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Abstract

This dissertation examines what factors determine the cross-section of returns. It

contains three chapters.

Chapter 1 investigates whether uncertainty shocks can explain the value premium

puzzle. Intuitively, the value of growth options increases when uncertainty is high. As

a result, growth stocks hedge against uncertainty risk and earn lower risk premiums

than value stocks. An investment-based asset pricing model augmented with time-

varying uncertainty accounts for both the value premium and the empirical failure

of the capital asset pricing model (CAPM). This study also shows that uncertainty

shocks influence cross-sectional investment. Uncertainty has a negative impact on the

investment of value firms, while it has a positive impact on the investment of growth

firms.

Chapter 2 shows that uncertainty shocks can explain the negative relation be-

tween idiosyncratic volatility and expected returns in Ang, Hodrick, Xing and Zhang

(2006, 2009). The main intuition is that idiosyncratic volatility amplifies the positive

impact of uncertainty shocks on the value of growth options. Therefore, everything

else being equal, growth stocks with higher idiosyncratic volatilities perform better

than growth stocks with lower idiosyncratic volatilities when uncertainty is high, and

consequently have lower expected returns. Using an investment-based asset pricing

model with time-varying uncertainty, I show that the idiosyncratic volatility puzzle
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exists only in stocks with low book-to-market ratios (growth stocks). The spread in

loadings on uncertainty shocks can explain why growth stocks with high idiosyncratic

volatilities earn lower average returns than those with low idiosyncratic volatilities.

In Chapter 3, co-authored with Kewei Hou, Chen Xue, and Lu Zhang, we hand-

collect data on total assets and earnings from Moody’s Industrial Manual to extend

the sample for the q-factors back to 1926. We also compare the q-factor model with

the Carhart (1997) model in capturing anomalies in the long sample.
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Chapter 1: The Impact of Uncertainty Shocks on the

Cross-section of Returns

1.1 Introduction

Time-varying uncertainty, proxied by volatility in stock returns or macro vari-

ables, plays an important role in explaining cross-sectional returns. Ang, Hodrick,

Xing, and Zhang (2006) and Adrian and Rosenberg (2008) show that market volatility

is a significant cross-sectional asset pricing factor. Campbell, Giglio, Polk, and Tur-

ley (2012) extend an intertemporal capital asset pricing model (ICAPM) by allowing

for stochastic volatility and find that volatility news explains cross-sectional returns.

Bansal, Kiku, Shaliastovich, and Yaron (2014) and Segal, Shaliastovich and Yaron

(2014) explore the effects of stochastic volatility in the long-run risk model. These

studies find that some assets tend to have higher risk loadings on the uncertainty

factor, and consequently, show that this factor contributes to explaining the return

spread across assets. However, they do not provide the theoretical mechanism for

why assets tend to react differentially to the uncertainty factor.

This paper shows that, based on a structural model, time-varying uncertainty

can explain the value premium puzzle. Historically, stocks with high book-to-market

ratios (value stocks) tend to earn higher average returns than those with low book-to-

market ratios (growth stocks); however, the value premium cannot be explained by the

1



capital asset pricing model (CAPM). Figure 1.1 represents the average excess returns

of 10 book-to-market sorted portfolios and their expected returns as predicted by the

CAPM. It shows that average excess returns rise from the growth portfolio to the value

portfolio while the CAPM betas are almost the same for all portfolios. Therefore, the

CAPM beta cannot account for the return spread between growth and value stocks.

I demonstrate that uncertainty shocks can drive the value premium by having

a differential impact on cross-sectional firms depending on their holdings of growth

options. The main intuition is that the value of growth options increases when un-

certainty is high, since high uncertainty expands the upside of future outcomes. As a

result, when uncertainty increases, growth stocks, which have more growth options,

do better than value stocks. Therefore, growth stocks are hedges against uncertainty

risk and have lower risk premiums than value stocks.

I show this in an investment-based asset pricing model augmented with time-

varying uncertainty by allowing the variances of both aggregate and firm-specific pro-

ductivity shocks to change over time. Uncertainty affects firms differentially according

to the amount of their growth options. The channel is the interaction between un-

certainty, investment opportunities, and adjustment costs. When firms change their

level of capital, they face adjustment costs, such as fixed costs and investment ir-

reversibility. These frictions cause investment opportunities to behave like financial

call options. Investment corresponds to the exercise of the option, while the firm

has the right to wait until prospects improve. This option is valuable since it gives

the firm access to upside benefits. The value of options, like financial call options,

increases with volatility. Adjustment costs generate the optionality in the model, and

time-varying uncertainty causes the value of options to change over time.
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The model generates a sizable value premium while replicating the empirical fail-

ure of the CAPM in accounting for the value premium. This is an important finding

as most prior studies that reproduce the value premium do not capture the CAPM’s

failure. For example, Gomes, Kogan, and Zhang (2003), Carlson, Fisher, and Gi-

ammarino (2004), Zhang (2005), Cooper (2006), Ozdagli (2012), and Obreja (2013)

produce the value premium, but their market betas also increase with book-to-market.

In these studies, the model-generated value premium can be counterfactually ex-

plained by the CAPM. These results are common in models with a single source of

aggregate risk by which market returns are mainly driven. Consequently, risk premi-

ums tend to be highly correlated with the model-generated market betas contradicting

empirical evidence. To resolve this counterfactual prediction, one needs to include

additional sources of aggregate risk. My model reproduces the failure of the CAPM

by introducing uncertainty shocks as the second source of aggregate risk. I show

that the return spread on book-to-market portfolios are mainly driven by uncertainty

shocks, while market returns are mostly driven by productivity shocks. As a result,

the model can separate risk premia from market betas and generate both flat betas

and significant alphas.

Empirical evidence supports the model’s predictions. Using the VIX index as a

proxy for uncertainty, I show that the returns of growth stocks have higher exposures

to changes in uncertainty than those of value stocks. This evidence implies that

growth stocks tend to do better than value stocks when uncertainty is high. In

addition, I find no distinct pattern in the sensitivities to productivity shocks across

the portfolios, using Utilization-adjusted Total Factor Productivity (TFP) as a proxy.
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Uncertainty shocks also have a large impact on corporate investment. Bernanke

(1983), Leahy and Whited (1996), Bloom (2009), and Kahle and Stulz (2013) show

that higher uncertainty reduces investment. My model provides a quantitative pre-

diction on how uncertainty affects investment in the cross-section of firms. I find that

value firms sharply reduce investment when uncertainty rises, while growth firms tend

to invest even in the presence of heightened uncertainty. This finding indicates that

uncertainty influences investment through Tobin’s Q. The positive relation between

Tobin’s Q and investment offsets the negative impact of uncertainty on investment.

Consequently, the investment of firms with high Tobin’s Q is not significantly af-

fected by uncertainty, while that of firms with low Tobin’s Q is adversely affected by

uncertainty.

The organization of the paper is as follows. Section 2 reviews the related litera-

ture. Section 3 presents some empirical tests. Section 4 describes the model. Section

5 calibrates the model and presents the quantitative results from simulations. Section

6 concludes.

1.2 Related Literature

This paper is related to a recent series of studies on how uncertainty shocks af-

fect macroeconomic variables, including Bloom, Bond, and Reenen (2007), Bloom

(2009), Fernandez-Vilaverde and Rubio-Ramrez (2010), Arellano, Bai, and Kehoe

(2012), Baker and Bloom (2012), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and

Terry (2012), Christiano, Motto, and Rostagno (2012), Schaal (2012), and Fajgel-

baum, Schaal, and Taschereau-Dumouchel (2014). These studies show that uncer-

tainty negatively influences investment, consumption, output, and employment. My
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paper differs from the existing literature in that it focuses on asset prices. In addition,

it investigates whether uncertainty shocks have an differential impact on the cross-

section of investment depending on firms’ characteristics while prior studies explore

the relation between uncertainty and aggregate investment.

My work is also connected to Merton (1973)’s ICAPM. With time-varying invest-

ment opportunities, factors in asset-pricing models should include state variables that

predict future investment opportunity sets. If an asset has a high covariance with a

state variable that improve the investment opportunity set, it has high risk premiums

since the asset tends to perform poorly when investment opportunities deteriorate.

In an ICAPM setting, Campbell and Vuolteenaho (2004) and Campbell, Polk , and

Vuolteenaho (2010) argue that value stocks have higher average returns since growth

stocks perform better when the expected return on the stock market declines. Camp-

bell, Giglio, Polk, and Turley (2013) point out that increase in the volatility of stock

returns also deteriorates investment opportunities. They allow for stochastic volatility

and show that growth stocks do well when the volatility of stock returns increases.

Beside Campbell, Giglio, Polk, and Turley (2013), a series of empirical stud-

ies have explored the role of stochastic volatility in explaining asset prices. Bakshi

and Kapadia (2003), Ang, Hodrick, Xing, and Zhang (2006), Adrian and Rosenberg

(2008), and Carr and Wu (2009) find that shocks to market volatility are negatively

priced. Bansal and Yaron (2004) incorporate stochastic consumption volatility into

a consumption-based asset pricing framework and show that an increase in volatility

lowers asset prices. Several recent studies examine the impact of stochastic volatil-

ity on cross-sectional returns. Bansal, Kiku, Shaliastovich, and Yaron (2014) and

Segal, Shaliastovich, and Yaron (2014) explains the effects of stochastic volatility on
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cross-sectional returns in the long-run risk framework. My paper differs from those by

constructing a structural model to investigate how different holdings of growth options

across firms can account for the patterns in their cross-sectional returns. McQuade

(2013) also explains the cross-sectional returns based on a structural model with

time-varying volatility. My model quantitatively show the impact of time-varying

uncertainty on the cross-section of returns while his explanation is qualitative.

This study is also related to the theoretical literature on the value premium. Carl-

son, Fisher, and Giammarino (2004) investigate the effect of operating leverage on

expected returns and demonstrate that the value effect is related to fixed operating

costs. Zhang (2005) shows that value stocks are riskier in the presence of investment

irreversibility and counter-cyclical price of risk and have higher average returns than

growth stocks. Cooper (2006) incorporates fixed adjustment costs of capital as well as

investment irreversibility to explain the value effect. However, these models are based

on a single source of aggregate risk, and as a result, they counterfactually generate

higher market betas for value firms than for growth firms. In contrast, my model is

able to replicate the failure of the CAPM by having two sources of aggregate risk,

namely, productivity and uncertainty shocks.

This paper is part of the recent literature that explains both cross-sectional returns

and the empirical failure of the CAPM by including additional sources of aggregate

risk. Kogan and Papanikolaou (2013) include investment-specific shocks. Ai and Kiku

(2013) allow for two sources of aggregate risk, namely, long-run and short-run risk in

aggregate consumption growth. Belo, Lin, and Bazdresch (2014) use stochastic ad-

justment costs, and Belo, Lin, and Yang (2014) use shocks to external financing costs.
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1.3 Empirical Findings

In this section, I conduct some empirical analysis to examine the link between

uncertainty and cross-sectional returns. First, I test whether uncertainty shocks can

explain the spread in returns between value stocks and growth stocks. To this end,

I run rolling monthly regressions to obtain the loadings of 10 book-to-market sorted

portfolios on the innovations in uncertainty. If the value of growth stocks increases

with uncertainty, they should have higher loadings on the innovations in uncertainty.

Prior studies show that innovations to aggregate volatility or macroeconomic un-

certainty are negatively priced (see, for example, Bakshi and Kapadia (2003), Ang,

Hodrick, Xing, and Zhang (2006), Adrian and Rosenberg (2008), Carr and Wu (2009),

Campbell, Giglio, Polk, and Turley (2012), Boguth and Kuehn (2013), and Bansal,

Kiku, Shaliastovich, and Yaron (2014)). Given this finding, if growth stocks have

significantly higher loadings on innovations in uncertainty than value stocks, then

this can account for the value premium.

Second, I examine whether productivity shocks influence growth stocks and value

stocks differently. The model in this study has two sources of aggregate risk, namely,

productivity shocks and uncertainty shocks. Using a proxy for productivity shocks,

I examine how productivity shocks affect the cross-section of stock returns. If pro-

ductivity shocks generate differential effects across the portfolios, the impact of un-

certainty shocks may be subsumed by that of productivity shocks, and consequently,

the uncertainty shocks may not be the main driving force of the value premium.
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1.3.1 Data

I use the VIX index as a proxy for uncertainty. The VIX is the implied volatility

of the Standard & Poor’s 500 portfolio, calculated from the prices of put and call

options traded on the Chicago Board Options Exchange (CBOE). The data are taken

from CBOE, and the sample period is from January 1990 to December 2013 due to

the data availability. A daily series of the VIX is aggregated to a monthly frequency

by averaging the daily values within the month.

As a proxy for productivity shocks, I use Utilization-adjusted Total Factor Produc-

tivity (TFP).1 The data are obtained from the Federal Reserve Bank of San Francisco.

Since the data of Utilization-adjusted TFP are quarterly, I aggregate returns on the

portfolios and the VIX by averaging their monthly values within the quarter when

conducting the regression analysis that involves TFP. When TFP is used as a single

factor for regressions, the sample period is from 1963 to 2013. For regressions that

include the VIX together with TFP, the sample period is restricted by the VIX data

availability, and the sample period narrows to from January 1990 to December 2013.

1.3.2 Uncertainty and Cross-sectional Returns

This study predicts that growth stocks tend to do better than value stocks when

uncertainty rises, since the value of growth options increases with uncertainty. To

examine this prediction, I run a regression of returns on 10 book-to-market portfolios

on the proxy for innovations in uncertainty:

rit = αi + βV IXi ∆V IXt + εit, (1.1)

1I also use Business-sector TFP as a proxy for productivity shocks, and the results are quantita-
tively similar.
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where rit is the excess return of portfolio i at time t, ∆V IXt is the innovation in the

VIX index, and βV IXi is the loading of portfolio i on uncertainty risk. In addition, I

run the following regression:

rit = αi + βMKT
i MKTt + βV IXi ∆V IXt + εit, (1.2)

where MKTt is the market excess return and βMKT
i is the loading of portfolio i

on market risk. By adding MKT , I control for the effect of the market factor on

cross-sectional returns. Table 1.1 reports the estimates of risk loadings and their t-

statistics in the regressions above when the VIX is used as a proxy for uncertainty.

Panel A presents the results of regression (1). It indicates that growth firms tend

to have higher risk loadings on innovations in the VIX than value firms. The risk

loading of the value minus growth portfolio is −0.22 and is statistically significant

(t = −3.03). The results imply that when uncertainty is high, value stocks would

experience a more severe decrease in their market values than growth stocks. Hence,

growth stocks provide a better hedge against uncertainty risk than value stocks.

Panel B of Table 1.1 summarizes the results of regression (2). It shows that after

controlling for the market factor, growth stocks still tend to have higher risk loadings

on innovations in the VIX than value stocks. In addition, the risk loading of the

growth portfolio becomes positive. The loading of the value minus growth portfolio

is −0.28 and is statistically significant (t = −2.79). Panel B also shows that the

loadings on the uncertainty factor exhibit distinct patterns while the loadings on the

market factor do not present any pattern.
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1.3.3 Aggregate Productivity and Cross-sectional Returns

In this subsection, I first examine whether productivity shocks affect the cross-

section of returns. Secondly, I test whether the portfolios have any significant dis-

persion in their risk loadings on uncertainty shocks after controlling for productivity

shocks. To this end, I conduct the following regressions:

rit = α + βTFPi ∆TFPt + εit (1.3)

rit = α + βTFPi ∆TFPt + βV IXi ∆V IXt + εit, (1.4)

where ∆TFPt is innovations in TFP, and βTFPi is loadings of portfolio i on TFP

shocks.

Table 1.2 reports the results from the regressions. Panel A presents the results

of regression (3). It shows that the risk loadings on productivity shocks do not

exhibit significant dispersion. The loading of the value minus growth portfolio is not

statistically significant (t = 1.05). Panel B reports the result of regression (4). It

indicates that growth stocks tend to have higher loadings on the uncertainty factor

after controlling for the productivity factor, and that the loading of the value minus

growth portfolio is −0.38 and is statistically significant (t = −2.59).

I also run regressions controlling for the market factor as follows:

rit = α + βMKT
i ∆MKTt + βTFPi ∆TFPt + εit (1.5)

rit = α + βMKT
i ∆MKTt + βTFPi ∆TFPt + βV IXi ∆V IXt + εit (1.6)

Table 1.3 presents the results. Both Panel A and Panel B show that loadings on

productivity shocks do not have any patterns, and the loading of the value-minus-

growth portfolio is not significant. In contrast, loadings on uncertainty shocks tend
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to decrease with book-to-market, and the loading of the value-minus-growth portfolio

is −0.54 and significant at 10% (t = −1.84).

In sum, the evidence from empirical tests supports the introduction of uncertainty

shocks into the model to explain the cross-section of returns. In Section 4, I examine

whether predictions from the model are consistent with empirical findings.

1.4 The Model

In this section, I develop a dynamic investment model of heterogeneous firms to

investigate the link between uncertainty shocks and cross-sectional returns. Time-

varying uncertainty is introduced into the model by allowing the second moment of

both aggregate and firm-specific productivity shocks to vary over time. The model

is in a partial-equilibrium setting in which the stochastic discount factor (SDF) is

exogenously given.

