
Systems Support for Carbon-Aware Cloud Applications

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree
Doctor of Philosophy in the Graduate School of The Ohio State

University

By

Nan Deng, B.S.

Graduate Program in Computer Science and Engineering

The Ohio State University

2015

Dissertation Committee:

Christopher C. Stewart, Advisor

Xiaorui Wang

Gagan Agrawal

c© Copyright by

Nan Deng

2015

Abstract

Datacenters, which are large server farms, host cloud applications, providing ser-

vices ranging from search engines to social networks and video streaming services.

Such applications may belong to the same owner of the datacenter or from third

party developers. Due to the growth of cloud applications, datacenters account for a

larger fraction of worldwide carbon emissions each year. To reduce the carbon emis-

sions, many datacenter owners are slowly but gradually adopting clean, renewable

energy, like solar or wind energy.

To encourage datacenter owners to invest into renewable energy, the usage of

renewable energy should lead to profit. However, in most cases, renewable energy

supply is intermittent and may be limited. Such fact makes renewable energy more

expensive than traditional dirty energy. On the other hand, not all customers have

the need of using renewable energy for their applications. Our approach is to de-

vise accountable and effective mechanisms to deliver renewable energy only to users

that will pay for renewable-powered services. According to our research, datacenter

owners could make profit if they could concentrate the renewable energy supply to

carbon-aware applications, who prefer cloud resources powered by renewable energy.

We develope two carbon-aware applications as use cases. We conclude that if an

application take carbon emissions as a constraint, it will end up with using more

ii

resources from renewable powered datacenters. Such observation helps datacenter

owners to wisely distribute renewable energy within their systems.

Our first attempt of concentrating renewable energy focuses on architectural level.

Our approach requires datacenters have on-site renewable energy generator using grid

ties to integrate renewable energy into their power supply system. To measure the

concentration of renewable energy, we introduce a new metric, the renewable-powered

instance. Using this metric, we found that grid-tie placement has first-order effects

on renewable-energy concentration.

On-site renewable energy requires an initial investment to install renewable gener-

ator. Although this cost could be gradually amortized over time, some people prefer

renewable energy credit, which could be bought from utility companies by paying

premium for the renewable energy transmitted through the grid and produced in

other locations. To let datacenters, with or without on-site renewable energy genera-

tor, attract more carbon-aware customers, we designed a system for Adaptive Green

Hosting. It identifies carbon-aware customers by signaling customers’ applications

when renewable energy is available and observing their behaviors. Since carbon-

aware applications would tend to use more resources in a datacenter with low emission

rates, datacenter owners could make profit by attributing more renewable energy to

carbon-aware applications, so that could encourage them to use more resources. Our

experiments show that adaptive green hosting can increase profit by 152% for one of

todays larger green hosts.

Although it is possible for cloud applications to maintain a low carbon footprint

while make profit, most existing applications are not carbon-aware. The carbon

footprint for most existing workloads is large. Without forcing them to switch to

iii

renewable energy, we believe responsible end users could take a step forward first. We

propose a method to help end users to discover implementation-level details about a

cloud application by extracting its internal software delays. Such details are unlikely

to be exposed to third-party users. Instead, our approach probes target application

from outside, and extract normalized software delay distributions using only response

times. Such software delay distributions are not only useful to reveal normalized

energy footprint of an application, but could also be used to diagnose root causes of

tail response times for live applications.

iv

To my parents, my wife and my mentor.

v

Acknowledgments

I enjoy my journey to study in the United States. I could never make this far

without everyone’s help. It is never an easy decision for parents to encourage their

child to travel across the world and study for years in a foreign country. I appreciate

my parents’ vision and their support. It was their early education that keep encour-

aging me to be curious to the outside world. I am also especially thankful for my

wife Ziqi. Working in the same department, she is my first reader, best reviewer. I

am thankful for her work on our wedding ceremony while I was writing my thesis.

I am grateful to have worked with my advisor Dr. Christopher Stewart, who

provided guidance for research and personal advice. His insights encouraged me to

dig deeper into the problems and his kindness could always relieve my stress when I

was desperate for a solution. I also thank Dr. Xiaorui Wang and Dr. Gagan Agrawal

for serving on my committee.

It is my honor to have made so many friends in our department. Thanks for their

help and support: Zichen Xu, Jaimie Kelley, Aniket Chakrabarti, Nathaniel Morris,

Zhezhe Chen, Mai Zheng, Dachuan Huang, Yang Zhang, Yuxuan Wang and Man

Cao.

Special thanks to my dog QiuQiu, a small Yorkshire Terrier with a big heart. He

trained me to be patient and smart. Thanks for his everyday whining that reminds

me to do my daily exercise even in the most busy days.

vi

Vita

2009 .B.S. Telecommunication Engineer-
ing, Beijing University of Post and
Telecommunication

2010-Present . Graduate Teaching Associate, Depart-
ment of Computer Science and Engi-
neering, The Ohio State University

2010-Present . Graduate Research Associate, Depart-
ment of Computer Science and Engi-
neering, The Ohio State University

Publications

Research Publications

Zichen Xu, Nan Deng, Christopher Stewart, Xiaorui Wang. Blending On-Demand
and Spot Instances to Lower Costs for In-Memory Storage. In Proceedings of 2016
IEEE International Conference on Computer Communications (INFOCOM’16), 2016.
Under submission.

Nan Deng, Zichen Xu, Christopher Stewart, Xiaorui Wang. Tell-Tale Tails: De-
composing Response Times for Live Internet Services. In Proceedings of the 6th
International Green and Sustainable Computing Conference (IGSC’15), 2015.

Zichen Xu, Nan Deng, Christopher Stewart, Xiaorui Wang. CADRE: Carbon-Aware
Data Replication for Geo-Diverse Services. In Proceedings of the 12th IEEE Interna-
tional Conference of Autonomic Computing (ICAC’15), 2015.

Nan Deng, Zichen Xu, Christopher Stewart, Xiaorui Wang. From the Outside Look-
ing In: Probing Web APIs to Build Detailed Workload Profiles. In Proceedings of the
9th International Workshop on Feedback Computing, 2014.

vii

Nan Deng, Christopher Stewart, Jaimie Kelley, Daniel Gmach and Martin Arlitt.
Adaptive Green Hosting. In Proceedings of the 9th ACM International Conference
on Autonomic Computing (ICAC’12), 2012.

Nan Deng, Christopher Stewart, Daniel Gmach, and Martin Arlitt. Policy and
Mechanism for Carbon-Aware Cloud Applications. In Proceedings of 2012 IEEE/IFIP
Network Operations and Management Symposium (NOMS’12), 2012.

Nan Deng, Christopher Stewart. Concentrating Renewable Energy in Grid-Tied
Datacenters. In Proceedings of 2011 IEEE International Symposium on Sustainable
Systems and Technology (ISSST’11), 2011.

Fields of Study

Major Field: Computer Science and Engineering

viii

Table of Contents

Page

Abstract . ii

Dedication . v

Acknowledgments . vi

Vita . vii

List of Tables . xi

List of Figures . xii

1. Introduction . 1

1.1 Thesis Statement . 2
1.2 Contributions . 4

1.2.1 Carbon-aware Resource Provisioning 6
1.2.2 Concentrating Renewable Energy in Datacenters 6
1.2.3 Adaptive Green Hosting . 7
1.2.4 Energy Usage Report for End Users 7

2. Carbon-aware Applications . 9

2.1 Policy and Mechanism for Carbon-Aware Cloud Applications . . . 9
2.1.1 Policy: Carbon-Aware Provisioning 10
2.1.2 Mechanism: Carbon Accounting 14
2.1.3 Experiment Results . 15

2.2 CADRE: Carbon-Aware Data Replication for Geo-Diverse Services 19
2.2.1 Carbon Footprint Models 19
2.2.2 Footprint-Replication Curves 20
2.2.3 Convexity of Footprint-Replication Curve 24

ix

2.2.4 Finding the Optimal Solution 26
2.3 Discussion . 30

3. Concentrating Renewable Energy . 31

3.1 Concentrating Renewable Energy in Grid-Tied Datacenters 32
3.1.1 Grid-tied Power Delivery 33
3.1.2 Renewable Powered Instances 34
3.1.3 Trace-Driven Simulation . 36
3.1.4 Study of Renewable-Powered Instances 38
3.1.5 Discussion . 47

3.2 Adaptive Green Hosting . 47
3.2.1 Making the Case for an Adaptive Approach 49
3.2.2 Adapting to Real Workloads 58
3.2.3 Case Studies on Shared Hosts 69
3.2.4 Shared Hosting Results . 73
3.2.5 Discussion . 77

4. Black-Box Analysis for Cloud Applications 79

4.1 Analyzing Third-Party Applications by Decomposing Response Times 80
4.1.1 Methodology . 81
4.1.2 Validation . 86
4.1.3 Study on Real Cloud Applications 97

5. Related Work . 103

5.1 Energy Accounting . 103
5.2 Energy Efficient Hardware . 104
5.3 Carbon-Aware Applications . 104
5.4 Carbon-Aware Datacenters . 107
5.5 Cloud Application Performance Analysis 109

6. Conclusion . 112

Bibliography . 115

x

List of Tables

Table Page

2.1 Symbols and notations. Bold indicates vectors. 20

3.1 A summary of all outcomes for the workload distribution found via integer

programming solution for carbon-capped and performance-oriented appli-

cations. 56

3.2 Values used to estimate cmax for this study. 61

3.3 Data on the best carbon offset ratios in our study. 67

3.4 Accuracy of reactive and tail-aware reactive approaches. Shown for the

western US host. 68

3.5 The configuration of each application’s load balancer in our setup. The

leftmost columns show the application number and its footprint goal. The

rightmost columns label which hosts the application routes requests to. . . 73

4.1 Results of finding software running in cloud applications. Found &
Confirmed means the software is found by our classifier and we can
find at least one reliable source confirming that the application uses
the software. 100

xi

List of Figures

Figure Page

1.1 We propose carbon-aware management for (1) datacenters and cloud
applications that puchase carbon offsets, (2) datacenters that produce
renewable energy on-site and (3) end users with limited visibility to
system backends. 3

1.2 Overview . 5

2.1 Dynamic Programming Solution . 12

2.2 Our renewable-energy cluster; the real setup and abstract goal. Dotted
lines reflect grid-tie placements. Note to reviewer, we would like to host
a demo at the conference. 16

2.3 Net grid energy used by nodes 1 and 2 in our cluster. The legend shows
the amount of power injected by the grid-tied power source. 17

2.4 Observed throughput versus offered workload for Apache under a carbon-
heavy energy cap. Uni is the homogeneous cluster; Het stands for
heterogeneous. 18

2.5 The convex footprint-Replication curves. 21

3.1 Simplified views of power delivery and grid-tie integration. 35

3.2 Simulating power delivery in a grid-tied datacenter. The far-left upper block

shows the hourly energy production in KW-hours of a solar panel system in

L.A.,CA. The far-left lower blocks capture energy usage of compute devices

(hence, the picture of the server). Labeled blocks in the middle of the figure

represent simulated components. 36

xii

3.3 Comparing commonly used grid-tie placements to the 90th percentile
of RPI producers. 39

3.4 Performance of 500 randomly selected grid-tie placements under the
WY production trace, our department’s energy usage trace, and 20%
renewable to energy ratio. An RPI indicates that 100% of a compute
core’s [2] energy for 1 hour came from an on-site renewable source.
This our default test setup, unless otherwise mentioned the reader can
assume that experiments in this section have these settings. 40

3.5 The impact of practical design parameters. 42

3.6 A niche market for green hosting. Each point represents 1 Web host. The

X-axis is the number of A-type DNS records registered to the host. Stars

indicate green hosts. 48

3.7 Adaptive green hosting for cloud applications that lease resources on
demand. 50

3.8 Carbon-offset elasticity for the eastern US host. The y-axis shows in-
stances provisioned on the host relative to the maximum setting, i.e.,
ηeast(X)−ηeast(K)

ηeast(K)
where K maximizes ηeast. Ecosia routes requests dif-

ferently across offset ratios (x-axis). Under 120 requests per second
(RPS), ηeast(K) equals 3 instances. Under 400 RPS, it equals 23 in-
stances. 54

3.9 Request rates for a modern enterprise application, codenamed VDR [92].
VDR is used in six continents. The plots show requests rates at 2
servers hosted in the Americas. The first plot compiles arriving re-
quests for both servers, capturing diurnal patterns. The second plot
shows request rates for a request type with fast response times, likely
static content. In the second plot, requests arrive according to a heavy
tail. 63

3.10 Profit of east, west, and European datacenters from the Ecosia example
using real workload traces. All results are reported relative to the profit
under the over-offsetting approach. 70

3.11 Our setup for adaptive green hosting. Dotted lines reflect data that is

transmitted at every cloud provisioning interval (e.g., hourly). Solid lines

reflect real time actions. 71

xiii

3.12 Where the shared Web hosts in our case studies live. We chose 11 of the

largest Web hosts (green and traditional) using domain tools and online

searches. Unintentionally, our results include hosts in North America and

Europe only. 72

3.13 Relative profit of the shared green hosts (B, J, and K). Each host’s profit

per application under the over offsetting policy was $2.17, $7.66, and $1.5

respectively. We used the VDR request trace with heavy tail arrival patterns

(7.8 days). The over offsetting policy sets a fixed offset ratio of 300%. Recall,

only hosts B, J, and K were shared by applications with diverse footprint

goals. 74

3.14 Average offset ratio recommended by adaptive green offsetting for each host

in our setup. 75

3.15 Relative profit of the shared green hosts when applications provision accord-

ing to a different optimization model [107]. Each host’s profit per application

under the over offsetting policy was $6.33, $5.50, and $4.83 respectively. . 75

3.16 Relative profit of the shared green hosts when applications can choose to

buy carbon offset directly. Each host’s profit per application under the over

offsetting policy was $1.71, $2, and $0.66. 76

4.1 Decomposing response times into delay caused by each software com-
ponent. 81

4.2 Our approach to decompose response time into normalized software
delays. It does not require changing or monitoring back-end servers. 82

4.3 Cumulative distribution functions for software delays. Delays are nor-
malized to zero mean unit variance. 89

4.4 50th, 90th and 95th percentile errors of the recovered component delays
under different workloads. 90

4.5 50th, 90th and 95th percentile errors for different software. There is
no background workload running on the test systems. 91

4.6 90th percentile KL divergence for ZooKeeper and Redis by extracting
2, 3, 4, 5, and 6 components from response times. 92

xiv

4.7 Receiver operating characteristic (ROC) curves of classifiers for each
software component when K=3. 93

4.8 Comparing recovered components under different workload against a
library. The library is built using software delays in an idle system. . 95

4.9 50th and 90th percentiles of KL divergence between component delays
and re-sampled MongoDB delays with parallel factors of 1, 2, 3 and 4.
The actual parallel factor in the system is 2. 97

4.10 95th percentile of normalized response times compared to the largest
95th percentile of recovered software delays for 33 real cloud applica-
tions. 99

4.11 95th percentile response times and normalized energy footprint. The
black bars are the median of the 95th percentile response time of the
sites that are found using the software by our classifier. The shaded
bars are the median normalized energy footprints (or parallel factors)
of those sites. 101

xv

Chapter 1: Introduction

Over the next 5 years, the number of Internet users will grow by 60% and cloud ap-

plications will host 3X more data [102]. As demand increases, carbon emissions from

those applications will grow. Already, the global IT sector emits more carbon dioxide

than most countries [84]. By 2020, the datacenters that host cloud applications will

emit 340 metric megatons of CO2 annually, twice as much as The Netherlands [61].

The growing emissions rate of the IT sector is happening at time when carbon emis-

sions worldwide must decrease by 72% to prevent climate change [43]. The enormity

of this challenge has prompted many IT companies to voluntarily reduce their emis-

sions. A growing cadre of green datacenters now use rooftop solar panels and on-site

wind turbines [5, 41], to reduce their carbon footprint.

On the other hand, a small group of users are starting to realize the importance of

low-carbon computing, gradually forming a demand of a niche market. For example,

over 700,000 Facebook members have signed a petition pressuring the site’s managers

to use only renewable energy [99] in 2010. After 20 months, Facebook agreed to invest

in renewable energy [100]. Similarly, Greenpeace.org used an industry-wide study of

carbon emissions to put pressure on a wide range of IT companies [27]. Increasingly,

hosting services, i.e., companies that lease datacenter resources to cloud applications,

1

exploit user demand for low-carbon computing by conspicuously powering their in-

frastructure with renewable energy. Examples of such green hosts include AISO [1],

HostGator [56], Green Geeks, and GreenQloud [53]. Green hosts attract carbon-aware

users. AISO, the eldest of these green hosts, enjoyed 10% CAGR between 2002 and

2008 [101].

Using clean, renewable energy to power the datacenters can reduce carbon emis-

sions. However, renewable energy may increase energy costs compared to traditional,

dirty energy. Increased costs have prevented wide adoption of renewable energy within

datacenters. Our work promotes low-carbon computing by helping datacenter owners

and Internet application providers keep costs low while delivering clean energy to end

users. With our holistic approach, low-carbon computing will be not only be cost

effective but profitable as well.

1.1 Thesis Statement

Our thesis is that accounting for and managing the carbon footprint of carbon-

aware users can increase profit for datacenters and cloud applications while reducing

the carbon footprint of Internet services. Our research builds upon recent studies that

have shown that carbon-aware users are an under served niche market [85].

Figure 1.1 depicts the parties involved in carbon-aware management. Our ap-

proach builds upon the traditional cloud computing market. Cloud applications lease

resources from datacenters and provide services to end users. Our research considers

the carbon footprint of each party. To quantify the carbon footprint, we use the term

carbon offset to represent a unit of clean energy that can replace a unit of dirty en-

ergy, both measured in Joules. Carbon offsets can be produced by on-site solar panels,

2

Cloud
Application

Datacenter

Carbon
Offset
Market

End
User

Lease
Resources

Provide
Services

Purchase &
Produce

Purchase

Purchase

Figure 1.1: We propose carbon-aware management for (1) datacenters and cloud ap-
plications that puchase carbon offsets, (2) datacenters that produce renewable energy
on-site and (3) end users with limited visibility to system backends.

power received from local wind farms, or renewable energy credits (RECs) purchased

via energy markets. Datacenters could purchase carbon offsets to reduce the carbon

emissions caused by their harware. Alternatively, datacenters could use on-site solar

panels or wind turbines to produce carbon offsets. In our model, cloud applications

and end users can only consume carbon offsets. Specifically, carbon-aware users, in-

cluding application owners and end users, may wish to maintain a certain offset ratio

— i.e., the ratio of carbon offsets to dirty energy. Our work builds on the following

axiomatic assumptions.

• Cloud computing decouples the resource providers and cloud application owners.

Computing and storage resources are leased to cloud applications for a fixed

period. The startup cost of building and installing renewable energy generators,

3

like solar panel or wind turbine, is amortized and embedded in the price when

leasing cloud resources. This lowers the bar for cloud application owners to step

into the market.

• Carbon-aware customers would take carbon footprint into account when they

choose where to host their applications. Some carbon-aware customers may

even like to pay a premium to use low-emissions resources [25]. This provides an

opportunity for cloud providers to attract carbon-aware customers by providing

profitable low footprint resources.

• An increasing number of end users care about clean computing. This would

push companies to move away from heavy carbon footprint resources. As we

mentioned above, Facebook has already announced to invest into renewable

energy partly because of a petition by its users [100].

1.2 Contributions

Figure 1.2 depicts our contributions at each layer in the cloud computing stack.

Power stations generate electricity power using either dirty or clean energy sources.

The grid delivers a mix of renewable and dirty energy to the datacenters’ power deliv-

ery system. Some datacenters may have their own on-site renewable energy generator,

which will deliver pure renewable energy to the power delivery system. The power

delivery system provides energy supply to support computing and storage resources

inside a datacenter. One of our contributions is an analysis on where to integrate

renewable energy into datacenters to maximize the concentration of renewable en-

ergy. Datacenters lease their computing and storage resources to their customers

upon request. Cloud applications deployed by datacenters’ customers use these cloud

4

Power Stations

Power
Grid

Datacenter

Power Delivery
System

Computing/Storage
Resources

Cloud
Application

Datacenter

Cloud
Application

Power Delivery
System

Computing/Storage
Resources

Internet

End Users

On-site
Renewable

Energy
Generator

Concentrating
Renewable Energy

for Grit-tied
Datacenters

Adaptive
Green

Hosting

Carbon-aware
Resource

Provisioning

Energy Usage
Report for

Individual Users

Figure 1.2: Overview

5

resources from datacenters and provide services through Internet for their end users.

Some cloud applications may use resources from different datacenters. Several factors

— like number of cores, datacenter location, etc. — affect cloud applications’ decision

of where to lease cloud resources.

1.2.1 Carbon-aware Resource Provisioning

To understand carbon-aware customers’ behavior, we first studied several carbon-

aware applications running in geo-diverse datacenters. In general, carbon-aware ap-

plications deploy their resources and/or direct their workloads by solving optimization

problem, which takes carbon footprint into account.

We build two carbon-aware applications: One application reduces its carbon foot-

print by scaling its computing resources within several datacenters; Another one

reduces its carbon footprint by allocating its storage resources from differerent data-

centers. Both of them could effectively reduce their carbon emissions without com-

promising the performance.

1.2.2 Concentrating Renewable Energy in Datacenters

We studied an architectural approach for datacenters with on site renewable en-

ergy generators. We argue that renewable energy should be concentrated as much as

possible on the servers used by carbon-aware customers. To measure the concentra-

tion, we introduce a new metric, the renewable-powered instance, that measures the

concentration of renewable energy in datacenters.

We conducted a simulation-based study of renewable-energy datacenters, focusing

on the grid tie—the device most commonly used to integrate renewable energy. We

6

found that grid-tie placement has first-order effects on renewable-energy concentra-

tion.

1.2.3 Adaptive Green Hosting

For datacenters without on-site renewable energy, renewable energy credit could

be another option. Datacenter owners could buy renewable energy credit from their

utility providers to offset emission caused by their electricity energy usage. Although

additional cost is introduced to buy such credit, datacenter owners could use it to

make profit by attracting more datacenter resource usage from carbon-aware cus-

tomers.

We designed Adaptive Green Hosting service, which identifies carbon-aware ap-

plications by signaling customers’ applications when renewable energy is available

and observing their behaviors. Datacenter owners could make profit by finding and

offering the best emission rate for each application to maximize their resource usage.

1.2.4 Energy Usage Report for End Users

We believe that the demand of Internet application end users is the ultimate

motivation for Internet applications and datacenters to switch to low carbon energy.

Letting users know an application’s carbon footprint is the first step. However, due

to security and commercial considerations, application owners are very unlikely to

disclose their energy footprints in details.

To help users understand a third-party application, we created an approach to

decompose an Internet application’s response times into per-component delays and

then extract normalized energy footprint of each component. Using our method, users

are able to analyze an application’s per-request energy footprint. We further found

7

that our approach is even useful to analyze an application’s tail performance and its

internal software stack.

8

Chapter 2: Carbon-aware Applications

Datacenters provide resources for customers to run their cloud applications. Cloud

applications provision their resources based on their workload and pay to datacenter

owners according to how much resources they have used. Carbon-aware applications

consider emission rates of a datacenter as an additional factor when they choose where

to provision their resources. In this chapter, we study two carbon-aware applications.

