈
y(x), ϕ(x)

〉
S′,S

+ zy(b)
〈
δ (x− b) , ϕ(x)

〉
S′,S

− zy(−b)
〈
δ (x+ b) , ϕ(x)

〉
S′,S

.

(A.2.47)

Yet reversing the work of the previous section, this simply becomes

〈
y′(x), ϕ′(x)

〉
S′,S

+
1

4

〈
xy(x), xϕ(x)

〉
S′,S

− 1

2

〈
y(x), ϕ(x)

〉
S′,S

+ zy(b)ϕ(b)− zy(b)ϕ(−b)
(A.2.48)

Moreover, for all y ∈ D (LPC(z, b)), y′(x) ∈ L2(R) and xy(x) ∈ L2(R), so we can

convert (A.2.48) to (A.2.39) by (A.2.36). In other words, for all y ∈ D (LPC(z, b)),

and all ϕ ∈ S, we have that

(LPC(z, b)y(x), ϕ(x))L2(R) = tz,b (y(x), ϕ(x)) . (A.2.49)

This works for all y(x) in D (LPC(z, b)) and all ϕ(x) in S, which by Lemma A.2.8 is

a core of tz,b. Hence, by part a) of Proposition A.1.7, LPC(z, b) ⊆ L1
PC(z, b).
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To �nish the proof of Propostion 3.3.1, we now must establish certain remaining

properties.

Lemma A.2.11. For all r ∈ R and b > 0, LPC(r, b) is self-adjoint.

Proof. The main idea is to use part b) of the �rst representation theorem, Prop. A.1.7.

We must show that LPC(r, b) is symmetric or bounded below. To show symmetry, we

must show that for b > 0 and r real,

tr,b (v(x), u(x)) = tr,b (u(x), v(x)). (A.2.50)

Yet by the inner product (u, v)L2(R) havind the desired symmetry, the individual terms

(u′(x), v′(x))L2(R), (xu(x), xv(x))L2(R), u(b)v(b), and u(−b)v(−b) are quadratic forms

with the desired symmetry, and by r real, they are multiplied by real weights, and so

the whole expression has the desired symmetry.

We already showed that LPC(r, b) is sectorial, which in particular implies that

N(tr,b) is contained in a half-plane of the form {ζ ∈ C : Re ζ ≥ γ}. Since symmetric

forms have numerical range on the real line, we have that LPC(r, b) is bounded below.

We may now use part b) of Prop. A.1.7.

Lemma A.2.12. For all b > 0 and z ∈ C, LPC(z, b) has compact resolvent.

Proof. We �rst show that for any �xed b > 0, the family {tz,b : z ∈ C} of forms is

a holomorphic family of quadratic forms of type (a) in the sense of Kato ([Kat95,

Chapter VII, Section 4.2, p. 395]). This means that all of the forms have the same

domain, and for any u(x) in that domain, tz,b (u(x), u(x)) varies holomorphically in

z. Of course, tz,b was de�ned on D1 independently of z, and for �xed b > 0 and

u(x) ∈ D1, tz,b (u(x), u(x)) is linear in z! Thus, the requirement is satis�ed.

It follows that for �xed b > 0, the family {tz,b : z ∈ C} is a holomorphic family of

quadratic forms of type (a) in the sense of Kato ([Kat95, Chapter VII, Section 4.2, p.
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395]). The family of associated operators {L1
PC(z, b) : z ∈ C} = {LPC(z, b) : z ∈ C}

is called a holomorphic family of quadratic forms of type (B) in the sense of Kato

([Kat95, Chapter VII, Section 4.2, p. 395]). This is valuable because by [Kat95,

Chapter VII, Section 4.2, Thm. 4.3, p. 396], the members of a holomorphic family of

type (B) either all have compact resolvent, or none do. Yet by Proposition 3.2.1, L0
PC

has compact resolvent, and for any b > 0, it is clear from (3.3.1b) that LPC(0, b) =

L0
PC. Therefore, we may indeed conclude that for any b > 0, for all z ∈ C, LPC(z, b)

has compact resolvent.

This �nishes the proof of Proposition 3.3.1.
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Appendix B

PROOF OF CONTINUITY AND JUMP CONDITIONS ON

EIGENFUNCTIONS

B.1 Reminders on Distributions

In this section, we give the promised proof on the jump conditions on eigenfunctions,

namely Proposition 3.3.2. To do so, we remind ourselves of the �regular� distributions.

De�nition B.1.1. Fix Ω open in R. Let C∞cpct (Ω) denote the set of C∞ functions

compactly supported in Ω. A distribution on Ω is a continuous linear functional on Ω.

We denote the space of distributions on Ω by D′(Ω). We denote the pairing between

a distribution F and a test-function ϕ ∈ C∞cpct (Ω) by

〈F, ϕ〉D′(Ω), C∞cpct(Ω). (B.1.1)

Lemma B.1.2 (Locally integrable functions and distributions; e.g., [Fol99, p.283]).

