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Abstract 

 

The north component of gravity and gravity gradient changes from the Gravity Recovery 

And Climate Experiment (GRACE) are used to study the coseismic gravity change for 

five earthquakes over the last decade: the 2004 Sumatra-Andaman earthquake, the 2007 

Bengkulu earthquake, the 2010 Maule, Chile earthquake, the 2011 Tohoku earthquake, 

and the 2012 Indian Ocean earthquakes. We demonstrate the advantage of these north 

components to reduce north-south stripes and preserve higher spatial resolution signal in 

GRACE Level 2 (L2) monthly Stokes Coefficients data products. By using the high 

spherical harmonic degree (up to degree 96) data products and the innovative GRACE 

data processing approach developed in this study, the retrieved gravity change is up to –

34±1.4 µGal for the 2004 Sumatra and 2005 Nias earthquakes, which is by far the highest 

coseismic signal retrieved among published studies. Our study reveals the detectability of 

earthquakes as small as Mw 8.5 (i.e., the 2007 Bengkulu earthquake) from GRACE data. 

The localized spectral analysis is applied as an efficient method to determine the practical 

spherical harmonic truncation degree leading to acceptable signal-to-noise ratio, and to 

evaluate the noise level for each component of gravity and gravity gradient change of the 

seismic deformations.  

By establishing the linear algorithm of gravity and gravity gradient change with respect 

to the double-couple moment tensor, the point source parameters are estimated through 

the least squares adjustment combined with the simulated annealing algorithm. The 



iii 

GRACE-inverted source parameters generally agree well with the slip models estimated 

using other data sets, including seismic, GPS, or combined data. For the 2004 Sumatra-

Andaman and 2005 Nias earthquakes, GRACE data produce a shallower centroid depth 

(9.1 km) compared to the depth (28.3 km) from GPS data, which may be explained by the 

closer-to-trench centroid location and by the aseismic slip over the shallow region. For 

the 2011 Tohoku earthquake, the inversions from two different GRACE data products 

and two different forward modeling produce similar source characteristics, with the 

centroid location southwest of and the slip azimuth 10° larger than the GPS/seismic 

solutions. The GRACE-estimated dip angles are larger than that from GPS/seismic data 

for the 2004 Sumatra-Andaman and 2005 Nias earthquakes, the 2010 Maule, Chile 

earthquake, and the 2007 Bengkulu earthquake. These differences potentially show the 

additional offshore constraint from GRACE data, compared to GPS/seismic data.  With 

more accurate and higher spatial resolution measurements anticipated from the GRACE 

Follow-on mission, with a scheduled launch date in 2017, we anticipate the data will be 

sensitive to even smaller earthquake signals. Therefore, GRACE type observations will 

hopefully become a more viable measurement to further constrain earthquake focal 

mechanisms. 
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Chapter 1. Introduction 

1.1 Traditional methods to study earthquakes and their limitations. 

There were several large undersea earthquakes in the past decade, including the 1 April 

2014 Mw 8.2 Iquique, Chile earthquake, the 24 May 2013 Mw 8.3 Okhotsk Sea 

earthquake, the 11 April 2012 Indian Ocean (Mw 8.6 and Mw 8.2) earthquakes, the 11 

March 2011 Mw 9.0 Tohoku earthquake, the 27 February 2010 Mw 8.8 Maule, Chile 

earthquake, the 12 September 2007 Mw 8.5 Bengkulu earthquake, the 15 November 2006 

Mw 8.3 and 13 January 2007 Mw 8.1 Kuril Islands earthquakes, and the 26 December 

2004 Mw 9.2 Sumatra-Andaman earthquake. The quantification of these earthquakes, 

including their exact sizes, location, the geometry and orientation of the faults, is critical 

for improving our understanding of fault mechanisms, as well as for application in 

tsunami warning. Geist et al. [2007] point out that the centroid location and seismic 

moment are essential parameters for tsunami forecast and assessment models. It is 

evident that the magnitude of the moment would directly affect tsunami amplitude. The 

souse location is also essential in tsunami generation, as shown by the fact that horizontal 

displacements over the very steep trench zone can generate large tsunamis [Tanioka and 

Satake, 1996; Meng et al., 2012]. Other first-order source parameters such as dip, fault 

length and width also affect the tsunami wave field [Geist et al., 2007]; for example, 

vertical dip-slip induces stronger tsunami due to its large vertical deformation [Tanioka 

and Satake, 1996]. Traditional measurements for studying focal mechanisms include 
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seismological data, GPS data, Interferometric Synthetic Aperture Radar (InSAR) data, 

tsunami data, vertical displacements on coral reefs, and recently repeated airborne 

LiDAR data, and so on. However, there are limitations for those traditional methods on 

estimating the source parameters of large undersea earthquakes. 

Seismological methods have difficulty in estimating source parameters such as seismic 

moment for rupture with long duration due to the overlap of interfering arrivals [Lay et 

al., 2005; Bilek et al., 2007; Chlieh et al., 2007]. Seismic waves data are also inadequate 

for detecting slow or aseismic slip and postseismic slip [Chlieh et al., 2007; Han et al., 

2013], for example the 2004 Sumatra-Andaman earthquake had a long duration, slow 

rupture [Banerjee et al., 2005; Lay et al., 2005; Park et al., 2005; Seno and Hirata, 2007] 

and large magnitude of aseismic afterslip [Chlieh et al., 2007].  Lay et al. [2010] indicate 

that seismic inversions are sensitive to waveform types and the frequency band, which is 

shown by the fact that different slip models are obtained from seismic waves with 

different frequency bands for the 2010 Maule, Chile earthquake. In addition, since 

seismic inversions are highly dependent on the velocity structure [Ji et al., 2002], they 

have instabilities for shallow ruptures [Lay et al., 2011].  

Although geodetic measurements, such as GPS data, have the potential to overcome the 

inadequacy of seismological data in detecting slow/aseismic slip, they are limited by the 

spatial distribution of their ground-based sites. Particularly, for undersea megathrust 

earthquakes, GPS stations are usually located at one side of the fault area, thus providing 

limited constraints on the source parameters [Chlieh et al., 2007; Lay et al., 2011; Wei et 

al., 2012]. For example, Chlieh et al. [2007] showed that the resolution for shallower 

patches on the finite fault near the trench are poorer than the resolution for deeper patches 



3 

due to the sparse distribution of the measurements on the islands farther away from the 

trench. Wei et al. [2012] also show that the inland static GPS data are quite insensitive to 

the shallow rupture and the resolution of the inverted slip model decreases rapidly away 

from the coast. 

1.2 GRACE data on constraining focal mechanisms 

The twin-satellite Gravity Recovery And Climate Experiment (GRACE) mission [Tapley 

et al., 2004] has been producing temporal global gravity field observations with monthly 

sampling rate and a spatial resolution longer than ~330 km (half-wavelength). The 

GRACE data have revolutionized our understanding of Earth’s mass redistribution, 

including the terrestrial hydrologic water balance, ocean mass variations and sea level 

rise, ice-sheet and glacier ablation, and their possible links with anthropogenic climate 

change. As one of such mass redistribution processes, earthquakes trigger crustal/mantle 

dilation or compression and surface uplift or subsidence, causing permanent change in 

the Earth’s gravity field. By surveying right above the rupture region over the ocean, 

although with a coarse spatial and temporal resolution, GRACE data have been 

demonstrated to have the feasibility to complement other data for detecting and 

constraining focal mechanisms of large undersea earthquakes. GRACE data have a better 

spatial coverage as compared to GPS data, and have better capability to detect aseismic 

slip as compared to seismic data. Several large earthquakes have been detected by 

GRACE data and analyzed in contemporary studies, including the 2004 Sumatra-

Andaman earthquake [e.g., Han et al., 2006; Wang et al., 2012c; Panet et al., 2010], 

2010 Maule, Chile earthquake [e.g., Han et al., 2010, Heki & Matsuto, 2010, Wang et al., 

2012a], and the 2011 Tohoku earthquake [e.g., Matsuo & Heki, 2011; Cambiotti and 
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Sabadini, 2012; Han et al., 2011, 2013; Wang et al., 2012b; Dai et al., 2014; Li and Shen, 

2015].  

These coseismic deformation studies for large undersea earthquakes were demonstrated 

by using the inferred gravity gradient changes computed from GRACE temporal gravity 

field solutions, which resulted in spatial resolution enhancement and improved 

constraints for the 2004 Sumatra-Andaman earthquake [Wang et al., 2012c]. The direct 

gravity gradient change measured by Gravity field and steady-state Ocean Circulation 

Explorer (GOCE) gravity gradiometry were also shown to be able to detect the coseismic 

deformation [Fuchs et al., 2013]. Other studies that improve the GRACE data processing 

include spatial enhancement of the gravity change using Slepian basis functions [Simons 

et al., 2006] for the 2010 Maule, Chile earthquake [e.g., Wang et al., 2012a], and the 

direct processing of the inter-satellite K-band range (KBR) data [Han et al., 2011]. Wang 

et al. [2012a, 2012b] for the first time utilized Slepian functions to analyze GRACE 

observed coseismic signals. Similar techniques were applied to the GRACE observed 

2011 Tohoku earthquake seismic signals and source parameter inversion by Cambiotti 

and Sabadini [2012]. Wang et al. [2012c] first demonstrated that the correlated errors in 

the GRACE temporal gravity field solution can be substantially suppressed using the Txx 

and Txz (x, z refers to north and up directions, respectively) components of gravity 

gradient change.  Li and Shen [2011] also conducted a study on the 2004 Sumatra-

Andaman earthquake and addressed the suppression to the correlated errors using the Txz 

component only. 

The inversion for several source parameters, such as the seismic moment, dip angle and 

rake angle, based on normal mode formulation [Dahlen and Tromp, 1998] assuming 
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point-source dislocation are demonstrated for the 2011 Tohoku earthquake [Han et al., 

2011]. Wang et al. [2012a, 2012b] adopted the simulated annealing algorithm to invert 

for fault length, width and uniform slip of the 2010 Chilean Maule and the 2011 Tohoku 

earthquakes, based on a finite fault model. Cambiotti & Sabadini [2013] presented the 

estimation of all parameters (centroid location and moment tensor) for a point source 

using GRACE data. Han et al. [2013] further solved for the seismic moment tensors of 

multiple centroids but with the location fixed based on the normal mode formulation for a 

number of large earthquakes over the last decade using GRACE data.  

1.3 Outline  

In this dissertation, a new approach for GRACE data processing using only the north 

component of the observed gravity change and the corresponding gravity gradient change 

is described and applied to five recent large undersea earthquakes. As a result, no 

decorrelation or spatial filtering of the GRACE data is needed, leading to the improved 

spatial resolution. The resulting gravity and gravity gradient change data are then used in 

the inversion for the source parameters based on two different source models, i.e., the 

seismic moment, fault width, rake angle, and the centroid location for a finite fault model, 

and the seismic moment, dip, strike, rake angle, and the centroid location and depth for a 

point-source model.  

Chapter 2 describes the forward modeling of the gravity and gravity gradient change 

from the slip distribution model. Then I conduct the sensitivity analysis of gravity and 

gravity gradient change to different finite fault parameters. Another forward modeling 

based on point-source moment tensor is also presented. This simple point-source model is 

considered mainly because of the linear relationship between the coseismic gravity and 
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gravity gradient change and the double-couple moment tensor elements, as well as the 

lower sensitivity of GRACE data to finite fault length. Based on the linear algorithm, I 

perform the least-squares estimation of double-couple moment tensor from GRACE-

derived gravity and gravity gradient change, from GPS surface displacement, and from 

the combination of GRACE data and GPS data. Then I evaluate the accuracy and 

precision of inverted source parameters based on the linear algorithm from simulated 

GRACE data and GPS data. The comparison of the inversion from simulated GPS data 

and GRACE data and their combination is analyzed to demonstrate the distinctive 

constraint from different data sets, and to show the contribution of GRACE data on 

offshore seismic deformation. Chapter 3 presents the improved GRACE data processing 

methods developed in this study, which includes the Heaviside step function, the 

localized spectral analysis, and the approach of using the north component of gravity and 

gravity gradient change. In Chapter 4, I present the inversion of the finite fault model for 

the 2011 Tohoku earthquake using the simulated annealing algorithm. Finally, the 

inversion of point source parameters for five recent large undersea earthquakes are 

carried out using the least-squares adjustment method combined with the simulated 

annealing algorithm. Chapter 5 presents the discussion and conclusions of this study. 
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Chapter 2. Forward Modeling and Source Parameters Inversion 

Method 

2.1 Forward modeling based on finite fault model 

2.1.1 Gravity and gravity gradient change predicted from slip distribution model 

Here we outline our approach for the model prediction of gravity and gravity gradient 

change based on dislocation theory in a layered half-space [Wang et al., 2006]. First, the 

coseismic gravity and surface displacement changes responding to the solid Earth 

deformation are evaluated at the ocean floor using Wang’s PSGRN/PSCMP software 

[Wang et al., 2006, Courtesy, R. Wang]. Second, we evaluate the effect of the ocean 

response [de Linage et al., 2009; Cambiotti et al., 2011] and the effect of topography [Li 

& Chen, 2013] on the surface density change, therefore its effect on the gravity change. 

For example, the surface density may decrease corresponding to the flowing out of the 

ocean water due to an uplift crustal motion, and the effect of topography is evaluated by 

considering the equivalent vertical displacement due to the horizontal motion over a 

sloped topography. Next, the gravity change due to solid earth deformation and surface 

density change at ocean floor is transformed to geopotential spherical harmonic 

coefficients up to degree 899. Then, each component of gravity and gravity gradient 

change is computed at a regular grid on Earth’s mean semi-major axis (6378.1363 km) 

from the geopotential coefficients up to the maximum degree (say 60) commensurable 

with the respective GRACE data products. The reason why to expand the gravity change 
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on a dense grid up to a high spherical harmonic degree (899) and then truncate the 

expansion at a low degree (60) is that in this way the low degree part of the coseismic 

signal can be reliably retrieved, and the aliasing error caused by sparse sampling may be 

reduced. Given the spherical harmonic coefficients of the disturbing gravitational 

potential, three components of gravity disturbance, gN, gE, gD, which are the first 

derivatives of the disturbing gravitational potential, T, in the local north-east-down frame, 

can be expressed using equations (B.11)~(B.13). The gravity gradient disturbance, Txx, 

Txy, Txz, Tyy, Tyz, Tzz (x, y, z axis points to north, west, up direction, respectively), as the 

second derivatives of T, can be expressed using equations (B.14)~(B.19). 

Taking the 2011 Tohoku earthquake as an example, the coseismic slip distribution model 

created by [Wei et al., 2012] using teleseismic body waves and near source GPS 

observations, and the postseismic slip distribution model produced by Ozawa et al. 

[2011] using GPS measured displacements during 12–25 March 2011, are adopted to 

predict the gravity field change resulting from the 2011 Tohoku earthquake. The 

coseismic fault plane boundary is shown as the black rectangle in Figure 2.1, with the 

strike angle of 201° and the dip angle of 9°; the maximum slip is 48 m, at the depth of 

10.58 km with the rake angle of 90°, indicating the oceanic plate subducting beneath the 

continental crust (http://www.tectonics.caltech.edu/slip_history/2011_taiheiyo-oki), as 

shown in Figure 2.2. The postseismic slip model suggests that the afterslip, overlapping 

the coseismic area and peripheral to it, extends along the dipping direction. Resembling 

the coseismic slip, the afterslip, with the seismic moment of about 10% of the main 

shock, has the mean rake angle of 90°, average strike angle at 193°, average dip angle of 

about 18°, and the maximum slip is up to 1 meter at the depth of 38 km. 



9 

The predicted gravity and gravity gradient change, corresponding to the coseismic and 

postseismic slip distribution model [Wei et al., 2012; Ozawa et al., 2011], are calculated 

using our developed code for each step of the model prediction procedure built on the 

PSGRN/PSCMP software [Wang et al., 2006], based on the 1D velocity model from 

Shengji Wei [personal communication, 2013] that is extracted from a 3D model 

[Takahashi et al., 2004], with the top replaced by an ocean layer. The ocean depth (3.94 

km) is the average value from the bathymetry data in CRUST2.0 model over the fault 

region. Since the provided fault segments’ depth is relative to the average elevation of 

GPS stations being used [Ji et al., 2002], these fault patches’ depths are then adjusted to 

be relative to the ocean floor (equation A.1). The down component of gravity (Figure 2.1 

left) and vertical displacement change (Figure 2.1 middle) corresponding to the solid 

Earth deformation are evaluated at the ocean floor using the PSGRN/PSCMP software, 

with significant uplift up to 12 m near the trench and with slightly subsidence for about 1 

m near the coast. Consistent with the sea floor vertical movement, the gravity increases to 

about 1000 µGal near the trench and decreases to about 300 µGal near the coast. 

As the fault dislocation is under sea, the passive response of the ocean water is 

considered. Near trench where crust goes up, water is evacuated; while near coastline 

where crust subsides, water flows in. As compared to coseismic crustal vertical 

displacement, the geoid change or the average sea level change is negligible, only up to 

several centimeters. So the thickness of the water layer has changed –H, where H is the 

ocean floor vertical displacement (positive upwards) as shown in Figure 2.1 (middle). We 

assume that the water layer is condensed on a zero thick shell at the ocean floor, both 
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before and after the earthquake. Hence, the effect of oceanic response on gravity is like 

adding a shell of surface density at the ocean floor: 

σ = −H ×ρw ×OF                                                                                                           (2.1) 

where ρw is the ocean water density and OF is the ocean function (1 over ocean, 0 over 

land). Broerse et al. [2014] discussed the large influence of the ocean function on 

modeled coseismic gravity changes compared to the uniform ocean assumption, which 

assumes the Earth is globally covered by ocean. They showed that it is essential to 

distinguish the marine and terrestrial area, especially for the 2010 Maule, Chile 

earthquake, which has crustal subsidence over land and uplift over ocean area. 

The topography/bathymetry effects on coseismic surface displacement are usually 

neglected; here we evaluate its effect on gravity. The effect of topography on gravity is 

estimated by considering the ‘equivalent’ vertical displacement [Li and Chen, 2013] due 

to the horizontal displacement over the sloped oceanic trench. For the ocean trench at the 

fault region, the depth of water goes deeper to the southeast direction according to the 

bathymetry data from ETOPO1 [Amante and Eakins, 2009]. Seismic model predicted 

horizontal displacement at ocean floor is at the southeast direction, which would cause an 

equivalent uplift (Figure 2.1 right), thus mass increase at the ocean trench. Surface 

density change would be σ = h×ρs − h×ρw ×OF , where ρs is the density of sediments, 

h is the equivalent vertical displacement, which can be estimated from horizontal 

displacements and topography (ETOPO1).  
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Figure 2.1. Gravity change, vertical displacement and ‘equivalent’ vertical displacement 
on ocean floor.  
The coseismic and postseismic slip distribution model [Wei et al., 2012; Ozawa et al., 
2011] is adopted. Left: Gravity change (!GalµGal) (without free air correction) 
corresponding to solid Earth change; Middle: Vertical displacement, H (meter) with 
upward as positive direction; Right: ‘Equivalent’ vertical displacement caused by 
topography with horizontal displacement. Black Rectangle is the boundary of the fault 
plane. 
 

As shown in Figure 2.2, the equivalent vertical displacement is, h = H (θ ',λ ')−H (θ,λ) , 

where H is the topography as a function of longitude λ , and colatitude θ . (θ ',λ ')  is the 

coordinate of the point that shifts to the location (θ,λ)  due to the earthquake. (θ ',λ ')  is 

calculated based on the equations θ −θ ' = uN / a , λ −λ ' = uE / (asinθ ) , where a is the 

Earth’s mean radius, and (uN , uE ) is the horizontal displacement along North, East 

direction for location (θ ',λ ') . Under the assumption that horizontal displacement is the 

same over a small area (e.g. area with the radius of 60 meter, the maximum amount of 

slip during an earthquake), (uN , uE ) is practically calculated at location (θ,λ)  from the 

slip distribution model. 
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Figure 2.2. Schematic view for equivalent vertical displacement due to horizontal motion.  
The solid line is the ocean bottom before earthquake, and the dash line is the trench after 
earthquake due to the horizontal displacement. Orange arrow shows the equivalent 
vertical displacement due to the horizontal displacement (blue arrow) over the sloped 
trench. Red arrows show the direction of slip on the fault plane for the 2011 Tohoku 
earthquake. 
 

Surface density change can be expanded as: 
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Δ Cnm and Δ Snm  are the spherical harmonic expansion coefficients for the surface density 

change, with the unit as kg/m2. a1  is the geocentric radial distance of ocean floor over the 

fault area (equation A.2), which is computed by subtracting the ocean thickness from the 
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earthquake).  
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where GM is the gravitational constant multiplied by the mass of the Earth, m3/s2, R is the 

Earth’s mean semi-major axis (6378136.3 m),ΔCnm and ΔSnm  are the normalized 

spherical harmonic coefficient differences,Pnm  is the fully normalized associated 

Legendre function, r is the radius (m), θ  is the colatitude (0), and 

€ 

λ  is the longitude (0). 

Refers to [Wahr et al., 1998], we have: 
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where a  is the Earth’s mean radius, 6371 km, aveρ  is the average Earth density, kg/m3, 

and nk  is the load Love number. 

From the changes of geopotential coefficients, the corresponding gravity change due to 

the passive response of the ocean layer is evaluated as shown in Figure 2.3 (middle), and 

the topography effect is shown in Figure 2.3 (right). We can see that the gravity change 

due to the ocean water redistribution cancels out part of the gravity change due to the 

solid Earth deformation (Figure 2.3 left), e.g., the negative gravity change due to water 

flowing out near trench is about 40% of the solid Earth gravity increase. This ratio is 

slightly smaller than the ratio of ocean density over density of sediment (51%), since the 

solid Earth gravity change is also contributed by the internal density dilation in addition 

to the vertical displacement at sea floor. The topography effect is up to 16% of the solid 

earth gravity change. From Figure 2.1 (right), we can see that the equivalent uplift 

corresponding to the horizontal displacement over the trench is positive, which indicates 

an increase of mass. To fulfill the mass balance principle, the crustal dilation over the 

coastal/left side of the oceanic trench needs to be further considered, which will reduce 

the magnitude of the equivalent mass increase [Li et al., 2015, to be submitted, personal 
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communication]. Thus we choose to neglect this topography correction in this study.  

 

Figure 2.3. Gravity (down component) change at ocean floor from three sources.  
Left:  gD due to solid Earth deformation; middle: gD from passive ocean response; right: 
gD due to the approximate topographic correction. The black rectangle is the coseismic 
fault plane boundary, and the black star is the estimated Global Centroid Moment Tensor 
Project (GCMT) epicenter (143.05°E, 37.52°N). 
 

Next, each component of gravity and gravity gradient change is computed at a regular 

grid on Earth’s mean semi-major axis (6378.1363 km) instead of on the ocean floor. The 

difference of the gravity change evaluated on the ocean floor and on Earth’s semi-major 

axis can be significant, but it has not been discussed in many previous publications [Han 

et al., 2006; Matsuo & Heki, 2011; Cambiotti and Sabadini, 2012; Wang et al., 2012b]. 

For this 2011 Tohoku earthquake, this upward continuation of gravity from the ocean 

floor (with radius as 6366.0567 km, gD up to 633 µGal) to Earth’s semi-major axis 

(6378.1363 km, gD up to 380 µGal, Figure 2.4 right) causes the magnitude to drop for 

about 40% for the gravity up to degree 899, and causes the magnitude to drop for about 

9% for the gravity up to degree 60. Accurate estimation of the modeled gravity change 
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directly affects the seismic moment inverted from GRACE-observed gravity change. If 

ignore this upward continuation, the inverted seismic moment will be underestimated.  

