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Abstract 
 

The motor system consists of multiple regions of the central nervous system 

involved in the control of movement.  Because each component of the motor system 

contributes to a specific motor function, clinical signs and symptoms of motor 

impairment can often be used to deduce the nature and location of a neurological lesion.  

In this way, a better understanding of neuroanatomical pathways and functional 

connections between motor areas leads directly to improvements in the diagnosis and 

treatment of motor system dysfunction.  The purpose of this dissertation was to utilize 

electrophysiological and computational techniques to study the motor outputs of the 

pontomedullary reticular formation (PMRF) and the computer-aided diagnosis (CAD) of 

parkinsonism. 

Electrophysiological techniques are of particular usefulness in the study of motor 

function.  In a research setting, electrical stimulation can be used to evoke neuronal 

action potentials.  In the clinic, electroencephalography (EEG), nerve conduction studies, 

and electromyography (EMG) are used to assess motor system function for diagnosing 

disease and tracking its progression.  Additionally, procedures such as transcranial direct-

current stimulation and deep brain stimulation (DBS) can be used to modify brain activity 

during the treatment of certain disorders of the motor system.  Computational methods 

are important in signal processing of electrophysiological recordings and modeling of 
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motor pathways.  Furthermore, machine learning algorithms are used in the CAD of 

neurological disorders. 

The first study in this dissertation used electrophysiological techniques to study 

the motor outputs of the PMRF.  The PMRF is the origin of the reticulospinal tract, one 

of the major descending motor pathways.  The reticulospinal system is of particular 

importance following damage to the corticospinal tract.  Unilateral cortical injury and 

motor cortex stroke, which cause corticospinal neuron death, classically result in 

contralateral hemiparesis.  However, stroke patients also exhibit a loss of fractionated 

control of joints, abnormal flexion synergies, and a reemergence of the asymmetric tonic 

neck reflex.  These additional motor symptoms indicate an increased reliance on 

reticulospinal pathways following damage to the corticospinal tract. 

To better characterize the function of reticulospinal neurons in stroke patients and 

healthy subjects, the motor output of the PMRF was investigated by electrically 

stimulating PMRF neurons or recording spontaneous spiking.  Stimulus-triggered 

averaging (StimulusTA) and spike-triggered averaging (SpikeTA) of EMG and force 

recordings were performed to identify event-related changes in motor output.  EMG was 

recorded from 12 pairs of upper limb muscles in two monkeys (M. fascicularis) and 

forces were detected using two isometric force-sensitive handles.  The majority of 

stimulation sites produced significant force and EMG responses, with an 

electromechanical delay (EMD) consistent with previous measurements in primates. The 

magnitude of force responses was correlated with the average post-stimulus change in 

EMG activity. A multivariate linear regression analysis was used to estimate the 
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contribution of each muscle to force generation, with flexors and extensors exhibiting 

antagonistic effects.  

A predominant force output pattern of ipsilateral flexion and contralateral 

extension was observed in response to PMRF stimulation, with the majority of significant 

ipsilateral force responses directed medially and posteriorly and the majority of 

contralateral responses directed laterally and anteriorly. This novel approach permits 

direct measurement of force outputs evoked by CNS microstimation. Despite the small 

magnitude of post-stimulus EMG effects, low-intensity single-pulse microstimulation of 

the PMRF evoked detectable forces. The forces, showing the combined effect of all 

muscle activity in the arms, were consistent with reciprocal pattern of force outputs from 

the PMRF detectable with StimulusTA of EMG. 

In one monkey, the neural activity of PMRF neurons was recorded simultaneously 

with EMG activity and force output from arm and shoulder muscles.  For some of these 

PMRF neurons, significant post-spike EMG and force effects were detected.  These post-

spike force effects were significantly correlated with post-spike EMG activity for the 

same recording site.  Consistent with previous findings, PMRF neurons facilitated 

ipsilateral flexors and contralateral extensors, while suppressing ipsilateral extensors and 

contralateral flexors. Additionally, EMG and force effects of SpikeTA and StimulusTA 

obtained from the nearest stimulation site were positively correlated in all significant 

cases. These findings demonstrate that single PMRF neurons can directly influence force 

outputs of the upper limbs. 
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The second study in this dissertation used computational techniques to study the 

CAD of parkinsonism.  Parkinson’s disease (PD) is a movement disorder caused by 

degeneration of dopamine-producing neurons in the basal ganglia.  It presents with 

characteristic parkinsonian motor symptoms – tremor, hypokinesia, rigidity, postural 

instability.  Accurate diagnosis is difficult because other disorders like atypical 

parkinsonian syndromes (APS) also present with parkinsonian motor symptoms.  It was 

recently discovered that about 10% of people diagnosed with PD do not have 

dopaminergic neuron loss.  These subjects without evidence of dopaminergic deficits 

(SWEDDs) are thought to have a disorder known as dopa-responsive dystonia instead of 

PD.  In order to differentiate between PD, SWEDDs, and healthy controls, an enhanced 

probabilistic neural network (EPNN) was implemented to classify subjects based on 

clinical exams and neuroimaging data. 

The EPNN model diagnosed between all three classes with 92.5% accuracy.  The 

Motor Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating 

Scale Part III was shown to be the most effective clinical exam at differentiated between 

PD subjects and healthy controls.  The putamen striatal-binding ratio of ioflupane (123I), a 

radioactive compound that binds to dopamine transporters, was shown to be the most 

effective measurement at differentiating between PD and SWEDDs subjects.  Clinical 

screening for SWEDDs using EPNN exhibited a sensitivity of 59.0% and specificity was 

85.9%.  Additionally, the results identify olfactory function, which was measured by the 

University of Pennsylvania Smell Identification Test, as a potential clinical indicator of 
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SWEDDs, supporting the hypothesis that SWEDDs has a different pathology than PD 

that disproportionately affects olfactory function.  
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Chapter 1: Introduction 
 

Normal motor system function 

 The motor system is comprised of various parts of the central nervous system that 

are involved in the control of movement, which include the motor cortex, basal ganglia, 

cerebellum, and motor nuclei of the brainstem (Rizzolatti and Luppino 2001, 

Groenewegen 2003, Glickstein and Doron 2008).  The control of movement encompasses 

multiple movement-related activities, such as motor planning, motor coordination, and 

motor learning.  The motor system interacts with the muscular system via peripheral 

motor neurons at the neuromuscular junction (Darabid et al. 2014).  At the neuromuscular 

junction, synaptic release of the neurotransmitter acetylcholine causes contraction of 

muscle fibers, which increases muscle tension and generates movement (Darabid et al. 

2014).  Clinically, it is useful to differentiate between lower motor neurons (LMNs) and 

upper motor neurons (UMNs) (Rekand 2010).  LMNs, found in cranial nerve nuclei and 

the anterior horn of the spinal cord, are the neurons that directly innervate skeletal muscle 

fibers (Stifani 2014).  LMNs receive input from UMNs, which typically have cell bodies 

in the motor cortex and brainstem (Stifani 2014).  The activity of LMNs is influenced 

both by these excitatory UMNs and by mostly inhibitory interneurons located within the 

brainstem and spinal cord (Stifani 2014).  UMNs are in turn influenced by complex 

interactions between various motor areas in the cerebral cortex, subcortical structures, the 
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brainstem, and the cerebellum.  Functionally and anatomically, the motor system can be 

divided into two main components – the pyramidal and extrapyramidal motor systems. 

 

Pyramidal motor system 

The pyramidal motor system consists of descending motor tracts that pass through 

the pyramids of the medulla (Martin 2005).  These include the corticospinal tract, which 

projects from the cerebral cortex to the spinal cord, and corticobulbar tract, which 

projects from the cerebral cortex to the brainstem (Keizer and Kuypers 1989).  The 

corticospinal tract is the principal motor pathway in primates, especially for fine motor 

control of distal muscles (Lemon 2008).  Pyramidal tract fibers often synapse directly 

onto motor neurons in the spinal cord and brainstem, in contrast to extrapyramidal 

pathways that are more involved in modulation of motor outputs. 

The corticospinal tract consists of neurons whose cell bodies are located in layer 

V of the cerebral cortex and whose axons project to the spinal cord (Martin 2005).  The 

majority of these neurons are located in the motor cortex, an area of the frontal lobe 

located anterior to the central sulcus (Rizzolatti and Luppino 2001).  The motor cortex is 

divided into multiple cortical areas, the largest of which are the primary motor cortex 

(M1), the dorsal and ventral premotor cortex (PMd and PMv), and the supplementary 

motor area (SMA), which are shown in Figure 1.1 (Rizzolatti and Luppino 2001).  About 

one third of corticospinal fibers originate in M1, and another third originate in the 

supplementary SMA, PMd, and PMv combined (Rizzolatti and Luppino 2001).  The vast 

majority (~80-85%) of corticospinal axons cross midline at the decussation of the 



3 
 

pyramids and form the lateral corticospinal tract, terminating on lower motor neurons and 

interneurons in the anterior horn of the contralateral spinal cord (Liu and Chambers 

1964).   

M1, located directly anterior to the central sulcus, contains many motor neurons 

that synapse directly on LMNs in the anterior horn of the spinal cord (Rizzolatti and 

Luppino 2001).  PMd and PMv, located anterior to the M1 arm representation, are 

involved in planning and preparing for movement (Rizzolatti and Luppino 2001). SMA, 

located anterior to the M1 leg representation, is involved in internally generated 

movement, bimanual control, postural stability, and temporal sequences of actions 

(Rizzolatti and Luppino 2001).  The corticospinal tract allows for fine voluntary 

movements and fractionated control of joints, with particular importance for control of 

the distal muscles of the contralateral limbs such as those for independent finger 

movements (Lawrence and Kuypers 1968). 

The corticobulbar tract consists of motor cortex neurons whose axons project to 

the brainstem, including axons collaterals from corticospinal neurons (Keizer and 

Kuypers 1989).  In addition to cranial nerve nuclei, which are analogous to motor pools 

in the spinal cord anterior horn, the brainstem contains the origins of multiple bulbospinal 

pathways.  These are the pontomedullary reticular formation (PMRF), which gives rise to 

the reticulospinal tract; the red nucleus, which gives rise to the rubrospinal tract; and the 

vestibular nuclei, which give rise to the vestibulospinal tract (Lemon 2008).  

Corticobulbar pathways, such as the corticoreticular tract, are able to influence motor 

control via inputs to brainstem motor pathways (Ziemann et al. 1999).   
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Extrapyramidal motor system 

The extrapyramidal motor system consists of motor pathways that do not travel 

through the medullary pyramids.  These include the previously mentioned major 

brainstem motor pathways – the reticulospinal, vestibulospinal, and rubrospinal tracts – 

and regulatory components such as the basal ganglia and cerebellum.  The basal ganglia 

are a network of subcortical nuclei involved in action selection and initiation of 

movement (Obeso et al. 2002).  The main components of the basal ganglia are the 

striatum, which consists of the caudate nucleus and putamen; the globus pallidus, which 

is divided into internal and external portions; the substantia nigra, which is divided into 

the pars reticulate and the pars compacta; the nucleus accumbens; and the subthalamic 

nucleus (Obeso et al. 2002).  The cerebellum, a region of the brain located inferior to the 

occipital lobe and posterior to the brainstem, is important in motor coordination (Thach et 

al. 1992).  The cerebellum receives feedback from sensory systems and makes small 

adjustments to fine-tune body and limb movements (Thach et al. 1992).  The 

reticulospinal tract, which originates in the reticular nuclei in the pons and medulla of the 

brainstem, is involved in the control of locomotion, postural stability, and voluntary 

movement (Lemon 2008).  The vestibulospinal tract, which originates in the vestibular 

nuclei of the brainstem, is involved in maintaining posture and balance (Lemon 2008).  

The rubrospinal tract, which originates in the red nucleus of the midbrain, is involved in 

voluntary movement of the upper limbs, but is significantly smaller in humans compared 

to other primates (Lemon 2008). 
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Disorders of the motor system 

Overview of motor system dysfunction 

 Motor system dysfunction affects over five million people in the United States 

(Borlongan et al. 2013, Lawrence et al. 2001, Nakayama et al. 1994).  There are many 

causes of motor system dysfunction, shown in Table 1.1, but two of the most common 

causes are stroke and Parkinson’s disease (PD).  About 77% of stroke patients report 

weakness or paralysis (Lawrence et al. 2001, Nakayama et al. 1994).  Because stroke 

causes injury to the motor cortex, it primarily affects the pyramidal motor system, 

resulting in UMN lesion symptoms like loss of fine motor control, weakness, and 

paralysis.  In contrast, PD affects the extrapyramidal system, involving deficits in the 

initiation of movement and motor coordination (Davie 2008). 

 

Unilateral motor cortex injury and hemiparetic stroke 

 The MCA, a branch of the internal carotid artery, is the most common site of 

occlusion in ischemic stroke (Ng et al. 2007).  One reason for the high rate of motor 

impairment in stroke is that the MCA supplies blood to most of the motor cortex.  

Occlusion of the MCA results in insufficient blood flow to the lateral cerebral cortex 

leading to cell death in affected areas.  Because the corticospinal tract descends primarily 

contralaterally, these deficits affect the opposite (contralateral) side of the body as the 

cortical lesion.  The medially located M1 leg representation is supplied primarily by the 

anterior cerebral artery, resulting in sparing of lower limb motor control following MCA 

stroke (de Freitas et al. 2000).  However, since the more laterally located M1 arm 
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representation is supplied by the MCA, upper limb motor control is less commonly 

spared.  As a result, deficits in reaching and other arm movements represent a large 

contribution to post-stroke morbidity. 

 

Disorders of the basal ganglia 

PD is the second most common neurodegenerative disorder, second only to 

Alzheimer’s disease. About one million (1 in 300) people in the U.S. have PD (de Lau 

and Breteler 2006).  PD is caused by degeneration of dopaminergic neurons in the 

substantia nigra (Davie 2008).  This degeneration of substantia nigra neurons in PD is 

histologically associated with intracellular aggregations of alpha-synuclein and other 

proteins, called Lewy bodies (Davie 2008).  This loss of substantia nigra neurons has 

widespread effects through the basal ganglia, as shown in Figure 1.2, leading to a 

characteristic set of motor symptoms – tremor, hypokinesia, rigidity, and postural 

instability – known as parkinsonism (Gelb 1999, Davie 2008). 

PD is part of the group of movement disorders of basal ganglia origin, which also 

includes Huntington’s disease, Sydenham’s chorea, and hemiballismus (Obeso et al. 

2002).  Although the etiology of these movement disorders is varied, they all involve 

damage to basal ganglia circuitry.  As previously stated, PD is caused by loss of 

dopaminergic neurons in the substantia nigra pars compacta (Davie 2008).  Huntington’s 

disease is a caused by trinucleotide expansion in the Huntingtin gene, which 

disproportionately affects striatal neurons (Walker 2007, Eidelberg and Surmeier 2011).  

Sydenham’s chorea is caused by an autoimmune-mediated destruction of striatal neurons 
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following group A β-hemolytic streptococci infection (Swedo et al. 1993).  

Hemiballismus can result from various conditions resulting in damage to the subthalamic 

nucleus (Postuma and Lang 2003).  Because the basal ganglia are involved in the 

initiation of movement, these movement disorders lead to either insufficient or excessive 

movement. 

 

Clinical correlates  

Impairment and recovery following hemiparetic stroke 

Because the majority of corticospinal axons descend contralaterally, unilateral 

loss of motor cortex neurons results in primarily contralateral hemiparesis.  This is 

reflected in decreased corticomuscular signal coupling between EEG and EMG in stroke 

patients compared to healthy controls (Fang et al. 2009).  Other deficits observed post-

stroke are prolonged cognitive planning time, elevated cognitive effort, impaired 

coordination and motor control, and delays in initiation and termination of muscle 

contractions (Daly et al. 2006, Chae et al. 2002).  Patients exhibit the loss of fractionated, 

or independent, control of joints (Ellis et al. 2012, Yao et al. 2009).  Following 

hemiparetic stroke, patients exhibit abnormal muscle coactivation patterns during 

isometric torque generation at the elbow and shoulder (Dewald et al. 1995).  In addition, 

they display deficits in the coordination of multi-joint arm movements indicating 

disturbed control of limb dynamics (Levin 1996, Beer et al. 2000, Daly et al. 2007).  

With rehabilitation therapy, functional recovery is usually complete by 20 weeks 

poststroke for all degrees of initial stroke severity (Twitchell 1951, Jorgensen et al. 
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1995).  Encouraging use of the impaired arm by restraining the unaffected arm was 

shown to effectively promote the recovery of motor function in stroke patients with 

chronic motor impairment (Taub et al. 2006).  

 

Differential diagnosis of parkinsonism 

While PD is the most common parkinsonian syndrome, the differential diagnosis 

of parkinsonism is complicated by the existence of atypical parkinsonian syndromes 

(APS), or Parkinson-plus syndromes, which also exhibit classical parkinsonian 

symptoms, but include additional features distinguishing them from idiopathic PD 

(Jankovic 2008).  Because of these overlapping symptoms, APS are especially difficult to 

differentiate from PD.  The most common APS are multiple system atrophy (MSA), 

progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) (Jankovic 

2008).  One in ten patients diagnosed clinically with early PD are later shown to have 

functional imaging scans without evidence of dopaminergic deficit (SWEDDs) 

(Schwingenschuh et al. 2010).  Improved diagnostic methods will result in earlier 

detection of disease, allowing patients to be treated sooner. 

 The development of various clinical examinations and neuroimaging analyses has 

increased the quantity of clinical data available for diagnosis of movement disorders.  

With increasing amounts of diagnostic data available to clinicians, it becomes 

increasingly difficult for physicians to generate, internalize, and apply accurate medical 

algorithms. Computer-aided diagnosis (CAD) can improve the diagnostic accuracy by 

incorporating precise clinical values and performing complex calculations to determine 
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the probability of competing diagnoses.  In addition to improvements in accuracy, CAD 

has been shown to detect early stages of disease with greater sensitivity (Freer and 

Ulissey 2001). 

 

Research objectives 

 The corticospinal pathway is central to fine motor control of voluntary movement 

in healthy primates (Lemon 1993).  As a result, much of motor systems research has 

focused on this system.  However, clinical evidence has indicated an important function 

of the reticulospinal system in stroke patients (Dewald et al. 1995, Dewald and Beer 

2001, Ellis et al. 2007, Ellis et al. 2012).  Despite this importance, many aspects of the 

reticulospinal system remain inadequately understood (Jang 2012).  The first objective of 

this dissertation is to determine the EMG and force outputs of reticulospinal neurons 

using a novel technique to record force responses evoked by spontaneous spiking and 

electrical stimulation in the PMRF.  We hypothesize that EMG and force outputs of 

reticulospinal neurons can be detected using stimulus-triggered averaging (StimulusTA) 

and spike-triggered averaging (SpikeTA). It is expected that EMG and force responses 

will exhibit a double reciprocal pattern of activity characterized by flexion of the 

ipsilateral arm and extension of the contralateral arm relative to the PMRF stimulation or 

recording site. 

Using diagnostic criteria promoted by the National Institute of Neurological 

Disorders and Stroke (NINDS), PD diagnosis only achieves diagnostic certainty of 57-

90% (Gelb et al. 1999, Jankovic 2008).  Improvements to these criteria require 
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probabilistic inferences from large collections of data, including clinical signs and 

symptoms, neuroimaging scans, and laboratory test results (Jankovic 2008).  With 

increasing amounts of medical information and increasing usage of electronic medical 

data, there is a growing role for CAD.  The second objective of this dissertation is to 

identify an accurate machine learning algorithm for differentiating between patients with 

PD, SWEDDs, and healthy controls.  Furthermore, by determining which data are most 

predictive of disease state, novel clinical features of and associations between PD and 

SWEDDs may be identified.  We hypothesize that PD, SWEDDs, and healthy subjects 

will be able to be accurately classified using machine learning algorithms based on 

clinical and neuroimaging features.  It is expected that the enhanced probabilistic neural 

network will exhibit the highest classification accuracy.  Furthermore, non-motor 

function is expected to be better able to differentiate between PD and SWEDDs than 

motor function. 
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Tables & Figures 

Motor system injury 2.7% 

Cortical injury 

Stroke 

Traumatic brain injury 

Spinal cord injury 

 

Movement disorders 0.3% 

Parkinsonian syndromes 

Parkinson’s disease 

Atypical parkinsonian syndromes 

Huntington’s disease 

Hemiballismus 

 

Motor neuron disorders < 0.1% 

Amyotrpohic lateral sclerosis (ALS) 

Spinal muscular atrophy (SMA) 

Guillain-Barre syndrome (GBS) 

Charcot-Marie-Tooth disease (CMT) 

 

Multiple Sclerosis  < 0.1% 

Cerebral Palsy < 0.1% 

Table 1.1  Prevalence of the leading causes of motor system dysfunction in the United 

States.  The most common causes are stroke and other brain and spinal cord injuries, 

followed by PD (Borlongan et al. 2013, Lawrence et al. 2001, Nakayama et al. 1994).  
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Figure 1.1  Lateral view of a human brain displaying the areas of the motor cortex.  The 

primary motor cortex (M1) is located directly anterior to the central sulcus (shown in 

red).  The premotor cortex (PMd and PMv) is located anterior to the lateral portion of M1 

(shown in blue).  The supplementary motor area (SMA) is located dorsal to PMd and 

extends into the medial longitudinal fissure (shown in green).  Adapted from Gray 

(1918).  
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Figure 1.2  A comparison of normal and PD motor circuits.  PD subjects have a loss of 

dopaminergic neurons in the substantia nigra pars compacta (SNc), decreasing the 

amount of dopamine delivered to the putamen (Obeso et al. 2002).  Open arrows 

represent excitation, filled arrows represent inhibition.  GPi, internal globus pallidus; 

GPe, external globus pallidus;  SNc, substantian nigra pars compacta; SNr, substantia 

nigra pars reticulata; STN, subthalamic nucleus; VL, ventral lateral nucleus of the 

thalamus.  
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Chapter 2: Review of the anatomy and physiology of the reticulospinal system 
 

Bilateral projections of reticulospinal neurons 

The reticulospinal tract, which originates in the PMRF, is a major descending 

motor pathway (Kuypers 1958, 1981; Peterson et al. 1974, 1975, 1979). The main targets 

of reticulospinal axons are interneurons in lamina VII and VIII and motor neurons in 

lamina IX that primarily innervate axial and proximal limb muscles (Grillner and Lund 

1966, 1968; Jankowska et al. 2003; Matsuyama et al. 1997; Peterson et al. 1979).  

However, recent studies have also shown reticulospinal activation of distal limb muscles, 

including muscles of the hand (Soteropoulos et al. 2012). 

The reticulospinal tract, like the corticospinal tract, contains both monosynaptic 

and polysynaptic projections to axial and upper limb motor neurons (Peterson et al. 

1979).  However, in contrast to the corticospinal tract, which projects primarily 

contralaterally, the reticulospinal tract projects primarily bilaterally to spinal motor 

neurons and interneurons (Keizer and Kuypers 1989, Sakei et al. 2009).  Within the 

PMRF, the gigantocellular reticular nucleus has more ipsilateral projections than 

contralateral (Sakei et al. 2009).  Stimulation of this region produces excitation of 

ipsilateral upper limb motor neurons more often than contralateral (Peterson et al. 1979). 

Reticulospinal axons that descend ipsilaterally are able to produce contralateral 

effects through commissural interneurons and decussating axon collaterals (Bannatyne et 

al. 2003; Jankowska et al. 2003; Sakai et al. 2009, Szokol et al. 2011).  Stimulation 
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studies have demonstrated functional connections indicating widespread bilateral 

projections.  In the cat, short stimulus trains were used to elicit reticulospinal recruitment 

of axial and proximal limb muscles bilaterally (Drew and Rossignol 1990a, 1990b; 

Schepens and Drew 2006; Sprague and Chambers 1954). A reciprocal motor output 

pattern was observed following stimulation, characterized by ipsilateral limb flexion, 

contralateral limb extension, and head rotation toward the ipsilateral side (Sprague and 

Chambers 1954). Stimulus trains in the monkey PMRF have reproduced the same motor 

pattern in the upper limb (Herbert et al. 2010). Motor outputs of stimulus trains have 

exhibited high agreement with those of stimulus-triggered averaging (StimulusTA) of 

single-pulse microstimulation (Herbert et al. 2010). StimulusTA studies in the monkey 

have revealed a double reciprocal pattern of EMG activity from upper limb muscles, 

consisting of facilitation of ipsilateral flexors and contralateral extensors and suppression 

of ipsilateral extensors and contralateral flexors (Davidson and Buford 2004, 2006).  

These bilateral outputs to proximal limb muscles make the reticulospinal system well-

suited to coordinate bilateral limb movement (Kuypers 1958, 1981; Peterson et al. 1974, 

1975, 1979).  

 

Reticulospinal control of movement 

 The reticulospinal system, one of the evolutionarily oldest descending pathways, 

is the primary circuit involved in supraspinal control of locomotion in vertebrates (Drew 

et al. 2004, Matsuyama et al. 2004).  In the lamprey, activity of reticulospinal neurons 

initiates swimming (Grillner 2003, Ménard and Grillner 2008).  In the cat, reticulospinal 
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neurons are modulated in phase with rhythmic muscle activity during locomotion (Drew 

et al. 1986, Matsuyama and Drew 2000).  Stimulation of the mesencephalic locomotor 

region (MLR), which projects to neurons in the reticular formation, is sufficient to 

produce locomotion with intensity-dependent gait patterns (Shik et al. 1966).  During gait 

modifications, reticulospinal neurons exhibit coinciding changes in discharge activity 

(Matsuyama and Drew 2000, Prentice and Drew 2001).   

The existence and function of the MLR has been identified in many vertebrate 

species, including the lamprey (McClellan and Grillner 1984), the rat (Garcia-Rill et al. 

1990), the rabbit (Corio et al. 1993), the cat (Shik et al. 1966), and the monkey (Eidelberg 

et al. 1981).  There are significant homologies between the brainstem and midbrain 

postural and locomotor control structures of primates and other animals (Mori et al. 

1996).  While homologies in locomotor control systems exist between primates and other 

vertebrates, locomotion generators in the monkey depend more on supraspinal inputs than 

those in the cat (Eidelberg et al. 1981).  Clinical studies point to the existence of similar 

locomotor control regions in humans, known as the pedunculopontine nucleus (PPN) 

(Caplan and Goodwin 1982; Masdeu et al. 1994; Zweig et al. 1987; Hanna and Frank 

1995; Garcia-Rill 1985). 

In addition to locomotion, the reticulospinal pathway is also involved in head 

movement for gaze control (Cowie and Robinson 1994, Cowie et al. 1994).  

Electrophysiological studies demonstrated that stimulation of the gigantocellular reticular 

nucleus produced ipsilateral head movements (Cowie and Robinson 1994).  
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Complementary tract tracing studies identified gigantocellular reticular nucleus efferents 

that projected to motor nuclei of the head and neck (Cowie et al. 1994).  

