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Abstract 
 

 

Tensor contractions are frequently encountered computationally expensive operations in 

the fields of Nuclear Physics, Quantum Chemistry, Fluid dynamics and other areas of 

computational science. Most often, these operations are executed in a sequence, where 

the output of one operation is used as input to later operations. Existing parallel solutions 

are either not communication optimal or do not handle a sequence of contractions 

optimally. A recently developed RRR framework requires tensors to be distributed in 

certain specific ways over a certain specific logical views of a processor grid for optimal 

communication. Redistribution of tensors over changing logical processor grids between 

successive contractions in a sequence enables it to be executed in a communication 

efficient manner in the RRR framework.  

While these redistributions involve no computation and are just communication 

operations, they can take a significant amount of the runtime of the contraction operation. 

In this thesis, an efficient way to redistribute tensors onto changing logical views of 

multi-dimensional processor grids is presented. A cost model to select the best 

distribution and grid scheme is implemented and is tested on a sequence of CCSD tensor 

contraction equations and the results are presented. 
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A report on some work to optimize the CCSD(T) method of the NWChem 

software suite is also presented.  
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Chapter 1:  Introduction 
 

Tensor contractions are frequently encountered computationally expensive operations in 

the fields of Nuclear Physics, Quantum Chemistry, Fluid dynamics and other areas of 

computational science [1]. NWChem is a software suite that makes heavy use of tensor 

contractions implemented using the Global Array Toolkit to perform these contractions in 

parallel [2]. However, optimization of inter-processor communication is not addressed. 

The recently developed RRR framework for tensor contractions provides a solution for 

this [3]. It uses MPI collective operations to communicate during a distributed tensor 

contraction. It optimizes the communication operations so as to perform the tensor 

contraction with a given data distribution on a given logical view of a multidimensional 

processor grid in the most efficient way possible. When the data is distributed ideally on 

an ideal processor grid, it performs the most communication optimal contraction. 

The solution works as long as there is only one contraction to be performed and 

we use the logical view of the processor grid and the data distribution on the grid. The 

problem is that tensor contraction operations are most often run in a sequence where the 

output of one operation is used as input to the next. This means we have little to no 

control over how tensors are distributed for subsequent contractions in the sequence and 

means RRR won’t be able to perform the most efficient contraction. Redistribution of 

tensors over changing logical views of the processor grid between successive 
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contractions in the sequence solves this problem. It allows us to change the way the 

tensor data is distributed and the logical view of the grid it is distributed on, between each 

contraction in the sequence. This allows RRR to perform each contraction in the 

sequence in an optimal manner.  

In this thesis, an efficient way to redistribute tensors onto changing multi-

dimensional processor grids is proposed. The redistribution is a multistep process in 

which the replication of tensor data before and after the process determines which steps 

are to be taken. In cases where there is no replication on either end, the data is 

accumulated and a point to point communication operation is used to redistribute the 

data. In cases where there is data replication either before or after the redistribution, an 

aggregation or broadcast operation is used to take advantage of data replication to reduce 

communication costs. 
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Chapter 2: Background 
 

This section describes in brief the various terms and concepts like Tensors, Tensor 

Contractions, Tensor Distribution, and then briefly explains how the RRR framework 

works and how redistributing a tensor onto different processor grids can have a positive 

impact on overall performance of a sequence of tensor contractions. 

 

2.1 Tensors 

Tensors like scalars and vectors are mathematical objects used to describe physical 

properties. In fact tensors are merely a generalization of scalars and vectors; a scalar is a 

zero dimensional tensor, and a vector is a one dimensional tensor. The dimension of a 

tensor is defined by the number of directions (and hence the dimensionality of the array) 

required to describe it. 

From a computational and storage perspective, Tensors are just higher 

dimensional arrays. Just as a matrix M[A x B] is essentially a two dimensional 

rectangular array with A rows and B columns, tensors are just a higher order 

generalization of this concept. Whereas a matrix is always defined by two indices, a 

Tensor is described by as many indices as its dimension.  

For representing matrix M of size A x B as a tensor, we need to use two indices 

representing its dimensions as M[i; j]. Here there are A elements along index i and B 
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elements along index j. Although an order is decided for the indices of a tensor for the 

purpose of storage, the order does not hold any significance in the physical interpretation 

of the tensor. A 4D tensor N[i; j; k; l] has four indices namely i, j, k and l and the tensor 

can also be represented as N[k; i; l; j] or any other permutation of the indices. However, 

the storage of the tensor only follows one of all the possible permutations. 

 

2.2 Tensor Contraction 

Tensor contractions are higher dimensional analogues of matrix-matrix products. 

Consider the multiplication of A [M _K] and B [K _N] to generate an output matrix C 

[M_N]. Here, an element of C at the intersection of ith row and jth column which is 

identified as C[i][j] (Note: C[i][j] is used to denote an element where I and j mean values 

of the respective indices, while C[i; j] is used to denote the tensor where i and j indicate 

the indices of the tensor) is a dot product of ith row of A and jth column of B. This matrix 

multiplication also represents a contraction of tensors A[i; k] and B[k; j] that contracts the 

index k and yields an output tensor C[i; j]. From the indices of the tensors, it can be 

observed that index i of A and the index j of B are retained in C after the contraction. 

These are called as \external indices" of the input tensors. However, the index k of both 

input tensors is contracted and thus does not appear in the output tensor. It is termed as a 

“contracting index" of the input tensors. 

In higher dimensional tensor contractions, there can be more than one contracting 

indices in each input tensor. For example, contraction of two tensors: A[a; b; k; l] and 
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B[l; k; c; d] will yield an output tensor C[a; b; c; d] such that the contraction indices k 

and l are contracted, while the indices a, b, c and d as external indices are retained in C. 

The code snippet below shows the contraction between two tensors A[a;b;c;d] and 

B[d;l] to form the output tensor C[a;b;c;l]. Here the indices a,b,c of tensor A and index l 

of tensor B are external indices since they appear on the output tensor and index d of 

tensor A and tensor B is the contracting index. 

 

for(int a=0; a<n; a++) 
     for(int b=0; b<n; b++)  
          for(int c=0; c<n; c++)  
               for(int d=0; d<n; d++)  
                    for(int l=0; l<n; l++)  
                         C[a,b,c,l] += A[a,b,c,d] * B[d,l];  

Listing 1: Code showing simple tensor contraction 

 

2.3 Tensor Distribution 

Contraction of tensors can be parallelized on a cluster of processor nodes with distributed 

memory. The processor grid considered for this study is a multi-dimensional torus. To 

perform parallel computation of the contraction, the tensor needs to be distributed onto 

the processor grid. A tensor can be stored in a processor grid of the same or different 

dimensionality as that of the tensor. Usually, tensor indices are mapped to the grid 

dimensions in order to distribute the tensor. This mapping is referred to as “index-

dimension mapping". It is represented by a vector of the same dimensionality as the 

tensor where the value at ith dimension represents the physical grid dimension the ith 

index of tensor is mapped to. There are certain constraints and rules to distributing a 

tensor onto a grid which are discussed below [3]. 
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2.3.1 Distribution and Serialization 

Each dimension of the tensor must be either distributed along some dimension of the 

torus or serialized. An index i of the tensor is said to be distributed along dimension p of 

the grid if each node along p holds a range of index values along i. An index i of the 

tensor is said to be serialized if every node in the grid along the dimension p holds all the 

index values along i. 

 

2.3.2 No Redundant Mapping 

Redundant mapping here refers to mapping two different dimensions of the tensor onto 

the same dimension of the processor grid. This isn’t allowed. Each set of elements along 

any dimension of a tensor can be viewed as a Cartesian product between each index of a 

tensor. Say we have a tensor of two dimensions A[i;j], it isn’t possible to have the entire 

set of product set of elements if both the tensor dimensions are mapped to the same 

processor dimension. If both i and j indices are mapped along the same processor 

dimension and are distributed in the same way, the only elements that now make sense 

are those where i=j. It is not possible to store any other elements since each node along 

the dimension cannot have different values for i and j. 
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2.3.3 Replication 

From the perspective of the processor grid, if a tensor dimension is mapped onto a 

processor grid dimension, then that means each processor along that dimension holds a 

range of values of the tensor. On the other hand, if no dimension of the tensor is mapped 

to a grid dimension, then it means all the processors along that dimension hold all of the 

tensor data. In other words, tensor data is replicated along the processors in that 

dimension.  

 

2.3.4 Examples of Tensor Distribution 

Let us go through a few example with their index dimension mapping provided to get 

familiar with the concept. 

1. All dimension distributed with no replication: Consider the example where a d-

dimensional tensor is distributed along d different dimensions of a d-dimensional 

torus grid. Here, there is a one to one mapping and there is no replication or 

serialization. Consider tensor T[a;b;c;d] distributed along a 4-dimensional 

processor grid. There are a total of 4*3*2*1 total ways of distributing this with 

given constraints. Consider one such example where in index a is mapped to 

dimension 0, index b along dimension 1, index c along dimension 2, and index d 

along dimension 3 of the grid. The index dimension mapping in this case is 

<0,1,2,3>. 

2. Some dimensions distributed and some serialized with no replication: Consider 

the example where in a 4-dimensional tensor T[a;b;c;d] is distributed on a 3-
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dimensional grid with three of the tensor dimensions distributed along  three 

dimensions of the processor grid. The fourth dimension of the tensor is serialized. 

Let’s say indices a,b,c are distributed along dimensions 0,1,2 and index d of the 

tensor is serialized. The index dimension mapping would be <0,1,2,serial>. 

3. Some dimensions distributed and some serialized with replication: This case is 

similar to the previous one except that there are dimensions of the processor grid 

that isn’t mapped to any dimension of the tensor. Consider a 4-dimensional tensor 

T[a;b;c;d] distributed on a 4-dimensional grid with indices a,b,c distributed along 

dimensions 0,1,2 with index d being serialized. The index dimension mapping 

would be <0,1,2,serial>. Here, dimension 3 of the grid has no mapping and hence 

it doesn’t appear in the index dimension map and the tensor data is replicated 

along that dimension. 