 

 

Figure 2.4. Gravity change at Earth surface.  
North (left), east (middle), down (right) components of gravity change for both solid 
Earth deformation and passive oceanic response. Gravity change is computed from 
spherical harmonic coefficients up to degree 899, at the Earth’s surface with R as 
6378136.3 m. These high-degree geopotential spherical harmonic coefficients are 
transformed from the gravity change due to solid Earth deformation and the surface 
density change due to ocean response at ocean floor on dense grids (0.2° along longitude 
by 0.1° along latitude).   
 

Then, we compute each component of gravity and gravity gradient change from the 

spherical harmonic coefficients up to the maximum degree (say degree 60) that’s 

consistent with GRACE data products. The high-resolution gravity change (Figure 2.4), 

when truncated to degree 60 (Figures 4.2 d~f), decreases for about one order of 

magnitude, with its spatial pattern dilating outward. The troughs and peaks for gN, gE, gD 

all shift outwards along the east west direction. For instance, for gD (Figure 2.4 right), the 

model-predicted maximum is 379.6 µGal, at 143.6°E, 38.25°N; the minimum is –201 

µGal, at 142.2°E, 38.65°N. After truncation at degree 60 (Figure 4.2f), there is a 

maximum at 144.8°E, 37.2°N, 19.53 µGal, and a minimum at 139.6°E, 38.8°N, –30.8 

µGal. The gD change amplitude decreases by one order of magnitude, and the peak and 
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trough locations dilate outward in the west-east direction, with the trough moving to the 

west for 2.6°and peak shifting to the east for 1.2°. In addition, the yellow-cyan (positive-

negative) ripple effect occurs distinctly (Figure 4.2f), with larger magnitude for the signal 

closer to the main negative-positive signal.  

 

2.1.2 Sensitivity analysis of gravity and gravity gradient change to different finite 

fault models 

To demonstrate the sensitivity of GRACE-observed north components of gravity and 

gravity gradient change to various fault parameters for an earthquake, e.g. fault strike, dip 

angle, rake angle, depth, length, width, dislocation magnitude, we carry out several 

synthetic scenarios estimating gN, Txx, Txy, Txz, based on the modeling procedure 

described above. Here we choose to study the 2011 Tohoku-Oki earthquake for the 

sensitivity study.  For the Tohoku-Oki earthquake’s fault parameters in the study, we 

choose strike angle to be 200°, fault length to be 600 km, fault width to be 300 km, dip 

angle to be 9°, depth to be 5 km, slip magnitude to be 2 m, rake angle to be 90°. To reveal 

the north components of gravity and gravity gradient change’s sensitivity to a specific 

fault parameter, all other fault parameters are fixed to the chosen value, with only the 

looked-for parameter as a variable.  

To test the sensitivity of GRACE observation (north components of gravity and gravity 

gradient change) to the fault length, the value of 300 km, 600 km, or 900 km is taken for 

the fault length, with all other parameters fixed. As shown in Figure 2.5, the spatial 

magnitude increases and signal pattern of gN is elongated along the strike direction when 

the fault length increases; the spatial pattern of Txx, Txy, Txz has the same characteristic 
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(figures not shown). Thus, the broadness of the signal along the strike direction will 

provide constraint on the fault length. However, the solution uncertainty (defined as in 

Figure 2.14 or Figure 4.5) of length during the inversion in section 4.1.2 is relatively 

large, around 150 km for GFZ RL05 data and 110 km for CSR RL05 data, respectively, 

which implies that the sensitivity of graivty to fault length is relatively low. Hence, 

during the inversion using CSR RL05 data in Section 4.1.2, for the first iteration, we 

fixed the length parameter at 240 km based on GPS/seismic slip models, and solved for 

location, width, slip, rake parameters simontaneously. After obtaining location and rake 

angle, the fault length, width and slip are simultaneously estimated during the second 

iteration. 

 

 

Figure 2.5. Sensitivity to length.  
Model derived gN change for the fault length: 300 km (a), 600 km (b), 900 km (c). Fault 
parameters are: strike angle 200°, fault width 300 km, dip angle 9°, depth 5 km, slip 
magnitude 2 m, rake angle 90°. The black rectangle is the fault plane boundary, and the 
black star is the Tohoku-Oki earthquake epicenter. White line is a chosen profile (through 
the center of the top edge of the fault plane, 70° to the strike direction) across main peaks. 
 

 

Figure 2.6 shows the sensitivity of gravity gradient change to the strike angle and rake 

angle, which determines the direction of slip vector. As the strike angle increase 

b a c 
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clockwise from 210° to 270°, the spatial pattern of the GRACE-observed Txx rotates 

clockwise for about 30°, the similar characteristic for gN, Txy, Txz. When the dislocation 

rake angle increases in an anticlockwise direction, from 30°, to 60°, 90° (Figure 2.6 (d, e, 

f)), the spatial pattern of Txz rotates anticlockwise for about 35°. More elaborate 

simulation for strike angle (animation link: goo.gl/QPJggv) and rake angle 

(goo.gl/WSIafi) shows that the spatial pattern varies from ‘stripes’ to ‘flowers’ when 

strike or rake angle varies, which in addition help to constrain the slip direction. Since the 

orientation of the spatial pattern is both affected by rake angle and strike angle, it might 

be difficult to isolate these two parameters during an inversion. Because strike angle is 

well constrained by other data sets, e.g. the after shock area, plate boundary direction, we 

may choose to fix the strike angle and only solve for rake angle. 

For each width value of 100 km, 200 km, 300 km, north components of gravity and 

gravity gradient changes (Figure 2.7) are computed along the chosen profile (white line in 

Figure 2.5) that crosses the signal peaks. First of all, it is clear that gN, Txx, Txy, Txz 

signal magnitude increases since the seismic moment increases, with the sensitivity of 

around 160% (equation 2.5). The sensitivity of  with respect to the independent 

variable is defined as, 

      (2.5) 

where , are two independent variables, , , are the three given values, e.g. they 

are 100 km, 200 km, 300 km respectively, for fault width. This formula gives how much 

the peak value of f(x,y) changes with respect to the change of independent variable x. For 

example, the first part in the parenthesis is basically the change of the peak value of f(x,y) 

divided by the change of x from x0 to x1, but this ratio is further scaled by the mean of the 
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peak value of f(x0,y) and f(x1,y) divided by the mean of x0 and x1. The second part in the 

parenthesis is the same as the first part but for the case of independent variable x 

changing from x1 to x2. In addition to the signal magnitude, the local peaks of gN, Txx, 

Txy, Txz move northwest to about 40 km when the fault width increases from 100 km to 

300 km. Thus the magnitude of the gravity and gravity gradient signal and the location of 

the peak value provide constraint on the fault width.  

 

 

Figure 2.6. Sensitivity to strike and rake.  
Model derived Txx change for the fault strike angle of 210° (a), 240° (b), 270° (c), and 
model derived Txz change for the slip rake angle of 30° (d), 60° (e), 90° (f). Fixed fault 
parameters are: fault length 600 km, fault width 300 km, dip angle 9°, depth 5 km, slip 
magnitude 2 m. Rake angle is 90° for the strike angle case, and strike angle is 200° for 
the rake angle case. Other labeling is the same as in Figure 2.5. 
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Figure 2.7. Sensitivity to width.  
Coseismic gN change (left) and gravity gradient change (right) along the profile shown in 
Figure 2.5 for width of 100 km, 200 km, or 300 km, respectively. Center of the fault 
plane is fixed. Fault strike angle, length, dip angle, depth, slip, rake angle, are fixed at 
200°, 600 km, 9°, 5 km, 2 m, 90°, respectively. Circles are the local maxima. 
 

When dip angle takes on the value of 3°, 9°, 15°, the magnitude increases since more 

mass around two sides of the fault plane is deformed, with the sensitivity of 54%, 51%, 

76%, 76% for gN, Txx, Txy, Txz, respectively. As shown in Figure 2.8, the signal shifts to 

the northwest for about 55 km when the dip angle increases. Since the signal magnitude 

increase and signal shift to the west for either an increase dip angle or increase width, it 

might be difficult to separate those two parameters. Nevertheless, north components of 

gravity and gravity gradient signals are more sensitive to the width change, it is suggested 

to fix the dip angle for a finite fault model inversion. 

 

120 130 140 150 160−4

−2

0

2

4

6

Longitude

µG
al

 

 

Width=100km
Width=200km
Width=300km

110 120 130 140 150 160−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Longitude

m
E

 

 

Txx 100km
Txx 200km
Txx 300km
Txy 100km
Txy 200km
Txy 300km
Txz 100km
Txz 200km
Txz 300km



21 

 

Figure 2.8. Sensitivity to dip.  
Coseismic gN change (left) and gravity gradient change (right) along the profile in Figure 
2.5 for dip angle of 3°, 9°, and 15°, respectively. Fault strike angle, length, width, depth, 
slip, rake angle, are fixed at 200°, 600 km, 300 km, 5 km, 2 m, 90°, respectively. Center 
of the fault plane is fixed. 
 

To test the GRACE-observed coseismic north components of gravity and gravity gradient 

change’s sensitivity to the depth parameter, with all other parameters fixed, the depth of 

the top edge of the fault takes the value of 5 km, 30 km, 50 km. When the fault depth 

increases, on one hand, the gravity change may decrease since the deformed medium gets 

further away from the ground surface; on the other hand, gravity change may increase 

since an additional volume of internal medium being elastically deformed. Figure 2.9 

shows the overall magnitude of gravity and gravity gradient change increases, with the 

expected low sensitivity of only about 35%. It is also shown in Figure 2.9 that gN, Txx, 

Txy, Txz, shift around 25 km southeast. Considering the signal magnitude is also 

determined by the dislocation magnitude, there would be a tradeoff among fault depth, 

dip angle and fault width in determining the location of the peaks. Since the gravity and 

gravity gradient are least sensitive to the fault depth, it’s also suggested to fix the depth 

angle for a finite fault model inversion. 
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Figure 2.9. Sensitivity to depth.  
Coseismic gN change (left) and gravity gradient change (right) along the profile in Figure 
2.5 for depth of 5 km, 30 km, 50 km. Fault strike angle, length, width, dip angle, slip, 
rake angle, are fixed at 200°, 600 km, 300 km, 9°, 2 m, 90°, respectively.  
 

The north components of gravity and gravity gradient change magnitude increase with 

the sensitivity of 100% when the uniform fault slip magnitude increase from 2 m, to 5 m, 

8 m.  This result is consistent with that the gravity and gravity gradient is linear to the 

uniform slip magnitude for shear dislocation [Sun and Okubo, 1993; Okada 1992], with 

peaks location staying exactly the same (results not shown here). The GRACE-observed 

gravity and gravity gradient signal magnitude will provide direct constraint on the fault 

plane dislocation magnitude, in the form of a linear relationship. 

The spatial pattern orientation of north components of gravity and gravity gradient are 

sensitive to strike angle and rake angle. If given the strike angle by other observations, 

the rake angle can be constrained by GRACE observations. Signal magnitude will 

provide linear constraint on the fault dislocation magnitude. Since the location of the 

signal peaks are determined by the fault width, dip angle, and fault depth, it’s hard to 

separate these three parameters. As the GRACE-observed signal is least sensitive to fault 
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depth and most sensitive to fault width, it is suggested to resolve the fault width during 

the finite fault model inversion while fixing the fault dip angle and depth. In conclusion, 

the GRACE-observed north components of gravity and gravity gradient for the 2011 

Tohoku-Oki earthquake, can provide excellent constraints on the fault rake angle, fault 

width, dislocation magnitude, however, they are relatively less sensitive to fault length. 

2.2 Forward modeling based on double-couple point source 

Instead of utilizing a finite fault model as in section 2.1, this section uses a point source 

to denote the source model for the forward modeling of GRACE-derived gravity and 

gravity gradient change resulting from a seismic deformation.  The main reason to 

consider a point source is that a linear algorithm can then be established between the 

coseismic gravity and gravity gradient change and the double-couple moment tensor 

elements. Another rationale to consider the point source model is the less sensitivity of 

GRACE data to the fault extension [Cambiotti & Sabadini, 2013], especially to the fault 

length, as shown in the sensitivity analysis. 

2.2.1 Double-couple point source  

A shear fault model can be expressed using the strike, , dip, , rake angle, , and the 

seismic moment, M0. The strike angle (Figure 2.10a) is the azimuth (with respect to 

North) of the projection of fault plane on the Earth’s surface, which is measured 

clockwise from north with the fault dipping down to the right of the strike direction [Aki 

and Richards, 1980, pp. 106], ranging from 0 to 2π. The dip angle is the angle between 

fault plane and horizon, characterizing the steepness of the fault, ranging from 0 to π/2. 

And the rake angle is the angle between the strike direction and slip direction, ranging 

from – π to π. The seismic moment was originally defined for the point force models, and 

φs δ λ
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it is force F times distance d for a point force couple (Figure 2.10c), where a point force 

is a force applied to a point in an elastic medium. This is where the term ‘moment’ comes 

from. For a shear fault, the seismic moment equals to µAS, where µ is the rigidity of the 

elastic medium in Pa, A is the area of the fault, and S is the amount of fault slip.  

The earthquake source with only shear motion on a fault plane can be modeled by a 

double-couple point source. For example, a vertical strike slip fault (Figure 2.10b) can be 

represented using the double-couple point source model as in Figure 2.10c. According to 

the representation theorem [Aki and Richards, 1980, pp. 38-50], for seismic wavelengths 

much larger than the size of the fault, the finite fault model (e.g. Figure 2.10b) with slip S 

over the fault of area A in an elastic medium of rigidity µ gives the same seismic 

radiation as the ‘double-couple’ point forces with moment of µAS. As shown in Figure 

2.10c, a double-couple point forces model consists of two pairs or a “double-couple” of 

point forces. A double couple of point forces have two opposing torques (moment of 

force) with equal moment, leading to zero translation or rotation effect but resulting in 

the deformation of the medium. Since the source is approximated as a point in space, the 

concept of a ‘double-couple point source’ is introduced.  

The seismic moment tensor is used to characterize the information about the source [Aki 

and Richards, 1980, pp. 50-57]. Generally, the direction of the slip and orientation of the 

fault plane are not known a priori. So, for a generally oriented dislocation or slip on an 

arbitrary fault plane, nine possible couples of forces are required to obtain equivalent 

forces for the dislocation. Three directions of forces and three possible lever arm 

directions generate these nine couples, leading to the concept of moment tensor. The 

moment tensor for a double-couple point source can be denoted as: 
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M =

Mxx Mxy Mxz

Mxy Myy Myz

Mxz Myz Mzz
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&
&
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where x, y, z are North, East, Down direction at the source, respectively. 

 

 

Figure 2.10. Finite fault model and a double-couple point source model.  
(a) Definition of strike, dip and rake angles of a shear fault model. This figure is copied 
from http://www.gps.alaska.edu/jeff/Classes/GEOS655/strike_dip_rake.gif. !u  is the slip 
vector on the fault plane. (b) Bird’s-eye view of a shear fault model for a vertical strike-
slip earthquake with dip angle as 90°, and strike angle as 90°. Red arrows show the 
direction of slip on the fault plane. (c) Double couple point source model, equivalent to 
the fault model in (b), where d is the distance between one pair or ‘couple’ of point 
forces, and F is the force applied to a point. 
 

b c 

a 

F 
d 
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The Cartesian components of the moment tensor M for a shear fault can be expressed by 

the strike, , dip, , rake angle, , and the seismic moment, M0 (page 117 in [Aki and 

Richards, 1980]) as: 

 

 

                                                (2.6) 

 

 

 

For this double couple moment tensor, there are three invariants. 

The first Invariant is: I1 = Trace of the moment tensor = 0 

The second Invariant is: 

I2 =1/2[I1
2 − ]=− M0

2 

The third Invariant is: 

I3 =determinant (M)= MxxMyyMzz + 2MxyMxzMyz −MxxMyz
2 −MyyMxz

2 −MzzMxy
2  = 0 

Considering the symmetry of the moment tensor, and from the second invariant, we get 

the formula for the computation of seismic moment, M0, as:

M0
2 =
1
2
(Mxx

2 +Myy
2 +Mzz

2 )+Mxy
2 +Mxz

2 +Myz
2  

φs δ λ

Mxx = −M0 sinδ cosλ sin2φs + sin2δ sinλ sin
2φs( )

Mxy =M0 sinδ cosλ cos2φs +1/ 2sin2δ sinλ sin2φs( ) =Myx

Mxz = −M0 cosδ cosλ cosφs + cos2δ sinλ sinφs( ) =Mzx

Myy =M0 sinδ cosλ sin2φs − sin2δ sinλ cos
2φs( )

Myz = −M0 cosδ cosλ sinφs − cos2δ sinλ cosφs( ) =Mzy

Mzz =M0 sin2δ sinλ

Mxx
2 +Mxy

2 +Mxz
2 +Myx

2 +Myy
2 +Myz

2 +Mzx
2 +Mzy

2 +Mzz
2( )
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2.2.2 Linear algorithm between gravity change and point-source moment tensor 

In this section, we show the linear relationship between coseismic gravity change and 

moment tensor elements. The design matrix relating moment tensor to gravity change is 

numerically retrieved from the output of Wang’s PSGRN/PSCMP software [Wang et al., 

2006], based on dislocation theory in a layered half-space. Then we numerically validate 

the linear algorithm. This linear relationship is eventually used to establish the 

observation model for the inversion of source parameters from GRACE data and surface 

displacement data. 

The theories of excitation of a normal mode by a seismic source [Dahlen and Tromp, 

1998] have been thoroughly developed since the work by Alterman et al. [1959]. Based 

on the excitation theory, the surface displacement excited by a double-couple point 

source can be expressed as a linear function of moment tensor components [Kanamori 

and Given, 1981; equations 10.51 to 10.61 in Dahlen and Tromp, 1998]. Nevertheless, 

the coseismic surface displacement based on this normal-mode theory involves the 

infinite summation over the overtone number, which designates the order of 

eigenfrequencies. Nevertheless, ground based geodetic data such as GPS typically 

measure the ‘static’ coseismic displacement, rather than recording the temporal 

oscillations as seismic waves data do. Hence, the static deformation of the Earth is more 

suitably calculated from a dislocation theory, e.g., the analytic formula established by 

Okada [1985] for a homogeneous half-space. Starting from a layered spherical Earth, 

Pollitz [1996] further developed a method for calculating the ‘static’ coseismic 

displacement from the equation of equilibrium of the deformed Earth, avoiding the 

summation over the overtone number. Similar to the linear expression between 
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displacement and moment tensor, the ‘static’ coseismic gravitational potential 

perturbation can also be linearly calculated with respect to the point source seismic 

moment tensor [Simons et al., 2009; Han et al., 2013]. 

The linear relationship between gravity change and moment tensor can be denoted as: 

y
n×1
= A1

n×1
Mxx + A2

n×1
Mxy + A3

n×1
Mxz + A4

n×1
Myy + A5

n×1
Myz + A6

n×1
Mzz

 

For a double-couple point source, we have the trace of the moment tensor equals zero. So 

considering
 
Mxx +Myy +Mzz = 0 , we get 

y
n×1
= A1

n×1
− A4

n×1

#
$
%

&
'
(Mxx + A2

n×1
Mxy + A3

n×1
Mxz + A5

n×1
Myz + A6

n×1
− A4

n×1

#
$
%

&
'
(Mzz = Bn×5 ξ5×1    

                         (2.7) 

where, T
nDiDD

n
gggy ]......[ ,,1,

1
=

×
, is the n×1 vector, with each element, gD,i , 

representing down component of gravity change at observation point, i. The design 

matrix relating moment tensor to gravity change is represented by A or B, B=[B1, B2, B3, 

B4, B5], where B1 = A1
n×1
− A4

n×1
, B2 = A2

n×1
, B3 = A3

n×1
, B4 = A5

n×1
, B5 = A6

n×1
− A4

n×1
. ξ
5×1

 is composed of 

the moment tensor elements, ξ
5×1
= Mxx Mxy Mxz Myz Mzz
"
#$

%
&'
T

, where x, y, z are 

North, East, Down respectively.  

To retrieve the design matrix from software PSGRN/PSCMP, five elementary moment 

tensors are used. First moment tensor is realized by a point source (M(2) as in pp 117 Aki 

and Richards, 1980) with dip angle as 90°, rake angle as 0°, strike angle as 135°, and the 

seismic moment as M0, which yields a moment tensor with Mxx=M0, Myy =−M0, and other 

components as zero. So we can get ξ
5×1
= [ M0 0 0 0 0 ]T ; hence the model 

produced gravity change, y1, with the input of this point source can give the first column 
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of design matrix as, B1= A1
n×1
− A4

n×1
= y1/M0. The second column of the design matrix, B2, can 

be retrieved using the gravity change, y2, from another point source (M(2a)) with dip angle 

as 90°, rake angle as 0°, strike angle as 0°, which gives Mxy=M0, yielding 

ξ
5×1
= [ 0 M0 0 0 0 ]T , leading

 
to

 
B2 = y2/M0. The third column of the design 

matrix, B3, can be retrieved using the gravity change, y3, from the point source (M(1)) 

with dip angle as 0°, rake angle as 0°, strike angle as 180°, which gives Mxz=M0, yielding 

ξ
5×1
= [ 0 0 M0 0 0 ]T , leading

 
to

 
B3 = y3/M0. The forth column of the design 

matrix, B4, can be retrieved using the gravity change, y4, from the point source (M(3)) 

with dip angle as 90°, rake angle as 90°, strike angle as 180°, which gives Myz=M0, 

yielding ξ
5×1
= [ 0 0 0 M0 0 ]T , leading

 
to

 
B4 = y4/M0. The last column of the 

design matrix, B5, can be retrieved using the gravity change, y5, from the point source 

(M(4)) with dip angle as 45°, rake angle as 90°, strike angle as 0°, yielding Mzz=M0, Myy 

=−M0, and other components as zero, i.e., ξ
5×1
= [ 0 0 0 0 M0 ]

T , leading
 
to

 
B5 = 

A6
n×1
− A4

n×1
= y5/M0. After retrieving the design matrix, the gravity change responding to any 

moment tensor can be simply computed using the linear relationship
1551 ×××

= ξ
nn
By . 
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M(3) =M0
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0 0 1
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To numerically verify the linear algorithm, we compare the coseismic gravity change 

from the direct computation with that from the linear relationship. As shown in Figure 

2.11 upper right, the down component of gravity change on Earth surface is calculated 

using Wang’s PSGRN/PSCMP software. The given earth model is the Preliminary 

Reference Earth Model (PREM) model [Dziewonski and Anderson, 1981]. The input 

source parameter is the GCMT (Global Centroid Moment Tensor) centroid solution for 

the 2011 Tohoku earthquake, with strike angle as 203°, dip as 10°, rake as 88°, and M0 as 

5.312×1029 dyne×cm. From these four variables, we compute each moment tensor 

element using equation (2.6), leading to the parameter vector ξ . Then we calculate the 

gravity change using the linear relationship . The difference of the gravity 

change between the two methods is shown in Figure 2.11 lower right, less than 0.1 µGal, 

which is only 2×10-6 of the peak coseismic gravity change, ~50,000 µGal (Figure 2.11 

upper right). The similar linear relationship between surface displacement and moment 

tensor is also carried out and numerically validated. The difference for the surface 

displacement to north direction is up to –10 cm (Figure 2.11 lower left), negligible 

compared to the peak coseismic displacement up to –28,000 cm (Figure 2.11 upper left). 

The difference for the upward surface displacement is up to –35 cm (Figure 2.11 lower 

middle), much smaller than the peak coseismic displacement up to 55,000 cm (Figure 

2.11 upper middle). 