One is a general purpose cloud application, which deploys its resources within cloud

instances. The second one is a storage application, which replicates data to sites that

combine together to yield low carbon footprint.

2.1 Policy and Mechanism for Carbon-Aware Cloud Appli-
cations

Carbon-aware cloud applications run inside of a renewable-energy datacenter, pro-

vision resources on demand, and seek to minimize their use of carbon-heavy, grid

energy. In this section, we first introduce a provisioning policy that address the

uncertainty of renewable energy. Then, we discuss mechanisms for datacenters to

determine the contribution of grid energy to specific application workloads.

9

2.1.1 Policy: Carbon-Aware Provisioning

Before introducing the carbon-aware provisioning problem, we first define a few

terms for readers without a background in cloud computing. A cloud resource is a

collection of computing hardware within a datacenter, e.g., CPU, disk, and memory.

A cloud resource running for a fixed period of time is a cloud instance . An application

manager provisions cloud instances that collectively compose a cloud application .

In carbon-aware provisioning, the application manager sets a hard limit on the

total carbon-heavy, grid energy of provisioned cloud instances. Carbon-aware policy

decides which cloud instances to provision such that 1) the grid energy limit is not

exceeded and 2) performance goals are met. In this paper, we focus on throughput

(i.e., requests per second or job processing rate) as performance metrics. Carbon-

aware policy needs estimates of grid-energy needs, performance goals, and grid-energy

caps. These can be adjusted at each time interval where cloud instances can be

provisioned.

Suppose there are n cloud instances available for provisioning. At time pe-

riod t, a provisioning strategy for an application is denoted as a vector x(t) =

(x
(t)
1 , x

(t)
2 · · · x

(t)
n)T , in which x

(t)
i = 1 if the ith instance is provisioned, otherwise

x
(t)
i = 0. Each cloud instance can provide up to its maximum throughput for a target

application, represented by the vector v = (v1, v2 · · · vn)T . vi is a real number that

denotes the maximum throughput provided by the server which will run ith instance.

The maximum throughput of a cloud application is the summation of the maximum

throughput of its provisioned instances, i.e. vTx(t). Here, the symbol T is the trans-

pose function in vector multiplication. We also note that some applications, e.g., Web

10

servers, may have fluctuating throughput needs over time. We use V (t) to represent

the target throughput at time t.

The hard limit on carbon-heavy, grid energy is D(t) as set by the application

manager. The total grid energy used by an instance at time t is represented as a

vector d(t) = (d
(t)
1 , d

(t)
2 · · · d

(t)
n)T . Note, d

(t)
i is a real number between zero and max

energy needs of the ith instance. An application’s total grid energy consumption at

time t is dTx(t) < D(t).

Given v,d(t), D(t), V (t), our goal is to find x(t). Specifically, we represent carbon-

aware provisioning as an integer programming problem:

Maximize vTx(t) (2.1)

Subject to d(t)Tx(t) ≤ D(t) (2.2)

and vTx(t) ≤ V (t) (2.3)

This problem is a variant of the well-known NP-complete knapsack problem [58].

A deterministic algorithm that finds optimal provisioning strategies quickly (i.e., in

polynomial time) is unlikely. However, algorithms that quickly find approximate

solutions exist [58]. Figure 2.1 shows a recursive dynamic programming solution [75].

Here, the function f(i, j) means the maximum throughput (less than V (t)) of the

application if we only consider the first i instances. The initial value of j is the

manager’s limit on carbon-heavy energy.

The boundary condition is f(0, 0) = 0. The dynamic programming algorithm uses

2-level loop, iterating from i = 0 to i = n; and in each i loop, iterating j from 0 to

D(t). The algorithmic runtime for this solution is O(nD(t)).

11

f(i, j) =

f(i− 1, j) if d
(t)
i > j

or d
(t)
i ≤ j

and f(i− 1, j) > vi + f(i− 1, j − d(t)
i)

or d
(t)
i ≤ j

and f(i− 1, j) ≤ vi + f(i− 1, j − d(t)
i)

and f(i− 1, j − d(t)
i) + vi > V (t)

and f(i− 1, j) > f(i, j − 1)

f(i, j − 1) if d
(t)
i ≤ j

and f(i− 1, j) ≤ vi + f(i− 1, j − d(t)
i)

and f(i− 1, j − d(t)
i) + vi > V (t)

and f(i− 1, j) ≤ f(i, j − 1)

f(i− 1, j − d(t)
i) + vi otherwise

Figure 2.1: Dynamic Programming Solution

In renewable-energy datacenters, the grid energy used by each cloud resource

changes unpredictably with the weather. When the sun is blocked by clouds, solar

panels produce less electricity, and the grid delivers more energy to cloud resources.

That is, each resource’s dependence on carbon-heavy energy (d(t)) could change at

any moment. Neither recent history, nearby weather, nor cyclic patterns can predict

d(t) perfectly [87]. Inaccurate predictions will affect carbon-aware policy.

Extending our earlier problem definition, let
ˆ
d

(t)
i denote the actual grid-energy

usage by ith instance at time t. Let ∆d
(t)
i be a random variable denoting the difference

between actual grid-energy usage at time t (
ˆ
d

(t)
i) and the predicted grid-energy usage

at time t (d
(t)
i). We use vectors ∆d(t) and d̂(t) to represent (∆d

(t)
1 ,∆d

(t)
2 · · ·∆d

(t)
n)T

12

and (
ˆ
d

(t)
1 ,

ˆ
d

(t)
2 · · ·

ˆ
d

(t)
n)T , respectively. Our new extended problem definition is:

Maximize vTx(t) (2.4)

Subject to d̂(t)
T
x(t) −∆d(t)Tx(t) ≤ D(t) (2.5)

and vTx(t) ≤ V̂ (t) + ∆V (t) (2.6)

From Equation (2.5), we can see that once we make the decision of our strategy,

the real upper bound of the dirty energy used is D(t) + ∆d(t)Tx(t). Hence ∆d(t)Tx(t)

is the error we may introduce. Using this model of uncertainty as a base, we plan to

answer the following research questions:

1. Which probability distribution characterizes ∆d
(t)
i ? The answer depends on the

prediction method [87] and the on-site renewable-energy source (e.g., solar versus

wind). However, both solar and wind energy are subject to sudden unexpected out-

ages that lead to heavy-tail production patterns [94]. Heavy-tail production often

leads to heavy-tail prediction error also.

2. Do different instances have different ∆d
(t)
i ? If on-site renewable energy is evenly

distributed to all resources, we would expect the answer to be no. However, our recent

work [33] shows that grid-tie placement can concentrate renewable energy to certain

datacenter resources. Our results shown later in this section confirm this result using

a different mechanism. If the answer is yes, ∆d
(t)
i may be statistically dependent

between instances.

Note that our model naturally extends to the practical case where instances are

heterogeneous. However, in the simple homogeneous case—if renewable energy is

evenly distributed— then we can assume that ∆d(t) are independent and identically

distributed random variables. If there are large enough number of instances running

13

the service, it is safe to say that ∆d(t)Tx(t) is a normally distributed random variable

according to central limit theory. This condition may be important for datacenters

that apply renewable energy incrementally by first targeting a few homogeneous racks.

2.1.2 Mechanism: Carbon Accounting

The carbon-aware policy discussed in Section 2.1.1 supports grid-tied datacenters

where the electric grid contributes fractionally to energy needs. These contributions

were d
(t)
i , a parameter that could range from 0 to the energy consumption of resource

i. Carbon accounting is the mechanism that attributes carbon-heavy electricity to

cloud resources. As we began to implement carbon-aware applications, we found that

grid ties complicate carbon accounting.

The DC electricity produced by solar panels is incompatible with the AC elec-

tricity pulled from the electric grid. Grid ties solve this problem by inverting DC

electricity from on-site sources and producing AC electricity that matches the grid’s

voltage and frequency. Electricity from these two sources become indistinguishable to

datacenter devices which draw power as they normally would. Grid ties are necessary

for net metering, a widely used concept in which owners of solar panels and wind tur-

bines can be reimbursed for contributing electricity to the grid— a potential revenue

stream for datacenter owners. Also, the cost of grid ties does not increase at scale,

unlike, batteries for energy storage. Finally and critically, grid ties can be deployed

incrementally. Allowing datacenters to slowly invest in renewable energy. However,

grid ties make it difficult to infer the exact contribution of carbon-heavy sources.

Accurate and technical carbon accounting must underlie any practical carbon-aware

system.

14

Our proposed solution measures the net energy pulled from the grid before and

after grid ties are installed. Since grid ties do not affect the energy needs of datacenter

devices, the amount of electricity flowing through power-delivery devices upstream

relative to grid ties must decrease (according Kirchhoff’s current law [80]). The pro-

portional sharing principle [20] attributes energy from multiple sources to individual

sinks (i.e., cloud resources) according to each source’s relative contribution to total

energy needs. In our solution, the grid contributes the net grid energy pulled after a

grid tie is installed. The total energy needs are the net grid energy pulled before a

grid tie is installed.

As we will discuss in the later chapter, under a net-energy model, grid-tie place-

ment affects the concentration of grid energy used to power cloud resources [33]. A

fixed injection of electricity causes greater relative reduction in grid energy when there

are few devices downstream (i.e., a small denominator). A grid tie could inject more

electricity on the circuit than the downstream resources need. In this case, the elec-

tricity flowing through power delivery devices further upstream decreases recursively.

2.1.3 Experiment Results

Combining policy and mechanism, we have set up an experimental renewable-

energy cluster in our lab (shown in Figure 2.2). The top component in Figure 2.2 is a

power supply unit with capacity that easily exceeds the max power of our cluster. This

power supply 1) serves as our experimental grid and 2) isolates electricity produced by

our grid tie (ensuring proper, downstream-only usage of the real grid). The bottom

component is a programmable power supply that connects to a grid tie; it can be

replaced by a real solar panel (i.e., for demo). Figure 2.2 also shows how these

15

Our 300W Grid tie (on top)

Power supply #2
can be replaced
by solar panels

Networked
servers

Power supply #1
acts like the grid

Power distribution
level

Real Setup Abstract Depiction

UPS and power
distribution panels

Rack-level
PDU

Rack-level
PDU

Networked Servers

Grid tie

Figure 2.2: Our renewable-energy cluster; the real setup and abstract goal. Dotted
lines reflect grid-tie placements. Note to reviewer, we would like to host a demo at
the conference.

components relate to traditional power delivery within the datacenter. It allows us

to produce repeatable results. Our cluster has 5 low-power Linux servers, each with

Apache and MapReduce capabilities, a 1GbE switch, and a 1GbE router. Collectively,

our cluster consumes about 42W, excluding the power supply. We used clamp-on amp

meters and line splitters to measure the power usage at each link.

Mechanism Experiments: A cloud resource in our renewable-energy cluster is

1 server (1.2Ghz processor, 128 MB, 1 Gb Ethernet). Power delivery devices in

our renewable-energy cluster are power strips and 1 rack-style PDU. Our grid tie

needs and produces 120V AC, making it compatible with our servers. This allows

us to measure the effect of grid-tie placement on net grid energy. Here, we present

an experiment that compares two grid-tie placements. The first places the grid tie

just below our grid-like power supply, a top-level placement that evenly dilutes the

concentration of energy from on-site sources [33]. The second places the grid tie on a

circuit where cloud resources 2–4 are downstream, but resources 0–1 are powered in

16

Top-level
Grid tie

Grid-tie
Placement

Top-level
Grid Tie

Grid-tie
Placement

0

1

2

3

4

5

6

0 Watts
4 Watts
6 Watts

Profiled Nodes Under Different Grid Tie Placement

G
rid

 E
ne

rg
y

P
er

 N
od

e

Node #1 Node #2

Figure 2.3: Net grid energy used by nodes 1 and 2 in our cluster. The legend shows
the amount of power injected by the grid-tied power source.

parallel on a different circuit. This changes the net contribution of renewable energy

between the two groups. Figure 2.2 depicts grid-tie placement.

Figure 2.3 shows the grid energy used by nodes 1 and 2 in our experiment. We

injected different amounts of “renewable” energy using our programmable power sup-

ply. The grid-tie placement changed the distribution of renewable energy under our

carbon accounting approach. The low-level placement sent more renewable energy to

nodes 2–4 by taking from nodes 0–1, increasing the sustainability of node 2 by 14%.

Policy Experiment: We set up the Apache Web Server [3] on our cluster. The

workload matched a scaled version of the World Cup 1998 logs [10]. We provisioned

instances by restarting Apache on a cluster node and telling our load balancer to

direct requests to it. We unprovisioned instances by stopping Apache. The maximum

throughput of each cloud resource (vi) was measured in requests per second (rps) via

offline profiling. Our homogeneous cluster nodes supported 15 rps before the average

response time exceeded our limit of 100ms. We also considered a heterogeneous cluster

where hypothetical profiling provided the same maximum throughput (75 rps) but

17

0
10
20
30
40
50
60
70

0 10 20 30 40 50 60 70 80
V̂

(t
)

-
O

b
se

rv
ed

T
h
ro

u
gh

p
u
t

(r
p
s)

V (t) - Offered Workload (rps)

Uni, D(t) = 45%

+ +

+ + + + + + + + + + +

+
Uni, D(t) = 90%

× ×

×××

×××

××××××
Het, D(t) = 45%

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗
Het, D(t) = 90%

�
�
��
��
��
�����

�

Figure 2.4: Observed throughput versus offered workload for Apache under a carbon-
heavy energy cap. Uni is the homogeneous cluster; Het stands for heterogeneous.

with varied rps per node (from 12–20). Building on Figure 2.3, we configured our

cluster for a grid-tie placement that gave more renewable energy to nodes 2–4 under

our operational carbon accounting. We set the contribution of renewable energy to

10% (D(t) is high) and 55% (D(t) is low) of the cluster’s maximum energy.

Figure 2.4 has important implications for application managers concerned about

sustainability. First, the heterogeneous cluster achieves higher throughput than the

homogeneous. This is because the heterogeneous cluster supports diverse combina-

tions of instances, and our carbon-aware policy naturally controls this parameter.

Second, strong (low) carbon caps degraded performance proportionally relative to

the cap, whereas weak (high) carbon caps had disproportionate effects. Under a low

carbon cap (45% of total power), the observed throughput under the heterogeneous

cluster saturated at 43% of the maximum. However, under a high carbon cap (90% of

total power), the observed throughput dropped to only 82% of the maximum. Here

again, low carbon caps allowed our integer-programming approach to choose from

18

more instance combinations. These preliminary results indicate that an application

looking to reduce its carbon footprint should prefer datacenters that supply diverse

instances.

2.2 CADRE: Carbon-Aware Data Replication for Geo-Diverse
Services

In this section, we consider another carbon-aware application named CADRE, a

carbon-aware data replication approach for geo-diverse services. The service tries

to minimize carbon emissions induced by subsequent read and write operations of

content, the former (read) involving a single replica at the datacenter with lowest

emission rates and the latter (write) involving all replicas. The application considers

the read-write ratio of a data object and find the best number of replicas under the

predicted carbon emission rates traces for all datacenters.

2.2.1 Carbon Footprint Models

The carbon footprint for an object is the product of two variables: energy used to

access the object and emissions rate during those accesses. CADRE uses an analytic

model to describe how the energy coefficient changes across workloads and replication

policies in one time frame [T1, T2]. The model is shown in Eq. (2.7), (2.8), and (2.9).

Cj,r(Dj) ,
T2∑
t=T1

∑
q∈Q

(er + z
(t)
i,q)r

(t)
j,q min

i∈Dj

(m
(t)
i) (2.7)

Cj,w(Dj) , ew

T2∑
t=T1

w
(t)
j

∑
i∈Dj

m
(t)
i (2.8)

Cj(Dj) , Cj,r(Dj) + Cj,w(Dj) (2.9)

Note, Cj,r(Dj) and Cj,w(Dj) are the total carbon footprints of reads and writes for

object j, respectively. zi,q accounts for the lowest energy consumption of routing the

19

Symbol(s) Meaning
Ω , Ωj Set of all sites and subset allowed for object j
O Set of objects created
Q Set of query dispatchers
er , ew Average energy per read and per write
rj , wj Read/write queries for object j
zi,q Energy to message site i from dispatcher q

m
(t)
i Emission rate at site i at time t

Cj(Dj) Total carbon footprints for object j
K, kj Default replication factor and assigned factor for object j
D∗j (k) Sites that host k replicas for object j with min. footprints
C∗j (k) Minimum carbon footprints for object j with k replicas
k∗j Best replication factor for object j
ko Best data replication policy
C(k) Minimum footprint of data replication policy k

Table 2.1: Symbols and notations. Bold indicates vectors.

read. All notations are defined in Table 2.1. The models use average emission and

access rates over discrete intervals. Here, we study the model under perfect forecasts.

First, the energy used at a single site for read queries differs from write queries.

Write queries often access more resources than reads, e.g., hard disks. However, read-

only queries often involve complex joins and scans [105]. For read-only queries, we

also model communication cost between dispatchers host sites. However, prior work

has shown that the energy footprints for communications are often the second-order

effects compared to processing footprints [63].

2.2.2 Footprint-Replication Curves

Replication helps dispatchers reduce footprints on read accesses, but it increases

the footprints of write accesses. Using Eq. (2.9), we explore an object’s total carbon

footprints under all possible replication factors. The graph, where each point on the

20

 0

 100

 200

 300

 400

 0 6 12 18 24

C
a
rb

o
n
 F

o
o
tp

ri
n
t

(C
O

2
E

 g
ra

m
s
)

of Replicas

Best replication factor

order
lineitem

Figure 2.5: The convex footprint-Replication curves.

y-axis is the smallest carbon footprint achievable under the corresponding replication

factor on the x-axis, is a footprint-replication curve. More precisely, Rj: Rj,k = C∗j (k).

Figure 2.5 gives an example of two footprint-replication curves (i.e., lineitem and

order data tables in TPC-H workloads [7]). The order table is a frequently accessed

small table (100Qps+25K rows) and the lineitem table is a less popular larger ta-

ble (1Qps+1M rows). Figure 2.5 shows that curves decrease with more replications

added for read flexibility. However, the curve reaches the minimum point, where

savings benefited from reads are compensated by penalties from keeping consistency

for writes. After the point, writes’ costs dominate the total carbon footprint and the

curve is increasing.

Formally, the curve contains points which are solutions to the following optimiza-

tion problem under different ks:

D∗j (k) , arg min
D⊆Ωj ,|D|=k

Cj(D) (2.10)

D∗j (k − 1) ⊂ D∗j (k) (2.11)

21

k∗j = arg min
k=1,...,|Ω|

D∗j (k) (2.12)

C∗j (k) , Cj(D
∗
j (k)) (2.13)

Eq. (2.10), (2.11), (2.12), and (2.13) present optimization models for the footprint-

replication curve.

Eq. (2.11) ensures that if the replication factor decreases, e.g., a virtual site fails,

the remaining virtual sites are unaffected. It requires that the best replication policies

build upon each other. Without this constraint, a decrease in the replication factor

could force CADRE to choose sites combined that lead to higher carbon footprints.

Consistent hashing has this feature, called smoothness [62]. Given the inputs to our

model, we construct best replication policy with a factor of k by incrementally adding

a site from the best k − 1 policy. We call it joint-access constraint.

Without losing generosity, we assume data objects are created at the same time

and their access frequencies are linearly correlated. Such transactional groups are

very common in practical systems. To reduce inter-site workload, objects within the

same group should have at least one copy within the same site. To guarantee this

property, we argued that joint-access constraint is sufficient.

Lemma 2.2.1. If ∀j ∈ O, k = 1, . . . , |Ω| − 1, D∗j (k) ⊂ D∗j (k + 1), then ∀j, p in

transactional group O′ either D∗j (k
o
j) ⊆ D∗p(k

o
p) or D∗p(k

o
p) ⊂ D∗j (k

o
j)

22

Proof.

∵j, p ∈ O′,

Ta(j) = Ta(p)

r
(t)
j = λj,pr

(t)
p

w
(t)
j = λj,pw

(t)
p

∴∀D ⊆ Ω, Cj(D) = λj,pCp(D)

∴∀k = 1, . . . , |Ω|, D∗j (k) = D∗p(k)

∵∀j ∈ O, k = 1, . . . , |Ω| − 1, D∗j (k) ⊂ D∗j (k + 1).

∴∀j ∈ O, k < k′ < |Ω|, D∗j (k) ⊂ D∗j (k
′)

∵∀k = 1, . . . , |Ω|, D∗j (k) = D∗p(k) and

∀j ∈ O, k < k′ < |Ω|, D∗j (k) ⊂ D∗j (k
′)

∴If koj < kop, D
∗
j (k

o
j) ⊂ D∗p(k

o
p).

If kop < koj , D
∗
p(k

o
p) ⊂ D∗j (k

o
j).

If kop = koj , D
∗
p(k

o
p) = D∗j (k

o
j).

Footprint-replication curves can be divided into two parts. In the first part, carbon

footprints decrease monotonically because replication to more sites provides more cost

saving potential for reads. In the second part, carbon footprints increase because the

routing provides little savings and writes dominate. The end of the first part is the

best replication factor, because the footprint-replication curve is convex.

23

2.2.3 Convexity of Footprint-Replication Curve

For all data object, their footprint-replication curves are convex under joint-access

constraint. More precisely, ∀j ∈ O,C∗j (k) is a convex function if ∀j ∈ O, k =

1, . . . , |Ω|, D∗j (k) ⊂ D∗j (k + 1).

For the jth data object, we can order all datacenters according to the order by

which the datacenter is selected to store the replicas for the data object. More

precisely, the kth datacenter to the jth object is in the set D∗j (k) \D∗j (k − 1), where

D∗j (0) = ∅. Since D∗j (k) \ D∗j (k − 1) contains exactly one element, then the kth

datacenter to the jth data object is uniquely defined. We use M
(t)
j,k to refer to the

minimal unit price among the first k datacenters at time t. This means M
(t)
j,k =

mini∈D∗
j (k)(m

(t)
i).

Let T = {T1, . . . , T2}, which is the set of all times we consider. By sorting all

datacenters against the jth data object, we denote the carbon ratio of the kth dat-

acenter at time t as m
(t)
k . Given the jth object and its kth datacenter, we define

Tj,k = {t|t ∈ T,m(t)
k ≤ M

(t)
j,k−1}. By definition, Tj,k contains times at which the kth

datacenter has the minimal carbon ratio among the first k datacenters. Since we

always choose the datacenter with least carbon ratio to read, if the jth data object

stores its replicas in the first k datacenters, then the read operations would happen

in the kth datacenter at t ∈ Tj,k.

Let ∆C∗j (k) = C∗j (k − 1)− C∗j (k). If k ≤ k∗j , then ∆C∗j (k) ≥ 0. According to the

definition of C∗j (k), we have

∆C∗j (k) = er
∑
t∈Tj,k

r
(t)
j (m

(t)
k −M

(t)
j,k−1)− ew

∑
t∈T

w
(t)
j m

(t)
k

24

Lemma 2.2.2. For all j ∈ O and k ≤ k∗j , if D∗j (k) ⊂ D∗j (k + 1), where k =

1, . . . , |Ω| − 1, then Cj(D̃
∗
j (k)) ≤ C∗j (k− 1)−∆C∗j (k+ 1) where D̃∗j (k) = D∗j (k− 1)∪(

D∗j (k + 1) \D∗j (k)
)
.