Firms choose their optimal investment activities in order to maximize their mar-

ket values. Any change in their current capital stock requires firms to pay adjustment

costs of capital. The costs are composed of convex and non-convex components. The

non-convex piece reflects that reducing or expanding capital incurs lump-sum costs

regardless of how much the capital amount actually changes. It also reflects that dis-

investment is more costly than investment. The interaction between uncertainty and

non-convex adjustment costs generates regions of inaction where firms prefer to ”wait

and see” rather than immediately invest or disinvest. Greater uncertainty expands

the region of inaction, generating a negative relationship between uncertainty and in-

vestment. Therefore, uncertainty influences firms’ choices on their optimal investment

through non-convex adjustment costs, and consequently, their expected returns.
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1.4.1 Production and Investment

In the economy, there is a continuum of firms with heterogeneity in their firm-

specific productivity and capital stock. Each firm uses capital to produce a single

homogenous good. The production function of firms is given by:

Yit = XtZitK
η
it. (1.7)

At time t, a firm indexed by i produces output Yit, using physical capital Kit. The

productivity of a firm is composed of aggregate productivity, Xt, and firm-specific

productivity, Zit. The aggregate productivity is common to all firms and is a source

of aggregate risk. The firm-specific productivity generates heterogeneity across firms.

There is also heterogeneity in capital stock. Firms with high productivity relative to

their capital are growth firms and have more growth options, while firms with low

productivity relative to their capital are value firms and have less growth options. The

capital share, 0 < η < 1, implies that the production function exhibits decreasing

returns to scale with capital.

Firms accumulate capital through investment. The investment of firms is as fol-

lows:

Iit = Kit+1 − (1− δ)Kit, 0 < δ < 1 (1.8)

where Iit denotes firm investment and δ represents the rate of capital depreciation.
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1.4.2 Time-varying Uncertainty

I assume that both xt ≡ logXt and zit ≡ logZit follow a first-order autoregressive

process:

xt+1 = x̄(1− ρx) + ρxxt + σxt ε
x
t+1, (1.9)

zit+1 = ρzzit + σzt ε
z
it+1, (1.10)

in which εxt+1 and εzit+1 are uncorrelated for all i; εzit+1 and εzjt+1 are uncorrelated for

any pair of i, j with i 6= j; x̄ is the long-term mean of aggregate productivity; ρx and

ρz are the persistence of aggregate and firm-level productivity, respectively.

Following Bloom (2009), I define uncertainty as the volatility of innovations to ag-

gregate productivity, σxt , and the volatility of innovations to firm-specific productivity,

σzt . They vary over time, following a two-state Markov chain:

σxt ∈ {σxL, σxH}, (1.11)

σzt ∈ {σzL, σzH}, (1.12)

Pr(σt+1 = σj | σt = σk) = πk,j (1.13)

Time-varying volatility of aggregate productivity generates periods of low and high

uncertainty in the economy, while time-varying volatility of firm-specific productivity

produces periods of low and high cross-sectional dispersion across firms. Since they

both are based on the same Markov process, periods of high economic uncertainty

are accompanied by periods of high cross-sectional dispersion, and vice-versa.

1.4.3 Adjustment Costs

Each firm faces adjustment costs of capital whenever they change their current

level of capital. Adjustment costs are critical in generating the options value of
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investment opportunities in the existence of uncertainty. In addition, without the

investment frictions, models produce a counterfactually smooth Tobins Q (Boldrin,

Christiano, and Fisher (2001)). Adjustment costs include installation costs of new

equipment, costs from temporarily shutting down factories for installation, and costs

incurred from educating employees on the use of new technology. There are two com-

ponents in the adjustment costs, namely, convex and nonconvex adjustment costs.

Convex adjustment costs were the bedrock of investment models in the 1980s; how-

ever, they cannot account for lumpy and intermittent investment patterns at a micro-

level. Nonconvex adjustment costs can capture these patterns. Cooper and Halti-

wanger (2006) show that the combination of convex and nonconvex adjustment costs

fits the micro-level investment data best. The formulations of convex and nonconvex

adjustment costs are as follows:

Convex : Convex costs reflect the rate of adjustment of capital stock. That is, more

rapid changes are more costly. This feature leads firms to smooth investment expen-

ditures over time. The formulation of convex adjustment costs is c
2

(
Iit
Kit
− δ
)2
Kit.

Nonconvex : First, firms need to pay fixed adjustment costs when they change their

current levels of capital. In the presence of these costs, investment tends to be lumpy

since firms aim to avoid incurring the fixed costs frequently. The fixed costs do not

depend on the level of investment activity. Instead, they are proportional to their

capital stock, meaning the costs are scaled by firm size. This aspect of adjustment

costs discourages big firms from growing quickly. Second, investment is partially

irreversible. That is, reducing capital is more costly than expanding capital since

there are resale losses due to transactions costs, information asymmetry, and the
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physical costs of resale. This feature reflects the fact that disinvestment occurs with

much less frequency than investment. For both types of adjustment costs, firms have

an investment threshold and invest only when profitability reaches an upper threshold.

The formulation of the nonconvex part incorporates both fixed adjustment costs and

investment irreversibility. Firms face a+Kit when they increase capital stock and

a−Kit when they decrease capital stock. The upward and downward speed of capital

adjustment are determined by a+ and a−, respectively, and a− > a+ > 0 represents

the irreversibility of investment.2

The adjustment cost function is given by:

Φ(Iit, Kit) =


a+Kit + c

2

(
Iit
Kit
− δ
)2
Kit for Iit > δKit

0 for Iit = δKit

a−Kit + c
2

(
Iit
Kit
− δ
)2
Kit for Iit < δKit.

(1.14)

Adjustment costs arise only from net investment, and replacing depreciated capital

does not incur any costs. This formulation leads firms to pay the adjustment costs

only when they deviate from the non-stochastic steady state of investment rate, δ.

In the presence of adjustment costs, firms are less flexible in adjusting their capital

stock. In particular, nonconvex adjustment costs generate the real options for invest-

ing when there is uncertainty in the economy. Without nonconvex adjustment costs,

the model cannot generate any option value associated with investment opportunities.

Firms invest only when their investment is far from the optimal level and the benefit

of adjusting capital is beyond the investment threshold. These options of investing

2Zhang (2005) shows that asymmetric adjustment costs are important in generating the value
premium. Cooper (2006) finds that the irreversibility is the driving force in generating the value
effect.
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can be interpreted as financial call options. Firms increase the level of installed capital

by exercising the options. The value of the options is time-varying since uncertainty

varies over time in the model. It increases when uncertainty increases because higher

uncertainty generates the higher upside of future growth.

1.4.4 Stochastic Discount Factor

The stochastic discount factor (SDF) is specified as:

logMt+1 = log β − γx(xt+1 − xt)− γσx(σxt+1 − σxt ), (1.15)

where the subjective discount factor is β > 0, the price of risk for productivity shocks

is γx > 0, and the price of risk for uncertainty shocks, γσx < 0.

The SDF is specified as a function of productivity shocks and uncertainty shocks.

The price of each shock reflects its opposite impact on asset prices.3 The positive sign

for γx represents the positive market price for productivity shocks, while the negative

sign for γσx represents the negative market price for uncertainty shocks. Their oppo-

site signs reflect that productivity risk carries positive premiums while uncertainty

risk carries negative premiums. If stocks do well during times of high aggregate pro-

ductivity and do poorly during times of low aggregate productivity, they earn high

average returns. The reason is that these stocks do poorly when the economy is in a

bad state. On the other hand, if stocks do well during times of high uncertainty and

do poorly during times of low uncertainty, they earn low average returns since they

provide insurance against uncertainty risk. An increase in uncertainty is considered

3In my model, the prices of risk are constant, which differs from the SDF in Zhang (2005) and
Lin and Zhang (2013). Time-varying price of risk is a key ingredient in their models to generate the
value premium. In my model, I produce a sizable value premium with constant prices of risk.
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as undesirable by investors so that they require compensation for holding stocks with

smaller exposure to uncertainty risk. The negative price of volatility risk is supported

by prior studies such as Bakshi and Kapadia (2003), Ang, Hodrick, Xing, and Zhang

(2006), Adrian and Rosenberg (2008), Carr and Wu (2009), Campbell, Giglio, Polk,

and Turley(2012), Boguth and Kuehn (2013), and Bansal, Kiku, Shaliastovich, and

Yaron (2014).

1.4.5 Optimal Investment

The profit function for a firm is given by:

Πit = Yit − f, (1.16)

where Yit is output and f is the fixed cost of production, which must be paid by

all firms participating in operational activities. The fixed costs generate operating

leverage. This operating leverage implies that firms are relatively risky when they

operates at low values of productivity because the costs are common for all firms with

different levels of productivity. It also implies that firms with low levels of capital are

relatively risky since the costs are common for all firms and do not depend on the

capital levels.

I denote by V (Kit, Zit;Xt, σ
x
t , σ

z
t ) the value function of a firm. There are five state

variables: (1) capital stock, Kit; (2) firm-specific productivity, Zit; (3) aggregate

productivity, Xt; (4) time-varying aggregate uncertainty, σxt ; and (5) time-varying

cross-sectional uncertainty, σzt .

Firms choose their investment activities to maximize the present value of their

future cash flows, discounted by the exogenously given stochastic discount factor.
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Optimal investment is defined as the solution to a dynamic optimization problem

defined by the stochastic Bellman equation:

V (Kit, Zit;Xt, σ
x
t , σ

z
t ) = max

Iit
{Πit − Iit − Φ(Iit, Kit)

+ Et[Mt+1V (Kit+1, Zit+1;Xt+1, σ
x
t+1, σ

z
t+1)]} (1.17)

s.t. Kit+1 = Iit + (1− δ)Kit, (1.18)

where V (·) is the value function, Πit is a profit function, Iit is investment, Φ(·) is an

adjustment cost function, Et is the expectations operator, and Mt+1 is the stochastic

discount factor. The first three terms on the right hand side of (15) represent the

present dividend, which is the firm’s profits minus investment minus adjustment costs

of capital.

1.5 Quantitative Results

This section presents the quantitative results from the model. In Section 5.1, I

discuss the calibration and evaluate whether the model can quantitatively capture

the important features in the data. In Section 5.2, the main results from model sim-

ulations are presented. In Section 5.3, I investigate the main driving source of the

value premium. In Section 5.4, I compute a model-implied the VIX and compare the

results with those obtained by using the real VIX index. In Section 5.6, I conduct

comparative statics and explore the mechanism in the model. Lastly, in Section 5.5,

I investigate the link between uncertainty and cross-sectional investment.
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1.5.1 Calibration

Table 1.4 reports parameter values used to calibrate the model. I calibrate the

model at a monthly frequency. In total, 100 artificial samples are simulated; each

sample has 5000 firms and 1000 periods. The first 400 periods are dropped to neu-

tralize the impact of initial conditions on the simulations and to match the length

of the sample period with that in the empirical data. I calibrate the model based

on two approaches. I first use the parameter values reported in prior literature. I

also choose values for parameters to match the selected moments in the data that are

presented in Table 1.5. I mainly target annual statistics of risk-free rates, market re-

turns, firm-level investment rates, and firm-level market-to-book ratios. I aggregate

the simulated data to yearly in order to compare the target moments from model

simulations with annual firm-level accounting data. The sample period for target

moments is 1963 through 2013. This period is chosen because the value premium

puzzle has been more pronounced since 1963. The firm-level data are taken from

COMPUSTAT. The returns of book-to-market sorted portfolios, risk-free rates, and

market returns are taken from Kenneth French’s website.

Productivity : The capital share, η, is chosen to be 0.6, which is close to the value

estimated by Cooper and Ejarque (2001) and Hennessy and Whited (2007). The

persistence of aggregate productivity, ρx, is set to be 0.983, following Cooley and

Prescott (1995). They report that the quarterly autocorrelation for the aggregate

output is 0.95. Since I calibrate the model at a monthly frequency, I set ρx = 0.95
1
3 =

0.983. I set the persistence of the firm-specific productivity, ρz = 0.97, following

Zhang (2005). The long-term average of aggregate productivity is set to be −3.954
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to normalize the average long-term capital stock at unity. For fixed operating costs,

I set f = 0.003 to match the median of the firm-level market-to-book-ratio of 1.64.

Uncertainty process : I set the average volatility of the aggregate productivity, fol-

lowing Cooley and Prescott (1995). They document the quarterly volatility for the

aggregate output to be 0.007. I convert it into the monthly value, σx = 0.007 ×√
1 + ρ2x + ρ4x = 0.0041.4 There are two states of aggregate productivity volatility,

the high and low states, given as σxL and σxH , respectively. Following Bloom (2009),

high volatility has twice the value of low volatility, so that σxL and σxH are chosen to

be 0.003 and 0.006 to match the average volatility of 0.0041. The average volatility

of the firm-specific productivity, ρz, is set to be 0.15, following Gomes and Schmid

(2010). There are also two states of volatility of firm-specific productivity. These are

the high and low states, given as σzL and σzH , respectively. High volatility has twice

the value of low volatility, so that σzL and σzH are set to be 0.108 and 0.217 to match

their average value of 0.15. The transition probabilities for the uncertainty process,

namely πL,L and πH,H , are from Bloom, Floetotto, Jaimovich, Saporta-Eksten, and

Terry (2012). They calibrate the quarterly transition probabilities as 0.95 and 0.92.

I convert the values into monthly values and set πL,L = 0.983 and πH,H = 0.972.

Adjustment costs : The monthly rate of depreciation, δ, is set to be 0.01, close to

the empirical estimate of Cooper and Haltiwanger (2000). The parameter for convex

adjustment costs, c, is chosen to be 0.05 to match the annual volatility of the firm-

level investment rates of 22.30%. The parameter for nonconvex adjustment costs, a+

and a−, are chosen to be 0.01 and 0.08 respectively, so that the model can match the

4The formulas that I use to convert the quarterly values to monthly values are from Heer and
Maussner (2009).
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median of the firm-level investment rates, 11.58%, and the range of the average ratio

of adjustment costs-to-output of 0− 4.2%, as estimated in Hall (2004) and Merz and

Yashiv (2007).

Stochastic discount factor : The subjective discount factor, β, is chosen to be 0.985

to match the average annual risk-free rates of 1.03%. I set the price of risk for

productivity shocks to be γx = 8 and price of risk for uncertainty shocks to be

γσx = −15 to match the mean and volatility of market returns, which are 7.01% and

17.35% respectively, as well as the volatility of the risk-free rate of 2.31%.

The comparison between target moments from data and those from model simu-

lations is summarized in Table 1.5. It shows that averages and volatilities for risk-free

rates and market returns from the model and the real data are closely matched. The

average of market returns from the model is higher than that from the data. The

statistics for firm-level investment rates, market-to-book ratios, and average adjust-

ment costs-to-output ratio are reasonably matched.

1.5.2 The value premium

In this subsection, I compare the value premium in the data with that which

was generated from model simulations. Table 1.6 reports descriptive statistics of 10

book-to-market portfolios, including the mean excess returns (E(r)), return volatil-

ity (σ(r)), abnormal returns (α), and market betas (β) from the CAPM regressions.

Panel A in Table 1.6 represents the statistics in the data. It shows that the value pre-

mium is 7.35% per year. The CAPM alpha of the value-minus-growth decile is 7.13%

and statistically significant (t-value = 2.26), while its market beta is not statistically
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different from zero. These results indicate that there is no association between mar-

ket betas and the return spread across book-to-market portfolios. The market betas

cannot generate enough dispersion to explain the return spread across the portfolios.

One of the goals of this study is to replicate Panel A by generating both the value

premium and the failure of the CAPM to account for the value premium.

Panel B in Table 1.6 summarizes the simulation results from the model. The book

value of the firm is defined as its capital stock, and the market value of the firm is

defined as its ex dividend stock price.5 I follow Fama and French (1992, 1993) to form

10 book-to-market portfolios for each simulated panel. I repeat the entire simulation

100 times and report the cross-simulation averages of the summary statistics in the

table. Panel B shows that the value premium generated from the model is 4.37%.

In addition, the model replicates the failure of the CAPM. The CAPM betas are

flat across book-to-market portfolios, and thus, they cannot capture the dispersion

between the growth and the value portfolios. The beta of the value-minus-growth

decile is not statistically different from zero, and its alpha is 4.20% and statistically

significant (t-value = 4.16). Therefore, the CAPM cannot account for the value

premium, which is consistent with the empirical evidence.

Reproducing the failure of the CAPM in the model is a key contribution of this

paper. The models in prior studies on the value effect generate high betas for value

stocks and low betas for growth stocks. As a result, the return difference between

growth and value stocks can be counterfactually explained by the CAPM. (see Gomes,

Kogan, and Zhang (2003), Carlson, Fisher, and Giammarino (2004), Zhang (2005),

5V (Kit, Zit;Xt, σ
x
t , σ

z
t ) is the cum dividend stock price. The current dividend is defined as

Dit = Πit− Iit−Φ(Iit,Kit). The ex dividend stock price is the firm value after dividend is paid out.
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Ozdagli (2012), and Obreja (2013)). This issue is common in models with one source

of aggregate risk. In the economy with one aggregate shock, the CAPM betas are

highly correlated with risk premiums. This paper shows that by adding time-varying

uncertainty risk as a second source of risk, the model generates a multifactor structure

of returns and breaks the high correlation between market betas and risk premiums

in the prior models.

