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Abstract

In vivo imaging provides a venue for studying and understanding the biological

mechanism of a living system noninvasively. High resolution scanning for MR imag-

ing is practically limited by the length of the scan for in vivo applications. In vivo

small animal MRI suffers from subject motion which can degrade image quality with

blurring and artifacts. In many small animal imaging studies, multiple imaging views

are already obtained as part of the normal workflow but the information taken from

one view is not generally combined with that from another view. The main objective

of this dissertation is to study the use of multiple imaging views for improving image

quality in small animal MR imaging studies. The goal of the study is to evaluate

post-processing techniques that could make use of multiple low resolution image ac-

quisitions for increasing resolution in through-plane 3D images and to reduce motion

artifacts in in-plane 2D images. Both qualitative and quantitative comparisons are

carried out to evaluate the performance of the algorithms and they are demonstrated

in in vivo settings.
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Chapter 1: Introduction

1.1 Background

Small animal imaging plays an important role in the improvement of preclini-

cal and translational biomedical research. Small animals are increasingly used for

biomedical research, because they are inexpensive with short life span and gestation

period [2]. Small animals like mice and rats share many human phenotypes and

pathologies. Mice and humans share about 97.5% of their working DNA [48]. The

ease of modification of the small animal genotype helps in creating transgenic animal

models with induced pathological states that are suitable for studying various human

diseases [2].

MRI is based on the principle of detecting the absorption and emission of radio

waves by protons (hydrogen nuclei) in the presence of strong magnetic field [38].

Some of the advantages of the MRI are it is noninvasive, provides excellent soft tissue

contrast and no ionizing radiation exposure is involved [2]. MRI produces images

with high spatial and temporal resolution and the repeatability and reproducibility

of the experiments are well established. Noninvasive in vivo imaging enables the

animal subjects to serve as their own control in longitudinal studies if imaging is

performed prior to initiation of the disease. One of the major advantages of medical
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imaging techniques like MRI is the ability to perform longitudinal noninvasive studies,

thereby reducing the number of animals required for a particular study. For example,

instead of having to sacrifice animals at each time point in a longitudinal study, a

group of animals can be monitored at multiple time points by imaging internal tissues

noninvasively during the study.

Some of the challenges faced by small animal MRI are the presence of physiological

motion, small size of the animal and limited time available for the scanning due to

the use of general anesthesia. Small animal MR imaging is similar to clinical MR

imaging in that they both use the same data acquisition setups and pulse imaging

sequences. However, the respiratory and cardiac rates of small animals are faster

than human subjects and animals cannot be instructed to hold their breath during

imaging. Hence, in vivo small animal MRI suffers from subject motion which can

degrade image quality with blurring and artifacts [73].

The structures of interest in small animal imaging are of the order of millimeter or

smaller, thus making it important to acquire high resolution images [2]. Because of the

finer feature sizes of organs and tissues, small animal MRI is usually done in ultrahigh

field MRI machines in order to obtain higher spatial resolution and signal-to-noise

ratio (SNR). High field and ultrahigh field MRI yield high resolution images with

more SNR because of the higher energy emitted per photon but the problems posed

by gradient inhomogeneities are more pronounced than that in lower field clinical

magnets [22]. However, high resolution imaging requires low slice thickness which

results in fewer protons contributing to the MRI signal. To achieve a suitable SNR,

the number of averaged scans has to be increased, which in turn leads to increase in

scanning time. There is a limit to how long the acquisition time can be increased as it
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is not desirable to keep the animal under anesthesia for extended period of time [23].

Therefore in MRI images, through-plane resolution1 is usually lower than the in-plane

resolution.

To sum up, even at ultrahigh field strength, high resolution imaging requires longer

acquisition time to accommodate weaker signal from smaller voxels2 because multiple

acquisition are required to average out the noise effects [1]. Therefore, key trade-

offs for acquiring high resolution images in MRI are acquisition time, resolution and

SNR. Long acquisition time could help getting high resolution images with high SNR,

however, it is not desirable. When the long acquisition time is taken in to account

along with the animal preparation time and recovery time, the total time taken for

an imaging session is long.

Many acquisition techniques have been proposed to reduce the scanning time in

MRI aimed at acquiring high resolution images in less time. These techniques include

parallel imaging [26], partial Fourier imaging [41] and partial echo [30]. Parallel

imaging is a technique which combines the signals from several coils within a phased

array to reconstruct an image and thus results in lower acquisition time. The major

drawback of parallel acquisition technique is the requirement of specialized hardware

(phased array coil) and low SNR. Partial Fourier imaging techniques are based on

partial filling of k -space. Low acquisition time comes at the expense of reduced SNR.

Truncation artifacts also pose a major problem for partial k -space filling [42]. These

techniques rely on specialized hardware and software for implementation and are not

always available.

1in-plane resolution is the resolution in X-Y plane and through-plane resolution is the resolution
in Z direction of MRI images.

2pixel and voxel refers to smallest image forming unit in 2D and 3D MRI images respectively.
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Super resolution reconstruction (SRR) is a post processing technique to improve

through-plane resolution that does not rely on any specialized equipment or acqui-

sition software [17], although it can be used in conjunction with other techniques

like parallel imaging and partial Fourier acquisition which are aimed at reducing ac-

quisition time. Several SRR methods have been proposed differing in acquisition

geometry and in the number of the low resolution (LR) image stacks and the op-

timization algorithms used for iterative reconstruction. Plenge et al. [52] evaluated

different optimization techniques used for SRR of MRI data. However, no defini-

tive quantitative comparison has been published to compare the effect of acquisition

geometry on SRR.

The shifted and rotated acquisition geometries are the most commonly used SRR

acquisition geometry [17], [60]. The orthogonal acquisition geometry is a relatively

new SRR geometry, introduced in 2008 [62]. The main advantage of using orthogonal

acquisition for SRR is that it requires a lower number of views and thus less acquisition

time when compared to shifted or rotated view acquisitions. In most research studies,

at least two orthogonal image stacks are acquired for the anatomical studies and using

them in SRR geometry without having to collect new additional stacks exclusively for

this purpose is advantageous. The results of the comparison study of these three SRR

acquisition geometries (discussed in detail in chapter 2) indicate that super resolution

reconstructed images based on orthogonally acquired low resolution images resulted in

reconstructed images with higher SNR and contrast-to-noise (CNR) in less acquisition

time than those based on rotational or shifted acquisition geometries. Although SRR

based on the shifted and rotated geometries could more closely approximate the

4



structures observed in the 3D isotropic acquisition by acquiring a greater number of

views, this would defeat the overall goal of reducing acquisition time.