Reticulospinal pathways are also involved in postural stability, which could 

account for the greater number of projections to axial and proximal limb muscles (Bolton 

et al. 1992, Eccles et al. 1975, Matsuyama and Drew 2000).  Lesions of both the 

brainstem (Kuypers 1964; Lawrence and Kuypers 1968) and spinal regions containing 

reticulospinal tract (Afelt 1974; Bem et al. 1995; Brustein and Rossignol 1998; Eidelberg 

et al. 1981; Gorska et al. 1990, 1993) result in postural deficits, indicating reticulospinal 

involvement. Similarly, injection of acetylcholine receptor agonists into the PMRF results 

in impaired postural responses during voluntary limb movement (Luccarini et al. 1990; 

Sakamoto et al. 1991). 

 More recently, the reticulospinal system has been shown to be involved in 

voluntary limb movements (Buford and Davidson 2004).  In the cat, reticulospinal 

neurons were modulated during postural adjustments and reaching movements (Schepens 

et al. 2004, 2006, 2008).  In the monkey, reticulospinal neurons were shown to be 

modulated during voluntary reaching (Buford and Davidson 2004) and during finger 

movement (Soteropoulos et al. 2012).  It is thought that the same reticulospinal pathways 

involved in locomotion are also activated during reaching (Drew et al. 2004). 

 

Cortical and subcortical projections to PMRF 

The basal ganglia are involved in the initiation of movement, as demonstrated by 

disorders like PD, which can cause akinesia. Classically, the basal ganglia have been 
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thought to influence locomotion by a corticostriatocortical pathway that travels from the 

cortex to the striatum and back to the cortex via the thalamus (Alexander et al. 1986). 

However, the loss of spontaneous initiation of locomotion in the postmammillary cat, but 

not in the premammillary cat, implies the involvement of direct projections from the 

basal ganglia to the MLR (Garcia-Rill et al. 1983, 1986).  Furthermore, stimulation in the 

substantia nigra delayed locomotion onset, increased step cycle time, and disturbed 

stepping rhythm (Takakusaki et al. 2003). 

In addition to subcortical pathways, there exist cortical pathways from motor 

cortex neurons that project directly to the reticular formation via corticoreticular efferents 

(Keizer and Kuypers 1989). In the cat, cortical projections from M1 to the PMRF were 

mostly through corticospinal axon collaterals, but the cortical projections from premotor 

cortex and SMA were mostly direct (Kably and Drew 1998).  In the monkey, transcranial 

magnetic stimulation (TMS) evoked short-latency responses from neurons in the PMRF 

(Fisher et al. 2012).  In humans, voluntary movements are initiated with reduced 

premotor reaction times when the imperative stimulus to initiate movement is replaced by 

a startling acoustic stimulus (Valls-Sole et al. 1995, 1999, 2008).  Additionally, TMS 

over the motor cortex delayed this early release of movement caused by acoustic startle 

(Alibiglou and MacKinnon 2012).  Furthermore, the corticoreticular connections thought 

to mediate this effect, projecting from premotor cortex to the PMRF, have been identified 

using diffusion tensor tractography (Yeo et al. 2012). 
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Motor impairment following unilateral stroke 

The primary motor deficit following unilateral motor cortex stroke is weakness 

affecting the opposite side of the body, called contralateral hemiparesis.  In addition to 

weakness, unilateral UMN lesions like stroke often present with spasticity, hyperreflexia, 

and hemiplegia.  A pattern known as pyramidal weakness is common, which includes 

greater weakness in upper limb extensors and lower limb flexors (Cheney et al. 1991, 

Thijsa et al. 1998).  Motor impairment is generally most severe immediately following 

stroke with initial improvement evident within weeks of the stroke (Partridge et al. 1987, 

Bonita and Beaglehole 1988).  Some rehabilitation techniques such as physical therapy, 

repetitive task training, and biofeedback have been shown to be effective at enhancing 

motor recovery (Langhorne et al. 2009). 

Many studies have examined other motor deficits in hemiparetic stroke patients.  

Some of the deficits observed alongside hemiparesis are cognitive difficulty in generating 

movement and impaired motor control (Daly et al. 2006, Chae et al. 2002).  Of particular 

note, certain motor symptoms demonstrate the importance of reticulospinal function after 

stroke.  For instance, stroke subjects show deficits in the coordination of multi-joint arm 

movements indicating disturbed control of limb dynamics (Levin 1996, Beer et al. 2000, 

Daly et al. 2007).  Similarly, stroke patients exhibit abnormal muscle coactivation 

patterns during isometric torque generation at the elbow and shoulder (Dewald et al. 

1995, Dewald and Beer 2001; Ellis et al. 2007).  This loss of fractionated joint control is 

thought to be caused by increased reliance on the reticulospinal system (Ellis et al. 2012).  
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Another line of evidence supporting this concept is related to the asymmetric 

tonic neck reflex (ATNR), a primitive reflex thought to be mediated by the PMRF (Brink 

et al. 1985; Srivastava et al. 1984).  The ATNR is characterized by a classic “fencing” 

posture, with ipsilateral arm flexion and contralateral arm extension, similar to the motor 

pattern evoked by PMRF stimulation (Davidson and Buford 2004, 2006; Ellis et al. 

2012).  The ATNR is normally suppressed in the adult nervous system, but often 

reemerges following stroke, indicating increased reticulospinal excitability (Ellis et al. 

2012).  The acoustic startle reflex, also mediated by brainstem pathways, is similarly 

increased following stroke (Brown et al. 1991, Li et al. 2014). 

 

Reticulospinal mediated functional recovery 

Motor recovery after stroke is mediated by brain reorganization, which can be 

enhanced with rehabilitation techniques like constraint-induced movement therapy 

(Krakauer 2005, Mark and Taub 2004).  Studies have detected reorganization in both the 

ipsilesional and contralesional motor cortices (Krakauer 2005).  The nature of this 

reorganization is thought to include unmasking of latent synapses, facilitation of 

alternative networks, synaptic remodeling, and axonal sprouting. (Hallett 2001, Elbert 

and Rockstroh 2004, Bütefisch 2004, Ward 2004)   

The contralesional motor cortex has been shown to play a role in functional 

reorganization during stroke recovery.  Stroke patients with normal motor examinations 

showed increased contralesional motor activation (Krakauer et al. 2004).  TMS applied to 

the contralesional PMd caused an increase in reaction time in the stroke patients but not 
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controls, with the magnitude of the increase significantly correlated with the degree of 

motor impairment (Johansen-Berg et al. 2002).  In addition, multiple cases have been 

described in which patients with good recovery after stroke-induced hemiparesis 

subsequently lost function in both ipsilaterally and contralaterally after a stroke to the 

opposite hemisphere (Fisher 1992, Ago et al. 2003). 

Because the contralesional motor cortex is ipsilateral to the affected limbs, the 

corticospinal pathway, which projects contralaterally, is not ideally situated to mediate 

recovery (Soteropoulos et al. 2011).  In contrast, the reticulospinal system, because of its 

bilateral pattern of projection to the upper limbs, has been considered a candidate 

pathway for alternative motor control of the impaired limb after stroke (Jankowska and 

Edgley 2006, Ellis et al. 2012).  Reticulospinal neurons receive inputs from corticospinal 

fiber collaterals from both the ipsilateral and contralateral motor cortex (Keizer and 

Kuypers 1984, 1989; Ugolini and Kuypers 1986; Matsuyama and Drew 1997; Kably and 

Drew 1998).  Electrical stimulation of cortical neurons has been shown to evoke 

excitatory postsynaptic potentials in reticulospinal neurons (Magni and Willis 1964, 

Peterson et al 1974, He and Wu 1985, Canedo and Lamas 1993). 

Several studies support the ability of motor cortex to exert motor effects through a 

cortico-reticulospinal circuit (Baker et al. 2015).  In the cat, lesion of the pyramidal tract 

demonstrated cortical actions transmitted via reticulospinal neurons (Alstermark et al. 

1985, Edgley et al. 2004).  Stimulation of the motor cortex has been shown to evoke 

postural adjustment in the ipsilateral and contralateral forelimbs, which is thought to be 

mediated by a corticoreticular pathway (Gahéry and Nieoullon 1978).  Functional 
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recovery after stroke cannot be explained by ipsilateral corticospinal pathways alone 

(Palmer et al. 1992).  After corticospinal tract lesion in the monkey, there was an increase 

in motor responses to stimulation of the reticulospinal tract but not to stimulation of the 

ipsilateral corticospinal tract (Zaaimi et al. 2012).  Additionally, this increase was 

observed in forelimb flexors and not extensors, matching symptoms of pyramidal 

weakness common after stroke (Zaaimi et al. 2012).  In humans, TMS of the motor cortex 

has been shown to yield responses in the ipsilateral limb (Ziemann et al. 1999, Alagona et 

al. 2001).  In stroke patients, these responses to TMS are stronger and evoked at lower 

thresholds than those in healthy controls (Alagona et al. 2001).  These responses have 

been shown to depend on head rotation, indicating involvement of the same reticulospinal 

pathway that mediates the ATNR (Ziemann et al. 1999, Tazoe and Perez 2014).  

Reticulospinal involvement is most common in lesions with little corticospinal sparing 

(Turton et al. 1996). 

Based on the output of the reticulospinal tract, there are likely two major 

corticoreticular pathways that could mediate cortical control of ipsilateral muscles.  The 

first is corticoreticular projections to ipsilateral reticulospinal neurons that project to 

ipsilateral spinal motor nuclei, and the second is corticoreticular projections to 

contralateral reticulospinal neurons that descend ipsilaterally with respect to the reticular 

nuclei and terminate on commissural interneurons in the spinal cord that synapse on 

neurons in the contralateral motor nuclei (with respect to the reticular nuclei). 
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Motor outputs of reticulospinal neurons 

To adequately understand the function of the reticulospinal system in both healthy 

people and those recovering from stroke, it is necessary to determine the motor effects of 

a reticulospinal neuron in a physiological setting.  Previous studies have identified 

changes in EMG activity evoked by electrical stimulation in the PMRF, but because of 

the extensive branching of reticulospinal axons which causes effects in many muscles, it 

is difficult to infer what effects this activity will have on movement (Davidson and 

Buford 2004, 2006).  No studies have been performed to identify the movements or force 

outputs associated with physiological levels of neural activity in the PMRF.  By 

recording spontaneous spiking or evoking spiking through electrical stimulation while 

simultaneously recording EMG and forces, the effect of PMRF neurons on the upper limb 

muscle activity and movement could be determined.  
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Chapter 3: Stimulus-triggered averaging of reticulospinal motor outputs evoked by 
single-pulse microstimulation 

 

Introduction 

Although they primarily descend ipsilaterally, reticulospinal axons produce 

contralateral effects through commissural interneurons and decussating axon collaterals 

(Bannatyne et al. 2003; Jankowska et al. 2003; Sakai et al. 2009).  Microstimulation 

studies in the monkey in the monkey PMRF using short stimulus trains have produced 

reciprocal patterns of ipsilateral upper limb flexion and contralateral extension (Herbert 

et al. 2010), similar to previously observed patterns in the cat (Sprague and Chambers 

1954).  Motor outputs of stimulus trains have exhibited high agreement with those of 

stimulus-triggered averaging (StimulusTA) of single-pulse microstimulation (Herbert et 

al. 2010). StimulusTA studies in the monkey have revealed a double reciprocal pattern of 

EMG activity from upper limb muscles, consisting of facilitation of ipsilateral flexors and 

contralateral extensors and suppression of ipsilateral extensors and contralateral flexors 

(Davidson and Buford 2004, 2006).  

Spike-triggered averaging (SpikeTA) is considered to be the most direct method 

of investigating motor outputs in electrophysiological studies. The major motor effects 

revealed by SpikeTA are thought to be primarily mediated through monosynaptic and 

disynaptic connections to motor neurons (Cheney and Fetz 1985; Baker and Lemon 1998; 

Davidson et al. 2007). StimulusTA is also thought to activate monosynaptic and 
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disynaptic pathways, but with a larger number of neurons engaged (Cheney and Fetz 

1985). StimulusTA and SpikeTA from the same recording sites in the motor cortex and 

PMRF exhibit similar EMG activity (Cheney and Fetz 1985; Davidson et al. 2007). 

These findings support the view that StimulusTA reveals the output of reticulospinal 

neurons through relatively direct pathways which more accurately depict the 

physiological effects of PMRF neural activity than trains of stimuli.  

To our knowledge, no SpikeTA or StimulusTA studies have investigated the 

movements and force outputs resulting from motor activity within the central nervous 

system. There have been multiple studies, however, that have investigated the 

relationship between neural activity and force. Evarts (1968) devised one of the first 

single unit recording studies to determine whether primary motor cortex neuron activity 

related to force or displacement. Over time, investigators have devised analytical 

approaches to extract correlates of force, velocity, and position signals from neural 

activity in cortical motor areas (Georgopoulos et al. 1992, Ashe 1997, Moran and 

Schwartz 1999). However, in the reticulospinal system, no comparable studies exist. In 

cats standing on force platforms, reticulospinal motor outputs were associated with 

stereotyped force output patterns for postural adjustments (Gahéry et al. 1980), but there 

have been no purely upper limb studies relevant to reaching where forces were measured. 

The purpose of this study was to determine the force effects of PMRF motor 

output evoked with single-pulse stimuli by using the StimulusTA approach to measure 

forces in addition to EMG activity. Despite the small magnitude of previously detected 

post-stimulus EMG effects, we expected measureable forces to be exerted by the upper 
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limbs in response to PMRF stimulation. Furthermore, we expected the pattern of forces to 

correspond to the double reciprocal pattern of EMG activity associated with PMRF 

output. Demonstrating the effectiveness of this novel technique for measuring motor 

outputs could have broad applications for motor systems neurophysiology by permitting 

direct measurement of force outputs evoked by CNS microstimation. This would allow 

for identification of physiologically relevant force effects of CNS neural activity. 

 

Methods 

Subjects, task, and surgery  

Two male monkeys (Macaca fascicularis) were trained to perform a bilateral 

isometric force control task administered by Tempo software (Reflective Computing, 

Olympia, WA, USA). Subjects sat in a primate chair with their head restrained and 

simultaneously controlled two cursors on a computer screen via two stationary force-

sensitive joysticks. The joysticks were located at waist level, so during the task both the 

subject’s arms were positioned much like a person’s would be to hold a gearshift in a car. 

The subjects tended to grip the joysticks with their palms down and their forearms 

pronated. Each hand controlled one cursor via a single joystick, as shown in Fig. 1. 

Cursors were primarily controlled by pushing and pulling along the anteroposterior y-

axis, also shown in Fig. 1. A trial began once the subject was holding both joysticks with 

the cursors within the range of two central targets corresponding to zero y-direction force.  

Once this starting position was held for 1.0 s, targets appeared indicating the necessary 

forces that must be applied to complete the task.  The subject had to push or pull on each 
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joystick to move the cursors to the targets.   Once the cursors were on targets, that effort 

had to be maintained for 0.5 s.  This was implemented as a simple reaction time task, 

with the subject free to begin the effort to move the cursors as soon as the targets 

appeared. Pushing or pulling forces of approximately 30 N were required to hold the 

cursors on the targets. The next trial could be initiated after a 1.0 s reward period; the 

subject self-paced the start of the next trial. Within each session, the trial types were 

presented in a pseudorandomized order. The start positions were in the center left and 

center right of the screen for the left and right joysticks. For each arm, the target positions 

were either directly above the start position (for a trial requiring pushing) or directly 

below it (for a trial requiring pulling). Two targets appeared for each trial type (one for 

each arm), in one of 4 possible combinations. 

Surgical procedures for implanting the recording chamber and EMG electrodes 

were similar to those provided in previous reports (Davidson and Buford 2004, 2006). A 

stainless steel recording chamber was mounted to the skull over a craniotomy of the left 

parietal bone and secured with bone screws and dental acrylic. The center of the 

recording chamber was directed toward Horsley-Clark stereotaxic coordinates 

anteroposterior (AP) 0, mediolateral (ML) 0, dorsoventral (DV) -12, allowing bilateral 

access to the PMRF (Szabo and Cowan 1984). The chamber was tilted approximately 10° 

laterally to avoid penetration of midline vascular structures. EMG electrodes consisted of 

pairs of multi-stranded, Teflon-coated stainless steel wires that were led subcutaneously 

from the cranial implant to the electrode implant sites. Insulation was removed from the 

last 2 mm of the tips of the wires, which were inserted intramuscularly with a hypodermic 
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needle (Betts et al. 1976; Park et al. 2000). Twelve bilateral arm and shoulder muscle 

pairs were implanted for a total of 24 muscles. The implanted muscles with their 

functions and abbreviations are presented in Table 1. 

Subject care complied with the NIH Guide for the Care and Use of Laboratory 

Animals and the institutionally approved animal care protocol for our laboratory. 

Surgeries were performed under veterinary supervision in aseptic conditions. Animals 

were pretreated with antibiotics and anesthetized with ketamine HCl (13 mg/kg IM) 

followed by isoflurane gas (1-2%) through endotracheal intubation. While under 

anesthesia, the subject’s respiration, heart rate, and body temperature were monitored. 

Antibiotics and non-steroidal anti-inflammatory analgesics (e.g., buprenorphine, 

ibuprofen) were administered postoperatively to prevent infection and discomfort. 

 

Stimulation procedures 

 Microstimulation was delivered by polyimide- and epoxy-insulated tungsten 

microelectrodes (Frederick Haer and Co, Bowdoin, ME, USA). Electrodes were inserted 

through a 23-gauge thin-walled stainless steel guide cannula, which was aligned with 

stimulation sites by placement through a two-dimensional grid in the recording chamber. 

Guide tubes were advanced into the brain and stopped a few millimeters into the 

cerebellum. The electrode was lowered through the guide tube and into the brainstem 

with a manual hydraulic microdrive. 

 A total of 311 stimulation sites from 83 penetrations were located throughout the 

PMRF, which is bounded by the abducens nucleus dorsally, the inferior olive and 
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pyramidal tract inferiorly, and the facial nucleus laterally. The abducens nucleus was 

identified during electrode insertion by recordings from cells with firing rates 

proportional to ipsilateral eye abduction (Fuchs and Luschei 1970). Prior to stimulation, 

electrophysiological activity was recorded as the electrode was inserted to its maximal 

depth. As the electrode was retracted, stimulation was applied at 0.5 mm intervals to 

regions in which task-related neural activity had been detected.  

At each StimulusTA site, 2000 biphasic pulses were delivered at a rate of 5 Hz by 

a digital stimulus controller (Master-8, AMPI, Israel) connected to an analog stimulus 

isolator (Model 2200, AM-Systems, Carlsborg, WA, USA). A stimulus current of 30 µA 

was used unless this current level produced observable muscle twitches or movement, in 

which case the current was reduced in 5 µA increments until the response was no longer 

visible. A default current of 30 µA was chosen because previous studies in PMRF output 

indicate this is an effective stimulus intensity for StimulusTA in the cat (Drew and 

Rossignol 1990a, 1990b) and monkey (Cowie and Robinson 1994; Davidson and Buford 

2004, 2006; Herbert et al. 2010). While some stimulus currents were as low as 10 µA, the 

vast majority of currents were 30 µA (> 95%). For each session, stimulation was 

delivered continuously for 400 s throughout all phases of the task and regardless of 

subject behavior. Both subjects appeared to be unaware of this background stimulation. 

 

EMG recording 

Electromyographic data were collected from 12 pairs of chronically-implanted 

intramuscular electrodes. The electrode wires were led subcutaneously to three 17-pin 
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plugs (WPI #223-161) mounted in the dental acrylic of the cranial implant. The integrity 

of the EMG implants was verified by periodic testing of electrode impedances. For both 

subjects, electrodes were located in both the left and right of 12 pairs of upper limb 

muscles, listed in Table 1. EMG activity was recorded at a sampling rate of 4 kHz with 

20-2000 Hz band-pass filtering from all implanted muscles during stimulation using 

Spike2 software and a Power 1401 data acquisition unit (CED, Cambridge, England). A 

template subtraction algorithm removed EKG artifact prior to processing. 

 

Force recording 

Bilateral forces were recorded using two stationary, force-sensitive joysticks, 

which the subjects were trained to grasp. To maintain an isometric condition, the 

joysticks measured the magnitude and direction of forces applied by the subject, but did 

not move. The joysticks consisted of a ball handle on top of a shaft screwed into the 

mounting site of a 6 degree-of-freedom load cell (Gamma Model, ATI Industrial 

Automation, Apex, NC, USA). The single-trial resolution of the load cells was 3.5 mN, 

which was subsequently improved by signal averaging.  Each load cell output controlled 

the movement of its respective cursor on the display screen. Force measurements were 

sampled at 4 kHz along the x-, y-, and z-axes from each joystick, shown in Fig. 1. Force 

response vectors were calculated using simple vector addition of the axial components. 

Force measurements were recalibrated for each recording session by defining the average 

force of periods in which the subject was not contacting the joysticks to be 0 N. The 
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firmware in the controller for the load cell was supplied parameters about the length of 

the joystick so that output readings were calibrated for the point of force application. 

 

EMG averaging and analysis 

Procedures for compiling StimulusTAs of EMG data have been previously 

described in detail (Davidson and Buford 2006; Herbert et al. 2010). Briefly, for each 

muscle, EMG records were adjusted to remove DC offsets, rectified, and averaged off-

line using custom scripts for Spike2 and MATLAB. Averages were compiled over an 80 

ms window with a 20 ms pre-stimulus period and a 60 ms post-stimulus period. Triggers 

were selected for averaging only if the mean EMG of the 80 ms window was at least 10% 

greater than the peak baseline noise (McKiernan et al. 1998). Periods during which the 

EMG level exceeded the maximum amplifier range (4.5 V) were also excluded. As a 

result, the number of stimulus triggers varied for the StimulusTA of each muscle, with a 

typical analysis including more than 1900 triggers.  A minimum of 500 triggers were 

required for a StimulusTA to be included in the analysis (McKiernan et al. 1998). 

 To test for post-stimulus EMG effects, multiple fragment statistical analysis 

(MFSA) (Poliakov and Schieber 1998) was performed by dividing the stimulation period 

into N non-overlapping fragments, where N is the square root of the number of triggers in 

the trial. For each fragment, the average post-stimulus EMG response was determined by 

subtracting the average EMG during a target interval from the average EMG during 

preceding and following control intervals. The target interval was a 10 ms period 

centered at 11 ms post-stimulus (Poliakov and Schieber 1998) and control intervals were 
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10 ms periods centered at 9 ms pre-stimulus and 31 ms post-stimulus, chosen to avoid the 

stimulus artifact observed immediately following stimulation. The distribution of the 

average post-stimulus EMG response for each fragment was used to determine a p-value 

for the significance of post-stimulus effects in each muscle using Student’s t-test with 

significance level α = 0.05. Onset and duration were calculated for significant responses, 

with onset and offset latencies defined as the times at which the EMG amplitude crossed 

the 2 SD threshold, shown in Fig. 3A. 

 

Force averaging and analysis 

Because force measurements could only be collected while the subjects made 

contact with the joysticks, only data from stimulation sites for which the subject 

contacted each joystick for cumulatively greater than 100 s (25.0%) of the 400 s 

stimulation period were included in the StimulusTA force analysis, with 162/311 (52.1%) 

of stimulation sites meeting these criteria. Subjects were considered to not be making 

contact with the joysticks if the net force on the joystick was less than 50 mN for greater 

than 15 ms. Force data were averaged over a 200 ms peri-stimulus window, consisting of 

a 50 ms pre-trigger and 150 ms post-trigger period. Only triggers during which contact 

was maintained throughout the entire 200 ms time window were included in the study. 

Since sites with less than 500 triggers were excluded from the analysis, the number of 

triggers for which contact was maintained ranged from 500 to 2000 for each stimulation 

site. To remove slow drift from force recordings, a baseline ramp subtraction procedure 

was used to level the baseline and set it to zero (Cheney and Fetz 1985). 
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MFSA was again used to test for post-stimulus force effects (Poliakov and 

Schieber 1998). For the force response average, the target interval was a 20 ms period 

centered at 40 ms post-stimulus, and control intervals were 20 ms periods centered at 0 

ms and 80 ms post-stimulus. These periods were chosen based on force onset and time-

to-peak estimates from trials in which the change in force deviated from baseline by > 4 

SD (Soto and Cros 2011). The N averages of the difference between target period and 

control for all 3 components of force were used to determine a p-value for the 

significance of post-stimulus force effects using Hotelling’s T-squared statistic. The 

distributions of the direction of force responses for each arm were compared using 

Pearson’s chi-squared test. The statistical significance of bilateral force responses was 

determined using Fisher’s method to combine unilateral significance values. Bilateral 

force patterns were quantified in Fig. 10 by defining “pure flexion” (directed equally 

medially and posteriorly) as 1 and “pure extension” (directed equally laterally and 

anteriorly) as -1 for the ipsilateral side and pure flexion as -1 and pure extension as 1 for 

the contralateral side and then finding the average of both sides. 

 

Multiple multivariate linear regression 

 To test for agreement between EMG and force measurements, a multiple 

multivariate linear regression was performed with the post-stimulus changes in EMG 

activity of all 12 muscles as explanatory variables and the components of the force 

responses along all 3 axes as dependent variables. For each muscle, regression 

coefficients were used to determine if the EMG activity significantly predicted the 
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components (along the x-, y-, or z- axis) of the force response. The change in EMG 

activity, defined as the average activity during the control intervals subtracted from the 

average activity during the target interval (Poliakov and Schieber 1998), was calculated 

for each muscle and used to predict forces recorded from the joystick on the 

corresponding side only. Because of the bilateral symmetry of the subject’s body and 

posture, the data from both sides were combined into one set. There were no significant 

differences between the quality or behavior of EMG and force recordings from the left 

and right arms. 

 

Anatomy and histology 

 Electrolytic lesions were made with 20 µA stimulation applied for 20 s (DC 

anodal) in the final tracks at multiple points of interest. After being placed under deep 

anesthesia with sodium pentobarbital, the subjects were transcardially perfused with 

phosphate-buffered saline and phosphate-buffered formalin. The brain was then removed 

and submerged in phosphate-buffered formalin with 30% sucrose for cryoprotection. A 

freezing microtome was used to cut 50 µm frontal sections and every fourth section was 

mounted and stained with cresyl violet. The locations of brainstem structures were 

identified using a stereotaxic atlas (Szabo and Cowan 1984). The locations of EMG 

recording electrodes were verified by post-mortem dissection. Following histological 

reconstruction, 12 additional stimulation sites that were outside of the PMRF or within 

0.5 mm of midline were excluded from the analysis. As a result, 150 sites met all of the 

criteria for inclusion in the analysis. 
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Results 

Task-related EMG activity and force outputs 

Electromyographic activity was present in all muscles at various times during 

performance of the task. The EMG activity of every muscle was significantly modulated 

between the hold phase and the target phase of the task (p < 0.001). The average force 

output during the target phase of the task was approximately 30 N along the y-axis, with 

smaller magnitude forces (< 10 N) measured along the x- and z-axes during the same 

time period. A representative example of task-related changes in y-axis force output and 

BIC and TRIC EMG activity is shown in Fig. 2. No post-stimulus EMG or force effects 

were evident in the raw data from single pulses before stimulus-triggered averaging was 

applied. 