1.5.3 The Risk Source of the Value Premium

This subsection explores what drives the cross-section of returns in the model. To

this end, I examine the loadings on two risk factors in the model, namely, productiv-

ity shocks and uncertainty shocks. Section 3 shows that in the data, book-to-market

portfolios have differential exposures to the uncertainty factor, while they have almost

the same exposures to the productivity factor and the market factor. This evidence

provides support for the explanatory power of uncertainty shocks on the value pre-

mium. I test whether the model generates results consistent with those in the data.

In the model, uncertainty shocks are defined as the first difference between the cur-

rent and lagged volatility of innovations to aggregate productivity. Table 1.7 reports

the regression results of 10 book-to-market portfolios on uncertainty shocks. Panel

A indicates that the loadings on uncertainty risk have a sizable spread and decrease

from the growth to value portfolios. The loading of the value minus growth portfolio

is −3.13 and is statistically significant (t = −1.83) at 10%. Panel B reports the load-

ings on uncertainty risk controlling for the market factor. It shows that the loadings

on uncertainty shocks monotonically decrease from the growth to value portfolios,

while there are no significant patterns in the loadings on market risk. The loadings of
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growth stocks on uncertainty shocks become positive after adding the market factor

to the regression model. The loading of the value minus growth portfolio is −3.04

and is statistically significant (t = −1.82) at the 10%. The results show that growth

stocks tend to do better than value stocks when uncertainty increases. These results

are consistent with those from the data reported in Section 3.2.

I investigate whether productivity shocks have a differential impact on cross-

sectional returns. If this is the case, the value premium generated from the model

might be explained by productivity shocks rather than uncertainty shocks. Table 1.8

summarizes the test results. Panel A shows that the portfolios do not exhibit a sizable

spread in their sensitivities to productivity shocks. Panel B shows that the portfolios

still have different sensitivities after controlling for productivity shocks. The loading

of the value-minus-growth portfolio is −3.02 and is statistically significant (t = 1.76)

at 10%. I also run regressions including the market factor, and present the results in

Table 1.9. It shows that the risk loadings on productivity shocks do not exhibit any

patterns, while loadings on uncertainty shocks decrease with book-to-market. These

results are consistent with the empirical findings presented in Section 3.3. Therefore,

in the model, uncertainty shocks are the driving force behind the value premium.

1.5.4 Model-implied VIX Index

I compute a model-implied VIX index to make the results from the model com-

parable with those from the data. This index is defined as the expected conditional

volatility of market returns. The model-implied VIX is calculated as follows:

V IXt = 100×
√

12× V ARt(RM
t+1), (1.19)
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where V ARt(R
M
t+1) is the monthly conditional variance of market returns. I convert

the monthly conditional variance into annualized volatility in percentages, following

the construction of the real VIX index.

I conduct the same analysis as that in the previous subsection, using the model-

implied VIX, and then compare the results with those from the data. Table 1.10

reports these results. It shows that the results are consistent with those using the

real VIX index, which were presented in Sections 3.2 and 3.3. The loadings on the

model-implied VIX decrease from growth to value stocks. The pattern remains after

controlling for the market factor or the productivity factor. In addition, Panel B

indicates that the loadings of growth stocks change from negative to positive after

adding the market factor to the regression model. The results show that the model

captures the link between the cross-section of returns and the VIX index that proxies

for uncertainty.

1.5.5 Comparative Statics

In this subsection, I conduct alternative calibrations with different values for the

model parameters in order to investigate the mechanism by which the model generates

the value premium. These experiments shed light on understanding which channels

make significant contributions to generating the differential effects of uncertainty

shocks on cross-sectional returns. The comparison results are reported in Table 1.11.

The first column shows the results from the benchmark model. The model generates a

value premium of 4.37%, and the CAPM alpha of the value-minus portfolio is 4.20%.

First, I shut down uncertainty shocks in specification 1 by setting constant volatil-

ities for both aggregate and firm-specific productivity shocks (i.e., σLx = σHx = 0.0041
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and σLz = σHz = 0.15). Without the time-varying uncertainty, the model generates

a value premium of 2.85%. In specification 2, I shut down firm-specific uncertainty

shocks by setting σLz = σHz = 0.15. When there are only aggregate uncertainty shocks,

the value portfolio earns annual average returns that are 2.28% higher than those of

the growth portfolio. The value premium is small compared with that from the bench-

mark model, which implies that firm-specific uncertainty shocks are also important in

producing the value premium. It seems that firm-specific uncertainty shocks amplify

the impact of the time-varying aggregate uncertainty shocks. In specification 3, I

assume that there is no price of risk for uncertainty shocks by setting γσx = 0. With

the setting, the model produces 2.71% of the value premium.

Specifications 4, 5, and 6 show the role of each component for adjustment costs.

In specification 4, I shut down the convex part of the adjustment costs by setting the

coefficient of the convex term, c, to zero. Without the convex component, the model

generates 3.21% of the return spread between the growth and the value portfolios.

The model can still produce the value premium, but the magnitude is smaller than

that of the model with the convex term in adjustment costs.

In specification 5, I remove investment irreversibility by setting the coefficient of

nonconvex adjustment costs of disinvestment, a−, to be equal to that of investment,

a+ . This means that disinvestment is no longer more expensive in the model. Af-

ter removing the irreversibility, the model generates 1.02% of the value premium.

This result implies that irreversibility of investment is critical in generating the value

premium. This finding is consistent with Zhang (2005) and Cooper (2006).

Lastly, in specification 6, I get rid of the nonconvex adjustment costs by setting the

coefficients of the costs, namely a+ and a−, to zero. By doing so, firms only need to
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pay convex adjustment costs to change their current level of capital. The result shows

that there is no value premium without the nonconvex adjustment costs. Therefore,

the nonconvex adjustment costs play a key role in producing the value premium.

This implies that without nonconvex adjustment costs, there is no optionality in the

model, and as a result, investment opportunities are not like financial call options.

The value of investment opportunities no longer interact with uncertainty.

1.5.6 Uncertainty and Cross-sectional Investment

A series of empirical and theoretical studies shows that uncertainty has a signifi-

cantly negative impact on corporate investment.6 However, the impact of uncertainty

on cross-sectional investment is less emphasized. In this subsection, I explore whether

corporate investment exhibits heterogeneous reactions to uncertainty depending on

the amount of each firm’s investment opportunities.

Table 1.12 compares annual average investment rates across book-to-market port-

folios during low uncertainty and high uncertainty. It shows that the investment rate

of extreme growth firms increases by 3.82% while investment rates of other firms drop.

In addition, the table indicates that firms with higher book-to-market ratios exhibits a

greater magnitude of reduction in their investment rates. This finding implies that the

impact of uncertainty on investment is negatively related to book-to-market ratios.

To assess the effect of uncertainty on cross-sectional investment, I run the following

regression using the model-generated data:

Iit
Kit

= ai + λiσt + εit, (1.20)

6See, for example, Bernanke (1983), Leahy and Whited (1996), Guiso and Parigi(1999), Bloom,
Bond, and Reenen (2007), Bloom (2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry
(2012), Stein and Stone (2012), Kahle and Stulz (2013), and Gilchrist, Sim and Zakrajsek (2014).
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where Iit is an investment flow of portfolio i over time t and Kit is capital stock at the

beginning of time t. σt is uncertainty at time t, defined as the volatility of innovations

to aggregate productivity.7 I also run the same regression using the model-implied

VIX index.

Table 1.13 reports estimates of the impact of uncertainty on the investment of

10 book-to-market portfolios. Panel A shows that uncertainty positively affects the

investment of firms with lowest book-to-market rations while it has a significantly

negative impact on investment of other firms. Panel B indicates that the results

using the model-implied VIX are consistent with those in Panel A. The finding in

Table 1.13 suggests that uncertainty has an impact on cross-sectional investment.

Investment of firms with high Tobin’s Q is positively affected by uncertainty while

that of firms with low Tobin’s Q is negatively affected. This implies that uncertainty

affects investment through Tobin’s Q, which is consistent with Dixit and Pindyck

(1994) and Abel and Eberly (1983). They show that in the presence of investment

irreversibility, uncertainty has an effect on investment only through marginal Q. Since

the production function in the model exhibits decreasing returns to scale, Tobin’s Q

is not equal to marginal Q. However, it can serve as a proxy for marginal Q.

The results imply that the positive relation between Tobin’s Q and investment

tends to cancel out the negative effect of uncertainty on investment. As a result,

firms with high Tobin’s Q are not affected by uncertainty and proceed with their

investment, while firms with low Tobin’s Q significantly decrease their investment

during times of high uncertainty.

7Capital stock, Kit,and uncertainty level, σt are known at the beginning of time t. Firms deter-
mine their optimal investment, Iit, based on Kit and σt.
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1.6 Conclusion

This study examines the effect of uncertainty shocks on the cross-section of stock

returns. Uncertainty has a heterogeneous impact across book-to-market portfolios.

Growth firms tend to do better than value firms when uncertainty rises, and therefore,

provide a better hedge against uncertainty shocks. The reason for this is that the

value of growth options increases with uncertainty.

By introducing uncertainty shocks into an investment-based asset pricing model,

my model can reproduce both the value premium and the empirical failure of the

CAPM. As such, the model with uncertainty shocks generates a multifactor struc-

ture in stock returns and reduces the high correlation between CAPM betas and risk

premiums in the models of prior studies on the value premium. The nonconvex ad-

justment costs of investment play a critical role in producing the value premium. The

combination of irreversibility and fixed costs of investment generates the optionality

in the model. The value of options is time-varying since uncertainty varies over time.

The results from comparative statics show that the model cannot generate the value

premium without the nonconvex adjustment costs.

This study also finds that uncertainty affects the cross-section of investment. The

investment of value firms is negatively affected by uncertainty, while that of growth

firms is positively affected. This finding suggests that uncertainty influences corporate

investment through Tobin’s Q. Firms with higher Tobin’s Q have greater ability to

proceed with their investment regardless of uncertainty.
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1.7 Tables and Figures

Figure 1.1: Average Returns of Book-to-Market Portfolios and the CAPM
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Table 1.1: VIX and Cross-sectional Returns

This table reports the estimated loadings on risk factors of 10 book-to-market
portfolios and their t-statistics from the following two regressions:

Panel A: rit = αi + βV IXi ∆V IXt + εit

Panel B: rit = αi + βMKT
i MKTt + βV IXi ∆V IXt + εit,

where rit is the excess return of portfolio i at time t, ∆V IX is the innovation in
the VIX index, MKT is the market excess return, and βV IX and βMKT are load-
ings on uncertainty risk and market risk, respectively. The VIX index is obtained
from CBOE (Chicago Board Options Exchange) and aggregated to a monthly fre-
quency by averaging its daily values within the month. The monthly returns on
book-to-market deciles, the risk-free rate, and market portfolio returns are taken
from Kenneth French’s website. Newey-West t-statistics are reported to control for
heteroscedasticity and autocorrelation. Due to the data availability of the VIX, the
sample period is January 1990 through December 2013.

Growth 2 3 4 5 6 7 8 9 Value V-G

Panel A

βV IX -0.66 -0.68 -0.60 -0.69 -0.67 -0.70 -0.61 -0.65 -0.69 -0.88 -0.22
tβV IX -10.65 -11.56 -6.84 -10.24 -8.30 -10.88 -8.76 -10.39 -9.20 -11.00 -3.03

Panel B

βMKT 1.08 0.94 0.92 0.91 0.82 0.90 0.82 0.81 0.89 1.00 -0.08
tβMKT 21.69 23.94 24.62 13.57 12.84 13.78 11.58 6.90 10.50 8.47 -0.47
βV IX 0.07 -0.04 0.02 -0.07 -0.11 -0.08 -0.05 -0.11 -0.09 -0.21 -0.28
tβV IX 1.63 -1.11 0.48 -1.55 -1.88 -1.88 -1.10 -1.31 -1.53 -2.93 -2.79
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Table 1.2: TFP and Cross-sectional Returns

This table reports the estimated loadings on risk factors of 10 book-to-market
portfolios and their t-statistics from the following two regressions:

Panel A: rit = αi + βTFPi ∆TFPt + εit

Panel B: rit = αi + βTFPi ∆TFPt + βV IXi ∆Ut + εit,

where rit is the excess return of portfolio i at time t, ∆TFP is the innovation in
Utilization-adjusted total factor productivity, ∆V IX is the innovation in the VIX
index, and βTFP and βV IX are loadings on productivity risk and uncertainty risk,
respectively. The returns of book-to-market deciles, the risk-free rate, and market
portfolio returns are taken from Kenneth French’s website. Since TFP data are quar-
terly, the portfolio returns and the VIX are averaged over every three months to
form quarterly observations. Newey-West t-statistics are reported to control for het-
eroscedasticity and autocorrelation. The sample period is January 1963 to December
2013 for Panel A and January 1990 to December 2013 for Panel B, due to limited
data availability of the VIX.

Growth 2 3 4 5 6 7 8 9 Value V-G

Panel A

βTFP 0.22 0.13 -0.02 -0.05 0.05 0.02 0.12 0.19 0.20 0.43 0.21
tβTFP 0.73 0.56 -0.08 -0.21 0.23 0.10 0.56 0.81 0.94 1.68 1.05

Panel B

βTFP 0.37 0.22 -0.04 -0.16 0.02 -0.14 -0.06 -0.00 0.04 0.33 -0.04
tβTFP 1.41 0.98 -0.20 -0.64 0.08 -0.73 -0.24 -0.01 0.15 1.06 -0.09
βV IX -0.92 -0.89 -0.75 -0.96 -0.85 -1.01 -0.86 -1.02 -0.95 -1.30 -0.38
tβV IX -6.24 -4.78 -3.02 -5.00 -3.85 -5.87 -4.02 -7.58 -4.15 -5.49 -2.55
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Table 1.3: TFP and Cross-sectional Returns, Controlling for Market Risk

This table reports the estimated loadings on risk factors of 10 book-to-market
portfolios and their t-statistics from the following regressions:

Panel A: rit = α + βMKT
i MKTt + βTFPi ∆TFPt

Panel B: rit = α + βMKT
i MKTt + βTFPi ∆TFPt + βV IXi ∆V IXt + εit,

where rit is the excess return of portfolio i at time t, MKT is market excess returns,
∆TFP is the innovation in Utilization-adjusted total factor productivity, ∆V IX is
the innovation in the VIX index, and βTFP , βMKT , and βV IX are loadings on market
factor, productivity risk, and uncertainty risk, respectively. A quarterly series of
Utilization-adjusted TFP is obtained from the Federal Reserve Bank of San Francisco,
and the VIX is from CBOE. The returns of book-to-market deciles, the risk-free
rate, and market portfolio returns are taken from Kenneth French’s website. Since
TFP data are quarterly, the portfolio returns, market excess returns, and the VIX
are averaged over every three months to form quarterly observations. Newey-West
t-statistics are reported to control for heteroscedasticity and autocorrelation. The
sample period is January 1963 to December 2013 for Panel A and is January 1990 to
December 2013 for Panel B, due to the limited data availability of the VIX.

Growth 2 3 4 5 6 7 8 9 Value V-G

Panel A

βMKT 1.09 1.02 0.99 0.98 0.87 0.91 0.90 0.88 0.95 1.06 -0.03
tβMKT 1.09 1.02 0.99 0.98 0.87 0.91 0.90 0.88 0.95 1.06 -0.03
βTFP 0.07 0.01 -0.15 -0.18 -0.07 -0.10 0.01 0.09 0.09 0.30 0.23
tβTFP 0.79 0.14 -2.88 -3.09 -1.05 -1.59 0.17 1.06 0.95 2.24 1.13

Panel B

βMKT 1.05 0.95 0.98 0.89 0.78 0.87 0.88 0.75 0.89 0.87 -0.18
tβMKT 12.30 16.10 16.83 8.67 6.82 9.58 6.68 5.27 6.76 4.45 -0.66
βTFP 0.29 0.14 -0.12 -0.23 -0.05 -0.21 -0.13 -0.06 -0.04 0.26 -0.03
tβTFP 1.56 1.28 -1.62 -1.77 -0.41 -2.13 -0.84 -0.35 -0.19 0.78 -0.06
βV IX 0.03 -0.03 0.14 -0.15 -0.14 -0.22 -0.05 -0.34 -0.13 -0.51 -0.54
tβV IX 0.28 -0.52 1.61 -1.53 -0.93 -2.30 -0.37 -2.60 -0.90 -2.70 -1.84
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Table 1.4: Parameters

This table reports the values for parameters used to calibrate the model. The model
is calibrated at a monthly frequency.