 

2.4 Processor Grids 

It is often convenient to have a logical organization of all the processors involved in the 

distributed tensor contraction. It helps in easy distribution of data, formation of broadcast 

groups during computation. The grid considered in this study is a torus. A torus shaped 

grid has nodes linked in series in each dimension with a link between the two extreme 

nodes. In a d-dimensional torus, every node has two neighbor nodes in each dimension 

and total 2 x d neighbors. Each processor in the grid can be identified by its d-

dimensional coordinates. Thus for a 3D grid, a processor P[i;j;k] is the ith processor in 
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0th dimension, jth in the 1st dimension and kth in the 2nd dimension, where dimension 

indexing starts at 0. 

Torus networks are especially suited to tensor contractions because it allows for 

efficiently shifting data along a dimension or rotating the data along a dimension which 

are frequently used in tensor contraction algorithms. 

Now, a given number of processors can be logically grouped to form many 

different torus networks. Let us consider an example of sixty four processors. The 64 

processors can be construed as many different torus grids. Let us consider a few of them. 

1. 2-dimensional grid with <8,8> layout. Here, there are only two dimensions and 

there are 8 processors along dimension 0 and 8 along dimension 1. 

2. 3-dimensional grid with <4,4,4> processors. Here there are three dimensions with 

four processors along each dimension. 

3. 4-dimensional grid with <2,2,4,4> layout. Here there are four dimensions with 

two along dimensions 0 and 1, and four along dimensions 2 and 3. 

 

2.5 RRR Framework 

This section briefly describes the communication operations used in RRR framework and 

how tensor distribution has an effect on which operations are chosen. 

 

2.5.1 Distribution of Contraction and External Indices 

Let k be a contraction index then kA and kB are corresponding contraction indices in input 

tensors A and B. kA and kB can each be either serialized on every node of the torus or 
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distributed along some dimension of the torus. All different possible distributions of kA 

and kB are: Distributed, Distributed - Aligned (DDA), Distributed, Distributed - 

Orthogonal (DDO), Serialized, Distributed (SD) or vice versa, Serialized, Serialized (SS). 

DDA refers to the case when both kA and kB are distributed along the same dimension of 

the torus and DDO refers to distribution along separate dimensions. 

 Let eA be an external index in A. eA can be either serialized on every node of the 

torus or distributed along some dimensions. All different possible mappings of eA are: 

Distributed-Conflicting (DC), Distributed-Exclusive (DE), Serialized (S). eA is 

Distributed-Exclusive if no external index of B is distributed along the same dimension 

of torus as eA, otherwise it is Distributed-Conflicting (DC). 

 

2.5.2 Reduction, Recursive Broadcast and Rotation (RRR) 

Let px and py be two dimensions of p-dimensional torus and nx and ny be the number of 

processors along px and py. Let P(x; y) represent a general node whose coordinates are x 

along px and y along py. 

 Distribution of a contracting iterator K along dimension px of the torus implies 

that the mapping produces partial results along px. The output tensor has to be combined 

along px to obtain final result. This communication operation for combining partial 

results of output tensor along a dimension px is referred to as Reduction. 

 If an iterator I is serialized, but the corresponding index iA in an input tensor A is 

distributed along a dimension px, then A has to be broadcasted along px. If I is a 
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contracting iterator and there are multiple such serialized iterators with distributed 

indices, we will call the broadcast operation on A as Recursive Broadcast. 

 Similarly if I is an external iterator, then we call the broadcast operation as 

Rotation. Rotation simply means that A is rotated along the dimensions, resulting in an 

efficient pipelined all-to-all broadcast. 

 

2.5.3 Recursive Broadcast with DDO 

Recursive Broadcast corresponds to serialization of the contracting iterator. Let 

contraction index kA and kB be distributed along processor dimension px and py 

respectively. Let km
A and km

B be range of values of kA and kB held at processor P(m; y) 

and P(x;m) respectively. Notice that except for the diagonal processors P(m;m) the kA 

and kB data are not aligned. In order to contract km, km
A and km

B initially held at P(m; y) 

and P(x;m) need to be held by all nodes. To do this P(m; y) can broadcast km
A along px to 

P(*; y) and P(x;m) can broadcast km
B along py to P(x; *). Now every processor P(x; y) 

holds km
A and km

B and a local contraction km can be performed. This is done for each m 

so that entire contraction index k is contracted locally on each node. 

 

2.5.4 Reduction with DDA and SD  

Reduction corresponds to distribution of the contracting iterator. Let contraction index kA 

and kB be distributed along processor dimension px. Let km
A and km

B be the range of 

values of kA and kB held at processor P(m; y). Notice that km
A and km

B are perfectly 

aligned on each node, i.e. at node P(m; y), km can be contracted since it has both km
A and 
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km
B . After the local contraction each node along px i.e nodes P(*; y) will hold partial 

result which can be summed using a Reduction. Notice that Reduction can also be used 

for contraction indices that are Serialized-Distributed. Without loss of generality if kA is 

serialized and kB is distributed along px, then the nodes P(m; y) that hold km
B also hold 

km
A since kA is serialized. 

 

2.5.5 Rotation with DC 

Rotation corresponds to serialization of external iterator. Let external indices eA and fB be 

distributed along px of the torus. Hence, eA and fB are conflicting. Let em
A and fm

B be 

ranges of eA and fB held at some processor P(m; y). Under such distribution there is no 

node which holds em
A and fm

B where m ≠ n. In other words a full cartesian product 

between eA and fB is not formed. Since eA and fB are external indices that appear in output 

tensor C, these indices cannot be aligned and a full cartesian product needs to be formed 

between them. This can be done by rotating either A or B along px. Without loss of 

generality, during each step of rotation of B a processor P(m; y) will recieve fm-1
B from 

P(m-1; y) and will send fm
B to processor P(m + 1; y). Hence, after nx steps of rotation, fB 

will be completely serialized on each node. 

 

2.5.6 Cost function based on RRR 

Given a processor grid, an index dimension mapping, and a suitable tensor distribution, 

the scheme described above can be shown to use optimal communication [3], with the 

total cost given by the following equation. 
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Total cost = num_rotation * (cost(recursive_broadcast + local_compute)+ cost(reduction) 

+ ts + tw * m) 

 

2.6 Need for Tensor Redistribution 

We have seen how a single tensor can be distributed in many different ways onto a single 

processor grid and we have seen how a fixed number of processors can be logically 

organized into many different torus grids. We see from the previous section how both of 

those aspects have an impact on which operations are performed and ultimately on 

performance. So, for the most efficient tensor contraction operation, the tensors involved 

must be distributed in a certain specific way on a certain specific processor grid. This is 

not much of an issue if there was only one tensor contraction to be performed. But most 

often, tensor contractions are performed in sequence meaning outputs from a contraction 

operation are used as inputs in subsequent contraction operations in the sequence.  

Now, what might be the most efficient distribution and the most efficient grid for 

the first contraction may not be the same for subsequent contractions. But we already 

have the output tensor distributed a certain way on a certain grid. This is where a 

redistribution operation is used. It takes the tensor, a new processor grid and a new index 

mapping as input and the redistributes the tensor onto the new grid according to the index 

mapping specified. This way, we can perform each tensor contraction in the sequence in 

the most efficient way available. Even though the redistribution operation adds extra time 

from communication operations, its presence reduces the total contraction time by a 

margin enough to justify a need for them. 
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Consider a simple case presented where the below two contractions need to be 

done in sequence.  

1. A[i;j;k;l] = B[i;j;m;n] x C[m;n;k;l] 

2. X[i;j] = A[i;j;k;l] x Y[k;l] 

The first contraction involves all 4-dimensional tensor and the second involves two 2-

dimensional tensors and the output of the first contraction. Performing both the above 

contractions on a single grid either 2-d, 3-d or 4-d is not efficient. It leads to either 

redundant computation when done on a 3-d or a 4-d grid because the data to be computed 

will be replicated or extra communication during contractions on a 2-d grid. The most 

optimal way to perform the above sequence of contractions is to perform the first one on 

a 4-dimensional grid and then redistribute the output tensor A onto a 2-dimnsional grid to 

perform the next contraction. This way we will be performing both the contractions in the 

most optimal way with the drawback that we are adding extra communication times due 

to redistribution. But, generally even with the extra communication operations due to 

redistributions there is gain in overall performance. 
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Chapter 3: Redistribution of Tensors 
 

The redistribution algorithm takes the tensor to be redistributed, the new processor grid, 

the new tensor index mapping as input and redistributes the tensor according to the new 

index mapping onto the new processor grid. Tensor redistribution is an important 

operation that may need to be carried out on all tensors between each successive 

contraction in a sequence. The frequency with which they need to be carried out 

necessitates the development of an efficient algorithm that can handle it. 

The algorithm uses the current processor grid and index mapping as well as the 

new ones to determine where data needs to be moved to in order for the tensor 

distribution to change. It uses point to point communication whenever there is a unique 

source and destination of data. If there are multiple sources or destinations due to 

replication before or after redistribution, optimizations are applied to ensure all 

processors are used during communication and total communication time is reduced. 

 

3.1 Communication 

Redistribution is a communication operation that involves changing the data distribution 

of a tensor meaning tensor data that stored in a processor before and after redistribution 

are different. So, the first step of redistribution involves identifying which processors act 
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as senders and which act as receivers for the redistribution process.  Before understanding 

how that is achieved, knowledge how tensor and grid is addressed is important. 

 

Tile Address 

Each block of the tensor data stored in the processor grid has a global address which is a 

vector with the same dimension as the tensor. It specifies where that block of tensor 

belongs to in the entire tensor. This address is used during the actual contraction process 

to identify which tensor block to use during communication and computation. It is 

important to note that this address does not change during a redistribution as only the 

local address assigned to a tensor block within a processor is changed. So, these 

addresses should also be communicated along with the actual tensor data when 

redistribution occurs. 

Let us consider an example of a 3-dimensional tensor with 3 blocks along each 

dimension. This would mean a total of 27 blocks with address ranging from (0,0,0) to 

(2,2,2) as shown in figure 1. 
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Figure 1:  Tensor with block addresses 

 

The index value in the tensor address changes as we move along a dimension. It’s 

important to note that the fastest changing dimension is the one whose index value 

changes first and is the dimension whose values are stored contiguously inside the block.  