There was typically a low-to-moderate level of EMG activity during pre-trial hold 

periods when the subject waited with its hands on the force sensors but before it was 

instructed to apply force. This resting level of EMG activity was usually sufficient for 

inter-trial triggers to meet the inclusion criteria for the analysis. The force output was 

greatest during the target phase of the task. All muscles showed a significant difference in 

the EMG activity for the pulling vs. pushing aspects of the task. The greatest differences 

in EMG for pulling vs. pushing were found in the flexors BIC, PMJ, and ADLT and the 

extensors TRIC and PDLT. The flexors were preferentially facilitated during pulling 

trials (negative y-direction), whereas the extensors were facilitated during pushing 

(positive y-direction). 
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General characteristics of post-stimulus EMG effects 

In total, 733 post-stimulus EMG effects (PStEs) were evoked from 139 of the 150 

sites included in the analysis, accounting for 92.7% of all PMRF sites tested. On average, 

22.0 ± 13.9% of the muscles analyzed responded per effective stimulus site, 

corresponding to five or six muscles. The overall range of EMG responses was 4.2% (one 

muscle) to 70.8% (17 muscles) of the 24 muscles tested. A selected example of post-

stimulus EMG and force effects is shown in Fig. 3. 

Of the 733 PStEs, 423 (57.7%) were post-stimulus suppression (PStS) and 310 

(42.3%) were post-stimulus facilitation (PStF). Consistent with its overall prevalence, 

PStS was evoked from more sites (132/150, 88.0%) than PStF (103/150, 68.7%). 

Exclusive PStS was observed from 36 sites (24.0%), while exclusive PStF was observed 

from only 7 sites (4.7%). For each effective stimulus site, 12.7 ± 8.2% of the muscles 

analyzed were suppressed, and 9.3 ± 10.1% were facilitated. The average onset for PStF 

of 8.3 ± 2.9 ms was significantly earlier than the average onset for PStS of 9.7 ± 2.9 ms, 

t(731) = 6.46, p < 0.001, as shown in Table 2. 

 

Post-stimulus EMG effects by muscle 

Fig. 4 shows the effectiveness of stimulation for each muscle, calculated as the 

number of stimulus-evoked responses in a muscle divided by the number of sites for 

which EMG was recorded from that muscle. Stimulation was most effective at limb 

girdle muscles compared to limb flexors and extensors, χ2(1, N = 733) = 29.9, p < 0.001. 
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EMG effects were most commonly observed in axial muscles like UTR (58.0%) and LAT 

(51.3%) and least commonly in distal muscles like FCU (27.3%) and ECR (14.0%). 

 

Post-stimulus muscle activation patterns 

 An average-linkage clustering algorithm was used to classify each of the 12 

muscles into two clusters based on their post-stimulus changes in EMG activity from all 

150 stimulation sites as calculated by MFSA (Poliakov and Schieber 1998). Muscles that 

had similar changes in EMG activity across many stimulation sites were clustered nearer 

each other. The clustering dendrogram is shown in Fig. 5A. The clustering assignments 

segregated muscles into a “flexor-like” muscle group, which contains the primary elbow 

and shoulder flexors (BIC and ADLT), and an “extensor-like” muscle group, which 

contains the primary elbow and shoulder extensors (TRIC and PDLT). The wrist muscles, 

FCU and ECR, were the muscles whose activity was least correlated with either group. 

While FCU and ECR are most correlated with each other, this may simply be due to the 

lower effectiveness of stimulation on distal muscles. 

Facilitation was the most common post-stimulus effect seen in ipsilateral flexors 

(BRAC, BIC, ADLT, PMJ) and contralateral extensors (TRIC, PDLT, UTR), while 

suppression was the most common effect seen in ipsilateral extensors and contralateral 

flexors, as shown in Fig. 5B. LAT exhibited generalized suppression, but more so for the 

contralateral side of the body, consistent with its classification as a flexor. In general, this 

agrees with previously published reports (Davidson and Buford 2004), with the new 

finding that SUP and SUB both group with the extensors. 
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General characteristics of transient force responses 

 Significant force responses were detected from 105 (70.0%) of the 150 

stimulation sites.  Of those sites, 64 sites (61.0%) produced significant force responses 

bilaterally. Unilateral force responses were detected from the ipsilateral arm for 19 sites 

(18.1%) and from the contralateral arm for 22 sites (21.0%). In total, 169 significant force 

responses were detected from either arm. The average magnitude of significant force 

responses was 12.0 ± 8.5 mN with a maximum of 40.9 mN. For perspective, this mean is 

about 1.2 grams and the max is about 5.0 grams by weight. The forces required for task 

performance were approximately 1000 times greater than the observed post-stimulus 

force responses. The magnitudes were not significantly different between ipsilateral and 

contralateral responses.   

Force onset latencies were determined for post-stimulus effects in which the 

instantaneous change in force deviated from baseline by > 4 SD. This threshold was 

reached in 65 (38.5%) of the 169 significant force responses from either arm. For these 

force responses, the force onset latency was defined as the time at which the change in 

force crossed the 2 SD threshold relative to the baseline mean. The average onset latency 

was 15.9 ± 2.6 ms, as shown in Table 2. No significant difference in onset latency was 

detected between ipsilateral and contralateral force responses. The average time-to-peak, 

defined as the length of time between stimulus delivery and the maximum force deviation 

from baseline, was 45.2 ± 18.3 ms (median = 38.8 ms). There was no significant 

difference in time-to-peak between ipsilateral and contralateral force responses. 
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Bilateral force output patterns  

 For the 105 stimulation sites in the PMRF that produced a significant force 

response in at least one arm, the majority of forces were directed along one of two 

directions, either medially and posteriorly or laterally and anteriorly. The direction of 

these force responses was significantly dependent on the laterality of the response relative 

to the location of the stimulation site (i.e. ipsilateral vs. contralateral), χ2(3, N = 193) = 

114.9, p < 0.001. The direction of force responses in the x-y plane can be divided into 

four groups, determined by the signs of the x- and y- components of force, with each 

group consisting of one 180° quadrant. 65.3% of significant force responses from the 

ipsilateral arm were directed medially and posteriorly, χ2(3, N = 95) = 86.5, p < 0.001, 

shown in Fig. 6; while 78.6% of responses from the contralateral arm were directed 

laterally and anteriorly, χ2(3, N = 98) = 151.6, p < 0.001, also shown in Fig. 6. For 

simplicity, results are presented as if the left side were always ipsilateral. Because of the 

bilateral symmetry of the subject and task design, this was done by mirroring results from 

right-sided stimulation across midline. In this frame of reference, the average ipsilateral 

force response was directed at an angle of 317° (medially and posteriorly), and the 

average contralateral force response was directed at an angle of 47° (laterally and 

anteriorly). This output pattern is consistent with the facilitation of ipsilateral flexors and 

contralateral extensors and the reciprocal suppression of contralateral flexors and 

ipsilateral extensors observed in EMG recordings. 
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Relationships between force responses and post-stimulus EMG effects 

 At all 105 sites with a significant force effect in the stimulus-triggered average, 

there was also at least one muscle with a significant PStE. As noted above, there were 

139 sites of the 150 that resulted in a significant PStE, leaving 34 sites from which at 

least one PStE was evoked, but the force response was not significant. These 34 sites 

evoked, on average, fewer PStEs than their counterparts, t(126) = 7.36, p < 0.001. 

For those sites from which significant PStEs were found in EMG records and in 

the forces, the average magnitude of the force responses was significantly correlated with 

the average post-stimulus change in EMG activity elicited for the same site, r2 = 0.425, 

F(1, 148) = 109.4, p < 0.001, as shown in Fig. 7. Similarly, the average force magnitude 

was significantly correlated with the number of muscles exhibiting a post-stimulus EMG 

effect, r2 = 0.373, F(1, 148) = 85.3, p < 0.001. The magnitude of the force and EMG 

responses was determined by subtracting the average value during the control intervals 

from the average value during the target interval. For Fig. 7, the average EMG response 

was calculated by finding the average percent change from baseline during the target 

interval for all 24 EMG recordings. Similarly, the average force response was found for 

recordings from both force sensors. As noted above, the magnitude of the stimulus 

triggered force responses was about 1/1000th of the force required to perform the task.  

Likewise, the sizes of the PStEs ranged from 1/100th to 1/1000th of the task-related 

modulation of the EMG levels. The average onset of the PStEs at 8.3 ± 2.9 ms was 

significantly earlier than the average onset of the force responses at 15.9 ± 2.6 ms, t(373) 
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= 19.5, p < 0.001, allowing sufficient time between events for the electromechanical 

delay. 

 

Multiple multivariate linear regression 

To test how well post-stimulus changes in EMG activity account for the observed 

force responses, a multiple multivariate linear regression model was developed. The 

explanatory variables were the changes in average EMG activity between control and 

target intervals for all 12 muscles on one side, measured in multiples of the standard 

deviation of the EMG levels recorded during the baseline period. The response variables 

were the components of the force responses along each axis, recorded from the same side 

as the EMG recordings. For each stimulation site, the force responses were calculated by 

determining the change in force between the average force onset time and the average 

time-to-peak. In order to determine the force contributions of all the muscles from which 

EMG was recorded, a stepwise regression was not used. 

The beta coefficients of the regression analysis represent the contributions of each 

muscle to the generation of force in the ipsilateral arm, as shown in Fig. 8A. Facilitation 

of flexors and suppression of extensors were significantly associated with a resultant 

medial and posterior deflection in the force response of the corresponding arm, χ2(3, N = 

7) = 8.43, p = 0.038; while facilitation of extensors and suppression of flexors were 

associated with a resultant lateral and anterior deflection, χ2(3, N = 5) = 8.60, p = 0.035. 

Additionally, the relative change in the EMG activity significantly correlated with the 

component of the force responses along the x-axis, r2 = 0.576, F(12, 287) = 32.54, p < 
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0.001; y-axis, r2 = 0.410, F(12, 287) = 16.63, p < 0.001; and z-axis, r2 = 0.294, F(12, 287) 

= 9.98, p < 0.001. Every muscle except the FCU made a significant contribution to the 

regression model, shown in Fig. 8A. Variance inflation factors for all muscles were < 5 

indicating tolerable multicollinearity of post-stimulus EMG effects. The goodness of fit 

for the x- and y- components of the linear regression model is shown in Figs. 8B and 8C, 

respectively. 

 

Force contributions of antagonistic muscle pairs 

According to the regression model, BIC and TRIC made the largest and most 

significant contributions to the force response (β = 10.7, p < 0.001 and β = 10.0, p < 

0.001, respectively). To determine the ability of BIC and TRIC EMG activity alone to 

explain forces in the x-y plane, a directional tuning curve for the BIC and TRIC was 

generated, shown in Fig. 9. For each muscle, the correlation coefficients were found 

between the EMG activity and the projection of the force response vectors in 12 

directions at 30° intervals. The correlation coefficient curves were fit well by sinusoidal 

functions, r2 = 0.962 for both BIC and TRIC. The EMG activity of BIC was best 

correlated with the components of force directed along an angle of 295° (medially and 

posteriorly). The TRIC EMG activity was best correlated with the components of force 

directed along an angle of 118° (laterally and anteriorly). As expected of antagonistic 

muscles, the BIC and TRIC correlated with components of force in opposite directions 

(177° difference). 
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Force patterns by location of stimulation 

Stimulus sites were distributed throughout the PMRF with no significant 

preference for laterality. For bilaterally significant responses, the average force output 

pattern was significantly different between left- and right-sided stimulation, t(71) = 16.4, 

p < 0.001, shown in Fig. 10B. The degree of flexion in the response from one arm was 

significantly correlated with the degree of extension in the other, r2 = 0.379, F(1, 71) = 

43.3 p < 0.001. In Fig. 10A, stimulation sites are categorized by their corresponding force 

output pattern, with different colors representing the directions of the post-stimulus forces 

effects. Sites that produced a force pattern of left-sided flexion and right-sided extension 

are shown in red, and sites that produced a pattern of right-sided flexion and left-sided 

extension are shown in blue. Sites for which no significant bilateral force responses were 

detected are shown in gray. 

 

Discussion 

Detection of transient force responses 

Single-pulse microstimulation produces small EMG responses detectable with 

StimulusTA, but does not produce obvious muscle twitches and is thought to be 

imperceptible to the subject (Cheney and Fetz 1985). Measuring this post-stimulus EMG 

activity has been a valuable method for studying motor outputs of cortical and brainstem 

neurons (Cheney and Fetz 1985; Davidson and Buford 2004, 2006). While individiual 

movements evoked by a single stimulus may be too small to observe, the present study 

shows that force responses associated with muscle recruitment can be detected using 
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StimulusTA. The overall effect of StimulusTA on arm movement is difficult to predict 

using only the complex pattern of facilitation and suppression of the muscles in that limb. 

But direct recording of these small force changes can reveal general patterns of arm 

movement resulting from muscle recruitment. To our knowledge, this is the first 

demonstration of such a measurement. This approach could also have considerable 

applications in other brain regions where questions about the coordinate representation 

encoded remain under study (Kakei et al. 1999, 2001). 

While many studies have produced limb and head movements with short stimulus 

trains in the motor cortex (Lemon 2008) and a few have done so in the brainstem (Drew 

and Rossignol 1990a, Cowie and Robinson 1994, Riddle et al. 2009, Herbert et al. 2010), 

this type of stimulation produces spatial and temporal summation leading to activation of 

polysynaptic pathways. In contrast, the low frequency (5 Hz) and low current intensity 

(30 µA) of single-pulse microstimulation minimizes temporal and spatial summation and 

primarily activates monosynaptic and disynaptic pathways, producing a more 

physiologically relevant response (Cheney and Fetz 1985). StimulusTA with single-pulse 

microstimulation produces motor outputs similar to those from SpikeTA (Davidson et al. 

2007), indicating that results from StimulusTA offer a better approximation of the motor 

effects of spontaneous neural activity than techniques that use higher frequency 

stimulation. Hence, it seems likely the force responses measured here are from relatively 

direct reticulospinal pathways. 
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Electromechanical delay 

Muscle fiber contraction and force generation trails the motor unit action potential 

onset by a time period known as the electromechanical delay (EMD). Muscle contraction 

following excitation in the frog sartorius muscle has been shown to occur with a latency 

as short as 2.5 ms (Sandow 1952). In human finger muscles, forces associated with 

contraction of single motor units have been measured based on the triggered averaging 

approach (Kilbreath et al. 2002, Yu et al. 2007).  In those studies, forces of 20-50 mN 

began in single fingers within 2-3 ms of the beginning of the motor unit action potential.  

In the present study, StimulusTA produced force responses with an average onset time of 

15.9 ms post-stimulation, which, considering an average flexor EMG onset latency of 

around 8.3 ms, corresponds to an EMD of approximately 7.6 ms. An EMD of 8.0 ms has 

been observed in humans in response to a maximal electrical stimulation of the posterior 

tibial nerve (Grosset et al. 2008). Winter and Brookes (1991) measured the time interval 

from the change in electrical activity to the registration of force from a human soleus 

muscle to be 10.2 ms, and Muro and Nagata (1985) reported similar results of 11.7 ms in 

unstretched soleus muscle and 7.0 ms in heavily stretched muscle. Hence, the timing of 

the present results is consistent with the hypothesis that the detected force responses 

resulted directly from the post-stimulus EMG changes measured by StimulusTA and not 

through an indirect mechanism. Studies relying on movement onset have reported longer 

estimates of EMD (Norman and Komi 1979, Philipp and Hoffmann 2014, Hoffmann and 

Strick 1999), but measurements of force onset in a pretensed, isometric condition would 

be expected to reveal relatively short electromechanical delays. 
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Linear regression analysis 

Multivariate linear regression is used to determine the effects of multiple 

explanatory variables on their associated dependent variables. Linear regression is 

appropriate for these data because the mean rectified EMG varies approximately linearly 

with the isometric force generated by a muscle over the mid-range recruitment levels 

studied (Lippold 1952, Milner-Brown and Stein 1975). Furthermore, because of the 

stationary position of the subject’s arms, activity from a specific muscle will generate 

forces in a consistent direction. If the force responses are caused by the change in EMG 

activity following stimulation, a multivariate linear regression model should be able to 

describe this relationship. Our model uses the change in EMG activity from 12 muscles 

on one side to predict the direction and magnitude of the force response generated from 

the corresponding arm. 

Linear regression analysis determined the contributions of each muscle to the 

forces generated at the joysticks, based on muscle EMG activity. The force responses of 

the studied muscles matched their expected functions, with elbow and shoulder flexors 

producing forces toward the body and extensors producing forces away from the body. 

BIC and TRIC made the largest contributions to force generation. Activation of wrist 

muscles was generally weak and hand position on the joysticks was free to vary with the 

subject’s style across trials, as long as the overall force was properly directed. As a result, 

the wrist muscles did not strongly contribute to the regression model. The limited 

contribution of more proximal muscles to the regression model may be dependent on the 

arm position required by the task and could vary with another recording setup. 
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Muscle groupings 

Davidson and Buford (2006) identified functional groups of upper limb muscles 

based on reciprocal patterns of EMG activation following PMRF stimulation. Of the 

muscles analyzed in this study, BIC, BRAC, ADLT, and PMJ have previously been 

shown to be facilitated during ipsilateral PMRF stimulation and suppressed during 

contralateral stimulation. Similarly, TRIC, PDLT, and UTR have been shown to be 

suppressed during ipsilateral PMRF stimulation and facilitated during contralateral 

stimulation. These groupings were preserved in this study by the clustering algorithm 

with grouped muscles based only on similarity of post-stimulus EMG activity. The 

cluster encompassing the BIC, BRAC, ADLT, and PMJ was designated as the “flexor-

like” muscle group, while the cluster containing TRIC, PDLT, and UTR was designated 

as the “extensor-like” muscle group. 

Possibly owing to their less consistent responses to stimulation, the distal FCU 

and ECR were the last muscles to be clustered into either group. Although stimulation 

has proven less effective at activating more distal muscles, the reticulospinal tract has 

been shown to make monosynaptic and disynaptic projections to both forearm and 

intrinsic hand muscles (Riddle et al. 2009). While our results indicate a relatively low 

level of consistency between the flexor and extensor synergies in the proximal limb 

muscles and the activation patterns in wrist muscles, hemiparetic stroke patients have 

been shown to exhibit flexion synergy between proximal arm muscles and those of the 

wrist and fingers (Miller and Dewald 2012). One possible factor in this discrepancy is 

that our subjects were free to adopt individual styles and vary their grip on the joysticks 
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across trials, which may have introduced some variability and reduced the consistency of 

muscle activation patterns. In other words, this might be due to experimental conditions. 

It is also possible that this is a species difference between humans and macaques. 

Rotator cuff muscles, such as SUB and SUP, act as stabilizers of the shoulder 

joint in addition to other actions on the humeroscapular joint. The primary functions of 

SUP are external rotation and elevation of the glenohumeral joint. The primary functions 

of SUB are internal rotation and adduction of the glenohumeral joint. Despite their 

seemingly opposite functions, both of these muscles strongly clustered with the 

extensors. This is consistent with their role as stabilizers, both acting during extension 

particularly to stabilize the glenohumeral joint. However, it is difficult to determine if this 

pattern of synergy is contingent on the subject being in the position required by the task. 

 

Reciprocal force output pattern 

Stimulation of the PMRF has been known to produce bilateral motor output 

patterns in the cat (Drew and Rossignol 1990a, 1990b; Sprague and Chambers 1954) and 

monkey (Davidson and Buford 2004, 2006). These movement patterns include flexion of 

the spine, ipsilateral head turning, ipsilateral arm flexion, and contralateral arm extension. 

The StimulusTA results agree that PMRF stimulation produces a bilateral pattern of 

EMG activity. Consistent with previous studies, ipsilateral facilitation and contralateral 

suppression of flexor-like muscles and reciprocal effects on extensor-like muscles were 

observed. Generalized suppression of LAT was compatible with flexion of the spine, and 

ipsilateral suppression and contralateral facilitation of UTR was compatible with 
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ipsilateral head turning. Post-stimulus force responses indicate a strong pattern of flexion 

of the ipsilateral arm and extension of the contralateral arm, as shown in Fig. 10. This 

pattern was also detected in force responses corresponding to stimulation sites in which 

only unilateral EMG activity was identified. 

This bilateral action of the PMRF is supported anatomically by evidence of 

bilaterally distributed monosynaptic and disynaptic pathways. While the majority of 

reticulospinal axons terminate ipsilaterally, they have also been shown to project 

bilaterally (Matsuyama et al. 1997). Additionally, ipsilaterally projecting neurons can 

evoke bilateral motor outputs via commissural interneurons (Bannatyne et al. 2003; 

Jankowska et al. 2003, 2006). The pattern of flexion of one limb and the extension of the 

other is closely tied to locomotion (Drew and Rossignol 1984). Supraspinal locomotor 

command signals to central pattern generators in the spinal cord are primarily conveyed 

via reticulospinal pathways (Eidelberg et al. 1981; Matsuyama et al. 2004). However, 

PMRF neurons have also been shown to be modulated during voluntary reaching (Buford 

and Davidson 2004; Schepens et al. 2004, 2006, 2008). These results suggest that 

reticulospinal pathways involved in locomotion are also activated during reaching (Drew 

et al. 2004). 

 

Task-dependent facilitation of post-stimulus effects 

It is possible that, because of the the requirements of the task, the behavior of the 

subjects preferentially facilitated force responses along the y-axis. If the behavioral task 

required exertion of forces in the x-direction, that may have affected the relative 



50 
 

magnitudes of the components of force in the x- and y-directions. However, because the 

flexion/extension pattern of the force responses was produced with bilaterally symmetric 

task requirements, we would expect the force responses to display the observed 

reciprocal force output pattern regardless of the exact nature of the task. While it would 

be interesting to subdivide the averages into periods of different patterns of exertion to 

construct an average from data collected only while both arms were pushing, another 

with one arm pulling and the other pushing, etc., the design of the study did not permit 

that. We would have needed to apply at least four times as many stimuli to support that 

analysis, perhaps more, and this would have made data collection four times as slow. As 

a practical matter in the design of this study, there was simply not enough time to 

perform so much stimulation. Perhaps a future study could be designed to allow dividing 

the stimuli for averaging in this manner. 

 

Conclusions 

This novel technique for measuring force responses from StimulusTA provides 

strong confirmation of a bilateral double reciprocal pattern of PMRF output. The high 

internal consistency of our results, especially the EMD determined by the force onset 

latency and the strong correlation between EMG activity and force direction and 

magnitude, supports the validity of these findings. To our knowledge, this is the first 

report of low-intensity, single-pulse microstimulation in the CNS producing measureable 

force outputs. Our study provides a new approach to measuring very small forces on the 

order of a few grams by weight generated by single-pulse microstimulation in the CNS. 
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Potentially, this approach could also reveal force responses associated with spontaneous 

neural activity in the motor system. This technique could be applied to other brain 

regions, such as the motor cortex, to detect physiological motor outputs. 

  



52 
 

Tables & Figures 

No. Muscle Function(s) Abbr. 

1 Flexor carpi ulnaris Wrist flexion FCU 

2 Extensor carpi radialis Wrist extension ECR 

3 Brachioradialis Elbow flexion BRAC 

4 Biceps brachii Elbow flexion BIC 

5 Triceps brachii, lateral Elbow extension TRIC 

6 Anterior deltoid Humerus flex. & in. rot. ADLT 

7 Posterior deltoid Humerus ext. & ex. rot. PDLT 

8 Subscapularis Humerus adduct. & in. rot. SUB 

9 Supraspinatus Humerus abduct. & ex. rot. SUP 

10 Pectoralis major Humerus flex. & adduct. PMJ 

11 Latissimus dorsi Humerus ext. & adduct. LAT 

12 Upper trapezius Scapula elevation UTR 

Table 3.1  List of EMG implantation sites. EMG Implants were located in left and right 

muscles, with 12 muscles per side, for a total of 24 muscles. Abbr. functions: flex. 

flexion, ext. extension, adduct. adduction, abduct. abduction, rot. rotation – in. internal 

and ex. external.  
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Timing (ms) 

 
EMG PStF  EMG PStS  Force 

 
Onset Duration  Onset Duration  Onset TTP 

Mean 8.3 7.3  9.7 6.6  15.9 45.2 

SD 2.9 5.0  2.9 3.7  2.6 18.3 

 
Amplitude 

 
EMG PStF (%)  EMG PStS (%)  Force (mN) 

Mean 11.0  9.2  12.0 

SD 4.0  3.4  8.5 

Table 3.2  Characteristics of post-stimulus effects. Timing and amplitude characteristics 

of post-stimulus force responses and EMG facilitation and suppression. Onset latency is 

defined as the earliest time at which the EMG or force recording deviated from baseline 

activity by > 2 SD. TTP, Time-to-peak.  
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Figure 3.1  Schematic of the apparatus for the isometric force control task. The force-

sensitive joysticks control the cursors on the display screen. The target locations 

correspond to the positions for a task requiring left-sided pulling and right-sided pushing. 

The coordinate system demonstrates the orientations of the x- (mediolateral), y- 

(anteroposterior), and z- (superoinferior) axes.  
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Figure 3.2  Representative example of task-related changes in y-axis force and BIC and 

TRIC EMG activity. Three trials are shown over a 20 s period. The first trial required 

bilateral pushing, the second left-sided pulling and right sided pushing, and the last left-

sided pushing and right-sided pulling. EMG recordings show increased BIC activity 

during trials requiring pulling for that arm and increased TRIC activity during trials 

requiring pushing. Scale bars represent 10 N for force recordings and 1 mV for EMG 

recordings. Throughout the session, 30 µA stimulation was applied at 200 ms intervals (5 

Hz).
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Figure 3.3  Selected example of EMG and force recordings of ipsilateral flexion and 

contralateral extension in response to left-sided PMRF stimulation. A: Significant post-

stimulus EMG effects. Significant periods of PStF are indicated by filled bars, PStS by 

open bars. Scale bars on right represent 0.01 mV except those for ECR and right TRIC 

which represent 0.001 mV. B: Corresponding post-stimulus force responses showing 

posteromedial forces toward the body from the left (ipsilateral) arm and anterolateral 

forces away from the body from the right (contralateral) arm. Scale bars represent 10 mN. 

For this site, all averages included at least 1355 triggers. The 30 µA stimulation was 

applied at time 0 s. 
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Figure 3.3  Selected example of EMG and force recordings of ipsilateral flexion and 

contralateral extension in response to left-sided PMRF stimulation.   
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Figure 3.4  Effectiveness of stimulation at producing post-stimulus EMG effects, 

determined for each muscle by calculating the percentage of sites from which a PStE was 

observed for each muscle. Percentages are subdivided based on the laterality of the 

responses evoked from each muscle. The height of the black bar represents the proportion 

of PStEs that produced a bilateral response, the gray bar represents ipsilateral responses, 

and the white bar represents contralateral responses. 
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Figure 3.5  Muscle activation patterns and distribution of PStF and PStS by muscle. A: 

Dendrogram showing muscle activation groupings based on average-linkage clustering 

algorithm of relative change in EMG activity following stimulation. The solid line 

indicates the flexor-like cluster; the dashed line indicates the extensor-like cluster. 