The SRR images based on three orthogonal views can exhibit significant streaking

artifacts and mislocalization when the low resolution data sets are acquired with a

slice thickness 6 times greater than the in-plane voxel size (discussed in detail in

chapter 2). In most in vivo studies the aspect ratio (AR)3 is high, so exploration

of a way to reduce the reconstruction artifacts observed in orthogonal SRR would

make the technique more useful for in vivo studies. A significant source of these

reconstruction artifacts in SRR image is the interpolation scheme used to upsample

the MRI images. Linear interpolation has been widely used in medical images [39]

and as it is more relevant when there is absence of additional information and the

interpolation factor is high. An extended review of interpolation methods used can

be found in [18], [39]. But most of these interpolation schemes require either prior

knowledge [31], [63] or a large training set to incorporate the domain knowledge into

the design of the interpolators [8]. A sigmoid based interpolation model modulated

by the local gradient profile of orthogonal datasets is studied in this dissertation.

The sigmoid interpolation model provides a level of smoothing along the boundaries

while maintaining sharp intensity contrast [47]. As typically two orthogonal views

are obtained in the studies, it is advantageous to use the gradient information from

orthogonal view to improve the interpolation of another image stack and it is a post

processing technique which aims at overcoming the above mentioned disadvantages

like requirement of prior knowledge or training sets.

3Voxel's AR refer to the proportional relationship of its size in each dimension (i.e.,
width:height:depth) and are directly related to SNR and acquisition time.
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The ghosting artifacts caused by various types of motion pose a big challenge

in small animal MRI. Although the animal is under anesthesia, motion cannot be

eliminated completely [23]. Many techniques have been developed to eliminate or

reduce effects of motion. Active restraints have been used to fasten the subject to the

bed to reduce motion, but this cannot eliminate motion completely [2]. Furthermore,

scans having long acquisition times (as in the case of high resolution imaging) are

more susceptible to ghosting artifacts due to motion. Several model based correction

algorithms have been implemented for reducing the effect of ghosting artifacts in

MRI images [44], [75], [74], [24]. But it is difficult to model all of the various causes

of modulation of k -space data in a correction algorithm. Some of the established

correction methods based on specific artifact models may not account for all the

causes of k -space modulation [75], [24]. Additionally, the correction models that

are well established in human studies cannot be extended to small animals without

significant modifications because the pattern of motion in animals is different than

that in humans [56], [67], [61]. Establishing a motion correction model which would

work across a wide spectrum of small animal models poses great difficulty as the

pattern of motion varies widely. Modulation of k -space data is caused by following

types of motion:

• Periodic motion like cardiac, blood flow and respiratory motion

• Random motion as caused by gastrointestinal peristalsis, eye motion and subject

movement

• Bulk motion which is caused by large scale motion of the subject such as the

motion of the head
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Periodic motion like cardiac and respiratory motion can be reduced by prospec-

tive or retrospective gating [20]. Prospective cardiac and respiratory gating [5] rely

on cardiac and respiratory signals as control signals to trigger the MRI acquisition,

so that the data are acquired at the same point in the cycle. However, even with

prospective gating, motion poses significant problems in small animal imaging ap-

plications [20]. For example, when the animal has an unstable ECG or respiratory

cycle due to its physical condition, the acquisition trigger point may not be accurately

detected leading to ghosting artifacts and poor quality images. Retrospective gating

technique relies on retro-gating software and it requires specialized pulse sequence

design. Blood flow effects can be reduced using techniques such as gradient moment

nulling [51] and spatial presaturation [12]. Adaptive motion correction techniques

using a navigator echo can be used for retrospective referencing of tissue position to

correct for random or bulk motion caused by subject movement [10]. Techniques such

as adaptive motion correction [34], gradient moment nulling [51], and spatial presat-

uration [12] require modification to the pulse sequence design and are not applicable

for post-processing.

The modulation in k -space data which causes the motion artifacts in MRI occurs

only in one direction (i.e., the phase encode direction). By acquiring multiple datasets

with different phase encode directions image information is correlated between the

data sets but the modulation caused by motion is uncorrelated. Previous works

have exploited this property to reduce ghosting artifacts [35], [70]. These methods

use two or more scans obtained over the same field of view (FOV) but with the

phase encode direction and readout directions interchanged. The advantages of these

methods are that no a priori knowledge about the type of motion is required for

7



their implementation. They are post processing techniques and no changes in pulse

sequence or hardware are needed for their implementation. However, these studies

used the same slice-select directions [35], [70]. In most small animal imaging studies

both long axis (coronal or sagittal) and short axis (axial) images of the region of

interest (ROI) are obtained. The concept of using two MRI images acquired over the

same region of interest using different slice-select directions (i.e., orthogonal views) is

explored in this dissertation.

1.2 Statement of Problem Studied in this Dissertation

The overall goal of this dissertation was to study the use of multiple imaging

views for improving image quality in small animal MR imaging studies. In many

small animal imaging studies, multiple imaging views are already obtained as part

of the normal workflow but the information taken from one view is not generally

combined with that from another view. Therefore, our goal was to evaluate imag-

ing post-processing techniques that could make use of multiple low resolution image

acquisitions for

1. increasing resolution in through-plane 3D images and

2. to reduce motion artifacts in in-plane 2D images.

More specifically, the aim is to find a technique that can use all the pre collected

data to reduce image reconstruction errors in orthogonal SRR or to reduce motion

artifacts.
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1.3 Overview of the Dissertation

Chapter 2 of this dissertation deals in detail with the evaluation of different SRR

acquisition geometry. Chapter 2 discusses whether SRR with a minimal number of

LR views would be useful for morphological evaluations of in vivo animal models. The

effects of various LR acquisition geometry (shifted, rotation, and orthogonal) and the

number of LR image stacks with different voxel ARs have on SRR are explored. For

this study, quantitative and qualitative evaluations of SRR images were performed

using a resolution (line pair) and a biological (ex vivo embryo) phantom. Image

quality was assessed by comparing the SRR images to a HR 3D isotropically acquired

image. SRR was also implemented for an in vivo animal imaging application.

Chapter 3 of this thesis describes the development of a post processing method

that aims to use multiple LR image stacks available in SRR algorithm, and make

use of gradient information from orthogonal scans to improve the interpolation of

another image stack and to reduce streaking artifacts in SR reconstructed image.

Chapter 3 explores two ways of solving the reconstruction artifacts in orthogonal

SRR, adding additional oblique LR views to the 3-view orthogonal super resolution

and a sigmoid based interpolation model which is modulated by the local gradient

profile of orthogonal datasets. Experiments are carried out using phantom and in

vivo mouse. Both qualitative (visual inspection) and quantitative measures are used

for comparison of the images.