 

Processor Address 

Each processor in the grid is also assigned an address depending on its position in the 

processor grid. This is separate from the rank that is assigned by the MPI process. This 

address tells us the position of the processor in the virtual grid. This address is 

represented by a vector with the same dimension as the processor grid. It works the same 

was as a tensor global address but it’s important to note that the processor address 

changes during a redistribution. This means that the processor with the same rank will 

have a different address before and after a redistribution if the grid changes. The 
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processor address is always a function of the rank and the grid layout and it’s the layout 

that changes during redistribution. 

Consider an example where an 8 processor grid with a <4,4> grid layout with 

processor addresses ranging from (0,0) to (3,3) is changed to a grid with <2,2,2> grid 

layout with processor address ranging from (0,0,0) to (1,1,1). Figure 2 shows the grids 

before and after redistribution with processor ranks and addresses of each processor. 

 

 

Figure 2: Processor ranks and addresses before and after redistribution 

 

Address changes during redistribution 

The position of a particular block of tensor in terms of which processor it belongs to is a 

function its tile address, the index mapping and processor address. When a redistribution 

occurs, the index mapping and the processor address are both changed. This means that 
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blocks of tensor that are presently in a processor will need to be moved to a new 

processor. 

 

Identifying Senders 

We need to determine where the data that is stored in the current processor will need to 

be stored after redistribution. This involves calculating the new processor address for 

each tensor tile in a processor. The new processor address of a tile along an index is 

calculated by a modulo operation on the tile address along that index with the number of 

processors that index is mapped to in the new processor. Calculating this for all indices of 

a tensor will give the address of the processor that tile needs to be sent to.  

Now we know where each block of tensor will end up in after redistribution is 

done. If the new processor calculated is the same as the old one, no action needs to be 

taken. All the other blocks need to be sent to their new processor. However, all the blocks 

that need to go to a given processor is not contiguous in memory. This would result in a 

large number of send operations essentially one for each block that needs to be 

communicated resulting in a huge overhead. To overcome this, number of blocks that are 

to be sent to each of the processor is counted and two buffers are created for each of the 

processor the size of which will be proportional to the number of blocks that are to be 

sent to that processor. Two buffers are needed for each processor because one will hold 

the global address of the block and the other is for the actual data. Now, the data to be 

moved and their global address is copied onto the corresponding buffers of their 

corresponding processor. Now, all the data that is to be communicated to a processor is 
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present in that processor’s two buffers. These buffers can now be sent out to the relevant 

processor. So, a non-blocking send operation is used. The whole process is summarized 

in the algorithm show in Listing 2 and Listing 3. 

 

repl_dims: l ist of replicated dimensions  
dims: number of dimensions of tensor to be redistributed  
new_proc_addr: processor address of a ti le after redistribution  
new_idx_map: index dimension mapping after redistribution  
tile_address: Array with global tensor t ile address f or all tiles  
tensor_data: Array with tensor data for all t iles  
new_grid: Grid layout after redistribution  
 
 
grid_redistribute_send():  
 
 //Calculate the new processor address for all tiles in a tensor   
 for i in range(0,num_tiles)  
  for(j in range(0,dims))  
   new_proc_addr[i][new_idx_map[j]]=tile_address[i][j] %  
                                                                                             new_grid[new_idx_map[i]];  
  
 //Initiate sent flag for all  tiles  
 for i in range(0,num_tiles)  
  sent[i] = false;  
  
 for i in range(0,num_tiles)  
  if sent[i] == false  
   num_blocks = get_blocks_for_proc(i, new_proc_addr, sent,  
                                                           data_buf, address_buf);  
    
   if(num_blocks > 0)  
    //Check if sender and reciever are the same 
    if(get_global_rank(old_grid,old_proc_addr[i]) ==  
                                                   get_global_rank(new_grid,new_proc_addr[i]))  
     local_data.add(data_buf);  
     local_tile_address.add(address_buf);  
     local_num_tiles.add(num_blocks);  
    //else if they are different   
    else 
                                                 reciever=get_replicated_proc_ranks(new_proc_addr)  
               Isend(num_blocks,address_buf,reciever)  
                                                           Isend(num_blocks, data_buf,reciever)  

Listing 2: Algorithm showing how senders are determined and data is sent 
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get_blocks_for_proc(index, ranks, sent, blocks, block_addrs):  
  
 count=0; 
  
 //Count number of t iles to send to a processor  
 for i in range(0,num_tiles)  
  if ranks[i] == ranks[index]  
      count++; 
  
 //Initiate buffers  
 blocks = new double[count * get_block_size()];  
            block_addrs = new int[count * dims];  
  
 //Pointers to the two buffers  
 double* out_blocks = blocks;  
            int* out_block_addrs = block_addrs;  
   
 for i in range(0,num_tiles)  
  if ranks[i] == ranks[index]  
   // Copy block  
   memcpy(out_blocks, tensor_tile[i], get_block_size() *  
                                                                                                                   sizeof(double));  
   out_blocks += get_block_size();  
   // Copy address  
   memcpy(out_block_addrs, tile_address[i], dims * sizeof(int));  
   out_block_addrs += dims;  
   sent[i] = true;  
   
 return count; 

Listing 3: Algorithm showing how send buffers are formed 

 

Number of tiles in a processor 

The number of blocks of tensor that each processor holds is not the same across a grid. It 

is a function of both the index dimension mapping and the processor address. Consider 

the example of a 2-d tensor A[i;j] with 4 blocks along i and 4 blocks along j. If it’s 

distributed on a 8 processor 2-d grid with grid layout <2,4> and an index dimension 

mapping of <0,1> meaning index i is distributed along dimension 0 and index j is 

distributed along index 1. Now, each processor has a total of two blocks. If that tensor 

needs to be distributed onto a 3-dimensional grid with grid layout <2,2,2> with an index 
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dimension mapping of <0,1>, then the data is replicated along dimension 2 of the grid. 

This means that each processor now has four blocks as shown in figure 3. 

 

 

Figure 3: Number of tiles in processors before and after redistribution 

 

So, clearly the number of blocks in a processor depends on the grid layout and 

index dimension mapping. Since both of these will be changing during redistribution, the 

number of blocks that a processor holds after redistribution needs to be calculated before 

receives can be posted. This is done by counting the number of tiles with the new 

processor address starting from the fastest moving dimension of the tensor address and 

moving onto next fastest and so on till all of the dimensions are covered. 
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new_tile_num: number of ti les in current processor after redistribution  
old_proc_addr: array to hold which processors data was in before redistribution  
tile_address: array holding global address of all tensor blocks  
old_idx_map: index dimension mapping before redistribution  
old_pgrid: grid layout before redistribution  
recv_data: data structure to hold data received from different processors  
 
 
grid_redistribute_recv(/*out*/recv_data):  
 
 //Calculate number of blocks this processor will hold after redistribution  
 new_tile_num=get_tile_num(new_idx_map, new_grid, new_proc_addr);  
  
 //Calculate the address of those blocks before redistribution   
 for i in range(0,new_tile_num)  
  for(j=0 to dims-1) 
   old_proc_addr[old_idx_map[j]] = ti le_address[i][j] %  
                                                                                         old_pgrid[old_idx_map[j]];  
             
 // Find how many blocks will be received from which processor  
 num_procs = get_num_recv_blocks(old_proc_addr,  new_tile_num, map);  
  
 for i in range(0,num_procs)  
  int num_tiles = map[i];  
   
  if num_tiles > 0  
   
         //Check if sender is same as reciever  
         i f(get_global_rank(old_grid,old_proc_addr[i]) ==  
                                 get_global_rank(new_grid,new_proc_addr[i]))  
    
                                     recv_data.push(local_data,local_tile_address, local_num_tiles);  
     
         else 
   //Initiate recieve buffer  
   rd.blocks = new double[num_tiles * get_block_size()];  
                                    rd.block_addrs = new int[num_tiles * dim s];  
   rd.num_blocks = num_tiles;  
   sender=get_replicated_proc_ranks(old_proc_addr);  
   Irecv(num_tiles,rd.block_addrs,sender);  
   Irecv(num_tiles,rd.blocks,sender);  

Listing 4: Algorithm showing how receivers are identified and receive operation is 

carried out 
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get_num_recv_blocks(old_proc_addr, new_tile_num, map):  
 
 // Find total number of processors  
            num_procs = 1;  
  
 for i in range (0,old_grid_dims)  
                   num_procs *= old_pgrid[i];  
   
 // Declare and initialize map of size of number of processors  
            map = new int[num_procs];  
 for i in range (0,num_procs)  
  map[i] = 0;  
  
 for i in range(0,new_tile_num)  
  map[ranks[i]]++;  
   
 return num_procs;  

Listing 5: Algorithm showing how number of tiles to receive from different processors 

are calculated 

 

Identifying Receivers 

Now we have the number of blocks each processor will hold after redistribution. Now we 

need to find out which processors they were stored in before the redistribution. This is 

done the same way using the old processor grid and index dimension mapping to 

calculate addresses of blocks that will end up in current processor after redistribution. 

We have the total number of blocks of data and their old processor addresses. We 

then determine how much blocks of data is to be received from each individual processor 

and create two buffers to store the received addresses and data. Then non-blocking 

receives are posted. The whole process is summarized in Listing 4 and Listing 5. 
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Rebuilding Local Index 

Since we used, non-blocking communication, all sends are posted together and 

then all receives. After the exchange of data is complete, we have the new tensor blocks 

and their global address. But the data and address are in chunks in the form of buffers. 

They are copied onto the correct data structure in the tensor. A local index for the blocks 

is also needed; it is rebuilt using the global address of the blocks. After this, the tensor is 

now ready for further operations. 

 

3.2 Replication and its effect on communication 

Data replication implies that the same data is present in multiple processors. This can be 

taken advantage of to optimize communication. Since, the same data is either already 

present in multiple processors or needs to go to multiple processors, we can cut down on 

the communication cost further. Based on that, there are two scenarios present. The first 

step in both scenarios involves finding the replicated dimensions which is simply a matter 

of finding the grid dimensions not present in the index dimension mapping and keeping a 

count of it. 

 

3.6.1 Replication before redistribution 

In this case, there are dimensions of processors to which no tensor dimension is mapped 

to before redistribution. This means there is replicated data along those dimensions. 

Determining these replicated dimensions is a simple function of the old processor grid 

and the old index dimension mapping. So, instead of posting sends and receives from the 
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same processor, whenever data is needed from a processor, all processors along the 

replicated dimension of that processor is logically treated as the same processor and a 

function is used to spread this to all the processors along that dimension in a cyclic way. 