Similarity in activity between muscles is denoted by the vertical location of the branch 

point. B: Each point represents the percentage of PStEs that were PStF for that muscle, 

organized along the horizontal axis to match clustering results. The solid line represents 

ipsilateral muscles; the dashed line represents contralateral muscles.  
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Figure 3.6  Polar histograms of the direction of post-stimulus force responses in the 

horizontal (x-y) plane. Left: Distribution of force responses from side ipsilateral to the 

stimulus site, with 0° medial and 270° posterior, shown as if the ipsilateral side were 

always on the left.  Ipsilateral force responses were primarily directed medially and 

posteriorly, p < 0.001. Right: Distribution of force responses contralateral to stimulus 

site, with 0° lateral and 90° anterior, shown as if the contralateral side were always on the 

right. Contralateral force responses were primarily directed laterally and anteriorly, p < 

0.001. 
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Figure 3.7  Correlation between the magnitude of post-stimulus EMG effects with the 

magnitude of post-stimulus force responses. A significant correlation was observed 

between the average change in EMG activity during the target interval as a percentage of 

the baseline activity and the average force magnitude, r2 = 0.425, p < 0.001, n = 150. 
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Figure 3.8  A: Contributions of each muscle to force responses as determined by the 

linear regression model. Filled squares represent flexor-like muscles and open triangles 

represent extensor-like muscles. BIC and TRIC are directly labeled and superscripts 

specify the other muscles: a, ECR; b, PDLT; c, SUP; d, FCU; e, UTR; f, LAT; g, ADLT; 

h, PMJ; i, SUB; j, BRAC. The positive x-axis is medial, and the positive y-axis is 

anterior. Error bars correspond to the standard error. B: Linear regression model 

predictions compared with actual x-axis (mediolateral) components of force responses 

and best-fit line, r2 = 0.576, p < 0.001, n = 300. C: Linear regression model predictions 

compared with actual y-axis (anteroposterior) components of force responses and best-fit 

line, r2 = 0.410, p < 0.001, n = 300.  
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Figure 3.9  Directional tuning curve showing the correlation of EMG activity with the 

components of force responses in each direction. For BIC and TRIC, the correlation 

coefficients were found between the EMG activity and the components of force in 12 

directions at 30° intervals. Standard cosine functions were used to fit data for BIC (solid 

line, filled circles) and TRIC (dashed line, open triangles). BIC activity was best 

correlated with the force components for 295°, and TRIC activity was best correlated 

with the force components for 118°. For both BIC and TRIC, r2 = 0.962.
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Figure 3.10  A: Anatomical locations of stimulation sites with associated force response 

patterns. Brainstem sections adapted from Szabo and Cowan (1984) with nomenclature 

from Martin and Bowden (1996). Colored circles represent a significant force response, 

with red representing a pattern of left-sided flexion and right-sided extension (LFRE), 

blue representing left-sided extension and right-sided flexion (LERF), and intermediate 

values defined by the color scale at the bottom. Gray circles indicate nonsignificant 

bilateral force responses. n4 fourth cranial nerve; n5 fifth cranial nerve; 6 sixth cranial 

nerve nucleus; n7 seventh cranial nerve; 7 seventh cranial nerve nucleus; n8 eighth 

cranial nerve; 10 tenth cranial nerve nucleus; 12 12th cranial nerve nucleus; icp inferior 

cerebellar peduncle; mcp middle cerebellar peduncle; scp superior cerebellar peduncle; 

Py pyramidal tract; tz trapezoid body; IO inferior olivary nucleus; SO superior olivary 

nucleus; IVe inferior vestibular nucleus; SVe superior vestibular nucleus; LVe lateral 

vestibular nucleus; MVe medial vestibular nucleus; PrP nucleus prepositus; ACu anterior 

cuneate nucleus; Sol nucleus solitarius; Pr5 principal nucleus of fifth cranial nerve; Sp5 

spinal nucleus of fifth cranial nerve; LC locus coeruleus; IC inferior colliculus; SC 

superior colliculus; 4V fourth ventricle; Aq cerebral aqueduct. The circle with crosshairs 

represents dorsoventral -12, mediolateral 0 in the stereotaxic coordinates. B: Bilateral 

force output patterns by laterality of stimulation site (left vs. right). Output patterns 

corresponding to LFRE are closer to 1, and those corresponding to RFLE are closer to -1. 

*** p < 0.001. Error bars, S.E.M.  
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Figure 3.10  Anatomical locations of stimulation sites with associated force response 

patterns.  
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Chapter 4: Comparison of stimulus-triggered averaging results to spike-triggered 
averaging of motor outputs from nearby reticulospinal neurons 

 

Introduction 

Spike-triggered averaging (SpikeTA) is the most direct electrophysiological 

method of investigating physiological motor outputs of neurons.  SpikeTA is performed 

by averaging the EMG activity before and after action potentials recorded from an 

individual neuron. The major motor effects revealed by SpikeTA of CNS neurons are 

thought to be primarily mediated through monosynaptic and disynaptic connections to 

motor neurons (Cheney and Fetz 1985; Baker and Lemon 1998; Davidson et al. 2007). 

Because StimulusTA is also thought to activate monosynaptic and disynaptic pathways 

(Cheney and Fetz 1985), it might be expected that StimulusTA and SpikeTA would 

produce similar effects when performed at the same site. Previous SpikeTA studies of 

spontaneous neural activity in the motor cortex and PMRF revealed similarity between 

post-spike EMG effects and post-stimulus EMG effects evoked by single-pulse 

microstimulation (Cheney and Fetz 1985; Davidson et al. 2007). In the PMRF study, less 

than 5% (14/309) of recorded neurons produced SpikeTA effects, suggesting that most 

reticulospinal neurons affect cervical motor neurons indirectly through interneurons 

(Davidson et al. 2007). Force transients in the upper limbs evoked by microstimulation of 

PMRF neurons have been identified with StimulusTA in the primate (Hirschauer and 
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Buford 2015), but no SpikeTA-based studies have detected force outputs of spontaneous 

PMRF spiking. 

The purpose of the present study was to determine the motor outputs that result 

from spontaneous spiking of PMRF neurons using the SpikeTA approach to measure 

post-spike EMG and force effects. Despite the small magnitude of previously detected 

post-spike EMG effects, we expected measureable forces to be exerted by the upper 

limbs following spontaneous PMRF spiking. Furthermore, we expected the pattern of 

forces to correspond to the reciprocal pattern of EMG activity associated with PMRF 

output observed in previous StimulusTA and SpikeTA studies (Hirschauer and Buford 

2015). Similarity between StimulusTA and SpikeTA force effects would confirm the 

validity of StimulusTA as an accurate method to determine the force outputs from CNS 

neurons. Additionally, demonstrating the effectiveness of this technique would permit 

direct measurement of force outputs evoked by spontaneous spiking of CNS neurons. 

 

Methods 

Subjects, task, and surgery  

The experimental setup and surgical procedures have been previously described 

(Hirschauer and Buford 2015).  Briefly, one male monkey (Macaca fascicularis) was 

trained to perform a bilateral isometric force control task, in which the subject controlled 

two cursors on a computer screen via two stationary force-sensitive joysticks located in 

front of it at waist level.  The subject tended to grip the joysticks with its palms down and 

its forearms pronated.  Cursors were primarily controlled by pushing and pulling along 
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the anteroposterior y-axis, with each cursor controlled by one joystick.  Each trial 

consisted of a hold period with targets located midway between the top and bottom of the 

screen (1.0 s duration).  The subject had to grip the joystick but neither push nor pull.  An 

exertion period then occurred with targets moving either up or down on the screen.  The 

subject had to push to move the cursor up, or pull to move it down to capture the target.  

The cursors both had to be held on target for 0.5 second to complete a trial.  The task was 

set so that pushing or pulling forces of approximately 30 N were required to move the 

cursors to the targets.  Two targets appeared for each trial type (one for each arm), in one 

of 4 possible combinations (push:push, push:pull, pull:push, pull:pull), which were 

presented in a pseudorandomized order. 

Surgical procedures for implanting the recording chamber and EMG electrodes 

were similar to those provided in previous reports (Davidson and Buford 2004, 2006; 

Hirschauer and Buford 2015). A stainless steel recording chamber was mounted to the 

skull over a craniotomy of the left parietal bone and secured. The center of the recording 

chamber was directed toward Horsley-Clark stereotaxic coordinates anteroposterior (AP) 

0, mediolateral (ML) 0, dorsoventral (DV) -12, allowing bilateral access to the PMRF 

(Szabo and Cowan 1984). The chamber was tilted approximately 10° laterally to avoid 

penetration of midline vascular structures. Subcutaneous EMG electrodes were implanted 

intramuscularly in 12 pairs of arm and shoulder muscles bilaterally (Park et al. 2000). 

The muscles implanted were the anterior deltoid (ADLT), biceps brachii (BIC), 

brachioradialis (BRAC), extensor carpi radialis (ECR), flexor carpi ulnaris (FCU), 

latissimus dorsi (LAT), posterior deltoid (PDLT), pectoralis major (PMJ), subscapularis 
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(SUB), supraspinatus (SUP), triceps brachii (TRIC), and upper trapezius (UTR), on both 

sides. Subject care complied with the NIH Guide for the Care and Use of Laboratory 

Animals and the institutionally approved animal care protocol for our laboratory.  

 

Neural activity recording and neuron isolation 

 Extracellular neural recordings were obtained by inserting tungsten 

microelectrodes through guide tubes placed in a two-dimensional grid over an open 

craniotomy. For each recording, the guide tube was advanced into the cerebellum and the 

electrode was lowered through the guide tube and into the brainstem. Recordings were 

made from 174 different sites throughout the PMRF from 35 electrode penetrations. 

Extracellular field potentials were recorded from neurons as the electrode was inserted 

through the brainstem until neural activity was no longer detected. Following recordings, 

30 µA single-pulse microstimulation was applied at 0.5 mm intervals as the electrode was 

retracted to regions in which task-related neural activity had been detected (Hirschauer 

and Buford 2015).  

Neuron isolation was performed by identifying putative action potentials in raw 

neuronal recordings using CED Spike2 software. Next, principal component analysis was 

applied to the action potential features and distinct clusters were identified as separate 

neurons. Differences in action potential magnitude, shape, and duration allowed for 

differentiation between nearby neurons. Final spike assignments were restricted so that 

individual neurons did not have firing rates over 100 Hz, eliminating most instances 

where potentials from two neurons were detected as one. 
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EMG and force recordings, averaging, and analysis 

As previously described (Hirschauer and Buford 2015), EMG activity was 

recorded from 12 pairs of chronically-implanted intramuscular electrodes. Bilateral forces 

were recorded using two stationary, force-sensitive joysticks, which the subject was 

trained to grasp. To maintain an isometric condition, the joysticks measured the 

magnitude and direction of forces applied by the subject, but did not move. Each load cell 

output controlled the movement of its respective cursor on the display screen. Force 

measurements were recorded along the x-, y-, and z-axes from each joystick.  Force 

vectors were calculated using simple vector addition of the axial components.  

Procedures for compiling StimulusTAs of EMG data have been previously described in 

detail (Davidson and Buford 2006; Herbert et al. 2010, Hirschauer and Buford 2015).  

Briefly, for each muscle, EMG records were adjusted to remove DC offsets, rectified, and 

averaged off-line using custom scripts for Spike2 and MATLAB. Averages were 

compiled over an 80 ms window with a 20 ms pre-spike period and a 60 ms post-spike 

period. A minimum of 4000 triggers were required for a SpikeTA to be included in the 

analysis, with a typical analysis including more than 12000 triggers. 

 To test for post-stimulus EMG effects, multiple fragment statistical analysis 

(MFSA) (Poliakov and Schieber 1998) was performed by dividing the stimulation period 

into N non-overlapping fragments, where N is the square root of the number of triggers in 

the trial. For each fragment, the average post-spike EMG effect was determined by 

subtracting the average EMG during a target interval (6-16 ms post-spike) from the 

average EMG during preceding and following control intervals (14-4 ms pre-spike and 
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26-36 ms post-spike) (Poliakov and Schieber 1998), chosen to match StimulusTA 

intervals. The distribution of the average post-spike EMG activity for each fragment was 

used to determine a p-value for the significance of post-spike effects in each muscle using 

Student’s t-test with significance level α = 0.05. The overall statistical significance of 

EMG effects for each neuron was determined using Fisher’s method to combine 

significance values from individual muscles. 

Because force measurements could only be collected while the subject made 

contact with the joysticks, only data recorded from neurons for which the subject 

contacted each joystick for cumulatively greater than 100 seconds during neural 

recording were included in the SpikeTA force analysis. The subject was considered to not 

be making contact with the joysticks if the net force on the joystick was less than 50 mN 

for greater than 15 ms. Force data were averaged over a 200 ms peri-spike window, 

consisting of a 50 ms pre-spike and 150 ms post-spike period. Only triggers during which 

contact was maintained throughout the entire 200 ms time window were included in the 

study. A 50 Hz moving average-based high-pass filter was applied to isolate fast changes 

in force caused by neuronal spiking from slower changes in force associated with task-

related movement. 

MFSA was again used to test for post-spike force effects (Poliakov and Schieber 

1998). The post-spike force effect was defined as the change in force between the 

average force onset time (16 ms) and the mean time-to-peak (31 ms) as determined by the 

high-pass filtered StimulusTA force traces (Hirschauer and Buford 2015). The N 

averages of the force change for all 3 components of force were used to determine a p-
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value for the significance of post-spike force effects using Hotelling’s T-squared statistic. 

The statistical significance of bilateral force responses was determined using Fisher’s 

method to combine unilateral significance values. 

 

Results 

General characteristics of post-spike EMG effects 

In total, post-spike EMG effects (PStEs) were detected from 34 of the 269 

neurons (10.4%) isolated from 174 recording sites included in the analysis. On average, 

15.7 ± 7.8% of the muscles responded per recording site with a significant effect, 

corresponding to 3 or 4 muscles. The overall range of EMG responses was 4.2% (1 

muscle) to 33.3% (8 muscles) of the 24 muscles tested. A selected example of post-spike 

EMG effects is shown in Figs. 4.1 and 4.2. Of the 128 PStEs, 71 (55.5%) were post-spike 

suppression (PStS) and 57 (45.5%) were post-spike facilitation (PStF). Post-spike EMG 

effects were more often observed in proximal muscles (ADLT = 22.1%, UTR = 20.6%) 

than distal muscles (ECR = 10.3%, FCU = 11.8%).  The majority of flexor muscles 

exhibited higher percentages of facilitation ipsilaterally and suppression contralaterally 

(ipsilateral PStF %: ADLT, 83%; BIC, 60%; BRAC, 80%; FCU, 75%; and LAT, 40%); 

whereas the majority of extensor muscles exhibited higher percentages of facilitation 

contralaterally and suppression ipsilaterally (contralateral PStF %: SUB, 80%; SUP, 

29%; TRIC, 72%; and UTR, 60%).  These results are consistent with previous reports 

from our lab for StimulusTA and SpikeTA data, demonstrating that the SpikeTA effects 

obtained here were typical. 
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General characteristics of post-spike force effects 

Significant post-spike force responses were detected for 12 of the 34 recording 

sites (35.3%) from which significant EMG effects were found.  The average onset latency 

for post-spike force responses was 17.6 ± 2.0 ms.  An example of post-spike force 

responses is shown in Fig. 4.3, corresponding to the same recording site as the EMG 

effects shown in Figs. 4.1 and 4.2.  The average post-spike change in EMG activity was 

significantly correlated with the average post-spike force effect magnitude, p < 0.001 

(Fig. 4.4). 

 

Comparison of StimulusTA and SpikeTA effects 

The comparison of post-stimulus and post-spike EMG effects for one of the 

neurons, shown in Fig. 4.5, exhibits a significantly positive correlation, p < 0.001, r2 = 

0.484, indicating that for muscles with a large StimulusTA effect, there tended to be a 

large SpikeTA effect.  Of the 34 neurons exhibiting significant post-spike EMG effects, 5 

neurons (15%) showed a significant correlation with the post-stimulus EMG effects from 

the nearest StimulusTA site.  For all 5 of these neurons that displayed a significant 

correlation with their nearest stimulation site, the correlation was positive, p = 0.031.  

 

Discussion 

Detection of post-spike force responses 

Spontaneous neural spiking produces small EMG effects revealed by SpikeTA. 

Measuring this post-spike EMG activity has been a valuable method for studying motor 
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outputs of cortical and brainstem neurons (Cheney and Fetz 1985; Davidson and Buford 

2004, 2006).  Although individual muscle twitches generated by a single spike may be 

too small to observe, the present study shows that force responses associated with muscle 

recruitment can be detected using SpikeTA.  It is difficult to predict the overall effect of 

PMRF neuron spiking on arm movement with only PSpEs because muscle responses are 

typically widespread, bilateral, and complex.  However, the present results show that 

direct recording of these small force changes can reveal general patterns of arm 

movement resulting from muscle recruitment.  To our knowledge, this is the first 

demonstration of such a measurement.  

 

Electromechanical delay 

In a previous study, StimulusTA produced force responses with an average onset 

time of 15.9 ms post-stimulation which corresponds to an EMD of approximately 7.6 ms 

(Hirschauer and Buford 2015).  In this study, the average force onset latency was 17.6 ms 

post-spike, which corresponds to an EMD of approximately 8.0 ms.  The timing of the 

force onset supports the hypothesis that the observed force effects resulted directly from 

the post-spike changes in EMG and not through a more indirect pathway. 

 

Similarity of SpikeTA and StimulusTA EMG and force responses 

 The significant correlation between post-spike and post-stimulus EMG effects at 

nearby sites, shown in Fig. 4.5, demonstrates that single-pulse microstimulation is 

capable of reproducing the motor outputs of spontaneous neural spiking.  Agreement 
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between SpikeTA and StimulusTA methods confirm the double reciprocal pattern of 

motor output from PMRF neurons – facilitation of ipsilateral flexors and contralateral 

extensors and suppression of contralateral flexors and ipsilateral extensors.  In addition to 

correlations in EMG effects, SpikeTA and StimulusTA exhibited similarities for post-

spike and post-stimulus force effects, shown in Fig. 4.3.  However, because stimulation 

does not necessarily activate the same neuron from which spiking was recorded, there 

were many cases in which SpikeTA and StimulusTA results were uncorrelated.   

 

Reciprocal force output pattern 

Stimulation of the PMRF has been known to produce bilateral motor output 

patterns in the cat (Drew and Rossignol 1990a, 1990b; Sprague and Chambers 1954) and 

monkey (Davidson and Buford 2004, 2006; Hirschauer and Buford 2015). These 

movement patterns include flexion of the spine, ipsilateral head turning, ipsilateral arm 

flexion, and contralateral arm extension. The present SpikeTA results demonstrate that 

spontaneous spiking of PMRF neurons produces a bilateral pattern of EMG activity. 

Consistent with previous studies, ipsilateral facilitation and contralateral suppression of 

flexor-like muscles and reciprocal effects on extensor-like muscles were observed. Post-

spike force responses also display a pattern of flexion of the ipsilateral arm and extension 

of the contralateral arm, shown in Fig. 4.3, similar to post-stimulus force patterns. This 

bilateral action of the PMRF is supported anatomically by evidence of bilaterally 

distributed monosynaptic and disynaptic pathways. While the majority of reticulospinal 

axons terminate ipsilaterally, they have also been shown to project bilaterally 
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(Matsuyama et al. 1997). Additionally, ipsilaterally projecting neurons can evoke 

bilateral motor outputs via commissural interneurons (Bannatyne et al. 2003; Jankowska 

et al. 2003, 2006). 

 

Conclusions 

The present results demonstrate that single PMRF neurons can produce muscle 

recruitment in a bilateral reciprocal pattern sufficient to produce very small force 

transients consistent with ipsilateral upper limb flexion and contralateral upper limb 

extension.  This novel measurement of force responses assciated with single unit neural 

activity in the brainstem opens a new window to the study of motor functions of the 

central nervous system. 
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Tables & Figures 

 

Figure 4.1 Selected example of EMG recordings of ipsilateral flexor facilitation and 

extensor suppression in response to left-sided PMRF stimulation (StimulusTA, left) or 

spontaneous spiking (SpikeTA, right). Significant post-stimulus EMG effects are 

indicated by asterisks for PStF and daggers for PStS. Scale bars represent indicated 

voltage changes. For StimulusTA, all averages included at least 1355 triggers; for 

SpikeTA, all averages included at least 15000 triggers. For StimulusTA, 30 µA 

stimulation was applied at time 0 s; for SpikeTA, a neuronal spike was detected at time 0 

s.  
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Figure 4.2 Corresponding example of EMG recordings of contralateral flexor 

suppression and extensor facilitation in response to left-sided PMRF stimulation 

(StimulusTA, left) or spontaneous spiking (SpikeTA, right). Significant post-stimulus 

EMG effects are indicated by asterisks for PStF and daggers for PStS. Scale bars 

represent indicated voltage changes. For StimulusTA, all averages included at least 1355 

triggers; for SpikeTA, all averages included at least 15000 triggers. For StimulusTA, 30 

µA stimulation was applied at time 0 s; for SpikeTA, a neuronal spike was detected at 

time 0 s.
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Figure 4.3 A: Corresponding example of post-spike force recordings of ipsilateral flexion 

and contralateral extension in response to left-sided PMRF stimulation (StimulusTA, left) 

or spontaneous spiking (SpikeTA, right). A 50 Hz high-pass filter was applied to both 

force traces. B: Raw force average and high-pass filtered average. The area shaded in 

gray represents the 15-ms interval during which there is a maximal change in force in the 

high-pass filtered StimulusTA averages. Scale bars represent indicated force changes. For 

StimulusTA, all averages included at least 1355 triggers; for SpikeTA, all averages 

included at least 24427 triggers. For StimulusTA, a 30 µA electrical pulse was delivered 

at time 0 s; for SpikeTA, a neuronal spike was detected at time 0 s.  



80 
 

 

Figure 4.3 Corresponding example of post-spike force recordings of ipsilateral flexion 

and contralateral extension.  
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Figure 4.4 Comparison of average z-scores for post-spike EMG activity and average z-

scores for post-spike force effects. EMG and forces were significantly correlated. N = 

269, r2 = 0.094, p < 0.001. 
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Figure 4.5 Comparison of z-scores for post-spike and post-stimulus EMG effects in 24 

muscles. SpikeTA and StimulusTA effects were significantly correlated. For 

StimulusTA, all averages included at least 1355 triggers; for SpikeTA, all averages 

included at least 24427 triggers. r2 = 0.484, p < 0.001.  
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Chapter 5: Review of the diagnosis of Parkinson’s disease 
 

Parkinson’s disease and other movement disorders 

Affecting an estimated one million people in the United States, PD is the second 

most common neurodegenerative disease after Alzheimer’s disease (de Lau and Breteler 

2006).  PD is a movement disorder characterized by tremor, hypokinesia, rigidity, and 

postural instability (Gelb et al. 1999).  Moreover, PD is one of the movement disorders of 

basal ganglia origin, which also include Huntington’s disease, Sydenham’s chorea, and 

hemiballismus (Obeso et al. 2002).  Although the etiology of these movement disorders is 

varied, they all involve damage to basal ganglia circuitry.  As previously stated, the 

motor symptoms of PD are caused by the loss of dopaminergic neurons in the substantia 

nigra (Obeso et al. 2002). Huntington’s disease, which is caused by trinucleotide 

expansion in the Huntingtin gene, results in widespread neuronal death that 

disproportionately affects striatal neurons (Walker 2007, Eidelberg and Surmeier 2011).  

Sydenham’s chorea, a sequela of group A β-hemolytic streptococcal (S. pyogenes) 

infection, is caused by an autoimmune-mediated destruction of striatal neurons (Swedo et 

al. 1993).  Hemiballismus, which has multiple etiologies, is caused by damage to the 

subthalamic nucleus (Postuma and Lang 2003). 

Because PD is caused by a deficiency in dopamine-producing neurons, the 

symptoms of PD are most effectively treated with a dopamine precursor known as L-

DOPA (Connolly and Lang 2014).  Less widely used drugs include dopamine agonists, 
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monoamine oxidase B inhibitors (MAOBIs), and catechol-O-methyl transferase 

inhibitors (COMTIs) (Connolly and Lang 2014).  However, disease progression is 

associated with a decrease in drug therapy effectiveness.  More severe cases of PD can be 

managed by strategically delivering electrical stimulation to the thalamus or different 

nuclei of the basal ganglia in a process known as deep brain stimulation (DBS) 

(Perlmutter and Mink 2006).  Parkinsonian symptoms are significantly alleviated by 

stimulation to the ventral intermediate nucleus of the thalamus, the subthalamic nucleus, 

or the internal segment of the globus pallidus (Perlmutter and Mink 2006). 

 

Differential diagnosis of parkinsonism  

The diagnosis of PD is complicated by the existence of by other parkinsonian 

syndromes, such as secondary parkinsonism and APS (Jankovic et al. 2008).  Secondary 

parkinsonism describes a syndrome in which parkinsonian motor symptoms are caused 

by an identifiably etiology, such as environmental toxins, drugs, metabolic disease, 

infection, or trauma (Olanow and Tatton 1999).  APS are disorders that exhibit classical 

parkinsonian symptoms, but include additional features distinguishing them from 

idiopathic PD.  Because of these overlapping symptoms, APS are especially difficult to 

differentiate from PD (Jankovic et al. 2008).  It is has been estimated by 

neuropathological studies using brain bank specimens that 25% of clinical diagnoses of 

PD are incorrect (Playfer 1997, Tolosa et al. 2006).  The most common Parkinson-plus 

syndromes are multiple system atrophy (MSA), progressive supranuclear palsy (PSP), 

and corticobasal degeneration (CBD) (Jankovic et al. 2008).  Additionally, one in ten 
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patients diagnosed clinically with early PD are later shown to have SWEDDs 

(Schwingenschuh et al. 2010).  Other disorders often included in the differential 

diagnosis of parkinsonism and possible sources of misdiagnosis are shown in Table 5.1. 

The clinical diagnosis of PD requires a diagnosis of parkinsonian syndrome and 

the absence of any exclusion criteria that would suggest secondary parkinsonism or APS 

(Gelb et al. 1999).  The UK Parkinson’s Disease Society Brain Bank and the National 

Institute of Neurological Disorders and Stroke (NINDS) have both developed criteria for 

clinical PD diagnosis but these only achieve diagnostic certainty of 75-90% (Gelb et al. 

1999; Jankovic 2008).  However, these criteria are primarily dependent on motor 

symptoms and ignore features such as olfactory function and functional neuroimaging 

results (Gelb et al. 1999).  With recent findings that non-motor symptoms can precede the 

onset of motor symptoms by as much as 20 years, including non-motor symptoms into 

the assessment can allow for early detection of PD (de Lau and Breteler 2006, Savica et 

al. 2010).  Improved diagnostic methods that result in greater accuracy and earlier 

detection of disease will allow for patients to be treated sooner with better outcomes 

(DeKosky and Marek 2003).  In additional, the severity of non-motor symptoms, such as 

autonomic dysfunction, pain, and sleep disturbances, are more strongly correlated with 

decreased quality of life than motor symptoms (Gallagher et al. 2010).  Increased 

diagnostic and prognostic accuracy requires consideration of supplementary clinical 

examinations, laboratory tests, and neuroimaging results (Jankovic 2008).   
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Overview of computer-aided diagnosis and detection 

One of the earliest examples of the successful implementation of CAD in a 

clinical setting was for the diagnosis of acute abdominal pain (de Dombal et al. 1972).  