Proof. Recall that M
(t)
j,k = mini∈D∗

j (k)(m
(t)
i), it is obvious that M

(t)
j,k+1 ≤ M

(t)
j,k . Then

we have

Cj(D̃
∗
j (k))

≤C∗j (k − 1) + ew
∑
t∈T

w
(t)
j m

(t)
k+1

(Reading in the (k + 1)th datacenter may emits less carbon.)

=C∗j (k − 1)− er
∑

t∈Tj,k+1

r
(t)
j (m

(t)
k+1 −m

(t)
k+1)

+ ew
∑
t∈T

w
(t)
j m

(t)
k+1

=C∗j (k − 1)− er
∑

t∈Tj,k+1

r
(t)
j (m

(t)
k+1 −M

(t)
j,k+1)

+ ew
∑
t∈T

w
(t)
j m

(t)
k+1 (Definition of Tk and M

(t)
j,k)

≤C∗j (k − 1)− er
∑

t∈Tj,k+1

r
(t)
j (m

(t)
k+1 −M

(t)
j,k)

+ ew
∑
t∈T

w
(t)
j m

(t)
k+1 (M

(t)
j,k+1 ≤M

(t)
j,k)

=C∗j (k − 1)−∆C∗j (k + 1)

∴ Cj(D̃∗j (k)) ≤ C∗j (k − 1)−∆C∗j (k + 1).

Lemma 2.2.3. For all j ∈ O and k ≤ k∗j , C∗j (k) is a convex function, if D∗j (k) ⊂

D∗j (k + 1), where k = 1, . . . , |Ω| − 1.

Proof. Let ∆C∗j (k) = C∗j (k − 1) − C∗j (k). Since C∗j (k) is a discrete function, then

C∗j (k) is convex iff ∆C∗j (k) ≥ ∆C∗j (k + 1).

25

Assuming that ∆C∗j (k) < ∆C∗j (k + 1), according to Lemma 2.2.2, we have

Cj(D̃
∗
j (k))

≤C∗j (k − 1)−∆C∗j (k + 1) (Lemma 2.2.2)

<C∗j (k − 1)−∆C∗j (k) (Assuming that ∆C∗j (k) < ∆C∗j (k + 1))

=C∗j (k − 1)− C∗j (k − 1) + C∗j (k) (Definition of ∆C∗j (k + 1))

=C∗j (k)

Then this means Cj(D̃
∗
j (k)) < C∗j (k), which contradict with the definition of C∗j (k).

Therefore ∆C∗j (k) ≥ ∆C∗j (k + 1).

Since C∗j (k), and ∆C∗j (k) ≥ ∆C∗j (k + 1), then C∗j (k) is convex.

Theorem 2.2.4. If ∀j ∈ O,D∗j (k) ⊂ D∗j (k+1), where k = 1, . . . , |Ω|−1, then C(k) =∑
j∈O C

∗
j (kj) is a convex function, where k = (k1, . . . , k|O|)

T and ∀j = 1, . . . , |O|,

kj ≤ k∗j .

Proof. Since C(k) =
∑

j∈O C
∗
j (kj), C(k) is a convex function, because it is convex in

any dimension, according to Lemma 2.2.3.

2.2.4 Finding the Optimal Solution

Footprint-replication curves provide the best carbon-aware policy for each ob-

ject. However, applying the best policy for each object may violate global system

constraints. CADRE allows system managers to set the following constraints:

1. Storage Capacity: We target fast but costly in-memory stores that are widely

used to provide low response times and high quality results. As shown in Eq. (2.14),

managers can set the provisioning factor f to force partial replication because full

26

replication is often too costly. ∑
|O|

kj ≤ |O||Ω|f (2.14)

2. Availability: Replication to geo-diverse sites ensure that objects are durable and

available during earthquakes, fires and other regional outages. Eq. (2.15) ensures

that every object is replicated to at least K sites but no more than |Ωj|.

K ≤ kj ≤ |Ωj|,∀j ≤ |O| (2.15)

3. Load Balancing: Consistent hashing uses virtual sites to handle heterogeneity.

CADRE overrides these settings to consider time varying emission rates. Managers

can devalue emission rates by setting per-site weights, shown in Eq. (2.16). The

weight vector can be changed on the fly.

m
(t)
i , m

∗(t)
i wi. (2.16)

To find the optimal solution, we will present a greedy algorithm that assigns each

incoming object to its best replication factor until the storage capacity is exhausted.

From this algorithm, we devise an optimal offline algorithm.

Greedy online algorithm: The greedy algorithm proceeds as follows. When a

data object is created, we compute its optimal replication factor using its footprint-

replication curve. At the start, we always replicate the object to its best replication

factor unless the availability constraint is violated. However, if the best replication

factor would cause the spare capacity to fall below the minimum capacity required

for the remaining objects, we only replicate the object to K sites (i.e., the minimum

replica for availability). At the end of this greedy algorithm, all objects are replicated

to either their optimal policy or the default policy. Algorithm 1 shows the pseudo-code

of the greedy online algorithm.

27

Algorithm 1 Greedy Online Algorithm

1: Cremain := |O||Ω|f
2: for j := 1 TO |O| do
3: if k∗j ≤ K then
4: //Availability constraint
5: Cremain := Cremain −K
6: kj := K;
7: else if Cremain − k∗j > (|O| − j)K −K then
8: Cremain := Cremain − k∗j //Replicating to optimum
9: kj := k∗j

10: else
11: Cremain := Cremain −K //Replicating to minimum
12: kj := K
13: end if
14: end for

If there always exist spare capacities for data replication, It is obvious that the

greedy algorithm is already optimal. Formally, if C ≥
∑

j∈O k
∗
j , then Algorithm 1

can find the optimal k. However, in the worst case, all late arriving objects with

heavy workloads could be assigned to default replication policies. We propose, Fill-

and-Swap, an offline algorithm that finds an optimal solution.

Fill-and-Swap algorithm: Given the result from the greedy algorithm, we use

gradient search to find a local optimum. First, we fill the unused storage capacity

by increasing replication factors of objects that are not replicated to their k∗j sites.

Specifically, we increase the replication factor for one at a time, choosing the object

that can reduce the most global carbon footprint. Once the storage capacity is ful-

filled, we further reduce the footprints by Swap. In the Swap, We find the ith object

that reduces the most carbon footprints if its replication factor is increased by one;

and find the jth data object that increases the least carbon footprints if its replica-

tion factor is decreased by one. If Swap reduces the global carbon footprints, we keep

28

looking for this kind of object pair (i, j) and perform Swap, otherwise, the algorithm

terminates.

By running Algorithm 1, follows Algorithm Fill-and-Swap, we can guarantee the

returned data replication policy k is the replication with least cost under the joint-

access constraint. As we mentioned that if C ≥
∑

j∈O k
∗
j , then Algorithm 1 can find

the optimal k. We will prove that if C <
∑

j∈O k
∗
j , our algorithm can find optimal k

by following the gradient of C(k).

Lemma 2.2.5. If C <
∑

j∈O k
∗
j , then the best data replication policy k∗ must fill the

whole storage space.

Proof. If the best data replication policy does not fill the storage space, and C <∑
j∈O k

∗
j , then there must be some data object j, who has less replicas than its

optimal number of replicas k∗j . In this case, we can always add more replicas for the

object towards its optimal number of replicas to decrease the cost. This contradict

with the definition of the best replication. Hence the best replication must fill the

storage space if C <
∑

j∈O k
∗
j .

Theorem 2.2.6. Running Algorithm 1 and Fill-and-Swap, we can always find the

best data replication policy under the joint-access constraint.

Proof. It is obvious that in both Algorithm 1 and Fill-and-Swap, ∀j ∈ O, kj ≤ k∗j in

anytime. This guarantee that C(k) is convex within the range we consider.

If C <
∑

j∈O k
∗
j , then according to Lemma 2.2.5, we only need to explore repli-

cations which can fill the storage space. Once we filled the space in Algorithm Fill-

and-Swap, we consider the neighbour point which decrease the most cost. This is

basically a gradient descendent algorithm, which can be guaranteed to find a local

29

optimal point of C(k). As we mentioned, C(k) is convex within the range we consider,

the local optimal point is also a global optimal point.

If C ≥
∑

j∈O k
∗
j , then it is apparent that Algorithm 1 will find the optimal solution.

2.3 Discussion

According to the case studies in this section, it is enough to demonstrate some

key parts of a typical carbon-aware application:

• Provisioning resources for an application could be reduced to optimization prob-

lems. The key feature of carbon-aware applications is that they consider emis-

sion rates within their optimization model. Different application may have

different emission policy expressed either within a constraint of the model or in

the goal of the model.

• Carbon-aware applications prefer heterogeneous systems. This feature makes

them choose resources from several datacenters whose resources combined could

reduce the carbon emission in total.

• Due to the nature of carbon-aware applications, they tend to use resources with

less emission rates. Datacenters providing lower emission rates have higher

probablity to attract carbon-aware customers.

30

Chapter 3: Concentrating Renewable Energy

Chapter 2 discussed carbon-aware cloud applications with two case studies. Such

applications run inside one or more datacenters by leasing cloud resources from those

datacenter owners. To make profit, datacenter owners would encourage applications

to use more cloud resources from their datacenters; while keep cost low. Nowa-

days, renewable energy is more expensive than other alternatives which increases

the operational cost to datacenter owners, making them less interest in switching to

low-emission energy.

However, our study shows that as long as datacenter owners could attract those

carbon-aware customers, they are able to make profit even if renewable energy is

slightly more expensive than traditional carbon-heavy energy. Using renewable energy

should not only be considered as pure altruism, but also a mean to increasing more

cloud resource usage, which leads to more profit. The key insight of our approaches

is to concentrate renewable energy to those cloud resources used by carbon-aware

customers, instead of evenly distributed among all customers. Under this principle,

costly renewable energy could be used effectively to target carbon-aware customers

encouraging them to keep using, and/or even use more cloud resources from the

datacenter.

31

In this chapter, we will go through several approaches to concentrate renewable

energy to a specific group of customers. First, we try to solve this problem from

the architectural perspective. We consider datacenters with on-site renewable energy

and focus on the grid-ties — the device most commonly used to integrate renewable

energy. The placement of grit-ties will affect the concentration of renewable energy in

datacenters. To quantitatively study the renewable energy concentration, we intro-

duce a new metric, the renewable-powered instance, that measures the concentration

of renewable energy in datacenters. Then, we move our focus onto the software in-

frastructure level in datacenters. In this approach, we renewable energy is described

as carbon offsets, which includes not only on-site renewable energy, but renewable

energy credit as well. Following our general principle — concentrating renewable

energy/carbon offsets only to carbon-aware customers when it leads to profit, we in-

troduce a heuristic algorithm to discover carbon-aware applications based on cloud

applications’ behavior. Once we locate a carbon-aware application, we profiling its

behavior by providing different amount of carbon offsets to find the optimal emission

rate which maximize the profit.

3.1 Concentrating Renewable Energy in Grid-Tied Datacen-
ters

Some datacenters reduce their carbon footprint by producing renewable energy on

site via solar panels or wind turbines [41, 1, 8]— 7 such renewable-energy datacenters

were announced in 2009 [41]. In this section, we study how to concentrate renewable

energy in these datacenters with on-site renewable energy generator. We focus on the

device most commonly used to integrate on-site renewable energy: the grid tie. Grid

ties transform electricity from a primary power source (e.g., rooftop solar panels) into

32

electricity with the same frequency and voltage as a secondary power source (e.g.,

the electric grid). After passing through a grid tie, electricity produced on site can

safely replace electricity drawn from the electric grid, reducing the net amount of

grid energy used by servers downstream. The grid fills any unmet power needs when

on-site sources are insufficient and it accepts excess energy when the on-site sources

over produce. Thus, the concentration of renewable energy in grid-tied datacenters

depends on 1) the amount of energy produced by the primary source and 2) the num-

ber of servers that are downstream to the grid tie. If every server is downstream, the

secondary source will probably need to supply some power, diluting the concentration

of renewable energy per server. If just one server connects to the grid tie, only that

server is guaranteed to have high concentrations of renewable energy. Our goal was

to quantify the impact of grid-tie placement on the concentration of renewable energy.

3.1.1 Grid-tied Power Delivery

The servers and network switches inside datacenters operate at very low voltages,

using much less power than the entire facility. These devices are powered on parallel

circuits—i.e., each device has its own receptacle for 120V AC power. These par-

allel circuits are combined using higher voltage PDUs (208V, 240V, or 480V) that

eventually connect to uninterruptible power supplies (UPS) that serve the whole fa-

cility [94, 42, 16]. Grid ties can be integrated into any of the above devices. Each

integration point places certain requirements on the grid tie during manufacturing,

e.g., UPS integration normally requires that grid ties output 480V, 3-phase AC. Most

grid-tie manufacturers offer at least 1 product line for each integration point [22],

creating a lot of options for the placement of grid ties. Below, we formally describe

33

the grid-tie placement problem and make a case for a new metric to study the con-

centration of renewable-energy in datacenters.

Power delivery components (P) and independently powered servers (D) in a dat-

acenter can be represented as vertices in a directed acyclic graph, G = (P ∪ D,E).

Cords in the datacenter are edges (E). Grid-tie placements are represented by a

function gt[e] that is 1 only if a grid tie is integrated at edge e; the function is 0

otherwise. Let e = (v1 → v2), power from the grid tie will first flow downstream to

descendants of v2, i.e., the servers that draw power from v2’s circuit. The amount of

renewable energy flowing into an integration point is represented as r[e]. The power

draw of a vertex v and its descendants is represented by the function f [v]. In this

model, grid energy used is: g = f [v0]− Σe∈Er[e] · gt[e].

3.1.2 Renewable Powered Instances

After grid ties transform electricity produced on-site, the concentration of renew-

able electrons versus dirty electrons can not be measured directly. It is physically

impossible to tag renewable electrons. However, prior power engineering research [20]

provides a reasonable principle: Electricity from multiple sources is distributed pro-

portionally from sources to loads. Adapted to the datacenter environment, the per-

centage of renewable energy powering downstream servers equals the percentage of

renewable energy used upstream at the grid tie’s integration point. More precisely,

the percentage of renewable energy powering a datacenter server di is:

c[di] = MAXj(
r[(vx, vj)] · gt[vx, vj]

f [vj]
)

where di ∈ D ∧ di ∈ descendants(vj)

34

ATS

UPS

Panel
PDU

Panel
PDU

Panel
PDU

Rack
PDU

Rack
PDU

Rack
PDU

UtilityGenerator

Datacenter

120kW

20kW

2.5kW

0.5kW

(a) The power delivery sub-
system in our department to-
day.

ATS

UPS

Panel
PDU

Panel
PDU

Panel
PDU

Rack
PDU

Rack
PDU

UtilityGenerator

Datacenter

Grid tie

Solar panels

Rack
PDU

(b) A large grid tie integrated
just above the UPS.

ATS

UPS

Panel
PDU

Panel
PDU

Panel
PDU

Rack
PDU

Rack
PDU

Rack
PDU

UtilityGenerator

Datacenter

Grid tie

Solar panels

PDU

Grid tie

Grid tie

(c) Multiple grid ties inte-
grated and controlled.

Figure 3.1: Simplified views of power delivery and grid-tie integration.

We define a k renewable-powered instance (k-RPI) as a server that gets at least

k% of its energy needs from renewable energy. Here, k reflects a minimum level of

concentration supplied to green customers and the result is a metric that can be used

to compare grid-tie placements.

k − rpi = {d0, d1, ...dn}

where di ∈ D ∧

∃vj, vx : di ∈ descendants(vj) ∧

r[(vx, vj)] · gt[vx, vj]
f [vj]

> k

Figure 3.1(a) shows a portion of the power delivery subsystem for our department’s

two server rooms (a tier-1 datacenter). There is one UPS operating at 3-phase 480V

with a power capacity of 120KW. The UPS delivers power to 7 PDU panels which

ultimately deliver 120V-power to 93 rack-level PDUs. These rack-level PDUs power

35

Energy Usage
Traces

12am 0.27KWh
1am 0.29KWh

Renewable Energy
Production Trace

12am 1.5KWh
1am 1.7KWh

Step 2: Propagate energy needs

Grid energy used

Renewable-powered
instances

Step 1: Increment time

UPS
0.392KWh + 0.1KWh

Panel PDU
0.391KWh + 0.01KWh

Utility Grid tie
0.492KWh 3KWh

Rack PDU
0.39 KWh + 0.01KWh

0.29KWh 0.1KWh

Forumula:
 ∑ Children Needs
+ Device Overhead

Requested:
0.494KWh

Requested:
3KWh

Step 3: Trace energy flow

UPS
0.392 Solar

Panel PDU
0.391 Solar

Utility Grid tie
0.0 Grid---0.492 Solar

Rack PDU
0.39 Solar

0.29 Solar 0.1 Solar

 0.39 Kwh + inefficiency

Energy given
back to grid :
1.217KWh

Provided:
1.7KWh

Step 4: Results

Figure 3.2: Simulating power delivery in a grid-tied datacenter. The far-left upper block
shows the hourly energy production in KW-hours of a solar panel system in L.A.,CA. The
far-left lower blocks capture energy usage of compute devices (hence, the picture of the
server). Labeled blocks in the middle of the figure represent simulated components.

332 servers, networking equipment, and (in 4 cases) other power distribution strips

attached to monitors and tower-style servers. On average, there are 32 cores per rack.

Figure 3.1(b) shows our subsystem with a grid tie placed between the transfer switch

and the utility provider. A real datacenter with on-site renewable energy uses a very

similar grid-tie integration strategy [65]. Figure 3.1(c) shows our subsystem with

a smart PDU controlling multiple grid ties. Later, we will see that this particular

placement performs well.

3.1.3 Trace-Driven Simulation

The power delivery subsystem in a datacenter with on-site renewable energy is

affected by the production of renewable energy and the energy usage of servers and

networking devices. Three facts will affect the power delivery subsystem in a data-

center with on-site renewable energy: the production of renewable energy, the energy

usage of servers and networking devices. Rather than model these complex factors,

we acquired traces from renewable energy systems and datacenters. These traces

36

provide realism when we consider the impact of these factors. We were fortunately

able to find amount of traces, especially on the renewable energy side. Actually the

availability of traces hardly limited our study. The main drawback for our approach is

that trace-driven simulation cannot consider the impact of user feedback. For renew-

able energy, this is not too bad, since users have little effect on the weather. For the

energy usage of datacenter devices, users could change their behavior based on the

datacenter’s green-ness [25]. In future work, we will look to merge our approach with

detailed models [76, 83], execution-driven simulation [37] or instruction emulation.

Figure 3.2 shows the simulation of a grid-tied power delivery subsystem for 1 time

interval. At the start of each interval, our simulator updates global virtual time.

Next, we get the energy needs from all datacenter compute devices at the current

virtual time (taken from the trace data). Then the simulator forwards these needs

to the power delivery components that the devices are plugged in to. These delivery

components add their own energy needs (based on their capacity and the current

load) and the simulator forwards the aggregate needs to the next level in the delivery

subsystem. This basic propagation model captures the behavior of traditional delivery

devices, but the grid tie is unique. As shown in Figure 3.2, the grid tie forwards the

aggregate energy need onto its secondary source (the grid) while forwarding a request

for its maximum capacity onto its primary source (the solar panels).

The third phase of the simulation begins once energy needs have propagated up

to an energy source (i.e., a solar panel system, a wind turbine, or the grid). Then the

virtual time is used to get the energy production of each source. The simulator replies

to top-level power delivery components with the minimum of energy production or

energy needs [20]. To ensure balanced delivery, we assume that the grid can always

37

supply energy needs. Each simulated component subtracts its energy needs from the

aggregate needs and delivers the requested amount of energy to the devices plugged

into it. Each component also passes a tag representing the proportion of energy

supplied by each source. Once again, the grid tie component plays a special role: it

ensures that the total amount of energy from its primary and secondary sources does

not exceed the amount requested. Our simulated grid-tie component follows three

rules:

1. All energy from the primary flows to devices downstream, up to the amount

requested.

2. Energy from the secondary source supplies any difference between the primary’s

production and downstream needs.

3. Excess energy from the primary flows back upstream to the grid.

We built a block diagram simulator, similar to the popular SCICOS framework [24].

However, since we target power delivery subsystems, we optimized our simulator for

acyclic directed graphs. We do not implement any function for removing graph cycles,

and we only consider discrete states. We need to call each block twice at every time

step: one for requesting energy, another for feeding energy from its parents. Each

type of block has an associated file for maintaining information about the delivery

inefficiency under different levels of utilization.

3.1.4 Study of Renewable-Powered Instances

In our work, we used a trace-driven simulation approach to explore the effect of

different grid-tie placements under 2 datacenter power delivery subsystems. The in-

puts to our simulator were 1) a graph of the power delivery subsystem, 2) a trace of

38

Placement policy
0

250

500
1 Top-level Grid Tie
1 Second-level Grid
Tie
3 Micro Grid Ties
90th % of 1 Grid Tie
Placements
90th % of 2 Grid Tie
Placements
90th % of 3 Grid Tie
Placements

R
P

I
pe

r
ho

u
r

Placement policy
0

50

100

150

G
ri

d
E

n
er

g
y

S
av

ed

Figure 3.3: Comparing commonly used grid-tie placements to the 90th percentile of
RPI producers.

per-server energy needs, and 3) a trace of renewable energy production. Our default

datacenter subsystem and trace comes from our department’s datacenter which com-

prises more than 104 rack- and panel-level PDUs. It is possible to integrate a grid

tie at each, meaning that even for our small datacenter there are thousands of ways

to place multiple grid ties. We used solar and wind renewable-energy traces collected

from different places in the U.S.

Our department’s power delivery subsystem was simulated with 500 randomly se-

lected grid-tie placements. Each placement had at most three grid ties with randomly

chosen integration points. After the integration points were selected, we chose the

grid tie from [22] that most closely matched the capacity of the integration point

(e.g., 240V, 6KW PDU). Data from [22] is used to simulate the grid tie’s energy

needs (i.e., its inefficiency) as a function of its load. We collected the energy usage of

rack-level PDUs in our department from March to June 2010 and looped this trace to

get 1 year of virtual time entries for our simulator. For the trace of renewable energy

production, we used a 1-year (2004) trace of wind energy production from Cheyenne,

39

C
D

F

RPI per hour

0 128 256 384 512
0

0.25

0.5

0.75

1

(a) CDF of the 100% 1-hour RPI per
hour

1 1.1 1.2 1.3 1.4 1.5
0

0.5

1

12% RPI
25% RPI
50% RPI

C
D

F

Normalized RPI Increase
(vs 100% RPI)

(b) RPI = X% renewable power for
1-hour

0 0.01 0.1 1
0

0.5

1
2 H R

4 H R
8 H R

C
D

F

Normalized RPI Increase
(vs RPI = 1 hour)

(c) RPI = 100% renewable power X-
hours

Figure 3.4: Performance of 500 randomly selected grid-tie placements under the WY
production trace, our department’s energy usage trace, and 20% renewable to energy
ratio. An RPI indicates that 100% of a compute core’s [2] energy for 1 hour came from
an on-site renewable source. This our default test setup, unless otherwise mentioned
the reader can assume that experiments in this section have these settings.

WY [81], the site of a well-known datacenter with on-site renewable energy [5]. The

trace came from the National Renewable Energy Laboratory [78]. We linearly scaled

the production trace to produce 20% of the energy used by the datacenter, reflecting

an incremental approach to deploying on-site renewable energy.