This way, the load on each individual processor is reduced and communication time is 

reduced. 

In case of multiple replicated dimensions, the same logic applies but the pool of 

processors from which data can be exchanged from is further increased by including 

processors along all the replicated dimensions. 

Let us consider an example of a case wherein a 2-d tensor A[i;j] is distributed 

along a 2-d grid with index i distributed along dimension 0 and index j being serialized 

before redistribution. So, data is replicated along dimension 1. 

 

 

Figure 4: A 2-d <4,4> processor grid with processor ids 

 

The above figure shows the processor grid and since data is distributed along 

dimension 0, processors with labels 1,2,3,4 all have different data. Now, since data is 
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replicated along dimension 1, processors with label 1,5,9,13 all have the same data and so 

on. Instead of sending the data multiple times from different processors, data is 

communicated only once with senders being cycled between all processors that hold 

same data. Here, whenever a block from processor 1 needs to be sent, the sending 

processor is cycled between all those four processors so as to balance out the load with a 

map maintained so as to ensure the correct receives are posted. 

 

3.6.2 Replication after redistribution 

In this case, there are dimensions of processors to which no tensor dimension is mapped 

to after redistribution. This means there is replicated data along those dimensions. 

Determining these replicated dimensions is a simple function of the new processor grid 

and the new index dimension mapping. So, now instead of having to receive data onto a 

single processor, it can be received by all the processors along the replicated dimension. 

After this receive, a communicator group is formed which includes all processors along 

the replicated dimension and then an all-to-all broadcast is performed. This way, all the 

processors along the replicated dimension end up having all the data. 

It works the same way in case there are multiple replicated dimensions. All 

processors along all replicated dimensions receive a part of the data and then a 

communicator group is formed which includes all those processors and then an all-to-all 

broadcast is performed as summarized in algorithm in Listing 6. 
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get_replicated_dims(idmap, repl_dims, grid_dims)  
 mapped = new int[grid_dims];  
 memset(temp, 0, grid_dims*sizeof(int));  
  
 count = 0; 
  
 for i in range(0,grid_dims)  
  mapped[idmap[i]] = 1;  
  
 for i in range(0,grid_dims)  
  if mapped[i]=0  
   count++;  
    
 repl_dims = new int[count];  
 j  = 0; 
 for i in range(0,grid_dims)  
  if mapped[i]=0  
   repl_dims[j++] = i;  
    
 return count;  
  
replicate(int rep_dim) 
 // Create a new MPI_Communicator in the replication dimension  
 num_procs = new_pgrid[rep_dim];  
 dim_group_ranks = new int[num_p rocs];  
 for in in range(0,num_procs)  
  new_proc_add[rep_dim] = i ;  
  dim_group_ranks[i] = get_proc_rank(new_grid,new_proc_add)  
   
 MPI_Comm_group(new_grid->grid_comm, &orig_group);  
 MPI_Group_incl(orig_group, num_procs, dim_group_ranks, &new_group);  
 MPI_Comm_create(new_grid ->grid_comm, new_group, &new_comm);  
  
 count[proc_rank] = get_num_tiles();  
 All_All_Bcast(count, new_comm);  
  
 All_All_Bcast(ti le_address,new_comm);  
 All_All_Bcast(ti le_data,new_comm);  

Listing 6: Algorithm showing how replication after redistribution is handled 

 

Let us consider a 2-d tensor A[i;j] with mapping <0,serial> after redistribution. 

This means the processors along dimension 1 should have replicated data after 

redistribution. 
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Processors with label 1,5,9,13 should now have the same data after redistribution 

and so on. Now, instead of all the processors receiving the same data, data is 

communicated only once with the receiver cycled between all processors that should hold 

the same data. In this case, data that should be received on processor 1 is distributed so 

that processors 1,5,9,13 receive a part each of the data in a cyclic way. After all the data 

is received, a communicator is formed containing those processors and an all-to-all 

broadcast operation is done to ensure that all the processors end up having all of the data. 
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Chapter 4: Experiments 
 

One of the widely used methods in Quantum Chemistry is the Coupled Cluster family of 

methods. Used for modeling many-body systems in chemistry, coupled cluster methods 

are computationally expensive and often require computational power of supercomputers. 

With the benefit of high performance computing, multi-electron wave functions can be 

more accurately modeled for molecules. The types of coupled cluster methods are 

decided by the number of excitations permitted. Coupled Cluster Doubles (CCD) applies 

for only double excitations, Coupled Cluster Singles and Doubles (CCSD) applies for 

single and doubles excitations. 

 In CCSD, using algebraic and diagrammatic techniques, a sequence of equations 

is derived. These equations involve operations on tensor objects generally addition and 

contractions. For our experiment, we considered once such sequence of equations. The 

full list is presented in Appendix A. 

 The equations were translated to code and an ad-hoc cost function was developed 

to determine the best grid layout and index dimension mapping for these contractions. 

The cost function considers the contraction and the number of processors available and 

first forms a grid of appropriate dimensionality and then determines and valid and 

optimal index dimension mapping. This is done considering the cost equation of RRR 

described earlier and assigning an index mapping that minimizes this cost. 
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The sequence of contractions were run with and without grid changing 

redistribution and the execution times were noted. The portion of time used for 

redistribution is also noted. The experiments were run on a cluster with 128 cores of Intel 

Xeon E5640 CPU running at 2666 MHz. There are 8 cores per node with a total memory 

of 16GB per node. 

 

 

Figure 5: Execution times with/without redistribution 
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 There were a total of 183 contractions that were run in sequence consisting of 2 

dimensional and 4-dimensional tensors with tensor sizes ranging from 16 to 128 elements 

along each dimension. 

 The graph clearly shows the advantage of redistribution. Even while redistributing 

on a single static grid, the total execution time was lowered from 314.7 seconds to 267.9 

seconds out of which 24.3 seconds were spent on redistribution. For redistribution with 

changing grids, the redistribution time was slightly more at 26.4 seconds but the total 

execution time is further reduced to 213.7 seconds. 
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Chapter 5: NWChem ccsd(t) Optimization 
 

NWChem provides many methods for computing the properties of molecular and 

periodic systems using standard quantum mechanical descriptions of the electronic wave 

function or density. Its classical molecular dynamics capabilities provide for the 

simulation of macromolecules and solutions, including the computation of free energies 

using a variety of force fields. These approaches may be combined to perform mixed 

quantum-mechanics and molecular-mechanics simulations.  

 Coupled Cluster theory has evolved into a widely used and very accurate method 

for solving the electronic Schrödinger equation. The methods such as the ubiquitous 

CCSD(T) approach enable precise predictions for the molecular structure, inter-molecular 

interactions, transition states, and activation barriers. This is an extremely important 

method and has an extremely high numerical complexity of N6 where N symbolically 

represents the system size [2]. 

 The most computationally intense and time consuming part of the ccsd(t) method 

involve tensor contraction equations of the form shown in figure 5. 
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Figure 6: Tensor contraction equations in ccsd(t) 

  

This part of the method acts as a bottleneck and it can be optimized. The idea was 

to use multi-threaded dgemm along with openmp to speedup these operations so that 

there is an improvement in the overall performance. 

One such optimization is shown in table 4. 
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#pragma omp parallel for collapse(6)  
for (h3=0; h3<= range_h3 -1; h3++)  
{ 
    for (h1=0; h1<= range_h1-1; h1++)  
 { 
  for (h2=0; h2<= range_h2 -1; h2++)  
  { 
   for (p4=0; p4<= range_p4 -1; p4++)  
   { 
    for (p5=0; p5<= range_p5 -1; p5++)  
    { 
     for (p6=0; p6<= range_p6 -1; p6++)  
     { 
       //Contraction code 
        
      }  
    } 
   } 
  } 
             } 
} 

Listing 7: One of the loops in ccsd(t) with openmp pragma 

 

 Since this is a perfectly nested rectangular loop with no loop carried 

dependencies, the openmp collapse directive can be used to further improve performance. 

The collapse clause is used to increase the total number of iterations that will be 

partitioned across the available number of OMP threads by reducing the granularity of 

work to be done by each thread. Since the amount of work to be done by each thread is 

non-trivial, this improves the parallel scalability of the application. 

 In case of loops that were not perfectly nested, care was taken to reduce the 

granularity of the work to be done by each thread as much as possible by placing the 

openmp pragma as far from the innermost loop as possible. 
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5.1 Experimental Setup and Benchmark used. 

NWChem version used was release version 6.5. The native Fortran code of NWChem 

was first converted to C before OpenMP pragmas were applied. Intel MKL was used as 

the BLAS library. The experiments were run on 96 cores of Intel Xeon E5640 CPU 

running at 2666 MHz. There are 8 cores per node with a total memory of 16GB per node. 

The Benchmark used was the equations available for Uracil molecule in NWChem.  

 

 

Figure 7: Execution times of ccsd(t) method for Uracil molecule 

  

Speeding up the slowest parts of the code using OpenMP has reduced the 

execution time by about 25%.  
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Chapter 6: Conclusion and Future Work 

The redistribution algorithm presented can redistribute the tensor data to any index 

dimension mapping and grid layout we chose. It exploited data replication either before 

or after redistribution to parallelize communication, thereby reducing redistribution time. 

It solved the problem of how the RRR framework can perform each contraction in a 

sequence of contractions in a communication-optimal way by allowing us to redistribute 

the data distribution between each successive contractions in the sequence in a way that 

allows the RRR framework to perform the entire sequence of contractions in a 

communication optimal way. 

 The algorithm was tested out by having RRR perform a sequence of contractions 

with and without the redistribution. The results clearly show that the communication time 

spent on redistribution is worth it as the total execution time is reduced by a significant 

margin. 