Since receiving FDA approval in 1998, CAD has been routinely used in the clinic for 

breast cancer screening (Doi 2007, Elmore et al. 2005, Noble et al. 2009).  CAD for 

mammography-based breast cancer screening has been shown to increase the recall rate, 

the proportion of early-stage cancer detected, and the overall number of cancers detected 

without decreasing the positive predictive value for biopsy (Freer and Ulissey 2001).  

Other studies estimate that the use of CAD for breast cancer screening is comparable to 

double reading of mammograms (Bennett et al. 2006, Houssami et al. 2009).  In 

neurology, CAD has been used clinically to differentiate patients with Alzheimer’s 

disease from cognitively intact age-matched controls based on structural MRI scans 

(Klöppel et al. 2008). 

The development of various clinical examinations and neuroimaging analyses has 

increased the quantity of clinical data available for diagnosis of neurological disorders.  

With increasing amounts of diagnostic data available to clinicians, it becomes 

increasingly difficult to generate, internalize, and apply accurate medical algorithms. 

Machine learning algorithms are capable of considering vast quantities of data during 

diagnosis and implementing probabilistic reasoning with high precision to determine the 

likelihood of a given diagnosis based on the symptoms and test results of a patient.  

Improved diagnostic methods will result in increased sensitivity and earlier detection of 

disease, allowing patients to be treated sooner. 
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 Various machine learning classification techniques have been utilized in CAD to 

differentiate between healthy subjects and those with disease (Wang and Summers 2012, 

Shiraishi et al. 2011, Yousefi and Hamilton-Wright 2014).  Some commonly used 

algorithms are listed in Table 5.2.  Support vector machines, illustrated in Figure 5.1, 

classify unknown cases by finding a hyperplane in the feature space that best separates 

the training data based on class, then assigning the case to a class based on its location in 

the feature space relative to the hyperplane (Cortes and Vapnik 1995).  The k-nearest 

neighbors (k-NN) algorithm, illustrated in Figure 5.2, classifies unknown cases by 

assigning them to the class that matches the plurality of the 𝑘𝑘 training data that are 

nearest to the unknown case in the feature space.  Classification trees classify unknown 

cases by developing a stepwise flowchart that during each step either assigns the test case 

to a class based on the value of the current feature or advances to consider the next 

feature (Cover and Hart 1967, Quinlan 1986). 

 

Computer-aided diagnosis of Parkinson’s disease 

Previous studies have investigated the CAD of PD by utilizing certain types of 

clinical features to differentiate between PD and either healthy controls or other 

parkinsonian syndromes.  Because parkinsonian syndromes are defined by their motor 

symptoms, many CAD studies have focused on these features.  Smith and Timmis (2008) 

used an evolutionary algorithm to classify subjects based on pen velocity profiles 

obtained during a figure-copying task performed by PD patients and age-matched 

controls.  Daliri (2013) classified subjects based on gait information collected from force 
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sensors placed underneath the feet of PD subjects and healthy controls.  Hauser et al. 

(2011) used ROC curve analysis to determine minimal clinically important change in 

total UPDRS for monitoring improvement in PD subjects.  MCIC for improvement in 

total UPDRS score (parts I-III) was reported to be -3.0 points.  Merello et al. (2002) 

tested parkinsonian patients without specific diagnoses using a levodopa challenge.  They 

reported that levodopa challenge predicts clinical diagnosis of PD and that a 30% 

improvement in UPDRS scores was supportive of PD diagnosis. 

Other studies have used neuroimaging, which directly measures changes in brain 

structure and function, to differentiate between PD, APS, and healthy subjects.  Babu et 

al. (2014) used voxel-based morphometry (Ghosh-Dastidar et al. 2006) to identify voxels 

with a significant change in tissue volume, concluding that tissue volume changes in the 

superior temporal gyrus region are most associated with PD.  A common neuroimaging 

technique in PD diagnosis is the use of single positron emission computed tomography 

(SPECT) to measure the striatal-binding ratio (SBR) of radioactive ioflupane (123I), a 

compound that binds to presynaptic dopamine transporters.  Prashanth et al. (2014) and 

Martinex-Murcia et al. (2014) distinguished between PD and healthy subjects based on 

SBR of ioflupane (123I) with accuracy up to 96.1%.  Garraux et al. (2013) classified PD 

and APS subjects more accurately than a nuclear medicine specialist based on 18-FDG 

positron emission topography (PET) scans.  Salvatore et al. (2014) used SVM to classify 

subjects based on features extracted from PCA of structural MRI from PD, PSP, and 

healthy control subjects and found that voxels in the midbrain, pons, corpus callosum, 

and thalamus were most important to classification between PD and PSP patients.  
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Morales et al. (2013) used a multivariate filter-based naïve Bayes model to predict 

cognitive function in PD subjects based on structural MRI measurements with 97.0% 

accuracy.  Boelmans et al. (2010) used diffusion tensor imaging (DTI) of the corpus 

callosum to differentiate PD from CBD. 

The inclusion of non-motor clinical features can improve diagnostic accuracy.  

Armañanzas et al. (2013) identified non-motor PD symptoms that predict disease severity 

in terms of Hoehn & Yahr (HY) staging and the clinical impression of severity index for 

PD (CISI-PD).  Hallucinations, involuntary loss of stools, and difficulty swallowing were 

among the features most commonly selected to differentiate between mild and moderate 

PD.  Goldstein et al. (2008) constructed ROC curves to determine the ability to 

differentiate between PD, MSA, and control subjects based on CSF and plasma catechol 

concentrations, olfactory function, and PET scans that measure dopaminergic 

functioning.  They reported that both the putamen dopaminergic functioning and 

olfactory testing were able to differentiate between PD and MSA subjects.  However, the 

use of a combination of motor and non-motor symptoms in the CAD of parkinsonism 

differentiating between PD, SWEDDS, and healthy subjects has not been investigated.  
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Tables & Figures 

1. Parkinson’s disease (primary parkinsonism) 

2. Scans without evidence of dopaminergic deficiency (SWEDDs) 

3. Atypical parkinsonian syndromes (APS) 

• Multiple system atrophy (MSA) 

• Progressive supranuclear palsy (PSP) 

• Corticobasal degeneration (CBD) 

• Dementia with Lewy bodies (DLB) 

• Frontotemporal dementia and parkinsonism linked to chromosome 17 

(FTDP-17) 

4. Secondary parkinsonism 

• Vascular parkinsonism 

• Toxin-induced parkinsonism 

• Medication-induced parkinsonism 

• Post-infectious parkinsonism 

5. Alzheimer’s disease with parkinsonism 

6. Huntington’s disease 

7. Essential tremor 

Table 5.1 Differential diagnosis of Parkinson’s disease.  Secondary parkinsonisms are 

parkinsonian syndromes with a known cause of substantia nigra degeneration.  Atypical 

parkinsonian syndromes are parkinsonian syndromes with additional characteristics 

distinguishing them from PD (Aerts et al. 2011).  
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Supervised learning 

Support vector machine (SVM) 

k-Nearest neighbors (k-NN) 

Classification tree (CT) 

Probabilistic neural network (PNN) 

Enhanced probabilistic neural network (EPNN) 

 

Unsupervised learning 

 Cluster analysis 

  k-Means clustering 

Expectation-maximization 

Gaussian mixture model 

 Hidden Markov model 

 Principal component analysis 

 

Table 5.2 Machine learning classification algorithms in computer-aided diagnosis.  For 

supervised learning, training data have known class labels.  For unsupervised learning, 

the classes of the data are unknown. 
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Figure 5.1 Support vector machine classifier.  The SVM identifies a line (for two 

dimensions), plane (for three dimensions), or hyperplane (for higher order dimensions) 

that separates the members of the two classes on either side and maximizes the margin 

between any data point and the hyperplane.  The maximum margin line (solid black) is 

equidistant from the nearest cases of either class.  A test case, indicated by the red X, 

would be assigned to class A because it is located on the same side of the classification 

line as the training cases from class A.  Filled circles, class A; open circles, class B.  
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Figure 5.2 k-Nearest neighbors classifier.  The k-NN algorithm calculates the Euclidean 

distances between the test case and the training cases and then determines the nearest 𝑘𝑘 

training cases to the test case.  The test case is assigned to the class that makes up the 

plurality of the 𝑘𝑘 nearest training cases.  For 𝑘𝑘 = 5, a test case, indicated by the red X, 

would be assigned to class B because 3 of the 5 nearest training cases are members of 

class B.  Filled circles, class A; open circles, class B.  
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Chapter 6: Computer-aided diagnosis of Parkinson’s disease using an enhanced 
probabilistic neural network 

 

Introduction 

PD is caused by degeneration of dopaminergic neurons in the substantia nigra, 

which leads to a characteristic set of motor symptoms – tremor, hypokinesia, rigidity, and 

postural instability – known as parkinsonism (Davie 2008). Although PD commonly 

presents with these classic motor deficits, early and accurate diagnosis remains 

challenging (Jankovic et al. 2008).  In fact, neuropathological studies using brain bank 

specimens have estimated that 25% of clinical diagnoses of PD are incorrect (Tolosa et 

al. 2006).  One reason for this difficulty is the presence of SWEDDs and APS, 

summarized in Table 5.1, which present with parkinsonism but have secondary features 

distinguishing them from PD.   

Approximately 10% of patients diagnosed clinically with early PD have normal 

dopaminergic functional imaging (Schwingenschuh et al. 2010).  Based on their imaging 

results, these patients are classified as having SWEDDs.  These patients have been 

hypothesized to have an atypical presentation of dopa-responsive dystonia (DRD) instead 

of PD (Schneider et al. 2007, Marek and Seibyl 2003, De Rosa et al. 2014).  

Distinguishing between PD and SWEDDs is difficult because patients present with 

similar motor symptoms (Lee et al. 2014).  However, recent studies have identified a 
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difference between some non-motor symptoms of PD and SWEDDs patients (Yang et al. 

2014). 

Since the 1970s, artificial intelligence and machine learning techniques (Adeli 

and Hung 1995) have been employed to aid clinicians in improving diagnostic accuracy 

(de Dombal et al. 1972).  Because of the complicated nature of PD diagnosis, these 

techniques can provide specific benefit to neurologists considering the differential 

diagnosis of parkinsonism (Jankovic et al. 2008).  Some studies have used CAD to 

differentiate PD from APS.  For instance, a recent study used a support vector machine 

(SVM) to differentiate between 28 subjects with PD, 28 subjects with progressive 

supranuclear palsy (PSP), and 28 healthy controls (HC) using structural MRI data 

(Salvatore et al. 2014).  They report a classification accuracy of 92.5% for PD vs. PSP 

and 92.7% for PD vs. HC.  Illan et al. (2012) analyzed dopaminergic functional imaging 

of 108 parkinsonian syndrome subjects and 100 health controls.  They reported 89.0% 

sensitivity and 93.2 % specificity using an SVM classifier. 

Machine learning techniques have also proven useful in prognosis and disease 

tracking.  Machine learning algorithms were used to predict the development of dementia 

in PD patients based on structural MRI and identified structural changes most predictive 

of cognitive decline (Morales et al. 2013).  Because PD patients often exhibit vocal 

symptoms that include impairment in the production of vocal sounds, vocal recording can 

be used to track disease progression of PD patients (Little et al. 2009, Rahn et al. 2007). 

Various studies have used machine learning techniques for the automated remote tracking 

of PD disease progression. 
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Publicly available data from PD and control subjects like those from the 

Parkinson’s Progression Marker Initiative (PPMI) database (Marek et al. 2011) have 

helped facilitate PD research.  Recent studies utilizing the PPMI database have examined 

the feasibility of using neuroimaging data for the CAD of PD.  For instance, Babu et al. 

(2014) report a classification accuracy of 82.3% using a meta-cognitive radial basis 

function (RBF) network classifier to distinguish between PD subjects and healthy 

controls based on structural MRI data.  Similarly dopaminergic functional neuroimaging 

data has been used to classify PD vs. HC subjects using an SVM classifier (Martinez-

Murcia et al. 2014, Prashanth et al. 2014).  However, no studies have used motor, non-

motor, and neuroimaging features simultaneously for the CAD of parkinsonism. 

In this chapter, a comprehensive model is presented for the diagnosis of PD based 

on motor, non-motor, and neuroimaging features using the recently-developed enhanced 

probabilistic neural network (EPNN).  The model’s ability to differentiate PD from 

SWEDDs and healthy controls is tested using the PPMI dataset.  Differentiating PD from 

SWEDDs presents similar diagnostic challenges as other non-PD parkinsonian 

syndromes.  Additionally, the results are compared to four other commonly-used machine 

learning algorithms: the probabilistic neural network (PNN), SVM, k-nearest neighbors 

(k-NN) algorithm, and classification tree (CT). 
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Methods 

Description of data 

Data used in this study were obtained from the Parkinson’s Progression Markers 

Initiative (PPMI) database (www.ppmi-info.org/data). For up-to-date information on the 

study, visit www.ppmi-info.org.  PPMI (Marek et al. 2011) is an observational, multi-

center, international study designed to identify PD biomarkers for diagnosis and disease 

progression.  To be included in the study, the subjects are required to have results for six 

clinical exams and functional neuroimaging data for two brain regions of interest.  The 8 

diagnostic tests are summarized in Table 6.1.  The six clinical examinations are: 1.) the 

Movement Disorder Society-sponsored revision of the United Parkinson’s Disease Rating 

Scale (MDS-UPDRS) Part I, which consists of 13 items and assesses the non-motor 

experiences of daily living; 2.) the MDS-UPDRS Part II, which consists of 13 items and 

assesses motor experiences of daily living; 3.) the MDS-UPDRS Part III, which consists 

of 18 items and assesses motor function; 4.) the Montreal Cognitive Assessment 

(MoCA), which consists of  26 items and assesses cognitive function; 5.) the Scales for 

Outcomes in Parkinson’s disease – Autonomic (SCOPA-AUT), which consists of 21 

items and assesses autonomic function; and 6.) the University of Pennsylvania Smell 

Identification Test (UPSIT), which consists of 4 items and  assesses olfactory function. 

For clinical examinations 1, 2, and 3, each item is assigned a score between 0 

(normal) and 4 (most severe) for a maximum total score of 52, 52, and 72, respectively 

(Goetz et al. 2008).  For examination 4, the maximum possible score on each item varies 

between 1 and 3 (higher scores indicating better cognitive function) for a maximum total 
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score of 30, with a score of less than 26 indicative of impaired cognitive function.  For 

examination 5, each item is assigned a score between 0 (normal) and 3 (most severe), for 

a maximum score of 105 with a score of greater than approximately 15 suggestive of 

impaired autonomic function (Visser et al. 2004).  In order to eliminate bias based on 

differences in disease prevalence between sexes, the sex-specific questions of 

examination 5 are excluded.  Finally, for examination 6, a score of 0 (all incorrect) to 10 

(perfect) is assigned to each of the 4 items for a total score of 40, with a score of less than 

35 (for men) or 36 (for women) indicative of impaired olfactory function (Doty et al. 

1984).  For each examination, a final test score is calculated by summing the values for 

all of the items included in that examination.  Neurologists use these kinds of clinical 

examinations to grade patients using a standardized metric and to determine if the 

patient’s functioning is within normal limits.  However, on their own, these clinical 

examinations are not sufficient for any specific diagnosis. 

For neuroimaging, the two brain regions of interest are the caudate nucleus and 

the putamen, which together constitute the striatum, the part of the basal ganglia that 

receives dopaminergic inputs from the substantia nigra.  For each region of interest, 

single positron emission computed tomography (SPECT) was used to measure the 

striatal-binding ratio (SBR) of ioflupane (123I), a radioactive compound that binds to 

presynaptic dopamine transporters.  The striatal binding ratio compares the average signal 

intensity of ioflupane (123I) in the region of interest (caudate or putamen) to the average 

signal intensity in the occipital lobe as a control region.  Thresholds distinguishing PD 

from healthy subjects have not previously been characterized. 
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Of the 1141 subjects available in the PPMI database, the 666 subjects (58.4%) 

that have received all of the aforementioned diagnostic tests are included in this study. Of 

the 666 subjects included in the study, 189 subjects (28.4 %) are diagnosed with PD, 62 

subjects (9.3%) exhibited SWEDDs, and the remaining 415 subjects (62.3%) are healthy 

controls.  The exclusion rates of subjects do not significantly differ between classes. 

 

Probabilistic neural network 

A PNN is a feedforward neural network with four layers: an input layer, a pattern 

layer, a summation layer, and an output layer (Specht 1990), shown in Fig. 1 for the 

classification of HC, SWEDDs, and PD subjects using the PPMI database. The PNN 

classifies test cases by applying a Gaussian radial basis function (RBF) to the Euclidean 

distance between the test case and each training case, finding the average RBF output for 

all training cases of each class, and then assigning the case to the class with the highest 

average. The 𝑑𝑑 neurons in the input layer correspond to the elements of the 𝑑𝑑-

dimensional input vector.  The number of neurons in the pattern layer, 𝑁𝑁, corresponds to 

the number of cases in the training data.  The 𝑖𝑖 neurons in the summation layer 

correspond to the 𝑖𝑖 classification categories.  These neurons receive input only from the 

𝑁𝑁𝑖𝑖 pattern layer neurons corresponding to training cases from that category.  The decision 

layer has one neuron that determines which neuron in the summation layer has the 

greatest output. For the PPMI database each input vector consists of 8 elements – the 

scores from 6 clinical examinations and 2 neuroimaging measurements, summarized in 

Table 6.1. 
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For each pattern layer neuron, a Gaussian kernel is applied to the Euclidean 

distance from the test case to estimate the likelihood of the test case being from the same 

class as the training case represented by the pattern layer neuron according to the 

equation: 

 𝜑𝜑𝑖𝑖𝑖𝑖(𝑦𝑦) = 1
(2𝜋𝜋)𝑑𝑑 2⁄ 𝜎𝜎𝑑𝑑

𝑒𝑒− 
�𝑦𝑦−𝑥𝑥𝑖𝑖𝑖𝑖�

𝑇𝑇
�𝑦𝑦−𝑥𝑥𝑖𝑖𝑖𝑖�

2𝜎𝜎2  (1) 

where 𝜑𝜑𝑖𝑖𝑖𝑖(𝑦𝑦) is the kernel function for input vector 𝑦𝑦 and the 𝑗𝑗th pattern layer neuron 

from class 𝑖𝑖, 𝑦𝑦 is the input vector, 𝑥𝑥𝑖𝑖𝑖𝑖 is feature vector for the 𝑗𝑗th pattern layer neuron 

from class 𝑖𝑖, and 𝜎𝜎 is the spread parameter of the Gaussian kernel. The value of 

𝜑𝜑𝑖𝑖𝑖𝑖(𝑦𝑦) obtained from Eq. (1) is then fed only to the summation layer neuron that 

corresponds to the class, 𝑖𝑖, of that training case according to the equation: 

 𝑃𝑃𝑖𝑖(𝑦𝑦) = 1
𝑁𝑁𝑖𝑖
∑ 𝜑𝜑𝑖𝑖𝑖𝑖(𝑦𝑦)𝑁𝑁𝑖𝑖
𝑗𝑗=1  (2) 

where 𝑃𝑃𝑖𝑖(𝑦𝑦) represents the likelihood that the test case 𝑦𝑦 belongs to class 𝑖𝑖. Lastly, the 

output layer neuron determines the summation layer neuron with the greatest sum 

according to the equation: 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦) = arg max𝑖𝑖{𝑃𝑃𝑖𝑖(𝑦𝑦)} (3) 

 

Enhanced probabilistic neural network 

In order to improve the classification accuracy of PNN, Ahmadlou and Adeli 

(2010a) developed the Enhanced Probabilistic Network (EPNN) model with local 

decision circles by modifying the spread of the Gaussian kernel based on the local 

heterogeneity of the training set.  For each case in the training set, the local heterogeneity, 
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𝛼𝛼𝑥𝑥𝑖𝑖𝑖𝑖, is calculated by determining the proportion of all training cases within a 

hypersphere of radius, r, that are of the same class as the central training case, 𝑥𝑥𝑖𝑖𝑖𝑖, 

according to the following equation: 

 𝛼𝛼𝑥𝑥𝑖𝑖𝑖𝑖 =  𝑃𝑃 �𝑥𝑥 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑥𝑥𝑖𝑖𝑖𝑖�|𝑥𝑥 ∈ 𝑆𝑆𝑟𝑟,𝑥𝑥𝑖𝑖𝑖𝑖� (4) 

In the EPNN, the spread parameter, σ, for each neuron in the pattern layer is 

adjusted according to the equation: 

 𝜎𝜎𝑥𝑥𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑥𝑥𝑖𝑖𝑖𝑖 × 𝜎𝜎 (5) 

The optimal values for the spread parameter, σ, and local decision circle radius, r, 

are determined empirically. 

 

Reference classification algorithms for comparison 

In addition to the EPNN, four other commonly used supervised learning 

techniques were implemented to provide a benchmark for comparison of diagnostic 

performance: PNN, SVM, k-NN, and CT classification algorithms.  Because the SVM is 

only capable of binary classification, it is not used for the ternary classification of PD, 

SWEDDs, and HC subjects.  PNN was described previously. Brief descriptions of the 

other three techniques are provided here. 

The SVM algorithm classifies each test case by finding a hyperplane in the 

feature space that best separates the training data based on class, then assigning the test 

case to a class based on its location in the feature space relative to the hyperplane.  The k-

NN algorithm classifies each test case by assigning it to the class that matches the 
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majority of the 𝑘𝑘 training data that are nearest to the test case in the feature space as 

measured by Euclidean distance.  The CT algorithm classifies each test case by making a 

series of decisions, represented by nodes on the tree, that assign test cases to one of a 

number of branches.  Each branch leads to either another node, where another decision is 

made, or to a leaf, where a final classification is assigned. 

 

Receiver operating characteristics of clinical exams 

 The ability of eight diagnostic tests (Table 6.1) to individually differentiate 

between disease states is examined using receiver operating characteristic (ROC) curves.  

For each diagnostic test, an ROC curve is plotted for the three binary comparisons (PD 

vs. HC, SWEDDs vs. HC, and PD vs. SWEDDs).  ROC curves are created by plotting the 

true positive rate against the false positive rate of a diagnostic test while varying the 

classification threshold across the entire range of possible test scores.  The classification 

threshold is the cutoff value that is used to decide which class the subjects are assigned 

to.  The area under the ROC curve (AUC) gives a measure of diagnostic performance, 

with 1.0 indicating that the test perfectly separates the two classes and 0.5 indicative of a 

completely uninformative test.  The percentile confidence intervals are derived from a 

bootstrap distribution. The ROC analysis is also used to determine the threshold score 

that maximizes classification accuracy for each diagnostic test.  This is then compared to 

the maximum classification accuracy achieved by machine learning algorithms that use 

all items as individual inputs instead of considering only the sum of all the item scores. 
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Modeling the EPNN 

 The number of neurons in the input layer of the EPNN matches the number of 

diagnostic features used for classification.  For the PPMI database, the feature set consists 

of 8 inputs (6 clinical exams and 2 neuroimaging measurements).  For each classification 

problem, approximately 90% of the data are used for training and 10% are used for 

testing as indicated in Table 6.2.  Subjects are assigned to the training or testing group 

randomly.  For cross-validation, the process is repeated 100 times, and the average values 

are reported in the paper.  Training and test data ranges were standardized by subtracting 

the median and dividing by the interquartile range for each input feature. 

To test the model in different clinical scenarios, both ternary and pairwise binary 

classifications are performed.  The number of neurons in the pattern layer is equal to the 

number of training cases.  This varies depending on whether a ternary or binary 

classification is performed and, for binary classifications, which two classes are being 

classified.  In the ternary classification the number of neurons in the pattern layer is equal 

to the entire number of   training instances available, that is, 599 (Table 6.2).  There are 3 

neurons in the summation layer representing the three potential class assignments (PD, 

SWEDDs, and HC). 

For the binary classifications, the number of neurons in the pattern layer is 544 for 

the PD vs. HC classification, 226 for the SWEDDs vs. HC classification, and 429 for the 

PD vs. SWEDDs classification as summarized in Table 6.2.  There are 2 neurons in the 

summation layer corresponding to the two potential class assignments (PD/HC, 

SWEDDs/HC, or PD/SWEDDs) for each classification pair. Lastly, for both ternary and 
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binary classifications, there is one neuron in the decision layer which provides the final 

class assignment for each test case. All algorithms and calculations have been 

implemented in Matlab. 

 

Measures of diagnostic performance 

 Classification results from the ternary classification are expressed in the form of 

an error matrix, or contingency table, in which each column indicates the assigned classes 

of the test data and each row indicates the actual class.  Therefore, the number of 

correctly assigned cases is equal to the sum of the values along the main diagonal.  The 

accuracy of a diagnostic test is defined as the ratio of the number of correct assignments 

to the total number of cases.  Error matrices also show whether certain types of errors in 

classification are more likely to occur than others, for example if PD subjects are more 

likely to be misclassified as SWEDDs than as HC. 

For binary classification, the sensitivity, or true positive rate, is defined as the 

proportion of positive cases that are correctly identified as positive; and the specificity, or 

true negative rate, is defined as the proportion of negative cases that are correctly 

identified as negative. Since accuracy calculations can report an inflated estimate of 

performance for datasets with an imbalanced number of cases and controls, a balanced 

accuracy metric is also defined as the arithmetic mean of the sensitivity and specificity. 
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Results 

Classification accuracy of individual diagnostic tests 

The receiver operating characteristic curves were created for all 8 diagnostic tests 

(6 clinical examinations, 2 neuroimaging measurements).  The areas under the ROC 

curves for each test are reported in Table 6.3 and the maximum balanced accuracies are 

reported in Table 6.4.  The most accurate tests for each binary classification are the 

MDS-UPDRS Part III for PD vs. HC, the MDS-UPDRS Part III for SWEDDs vs. HC, 

and the putamen SBR for PD vs. SWEDDs. 

Figure 2 shows the ROC curve and classification accuracy for the MDS-UPDRS 

Part III.  The MDS-UPDRS Part III exam is most effective at differentiating PD vs. HC 

(AUC = 0.997, Acc. = 97.0%) and SWEDDs vs. HC (AUC = 0.973, Acc. = 91.0%), but 

is less effective at differentiating PD vs. SWEDDs (AUC = 0.698, Acc. = 65.8%).  The 

MDS-UPDRS Part II, which also assesses motor function, is similarly effective at 

differentiating PD vs. HC (AUC = 0.968, Acc. = 89.0%) and SWEDDs vs. HC (AUC = 

0.957, Acc. = 86.6%), but is not effective at differentiating PD vs. SWEDDs (AUC = 

0.560, Acc. = 57.1%). The MDS-UPDRS Part I, which assesses non-motor function, is 

better at differentiating SWEDDs vs. HC (AUC = 0.810, Acc. = 71.2%) than PD vs. HC 

(AUC = 0.739, Acc. = 67.7%), but is less effective at differentiating PD vs. SWEDDs 

(AUC = 0.581, Acc. = 62.5%). 

Figure 3 shows the ROC curve and classification accuracy for the putamen SBR.  

The putamen SBR is very effective at differentiating PD vs. HC (AUC = 0.987, Acc. = 

95.8%) and PD vs. SWEDDs (AUC = 0.974, Acc. = 93.7%), but does not significantly 
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differentiate SWEDDs vs. HC (AUC = 0.557, Acc. = 58.6%).  The caudate SBR is also 

effective at differentiating PD vs. HC (AUC = 0.897, Acc. = 81.2%) and PD vs. 