The analogues of (A.2.35) and (A.2.36) hold for �regular� distributions; i.e., we have

that for all f ∈ L2(R) all Ω open in R, and all ϕ ∈ C∞cpct (Ω),

〈f, ϕ〉D′(Ω), C∞cpct(Ω) =

∫
f(x)ϕ(x) dx. (B.1.2)
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Moreover,

(f, ϕ)L2(R) =

∫
R

f(x)ϕ(x) dx = 〈f, ϕ〉D′(Ω), C∞cpct(Ω), (B.1.3)

B.2 The Proof

Proof of Proposition 3.3.2. Fix b > 0 and z ∈ C. Suppose that y(x) ∈ D (LPC(z, b))

is an eigenfunction of LPC(z, b). We �rst show that y(x), restricted to (b,∞), is C∞ on

(b,∞); the in�nite di�erentiability on the other intervals will follow similarly. First,

since y ∈ D (LPC(z, b)) ⊆ D (tz,b) = D1 ⊆ H1(R), it is continuous, in L2(R), and

satis�es LPC(z, b)y(x) ∈ L2(R), so both LPC(z, b)y(x) and νy(x) form distributions

on (b,∞) in the manner of (B.1.2). Yet of course, for any ϕ ∈ C∞cpct ((b,∞)), we have

that ϕ(b) = 0 and ϕ(−b) = 0, so

〈LPC(z, b)y(x), ϕ(x)〉D′((b,∞)), C∞cpct((b,∞))

=

〈
−y′′(x) +

(
x2

4
− 1

2

)
y(x), ϕ(x)

〉
D′((b,∞)), C∞cpct((b,∞))

+ 〈zy(b)δ (x− b)− zy(−b)δ (x+ b) , ϕ(x)〉D′((b,∞)), C∞cpct((b,∞))

=

〈
−y′′(x) +

(
x2

4
− 1

2

)
y(x), ϕ(x)

〉
D′((b,∞)), C∞cpct((b,∞))

+ 0,

(B.2.1)

since of course the point masses at ±b do not a�ect functions that are 0 at them. Yet

since y is a ν-eigenvector, of LPC(z, b), it follows that

〈νy(x), ϕ(x)〉D′((b,∞)), C∞cpct((b,∞))

= 〈LPC(z, b)y(x), ϕ(x)〉D′((b,∞)), C∞cpct((b,∞))

=

〈
−y′′(x) +

(
x2

4
− 1

2

)
y(x), ϕ(x)

〉
D′((b,∞)), C∞cpct((b,∞))

, ϕ ∈ C∞cpct ((b,∞))

(B.2.2)
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or 〈
−y′′(x) +

(
x2

4
−
[
ν +

1

2

])
y(x), ϕ(x)

〉
D′((b,∞)), C∞cpct((b,∞))

= 0 (B.2.3)

for all ϕ ∈ C∞cpct ((b,∞)). In other words, de�ning the di�erential operator

Ly := −y′′ +
(
x2

4
−
[
ν +

1

2

])
y(x), (B.2.4)

, for all eigenfunctions y of LPC(z, b), Ly is indistinguishable from the 0 perturba-

tion as a distribution on (b,∞). Moreover, L is an second-order elliptic di�erential

operator, since its principal symbol is

P2(x, ξ) = −ξ2,

which clearly satis�es

P2(x, ξ) 6= 0 unless ξ = 0, x ∈ RR.

Because of the
x2

4
term in the zero-order term, all we can say is that L has C∞ coe�-

cients. By the Local Regularity Theorem and its corollaries (see Folland, Introduction

to Partial Di�erential Equations, in particular[Fol76, Thm. 6.30 and Cor. 6.31, pp.

269 � 270]), it follows that since Ly = 0 in D′((b,∞)), and since 0 is C∞, then y is

C∞(b,∞).

We now show that y satis�es (3.3.3) on (b,∞), i.e., �weak solutions with su�cient

regularity are classical solutions.� First, we note that by that −y′′(x) on (b,∞) can

now be considered the classical, and continuous, derivative −d
2y

dx2 (x), the left-hand

element of the distribution pair (B.2.3) is now continuous, hence locally integrably,
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so for all ϕ ∈ C∞cpct ((b,∞)),

0 =

〈
−y′′(x) +

(
x2

4
−
[
ν +

1

2

])
y(x), ϕ

〉
D′((b,∞)), C∞cpct((b,∞))

=

∫ ∞
b

{
−d

2y

dx2 (x) +

(
x2

4
−
[
ν +

1

2

])
y(x)

}
ϕ(x) dx.

(B.2.5)

For any α, β in R, b < α < β < ∞, we can take a series ϕn(x) of C∞cpct ((b,∞))

functions , uniformly supported in (α − ε, β + ε) for some ε > 0, approximating the

step function
1

β − α
1(α,β) in L2((b,∞)) norm. Hence, by Cauchy-Schwartz, for all

b < α < β < ∞, replacing the continous function −d
2y

dx2 (x) +

(
x2

4
−
[
ν +

1

2

])
y(x)

by its truncation to (α− ε, β + ε) for L2-estimates,

0 = lim
n→∞

0

= lim
n→∞

∫ ∞
b

{
−d

2y

dx2 (x) +

(
x2

4
−
[
ν +

1

2

])
y(x)

}
ϕn(x) dx

=
1

β − α

∫ β

α

−d
2y

dx2 (x) +

(
x2

4
−
[
ν +

1

2

])
y(x) dx.