Chapter 4 of this thesis outlines the development of a post processing method

that aims to use two orthogonal views obtained with different slice-select directions

to correct for motion artifacts in-plane 2D images. In particular, the focus is on

deriving a motion correction method with no external hardware requirements but
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without an increase in acquisition time over conventional scans. Simulated phantom

experiment, ex vivo and in vivo experiments are carried out and improvement in

image quality is evaluated.
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Acronyms Definitions

AR Aspect ratio

CNR Contrast-to-noise ratio

DW Diffusion weighted

EPI Echo-planar imaging

FA Flip angle

FDR False discovery rate

FOR False omission rate

FOV Field of view

FVE Fractional volume error

FWHM Full width at half maximum

GD Gadopentetate dimeglumine

HR High resolution

LR Low resolution

MRI Magnetic resonance imaging

MSE Mean square error

NPV Negative predictive values

PBS Phosphate buffered saline

PPV Positive predictive values

RE Rand error

RI Rand index

RMS Root mean square deviation

ROI Region of interest

SNR Signal-to-noise ratio

SRR Super resolution reconstruction

TE Echo time

TR Repetition time

Table 1.1: List of abbreviations used in the thesis
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Chapter 2: In Depth Comparison of SR Acquisition

Geometries and Trade-offs Involved

2.1 Introduction

MRI is more frequently being used for evaluating morphological phenotypes in

genetically engineered mouse models of disease [7]. Three-dimensional imaging at

the highest spatial resolution is the preferred approach for comparing morphological

phenotypes, however it is not always possible in small animal in vivo imaging settings.

This is due to the long acquisition times required to achieve high spatial resolution in

all directions. Several factors limit obtaining high resolution 3D isotropic images in

the in vivo settings such as the length of time a mouse can be kept under anesthesia,

motion artifacts that are likely to occur during long acquisition protocols that degrade

image quality, and increased repetition times required at the high magnetic field

strengths used for small animal imaging. Even though the high magnetic field strength

increases the SNR, it is not enough to resolve small anatomical details in all directions

in small animal studies. Keeping animals under anesthesia for long periods of time

(>2 hrs) is not desirable. MRI acquisition protocols with very long repetition times

(TR>1500 ms) such as T2-weighted, diffusion-weighted (DW), and inversion recovery

imaging are particularly affected by the long scan times required for 3D isotropic
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imaging. Thus, in vivo MR images in small animal studies are usually acquired using

2D multi-slice acquisitions with in-plane pixel dimensions (50-100 µm) which are 5-

10 times greater than the through-plane dimension (slice thickness) in the slice-select

direction (500-1000 µm).

Multi-slice 2D images suffer from the effects of partial volume averaging due to

their increased slice thickness and when reformatted and viewed from a perspective

other than the in-plane acquisition direction, the features often appear blurry due

to decreased resolution in the slice-select direction. Increasing the resolution in the

slice-select direction comes at the expense of decreased SNR due to the smaller voxel

size (fewer spins in the voxel to generate the signal). SNR is directly proportional

to voxel size, and the square root of number of signal averages. Therefore, in order

to compensate for a decrease in SNR due to a decrease in voxel size, the number

of signal averages must be increased by a factor and thus an increase in acquisition

time. Decreasing the slice thickness also requires increasing the number of slices in

order to cover the same FOV which also results in increased acquisition time. This

trade-off between spatial resolution, acceptable SNR, and image acquisition time

is always a consideration when imaging live subjects. MRI acquisition techniques,

such as parallel imaging [15] and partial Fourier imaging [41] have been proposed

for speeding up acquisition times so that higher resolution images can be acquired.

These techniques require specialized hardware and software such as array coils and

specialized acquisition sequence for implementation and are not always available for

small animal MRI applications. Super resolution reconstruction is an image post-

processing approach that has been proposed to improve the resolution in the slice-

select direction in 2D multi-slice MRI data sets [17]. It is based on reconstructing a
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high resolution (HR) image volume from a set of low resolution (LR) image stacks

that were obtained from different viewpoints of the same FOV. Its application is not

limited by the availability of acquisition hardware or specialized acquisition sequences

and can be used in many multi-slice acquisition setting including those that utilize

high-speed acquisition protocols, such as parallel or partial Fourier imaging.

The SRR approaches proposed thus far for MRI have differed primarily in the ori-

entation of the acquisition geometry of the set of LR image stacks and the iterative

optimization technique used for SRR. Greenspan et al. [17] proposed collecting a set

of LR image stacks by subpixel shifting the 2D multi-slice stack acquisitions in the

slice-select direction. Irani and Peleg's iterative backprojection method (IBP) [28]

was then used to reconstruct the HR image from the shifted LR stacks. For this

method, the number of LR image stacks required to reconstruct an isotropic 3D HR

image is directly related to the ratio of the slice thickness to the in-plane resolu-

tion of the LR images. Thus the more anisotropic the LR data acquisitions are the

greater the number of LR image stacks that are required. Shilling et al. [60] proposed

acquiring a set of LR image stacks by rotating the slice-select direction in equal an-

gle sampling intervals about a central axis. Six LR image stacks, obtained at 30◦

rotational increments, were used for SRR. Additive and multiplicative iterative alge-

braic reconstructions were used to produce the HR image volume from the LR image

stacks. Additive correction was found to be better than the multiplicative method

for high noise levels. Resolution enhancement was observed in phantom studies, ex

vivo studies, and in vivo human brain scans.

Souza and Senn [62] based their SR reconstructions on the acquisition of three

orthogonal (i.e., coronal, sagittal, and axial) LR image stacks. IBP was also used for
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reconstructing HR images from the LR image stacks in this approach. Qualitative

and quantitative evaluations indicated that SRR using LR image stacks acquired

orthogonally might be useful for improving spatial resolution and CNR similar to

that observed using shifted and rotational geometries. Recently, Plenge et al. [52]

evaluated the different optimization techniques used for SRR of MRI data. Plenge's

evaluation was performed using only the rotational acquisition geometry proposed by

Shilling et al. [60]. No evaluation of the affect of LR acquisition geometry on SRR

has been performed. Their results indicated that reconstruction methods based on

IBP and least squares optimization techniques performed better than those based on

algebraic reconstruction.

Our overall goal in this chapter was to determine whether SRR with a minimal

number of LR views would be useful for morphological evaluations of in vivo animal

models. In order for SRR to be applicable in small animal phenotyping applications,

the LR image stacks must be acquired in significantly less time than a comparable HR

3D isotropic acquisition and the SRR image should have comparable image quality

to that observed in images obtained from a HR acquisition. To achieve this goal we

investigated the effects that LR acquisition geometry (shifted, rotation, and orthogo-

nal) and the number of LR image stacks with different voxel ARs have on SRR. For

this study, quantitative and qualitative evaluations of SRR images were performed

using a resolution (line pair) and a biological (ex vivo embryo) phantom. Image qual-

ity was assessed by comparing the SRR images to a HR 3D isotropically acquired

image. SRR was also implemented for an in vivo animal imaging application.
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2.2 Material and Methods

2.2.1 Super Resolution Reconstruction Method

All SRR images were reconstructed using the IBP approach proposed by Irani

and Peleg [28]. IBP was chosen because it has been widely used for super resolution

reconstruction in the past and its ease of implementation. A flowchart illustrating

the IBP approach is provided in Figure 2.1. Initially an HR image volume Ĝ(0) is

approximated from the average of LR image stacks, {fk}Nk=1 that have been upsampled

and geometrically transformed, Tk
−1, to the same orientation prior to averaging as

shown in equation 2.1.