SWEDDs (AUC = 0.853, Acc. = 78.6%), but similarly does not significantly differentiate 

SWEDDs vs. HC (AUC = 0.559, Acc. = 55.8%). 

Figure 4 shows the ROC curve and classification accuracy for the UPSIT.  The 

UPSIT is the clinical examination that best differentiates PD vs. SWEDDs (AUC = 

0.794, Acc. = 74.4%), while also significantly differentiating PD vs. HC (AUC = 0.898, 

Acc. = 82.4%) and SWEDDs vs. HC (AUC = 0.664, Acc. = 61.0%).  MoCA is 

moderately effective at differentiating PD vs. HC (AUC = 0.620, Acc. = 66.4%) and 

SWEDDs vs. HC (AUC = 0.616, Acc. = 64.8%), but does not significantly differentiate 

PD vs. SWEDDs.  SCOPA-AUT significantly differentiates SWEDDs vs. HC (AUC = 

0.781, Acc. = 72.8%) and PD vs. SWEDDs (AUC = 0.612, Acc. = 62.0%), with 

SWEDDs associated with a higher SCOPA-AUT score than PD. 

 

Machine learning classification 

The results of the computer-aided diagnosis classification using five different ML 

algorithms are summarized in Table 6.5.  The EPNN resulted in the highest classification 

accuracy for the ternary classification with 92.5% accuracy followed by PNN (91.6%), k-

NN (90.8%), and CT (90.2%).  The error matrix for the EPNN ternary classification is 

given in Table 6.7.  The classification accuracy of 92.5% is calculated by summing the 

percentages along the main diagonal.  The EPNN used a spread parameter, 𝜎𝜎, of 0.44 and 

a radius, 𝑟𝑟, of 0.72.  Fig. 5 shows the diagnostic accuracy versus the spread parameter for 
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the PNN, which is the first step in the bi-level optimization of the EPNN.  Fig. 6 shows 

the diagnostic accuracy versus the decision circle radius for the EPNN.  Because binary 

classification has fewer opportunities for misclassification than ternary, the binary 

classification generally resulted in higher accuracies. 

The results of the clinical screening for SWEDDs are summarized in Table 6.6.  

The EPNN exhibited the highest classification accuracy for the ternary classification with 

89.2% accuracy followed by k-NN (88.8%), CT (88.5%), and PNN (84.0%).  However, 

to improve its utility as a screening tool, the parameters of the PNN/EPNN were chosen 

to maximize the balanced classification accuracy.  The error matrix for this EPNN is 

given in Table 6.8.  The balanced classification accuracy of 75.3% is determined by 

calculating the mean classification accuracy among all 3 classes.  The sensitivity of the 

SWEDDs classification was 59.0%, and the specificity was 85.9%.  The EPNN used a 

spread parameter, 𝜎𝜎, of 0.44 and a radius, 𝑟𝑟, of 0.08. 

 

Discussion 

Classification accuracy of individual diagnostic tests 

The MDS-UPDRS Part III, a clinical examination that assesses motor function, 

was most effective at differentiating between HC and other classes, as shown in Tables 

6.3 and 6.4 and Fig. 2.  It was less effective at differentiating between PD and SWEDDs, 

but still performed significantly above chance.  Based on the area under the receiver 

operating characteristic curve and the binary classification accuracies, the MDS-UPDRS 

Part III was significantly more effective than the SCOPA-AUT, which assesses 
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autonomic function, and the MoCA which assesses cognitive function, at differentiating 

HC vs. PD, HC vs. SWEDDs, and SWEDDs vs. PD, shown in Tables 6.3 and 6.4.  These 

findings indicate that the deficits in motor function are the most predictive clinical 

symptom for PD compared to both HC and SWEDDs subjects. 

The caudate and putamen ioflupane (123I) SBRs, which analyze dopaminergic 

functioning of striatal neurons, were most effective at differentiating between subjects 

with PD and other classes, as shown in Tables 6.3 and 6.4.  However, they were not 

successful at differentiating between HC and SWEDDs.  The putamen SBR, shown in 

Fig. 3, was significantly more accurate than the caudate SBR for all classification types.  

These results suggest a more consistent decrease in putamen dopamine transporter 

binding compared to the caudate for subjects with PD.  The putamen SBR distinguished 

between SWEDDs and PD subjects with 93.7% accuracy; however, obtaining these SBR 

measurements requires subjects to be injected with a radioactive tracer followed by 

expensive SPECT imaging, which may limit its cost-effectiveness in clinical use. 

Of all the clinical examinations studied, the UPSIT best differentiated PD vs. 

SWEDDs, while also significantly differentiating PD vs. HC and SWEDDs vs. HC, 

shown in Tables 6.3 and 6.4.  Because of the greater ability of UPSIT to differentiate 

SWEDDs vs. PD subjects compared to MDS-UPDRS Part III, this could be an important 

indicator of the likelihood of SWEDDs, and a useful figure in determining the need for 

ioflupane (123I)/SPECT imaging to determine SBR. 

The receiver operating characteristic curve for MoCA indicated decreased 

cognitive function in both SWEDDs and PD subjects, but without a significant difference 
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between the two classes.  The receiver operating characteristic curve for SCOPA-AUT 

indicates that SWEDDs subjects have autonomic functioning that is not intermediate to 

HC and PD subjects, but instead significantly worse than those for PD subjects. This 

finding supports the hypothesis that SWEDDs subjects are not an early stage of PD, but 

represent a different etiology. 

 

Computer-aided diagnosis of parkinsonism 

The computer-aided diagnosis using all diagnostic tests was shown to perform 

well for both the ternary classification (92.5% accuracy) and for the main binary 

classification of interest, HC vs. PD (98.6% accuracy).  For all classification types, the 

EPNN exhibited the highest classification accuracy compared to other machine learning 

algorithms, as shown in Table 6.5.  The error matrix for the EPNN ternary classification 

is given in Table 6.7.  The majority of all misclassifications were of SWEDDs subjects 

(54.9%), calculated by dividing the percentage of misclassifications of SWEDDs subjects 

(4.1%) by the percentage of all misclassifications (7.5%).  Approximately 27.0% of 

SWEDDs subjects were misclassified as HC.  HC was misclassified least often, with only 

1.7% of HC cases classified as either SWEDDs or PD. 

 

Clinical screening for further examination of potential SWEDDs subjects 

SWEDDs and PD subjects are difficult to differentiate based on classic motor 

symptoms alone (Lee et al. 2014).  However, other studies have identified differences in 

gait between the two classes (Mian et al. 2011).  The present study has shown that 
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SWEDDs and PD subjects can be differentiated above chance using all features except 

for cognitive function.  This supports previous findings that non-motor symptoms differ 

between SWEDDs and PD subjects (Yang et al. 2014, Silveira-Moriyama et al. 2009). 

While the putamen SBR was shown to be the most accurate test in differentiating 

between SWEDDs and PD, ioflupane (123I)/SPECT imaging is expensive and time-

consuming compared to clinical examinations.  Clinical screening of subjects to identify 

those with a high likelihood of SWEDDs could decrease costs by limiting the number of 

patients that obtain neuroimaging.  The clinical screening was performed by using only 

the 6 clinical examinations as inputs for the machine learning algorithms.  The results are 

given in Table 6.6.  For the ternary classification, the EPNN exhibited the highest 

classification accuracy at 89.2%, which was 3.3 percentage points lower than when all 

diagnostic tests were included.  The balanced classification accuracy was 75.3%, 

calculated by finding the mean classification accuracy across all 3 classes, shown in 

Table 6.8.  The sensitivity of the SWEDDs clinical screening was 59.0%, and the 

specificity was 85.9%. 
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Tables & Figures 

Clinical examinations Abbr. Functions assessed Item # 
    
Motor Disorder Society-sponsored 

revision of the Unified Parkinson’s 
Disease Rating Scale Part I 

 

MDS-
UPDRS Part 
I 

Non-motor tasks 
of daily living 

13 

Motor Disorder Society-sponsored 
revision of the Unified Parkinson’s 
Disease Rating Scale Part II 

 

MDS-
UPDRS Part 
II 

Motor tasks of 
daily living 

13 

Motor Disorder Society-sponsored 
revision of the Unified Parkinson’s 
Disease Rating Scale Part III 

 

MDS-
UPDRS Part 
III 

Motor function 18 

Montreal Cognitive Assessment 
 

MoCA Cognitive function 26 

Scales for Outcomes in Parkinson's 
disease – Autonomic 

 

SCOPA-
AUT 

Autonomic 
function 

21 

University of Pennsylvania Smell 
Identification Test 

 

UPSIT Olfactory function 4 

Neuroimaging measurements    
    
Caudate ioflupane (123I) Striatal Binding 

Ratio 
SBR-Caud Caudate 

dopaminergic 
functioning 
 

2 

Putamen ioflupane (123I) Striatal Binding 
Ratio 

SBR-Put Putamen 
dopaminergic 
functioning 

2 

    

Table 6.1  Parkinson’s Progression Markers Initiative (PPMI) subject data.  The data 

used in this study consists of six clinical examinations and neuroimaging measurements 

of two regions of interest. 
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Classification type Classes Training Testing Total cases 

Ternary PD/SWEDDs/HC 599 67 666 

Binary PD/HC 544 60 604 

Binary SWEDDs/HC 226 25 251 

Binary PD/SWEDDs 439 48 477 

Table 6.2  Numbers of training and test data cases by classification type.  Because of the 

different numbers of subjects per class, the numbers of training and test cases differ 

between classification types.  Of the binary classifications, the PD vs. HC classification 

has the most subjects (604 total), while the SWEDDs vs. HC classification has the least 

subjects (251 total). 
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Diagnostic test PD vs. HC SWEDDs vs. HC PD vs. SWEDDs 

MDS-UPDRS I 0.74  (0.68-0.76) 0.81  (0.69-0.87) 0.58  (0.54-0.71) 

MDS-UPDRS II 0.97  (0.94-0.97) 0.96  (0.90-0.97) 0.56  (0.46-0.62) 

MDS-UPDRS III 1.00  (0.99-1.00) 0.97  (0.95-0.99) 0.70  (0.62-0.78) 

MoCA 0.62  (0.58-0.67) 0.62  (0.52-0.73) 0.51  (0.43-0.58) 

SCOPA-AUT 0.70  (0.66-0.75) 0.78  (0.71-0.84) 0.61  (0.54-0.69) 

UPSIT 0.90  (0.87-0.92) 0.66  (0.59-0.74) 0.79  (0.74-0.86) 

Caudate SBR 0.90  (0.87-0.92) 0.56  (0.45-0.66) 0.85  (0.80-0.90) 

Putamen SBR 0.99  (0.98-0.99) 0.56  (0.48-0.64) 0.97  (0.95-0.99) 

Table 6.3  Area under the ROC curves of binary classifications for each diagnostic test.  

The test that most effectively differentiated between PD vs. HC and SWEDDs vs. HC 

was the MDS-UPDRS Part III, while the test that best differentiated PD vs. SWEDDs 

was the putamen SBR (bold).  The MDS-UPDRS Parts II and III; MoCA; UPSIT; 

caudate SBR; and putamen SBR were most effective at differentiating PD vs. HC, 

whereas the MDS-UPDRS Parts I and SCOPA-AUT was most effective at differentiating 

SWEDDs vs. HC (italics).  Parentheses indicate 95% bootstrap confidence intervals.  



114 
 

Diagnostic test PD vs. HC SWEDDs vs. HC PD vs. SWEDDs 

MDS-UPDRS I 67.7% 71.2% 62.5% 

MDS-UPDRS II 89.0% 86.6% 57.1% 

MDS-UPDRS III 97.0% 91.0% 65.8% 

MoCA 66.4% 64.8% 53.2% 

SCOPA-AUT 66.0% 72.8% 62.0% 

UPSIT 82.4% 61.0% 74.4% 

Caudate SBR 81.2% 55.8% 78.6% 

Putamen SBR 95.8% 58.6% 93.7% 

Table 6.4  Balanced accuracies of binary classifications for each diagnostic test.  The test 

that most accurately differentiated between PD vs. HC and SWEDDs vs. HC was the 

MDS-UPDRS Part III, while the test that most accurately differentiated PD vs. SWEDDs 

was the putamen SBR (bold).  The MDS-UPDRS Parts II and III; MoCA; UPSIT; 

caudate SBR; and putamen SBR were most accurate at differentiating PD vs. HC, 

whereas the MDS-UPDRS Parts I and SCOPA-AUT was most accurate at differentiating 

SWEDDs vs. HC (italics).  
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 Ternary Binary 

Diagnostic test PD/SWEDDs/
HC 

PD/HC SWEDDs/HC PD/SWEDDs 

CT 90.2% 96.5% 89.2% 94.2% 

SVM n/a 98.1% 89.0% 89.3% 

k-NN 90.8% 98.2% 91.6% 94.7% 

PNN 91.6% 97.9% 91.6% 94.6% 

EPNN 92.5% 98.6% 92.0% 95.3% 

Table 6.5  Classification accuracies of machine learning algorithms using inputs from all 

8 diagnostic tests.  The EPNN yielded the highest classification accuracy for both binary 

and ternary classifications.  
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 Ternary Binary 

Diagnostic test PD/SWEDDs/
HC 

PD/HC SWEDDs/HC PD/SWEDDs 

CT 88.5% 97.1% 90.6% 85.3% 

SVM n/a 96.4% 88.0% 85.4% 

k-NN 88.8% 96.7% 92.3% 86.2% 

PNN 84.0% 97.0% 92.2% 83.8% 

EPNN 89.2% 97.2% 93.6% 86.8% 

Table 6.6  accuracies of machine learning algorithms using only inputs from the 6 

clinical examinations.  The lack of neuroimaging results decreases the ability of the 

algorithms to correctly classify subjects.  The EPNN yielded the highest classification 

accuracy for both binary and ternary classifications.  
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 Assigned Class  

 
 HC SWEDDs PD Total 

Actual 
Class 

HC 28.9% 0.4% 0.2% 29.5% 

SWEDDs 2.7% 5.9% 1.4% 10.0% 

PD 1.4% 1.5% 57.7% 60.6% 

 
Total 33.0% 7.8% 59.3% 100.0% 

Table 6.7  Error matrix for ternary classification for EPNN with all tests as inputs.  The 

overall classification accuracy was 92.5%, calculated by summing the percentages along 

the shaded diagonal.  The non-shaded cells in the 3x3 matrix represent the 6 different 

ways to misclassify a subject.  The majority of all misclassifications (54.9%) were of 

SWEDDs subjects, with 27.0% of SWEDDs subjects classified as HC.  HC cases were 

misclassified least often, with only 1.7% of HC cases classified as either SWEDDs or 

PD.  
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 Assigned Class  

 
 HC SWEDDs PD Total 

Actual 
Class 

HC 27.8% 0.9% 0.2% 28.9% 

SWEDDs 1.6% 5.4 2.2% 9.1% 

PD 4.8% 11.9% 45.3% 62.0% 

 
Total 34.2% 18.2% 47.6% 100.0% 

Table 6.8  Error matrix for SWEDDs clinical screening using EPNN with only clinical 

examinations as inputs.  The balanced classification accuracy was 75.3%, calculated by 

finding the mean classification accuracy across all 3 classes.  The shaded cells in the 3x3 

matrix represent correctly classified subjects, and the non-shaded cells represent the 6 

different ways to misclassify a subject.  The sensitivity of the SWEDDs classification 

was 59.0%, and the specificity was 85.9%.  
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Figure 6.1  Example architecture of the PNN/EPNN for the classification of HC, 

SWEDDs, and PD subjects using the PPMI database.  The eight inputs are the MDS-

UPDRS Part I (x1), MDS-UPDRS Part II (x2), MDS-UPDRS Part III (x3), MoCA (x4), 

SCOPA-AUT (x5), UPSIT (x6), the caudate ioflupane (123I) SBR (x7), and the putamen 

ioflupane (123I) SBR (x8).  PD, Parkinson’s disease; SW, SWEDDs; HC, healthy controls. 

As indicated in the pattern layer, there are 170 PD cases in the training set, 56 SWEDDs 

cases, and 373 healthy control cases.  
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Figure 6.2  A: Receiver operating characteristic curve for the MDS-UPDRS Part III.  

Solid curve: PD vs. HC (AUC = 0.997, 𝑁𝑁 = 548); Dashed curve: PD vs. SWEDDs (AUC 

= 0.973, 𝑁𝑁 = 425); Dotted curve: SWEDDs vs. HC (AUC = 0.698, 𝑁𝑁 = 229).  Diagonal 

line indicates chance levels of discrimination.  AUC, area under the curve.  B: Balanced 

accuracy of MDS-UPDRS Part III across all classification thresholds. Solid curve: PD vs. 

HC (Max Acc. = 97.0%, threshold = 5.5); Dashed curve: PD vs. SWEDDs (Max Acc. = 

65.8%, threshold = 13.5); Dotted curve: SWEDDs vs. HC (Max Acc. = 91.0%, threshold 

=3.5).  
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Figure 6.3  A: Receiver operating characteristic curve for the putamen SBR.  Solid curve: 

PD vs. HC (AUC = 0.987, 𝑁𝑁 = 548); Dashed curve: PD vs. SWEDDs (AUC = 0.974, 𝑁𝑁 = 

425); Dotted curve: SWEDDs vs. HC (AUC = 0.557, 𝑁𝑁 = 229).  Diagonal line indicates 

chance levels of discrimination.  AUC, area under the curve.  B: Balanced accuracy of 

putamen SBR across all classification thresholds. Solid curve: PD vs. HC (Max Acc. = 

95.8%, threshold = 1.35); Dashed curve: PD vs. SWEDDs (Max Acc. = 93.7%, threshold 

= 1.39); Dotted curve: SWEDDs vs. HC (Max Acc. = 58.6%, threshold = 2.57).  
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Figure 6.4  A: Receiver operating characteristic curve for the UPSIT.  Solid curve: PD vs. 

HC (AUC = 0.997, 𝑁𝑁 = 548); Dashed curve: PD vs. SWEDDs (AUC = 0.973, 𝑁𝑁 = 425); 

Dotted curve: SWEDDs vs. HC (AUC = 0.698, 𝑁𝑁 = 229).  Diagonal line indicates chance 

levels of discrimination.  AUC, area under the curve.  B: Balanced accuracy of UPSIT 

across all classification thresholds. Solid curve: PD vs. HC (Max Acc. = 82.4%, threshold 

= 30.5); Dashed curve: PD vs. SWEDDs (Max Acc. = 74.4%, threshold = 28.5); Dotted 

curve: SWEDDs vs. HC (Max Acc. = 61.0%, threshold = 31.5).  
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Figure 6.5  Classification accuracy of PNN over a range of spread parameter values.  The 

mean accuracy of 100 iterations is shown. The maximum accuracy was 91.6% for 

parameter 𝜎𝜎 = 0.44.  
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Figure 6.6  Classification accuracy of EPNN over a range of local decision circle radius 

values.  The mean accuracy of 100 iterations is shown. The maximum accuracy was 

92.5% for parameters 𝜎𝜎 = 0.44 and 𝑟𝑟 = 0.72.  
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Chapter 7: Conclusion 
 

General conclusions 

The novel technique for measuring force responses to single-pulse 

microstimulation presented in Chapter 3 provides investigators a method for detecting 

small movements or forces evoked by stimulation in the CNS. Just as this technique was 

used to detect the upper limb forces evoked by stimulation in the PMRF, the 

physiological motor outputs of other UMNs could be measured.  The force pattern 

resulting from PMRF stimulation supports previous findings indicating a double 

reciprocal pattern of EMG effects (i.e. facilitation of ipsilateral flexors and contralateral 

extensors and suppression of ipsilateral extensors and contralateral flexors).  In addition, 

these results characterize the magnitude, direction, and onset latency of upper limb forces 

as well as the electromechanical delay associated with PMRF microstimulation. 

The application of this technique to spontaneous spiking of PMRF neurons 

presented in Chapter 4 demonstrates sufficient muscle recruitment from single neurons to 

produce detectable upper limb forces.  By demonstrating the validity of this novel 

technique for investigating motor systems neurophysiology, our findings enable 

researchers to identify the force outputs of CNS neurons in different motor pathways.  

This technique could be especially useful in determining the force effects of individual 

neurons in the motor cortex, which remain controversial (Kakei et al. 1999, 2001).  

Additionally, the similarity in EMG and force responses to stimulation and spontaneous 
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spiking of nearby PMRF neurons supports the physiological relevance of single-pulse 

microstimulation and demonstrates its ability to replicate the effects of spontaneous 

spiking.   

The EPNN described in Chapter 6 was shown to be an effective machine learning 

algorithm for the CAD of PD, with an accuracy of 92.5% for the ternary classification 

problem.  Based on ROC analysis, the putamen SBR was demonstrated to be the single 

feature most effective at individually differentiating between PD and SWEDDs subjects, 

whereas the MDS-UPDRS Part III was shown to be the feature most effective at 

differentiating between SWEDDs subjects and health controls.  The fact that UPSIT was 

the clinical exam that best differentiated PD vs. SWEDDs not only demonstrates its 

usefulness in informing a cost-effective implementation of ioflupane (123I) neuroimaging, 

but also suggests that different pathologies cause PD and SWEDDs with distinct effects 

on olfaction.  The EPNN was shown to be more effective at accounting for missing data 

than the SVM and CT algorithms. 

 

Clinical significance 

The motor outputs of the reticulospinal system characterized in Chapters 3 and 4 

are similar to the patterns of flexion synergy observed in stroke patients, consistent with 

an increased role in the control of movement after injury to the corticospinal pathway.  

This involvement of the PMRF in stroke rehabilitation indicates its potential as a target 

for pharmacological or electrophysiological therapy after stroke (Jankowska et al. 2005, 

Jankowska and Edgley 2006).  Previous studies have demonstrated that certain 
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pharmacological interventions may preferentially affect reticulospinal pathways 

(Jankowska and Edgley 2006).  For instance, norepinephrine enhances the activation of 

commissural interneurons by reticulospinal neurons but not by group II afferents 

(Hammar et al. 2004).  The K+ channel blocker 4-aminopyridine (4-AP) has been shown 

to increase the effects of pyramidal tract neurons on ipsilateral motor neurons via the 

reticulospinal pathway (Jankowska et al. 2005).  The feasibility of 4-AP as a 

pharmaceutical therapy is supported by clinical trials for patients with spinal cord injury 

in which administration of 4-AP was associated with improved motor outcomes 

(Hansebout et al. 1993, Hayes et al. 1993). 

Another pharmacological therapy, the use of a monoclonal anti-Nogo-A antibody 

treatment has improved motor function in rodent and primate models of stroke and spinal 

cord injury (Freund et al. 2007, Hamadjida et al. 2012, Lindau et al. 2013).  Similarly, 

down-regulation of the Nogo receptor using adenovirus-mediated RNA interference 

promoted functional recovery after stroke in rats (Wang et al. 2010).  These treatments 

improved motor outcomes by enhancing neuronal sprouting of upper motor neurons 

(Freund et al. 2007, Lindau et al. 2013).  A thorough understanding of corticospinal, 

corticoreticular, and reticulospinal outputs is important for appropriate targeting of 

pharmacological and gene therapies for stroke. 

Electrophysiological therapies have a long history of use in treating motor system 

dysfunction. Deep brain stimulation (DBS) was first used clinically to treat essential 

tremor (Hassler et al. 1960, Perlmutter and Mink 2006).  DBS in the basal ganglia has 

been shown to effectively manage the motor symptoms of PD and reduce side-effects of 
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PD medications (Benabid et al. 1991, Perlmutter and Mink 2006).  DBS and motor cortex 

stimulation (MCS) have also been used to successfully control involuntary movements in 

stroke patients (Katayama et al. 2003).  Clinical trials of MCS for stroke patients have 

shown improved upper limb motor function compared to a standard rehabilitation group 

(Brown et al. 2006, Levy et al. 2008).  Similarly, modulating the activity of PMRF 

neurons through electrical stimulation, either directly or indirectly, could improve motor 

rehabilitation after stroke. 

CAD of PD can lead to earlier and more accurate diagnoses (Long et al. 2012).  

Additionally, CAD can facilitate monitoring of PD to better track disease progression 

(Little et al. 2009, Tsanas et al. 2010).  With this information, earlier intervention with 

disease-modifying agents can slow the decline of motor function in PD patients and 

improve overall health outcomes (Kansara et al. 2013).  By identifying motor and non-

motor features predictive of SWEDDs, machine learning algorithms would be able use 

clinical information to identify patients at risk for SWEDDs who would be candidates for 

cost-effective functional neuroimaging.  By including clinical data from multiple time 

points as are available in the PPMI database, CAD systems could predict disease 

progression of PD patients and identify the treatments most likely to be effective on an 

individual basis.  Similarly, using these machine learning techniques for the CAD of 

other neurological disorders or injuries, such as stroke, could facilitate earlier diagnosis 

and improved outcomes.  Machine learning techniques have previously been used for 

detecting lesions in MR images of stroke patients (Uchiyama et al. 2012) identifying 

fMRI markers of motor impairment (Rehme et al. 2014). 
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Future studies 

 In the future, we plan to deliver single-pulse microstimulation to neurons in both 

the motor cortex and PMRF simultaneously while recording EMG and force data.  By 

doing so, we will be able to determine how interactions between cortical neurons and 

reticulospinal neurons combine to generate force responses in the upper limbs.  Next, we 

will record spontaneous spiking activity from these sites and use these data to analyze 

gating effects between the cortex and PMRF.  With these experiments we will also be 

able to compare how differently neurons from different motor cortex areas, such as M1, 

SMA, and PMd, interact with neurons in the PMRF to produce EMG and force effects. 

 Electrophysiological studies in a primate model of stroke could provide valuable 

insight into changes in the corticoreticulospinal pathway that occur following ischemic 

injury to the corticospinal pathway.  Injection of the vasoconstrictor endothelin-1 into the 

motor cortex results in localized ischemic cell death, leading to loss of corticospinal 

neurons.  Changes in descending motor pathways could be identified by comparing the 

EMG and force responses to microstimulation of motor cortex and PMRF neurons in the 

stroke model to the responses in the intact primate. 

We also plan to complete neuronal tract tracing studies in which triple-labeling 

will be used to determine the relative proportion of corticoreticular tract fibers that 

project ipsilaterally or contralaterally from different areas in the motor cortex to the 

PMRF.  This will be accomplished by first injecting two anterograde tracers, biotinylated 

dextran amine (BDA) and fluorescein isothiocyanate-dextran (FD), one into M1 or PMd 

of each cerebral hemisphere; then injecting a retrograde tracer, cholera toxin B, into the 
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cervical enlargement.  Reticulospinal neurons can then be detected with 

immunohistochemistry by identifying retrogradely labeled neurons in the brainstem 

reticular formation.  By counting the ratio of anterogradely labeled axons that synapse 

onto the dendrites of reticulospinal neurons that are labeled with BDA and FD, the 

proportion of the corticoreticular tract that crosses midline can be determined for each 

cortical region. 