 

1551 ×××
= ξ
nn
By
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Figure 2.11. The comparison of directly computed gravity change and displacement with 
that from the linear relationship. 
First row: coseismic surface displacement and gravity change by PSGRN/PSCMP for the 
GCMT centroid solution of 2011 Tohoku earthquake. Left: surface displacement to north 
in cm; Middle: upward surface displacement in cm; Right: down component of gravity 
change, gD, in µGal. Second row: coseismic displacement and gravity change by the 
linear algorithm minus the results in first row.  
 

To be consistent with the GRACE-observed gravity and gravity gradient change, the 

model-predicted all components of gravity and gravity gradient change are further 

processed as discussed in Section 2.1.1 start from the down component of gravity change 

and displacement on Earth’s surface due to the solid Earth deformation. The further 

modeling process includes the computation of ocean response on gravity change, the 

spherical harmonic transformation and truncation, the computation of each component of 

gravity and gravity gradient from the geopotential coefficients. We can see that each step 

is a linear algorithm, which leads to a linear relationship between the GRACE-observed 

gravity and gravity gradient change and the seismic moment tensor. To numerically 
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validate the linear relationship, we first compute the north, east, down component of 

gravity change (Figure 2.12 first row) up to degree 59 directly using the data processing 

method as described in section 2.1.1. As a comparison, we then compute the gravity 

change up to degree 59 from the linear algorithm with the moment tensor elements. The 

difference between the two methods, as shown in Figure 2.12 second row, representing 

the error in the numerically retrieved linear algorithm, is around 0.02 µGal, about 0.07% 

of the directly computed gravity change (Figure 2.12 first row). This difference/error is 

dominated by the error in the linear algorithm for gravity change due to the passive ocean 

response, which is three orders of magnitude larger than the error (about 2×10-5 µGal) in 

the linear algorithm for the gravity change from solid earth deformation. The relative 

difference/error of the linear algorithm for gravity change due to the passive ocean 

response is at the same order of magnitude of the relative difference for the upward 

displacement (Figure 2.11 lower middle), consistent with the fact that the surface density 

change is a linear function of the vertical displacement (equation 2.1). This equivalence 

of the two relative errors implies that the error for the linear algorithm for gravity change 

due to the passive ocean response mainly comes from the error in the linear algorithm for 

the vertical displacement, and that the post processing of the gravity change due to the 

passive ocean response from the vertical deformation does not contribute much numerical 

error to the linear algorithm. Similarly for gravity gradient change, the error of the linear 

algorithm is also about 10-3 of the directly computed gravity gradient change. 
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Figure 2.12. The comparison of directly computed gravity change due to both solid Earth 
deformation and ocean response with that from the linear algorithm.  
First row: north (left), east (middle), down (right) component of gravity up to degree 59 
due to both solid Earth deformation and ocean response, computed from the surface 
displacement and gravity change due to solid Earth deformation only (Figure 2.11 first 
row). Second row: coseismic gravity change by the linear algorithm minus the results in 
first row. 
 

2.3 The least-squares estimation of double-couple point source  

As discussed above, the north component of gravity and gravity gradient change due to 

solid Earth deformation and the passive response of ocean water can be expressed as an 

explicit linear function of seismic moment tensor components. From this linear 

algorithm, the seismic moment tensor can be straightforwardly resolved using least-

squares adjustment. Nevertheless, the coseismic deformation and gravitational 

perturbation is a non-linear function of centroid depth and location, so the simulated 

annealing algorithm [Kirkpatrick et al., 1983; Goffe et al., 1994] is adopted to solve for 

the centroid depth and location. This section describes the method to solve for source 

parameters of a point source from GRACE data and GPS data. 
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2.3.1 Estimation from GRACE data  

Based on the linear relationship shown in section 2.2.2, we have the observation model 

for GRACE-derived north component of gravity and gravity gradient change as: 

yI
4n1×1

= AI
4n1×5

ξ
5×1
+ eI
4n1×1                                         

                                                                   (2.8) 

yI
4n1×1

is the vector of observations, composed of the gN, Txx, Txy, and Txz at grid point 1 to 

n1, yI
T = gN ,1 … gN ,n1 Txx,1 … Txx,n1 Txy,1 … Txy,n1 Txz,1 … Txz,n1

!
"#

$
%& , where 

gN ,1  is gN at point 1; AI
4n1×5

 is the design matrix; ξ
5×1

 is the unknown parameter vector, 

composed of the moment tensor elements, ξ
5×1
= Mxx Mxy Mxz Myz Mzz
"
#$

%
&'
T

 , where 

x, y, z are North, East, Down direction, respectively. eI
4n1×1

is the error vector for the 

observations. The dispersion matrix for this error vector is given as, 

ΣI = D eI{ }
4n1×4n1

=

D gN{ }
n1×n1

0 0 0

0 D Txx{ }
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                                  (2.9) 

where D gN{ }=

σ gN ,1
2 0 0

0 ! 0
0 0 σ gN ,n1

2

!
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#
#

$

%

&
&
&
&

, with the unit as µGal2; σ gN ,1
2 is the square of the 

standard deviation of gN change at point 1, which is evaluated by the error propagation of 

the linear fit model with the Heaviside step function. The similar diagonal dispersion 
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matrix for Txx, Txy, and Txz is denoted as, D Txx{ } , D Txy{ } , and D Txz{ } , respectively, 

with the unit as mE2. As shown, we assume there is no correlation between gN change at 

different observation points, and there is no correlation between gN, Txx, Txy, and Txz 

change. 

From the observation model, we can get the least-squares solution for the point-source 

moment tensor as: 

ξ̂ = AI
TΣI

−1AI( )
−1
AI
TΣI

−1yI , with its dispersion matrix as D ξ̂{ }= AI
TΣI

−1AI( )
−1

    
          (2.10) 

Assuming the point source is a double-couple source, the further constraint of zero 

determinant must be imposed on the seismic moment. So we aim to solve for the least-

squares solution of the observation model with fixed constraint. The fixed constraint, i.e., 

the third invariant equals to zero, can be expressed as: 

f ξ( )=  = 0                           (2.11) 

To linearize the above fixed constraint, we have 

f ξ( ) ≈ f ξ0( )+ ∂f
∂ξ ξ0

ξ −ξ0( ) = 0  

Let κ0 = − f ξ0( )+ ∂f
∂ξ ξ0

ξ0 , and K
1×5
=
∂f
∂ξ ξ0

, then we get the linearized fixed constraint as: 

κ0 = Kξ                                                                                                                        (2.12) 

Then the least-squares solution for the observation model with fixed constraint is: 

ξ̂ = NI
−1cI + NI

−1KT KNI
−1KT( )

−1
κ0 −KNI

−1cI( )                                                               (2.13) 

Its dispersion matrix is D ξ̂{ }= NI
−1 − NI

−1KT KNI
−1KT( )

−1
KNI

−1 , where NI = AI
TΣI

−1AI , 

cI = AI
TΣI

−1yI . The residual vector is: !eI = yI − AIξ̂  

MxxMyyMzz + 2MxyMxzMyz −MxxMyz
2 −MyyMxz

2 −MzzMxy
2
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Using the estimated ξ̂ with no constraint in equation (2.10) as the initial value for theξ0 , 

we then compute the least-squares solution with the fixed constraint iteratively until the 

non-linear fixed constraint (equation 2.11) is smaller than the given termination criteria, 

ε , i.e., the iteration ends when f ξ̂( )<ε .  

To evaluate the strike, φs , dip, δ , rake angle, λ , and the seismic moment, M0, from the 

above estimated moment tensor elements and its dispersion matrix [Han et al., 2013], we 

start from the equation of moment tensor as a function of the four parameters (equation 

2.6). We have yM
5×1
= g ξa( )+ eM

5×1
, where yM = ξ̂ , is composed by the estimated moment 

tensor elements, with its dispersion matrix as D yM{ }= D ξ̂{ } . ξa is the unknown 

parameters, ξa = φs δ λ M0
!
"

#
$
T

. g ξa( )  is composed by the five equations for Mxx, 

Mxy, Mxz, Myz, Mzz as in equation (2.6). 

This observation model is then linearized as: 

yM
5×1
≈ g ξa,0( )++ ∂g

∂ξa ξa,0

ξa −ξa,0( )+ eM
5×1

 
                                                                        (2.14)

 

Hence, the ξ̂a  can be further estimated by the least-squares adjustment through iteration. 

Its corresponding dispersion matrix D ξ̂a{ }  can be used to evaluate the correlation matrix 

between the four parameters. Assuming ci, j is the i-th row and j-th column of the 

dispersion matrix, then the correlation between the i-th parameter and j-th parameter of 

ξ̂a can be computed as  

ρi, j = ci, j ci,ic j, j                                                                                                          (2.15) 
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Here, the observation model is established for a given centroid location, and the moment 

tensor elements, or the strike, dip, rake angle and the seismic moment are the to-be-

determined parameters. To find the optimal centroid location and depth, we adopt the 

simulated annealing algorithm discussed in section 4.1.1. During the inversion, the 

moment tensor is estimated for each trial of centroid location and depth, and then the 

simulated annealing algorithm is used to find the optimal centroid location and depth that 

produce the minimum of a target function. We define the target function as the mean of 

the relative difference for gN, Txx, Txy, and Txz:  

Φ lat, lon,depth( ) = rdgN + rdTxx + rdTxy + rdTxz( ) / 4   
                                                      (2.16) 

where, lat, lon, depth is the latitude, longitude, depth of the centroid, respectively. 

The relative difference, rd, between the model estimation, m(θ,λ) , and the GRACE 

observation y(θ,λ)  is defined as: 

rd=
 

y(θ,λ)−m(θ,λ)( )2
λ

∑
θ

∑ / n1 y(θ,λ)2
λ

∑ / n1
θ

∑ × 100%                               (2.17) 

n1 is the number of evaluation points; θ  is the colatitude, and

€ 

λ  is the longitude of the 

grid point of the GRACE-derived gravity change. y(θ,λ) could be either gN, or Txx, Txy, 

Txz. As shown, the difference between model GRACE observation and model estimation 

is actually the residual vector, i.e. y(θ,λ)−m(θ,λ) = !eI (θ,λ) . 

2.3.2 Estimation from GPS data  

The observation model for GPS-measured surface displacement can be expressed as: 

yII
3n2×1

= AII
3n2×5

ξ
5×1
+ eII
3n2×1                      

                                                                                   (2.18) 
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where yII
T = uN ,1 … uN ,n2 uE,1 … uE,n2 uD,1 … uD,n2

!
"#

$
%& , with uN, uE, uD as the 

north, east, down component of surface displacement in meters, and uN ,n2 is the 

displacement in north direction at observation point n2. AII is the design matrix. ξ  is the 

unknown parameter vector of the moment tensor elements. eII  is the error vector for the 

observations. The dispersion matrix for this error vector is given as, 

ΣII = D eII{ }
3n2×3n2

=

D uN{ }
n2×n2

0 0

0 D uE{ }
n2×n2

0

0 0 D uD{ }
n2×n2

#

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
             

                                                 (2.19) 

where D uN{ } , D uE{ } , D uD{ }  are the diagonal dispersion matrix for uN, uE, uD, 

respectively, in meter2, e.g.,  

D uN{ }=

σ uN ,1
2 0 0

0 ! 0
0 0 σ uN ,n2

2

!

"

#
#
#
#

$

%

&
&
&
&

 

σ uN ,1
2  is the square of the standard deviation of uN, which is given along with the 

measurements. Again, we assume there is no correlation between the three component of 

displacements, and no correlation between measurements at different observation points. 

The same as discussed in the previous section, the fixed constraint of the zero 

determinant is further considered for a double-couple point source. The least-squares 

solution for the observation model with the fixed constraint is: 

ξ̂ = NII
−1cII + NII

−1KT KNII
−1KT( )

−1
κ0 −KNII

−1cII( )      
                                                        (2.20) 



39 

Its dispersion matrix is D ξ̂{ }= NII
−1 − NII

−1KT KNII
−1KT( )

−1
KNII

−1 , where NII = AII
TΣII

−1AII , 

cII = AII
TΣII

−1yII . The residual vector is: !eII = yII − AIIξ̂  
The similar iteration is carried out to fulfill the non-linear constraint in equation (2.11). 

The target function for finding the optimal centroid location and depth is: 

Φ lat, lon,depth( ) = !eII
T !eII yII

T yII × 100%                                                                 (2.21) 

where, lat, lon, depth is the latitude, longitude, depth of the centroid, respectively. This 

target function is basically the same as the relative difference in equation (2.17) for 

GRACE data. 

2.3.3 Joint Estimation from GRACE data and GPS data 

To combine the two data sets, we establish the combined observation model: 

y
(4n1+3n2 )×1

= A
(4n1+3n2 )×5

ξ
5×1
+ e
(4n1+3n2 )×1  

                                                                                    (2.22) 

where y =
yI
yII

!

"
#
#

$

%
&
&
, A =

AI
AII

!

"
#
#

$

%
&
&

, e =
eI
eII

!

"
#
#

$

%
&
&
. The dispersion matrix is provided as:

Σ = D e{ }=
ΣI 0
0 ΣII

"

#
$
$

%

&
'
'

, which assumes there is no correlation between GRACE 

measurements and GPS data. 

Based on the least-squares adjustment, the objective is to find the estimated parameter ξ̂  

that will minimize the Lagrange target function: 

Φ ξ( ) = y− Aξ( )T Σ−1 y− Aξ( ) = eITΣI
−1eI + eII

TΣII
−1eII                   

The least-squares solution is: 
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ξ̂ = ATΣ−1A( )
−1
ATΣ−1y , with its dispersion matrix as D ξ̂{ }= ATΣ−1A( )

−1

                 (2.23) 

We further impose the zero determinant as a fixed constraint to a double-couple point 

source. Similar to the previous sections, the least-squares solution for the observation 

model with the fixed constraint is: 

ξ̂ = N −1c+ N −1KT KN −1KT( )
−1
κ0 −KN

−1c( )       
                                                           (2.24) 

Its dispersion matrix is D ξ̂{ }= N −1 − N −1KT KN −1KT( )
−1
KN −1

 

where N = ATΣ−1A = AI
TΣI

−1AI + AII
TΣII

−1AII , c = A
TΣ−1y = cI + cII . 

The residual vector is: !e = y− Aξ̂  

The iteration is carried out to fulfill the non-linear constraint of the equation (2.11). 

To further find the optimal centroid location, we choose the target function to be 

minimized as: 

Φ lat, lon,depth( ) = !eI
TΣI

−1!eI + !eII
TΣII

−1!eII( ) yI
TΣI

−1yI + yII
TΣII

−1yII( ) ×100%                   (2.25) 

where, lat, lon, depth is the centroid latitude, longitude, and depth.  

 

2.4 Simulation 

This section presents the simulation studies for the inversion of point source from 

GRACE data and the surface displacement from GPS data. Here we use the 2011 

Mw=9.0 Tohoku earthquake as a study case. We adopt the GCMT centroid solution in 

Section 2.2.2 for the 2011 Tohoku earthquake as the known input source parameters. 

Then the simulated north component of gravity change up to degree 59 corresponding to 

the input source parameters can be calculated as shown in Figure 2.12 (top left), as well 
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as for the north component of gravity gradient change. The surface displacement data on 

1,216 GPS stations and 5 GPS/acoustic sea-floor sites [Sato et al., 2011] near Japan are 

also simulated (Figure 2.13). From these simulated GRACE gravity and gravity gradient 

change data and the surface displacement data, the source parameters are then inverted 

from either of the data sets or the combination of GRACE and GPS data, using the 

inversion scheme discussed in Section 2.3. 

Several scenarios are carried out to evaluate the accuracy and precision of each source 

parameter constraint by GRACE data assuming the location of the point source is known. 

Using the simulated gN, Txx, Txy, Txz change with no measurement noise, the first 

scenario (scheme a0 in Table 2.1) inverts for the five elements of moment tensor based 

on the least-squares adjustment method discussed in Section 2.3.1, without adding the 

fixed constraint of the zero determinant. We calculate the error as the difference between 

the estimated moment tensor element and the input moment tensor element (the first line 

in Table 2.1) that is computed from the strike, dip, rake angle and the moment. We can 

see that the error is worst for the Mxx, Mzz component. To evaluate the effect of adding the 

fixed constraint to the least-squares adjustment, the second scenario (scheme a1) is 

carried out, which is the same as scheme a0 except adding the fixed constraint. We can 

see that by adding the fixed constraint, the error of Mxx, Mzz component is reduced by 

about three times, as well as that for M0 and dip angle. We further add a random noise of 

1.2 µGal for gN and 0.1 mE for gravity gradients for the inversion (scheme a2). It is 

shown that by adding the noise commensurate with GRACE measurements, the error of 

the north-associated components of moment tensor does not increase much, especially for 

the Mxx, while the error of the east and down components of moment tensor (Myz, Mzz) 
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increases by more than ten times, which can be explained by the relatively less sensitivity 

of GRACE measurements to the east and down component of gravity and gravity 

gradient change as discussed in Section 3.3. The standard deviation of each moment 

tensor element is consistent with its error, and similar consistency holds for the three 

angles, demonstrating that the standard deviation is a reasonable indicator of the absolute 

error. As shown, Mzz has the worst precision, followed by Myz. Compared to the good 

precision of the dip angle, the worse accuracy and precision in strike and rake angle are 

probably caused by the trade-off between these two angles as discussed in the sensitivity 

test, as well as the strong correlation shown between these two angles (Table 2.2 left 

panel). 

The GPS coseismic displacement data produced by the ARIA team at JPL and Caltech 

can be downloaded from ftp://sideshow.jpl.nasa.gov/pub/usrs/ARIA/ (last accessed 

February 2015). Geodetic observations at five sea-floor sites by using the GPS/acoustic 

combination technique are available from Table S1 in [Sato et al., 2011]. The surface 

displacement on these GPS stations and five sea-floor sites are forward modeled 

corresponding to the GCMT centroid solution for the 2011 Tohoku earthquake.  

 



43 

  

Figure 2.13. Simulated surface displacement on GPS stations and five sea floor sites.  
The horizontal (left) and vertical (right) displacements are simulated from the GCMT 
centroid solution of the 2011 Tohoku earthquake based on PREM earth model using 
PSGRN/PSCMP software. 
 

Here we evaluate the accuracy and precision of the source parameters that are inverted 

from the simulated displacement data on over a thousand of stations. First, the simulated 

surface displacements uN, uE, uD of the on-land GPS stations and seafloor sites with no 

measurement noise are used to solve for the source parameters (scheme b1) with the fixed 

constraint. Then a random noise of 0.04 meter is added to the displacements (scheme b2). 

We can see that either with or without random noise, GPS data tend to give worst 

accuracy/precision for Mxz, Myz, while GRACE data tend to yield worst precision for Myz, 

Mzz. This indicates that GRACE data and GPS data can compensate each other on the 

constraint of moment tensor. Nevertheless, similar to the use of GRACE data, there is 

also strong correlation (Table 2.2 right panel) between the strike and rake angles from 

GPS data, leading to their worse standard deviation as compared to dip angle. In addition, 

the correlation, –0.8, between dip angle and moment from GPS data (Table 2.2 right 

panel) is larger than that from GRACE data. To test the contribution of the five seafloor 
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sites, another scenario without the seafloor displacement data (scheme b3) is carried out. 

As shown, accuracy and precision get worse significantly to about one order of 

magnitude, especially for Mxz, Myz, and the three angles. Consistent with the conclusion in 

[Wei et al., 2012; Wang et al., 2013], the five ocean bottom GPS/acoustic displacement 

data set greatly improves the precision of the inversion, showing the importance of the 

GPS stations’ configuration on the inversion of source parameter. 

By combing the two data sets, it shows the contribution from GRACE data to source 

parameters inversion, especially for the constraint on the offshore deformation. As 

discussed in last paragraph, without the ocean floor displacement data, the precision on 

source parameters from on-land GPS data only (scheme b3) is very poor. By combining 

with GRACE data, the precision (scheme c3) improves significantly, showing that 

GRACE data can compensate the poor configuration of GPS stations. The sensitivity of 

GRACE data over offshore seismic deformations is supported by the better spatial 

coverage of the satellite measurements. In addition, even for combining with the ocean 

floor data, the joint solution (scheme c2) improves the solution precision for all source 

parameters, as shown by the fact that the standard deviation of the estimated parameters 

is smaller than the standard deviation by either the GRACE data only (scheme a2) or that 

by GPS data only (scheme b2). Furthermore, the joint solution significantly reduces the 

correlation between dip angle and moment to zero (Table 2.2) from the –0.8 in the case of 

GPS-only solution and the 0.4 for the case of the GRACE-only solution.  