(B.2.6)

Yet we know that for any g(x) continuous on an interval (α, β), for any c ∈ (α, β),

we have by averaging arguments that

lim
ε→0+

1

2ε

∫ c+ε

c−ε
g(x) dx = g(c); (B.2.7)

see, e.g., [Fol99, Proof of Thm. 3.18, p. 97]. Hence, for any c ∈ (b,∞), we have by

(B.2.6) that

0 = lim
ε→0+

0

= lim
ε→0+

1

2ε

∫ c+ε

c−ε
−d

2y

dx2 (x) +

(
x2

4
−
[
ν +

1

2

])
y(x) dx

= − d2y

dx2

∣∣∣∣
x=c

+

(
c2

4
−
[
ν +

1

2

])
y(c);

(B.2.8)
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i.e., (3.3.3) holds at x = c. This works for all c ∈ (b,∞), so (3.3.3) holds on (b,∞).

Similarly, (3.3.3) will hold on the intervals (−∞,−b) and (−b, b).

Now we must show that (3.3.4) holds; we show that (3.3.4b) holds, and (3.3.4a)

will hold Now, y is continuous. Also, since y(x) is a solution to (3.3.3) on (−∞,−b),

(−b, b) and (b,∞), but by Proposition 2.5.1, any solution to (3.3.3) will freely extend

to an analytic function on C, we certainly have that the limits y′(b+) and y′(b−),

and y′(−b+) and y′(−b−) exist. Then by iteration of [Fol99, Exercise 9.5, p. 289],

the distributional derivative y′′ satis�es on (0,∞)

y′′(x) =
d2y

dx2
+ (y′(b+)− y′(b−))δ (x− b) + (y′(−b+)− y′(−b−))δ (x+ b) , (B.2.9)

but by hypothesis, y is an eigenvector of D (LPC(z, b)), hence is in L2(R)∩C(R) and

satis�es

−y′′(x) +

(
x2

4
− 1

2

)
y(x) + zy(b)δ (x− b)− zy(−b)δ (x+ b) ∈ L2(R).

In particular, the point-masses must cancel, and the point-masses on the left-hand

side add up to

[zy(b)− (y′(b+)− y′(b−))] δ (x− b) + [−zy(b)− (y′(−b+)− y′(−b−))] δ (x+ b)

so to cancel the point mass at x = b

zy(b)− (y′(b+)− y′(b−)) = 0

zy(b) = (y′(b+)− y′(b−));

(B.2.10)

i.e., (3.3.4b) holds. Similarly, (3.3.4a) holds.
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Appendix C

IMPLICIT FUNCTIONS: PROOF OF DEAN'S RESULT

C.1 Preliminary Properties of any Implicit Function

Proposition 6.4.1 declares the existence of C1 functions gk(x) : R → R+ such that

Dgk(x)x = 0; i.e., we de�ne ν = gk(x) as an implicit function of x. In this section, we

brie�y note some properties that any implicit function on any subinterval of R must

satisfy. For our �rst result, we require a few lemmas.

Lemma C.1.1. Dν(0) = 0 if and only if ν ∈ 2N0 + 1.

Proof. It is known (e.g., [Tem14, Section 2, (12.2.6)] that

Dν(0) =

√
π2ν/2

Γ

(
−ν

2
+

1

2

) , (C.1.1)

and hence, exponentials being nonzero, it follows that Dν(0) = 0 if and only if(
− ν

2
+

1

2

)
is one of the poles of the Gamma Function; i.e.,

(
− ν

2
+

1

2

)
= −n for

some n ∈ N0. In other words,

Dν(0) = 0 if and only if ν ∈ 2N0 + 1. (C.1.2)

142



Lemma C.1.2. Suppose that for some x0 ∈ R and ν0 ∈ C, Dν0(x0) = 0. Then

∂

∂x
(Dν(x))

∣∣∣∣
x=x0,ν=ν0

6= 0. If x0 ≥ 0, then
∂

∂ν
(Dν(x))

∣∣∣∣
ν=ν0,x=x0

6= 0.

Proof. Suppose, by way of contradiction, that for some x0 ∈ R and ν0 ∈ C. Dν0(x0) =

0 and
∂

∂x
(Dν(x))

∣∣∣∣
x=x0,ν=ν0

= 0. Then since Dν0(x) is a solution to the ν = ν0 case of

(3.1.1a), with initial conditions all 0, it follows by Proposition 2.5.1 that Dν0(x) ≡ 0.

Yet Dν0(x) was de�ned so that

lim
x→∞

Dν0(x)

xν0e−x2/4
= 1. (C.1.3)

In particular, for x large enough, Dν0(x) 6= 0. Contradiction. Hence, if Dν0(x0) = 0,
∂

∂x
(Dν(x))

∣∣∣∣
x=x0,ν=ν0

6= 0.

In the process of proving Proposition 6.2.1, in particular the proof of Corol-

lary 6.2.9, we showed that for x0 > 0, the zeroes of ν 7→ Dν(x0), outside N0

were simple and on the positive real ν-axis. The exceptional case of zeroes of

ν 7→ Dν(x0) in N was handled in the proof of Corollary 6.3.6 (and again, D0(x) 6= 0

for all x, being essentially an exponential). Hence, for all x0 > 0, if Dν0(x0) = 0,
∂

∂ν
(Dν(x))

∣∣∣∣
ν=ν0,x=x0

6= 0.