Ĝ(0) =
1

N

∑N

k=1
Tk
−1 [upsample {fk}] (2.1)

{
f̂k

(i)
}N

k=1
=
[
downsample

{
Tk
(
G(i)

)
∗ h
}]

(2.2)

Here fk denotes the LR image stacks andN denotes the number of LR image stacks

used. A temporary set of LR images, {f̂k
(0)
}
N

k=1, is obtained from the predicted HR

image, Ĝ(0), by simulating the imaging process that includes blurring, h, and down

sampling as shown in equation 2.2. For our case, a 1D Gaussian kernel with full width

at half maximum (FWHM) equal to the LR slice thickness was used along the slice-

select direction in the HR image for blurring because it closely matched the excitation

profile used in the original image acquisition sequence. If the predicted HR image

Ĝ(0) is the same as the true HR image G, then the simulated LR images {f̂k
(0)
}
N

k=1

should be equal to the observed LR images {fk}Nk=1. Therefore, the difference (error)

between the observed and simulated LR images {fk − f̂k
(0)
}
N

k=1 is upsampled and
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backprojected on to Ĝ(0) using linear interpolation. This results in an updated HR

image that can again be downsampled and the predicted LR images compared to

the observed LR images (equation 2.3). These steps are iteratively repeated till the

maximum error at the ith iteration is less than a preset threshold (equation 2.4). All

SRR software was developed using Matlab v.2009a (MathWorks Inc., Mass USA).

Ĝ(1) = Ĝ(0) +
1

k

∑N

k=1

(
upsample

{
fk − f̂ (0)

k

})
(2.3)

e(i) = Max
{∥∥∥fk − f̂ (i)

k

∥∥∥
2

}
k=1,2,...,N

(2.4)

2.2.2 Resolution Phantom

A resolution phantom was constructed using five cylindrical quartz capillary tubes

(0.5 mm ID, 0.7 mm OD). The tubes were cut into 2.5 cm lengths and were placed

side-by-side with a known separation of 0.7 mm (see illustration in Figure 2.2a). The

tubes were sealed with air trapped inside the tubes, resulting in a signal void within

the tubes. They were then immersed in the center of a 15 ml test tube (14 mm

ID) filled with 1:30 (v:v) homogeneous mixture of gadopentetate dimeglumine (GD)

MagnevistTM (Bayer Pharmaceutical, Wayne NJ) and water.

LR image stacks of the phantom were acquired using a Bruker Biospin AvanceTM

500 MHz 11.7T magnet (Bruker Biospin, Karlsruhe, Germany) and a 25 mm diameter

volume coil and a T1-weighted FLASH imaging sequence (TR = 348.2 ms, TE = 6 ms,

FA=90, FOV = 2.6*2.6 cm, 1 mm slice thickness, navgs = 4, number of contiguous

slices = 26, acquisition time = 4 min 56 sec). The phantom was imaged at two

orientations relative to the slice-select direction of the three acquisition geometries.
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The first orientation was where the long axes of the tubes were positioned parallel

to the Y-axis as illustrated in Figures 2.2a-c. The second orientation was where the

long axes of the tubes were positioned obliquely to the slice-select direction of the

acquisition geometries as illustrated in Figure 2.2d. For this orientation the tubes

were rotated 40◦ in the XY-plane and 55◦ in the YZ-plane in the oblique orientation.

The oblique orientation represents the most extreme case where edge reconstruction

is affected due to partial volume averaging in the slice-select direction. LR image

stacks were collected using an in-plane matrix size of 128*128 and 256*256 for voxel

AR of 1:1:5 and 1:1:10, respectively. For both the orientations mentioned above

the stacks were obtained using the following three acquisition geometries for sets of

data acquired using two different AR: 1) Five sets of LR image stacks were acquired

using 0.20 mm subpixel shifts in the slice-select direction for voxel AR of 1:1:5 and

ten sets were acquired using 0.10 mm subpixel shifts in the slice-select direction

for voxel AR of 1:1:10 (shifted) (Figure 2.2a), 2) six sets were acquired with 30◦

angular rotations along the slice-select direction for both ARs of 1:1:5 and 1:1:10

(rotated) (Figure 2.2b), and 3) three sets were acquired orthogonally to one another

in axial, coronal and sagittal planes for both ARs of 1:1:5 and 1:1:10 (orthogonal)

(Figure 2.2c). SRR images were calculated for each acquisition geometry using the

SRR method described above.

2.2.2.1 Quantitative measures

The quality of the SRR was evaluated by visual inspection of the resolution phan-

tom in the short axis view (i.e. short axis of the tubes), where blurring in the slice-

select direction is expected to be the greatest due to the low resolution sampling in

that direction. Intensity line plots were obtained to better evaluate the effects of SRR
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on signal intensity and edge transitions. SRR images were qualitatively compared to

a high resolution image of the phantom acquired in the axial plane.

SNR, CNR and edge pixel width were commonly used for quantitative evaluation

of the SRR images. In case of line phantom, SNR and CNR obtained would be fairly

high as there is not much gray scale information. SNR and CNR might not be useful

measures as there was no live tissue which contributes to the gray scale information

in the images. So contrast of the images along the line plot with respect to the ideal

contrast is used as comparison. Contrast is defined as difference between the mean

maximum (Smax from air filled in test tube) and mean minimum (Smin inside quartz

tube) signal intensities along the line profile chosen for intensity plots.

C = Smax − Smin (2.5)

Edge profiles were measured by nonlinear least-square fitting a sigmoid function

of the form [17], [60], [52].

f = a1 +
a2

1 + exp (−a3 (x− a4))
(2.6)

The edge width in high resolution pixels is computed by

Edge Width [Pixels ] =
4.4

a3
(2.7)

After fitting using the equation 2.6, a measure of rise length is calculated using

equation 2.7. It is defined as the width (in high resolution pixels) from 10% to

90% of edge height. An estimate of resolution can be obtained from these edge

widths. The mean edge width was calculated from 5 edge profiles obtained across the
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boundary between the quart tubes and the air trapped inside the test tube as showed

in Figure 2.3.

2.2.3 Biological Phantom

An ex vivo E17.5 wild type embryo was used as a biological phantom for evaluating

the effects of SRR on live subject MRIs. It possesses anatomic structures similar to

that observed in live animals but does not suffer from motion artifacts observed in in

vivo imaging. It is also possible to obtain an isotropic high resolution volume image

of the ex vivo embryo for comparison to the SRR images. The E17.5 embryo was

fixed and stained for 2 hours using a 20:1 volume ratio of 4% paraformaldehyde and

Phosphate-buffered saline PBS:GD solution. It was then stabilized and stored in 15

ml of 200:1 PBS:GD solution prior to imaging. For MR imaging the embryo was

suspended in a 15 ml tube of FluorinertTM FC-70(3M Company, St. Paul MN).