The centroid location and depth is further inverted using the SA algorithm. The simulated 

onshore and offshore displacement data with random noise of 0.04 m are used for the 

inversion. As shown in the Figure 2.14, the optimal location converges to the input given 
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location very well, after about 20000 iterations. The relative difference, which is the 

value of the target function (equation 2.21), is close to zero (0.05%) at the optimal 

location. For this SA algorithm, we define the solution uncertainty as the half of the range 

(Figure 2.14), which produces no more than 0.1% of the relative differences as compared 

to the optimal solution. As shown in Figure 2.14, the uncertainty for longitude, latitude, 

and depth is 0.1 km, 0.15 km, 0.1 km, respectively. Again, if the five ocean bottom 

displacement data are not included, the estimated location with the minimum target 

function (1.7%) is 143.04°E, 37.521°N, 19.875 km, which is about 1 km west, 0.1 km 

north and 0.1 km shallower relative to the given input location. The target function is 

larger, about 3.4%, if the location is fixed at the input location. We can see that with the 

GPS stations distributed on the west side of the centroid, the error of the estimated 

location got increased largely. The error along east west direction is especially large, ten 

times of the error along the north south direction, which is due to the fact that no stations 

distributed on along the east-west dimension of the centroid to constrain the location 

along this dimension.  By measuring right above the fault area, GRACE data can 

overcome the inadequacy of the poor configuration of GPS stations, and provide good 

constraint on the centroid location, which is demonstrated by the small error within 0.1 

km for the SA inversion of location from the simulated GRACE-observed gN, Txx, Txy, 

Txz change with random noise.  
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Figure 2.14. Solution uncertainty for the inversion from onshore and offshore 
GPS/Acoustic displacements.  
Each blue dot is a trial of latitude (left), longitude (middle), and depth (right) during 
inversion. The minimum relative difference gives the optimal solution, which is 
143.05°E, 37.52°N, 20 km, same with the given value. The latitude and longitude is 
transformed to Cartesian coordinates with origin at the optimal location, with first axis 
pointing to North and second axis pointing to East. The red horizontal line is the 
threshold bar for the definition of solution uncertainty, which is 0.1 plus the minimum 
relative difference. As shown, the latitudinal range [–0.15, 0.15] km can give relative 
differences lower than the red line. This range is defined as solution uncertainty. The 
uncertainty along longitude direction (middle) is 0.1 km, and the uncertainty for depth is 
0.1 km (right). 
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 Moment tensor component in (1019 
Nm) 

Moment in (1019 Nm), angles in 
(°) 

Mxx Mxy Mxz Myz Mzz M0 Strike Dip Rake 
Input value −300 675 2117 −4521 1816 5312 203 10 88 

Scheme 
a0 

error 2 −0.1 0.1 0.1 −3 −0.7 −0.06 −0.009 −0.06 

Scheme 
a1 

error 0.8 −0.5 0.1 0.08 0.7 0.2 −0.08 −0.004 −0.07 

Scheme 
a2 

error −0.9 4 0.6 5 10 1 −0.1 0.08 −0.2 
std 2 2 2 4 6 4 0.2 0.03 0.2 

Scheme 
b1 

error 0.1 −0.1 −0.6 −0.5 −0.08 0.2 0.0007 −0.001 0.01 

Scheme 
b2 

error 2 −2 −2 −10 −0.5 8 −0.07 −0.02 −0.004 
std 4 4 9 20 6 11 0.4 0.05 0.5 

Scheme 
b3 

error  10 –7 120 24 –7 27 −2 −0.06 −3 
std 14 11 150 110 23 111 2 0.3 4 

Scheme 
c2 

error 0.4 1.4 0.08 4.8 7.5 –1.5 –0.15 0.05 –0.2 
std 1.5 1.6 1.9 3.4 3.5 3 0.1 0.02 0.1 

Scheme 
c3 

error –0.8 2 0.4 6 7 –2 –0.06 0.04 –0.08 

std 1.9 2 2 3.5 3.9 3 0.1 0.02 0.1 
Table 2.1. Accuracy and precision of estimated parameters for several schemes. 
Error = estimated value − true value (input value) 
Scheme a0 using simulated GRACE-observed gN, Txx, Txy, Txz change, with no 
measurement noise. 
Scheme a1 using simulated GRACE-observed gN, Txx, Txy, Txz change, with no 
measurement noise, solved with fixed constraint. 
Scheme a2 using simulated GRACE-observed gN, Txx, Txy, Txz change, with random 
noise of 1.2 µGal for gN and 0.1 mE for gravity gradients, solved with fixed constraint. 
Scheme b1 using simulated surface displacements uN, uE, uD on 1221 onshore and 
offshore GPS/Acoustic stations with no measurement noise, solved with the fixed 
constraint. 
Scheme b2 using simulated surface displacements uN, uE, uD on 1221 onshore and 
offshore GPS/Acoustic stations with random noise of 0.04 meter, solved with fixed 
constraint. 
Scheme b3 using simulated surface displacements onshore GPS stations only without the 
five offshore GPS/Acoustic stations, with random noise of 0.04 meter, solved with fixed 
constraint. 
Scheme c2 combined solution using simulated GRACE-observed gN, Txx, Txy, Txz 
change with random noise of 1.2 µGal for gN and 0.1 mE for gravity gradients (as in 
scheme a2), and simulated surface displacements uN, uE, uD on 1221 onshore and offshore 
GPS/Acoustic stations with random noise of 0.04 meter (as in scheme b2), solved with 
fixed constraint. 
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 Strike  Dip Rake M0  Strike  Dip Rake M0  Strike  Dip Rake M0 
Strike 1.0 –0.3 1.0 –0.2 1.0 –0.3 1.0 0.4 1.0 –0.2 1.0 –0.1 
Dip –0.3 1.0 –0.3 0.4 –0.3 1.0 –0.4 –0.8 –0.2 1.0 –0.2 0.0 
Rake 1.0 –0.3 1.0 –0.1 1.0 –0.4 1.0 0.5 1.0 –0.2 1.0 0.0 
M0 –0.2 0.4 –0.1 1.0 0.4 –0.8 0.5 1.0 –0.1 0.0 0.0 1.0 

Table 2.2. The correlation between parameters. 
Left panel for GRACE data only (scheme a2), the middle panel for GPS data only 
(scheme b2), and the right panel is for the joint solution of GRACE data and GPS data 
(scheme c2). 
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Chapter 3. Improved GRACE Data Processing 

3.1 Heaviside step function for coseismic gravity change detection 

Different data processing methods [Han et al., 2006; Matsuo & Heki, 2011; Cambiotti 

and Sabadini, 2012; Wang et al., 2012b] have been applied to retrieve coseismic gravity 

change signal from GRACE data. Han et al. [2006] took the difference of gravity change 

several months after the earthquake with the gravity change during the same months of 

the year before, to suppress the seasonal gravity variations. Similar method of subtracting 

measurements before and after earthquake was also applied in [Han et al., 2010, 2011]. 

Although this method of subtracting gravity change before and after the earthquake at the 

same month of each year can suppress the seasonal change, it is still affected by the long-

term trend of the gravity signal over the study region. The biggest disadvantage of this 

method is in its deficiency on reducing random noise compared to the Heaviside step 

function method, which isolates coseismic signal using the Heaviside step function 

together with periodic functions from the gravity time series. Because based on the least-

squares adjustment, the difference of two independent variables has a larger standard 

deviation than each of the variables; while for the Heaviside step function method, the 

estimated coseismic gravity change has a reduced standard deviation due to the 

smoothing effect over the long time series. Wang et al. [2012a, 2012b] have recently 

adopted a new method of utilizing Slepian functions [Simons et al., 2006] to spatially 

localize GRACE data in the surrounding region of the earthquake. Similar techniques 
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were also applied to the coseismic gravity change and source parameter inversion in 

[Cambiotti and Sabadini, 2012]. The main benefit of this localization method is that the 

number of coefficients that approximately represent the signal over a targeted region is 

much less than the number of the global spherical harmonic coefficients, since the 

Slepian basis function is designed to have the majority of its energy optimally 

concentrated inside an arbitrarily defined region, that is, this method is intended to 

mitigate or reduce signal leakage. Nevertheless, the shortcoming of this method lies in 

the approximation, which makes it not a rigorous representation for the signal over the 

region. Here we choose to estimate the coseismic gravity change from the time series of 

monthly gravity disturbance calculated from the spherical harmonic coefficients over the 

earthquake region, similar to the method applied in [Heki & Matsuto, 2010; Matsuo & 

Heki, 2011], however, with improved processing without smoothing and decorrelations.  

Monthly geopotential solutions complete to degree 70 from CSR L2 Release 05 (RL05) 

NMAX 96 product are used to generate the disturbing potential by subtracting a reference 

model (GOCO02S with maximum degree up to 250), from January 2003 to September 

2014. We choose to truncate the spherical harmonic coefficients to maximum degree 70 

instead of the given maximum degree 96, based on the localized spectral analysis in the 

next section. For the available monthly solutions over ten years, we exclude the solutions 

for March 2011, January 2003, September 2004, and June 2012. The solution for March 

2011 is excluded since it contains both the gravity signal before the earthquake and the 

signal after the earthquake. The other three extra excluded solutions are chosen based on 

their abnormal degree variance characteristics. As shown in Figure 3.1, the geoid residual 

degree variances for these three months are higher than those for the majority of the 
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solutions, especially for the degree range from 30 to 60, indicating their higher noise 

level. 

 

 

Figure 3.1. Geoid residual degree variance (relative to GOCO02S background model) for 
each monthly solution from January 2003 to July 2013 for the CSR RL05 NMAX 96 
product.  
The red dot line is for January 2003, the red circle line is for September 2004 (worst), the 
red triangle line is for June 2012, and the blue lines are for the other monthly solutions 
from January 2003 to July 2013.  
 

 

 

 

 

0 20 40 60 80 100
10−9

10−8

10−7

10−6

10−5

10−4

10−3

Degree

D
eg

re
e 

va
ria

nc
e 

(m
2 )

Geoid residual degree variance



52 

We then establish a linear model to fit the time series of the gravity and gravity gradient 

disturbance over the 0.4° by 0.4° gridded study region, and conduct the least-squares 

adjustment. The linear fitting model is:  

y = a+ b(t − tm )+ A1 × cos 2π (t − tm ) /T1( )+B1 × sin 2π (t − tm ) /T1( )  
          +A2 × cos 2π (t − tm ) /T2( )+B2 × sin 2π (t − tm ) /T2( )  
          +A3 × cos 2π (t − tm ) /T3( )+B3 × sin 2π (t − tm ) /T3( )+ d ×H (t − teq )                       (3.1) 
a  the constant, µGal for gravity or mE for gravity gradient. 
b  the linear trend rate, µGal/year for gravity or mE/year for gravity gradient. 
tm  the mean value of the all epochs, unit is year. 
T1  the annual period, year; =1. 
A1  the annual amplitude of the cosine function, µGal for gravity or mE for gravity 
gradient. 
B1  the annual amplitude of the sine function, µGal for gravity or mE for gravity gradient. 
T2  the semiannual period, year; =0.5. 
A2  the semiannual amplitude of the cosine function, µGal for gravity or mE for gravity 
gradient. 
B2  the semiannual amplitude of the sine function, µGal for gravity or mE for gravity 
gradient. 
T3  the 161-days period, year. 
A3  the 161-days period amplitude of the cosine function, µGal for gravity or mE for 
gravity gradient. 
B3  the 161-days period amplitude of the sine function, µGal for gravity or mE for gravity 
gradient. 
d  the to-be-estimated coseismic jump, µGal for gravity or mE for gravity gradient 
changes. 
teq  the Tohoku-Oki earthquake epoch, year. 
The Heaviside step function is defined as:  

H (t − teq ) =
0
0.5
1

t < teq
t = teq
t > teq

"

#
$$

%
$
$

 

Figure 3.2 shows the gravity (north component or gN, top) and gravity gradient (Txz, 

bottom) disturbance time series (blue lines) from January 2003 to September 2014 

(excluding March 2011, January 2003, September 2004, June 2012) at a selected location 

(140.2°E 36.85°N). Txz represents the largest gravity gradient component. The 

T1

T2
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uncertainties (blue shading) are propagated based on the estimated a posteriori variance 

of unit weight for each coefficient. In order to isolate the earthquake seismic deformation 

signal, periodicities associated with the annual, semiannual, and the 161-day S2 tidal 

aliasing periods [Chen et al., 2009; Wang et al., 2012b] are simultaneously fitted with a 

linear trend and the Heaviside step function for the jump at the earthquake epoch 

(equation 3.1) for each time series.  The 161-day period is described in published studies 

as GRACE S2 tidal aliasing or tidal errors manifested on the surface of the Earth observed 

by GRACE [e.g., Chen et al., 2009; Melachroinos et al., 2009; Moore & King, 2008; 

King et al., 2011].  However, it is likely that the error originates from non-conservative 

forces. Here our approach is to estimate this error from GRACE seismic deformation 

time series. Figure 3.2 shows that the annual signal dominates both time series, while the 

two other periodical signals are slightly subordinate. gN (Figure 3.2, top) decreases 

significantly at the earthquake epoch, with the estimated earthquake triggered jump as –

24±3.9 µGal.  For Txz (Figure 3.2 bottom), the estimated jump is also substantial at 

1.98±0.41 milli-Eötvös (mE). We find that the approach using Heaviside step function 

can better reveal the seismic gravity and gravity gradient change compared to other 

methods, and the resulting retrieved signals are less contaminated by the long-term 

viscoelastic postseismic and other signals. 

 



54 

 

Figure 3.2. Time series of GRACE gravity and gravity gradient disturbances.  
Blue lines are the gravity disturbance gN (top) and the gravity gradient disturbance Txz 
(bottom) at 140.2°E 36.85°N, generated from 131 monthly CSR RL05 NMAX 96 
solutions up to degree 70 from January 2003 to September 2014. The uncertainties (blue 
shadings) are propagated based on the estimated a posteriori variance of unit weight for 
each coefficient. The red lines represent the model fits using equation (3.1) including the 
estimated jumps at the earthquake occurrence. 
 

The direct estimation of the coseismic signal change at the earthquake epoch using the 

Heaviside step function together with other periodic and linear terms has many 

advantages compared to other methods. It can better reveal the coseismic signal change 

without being contaminated by the long term post-seismic signal, at least separate the 

post-seismic signals after the earthquake month, although it is still affected by the pre-

shocks and after shocks within the earthquake month. This method reduces the standard 

deviation of the coseismic jump compared to the method of subtracting signal of the same 

month of each year before and after the earthquake. Moreover, the gravity change over 

140.2°E(36.85°N(



55 

the study region strictly represents the regional signal, as compared to the localization 

method based on Slepian functions.  

3.2 Localized spectral analysis 

In this section, we show the benefits of the localized spectral analysis as an efficient 

method to evaluate the noise level of each component of gravity and gravity gradient 

change and to guide the practical degree truncation that gives good signal-to-noise ratio. 

To estimate the localized spectrum of the earthquake-induced gravity and gravity 

gradient changes, we first compute the gravity and gravity gradient change up to 

maximum degree 96 for the CSR RL05 NMAX 96 product over the fault region using the 

Heaviside step function described above. Then we carry out the localized spectral 

estimates as presented in [Wieczorek & Simons, 2005] using Slepian tapering windows 

centered at the 2011 Tohoku earthquake centroid. 

One important benefit of this localized spectral analysis is that it can evaluate the signal 

and noise level of each component of gravity and gravity gradient as a function of 

spherical harmonic degree. Assuming the degree variance for the model-predicted gravity 

and gravity gradient change are the true signal, we can see that both gravity and gravity 

gradient change induced by earthquakes have higher power for the higher degrees. It’s 

worth mentioning that the dropping of the degree variance staring from degree 81 for the 

model predicted value does not represent the actual decrease of the degree variance, 

rather it is the artifacts caused by the localized spectral analysis, which is not reliable for 

the degrees from NMAX – Lh to NMAX [Wieczorek and Simons, 2005], where Lh is the 

maximum degree, 15, of the Slepian window function. From Figure 3.3, we can see that 

the GRACE-observed gN change agrees well with the model prediction up until around 
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degree 70, although the amplitude is slightly larger than the model prediction. While, the 

degree variance for GRACE-observed gE and gD change (Figure 3.3) increases sharply 

starting from degrees at around 40, indicating that degrees higher than that are dominated 

by noise. This demonstrates that north component of gravity contain reliable signal up to 

much higher degree than the east and down component of gravity change. Same for the 

gravity gradient change, the north component of GRACE-observed gravity gradient 

change is showing good consistency with the model prediction until around degree 70. 

Above degree 70, the GRACE data is much higher than the model prediction, which we 

interpret as noise. We also notice that Txy are noiser compared to Txx, Txz for degrees 

between 60 and 70, which might be caused by the term Tλ (partial derivative of T with 

respect to longitude), contaminated by the south-north stripes. One other important 

application of this localized spectra analysis is that it is an efficient method to guide the 

choice of practical degree truncation. As shown in Figure 3.3, the degree variance for gN 

change keeps in good agreement with the model prediction until around degree 70, based 

on which, we can choose to discard the spherical harmonic coefficients above degree 70.  
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Figure 3.3. Comparison in the spectral domain.  
The localized degree variance as a function of spherical harmonic degree is shown for the 
observed and model-predicted gN, gE, gD change (a), and Txx, Txy, Txz change (b). 
 

3.3 North component of gravity and gravity gradient change 

As shown in the localized spectral analysis, the north component of gravity change from 

GRACE data contained much higher degree signals compared to the east and down 

component of gravity. Hence, we use only the north component of gravity and gravity 

gradient changes from GRACE data to isolate large undersea earthquakes, with no 

decorrelation or spatial filtering of the GRACE data, leading to improved spatial 

resolution to the extent possible. We demonstrate the advantage of these components to 

reduce south-north stripes and preserve high-degree signal in GRACE L2 products.  

For GRACE L2 data post-processing, de-striping or decorrection technique is widely 

used to remove or reduce the high-frequency correlated errors in GRACE temporal 

gravity field solutions [e.g., Swenson and Wahr, 2006, Duan et al., 2009]. However, the 

de-correlation process may partially eliminate the seismic gravity change signal [Wang et 

al., 2012a, 2012c] and/or alter the orientation of the spatial pattern, which is the key 

observation to constrain the dislocation vector orientation. Although Gaussian smoothing 
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can reduce the ripple effects caused by the band-limited L2 solution, as a low-pass filter it 

also could smooth out or diminish the desired earthquake-induced high frequency signal. 

As shown in the next section, our approach using the north component of gravity and the 

corresponding gravity gradient change can effectively reduce the contamination by the 

north-south stripes; hence it can better preserve the seismic signal by avoiding the 

negative effect from de-striping and Gaussian smoothing.  

The GRACE-observed and model-predicted gravity and gravity gradient changes 

corresponding to the 2011 Tohoku earthquake are compared with a resolution 

commensurate with the GRACE observations. For the GRACE-derived gN change 

(Figure 3.5a) up to degree 70, the positive-negative-positive pattern is evident and agrees 

well with model predictions (Figure 3.5d). The GRACE-observed gN change is 

substantial and reaches –24.0 ± 3.9 µGal at 140.2°E 36.85°N (Figure 3.5a), with the 

magnitude slightly greater than the model prediction, –18.5 µGal. It is evident that larger 

stripes exist in the GRACE-derived gE, gD changes.  For the gE change, although the 

negative-positive-negative pattern centered over the Tohoku region (Figure 3.5b) is 

visibly similar to the model prediction (Figure 3.5e), the surrounding error is too large to 

clearly distinguish the seismic induced signal. Analogous to the gE change, the 

surrounding error for the gD change (Figure 3.5c) is also too large. From the GRACE 

observation, the north-south stripes occur in gE, gD changes, because the KBR 

measurement is highly sensitive to gN change but relatively insensitive to gE, gD changes. 

The reason is that the GRACE-measured range-acceleration is linearly related (equation 

3.2) to the gravitational force differences projected at the line-of-sight (LOS) direction, 
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which is the north south direction because of the near-900 orbital inclination. This linear 

relationship is: 

!!ρ12 =
"g12
i ⋅
"e12
i + ("a2

i −
"a1
i ) ⋅ "e12

i + ( "!r i12
2
− !ρ12

2 ) / ρ12   
                                                              (3.2) 

where ρ12 , !ρ12 , !!ρ12 are the inter-satellite range, range rate, and range acceleration 

respectively. !g12
i is the difference between the gravitational force on the satellite 2 and 

satellite 1. !e12
i is the unit line-of-sight position vector. !a1

i  and !a2
i are the non-gravitational 

forces on the satellite 1 and satellite 2, respectively. !r i12 is the relative position vector of 

satellite 2 with respective to satellite 1 in the inertial frame.  

For the LOS gravitational difference, !g12
i ⋅
!e12
i , we have !g12

i ⋅
!e12
i = (Ci,2

n !e12
i ) ⋅ !g2

n − (Ci,1
n !e12

i ) ⋅ !g1
n . 

whereCi,2
n is the transformation matrix from the north-east-down frame to the inertial 

frame for satellite 2, and Ci,1
n is the transformation matrix for satellite 1. !g2

n is the 

gravitational vector in the north-east-down frame at the position of satellite 2, and !g1
n is 

the gravitational vector in the north-east-down frame at the position of satellite 1. 

As shown in Figure 3.4 (right), the down component of the line-of-sight direction 

projection vector (the unit LOS position vector), Ci,2
n !e12

i  is small globally, around 0.015. 

And the east component (Figure 3.4 middle) is also small, below 0.044 for latitude within 

60 degree, but increases to almost one near two poles due to the orbit configuration of 

GRACE satellites. Nevertheless, the absolute value of the north component of this 

position vector (Figure 3.4 left) is around one, but drops to almost zero near the poles. 

Hence, we can see that the line-of-sight direction projection factor, Ci,2
n !e12

i , for east and 

down component of gravitational force is about two orders of magnitude smaller than that 
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for the north component of gravitation globally (Figure 3.4) excluding the polar regions. 

Therefore, the GRACE KBR measurement is about two orders of magnitude less 

sensitive to the gE, gD change signals than to the gN change signal. In another word, the 

GRACE-measured range change is mainly driven by the north component of gravity 

change. 

 

 

Figure 3.4.  The absolute value of the north (left), east (middle), down (right) components 
of the LOS position vector . The plot is for GRACE satellite 1 in March 2011. 
 

Theoretically speaking, since gN = −∂T /∂θ / r , the gN change obviously has diminished 

north-south stripes where the disturbing potential is differentiated along the meridian 

direction. This is the same for the gravity gradient observables, of which only north-

associated components have reduced stripes or correlated errors. The other three 

components, Tyy, Tyz, Tzz, like gE, gD, are basically contaminated by high-frequency 

correlated error, which is twice of that for the Txx, Txy, Txz components. As first 

mentioned by Wang et al. [2012c], the gravity gradient, Txx, dominated by the Tθθ  term, 

is less influenced by the south-north stripes. For the Txz, the north-south stripes are 

reduced by Tθ  and Trθ  terms. Although Txy include the Tλ  term, the dominating term Tθλ

helps to diminish the north-south stripes. In conclusion, the gravity and gravity gradient 

components that are dominated by the derivative of disturbing potential with respect to 

Ci,2
n !e12

i
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the colatitude are much less influenced by the north-south stripes representing high-

frequency errors in the current GRACE data products. 

The comparison between GRACE-observed and model-predicted gravity gradient change 

is shown in Figure 3.6. For the Txx change (Figure 3.6a), the main negative-positive-

negative-positive pattern distributed from Sea of Japan to southeast coast of Kanto 

matches well with the model prediction (Figure 3.6d). For the Txy change (Figure 3.6b), 

the main negative-positive pattern is also similar with the prediction (Figure 3.6e), even 

with the analogous ‘8’ shape positive pattern. The Txz change (Figure 3.6c) matches the 

prediction as well, with the maximum change of 2.0±0.4 mE at 140.2°E, 36.95°N, 

slightly larger than the prediction, 1.5 mE.  

 

 

Figure 3.5. Comparison of GRACE-observed and model-predicted coseismic and 
postseismic (March 2011) gravity changes up to degree 70 from CSR RL05 NMAX 96 
product.  
(a) ~ (c): GRACE-observed gN (a), gE (b), gD (c) change, respectively. (d) ~ (f): model-
predicted gN (d), gE (e), gD (f) change, respectively. The black star is the Global Centroid 
Moment Tensor Project (GCMT) centroid (143.05°E, 37.52°N) 
(http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/neic_c0001xgp_g
cmt.php).  
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Figure 3.6. Comparison of GRACE-produced and model-predicted gravity gradient 
change up to degree 70 from CSR RL05 NMAX 96 product.  
(a) ~ (c): GRACE-produced Txx (a), Txy (b), Txz (c) change. (d) ~ (f): seismic-model-
predicted Txx (d), Txy (e), Txz (f) change. Other descriptions are the same as in Figure 
3.5. 
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Chapter 4. Inversion for Source Parameters 

4.1 Inversion for finite fault model with the Simulated Annealing algorithm 

This section solves for the finite fault parameters from GRACE data using the simulated 

annealing algorithm as discussed below. Instead of assuming the source as a point source, 

here we use a uniform distributed slip model to represent the focal mechanism. We first 

briefly introduce the simulated annealing algorithm, and then apply this inversion scheme 

to solve for the source parameters of the 2011 Tohoku earthquake.  

4.1.1 Simulated Annealing algorithm 

The Simulated Annealing (SA) algorithm [Kirkpatrick et al., 1983; Goffe et al., 1994] is 

an optimization technique developed to find a global optimum via a procedure analogous 

to the process of chemical annealing. It is based on the Metropolis-Hastings algorithm, 

which is a kind of Markov Chain Monte Carlo algorithm designed to generate a sequence 

of random samples from a target probability distribution [Wang, 2012]. The core of the 

SA algorithm is to sample the Gibbs-Boltzmann distribution, which describes the 

expected fluctuations of a system’s state at a certain temperature. This Gibbs-Boltzmann 

distribution is generally difficult to be explicitly expressed. Therefore, the Metropolis-

Hastings algorithm is used to generate a sequence of samples for approximation. 

For the finite model inversion using GRACE data, the goal of the optimization is to find 

the source parameters that give a minimum model-data misfit. For each trail of source 

parameters, the forward model-predicted gravity and gravity gradient change are 
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calculated and compared with the GRACE-derived gN, Txx, Txy, and Txz change. So, the 

target function to be minimized is the mean of the relative difference (equation 2.17) for 

gN, Txx, Txy, and Txz:  

Φ X( ) = rdgN + rdTxx + rdTxy + rdTxz( ) / 4  

where, X is the vector of to-be-determined parameters, X= [lat, lon, L, W, S]T. lat, lon, L, 

W, S are the latitude, longitude, fault length, width, uniform slip of the finite fault model, 

respectively. The number of parameters, m, is 5 here.  