Parameter Notation Value

Productivity
Capital share η 0.6
Persistence of aggregate productivity ρx 0.983
Persistence of idiosyncratic productivity ρz 0.97
Long-term average of aggregate productivity x̄ -3.954
Fixed operating costs f 0.003

Uncertainty process
Low volatility of aggregate productivity σxL 0.003
High volatility of aggregate productivity σxH 0.006
Low volatility of firm-specific productivity σzL 0.108
High volatility of firm-specific productivity σzH 0.217
Probability of staying in the low volatility state πL,L 0.983
Probability of staying in the high volatility state πH,H 0.972

Adjustment costs
Depreciation rate δ 0.01
Convex costs c 0.05
Nonconvex costs of positive investment a+ 0.01
Nonconvex costs of negative investment a− 0.08

Stochastic discount factor
Subjective discount factor β 0.985
Price of risk for productivity shocks γx 8
Price of risk for uncertainty shocks γσx -15
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Table 1.5: Target Moments

This table compares target moments from the data with those from model simulations.
100 samples are simulated, and each includes 1000 month and 5000 firms. The first
400 months are dropped to neutralize the impact of initial conditions and to match the
length of the sample period with that in the empirical data. The moments from model
simulations are aggregated to an annual level. The sample period of the empirical
data is from 1963 to 2013. The firm-level data are taken from COMPUSTAT and
the Center for Research in Security Prices (CRSP). The returns of book-to-market
sorted portfolios, risk-free rates, and market returns are taken from Kenneth French’s
website. The range of the average adjustment costs-to-output ratio is from Hall (2004)
and Merz and Yashiv (2007).

Data Model

Average risk-free rate (%) 1.03 0.8
Volatility of risk-free rate (%) 2.31 2.22
Average market return (%) 7.01 9.21
Volatility of market return (%) 17.35 18.00
Median of firm-level investment rate (%) 11.58 12.00
Volatility of firm-level investment rate (%) 22.30 20.44
Median market-to-book ratio 1.64 1.61
Average adjustment costs-to-output ratio (%) 0-4.2 2.04
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Table 1.6: Value Premium and CAPM Regressions

This table compares summary statistics for 10 book-to-market portfolios, including
the mean excess returns (E(r)), return volatility (σ(r)), abnormal returns (α), and
market betas (β) from the empirical data and model simulations. The mean excess re-
turns, return volatility, and abnormal returns are reported in annual percentages. The
sample period of the real data is from 1963 to 2013. The returns on book-to-market
portfolios, risk-free rates, and market returns are obtained from Kenneth French’s
website. For the model, 100 samples are simulated, with each sample containing 5000
firms and 1000 periods. The first 400 periods are dropped to neutralize the impact
of initial conditions on the simulation and to match the length of the sample period
with that in the empirical data. Newey-West t-statistics are reported to control for
heteroscedasticity and autocorrelation.

Growth 2 3 4 5 6 7 8 9 Value V-G

Panel A: Data

E(r) 5.78 6.84 7.08 7.18 7.11 7.88 9.44 9.54 10.62 13.14 7.35
σ(r) 21.33 18.07 17.11 18.55 17.55 17.40 18.72 18.52 18.26 24.31 20.64
α -1.52 0.30 0.85 0.94 1.24 1.89 3.32 3.71 4.84 5.61 7.13
tα -1.22 0.45 1.24 0.80 0.89 1.68 2.38 2.39 4.31 3.12 2.51
β 1.08 0.97 0.92 0.93 0.87 0.89 0.91 0.86 0.86 1.12 0.03
tβ 19.17 28.06 22.19 10.15 9.87 12.94 8.66 7.26 8.62 9.61 0.22

Panel B: Model

E(r) 7.31 7.90 8.39 8.68 9.31 9.93 10.85 10.93 11.43 11.67 4.37
σ(r) 15.50 15.22 14.94 14.63 14.61 14.63 14.51 14.83 15.56 16.31 7.06
α -2.40 -1.67 -1.03 -0.56 0.08 0.70 1.71 1.64 1.79 1.81 4.20
tα -6.50 -5.09 -3.76 -2.17 0.33 2.75 6.28 4.54 3.45 2.51 4.16
β 1.04 1.02 1.01 0.99 0.99 0.99 0.98 0.99 1.03 1.05 0.02
tβ 53.98 63.89 90.31 123.83 119.21 130.29 89.78 70.39 39.19 23.16 0.29
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Table 1.7: Value Premium and Uncertainty Risk

This table reports the exposures of 10 book-to-market portfolios to productivity
shocks and their t-statistics using model-generated data. The results are from the
following regressions:

Panel A: rit = α + βσi ∆σt + εit

Panel B: rit = α + βMKT
i MKTt + βσi ∆σt + εit,

where rit is the excess return of portfolio i at time t and ∆σt is uncertainty shocks
defined as the changes in the volatility of innovations to the aggregate productivity
in the model. MKT is market excess returns, and βσ and βMKT are loadings on the
uncertainty factor and the market factor, respectively. 100 samples are simulated,
with each sample containing 5000 firms and 1000 periods. The first 400 periods are
dropped to neutralize the impact of initial conditions on the simulation and to match
the length of the sample period with that in the empirical data. The reported values
are averaged from the 100 samples. Newey-West t-statistics are reported to control
for heteroscedasticity and autocorrelation.

Growth 2 3 4 5 6 7 8 9 Value V-G

Panel A

βσ -5.31 -4.90 -5.12 -6.57 -5.84 -5.87 -6.19 -6.22 -7.35 -8.44 -3.13
tβσ -1.82 -1.67 -1.58 -2.02 -1.77 -1.69 -1.71 -1.60 -1.69 -1.86 -1.83

Panel B

βMKT 1.04 1.02 1.01 0.99 0.99 0.99 0.98 0.99 1.03 1.05 0.02
tβMKT 53.99 64.16 89.96 124.05 119.27 130.79 88.73 70.18 39.18 23.08 0.25
βσ 0.80 1.13 0.82 -0.75 -0.02 -0.05 -0.43 -0.37 -1.28 -2.24 -3.04
tβσ 1.25 1.76 1.74 -1.75 -0.07 -0.11 -0.73 -0.50 -1.35 -1.89 -1.82
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Table 1.8: Value Premium and Productivity Risk

This table reports the exposures of 10 book-to-market portfolios to productivity
shocks and their t-statistics using model-generated data. The results are from the
following regressions:

Panel A: rit = αi + βTFPi ∆TFPt + εit

Panel B: rit = αi + βTFPi ∆TFPt + βσi ∆σt + εit

where rit is the excess return of portfolio i at time t, and ∆σt is uncertainty shocks
defined as the changes in the volatility of innovations to the aggregate productivity
in the model. ∆TFP is productivity shocks, defined as the changes in aggregate pro-
ductivity. βTFP and βσ are loadings on productivity shocks and uncertainty shocks,
respectively. 100 samples are simulated, with each sample containing 5000 firms and
1000 periods. The first 400 periods are dropped to neutralize the impact of initial
conditions on the simulation and to match the length of the sample period with that
in the empirical data. The reported values are averaged from the 100 samples. Newey-
West t-statistics are reported to control for heteroscedasticity and autocorrelation.

Growth 2 3 4 5 6 7 8 9 Value V-G

Panel A

βTFP 0.58 0.52 0.61 0.69 0.68 0.66 0.66 0.63 0.68 0.78 0.20
tβTFP 0.97 0.94 1.12 1.33 1.31 1.26 1.30 1.23 1.19 1.25 0.89

Panel B

βTFP 0.54 0.49 0.58 0.65 0.64 0.62 0.62 0.60 0.64 0.73 0.18
tβTFP 0.91 0.88 1.06 1.24 1.23 1.18 1.21 1.14 1.10 1.15 0.79
βσ -5.00 -4.62 -4.78 -6.19 -5.46 -5.50 -5.82 -5.87 -6.98 -8.02 -3.02
tβσ -1.64 -1.51 -1.41 -1.83 -1.59 -1.53 -1.56 -1.47 -1.56 -1.72 -1.76
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Table 1.9: Value Premium and Productivity Risk, Controlling for Market
Risk

This table reports the estimated loadings on risk factors of 10 book-to-market
portfolios and their t-statistics from the following two regressions:

Panel A: rit = α + βMKT
i MKTt + βTFPi ∆TFPt

Panel B: rit = αi + βMKT
i MKTt + βTFPi ∆TFPt + βσi ∆σt + εit,

where rit is the excess return of portfolio i at time t, MKT is market excess returns,
∆TFP is productivity shocks, defined as the changes in aggregate productivity. ∆σt
is uncertainty shocks defined as the changes in the volatility of innovations to the
aggregate productivity in the model. βMKT , βTFP , and βσ are loadings on market
factor, TFP factor, and uncertainty factor, respectively. 100 samples are simulated,
with each sample containing 5000 firms and 1000 periods. The first 400 periods are
dropped to neutralize the impact of initial conditions on the simulation and to match
the length of the sample period with that in the empirical data. The reported values
are average from 100 samples. Newey-West t-statistics are reported to control for
heteroscedasticity and autocorrelation.

Growth 2 3 4 5 6 7 8 9 Value V-G

Panel A

βMKT 1.04 1.02 1.01 0.99 0.99 0.99 0.98 0.99 1.03 1.05 0.02
tβMKT 54.03 64.08 89.97 123.87 118.12 130.79 90.22 70.40 39.31 23.21 0.27
βTFP -0.08 -0.12 -0.02 0.07 0.05 0.04 0.05 0.01 0.03 0.11 0.19
tβTFP -0.85 -1.76 -0.41 1.27 1.02 0.78 0.72 0.10 0.25 0.72 0.87

Panel B

βMKT 1.04 1.02 1.01 0.99 0.99 0.99 0.98 0.99 1.03 1.05 0.01
tβMKT 54.11 64.49 89.79 124.20 118.20 131.23 89.26 70.23 39.33 23.17 0.23
βTFP -0.07 -0.12 -0.02 0.07 0.05 0.04 0.04 0.01 0.02 0.10 0.17
tβTFP -0.79 -1.65 -0.31 1.17 1.01 0.78 0.68 0.08 0.18 0.63 0.78
βσ 0.76 1.06 0.81 -0.72 0.01 -0.03 -0.41 -0.36 -1.27 -2.18 -2.94
tβσ 1.18 1.61 1.72 -1.69 0.01 -0.06 -0.68 -0.49 -1.31 -1.84 -1.75
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Table 1.10: Value Premium and Model-implied VIX

This table reports the exposures of 10 book-to-market portfolios to the model-implied
VIX index and their t-statistics using model-generated data. The results are from
the following regressions:

Panel A: rit = αi + βV IXi ∆V IXt + εit

Panel B: rit = αi + βMKT
i MKTt + βV IXi ∆V IXt + εit

Panel C: rit = αi + βTFPi ∆TFPt + βV IXi ∆V IXt + εit,

where rit is the excess return of portfolio i at time t, ∆V IX is the changes in the
model-implied VIX, defined as the expected conditional volatility of market returns.
MKT is market excess returns, and ∆TFP is productivity shocks, defined as the
changes in aggregate productivity. βV IX , βMKT , and βTFP are loadings on uncertainty
factor, proxied by the model-implied VIX, market factor, and productivity factor,
respectively. 100 samples are simulated, with each sample containing 5000 firms and
1000 periods. The first 400 periods are dropped to neutralize the impact of initial
conditions on the simulation and to match the length of the sample period with
that in the empirical data. The reported values are averaged from the 100 samples.
Newey-West t-statistics are reported.

Growth 2 3 4 5 6 7 8 9 Value V-G

Panel A

βV IX -0.12 -0.11 -0.12 -0.15 -0.13 -0.13 -0.14 -0.14 -0.16 -0.18 -0.06
tβV IX -2.06 -2.01 -1.96 -2.50 -2.18 -2.05 -2.17 -1.90 -1.95 -2.18 -1.92

Panel B

βMKT 1.04 1.02 1.01 0.99 0.99 0.99 0.98 0.99 1.03 1.05 0.01
tβMKT 54.06 64.39 89.86 124.07 119.06 131.30 88.92 70.06 39.18 23.07 0.24
βV IX 0.02 0.02 0.02 -0.02 -0.00 -0.00 -0.01 -0.01 -0.02 -0.04 -0.06
tβV IX 1.45 2.00 1.87 -2.29 -0.37 -0.27 -1.27 -0.40 -1.20 -1.90 -1.93

Panel C

βTFP 0.39 0.35 0.43 0.46 0.47 0.46 0.44 0.42 0.43 0.49 0.10
tβTFP 0.63 0.60 0.76 0.84 0.87 0.83 0.81 0.76 0.71 0.73 0.40
βV IX -0.10 -0.09 -0.10 -0.12 -0.11 -0.11 -0.12 -0.12 -0.14 -0.16 -0.06
tβV IX -1.68 -1.60 -1.49 -1.94 -1.66 -1.58 -1.68 -1.48 -1.56 -1.74 -1.72

40



Table 1.11: Comparative Statics

This table compares the value premium and the CAPM alpha of the value-minus-
growth portfolio, generated from the model by alternative calibrations. The first
column reports results from the benchmark model. In specification 1, I shut down
uncertainty shocks, by setting constant volatilities for both aggregate and firm-specific
productivity shocks (i.e., σLx = σHx = 0.0041 and σLz = σHz = 0.15). In specification 2,
I turn off firm-specific uncertainty shocks by setting σLz = σHz = 0.15. In specification
3, I set the price of uncertainty risk to be zero (i.e. γx = 0). In specification 4, I
shut down the convex part of the adjustment costs by setting its coefficient to zero
(i.e., c = 0). In specification 5, I remove the investment irreversibility by setting the
coefficient of the nonconvex adjustment costs of disinvestment to be equal to that
of investment (i.e. a+ = a− = 0.01). In specification 6, I shut down the nonconvex
adjustment costs by setting their coefficients to zero (i.e., a+ = a− = 0).

Baseline No σ shocks No σz shocks γσx = 0 c = 0 a+ = a− = 0.01 a+ = a−= 0

E(r) 4.37 2.85 2.28 2.71 3.21 1.02 -0.30
α 4.20 1.81 3.22 3.17 6.03 2.61 0.13
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Table 1.12: Investment Rates

This table reports compares annual average investment rate (I/K) of 10 book-to-
market portfolios during periods of low and high uncertainty from model simulations.
Monthly average investment rates are annualized by multiplying by 12. 100 samples
are simulated, with each sample containing 5000 firms and 1000 periods. The first 400
periods are dropped to neutralize the impact of initial conditions on the simulation
and to match the length of the sample period with that in the empirical data. The
reported values are averaged from the 100 samples.

I/K Growth 2 3 4 5 6 7 8 9 Value

Low Uncertainty 24.07 18.23 15.81 14.58 13.59 12.92 12.44 11.88 11.48 9.49

High Uncertainty 27.89 16.99 14.25 12.03 10.27 8.80 7.28 6.13 2.55 -4.38

Diff (High-Low) 3.82 -1.25 -1.56 -2.55 -3.32 -4.12 -5.16 -5.75 -8.93 -13.87
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Table 1.13: Uncertainty and Cross-sectional Investment

This table reports the estimated loadings on risk factors of 10 book-to-market
portfolios and their t-statistics from the following regressions:

Panel A: Iit
Kit

= ai + λσi σt + εit

Panel B: Iit
Kit

= ai + λV IXi V IXt + εit,

where Iit is an investment flow of portfolio i over time t and Kit is capital stock
at the beginning of time t. σt is uncertainty at time t, defined as the volatility of
innovations to aggregate productivity. σt−1 is one-month lagged uncertainty defined
as the volatility of innovations to the aggregate productivity in the model. V IXt

is the model-implied VIX index, defined as the expected conditional volatility of
market returns. 100 samples are simulated, with each sample containing 5000 firms
and 1000 periods. The first 400 periods are dropped to neutralize the impact of
initial conditions on the simulation and to match the length of the sample period
with that in the empirical data. The reported values are averaged from the 100
samples. Newey-West t-statistics are reported to control for heteroscedasticity and
autocorrelation.

Growth 2 3 4 5 6 7 8 9 Value

Panel A

λσ 1.07 -0.35 -0.44 -0.72 -0.94 -1.16 -1.45 -1.62 -2.51 -3.90
tλσ 1.94 -1.31 -1.69 -3.91 -5.19 -5.91 -6.06 -6.61 -6.70 -4.45

Panel B

λV IX 0.00 -0.01 -0.01 -0.01 -0.02 -0.02 -0.03 -0.03 -0.04 -0.07
tλV IX 1.64 -1.79 -2.36 -4.80 -5.54 -6.40 -6.74 -7.75 -7.64 -4.82
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Chapter 2: Uncertainty Shocks and the Idiosyncratic

Volatility Puzzle

2.1 Introduction

Ang, Hodrick, Xing, and Zhang (2006, 2009) find that idiosyncratic volatility,

measured by the standard deviation of the residuals from the Fama-French three fac-

tor model, is negatively priced in the cross-section. This finding has attracted much

attention since it is inconsistent with traditional asset pricing theories. For exam-

ple, according to the capital asset pricing model (CAPM), expected returns on assets

are explained only by their sensitivities to market returns, and therefore idiosyncratic

volatility should not capture the cross-sectional variation in expected returns. Merton

(1987) argues that if markets are incomplete and investors cannot hold well-diversified

portfolios, investors will demand compensation for holding under-diversified portfo-

lios. Therefore, idiosyncratic volatility should be positively related to the cross-section

of expected returns.