The LR image stacks of the ex vivo embryo were obtained using a Bruker Biospin

AvanceTM 500 MHz 11.7T magnet (Bruker Biospin, Karlsruhe, Germany) and a 25

mm diameter volume coil and T1-weighted FLASH imaging sequence (TR = 519.5

ms, TE = 4 ms, FA = 30.0, FOV = 2.2*2.2 cm, matrix = 512*512, navgs = 1,

acquisition time = 3 min) and two different slice thicknesses, 0.19 mm (voxel AR =

1:1:4, number of contiguous slices = 64) and 0.26 mm (voxel AR = 1:1:6, number

of contiguous slices = 46). Two additional slice thicknesses were evaluated for the

orthogonal acquisition geometry, 0.38 mm (voxel AR = 1:1:8, number of contiguous

slices = 32) and 0.46 mm (voxel AR = 1:1:10, number of continguous slices = 26).

LR image stacks were obtained using the acquisition geometries outlined above: 1)

Four sets of LR image stacks were acquired using 0.0475 mm subpixel shifts in the
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slice-select direction for a voxel AR 1:1:4 and six sets were acquired using 0.0433

mm subpixel shifts in the slice-select direction for a voxel AR 1:1:6 (shifted), 2) six

sets were acquired with 30◦ angular rotations along the slice-select direction for both

ARs of 1:1:4 and 1:1:6 (rotated), and 3) three sets were acquired orthogonal to one

another in axial, coronal and sagittal planes for ARs of 1:1:4, 1:1:6, 1:1:8, and 1:1:10

(orthogonal). The embryo was positioned such that the sub-pixel shifts were done

along the X-axis for the shifted geometry and around the Z-axis for the rotational

geometry (Figure 2.4). SRR images were calculated for each LR acquisition geometry

using the SRR method described above.

3D isotropic volume images of the same embryo were acquired for comparison to

the SRR images. A T1-weighted 3D FLASH sequence (TR = 11.3 ms, TE = 4.0 ms,

FA = 20.0 , FOV = 2.2*2.2*1.2 cm, matrix = 512*512*256, navgs = 1, acqusition

time = 18.5 min) was used for the 3D imaging. The 3D image obtained from this

acquisition protocol results in a high quality image that is routinely used for biological

phenotyping of ex vivo embryos in our laboratory.

2.2.3.1 Quantitative measures

SRR images were qualitatively compared to the isotropically acquired 3D image of

the biological phantom. SNR, CNR and edge pixel width were used for quantitative

evaluation of the SRR images. SNR and contrast-to-noise ratio (CNRH−L) were

calculated using 9*9*9 voxel regions within homogenous regions of tissue illustrated

in Figure 2.5. SNR was calculated using the following equation:

SNR =
S

σn
(2.8)
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where S is the mean signal intensity (regions selected in brain as shown in Fig-

ure 2.5) and σn is the standard deviation of the noise (from background as shown in

Figure 2.5). CNR was calculated using the following equation:

CNRhl =
|Sh − Sl|

Max(σh, σl)
(2.9)

where Sl, Sh and σl, σh are mean signal intensity and standard deviation in low

and high signal intensity ROIs. Following the procedure described in 2.2.2.1, the mean

edge width was calculated from 20 edge profiles obtained across the liver boundary

as illustrated in Figure 2.5.

2.2.4 In vivo Experiment

MR imaging of a live mouse was performed using a Bruker Biospin AvanceTM

400 MHz 9.4T magnet (Bruker Biospin, Karlsruhe, Germany). All animal protocols

were approved by the Institutional Laboratory Care and Use Committee of The Ohio

State University. The mouse was placed prone on a temperature controlled mouse

bed and inserted into the 35 mm diameter quadrature volume coil. The mouse was

anesthetized with 2.5% isoflurane mixed with 1 liter per minute carbogen and main-

tained with 1-1.5% isoflurane during imaging. The respiration and temperature of

the animal were monitored during the course of the experiment using a Small Animal

Monitoring and Gating System (Model 1025, Small Animals Instruments, Inc. Stony

Brook, NY). A bolus of 11 µl of 11.2 mg iron oxide I.V. (Feridex, AMAH Pharma-

ceuticals, Lexington MA) per 1 ml PBS was injected via tail vein approximately 20

min. prior to imaging. An orthogonal set of LR image stacks (voxel AR of 1:1:10) of

the live mouse were acquired using a respiratory-gated T1-weighted FLASH imaging
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sequence (TR = 200 ms, TE = 2.72 ms, FA = 55.0, FOV = 2.5*2.5 cm, navgs =

8, matrix = 256*256, 1 mm slice thickness, acqusition time = 15 min). Contiguous

slices covering 25 mm of the upper abdominal region were acquired.

2.3 Results

2.3.1 Resolution Phantom

Short-axis images of the resolution phantom (voxel AR = 1:1:5) where the long axis

of the tubes were positioned along the Y-axis of Figure 2.2 are shown in Figure 2.6a-e.

The lack of resolution in the slice-select direction is apparent in Figure 2.6a, where

the 2D images are acquired at a slice thickness greater than the distance between

the tubes and linear interpolation is used for reconstruction. Figure 2.6b-d are the

corresponding short axis images from the SRR images based on shifted, rotated, and

orthogonal acquisition geometries, respectively. The five tubes are resolved in the

SRR images based on all three acquisition geometries, however a significant blurring

is observed in the slice-select direction for the SRR image based on parallel shifts

(Figure 2.6b) and to a lesser extent for the SRR image based on rotational acqui-

sition (Figure 2.6c). The SRR image based on orthogonal acquisition (Figure 2.6d)

reproduced the five tubes with the least amount of blurring artifact and looked similar

to that observed in the in-plane short-axis image (Figure 2.6e), where the sampling

rate is great enough to resolve the tubes in the image. The intensity line plot shown

in Figure 2.6f illustrates a decrease in peak intensities in the SRR images relative to

that observed for the in-plane image, with the least amount of change observed in

the SRR image based on the orthogonal acquisition geometry. Similar results were
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observed for the SRR HR images when the LR image stacks were collected with a

voxel AR of 1:1:10 (Figure 2.7).

Short axis images of the line pair phantom (voxel AR = 1:1:5) where the long

axes of the tubes were aligned oblique to the slice-select direction of the acquisition

geometries are shown in Figure 2.6g-k. The lack of resolution in the slice-select

direction is observed in Figure 2.6g, where the 2D images are acquired at a slice

thickness greater than the distance between the spaced tubes. The five tubes are

not resolved in the reconstruction based on the parallel shift acquisition geometry

(Figure 2.6h), but are resolved in the reconstructions based on rotational (Figure 2.6i)

and orthogonal (Figure 2.6j) acquisition geometry. However, blurring is observed in

the slice-select direction of the SRR image based on rotational acquisition geometry

but not in the SRR image based on orthogonal acquisition geometry. This is better

illustrated in the intensity line plot presented in Figure 2.6l. Similar results were

observed for low resolution data sets collected with a voxel AR of 1:1:10 (Figure 2.7).