 Even though the algorithm is quite flexible and can redistribute any tensor on any 

given changed view of the grid, it can handle only one grid at a time. Having the 

flexibility of having multiple grids that can be formed dynamically from a pool of 

processors is extremely beneficial. It allows us to have multiple parallel contractions. It 

can also be exploited to schedule larger and more expensive contractions on larger grids 

and smaller, less expensive ones on a smaller one [4]. For this to work, a more generic 

redistribution algorithm that can redistribute the data onto an entirely different grid needs 
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to be developed. This type of redistribution also needs a more flexible cost model and a 

scheduler.  
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Appendix A: List of contractions 

 

    Contraction* C0 = new Contraction(vaa_vovv/*Input Tensor A*/, ta_vo/*Input 
Tensor B*/, _a24849/*Output Tensor C*/);  
    C0->contract( "p1a,h2a,p3a,p2a"/*Indices of Tensor A*/, "p3a,h2a"/*Indices of 
Tensor B*/, "p1a,p2a"/*Indices of Tensor C*/);  
        
    Contraction* C1 = new Contraction(vab_oovv, tb_vo, _a5246);  
    C1->contract( "h2a,h1b,p2a,p1b", "p1b,h2b", " h2a,h1b,p2a,h2b");  
        
    Contraction* C2 = new Contraction(vbb_oovv, tbb_vvoo, _a14811);  
    C2->contract( "h1b,h3b,p1b,p3b", "p1b,p3b,h2b,h3b", "h1b,h2b");  
       
    Contraction* C3 = new Contraction(vab_vovo, ta_vo, _a30368);  
    C3->contract( "p1a,h1b,p2a,h2b", "p2a,h1a", "p1a,h1b,h2b,h1a");  
   
    Contraction* C4 = new Contraction(vab_ovvv, tab_vvoo, _a34826);  
    C4->contract( "h2a,p2b,p2a,p1b", "p2a,p1b,h1a,h2b", "h2a,p2b,h1a,h2b");  
   
    Contraction* C5 = new Contraction(vab_vovv, tb_vo, _a93 95); 
    C5->contract( "p1a,h1b,p2a,p1b", "p1b,h1b", "p1a,p2a");  
      
    Contraction* C6 = new Contraction(vaa_oovv, tab_vvoo, _a3071);  
    C6->contract( "h2a,h3a,p2a,p3a", "p3a,p2b,h3a,h2b", "h2a,p2b,p2a,h2b");  
    
    Contraction* C7 = new Contraction(vab_vovv, tb_vo, _a3715);  
    C7->contract( "p1a,h1b,p2a,p1b", "p1b,h2b", "p1a,h1b,p2a,h2b");  
    
    Contraction* C8 = new Contraction(vab_oovv, ta_vo, _a12895);  
    C8->contract( "h2a,h1b,p2a,p1b", "p2a,h2a", "h1b,p1b");  
    
    Contraction* C9 = new Contraction(tab_vvoo, _a5246, _a22682);  
    C9->contract( "p2a,p2b,h1a,h1b", "h2a,h1b,p2a,h2b", "p2b,h2a,h1a,h2b");  
    
    Contraction* C10 = new Contraction(vab_oovo, tab_vvoo, _a27108);  
    C10->contract( "h2a,h1b,p2a,h2b", "p2a,p2b,h1a,h1b", "h2a,p2b,h2b, h1a"); 
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    Contraction* C11 = new Contraction(vbb_oovo, tab_vvoo, _a27232);  
    C11->contract( "h1b,h3b,p1b,h2b", "p1a,p1b,h1a,h3b", "h1b,p1a,h2b,h1a");  
    
    Contraction* C12 = new Contraction(vab_ooov, tab_vvoo, _a27231);  
    C12->contract( "h2a,h1b,h1a,p1b", "p1a,p1b,h2a,h2b", "h1b,p1a,h1a,h2b");  
    
    Contraction* C13 = new Contraction(vbb_oovv, tbb_vvoo, _a3023);  
    C13->contract( "h1b,h3b,p1b,p3b", "p2b,p3b,h2b,h3b", "h1b,p2b,p1b,h2b");  
    
    Contraction* C14 = new Contraction(vab_oov o, taa_vvoo, _a27296);  
    C14->contract( "h2a,h1b,p2a,h2b", "p1a,p2a,h1a,h2a", "h1b,p1a,h2b,h1a");  
    
    Contraction* C15 = new Contraction(vaa_oovv, ta_vo, _a18241);  
    C15->contract( "h2a,h3a,p2a,p3a", "p3a,h2a", "h3a,p2a");  
    
    Contraction* C16 = new Contraction(ta_vo, _a18241, _a18246);  
    C16->contract( "p2a,h1a", "h3a,p2a", "h3a,h1a");  
    
    Contraction* C17 = new Contraction(vbb_oovv, tb_vo, _a12781);  
    C17->contract( "h1b,h3b,p1b,p3b", "p1b,h3b", "h1b,p3b");  
    
    Contraction* C18 = new Contraction(vab_oovv, tab_vvoo, _a3029);  
    C18->contract( "h2a,h1b,p2a,p1b", "p2a,p2b,h2a,h2b", "h1b,p2b,p1b,h2b");  
    
    Contraction* C19 = new Contraction(vab_oovv, taa_vvoo, _a3040);  
    C19->contract( "h2a,h1b,p2a,p1b", "p1a,p2a,h1a,h2a", "h1b,p 1a,p1b,h1a");  
    
    Contraction* C20 = new Contraction(vab_ovvv, ta_vo, _a34268);  
    C20->contract( "h2a,p2b,p2a,p1b", "p2a,h1a", "h2a,p2b,p1b,h1a");  
    
    Contraction* C21 = new Contraction(tab_vvoo, _a34269, _a34270);  
    C21->contract( "p1a,p1b,h2a,h2b", "h2a,p2b,p1b,h1a", "p1a,p2b,h2b,h1a");  
    
    Contraction* C22 = new Contraction(tb_vo, _a3040, _a23395);  
    C22->contract( "p1b,h2b", "h1b,p1a,p1b,h1a", "h1b,p1a,h2b,h1a");  
    
    Contraction* C23 = new Contraction(vaa_oovv, ta_vo, _a28768);  
    C23->contract( "h2a,h3a,p3a,p2a", "p3a,h3a", "h2a,p2a");  
    
    Contraction* C24 = new Contraction(vbb_oovv, tb_vo, _a18471);  
    C24->contract( "h1b,h3b,p1b,p3b", "p3b,h1b", "h3b,p1b");  
    
    Contraction* C25 = new Contraction(fa_ov, tab_vvoo, _a29926 ); 
    C25->contract( "h2a,p2a", "p2a,p2b,h1a,h2b", "h2a,p2b,h1a,h2b");  
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    Contraction* C26 = new Contraction(tb_vo, _a18471, _a18476);  
    C26->contract( "p1b,h2b", "h3b,p1b", "h3b,h2b");  
    
    Contraction* C27 = new Contraction(vab_oovv, tab_vvoo,  _a4801); 
    C27->contract( "h2a,h1b,p2a,p1b", "p2a,p2b,h2a,h1b", "p2b,p1b");  
    
    Contraction* C28 = new Contraction(vaa_vovv, ta_vo, _a3685);  
    C28->contract( "p1a,h2a,p2a,p3a", "p2a,h1a", "p1a,h2a,p3a,h1a");  
    
    Contraction* C29 = new Contract ion(vab_ovvo, ta_vo, _a30499);  
    C29->contract( "h2a,p2b,p2a,h2b", "p2a,h1a", "h2a,p2b,h2b,h1a");  
    
    Contraction* C30 = new Contraction(vab_vovv, tab_vvoo, _a34818);  
    C30->contract( "p1a,h1b,p2a,p1b", "p2a,p1b,h1a,h2b", "p1a,h1b,h1a,h2b");  
    
    Contraction* C31 = new Contraction(vbb_oovv, tbb_vvoo, _a4981);  
    C31->contract( "h1b,h3b,p1b,p3b", "p2b,p3b,h1b,h3b", "p2b,p1b");  
    
    Contraction* C32 = new Contraction(vab_vvov, tb_vo, _a10340);  
    C32->contract( "p1a,p2b,h1a,p1b", "p1b,h2b", "p 1a,p2b,h1a,h2b");  
    
    Contraction* C33 = new Contraction(vaa_oovo, ta_vo, _a19150);  
    C33->contract( "h2a,h3a,p2a,h1a", "p2a,h2a", "h3a,h1a");  
    
    Contraction* C34 = new Contraction(vbb_oovv, tab_vvoo, _a3197);  
    C34->contract( "h1b,h2b,p1b,p2b", "p2a,p2b,h2a,h2b", "h1b,p2a,p1b,h2a");  
    
    Contraction* C35 = new Contraction(vab_oovv, tab_vvoo, _a13050);  
    C35->contract( "h2a,h1b,p2a,p1b", "p2a,p1b,h1a,h1b", "h2a,h1a");  
    
    Contraction* C36 = new Contraction(vab_voov, tb_vo, _a30095);  
    C36->contract( "p1a,h1b,h1a,p1b", "p1b,h2b", "p1a,h1b,h1a,h2b");  
    
    Contraction* C37 = new Contraction(fb_ov, tab_vvoo, _a30094);  
    C37->contract( "h1b,p1b", "p1a,p1b,h1a,h2b", "h1b,p1a,h1a,h2b");  
    
    Contraction* C38 = new Contraction(tb_vo, _a12895, _a18706); 
    C38->contract( "p1b,h2b", "h1b,p1b", "h1b,h2b");  
    
    Contraction* C39 = new Contraction(fa_ov, ta_vo, _a19350);  
    C39->contract( "h2a,p2a", "p2a,h1a", "h2a,h1a");  
    
    Contraction* C40 = new Contraction(vab_vovv, ta_vo, _a36 55); 
    C40->contract( "p1a,h1b,p2a,p1b", "p2a,h1a", "p1a,h1b,p1b,h1a");  
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    Contraction* C41 = new Contraction(tb_vo, _a24960, _a26520);  
    C41->contract( "p1b,h2b", "h1b,p1a,p1b,h1a", "h1b,p1a,h2b,h1a");  
    
    Contraction* C42 = new Contraction(vab_oovv, ta_vo, _a5130);  
    C42->contract( "h2a,h1b,p2a,p1b", "p2a,h1a", "h2a,h1b,p1b,h1a");  
    
    Contraction* C43 = new Contraction(tbb_vvoo, _a5130, _a22677);  
    C43->contract( "p2b,p1b,h2b,h1b", "h2a,h1b,p1b,h1a", "p2b,h2a,h2b,h1a");  
    
    Contraction* C44 = new Contraction(vab_ovvv, ta_vo, _a9575);  
    C44->contract( "h2a,p2b,p2a,p1b", "p2a,h2a", "p2b,p1b");  
    