It remains to handle the case x0 = 0. Di�erentiating (C.1.1) with respect to ν,

and using the Product Rule and Chain Rule,

∂

∂ν
(Dν(0))

∣∣∣∣
ν=ν=ν0

=

√
π2ν/2 · log

√
2

Γ
(
−ν

2
+ 1

2

)
+
√
π2ν/2 ·

(
−1

2

)
d

dz

(
1

Γ(z)

)∣∣∣∣
z=(1−ν)/2

(C.1.4)

Yet Dν(0) = 0 if and only if ν = 2k + 1, k ∈ N0, by Lemma C.1.1. In this case,

the �rst term on the right-hand side in (C.1.4) zeroes, being a multiple of
1

Γ(−k)
.

Moreover,
1

Γ(z)
has only a simple pole at z = −k, so d

dz

(
1

Γ(z)

)∣∣∣∣
z=(1−ν)/2

6= 0. The
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other factors of the second term on the right-hand side of (C.1.4) are nonzero, hence

∂

∂ν
(Dν(0))

∣∣∣∣
ν=2k+1

6= 0, k ∈ N0. (C.1.5)

We now note a result about the implicit functions, at least on (0,∞).

Corollary C.1.3. Suppose that on any �nite or in�nite interval (a, c) ⊆ (0,∞),

there exists a C1 function g : (a, c) → R+ with Dg(x)(x) = 0. Then g′(x) is never 0

on (a, c). In fact, g′(x) has a consistent sign on (a, c), so g is either increasing or

decreasing on (a, c).

Proof. Let (a, c) ⊆ (0,∞) be an open interval, and suppose that there exists g :

(a, c) → R+ be such that Dg(x)(x) = 0. Fix b ∈ (a, c). Then by the rules of implicit

di�erentiation, we have that

∂

∂x
(Dν(x))

∣∣∣∣
x=b,ν=g(b)

+
∂

∂ν
(Dν(x))

∣∣∣∣
ν=g(b),x=b

· g′(b) = 0, (C.1.6)

or

g′(b) = −
∂
∂x

(Dν(x))
∣∣
x=b,ν=g(b)

∂
∂ν

(Dν(x))
∣∣
ν=g(b),x=b

. (C.1.7)

By Lemma C.1.2, neither numerator nor denominator is 0, so g′(b) 6= 0. More impor-

tantly, since the map

b 7→ ∂

∂x

(
Dg(x)(x)

)∣∣∣∣
x=b,ν=g(b)

is real-valued and continuous on (a, c) (by the joint continuity of Dν(x) in ν and x),
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and is never 0 by Lemma C.1.2, it follows that it must be of one sign on (a, c) by the

Intermediate Value Theorem. Similarly,

b 7→ ∂

∂ν
(Dν(x))

∣∣∣∣
ν=g(b),x=b

is of one sign on (a, c). Hence, by (C.1.7), g′(b) is of one sign on all of (a, c). By

standard real analysis, e.g.,

Now, we show that g can be extended in whatever direction it is decreasing, at

least to a neighborhood of 0 on the left.

Lemma C.1.4. Suppose that on any �nite or in�nite interval (a, c) ⊆ (0,∞), there

exists a C1 function g : (a, c) → R+ with Dg(x)(x) = 0. If g is increasing, then

g extends to a C1 function on (−ε, c) for some ε > 0, still with the property that

Dg(x)(x) = 0. If g is decreasing, then g extends to a function on (a,∞), still with the

property that Dg(x)(x) = 0.

Proof. We prove the case that g is increasing; the case that g is decreasing is similar.

Suppose, then, that on any �nite or in�nite interval (a, c) ⊆ (0,∞), there exists an

increasing function g : (a, c)→ R+ with Dg(x)(x) = 0. Let

A0 := {d ≤ a : g extends to a C1 function on (d, c) with Dg(x)(x) = 0.},

a0 := infA0.

(C.1.8)

a ∈ A0 by hypothesis, so a0 ≤ a. Suppose, by way of contradiction, that a0 ≥ 0.

Then by a0 being the in�mum, for ε > 0 arbitrarily small, then there exists a(ε) ∈ A0,

a0 < a(ε) < a0 + ε, so in particular, g extends to a C1 function on (a0 + ε, c) with

Dg(x)(x) = 0. This works for all ε > 0, so g extends to a function on (a0, c) with

Dg(x)(x) = 0. Since g was increasing on (a, c), it follows from Corollary C.1.3 that g
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is increasing on (a0, c). Hence, g

(
a0 +

1

n

)
is a decreasing sequence in R. Yet D0(x)

is never 0, so the sequence is bounded below by 0. A decreasing sequence, bounded

below, must have a limit; hence,

L := lim
n→∞

g

(
a0 +

1

n

)
exists and is ≥ 0.