Figure 3.4(a) plots the distribution of 100% renewable-powered instances (100-

RPI, or RPI for simplicity) across the tested placements. RPI production varies a

lot; some placements allow datacenter managers to track 499 RPI per hour while

40

other placements can’t report any RPI. Figure 3.4(a) shows that grid-tie placement

can affect a datacenter’s ability to concentrate renewable energy. In the remainder of

this subsection, we examine factors that could vary from one datacenter to another

to see if they change this result.

An RPI in our default setup required a grid-tie placement to power a compute

core with 100% renewable energy for an hour. Both of these parameters, the percent-

age of renewable energy and the duration of delivery, could vary from datacenter to

datacenter. Figure 3.4(b) shows that decreasing the first parameter improved some

placements much more than others. Looking further into the data, we found that the

best placements were getting better. When 12% renewable power constituted an RPI,

we observed that the 90th percentile of grid-tie placements could produce 539 more

RPI per hour than the 10th percentile. This was 1.39 times larger than the difference

between the 90th and 10th percentiles when 100% renewable power was required.

Figure 3.4(c) shows that increasing the duration required for an RPI can signifi-

cantly reduce the total number of RPI (note the x-axis is log scale). As a result, the

absolute difference between grid-tie placements is also reduced. When the required

duration of an RPI is 8 hours, the 90th percentile produces only 11 more RPI per

hour than the 10th percentile—but these placements only produce 12 RPI per hour

total.

Comparison of Common Grid-Tie Placements

Next, we asked “how well do the grid-tie placements used in practice today per-

form?” We spoke with 2 datacenter managers who were able to share high-level

information about their power delivery structure [65, 60]. Both of these datacenters

41

0 128 256 384 512
0

0.25

0.5

0.75

1

1 Grid Tie
2 Grid Ties
3 Grid Ties

C
D

F

RPI per hour

(a) Impact of multiple grid ties

|x
t
 – x

t+1
| / max

0% 30% 60% 90%
0%

50%

100%

CA

IL

WY

C
D

F

Relative Hour-to-Hour Change

(b) The volatility of renewable-
energy sources in Chicago,IL,
Cheyenne,WY, and Rohnert
Park,CA.

C
D

F

0 200 400 600
0

0.25

0.5

0.75

1

2nd level
placement
90th %
placement
WY
CA
IL

RPI per hour

(c) Impact of Geographic Location

1300 1335 1370
0

256

512

768

1024

R
P

I
pe

r
ho

u
r

Grid Energy Used (MWh)

(d) Impact of Datacenter Size and
Workload

Figure 3.5: The impact of practical design parameters.

integrated only one grid tie near the top of their power delivery hierarchy. One in-

tegrated the grid tie above their UPS and ATS systems (see Figure 3.1(b)), meaning

that renewable power could support their entire facility. The other integrate the grid

tie on the B-side of their datacenter. Here, the grid tie could only power part of the

datacenter at a time. In contrast to these 1-grid-tie placement strategies, we also

considered a new trend in practice: the use of multiple micro grid ties [40]. Because

grid ties consume energy during the process of making primary and secondary sources

42

compatible, and the consumption differs across grid ties with different capacity or un-

der different load [22], placing several grid ties at multiple levels of power delivery

subsystem may affect the grid energy used. To study the impact of multiple gird-tie

placement, the idea is to integrate renewable energy into the system at easy to install

120V wall outlets rather than larger capacity UPS or PDU integration points.

We applied these grid-tie placements to our department’s datacenter and com-

pared the results to the 90th percentile of our randomly selected placements. Note,

Figure 3.1(c) shows the 90th percentile placement for the placements with 3 grid ties.

Figure 3.3 shows that the placements used in practice performed considerably worse.

Below we highlight important results that further confirm the impact of grid-tie place-

ment:

• The naive approach of placing grid ties near the utility provider can significantly

decrease RPI production. Placing 1 grid tie wisely at the rack-level or panel-

level increased RPI per hour by 1.76X.

• The integration of multiple grid ties improved RPI production by 1.89X while

using 60% less grid energy. As shown in Section 3.1.1, simply turning on grid ties

consumes a lot of power. When renewable-energy sources produce low amounts

of power, big large capacity grid ties can’t be turned on—explaining the poor

savings from the top-level grid tie. Adding multiple grid ties allows the power

delivery subsystem to flexibly use such renewable energy during low production

periods.

• Micro grid ties produced 17% of RPI produced by the 90th percentile of 3 grid

ties. This was because the micro grid ties were unable to bring in enough

43

renewable power. A high-capacity grid tie ensures that power produced during

windy surges flowed downstream.

• The best placements have significant overhead, almost 9% of the grid energy

savings in some cases.

Figure 3.5(a) shows that the use of multiple grid ties increases the disparity be-

tween grid-tie placements. The difference between the 90th percentile and the 10th

percentile of placements with 3 grid ties was 388 RPI per hour, more than 2.5 times

larger than the difference for placements with 1 grid tie. Paired with Figure 3.1(b),

these results highlight the importance of grid-tie placement in a new way. Yes, us-

ing multiple grid ties can lead to better performance, but it can also increase the

opportunity cost from poor placements.

Renewable Energy Production Patterns

We examined renewable energy production in 3 areas used by today’s renewable-

energy datacenters: Woodstock, IL [65], Rohnert Park, CA [41] and Cheyenne,

WY [5]. The CA trace reflects solar-energy production (taken from the Solar Ad-

visor Model [23]), and the IL and WY traces reflect wind-energy production (taken

from NREL [81]). Each trace captures hourly snapshots of the monitored energy

source’s performance (i.e., production divided by capacity) for 2004. The traces were

scaled linearly to have the same aggregate energy output.

Not only do these areas reflect different real-world site locations, the production

traces offer fundamentally different production patterns. It is well known that solar

energy exhibits strong daily cycles and wind energy does not. The auto correlation

function with a 24-hour delay (a measure of daily periodicity) was more than 3 times

44

larger (0.88) for the CA trace than for the WY and IL traces (0.09 and 0.27). The

WY and CA traces exhibited larger changes from hour-to-hour than the IL trace,

shown in Figure 3.5(b). We observe that the largest hour-to-hour changes in CA and

WY (72% and 89% respectively) are more than 60% larger than the largest change

in the IL trace (44%).

Figure 3.5(c) shows that studied production patterns had only a small affect on the

full distribution of grid-tie placements. The median solar placement produced only

1.05X more RPI than the median wind placements, between the wind sites, the distri-

butions were essentially the same. These results suggest that datacenter managers in

a wide range of areas can expect similar returns on investments in renewable energy.

Figure 3.5(c) also explores the performance of two specific placements, the 2nd level

placement approach described earlier and the 90th percentile placement in Cheyenne,

WY. We were surprised to see the the performance of the individual placements varied

a lot, producing 1.5X and 1.8X more RPI in the solar study. When we investigated

this result, we found that these placements both place a grid tie at the largest panel-

level PDU which happens to have energy consumption patterns that closely match the

daily peaks of solar energy production. If our simulated solar panel system produced

just 10% more energy, the placements would send a substantial amount of renewable

energy upstream and would be less effective relative to their performance under the

wind sites. This results shows that the performance of individual grid-tie placements

can vary from location to location.

Next, we examined the impact of amount of renewable energy produced on site.

We scaled our production traces to produce 5%, 20% (default) and 100% of the energy

used by the datacenter’s energy consumption traces. We found that the tail of the

45

distribution became much heavier as we increased the amount of renewable energy

produced on site. The difference between the 90th percentile and 10th percentile was

1.56 times larger when the amount of on-site production was equal to the on-site

consumption compared to the default case. Comparatively, it was only 6% smaller

when the on-site production was 5% of aggregate energy needs.

Datacenter Size and Workload

We concluded our study by examining grid tie placement on a larger datacenter.

We monitored the energy usage and mapped the power delivery subsystem for a

datacenter serving our entire university (one of the largest university’s in the nation).

The workload at this datacenter differed from the mostly research workloads in our

department, running more enterprise-oriented applications, like SAP and BlackBoard.

Further, this datacenter uses virtualization and other energy efficiency techniques. We

compared the hour-to-hour volatility of the energy usage between these datacenters

and found that the average hour-to-hour change in the university-wide datacenter was

10 times more than in our department datacenter which we attribute to fluctuating

workload and higher energy efficiency. The median hourly change of university-wide

PDUs was 15% of its peak consumption.

Figure 3.5(d) plots the grid energy used against the RPI for the university-wide

datacenter. This result provides further confirmation of our hypothesis that grid-tie

placements can significantly affect the ability to concentrate renewable energy. We

once again observe that the worst placements essentially eliminate the ability to track

when servers are powered by renewable energy (i.e., RPI). In future work, we plan to

study the economic value of the RPI metric.

46

3.1.5 Discussion

According to our simulation-based study, proper grid-tie placement can increase

the degree of renewable energy concentration. Carbon-aware customers could be

able to use more renewable energy from the datacenter. However, there are some

restrictions about this appraoch:

• It requires the datacenter has on-site renewable energy generators. This will

introduce additional cost to the datacenter owners.

• Placing grid-ties requires architectural level changes. Once grid ties are placed,

they will be rarely moved; while cloud resources may be leased frequently.

• This study only considers how to concentrate renewable energy. It did not

consider any applicable profit model to help datacenter owners how to use those

renewable-powered instances.

3.2 Adaptive Green Hosting

As we discussed in Chapter 1, there is a niche market focusing carbon-aware

customers by providing green computing resources. Some datacenter owners provide

green hosting1 service which leases cloud resources powered by clean renewable energy

while maintaining low prices.

Green hosting firms are targeting a small but growing market, cloud application

owners that want show their commitment to the environment. Most people worldwide

(83%) say that they prefer green products when they do not cost more than non-green

alternatives [55], perhaps reflecting conspicuous altruism [54]. Similar results show

1 The term “green Web host”, instead of green datacenter, is widely used in popular press and
on business websites [79, 1, 56]. In this section, we follow this precedent.

47

0.2 2 20 200 2000

0

0.5

1

Registered Domains (x 1000)

C
u

m
u

la
ti

ve

D
is

tr
ib

u
ti

on

F
u

n
ct

io
n

Figure 3.6: A niche market for green hosting. Each point represents 1 Web host. The
X-axis is the number of A-type DNS records registered to the host. Stars indicate green
hosts.

that CIOs (61%) and system managers (71%) are willing to support green hosts if

prices, response times, and throughput are the same [82, 25].

Figure 3.6 provides evidence of the growth. We plot registrations on the domain

name services (DNS) of Web hosts, a rough but widely used metric to size Web

hosts. Hosts with more authoratative (A-type) DNS records likely support more

applications. Using Domain Tools [36], we counted the DNS records of 200 Web

hosts returned from online searches, plotting the 25 largest. In this group, there were

8 hosts that mentioned clean energy investments on their public Web pages (green

hosts) and 17 traditional hosts that did not. We also controlled for price and hosting

features. Each host offered hosting plans below $5, a 99.9% uptime guarantee, and

unlimited network data transfer. Most green hosts in our study were above the median

in terms of registered domains with 2.9 times more A-type records than traditional

hosts on average.

However, due to the intermittent nature of renewable energy production, it usually

costs more than traditional dirty energy. Green hosts must host more applications

48

than traditional hosts to profit from their investment. We propose adaptive green

hosting, a software infrastructure layer component for datacenter owners to attract

carbon-aware customers by efficiently investing clean, renewable energy. It is datacen-

ter owners’ response to geographically distributed carbon-aware applications. As we

discussed in Chapter 2, such applications meet their cost, SLA, and carbon footprint

goals by routing their workload to hosts that offer either 1) low carbon footprints, 2)

high performance, or 3) a little bit of both. Our key insight is that a green host can

entice an application to route workload to it by providing more carbon offsets. As

mentioned in the beginning of this chapter, we use the term carbon offset to repre-

sent a unit of clean energy that can replace a unit of dirty energy, both measured in

Joules. Carbon offsets can be produced by on-site solar panels, power received from

local wind farms, or renewable energy credits (RECs) purchased via energy markets.

In adaptive green hosting, Web hosts set the ratio of carbon offsets to dirty energy,

henceforth the offset ratio, by observing their profit from each hosted application un-

der various settings over time. Where geographically distributed cloud applications

look for hosts with good offsetting policies, adaptive green hosting sets policies to

entice cloud application owners to use them.

3.2.1 Making the Case for an Adaptive Approach

Adaptive green hosting contrasts with the approach most widely used in practice

today, fixed offset ratios. In choosing a fixed offset ratio, today’s green hosts try to

meet the carbon footprint goals of their hosted applications. However, meeting this

threshold does not ensure that a green host will receive an application’s workload.

Instead, an application may route its workload across multiple hosts, mixing resources

49

Green Hosting
Center

Cloud
Application

ratio of carbon offsets
to dirty energy

provision
cloud resources

user
requests

intermittent
clean energy

resources
at other
centers

carbon
footprint

goals

Figure 3.7: Adaptive green hosting for cloud applications that lease resources on
demand.

that differ in performance and offset ratios. This latter approach exploits fungible

carbon offsets. The application needs only ensure that the weighted sum of their

carbon footprint across all hosts meets their goals.

Adaptive green hosting introduces a new control loop based on carbon offset ratios

(shown in Figure 3.7). Hosts adapt their offset ratios for each hosted application in

response to changes in the availability of carbon offsets and request arrival patterns.

We define a carbon offset policy as a vector where each element indicates the offset

ratio assigned to each hosted application. This section makes the case for an adaptive

approach by showing that fixed policies yield below optimal profits even when carbon

offsets are always available at a fixed price and hosted applications have fixed carbon-

footprint goals.

Motivating Example

Consider Ecosia [39], a simple application that provides a wrapper to Bing’s search

APIs and uses ad revenue to 1) offset Bing’s estimated footprint and 2) invest in a

rainforest protection program. Rather than spending its ad revenue on carbon offsets

50

for the servers that host its homepage, CSS style sheets, and CGI scripts, Ecosia

uses green hosts, bundling the costs of carbon offsets with hosting expenses. Ecosia

commits to a carbon neutral footprint for its servers [39], i.e. 100% offset ratio. That

is, Ecosia must be able to attribute 1 carbon offset for every joule of dirty energy

used to power its servers. Every month these servers support more than 15 million

unique searches that must complete quickly or else Ecosia will lose users [4].

For this example, we assume that Ecosia can send search requests that originate

in the East Coast of the US to a Web host in either 1) the Eastern US, 2) the Western

US, or 3) Europe. This setup mimics prior work [66, 32]. The hosts differ only in their

network latency and carbon offsets per joule. The eastern host has the lowest network

latency (41ms round trip on average), then the western host (80ms), and finally the

European host (121ms). Each host leases cloud instances that can service a request in

1.6ms, supporting up to 600 requests per second (RPS). However, successful requests

must complete within 150ms, including network latency, queuing delay, and service

time. The expected successful requests from each datacenter is shown below, using

an modified M/M/1 queuing model [59].

Eastern US Host v0 =
(0.150− 0.041)

1
(600−λ0)

(3.1)

Western US Host v1 =
(0.150− 0.080)

1
(600−λ0)

(3.2)

European Host v2 =
(0.150− 0.121)

1
(600−λ0)

(3.3)

Here, λ0 reflects the request arrival rate at time 0. The eastern host offers no carbon

offsets, the western host is carbon neutral, and finally the European host buys 2

51

offsets for every joule it uses. In other words, the hosts have offset ratios of 0%,

100%, and 200% respectively.

Ecosia wants to use as few cloud instances as possible while ensuring 1) all ar-

riving requests complete successfully and 2) carbon footprint goals are met. Cloud

instances are leased hourly. We assume that at every 1-hour interval t, Ecosia knows

its request arrival rate for that interval, e.g., λt = 120 requests per second. With the

request arrival rate, we can compute how many requests each instance can complete

successfully (i.e., v0 = 51,v1 = 38,v2 = 16 under λt = 120 RPS). Knowing the offset

ratio for each instance (i.e., c0 = 0%, c1 = 100%, c2 = 200%) and Ecosia’s goal of

being carbon neutral (C = 100%), we can compute the Ecosia’s optimal workload

distribution, i.e., the vector X = ¡x0, x1, · · ·, xi¿ where each element reflects how

many instances (an integer) Ecosia leases from each host i. The formal optimization

model is:

Minimize
n∑
i=0

x
(t)
i (3.4)

Subject to

∑n
i=0Eic

(t)
i x

(t)
i∑

Eix
(t)
i

≥ C (3.5)

and
n∑
i=0

vix
(t)
i ≥ λ (3.6)

and ∀i(xi ∈ Z) (3.7)

The goal is to minimize the total number of instances used. The first constraint

keeps Ecosia’s servers within a target carbon footprint (C). To be carbon neutral,

Ecosia would set C = 0. Assuming green hosts and traditional hosts differ only in

their offset ratio, we uniformly set the energy per instance coefficient (Ei) to 100wH.

52

The second constraint requires enough instances to process incoming requests (λt)

within SLA.

Integer programming solvers can find near optimal workload distributions for

Ecosia [66, 72, 107]. We used LP solve, an open source solver commonly bundled

with Linux platforms [73]. Under 120 RPS, Ecosia would use 4 instances from the

host in western US only. Even though the host in eastern US can successfully com-

plete 1.3X more requests per instance, the lack of carbon offsets forces Ecosia to use

other hosts.

Under adaptive green hosting, the eastern host could buy carbon offsets specifi-

cally to attract Ecosia’s workload. The carbon-offset elasticity (η) captures a host’s

workload as a function of carbon offsets assigned (ζ) to a target application. The

carbon-offset elasticity tells us if a host can increase its workload by giving a target

application more offsets per joule of dirty energy. These offsets can be bought as

renewable energy credits, transferred from another application, or pulled from on-site

sources. Because energy is fungible, this is an accounting problem. Below, we show

the optimization formula for carbon offset elasticity for a single application. Equa-

tion 3.9 projects Equation 3.5 to a single host that considers the marginal gain by

changing its offset ratio (Equation 3.10).

ηj(ζ) = xj : Minimize
n∑
i

x
(t)
i (3.8)

Subject to

∑n
i=1 c

(t)x
(t)
i + ζx

(t)
0∑

x
(t)
i

≥ C (3.9)

and
n∑
i=0

vix
(t)
i ≥ λ (3.10)

53

0% 20% 40% 60% 80% 100% 120%

0%

20%

40%

60%

80%

100%

120 RPS
400 RPS
App Goal

Carbon Offset to Energy Ratio
For the eastern US host

R
e

la
tiv

e
In

st
a

n
ce

s
P

ro
vi

si
o

n
e

d

Figure 3.8: Carbon-offset elasticity for the eastern US host. The y-axis shows in-
stances provisioned on the host relative to the maximum setting, i.e., ηeast(X)−ηeast(K)

ηeast(K)

where K maximizes ηeast. Ecosia routes requests differently across offset ratios (x-
axis). Under 120 requests per second (RPS), ηeast(K) equals 3 instances. Under 400
RPS, it equals 23 instances.

For N discrete settings of ζ, we can compute a host’s carbon offset elasticity for a

model-driven application by solving N integer programming problems. We use this

key insight to assess the yield of clean energy investments for a host.

Figure 3.8 shows the carbon-offset elasticity for the eastern host. The result high-

lights a unique aspect of clean energy: it is fungible. Even though Ecosia managers

want their application to be carbon neutral, they will lease instances from a host that

offsets less than 100% of its carbon footprint if other hosts offset more than 100%. In

this example, the eastern host benefited. Under 120 RPS, if the eastern US host were

to offset just 50% of its carbon footprint, the best workload distribution used only

eastern US and European instances. If the eastern US host were to offset 70% of its

carbon footprint, the best workload distribution used 1 European and 3 eastern US

54

instances, matching the the number of instances used if the host were to offset 100%

(carbon neutral).

The carbon elasticity changes when Ecosia’s request arrival rate rises to 400 RPS.

Under 70% carbon offset ratio, European instances detracted 13% of the workload

that would be sent to the eastern US host if it were carbon neutral. In fact, under 400

RPS, the eastern host leases the same number of instances under a 50% offset ratio

as it does at the 70% offset ratio. This shows that a static carbon offset policy chosen

under 1 request arrival rate can be below optimal when the request rate changes.

Note, this finding does not require that Ecosia managers change their carbon footprint

goals or relax their SLA, nor does it require that carbon offsets become more or less

available. Also, we observe that the elasticity function grew slowly after 40% offset,

raising the question, “does a 15% increase in leased instances justify a 60% increase

in the offset ratio?” We address this question Section 3.2.2.

Generalizing the Example

The relative throughput and offset ratios of the hosts in our example capture a

practical region of the workload distribution problem for carbon aware applications.

The general problem is an integer programming problem; each application assigns an

integer (ipi ∈ Z) to n-tuples (vi, ci) reflecting the instances leased from each host. The

ideal solution is not limited by the integer requirement and finds a solution equal to

the linear programming solution (lpi ∈ R). We constrain this space of problems with

the following assumption: an application will consider only 1 host that doesn’t meet

its carbon footprint goals, the best performing host. Our assumption builds from the

intuition that workload distribution involves some management costs that will deter

managers from choosing poor performing hosts that offer too few offsets to meet an

55

Conditions Hosts chosen
cBP ≥ C East
∀ilpi(λ) ∈ Z and East, West,

or Euro∑
vi · [lpi(λ)− b(lpi(λ))c] ≤ 2vsp East, West,

or Euro∑
vi · [lpi(λ)−b(lpi(λ))c]>2vwest

and
East, West∑

vi · [lpi(λ)−b(lpi(λ))c] ≤ veast Euro, Euro∞∑
vi·[lpi(λ)−b(lpi(λ))c]>2∗veast

and
East, West∑

vi · [lpi(λ) − b(lpi(λ))c] ≤
veast + veuro

Euro, Euro∞

Table 3.1: A summary of all outcomes for the workload distribution found via integer
programming solution for carbon-capped and performance-oriented applications.

application’s goals. We call applications that follow this assumption performance

oriented.

We claim that any carbon-capped and performance-oriented application will lease

instances from only 1) its best performing host, 2) its best performing host that

meets carbon footprint goals (i.e., second best performing host), or 3) the host of-

fers an offset ratio that exceeds the application’s footprint goals and combines with

the best performing host to yield highest performance per instance achievable while

meeting footprint goals (exploiting fungible offsets). These properties correspond to

the eastern US, western US, and European hosts in the Ecosia example. Changing

the absolute throughput and offset ratios of an application’s hosts will change the

proportions with which each host is selected. However, our claim is that any host

used by a carbon capped application will have (in the limit) at least one of the 3

properties above.

56

We prove this claim by considering all possible outcomes of the optimization

model. Table 3.1 provides a summary of our proof.

Outcome #1: The best performing host offers an offset ratio that exceeds

the application’s carbon footprint goals. The application uses instances from

only the eastern US host.

Outcome #2: The linear programming solution returns only integer val-

ues. With only 2 constraints, an n-host linear programming solution chooses between

only 3 hosts [97]. The application picks instances from either only the western US

host or some linear combination of the eastern US and European hosts, whichever

provides the best performance per instance. The outcomes here are restricted by our

prior assumption that each application considers at most 1 dirty host. We leave to

future work an extension of this analysis for applications that can use more than 1

dirty host. For such applications, any mix of dirty and green hosts could be the most

efficient, which would make computing the η function more complex.