Mean edge width and contrast along the line profile for the SRR images and the

HR image of the line pair phantom are listed in Table 2.1. An increase in mean

width was observed for the SR images based on orthogonal geometry at AR of 1:1:5,

1:1:5(oblique), 1:1:10 and 1:1:10(oblique). The relative contrast for the SRR images

were greatest for the SRR images based on the orthogonal geometry followed by SRR

images based on the rotated and shifted geometries.

2.3.2 Biological Phantom

Increased resolution of biological structures in the ex vivo embryo was observed

in the SRR images over a single LR image stack using straight linear interpolation
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Mean Edge Width (in HR pixels)

AR Intb Shifted Rotated Orthogonal

1:1:1a 1.7

1:1:5 4.6 4.1 3.9 2.8

1:1:10 9.7 8.9 7.8 6.1

1:1:1(oblique)a 4.2

1:1:5(oblique) 5.3 4.7 4.0 3.9

1:1:10(oblique) 10.2 9.3 8.1 6.6

Contrast (with respect to HR image)

AR Intb Shifted Rotated Orthogonal

1:1:1a 201(100%)

1:1:5 43(22%) 51(25%) 56(28%) 116(58%)

1:1:10 46(23%) 69(34%) 99(49%) 127(63%)

1:1:1(oblique)a 130(100%)

1:1:5(oblique) 68(53%) 71(55%) 75(58%) 94(73%)

1:1:10(oblique) 6(5%) 24(19%) 73(56%) 97(75%)

a – isotropically acquired 3D image

b – linear interpolation from LR image stack

Table 2.1: Quantitative measures of image quality calculated from line phantom

(Figure 2.8). This was true for the SRR images based on LR image stacks acquired at

both 0.19 mm (AR = 1:1:4) and 0.26 mm (AR = 1:1:6) slice thickness. Small struc-

tures (1-2 mm in width), such as those highlighted in the sinuses and the vertebrae,

were not as clearly delineated in the SRR images as that observed in the isotropically

acquired 3D image (Figure 2.8e).

25



The SRR image based on rotational geometry appeared more smooth than those

based on the shifted and orthogonal geometries. This smoothing effect increased when

the slice thickness of the LR images was increased from 0.19 mm (AR of 1:1:4) to 0.26

mm (AR of 1:1:6). Streaking artifacts were observed in uniform regions of the SRR

images based on shifted (Figure 2.8b) and orthogonal (Figure 2.8d) geometries but

were not as apparent in the SRR image based on rotational geometry (Figure 2.8c).

These streaking artifacts were observed in the direction of linear interpolation used

for upsampling in the LR direction in the iterative backprojection algorithm.

The SRR images based on orthogonal acquisition for different voxel ARs are shown

in Figure 2.9. The SRR images exhibited increased streaking artifacts with increasing

slice thickness. Once the slice thickness was increased beyond voxel AR of 1:1:6,

we observed structures from adjacent slices that were not located in their proper

through-plane location (Figure 2.9d). This artifact was not consistently observed

with increasing slice thickness, as can be seen in Figure 2.9e, suggesting the artifact

is dependent upon where those structures are positioned in the original LR sampling.

Mean edge width, SNR, CNR and acquisition time for the SRR images and the

isotropically acquired image of the ex vivo embryo are listed in Table 2.2. SNR and

CNR increased for SRR images with increasing voxel AR. The SNR and the CNR for

the SRR images were greatest for the SRR images based on the orthogonal geometry

followed by SRR images based on the rotated and shifted geometries. Mean edge

width was similar for SRR images with voxel ARs of 1:1:4 and 1:1:6, but an increase

was observed for the SR images based on orthogonal geometry at increased voxel AR

of 1:1:8 and 1:1:10.
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2.3.3 In vivo Experiment

A 3D volume rendering of the SRR image of the live mouse is presented in Fig-

ure 2.10. Biological structures, such as the wall of the stomach, kidneys, and liver

vasculature are clearly observed in all three image planes of the SRR image. A 3D

volume rendering based on the sagittally acquired LR image with linear interpolation

illustrates the loss of image quality in planes other than the primary HR acquisition

plane. The streaking artifacts normally observed in the 2D slice view of the SRR

images obtained from orthogonal acquisition are not observed in the volume rendered

images because of the ray projection used for rendering in Vol suite. The total time

taken to acquire all three LR image stacks used for the in vivo SRR was 45 minutes

due to the respiratory and cardiac gating. A full 3D isotropic scan of this mouse

would have taken more than 4 hrs with gating and would not be possible for live

animal applications.

2.4 Discussion

The results from this study illustrate that SRR using multiple LR views improves

image content and spatial resolution in the slice-select direction of 2D multi-slice ac-

quisitions. In the resolution phantom, improvement in mean edge width and contrast

were observed in SRR images based on orthogonal and rotational acquisition geome-

try when compared with shifted SRR and interpolated images. In line pair phantom

experiments the blurring in the slice select direction was caused by inter-voxel mixing

and the improvement in mean edge width and the contrast help in reducing the blur-

ring and resolution of quartz tubes. Increased SNR and CNR were observed in the

SRR images from the orthogonal acquisition compared to those reconstructed using
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shifted and rotational geometries. SRR images based on rotational acquisition geom-

etry exhibited a smoothing of the edges in both the resolution phantom and biological

phantom. This was observed visually and in the mean edge width calculated from the

SRR images. However, streaking artifacts were observed in the SRR images based

on shifted and orthogonal geometries that became more pronounced at the higher

ARs of 1:1:8 and 1:1:10. These streaking artifacts appear to be due to the linear

interpolation used for upsampling the LR images and updated differences in LR and

predicted HR images. Use of higher order or standard sigmoid-shaped interpolation

kernels did not improve this streaking artifact.

Streaking artifacts may not be as apparent in the SRR images based on rotational

geometry because the linear interpolation is occurring at oblique angles to the view

plane or they may be blurred due to the number of rotational angles used for the

SRR. Streaking artifacts were only observed in 2D slice views of the SRR images and

not the volume rendered images. This suggests that the ray tracing used for creating

the volume rendered image has also reduced the appearance of the streaking artifacts.

The main advantage of using orthogonal acquisition for SRR over the other pro-

posed acquisition geometries is that it requires the minimum number of views and

thus the minimum amount of acquisition time. Additionally, orthogonal or nearly or-

thogonal acquisitions are typically acquired in most clinical and small animal imaging

applications. SRR based on orthogonal views may result in better 3D volumes than

those based on the other two geometries because the high resolution volume space is

more uniformly sampled in all three directions.

Theoretically, SRR images based on three views is an under-determined problem

when the slice thickness is greater than three times the in-plane voxel size (AR =
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1:1:3). Practically, the image quality of SRR images based on the orthogonal geometry

and limited number of views was not significantly affected until the slice thickness of

the LR image stacks was greater than six times the in-plane voxel size (AR = 1:1:6).