The SA algorithm procedure is briefly described here. Starting with a given initial 

temperature, T0, which is a control parameter, the algorithm generates a group of random 

vector X within the given upper and lower boundaries. For each random vector X, the 

forward modeling of the gravity and gravity gradient change corresponding to this fault 

model are calculated, leading to a value for the target function Φ X( ) . If the Φ X( )  is 

smaller than the previous target function, then the new vector X is accepted. Otherwise, 

the Metropolis acceptance ratio [Uzun, 2013], which depends on the difference of the two 

target functions and the current temperature, is used as a criterion to accept or reject this 

new vector X. The next trial of vector X is computed as X= Xpre + r×V, where Xpre is the 

previous accepted parameter vector, r is a uniform-distributed random number, and V is 

the step length vector. The above acceptance-perturbation steps are repeated for NS×m 

times, where NS is a predefined integer. After that, the step length vector is adjusted 

according to the ratio of the count of the accepted trails over the count of the rejected 

trails from the last NS×m iterations. This adjustment to the step length vector is repeated 

for NT times for the given temperature, where NT is a predefined integer. Then the 

temperature is reduced to be rT×T0, where rT is the temperature reduction parameter. This 
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iteration is repeated until the target function, Φ X( ) , dose not change for the last several 

temperatures. 

To get a reliable solution, Corana et al. [1987] suggested the following values of the 

parameters: NS to be 20, NT to be the maximum of (100, 5m), and the temperature 

reduction parameter rT to be 0.85. The essential parameters for minimizing the target 

function are the initial temperature T0, the starting values of parameters, X, and the step 

length V for X. As pointed out by Goffe et al. [1994], the appropriate choice of the initial 

temperature is important. Because if the initial temperature is too low, the step length 

would be too small, which might miss the search area containing the global minimum. 

The method in [Goffe et al., 1994] is a good way to find T0. First set T0 to be 107 and the 

temperature reduction parameter, rT, to be 0.01, and then find the temperature at which 

the step length begins to decrease as the initial temperature. At each temperature, the step 

length is chosen correctly if fifty percent of the total evaluations are accepted [Goffe et 

al., 1994], and that the number of rejected trials may not be excessively more than half of 

total trials. To further gain confidence on the reliability of the solution, different starting 

values can be tried to see whether they can produce the same global minimum. 

4.1.2 The 2011 Tohoku earthquake 

The 11 March 2011 Mw 9.0 Tohoku earthquake ruptured the Okhotsk-Pacific interplate 

boundary of east Japan offshore up to about 40 m, with a fault area as large as 500×200 

km2 [e.g. Ammon et al., 2011; Ozawa et al., 2011; Simons et al., 2011]. Large postseismic 

slips [Ozawa et al., 2011] occurred with a moment of about 10% of the main shock. 

Several coseismic slip distribution models were determined using seismic data [Hayes et 

al., 2011; Lay et al., 2011; Shao et al., 2011], Global Positioning System (GPS) observed 
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surface displacement data [Ozawa et al., 2011; Pollitz et al., 2011b], combined seismic 

and GPS data [Wei et al., 2012; Ammon et al., 2011], and combined seismic, GPS and 

tsunami data [Simons et al., 2011].  However, the estimated location and depth of the 

average slip differ significantly. Geodetic inversions give the average slip down-dip 

[Ozawa et al., 2011; Simons et al., 2011; Ammon et al., 2011] of the GCMT hypocenter 

(20 km depth) closer to land. Seismic inversions tend to give the average slip up-dip 

[Shao et al., 2011; Hayes et al., 2011; Wei et al., 2012], or even shallower near trench 

[Lay et al., 2011]. In this section, we show the independent constraint on seismic 

moment, fault width, rake angle, and centroid location from GRACE data through the 

innovative method of using only the north component of gravity and gravity gradient 

change [Dai et al., 2014]. We show that the estimated slip orientation and centroid 

location are different from GPS/seismic solutions and potentially due to the additional 

offshore constraint from GRACE data [Dai et al., 2014]. 

Adopting the GRACE data processing method described in Section 3, we analyze the 

GRACE L2 products by the Univ. of Texas Center for Space Research (CSR), GFZ 

German Research Centre for Geosciences, and Jet Propulsion Laboratory (JPL) from 

January 2004 to February 2013. And we choose to present the results using the CSR L2 

data products. We first conduct an analysis of the gravity and gravity gradient disturbance 

time series over the 0.4° by 0.4° gridded study region using the fitting model (equation 

3.1), as shown in Figure 4.1. North component of gravity, gN (Figure 4.1, top) decreases 

significantly at the earthquake epoch, with the estimated earthquake triggered jump as –

17.6±1.1 µGal.  For Txz (Figure 4.1 bottom), the estimated jump is also substantial at 

1.25±0.09 mEötvös (mE). 
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Figure 4.1. Time series of GRACE gravity and gravity gradient disturbances.  
Blue lines are the CSR RL05 derived gravity disturbance gN (top) and the gravity gradient 
disturbance Txz (bottom) at the location of apparent maxima (139.6°E, 36.4°N, 
corresponding to white circles in Figure 4.2a and Figure 4.3c). The uncertainties (blue 
shadings) are propagated based on the estimated a posteriori variance of unit weight for 
each coefficient. The red lines represent the model fits using equation (3.1) including the 
estimated jumps at the earthquake occurrence. 
 

As described in section 2.2.1, the coseismic slip distribution model generated using 

teleseismic body waves and near source GPS observations [Wei et al., 2012], and the 

postseismic slip distribution model produced using GPS displacement data for 12–25 

March 2011 [Ozawa et al., 2011] are adopted to model the gravity and gravity gradient 

changes. The north component of gravity and gravity gradient change at the Earth’s 

surface due to both solid Earth deformation and the passive response of ocean water is 

computed up to spherical harmonic degree 60 (Figure 4.2 d ~ f) to be consistent with 
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GRACE solution. The comparison in both spatial domain and spectral domain for model-

predicted and GRACE-derived gravity and gravity gradient change are presented below. 

For the GRACE-derived gN change (Figure 4.2a), the positive-negative-positive pattern is 

evident and agrees well with model predictions (Figure 4.2d). The GRACE-observed gN 

change reaches –17.6±1.1 µGal at 139.6°E, 36.4°N (Figure 4.2a), with the magnitude 

slightly greater than the model prediction, –13.6 µGal. The profile along 140.4°E (Figure 

4.4a) also shows good agreement between observed and model predicted gN, with 

GRACE-observed magnitude slightly larger than the prediction. By detailed comparison, 

the spatial patterns of the GRACE observed gN (Figure 4.2a) is found to be at an 

orientation of about 10° clockwise of the model predicted gN orientation (Figure 4.2d), 

which implies that a different slip vector direction (e.g. rake angle) is preferred by 

GRACE data. The GRACE-observed gravity gradient change is shown to have good 

consistency with the model prediction in Figure 4.3. The Txx change (Figure 4.3a) 

matches well with the model prediction (Figure 4.3d), as well as the Txy change (Figure 

4.3b). The Txz change (Figure 4.3c) has the maximum change of 1.25±0.09 mE at 

139.6°E, 36.4°N, slightly larger than the prediction, 0.95 mE. Coincide with the 

orientation of the spatial pattern of gN in Figure 4.2a, GRACE observed gravity gradient 

change (Figure 4.3) precedes about 10° clockwise of the model predicted gN orientation. 
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Figure 4.2. Comparison of GRACE-observed and model-predicted coseismic and 
postseismic (March 2011) gravity changes.  
(a)~(c): GRACE-observed gN (a), gE (b), gD (c) change, respectively. (d)~(f): Coseismic 
and postseismic model predicted gN (d), gE (e), gD (f) change, respectively. The 
uncertainties for observed gN, gE, gD change are approximately 1.2, 2.5, 2.8 µGal, 
respectively. The white circle is the location of maxima to show the time series in Figure 
4.1. The black rectangle is the coseismic fault plane boundary, and the black star is the 
GCMT centroid.  
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Figure 4.3. Comparison of GRACE-produced and model-predicted gravity gradient 
change.  
(a)~(c): GRACE-produced Txx (a), Txy (b), Txz (c) change. (d)~(f): Coseismic and 
postseismic model predicted gravity gradient change: Txx (d), Txy (e), Txz (f). Other 
descriptions are the same as in Figure 4.2. 
 

Figure 4.4b presents the percentage of the degree variance of the observed and model-

predicted gN, Txx, Txy, Txz changes in the study region, showing the consistency between 

the observed and the model-predicted values. It shows that both gravity and the 

corresponding gravity gradient changes are dominated by the higher degree signals. 

Consistent with Wang et al.’s [2012c] conclusion for the 2004 Sumatra-Andaman 

earthquake, Figure 4.4b validates that gravity gradient changes have relatively high 

power for degrees above 42, about 25% greater than the gN change. Although gravity 

gradient can enhance the high frequency details, they are noisier, as demonstrated by 

their unexpected higher power compared the model prediction for degrees above 48, 

especially for Txy.  
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Figure 4.4. Comparison in the spectral domain and along a profile.  
(a): Model-predicted and GRACE-observed north component of gravity change gN along 
the profile of 140.4°E. Shading denotes the estimated standard deviation; (b): Percentage 
of the degree variance as a function of spherical harmonic degree, for observed and 
model predicted north component of gravity change, gN, and the corresponding gravity 
gradient changes, Txx, Txy, and Txz. 
 

The sensitivity of GRACE-observed north components of gravity and its corresponding 

gravity gradient changes to seven fault parameters has been demonstrated by numerous 

synthetic scenarios (Figures 2.5–2.9). It shows that the spatial orientation of gravity and 

gravity gradient change rotates in the same direction as either strike or rake angle 

changes, agreeing with Han et al.’s [2011] conclusion that there is a monotonic 

relationship between gravity change pattern and strike and rake angles for fault with 

small dip angle. Since the strike angle is well constrained by other kinds of data, such as 

the orientation of the aftershocks area, and the plate boundary direction, we fixed the 

strike angle during our inversion. As a result, the rake angle can be effectively 

constrained by GRACE observations. In addition, the dislocation magnitude and fault 

width are highly sensitive to the gravity signal. Since there is a trade-off between the fault 

width, dip angle and fault depth, and as the GRACE-observed signal is least sensitive to 
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fault depth and most sensitive to fault width, the fault width can be resolved during the 

inversion while fixing the fault dip angle and depth (Table 4.1).  

Using the simulated annealing algorithm [Kirkpatrick et al., 1983; Goffe et al., 1994] and 

an approach similar to [Wang et al., 2012a] but for a different earthquake, the rake angle, 

fault location, width, and uniform or average slip magnitude have been resolved with 

strike angle fixed at 201°, fault dip angle fixed at 10°, and the depth of the top edge of the 

fault fixed to be at the seafloor. The inversion procedure is to search for the optimal fault 

parameters that give the minimum relative differences (equation 2.16~2.17), which are 

the root-mean-square (RMS) of data-model differences divided by RMS of GRACE data. 

Our inverted uniform slip fault model improves the relative differences with GRACE 

CSR observation by about 20% as compared with the slip model inverted using GPS and 

seismic data by Wei et al. [2012] and Ozawa et al. [2011]. During the inversion, the rake 

angle quickly converged to its optimal value at 77.0°±2° (Table 4.1). We define the 

solution uncertainty by using the range (Figure 4.5), which produces no more than 0.1% 

of the relative differences (equation 2.16), as compared to the optimal solution during the 

inversion. The GRACE inverted rake angle is about 10° smaller than most of the 

published estimates. The smaller rake angle indicates that the azimuth of the slip vector 

(equation 4.1) is about 10° larger than some of the published solutions (Table 4.1) and it 

is about 5° larger than the published USGS CMT solution (http://earthquake.usgs.gov/ 

earthquakes/eqinthenews/2011/usc0001xgp/neic_c0001xgp_cmt.php), which gives the 

smaller rake angle than our solution but has a correspondingly small strike angle. The 

different orientation of our estimated slip model can be explained by the spatial 

orientation of the observed gravity and gravity gradient changes, which is about 10° 
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clockwise from the model prediction. The slip vector azimuth (β ) is defined as the 

azimuth of slip vector projected to horizon, positive clockwise from North. Given strike, 

φ , rake λ , dip δ , we have: 

β = φ − arctan sinλ cosδ / cosλ( ) ≈ φ −λ                                                                   (4.1) 

The approximation holds when dip angle is small. 

 

 

Figure 4.5. Solution uncertainty for rake angle.  
Each red dot is a trial of rake angle, fault length, width, slip, and location during 
inversion. The minimum relative difference would give the optimal solution, which is 77° 
for rake angle as shown. The red horizontal line is corresponding to 0.1 plus the 
minimum relative difference. In this figure, the rake angle range [75, 79] can give relative 
differences lower than the red line. This range is defined as solution uncertainty. 
 

The centroid location is well resolved to be at 142.17±0.05°E, 37.53±0.08°N, shown as a 

red star in Figure 4.6. As it is well-known, seismic data tend to yield average slip near 

trench, e.g., the blue contour and blue star [Wei et al., 2012] (Figure 4.6), and GPS data 

infer a average slip closer to land, as shown by the magenta contour and magenta star 

(Figure 4.6) [Ozawa et al., 2011]. GRACE data resolved location is in-between these two 
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other solutions in the west-east direction. Although our solution is about 40 km south of 

the solutions in [Wei et al., 2012] and [Ozawa et al., 2011], it centers at the same latitude 

as the GCMT centroid, and it is 30 km west of the USGS CMT solution. The GRACE-

estimated centroid depth (12 km) is relatively smaller than other published values, 

partially due to the inversion scheme, which fixed the top edge of the fault at the seafloor. 

The seismic moment converges to its optimal solution well, which is (6.43±0.4)×1022 N 

m (Table 4.1), corresponding to a Mw value of 9.14±0.02, which is larger than estimates 

of other slip models (Table 4.1), and can be explained by the larger gravity magnitude as 

observed by GRACE, considering that the GRACE solution contain the afterslip 

information in March 2011. Estimated fault width is 70±20 km using GRACE data. 

However, the resolved fault length has large deviations to make relative difference close 

to its minimum, which is 240±110 km, indicating that, as discussed before, the fault 

length is relatively hard to be constrained by GRACE data. Since length, width and slip 

together determine the signal magnitude, the small width indicates a large slip and the 

larger deviation in length leads to a larger uncertainty for estimated average slip, which is 

127±100 m. 
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Figure 4.6. Comparison of slip distribution models.  
The black triangle line is the plate boundary [Bird, 2003]. The black and green stars are 
the GCMT and USGS CMT estimated Centroid locations, respectively. The brown star is 
the centroid location of postseismic slip model [Ozawa et al., 2011]. The slip contours 
(m) are from the published coseismic slip models: GPS-only model in magenta [Ozawa et 
al., 2011] and GPS/seismic model in blue [Wei et al., 2012]. The centroid location of 
these two slip models are denoted as blue and magenta stars, which are outlined with 
brown color when combined with the postseismic slip model. The contribution of the 
postseismic slip to centroid location is negligible as shown that the magenta star and the 
magenta star with brown outline are almost at the same location. The red star is estimated 
centroid location with the red rectangle as fault boundary using the GRACE CSR data, 
which is about 40 km south and 40 km west of the centroid location (blue star) by Wei et 
al. [2012].  
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Model Data Source Centroid Rake 
angle (°) 

Strike 
angle (°) 

Dip (°) Slip 
azimuth 

(°) 

M0 in 
1022 
Nm Location Depth Ave Ave Ave 

Ozawa et 
al. [2011] 

GPS  Magenta 
star 

50 
km 

87 196 11 109 3.43!

Wei et al. 
[2012] 

GPS and 
Seismic data 

Blue star 18 
km 

89 201*  10* 112 5.31* 

GCMT Long-period 
mantle waves 

Black star 20 
km 

88 203 10 115 5.31 

USGS 
CMT 

Seismic data Green star 10 
km 

68 187 14 120 4.50 

Han et al. 
[2011] 

GRACE 
Level 1b data 

- 17 
km 

82 196* 10.5 114 5.40 

This 
study 

GRACE CSR 
RL05 data 

Red star 12 
km 

77.0±2 201* 10* 124 6.43±
0.4 

This 
study 

CSR RL05 
N96 

Red beach 
ball (Fig. 

4.15) 

16 
km 

113±0.5 236±0.5 12±0.1 123 4.03±
0.01 

Table 4.1. Comparison of Fault Parameters. 
*Parameter fixed during inversion. 
 

GRACE observed coseismic gravity change is at much coarser resolution than other 

geodetic data, namely, GPS or synthetic aperture radar interferometry measured land 

displacement. However, GRACE directly observes right above the fault area of the 

March 2011 Tohoku undersea earthquake, providing a better spatial coverage.  Here we 

further illustrate that GRACE observation provides independent constraints on the 

earthquake source parameters complementary to the on-land GPS and seismic data. Using 

both onshore and offshore GPS/Acoustic Network data, Wang et al. [2013] obtained a 

slip model (Model 1) with the maximum slip of ~ 48 m at (38.13°N, 143.26°E, 15.5 km), 

rake 74° at the peak slip, and an average rake of 80°. Using only the onshore GPS data, 

they obtained a model (Model 4) with the maximum slip of ~23 m at (38.06°N, 142.80°E, 

24.4 km), rake 79° at the peak slip, and an average rake of 83°. Both slip models explain 

the onshore GPS data equally well, but the slip model using the offshore GPS data has 

been proven to fit the tsunami observations much better than the model with only onshore 
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GPS data [Wang et al., 2013]. The slip orientation of our model is obviously closer to 

Model 1 than 4, further demonstrating that the GRACE data is able to provide additional 

constraint similar to the offshore GPS observation. In addition, the RMS and relative 

differences (equation 2.17) between the GRACE observation and these two slip model 

predictions are computed and the results are shown in Table 4.2, showing that GRACE is 

closer to Model 1 than Model 4, with an RMS of 1.5 and 1.6 µGal for gN, respectively.  

 

 gN Txx Txy Txz 
CSR solution RMS 3.08 µGal 0.18 mE 0.15 mE 0.23 mE 

CSR solution 
minus Model 1* 

RMS 1.5 µGal 0.078 mE 0.086 mE 0.118 mE 
Relative difference  47.75% 43.72% 57.94% 50.42% 

CSR solution 
minus Model 4§ 

RMS 1.6 µGal 0.093 mE 0.089 mE 0.131 mE 
Relative difference 53.11% 52.01% 60.19% 55.82% 

Table 4.2. RMS and relative differences between the GRACE observation and two slip 
models predictions. 
*Model 1 is the slip model [Wang et al. 2013] determined using both onshore and 
offshore GPS/Acoustic Network data 
§Model 4 is the slip model [Wang et al. 2013] determined using only onshore GPS data  

 

Our new approach can retrieve significantly more enhanced coseimic gravity change 

signals. We obtained a peak magnitude of –17.6±1.1 µGal (Figure 4.2a) for gN change, 

larger than previously published values, e.g., than the peak coseismic gD change of –7 

µGal estimated by Matsuo and Heki [2011], and than the peak gD change of –8.75±1.6 

µGal estimated by Wang et al. [2012b], even though the seismic gravity change of the 

component gD is always larger than the change of other two components, including gN 

change. Using an elaborate simulated annealing algorithm inversion scheme and the 

improved GRACE gravity and gravity gradient observations (gN, Txx, Txy, Txz), we 

demonstrated that GRACE data can provide a good constraint to fault seismic moment, 

fault width, especially for rake angle and centroid location. Our solution produces a 
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centroid location that is close to the latitude of GCMT solution and the longitude of 

USGS solution and gives a slip orientation that is about 50–100 clockwise from published 

GPS/seismic slip models. Compared to the two slip models given by Wang et al. [2013], 

our slip model is closer to Model 1 that is resolved using both onshore and offshore GPS 

data than Model 4 which used only onshore GPS data, indicating that GRACE data 

independently contain reliable signal over the offshore area. However, the question of 

how the systematic or stochastic error from GRACE data affect the resolved parameters 

need to be further studied. Nevertheless, our inverted fault model still has around 40% 

relative difference (39%, 27%, 52%, 40% for gN, Txx, Txy, Txz) using GRACE 

observations. This may be due to the fact that our uniform dislocation model is too simple 

to represent the actual fault mechanism, which is a subject for future studies.  

4.2 Inversion of point source parameters for recent large undersea earthquakes  

Previous studies [Han et al., 2011, 2013; Cambiotti & Sabadini, 2013; Dai et al., 2014] 

showed the constraint of GRACE data on centroid horizontal location and centroid depth. 

Here we propose to solve for all source parameters of a point source including centroid 

depth and location together with the seismic moment tensor, using the north component 

of gravity and gravity gradient change from GRACE data. The inversion approach is the 

least-squares adjustment method combined with the simulated annealing algorithm as 

discussed in section 2.3.1, with its precision evaluated in section 2.4. 

4.2.1 The 2004 Sumatra-Andaman and 2005 Nias earthquakes 

The 26 December 2004 Sumatra-Andaman (Mw 9.2) megathrust earthquake was the 

largest earthquake in the last 50 years, and it ruptured about 1500 km of the subduction 

zone along the India-Burma plate boundary. Three months later, the 28 March 2005 Nias 



79 

(Mw 8.6) earthquake ruptured about 300 km at the adjacent Australia-Sunda plate 

boundary. In this study, we evaluate the cumulative coseismic slip deformation for the 

two events from GRACE data, considering the short time difference between these two 

earthquakes. 

For the great 26 December 2004 Sumatra-Andaman earthquake, numerous studies have 

been conducted using seismic waves [Ammon et al., 2005; Lay et al., 2005; Park et al., 

2005; Stein and Okal, 2005], GPS data [Vigny et al., 2005; Banerjee et al., 2005, 2007], 

tsunami data [Tanioka et al., 2006; Fujii and Satake, 2007; Geist et al., 2007; Poisson et 

al., 2011], GRACE data [Han et al., 2006; de Linage et al., 2009; Wang et al., 2012c; 

Han et al., 2013], both seismic waves and GPS offsets [Rhie et al., 2007], and the 

combination of GPS data and vertical displacements from coral reefs and remote sensing 

optical images [Chlieh et al., 2007]. As pointed out by Chlieh et al. [2007], the source 

parameters are difficult to be constraint by teleseismic body waves due to the interference 

between direct and reflected waves caused by the long duration (about 515 second) of 

rupture. The moment magnitude, MW, a first-order characteristic of this earthquake, is 

poorly constrained by purely seismological methods, which ranges between 9 and 9.3 

[Ammon et al., 2005; Lay et al., 2005; Park et al., 2005; Stein and Okal, 2005]. Also, the 

seismic moment can be underestimated using the seismic waves with period too short to 

represent the rupture process [Lay et al., 2005]. The large misfit between the 

seismological slip model prediction and the near-field displacement measurements 

reveals the deficit of the slip distribution from seismological data without near-field 

geodetic data [Chlieh et al., 2007]. In addition, seismic data are inadequate for detecting 

aseismic slip and postseismic slip [Chlieh et al., 2007; Han et al., 2013]. For the 2004 
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Sumatra-Andaman earthquake, the aseismic slip, much larger than the total moment of 

aftershocks, dominates the postseismic deformation one month after the main shock. The 

former has the moment about 35% of the coseismic moment, and the later has moment 

less than 1% of the postseismic slip [Chlieh et al., 2007]. Although GPS data can 

overcome the inadequacy of seismological data in detecting slow/aseismic slip, they are 

limited by the spatial distribution of the GPS stations. Here we first compare GRACE 

measurements with the gravity change predicted from the slip model by Chlieh et al. 