We now show that L = lim
x→a+0

g(x): on the one hand, for all x > a0, there exists n ∈ N

with a0 +
1

n
< x, so by decreasingness of the sequence and the function g,

L ≤ g

(
a0 +

1

n

)
≤ g(x); (C.1.9)

Hence,

lim inf
x→a+0

g(x) ≥ L. (C.1.10)

On the other hand, for all n ∈ N, eventually x < a0 +
1

n
, so

lim sup
x→a+0

g(x) < g

(
a0 +

1

n

)
, (C.1.11)

and this holds for all n ∈ N; hence,

lim sup
x→a+0

g(x) ≤ lim
n→∞

g

(
a0 +

1

n

)
= L. (C.1.12)

Hence,

L = lim
x→a+0

g(x), (C.1.13)

as required.
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Moreover, Dν(x) is jointly continuous in x and ν, so

DL(a0) = lim
x→a+0

Dg(x)(x)

= lim
x→a+0

0 = 0.

(C.1.14)

In particular, L 6= 0 since D0(x) 6= 0 for all x, being a multiple of an exponential;

hence, L > 0. Moreover, by a0 ≥ 0, we have by Lemma C.1.2 that

∂

∂ν
(Dν(x))

∣∣∣∣
ν=L,x=a0

6= 0,

so by the Implicit Function Theorem, there exists a unique C1(R) function g̃(x) in a

neighborhood of a0 such that Dg̃(x)x = 0; by uniqueness and L = lim
x→a+0

g(x), it follows

that g̃(x) and g(x) agree on their common domain, an interval of the form (a0, a0 + ε)

for some ε > 0. By shrinking ε if necessary, we also have that g̃(x) is de�ned on

(a0 − ε, a0 + ε). Hence, we may de�ne the function

g1(x) =


g̃(x), a0 − ε < x < a0 + ε,

g(x), a0 + ε ≤ x ≤ c,

(C.1.15)

and so g(x) extends to a C1(a0 − ε, c) function g1(x). Hence, a0 − ε ∈ A′. Yet

a0 = infA0� so a0 ≤ a0 − ε for some ε > 0; contradiction. Therefore, a0 ≤ 0.

Our next argument will show that g(x) must be increasing. To do so, we need an

argument that uniformizes the rule (C.1.3).

Lemma C.1.5. There exists t0 > 0 such that for all ν ∈ [0,∞),

x ≥ t0
√

2ν + 1 implies Dν(x) 6= 0. (C.1.16)
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Proof. We adjust the arguments of [Olv74, Chapter 6, Section 6.6]. We make the

change of variables

u = ν +
1

2
(C.1.17a)

x = (2u)1/2t = t
√

2ν + 1 (C.1.17b)

to convert (3.1.1a) into
d2w

dt2
= u2(t2 − 1) dt. (C.1.18)

Note that ν ≥ 0 implies u ≥ 1

2
and 2u ≥ 1; hence, for t ≥ 2, t2 − 1 ≥ 3. Then by the

standard error estimates in [Olv74, Chapter 6, Section 6.2, Thm. 2.1, p. 183], the

decaying solution at t→∞ has an expansion

w(u, t) = (t2 − 1)−1/4 exp{−uξ(t)} (1 + ε(u, t)) , u ≥ 1

2
, t ≥ 2, (C.1.19)

where ξ(t) is an antiderivative of
√
t2 − 1 in the domain of validity of the expansion;

in particular, we require t ≥ 2 and u ≥ 1

2
so that u2(t2 − 1) ≥ 3

2
> 0.

Moreover, since Du− 1
2
((2u)1/2t) is decaying (recessive) in the same regime, we have

that it is a (nonzero) multiple of this w(u, t).

Our goal is to show that uniformly in u ≥ 1

2
, there exists t ≥ t0 such that

ε(u, t) <
1

2
. Then w(u, t) ∈ (C.1.19) would be nonzero, by

|1 + ε(u, t)| ≥ |1| − |ε(u, t)| ≥ 1− 1

2
=

1

2
,

1
4
√
t2 − 1

positive, the exponential obviously nonzero, and the constant factor between

w(u, t) to Du− 1
2
((2u)1/2t) being nonzero.

By the standard theory (e.g., [Olv74, Chapter 6, Section 6.2, Thm. 2.1, p. 183])
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the error term ε(u, t), in terms of f(u, t) = u2(t2 − 1), for t ≥ 2, say, is bounded by

∫ ∞
t

∣∣∣∣ 1

[f(u, s)]1/4
d2

ds2

(
1

[f(u, s)]1/4

)∣∣∣∣ ds (C.1.20)

With some e�ort, this becomes

1

4u

∫ ∞
t

s2 + 2

(s2 − 1)5/2
ds (C.1.21)

The integrand is in L1[2,∞), of course: for s ≥ 2, s2 + 2 ≤ s2 + s ≤ 2s2, and

(s2−1)5/2 ≥
[
(s− 1)2

]5/2
= (s−1)5 ≥ s5

25
, so the integral on [2,∞) is bounded above

by
∫ ∞

2

26

s3
ds, which is of course �nite. Therefore,

lim
t→∞

∫ ∞
t

s2 + 2

(s2 − 1)5/2
ds = 0, (C.1.22)

and hence there is t0 such that t ≥ t0 implies that

∫ ∞
t

s2 + 2

(s2 − 1)5/2
ds <

1

2
,

and by
1

4u
=

1

2
· 1

2u
=

1

2
· 1

2ν + 1
≤ 1

2
for ν ≥ 0, we see that for t ≥ t0, uniformly in

u ≥ 1

2
,

|ε(u, t)| ≤ 1

2
.