This was also observed in orthogonal super resolution reconstructions of a digital

brain phantom by Gholipour [13].

Whole body mouse phenotyping is typically performed in ex vivo specimens [7].

However, phenotyping in live animals has significant advantages in that you can

observe structures in their native environment and monitor changes in structure and

function over time. The main factors that affect the acquisition of HR images in

live mice are the large FOV required for the whole body and the gated acquisitions

required for respiratory and cardiac motion. We have successfully demonstrated that

SRR can be implemented in a live animal model that requires respiratory- and ECG-

gating to account for motion. A full 3D isotropic acquisition of the mouse used in

this study would have taken more than 4 hrs with gating and would not be possible

in a live animal imaging setting. This SRR acquisition was limited to an AR of 1:1:10

which is common for 2D multi-slice in vivo imaging applications. Visual comparison

of different phenotypes using volume rendering would be possible at this resolution

however image post-processing such as object segmentation and quantitative analysis

may suffer from the reconstruction artifacts observed in SRR images obtained at

higher ARs.

SRR has been shown to be useful in clinical applications where images are cor-

rupted by motion such as fetal brain imaging in-utero [14], [57], [36] and imaging of

the tongue [72]. These approaches use registration to align the data to an anatomical

model. Gholipour et al. [14] developed a model based super resolution reconstruction
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framework using arbitrarily oriented slices in 3D acquisition space. This algorithm

was applied to volume reconstructions from fetal brain MR images where inter-slice

motion is prevalent. Rigid body registration was used to correct inter-slice motion

using a slice-to-volume registration approach. Although this approach has shown to

be effective using 2D acquisitions from arbitrary orientations, they have also sug-

gested using multiple orthogonal or overlapped slice acquisitions for high resolution

reconstructions. Woo et al. [72] used an orthogonal SRR approach to obtain high

resolution 3D images of the tongue. Super resolution offered a viable alternative to

obtain 3D volumes where acquisition time is limited by the involuntary motion of the

tongue.

SRR has also recently been implemented for improving spatial resolution in DW

imaging of the human brain using single-shot echo-planar imaging (EPI) acquisition

protocols [59]. Spatial resolution in DW imaging is inherently low relative to the

structures of interest and isotropic acquisition at high spatial resolution is virtually

impossible due to the long scan times required for data acquisition. Although im-

provements to hardware and acquisition protocols have been implemented to address

this problem, it still remains a challenge to obtain high resolution isotropic DW im-

ages.
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Figure 2.1: Block diagram of Irani and Peleg's IBP algorithm

31



Figure 2.2: Schematic illustrating the orientation of the resolution phantom where
the long axis of tubes were positioned orthogonal to the slice-select direction of the a)
shifted, b) rotational, c) orthogonal acquisition geometries, and d) orientation of tubes
in the resolution phantom for the oblique setup and the acquisition geometries shown
in Figure 2.2a, 2.2b, 2.2c were repeated for this oblique orientation. (Axes in this
image represent physical coordinates and the main magnetic field is in Z direction)
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Figure 2.3: Axial view of the line pair resolution phantom illustrating sample edge
profiles chosen to calculate the edge width
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Figure 2.4: Schematic illustrating the orientation of the ex vivo embryo with respect
to the slice-select direction of the acquisition geometries
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Figure 2.5: 2D slice image of the ex vivo embryo illustrating the location of 9*9*9
voxel ROI chosen for SNR and CNR calculations and sample edge profiles chosen to
calculate the edge width
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Figure 2.6: 2D slice images (Image plane represented is orthogonal to the long axis
of the tube which is placed along Y-axis in Figure 2.2a) of resolution phantom where
the long axis of the tubes is orthogonal to the acquisition plane and LR image stacks
were collected with a voxel AR of 1:1:5: a) interpolated, b) shifted, c) rotational, d)
orthogonal, e) in-plane, f) line plot, and where the long axis of the tubes is oblique
to the acquisition plane: g) interpolated, h) shifted, i) rotational, j) orthogonal, k)
in-plane, l) line plot
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Figure 2.7: 2D slice images (Image plane represented is orthogonal to the long axis
of the tube which is placed along Y-axis in Figure 2.2a) of resolution phantom where
the long axis of the tubes is orthogonal to the acquisition plane and LR image stacks
were collected with a voxel AR of 1:1:10: a) interpolated, b) shifted, c) rotational, d)
orthogonal, e) in-plane, f) line plot, and where the long axis of the tubes is oblique
to the acquisition plane: g) interpolated, h) shifted, i) rotational, j) orthogonal, k)
in-plane, l) line plot
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Figure 2.8: 2D sagittal view of SRR images of the ex vivo embryo based on different
acquisition geometries: a) interpolated, b) shifted, c) rotational, d) orthogonal, e)
isotropic. White arrow indicates structures in the nasal cavity not clearly observed
in the corresponding SRR images

Figure 2.9: 2D sagittal view of the ex vivo embryo for a) 3D isotropic acquisition,
and SRR images based on LR image stacks with AR equal to b) 1:1:4, c) 1:1:6, d)
1:1:8, and e) 1:1:10. White arrow highlights rib structures that are present in the
SRR image but not present in the isotropic 3D image
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SNR

1:1:1a 26.8

AR Intb Shifted Rotated Orthogonal

1:1:4 20.0 21.6 23.3 25.4

1:1:6 22.2 25.0 27.1 28.4

1:1:8 35.2

1:1:10 41.5

CNR

1:1:1a 5.6

AR Intb Shifted Rotated Orthogonal

1:1:4 5.1 5.3 6.0 6.9

1:1:6 5.8 6.8 7.2 8.0

1:1:8 7.9

1:1:10 7.9

Mean Edge Width (in HR pixels)

1:1:1a 2.4

AR Intb Shifted Rotated Orthogonal

1:1:4 5.9 4.2 3.7 3.2

1:1:6 6.1 4.1 3.8 3.5

1:1:8 3.9

1:1:10 4.4

Acquisition Time (mins)

1:1:1a 18.5

AR Intb Shifted Rotated Orthogonal

1:1:4 3 12 18 9

1:1:6 3 18 18 9

1:1:8 9

1:1:10 9

a – isotropically acquired 3D image

b – linear interpolation from LR image stack

Table 2.2: Quantitative measures of image quality calculated from images of biological
phantom
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Figure 2.10: Cutaway section from 3D volume rendering of the in vivo mouse abdomen
based on orthogonal SRR (left) with AR equal to 1:1:10 and single interpolated
view (right). The solid arrow points to the wall of the stomach, dashed arrow to
the kidney, and dotted arrow to the liver vasculature. Biological structures can be
observed clearly in any oblique cutting plane of the SRR image as opposed to single
2D multi-slice image with linear interpolation
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Chapter 3: Addressing Streaking Artifacts in Orthogonal

SRR

3.1 Introduction

In order for SRR to be useful in many clinical and small animal imaging ap-

plications, SRR should be implemented using LR image stacks that have ARs on

the order of 1:1:5 to 1:1:10. However, SRR images based on three orthogonal views

exhibited significant streaking artifacts and mislocalization when the LR data sets

were acquired with a slice thickness 6 times greater than the in-plane voxel size [Fig-

ure 2.8, 2.9]. Preserving structural boundaries and reduction of the streaking artifacts

is very important in making the orthogonal SRR applicable to in vivo applications.