    Contraction* C45 = new Contraction(ta_vo, tb_vo, _a34095);  
    C45->contract( "p2a,h1a", "p1b,h2b", "p2a,p1b,h1a,h2b");  
    
    Contraction* C46 = new Contraction(vab_vvvv, _a34096, _a34097);  
    C46->contract( "p1a,p2b,p2a,p1b", "p2a,p1b,h1a,h2b", "p1a,p2b,h1a,h2b");  
    
    Contraction* C47 = new Contraction(vab_oovo, ta_vo, _a19210);  
    C47->contract( "h2a,h1b,p2a,h2b", "p2a,h2a", "h1b,h2b"); 
    
    Contraction* C48 = new Contraction(vaa_oovo, tab_vvoo, _a27056);  
    C48->contract( "h2a,h3a,p2a,h1a", "p2a,p2b,h3a,h2b", "h2a,p2b,h1a,h2b");  
    
    Contraction* C49 = new Contraction(vab_ovov, tb_vo, _a29927);  
    C49->contract( "h2a,p2b,h1a,p1b", "p1b,h2b", "h2a,p2b,h1a,h2b");  
    
    Contraction* C50 = new Contraction(vbb_vovv, tb_vo, _a3775);  
    C50->contract( "p2b,h1b,p1b,p3b", "p1b,h2b", "p2b,h1b,p3b,h2b");  
    
    Contraction* C51 = new Contraction(tab_vvoo, _a34382, _a34383);  
    C51->contract( "p1a,p1b,h1a,h1b", "h1b,p2b,p1b,h2b", "p1a,p2b,h1a,h2b");  
    
    Contraction* C52 = new Contraction(vab_oovv, tb_vo, _a12541);  
    C52->contract( "h2a,h1b,p2a,p1b", "p1b,h1b", "h2a,p2a");  
    
    Contraction* C53 = new Contraction(ta_vo,  _a12541, _a18015); 
    C53->contract( "p2a,h1a", "h2a,p2a", "h2a,h1a");  
    
    Contraction* C54 = new Contraction(ta_vo, _a28769, _a34717);  
    C54->contract( "p1a,h2a", "h2a,p2a", "p1a,p2a");  
    
    Contraction* C55 = new Contraction(vab_ooov, tbb_vvoo , _a27055); 
    C55->contract( "h2a,h1b,h1a,p1b", "p2b,p1b,h2b,h1b", "h2a,p2b,h1a,h2b");  
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    Contraction* C56 = new Contraction(vab_oovv, tab_vvoo, _a13021);  
    C56->contract( "h2a,h1b,p2a,p1b", "p2a,p1b,h2a,h2b", "h1b,h2b");  
    
    Contraction* C57 = new Contraction(vaa_oovv, taa_vvoo, _a5011);  
    C57->contract( "h2a,h3a,p2a,p3a", "p1a,p3a,h2a,h3a", "p1a,p2a");  
    
    Contraction* C58 = new Contraction(vab_oovo, ta_vo, _a10295);  
    C58->contract( "h2a,h1b,p2a,h2b", "p2a,h1a", "h2a,h1b,h2b,h1a");  
    
    Contraction* C59 = new Contraction(fb_ov, tb_vo, _a19380);  
    C59->contract( "h1b,p1b", "p1b,h2b", "h1b,h2b");  
    
    Contraction* C60 = new Contraction(vab_ovvv, tb_vo, _a3805);  
    C60->contract( "h2a,p2b,p2a,p1b", "p1b,h2b", "h2a,p2b,p2a,h2b");  
    
    Contraction* C61 = new Contraction(vab_oooo, tb_vo, _a34780);  
    C61->contract( "h2a,h1b,h1a,h2b", "p2b,h1b", "h2a,p2b,h1a,h2b");  
    
    Contraction* C62 = new Contraction(vab_ooov, tb_vo, _a19120);  
    C62->contract( "h2a,h1b,h1a,p1b", "p1b,h1b", "h2a,h1a");  
    
    Contraction* C63 = new Contraction(tab_vvoo, _a34239, _a34240);  
    C63->contract( "p3a,p2b,h2a,h2b", "p1a,h2a,p3a,h1a", "p2b,p1a,h2b,h1a");  
    
    Contraction* C64 = new Contraction(vab_ooov, tb_vo, _a10265);  
    C64->contract( "h2a,h1b,h1a,p1b", "p1b,h2b", "h2a,h1b,h1a,h2b");  
    
    Contraction* C65 = new Contraction(ta_vo, _a27051, _a30369);  
    C65->contract( "p1a,h2a", "h2a,h1b,h1a,h2b", "p1a,h1b,h1a,h2b");  
    
    Contraction* C66 = new Contraction(vbb_vovv, tb_vo, _a9515);  
    C66->contract( "p2b,h1b,p1b,p3b", "p1b,h1b", "p2b,p3b");  
    
    Contraction* C67 = new Contraction(tab_vvoo, _a34888, _a34889);  
    C67->contract( "p1a,p1b,h1a,h2b", "p2b,p1b", "p1a,p2b,h1a,h2b");  
    
    Contraction* C68 = new Contraction(taa_vvoo, _a3 4809, _a34810); 
    C68->contract( "p1a,p2a,h1a,h2a", "h2a,p2b,p2a,h2b", "p1a,p2b,h1a,h2b");  
    
    Contraction* C69 = new Contraction(vab_vvvo, ta_vo, _a10345);  
    C69->contract( "p1a,p2b,p2a,h2b", "p2a,h1a", "p1a,p2b,h2b,h1a");  
    
    Contraction* C70 = new Contraction(vab_oovv, tab_vvoo, _a3125);  
    C70->contract( "h2a,h1b,p2a,p1b", "p1a,p1b,h2a,h2b", "h1b,p1a,p2a,h2b");  
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    Contraction* C71 = new Contraction(tab_vvoo, _a34520, _a34521);  
    C71->contract( "p2a,p2b,h1a,h1b", "h1b,p1a,p2a,h2b", "p 2b,p1a,h1a,h2b");  
    
    Contraction* C72 = new Contraction(ta_vo, _a3125, _a23391);  
    C72->contract( "p2a,h1a", "h1b,p1a,p2a,h2b", "h1b,p1a,h1a,h2b");  
    
    Contraction* C73 = new Contraction(vab_oovv, tab_vvoo, _a4861);  
    C73->contract( "h2a,h1b,p2a,p1b", "p1a,p1b,h2a,h1b", "p1a,p2a");  
        
    Contraction* C74 = new Contraction(tab_vvoo, _a34896, _a34897);  
    C74->contract( "p2a,p2b,h1a,h2b", "p1a,p2a", "p2b,p1a,h1a,h2b");  
     
    Contraction* C75 = new Contraction(vab_oovv, tab_vvoo, _a4920) ; 
    C75->contract( "h2a,h1b,p2a,p1b", "p2a,p1b,h1a,h2b", "h2a,h1b,h1a,h2b");  
    
    Contraction* C76 = new Contraction(ta_vo, _a4920, _a26518);  
    C76->contract( "p1a,h2a", "h2a,h1b,h1a,h2b", "p1a,h1b,h1a,h2b");  
           
    Contraction* C77 = new Contraction(tab_vvoo, _a28178, _a29111);  
    C77->contract( "p1a,p3b,h1a,h2b", "h1b,p3b", "p1a,h1b,h1a,h2b");  
         
    Contraction* C78 = new Contraction(vaa_oovv, taa_vvoo, _a14870);  
    C78->contract( "h2a,h3a,p2a,p3a", "p2a,p3a,h1a,h2a", "h3a,h1a");  
    
    Contraction* C79 = new Contraction(tab_vvoo, _a34932, _a34933);  
    C79->contract( "p1a,p2b,h2a,h2b", "h2a,h1a", "p1a,p2b,h2b,h1a");  
    
    Contraction* C80 = new Contraction(vbb_oovo, tb_vo, _a19180);  
    C80->contract( "h1b,h3b,p1b,h2b", "p1b,h1b", "h3b,h2b");  
    
    Contraction* C81 = new Contraction(tab_vvoo, _a34924, _a34925);  
    C81->contract( "p1a,p2b,h1a,h1b", "h1b,h2b", "p1a,p2b,h1a,h2b");  
    
    Contraction* C82 = new Contraction(ta_vo, _a25416, _a34676);  
    C82->contract( "p2a,h1a", "h2a,p2b,p2a,h2b", "h2a,p2b,h1a,h2b");  
    
    Contraction* C83 = new Contraction(ta_vo, _a34952, _a34953);  
    C83->contract( "p1a,h2a", "p2b,h2a,h2b,h1a", "p1a,p2b,h2b,h1a");  
    
    Contraction* C84 = new Contraction(tbb_vvoo, _a34463, _a34464);  
    C84->contract( "p2b,p1b,h2b,h1b", "h1b,p1a,p1b,h1a", "p2b,p1a,h2b,h1a");  
    
    Contraction* C85 = new Contraction(ta_vo, _a5246, _a9160);  
    C85->contract( "p2a,h1a", "h2a,h1b,p2a,h2b", "h2a,h1b,h1a,h2b");  
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    Contraction* C86 = new Contraction(tab_vvoo , _a34878, _a34879); 
    C86->contract( "p1a,p2b,h2a,h1b", "h2a,h1b,h1a,h2b", "p1a,p2b,h1a,h2b");  
    
    Contraction* C87 = new Contraction(ta_vo, _a9160, _a29106);  
    C87->contract( "p1a,h2a", "h2a,h1b,h1a,h2b", "p1a,h1b,h1a,h2b");  
    
    Contraction* C88 = new Contraction(tb_vo, _a34944, _a34945);  
    C88->contract( "p2b,h1b", "h1b,p1a,h1a,h2b", "p2b,p1a,h1a,h2b");  
    
    Contraction* C89 = new Contraction(vaa_vovv, taa_vvoo, _a4601);  
    C89->contract( "p1a,h3a,p3a,p4a", "p3a,p4a,h1a,h2a", "p1a,h3a,h 1a,h2a"); 
    
    Contraction* C90 = new Contraction(vaa_oovv, taa_vvoo, _a10790);  
    C90->contract( "h3a,h4a,p3a,p4a", "p3a,p4a,h1a,h2a", "h3a,h4a,h1a,h2a");  
    