In particular, for t ≥ t0, u ≥
1

2
,

Du− 1
2
((2u)1/2t) 6= 0, or

Dν(x) 6= 0.

(C.1.23)

In particular, this holds for x ≥ t0
√

2ν + 1, by (C.1.17).
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Corollary C.1.6. Suppose that on some �nite interval (a, c) ⊂ (0,∞), there exists

a C1 function g : (a, c)→ R+ such that Dg(x)(x) = 0. Then g(x) is increasing.

Proof. Suppose that on some �nite interval (a, c) ⊂ (0,∞), there exists a C1 function

g : (a, c) → R+ such that Dg(x)x = 0. Suppose by way of contradiction that g is

decreasing. Then by Lemma C.1.4, g extends to a function on (a,∞), still satisfying

Dg(x)(x) = 0, which by Corollary C.1.3 must be decreasing on all of (a,∞). Then

in particular, for x ≥ c, g(x) ≤ g(c). Then for t0 as de�ned in Lemma C.1.5,

x ≥ max{c, t0
√

2g(c) + 1}, g(x) ≤ g(c) so t0
√

2g(c) + 1 ≥ t0
√

2g(x) + 1. Hence,

for x ≥ max{c, t0
√

2g(c) + 1}, x ≥ t0
√

2g(x) + 1, so by Lemma C.1.5 and (C.1.16),

Dg(x)x 6= 0. YetDg(x)(x) = 0 by de�nition of g (and its extension). Contradiction.

C.2 Induction Argument

We now use the theory of the zeroes of the Hermite Polynomials to start creating

our gk(x). We remind the reader of some properties of the zeroes of the Hermite

Polynomials.

Lemma C.2.1 (Properties of the Zeroes of the Hermite Polynomials).

Reality, Simplicity. The nth Hermite Polynomial's zeroes are all real and simple.

This follows from the standard theory of orthogonal polynomials, e.g. [Sze75,

Thm. 3.3.1, p. 43].

Symmetry. As the Hermite Polynomials are either odd or even, Hn(x) = 0 if and

only if Hn(−x) = 0, n ∈ N0, x ∈ R.

Number of Positive Zeros. Combining the above statements, Hn(x) has exactly

bn
2
c strictly positive zeroes.
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Interpolation. If x0 > x1 > · · · > xn−1 are the zeroes of Hn(x), then in each inter-

val [xn−j, xn−j−1], 1 ≤ j ≤ n, there exists exactly one zero of Hn+1(x). More-

over, there exists exactly one zero of Hn+1(x) in [x0,∞) and (−∞,−x0]. Again,

this follows from the general theory of orthogonal polynomials, e.g. [Sze75, Thm.

3.3.2, p. 45].

Behavior of largest zero. It is known that there exists a positive constant C and

N ∈ N such that for n ≥ N , the largest positive zero x
(n)
0 of Hn(x) satis�es

√
2n+ 1− C + 1

61/3(2n+ 1)1/6
< x

(n)
0 <

√
2n+ 1− C

61/3(2n+ 1)1/6
; (C.2.1)

see, e.g., [Sze75, Chapter VI, Section 6.32, Thm. 6.32, pp. 127�128]. (C

is actually the �rst positive zero of one of the Airy functions, but this is not

important). In particular,

lim
n→∞

x
(
0n) =∞. (C.2.2)

and

x
(n)
0 = o(n) (C.2.3)

Density. Combining (C.2.3) and the re�ective symmetry of the zeroes of the Her-

mite Polynomial, we see that the zero of greatest modulus of Hn(x) is o(n).

Since the weight-function w(x) = e−x
2

is positive and continuous everywhere on

R, we may use [Sze75, Chapter 6, Section 6.1, Thms. 6.1.1 and 6.1.2, pp. 107

� 108] to show that for any closed, �nite interval [a, c] ⊆ R of nonzero length,

there exists N = N([a, c]) such that n ≥ N implies that at least one zero of

Hn(x) lies in [a, c].

Of course, most of the results of Lemma C.2.1 are qualitiative enough to also
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occur for the zeroes of Hn

(
x√
2

)
, which is the zero-contributing factor to Dn(x) by

(3.2.5). We rewrite the results that we shall need.

Corollary C.2.2 (Properties of the zeroes of Dn(x), n ∈ N).

Reality, Simplicity. For n ∈ N, the zeroes of x 7→ Dn(x) are real and simple.

Number of Positive Zeros. For n ∈ N, x 7→ Dn(x) has bn
2
c strictly positive

zeroes.

Interpolation. Fix n ∈ N. If b0 > b1 > · · · > bn−1 are the zeroes of x 7→ Dn(x),

then in each interval [bn−j, bn− j − 1], 1 ≤ j ≤ n, there exists exactly one zero

of x 7→ Dn+1(x). Moreover, there exists exactly one zero of x 7→ Dn+1(x) in

[b0,∞) and (−∞,−b0].