[2007], then we solve for the fault parameters using GRACE-derived gravity and gravity 

gradient change. 

For the forward model prediction of gravity changes, we adopt the coseismic slip 

distribution model given by Chlieh et al. [2007] for the 2004 Sumatra-Andaman 

earthquake and the coseismic slip model by Konca et al. [2007] for the 2005 Nias 

earthquake, which is shown as the red image in Figure 4.14. The coseismic slip model 

(http://www.tectonics.caltech.edu/slip_history/2004_sumatra/update1/slipAceh_BSSA20

07) [Chlieh et al., 2007] contains three subsegments, starting from the south part of the 

India-Burma plate boundary and extending about 1500 km along the trench to northern 

Andaman Islands. The dip angle for these three subsegments are 12°, 15°, and 17.5° from 

south to north, which are approximated based on the seismicity-based slab contours 

[Ammon et al., 2005]. The slip patches are shallower near the trench, and go deeper along 

the dip direction (toward land). The slip model [Konca et al., 2007] for the 2005 Nias 

earthquake (http://www.tectonics.caltech.edu/slip_history/2005_sumatra/update2/static_o 

ut) is the red image near south Sumatra along the Australia-Sunda plate boundary. Slip 

distribution model given by Chlieh et al. [2007] are generated from near field geodetic 
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measurements and 39 far-field GPS measurements. The near field geodetic data are about 

100 km to 300 km away from the trench, including 23 campaign GPS measurements 

between 28 January and 19 February 2005, several GPS campaign measurements 

between September 2003 and February 2005, 12 GPS measurements between 11 and 22 

January 2005, vertical displacements of coral reefs on Simeulue Island about 50 km south 

of the epicenter on 17 and 18 January and 5 February, and vertical displacements from 

remote sensing optical images. These near field GPS measurements contain about 20 

days to 40 days of postseismic displacements, which are used to invert for the 30 days 

postseismic slip model.  

We adopt the earth model in [Chlieh et al., 2007] as shown in Table 4.3 and the earth 

model in [Konca et al., 2007] for the forward prediction of gravity and gravity gradient 

change corresponding to the coseismic slip model for the 2004 Sumatra-Andaman and 

the 2005 Nias earthquakes. The thickness of the ocean layer (1.8 km) is estimated as the 

mean value over the coseismic slip model from the bathymetry data in CRUST2.0 model. 

Since the provided slip patches’ depth is relative to the average elevation of the GPS 

stations, the depth is re-adjusted to be relative to the ocean floor according to equation 

(A.1) in appendix A. The down component of gravity change and vertical displacement 

are computed at a regular 0.1°N by 0.2°E grid on the ocean floor for the solid earth model 

using the software PSGRN/PSCMP. The surface density change caused by the change of 

ocean thickness responding to the vertical deformation is calculated using the 

methodology in section 2.1.1. The gravity change due to solid earth deformation and 

surface density change at ocean floor is then transformed to geopotential spherical 

harmonic coefficients up to degree 899. Next, the each component of gravity and gravity 
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gradient change is computed at a regular grid on Earth’s semi-major axis (6378.1363 km) 

instead of on ocean floor (with the radius as 6376.3 km, equation A.2), from the 

coefficients up to degree 65 to be commensurable with GRACE data. The effect of ocean 

response for gravity change is about 30% of that from solid earth. The gravity and gravity 

gradient change up to degree 65 using the procedure described above for each of the 

coseismic slip model by Chlieh et al. [2007] and Konca et al. [2007] are then summed 

together as shown in Figures 4.9~4.10.  

 

 

Table 4.3. Earth Model [Chlieh et al., 2007] 
 

For these giant megathrust earthquakes, we present the gravity and gravity gradient 

change estimated from the 137 high degree monthly solutions (up to degree 90) of GFZ 

RL05a NMAX 90 product from April 2002 to August 2014. CSR RL05 NMAX 96 

product are also used to study the coseismic gravity change using 138 monthly solutions 

from April 2002 to September 2014, but shows a worse model-data misfit compared to 

GFZ RL05a product. Four large earthquakes occurred in Sumatra and its nearby region in 

the last decade, including the 2004 Sumatra-Andaman (Mw 9.2) and 2005 Nias (Mw 8.6) 

earthquakes, the 2012 Indian Ocean earthquakes (Mw 8.6 and Mw 8.2), and the 2007 

Bengkulu earthquake (Mw8.5). Considering the overlap of the fault area, and three 

coseismic jumps are estimated simultaneously for time series at each grid point. The 2005 

Layer Vp (km/s) Vs (km/s) Density (kg/m3) Thickness (km) 

Ocean 1.5 0 1020 1.8 
Sediment 5 2.5 2600 1.7 

Upper Crust 6.6 3.65 2900 2.3 
Middle Crust 7.1 3.9 3050 2.5 
Lower Crust 8.08 4.473 3375.4 196 

Mantle 8.594 4.657 3446.5 - 



83 

Nias (Mw 8.6) earthquake is not separated from the 2004 Sumatra-Andaman (Mw 9.2) 

earthquake, due to the short time difference between these two events. 

Based on the localized spectral analysis, GFZ RL05a solutions are truncated to degree 65 

to retrieve gN, Txx, Txy, Txz (x, y, z, is north, west, up direction) time series as shown in 

Figure 4.7.  The uncertainties (blue shading) are standard deviations propagated from the 

formal error of each coefficient. We can see that gN significantly decreases by about 

34±1.4 µGal, which is by far the highest coseismic signal achievable by innovative 

GRACE data processing. For Txz, the increase is also substantial, about 2.5±0.13 mE. 

The localized degree variance [Wieczorek & Simons, 2005] is carried out using Slepian 

tapering window centered at the fault area. This localized spectra analysis can evaluate 

the signal and noise level of each component of gravity and gravity gradient change as a 

function of degree. We can see that the GRACE-observed gN change agrees well with the 

model prediction up until around degree 70, although the amplitude is slightly larger than 

the model prediction. Same for the gravity gradient change, GRACE-observed value is 

larger than the model prediction but has good agreement until around degree 65. Above 

degree 65, the GRACE data is much higher than the model prediction, which we interpret 

as noise. While, the degree variance of GRACE-observed gE and gD change (Figure 4.8a) 

increases starting from degrees as low as 30, indicating that degrees higher than that are 

dominated by noise. We can also see that both gravity gradient and gravity change 

induced by earthquakes have higher power for the higher degrees. One other important 

application of this localized spectra analysis is that it is an efficient method to guide the 

choice of practical degree truncation. As shown in Figure 4.8, the degree variance for gN 

change keeps in good agreement with the model prediction until around degree 70, so we 
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choose to discard the spherical harmonic coefficients above degree 65, based on 

additional comparison in spatial domain.  

For the GRACE-derived gN change, the overall positive-negative-positive pattern over 

the Aceh region and surrounding ocean is consistent with the slip model prediction. The 

maximum gN change is –34±1.4 µGal at 95°E, 4.05°N, almost twice of the model 

prediction at the same point, –19.4 µGal. GRACE-derived gN change is larger than the 

model prediction mainly due to the small shear modulus value (30 GPa) applied in our 

forward prediction, which underestimate the moment by about half as discussed later. In 

addition, the orientation of the GRACE-observed pattern rotates slightly anticlockwise 

with respect to the model-predicted gN change, which explains the 8° smaller slip azimuth 

estimated by GRACE data compared to the model prediction as shown later. However, 

the GRACE-derived gE (Figure 4.9b) and gD (Figure 4.9c) change is contaminated by the 

stripe noise. Coincide with gN change, the GRACE-derived gravity gradient change 

(Figure 4.10), Txx, Txy, Txz also matches well with the model prediction, with slightly 

anticlockwise rotated spatial orientation. The magnitude is larger than the model 

prediction as well due to the smaller shear modulus, for example, the peak value of Txz is 

at 94.8°E, 4.15°N, 2.53±0.13 mE, larger than the model-predicted Txz, 1.36 mE. We also 

use the CSR RL05 NMAX 60 product to retrieve the gravity and gravity gradient change 

from 137 monthly solutions from April 2002 to September 2014. We can see that gravity 

and gravity gradient change (Figures 4.11~4.13) agrees well with the model prediction, 

even the down component of gravity change has good agreement with model prediction. 
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Figure 4.7. Time series of gN, Txz at 95°E 4.05°N.  
Blue lines are the gN (top), Txz (bottom) disturbance generated from 137 monthly GFZ 
RL05a gravity field solutions up to degree 65 from April 2002 to August 2014. The blue 
shadings are standard deviations propagated from the formal error of each coefficient. 
The red lines are the fitted value using linear trend, periods, and Heaviside step functions. 
 

4.05%N%95%E%
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Figure 4.8. Comparison in the spectral domain.  
The localized degree variance as a function of spherical harmonic degree is shown for the 
observed and model-predicted gN, gE, gD change (a), and Txx, Txy, Txz change (b) up to 
degree 90. 
 

 

Figure 4.9. Comparison of GRACE-observed and model-predicted coseismic gravity 
changes up to degree 65 from GFZ RL05a product.  
(a) ~ (c): GRACE-observed gN (a), gE (b), gD (c) change. (d) ~ (f): seismic-model-
predicted gN (d), gE (e), gD (f) change. The black star is the GCMT centroid (94.26°E, 
3.09°N).  
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Figure 4.10. Comparison of GRACE-produced and model-predicted gravity gradient 
change up to degree 65 from GFZ RL05a product.  
(a) ~ (c): GRACE-produced Txx (a), Txy (b), Txz (c) change. (d) ~ (f): seismic-model-
predicted Txx (d), Txy (e), Txz (f) change. The black star is the GCMT centroid. 
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Figure 4.11. Comparison in the spectral domain for CSR RL05 NMAX 60 solution 
results.  
(a) the localized degree variance as a function of spherical harmonic degree for the 
observed and model-predicted gN, gE, gD change. (b) the localized degree variance for the 
observed and model-predicted Txx, Txy, Txz change. 
 

 

Figure 4.12. Comparison of GRACE-observed and model-predicted coseismic gravity 
changes up to degree 60 from CSR RL05 NMAX 60 product.  
(a) ~ (c): GRACE-observed gN (a), gE (b), gD (c) change. (d) ~ (f): seismic-model-
predicted gN (d), gE (e), gD (f) change. The black star is the GCMT centroid.  
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Figure 4.13. Comparison of GRACE-produced and model-predicted gravity gradient 
change up to degree 60 from CSR RL05 NMAX 60 product.  
(a) ~ (c): GRACE-produced Txx (a), Txy (b), Txz (c) change. (d) ~ (f): seismic-model-
predicted Txx (d), Txy (e), Txz (f) change. The black star is the GCMT centroid. 
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The estimated location (red star in Figure 4.14) is remarkably close to the GCMT 

solution (black star, http://www.globalcmt.org/). It is west of the USGS CMT 

(http://comcat.cr.usgs.gov/earthquakes/eventpage/official20041226005853450_30#scient

ific_summary, green beach ball), and south of the cumulative coseismic slip models (blue 

beach ball) [Chlieh et al., 2007; Konca et al., 2007]. Poisson et al. [2011] demonstrate 

that the best model that reproduces the tsunami data among five published slip models is 

the slip model in [Rhie et al., 2007], which has the peak slip at south of Nicobar Island, 

close to our centroid location. The northward of the centroid location (blue beach ball) by 

[Chlieh et al., 2007] may be caused by the constraint from the larger amplitude of GPS 

measurements in the north part around Nicobar Island and Andaman Island [Ammon et 

al., 2005; Chlieh et al., 2007]. On the other hand, for the coseismic slip model [Chlieh et 

al., 2007], the fault geometry of the three segments are fixed to the presumed values, 

which are based on the geometry of the India-Burma plate interface, i.e. strike angles are 

approximated according to the direction of the local trench, and dip angles are 

approximated based on seismicity-based slab contours [Ammon et al., 2005]. The source 

parameters that are actually constrained by the geodetic data are rake angle, seismic 

moment, and centroid location. Although the centroid location is estimated from the 

distribution of slip on each fault patch, it’s still constrained to some extent by the 

presumed fault location [Lay et al., 2010]. 

Our estimated centroid depth (9.1 km) is much shallower than the depth (28.6 km) 

resolved using seismic data (GCMT and USGS CMT) and the depth (28.3 km) from 

geodetic data [Chlieh et al., 2007; Konca et al., 2007]. The underestimation of slip at the 

updip direction and overestimation of slip at downdip direction (closer to measurements) 
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from the checkerboard test [Chlieh et al., 2007], might explain the deeper centroid by 

geodetic data compared to our solution by GRACE data. In addition, the shallow region 

near trench sediments is thought to accommodate relative plate motions aseismically, as 

pointed out by Lay et al. [2012]. Hence, the aseismic afterslip, which releases the 

moment about 35% of the coseismic moment [Chlieh et al., 2007], might occur at the 

shallow region, contributing toward a shallower centroid depth. Finally, the GRACE-

solved location is closer to the trench, which indicates a shallow source. 

Our estimated centroid moment tensor, with the moment of 6.09×1022 Nm, is the total of 

the coseismic slip of the 2004 Sumatra-Andaman earthquake, the aseismic afterslip and 

postseismic slip over the following three months, and coseismic slip of the 2005 Nias 

earthquake. The estimated moment is smaller than the sum (10.37×1022 Nm) of the 

coseismic moment 6.93×1022 Nm, one-month postseismic moment 2.44×1022 Nm by 

[Chlieh et al., 2007], and the coseismic moment 1.0×1022 Nm [Konca et al., 2007] for the 

2005 Nias earthquake. However, considering the strong dip dependence of moment 

estimates, and the fact that the quantity M0 sin 2δ is better constrained than each of M0 

and dip angle (δ) [Kanamori and Given, 1981], the total moment by Chlieh et al. [2007] 

and Konca et al. [2007] corresponds to 5.4×1022 Nm for dip angle of 32°, which is closer 

to our estimated M0. It is also larger than the cumulative seismic moment (5.01×1022 Nm) 

for the two events by GCMT and USGS CMT. One point to mention is that in Table 4.4, 

the calculated moment by equation (C.1) shown in parenthesis is only about half of the 

total of the two published moments by Chlieh et al. [2007] and Konca et al. [2007]. The 

reason for the underestimation is that our forward modeling software PSGRN/PSCMP 

adopts a constant shear modulus, µ, as 30 GPa, for the calculation of seismic moment, 
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which is smaller than the value used in their evaluation. The value published by Chlieh et 

al. [2007] and Konca et al. [2007] should be used for comparing the estimated seismic 

moment between different solutions; while our underestimated M0 for their slip model 

explains the smaller magnitude of model prediction for the spatial and spectral 

comparison. 

Dip angle is another important source parameter since the estimation of moment has a 

strong dependence on dip [Banerjee et al., 2005; Rhie et al., 2007; Han et al., 2011]. The 

sensitivity test by Rhie et al. [2007] shows the dip angle is not well resolved using the 

long-period teleseismic data and near-field GPS displacements. Our estimated dip angle 

is 32° (Table 4.4), larger than the mean value (14°) of cumulative coseismic slip models 

by Chlieh et al. [2007] and Konca et al. [2007]. Nevertheless our dip angle is close to the 

dip angles in [Banerjee et al., 2005, 2007] using far-field GPS displacements, which 

adopt dip angle as 35° for the deeper portion of the segments (30-50 km) based on the dip 

angles of after shocks and 11° to 18° for the shallow portion of the segments (0-30 km). 

In addition, Banerjee et al. [2005] also show the better model-data fit with the larger dip 

angle compared to that with the smaller dip angle. Our slip azimuth (equation 4.1) is 

about 8° clockwise of the GCMT and USGS CMT solution, and 8° anticlockwise of the 

cumulative slip distribution models by Chlieh et al. [2007] and Konca et al. [2007]. The 

fact that the slip azimuth estimated by GRACE data is 8° smaller than that by the 

cumulative slip models, is evident by the slightly rotated spatial pattern of the GRACE 

observed gravity and gravity gradient change. The strong correlation between strike and 

rake angle (Table 4.5) is consistent with the trade-off between these two angles as 

discussed in the sensitivity test. Han et al. [2013] explained that only the difference 
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between strike and rake angle could be better constrained for low-dip earthquakes, since 

the two dominant moment tensor components can be approximated to 

Mxz ≈ −M0 cos φs −λ( ) , Myz ≈ M0 sin λ −φs( ) , when the dip angle is small, which shows 

that the strike angle, , and rake angle, , are tightly coupled. 

 

Model 
name 

Data Sources Centroid Strike 
(°) 

Dip 
(°)  

Rake 
(°) 

M0 in  
1022 Nm Location Depth 

Cumulative 
model  
(Chlieh et 
al., 2007; 
Konca et 
al., 2007) 

GPS, coral uplift 
and uplift from 
satellite images. 
GPS, coral uplift, 
teleseismic data 

Blue beach 
ball 

28.3 
km 

340 14 104 6.93 
+1.0  
(3.76) 

GCMT Long-period 
mantle waves  

Black star 
and beach 
ball 

28.6 
km 

329 8 110 3.96 
+1.05  

USGS 
CMT 

Seismic data Green beach 
ball 

28.6 
km 

329 8 109 3.96 
+1.05  

This study GRZ RL05a Red star and 
beach ball 

9.1 km 339±0.1 32±0.05 111±0.2 6.09±0.01 

Table 4.4. Comparison of Source Parameters. 
The additional seismic moment M0 in Orange color is for the 2005 Nias earthquake 
(http://comcat.cr.usgs.gov/earthquakes/eventpage/centennial20050328160937#scientific_
moment-tensor). The M0 in parenthesis, 3.76 ×1022 Nm, is our estimated value from the 
slip models given by Chlieh et al. [2007] and Konca et al. [2007], which is smaller than 
the sum of the two published moments for the same slip models.  
 

 

Table 4.5. The correlation between parameters 
 

φs λ

 Strike Dip Rake M0 
Strike 1 0.4 1 –0.4 
Dip 0.4 1 0.5 –0.4 

Rake 1 0.5 1 –0.6 
M0 –0.4 –0.4 –0.6 1 
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Figure 4.14. Comparison of centroid moment tensor solutions.  
The blue slip contours are for the cumulative slip distribution models (red 2D image) 
[Chlieh et al., 2007; Konca et al., 2007] on the fault plane. The red image along the 
India-Burma plate boundary is for the slip model by Chlieh et al. [2007] for the 2004 
Sumatra-Andaman earthquake, and the red 2D map along the Australia-Sunda plate 
boundary is for the slip model [Konca et al., 2007] of the 2005 Nias earthquake. The blue 
beach ball represents the centroid location and moment tensor estimated from the 
cumulative slip distribution models. The GCMT solution is denoted as the black beach 
ball, with location at the black star. Green beach ball represents USGS CMT solution and 
location. Red beach ball is CMT solution from GRACE data, with the location at the red 
star (94.20°E, 3.00°N, 9.1 km). The thick black line is the plate boundary, with black 
triangular representing the subduction zone. 
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4.2.2 The 2011 Tohoku earthquake 

For the 11 March 2011 Tohoku earthquake (Mw 9.0), we use the GRACE-derived north 

component of gravity and gravity gradient change presented in Chapter 3 from CSR 

RL05 NMAX 96 product to solve for the centroid moment tensor of the earthquake 

source. As shown, the GRACE-observed gN, Txx, Txy, Txz (x, y, z, is north, west, up 

direction) change can be retrieved up to degree 70, which is by far the highest degree of 

coseismic signal achievable by GRACE. Here we show the source parameters inverted 

using the GRACE-observed gN, Txx, Txy, Txz change data. 

The estimated centroid location and CMT from this high degree L2 product are basically 

consistent with the finite fault parameters (denoted as solution 1) inverted using GRACE 

CSR RL05 NMAX 60 product as shown in section 4.1.2. The location is at 142.2°E, 

37.65°N (red beach ball in Figure 4.15), only 13 km away from the centroid location of 

solution 1 within the error range. The consistency of the two solutions demonstrates the 

coherence of the two GRACE products, as well as the coherence of the finite fault 

modeling and the centroid moment tensor modeling. As discussed in section 4.1.2, the 

GRACE-estimated centroid location is almost parallel in latitude with the GCMT 

centroid, and about 30 km west of the USGS CMT centroid. Regards to its distance to the 

coast, GRACE-estimated centroid is in between the location estimated by GPS data only 

[Ozawa et al., 2011] and the location (blue beach ball) estimated by the combined 

seismic waves data and on-land/offshore GPS data [Wei et al., 2012]. The GRACE-

estimated depth (16 km) agrees well with the centroid depth (18 km) by combined 

seismic data and GPS data [Wei et al., 2012], as well as the centroid depth (17 km) 

constrained by GRACE KBR data [Han et al., 2011].  



96 

The GRACE-estimated seismic moment, (4.03±0.01)×1022 Nm, is slightly smaller than 

the published results. The GRACE-estimated dip angle (12±0.1°) agrees incredibly well 

with the published results, with difference less than 2 degrees. Although the strike 

(236±0.5°) and rake angle (113±0.5°) are about 30 degrees larger than the angles inverted 

from the finite fault model that fixed the strike angle at 201°, considering the strong 

correlation between the strike and rake angle (Table 4.6), our slip azimuth (123°) is 

almost the same with the slip azimuth (124°) inverted by solution 1. This slip azimuth is 

consistent with the earlier conclusion that the GRACE-inverted slip direction is about 10° 

clockwise from that inverted by GPS and seismic waves data [Wei et al., 2012], only 

about 3° clockwise from the USGS CMT slip direction. Furthermore, this clockwise 

rotation of the slip direction is validated by another satellite gravity gradiometry-GOCE 

measurements [Fuchs et al., 2013]. 

 

 

Table 4.6. The correlation between parameters for SA inversion. 
 

 Strike Dip Rake M0 
Strike 1 0.4 1 0 
Dip 0.4 1 0.2 0.1 

Rake 1 0.2 1 0.1 
M0 0 0.1 0.1 1 
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Figure 4.15. Comparison of centroid moment tensor solutions.  
The red image overlapped on the topography/bathymetry along the trench is for the 
cumulative coseismic and postseismic (March 2011) slip model [Wei et al., 2012; Ozawa 
et al., 2011], with contours represented by the blue lines and CMT denoted by the blue 
beach ball. Red beach ball is CMT solution from GRACE data (CSR RL05 NMAX 96 
product), located at 142.2°E, 37.65°N, with depth as 16 km. Other markings are the same 
as in Figure 4.14. 
 

4.2.3 The 2010 Maule, Chile earthquake 

The 27 February 2010 Maule, Chile (Mw 8.8) earthquake ruptured about 500 km along 

Nazca-South American plate boundary, with the Nazca oceanic crust subducting under 

the continent of the South American plate to the east direction. The gN change would be 
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real case of east-west slip earthquake. The coseismic gravity and gravity gradient change 

up to degree 60 are retrieved using 137 monthly solutions from CSR RL05 product from 

April 2002 to September 2014, excluding the solution for month February 2010.  