Motivated by my previous work, Koh (2014), I demonstrate in this study that ag-

gregate uncertainty risk can account for the negative relation between idiosyncratic

volatility and expected returns (the idiosyncratic volatility puzzle). Koh (2014) shows

that a model incorporating time-varying aggregate and idiosyncratic uncertainty can
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explain the value premium.8 The study’s main intuition is that the value of growth

options increases with uncertainty, and therefore stocks with more growth options

(growth stocks) hedge uncertainty risk and carry lower risk premiums. It also finds

that without time-varying idiosyncratic uncertainty, the magnitude of the value pre-

mium from the model decreases by 50%, compared with that from the model with

both time-varying aggregate and idiosyncratic uncertainty.9 This finding suggests

that idiosyncratic uncertainty would amplify the positive impact of aggregate un-

certainty risk on cross-sectional returns. Everything else being equal, growth stocks

with higher idiosyncratic volatilities would have lower expected returns than growth

stocks with lower idiosyncratic volatilities since the positive influence of aggregate

uncertainty risk on the value of growth options increases with their idiosyncratic

volatilities. This argument can be applied to explain the negative relation between

idiosyncratic volatility and expected returns. Therefore, if they hold the same amount

of growth options, assets with higher idiosyncratic volatility would provide a better

hedge against aggregate uncertainty risk than those with lower idiosyncratic volatility,

and consequently they would be more desirable assets and have lower risk premiums.

Ang, Hodrick, Xing, and Zhang (2006, 2009) show that exposures to aggregate

volatility risk cannot explain the idiosyncratic volatility puzzle. However, I argue that

aggregate uncertainty risk can account for the puzzle if we consider the interaction be-

tween uncertainty and growth options. In this paper, I test two hypotheses: (1) The

8I use the terms uncertainty and volatility interchangeably. There is no agreement on the direct
measure of uncertainty, and popular proxies are the volatility of either stock returns or macro
variables such as productivity, employment or output.

9The model with both time-varying aggregate and idiosyncratic uncertainty generates a value
premium of about 4% while the model with only time-varying aggregate uncertainty generates that
of about 2%.
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idiosyncratic volatility discount is driven by growth stocks, and (2) Growth stocks

with higher idiosyncratic volatility exhibit higher exposures to aggregate uncertainty

risk.

To conduct empirical tests, I form 25 portfolios based on book-to-market ratio and

idiosyncratic volatility, measured as the standard deviation of the residuals from the

CAPM. 10 Weekly stock returns are used in order to match the results from empirical

tests with those from model simulations. I rebalance portfolios annually based on

the idiosyncratic volatility of the previous year. The results show that the differences

in CAPM alphas between portfolios with low idiosyncratic volatility and those with

high are significantly negative only for growth portfolios. In addition, they show that

within growth portfolios, exposures to aggregate uncertainty risk, proxied by the VIX

index, increase with idiosyncratic volatility. That is, growth portfolios with higher

idiosyncratic volatilities have significantly lower exposures to aggregate uncertainty

risk than those with lower idiosyncratic volatilities. I also find that growth port-

folios with high idiosyncratic volatility tend to have higher investment rates, lower

profitability, and more R&D expenditures. This finding is consistent with Hou, Xue,

Zhang (2015a), which show that the investment and profitability factor loadings of

the high-minus-low idiosyncratic volatility decile are both negative and significant.

I augment time-varying uncertainty into the investment-based asset pricing model

and calibrate the model at a weekly frequency. Following Bloom (2009), uncertainty is

defined as the standard deviation of aggregate and idiosyncratic productivity shocks.

10Ang, Hodrick, Xing and Zhang (2006, 2009) use the Fama-French three factor model to calculate
idiosyncratic volatility. The idiosyncratic volatility from the CAPM is quantitatively similar and
qualitatively identical to that from the three factor model. Ang, Hodrick, Xing and Zhang (2006,
2009) and other studies also show that the results from using the idiosyncratic volatility from the
CAPM are consistent with those from using the idiosyncratic volatility from the three factor model.
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The model is not a real-options model but generates the options by the interaction

between non-convex adjustment costs and uncertainty. Non-convex adjustment costs

are composed of the irreversibility of investment and fixed costs. Because these ad-

justment costs make investment mistakes more expensive, firms would be cautious

and postpone their investment decisions when uncertainty is high (the ’wait-and-see

effect’). This implies that the value of investment opportunities (growth options)

increases with uncertainty, and therefore firms would want to keep their growth op-

tions rather than exercise them. In addition, investors would prefer assets with more

growth options since those assets hedge the uncertainty risk. Such a positive impact

of aggregate uncertainty risk on the value of growth options is magnified by idiosyn-

cratic uncertainty, and this can explain why stocks with higher idiosyncratic volatility

have lower average returns.

The model generates results consistent results with the empirical evidence. Using

the model-generated data, I form 25 portfolios sorted on book-to-market ratio and

idiosyncratic volatility, defined as the standard deviation of the residuals from the

CAPM. Within growth portfolios the high-minus-low idiosyncratic portfolios have

significantly negative CAPM alphas, while within value portfolios they do not. To

investigate whether aggregate uncertainty risk can explain the idiosyncratic volatility

discount that exists only within growth portfolios, I estimate the loadings on un-

certainty risk of the 25 portfolios. The results show that within growth portfolios,

the uncertainty risk loadings increase with idiosyncratic volatility while within value

portfolios they do not. Therefore, the idiosyncratic volatility puzzle exists only in

growth stocks, and aggregate uncertainty risk can account for the puzzle through its

interaction with growth options, which is amplified by idiosyncratic volatility.
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The remainder of this paper is organized as follows. In Section 2, I present the

results from the empirical tests. In Section 3, I develop the investment-based asset

pricing model with time-varying aggregate and idiosyncratic uncertainty. In Section

4, I calibrate the model and report the results from model simulations. In Section 5,

I conclude.

2.2 Empirical Evidence

In this section, I begin by drawing plots using daily stock returns in order to

explore the relations of idiosyncratic volatility with aggregate volatility, business cy-

cles, and firm characteristics. Then I conduct a portfolio analysis using weekly stock

returns in order to test whether aggregate volatility risk can explain the idiosyncratic

volatility puzzle.

2.2.1 Data

The sample includes publicly traded U.S. firms for the 1963-2013 period. I use

daily stock returns from the Center for Research in Security Prices (CRSP) and

annual accounting data and firm characteristics from the COMPUSTAT annual fun-

damental files. The analysis is limited to common stocks (CRSP share codes 10 and

11) that are listed on NYSE, AMEX, or NASDAQ. Firms must also have accounting

information in COMPUSTAT for at least two years to be included. Financial firms

(sic codes between 6000 and 6999) and firms with negative book equity are excluded.

Idiosyncratic volatility is estimated using the capital asset pricing model (CAPM):

rit = βMKT
i MKTt + εit, (2.1)
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where where rit is the excess return of stock i at time t, MKTt is the market excess

return and βMKT
i is the loading of portfolio i on market risk. The estimate of id-

iosyncratic volatility is the monthly standard deviation of εit. I exclude stocks with

less than 15 daily returns in estimating the model.

I use the VIX index as a proxy for aggregate uncertainty. The VIX is the implied

volatility of the Standard & Poor’s 500 portfolio, calculated from the prices of put

and call options traded on the Chicago Board Options Exchange (CBOE). The data

are taken from the CBOE, and the sample period is from January 1990 to December

2013. The monthly series of the VIX is calculated by averaging the daily values within

each month.

2.2.2 Idiosyncratic Risk and Macroeconomy

Figure 2.1 plots the time-trend of the monthly average idiosyncratic volatility of

the firms in the sample. The line represents the estimate of the average idiosyncratic

volatility from equation (1), and the shaded vertical bars denote the NBER-dated

recessions. The figure shows that idiosyncratic volatility tends to increase before and

during recessions. The counter-cyclical movement of idiosyncratic volatility suggests

that it would reflect macroeconomic risks.

Figure 2.2 compares the relation between monthly average idiosyncratic volatility

and aggregate volatility, proxied by the VIX index. The solid line depicts the estimate

of idiosyncratic volatility, and the dotted line represents the VIX. The figure shows

that idiosyncratic volatility is highly correlated with aggregate volatility over the

sample period. When aggregate volatility increases, idiosyncratic volatility also tends

to increase. This finding implies that idiosyncratic volatility would be affected by
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aggregate volatility, which is a significant macroeconomic risk as shown in Bloom

(2009) and Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012).

2.2.3 Idiosyncratic Risk and Firm Characteristics

Figure 2.3 reports time-series variation of idiosyncratic volatility by firm char-

acteristics. Panel A plots idiosyncratic volatility grouped by book-to-market ratio,

and shows that there is no distinct pattern among the five portfolios. Panel B plots

idiosyncratic volatility grouped by firm size, which is measured by market equity.

It shows that smaller firms tend to have higher idiosyncratic volatilities than big-

ger firms. Since the correlation between size and idiosyncratic volatility is strong, I

plot idiosyncratic volatility grouped by book-to-market ratio after controlling for size.

Panel C reports the result. It shows that idiosyncratic volatility tends to decrease

with book-to-market ratio except for the portfolio with the highest book-to-market

ratio (the value portfolio). The idiosyncratic volatility of the value portfolio tends to

be high especially during times of high idiosyncratic volatility.

2.2.4 Portfolio Analysis

To conduct the portfolio analysis, I sort stocks into 25 portfolios based on their

book-to-market ratios and idiosyncratic volatilities. Weekly stock returns are used to

match the results with the results from model simulations. The idiosyncratic volatili-

ties of the 25 portfolios are estimated as the standard deviations of the residuals from

the CAPM and are calculated after controlling for their size in order to eliminate the

impact of size on idiosyncratic volatility. Portfolios are rebalanced annually based on

the idiosyncratic volatilities of the previous year.
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Table 2.1 reports the CAPM alphas of the 25 portfolios. It shows that the spread

in abnormal returns between high and low idiosyncratic volatility portfolios is nega-

tive and significant for the first and second book-to-market quintiles while it is not

significant for the other quintiles. Therefore, the idiosyncratic volatility discount

exists only for portfolios with low book-to-market ratios.

Table 2.2 represents the loadings of the 25 portfolios on aggregate uncertainty risk.

Aggregate uncertainty is proxied by the VIX index and the loadings are measured

from the equation as follows:

rit = β0 + βMKT
i MKTt + βV IXi ∆V IXt + εit, (2.2)

where MKTt is the market excess return and βMKT
i is the loading of portfolio i on

market risk, and βV IXi is the loading of portfolio i on uncertainty risk. By adding

MKT , I control for the effect of the market factor on cross-sectional returns. The

table shows that within the growth portfolio, the uncertainty risk loadings increase

with idiosyncratic volatility. Therefore, the spread of the risk loadings can account

for the return difference between low and high idiosyncratic volatility portfolios.

To investigate the characteristics of the 25 portfolios, I estimate their investment

rates, profitability, and research and development (R&D) expenditures. The invest-

ment rate is measured as the annual change in total assets (Compustat annual item

AT) divided by 1-year-lagged total assets. The profitability is measured as ROE,

which is income before extraordinary items (Compustat annual item IB) divided by

1-year-lagged book equity. R&D expenditures are calculated as R&D expenses (Com-

pustat annual item XRD) divided by 1-year-lagged total assets. Table 2.3 reports the

estimated values. Since the idiosyncratic volatility discount is driven mainly by the
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growth portfolio, my interpretation of the results focuses only on the growth port-

folio. Panels A, B, and C show that within the growth portfolio, investment rates

increase, profitability decreases, and R&D expenditures increase with idiosyncratic

volatility. Therefore, if firms hold the same amount of growth options, those with

higher idiosyncratic volatility tend to invest more, earn less profitability, and have

more R&D expenditures than those with lower idiosyncratic volatility. This result is

consistent with Hou, Xue, and Zhang (2015 a), which show that the investment and

profitability factor loadings of the high-minus-low idiosyncratic volatility decile are

both negative and significant.

2.3 The Model

I develop a dynamic investment model of heterogeneous firms with time-varying

uncertainty. Two types of uncertainty, aggregate and idiosyncratic, are introduced

into the model.

2.3.1 Production and Investment

The production function of firms is given by:

Yit = XtZitK
η
it, (2.3)

At time t, a firm i produces output, Yit, using physical capital, Kit. The productivity

of a firm is composed of aggregate productivity, Xt, and firm-specific productivity,

Zit. The capital share, 0 < η < 1, therefore, the production function decreases return

to scale with capital.
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Tomorrow’s capital of firms is the sum of investment and leftover of today’s capital

after its depreciation.

Kit+1 = Iit + (1− δ)Kit, 0 < δ < 1 (2.4)

where Iit denotes firm investment, and δ represents the rate of capital depreciation.

2.3.2 Time-varying Uncertainty

I assume that both xt ≡ logXt and zit ≡ logZit follow a first-order autoregressive

process:

xt+1 = x̄(1− ρx) + ρxxt + σxt ε
x
t+1, (2.5)

zit+1 = ρzzit + σzt ε
z
it+1, (2.6)

in which εxt+1 and εzit+1 are uncorrelated for all i, and εzit+1 and εzjt+1 are uncorrelated

for any pair of i, j with i 6= j, x̄ is the long-term mean of aggregate productivity, ρx

and ρz are the persistence of aggregate and firm-level productivity, respectively.

Both the volatility of innovations to aggregate productivity, σxt , and that to firm-

specific productivity, σzt , vary over time. They move based on a two-state Markov

chain:

σxt ∈ {σxL, σxH}, (2.7)

σzt ∈ {σzL, σzH}, (2.8)

Pr(σt+1 = σj | σt = σk) = πk,j, (2.9)

Time-varying volatility of aggregate productivity generates periods of low and

high uncertainty in the economy while time-varying volatility of firm-specific produc-

tivity produces periods of low and high cross-sectional dispersion across firms. Since
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they are based on the same Markov process, periods of high economic uncertainty are

accompanied by periods of high cross-sectional dispersion, and vice-versa.

2.3.3 Adjustment Costs

Each firm faces adjustment costs of investment whenever they change their current

level of capital. The adjustment cost function is as fllows:

Φ(Iit, Kit) =


a+Kit + c

2

(
Iit
Kit
− δ
)2
Kit for Iit > δKit

0 for Iit = δKit

a−Kit + c
2

(
Iit
Kit
− δ
)2
Kit for Iit < δKit

(2.10)

Adjustment costs arise only from net investment, and replacing depreciated capital

does not incur any costs. This formulation leads firms to pay the adjustment costs

only when they deviate from the non-stochastic steady state of investment rate, δ.

2.3.4 Stochastic Discount Factor

The model is in a partial-equilibrium setting, and the stochastic discount factor

is exogenously specified. The SDF follows as:

logMt+1 = log β − γx(xt+1 − xt)− γσx(σxt+1 − σxt ), (2.11)

where the subjective discount factor, β > 0, the price of risk for productivity shocks,

γx > 0, and the price of risk for uncertainty shocks, γσx < 0.

The SDF is a function of productivity risk and uncertainty risk. The price of

productivity risk, γx, is positive, while that of uncertainty risk, γσx , is negative.
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2.3.5 Optimal Investment

The profit function for a firm is given by:

Πit = Yit − f, (2.12)

where Yit is output and f is the fixed costs of production, which must be paid by all

the firms participating in operational activities.

Firms choose their investment activities to maximize the present value of their

future cash flows, V (Kit, Zit;Xt, σ
x
t , σ

z
t ). Optimal investment is defined as the solution

to a dynamic optimization problem defined by the stochastic Bellman equation:

V (Kit, Zit;Xt, σ
x
t , σ

z
t ) = max

Iit
{Πit − Iit − Φ(Iit, Kit)

+ Et[Mt+1V (Kit+1, Zit+1;Xt+1, σ
x
t+1, σ

z
t+1)]} (2.13)

s.t. Kit+1 = Iit + (1− δ)Kit (2.14)

where V (·) is the value function, Πit is a profit function, Iit is investment, Φ(·) is an

adjustment cost function, Et is the expectations operator, and Mt+1 is the stochastic

discount factor.

2.4 Quantitative Results

This section presents the quantitative results from the model. First, I discuss the

calibration and evaluate whether the model can quantitatively capture the important

features of the data. Then, I present the main results from model simulations.
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2.4.1 Calibration

Table 2.4 reports parameter values used to calibrate the model. I calibrate the

model at a weekly frequency. In total, 100 artificial samples are simulated; each sam-

ple has 5000 firms and 5000 periods. The first 1400 periods are dropped to neutralize

the impact of initial conditions in the simulations and to match the length of the

sample period with that in the empirical data.