Outcome #3: The linear programming solution uses fractional instances

to process fewer than 2vwest requests. Here, the integer programming solution

replaces the fractional instances with whole instances. The western US host represents

the most efficient way to do this, since, by definition, it offers the greatest performance

among hosts that meet carbon footprint goals.

Outcome #4: The linear programming solution uses fractional instances

to process fewer than veast requests. Here, we rely on the performance-oriented

assumption. The application either provisions (more than 2) instances from only the

western US host, or it mixes instances with the eastern US host and some other host

57

that exceeds its footprint goals. The application must use either the eastern US host

or the western US host because no other host offers fewer offsets than the western

US host and exceeds its throughput. As the Europoean host’s offset ratio goes to

infinity, we can show that it becomes the host that the eastern US host is combined

with. Thus, we denote it as euro∞ in Table 3.1.

Outcome #5: The linear programming solution uses fractional instances

to process fewer than veast + veuro requests. This outcome combines instances

from Outcome #3 and #4. Finally, we note that the linear programming solution

would not process more fractional requests than veast + veuro.

3.2.2 Adapting to Real Workloads

Section 3.2.1 described a cloud application that divided user requests among com-

peting hosts to 1) be carbon neutral and 2) keep its costs low. Hosts received a

portion of the application’s requests, depending on their cost to throughput ratio,

carbon footprint, and the rate at which user requests arrived. This example showed

that, as request rates change over time, green hosts that use fixed offset ratios will

sometimes lower their profit by buying too many (spending more than needed) or too

few offsets (losing customers).

This section shows that green hosts can increase profit derived from an appli-

cation by eschewing fixed offset ratios in favor of an adaptive approach. Prior re-

search on adapting to workload changes has focused on how applications should

provision instances to maximize throughput [9], minimize costs [45, 72], and meet

carbon goals [66, 72, 107]. In this section, we focus on how hosts should set their

offset ratio (e.g., by buying RECs) to maximize their profit for an application. Like

58

prior work, this function depends on the application’s request rate, cost models, and

carbon footprint goals. However, unlike prior work, this function also depends on the

performance and offset ratios of other hosts.

We revisit our example application from Section 3.2.1. This time, we use a trace

from a real enterprise application to capture changing request rates. For each 1-hour

window in the traces, we compute carbon offset ratios that maximize profit for the

eastern, western, and European hosts. We study 1) how many times the best carbon

offset ratio changes, 2) how quickly it changes, and 3) how much it changes. Our

results prompted us to create a reactive approach that adapts the offset ratio based

on recent history. We begin by presenting a formal profit model for green hosting.

Profit Model

Datacenters adopt a cloud computing model earn money by leasing virtual re-

sources over a fixed period of time [16]. A leasable resource is called an instance.

Datacenters profit when they earn more money per leased resource than they spend

buying, maintaining, and powering them (captured in Equation 3.11).

P = I · p ·R− StartupCosts

T
(3.11)

In the above equation, profit P is a function of instances leased (I), revenue per

instance (R), the percentage of revenue turned into profit considering only operational

costs (p), and amortized startup costs (where T captures the datacenter’s expected

lifetime). We assume I ≥ 1. In most places, clean energy costs more than dirty

energy, so green datacenters will have higher operational costs. They must lease

more instances to profit from this investment.

59

P (c) = η(c) · p ·R− c · E · costco2e · S −
StartupCosts

T
(3.12)

P (c) = η(c) · p ·R− c · E · costco2e · d
η(c)

S
eS − StartupCosts

T
(3.13)

Equation 3.12 adds the cost of carbon offsets (costco2e), energy per instance (E),

the granularity of energy data (measured in instances) (S), and the ratio of carbon

offsets to joules (c). These factors make green datacenters less profitable than tra-

ditional datacenters. The equation also shows the effect of carbon offset elasticity

(η(c)) in increasing the amount of instances leased. Green hosts can profit by invest-

ing in clean energy only when the carbon offset elasticity leads to increased revenue.

Equation 3.13 shows the full profit model when η(c) can exceed S.

In practice, datacenters invest in clean energy with caution, trying to keep the

risk of losing money low. Here, we formalize a risk aware approach commonly used

in practice [65, 60]. The idea is to cap how much money is invested in clean energy

so that a small increase in leased instances yields profit.

Low Risk Green Hosting: The maximum ratio of carbon offsets to dirty energy

(cmax) is capped, such that cmax ≤ pR
E·costco2e·|S| . Where S is the set of leasable in-

stances receiving the offsets. Plugging cmax into Equation 3.12, we see that it allows a

datacenter to recoup costs when increasing the offset ratio from 0 to cmax yields only

1 leased instance (the worst case).

Theorem: A datacenter that invests with the above low-risk approach should choose
the smallest c that maximizes η(c) in order to maximize profit. Here, we provide a
short proof. First, we observe that a datacenter’s costs are linear in c, provided E>0
and costco2e>0. If η(c+ ε) = η(c), then costs under c+ ε would exceed costs under c,
meaning lower total profit. Thus, the smallest c is a necessary condition. Second, we

60

Public Data
variable value source
R $0.085 Amazon EC2 [2]
p 4% Amazon’s EBITDA [98]
costco2e $0.0045 Renewable energy credits

online [52]
Local Tests
variable value source
E 23Kj ARM Marvel processor +

SSD
S 32 Tripp Lite PDU with

power display

Table 3.2: Values used to estimate cmax for this study.

prove by contradiction that η must be maximized.

Hypothesis :AssumeP (c1)>P (c2) where η(c1)<η(c2) (3.14)

WLOG :StartupCosts = 0 (3.15)

Substitution :P (c1) = η(c1)pR− c1Ecostco2e|S| (3.16)

Substitution :P (c2) = η(c2)pR− c2Ecostco2e|S| (3.17)

WLOG :Assumec1 = 0 (3.18)

Substitution :η(0)pR>η(c2)pR− c2Ecostco2e|S| (3.19)

Algebra :
c2Ecostco2e|S|

pR
>η(c2)− η(0) (3.20)

WLOG :Assumeη(c2)− η(0) = 1 (3.21)

WLOG :Assumec2 = cmax i.e., as large as possible (3.22)

Contradiction :
|S|
|S|

>1 (3.23)

Finally, we used both public data and local tests to calibrate a realistic cmax.

Table 3.2 shows inputs to our profit model and their source. Our local setup uses a

small cluster of ARM processor devices with attached SSD storage. These devices

host Apache on Linux, supporting up to 600 requests per second throughput. These

results match findings from prior work [70, 83]. The peak power from our ARM nodes

61

is 5.5W; multiplying by 3,600 seconds provides our value for the hourly energy usage

of an instance. We also consider a PUE of 1.2. Most (81%) power distribution units

(PDU) used at the rack level in today’s datacenter include LCD displays and network

access for energy data [93]. Our PDU can support 32 instances. Note, the PDU is

a good level to assign carbon offsets since energy data is easy to acquire. Assigning

carbon offsets at higher levels in the power delivery system increase the size of S,

diluting the amount of carbon offsets that can be purchased with low risk [33]. Filling

these values into our model, we set cmax = 300% for all studies in the remainder of

this section.

Trace-driven Study

We used empirical traces of request rates and carbon prices to study the most

profitable carbon offset ratios for green hosts over time. Recall, in Section 3.2.1, we

computed η for the eastern host using a constant request rate and the default offset

ratios of the western US and European hosts. In this section, we compute η for T

timestamped request rates and offset ratios. Assuming low risk investing, the output

reduces to a vector of T carbon offset ratios for each host, where the tth setting

reflects the smallest ratio ct that maximizes ηt(ct) given the request rate λt. Our final

assessment of profit uses our model to combine results from all T time steps.

Figure 3.9 shows two normalized request rate traces taken from an HP cloud

application used across the world [92]. These traces cover approx. 8 days and capture

diurnal patterns in the request rate. Both traces were normalized to produce about

1.5 million requests per day (about 175 RPS). They differ in the distribution of request

rates within a day. The top trace matches the distribution of all arriving requests. Its

99th percentile of request rates is 1.5X larger than the 99th percentile of an exponential

62

0

0.25

0.5

0.75

1
H eavy Tail

0

0.25

0.5

0.75

1

Diurnal Arrivals

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8

N
or

m
al

iz
ed

W

or
kl

oa
d

N
or

m
al

iz
ed

W

or
kl

oa
d

Figure 3.9: Request rates for a modern enterprise application, codenamed VDR [92].
VDR is used in six continents. The plots show requests rates at 2 servers hosted in
the Americas. The first plot compiles arriving requests for both servers, capturing
diurnal patterns. The second plot shows request rates for a request type with fast
response times, likely static content. In the second plot, requests arrive according to
a heavy tail.

63

distribution with the same mean. In other words, the top trace has a tail that is only

slightly heavier than an exponential distribution. The bottom trace captures the

arriving requests for 1 request type. The 99th percentile of request rates in this trace

is 5X larger than the 99th percentile of a normal distribution with the same mean. In

other words, the bottom trace has a tail that is much “heavier” than an exponential

distribution. Such heavy tails are a well studied in cloud applications [29, 11].

We also studied the effect of changing carbon prices by discounting cmax and

default offset ratios. We used a trace of the daily market price for carbon offsets

from iPath Global Carbon [6]. Our trace ranged from Feb. 8, 2012 through Feb. 14,

2012. The resulting daily, relative prices were 1.08, 1.08, 1.03, 0.98, 0.97, 0.94, and

1. Market prices often track wholesale prices well.

Study Results: We used the iterative method described in Section 3.2.1 to compute

carbon offset elasticities for each host, workload, and time step. We chose 31 discrete

values for the offset ratio, using multiples of 10% from 0 to 300%. For every 1-hour

time step, we used the request rate (λt) from either the diurnal or heavy tail traces

above to compute how many instances a host would provision if it set its offset ratio

to one of the above discrete values. We assume that the other hosts keep their default

offset ratio.

Table 3.3 shows how the best carbon offset ratio changed over time under 1)

the diurnal workload with fixed carbon prices, 2) the heavy tail workload with fixed

carbon prices, and 3) the heavy tail workload with changing carbon prices. In total

we computed 1,674 offset elasticities (3 hosts x 3 workloads x 186 hours).

To maximize profit across each studied workload, every host needed to use at

least 3 different offset-ratio settings. The hosts used fewer settings (below 4) under

64

the diurnal workload than under the heavy tail traces. We explain these results

by highlighting a key aspect of the integer programming (IP) outcomes outlined

in Section 3.2.1: Linear programming (outcomes #1 and 2) provide the best solution

modulo the request rate. When the request rate is larger than veast + veuro, a host

should set its offset ratio to maximize its usage under the linear programming solution.

For the eastern and western US hosts, this setting is very close to the application’s

carbon footprint goal. For the European host, this setting is the smallest setting that

ensures the following k ∗ veast + veuro>vwest where k in R is the number of eastern

US instances sponsored by the European host’s fungible offsets. However, when

the request rate falls below veast + veuro (outcomes #3–5), the best settings change

depending on the IP solution.

In our example, veast+veuro equals 67 RPS and the average arrival rate is 175 RPS.

The distribution of request rates in the diurnal workload is close to exponential,

meaning the median request rate is close to the average rate. Indeed only 18% of

the 1-hour intervals under the diurnal had request rate below 67 RPS. The offset

ratio found under the linear programming solution was chosen of 90% of the time

for all hosts. Heavy tail distributions do not share this property. Instead, short

workload bursts make the average rate larger than the median. Despite having the

same arrival rate, the heavy tail distribution shows request rates below 67 RPS 45%

of the time. More generally, we can not claim that all heavy tail workloads on all

cloud platforms will include some intervals where λt<veast + veuro. However, for a

given average arrival rate, a high variance, heavy tail distribution is more likely than

an exponential distribution to include such intervals.

65

Second, we observe that offset ratios change slowly. In particular, we observe

several long contiguous periods under the second most frequent policy, even under

the diurnal workload. Several last longer than 4 hours. We note that this correlated

behavior is well explained by low request rates 1) at night and 2) between bursty

periods. The average period of contiguity rounds up to 2 hours in all but 1 of the

study traces. Finally, we also observe that the absolute distance between the second

most frequent and most frequent ratio are far apart, simply setting the offset ratio to

the larger of the two can waste a lot of money.

A Reactive Approach

Since our trace-driven approach revealed that the best offset ratio held for long

contiguous periods, we implemented a reactive approach to set the carbon offset ratio.

We assume that applications tell each datacenter what their ideal offset ratio was for

the previous hour. Given that the application can monitor its request arrival rate, it

can compute this offset directly using the approach described in Section 3.2.1.

Our reactive approach considers the history of an application’s ideal offset ratio.

When the ideal ratios over the last 2 hours match, we change the offset ratio to the

matching value. Otherwise, we assign the ratio to the statistical mode. The latter

works well under diurnal workloads where the most frequent ratio occurs 97% of

the time. The former helps with heavy tailed workloads where the ratio changes for

several hours at time.

Our full approach also exploits heavy tailed contiguous periods in the offset ratio.

We scan the history of results for patterns indicating that a contiguous period of

length l has a large probability of leading to a period of length l+ k. If such patterns

are found, our reactive policy returns to the mode after the l + k interval.

66

Metric: Number of Ratios Chosen (|c̄| : c ∈ c̄ iff ∃t ∀k Pt(c) ≥ Pt(k))
What to look for: Numbers greater than 1 suggest that fixed policies
yield below optimal profit.
Workload Eastern Western European
Diurnal 4 settings 3 3
Heavy tail 5 4 5
Heavy tail and market carbon prices 7 8 5

Metric: Expected Contiguity of 2nd Most Frequent Setting (Ex(|L|: ∀
l ∈ L Cl = k ∧ (l+1) ∈ L)
What to look for: Large numbers suggest carbon offset ratios are stable.
Workload Eastern Western European
Diurnal 1.60 hours 1.75 1.23
Heavy tail 1.65 3.00 4.05
Heavy tail and market carbon prices 2.05 2.75 8.86

Metric: Absolute distance from 1st

What to look for: Large numbers reflect the magnitude of profits lost
by static hosts. Minimum value is 10% and maximum is 300%.
Workload Eastern Western European
Diurnal 100% 100% 200%
Heavy tail 100% 50% 190%
Heavy tail and market carbon prices 100% 100% 100%

Table 3.3: Data on the best carbon offset ratios in our study.

Experiment Results

We used empirical traces of request rates and carbon prices to study the most

profitable carbon offset ratios for green datacenters over time. Recall, in Section 3.2.1,

we computed η for the eastern datacenter using a constant request rate and the default

offset ratios of the western US and European datacenters. In this section, we compute

η for T timestamped request rates and offset ratios. Assuming low risk investing, the

output reduces to a vector of T carbon offset ratios for each datacenter, where the

67

Metric: Accuracy (
∑

n
I(Cn=Pred(n)

n
))

Web host Mode Reactive Tail Aware
Diurnal 97% 95% 97%
Heavy tail 66% 65% 70%
Heavy tail w/ Carbon market 79% 73% 80%

Table 3.4: Accuracy of reactive and tail-aware reactive approaches. Shown for the western
US host.

tth setting reflects the smallest ratio ct that maximizes ηt(ct) given the request rate

λt. Our final assessment of profit uses our model to combine results from all T time

steps.

Figure 3.9 shows two normalized request rate traces taken from an HP cloud

application used across the world [92]. These traces cover approx. 8 days and capture

diurnal patterns in the request rate. Both traces were normalized to produce about

1.5 million requests per day (about 175 RPS). They differ in the distribution of request

rates within a day. The top trace matches the distribution of all arriving requests. Its

99th percentile of request rates is 1.5X larger than the 99th percentile of an exponential

distribution with the same mean. In other words, the top trace has a tail that is only

slightly heavier than an exponential distribution. The bottom trace captures the

arriving requests for 1 request type. The 99th percentile of request rates in this trace

is 5X larger than the 99th percentile of a normal distribution with the same mean. In

other words, the bottom trace has a tail that is much “heavier” than an exponential

distribution. Such heavy tails are a well studied in cloud applications [29, 11].

Using these traces, we compare our reactive approach to an oracle-driven adaptive

approach that sets the offset ratio to the value that maximizes profit for the upcoming

68

interval (called oracle adaptive)). We also compare against an oracle-driven fixed-

setting approach that sets the offset ratio to the value that most frequently maximized

profit throughout the trace (i.e., the statistical mode for the whole trace). These

approaches use advanced knowledge that would be unavailable in a deployed system,

but they are useful in demonstrating how well our reactive approach works. We also

compare against the over offsetting approach which sets offset ratio to cmax. The idea

behind this approach is that increasing the offset ratio will only increase η (which is

not true). We make this over-offsetting approach our baseline.

3.2.3 Case Studies on Shared Hosts

Figure 4.2 details adaptive green hosting. At every provisioning interval, the

hosted application owners recently observed data on its request arrival rate to compute

the offset ratios that would maximize instances leased from each host (Section 3.2.1).

The adaptive green hosts keeps a history of such data, and uses it to set its offset ratio

for the next interval (Section 3.2.2). The hosted application then tries to maximize

throughput within a carbon budget based on each host’s performance and offset ratio

by balancing its workload across hosts. In Section 3.2.2, we studied the effect of

adaptive offset ratio on one application, finding that green hosts can increase profit

by adapting their offset ratio to the application’s daily and bursty workload patterns.

This section studies hosts that support many applications.

Setup

We used our VDR traces to simulate 9 Ecosia applications. Each application used

a load balancer to route requests to either: 1) its best performing host, 2) the best

performing host that met its carbon footprint goals, or 3) a host that offered a high

69

Diurnal Heavy tail Heavy tail +
Carbon market

-10%

-5%

0%

5%

10%

Oracle Adaptive
Oracle Static
Reactive
Tail Aware

R
el

a
tiv

e
 P

ro
fit

Eastern US Host

(a) Eastern US Datacenter

Diurnal Heavy tail Heavy tail +
Carbon market

0%

50%

100%

150%

200%

250%

300%

R
el

a
tiv

e
 P

ro
fit

Western US Host

(b) Western US Datacenter

Diurnal Heavy tail Heavy tail +
Carbon market

-10%

0%

10%

20%

30%

R
el

a
tiv

e
 P

ro
fit

European Host

(-88%) (-92%) (-92%)

(c) European Datacenter

Figure 3.10: Profit of east, west, and European datacenters from the Ecosia example
using real workload traces. All results are reported relative to the profit under the
over-offsetting approach.

70

Adaptive Green Host Hosted Cloud Application

load balancerins
1

ins
3

ins
2

cloud
resource manager

reactive
carbon-offset
manager

offset history
t-2 t-1 mode
29 15 15

carbon-aware
cloud provisioner

λ
t-1

 (request arrival

rate of last hour)

offset ratio

In
s.

le

a
se

d η
λ
 function for host

i

x: max η
λ
(x)

offset ratio t

leased instances

other hosts

 user requests

Figure 3.11: Our setup for adaptive green hosting. Dotted lines reflect data that is trans-
mitted at every cloud provisioning interval (e.g., hourly). Solid lines reflect real time actions.

offset ratio. We defined these applications such that the best performing host mapped

to one of the large Web hosts described in Figure 3.6.

Each application placed its load balancer at the best performing host and set its

carbon footprint goal to the offset ratio of the fastest green host. When the load

balancer sent requests to a remote host, the penalty was 1 round trip network delay

(as in the queuing models in Section 3.2.1). We modeled delay between hosts using:

1) distance in miles between the other hosts and the nearest host, 2) speed of light, 3)

a slowdown coefficient, and 4) TCP processing overhead. We calibrated the slowdown

coefficient with regression tests on ping results between a laptop in Columbus, OH

and servers deployed in London, UK, Frankfurt, GE, Berkeley, CA, St. Louis, MO,

and Rochester, NY. We set the coefficient to 2.4.

Figure 3.12 plots the cities where each Web host’s servers resided. The legend

in the figure shows the carbon offset to dirty energy ratio offered by each host. We

71

K

I
C

A

B A
tla

nt
ic

O

ce
an

Pa
ci

fic
O

ce
an D

E
FGH
J

Location Offset # Location Offset
 Ratio Ratio
A Berlin,GE 100% H Chicago,IL 0%
B Dallas,TX 130% I San Luis,CA 0%
C Provo,UT 0% J Toronto,ON 100%
D LA,CA 300% K Vancouver,CA 150%
E Columbus,OH 0%
F Burlington,MA 100%
G Boston, MA 100%

Figure 3.12: Where the shared Web hosts in our case studies live. We chose 11 of the largest
Web hosts (green and traditional) using domain tools and online searches. Unintentionally,
our results include hosts in North America and Europe only.

collected this data from public websites. There are 11 hosts listed, each is labeled

with a letter to hide its identity. The two hosts offering the most carbon offsets (D

and K) do not provide the highest throughput for any application.

Table 3.5 shows the set up for each application’s load balancer and its carbon foot-

print goal. Two hosts (B and K) that offered offset ratios greater than 100% were used

by applications with diverse carbon footprint goals. Also, one well located carbon-

neutral host (J) supported diverse footprint goals. Specifically, host B supported 7

applications with the following goals: 100%, 100%, 130%, 130%, 130%, 130%, and

150%. Host J supported 3 applications with the following goals: 100%, 100%, and

130%. Finally, host K supports 6 servies with the following goals: 150%, 130%, 130%,

130%, 130%, and 130%. We used the heavy tailed VDR trace for each application

(Figure 3.9). The price of carbon offsets was fixed. The maximum throughput of

each node was 600 requests per second.

72

footprint Best Best performing + Many Offsets
goal performing meets goals

1 100% E J B
2 150% C K D
3 100% H J B
4 130% A B K
5 130% J B K
6 130% F B K
7 150% I K D
8 130% G B K
9 130% B K D

Table 3.5: The configuration of each application’s load balancer in our setup. The leftmost
columns show the application number and its footprint goal. The rightmost columns label
which hosts the application routes requests to.

At the top of every hour, our tail-aware reactive approach collected the ideal offset

ratio for each application during the previous hour. We set the offset ratio for each

application individually. Total profit for a host was the sum of profit from each hosted

application. We compared this approach to the fixed offset policies commonly used in

practice: 100%, 150%, 200%, and 300%. Here again, we call 300% the over offsetting

approach and used it as our baseline.

3.2.4 Shared Hosting Results

Figure 3.13 shows the relative profit increase from our adaptive green hosting

approach. Our approach consistently outperformed the over offsetting approach, in-

creasing profit by at least 68% in each case. Our gains were lowest (68%) for host J

because its hosted applications saw a wide difference in the offset ratio between their

best performing hosts (0%) and host J (100%). Any investment in carbon offsets

offered high yield. Indeed, the profit per application under the over offsetting policy

73

B J K
-50%

50%

150%

250%

350%
Carbon N eutra l
150% Fixed

200% Fixed
Reactive

Shared Green Hosts
R

e
la

tiv
e

P
ro

fit

Baseline = over offsetting

-1.09 -0.98

Figure 3.13: Relative profit of the shared green hosts (B, J, and K). Each host’s profit
per application under the over offsetting policy was $2.17, $7.66, and $1.5 respectively. We
used the VDR request trace with heavy tail arrival patterns (7.8 days). The over offsetting
policy sets a fixed offset ratio of 300%. Recall, only hosts B, J, and K were shared by
applications with diverse footprint goals.

($7.66) was 2–4 times larger than the other hosts. Here, our approach increases profit

by adapting to workload changes in applications. We also run the same experiment

on diurnal traces mentioned in Section 3.2.2. The relative profit increase for host B,

J and K are 105%, 69% and 236% respectively.