For the forward model prediction, we start from the USGS finite fault model by Hayes 

[2010] (http://on.doi.gov/yVUcUQ), shown as the red image overlapped on top of the 

local topography/bathymetry in Figure 4.20. We retrieve the 1-D velocity model by the 

average of the velocity model over the fault area from CRUST 2.0 model. The average 

thickness of ocean over the fault plane is 1.3267 km. The provided fault patches’ depth is 

re-adjusted to be relative to the ocean floor by subtracting the ocean thickness from the 

depth. The upward continuation of the gravity change from ocean floor (with the radius 

of 6369.4049 m) to Earth’s semi-major axis is considered. The difference of the gravity 

evaluated on ocean floor or on Earth’s semi-major axis can be large for some earthquakes 

as shown in section 2.1.1, especially when the geocentric distance of the ocean floor over 

the fault area is much smaller than the Earth’s semi-major axis, but it’s not discussed in 

many researches [Han et al., 2006; Matsuo & Heki, 2011; Cambiotti and Sabadini, 2012; 

Wang et al., 2012b]. The effect of ocean response for gravity change is significant, about 

60% of that from solid earth. The gravity and gravity gradient change up to degree 60 

corresponding to the finite slip model [Hayes, 2010] are then computed as shown in 

Figures 4.18~4.19. 
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Layer Vp [km/s] Vs [km/s] Density [kg/m3] Thickness [km] 
Ocean 1.5 0 1020 1.3267 

Sediment 2.2836 1.0898 2092.9 0.7466 
Upper Crust 5.9555 3.3835 2696.3 8.5878 
Middle Crust 6.5466 3.6977 2887.0 9.3678 
Lower Crust 7.1671 3.9668 3083.9 8.9389 

Mantle 8.1622 4.6764 3394.7 - 
Table 4.7. Earth Model from CRUST 2.0 
 

The time series of gravity and gravity gradient disturbance are fitted with periodicities, 

linear trend, and the coseismic jump. A posteriori variance of unit weight for each 

spherical harmonic coefficient is first estimated by fitting the coefficient time series of 

the CSR RL05 monthly solution with linear trend and periodicities. Then, the 

uncertainties for gravity and gravity gradient disturbance on each grid point are estimated 

through error propagation, shown as the blue shadings in Figure 4.16. We can see that the 

coseismic jump is substantial, with gN increasing by 10.6±1.3 µGal, and Txz decreasing 

by 0.74±0.11 mE.  

The localized degree variance demonstrates the signal and noise level of gravity and 

gravity gradient change. As shown in Figure 4.17a, the GRACE-observed gN change 

agrees with the model prediction with slightly larger magnitude, but the gE and gD change 

goes much higher than the model prediction indicating it’s dominated by noise, 

confirmed as the stripes (Figure 4.18 b~c) in spatial comparison. For the north 

component of gravity gradient change, they also agree well with the model prediction. 

Again, the model-predicted north component of gravity and gravity gradient change 

shows that the degree variance is larger for higher degrees, showing the high frequency 

characteristics of the coseismic gravity change. For the GRACE-derived gN change, the 

quadruple spatial pattern is consistent with the model prediction. The peak gN change is 



100 

10.6±1.3 µGal at 69.4°W 32.45°S as is shown in Figure 4.18a, slightly larger than the 

predicted value, 7.2 µGal. The north component of gravity gradient change (Figure 4.19) 

also match well with the model prediction, with peak value of Txz as –0.75±0.11 mE at 

69.4°W 32.65°S, slightly larger than the model prediction, –0.51mE.  

 

 

Figure 4.16. Time series at 69.4°W 32.45°S.  
Blue lines are the gN (top), Txz (bottom) disturbance generated from 137 monthly CSR 
RL05 solutions up to degree 60 from April 2002 to September 2014. The blue shadings 
are uncertainties propagated from the estimated a posteriori variance of unit weight for 
each coefficient. The red lines are the fitted value using linear trend, periods, and 
Heaviside step functions. 
 

69.4°W'32.45°S'
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Figure 4.17. Comparison in the spectral domain.  
The localized degree variance as a function of spherical harmonic degree is shown 
for the observed and model-predicted gN, gE, gD change (a), and Txx, Txy, Txz change 
(b). 
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Figure 4.18. Comparison of GRACE-observed and model-predicted coseismic gravity 
changes up to degree 60 from CSR RL05 product.  
(a) ~ (c): GRACE-observed gN (a), gE (b), gD (c) change. (d) ~ (f): seismic-model-
predicted gN (d), gE (e), gD (f) change. The black star is the GCMT centroid (73.15°W, 
35.98°S).  
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Figure 4.19. Comparison of GRACE-produced and model-predicted gravity gradient 
change up to degree 60 from CSR RL05 product.  
(a) ~ (c): GRACE-produced Txx (a), Txy (b), Txz (c) change. (d) ~ (f): seismic-model-
predicted Txx (d), Txy (e), Txz (f) change. The black star is the GCMT centroid. 
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rake, 112°), which leads to the ratio of gN over gD as small as 0.39. The peak value of 

GRACE observed gN for the 2010 Maule, Chile earthquake is 10.6±1.3 µGal 

(Figure 4.18a), at 69.4°W, 32.45°S, slightly greater than model prediction, 7.2 µGal 

(Figure 4.18d). Even for this adverse case, the GRACE-derived gN change still has 

slightly larger magnitude than the peak gD change of –8.0 µGal from GRACE data [Wang 

et al., 2012a], due to the smoothing filter applied for gD to reduce stripes. Nevertheless, 

the ratio of gN over gD may get further smaller for the east-west slip cases with different 

dip angles. 

 

Dip angle (°) Strike angle (°) Rake angle (°) gN/gD 
9 270 90 0.97 
9 0 90 0.35 
90 200 90 0.37 

Table 4.8. Comparison of gN/gD for three special cases. 
Other fault parameters: fault length 600 km, fault width 300 km, depth 5 km, and slip 2 
m. 
 

GRACE-solved centroid location (73.4°W, 35.2°S, red star in Figure 4.20) using CSR 

RL05 product is northwest of the centroid solved by other data sets [Hayes, 2010; Vigny 

et al., 2011]. For example, it is about 40 km north and 50 km west of the centroid 

location (blue beach ball) by Hayes [2010] from broadband seismic waves, and it is about 

20 km west and 80 km north of the GCMT centroid (black beach ball). To check the 

uncertainty on solved source parameters caused by different GRACE L2 data processing, 

another two L2 products, the latest JPL RL05.1 and GFZ RL05a data products, are also 

used for the inversion. Both products are truncated at degree 50 to reduce the noise at 

high degrees. We can see that the GRACE-solved CMT locations by CSR RL05 and JPL 

RL05.1 products are almost identical to each other, which can be explained by the fact 
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that the two data products are solved using similar background models and data 

processing strategies. While the GFZ RL05a product produce a location about 50 km 

north and 50 km east of that by the CSR RL05 product. The discrepancy on the locations 

by three data products can to an extent represent the uncertainty of the centroid location 

inverted from GRACE data. Nevertheless, for this earthquake, GFZ RL05a data product 

shows a relatively worse noise level on the gravity and gravity gradient change (figures 

not shown), which is also shown by its worse RMS (e.g. 1.0 µGal for gN) of data-model 

differences compared to the RMS (0.93 µGal for gN) by the JPL RL05.1 product, where 

the model is the GRACE-inverted CMT solution using each data product. 

GRACE-estimated depth (20.7 km) by the three L2 data products are the same, which 

indicates its small uncertainty. This GRACE-estimated depth is consistent with the 

published depths from geodetic data [Vigny et al., 2011; Pollitz et al., 2011a], which 

show major slip locates at the the shallow depth (<25 km). It is also close to the depth 

from seismic waves data by GCMT. Though, the depth of the highest slip in [Lorito et 

al., 2011] is deeper around 25–40 km, coherent with the downdip location of the peak 

slip. The shallow slip given by GRACE and GPS data [Vigny et al., 2011] is in 

consistency with the generation of a strong tsunami and the numerous aftershocks near 

the trench. Koper et al. [2012] state that there is nearly no relative depth resolution from 

teleseismic arrival times for a shallow-dipping fault; hence they fix the depth during the 

inversion. 

GRACE-resolved seismic moment, (2.17~2.6)×1022 Nm, is very close to the M0, 

2.39×1022 Nm, by Hayes [2010]. But it’s slightly larger than the M0, (1.55~1.97)×1022 

Nm, in [Lorito et al., 2011; Pollitz et al., 2011a; Vigny et al., 2011], as well as that by 
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GCMT and USGS CMT. Nevertheless, GRACE-resolved dip angle (25~26°) is about 8° 

larger than the average value (18°) of dip angle by seismic waves and that by geodetic 

data [Pollitz et al., 2011a]. The azimuth of slip direction from CSR RL05 and JPL 

RL05.1 products is close to that in [Hayes, 2010] and that by USGS CMT, while the slip 

azimuth from GFZ RL05a is about 10° different. As a trial, we also solve for the CMT 

parameters with location and depth fixed at the GCMT solution. By fixing the centroid 

location, the estimated slip azimuth is 13° anticlockwise of that in [Hayes, 2010], leading 

to a worse relative difference, 59.5%, compared to the 53.9% from the SA inversion. This 

test shows that an inaccurate presumed location may affect the solution for the CMT 

parameters. 

 

Model 
name 

Data 
Sources 

Centroid Strike 
(°) 

Dip 
(°) 

Rake 
(°) 

Slip 
azimuth 

(°) 

M0 in 
1022 Nm Location Depth 

Hayes, 
2010 

Seismic 
waves 

Blue beach 
ball 

28.2 
km 

17 18 107 –91 2.39 
(1.22) 

GCMT Seismic 
waves 

Black 
beach ball 

23.2 
km 

19 18 116 –98 1.86 

USGS 
CMT 

Seismic 
waves 

Green 
beach ball 

30.0 
km 

14 19 104 –91 1.81 

This 
study 

CSR 
RL05 

Red star 
and beach 

ball 

20.7 
km 

9±0.2 26±0.06 99±0.1 –91 2.17±0.006 

This 
study 

CSR 
RL05 

Fixed at 
GCMT 

- 346±0.2 25±0.07 90±0.2 –104 1.62±0.005 

This 
study 

JPL 
RL05.1 

Yellow 
star and 

beach ball 

20.7 
km 

18 26 105 -89 2.6 

This 
study 

GFZ 
RL05a 

Magenta 
beach ball 

20.7 
km 

27 25 106 -81 2.25 

Table 4.9. Comparison of Source Parameters. 
The M0 in parenthesis, 1.22 ×1022 Nm, is our estimated value from the slip models given 
by Hayes [2010], which is smaller than the published moment for the same slip models 
due to the smaller shear modulus adopted in our forward modeling software. 
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Figure 4.20. Comparison of centroid moment tensor solutions.  
The red image overlapped on the topography/bathymetry along the Nazca/South 
American plate boundary is for the slip model by Hayes [2010], with contours 
represented by the blue lines and CMT denoted by the blue beach ball. Red beach ball is 
CMT solution from GRACE CSR RL05 product, located at 73.4°W, 35.2°S (red star), 
with depth as 20.7 km. Yellow star is the location (73.4°W, 35.1°S, 20.7km) of CMT 
solution (yellow beach ball) from GRACE JPL RL05.1 product, which is almost 
overlapped by the red star since they are only about 4 km apart. Magenta beach ball is the 
CMT solution from GRACE GFZ RL05a data product, located at 72.8°W, 34.6°S, with 
depth as 20.7 km. Other markings are the same as in Figure 4.14. USGS CMT (green 
beach ball) is from http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010tfan/ 
neic_tfan_cmt.php. 
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 Strike Dip Rake M0 
Strike 1 0 0.9 –0.2 
Dip 0 1 –0.1 0.6 

Rake 0.9 –0.1 1 –0.2 
M0 –0.2 0.6 –0.2 1 

Table 4.10. The correlation between parameters for SA inversion using CSR RL05 data 
 

4.2.4 The 2012 Indian Ocean earthquakes 

The 11 April 2012 Indian Ocean (Mw 8.6 and Mw 8.2) earthquakes ruptured within the 

Indian Oceanic plate near the India-Australia plate boundary off the west coast of 

northern Sumatra. These strike-slip earthquakes occurred in the diffuse deformation zone 

at the India-Australia plate boundary are consistent with the tectonic activities over this 

region [McGuire and Beroza, 2012]. The Australia plate is moving faster northward 

subducting under the Sunda trench; while the India plate is moving northward at slower 

rate resisted by the Himalayan front. This differential movement rate of about 1cm/year 

along south-north direction results in the detachment of the Australia plate from the India 

plate [Delescluse et al., 2012]. The mainshock of Mw 8.6 is the largest strike-slip 

earthquake on record [Delescluse et al., 2012; McGuire and Beroza, 2012; Meng et al., 

2012; Royer, 2012; Yue et al., 2012], and the aftershock occurred just two hours later 

with the magnitude of Mw 8.2. These large intraplate strike-slip earthquakes raise debates 

about the depth for strike-slip faulting [McGuire and Beroza, 2012; Meng et al., 2012], as 

well as discussions on whether it is dominated by east-west right-lateral slips [Meng et 

al., 2012; Yue et al., 2012; Yadav et al., 2013] or meridian-aligned left-lateral slips 

[Delescluse et al., 2012; Shao et al., 2012].  

Because of its remote offshore location, the geodetic constraints on the static fault 

geometry are limited [Meng et al., 2012]; thus only seismological data are used to invert 
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for the focal mechanisms. Although there are some remote GPS stations accessible at 

about 500-1200 km north of faults, they are only used for the detection of coseismic 

displacements and validation of the slip model by seismic data [Yadav et al., 2013]. 

Hence, GRACE data become an important source of independent constraint on the 

coseismic static deformation. Although the gravity change for vertical strike-slip 

earthquakes is expected to be small, we show that the coseismic gravity change from 

GRACE is still considerable, up to –5.7±0.7 µGal for gN and 0.26±0.03 mE for Txz. In 

this section, we present the source parameters resolved from the coseismic gN, Txx, Txy, 

Txz change derived from CSR RL05 monthly geopotential solutions. 

Three products are used to estimate the coseismic gravity and gravity gradient change. 

The first product is generated by Shang et al. [2015] using the improved energy integral 

approach [Guo et al., 2015; Shang et al., 2015], denoted as OSU product, which includes 

124 monthly solutions from January 2003 to December 2013. The second product is the 

137 monthly solutions from CSR RL05 NMAX 60 product from April 2002 to 

September 2014. The third product is 137 monthly solutions from GFZ RL05a NMAX 90 

product from April 2002 to August 2014. All solutions are truncated to degree 40 based 

on the localized spectral analysis and the signal’s spatial pattern. The RMS of the 

difference between GRACE-estimated gN, Txx, Txy, Txz and model prediction are 

evaluated as shown in Table 4.12, where the model is the GRACE-inverted CMT 

solution using each data product, with centroid location fixed at GCMT solution. It shows 

that GFZ RL05a gives the worst RMS, while the CSR RL05 and OSU product produce 

the similar small RMS. In addition, we try the case of estimating only two coseismic 

jumps for CSR RL05 product and neglecting the jump at the 2007 Bengkulu earthquake, 
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since the 2007 Bengkulu earthquake has smaller seismic moment and its fault area is 

relatively further apart. However the RMS of this case is shown to be slightly worse than 

the case of considering the three coseismic jumps simultaneously. Here, we choose to 

show the results for the CSR RL05 product using least-squares adjustment for three 

coseismic jumps. 

The cumulative slip model composed of the complex four-fault slip model by Yue et al. 

[2012] for the Mw 8.6 mainshock and the GCMT solution of the Mw 8.2 aftershock are 

adopted to predict the gravity and gravity gradient change. Since Yue et al.’s slip model 

(http://equake-rc.info/media/srcmod/_fsp_files/s2012SUMATR01YUEx.fsp) gives 

coordinates for top-center of each subfault, it is necessary to be converted to the left top 

point of each patch [Freymueller et al., 2014] to be consistent with the forward modeling 

PSGRN/PSCMP software. The 1-D velocity model is interpolated by estimating the mean 

velocity model from CRUST 2.0 model over the fault area. The average ocean thickness 

over the fault area is 4.0 km. The upward continuation of gravity change from ocean floor 

(with the radius as 6374085.221 m) to Earth’s semi-major axis is considered. The effect 

of ocean response for gravity change is significant, the same magnitude of that from solid 

earth. The gravity and gravity gradient up to degree 40 corresponding to the finite slip 

model [Yue et al., 2012] are then computed. 
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Layer Vp [km/s] Vs [km/s] Density [kg/m3] Thickness [km] 
Ocean 1.5 0 1020 4.0156 

Soft sediment 2.24 1.07 2169 1.2878 
Hard sediment 3.2 1.6 2300 0.3171 
Upper Crust 5 2.5 2600 1.7 
Middle Crust 6.6 3.65 2900 2.3 
Lower Crust 7.1 3.9 3050 2.5 

Mantle 8.15 4.65 3350 - 
Table 4.11. Earth Model from CRUST 2.0. 
 

RMS of the residual gN ( µGal)  Txx (mE) Txy (mE) Txz (mE) 

OSU  0.77 0.024 0.017 0.030 

CSR RL05 0.76 0.024 0.017 0.032 

CSR RL05* 0.88 0.030 0.018 0.037 

GFZ RL05a 1.01 0.028 0.023 0.037 

Table 4.12. Comparison of different GRACE products. 
CSR RL05* use the CSR RL05 product, but different fitting model for the time series. 
Instead of estimating three coseismic jumps like the other three cases, this case only 
estimate two jumps corresponding to the 2004 Sumatra-Andaman and 2005 Nias 
earthquakes and the 2012 Indian Ocean earthquakes.  
 

The localized spectral analysis is first carried out to evaluate the signal and noise level of 

GRACE-derived gravity and gravity gradient change. As shown in Figure 4.22, the 

GRACE-observed gN, Txx, Txz change agrees well with the model prediction with 

slightly larger amplitude up to degree 55. While the localized degree variance of Txy 

change goes up since degree 45 and that for gE and gD change goes straight up since 

around degree 25. Guided by the localized spectral comparison, we use only the north 

component of gravity and gravity gradient change up to degree 40 to study the coseismic 

signal.  
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As shown the Figure 4.23, the GRACE-derived gN change agrees well with the 

cumulative slip model prediction in spatial pattern and signal magnitude. The peak gN 

change is at 88.4°E, 3.45°N about –5.7±0.7 µGal (Figure 4.23a), slightly larger to the 

model prediction at the same location, –3.7 µGal. The smaller magnitude for the model 

prediction is consistent with the smaller seismic moment M0 (9.53×1021 Nm) compared to 

the GRACE-resolved M0 (10.13×1021 Nm). Similar characteristic goes to the north 

component of gravity gradient change, which is up to 0.26±0.03 mE at 88.6°E, 3.35°N 

for Txz, slightly larger than the model-predicted 0.18 mE. All three components of the 

north component of gravity gradient change have the comparable spatial pattern with the 

slip model prediction.  
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Figure 4.21. Time series of gN, Txz at 88.4°E 3.45°N.  
Blue lines are the gN (top), Txz (bottom) disturbance generated from 137 monthly CSR 
RL05 solutions up to degree 40 from April 2002 to September 2014. The blue shadings 
are uncertainties propagated from the estimated a posteriori variance of unit weight for 
each coefficient. The red lines are the fitted value using linear trend, periods, and 
Heaviside step functions. 
 

 

Figure 4.22. Comparison in the spectral domain.  
The localized degree variance as a function of spherical harmonic degree is shown 
for the observed and model-predicted gN, gE, gD change (a), and Txx, Txy, Txz change 
(b). 
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Figure 4.23. Comparison of GRACE-observed and model-predicted coseismic gravity 
changes up to degree 40.  
(a) ~ (c): GRACE-observed gN (a), gE (b), gD (c) change. (d) ~ (f): Coseismic-model-
predicted gN (d), gE (e), gD (f) change. The black star is the GCMT centroid (92.82°E, 
2.35°N).  
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Figure 4.24. Comparison of GRACE-produced and model-predicted gravity gradient 
change up to degree 40.  
(a) ~ (c): GRACE-produced Txx (a), Txy (b), Txz (c) change. (d) ~ (f): Coseismic-model-
predicted Txx (d), Txy (e), Txz (f) change. The black star is the GCMT centroid. 
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resolved in [Yue et al., 2012] using broadband teleseismic waves and the surface waves is 

shallower with slips mainly distributed at the thin oceanic crust and uppermost mantle 

layer, giving the centroid depth at around 26.4 km. In this study, we fixed the centroid 

depth at the GCMT depth of 45.6 km. 

The solved M0 (10.13×1021Nm) from CSR RL05 product, the cumulative moment for 

both the mainshock and the aftershock, is close to the other published values. The M0 is 

slightly smaller than the cumulative M0 by GCMT solution (12.03×1021Nm), USGS CMT 

solution (10.7×1021Nm, http://earthquake.usgs.gov/earthquakes/eqinthenews/2012/ 

usc000905e/neic_c000905e_cmt.php), and the published moment of the cumulative slip 

model (16.79×1021Nm). Our dip angle is also consistent with the dip angle given by other 

solutions, just about 4-5° smaller. As shown in Table 4.14, the correlation between dip 

and moment is about zero for this vertical strike-slip source, indicating the independency 

of the estimated dip angle and moment. 

The rupture process of these intraplate earthquakes over the diffuse deformation zone is 

very complicated, and it raises discussions on whether it is dominated by east-west right-

lateral slips [Meng et al., 2012; Yue et al., 2012; Yadav et al., 2013] or meridian-aligned 

left-lateral slips [Delescluse et al., 2012; Shao et al., 2012]. Numerous preliminary results 

characterize the fault as a meridian-aligned left-lateral strike-slip [Shao et al., 2012], 

which is consistent with the nearly north-south orientation of fracture zones of magnetic 

anomalies [Yadav et al., 2013] and gravity anomalies data [Delescluse et al., 2012] and 

can be explained by the northwest-southeast compression due to the relative northward 

movement between Australia plate and India plate [Delescluse et al., 2012; Yadav et al., 

2013]. These meridian-aligned left-lateral slips are also theoretically predicted by the 
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inferred Coulomb stress change distribution assuming these strike-slip earthquakes are 

induced by the stress change following the 2004 Sumatra and 2005 Nias earthquakes 

[Delescluse et al., 2012]. Nevertheless, the back projection source imaging from seismic 

data shows that the rupture of faults is dominated by east-west right-lateral slip [Meng et 

al., 2012; Yue et al., 2012], which might be explained by the enhanced slab pull force on 

the Australia plate at the Sunda trench [Delescluse et al., 2012; Yue et al., 2012]. The 

east-west right-lateral slip model is further validated by the consistency with the remote 

offshore GPS offsets [Yadav et al., 2013]. Coherent with the fault plane by Yue et al. 

[2012], the GRACE-solved CMT also indicates an east-west right-lateral strike slip with 

strike angle as 292°. The reason why the strike angle by GRACE and GCMT solution is 

about 180° larger than that by Yue et al. [2012] and USGS CMT solution is that, for this 

nearly vertical strike-slip source, the dip direction is almost vertical and it is slightly tilted 

toward north for the former solutions and toward south for the latter as shown in Figure 

4.25. Taking into consideration of this 180° difference, GRACE-solved slip direction is 

amazingly consistent with the slip azimuth by other data, only 1-2° different from the 

GCMT and USGS CMT solutions and 5° different from the cumulative model. 
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Model name Data Sources Centroid Strike 
(°) 

Dip 
(°) 

Rake 
(°) 

Slip 
azimuth 

(°) 

M0 in 
1021 
Nm Location Depth 

Yue et al., 
2012 

Mainshock 
Mw 8.6 

Seismic 
waves 

- 26.4 
km 

108 85 184  13.9 
(6.64) 

GCMT Aftershock 
Mw 8.2 

Seismic 
waves 

- 54.7 
km 

107 83 183  2.89 

Cumulative model 
(Yue et al., 2012 & 

GCMT) 

Seismic 
waves 

Blue star and 
beach ball 

30.9 
km 

107 85 184 287 16.79 
(9.53) 

GCMT (for mainshock) Seismic 
waves 

Black star and 
beach ball 

45.6 
km 

289 85 166 110 9.14 
+2.89 

USGS CMT (for 
mainshock) 

Seismic data Green star and 
beach ball 

40.0 
km 

109 84 165 291 8.5 
+2.2 

This study OSU Fixed 45.6 
km (F) 

292 74 177 113 9.62 

This study CSR RL05 Fixed 45.6 
km (F) 

292± 
0.04 

80± 
0.09 

178± 
0.06 

112 10.11± 
0.01 

This study CSR RL05* Fixed 45.6 
km (F) 

292 82 182 112 10.08 

This study GFZ RL05a Fixed 45.6 
km (F) 

292 79 179 112 10.09 

Table 4.13. Comparison of Source Parameters. 
The additional seismic moment M0 in Orange color is for the aftershock (Mw 8.2) that 
occurred two hours after the mainshock (Mw 8.6); The GCMT solution is available at 
http://www.globalcmt.org and the USGS CMT solution for the aftershock is from 
http://earthquake.usgs.gov/earthquakes/eqinthenews/2012/usc00090da/neic_c00090da_c
mt.php. The M0 in parenthesis, 6.64×1021 Nm, is our estimated value from the slip 
models given by Yue et al. [2012], which is smaller than the published moment for the 
same slip models due to the smaller shear modulus (30 GPa) adopted in our forward 
modeling software. CSR RL05* is the same as in Table 4.12. 
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Figure 4.25. Comparison of centroid moment tensor solutions.  
The white/red dot is the fault patches projected to the Earth’s surface for the cumulative 
slip model by Yue et al. [2012] for mainshock and GCMT solution for aftershock, with its 
CMT located at the blue star and represented by the blue beach ball. Red beach ball is 
CMT solution from GRACE CSR RL05 data, fixed at the GCMT location (black star). 
Other markings are the same as in Figure 4.14. 
 