The capital share, η, is chosen to be 0.6, which is close to the value estimated

by Cooper and Ejarque (2001) and Hennessy and Whited (2007). The persistence of

aggregate productivity, ρx, is set to be 0.996, which is converted from the quarterly

estimate, 0.95, reported in Cooley and Prescott (1995) into a weekly value. I set

the persistence of the firm-specific productivity as ρz = 0.992, which is converted

into a weekly value from the quarterly estimate, 0.9, reported in Imrohoroglu and

Tuzel (2013). The long-term average of aggregate productivity is set to be −5.2 to

normalize the average long-term capital stock at unity. For fixed operating costs, I

set f = 0.001 to match the median of the firm-level market-to-book-ratio of 1.64.

The transition probabilities for the uncertainty process, namely πL,L and πH,H ,

are from Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012). They cali-

brate the quarterly transition probabilities as 0.95 and 0.92. I convert the values into

weekly values and set as πL,L = 0.996 and πH,H = 0.993. The rate of depreciation, δ,

is set to be 0.002, converted into a weekly value from the annual estimate reported

in Cooper and Haltiwanger (2000).
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The parameter for convex adjustment costs, c, is set to be 0.15 to match the

annual volatility of the firm-level investment rates of 22.30%. The parameter for non-

convex adjustment costs, a+ and a−, are set at 0.002 and 0.025 respectively, in order

to match the median of the firm-level investment rates of 11.58%.

The subjective discount factor, β, is chosen to be 0.999 to match the average

annual risk-free rates of 1.03%. I set the price of risk for productivity shocks to be

γx = 10 and the price of risk for uncertainty shocks to be γσx = −10 to match the

mean and volatility of market returns, which are 7.01% and 17.35% respectively, as

well as the volatility of the risk-free rate of 2.31%.

The comparison between target moments from the data and those from model

simulations is summarized in Table 2.5. The table shows that the averages of the

risk-free rate and market return from model simulatoins are higher than those from

the data. The volatilities of the risk-free rate and market return and the median and

volatility of firm-level investment are closely matched. The median market-to-book

ratio from model simulations are slightly lower than that from the data.

2.4.2 The Idiosyncratic Volatility Puzzle

I compute a model-implied VIX index and idiosyncratic volatility. The VIX is cal-

culated as the expected conditional volatility of market returns, and the idiosyncratic

volatility is computed as the standard deviation of the residuals from the CAPM

using weekly returns. Figure 2.4 plots the relation between annual series of the VIX

and average idiosyncratic volatility. The weekly-series of the VIX index are aggre-

gated into an annual value by averaging the values for each year. The annual average

idiosyncratic volatility is calculated by averaging idiosyncratic volatilities of firms in
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the sample for each year. The figure indicates that the two types of uncertainty tend

to move together, which is consistent with the findings from the empirical data.

To do the same portfolio analysis done in the empirical tests in Section 2, I form

25 portfolios based on their book-to-market ratios and idiosyncratic volatilities. As

in the empirical tests, the idiosyncratic volatilities are estimated as the standard de-

viations of the residuals from the CAPM and are calculated after controlling for their

size. Weekly stock returns are used to calculate annual idiosyncratic volatility, and

portfolios are rebalanced annually based on their idiosyncratic volatilities from the

previous year. Table 2.6 reports the CAPM alphas of the 25 portfolios. It shows that

within the first and second quintiles the high-minus-low idiosyncratic portfolios have

significantly negative CAPM alphas, while within the other quintiles they do not.

Therefore, the idiosyncratic volatility puzzle is only driven by portfolios with more

growth options, which is consistent with the finding from the empirical data.

Next, I test whether aggregate uncertainty risk can explain the idiosyncratic

volatility discount that exists in low book-to-market quintiles. I measure the loadings

on the uncertainty risk from the equation as follows:

rit = β0 + βMKT
i MKTt + βσi ∆σt + εit, (2.15)

where rit is the excess return of portfolio i at time t, and ∆σt is the uncertainty shocks

defined as the changes in the volatility of innovations to the aggregate productivity

in the model. MKT is market excess returns, and βσ and βMKT are loadings on the

uncertainty factor and the market factor, respectively. By adding MKT , I control for

the effect of the market factor on cross-sectional returns. Table 2.7 reports the risk

loadings on the uncertainty risk (βσ) of the 25 portfolios. It shows that within the
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growth quintile, the portfolio with high idiosyncratic volatility has a higher risk load-

ing than that with low idiosyncratic volatility. Therefore, the lower average return

of the high idiosyncratic volatility portfolio can be explained by its higher loading on

aggregate uncertainty risk since uncertainty risk has a negative risk price.

Lastly, I estimate the investment rates and profitability (ROE) of the 25 portfolios

to see whether the model generates the similar portfolio characteristics to those from

the empirical data. At the beginning of each period, capital level is pre-determined,

and firms change the capital level by choosing their optimal investment during the

period. The investment rate is calculated as the change in capital during the period

divided by the capital level at the beginning of the period. Profitability is calcu-

lated as the net income (profits net of the adjustment costs of investment) divided by

the value of market equity. Since the idiosyncratic volatility discount exists only in

growth portfolios, my interpretation focuses on them. Panel A shows that investment

rates increase with idiosyncratic volatility, and Panel B indicates that profitability

decreases with idiosyncratic volatility. These results are consistent with those from

the empirical evidence.

2.5 Conclusion

In this paper, I explore the relation between idiosyncratic volatility and cross-

sectional returns. Specifically, I test two hypotheses: (1) The idiosyncratic volatility

discount is driven by growth stocks, and (2) Growth stocks with higher idiosyncratic

volatility exhibit higher exposures to aggregate uncertainty risk.

The empirical tests show that stocks with high idiosyncratic volatility have nega-

tive abnormal returns, which can not be explained by the CAPM, only if they have

59



low book-to-market ratios. This finding suggests that the idiosyncratic volatility dis-

count is driven mainly by growth stocks. To investigate whether uncertainty risk

accounts for the idiosyncratic volatility discount, I regress the returns of 25 portfolios

based on book-to-market ratio and idiosyncratic volatility on the uncertainty risk fac-

tor, controlling for the market risk. The results show that within growth portfolios,

stocks with higher idiosyncratic volatility tend to have higher risk loading than those

with lower idiosyncratic volatility. Therefore, the empirical tests provide evidence

that aggregate uncertainty risk would account for the idiosyncratic volatility puzzle.

An investment-based asset pricing model with time-varying uncertainty generates

results consistent with empirical evidence. The interaction between non-convex ad-

justment costs and uncertainty produces the time-varying value of growth options.

Uncertainty has a positive impact on the value of the options since it expands the up-

side of possible outcomes. This positive impact is amplified by idiosyncratic volatility

as shown in Koh (2014). Therefore, all else being equal, growth stocks with higher

idiosyncratic volatility provide a better hedge against aggregate uncertainty risk than

those with lower idiosyncratic volatility. This role of idiosyncratic volatility can ex-

plain its negative relation with expected returns.
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2.6 Tables and Figures

Figure 2.1: Idiosyncratic Volatility and Business Cycles

This figure plots the monthly average idiosyncratic volatility of the firms in the sam-
ple from July 1963 to December 2013. Within each month, idiosyncratic volatility
is estimated as the standard deviation of the residuals from the CAPM, and it is
annualized in percent. The shaded vertical bars denote the NBER-dated recessions.
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Figure 2.2: Idiosyncratic Volatility and Aggregate Volatility

This figure plots the relation between idiosyncratic volatility and aggregate volatility,
proxied by the VIX index. Within each month, idiosyncratic volatility is estimated
as the standard deviation of the residuals from the CAPM, and it is annualized
in percent. The solid line represents idiosyncratic volatility, and the dotted line
represents the monthly series of the VIX. The shaded vertical bars denote the NBER-
dated recessions. The sample period is 1990 to 2013, restricted by the data availability
of the VIX.
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Table 2.1: CAPM Alphas

The table reports the CAPM alpha of 25 portfolios sorted by the book-to-market
ratio and idiosyncratic volatility. Idiosyncratic volatility is measured as the standard
deviation of the residuals from the CAPM. Weekly stock returns are used to calcu-
late annual idiosyncratic volatility, and portfolios are rebalanced annually based on
their idiosyncratic volatility of the previous year. The sample period is from 1963
to 2013. Newey-West t-statistics are reported to control for heteroscedasticity and
autocorrelation.

Growth 2 3 4 Value V-G

Low IV 0.13 0.18 0.30 0.41 0.42 0.30
t-value 1.54 2.29 3.94 4.98 4.45 2.74
2 0.04 0.30 0.29 0.26 0.39 0.35
t-value 0.42 3.29 2.99 2.45 3.17 2.66
3 0.01 0.07 0.00 0.17 0.47 0.46
t-value 0.08 0.54 0.00 1.12 2.75 2.48
4 -0.35 0.05 0.21 0.42 0.70 1.05
t-value -2.19 0.29 1.10 2.22 3.11 4.49
Hi IV -0.73 -0.42 0.02 0.24 -0.01 0.72
t-value -3.07 -1.72 0.06 0.86 -0.03 2.37
H-L -0.86 -0.60 -0.28 -0.17 -0.43 0.42
t-value -3.35 -2.30 -0.88 -0.61 -1.54 2.49
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Figure 2.3: Idiosyncratic Risk and Firm Characteristics

This figure plots idiosyncratic volatility grouped by firm characteristics. Within each
month, idiosyncratic volatility is estimated as the standard deviation of the residuals
from the CAPM and is annualized in percent. Panel A shows idiosyncratic volatility
averaged within the book-to-market quintile. Panel B shows idiosyncratic volatil-
ity averaged within the size (market equity) quintile. Panel C shows idiosyncratic
volatility averaged within the book-to-market quintile after controlling for size.

(a) IVOL by Book-to-Market (b) IVOL by Size

(c) IVOL by Book-to-Market controlling for Size
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Table 2.2: Sensitivities to Uncertainty Risk

The table reports the uncertainty risk loadings (βV IX) of 25 portfolios, sorted by
the book-to-market ratio and idiosyncratic volatility. Aggregate uncertainty is
proxied by the VIX index. Idiosyncratic volatility is measured as the standard
deviation of the residuals from the CAPM. Weekly stock returns are used to calculate
annual idiosyncratic volatility, and portfolios are rebalanced annually based on the
idiosyncratic volatilities of the previous year. The sample period is from 1990 to
2013. Newey-West t-statistics are reported to control for heteroscedasticity and
autocorrelation.

The estimates are from the following equation:

rit = β0 + βMKT
i MKTt + βV IXi ∆V IXt + εit,

where MKTt is the market excess return and βMKT
i is the loading of portfolio i on

market risk, and βV IXi is the loading of portfolio i on uncertainty risk.

Growth 2 3 4 Value

Low IV -0.13 -0.12 -0.15 -0.16 -0.17
t-value -3.69 -3.26 -3.99 -3.93 -3.75
2 -0.14 -0.11 -0.19 -0.25 -0.22
t-value -3.24 -2.42 -3.81 -4.34 -3.70
3 -0.08 -0.15 -0.31 -0.26 -0.21
t-value -1.25 -2.46 -4.43 -3.21 -2.36
4 -0.02 -0.08 -0.23 -0.17 -0.21
t-value -0.18 -0.91 -2.24 -1.67 -1.72
Hi IV -0.02 -0.28 -0.16 -0.38 -0.12
t-value -0.15 -1.95 -0.90 -2.39 -0.77
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Table 2.3: Portfolio Characteristics

This table summarizes investment rate, profitability (ROE), and R&D expenditures
of 25 portfolios sorted by the book-to-market ratio and idiosyncratic volatility. The
investment rate is measured as the annual change in total assets (Compustat annual
item AT) divided by 1-year-lagged total assets. The profitability is measured as ROE,
which is income before extraordinary items (Compustat annual item IB) divided by
1-year-lagged book equity. R&D expenditures are calculated as R&D expenses (Com-
pustat annual item XRD) divided by 1-year-lagged total assets. Weekly stock returns
are used to calculate annual idiosyncratic volatility, and portfolios are rebalanced an-
nually based on their idiosyncratic volatility of the previous year. The sample period
is from 1963 to 2013.

Growth 2 3 4 Value

Panel A : Investment rate

Low IV 1.26 1.01 0.82 0.64 0.41
2 2.39 1.48 1.11 0.77 0.39
3 3.55 1.70 1.14 0.79 0.28
4 3.88 1.44 1.25 0.59 0.07
Hi IV 3.55 1.04 0.68 0.40 -0.25

Panel B : Profitability (ROE)

Low IV 28.98 14.54 11.38 9.21 5.87
2 10.41 11.66 9.54 7.27 3.35
3 -66.25 7.22 6.35 4.30 0.24
4 -62.62 -0.91 -2.26 -2.66 -5.73
Hi IV -221.58 -34.93 -25.65 -23.34 -21.52

Panel C : R&D expenditures

Low IV 4.42 3.00 2.54 2.20 1.91
2 6.82 4.16 3.52 3.21 2.55
3 10.54 6.59 5.30 4.60 3.28
4 13.93 9.05 7.73 6.32 4.50
Hi IV 18.59 13.20 11.09 9.34 6.66
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Table 2.4: Parameters

This table reports the values for parameters used to calibrate the model. The model
is calibrated at a weekly frequency.

Parameter Notation Value

Productivity
Capital share η 0.6
Persistence of aggregate productivity ρx 0.999
Persistence of idiosyncratic productivity ρz 0.992
Long-term average of aggregate productivity x̄ -5.2
Fixed operating costs f 0.001

Uncertainty process
Low volatility of aggregate productivity σxL 0.002
High volatility of aggregate productivity σxH 0.004
Low volatility of firm-specific productivity σzL 0.036
High volatility of firm-specific productivity σzH 0.072
Probability of staying in the low volatility state πL,L 0.996
Probability of staying in the high volatility state πH,H 0.993

Adjustment costs
Depreciation rate δ 0.002
Convex costs c 0.15
Nonconvex costs of positive investment a+ 0.002
Nonconvex costs of negative investment a− 0.025

Stochastic discount factor
Subjective discount factor β 0.999
Price of risk for productivity shocks γx 10
Price of risk for uncertainty shocks γσx -10
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Table 2.5: Target Moments

This table compares target moments from the data with those from model simulations.
The model is calibrated at a weekly frequency. 100 samples are simulated, and each
includes 5000 firms 5000 periods. The first 1400 periods are dropped to neutralize
the impact of initial conditions on the simulation and to match the length of the
sample period with that of the empirical data. The moments from model simulations
are aggregated to an annual level. The sample period of the empirical data is from
1963 to 2013. The firm-level data are taken from COMPUSTAT and the Center for
Research in Security Prices (CRSP). The returns of book-to-market sorted portfolios,
risk-free rates, and market returns are taken from Kenneth French’s website.

Data Model

Average risk-free rate (%) 1.03 3.09
Volatility of risk-free rate (%) 2.31 2.52
Average market return (%) 7.01 10.08
Volatility of market return (%) 17.35 18.08
Median of firm-level investment rate (%) 11.58 12.00
Volatility of firm-level investment rate (%) 22.30 23.13
Median market-to-book ratio 1.64 1.41
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Figure 2.4: Idiosyncratic Volatility and Aggregate Volatility from the Model

This figure plots the relation between model-generated idiosyncratic volatility and the
VIX. Within each year, idiosyncratic volatility is estimated as the standard deviation
of the residuals from the CAPM using weekly returns. The VIX is calculated as the
expected conditional volatility of market returns. The solid line represents idiosyn-
cratic volatility, and the dotted line represents the VIX. 100 samples are simulated,
with each sample containing 5000 firms and 5000 periods. The first 1400 periods are
dropped to neutralize the impact of initial conditions on the simulation and to match
the length of the sample period with that of the empirical data.
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Table 2.6: CAPM alphas from the Model

The table reports the CAPM alphas of 25 portfolios from model simulations, sorted by
book-to-market ratio and idiosyncratic volatility. Idiosyncratic volatility is measured
as the standard deviation of the residuals from the CAPM. Weekly stock returns are
used to calculate annual idiosyncratic volatility, and portfolios are rebalanced annually
based on the idiosyncratic volatility of the previous year. 100 samples are simulated,
with each sample containing 5000 firms and 5000 periods. The first 1400 periods
are dropped to neutralize the impact of initial conditions on the simulation and to
match the length of the sample period with that of the empirical data. Newey-West
t-statistics are reported to control for heteroscedasticity and autocorrelation.

Growth 2 3 4 Value V-G

Low IV 0.77 0.60 0.42 1.23 1.01 0.24
t-value 4.36 3.61 2.82 6.45 3.74 1.06
2 -0.08 0.66 0.94 1.46 1.28 1.36
t-value -1.69 5.00 5.47 8.34 5.13 2.01
3 -0.03 0.29 0.59 1.23 1.65 1.68
t-value -0.53 2.71 4.46 6.85 5.71 2.24
4 -0.05 0.00 0.32 0.31 1.41 1.46
t-value -2.42 -0.11 3.48 2.37 5.48 2.14
Hi IV -0.07 0.00 -0.02 -0.02 1.58 1.65
t-value -3.39 0.10 -0.48 -0.36 4.93 2.87
H - L -0.84 -0.60 -0.44 -1.25 0.57 1.41
t-value -3.85 -2.41 -1.58 -1.09 1.45 1.23
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Table 2.7: Sensitivities to Uncertainty Risk from the Model

The table reports the uncertainty risk loadings (βσ) of 25 portfolios from model
simulations, sorted by book-to-market ratio and idiosyncratic volatility. Idiosyncratic
volatility is measured as the standard deviation of the residuals from the CAPM.
Weekly stock returns are used to calculate annual idiosyncratic volatility, and
portfolios are rebalanced annually based on the idiosyncratic volatilities of the
previous year. 100 samples are simulated, with each sample containing 5000 firms
and 5000 periods. The first 1400 periods are dropped to neutralize the impact of
initial conditions on the simulation and to match the length of the sample period
with that of the empirical data. Newey-West t-statistics are reported to control for
heteroscedasticity and autocorrelation.