We also compared two approaches commonly used in practice: over offsetting

and carbon-neutral green hosting. Host B and K gain the most from over offsetting

because they were in competition against other green hosts. Host J preferred a

carbon neutral approach. First, our approach adapted to each host’s environment,

consistently outperfoming both approaches.

Is Adaptive Green Hosting Really Green? Adaptive green hosting increases

profit in two ways. First, it helps green hosts buy carbon offsets with low risk,

allowing them to make bold investments (up to cmax) to bring in customers. Second,

it helps green hosts avoid wasting money on too many offsets. This latter benefit

could actually make hosts less green than they are today. Figure 3.14 shows the

74

A B C D E F G H I J K

0%

100%

200%

300% Default
Adaptive

Web Hosts

A
ve

ra
ge

O

ff
se

t
R

a
tio

Figure 3.14: Average offset ratio recommended by adaptive green offsetting for each host
in our setup.

B J K

-50%

0%

50%

100%

150%
Carbon N eutra l
150% Fixed

200% Fixed
Reactive

Shared Green Hosts

R
e

la
tiv

e
 P

ro
fit

Baseline = over offsetting

-1.00 -1.00

Figure 3.15: Relative profit of the shared green hosts when applications provision according
to a different optimization model [107]. Each host’s profit per application under the over
offsetting policy was $6.33, $5.50, and $4.83 respectively.

suggested average offset ratio of adaptive green hosting in our setup. The average

offset ratio increased for 10 of the 11 hosts. Only host D, which offered a ratio of

300%, had a lower average offset ratio than its default. Because green hosts reflect a

minority of web hosts in general, adaptive green hosting is likely to suggest increased

investment in clean energy.

Can Adaptive Green Hosting be Applied to Different Service Models?

The applications that we have studied so far have been based on minimizing instances

(cost) within carbon and throughput constraints [66]. However, recent work has

75

B J K

-50%

0%

50%

100%
Ca rbon Neutra l
150% Fixed
200% Fixed
Rea ctive

Shared Green Hosts
R

e
la

tiv
e

 P
ro

fit

Baseline = over offsetting

-1.00-1.00-1.00

Figure 3.16: Relative profit of the shared green hosts when applications can choose to buy
carbon offset directly. Each host’s profit per application under the over offsetting policy
was $1.71, $2, and $0.66.

explored alternative models. Zhang et al. [107] proposed a model that maximizes

renewable energy usage within cost and throughput constraints. Our approach to

create carbon offset elasticity models can be applied to this application model also.

We modified our setup to allow applications #1, 2 and 3 to use this application model.

Figure 3.15 shows the results. Services in this model tend to route a few requests to

the greenest datacenter. Host J (which offers on 100% offset ratio by default) suffers

the most. Over offsetting helps this host the most. Hosts B and K can adapt not only

to supporting diverse carbon footprint goals but even to diverse application models.

Our adaptive approach increases relative profit by more than 100 percentage points

for both hosts.

Is Adaptive Green Hosting Useful when Services by Offsets Directly?

Instead of using green hosts, applications could buy offsets directly, removing the

need to route requests across multiple datacenters. As discussed in Section 3.2.1,

applications that adopt this approach lose economic benefits from bundling hosting

and offsetting costs. Nonetheless, we can compute the carbon-offset elasticity for

76

these applications by treating carbon markets as a special Web host that offers many

offsets and zero throughput. We divided costco2e by the price of an EC2 instance and

used the result (approx. 8000%) as the offset ratio for the special, carbon-market

host. We added this host as a fourth choice to every application in our setup. Some

applications used this host, reducing the profit per application for the shared hosts.

However, as shown in Figure 3.16, our adaptive approach still provided the most

profit for shared green hosts, increasing profit by at least 7% compared to the over

offsetting approach.

3.2.5 Discussion

Green hosts invest in clean energy while keeping their prices low and competitive.

These hosts profit from their investment by hosting more cloud applications than

their traditional counterparts; it is possible that they can tap into a niche market

to accomplish this. Today’s green hosts adopt ad-hoc policies for investing in clean

energy, e.g., by buying as much clean energy as possible within a fixed budget. We

showed that such fixed policies yield below optimal profit when the hosted cloud

applications support diurnal and bursty workloads and when the hosted applications

have diverse carbon footprint goals. We proposed a new research agenda: adaptive

green hosting, where hosts invest in clean energy based on prior or predicted yield.

We proposed a first-cut reactive solution that exploits heavier-than-exponential tails

in cloud application workloads. Our reactive approach improves profit for existing

green hosts and tends to urge hosts to increase their investments in clean energy.

Since datacenter owners could offset their carbon footprint through renewable

energy credits, adaptive green hosting does not require any hardware changes in the

77

datacenter. However, datacenter owners have to monitor and analyze their customer

applications’ behavior. In the next chapter, we will introduce a non-intrusive way to

analyze an application’s energy footprint.

78

Chapter 4: Black-Box Analysis for Cloud Applications

In previous chapters, we discussed about how to make cloud applications and

datacenters become carbon-aware. However, nowadays, most applications and data-

centers are not carbon-aware since there is little incentive to motivate them to switch

to renewable energy. We believe that the demand of cloud applications’ end users is

the best way to urge applications and datacenters to be environmental friendly. The

implementation and architecture of an application affects its energy footprint a lot.

Helping end users to know more details about an application’s implementation level

details would be the first step to let users get involved. However, due to security and

commercial considerations, it is almost impossible for application owners to reveal

their application’s implementation details. As a third party, users have to infer based

on publicly available data.

Extracting an applications’ internal information from outside is not only useful to

analyze an application’s energy or carbon footprint, it could also be a useful tool to

detect an application’s performance bugs and study live production cloud applications

for third parties.

79

4.1 Analyzing Third-Party Applications by Decomposing Re-
sponse Times

We propose a method to extract an application’s implementation level informa-

tion using its response times. Nowadays, a typical cloud application is a distributed

system consisting of several software components collaborating together to achieve

different tasks. Users interact with these applications through a request-response

interface. Inside a cloud application, one or more software components will cause

delays for each user request by processing or queuing the request. Such delays ac-

cumulate and are observed as response times to the end users. Our work involves

decomposing response times to recover the software delays within a cloud application

so that we could extract implementation level information by analyzing the recovered

delays individually. Based on the recovered delay distributions, we could accurately

get useful information like the type of software running behind the application; the

number of parallel software instances processing the request, hence the normalized

energy footprint.

Our first challenge was to model software delays for applications hosting live work-

loads. Our approach is black box; it does not require modifying back-end software.

Instead, we used independent component analysis (ICA) to decompose response time

into per-component delays. ICA is a well known machine learning algorithm that

extracts source signals from multiple, independent composite signals. In our context,

source signals are the delays caused by software invocation during request process-

ing. Composite signals are response times observed from independent and parallel

80

Request execution over time

R1

web sql
mc

mc web
web

R
e

sp
on

se
T

im
e

web
mc

sql
mc

webweb

R
es

po
ns

e
T

im
e

Response time
decomposition

(seconds x 10-1)

 web→{R1=3, ... ,Rn=4 }

 mc →{R1=1, ... , Rn=2 }

RN
 sql →{R1=1, ... , Rn=1 } webmc

Figure 4.1: Decomposing response times into delay caused by each software compo-
nent.

requests. ICA assumes component delays are non-Gaussian. This assumption is rea-

sonable because widely used software is known to have fat tails. ICA exploits fat tails

to learn about delays caused by software.

After we decomposed response times into software delays, we defined statistical

confidence thresholds to prune recovered components that were unstable. Then, we

labeled components using a library that included widely used software, e.g., MySQL,

Redis, MongoDB, etc. Our library also models the degree of data parallelism within

request executions.

4.1.1 Methodology

Figure 4.1 shows the execution of Php scripts (web), Memcached (mc), and

MySQL (sql) during request processing. The web and sql components run in se-

quence using remote procedure semantics. The mc component uses parallel threads

with each thread processing keys in its partition range. Finally, the web component

triggers timeouts when the sql component is too slow. When this happens, the sql

component finishes executing in the background while web completes the request.

81

Issue K parallel
queries N times

Confidence
threshold

Component
library

Live
System ICA

Label
Comp.

Observed
Response

Times
<N, K>

Normalized
Component

Service
Times
<N, C>

Decomposition
 of normalized
service times

redis = { 1,1.2, 0.8... }

mysql = { 1, 1.1, 0.5...}

Figure 4.2: Our approach to decompose response time into normalized software delays.
It does not require changing or monitoring back-end servers.

Our goal is to decompose response time into the delays caused by each software

component. Figure 4.1 depicts the response time decomposition. First, we must

define software delay. In our context, software components comprise a code base

that is repeatedly invoked during request processing. Software delay is the portion

of response time spent executing a code base and waiting for CPU, memory and disk

resources to execute it. In Figure 4.1, the sql component does not cause software

delay after web times out, because background execution does not increase response

time. Likewise, the slowest mc thread causes software delay but other, parallel mc

threads do not.

Prior work time stamps the start and end of software invocations to decompose

response time. For this paper, we used a black box approach shown in Figure 4.2.

We did not change software or operating systems on the back-end servers. First, we

measure response time for a target application by issuing many requests in parallel and

over time. Then, we use ICA to recover the distribution of per-component software

delay. We then prune our results for stability. Finally, we use a library to label

recovered components.

82

Limitations: Our black-box approach is useful when cloud applications block access

to their back-end servers. However, it is not as powerful as direct instrumentation.

By comparing Figure 4.1 and Figure 4.2, we highlight the following limitations:

• Our approach returns normalized software delay, not actual delays. Here, nor-

malized means that software delays are shifted to have zero mean and unit

variance. As a result, we can not directly compare delays between two recov-

ered components.

• Our approach captures the distribution of software delay, not per-request delays.

We can not explain slow response time for a specific request.

• Our approach does not recover delay for every software component used during

request processing. There may be other components that affect response time

as well.

Despite these limitations, our approach helps managers identify components with

fat tails, label hidden components, and model energy footprints.

System Model

We model software delay as a stochastic process with a linear multiplier. Random

variable si is software delay per invocation, where i indexes components. Compo-

nents are invoked ai times during request processing. The total software delay for

a request is ai × si. Considering a request invokes I components, then its response

time x is a random variable which is a linear combination of all invoked components’

delays, i.e. x =
∑

i=1,...,I aisi. In this paper, we use vector representation x = aT s,

where a = (a1, . . . , aI)
T and s = (s1, . . . , sI)

T . Bold lowercase letters to represent vec-

tors. Assuming per-component software delays comprise the majority of end-to-end

83

response time, we let xn be the response time of the nth request and x = (x1, . . . , xN)T

represents response times of N concurrent requests. Suppose the nth request invokes

the ith component an,i times, then we have:

x = As (4.1)

The mixing matrix A is unknown. Our goal is to find software delays (s) by only

observing the response times (x).

Extracting Per-Component Delays with ICA

To be sure, it is impossible to solve Eq (4.1) using only response times (x) without

constraining delays (s) or the mixing matrix A. The number of unknowns exceeds the

number of observations. A key contribution for this paper is the identification of prac-

tical constraints that 1) capture common operating conditions for cloud applications

and 2) allow us to solve Eq (4.1). The constraints are:

1. Per-component delays are non-Gaussian: It is well known that software

delays in cloud applications often have fat/heavy tails [91].

2. Normalized component delays are independent: Software delays depend on

the processing speed of their underlying hardware. However, normalizing to zero

mean and unit variance, makes these delays statistically independent. Software

delays also depend on queuing. However, auto-scaling [46] and multi-path net-

works significantly reduce queuing variance, limiting the affect of queuing delay

on normalized delays.

3. Invocation frequencies vary between requests: Request parameters affect

the invocation frequency of software like databases and memcached.

84

Given the above constraints, ICA can be used to recover normalized software de-

lays using only response times. ICA reverses Eq (4.1) by finding the mixing matrix

W that is most likely W = A−1. Specifically, ICA explores candidate W matrices and

chooses the matrix that minimizes mutual information between software components

and Gaussianity within components. Minimizing mutual information maximizes inde-

pendence of normalized delays [28], whereas minimizing Gaussianity constrains ICA

to realistic mixing matrices. We use FastICA [15], one possible implementation of

ICA that uses gradient descent methods to explore candidate W matrices. FastICA is

a randomized, fixed-point, parameter-free algorithm whose convergence is cubic [57].

Choosing Request Parameters: Remember that the response times we collected

are a set of vectors. These vectors are realizations of the random vector x. Within each

vector, there are response times from concurrent requests which invokes components

with different frequency to make sure the rows in the mixing matrix A are linearly

independent. Between those vectors, they should be the same set of requests to make

sure that the mixing matrix A is the same across the experiment. Request parameters

must be chosen carefully based on the presumed design of the target application.

Finding Stable Components

FastICA uses randomized, gradient descent. If it is executed twice on the same

application, it may recover different component delays. This can happen for two

reasons. First, the application can change in between the two executions. For exam-

ple, CRON jobs that run only at night may shift software delays. Second, FastICA

may converge upon a W matrix that is a local minima, introducing false-positive

components.

85

We use two thresholds to build confidence that the recovered components reflect

true software delays under normal operating conditions. The first threshold T0 is a

percentage, ensuring that recovered components are found in more than T0 of FastICA

executions. The second threshold T1 sets the minimum similarity between components

recovered across multiple executions. It is an absolute relative error. Recovered delays

across two executions are from the same component if 1) their absolute relative error

is less than T1 and 2) for both components, there does not exist another recovered

component with lower absolute error.

Labeling Components

Finally, our approach uses recovered delay distributions to infer the underlying

code base. The key assumptions here are that 1) widely used software will have unique

normalized delay distributions and 2) ICA can recover delays with sufficient accuracy

to distinguish components. We use K-nearest neighbor clustering to match recovered

delays to a library. Our library includes software components deployed with different

levels of data parallelism. Thus, a match describes the recovered component’s code

base and energy footprint.

4.1.2 Validation

To validate the accuracy of our component delay recovery method, we compare

delays for the recovered components to the observed software delays obtained by

instrumenting the system. We setup a two-tier storage application. In each tier,

there are several options of software to run. The first tier runs Memcached, Redis

or ZooKeeper which are in-memory key-value storage software. The second tier runs

86

MySQL, PostgreSQL, MongoDB or ElasticSearch. This gives us 12 possible configu-

rations for the system

We run our experiments on virtual machine instances from Google Cloud Compute

Engine. For MySQL, PostgreSQL, Memcached, MongoDB and Redis, we run them on

single “n1-standard-1” instances, which has one CPU core from 2.5GHz Intel Xeon

E5 v2 (Ivy Bridge) and 3.75GB of memory. ZooKeeper runs in a 3-node cluster

where each node is an “n1-standard-1” instance. ElasticSearch runs on a two-node

“n1-standard-1” cluster. All experiments are conducted within “us-central1-f” region,

which is located in Council Bluffs, Iowa.

The system accepts 6 types of requests, where each of them triggers a write opera-

tion in each tier with different frequency. In each experiment, we issue these 6 requests

types concurrently and repeatedly send such concurrent requests every 500ms for 1000

times. This results 1000 sets of response times where each set contains response times

from 6 concurrent requests with different types. For each configuration, we repeat this

experiment for 100 times. We set T0 = 50% and T1 = 3% to prunce false components.

Accuracy of Recovered Component Delays

The first question we want to answer is that if ICA could accurately recover

software delays. We know that ICA could recover statistically mutually independent

component delays. According to the discussion in previous section, if software delays

are independent, then ICA could in theory recover them.

Comparing one recovered component with a set of software delay requires a met-

ric to measure the distance of two sets of 1000 samples of delays. We use symmetric

Kullback-Leibler divergence [21], or KL divergence, as our metric to measure the

87

distance. Intuitively, given two sets of samples, KL divergence tells how many addi-

tional bits are required to represent one set of samples with another. The maximum

divergence for 1000 samples is 17.667 bits. Relative error (reported as a percentage)

is KL divergence divided by this number.

Given an experiment, every recovered component’s delays is matched with the

closest software delays monitored from the experiment. We then collect KL divergence

of those matches in all experiments under all configuration. We find that the recovered

component delays could be used to accurately approximate software delays. The

50th and 90th percentiles of the error between component and software delays in

all experiments are 0.5% and 15.5%. Figure 4.3 shows the corresponding empirical

cumulative distribution functions (eCDFs). As we discussed in Section 4.1.1, the

component delays that ICA recovers are normalized to zero mean unit variance. The

X-axis in these eCDFs is normalized delays. Remember that our result considers all

experiments (100 experiments for each configuration) under all configurations (3 tier-

1 software and 4 tier-2 software). As shown in these figures, ICA could accurately

recover software delays in almost all cases.

Recovered Delay Accuracy under Different Workload

In the previous subsection, our experiment is conducted under idle systems. There

is no outside workload other than our probing requests. We would also want to know

how well ICA recovers delays under live workloads.

We set up the same two-tier storage application again and probed the system at

the same rate. This time, we issued two workloads concurrently. The first workload

is fixed-rate sending 300 requests per second which contains 100 read requests and

88

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Normalized Delay

C
D

F

Observed
Recovered

(a) Observed and recovered delays for a
component that yields median error (er-
ror=0.5%).

−5 0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Normalized Delay

C
D

F

Observed
Recovered

(b) Observed and recovered delays for a
component that yields 90th %tile error
(i.e., near worst case,error=15.6%).

Figure 4.3: Cumulative distribution functions for software delays. Delays are normal-
ized to zero mean unit variance.

200 write requests. The second is the WorldCup98 [10] workload with time varying

workload.

Figure 4.4 shows the results of the median, 90th and 95th percentile errors of

recovered delays under different workloads. We can see that adding workload in the

background does not hurt the accuracy. In fact, it even improves the accuracy in the

worst cases. Remember that ICA recovers component delays that are statistically

mutually independent and non-Gaussian. Applying workloads skews the component

delay distributions in each tier, making them less like a Gaussian distribution. Note,

this test compares recovered component delays to observed delays under the same

workload. Later, we will study the effect of changing the workload, i.e., comparing

recovered delays under one workload to observed delays under a different workload.

89

Idle Systems Fixed Rate WorldCup98
0

5

10

15

20
50th %tile
90th %tile
95th %tile

E
rr

or
 P

er
ce

nt
ag

e
(%

)

Figure 4.4: 50th, 90th and 95th percentile errors of the recovered component delays
under different workloads.

Recovered Delay Accuracy for Different Software

The next question we want to answer is that if the accuracy of recovered delays

differs from software by software. The answer turns out to be positive. Some software

components are recovered with lower error. Figure 4.5 shows 50th, 90th and 95th

percentiles of KL divergence between software and component delays grouped by

software. Note that ElasticSearch, PostgreSQL and MongoDB’s delays could always

be recovered accurately; while Memcached and Redis’ recovered component delays

are bit far from their software delays. It is not surprised because fast in-memory key-

value stores like Memcached and Redis have relatively small delays making it easily

to be masked by other components’ delays.

Remember that we issue 6 concurrent requests every time to the system making

ICA could recover at most 6 components. The number 6 is chosen quite arbitrary

and we would also want to see what happen if we only consider the first 2, 3, 4 or

90

0

5

10

15

20

25
50th %tile
90th %tile
95th %tile

E
rr

or
 P

er
ce

nt
ag

e
(%

)

Figure 4.5: 50th, 90th and 95th percentile errors for different software. There is no
background workload running on the test systems.

5 concurrent requests and only recover 2, 3, 4 or 5 components from the selected

response times.

Figure 4.6 shows the 90th percentile of KL divergence for ZooKeeper and Redis

under the settings of recovering 2, 3, 4, 5 and 6 components fprom the response times.

First, ZooKeeper’s delays are constantly better recovered than Redis’ delays. This

validates our statement from another angle that some software are more friendly to

ICA than others. Secondly, by extracting more components, the accuracy could be

slightly improved. This is partly because by extracting more components, some noise

could be isolated in separate components making other components less noisy. These

two trends could also be found in other software under our test.

91

ZooKeeper Redis
0

10

20

30

2 Components

3 Components

4 Components

5 Components

6 Components

E
rr

or
 P

er
ce

nt
ag

e
(%

)

Figure 4.6: 90th percentile KL divergence for ZooKeeper and Redis by extracting 2,
3, 4, 5, and 6 components from response times.

Identifying Software by Recovered Component Delays

To push our study even further, we want to see if we could use recovered compo-

nent delays to identify the underlying software running inside a application. That is,

can we extract components accurately enough to distinguish their normalized distri-

bution from other software.

We built a library of normalized software delays measured under idle workload for

Memcached, Redis, ZooKeeper, MySQL, PostgreSQL, MongoDB and ElasticSearch.

We collected 10 sets of 10, 000 delays for each software component.

To identify the underlying software in the system, we build one binary classifier for

each software. Each classifier takes a recovered component delays as input and returns

positive if the component delay is close enough to the corresponding software delays.

The algorithm of our classifier is quite simple and could be summarized into one

sentence: Return positive if in the library there are more than K sets of software delay

92

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

0 1

0
1

MongoDB
PostgreSQL
ElasticSearch

(a) ROC curves of software with low er-
rors

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

0 1

0
1

MySQL
ZooKeeper
Memcached
Redis

(b) ROC curves of software with high er-
rors

Figure 4.7: Receiver operating characteristic (ROC) curves of classifiers for each
software component when K=3.

samples whose KL divergence with the input component delay is less than KLthreshold

bits. Two parameters are K and KLthreshold. Since in our library, each software has

10 sets of delays, K is between 1 and 10. As we mentioned before, the recovered

component delays could not be equally accurate for all software, KLthreshold differs

from software to software. Because we build one classifier per software, there are 7

classifiers in total in our test.

To measure the performance of the classifiers, we use receiver operating charac-

teristic (ROC) curves to show the results. ROC curve is a widely used graphical tool

to illustrate the performance of a binary classifier. The basic idea of the ROC curve

is to run the classifier under different parameters on the same data set and record

its false positive rate and true positive rate. The Y-axis of an ROC space is the true

positive rate, which is the division of number of true positives (in our case, it means

93

the system contains the software and the classifier could correctly identifies it) over

the number of positives (in our case, it means the system contains the software) in

the data set. The X-axis is the false positive rate, which is the division of the number

of false positives (in our case, it means the system does not have the software but

the classifier falsely identified the software) over the number of positives. Both true

and false positive rates are between zero and one. To draw an ROC curve, we pick

a fixed value for K, change KLthreshold to get different values of true-positive and

false-positive rate and draw those points in the ROC curve.

Figure 4.7 shows ROC curves when K = 3. The diagonal in the ROC space

means a classifier that performs random guess. Any point above the diagonal in the

ROC curve means a possible configuration which is better than a random guess. We

can clearly see that the performance of classifiers is highly correlated with the accu-

racy of the recovered component delays. We group the ROC curves in two figures:

Figuer 4.7(a) shows the software whose delays could be recovered with low error.

These software can be accurately identified by their classifiers. In the case of Mon-

goDB, the true positive rate could reach 98% while the false positive rate could be

still under 20%. On the other hand, software, whose recovered delays has medium

error, like MySQL and ZooKeeper could be identified but sacrifices true positive rate

for lower false positive rate.

However, software delay distributions will be skewed by its workload. This re-

stricted our approach because the workload of software is unknown when the library

is built. Fortunately, modern cloud computing principles mitigates this problem.

Principles, especially like auto scaling, make per server workload stable by dynami-

cally adding or removing resources to each tier when the outside workload changes.