 Strike Dip Rake M0 
Strike 1 0.2 0.2 0 
Dip 0.2 1 0.4 0 

Rake 0.2 0.4 1 0 
M0 0 0 0 1 

Table 4.4.14. The correlation between parameters for SA inversion.  
 

4.2.5 The 2007 Bengkulu earthquake 

The 12 September 2007 Bengkulu earthquake (Mw 8.5) occurred off the west coast of 

Bengkulu, Indonesia [Konca et al., 2008; Borrero et al., 2009; Gusman et al., 2010]. It 

ruptured the plate interface at the Sumatra subduction zone where the Australia plate is 

subducting beneath the Sunda plate, with the strike angle parallel to the Sunda trench. 
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The relatively small seismic moment of this event renders it to be by far the smallest 

earthquake detectable by GRACE data. To crosscheck the reliability of the coseismic 

signal, three products for GRACE data are used to estimate the gravity and gravity 

gradient change corresponding to this 2007 Bengkulu earthquake. The first product is 

generated by Shang et al. [2015] using the improved energy integral approach [Guo et 

al., 2015; Shang et al., 2015], denoted as OSU product, which includes 124 monthly 

solutions from January 2003 to December 2013. The second product is the 137 monthly 

solutions from CSR RL05 NMAX 60 product from April 2002 to September 2014. The 

third product is 137 monthly solutions from GFZ RL05a NMAX 90 product from April 

2002 to August 2014. All solutions are truncated to degree 40 based on the localized 

spectral analysis. The RMS of the model-data misfit for gN, Txx, Txy, Txz are evaluated as 

shown in Table 4.16, where the model is the GRACE-inverted CMT parameters for each 

product. OSU product seems to give the lowest noise level with the smallest RMS, while 

GFZ RL05a product gives the worst model-data misfit. Considering the comparison of 

the residual RMS as well as the comparison in spatial domain, we choose to present the 

gravity and gravity gradient change from OSU GRACE data product.  

The slip distribution model by Konca et al. [2008] is used to model the GRACE-

commensurable gravity and gravity gradient change. This published slip model 

(http://www.tectonics.caltech.edu/slip_history/2007_s_sumatra/ssumatra-update.html) is 

the joint inversion of teleseismic waveforms, GPS and InSAR data. Fault patch’s location 

is given on the center of each patch, so it is converted to the left top point to be consistent 

with the forward modeling PSGRN/PSCMP software. The earth model is interpolated 

from the CRUST2.0 model as displayed in Table 4.15. The average ocean thickness over 
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the fault area is 1.3 km. The upward continuation of gravity change from ocean floor 

(with the radius as 6376758.506 m) to Earth’s semi-major axis is considered. The effect 

of ocean response for gravity change is about 46% of that from solid earth. The gravity 

and gravity gradient up to degree 40 corresponding to the finite slip model [Konca et al., 

2008] are then computed. 

 

Layer Vp 
[km/s] 

Vs 
[km/s] 

Density 
[kg/m3] 

Thickness [km] 

Ocean 1.5 0 1020 1.285 
Soft sediment 2.209 1.053 2081.8 0.824 
Hard sediment 3.905 2.038 2390.3 0.295 
Upper Crust 5.901 3.3 2691.6 6.360 
Middle Crust 6.6 3.694 2900 6.371 
Lower Crust 7.188 3.988 3072 6.434 
Mantle 8.156 4.656 3370 - 
Table 4.15. Earth Model from CRUST 2.0 
 

The localized degree variance shows the consistency and the difference between 

GRACE-derived and model-predicted gravity and gravity gradient change. From Figure 

4.27, we can see that the gN has lower noise level compared to gE, gD change as always. 

Nevertheless, the difference between the GRACE-observed and model-predicted gN is 

still large for both the low degree part and high degree part, which indicates the GRACE 

noise level is relatively high for this comparatively small earthquake. For the north 

component of gravity gradient change, the GRACE-derived Txx, Txy, Txz change agrees 

with the model prediction with larger magnitude for degree below 50. With additional 

comparison in spatial domain by different maximum truncation degree, we choose to use 

the spherical harmonic coefficients below 40 to solve for fault mechanisms. As shown in 

Figures 4.28 and 4.29, the spatial pattern of the GRACE-derived gravity and gravity 
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gradient change for north components has good consistency with the model prediction. 

The gN change is up to 1.7±0.2 µGal (Figure 4.28) three times larger than the model 

prediction, 0.5 µGal, and Txz change is up to 0.09±0.01 mE at 101.4°E, 1.95°S, twice of 

the model-predicted 0.04 mE. The smaller magnitude of the model prediction is 

consistent with the approximately in half underestimated seismic moment for the given 

slip model as shown in Table 4.17. Nevertheless, the surrounding noise is relatively high 

for this small earthquake, as also indicated in the localized spectral analysis. For example, 

for the gN change (Figure 4.28a), there is an abnormal positive signal west coast of North 

Sumatra, which is absent in the model prediction (Figure 4.28d). Similarly, over the same 

region, there is uncategorized negative signal for Txz (Figure 4.29c) change. Due to this 

large surrounding noise, it is not suggested to solve for the source location since the noise 

can be mistakenly treated as a signal and produce wrong source parameters.  

 

RMS of the residual gN ( µGal)  Txx (mE) Txy (mE) Txz (mE) 

OSU  0.50 0.016 0.016 0.022 

CSR RL05 0.54 0.017 0.015 0.023 

GFZ RL05a 0.69 0.023 0.017 0.029 

Table 4.16. Comparison of different GRACE products. 
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Figure 4.26. Time series of gN, Txz at 100.6°E 7.95°S.  
Blue lines are the gN (top), Txz (bottom) disturbance generated from 124 monthly OSU 
gravity field solutions up to degree 40 from January 2003 to December 2013. The blue 
shadings are uncertainties propagated from the formal error of each coefficient. The red 
lines are the fitted value using linear trend, periods, and Heaviside step functions. 
 

 

Figure 4.27. Comparison in the spectral domain.  
The localized degree variance as a function of spherical harmonic degree is shown 
for the observed and model-predicted gN, gE, gD change (a), and Txx, Txy, Txz change 
(b). 
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Figure 4.28. Comparison of GRACE-observed and model-predicted coseismic gravity 
changes.  
(a) ~ (c): GRACE-observed gN (a), gE (b), gD (c) change. (d) ~ (f): Coseismic-model-
predicted gN (d), gE (e), gD (f) change. The black star is the GCMT centroid (100.99°E, 
3.78°S).  
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Figure 4.29. Comparison of GRACE-produced and model-predicted gravity gradient 
change.  
(a) ~ (c): GRACE-produced Txx (a), Txy (b), Txz (c) change. (d) ~ (f): Coseismic-model-
predicted Txx (d), Txy (e), Txz (f) change. The black star is the GCMT centroid. 
 

As discussed above, due to the large surrounding noise, we choose only to solve for the 

centroid moment tensor while fix the centroid location at the GCMT solution. All three 

products are used for the inversion. We can see that the divergence for three angles form 

the three products is large, e.g. the difference is up to 11° for strike angle, 10° for dip 

angle, and 36° for rake angle. This larger variation for the solved source parameters, 

compared to the case for the 2012 Indian Ocean earthquakes, indicates again that the 

noise level from GRACE data is relatively high for this magnitude Mw 8.5 earthquake. 
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source angles. Nevertheless, the self-consistency for the seismic moment is good from 

these three products of GRACE data. 

For the seismic moment, GRACE-inverted M0 from all three products is systematically 

smaller than that from GCMT solution (6.71×1021Nm) and that (4.47×1021Nm) in [Konca 

et al., 2008], with GFZ RL05a producing the closest M0 (4.16×1021Nm) to that in [Konca 

et al., 2008]. The GRACE-solved dip angle is larger than the published values, with the 

closest dip angle as 18° from CSR RL05 product. Considering the trade-off relationship 

between M0 and dip angle, larger dip angle indicates smaller moment, further improving 

the consistency of GRACE-estimated M0 with the published values. During the three 

products, the OSU product produces the closest strike and rake angles with other results, 

e.g. rake angle (108°) is in-between the value given by GCMT and Konca et al. [2008] 

and it’s only 2° larger than the rake angle by the joint inversion using tsunami waveforms 

and InSAR data in [Gusman et al., 2010]; but the strike angle is about 20° smaller 

causing the at least 16° smaller slip azimuth. On the other hand, the slip azimuth from 

CSR RL05 and GFZ RL05a is consistent with the slip azimuth by GCMT and Konca et 

al. [2008], but the individual strike and rake angle are about 20~30° smaller. 
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Model 
name 

Data Sources Centroid Strike 
(°) 

Dip 
(°) 

Rake 
(°) 

Slip 
azimuth 

(°) 

M0 in 
1021 
Nm 

Location Depth 

Konca et 
al., 2008 

GPS, SAR, 
Teleseismic 

data 

Blue 
beach ball 

36 
km 

324 15 99 225 4.47 
(2.39) 

GCMT Seismic waves Black 
beach ball 

24.4 
km 

328 9 114 214 6.71 

This 
study 

OSU Red beach 
ball 

24.4 
km 

308 28 108 198 3.09 

This 
study 

CSR - 24.4 
km 

299 18 72 228 3.16 

This 
study 

GFZ RL05a - 24.4 
km 

297 28 80 218 4.16 

Table 4.17. Comparison of Source Parameters. 
The M0 in parenthesis, 2.39 ×1021 Nm, is our estimated value from the slip models given 
by Konca et al. [2008], which is smaller than the published moment for the same slip 
models due to the smaller shear modulus adopted in our forward modeling software. 
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Figure 4.30. Comparison of CMT solutions.  
The white/red 2D map and blue slip contours are for the slip distribution model [Konca et 
al., 2008] at the Sunda/Australia plate boundary, with its CMT located at the blue star 
and represented by the blue beach ball. Red beach ball is CMT solution from GRACE 
data (OSU product). Other markings are the same as in Figure 4.14.  
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Chapter 5. Conclusions 

 

Innovative GRACE data processing is developed in this study by conducting the 

localized spectral analysis and by using the north component of gravity and gravity 

gradient change. The Heaviside step function is applied to isolate coseismic jump from 

the time series of gravity and gravity disturbance over the fault region. This method of 

direct analysis on the regional gravity time series can reduce the effect from the long-

term trend of gravity variation, the seasonal variations, and the random noise. The 

localized spectral analysis is used as an efficient method for guiding the truncation of the 

maximum spherical harmonic degree for high degree solutions, as well as evaluating the 

noise level of each component of gravity and gravity gradient change. The new approach 

of using only the north component of gravity and gravity gradient change from GRACE 

geopotential solutions is shown to have the advantage of reducing south-north stripes and 

preserving high-degree signals in GRACE L2 products, leading to improved spatial 

resolution to the extent possible. The benefit of these north components in the way of 

preserving high degree signals and reducing stripes is demonstrated in both the spectral 

domain and the spatial domain. The north component of gravity and gravity gradient 

change can suppress the south-north stripes because GRACE KBR measurement is 

highly sensitive to gN change but relatively insensitive to gE, gD changes due to the orbit 

configuration of the two satellites. Another way to explain the suppression on the south-

north stripes is from the equation of the north component of gravity and gravity gradient 
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change, which reduces the stripes by the derivative of disturbing potential along the 

meridian direction. 

In this study, we show the linear relationship between the surface displacement and north 

component of gravity and gravity gradient change with the seismic moment tensor. The 

design matrix of this linear algorithm is realized based on the output of Wang’s 

PSGRN/PSCMP software. By establishing the observation model for gravity change and 

surface displacement as a linear function of the double-couple moment tensor, the point 

source parameters are resolved through the least-squares adjustment. Considering that the 

coseismic deformation and gravity change is a non-linear function of the centroid depth 

and location, the simulated annealing algorithm is applied to solve for the location. This 

inversion method is validated through simulation to evaluate its accuracy and viability. 

The comparison of source parameters inverted from simulated GPS data and GRACE 

data and their combination is analyzed to demonstrate the distinctive constraint from 

different data sets, and to show the contribution of GRACE data on offshore seismic 

deformation. The inversion from simulated GRACE data shows larger errors for the east 

and down components of moment tensor (Myz, Mzz), and the inversion from simulated 

GPS data tend to produce worse precision for Mxz, Myz component, which implies that 

GRACE data and GPS data can compensate each other on the constraint of moment 

tensor. The combination of GRACE and GPS data gives a better precision for each 

component of source parameters. In addition, the joint solution significantly reduces the 

correlation between dip angle and seismic moment compared to the solution by GRACE 

data only or the solution by GPS data only.  
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Sensitivity of GRACE data over offshore seismic deformations is illustrated by 

simulation, as well as by the comparison of slip models from real data inversion. First, to 

test the influence of the GPS stations’ spatial distribution, the simulation using GPS data 

excluding the five seafloor sites is carried out, showing that the precision got worsen 

badly with the standard deviation of the inverted source parameters increased for about 

one order of magnitude. Without the offshore displacement data, the centroid location 

inverted using SA algorithm from onshore GPS data has much larger error (1km) along 

the east-west direction, ten times of the error along the north south direction, explained 

by the lack of stations along the east-west direction of the source. By measuring right 

above the fault area, GRACE data can proved good constraint on centroid locations, and 

it can overcome the inadequacy caused by the poor configuration of GPS stations as 

shown by the small errors (0.1km) along all three directions for GRACE-only inversion. 

On the other hand, the comparison between the GRACE-estimated fault model with the 

two GPS slip models is illustrated to show the offshore constraint from GRACE data.  

Compared to the two slip models given by Wang et al. [2013], GRACE-estimated slip 

model is closer to Model 1 that is resolved using both onshore and offshore GPS data 

than Model 4 which used only onshore GPS data, indicating that GRACE data 

independently contain reliable signal over the offshore area. 

The GRACE-inverted source parameters generally agree well with the slip models 

estimated using other data sets, including seismic, GPS, or combined data. For the 2004 

Sumatra-Andaman and 2005 Nias earthquakes, GRACE data infer a shallower centroid 

depth (9.1 km), which may be explained by the closer-to-trench centroid and by the 

aseismic slip over the shallow region. For the 2011 Tohoku earthquake, GRACE-



132 

estimated centroid location and slip azimuth from two different GRACE data products 

and two different forward modeling are consistent with each other, demonstrating the 

coherence of the CSR RL05 NMAX 60 and CSR RL05 NMAX 96 products, as well as 

the coherence of the finite fault modeling and the point-source moment tensor modeling. 

The slip direction from GRACE data shows a clockwise rotation compared to the slip 

direction by GPS and seismic waves data, which is also observed by GOCE 

measurements [Fuchs et al., 2013]. The centroid location inverted from GRACE data for 

the 2011 Tohoku and 2010 Maule, Chile earthquakes are both westwards of other 

solutions, which might be caused by systematic errors from GRACE data. The GRACE-

estimated dip angles are larger than that from GPS/seismic data, about 18° larger for the 

2004 Sumatra-Andaman and 2005 Nias earthquakes, about 8° larger for the 2010 Maule, 

Chile earthquake, and about 3~20° larger for the 2007 Bengkulu earthquake. These 

differences potentially show the additional offshore constraint from GRACE data, 

compared to GPS/seismic data.   

The strong correlation between strike and rake angle is presented for the small-dip thrust 

earthquakes. Hence, the slip azimuth is better constraint from GRACE data compared to 

the strike and rake angle individually. This correlation between strike and rake angle is 

significantly reduced for the vertical strike-slip earthquakes. The correlation between dip 

and moment for the vertical strike-slip earthquakes is also much smaller than that for 

small-dip earthquakes. In addition, the correlation between dip angle and seismic moment 

is also significantly reduced in the joint solution of GRACE and GPS data. 
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Appendix A. Depth of the Slip Model 

 

About the coordinates of fault patches given by GPS measurements, the depth of each 

sub-fault is relative to the average elevation of GPS stations [Ji et al., 2002]. The reason 

is that during the inversion for fault parameters using GPS measurements, a one-

dimensional velocity model is used, which means all GPS stations are considered located 

on the same spherical surface (horizon plane) and the fault geometry is built based on the 

same assumption (personal communication with Shengji Wei, Caltech). In a horizontal 

flat Earth model, depth is relative to the horizontal plane. When we apply this to a 

spherical earth model, this depth would represent the radial distance from each fault 

patches’ location to its radial surface projection. Since the provided fault segments’ depth 

is relative to the average elevation of GPS stations that being used, these fault patches’ 

depth needs to be adjusted to be relative to ocean floor for modeling the gravity change 

on sea floor due to the solid earth deformation. 

We can first compute the average geocentric radial distance of Japan GPS stations, RGPS, 

which is the reference surface of the fault model. Then the radial distance of the fault 

patch is, RGPS − dep, where dep is the depth of each fault patch of the given slip 

distribution model inverted from GPS data. As shown in Figure A.1, the slip’s depth 

relative to ocean bottom, depob, can be calculated as: depob =Rocean bottom − (RGPS − dep) = 

dep − (RGPS − Rocean bottom), where Rocean bottom is the radial distance of ocean bottom. 

Assume GPS stations are located on the geoid, i.e. RGPS = RGeoid, we have 
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 depob = dep − hocean thickness                                                                                       (A.1) 

where hocean thickness is the ocean thickness, hocean thickness = RGeoid − Rocean bottom. RGeoid is the 

radial distance of the geoid at the fault patch location. 

For the upward continuation of the gravity change from the ocean floor to Earth’s semi-

major axis, the geocentric distance of ocean bottom needs to be calculated.  We first 

compute the geocentric distance of points on the Earth ellipsoid over the fault area, then 

compute the radial distance of the ocean bottom. Given the geocentric coordinate of the 

epicenter (e.g. longitude as 142.8°, latitude, φc, as 38.05°, depth, 24 km, 

http://tectonics.caltech.edu/slip_history/2011_taiheiyo-oki/), the geocentric distance of 

the radial projection of the epicenter onto the WGS84 (World Geodetic System 1984) 

ellipsoid can be computed as: 

Rellipsoid = x2 + z2                         

Where, 

x = acosϕ 1− e2 sin2ϕ ,  z = a 1− e2( )sinϕ 1− e2 sin2ϕ  

φ is the geodetic latitude of the radial projection of the epicenter on the ellipsoid, which 

can be computed from its geocentric latitude, tanϕ = tanϕc / 1− e
2( ) . a is the semi-major 

axis, and e is the first eccentricity of the Earth ellipsoid. 

Then the geocentric distance of the local geoid at the fault region is: RGeoid = Rellipsoid + N, 

where N is the geoid undulation. Neglecting the geoid undulation, the geocentric distance 

of ocean bottom would be:  

Rocean bottom = RGeoid − hocean thickness= Rellipsoid − hocean thickness                                          (A.2) 
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Figure A.1. The diagram for different geocentric radial distances 
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Appendix B. Derivation of Gravity Disturbance and Gravity Gradient Tensor Disturbance 

from Spherical Harmonic Coefficients 

 

The disturbing gravitational potential, T, difference between GRACE L2 product and the 

GOCO02S reference field, can be computed by  

T = GM
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GM the gravitational constant multiplied by the mass of the Earth, m3/s2. 

R the Earth’s semi-major axis as defined in GRACE L2 solution, 6378136.3 m.  

ΔCnm and ΔSnm  the spherical harmonic coefficients difference, unitless. 

Pnm  the fully normalized associated Legendre function, unitless. 

r  the radius, meter. 

θ  the colatitude, degree.  

€ 

λ  the longitude, degree. 

Based on equation (B.1), the first derivatives of T with respect to r ,θ  and 
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λ  can be 

easily derived: 
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And the second derivatives of T with respect to 

€ 

r,θ  and λ  are: 
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The gravity disturbance vector in the local north-east-down (NED) frame can be 

expressed as (equation 2.32 in Chen [2007]): 

gN = −Tθ / r =GM / R2 R / r( )n+2 ΔCnm cosmλ +ΔSnm sinmλ( )P 'nm cosθ( )sinθ
m=0

n

∑
n=2
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∑
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&
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gD = −Tr =GM / R2 n+1( ) R / r( )n+2 ΔCnm cosmλ +ΔSnm sinmλ( )Pnm cosθ( )
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The gravity gradient disturbance (full tensor) in the local pole-oriented frame (LPOF) 

(the convention of GOCE standard) that is defined as: the x-axis is directed to the North, 
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the y-axis to the West, and the z-axis upwards, can be further derived as (equation (3) in 

[Ditmar and Klees, 2002]): 

Txx (r,θ,λ) = Tr (r,θ,λ) / r +Tθθ (r,θ,λ) / r
2                                                            (B.14) 

Txy (r,θ,λ) = Tyx (r,θ,λ) = −cotθTλ (r,θ,λ)+Tθλ (r,θ,λ)( ) / (r2 sinθ )     (B.15) 

Txz (r,θ,λ) = Tzx (r,θ,λ) = Tθ (r,θ,λ) / r
2 −Trθ (r,θ,λ) / r                                                  (B.16) 

Tyy (r,θ,λ) = Tr (r,θ,λ) / r + cotθTθ (r,θ,λ) / r
2 +Tλλ (r,θ,λ) / (r

2 sin2θ )         (B.17) 

Tyz (r,θ,λ) = Tzy (r,θ,λ) = (rsinθ )
−1 Tλ (r,θ,λ) / r −Trλ (r,θ,λ)( )                                    (B.18) 

Tzz (r,θ,λ) = Trr (r,θ,λ)         (B.19) 
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Appendix C. Retrieve Centroid Moment Tensor and Location From Finite Fault Slip 

Distribution Model 

 

Given a slip distribution model, which has the slip parameters on each fault patch, the 

centroid moment tensor can be calculated. The centroid moment tensor is the sum of 

every point source moment tensor on each fault patch. 

M = , where                                                         (C.1) 

ns is the number of fault patches, is the xx component of moment tensor for patch i. 

The same summation is done for each component of moment tensor. 

The centroid location is computed as the weight sum of every point source location on 

each fault patch.  

, ,         (C.2) 

 the latitude of the centroid, degree.   

 the longitude of the centroid, degree. 

( , , , ) is the latitude, longitude, depth, seismic moment of every point 

source on each fault patch.  
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