    Contraction* C91 = new Contraction(vaa_vovv, ta_vo, _a9455);  
    C91->contract( "p1a,h2a,p2a,p3a", "p2a,h2a", "p1a,p3a");  
    
    Contraction* C92 = new Contraction(vaa_oovo, taa_vvoo, _a9891);  
    C92->contract( "h3a,h4a,p3a,h1a", "p2a,p3a,h2a,h4a", "h3a,p2a,h1a,h2a");  
    
    Contraction* C93 = new Contraction(ta_vo, _a9891, _a9894);  
    C93->contract( "p1a,h3a", "h3a,p2a,h1a,h2a", "p1a,p2a,h1a,h2a");  
    
    Contraction* C94 = new Contraction(vaa_oovv, taa_vvoo, _a46510);  
    C94->contract( "h3a,h4a,p3a,p4a", "p3a,p4a,h2a,h4a", "h3a,h2a");  
    
    Contraction* C95 = new Contraction(taa_vvoo , _a9395, _a10354); 
    C95->contract( "p2a,p3a,h1a,h2a", "p1a,p3a", "p2a,p1a,h1a,h2a");  
    
    Contraction* C96 = new Contraction(fa_ov, taa_vvoo, _a18991);  
    C96->contract( "h3a,p3a", "p2a,p3a,h1a,h2a", "h3a,p2a,h1a,h2a");  
    
    Contraction* C97 = new Contraction(vaa_vvvo, ta_vo, _a10540);  
    C97->contract( "p1a,p2a,p3a,h1a", "p3a,h2a", "p1a,p2a,h1a,h2a");  
    
    Contraction* C98 = new Contraction(vab_ooov, tab_vvoo, _a9861);  
    C98->contract( "h3a,h1b,h1a,p1b", "p2a,p1b,h2a,h1b", "h3a,p2a,h1a,h2a "); 
    
    Contraction* C99 = new Contraction(ta_vo, _a9861, _a9864);  
    C99->contract( "p1a,h3a", "h3a,p2a,h1a,h2a", "p1a,p2a,h1a,h2a");  
    
    Contraction* C100 = new Contraction(vaa_oovo, ta_vo, _a10910);  
    C100->contract( "h3a,h4a,p3a,h1a", "p3a,h 2a", "h3a,h4a,h1a,h2a");  
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    Contraction* C101 = new Contraction(vaa_oovo, ta_vo, _a42744);  
    C101->contract( "h4a,h3a,p3a,h2a", "p3a,h4a", "h3a,h2a");  
    
    Contraction* C102 = new Contraction(tab_vvoo, _a3655, _a3869);  
    C102->contract( "p2a,p1b,h2a,h1b", "p1a,h1b,p1b,h1a", "p2a,p1a,h2a,h1a");  
    
    Contraction* C103 = new Contraction(vaa_oovv, ta_vo, _a10551);  
    C103->contract( "h3a,h4a,p3a,p4a", "p4a,h2a", "h3a,h4a,p3a,h2a");  
    
    Contraction* C104 = new Contraction(ta_vo, _a10551, _a10 556); 
    C104->contract( "p3a,h1a", "h3a,h4a,p3a,h2a", "h3a,h4a,h1a,h2a");  
    
    Contraction* C105 = new Contraction(taa_vvoo, _a5011, _a9818);  
    C105->contract( "p1a,p3a,h1a,h2a", "p2a,p3a", "p1a,p2a,h1a,h2a");  
    
    Contraction* C106 = new Contraction(ta_vo, _a28769, _a52784);  
    C106->contract( "p3a,h2a", "h3a,p3a", "h3a,h2a");  
    
    Contraction* C107 = new Contraction(tab_vvoo, _a3040, _a3283);  
    C107->contract( "p1a,p1b,h1a,h1b", "h1b,p2a,p1b,h2a", "p1a,p2a,h1a,h2a");  
    
    Contraction* C108 = new Contraction(tab_vvoo, _a5130, _a5959);  
    C108->contract( "p2a,p1b,h2a,h1b", "h3a,h1b,p1b,h1a", "p2a,h3a,h2a,h1a");  
    
    Contraction* C109 = new Contraction(ta_vo, _a5959, _a5967);  
    C109->contract( "p1a,h3a", "p2a,h3a,h2a,h1a", "p1a,p2a,h2 a,h1a"); 
    
    Contraction* C110 = new Contraction(vab_voov, tab_vvoo, _a4490);  
    C110->contract( "p1a,h1b,h1a,p1b", "p2a,p1b,h2a,h1b", "p1a,p2a,h1a,h2a");  
    
    Contraction* C111 = new Contraction(vaa_vovo, ta_vo, _a13260);  
    C111->contract( "p1a,h3a,p3a,h1a", "p3a,h2a", "p1a,h3a,h1a,h2a");  
    
    Contraction* C112 = new Contraction(vaa_vovo, taa_vvoo, _a4495);  
    C112->contract( "p1a,h3a,p3a,h1a", "p2a,p3a,h2a,h3a", "p1a,p2a,h1a,h2a");  
    
    Contraction* C113 = new Contraction(ta_vo, _a13260, _a13265); 
    C113->contract( "p2a,h3a", "p1a,h3a,h1a,h2a", "p2a,p1a,h1a,h2a");  
    
    Contraction* C114 = new Contraction(ta_vo, _a3685, _a6775);  
    C114->contract( "p4a,h2a", "p1a,h3a,p4a,h1a", "p1a,h3a,h2a,h1a");  
    
    Contraction* C115 = new Contraction(taa_vvoo, _a3685, _a3919);  
    C115->contract( "p2a,p4a,h2a,h3a", "p1a,h3a,p4a,h1a", "p2a,p1a,h2a,h1a");  
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    Contraction* C116 = new Contraction(taa_vvoo, _a9455, _a10379);  
    C116->contract( "p2a,p4a,h1a,h2a", "p1a,p4a", "p2a,p1a,h1a,h2a");  
    
    Contraction* C117 = new Contraction(taa_vvoo, _a4861, _a5043);  
    C117->contract( "p1a,p3a,h1a,h2a", "p2a,p3a", "p1a,p2a,h1a,h2a");  
    
    Contraction* C118 = new Contraction(vaa_oovv, ta_vo, _a12666);  
    C118->contract( "h2a,h3a,p2a,p3a", "p2a,h3a", "h2a,p3a");  
    
    Contraction* C119 = new Contraction(taa_vvoo, _a12666, _a15737);  
    C119->contract( "p2a,p4a,h1a,h2a", "h3a,p4a", "p2a,h3a,h1a,h2a");  
    
    Contraction* C120 = new Contraction(tab_vvoo, _a3197, _a3200);  
    C120->contract( "p1a,p1b,h1a,h1b", "h1b,p2a,p1b,h2a", "p1a,p2a,h1a,h2a");  
    
    Contraction* C121 = new Contraction(ta_vo, _a6775, _a6788);  
    C121->contract( "p2a,h3a", "p1a,h3a,h2a,h1a", "p2a,p1a,h2a,h1a");  
    
    Contraction* C122 = new Contraction(vaa_oooo, ta_vo, _a4270 3); 
    C122->contract( "h3a,h4a,h1a,h2a", "p1a,h3a", "h4a,p1a,h1a,h2a");  
    
    Contraction* C123 = new Contraction(taa_vvoo, _a12541, _a15498);  
    C123->contract( "p2a,p3a,h1a,h2a", "h3a,p3a", "p2a,h3a,h1a,h2a");  
    
    Contraction* C124 = new Contraction(taa_vvoo, _a121238, _a121239);  
    C124->contract( "p1a,p2a,h1a,h3a", "h3a,h2a", "p1a,p2a,h1a,h2a");  
    
    Contraction* C125 = new Contraction(vaa_vvvv, taa_vvoo, _a3645);  
    C125->contract( "p1a,p2a,p3a,p4a", "p3a,p4a,h1a,h2a", "p1a,p2a,h1a,h2a");  
    
    Contraction* C126 = new Contraction(taa_vvoo, _a107369, _a107370);  
    C126->contract( "p1a,p2a,h2a,h3a", "h3a,h1a", "p1a,p2a,h2a,h1a");  
    
    Contraction* C127 = new Contraction(ta_vo, _a45798, _a48054);  
    C127->contract( "p2a,h4a", "h3a,h4a,h1a,h2a", "p2a,h3a,h1a,h2a");  
    
    Contraction* C128 = new Contraction(ta_vo, _a86275, _a86276);  
    C128->contract( "p1a,h3a", "p2a,h3a,h1a,h2a", "p1a,p2a,h1a,h2a");  
    
    Contraction* C129 = new Contraction(taa_vvoo, _a57517, _a57518);  
    C129->contract( "p1a,p2a,h3a,h4a", "h3a,h4a,h1a,h2a", "p1a,p2a,h1a,h2a");  
    
    Contraction* C130 = new Contraction(vaa_oovv, taa_vvoo, _a3331);  
    C130->contract( "h3a,h4a,p3a,p4a", "p2a,p4a,h2a,h4a", "h3a,p2a,p3a,h2a");  
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    Contraction* C131 = new Contract ion(ta_vo, _a3331, _a8218);  
    C131->contract( "p3a,h1a", "h3a,p2a,p3a,h2a", "h3a,p2a,h1a,h2a");  
    
    Contraction* C132 = new Contraction(ta_vo, _a8218, _a8227);  
    C132->contract( "p1a,h3a", "h3a,p2a,h1a,h2a", "p1a,p2a,h1a,h2a");  
    
    Contraction* C133 = new Contraction(taa_vvoo, _a3331, _a3334);  
    C133->contract( "p1a,p3a,h1a,h3a", "h3a,p2a,p3a,h2a", "p1a,p2a,h1a,h2a");  
    
    Contraction* C134 = new Contraction(fa_vv, taa_vvoo, _a10530);  
    C134->contract( "p1a,p3a", "p2a,p3a,h1a,h2a", "p1a,p 2a,h1a,h2a");  
    
    Contraction* C135 = new Contraction(ta_vo, _a93335, _a93336);  
    C135->contract( "p2a,h3a", "h3a,p1a,h1a,h2a", "p2a,p1a,h1a,h2a");  
    
    Contraction* C136 = new Contraction(vaa_vvvv, ta_vo, _a4511);  
    C136->contract( "p1a,p2a,p3a,p4a", "p4a,h2a", "p1a,p2a,p3a,h2a");  
    