94

50th %tile 90th %tile 95th %tile
0

5

10

15

20
Fixed Rate
WorldCup98
Auto Scaling
Idle System

E
rr

or
 P

er
ce

nt
ag

e
(%

)

Figure 4.8: Comparing recovered components under different workload against a
library. The library is built using software delays in an idle system.

We conduct an experiment on the storage system running Memcached and MongoDB

in each tier serving WorldCup98 day 70’s workload. Each tier scales individually

along with the changes of the workload. We then compare the recovered component

delays against a library built with Memcached and MongoDB delays in an idle sys-

tem. As a comparison, we also run fixed-rate (300 rps) and Worldcup98 workload on

another system without auto-scaling. Figure 4.8 shows the median, 90th and 95th

percentile error by comparing recovered component delays with software delays in our

library. We can see that auto-scaling decreases the difference.

Exploring Parallelism within Components

As we described in Section 4.1.1, in our model, a request is processed sequentially

through independent components. There is no parallelism taken into consideration

when we apply ICA on response times.

95

Since we have shown above that with a help of a library of known software, we

could match the recovered components’ delay back to software within the library. We

would like to further use the library to explore the parallelism within a component.

Looking into one tier in the system, consider a request is being processed in parallel

within a cluster of servers. Assuming that the request can only be processed by the

next tier only if N servers respond the request. We call the number N as the parallel

factor for the software in the tier. The delay of the tier is the maximum delay of the

N servers, which would be recovered by ICA.

To detect the parallel factor of a given software, we adopt the same idea of using

a library of known software. We could setup the software on one server under a

controlled environment and collects its delays. We only keep the maximum delay of

every N delays and build a new set of delays. If a recovered component’s delay is

close to the set of delays, we would say that the recovered component has a parallel

factor of N .

To validate our approach, we setup the two-tier storage application, and put a

2-node MongoDB cluster in the second tier. For the first tier, we use one node to

run Memcached. We re-use the same MongoDB delays from the training set used

in Section 4.1.2 but uniformly re-sample them (with replacement) by keeping the

maximum of every 2, 3, and 4 delays and construct 10 sets of delays for each parallel

factor. Again, in each set, there are 1000 samples of delay.

We then apply ICA and recover independent component delays from the system.

Each recovered component delay is compared with the re-sampled MongoDB delays

within the training sets using symmetric KL divergence. Figure 4.9 shows the 50th

and 90th percentiles of KL divergence between the recovered component delays and

96

50th %tile 90th %tile
0
2
4
6
8

10
12
14

Factor=1
Factor=2
Factor=3
Factor=4

E
rr

or
 P

er
ce

nt
ag

e
(%

)

Figure 4.9: 50th and 90th percentiles of KL divergence between component delays
and re-sampled MongoDB delays with parallel factors of 1, 2, 3 and 4. The actual
parallel factor in the system is 2.

re-sampled MongoDB delays with parallel factors of 1 (i.e. the original MongoDB

delays), 2, 3, and 4. As we can see, the re-sampled delays with parallel factor of 2

is the closest to the recovered component delays. This agrees the fact that we use a

2-node MongoDB cluster in the backend of the system.

4.1.3 Study on Real Cloud Applications

We applied our approach to decompose response time for 33 real cloud applica-

tions that support keyword search. Requests that execute keyword search meet the

requirements outlined in Section 4.1.1:

1. Keyword search uses software with non-Gaussian service times: Elastic-

Search, Apache Solr, Memcached, Redis and SQL databases are commonly used

to process keyword searches. As shown in Section 4.1.2, these components have

fat tail, non-Gaussian execution times.

97

2. Keyword searches can have independent normalized delay: Our search

parameters include long words composed from random letters. These words sub-

vert caches that would make normalized delay between requests inter-dependent.

Each of our applications are likely to proceed through all layered caches before

returning a result.

3. Invocation frequencies vary: Our requests also use search parameters that

specify real keywords and categories. Under live workloads, these parameters

ensure concurrent requests will invoke cache components differently.

We selected a wide range of applications from large popular sites like Google and

Amazon to smaller sites like Sundial (a comedy magazine). All applications support

HTTP/HTTPS, allowing us to use CGI to specify keyword parameters. For each

application, we issued 5 concurrent requests 1000 times, allowing 500ms idle time

between each round. We conducted 20 experiments for each applications, spreading

experiments over 30 days. We set T0 to 50%, meaning we pruned components that

appeared in fewer than 10 experiments. We set T1 to 3% error, meaning components

were considered to represent the same software component if the absolute relative

error between their distributions was less than 3%.

Component Delays and Response Times

Figure 4.10 compares tail response time and component delay for each application.

Slow components do not necessarily cause slow response time. Craiglist, Youtube,

Yelp, Google and Amazon use components with relatively fat tails but achieve skinny

tails for response time. The 11 applications that achieve fastest response-time tails

98

0.0

0.5

1.0

1.5

2.0

2.5
95th %tile Response Time

Max. 95th %tile Component Delay

N
o

rm
a

liz
e

d
 T

im
e

Figure 4.10: 95th percentile of normalized response times compared to the largest 95th

percentile of recovered software delays for 33 real cloud applications.

support at least one component with a longer tail. To be sure, Figure 4.10 reports nor-

malized delay. We can not directly compare tails for response time and components.

However, it is likely that these applications are engineered to survive slow responding

components. Either slow components make up a small portion of response time or

the applications react when components take too long (e.g., timeouts).

Figure 4.10 also shows that applications with poor tail response time are affected

by multiple components. The 5 of the 6 applications with slowest tail response time

perform worse than their slowest component. Response time tail results from multiple

components executing slowly at the same time.

Labeling Software Used in Real Sites

We have shown in the previous section that it is possible to use recovered compo-

nent delays and a library of known software to roughly find what software is running

in the back-end system given a cloud application’s response times. Besides, we could

further manipulate the library to find how many instances of a given software is used

in parallel to process a user request. Number of parallel instances involved in each

99

Found & Confirmed Found & Unconfirmed

ElasticSearch Ebay, Etsy, Kickstarter, Wal-
mart, Yelp

Bing, Deviantart, Slate.fr

MongoDB FashionUnited, Gov.uk,
Mtv.com, Otto.de, Slate.fr

Ebay

PostgreSQL AppBrain Yelp, Walmart

MySQL Ebay, Flickr, Github, Kick-
Starter, Pitchfork, Twitter ,
Walmart, Wikia

CNN.com , Etsy, The Inde-
pendent

ZooKeeper Reddit Etsy, Flickr, KickStarter

Table 4.1: Results of finding software running in cloud applications. Found & Con-
firmed means the software is found by our classifier and we can find at least one
reliable source confirming that the application uses the software.

request could be used as a rough estimation of the energy footprint per request of the

cloud application.

We apply the same technique on real cloud applications’ data and try to find what

software runs behind those applications. We also consider different parallel factors

for each software. For each software and a given parallel factor, we build a binary

classifier comparing the recovered delay with the software delays in the library. The

classifiers are tuned using our two-tier storage application’s data. Their parameter K

is set to maximize the area under their ROC curve (AUC); and KLthreshold is chosen

to maximize the true positive rate while maintains the false positive rate less than

1/3 of the true positive rate.

Table 4.1 shows the software that we found for each cloud application. For recov-

ered component that matched software components in our library, we searched for

public-domain data that confirmed that the application actually uses the matched

software component. Specifically, we searched technical blogs, official Powerpoint

100

slides, white papers and reliable third party articles. Even though different appli-

cations are running different versions of software under diverse environments, our

classifiers could still have a decent performance partly because we use normalized

software delays. In most cases, once our classifier finds a software running behind a

application, it could be confirmed by at least one source. However, there are some

obvious errors that we can see from the table: Microsoft Bing is very unlikely to use

ElasticSearch (though, they may use similar proprietary software). Yelp and Walmart

use MySQL, making it unlikely that they also use PostgreSQL.

We matched 28 recovered, stable components against the open source components

in our library. We were able to confirm 20 of the components were used in production

by the applications (71% success rate).

Studying Normalized Energy Footprint of Real Sites

MySQL

MongoDB

Zookeeper

Elastic Search

0 0.5 1 1.5 2 2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized EnergyNormalized Energy

95th %tile Response Time

Figure 4.11: 95th percentile response times and normalized energy footprint. The
black bars are the median of the 95th percentile response time of the sites that are
found using the software by our classifier. The shaded bars are the median normalized
energy footprints (or parallel factors) of those sites.

101

Recall, our matching approach discovers the parallel factor for each component in

library, i.e., an estimate on the number of data-parallel software invocations during

request execution. Assuming that data-parallel optimizations linearly increase energy

footprint, the parallel factor describes normalized energy foorprint.

In Figure 4.11, we noticed that increasing data parallelism would increased the

tail response time. We grouped energy footprints and 95th percentile response time

by the software component matched in our library, reporting the median for both

energy footprint and response time. As we can see in the figure, higher tail response

time is highly correlated to higher energy footprints. The correlation coefficient of

them is 0.908.

102

Chapter 5: Related Work

Our work provides solutions for different participants in the carbon-aware com-

puting market. In literature, there are a large amount of works focusing on each of

these issues.

5.1 Energy Accounting

Accurately monitoring and fairly attributing energy consumption is the first step

to energy efficient systems. Bellosa [18] used a linear model to estimate CPU and

memory energy consumption using data collected from hardware counters. Similar

approach was used in [19] to model power consumption for multicore processors.

PowerTracer [74] maps the low-level measurements back to request context. These

low-level traces were combined to produce diverse views of the system ranging from

per-node system call counts to per-tier energy efficiency. Power container [89] ac-

counts and controls the energy usage of individual requests in multicore systems. It

replies on a model to estimate per-core energy consumption and tracking systems

for user requests. To control the energy usage, power container introduced a fair

power capping that only penalizes power-hungry requests. HaPPy [106] considered

hyperthread processors and modeled the energy consumption for each job in a system.

103

5.2 Energy Efficient Hardware

Works have been done to improve the energy efficiency at the hardware level.

Weiser et al. [103] studied several algorithms to adjust CPU frequencies under differ-

ent workloads. It used the CPU utilization as the major metric to control the CPU

speed. This early work laid down a foundation for DVFS. Luiz et al. [17] suggested

that energy proportional computer systems are desirable for datacenters, because

real production servers spend most of their time at utilization between 10 to 50 per-

cent. Their work showed that some CPUs were already energy proportional, while

other components like memory, disk are not, making servers less energy efficient in

most of their time. Delaluz et al. [31] investigated several hardware and software

approach to control memory’s power mode. They used a combination of techniques

managed to save up to 89 percent of energy under some workloads. MemScale [35]

introduced low-power mode for main memory by lowering the bandwidth for energy

savings. It focused on multi-core systems which have multiple memory controllers.

Using a heuristic algorithm, MemScale calculates the frequency combination across

memory controllers to minimize overall system energy under user-specified perfor-

mance constraints. Similarly, CoScale [34] considered both memory and CPU cores

to heuristically find a frequency setting to save energy.

5.3 Carbon-Aware Applications

One general approach to reduce carbon footprints is to distribute workload among

several datacenters. Datacenters with lower carbon footprints will be preferred if

other conditions are same. Looking at the carbon footprint of entire datacenters,

these works measure the contribution of renewable energy from utility providers over

104

time. By dynamically migrating workload to the datacenter with the least carbon-

heavy, grid energy, the aggregate footprint for a collection of datacenters is reduced.

Le et al. [66] studied applications that capped their carbon footprints either by cap-

and-trade, cap-and-pay, or absolutely capped policies. Their key insight was that

a central load balancer could route requests between green and dirty Web hosts to

maintain a low carbon footprint while meeting SLAs.

Liu et al. [72] provided a model to assess a datacenter’s performance to carbon

footprint efficiency. They use weighted linear models to find the best datacenter,

proposing a scalable algorithm to do so. Zhang et al. [107] studied cloud applications

that tried to minimize the carbon footprint of certain requests within a fixed budget.

This approach reflects a common practice where large companies outsource a small

portion of their operation to a green host, often for conspicuous altruism [54, 1].

Lin et al. [71] studied the general geographical load balancing problem by using

online algorithms, which assuming only history and near future data is available and

try to calculate a solution whose difference between the optimal solution (the solution

considering both history and all future data) is bounded. In the paper, three online

algorithms were discussed to solve geographical load balancing problem: Receding

Horizon Control (RHC), Fixed Horizon Control (FHC) and Averaging Fixed Hori-

zon Control (AFHC). The paper discussed these three algorithms, mainly RHC and

AFHC, by comparing their competitive ratios under homogeneous and heterogeneous

configurations. It proved that RHC provides good performance on homogeneous data

centers, which is

(
1 +

β

(w + 1)e0

)
-competitive, where e0 is the cost of running an idle

105

server, β is the switching cost of turning on a server. This means better prediction al-

gorithm, which provides larger w, could improve the result linearly. However, on het-

erogeneous data centers, RHC is ≥
(

1 + maxs(
β

e0,s

)

)
-competitive. Compared with

RHC, AFHC gives a more robust competitive ratio, which is

(
1 + maxs

βs
(w + 1)e0,s

)
-

competitive in both homogeneous and heterogeneous settings. This means AFHC

could give better worste-case results if the prediction algorithm is improved to pre-

dict further future even under heterogeneous setting.

Instead of redirecting user requests, Yank [90] migrates virtual machines to deal

with the intermittent nature of renewable energy. The key idea is to reduce cost by

using unreliable but cheap power for most servers, called transient servers; while using

reliable but expensive power for small group of servers, called stable servers, as back

ups. When the power is going to be cut, an advanced warning will be sent to affected

transient servers. Stable servers will be used to record the state of virtual machines

(VMs) running on those transient servers. The transient servers will be shut down

after a short warning period. Yank explored a solution working for different lengths

of warning period.

There are also works focusing on reducing carbon footprint for specific type of

application. Blink [86] proposed a key-value storage application that transferred

popular keys away from nodes that were turned off during intermittent clean energy

outages. The challenge was to serve as many read and write requests as possible

using only resources powered by clean energy. BlinkFS [88] used the similar idea on

designing a distributed file system for intermittent power supply. GreenHadoop [51]

schedules MapReduce jobs to increase the use of renewable energy. It used a model

106

to predict the on-site renewable energy production in the near future and postpones

jobs until the renewable energy is available or the jobs’ deadline.

5.4 Carbon-Aware Datacenters

Ren et al. [84] modeled the energy capacity planning problem for datacenters us-

ing a linear programming. It considered renewable energy credits and multiple power

sources, including power grid, on/off-site renewable energy generators, diesel gener-

ators, energy storage devices. The goal is to minimize the total cost for datacenters

by smartly planning the energy usage from different sources. Li et al. [68] turned off

processor cores (e.g. via DVFS) to increase the ratio of renewable energy to dirty

energy on a system. Similarly, Gmach et al. [48, 49] found that server-power capping

and consolidation to power servers under low renewable-energy production can enable

renewable powered services, albeit with a performance cost. GreenWorks [67] is also

a research of a full stack power management system in renewable data centers. It dif-

fers from previous work due to its hierarchical power management and coordination

framework. The GreenWorks manages power supply in three tiers, where each tier

runs a type of green worker specifically designed for the tier. The first, datacenter

level tier runs green worker called baseload laborer, which controls the output of all

energy sources through micro-grid central controller. The second tier is at the clus-

ter/PDU level running energy keeper which monitors the battery state and control

battery discharging when power supply drops or load surge happens. The third tier

is the rack level running load broker which uses CPU frequency scaling to match the

power supply. It is well known that datacenters support dynamic workloads that

exhibit daily [11, 92], bursty [29], and nonstationary patterns [92]. Control theory

107

solutions are now widely used in research and practice. Abdelzaher et al. [9] provides

a good primer on such techniques, covering resource and admission controllers, sen-

sors, and reactive and predictive techniques. Stewart et al. [94] was among the first

to explore these problems, showing that datacenters must use costly batteries or grid

ties to make up for below-threshold renewable-energy production.

There are experiments on building real environmental friendly datacenters. Net-

Zero energy data center [13] is an experimental research project from HP lab aiming

to build a data center with zero emission within its whole life time, starting from

mining and producing the materials used in the data center. This requires life-cycle

assessment (LCA) for all hardware including servers, buildings, cooling system, etc.

To reduce the carbon emission, all components in the data center should have a low

embedded exergy consumption. Because most components have positive embedded

exergy consumption, this requires the data center produce more energy than its con-

sumption in its lifecycle to offset the embedded carbon emission in their hardware.

Parasol [50] is a container-size data center in Rutgers powered by solar panel and grid.

It did not consider the embedded energy consumption of the data center. This gives

Parasol more flexibility when building the data center. Both approaches have their

own contribution. Net-zero energy data center is the most environmental friendly

way of building and operating a data center. Parasol proposed a cost-centric way of

using renewable energy making it more practical for current real-world data centers.

For-profit companies provide green hosting service to attract carbon aware cus-

tomers. AISO [1], HostGator [56], Green Geeks, and GreenQloud [53] reflect a grow-

ing cadre of green hosts that hope to profit from their investments in clean energy.

AISO, the eldest of these green hosts, was founded in 1997 but its customer base

108

began to grow rapidly in 2002, increasing by 60% through 2008 [101]. AISO’s growth

marks the start of an ongoing boom in green hosting. HostGator [56], a green host

based in windy Texas and founded in 2002, is now one of the largest low-cost Web

hosts in the world, hosting over 1.8 million domain names. While AISO buys so-

lar panels to invest in clean energy, HostGator buys renewable energy credits from

local wind farms. The latter approach, using renewable energy credits. Datacenter

owners could invest in renewable energy farms or buy credit from renewable energy

market; while the renewable power is merged into the electrical grid. The benefit of

this approach is to use renewable energy without initial installation. It also allows

hosts like HostGator to support offset ratios greater than 100% by buying multiple

credits for every joule used. HostGator in particular offsets 130% of the dirty energy

used to power its servers. Green Geeks offset 300%. Several sources also suggest that

Google is currently buying renewable energy credits to offset its datacenters’ carbon

footprints [1, 38].

5.5 Cloud Application Performance Analysis

Chapter 4 introduced a black-box approach to analyze a cloud application’s per-

component performance. This approach helps end users to get implementation level

details about an application. There are several methods available to study a cloud

application’s performance from different perspectives requiring different amount of

exposure of the application. To the best of our knowledge, our ICA-based approach

is the first work that analyzes a cloud application from per-component’s perspective

but only requires information available to third party users.

109

Works have been done to trace user requests within a cloud application’s back-

end system. Frameworks like Pinpoint [26] monitor components triggered by each

user requests and locate faulty components using data mining techniques. Tracing

user requests to see which components are triggered by a request is also required in

systems like Magpie [14], X-Trace [44] and EntomoModel [95]. In these systems, each

component is monitored by either changing their source code, or their running envi-

ronment, e.g. using a modified kernel. Low level information like system call trace,

CPU utilization and memory usage is also used to study live cloud applications’ be-

havior. PerfScope [30] analyzes recent system calls to perform online bug inference.

It narrows down the possible buggy functions by detecting time or frequency changes

in system calls. PREPARE [96] monitors virtual machines’ system-level metrics and

applies statistical learning algorithms to detect performance anomalies. It works at

the hypervisor level making it possible to be applied by cloud providers. Li et al. [69]

studied the relationship between low-level metrics, like system call trace, CPU utiliza-

tion and memory usage, and the tail latencies of components in cloud applications.

Their findings shown that scheduling policy, CPU power saving mechanisms and

NUMA effects would significantly affects the tail latencies. Software log messages

are also useful to conduct a component-level study of a cloud application. Tools like

DISTALYZER [77] helps users to discover anomalies by comparing log from normal

runs against logs with anomaly performance. Using source code information along

with log messages would even help users to locate the exact line of anomaly. Both Xu

et al. [104] and Ghanbari et al. [47] use static analysis to find log statements in the

source code and relate the anomalous log messages back to the source code. When

source code is not available, other approaches such as Mantis [64] and ConfAid [12]

110

modified application binaries to collect events. All these approaches are useful for

cloud applications’ administrators who has access to the back-end system.

111

Chapter 6: Conclusion

Carbon emissions increasingly affect the design and management of cloud appli-

cations and datacenters. Our research has shown that carbon-aware management, at

every layer in the cloud computing stack, can increase profit and improve end-user

satisfaction.

We proposed a general policy and mechanism for carbon-aware applications and

introduced carbon-awareness into storage applications. Our experiments showed that

carbon-aware applications prefer heterogeneous systems, where they choose resources

from several datacenters whose resources combined could reduce carbon footprint.

Because different types of applications may exhibit different characteristics, there

may be opportunities to further reduce their carbon footprints by fully exploiting

their potentials in a case-by-case study. Instead of studying general frameworks for

carbon-aware applications, the future work for carbon-aware applications would focus

more on application-specific features, so that the application could be further tuned

to perform a specific task under low carbon footprints. Some examples could be

low-carbon key-value in-memory data store, low-carbon video streaming service, etc.

We also studied power delivery mechanisms to allow datacenters to concentrate

their carbon offset investments to to servers used by carbon-aware users. Our study

first focused on an architectural level solution to concentrate renewable energy into

112

a group of resources. We identified a key component in renewable datacenters: grid

ties, the device most commonly used to integrate renewable energy into the datacen-

ters power delivery system. Our research showed that placement of grid ties would

dramatically affect the number of renewable powered instances — a metric we pro-

posed to measure concentration of renewable energy. Second, we proposed adaptive

green hosting, a system for datacenters which adaptively control its renewable energy

supply to cloud applications. We argued that renewable energy investment should di-

rectly lead to profit. Our approach is to distribute renewable energy to carbon-aware

applications to encourage them to use more renewable-powered resources.

There are still open problems for adaptive green hosting. Future work will improve

upon our approach by considering more complex interplay between SLAs and carbon

footprint goals, heterogeneous energy efficiency and carbon efficiency among hosts,

and in depth workload prediction approaches. Besides, interactions between multiple

adaptive green hosts would be an interesting topic. In this case, when a green host

tries to set its offset ratio, it has to consider the offset ratios set by other competing

hosts using similar adaptive approach.

Finally, we devised a novel approach to infer a cloud application’s implementation

and energy footprint using only publicly available data. Solving this problem may

encourage cloud applications to be carbon-aware by exposing their internal informa-

tion to their end users. Such information is also useful for third parties to diagnose

an application’s performance issue. We presented a series of study on decomposing

response times into per-component delays. Using Independent Component Analysis

(ICA), response times can be accurately divided into component delays with 90th

percentile error less than 17%. Using a library of known software, these recovered

113

component delays can be used to find the software running behind an application

and its corresponding parallel factor, which is directly related to per-request energy

footprint. Further, 33 real cloud applications’ per-component delays are studied along

with their response times. We found that the collaboration between components in

a service is important to the system’s performance. Also, we found that the energy

footprint and tail response time are correlated.

Looking from different perspectives of all participants in green computing market,

our research showed that, even if renewable energy is more expensive than traditional

dirty energy, it is possible and profitable to invest into this field. Considering the

carbon emissions of the global IT sector [61], encouraging more companies to reduce

their carbon footprints would benefit the society in a large scale.

114

Bibliography

[1] Aiso.net: Web hosting as nature intended. http://aiso.net.

[2] Amazon elastic compute cloud. http://aws.amazon.com/ec2/pricing/.

[3] Apache web server. http://httpd.apache.org/.