To continue studying the CAD of PD, we plan to examine the effect of genetic 

biomarkers in improving PD diagnosis.  This will be accomplished by utilizing data from 

the LRRK2 Cohort Consortium dataset, which indicates whether subjects possess any of 

the common gene variants associated with PD (Paisán-Ruíz 2004).  Because this dataset 

also includes many of the clinical features analyzed in Chapter 6, we will be able to 

assess the intercenter variability in the accuracy of automated PD diagnosis.  The PPMI 

dataset includes data from multiple time points throughout the course of disease.  These 

data could be used to more accurately predict disease progress for individual patients 

based on their current symptoms and test results. 

  



132 
 

 

 

References 
 

1. Adeli H, Hung SL. Machine Learning - Neural Networks, Genetic Algorithms, and 
Fuzzy Sets. John Wiley and Sons, New York, 1995. 
 
2. Aerts MB, Esselink RA, Post B, van de Warrensburg PB, Bloem BR. Improving 
the diagnostic accuracy in parkinsonism: a three-pronged approach. Pract Neurol 12(2): 
77-87, 2012. 
 
3. Afelt Z. Functional significance of ventral descending tracts of the spinal cord in the 
cat. Acta Neurobiol Exp (Wars) 34(3): 393-407, 1974. 
 
4. Ago T, Kitazono T, Ooboshi H, Takada J, Yoshiura T, Mihara F, Ibayashi S, 
Iida M. Deterioration of pre-existing hemiparesis brought about by subsequent ipsilateral 
lacunar infarction. J Neurol Neurosurg Psychiatry 74(8): 1152-1153, 2003. 
 
5. Ahmadlou M, Adeli. Enhanced probabilistic neural networks with local decision 
circles: A robust classifier. Integr Comput Aided Eng 17: 197-210, 2010. 
 
6. Alagona G, Delvaux V, Gérard P, De Pasqua V, Pennisi G, Delwaide PJ, 
Nicoletti F, Maertens de Noordhout A. Ipsilateral motor responses to focal transcranial 
magnetic stimulation in healthy subjects and acute-stroke patients. Stroke 32(6): 1304-
1309, 2001. 
 
7. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally 
segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357-381, 
1986. 
 
8. Alibiglou L, MacKinnon CD. The early release of planned movement by acoustic 
startle can be delayed by transcranial magnetic stimulation over the motor cortex. J 
Physiol 590(4): 919-936, 2012. 
 
9. Alstermark B, Pinter MJ, Sasaki S. Pyramidal effects in dorsal neck motoneurones 
of the cat. J Physiol 363: 287–302, 1985. 
 
10. Antonini A, Benti R, De Notaris R, Tesei S, Zecchinelli A, Sacilotto G, Meucci N, 
Canesi M, Mariani C, Pezzoli G, Gerundini P. 123I-Ioflupane/SPECT binding to 
striatal dopamine transporter (DAT) uptake in patients with Parkinson's disease, multiple 
system atrophy, and progressive supranuclear palsy. Neurol Sci 24(3): 149-150, 2003. 



133 
 

 
11. Armañanzas R, Bielza C, Chaudhuri KR, Martinez-Martin P, Larrañaga P. 
Unveiling relevant non-motor Parkinson's disease severity symptoms using a machine 
learning approach. Artif Intell Med 58(3): 195-202, 2013. 
 
12. Ashe J. Force and the motor cortex. Behav Brain Res 87: 255-269, 1997. 
 
13. Babu GS, Suresh S, Mahanand BS. A novel PBL-McRBFN-RFE approach for 
identification of critical brain regions responsible for Parkinson's disease. Expert Syst 
Appl 41(2): 478-488, 2014. 
 
14. Baker SN, Lemon RN. Computer simulation of post-spike facilitation in spike-
triggered averages of rectified EMG. J Neurophysiol 80: 1391-1406, 1998. 
 
15. Baker SN, Zaaimi B, Fisher KM, Edgley SA, Soteropoulos DS. Pathways 
mediating functional recovery. Prog Brain Res 218: 389-412, 2015. 
 
16. Bannatyne BA, Edgley SA, Hammar I, Jankowska E, Maxwell DJ. Networks of 
inhibitory and excitatory commissural interneurons mediating crossed reticulospinal 
actions. Eur J Neurosci 18: 2273-2284, 2003. 
 
17. Beer RF, Dewald JP, Rymer WZ. Deficits in the coordination of multijoint arm 
movements in patients with hemiparesis: evidence for disturbed control of limb 
dynamics. Exp Brain Res 131(3): 305-319, 2000. 
 
18. Bem T, Górska T, Majczyński H, Zmysłowski W. Different patterns of fore-
hindlimb coordination during overground locomotion in cats with ventral and lateral 
spinal lesions. Exp Brain Res 104(1): 70-80, 1995. 
 
19. Benabid AL, Pollak P, Gervason C, Hoffmann D, Gervason C, Hommel M, 
Perret JE, de Rougemont J, Gao DM. Long-term suppression of tremor by chronic 
stimulation of the ventral intermediate thalamic nucleus. Lancet 337: 403-406, 1991. 
 
20. Bennett RL, Blanks RG, Moss SM. Does the accuracy of single reading with CAD 
(computer-aided detection) compare with that of double reading?: A review of the 
literature. Clin Radiol 61(12): 1023-1028, 2006. 
 
21. Betts B, Smith JL, Edgerton VR, Collatos TC. Telemetered EMG of fast and slow 
muscles in cats. Brain Res 117: 529-533, 1976. 
 
22. Boelmans K, Bodammer NC, Bogdana S, Kaufman J, Ebersbach G, Heinze H, 
Niehaus L. Diffusion tensor imaging of the corpus callosum differentiates corticobasal 
syndrome from Parkinson’s disease. Parkinsonism & Relat Disord 16(8): 498-502, 2010. 
 



134 
 

23. Bolton PS, Goto T, Schor RH, Wilson VJ, Yamagata Y, Yates BJ. Response of 
pontomedullary reticulospinal neurons to vestibular stimuli in vertical planes. Role in 
vertical vestibulospinal reflexes of the decerebrate cat. J Neurophysiol 67(3): 639-647, 
1992. 
 
24. Bonita R, Beaglehole R. Recovery of motor function after stroke. Stroke 19(12): 
1497-1500, 1988. 
 
25. Borlongan CV, Burns J, Tajiri N, Stahl CE, Weinbren NL, Shojo H, … van 
Loveren HR. Epidemiological Survey-Based Formulae to Approximate Incidence and 
Prevalence of Neurological Disorders in the United States: a Meta-Analysis. PLoS ONE 
8(10): e78490. doi:10.1371/journal.pone.0078490, 2013. 
 
26. Brink EE, Suzuki I, Timerick SJ, Wilson VJ. Tonic neck reflex of the decerebrate 
cat: a role for propriospinal neurons. J Neurophysiol 54: 978-987, 1985. 
 
27. Brown JA, Lutsep H, Weinand M, Cramer S. Motor cortex stimulation for the 
enhancement of recovery from stroke: a prospective, multicenter safety study. J 
Neurosurg 58: 464-473, 2006. 
 
28. Brown P, Rothwell JC, Thompson PD, Britton TC, Day BL, Marsden CD. New 
observations on the normal auditory startle reflex in man. Brain 114(4): 1891–1902, 
1991.  
 
29. Brustein E, Rossignol S. Recovery of locomotion after ventral and ventrolateral 
spinal lesions in the cat. I. Deficits and adaptive mechanisms. J Neurophysiol 80(3): 
1245-1267, 1998. 
 
30. Buford JA, Davidson AG. Movement-related and preparatory activity in the 
reticulospinal system of the monkey. Exp Brain Res 159: 284-300, 2004. 
 
31. Buford JA, Montgomery L. Small force transients in the upper limbs recorded in 
association with stimulus triggered averaging in the reticulospinal system of the monkey. 
Soc Neurosci Abstr 591.02, 2011. 
 
32. Bütefisch CM. Plasticity in the human cerebral cortex: lessons from the normal brain 
and from stroke. Neuroscientist 10(2): 163-73, 2004. 
 
33. Canedo A, Lamas JA. Pyramidal and corticospinal synaptic effects over 
reticulospinal neurones in the cat. J Physiol 463: 475-489, 1993. 
 
34. Caplan LR, Goodwin JA. Lateral tegmental brainstem hemorrhages. Neurology 
32(3): 252-260, 1982. 
 



135 
 

35. Chae J, Yang G, Park BK, Labatia I. Delay in initiation and termination of muscle 
contraction, motor impairment, and physical disability in upper limb hemiparesis. Muscle 
Nerve 25(4): 568-575, 2002. 
 
36. Cheney PD, Fetz EE. Comparable patterns of muscle facilitation evoked by 
individual corticomotoneuronal (CM) cells and by single intracortical microstimuli in 
primates: evidence for functional groups of CM cells. J Neurophysiol 53: 786-804, 1985. 
 
37. Cheney PD, Fetz EE, Mewes K. Neural mechanisms underlying corticospinal and 
rubrospinal control of limb movements. Prog Brain Res 87: 213–252, 1991. 
 
38. Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: a review. 
JAMA 311(16): 1670-1683, 2014. 
 
39. Corio M, Palisses R, Viala D. Origin of the central entrainment of respiration by 
locomotion facilitated by MK 801 in the decerebrate rabbit. Exp Brain Res 95(1): 84-90, 
1993. 
 
40. Cortes C, Vapnik V. Support-vector networks. Mach Learn 20(3): 273, 1995. 
 
41. Cover TM, Hart PE. Nearest neighbor pattern classification. IEEE T Inform Theory 
13(1): 21–27, 1967. 
 
42. Cowie RJ, Robinson DL. Subcortical contributions to head movements in macaques. 
I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the 
superior colliculus. J Neurophysiol 72: 2648-2664, 1994. 
 
43. Cowie RJ, Smith MK, Robinson DL. Subcortical contributions to head movements 
in macaques. II. Connections of a medial pontomedullary head-movement region. J 
Neurophysiol 72(6): 2665-2682, 1994. 
 
44. Daliri M. Chi-square distance kernel of the gaits for the diagnosis of Parkinson’s 
disease. Biomedical Signal Processing and Control 8: 66-70, 2013. 
 
45. Daly JJ, Fang Y, Perepezko EM, Siemionow V, Yue GH. Prolonged cognitive 
planning time, elevated cognitive effort, and relationship to coordination and motor 
control following stroke. IEEE Trans Neural Syst Rehabil Eng14(2): 168-171, 2006. 
 
46. Daly JJ, Sng K, Roenigk K, Fredrickson E, Dohring M. Intra-limb coordination 
deficit in stroke survivors and response to treatment. Gait Posture 25(3): 412-418, 2007. 
 
47. Darabid H, Perez-Gonzalez AP, Robitaille R. Neuromuscular synaptogenesis: 
coordinating partners with multiple functions. Nat Rev Neurosci 15(11): 703-718, 2014. 
 



136 
 

48. Davidson AG, Buford JA. Motor outputs from the primate reticular formation to 
shoulder muscles as revealed by stimulus triggered averaging. J Neurophysiol 92: 83-95, 
2004. 
 
49. Davidson AG, Buford JA. Bilateral actions of the reticulospinal tract on arm and 
shoulder muscles in the monkey: stimulus triggered averaging. Exp Brain Res 173: 25-39, 
2006. 
 
50. Davidson AG, Schieber MH, Buford JA. Bilateral spike-triggered average effects 
in arm and shoulder muscles from monkey pontomedullary reticular formation. J 
Neurosci 27: 8053-8058, 2007. 
 
51. Davie CA. A review of Parkinson's disease. Br Med Bull 86(1): 109-127, 2008. 
 
52. de Dombal FT, Leaper DJ, Staniland JR, McCann AP, Horrocks JC. Computer-
aided diagnosis of acute abdominal pain. Br Med J 2(5804): 9-13, 1972. 
 
53. de Freitas GR, Devuyst G, van Melle G, Bogousslavsky J. Motor strokes sparing 
the leg: different lesions and causes. Arch Neurol 57(4): 513-8, 2000. 
 
54. de Lau LM, Breteler MM. Epidemiology of Parkinson's disease. Lancet Neurol 
5(6): 525-535, 2006. 
 
55. de Lau LM, Koudstaal PJ, Hofman A, Breteler MM. Subjective complaints 
precede Parkinson disease: the rotterdam study. Arch Neurol 63(3): 362-365, 2006. 
 
56. De Rosa A, Carducci C, Carducci C, Peluso S, Lieto M, Mazzella A, Saccà F, 
Brescia Morra V, Pappatà S, Leuzzi V, De Michele G. Screening for dopa-responsive 
dystonia in patients with scans without evidence of dopaminergic deficiency (SWEDD). J 
Neurol 261(11): 2204-2208, 2014. 
 
57. DeKosky ST, Marek K. Looking backward to move forward: early detection of 
neurodegenerative disorders. Science 302(5646): 830-834, 2003. 
 
58. Dewald JP, Beer RF. Abnormal joint torque patterns in the paretic upper limb of 
subjects with hemiparesis. Muscle Nerve 24(2): 273-283, 2001. 
 
59. Dewald JP, Pope PS, Given JD, Buchanan TS, Rymer WZ. Abnormal muscle 
coactiviation patterns during isometric torque generation at the elbow and shoulder in 
hemiparetic subjects. Brain 118: 495-510, 1995. 
 
60. Dickson DW, Fujishiro H, Orr C, DelleDonne A, Josephs KA, Frigerio R, 
Burnett M, Parisi JE, Klos KJ, Ahlskog JE. Neuropathology of non-motor features of 
Parkinson disease. Parkinsonism Relat Disord 15: S1-5, 2009. 



137 
 

 
61. Doi K. Computer-aided diagnosis in medical imaging: historical review, current 
status and future potential. Comput Med Imaging Graph 31(4-5): 198-211, 2007. 
 
62. Drew T, Dubuc R, Rossignol S. Discharge patterns of reticulospinal and other 
reticular neurons in chronic, unrestrained cats walking on a treadmill. J Neurophysiol 
55(2): 375-401, 1986. 
 
63. Drew T, Prentice S, Schepens B. Cortical and brainstem control of locomotion. 
Prog Brain Res 143: 251-261, 2004. 
 
64. Drew T, Rossignol S. Phase-dependent responses evoked in limb muscles by 
stimulation of medullary reticular formation during locomotion in thalamic cats. J 
Neurophysiol 52: 653-675, 1984. 
 
65. Drew T, Rossignol S. Functional organization within the medullary reticular 
formation of intact unanesthetized cat. I. Movements evoked by microstimulation. J 
Neurophysiol 64: 767-781, 1990a. 
 
66. Drew T, Rossignol S. Functional organization within the medullary reticular 
formation of intact unanesthetized cat. II. Electromyographic activity evoked by 
microstimulation. J Neurophysiol 64: 782-795, 1990b. 
 
67. Eccles JC, Nicoll RA, Schwarz WF, Táboriková H, Willey TJ. Reticulospinal 
neurons with and without monosynaptic inputs from cerebellar nuclei. J Neurophysiol 
38(3): 513-530, 1975. 
 
68. Edgley SA, Jankowska E, Hammar I. Ipsilateral actions of feline corticospinal tract 
neurons on limb motoneurons. J Neurosci 24(36): 7804-7813, 2004. 
 
69. Eidelberg E, Story JL, Walden JG, Meyer BL. Anatomical correlates of return of 
locomotor function after partial spinal cord lesions in cats. Exp Brain Res 42: 81-88, 
1981. 
 
70. Eidelberg D, Surmeier DJ. Brain networks in Huntington disease. J Clin Invest 
121(2): 484-492, 2011. 
 
71. Elbert T, Rockstroh B. Reorganization of human cerebral cortex: the range of 
changes following use and injury. Neuroscientist. 10(2): 129-141, 2004. 
 
72. Ellis MD, Acosta AM, Yao J, Dewald JP. Position-dependent torque coupling and 
associated muscle activation in the hemiparetic upper extremity. Exp Brain Res 176(4): 
594-602, 2007. 
 



138 
 

73. Ellis MD, Drogos J, Carmona C, Keller T, Dewald JP. Neck rotation modulates 
flexion synergy torques, indicating an ipsilateral reticulospinal source for impairment in 
stroke. J Neurophysiol 108: 3096-3104, 2012. 
 
74. Elmore JG, Armstrong K, Lehman CD, Fletcher SW. Screening for breast cancer. 
JAMA 293(10): 1245-1256, 2005. 
 
75. Evarts EV. Relation of pyramidal tract activity to force exerted during voluntary 
movement. J Neurophysiol 31: 14-27, 1968. 
 
76. Fang Y, Daly JJ, Sun J, Hvorat K, Fredrickson E, Pundik S, Sahgal V, Yue GH. 
Functional Corticomuscular Connection During Reaching Is Weakened Following 
Stroke. Clin Neurophysiol 120(5): 994–1002, 2009. 
 
77. Fisher CM. Concerning the mechanism of recovery in stroke hemiplegia. Can J 
Neurol Sci 19: 57–63, 1992. 
 
78. Fisher KM, Zaaimi B, Baker SN. Reticular formation responses to magnetic brain 
stimulation of primary motor cortex. J Physiol 590(16): 4045-4060, 2012. 
 
79. Freer TW, Ulissey MJ. Screening mammography with computer-aided detection: 
prospective study of 12,860 patients in a community breast center. Radiology 220(3): 
781-786, 2001. 
 
80. Freund P, Wannier T, Schmidlin E, Bloch J, Mir A, Schwab ME, Rouiller EM.  
Anti-Nogo-A antibody treatment enhances sprouting of corticospinal axons rostral to a 
unilateral cervical spinal cord lesion in adult macaque monkey.  J Comp Neurol 502(4): 
644-659, 2007. 
 
81. Fuchs AF, Luschei ES. Firing patterns of abducens neurons of alert monkeys in 
relationship to horizontal eye movement. J Neurophysiol 33: 382-392, 1970. 
 
82. Gahéry Y, Ioffe ME, Massion J, Polit A. The postural support of movement in cat 
and dog. Act Neurobiol Exp 40: 741-756, 1980. 
 
83. Gahéry Y, Nieoullon A. Postural and kinetic coordination following cortical stimuli 
which induce flexion movements in the cat's limbs. Brain Res 149(1): 25-37, 1978. 
 
84. Gallagher DA, Lees AJ, Schrag A. What are the most important nonmotor 
symptoms in patients with Parkinson's disease and are we missing them? Mov Disord 
25(15): 2493-2500, 2010. 
 
85. Garcia-Rill E. The basal ganglia and the locomotor regions. Brain Res 396(1): 47-
63, 1986. 



139 
 

 
86. Garcia-Rill E, Kinjo N, Atsuta Y, Ishikawa Y, Webber M, Skinner RD. Posterior 
midbrain-induced locomotion. Brain Res Bull 24(3): 499-508, 1990. 
 
87. Garcia-Rill E, Skinner RD, Fitzgerald JA. Chemical activation of the 
mesencephalic locomotor region. Brain Res 330(1): 43-54, 1985. 
 
88. Garcia-Rill E, Skinner RD, Jackson MB, Smith MM. Connections of the 
mesencephalic locomotor region (MLR) I. Substantia nigra afferents. Brain Res Bull 
10(1): 57-62, 1983. 
 
89. Garraux G, Phillips C, Schrouff J, Kreisler A, Lemaire C, Degueldre C, Delcour 
C, ... Salmon E. Multiclass classification of FDG PET scans for the distinction between 
Parkinson's disease and atypical parkinsonian syndromes. Neuroimage Clin 2: 883-893, 
2013. 
 
90. Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol 
56: 33-39, 1999. 
 
91. Georgopolous AP, Ashe J, Smyrnis N, Taira M. The motor cortex and the coding 
of force. Science 256: 1692-1695, 1992. 
 
92. Ghosh-Dastidar S, Adeli H, and Dadmehr N. Voxel-based Morphometry in 
Alzheimer’s Patients. J Alzheimers Dis 10(4): 445-447, 2006. 
 
93. Glickstein M, Doron K. Cerebellum: connections and functions. Cerebellum 7(4): 
589-594, 2008. 
 
94. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, 
Poewe W, … LaPelle N; Movement Disorder Society UPDRS Revision Task Force. 
Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease 
Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov 
Disord 23(15): 2129-2170, 2008. 
 
95. Goldstein DS, Holmes C, Bentho O, Sato T, Moak J, Sharabi Y, Imrich R, … 
Eldadah BA. Biomarkers detect central dopamine deficiency and distinguish Parkinson 
disease from multiple system atrophy. Parksinonism Relat Disord 14(8): 600-607, 2008. 
 
96. Górska T, Bem T, Majczyński H. Locomotion in cats with ventral spinal lesions: 
support patterns and duration of support phases during unrestrained walking. Acta 
Neurobiol Exp (Wars) 50(4-5): 191-199, 1990. 
 
97. Górska T, Bem T, Majczyński H, Zmysłowski W. Unrestrained walking in cats 
with partial spinal lesions. Brain Res Bull 32(3): 241-249, 1993. 



140 
 

 
98. Gray H. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1918. 
 
99. Grillner S. The motor infrastructure: from ion channels to neuronal networks. Nat 
Rev Neurosci 4(7): 573-586, 2003. 
 
100. Grillner S, Lund S. A descending pathway with monosynaptic action on flexor 
motoneurones. Experimentia 22: 390-390, 1966. 
 
101. Grillner S, Lund S. The origin of a descending pathway with monosynaptic 
action on flexor motoneurones. Acta Physiol Scand 74: 274-284, 1968. 
 
102. Groenewegen HJ. The basal ganglia and motor control. Neural Plast 10(1-2): 
107-120, 2003. 
 
103. Grosset J-F, Piscione J, Lambertz D, Perot C. Paired changes in 
electromechanical delay and musculo-tendinous stiffness after endurance or plyometric 
training. Eur J Appl Physiol 105: 131-139, 2008. 
 
104. Hallett M. Plasticity of the human motor cortex and recovery from stroke. Brain 
Res Rev 36(2-3):169-174, 2001. 
 
105. Hamadjida A, Wyss AF, Mir A, Schwab ME, Belhaj-Saif A, Rouiller EM. 
Influence of anti-Nogo-A antibody treatment on the reorganization of callosal 
connectivity of the premotor cortical areas following unilateral lesion of primary motor 
cortex (M1) in adult macaque monkeys. Exp Brain Res 223(3): 321-340, 2012. 
 
106. Hanna JP, Frank JI. Automatic stepping in the pontomedullary stage of central 
herniation. Neurology 45(5): 985-986, 1995. 
 
107. Hansebout RR, Blight AR, Fawcett S, Reddy K. 4-Aminopyridine in chronic 
spinal cord injury: a controlled, double-blind, crossover study in eight patients. J 
Neurotrauma 10(1): 1–18, 1993. 
 
108. Hassler R, Riechart T, Munginer F, Umbach W, Ganglberger JA. 
Physiological observations in stereotaxic operations in extrapyramidal motor 
disturbances. Brain 83: 337-350, 1960. 
 
109. Hauser RA, Auinger P; Parkinson Study Group. Determination of minimal 
clinically important change in early and advanced Parkinson's disease. Mov Disord 26(5): 
813-818, 2011. 
 



141 
 

110. Hayes KC, Blight AR, Potter PJ, Allatt RD, Hsieh JT, Wolfe DL, Lam S, 
Hamilton JT. Preclinical trial of 4-aminopyridine in patients with chronic spinal cord 
injury. Paraplegia 31(4): 216–224, 1993. 
 
111. He XW, Wu CP. Connections between pericruciate cortex and the medullary 
reticulospinal neurons in cat: an electrophysiological study. Exp Brain Res 61(1): 109-
116, 1985. 
 
112. Herbert WJ, Davidson AG, Buford JA. Measuring the motor output of the 
pontomedullary reticular formation in the monkey: do stimulus-triggered averaging and 
stimulus trains produce comparable results in the upper limbs? Exp Brain Res 203: 271-
283, 2010. 
 
113. Hirschauer TJ, Buford JA. Bilateral force transients in the upper limbs evoked 
by single-pulse microstimulation in the ponto-medullary reticular formation. J 
Neurophysiol 113(7): 2592-2604, 2015. 
 
114. Hoffman DS, Strick PL. Step-tracking movements of the wrist. IV. Muscle 
activity associated with movements in different directions. J Neurophysiol 81: 319-333, 
1999. 
 
115. Houssami N, Given-Wilson R, Ciatto S. Early detection of breast cancer: 
overview of the evidence on computer-aided detection in mammography screening. J 
Med Imaging Radiat Oncol 53(2): 171-176, 2009. 
 
116. Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ. What features improve the 
accuracy of clinical diagnosis in Parkinson's disease: a clinicopathologic study. 
Neurology 42: 1142-1146, 1992. 
 
117. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of 
idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol 
Neurosurg Psychiatry 55: 181–184, 1992. 
 
118. Hughes AJ, Daniel SE, Lees AJ. Improved accuracy of clinical diagnosis of 
Lewy body Parkinson’s disease. Neurology 57: 1497-1499, 2001. 
 
119. Illan IA, Gorrz JM, Ramirez J, Segovia F, Jimenez-Hoyuela JM, Ortega 
Lozano SJ. Automatic assistance to Parkinson's disease diagnosis in DaTSCAN SPECT 
imaging. Med Phys 39(10): 5971-5980, 2012. 
 
120. Jang SH. Motor recovery mechanisms in patients with middle cerebral artery 
infarct: a mini-review. Eur Neurol 68(4): 234-239, 2012. 
 



142 
 

121. Jankovic J. Parkinson's disease: clinical features and diagnosis. J Neurol 
Neurosurg Psychiatry 79(4): 368-376, 2008. 
 
122. Jankowska E, Edgley SA. How can corticospinal tract neurons contribute to 
ipsilateral movements? A question with implications for recovery of motor functions. 
Neuroscientist 12: 67-79, 2006. 
 
123. Jankowska E, Hammar I, Slawinska U, Maleszak K, Edgley SA. Neuronal 
basis of crossed actions from the reticular formation on feline hindlimb motoneurons. J 
Neurosci 23: 1867-1878, 2003. 
 
124. Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, 
Wimalaratna S, Matthews PM. The role of ipsilateral premotor cortex in hand 
movement after stroke. Proc Natl Acad Sci USA 99(22): 14518-14523, 2002. 
 
125. Jørgensen HS, Nakayama H, Raaschou HO, Vive-Larsen J, Støier M, Olsen 
TS. Outcome and time course of recovery in stroke. Part II: Time course of recovery. The 
Copenhagen Stroke Study. Arch Phys Med Rehabil 76(5): 406-412, 1995. 
 
126. Kably B, Drew T. Corticoreticular pathways in the cat. I. Projection patterns and 
collaterization. J Neurophysiol 80(1): 389-405, 1998. 
 
127. Kakei S, Hoffman DS, Strick PL. Muscle and movement representations in the 
primary motor cortex. Science 285: 2136-2139, 1999. 
 
128. Kakei S, Hoffman DS, Strick PL. Direction of action is represented in the 
ventral premotor cortex. Nature Neurosci 4: 1020-1025, 2001. 
 
129. Kansara S, Trivedi A, Chen S, Jankovic J, Le W. Early diagnosis and therapy 
of Parkinson's disease: can disease progression be curbed? J Neural Transm 120(1): 197-
210, 2013.  
 
130. Katayama Y, Yamamoto T, Kobayashi K, Oshima H, Fukaya C. Deep brain 
and motor cortex stimulation for post-stroke movement disorders and post-stroke pain. 
Acta Neurochir Suppl 87: 121-123, 2003. 
 