The estimates are from the following equation:

rit = α + βMKT
i MKTt + βσi ∆σt + εit,

where rit is the excess return of portfolio i at time t and ∆σt is uncertainty shocks
defined as the changes in the volatility of innovations to the aggregate productivity
in the model. MKT is market excess returns, and βσ and βMKT are loadings on the
uncertainty factor and the market factor, respectively.

Growth 2 3 4 Value

Low IV -0.03 -0.20 -0.11 -3.57 -4.06
t-value -1.13 -1.50 -0.45 -1.85 -1.27
2 -0.58 0.75 0.47 -1.10 -5.35
t-value -1.43 1.13 0.76 -0.62 -1.38
3 0.06 1.32 0.20 0.60 0.22
t-value 0.13 1.91 0.52 0.57 0.51
4 0.04 -0.10 -0.57 -0.43 -0.33
t-value 0.03 -0.26 -1.48 -2.12 -1.43
Hi IV 1.24 -0.18 -0.13 -0.25 -0.14
t-value 1.50 -1.09 -0.85 -2.18 -1.27
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Table 2.8: Portfolio Characteristics from the Model

This table summarizes annual percent of investment rate and profitability (ROE) 25
portfolios, sorted by the book-to-market ratio and idiosyncratic volatility, from model
simulations. The investment rate is measured as the change in capital divided by
capital at the beginning of the period. The profitability is measured as ROE, which is
net income divided by one-period lagged value of market equity. The estimated values
are annualized in percent. 100 samples are simulated, with each sample containing
5000 firms and 5000 periods. The first 1400 periods are dropped to neutralize the
impact of initial conditions on the simulation and to match the length of the sample
period with that of the empirical data.

Growth 2 3 4 Value

Panel A : Investment rate

Low IV -0.36 0.45 0.16 0.38 -0.29
2 0.15 0.46 -0.18 0.00 0.00
3 0.16 0.19 0.34 0.10 0.21
4 2.61 3.31 0.49 0.53 0.62
Hi IV 4.86 3.62 2.48 3.42 2.27

Panel B : Profitability (ROE)

Low IV 17.66 16.02 16.24 13.16 7.62
2 17.98 16.39 14.94 12.45 10.37
3 17.66 15.78 14.16 12.12 8.04
4 16.82 14.16 13.09 10.27 8.68
Hi IV 15.73 13.81 12.08 10.13 8.22

72



Chapter 3: Historical q-Factors

3.1 Introduction

Hou, Xue, and Zhang (2015a, HXZ) propose the q-factor model that largely sum-

marizes the cross section of average stock returns. The q-factor model says that the

expected return of an asset in excess of the risk-free rate is described by the sensi-

tivities of its returns to the market factor, a size factor, an investment factor, and a

profitability (return on equity, ROE) factor:

E[Ri]−Rf = βiMKTE[MKT] + βiMEE[rME] + βiI/AE[rI/A] + βiROEE[rROE], (3.1)

in which E[Ri] − Rf is the expected excess return, E[MKT], E[rME], E[rI/A], and

E[rROE] are expected factor premiums, and βiMKT, βiME, βiI/A, and βiROE, are the cor-

responding factor loadings.

In this paper, we hand-collect data on total assets and earnings from Moody’s

Industrial Manual to extend the sample for the q-factors back to 1926. We then com-

pare the performance of the q-factor model with the Carhart (1997) model and the

Fama-French (2015, FF) five-factor model, using a set of testing portfolios constructed

with data in the long sample.
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3.2 Factors

3.2.1 The Post-Compustat Sample

We describe the construction of the q-factors and the new FF factors.

The q-factor Model

The q-factors are constructed from a triple two-by-three-by-three sort on size,

investment-to-assets (I/A), and ROE. I/A is the annual change in total assets (Com-

pustat annual item AT) divided by one-year-lagged total assets, and ROE is income

before extraordinary items (Compustat quarterly item IBQ) divided by one-quarter-

lagged book equity.11

At the end of June of each year t, we use the median NYSE market equity (stock

price per share times shares outstanding from CRSP) to split NYSE, Amex, and

NASDAQ stocks into two groups, small and big. Independently, at the end of June

of year t, we break NYSE, Amex, and NASDAQ stocks into three I/A groups using

the NYSE breakpoints for the low 30%, middle 40%, and high 30% of the ranked

values of I/A for the fiscal year ending in calendar year t − 1. Also, independently,

at the beginning of each month, we sort all stocks into three groups based on the

NYSE breakpoints for the low 30%, middle 40%, and high 30% of the ranked values

of ROE. Earnings data in Compustat quarterly files are used in the monthly sorts in

the months immediately after the most recent public earnings announcement dates

11Book equity is shareholders’ equity, plus balance sheet deferred taxes and investment tax credit
(Compustat quarterly item TXDITCQ) if available, minus the book value of preferred stock. De-
pending on availability, we use stockholders’ equity (item SEQQ), or common equity (item CEQQ)
plus the carrying value of preferred stock (item PSTKQ), or total assets (item ATQ) minus total lia-
bilities (item LTQ) in that order as shareholders’ equity. We use redemption value (item PSTKRQ)
if available, or carrying value for the book value of preferred stock. Our measure of the book equity
is the quarterly version of the annual book equity measure in Davis, Fama, and French (2000).
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(Compustat quarterly item RDQ). For a firm to enter the factor construction, we

require the end of the fiscal quarter that corresponds to its announced earnings to be

within six months prior to the portfolio formation month.

Taking the intersections of the size, I/A, and ROE groups, we form 18 portfolios.

Monthly value-weighted portfolio returns are calculated for the current month, and

the portfolios are rebalanced monthly. The size factor (rME) is the difference (small-

minus-big), each month, between the simple average of the returns on the nine small

size portfolios and the simple average of the returns on the nine big size portfolios.

Designed to mimic the common variation in returns related to I/A, the investment

factor (rI/A) is the difference (low-minus-high), each month, between the simple aver-

age of the returns on the six low I/A portfolios and the simple average of the returns

on the six high I/A portfolios. Finally, designed to mimic the common variation

in returns related to ROE, the ROE factor (rROE) is the difference (high-minus-low),

each month, between the simple average of the returns on the six high ROE portfolios

and the simple average of the returns on the six low ROE portfolios.

HXZ (2015a) start their sample in January 1972, which is restricted by the limited

coverage of earnings announcement dates and book equity in Compustat quarterly

files. HXZ (2015b) extend the q-factors sample back to January 1967. To overcome

the lack of coverage for quarterly earnings announcement dates, we use the most re-

cent quarterly earnings from fiscal quarters ending at least four months prior to the

portfolio formation month. To expand the coverage for quarterly book equity, we

use book equity from Compustat annual files and impute quarterly book equity with

clean surplus accounting. Whenever available we first use quarterly book equity from

Compustat quarterly files. We then supplement the coverage for fiscal quarter four
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with book equity from Compustat annual files.12 If both approaches are unavailable,

we apply the clean surplus relation to impute the book equity. If available, we back-

ward impute the beginning-of-quarter book equity as the end-of-quarter book equity

minus quarterly earnings plus quarterly dividends.13 Because we impose a four-month

lag between earnings and the holding period month (and the book equity in the de-

nominator of ROE is one-quarter-lagged relative to earnings), all the Compustat data

in the backward imputation are at least four-month lagged relative to the portfolio

formation month.

If data are unavailable for the backward imputation, we impute the book equity for

quarter t forward based on book equity from prior quarters. Let BEQt−j, 1 ≤ j ≤ 4,

denote the latest available quarterly book equity as of quarter t, and IBQt−j+1,t and

DVQt−j+1,t be the sum of quarterly earnings and quarterly dividends from quarter

t − j + 1 to t, respectively. BEQt can then be imputed as BEQt−j + IBQt−j+1,t −

DVQt−j+1,t. We do not use prior book equity from more than four quarters ago

(1 ≤ j ≤ 4) to reduce imputation errors. We start the sample in January 1967 to

ensure that all the 18 benchmark portfolios from the triple sort on size, I/A, and

ROE have at least ten firms.

12Following Davis, Fama, and French (2000), we measure annual book equity as stockholders’
book equity, plus balance sheet deferred taxes and investment tax credit (Compustat annual item
TXDITC) if available, minus the book value of preferred stock. Stockholders’ equity is the value
reported by Compustat (item SEQ), if available. Otherwise, we use the book value of common equity
(item CEQ) plus the par value of preferred stock (item PSTK), or the book value of assets (item AT)
minus total liabilities (item LT). Depending on availability, we use redemption value (item PSTKRV),
liquidating (item PSTKL), or par value (item PSTK) for the book value of preferred stock.

13Quarterly earnings are income before extraordinary items (Compustat quarterly item IBQ).
Quarterly dividends are zero if dividends per share (item DVPSXQ) are zero. Otherwise, total
dividends are dividends per share times beginning-of-quarter shares outstanding adjusted for
stock splits during the quarter. Shares outstanding are from Compustat (quarterly item CSHOQ
supplemented with annual item CSHO for fiscal quarter four) or CRSP (item SHROUT), and the
share adjustment factor is from Compustat (quarterly item AJEXQ supplemented with annual item
AJEX for fiscal quarter four) or CRSP (item CFACSHR).
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The FF Five-factor Model

FF (2015) propose a five-factor model:

Rit −Rft = ai + bi MKTt + si SMBt + hi HMLt + ri RMWt + ci CMAt + eit. (3.2)

MKT, SMB, and HML are the market, size, and value factors that form the FF

(1993) three-factor model. RMW (robust-minus-weak) is the difference between the

returns on diversified portfolios of stocks with robust and weak profitability, and

CMA (conservative-minus-aggressive) is the difference between the returns on diver-

sified portfolios of low and high investment stocks.

FF (2015) measure (operating) profitability (OP) as revenues (Compustat annual

item REVT) minus cost of goods sold (item COGS), minus selling, general, and ad-

ministrative expenses (item XSGA, zero if missing), minus interest expense (item

XINT, zero if missing) all divided by book equity for the fiscal year ending in calen-

dar year t − 1, following Novy-Marx (2013). We measure annual book equity as in

Davis, Fama, and French (2000) (see footnote 12). FF measure investment (Inv) as the

change in total assets from the fiscal year ending in year t−2 to the fiscal year ending in

t−1, divided by total assets from the fiscal year ending in t−2, (TAt−1−TAt−2)/TAt−2.

FF (2015) construct their benchmark factors from July 1963 to December 2014

from double (2×3) sorts by interacting size with book-to-market (B/M), and sepa-

rately, with OP and with Inv. The size breakpoint is NYSE median market equity,

and the B/M, OP, and Inv breakpoints are their respective 30th and 70th percentiles

for NYSE stocks. HML is the average of the two high B/M portfolio returns minus

the average of the two low B/M portfolio returns. RMW is the average of the two

high OP portfolio returns minus the average of the two low OP portfolio returns.
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CMA is the average of the two low Inv portfolio returns minus the average of the two

high Inv portfolio returns. Finally, SMB is the average of the returns on the nine

small stock portfolios from the three separate 2×3 sorts minus the average of the

returns on the nine big stock portfolios.

3.2.2 The Pre-Compustat Sample

To get a sense of the results, without going through the massive data collection

from Moody’s Industrial Manual, we can obtain the annual book equity data in the

pre-Compustat sample are available on the Kenneth French’s Web site. Dividends

are obtained from CRSP stock event data set. Under the clean surplus relation,

earnings can be computed as the sum of dividends and the change in book equity,

Πit = Dit + (Bit − Bit−1), in which Πit is earnings over period t, Dit is dividends

over the same period, and Bit is the book equity at the end of period t or at the

beginning of period t + 1. We can then measure ROE as Πit/Bit−1 and investment

as (Bit − Bit−1)/Bit−1. To construct the q-factors in the pre-Compustat sample, up

to December 1966, we use annual sorts on size and investment but monthly sorts on

(annual) ROE with a four-month lag. To construct the FF five factors in the pre-

Compustat sample, up to June 1963, at the end of June of year t we measure OP with

Πit−1/Bit−1 for the fiscal year ending in calendar year t− 1. To measure their invest-

ment (Inv) at the end of June of t, we use (Bit−1 − Bit−2)/Bit−2. Their benchmark

factor construction can then be implemented in the pre-Compustat sample.
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3.3 Factor Regressions

We run horse races between the Carhart model, the FF five-factor model, and the

q-factor model from 1926 to 1967. Table 3.1 reports the results. The market fac-

tor (MKT) is calculated as the value-weighted market return minus the one-month

Treasury bill rate from CRSP, and SMB, HML, and UMD are obtained from Kenneth-

French’s website. Panel A shows that our size, investment, and ROE factors earn on

average 0.28%, 0.15%, and 0.24% per month (t = 1.93, 1.57, and 2.36), respectively.

It also shows that the ROE premiums cannot be captured by the FF three-factor

model or the Carhart four-factor model and have significant alphas, 0.37% (t = 4.83)

and 0.39% (t = 4.36), respectively. The FF five-factor model also cannot explain the

premiums, and the alpha is 0.24% (t = 2.74).

Panel B of Table 3.1 represents the properties of the FF five-factor model. It

shows that their SMB and HML have on average 0.35% and 0.42% per moth (t =

2.10 and 1.99) and averages of RMW and CMA are not significantly different from

zero. The Carhart alphas of RMW and CMA are 0.26% (t = 3.26) and -0.15% (t =

-1.68), respectively. More importantly, the q-factor model explains RMW and CMA

returns, leaving insignificant alphas. Panel C shows that UMD earns on average

0.68% per month (t = 2.84). Differently from HXZ (2015a and 2015b), both the

q-factor model and the FF five-factor model cannot capture the UMD return. Panel

D reports correlation among the factors. It shows that the investment factor has a

correlation of 0.62 and the ROE factor has a correlation of 0.54 with RMW.
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3.4 Conclusion

In this study, we extend the sample period back to 1926 by introducing new data,

Moody’s Industrial Manual and compare the q-factor model and the Fama-French five

factor model. We obtain the annual book equity data in the pre-Compustat sample,

which are available on the Kenneth French’s Web site. Under the clean surplus

relation, we calculate earnings using dividends and book equity. The results show

that the q-factors have better properties than the Fama-French five factors. The q-

factors cannot be captured by the Fama-French five factor model while the five factor

model can be captured by the q-factor model, which is consistent with Hou, Xue, and

Zhang (2015 b). Our next step is to manually collect total assets and earnings from

Moody’s Industrial Manual and compare the two models’ performance in explaining

anomalies.
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3.5 Tables

Table 3.1: Empirical Properties of the New Factors, July 1928 to December
1966

rME , rI/A, and rROE are the size, investment, ROE factors in the q-factor model, respec-

tively. We calculate MKT as the value-weighted market return minus the one-month Trea-

sury bill rate from CRSP. SMB, HML, RMW, and CMA are the size, value, profitability,

and investment factors from the FF five-factor model (from 2 × 3 sorts), respectively. The

data for SMB and HML in the three-factor model, SMB, HML, RMW, and CMA in the five-

factor model, as well as UMD are from Kenneth French’s Web site. m is the average return,

α is either the FF three-factor alpha or the Carhart alpha, αq the q-model alpha, a is the

five factor alpha, and b, s, h, r, and c are five-factor loadings. The numbers in parentheses

in Panels A to C are heteroscedasticity-and-autocorrelation-adjusted t-statistics, which test

that a given point estimate is zero. In Panel D, the numbers in parentheses are p-values

testing that a given correlation is zero.
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Table 3.1: continued

Panel A: The q-factors

m α βMKT βSMB βHML βUMD R2

rME 0.28 0.00 -0.00 0.80 0.12 0.84
(1.93) (0.03) (-0.16) (15.45) (5.92)

0.01 -0.00 0.80 0.12 -0.01 0.84
(0.14) (-0.25) (15.36) (5.00) (-0.34)

rI/A 0.15 0.05 0.03 0.06 0.15 0.15

(1.57) (0.58) (0.79) (0.99) (2.96)
0.05 0.03 0.06 0.14 -0.00 0.15

(0.61) (0.74) (0.99) (2.85) (-0.18)
rROE 0.24 0.37 0.04 -0.15 -0.21 0.21

(2.36) (4.38) (1.43) (-1.95) (-3.43)
0.39 0.04 -0.15 -0.22 -0.02 0.22

(4.36) (1.26) (-1.98) (-4.32) (-0.68)

a b s h r c R2

rME -0.00 -0.01 0.83 0.03 0.08 0.05 0.87
(-0.04) (-0.71) (17.21) (1.08) (1.05) (0.66)

rI/A 0.12 0.07 0.03 -0.05 0.13 0.7 0.42

(1.66) (2.50) (0.52) (-1.21) (1.21) (7.41)
rROE 0.24 0.11 -0.13 -0.03 0.63 0.28 0.36