Behavior of largest zero. It is known that if b
(n)
0 denotes the largest zero of x 7→

Dn(x)

lim
n→∞

b
(n)
0 =∞. (C.2.4)

Therefore, for n ∈ N, k ∈ {0, 1, . . . , n − 1}, let b(n)
k denote the zeroes of the nth

rescaled Hermite polynomial Hn

(
x√
2

)
(equivalently, of Dn(x)) in decreasing order:

b
(n)
0 > b

(n)
1 > . . . > b

(n)
n−1. (C.2.5)

By our comments on the positive zeroes,

b
(n)
bn
2
c−1 > 0 ≥ b

(n)
bn
2
c, n ≥ 2,

where equality holds in the second inequality if and only if n is odd.
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Of course, as noted in [Dea66], D2k+1(0) = 0 for all k ∈ N0, and by Lemma C.1.2,

∂

∂ν
(Dν(x))

∣∣∣∣
ν=2k+1,x=0

6= 0,

so by the Implicit Function Theorem, for all k ∈ N0, there exists a C
1 function gk(x),

de�ned for x in a neighborhood of 0, satisfying


Dgk(x)(x) = 0

gk(0) = 2k + 1.

(C.2.6)

Similarly, for n ≥ 2, for the positive zeroes {b(n)
k }
bn

2
c − 1

k=0 of x 7→ Dn(x), Lemma C.1.2

again assures us that

∂

∂ν
(Dν(x))

∣∣∣∣
ν=2k+1,x=b

(n)
k

6= 0, n ≥ 2, 0 ≤ k ≤ bn
2
c − 1.

so again by the Implicit Function Theorem, there exists a C1(R) function gn,k(x),

de�ned in a neighborhood of b(n)
k , satisfying


Dgn,k(x)(x) = 0

gn,k(b
(n)
k ) = n.

(C.2.7)

Moreover, by Corollary C.1.6, gn,k is an increasing function in a neighborhood of b(n)
k ,

and by Lemma C.1.4, gn,k extends to a function de�ned on an open interval containing

[0, b
(n)
k ], still satisfying Dgn,k(x)(x) = 0. Yet by Lemma C.1.1, by Dgn,k(0)(0) = 0,

gn,k(0) = 2j + 1 for some j ∈ N0. In particular, then, by the Uniqueness part of the

Implicit Function Theorem, gn,k(x) extends gj(x). The only thing left to show is that

the indexation was chosen correctly.
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Proposition C.2.3. For n ≥ 2, and 0 ≤ k ≤ bn
2
c − 1, gn,k(x) extends gk(x) to an

open interval containing [0, b
(n)
k ]; i.e., in the notation above, j = k.

Proof. We induct on n. For base cases, we consider both n = 2 and n = 3. For n = 2,

of course g2,0 is increasing, so g2,0(0) < g2,0(b
(2)
0 ) = 2, yet g2,0 satis�es g2,0(0) ∈ 2N0 +1

by Lemma C.1.1, so we must have g2,0(0) = 1 and g2,0(x) extends g0(x). Similarly,

for n = 3, g3,0(0) < g3,0b
(3)
0 = 3, but Dg3,0(0)(0) = 0, so by Lemma C.1.1, g3,0(0) = 1,

so g3,0(x) extends g0(x). Now suppose the statement is true for n = m ≥ 3; we wish

to prove it for n = m+ 1.

Case 1: m is odd. Then m = 2j + 1, m + 1 = 2j + 2 for some j ∈ N. Then

D2j+1(0) = 0, so by the interpolation property in Corollary C.2.2, the positive zeros

of D2j+1(x) and D2j+2(x) are related by

b
(2j+1)
j = 0 < b

(2j+2)
j < b

(2j+1)
j−1 < b

(2j+2)
j−1 < · · · < b

(2j+1)
1 < b

(2j+2)
1 < b

(2j+1)
0 < b

(2j+2)
0

(C.2.8)

The positive zero closest to x = 0 of D2j+2(x) is b(2j+2)
j . We wish to show that

g2j+2,j(x) does not extend g0(x), g1(x), . . . gj−1(x). By (C.2.8), b(2j+2)
j < b

(2j+1)
j−1 , so for

all r ∈ N0, 0 ≤ r ≤ j, b(2j+2)
j < b(2j+1)

r for all r, 0 ≤ r ≤ j − 1. In particular, then,

by the inductive hypothesis, gr(x) has been de�ned on [0, b(2j+1)
r ], and hence by the

gr increasing by Corollary C.1.6,

gr(b
(2j+2)
j ) ≤ gr(b

(2j+1)
r ) = g2j+1,r(b

(2j+1)
r ) = 2j + 1 < 2j + 2, (C.2.9)

so the graph of gr(x) does not pass through the point (b
(2j+2)
j , 2j + 2). Hence, g2j+2j

does not extend gr(x) for 0 ≤ r ≤ j− 1, yet it must extend some gp(x) with 2p+ 1 ≤

m + 1 = 2j + 2, so it must extend gj(x). We now induct on `, 0 ≤ ` ≤ j, the

statement, �g2j+2,j−q extends gj−q, 0 ≤ q ≤ `.� We have just proven the statement for
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` = 0. If true for ` = `0, then for ` = `0 + 1, we see that g2j+2,j−(`0+1) cannot extend

gj−q for 0 ≤ q ≤ `0, since the fact that all such implicit functions are increasing by

Corollary C.1.6, and by the inductive hypothesis, gj−q(b
(2j+2)
j−q ) = 2j + 2, q ≤ `0, so

we cannot have gj−q(b
(2j+1)
j−(1+`0)) = 2j + 2 as well. Yet equally, by (C.2.8), if `0 6= j + 1.