131. Keizer K, Kuypers HG. Distribution of corticospinal neurons with collaterals to 
lower brain stem reticular formation in cat. Exp Brain Res 54(1): 107-120, 1984. 
 
132. Keizer K, Kuypers HG. Distribution of corticospinal neurons with collaterals to 
the lower brain stem reticular formation in monkey (Macaca fascicularis). Exp Brain Res 
74(2): 311-318, 1989. 
 



143 
 

133. Kilbreath SL, Gorman RB, Raymond J, Gandevia SC. Distribution of the 
forces produced by motor unit activity in the human flexor digitorum profundus. J 
Physiol 543: 289-296, 2002. 
 
134. Klöppel S, Stonnington CM, Chu C, Draganski B, Scahill RI, Rohrer JD, Fox 
NC, Jack CR Jr, Ashburner J, Frackowiak RS. Automatic classification of MR scans 
in Alzheimer's disease. Brain 131(3): 681-689, 2008. 
 
135. Krakauer JW. Arm function after stroke: from physiology to recovery. Semin 
Neurol 25(4): 384-395, 2005. 
 
136. Krakauer JW, Radoeva PD, Zarahn E, Wydra J, Lazar RM, Hirsch J, 
Marshall RS. Hypoperfusion without stroke alters motor activation in the opposite 
hemisphere. Ann Neurol 56(6): 796-802, 2004. 
 
137. Kuypers HG. Anatomical analysis of cortico-bulbar connexions to the pons and 
the lower brain stem in the cat. J Anat 92: 198-218, 1958. 
 
138. Kuypers HG. Anatomy of descending pathways. In: Handbook of Physiology. 
The Nervous System. Motor Control. Bethesda, MD: Am. Physiol. Soc., 1981, sect. 1, 
vol. II, pt 1., p. 597-666.  
 
139. Kuypers HG. The descending pathways to the spinal cord, their anatomy and 
function. Prog Brain Res 11: 178-202, 1964. 
 
140. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic 
review. Lancet Neurol 8(8): 741-754, 2009. 
 
141. Lawrence DG, Kuypers HG. The functional organization of the motor systems 
in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91: 1–14, 1968. 
 
142. Lawrence ES, Coshall C, Dundas R, Stewart J, Rudd AG, Howard R, Wolfe 
CD. Estimates of the prevalence of acute stroke impairments and disability in a 
multiethnic population. Stroke. 32(6): 1279-1284, 2001. 
 
143. Lee MJ, Kim SL, Lyoo CH, Lee MS. Kinematic analysis in patients with 
Parkinson's disease and SWEDD. J Parkinsons Dis 4(3): 421-430, 2014. 
 
144. Lemon RN. The G. L. Brown Prize Lecture. Cortical control of the primate hand. 
Exp Physiol 78(3): 263-301, 1993. 
 
145. Lemon RN. Descending pathways in motor control. Ann Rev Neurosci 31: 195-
218, 2008. 
 



144 
 

146. Levin MF. Interjoint coordination during pointing movements is disrupted in 
spastic hemiparesis. Brain 119(1): 281-293, 1996. 
 
147. Levy R, Ruland S, Weinand M, Lowry D, Dafer R, Bakay R. Cortical 
stimulation for the rehabilitation of patients with hemiparetic stroke: a multicenter 
feasibility study of safety and efficacy. J Neurosurg 108(4): 707-714, 2008. 
 
148. Li S, Chang SH, Francisco GE, Verduzco-Gutierrez M. Acoustic startle reflex 
in patients with chronic stroke at different stages of motor recovery: a pilot study. Top 
Stroke Rehabil 21(4): 358-370, 2014. 
 
149. Lindau NT, Bänninger BJ, Gullo M, Good NA, Bachmann LC, Starkey ML, 
Schwab ME. Rewiring of the corticospinal tract in the adult rat after unilateral stroke and 
anti-Nogo-A therapy. Brain 137(3): 739-756, 2014. 
 
150. Lippold, OCJ. The relation between integrated action potentials in a human 
muscle and its isometric tension. J Physiol 117: 492-499, 1952. 
 
151. Little MA, McSharry PE, Hunter EJ, Spielman J, Ramig LO. Suitability of 
dysphonia measurements for telemonitoring of Parkinson's disease. IEEE Trans Biomed 
Eng 56(4): 1015, 2009. 
 
152. Liu CN, Chambers WW. An experimental study of the cortico-spinal system in 
the monkey (Macaca mulatta). J Comp Neurol 123: 257-284, 1964. 
 
153. Long D, Wang J, Xuan M, Gu Q, Xu X, Kong D, Zhang M. Automatic 
classification of early Parkinson's disease with multi-modal MR imaging. PLoS One 
7(11): e47714, 2012. 
 
154. Luccarini P, Gahéry Y, Pompeiano O. Cholinoceptive pontine reticular 
structures modify the postural adjustments during the limb movements induced by 
cortical stimulation. Arch Ital Biol 128(1): 19-45, 1990. 
 
155. Magni F, Willis WD. Cortical control of brain stem reticular neurons. Arch Ital 
Biol 102: 418-433, 1964. 
 
156. Marek K, Jennings D, Lasch S, Siderowf A, Tanner C, Simuni T, Coffey C, 
… Taylor P. The Parkinson Progression Marker Initiative (PPMI). Prog Neurobiol 
95(4): 629-635, 2011. 
 
157. Mark VW, Taub E. Constraint-induced movement therapy for chronic stroke 
hemiparesis and other disabilities. Restor Neurol Neurosci 22(3-5): 317-336, 2004. 
 



145 
 

158. Martin JH. The corticospinal system: from development to motor control. 
Neuroscientist 11(2): 161-173, 2005. 
 
159. Martin RF, Bowden DM. A stereotaxic template atlas of the macaque brain for 
digital imaging and quantitative neuroanatomy. Neuroimage 4: 119-150, 1996. 
 
160. Martinez-Murcia FJ, Gorriz JM, Ramirez J, Illan IA, the Parkinson’s 
Progression Markers Initiative. Automated Detection of Parkinsonism Using 
Significance Measures and Component Analysis in DatSCAN imaging. Neurocomputing 
126: 58-70, 2014. 
 
161. Masdeu JC, Alampur U, Cavaliere R, Tavoulareas G. Astasia and gait failure 
with damage of the pontomesencephalic locomotor region. Ann Neurol 35(5): 619-621, 
1994. 
 
162. Matsuyama K, Drew T. Organization of the projections from the pericruciate 
cortex to the pontomedullary brainstem of the cat: a study using the anterograde tracer 
Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 389(4): 617-641, 1997. 
 
163. Matsuyama K, Drew T. Vestibulospinal and reticulospinal neuronal activity 
during locomotion in the intact cat. I. Walking on a level surface. J Neurophysiol 84(5): 
2237-2256, 2000. 
 
164. Matsuyama K, Mori F, Nakajima K, Drew T, Aoki M, Mori S. Locomotor 
role of the corticoreticular-reticulospinal-spinal interneuronal system. Prog Brain Res 
143: 239-249, 2004. 
 
165. Matsuyama K, Takakusaki K, Nakajima K, Mori S. Multi-segmental 
innervation of single pontine reticulospinal axons in the cervico-thoracic region of the 
cat: anterograde PHA-L tracing study. J Comp Neurol 377: 234-250, 1997. 
 
166. McClellan AD, Grillner S. Activation of 'fictive swimming' by electrical 
microstimulation of brainstem locomotor regions in an in vitro preparation of the lamprey 
central nervous system. Brain Res 300(2): 357-361, 1984. 
 
167. McKiernan BJ, Marcario JK, Karrer JH, Cheney PD. Corticomotoneuronal 
postspike effects in shoulder, elbow, wrist, digit, and intrinsic hand muscles during a 
reach and prehension task. J Neurophysiol 80: 1961-1980, 1998. 
 
168. Ménard A, Grillner S. Diencephalic locomotor region in the lamprey--afferents 
and efferent control. J Neurophysiol 100(3): 1343-1353, 2008. 
 



146 
 

169. Merello M, Nouzeilles MI, Arce GP, Leiguarda R. Accuracy of acute levodopa 
challenge for clinical prediction of sustained long-term levodopa response as a major 
criterion for idiopathic Parkinson's disease diagnosis. Mov Disord 17(4): 795-798, 2002. 
 
170. Mian OS, Schneider SA, Schwingenschuh P, Bhatia KP, Day BL. Gait in 
SWEDDs patients: comparison with Parkinson's disease patients and healthy controls. 
Mov Disord 26(7): 1266-1273, 2011. 
 
171. Miller LC, Dewald JPA. Involuntary paretic wrist/finger flexion forces and 
EMG increase with shoulder abduction load in individuals with chronic stroke. Clin 
Neurophysiol 123: 1216-1225, 2012. 
 
172. Milner-Brown HS, Stein RB. The relation between the surface electromyogram 
and muscular force. J Physiol 246: 549-569, 1975. 
 
173. Morales DA, Vives-Gilabert Y, Gómez-Ansón B, Bengoetxea E, Larrañaga P, 
Bielza C, Pagonabarraga J, ... Delfino M. Predicting dementia development in 
Parkinson's disease using Bayesian network classifiers. Psychiatry Res 213(2): 92-98, 
2013. 
 
174. Moran DW, Schwartz AB. Motor cortical representation of speed and direction 
during reaching. J Neurophysiol 82: 2676-2692, 1999. 
 
175. Mori S, Matsuyama K, Miyashita E, Nakajima K, Asanome M. Basic 
neurophysiology of primate locomotion. Folia Primatol (Basel) 66(1-4): 192-203, 1996. 
 
176. Muro A, Nagata A. The effects on electromechanical delay of muscle stretch of 
the human triceps surae. In: Biomechanics IX-A, edited by Winter DA, Norman RW, 
Wells RP, Hayes KC, Patla AE. Champaign, IL: Human Kinetics, 1985, p. 86-90. 
 
177. Nakayama H, Jørgensen HS, Raaschou HO, Olsen TS. Compensation in 
recovery of upper extremity function after stroke: the Copenhagen Stroke Study. Arch 
Phys Med Rehabil 75(8): 852-857, 1994. 
 
178. Ng YS, Stein J, Ning M, Black-Schaffer RM.  Comparison of clinical 
characteristics and functional outcomes of ischemic stroke in different vascular 
territories.  Stroke 38(8): 2309-2314, 2007. 
 
179. Noble M, Bruening W, Uhl S, Schoelles K. Computer-aided detection 
mammography for breast cancer screening: systematic review and meta-analysis. Arch 
Gynecol Obstet 279(6): 881-890, 2009. 
 
180. Norman RW, Komi PV. Electromechanical delay in skeletal muscle under 
normal movement conditions. Acta Physiol Scand 106: 241-248, 1979. 



147 
 

 
181. Obeso JA, Rodríguez-Oroz MC, Rodríguez M, Arbizu J, Giménez-Amaya 
JM. The basal ganglia and disorders of movement: pathophysiological mechanisms. 
News Physiol Sci 17: 51-55, 2002. 
 
182. Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson's disease. 
Annu Rev Neurosci 22: 123-144, 1999. 
 
183. Paisán-Ruíz C, Jain S, Evans EW, Gilks WP, Simón J, van der Brug M, 
López de Munain A, … Singleton AB. Cloning of the gene containing mutations that 
cause PARK8-linked Parkinson's disease. Neuron 44(4): 595-600, 2004. 
 
184. Palmer E, Ashby P, Hajek VE. Ipsilateral fast corticospinal pathways do not 
account for recovery in stroke. Ann Neurol 32(4): 519-525, 1992. 
 
185. Park MC, Belhaj-Saif A, Cheney PD. Chronic recording of EMG activity from 
large numbers of forelimb muscles in awake macaque monkeys. J Neurosci Methods 96: 
153-160, 2000. 
 
186. Partridge CJ, Johnston M, Edwards S. Recovery from physical disability after 
stroke: normal patterns as a basis for evaluation. Lancet 1(8529):373-375, 1987. 
 
187. Perlmutter JS, Mink JW. Deep brain stimulation. Annu Rev Neurosci 29: 229-
257, 2006. 
 
188. Peterson BW. Reticulospinal projections to spinal motor nuclei. Ann Rev Physiol 
41: 127-140, 1979. 
 
189. Peterson BW, Anderson ME, Filion M. Response of pontomedullary reticular 
neurons to cortical, tectal and cutaneous stimuli. Exp Brain Res 21: 19-44, 1974. 
 
190. Peterson BW, Maunz RA, Pitts NG, Mackel RG. Patterns of projection and 
braching of reticulospinal neurons. Exp Brain Res 23: 333-351, 1975. 
 
191. Peterson BW, Pitts NG, Fukushima K. Reticulospinal connections with limb 
and axial motoneurons. Exp Brain Res 36: 1-20, 1979. 
 
192. Philipp R, Hoffmann K-P. Arm movements induced by electrical 
microstimulation in the superior colliculus of the macaque monkey. J Neurosci 34: 3350-
3363, 2014. 
 
193. Poliakov AV, Schieber MH. Multiple fragment statistical analysis of post-spike 
effects in spike-triggered averages of rectified EMG. J Neurosci Methods 94: 3325-3341, 
1998. 



148 
 

 
194. Postuma RB, Lang AE. Hemiballism: revisiting a classic disorder. Lancet 
Neurology 2(11): 661-668, 2003. 
 
195. Prashanth R, Roy SD, Mandal PK, Ghosh S. Automatic classification and 
prediction models for early Parkinson’s disease diagnosis from SPECT imaging. Expert 
Syst Appl 41: 3333-3342, 2014. 
 
196. Prentice SD, Drew T. Contributions of the reticulospinal system to the postural 
adjustments occurring during voluntary gait modifications. J Neurophysiol 85(2): 679-
698, 2001. 
 
197. Quinlan JR. Induction of Decision Trees. Mach Learn 1: 81-106, 1986. 
 
198. Rajput AH, Rozdilsky B, Rajput A. Accuracy of clinical diagnosis in 
Parkinsonism: a prospective study. Can J Neurol Sci 18: 275–278, 1991. 
 
199. Rehme AK, Volz LJ, Feis DL, Bomilcar-Focke I, Liebig T, Eickhoff SB, Fink 
GR, Grefkes C. Identifying Neuroimaging Markers of Motor Disability in Acute Stroke 
by Machine Learning Techniques. Cereb Cortex, 2014. doi:10.1093/cercor/bhu100. 
 
200. Rekand T. Clinical assessment and management of spasticity: a review. Acta 
Neurol Scand 122(S190):62-66, 2010. 
 
201. Riddle CN, Edgley SA, Baker SN. Direct and indirect connections with upper 
limb motoneurons from the primate reticulospinal tract. J Neurosci 29: 4993-4999, 2009. 
 
202. Rizzolatti G, Luppino G. The cortical motor system. Neuron 31(6): 889-901, 
2001. 
 
203. Sakai ST, Davidson AG, Buford JA. Reticulospinal neurons in the 
pontomedullary reticular formation of the monkey (Macaca fascicularis). Neurosci 163: 
1158-1170, 2009. 
 
204. Sakamoto T, Gahéry Y, Mori S. Effects of bethanecol injection into pontine 
reticular formation upon postural changes accompanying a food retrieval task by a 
forelimb in a standing cat. In: Neurobiological Basis of Human Locomotion, edited by 
Shimamura M, Grillner S, Edgerton VR. Tokyo: Japan Scientific Societies Press, 1991, p. 
45–50. 
 
205. Salvatore C, Cerasa A, Augimeri A, Quattrone A, Castiglioni I, Gallivanone 
F, Gilardi MC, ... Morelli M. Machine learning on brain MRI data for differential 
diagnosis of Parkinson's disease and Progressive Supranuclear Palsy. J Neurosci Methods 
222: 230-237, 2014. 



149 
 

 
206. Sandow A. Excitation-contraction coupling in muscular response. Yale J Biol 
Med 25: 176-201, 1952. 
 
207. Savica R, Rocca WA, Ahlskog JE. When does Parkinson disease start? Arch 
Neurol 67(7): 798-801, 2010. 
 
208. Schepens B, Drew T. Independent and convergent signals from the 
pontomedullary reticular formation contribute to the control of posture and movement 
during reaching in the cat. J Neurophysiol 92: 2217-2238, 2004. 
 
209. Schepens B, Drew T. Descending signals from the pontomedullary reticular 
formation are bilateral, asymmetric, and gated during reaching movements in the cat. J 
Neurophysiol 96: 2229-2252, 2006. 
 
210. Schepens B, Stapley P, Drew T. Neurons in the pontomedullary reticular 
formation signal posture and movement both as an integrated behavior and 
independently. J Neurophysiol 100: 2235-2253, 2008. 
 
211. Schneider SA, Edwards MJ, Mir P, Cordivari C, Hooker J, Dickson J, Quinn 
N, Bhatia KP. Patients with adult-onset dystonic tremor resembling parkinsonian tremor 
have scans without evidence of dopaminergic deficit (SWEDDs). Mov Disord 22(15): 
2210-2215, 2007. 
 
212. Schwingenschuh P, Ruge D, Edwards MJ, Terranova C, Katschnig P, 
Carrillo F, Silveira-Moriyama L, … Bhatia KP. Distinguishing SWEDDs patients 
with asymmetric resting tremor from Parkinson's disease: a clinical and 
electrophysiological study. Mov Disord 25(5): 560-569, 2010. 
 
213. Shik ML, Severin FV, Orlovskiĭ GN. [Control of walking and running by means 
of electric stimulation of the midbrain]. Biofizika 11(4): 659-666, 1966. 
 
214. Shiraishi J, Li Q, Appelbaum D, Doi K. Computer-aided diagnosis and artificial 
intelligence in clinical imaging. Semin Nucl Med 41(6): 449-462, 2011. 
 
215. Silveira-Moriyama L, Schwingenschuh P, O'Donnell A, Schneider SA, Mir P, 
Carrillo F, Terranova C, Petrie A, Grosset DG, Quinn NP, Bhatia KP, Lees AJ. 
Olfaction in patients with suspected parkinsonism and scans without evidence of 
dopaminergic deficit (SWEDDs). J Neurol Neurosurg Psychiatry 80(7): 744-748, 2009. 
 
216. Smith SL, Timmis J. An immune network inspired evolutionary algorithm for 
the diagnosis of Parkinson's disease. Biosystems 94(1-2): 34-46, 2008. 
 



150 
 

217. Soteropoulos DS, Edgley SA, Baker SN. Lack of evidence for direct 
corticospinal contributions to control of the ipsilateral forelimb in monkey. J Neurosci 
31(31): 11208-11219, 2011. 
 
218. Soteropoulos DS, Williams ER, Baker SN. Cells in the monkey ponto-
medullary reticular formation modulate their activity with slow finger movements. J 
Physiol 590: 4011-4027, 2012. 
 
219. Soto O, Cros D. Direct corticospinal control of force derivative. J Neurosci 31: 
1944-1948, 2011. 
 
220. Specht DF. Probabilistic neural networks. Neural Netw 3: 109-118, 1990. 
 
221. Sprague JM, Chambers WW. Control of posture by reticular formation and 
cerebellum in the intract, anesthetized and unanesthetized and in the decerebrated cat. Am 
J Physiol 176: 52-64, 1954. 
 
222. Srivastava UC, Manzoni D, Pompeiano O, Stampacchia G. Responses of 
medullary reticulospinal neurons to sinusoidal rotation of neck in decerebrate cat. J 
Neurosci 11: 473-486, 1984. 
 
223. Stifani N. Motor neurons and the generation of spinal motor neuron diversity. 
Front Cell Neurosci 8: 293, 2014. 
 
224. Swedo SE, Leonard HL, Shapiro MB. Sydenham's Chorea: Physical and 
Psychological Symptoms of St Vitus Dance. Pediatrics 91(4): 706-713, 1993. 
 
225. Szabo J, Cowan WM. A stereotaxic atlas of the brain of the cynomolgus monkey 
(Macaca fascicularis). J Comp Neurol 222: 265-300, 1984. 
 
226. Szokol K, Glover JC, Perreault MC. Organization of functional synaptic 
connections between medullary reticulospinal neurons and lumbar descending 
commissural interneurons in the neonatal mouse. J Neurosci 31(12): 4731-4742, 2011. 
 
227. Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T. 
Basal ganglia efferents to the brainstem centers controlling postural muscle tone and 
locomotion: a new concept for understanding motor disorders in basal ganglia 
dysfunction. Neuroscience 119(1): 293-308, 2003. 
 
228. Taub E, Uswatte G, King DK, Morris D, Crago JE, Chatterjee A. A placebo-
controlled trial of constraint-induced movement therapy for upper extremity after stroke. 
Stroke 37(4): 1045-1049, 2006. 
 



151 
 

229. Tazoe T, Perez MA. Selective activation of ipsilateral motor pathways in intact 
humans. J Neurosci 34(42): 13924-13934, 2014. 
 
230. Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive 
coordination of movement. Annu Rev Neurosci 15: 403-442, 1992. 
 
231. Thijsa RD, Notermansa NC, Wokkea JHJ, van der Graafb Y, van Gijna J. 
Distribution of muscle weakness of central and peripheral origin. J Neurol Neurosurg 
Psychiatry 65:794-796, 1998. 
 
232. Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson's disease. Lancet 
Neurol 5(1): 75-86, 2006. 
 
233. Tsanas A, Little MA, McSharry PE, Ramig LO. Accurate telemonitoring of 
Parkinson's disease progression by noninvasive speech tests. IEEE Trans Biomed Eng 
57(4): 884-893, 2010. 
 
234. Turton A, Wroe S, Trepte N, Fraser C, Lemon RN. Contralateral and 
ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm 
and hand function after stroke. Electroencephalogr Clin Neurophysiol 101(4): 316-328, 
1996. 
 
235. Twitchell TE. The restoration of motor function following hemiplegia in man. 
Brain 74(4): 443-480, 1951. 
 
236. Uchiyama Y, Asano T, Kato H, Hara T, Kanematsu M, Hoshi H, Iwama T, 
Fujita H. Computer-aided diagnosis for detection of lacunar infarcts on MR images: 
ROC analysis of radiologists' performance. J Digit Imaging 25(4): 497-503, 2012. 
 
237. Ugolini G, Kuypers HG. Collaterals of corticospinal and pyramidal fibres to the 
pontine grey demonstrated by a new application of the fluorescent fibre labelling 
technique. Brain Res 365(2): 211-227, 1986. 
 
238. Utiumi MA, Felício AC, Borges CR, Braatz VL, Rezende SA, Munhoz RP, 
Bressan RA, Ferraz HB, Teive HA. Dopamine transporter imaging in clinically unclear 
cases of parkinsonism and the importance of scans without evidence of dopaminergic 
deficit (SWEDDs). Arq Neuropsiquiatr 70(9): 667-673, 2012. 
 
239. Valls-Solé J, Kumru H, Kofler M. Interaction between startle and voluntary 
reactions in humans. Exp Brain Res 187(4): 497-507, 2008. 
 
240. Valls-Solé J, Rothwell JC, Goulart F, Cossu G, Muñoz E. Patterned ballistic 
movements triggered by a startle in healthy humans. J Physiol 516(3):931-938, 1999. 
 



152 
 

241. Valls-Solé J, Solé A, Valldeoriola F, Munoz E, Gonzalez LE, Tolosa ES. 
Reaction time and acoustic startle in normal human subjects. Neurosci Lett 195: 97–100, 
1995. 
 
242. Walker FO. Huntington's disease. Lancet 369(9557): 218–228, 2007. 
 
243. Wang S, Summers RM. Machine learning and radiology. Med Image Anal 16(5): 
933-951, 2012.  
 
244. Wang T, Wang J, Yin C, Liu R, Zhang JH, Qin X. Down-regulation of Nogo 
receptor promotes functional recovery by enhancing axonal connectivity after 
experimental stroke in rats. Brain Res 1360: 147-158, 2010. 
 
245. Ward NS. Functional reorganization of the cerebral motor system after stroke. 
Curr Opin Neurol 17(6): 725-730, 2004. 
 
246. Winter EM, Brookes FBC. Electromechanical response times and muscle 
elasticity in men and women. Eur J Appl Physiol 63: 124-128, 1991. 
 
247. Yang HJ, Kim YE, Yun JY, Ehm G, Kim HJ, Jeon BS. Comparison of sleep 
and other non-motor symptoms between SWEDDs patients and de novo Parkinson's 
disease patients. Parkinsonism Relat Disord 20(12): 1419-1422, 2014. 
 
248. Yao J, Chen A, Carmona C, Dewald JP. Cortical overlap of joint 
representations contributes to the loss of independent joint control following stroke. 
Neuroimage 45(2): 490-499, 2009. 
 
249. Yeo SS, Chang MC, Kwon YH, Jung YJ, Jang SH. Corticoreticular pathway in 
the human brain: diffusion tensor tractography study. Neurosci Lett 508(1): 9-12, 2012. 
 
250. Yousefi J, Hamilton-Wright A. Characterizing EMG data using machine-
learning tools. Comput Biol Med 51: 1-13, 2014. 
 
251. Yu WS, Kilbreath SL, Fitzpatrick RC, Gandevia SC. Thumb and finger forces 
produced by motor units in the long flexor of the human thumb. J Physiol 583: 1145-
1154, 2007. 
 
252. Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN. Changes in descending 
motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain 
135(7): 2277-2289, 2012. 
 
253. Ziemann U, Ishii K, Borgheresi A, Yaseen Z, Battaglia F, Hallett M, Cincotta 
M, Wassermann EM. Dissociation of the pathways mediating ipsilateral and 



153 
 

contralateral motor-evoked potentials in human hand and arm muscles. J Physiol 518(3): 
895-906, 1999. 
 
254. Zweig RM, Whitehouse PJ, Casanova MF, Walker LC, Jankel WR, Price 
DL. Loss of pedunculopontine neurons in progressive supranuclear palsy. Ann Neurol 
22(1): 18-25, 1987. 
 


	Abstract
	Acknowledgments
	Vita
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1: Introduction
	Normal motor system function
	Disorders of the motor system
	Clinical correlates
	Research objectives
	Tables & Figures

	Chapter 2: Review of the anatomy and physiology of the reticulospinal system
	Bilateral projections of reticulospinal neurons
	Reticulospinal control of movement
	Cortical and subcortical projections to PMRF
	Motor impairment following unilateral stroke
	Reticulospinal mediated functional recovery
	Motor outputs of reticulospinal neurons

	Chapter 3: Stimulus-triggered averaging of reticulospinal motor outputs evoked by single-pulse microstimulation
	Introduction
	Methods
	Results
	Discussion
	Tables & Figures

	Chapter 4: Comparison of stimulus-triggered averaging results to spike-triggered averaging of motor outputs from nearby reticulospinal neurons
	Introduction
	Methods
	Results
	Discussion
	Tables & Figures

	Chapter 5: Review of the diagnosis of Parkinson’s disease
	Parkinson’s disease and other movement disorders
	Differential diagnosis of parkinsonism
	Overview of computer-aided diagnosis and detection
	Computer-aided diagnosis of Parkinson’s disease
	Tables & Figures

	Chapter 6: Computer-aided diagnosis of Parkinson’s disease using an enhanced probabilistic neural network
	Introduction
	Methods
	Results
	Discussion
	Tables & Figures

	Chapter 7: Conclusion
	General conclusions
	Clinical significance
	Future studies

	References