[4] Ecosia - number of daily searches. http://ecosia.org/statistics.php.

[5] Green House Data: Greening the data center. http://www.greenhousedata.

com/.

[6] ipath global carbon etn. http://www.ipathetn.com/product/GRN/.

[7] TPC. http://www.tpc.org/.

[8] Google solar panel project. http://www.google.com/corporate/

solarpanels/home, June 2007.

[9] Tarek Abdelzaher, John Stankovic, Chenyang Lu, Ronghua Zhang, and Ying
Lu. Feedback performance control in software services. IEEE Control Systems
Magazine, 23(3):74–90, 2003.

[10] Martin Arlitt and Tai Jin. A workload characterization study of the 1998 world
cup web site. Network, IEEE, 14(3):30–37, 2000.

[11] Martin F Arlitt and Carey L Williamson. Web server workload characterization:
The search for invariants. In ACM SIGMETRICS Performance Evaluation
Review, volume 24, pages 126–137. ACM, 1996.

[12] Mona Attariyan and Jason Flinn. Automating configuration troubleshooting
with dynamic information flow analysis. In OSDI, pages 237–250, 2010.

[13] Prithviraj Banerjee, Chandrakant Patel, Cullen Bash, Amip Shah, and Martin
Arlitt. Towards a net-zero data center. ACM Journal on Emerging Technologies
in Computing Systems (JETC), 8(4):27, 2012.

115

http://aws.amazon.com/ec2/pricing/
http://ecosia.org/statistics.php
http://www.greenhousedata.com/
http://www.greenhousedata.com/
http://www.ipathetn.com/product/GRN/
http://www.tpc.org/
http://www.google.com/corporate/solarpanels/home
http://www.google.com/corporate/solarpanels/home

[14] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using
magpie for request extraction and workload modelling. In OSDI, volume 4,
pages 18–18, 2004.

[15] Allan Kardec Barros and Andrzej Cichocki. A fixed-point algorithm for indepen-
dent component analysis which uses a priori information. In Neural Networks,
1998. Proceedings. Vth Brazilian Symposium on, pages 39–42. IEEE, 1998.

[16] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The datacenter as a
computer: An introduction to the design of warehouse-scale machines. Synthesis
lectures on computer architecture, 8(3):1–154, 2013.

[17] Luiz André Barroso and Urs Hölzle. The case for energy-proportional comput-
ing. Computer, (12):33–37, 2007.

[18] Frank Bellosa. The benefits of event: driven energy accounting in power-
sensitive systems. In Proceedings of the 9th workshop on ACM SIGOPS Euro-
pean workshop: beyond the PC: new challenges for the operating system, pages
37–42. ACM, 2000.

[19] Ramon Bertran, Marc Gonzalez, Xavier Martorell, Nacho Navarro, and Eduard
Ayguade. Decomposable and responsive power models for multicore processors
using performance counters. In Proceedings of the 24th ACM International
Conference on Supercomputing, pages 147–158. ACM, 2010.

[20] Janusz Bialek. Tracing the flow of electricity. IEE Proceedings-Generation,
Transmission and Distribution, 143(4):313–320, 1996.

[21] Sylvain Boltz, Eric Debreuve, and Michel Barlaud. knn-based high-dimensional
kullback-leibler distance for tracking. In Image Analysis for Multimedia Inter-
active Services, 2007. WIAMIS’07. Eighth International Workshop on, pages
16–16. IEEE, 2007.

[22] Ward Bower, Chuck Whitaker, W Erdman, M Behnke, and M Fitzgerald. Per-
formance test protocol for evaluating inverters used in grid-connected photo-
voltaic systems. California Energy Commission, 2004.

[23] Christopher P Cameron, William E Boyson, and Daniel M Riley. Comparison
of pv system performance-model predictions with measured pv system perfor-
mance. In Photovoltaic Specialists Conference, 2008. PVSC’08. 33rd IEEE,
pages 1–6. IEEE, 2008.

[24] Stephen L Campbell, Jean-Philippe Chancelier, and Ramine Nikoukhah. Mod-
eling and Simulation in SCILAB. Springer, 2006.

116

[25] John Chattaway. Rackspace green survey. In Rackspace Hosting White Paper,
June 2008.

[26] Mike Y Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric Brewer.
Pinpoint: Problem determination in large, dynamic internet services. In De-
pendable Systems and Networks, 2002. DSN 2002. Proceedings. International
Conference on, pages 595–604. IEEE, 2002.

[27] Gary Cook and Jodie Van Horn. How dirty is your data? a look at the energy
choices that power cloud computing. Greenpeace (April 2011), 2011.

[28] Thomas M Cover and Joy A Thomas. Elements of information theory. John
Wiley & Sons, 2012.

[29] Mark E Crovella and Azer Bestavros. Self-similarity in world wide web traffic:
Evidence and possible causes. ACM SIGMETRICS Performance Evaluation
Review, 24(1):160–169, 1996.

[30] Daniel J Dean, Hiep Nguyen, Xiaohui Gu, Hui Zhang, Junghwan Rhee, Nipun
Arora, and Geoff Jiang. Perfscope: Practical online server performance bug
inference in production cloud computing infrastructures. In Proceedings of the
ACM Symposium on Cloud Computing, pages 1–13. ACM, 2014.

[31] Victor Delaluz, Mahmut Kandemir, Narayanan Vijaykrishnan, Anand Sivasub-
ramaniam, and Mary Jane Irwin. Hardware and software techniques for control-
ling dram power modes. Computers, IEEE Transactions on, 50(11):1154–1173,
2001.

[32] Nan Deng, Christopher Stewart, Daniel Gmach, and Martin Arlitt. Policy and
mechanism for carbon-aware cloud applications. In Network Operations and
Management Symposium (NOMS), 2012 IEEE, pages 590–594. IEEE, 2012.

[33] Nan Deng, Christopher Stewart, and Jing Li. Concentrating renewable energy
in grid-tied datacenters. In Sustainable Systems and Technology (ISSST), 2011
IEEE International Symposium on, pages 1–6. IEEE, 2011.

[34] Qingyuan Deng, David Meisner, Arup Bhattacharjee, Thomas F Wenisch, and
Ricardo Bianchini. Coscale: Coordinating cpu and memory system dvfs in
server systems. In Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM
International Symposium on, pages 143–154. IEEE, 2012.

[35] Qingyuan Deng, David Meisner, Luiz Ramos, Thomas F Wenisch, and Ri-
cardo Bianchini. Memscale: active low-power modes for main memory. ACM
SIGARCH Computer Architecture News, 39(1):225–238, 2011.

117

[36] Domain Tools. http://www.domaintools.com/.

[37] Sandhya Dwarkadas, J. Robert Jump, and James B. Sinclair. Execution-driven
simulation of multiprocessors: Address and timing analysis. ACM Transactions
on Modeling and Computer Simulation (TOMACS), 4(4):314–338, 1994.

[38] EcobusinessLinks. Green webhosts. http://www.ecobusinesslinks.com/

green_webhosts/.

[39] Ecosia - the green search. http://www.ecosia.org/.

[40] Enphase Energy. Enphase grid tie inverters. http://www.enphase.com/.

[41] Environmental Leader. Data centers power up savings with re-
newable energy. http://www.environmentalleader.com/2009/07/29/

data-centers-power-up-savings-with-renewable-energy/.

[42] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provisioning
for a warehouse-sized computer. In ACM SIGARCH Computer Architecture
News, volume 35, pages 13–23. ACM, 2007.

[43] Christopher B Field, Vicente R Barros, MD Mastrandrea, Katharine J Mach,
MA-K Abdrabo, N Adger, YA Anokhin, OA Anisimov, DJ Arent, J Barnett,
et al. Summary for policymakers. Climate change 2014: impacts, adaptation,
and vulnerability. Part a: global and sectoral aspects. Contribution of working
group II to the fifth assessment report of the intergovernmental panel on climate
change, pages 1–32, 2014.

[44] Rodrigo Fonseca, George Porter, Randy H Katz, Scott Shenker, and Ion Stoica.
X-trace: A pervasive network tracing framework. In Proceedings of the 4th
USENIX conference on Networked systems design & implementation, pages 20–
20. USENIX Association, 2007.

[45] Anshul Gandhi, Yuan Chen, Daniel Gmach, Martin Arlitt, and Manish Mar-
wah. Minimizing data center sla violations and power consumption via hybrid
resource provisioning. In Green Computing Conference and Workshops (IGCC),
2011 International, pages 1–8. IEEE, 2011.

[46] Anshul Gandhi, Sherwin Doroudi, Mor Harchol-Balter, and Alan Scheller-Wolf.
Exact analysis of the m/m/k/setup class of markov chains via recursive renewal
reward. In Proceedings of the ACM SIGMETRICS/international conference on
Measurement and modeling of computer systems, pages 153–166. ACM, 2013.

[47] Saeed Ghanbari, Ali B Hashemi, and Cristiana Amza. Stage-aware anomaly
detection through tracking log points. In Proceedings of the 15th International
Middleware Conference, pages 253–264. ACM, 2014.

118

http://www.ecobusinesslinks.com/green_webhosts/
http://www.ecobusinesslinks.com/green_webhosts/
http://www.ecosia.org/
http://www.environmentalleader.com/2009/07/29/data-centers-power-up-savings-with-renewable-energy/
http://www.environmentalleader.com/2009/07/29/data-centers-power-up-savings-with-renewable-energy/

[48] Daniel Gmach, Yuan Chen, Amip Shah, Jerry Rolia, Cullen Bash, Tom Chris-
tian, and Ratnesh Sharma. Profiling sustainability of data centers. In Sustain-
able Systems and Technology (ISSST), 2010 IEEE International Symposium on,
pages 1–6. IEEE, 2010.

[49] Daniel Gmach, Jerry Rolia, Cullen Bash, Yuan Chen, Tom Christian, Amip
Shah, Ratnesh Sharma, and Zhikui Wang. Capacity planning and power man-
agement to exploit sustainable energy. In Network and Service Management
(CNSM), 2010 International Conference on, pages 96–103. IEEE, 2010.

[50] Íñigo Goiri, William Katsak, Kien Le, Thu D Nguyen, and Ricardo Bianchini.
Parasol and greenswitch: Managing datacenters powered by renewable energy.
In ACM SIGARCH Computer Architecture News, volume 41, pages 51–64.
ACM, 2013.

[51] Íñigo Goiri, Kien Le, Thu D Nguyen, Jordi Guitart, Jordi Torres, and Ricardo
Bianchini. Greenhadoop: leveraging green energy in data-processing frame-
works. In Proceedings of the 7th ACM european conference on Computer Sys-
tems, pages 57–70. ACM, 2012.

[52] GoodEnergy. http://www.goodenergy.com, 2012.

[53] Greenqloud — the worlds first truly green compute cloud.
http://www.greenqloud.com.

[54] Vladas Griskevicius, Joshua M Tybur, and Bram Van den Bergh. Going green
to be seen: status, reputation, and conspicuous conservation. Journal of per-
sonality and social psychology, 98(3):392, 2010.

[55] Nielsen Holdings. The nielsen global online environmental survey, 2011.

[56] Hostgator: Web hosting services. http://hostgator.com.

[57] Aapo Hyvärinen. Fast and robust fixed-point algorithms for independent com-
ponent analysis. Neural Networks, IEEE Transactions on, 10(3):626–634, 1999.

[58] Oscar H Ibarra and Chul E Kim. Fast approximation algorithms for the knap-
sack and sum of subset problems. Journal of the ACM (JACM), 22(4):463–468,
1975.

[59] Raj Jain. The art of computer systems performance analysis. John Wiley &
Sons, 2008.

[60] John Mattson, Emerson Inc. Personal communication. http://

emerson-datacenter.com.

119

http://www.goodenergy.com
http://emerson-datacenter.com
http://emerson-datacenter.com

[61] James M Kaplan, William Forrest, and Noah Kindler. Revolutionizing data cen-
ter energy efficiency. Technical report, Technical report, McKinsey & Company,
2008.

[62] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,
and Daniel Lewin. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pages 654–663.
ACM, 1997.

[63] Jonathan G Koomey. Worldwide electricity used in data centers. Environmental
Research Letters, 3(3):034008, 2008.

[64] Yongin Kwon, Sangmin Lee, Hayoon Yi, Donghyun Kwon, Seungjun Yang,
Byung-Gon Chun, Ling Huang, Petros Maniatis, Mayur Naik, and Yunheung
Paek. Mantis: Automatic performance prediction for smartphone applications.
In Proceedings of the 2013 USENIX conference on Annual Technical Conference,
pages 297–308. USENIX Association, 2013.

[65] Larry O’Connor, CEO of OWC.net. Personal communication. http://owc.net.

[66] Kien Le, Ricardo Bianchini, Thu D Nguyen, Ozlem Bilgir, and Margaret
Martonosi. Capping the brown energy consumption of internet services at low
cost. In Green Computing Conference, 2010 International, pages 3–14. IEEE,
2010.

[67] Chao Li, Rui Wang, Tao Li, Depei Qian, and Jingling Yuan. Managing green
datacenters powered by hybrid renewable energy systems. In International Con-
ference on Autonomic Computing (ICAC), 2014.

[68] Chao Li, Wangyuan Zhang, Chang-Burm Cho, and Tao Li. Solarcore: Solar
energy driven multi-core architecture power management. In High Performance
Computer Architecture (HPCA), 2011 IEEE 17th International Symposium on,
pages 205–216. IEEE, 2011.

[69] Jialin Li, Naveen Kr Sharma, Dan RK Ports, and Steven D Gribble. Tales of the
tail: Hardware, os, and application-level sources of tail latency. In Proceedings
of the ACM Symposium on Cloud Computing, pages 1–14. ACM, 2014.

[70] Kevin Lim, Parthasarathy Ranganathan, Jichuan Chang, Chandrakant Patel,
Trevor Mudge, and Steven Reinhardt. Understanding and designing new server
architectures for emerging warehouse-computing environments. In Computer
Architecture, 2008. ISCA’08. 35th International Symposium on, pages 315–326.
IEEE, 2008.

120

http://owc.net

[71] Minghong Lin, Zhenhua Liu, Adam Wierman, and Lachlan LH Andrew. Online
algorithms for geographical load balancing. In Green Computing Conference
(IGCC), 2012 International, pages 1–10. IEEE, 2012.

[72] Zhenhua Liu, Minghong Lin, Adam Wierman, Steven H Low, and Lachlan LH
Andrew. Greening geographical load balancing. In Proceedings of the ACM
SIGMETRICS joint international conference on Measurement and modeling of
computer systems, pages 233–244. ACM, 2011.

[73] LPSolve. http://www.lpsolve.com.

[74] Gang Lu, Jianfeng Zhan, Haining Wang, Lin Yuan, and Chuliang Weng. Power-
tracer: Tracing requests in multi-tier services to diagnose energy inefficiency. In
Proceedings of the 9th international conference on Autonomic computing, pages
97–102. ACM, 2012.

[75] Silvano Martello and Paolo Toth. Knapsack problems: algorithms and computer
implementations. John Wiley & Sons, Inc., 1990.

[76] David Meisner and Thomas F Wenisch. Stochastic queuing simulation for data
center workloads. In Exascale Evaluation and Research Techniques Workshop.
Citeseer, 2010.

[77] Karthik Nagaraj, Charles Killian, and Jennifer Neville. Structured comparative
analysis of systems logs to diagnose performance problems. In Proceedings of
the 9th USENIX conference on Networked Systems Design and Implementation,
pages 26–26. USENIX Association, 2012.

[78] National Renewable Energy Laboratory. NREL: Western wind resources
dataset. http://wind.nrel.gov/Web_nrel/, 2009.

[79] M. Ontkush. Plethora of options for green web hosting. www.treehugger.com,
2007.

[80] Clayton R Paul. Fundamentals of Circuit Analysis. Wiley, 2000.

[81] Cameron Potter, Debra Lew, Jim McCaa, Sam Cheng, Scott Eichelberger, and
Eric Grimit. Creating the dataset for the western wind and solar integration
study (usa). Wind Engineering, 32(4):325–338, 2008.

[82] PricewaterhouseCoopers Inc. Going green:sustainable growth strategies. www.

pwc.com/en_GX/gx/technology/pdf/going-green.pdf, 2011.

[83] Parthasarathy Ranganathan and Phil Leech. Simulating complex enterprise
workloads using utilization traces. In 10th Workshop on Computer Architecture
Evaluation using Commercial Workloads (CAECW). Citeseer, 2007.

121

http://www.lpsolve.com
http://wind.nrel.gov/Web_nrel/
www.treehugger.com
www.pwc.com/en_GX/gx/technology/pdf/going-green.pdf
www.pwc.com/en_GX/gx/technology/pdf/going-green.pdf

[84] Chuangang Ren, Di Wang, Bhuvan Urgaonkar, and Anand Sivasubramaniam.
Carbon-aware energy capacity planning for datacenters. In Modeling, Analysis
& Simulation of Computer and Telecommunication Systems (MASCOTS), 2012
IEEE 20th International Symposium on, pages 391–400. IEEE, 2012.

[85] SAP. Sap insight: Product environmental footprint and ecolabeling. August
2009.

[86] Navin Sharma, Sean Barker, David Irwin, and Prashant Shenoy. Blink: man-
aging server clusters on intermittent power. In ACM SIGPLAN Notices, vol-
ume 46, pages 185–198. ACM, 2011.

[87] Navin Sharma, Jeremy Gummeson, David Irwin, and Prashant Shenoy. Cloudy
computing: Leveraging weather forecasts in energy harvesting sensor systems.
In Sensor Mesh and Ad Hoc Communications and Networks (SECON), 2010
7th Annual IEEE Communications Society Conference on, pages 1–9. IEEE,
2010.

[88] Neelam Sharma, David Irwin, and Prashant Shenoy. A distributed file system
for intermittent power. In Green Computing Conference (IGCC), 2013 Inter-
national, pages 1–10. IEEE, 2013.

[89] Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, and Zhuan
Chen. Power containers: An os facility for fine-grained power and energy man-
agement on multicore servers. In ACM SIGPLAN Notices, volume 48, pages
65–76. ACM, 2013.

[90] Rahul Singh, David E Irwin, Prashant J Shenoy, and Kadangode K Ramakr-
ishnan. Yank: Enabling green data centers to pull the plug. In NSDI, pages
143–155, 2013.

[91] Christopher Stewart, Aniket Chakrabarti, and Rean Griffith. Zoolander: Effi-
ciently meeting very strict, low-latency slos. In ICAC, pages 265–277, 2013.

[92] Christopher Stewart, Terence Kelly, and Alex Zhang. Exploiting nonstationar-
ity for performance prediction. In ACM SIGOPS Operating Systems Review,
volume 41, pages 31–44. ACM, 2007.

[93] Christopher Stewart and Jing Li. Power provisioning for diverse datacenter
workloads. In Workshop on Energy Efficient Design, 2011.

[94] Christopher Stewart and Kai Shen. Some joules are more precious than others:
Managing renewable energy in the datacenter. In Proceedings of the Workshop
on Power Aware Computing and Systems, 2009.

122

[95] Christopher Stewart, Kai Shen, Arun Iyengar, and Jian Yin. Entomomodel: Un-
derstanding and avoiding performance anomaly manifestations. In Modeling,
Analysis & Simulation of Computer and Telecommunication Systems (MAS-
COTS), 2010 IEEE International Symposium on, pages 3–13. IEEE, 2010.

[96] Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Chitra Venkatramani,
and Deepak Rajan. Prepare: Predictive performance anomaly prevention for
virtualized cloud systems. In Distributed Computing Systems (ICDCS), 2012
IEEE 32nd International Conference on, pages 285–294. IEEE, 2012.

[97] Michael J Todd. The many facets of linear programming. Mathematical Pro-
gramming, 91(3):417–436, 2002.

[98] Trefis Team. Amazon kills it in cloud computing but it wont budge the stock
price. http://www.forbes.com, 2011.

[99] GreenPeace USA. Facebook status update: Renewable energy now. http:

//www.greenpeace.org/usa/news/facebook-update-renewable-ene.

[100] GreenPeace USA. Victory! facebook ’friends’ renewable energy.
http://www.greenpeace.org/international/en/news/features/

Victory-Facebook-friends-renewable-energy/.

[101] The AMD Opteron Processor Helps AISO. www.vmware.com.

[102] Bryan Walsh. Your data is dirty: The carbon
price of cloud computing. http://time.com/46777/

your-data-is-dirty-the-carbon-price-of-cloud-computing/, 2014.

[103] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for
reduced cpu energy. In Mobile Computing, pages 449–471. Springer, 1996.

[104] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan.
Detecting large-scale system problems by mining console logs. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles, pages
117–132. ACM, 2009.

[105] Zichen Xu, Yi-Cheng Tu, and Xiaorui Wang. Dynamic energy estimation of
query plans in database systems. In Distributed Computing Systems (ICDCS),
2013 IEEE 33rd International Conference on, pages 83–92. IEEE, 2013.

[106] Yan Zhai, Xiao Zhang, Stephane Eranian, Lingjia Tang, and Jason Mars.
Happy: Hyperthread-aware power profiling dynamically. In USENIX ATC,
volume 14, pages 211–217, 2014.

123

http://www.forbes.com
http://www.greenpeace.org/usa/news/facebook-update-renewable-ene
http://www.greenpeace.org/usa/news/facebook-update-renewable-ene
http://www.greenpeace.org/international/en/news/features/Victory-Facebook-friends-renewable-energy/
http://www.greenpeace.org/international/en/news/features/Victory-Facebook-friends-renewable-energy/
http://time.com/46777/your-data-is-dirty-the-carbon-price-of-cloud-computing/
http://time.com/46777/your-data-is-dirty-the-carbon-price-of-cloud-computing/

[107] Yanwei Zhang, Yefu Wang, and Xiaorui Wang. Greenware: Greening cloud-
scale data centers to maximize the use of renewable energy. In Middleware
2011, pages 143–164. Springer, 2011.

124

	Abstract
	Dedication
	Acknowledgments
	Vita
	List of Tables
	List of Figures
	Introduction
	Thesis Statement
	Contributions
	Carbon-aware Resource Provisioning
	Concentrating Renewable Energy in Datacenters
	Adaptive Green Hosting
	Energy Usage Report for End Users

	Carbon-aware Applications
	Policy and Mechanism for Carbon-Aware Cloud Applications
	Policy: Carbon-Aware Provisioning
	Mechanism: Carbon Accounting
	Experiment Results

	CADRE: Carbon-Aware Data Replication for Geo-Diverse Services
	Carbon Footprint Models
	Footprint-Replication Curves
	Convexity of Footprint-Replication Curve
	Finding the Optimal Solution

	Discussion

	Concentrating Renewable Energy
	Concentrating Renewable Energy in Grid-Tied Datacenters
	Grid-tied Power Delivery
	Renewable Powered Instances
	Trace-Driven Simulation
	Study of Renewable-Powered Instances
	Discussion

	Adaptive Green Hosting
	Making the Case for an Adaptive Approach
	Adapting to Real Workloads
	Case Studies on Shared Hosts
	Shared Hosting Results
	Discussion

	Black-Box Analysis for Cloud Applications
	Analyzing Third-Party Applications by Decomposing Response Times
	Methodology
	Validation
	Study on Real Cloud Applications

	Related Work
	Energy Accounting
	Energy Efficient Hardware
	Carbon-Aware Applications
	Carbon-Aware Datacenters
	Cloud Application Performance Analysis

	Conclusion
	Bibliography