(2.74) (3.27) (-1.26) (-0.40) (3.95) (2.71)

(continued)
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Table 3.1: continued

Panel B: The FF five factors

m α βMKT βSMB βHML βUMD R2

SMB 0.35 -0.02 0.02 0.95 0.15 0.01 0.95
(2.10) (-0.42) (2.29) (48.43) (8.87) (0.60)

HML 0.42 -0.06 0.04 0.04 1.03 -0.02 0.93
(1.99) (-1.03) (2.31) (1.04) (41.56) (-1.07)

RMW -0.01 0.26 -0.06 -0.05 -0.46 -0.00 0.60
(-0.07) (3.26) (-1.80) (-0.80) (-12.25) (-0.07)

CMA -0.02 -0.15 -0.05 0.04 0.35 -0.00 0.36
(-0.15) (-1.68) (-1.21) (1.06) (7.43) (-0.15)

αq βMKT βME βI/A βROE R2

SMB 0.08 0.05 0.99 -0.05 -0.19 0.90
(1.36) (4.26) (25.21) (-1.30) (-5.09)

HML 0.25 0.27 0.24 0.66 -0.79 0.57
(1.59) (3.63) (3.02) (3.61) (-9.09)

RMW 0.00 -0.13 0.05 -0.80 0.77 0.76
(0.00) (-4.76) (0.60) (-8.66) (10.60)

CMA 0.04 -0.01 -0.08 0.86 -0.6 0.69
(0.64) (-0.28) (-2.42) (12.54) (-13.41)

Panel C: The Carhart momentum factor, UMD

m αq βMKT βME βI/A βROE R2

UMD 0.68 0.96 -0.34 -0.15 -0.31 0.27 0.28
(2.84) (5.30) (-2.79) (-1.01) (-1.57) (1.99)

a b s h r c R2

UMD 1.04 -0.21 0.01 -0.5 -0.04 -0.03 0.38
(6.10) (-2.14) (0.08) (-2.65) (-0.08) (-0.07)

(continued)

83



Table 3.1: continued

Panel D: Correlation matrix

rI/A rROE MKT SMB HML UMD RMW CMA

rME 0.31 -0.26 0.39 0.93 0.50 -0.32 -0.39 0.27
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

rI/A 0.19 0.28 0.24 0.37 -0.24 -0.52 0.62

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rROE -0.17 -0.37 -0.43 0.18 0.54 -0.41

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
MKT 0.45 0.58 -0.50 -0.53 0.25

(0.00) (0.00) (0.00) (0.00) (0.00)
SMB 0.54 -0.34 -0.44 0.30

(0.00) (0.00) (0.00) (0.00)
HML -0.57 -0.77 0.60

(0.00) (0.00) (0.00)
UMD 0.46 -0.33

(0.00) (0.00)
RMW -0.84

(0.00)
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Table 3.2: List of Anomalies with Data Available in the Pre-Compustat
Sample

The anomalies are from five categories: (i) momentum; (ii) value-versus-growth; (iii) invest-

ment; (iv) profitability; and (v) trading frictions. For each variable, we list its symbol, brief

description, and source in the academic literature. Appendix A details variable definition

and portfolio construction.

Panel A: Momentum

R6-1 Price momentum (6-month prior returns, R6-3 Price momentum (6-month prior returns,
1-month holding period), 3-month holding period),
Jegadeesh and Titman (1993) Jegadeesh and Titman (1993)

R6-6 Price momentum (6-month prior returns, R6-12 Price momentum (6-month prior returns,
6-month holding period), 12-month holding period),
Jegadeesh and Titman (1993) Jegadeesh and Titman (1993)

R11-1 Price momentum (11-month prior returns, R11-3 Price momentum (11-month prior returns,
1-month holding period), 3-month holding period),
Fama and French (1996) Fama and French (1996)

R11-6 Price momentum (11-month prior returns, R11-12 Price momentum (11-month prior returns,
6-month holding period), 12-month holding period),
Fama and French (1996) Fama and French (1996)

I-Mom Industry momentum,
Moskowitz and Grinblatt (1999)

Panel B: Value-versus-growth

B/M Book-to-market equity, D/P Dividend yield,
Rosenberg, Reid, and Lanstein (1985) Litzenberger and Ramaswamy (1979)

Rev Reversal, De Bondt and Thaler (1985) E/P Earnings-to-price, Basu (1983)
O/P Payout yield, Boudoukh, Michaely, NO/P Net payout yield, Boudoukh, Michaely,

Richardson, and Roberts (2007) Richardson, and Roberts (2007)

Panel C: Investment

g4B Growth in book equity change gB Book equity growth
gI g4B prior to 1967, I/A gB prior to 1967,

investment growth afterward, assets growth afterward,
Xing (2008) Cooper, Gulen, and Schill (2008)

CEI Composite issuance, NSI Net stock issues,
Daniel and Titman (2006) Pontiff and Woodgate (2008)

Panel D: Profitability

ROE Return on equity, Haugen and Baker (1996)

Panel E: Trading frictions

Tvol Total volatility, Ivol Idiosyncratic volatility,
Ang, Hodrick, Xing, and Zhang (2006) Ang, Hodrick, Xing, and Zhang (2006)

S-Rev Short-term reversal, Jegadeesh (1990) 1/P 1/share price, Miller and Scholes (1982)
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3.6 Addendum : Variable Definition and Portfolio Construc-
tion

As noted, we construct two sets of testing deciles for each anomaly variable: (i)

NYSE-breakpoints and value-weighted returns; and (ii) all-but-micro breakpoints and

equal-weighted returns.

3.6.1 Momentum

This category includes R6-1, R6-3, R6-6, R6-12, R11-1, and I-Mom.

R6-1, R6-3, R6-6, and R6-12

At the beginning of each month t, we split all stocks into deciles based on their

prior six-month returns from month t − 7 to t − 2. Skipping month t − 1, we calcu-

late monthly decile returns, separately, for month t (R6-1), month t to t + 2 (R6-3),

month t to t+ 5 (R6-6), and month t to t+ 11 (R6-12). The deciles are rebalanced at

the beginning of month t + 1. The holding period that is longer than one month as

in, for instance, R6-6, means that for a given R6-6 decile in each month there exist

six sub-deciles, each of which is initiated in a different month in the prior six-month

period. We take the simple average of the sub-deciles returns as the monthly return

of the R6-6 decile.

When equal-weighting the returns of price momentum portfolios with all-but-

micro breakpoints and equal-weighted returns, we do not impose a separate screen

to exclude stocks with prices per share below $5 as in Jegadeesh and Titman (1993).

These stocks are mostly microcaps that are absent in the all-but-micro sample. Also,

value-weighting returns assigns only small weights to these stocks, which do not need

to be excluded with NYSE breakpoints and value-weighted returns.
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R11-1, R11-3, R11-6, and R11-12

We split all stocks into deciles at the beginning of each month t based on their

prior 11-month returns from month t−12 to t−2. Skipping month t−1, we calculate

monthly decile returns for month t (R11-1), month t to t+2 (R11-3), month t to t+5

(R11-6), and month t to t+ 11 (R11-12). The deciles are rebalanced at the beginning

of month t+ 1. The holding period that is longer than one month as in, for instance,

R11-6, means that for a given R11-6 decile in each month there exist six sub-deciles,

each of which is initiated in a different month in the prior six-month period. We take

the simple average of the sub-deciles returns as the monthly return of the R11-6 decile.

Because we exclude financial firms, these decile returns are different from those posted

on Kenneth French’s Web site. When equal-weighting the returns of these portfolios

with all-but-micro breakpoints and equal-weighted returns, we do not impose a sep-

arate screen to exclude stocks with prices per share below $5 as in Jegadeesh and

Titman (1993). These stocks are mostly microcaps that are absent in the all-but-

micro sample. Also, value-weighting returns assigns only small weights to these stocks,

which do not need to be excluded with NYSE breakpoints and value-weighted returns.

I-Mom

We start with the FF (1997) 49-industry classifications. Excluding financial firms

from the sample leaves 45 industries. At the beginning of each month t, we sort

industries based on their prior six-month value-weighted returns from t− 6 to t− 1.

Following Moskowitz and Grinblatt (1999), we do not skip month t−1 when measur-

ing industry momentum. We form nine portfolios (9×5 = 45), each of which contains
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five different industries. We define the return of a given portfolio as the simple av-

erage of the five industry returns within the portfolio. We calculate value-weighted

(and equal-weighted) returns for the nine portfolios for six months from t to t+5, and

rebalance the portfolios at the beginning of t+1. For a given I-Mom portfolio in each

month there exist six sub-portfolios, each of which is initiated in a different month

in the prior six-month period. We take the simple average of the six sub-portfolio

returns as the monthly return of the I-Mom portfolio.

3.6.2 Value-versus-Growth

This category includes six anomaly variables, B/M, D/P, Rev, E/P, O/P, and

NO/P.

B/M

At the end of June of each year t, we split stocks into deciles based on B/M, which

is the book equity for the fiscal year ending in calendar year t− 1 divided by the ME

(from Compustat or CRSP) at the end of December of t− 1. We calculate monthly

decile returns from July of year t to June of t + 1, and the deciles are rebalanced in

June of t + 1. Following Davis, Fama, and French (2000), we measure book equity

as stockholders’ book equity, plus balance sheet deferred taxes and investment tax

credit (Compustat annual item TXDITC) if available, minus the book value of pre-

ferred stock. Stockholders’ equity is the value reported by Compustat (item SEQ), if

it is available. If not, we measure stockholders’ equity as the book value of common

equity (item CEQ) plus the par value of preferred stock (item PSTK), or the book

value of assets (item AT) minus total liabilities (item LT). Depending on availability,

we use redemption (item PSTKRV), liquidating (item PSTKL), or par value (item
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PSTK) for the book value of preferred stock. In the pre-Compustat sample, we use

the book equity data from Kenneth French’s Web site.

D/P

At the end of June of each year t, we sort stocks into deciles based on their dividend

yields, which are the total dividends paid out from July of year t−1 to June of t divided

by the market equity (from CRSP) at the end of June of t. We calculate monthly divi-

dends as the begin-of-month market equity times the difference between cum- and ex-

dividend returns. Monthly dividends are then accumulated from July of t−1 to June

of t. We exclude firms that do not pay dividends. Monthly decile returns are calcu-

lated from July of year t to June of t+1, and the deciles are rebalanced in June of t+1.

Rev

To capture the De Bondt and Thaler (1985) long-term reversal (Rev) effect, at

the beginning of each month t, we split stocks into deciles based on the prior returns

from month t− 60 to t− 13. Monthly decile returns are computed for month t, and

the deciles are rebalanced at the beginning of t+ 1. To be included in a portfolio for

month t, a stock must have a valid price at the end of t − 61 and a valid return for

t− 13. In addition, any missing returns from month t− 60 to t− 14 must be −99.0,

which is the CRSP code for a missing price.

E/P

We split stocks into deciles based on E/P at the end of June of each year t. In

the post-Compustat sample, E/P is calculated as income before extraordinary items

(Compustat annual item IB) for the fiscal year ending in calendar year t−1 divided by

the market equity (from Compustat or CRSP) at the end of December of t−1. Stocks
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with negative earnings are excluded. Monthly decile returns are calculated from July

of year t to June of t+ 1, and the deciles are rebalanced in June of t+ 1. In the pre-

Compustat sample, earnings is calculated as dividends plus the change in book equity.

Dividends are the begin-of-month market equity times the difference between cum-

and ex-dividend returns. The book equity data are from Kenneth French’s Web site.

O/P and NO/P

As in Boudoukh, Michaely, Richardson, and Roberts (2007), total payouts are

dividends on common stock (Compustat annual item DVC) plus repurchases. Repur-

chases are the total expenditure on the purchase of common and preferred stocks (item

PRSTKC) plus any reduction (negative change over the prior year) in the value of

the net number of preferred stocks outstanding (item PSTKRV). Net payouts equal

total payouts minus equity issuances, which are the sale of common and preferred

stock (item SSTK) minus any increase (positive change over the prior year) in the

value of the net number of preferred stocks outstanding (item PSTKRV).

At the end of June of each year t, we sort stocks into deciles based on total pay-

outs (O/P) (or net payouts, NO/P) for the fiscal year ending in calendar year t − 1

divided by the market equity (from Compustat or CRSP) at the end of December of

t− 1. We exclude firms with non-positive total payouts (zero net payouts). Monthly

decile returns are calculated from July of year t to June of t+ 1, and the deciles are

rebalanced in June of t + 1. Because the data on total expenditure of common and

preferred stocks start in 1971, the O/P (NO/P) decile returns start in July 1972.

3.6.3 Investment

This category includes six variables, g4B, gB, gI , I/A, CEI, and NSI.
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g4B

The growth in book equity change is inspired by investment growth in Xing (2008).

In the long sample, we use change in book equity to measure investment. Annual

sorts as in Xing (2008).

gB

The change in book equity scaled by one-year-lagged book equity. Annual sorts.

gI

Following Xing (2008), in the post-Compustat sample, we measure investment

growth, gI , for the portfolio formation year t as the growth rate in capital expenditure

(Compustat annual item CAPX) from the fiscal year ending in calendar year t− 2 to

the fiscal year ending in t− 1. At the end of June of each year t, we split stocks into

deciles based on IG, and calculate monthly decile returns from July of year t to June of

t+1. In the pre-Compustat sample, we measure investment as change in book equity.

I/A

Following Cooper, Gulen, and Schill (2008), in the post-Compustat sample, we

measure investment-to-assets, I/A, for the portfolio formation year t as total assets

(Compustat annual item AT) for the fiscal year ending in calendar year t−1 divided by

total assets for the fiscal year ending in t−2 minus one. At the end of June of each year

t, we split stocks into deciles based on I/A, and calculate monthly decile returns from

July of year t to June of t+1. In the pre-Compustat sample, we measure I/A as4B/B.
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CEI

Following Daniel and Titman (2006), we measure CEI as the growth rate in the

market equity not attributable to the stock return, log (MEt/MEt−5) − r(t − 5, t).

For the portfolio formation at the end of June of year t, r(t− 5, t) is the cumulative

log return on the stock from the last trading day of June in year t − 5 to the last

trading day of June in year t, and MEt is the market equity on the last trading day of

June in year t from CRSP. Equity issuance such as seasoned equity issues, employee

stock option plans, and share-based acquisitions increase the composite issuance,

whereas repurchase activities such as share repurchases and cash dividends reduce

the composite issuance. At the end of June of each year t, we sort stocks into deciles

on CEI, and calculate monthly decile returns from July of year t to June of year t+1.

NSI

Following FF (2008), at the end of June of year t, we measure net stock issues

(NSI) as the natural log of the ratio of the split-adjusted shares outstanding at the

fiscal year ending in calendar year t−1 to the split-adjusted shares outstanding at the

fiscal year ending in t−2. The split-adjusted shares outstanding is shares outstanding

(Compustat annual item CSHO) times the adjustment factor (item AJEX). At the

end of June of each year t, we assign all stocks into deciles based on NSI. We exclude

firms with zero NSI. Monthly decile returns are from July of year t to June of t+ 1,

and the deciles are rebalanced in June of t+ 1.

3.6.4 Profitability

This category includes only one variable, ROE.
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ROE

Monthly sorts as in the construction of the ROE factor. Measure ROE with clean

surplus relation in the pre-Compustat sample as in the construction of the ROE

factor.

3.6.5 Trading Frictions

This category includes four anomaly variables, including Ivol, Tvol, S-Rev, and

1/P.

Ivol

Following Ang, Hodrick, Xing, and Zhang (2006), we measure a stock’s Ivol as

the standard deviation of the residuals from regressing the stock’s returns on the FF

(1993) three factors. At the beginning of each month t, we sort stocks into deciles

based on the Ivol estimated with daily returns from month t− 1. We require a mini-

mum of 15 daily returns. Monthly decile returns are calculated for the current month

t, and the deciles are rebalanced at the beginning of month t+ 1.

Tvol

Following Ang, Hodrick, Xing, and Zhang (2006), we measure a stock’s Tvol as

the standard deviation of its daily returns. At the beginning of each month t, we sort

stocks into deciles based on the Tvol estimated with the daily returns from month

t−1. We require a minimum of 15 daily returns. Monthly decile returns are calculated

for the current month t, and the deciles are rebalanced at the beginning of month t+1.
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S-Rev

To construct the Jegadeesh (1990) short-term reversal (S-Rev) deciles, at the

beginning of each month t, we sort stocks into deciles based on the return in month

t−1. To be included in a decile in month t, a stock must have a valid price at the end

of month t−2 and a valid return for month t−1. Monthly decile returns are calculated

for the current month t, and the deciles are rebalanced at the beginning of month t+1.

1/P

At the beginning of each month t, we sort stocks into deciles based on the recip-

rocal of the share price (1/P) at the end of month t− 1. We calculate decile returns

for the current month t and rebalance the deciles at the beginning of month t+ 1.
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