    Contraction* C137 = new Contraction(ta_vo, _a4511, _a4514);  
    C137->contract( "p3a,h1a", "p1a,p2a,p3a,h2a", "p1a,p2a,h1a,h2a");  
    
    Contraction* C138 = new Contraction(tb_vo, _a3029, _a7197);  
    C138->contract( "p3b,h1b", "h3b,p2b,p3b,h2b", "h3b,p2b,h1b,h2b");  
    
    Contraction* C139 = new Contraction(tab_vvoo, _a3071, _a3543);  
    C139->contract( "p1a,p1b,h1a,h1b", "h1a,p2b,p1a,h2b", "p1b,p2b,h1b,h2b");  
    
    Contraction* C140 = new Contraction(vbb_v ovo, tb_vo, _a13350); 
    C140->contract( "p1b,h3b,p3b,h1b", "p3b,h2b", "p1b,h3b,h1b,h2b");  
    
    Contraction* C141 = new Contraction(tbb_vvoo, _a4981, _a10043);  
    C141->contract( "p1b,p3b,h1b,h2b", "p2b,p3b", "p1b,p2b,h1b,h2b");  
    
    Contraction* C142 = new Contraction(tbb_vvoo, _a4801, _a5089);  
    C142->contract( "p1b,p3b,h1b,h2b", "p2b,p3b", "p1b,p2b,h1b,h2b");  
    
    Contraction* C143 = new Contraction(tb_vo, _a3023, _a8628);  
    C143->contract( "p3b,h1b", "h3b,p2b,p3b,h2b", "h3b,p2b,h1b,h2b");  
    
    Contraction* C144 = new Contraction(fb_ov, tbb_vvoo, _a19071);  
    C144->contract( "h3b,p3b", "p2b,p3b,h1b,h2b", "h3b,p2b,h1b,h2b");  
    
    Contraction* C145 = new Contraction(vbb_vvvo, tb_vo, _a10545);  
    C145->contract( "p1b,p2b,p3b,h1b", "p3b,h2b", "p1b,p2b,h1b,h2b");  
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    Contraction* C146 = new Contraction(vbb_vovo, tbb_vvoo, _a4500);  
    C146->contract( "p1b,h3b,p3b,h1b", "p2b,p3b,h2b,h3b", "p1b,p2b,h1b,h2b");  
    
    Contraction* C147 = new Contraction(vab_ovvo, tab_vvoo, _a4505);  
    C147->contract( "h1a,p1b,p1a,h1b", "p1a,p2b,h1a,h2b", "p1b,p2b,h1b,h2b");  
    
    Contraction* C148 = new Contraction(vbb_vvvv, tb_vo, _a4541);  
    C148->contract( "p1b,p2b,p3b,p4b", "p4b,h2b", "p1b,p2b,p3b,h2b");  
    
    Contraction* C149 = new Contraction(tb_vo, _a4541, _a4544);  
    C149->contract( "p3b,h1b", "p1b,p2b,p3b,h2b", "p1b,p2b,h1b,h2b");  
    
    Contraction* C150 = new Contraction(tbb_vvoo, _a3775, _a4209);  
    C150->contract( "p2b,p4b,h2b,h3b", "p1b,h3b,p4b,h1b", "p2b,p1b,h2b,h1b");  
    
    Contraction* C151 = new Contraction(tbb_vvoo, _a12781, _a16377);  
    C151->contract( "p2b,p4b,h1b,h2b", "h3b,p4b", "p2b,h3b,h1b,h2b");  
    
    Contraction* C152 = new Contraction(tb_vo, _a13350, _a13355);  
    C152->contract( "p2b,h3b", "p1b,h3b,h1b,h2b", "p2b, p1b,h1b,h2b");  
    
    Contraction* C153 = new Contraction(tbb_vvoo, _a9575, _a10469);  
    C153->contract( "p2b,p3b,h1b,h2b", "p1b,p3b", "p2b,p1b,h1b,h2b");  
    
    Contraction* C154 = new Contraction(vbb_oovv, tbb_vvoo, _a10850);  
    C154->contract( "h3b,h4b,p3b,p4b", "p3b,p4b,h1b,h2b", "h3b,h4b,h1b,h2b");  
    
    Contraction* C155 = new Contraction(tbb_vvoo, _a12895, _a16595);  
    C155->contract( "p2b,p3b,h1b,h2b", "h3b,p3b", "p2b,h3b,h1b,h2b");  
    
    Contraction* C156 = new Contraction(vbb_oovo, tb_vo,  _a11010); 
    C156->contract( "h3b,h4b,p3b,h1b", "p3b,h2b", "h3b,h4b,h1b,h2b");  
    
    Contraction* C157 = new Contraction(vbb_oovo, tbb_vvoo, _a10086);  
    C157->contract( "h3b,h4b,p3b,h1b", "p2b,p3b,h2b,h4b", "h3b,p2b,h1b,h2b");  
    
    Contraction* C158 = new Contraction(tb_vo, _a10086, _a10089);  
    C158->contract( "p1b,h3b", "h3b,p2b,h1b,h2b", "p1b,p2b,h1b,h2b");  
    
    Contraction* C159 = new Contraction(tb_vo, _a7197, _a7206);  
    C159->contract( "p1b,h3b", "h3b,p2b,h1b,h2b", "p1b,p2b,h1b,h2b");  
    
    Contraction* C160 = new Contraction(tb_vo, _a8628, _a8637);  
    C160->contract( "p1b,h3b", "h3b,p2b,h1b,h2b", "p1b,p2b,h1b,h2b");  
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    Contraction* C161 = new Contraction(vbb_vovv, tbb_vvoo, _a4701);  
    C161->contract( "p1b,h3b,p3b,p4b", "p3b,p4b,h1b,h2b", "p1b,h3b,h1b,h2b");  
    
    Contraction* C162 = new Contraction(tab_vvoo, _a3805, _a4259);  
    C162->contract( "p1a,p2b,h1a,h2b", "h1a,p1b,p1a,h1b", "p2b,p1b,h2b,h1b");  
    
    Contraction* C163 = new Contraction(vbb_vvvv, tbb_vvoo, _a3650);  
    C163->contract( "p1b,p2b,p3b,p4b", "p3b,p4b,h1b,h2b", "p1b,p2b,h1b,h2b");  
    
    Contraction* C164 = new Contraction(vbb_oovv, tb_vo, _a10671);  
    C164->contract( "h3b,h4b,p3b,p4b", "p4b,h2b", "h3b,h4b,p3b,h2b");  
    
    Contraction* C165 = new Contraction(tbb_vvoo, _a3029, _a3499);  
    C165->contract( "p1b,p3b,h1b,h3b", "h3b,p2b,p3b,h2b", "p1b,p2b,h1b,h2b");  
    
    Contraction* C166 = new Contraction(tb_vo, _a10671, _a10676);  
    C166->contract( "p3b,h1b", "h3b,h4b,p3b,h2b", "h3b,h4b,h1b,h2b");  
    
    Contraction* C167 = new Contraction(tbb_vvoo, _a9515, _a10444);  
    C167->contract( "p2b,p4b,h1b,h2b", "p1b,p4b", "p2b,p1b,h1b,h2b");  
    
    Contraction* C168 = new Contraction(tbb_vvoo, _a3023, _a3473);  
    C168->contract( "p1b,p3b,h1b,h3b", "h3b,p2b,p3b,h2b", "p1b,p2b,h1b,h2b");  
    
    Contraction* C169 = new Contraction(vab_oovo, tab_vvoo, _a10116);  
    C169->contract( "h1a,h3b,p1a,h1b", "p1a,p2b,h1a,h2b", "h3b,p2b,h1b,h2b");  
    
    Contraction* C170 = new Contraction(tb_vo, _a10116, _a10119);  
    C170->contract( "p1b,h3b", "h3b,p2b,h1b,h2b", "p1b,p2b,h1b,h2b");  
    
    Contraction* C171 = new Contraction(vbb_oovv, tbb_vvoo, _a174692);  
    C171->contract( "h3b,h4b,p3b,p4b", "p3b,p4b,h1b,h3b", "h4b,h1b");  
    
    Contraction* C172 = new Contraction(tb b_vvoo, _a241201, _a241202);  
    C172->contract( "p1b,p2b,h2b,h3b", "h3b,h1b", "p1b,p2b,h2b,h1b");  
    
    Contraction* C173 = new Contraction(tbb_vvoo, _a254814, _a254815);  
    C173->contract( "p1b,p2b,h1b,h3b", "h3b,h2b", "p1b,p2b,h1b,h2b");  
    
    Contraction* C174 = new Contraction(vbb_oooo, tb_vo, _a177605);  
    C174->contract( "h3b,h4b,h1b,h2b", "p1b,h3b", "h4b,p1b,h1b,h2b");  
    
    Contraction* C175 = new Contraction(tb_vo, _a227425, _a227426);  
    C176->contract( "p2b,h3b", "h3b,p1b,h1b,h2b", "p2b ,p1b,h1b,h2b");  
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    Contraction* C176 = new Contraction(tb_vo, _a180621, _a182867);  
    C177->contract( "p2b,h4b", "h3b,h4b,h1b,h2b", "p2b,h3b,h1b,h2b");  
    
    Contraction* C177 = new Contraction(tbb_vvoo, _a192257, _a192258);  
    C178->contract( "p1b,p2b,h3b,h4b", "h3b,h4b,h1b,h2b", "p1b,p2b,h1b,h2b");  
    
    Contraction* C178 = new Contraction(tb_vo, _a220495, _a220496);  
    C179->contract( "p1b,h3b", "p2b,h3b,h1b,h2b", "p1b,p2b,h1b,h2b");  
    
    Contraction* C179 = new Contraction(fb_vv, tbb_vvoo , _a10535); 
    C180->contract( "p1b,p3b", "p2b,p3b,h1b,h2b", "p1b,p2b,h1b,h2b");  
    
    Contraction* C180 = new Contraction(tb_vo, _a3775, _a7785);  
    C181->contract( "p4b,h2b", "p1b,h3b,p4b,h1b", "p1b,h3b,h2b,h1b");  
    
    Contraction* C181 = new Contraction(tb_vo, _a7785, _a7798);  
    C182->contract( "p2b,h3b", "p1b,h3b,h2b,h1b", "p2b,p1b,h2b,h1b");  