b
(2j+2)
j−(1+`0) < b

(2j+1)
j−(`0+2) < . . . < b(2j+1,0)

, (C.2.10)

so for 0 ≤ r ≤ j − (`0 + 2), again by increasingness of the implicit functions and the

inductive hypothesis,

gr(b
(2j+2)
j−(1+`0))) ≤ gr(b

(2j+1,r)
) = g2j+1,r(b

(2j+1)
r ) = 2j + 1 < 2j + 2, (C.2.11)

so gr(b
(2j+2)
j−(1+`0)) is too small to touch g2j+2,j−(1+`0)(b

(2j+2)
j−(1+`0)) = 2j + 2. Hence, we have

that g2j+2,j−(1+`0) does not extend gr(x) for 0 ≤ r ≤ j− (`0 + 2). Hence, g2j+2,j−(1+`0)

must interpolate some gp(x) with 2p+ 1 ≤ 2j+ 2, but p ≤ j− (`0 + 2) and p ≥ j− `0

are both removed, so p = j − (1 + `0) is the only possibility. Hence, g2j+2,j−(1+`0)

extends gj−(1+`0). Hence, the statement is true for ` = `0 +1. By this inner induction,

we have, that g2j+2,k extends gk for 0 ≤ k ≤ j =

⌊
m+ 1

2

⌋
− 1.

Case 2: m is even. Then m = 2j, m + 1 = 2j + 1 for some j ∈ N. Then

D2j+1(0) = 0, so by interpolation, the positive zeros of D2j(x) and D2j+1(x) are

related by

b
(2j+1)
j = 0 < b

(2j)
j−1 < b

(2j+1)
j−1 < b

(2j)
j−2 < b

(2j+1)
j−2 < · · · < b

(2j)
1 < b

(2j+1)
1 < b

(2j)
0 < b

(2j+1)
0

(C.2.12)

The zero closest to x = 0 of D2j+1(x) is b(2j+1)
j−1 , the jth largest zero. We wish to show

that g2j+1,j(x) does not extend g0(x), g1(x), . . . gj−2(x). By (C.2.12), b(2j+1)
j−1 < b

(2j)
j−2,

so for all r ∈ N0, 0 ≤ r ≤ j − 2, b(2j+1)
j−1 < b(2j)

r for all r ≤ j − 2. In particular, then,
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by the inductive hypothesis, gr(x) has been de�ned on [0, b(2j)
r ], and hence by the gr

increasing by Corollary C.1.6,

gr(b
(2j+1)
j−1 ) ≤ gr(b

(2j)
r ) = g2j,r(b

(2j)
r ) = 2j < 2j + 1, (C.2.13)

so the graph of gr(x) does not pass through the point (b
(2j+1)
j−1 , 2j+1). Hence, g2j+1,j−1

does not extend gr(x) for 0 ≤ r ≤ j− 1, yet it must extend some gp(x) with 2p+ 1 ≤

m+ 1 = 2j + 1, so it must extend gj−1(x).

We now induct on `, 0 ≤ ` ≤ j − 1, the statement, �g2j+1,j−1−q extends gj−1−q,

0 ≤ q ≤ `.� We have just proven the statement for ` = 0. If true for ` = `0 < j − 1,

then for ` = `0 + 1, we see that g2j+2,j−1−(`0+1) cannot extend gj−1−q for 0 ≤ q ≤ `0,

since the fact that all such implicit functions are increasing by Corollary C.1.6, and

gj−1−q(b
(2j+1)
j−1−q) = g2j+1,j−1−q(b

(2j+1)
j−1−q) = 2j + 1, so we cannot have gj−q(b

(2j+1)
j−1−(1+`0)) =

2j + 1 as well. Yet equally, by (C.2.12), if `0 + 1 < j − 1.

b
(2j+1)
j−1−(1+`0) < b

(2j,j−1−(2+ell0))
< b

(2j,j−1−(`0+3))
< . . . < b(2j,0)

, (C.2.14)

so for 0 ≤ r ≤ j − 1− (`0 + 2), again by increasingness of the implicit functions and

the inductive hypothesis,

gr(b
(2j+1)
j−1−(`0+1)) ≤ gr(b

(2j)
r ) = g2j,r(b

(2j)
r ) = 2j < 2j + 1 (C.2.15)

so gr(b
(2j+1)
j−1−(`0+1)) is too small to touch g2j+2,j−1−(`0+1)(b

(2j+2)
j−1−(`0+1)) = 2j + 1. Hence,

g2j+2,j−1−(`0+1) does not extend gr(x) for 0 ≤ r ≤ j−1−(`0+2). Hence, g2j+2,j−1−(`0+1)

must interpolate some gp(x) with 2p + 1 ≤ 2j + 2, but p ≤ j − 1 − (`0 + 2) and

p ≥ j− 1− `0 are both removed, so p = j− 1− (`0 + 1) is the only possibility. Hence,
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g2j+1,j−1−(`0+1) extends gj−1−(`0+1). Hence, the statement is true for ` = `0+1. By this

inner induction, we have, that g2j+2,k extends gk for 0 ≤ k ≤ j − 1 =

⌊
m+ 1

2

⌋
− 1.

In all cases, we are done; the statement for n = m implies the statement for

n = m+ 1.
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