Therefore, the main objective of this study was to determine whether we could

develop a method for reducing the streaking artifacts and mislocalization of structures

observed in SRR images reconstructed from 2D LR images with the larger voxel aspect

ratio. In this chapter we explored two ways of solving this problem:

1. Adding additional oblique LR views to the 3-view orthogonal super resolution

reconstruction

2. Incorporating a sigmoid based model which is modulated by the local gradient

profile of orthogonal datasets. Experiments were carried out using a phantom
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and in vivo mouse images. Both qualitative (visual inspection) and quantitative

measures are used for comparison of the images

3.2 Method 1: Adding Additional Oblique Views

3.2.1 Theory

In the super resolution geometries other than orthogonal views, the number of

LR images used for reconstruction can be increased to achieve fully-determined re-

construction [17], [60]. The number of LR images required for a fully-determined

reconstruction is equal to the factor by which the through-plane resolution is im-

proved [60]. But in SRR by orthogonal views, 3 sets of low resolution images are

used, irrespective of the factor by which through-plane resolution is improved. As a

result, SRR by orthogonal views is an under-determined problem.

In the orthogonal super resolution, the images have high resolution for in-plane

directions and low resolution along the through-plane direction (the number of sam-

ples in the high resolution directions is Nh and number of samples in low resolution

direction (number of slices) is Nl). Assuming the FOV is same in all direction, if there

are three orthogonal LR stacks and number of samples in in-plane direction is (Nh)2

then the number of measurements available for orthogonal SR reconstruction is given

by M = (Nh)2 ∗ Nl ∗ 3. The number of samples (U) to be estimated to reconstruct

a 3D isotropic image is equal to (Nh)3. The necessary condition for the signal re-

covery is M ≥ U (for a fully-determined reconstruction M = U , for over-determined

reconstruction M > U , and for a under-determined reconstruction M < U).

SRR based on three views is an under-determined problem when the slice thickness

is greater than three times the in-plane voxel size (AR = 1:1:3). However, visual
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evaluation of the results of preliminary studies done with ex vivo embryos shows

that the image quality of SRR images based on the orthogonal geometry was not

significantly affected until the slice thickness of the LR image stacks was greater

than six times the in-plane voxel size (AR = 1:1:6) and the 3D dataset produced

by orthogonal SRR was comparable to that of isotropically acquired HR data set

[Figure 2.9]. The above observation gives us a reason to believe that the addition

of one or two oblique LR image stacks might be enough to provide a reasonable

increase in image quality for AR greater than 1:1:6. For example to reconstruct a 3D

isotropic dataset from LR views with ARs of 1:1:10, four to five LR views might be

enough to produce an image with reasonable image quality comparable with that of

an isotropically acquired high resolution 3D image.

Theoretically adding LR views to orthogonal images that are obtained from dif-

ferent viewpoints of the same FOV will increase the image quality, but these LR

multi-slice images can be acquired using different orientations. The LR image can

be obtained by shifting by sub-pixel along the through-plane direction, or by rotat-

ing along an axis or at an angle oblique to the orthogonal orientations. Shifting by

subpixel corresponds to increasing the sampling density after convolving with slice

excitation profile thus resulting in over sampling [17]. Acquiring at rotational incre-

ments or at an angle allows combining scans with different slice-selection direction

and the slice-select direction of each image is oriented in a different direction in the

3D frequency spectrum, so combining these images will produce a 3D image with high

spatial frequencies [60]. It was observed by Plenge et al. that the rotational SRR

acquisition geometry is advantageous over the shifted acquisitions [52].
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3.2.2 Experiments

3.2.2.1 Simulated Shepp-Logan phantom

Shepp-Logan is a standard phantom used to test image reconstruction algorithms

in MRI. The advantage of the Shepp-Logan phantom is that it has a generally anatom-

ical shape with no noise and with sparse gradients which facilitate testing the per-

formance of algorithms in ideal conditions. Images of a 3D standard Shepp-Logan

phantom (256*256*256) were created using the available MATLAB program [33].

This standard Shepp-Logan phantom image is downsampled in the corresponding

slice-select directions to simulate axial, coronal and sagittal views with ARs of 1:1:8

and 1:1:10. For example, to simulate an AR of 1:1:8 for two orthogonal image sets,

we can use an axial image stack (256*256*32) in which the phantom images are

downsampled along z-axis by a factor of 8, and a coronal image stack (32*256*256)

as downsampled along x-axis by a factor of 8. LR image stacks were simulated at

following oblique orientations for both the ARs (1:1:8 and 1:1:10):

• 45◦ and 135◦ along an axis perpendicular to the coronal orientation. Three

SRR images are reconstructed with basic orthogonal geometry (3-view ortho

SRR), by adding 45◦ orientation to the basic geometry (4-view ortho SRR) and

by adding both 45◦ and 135◦ to the basic orthogonal geometry (5-view ortho

SRR).

• 30◦, 60◦, 120◦ and 150◦ along an axis perpendicular to the coronal orientation.

Five SRR images are reconstructed using basic orthogonal geometry (3-view
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ortho SRR), basic with 30◦ (4-view ortho SRR), basic with 30◦ and 60◦ (5-

view ortho SRR), basic with 30◦, 60◦ and 120◦ (6-view ortho SRR) and basic

geometry with 30◦, 60◦, 120◦ and 150◦ (7-view ortho SRR).

IBP algorithm is used for the orthogonal SRR reconstructed [28]. Multiples of 30◦

and 45◦ are chosen because these are commonly used in SRR rotational acquisition

geometry [60], [52]. Both qualitative and quantitative parameters are used to compare

the results with the HR 3D image.

3.2.2.2 Simulated biological phantom

A 3D isotropic data set (3DFLASH, TR = 11.3 ms, TE = 4.0 ms, FA = 90.0, FOV

= 2.2*2.2*1.2 cm, matrix = 512*512*256, navg=4) of a gadolinium-stained E17.5

embryo was used to study the effects of SRR using oblique views. The advantage

of using ex vivo embryo as biological phantom is discussed in 2.2.3. Three LR 2D

multi-slice image stacks (voxel aspect ratio (AR) of 1:1:8 and 1:1:10) were obtained

from the high resolution data set by mean subsampling in one of three orthogonal

directions (axial, sagittal, coronal). Two additional LR image stacks were simulated

at oblique orientations along an axis perpendicular to the through-plane directions

(45◦ and 135◦ along an axis perpendicular to the coronal orientation). Iterative back

projection was used for reconstructing the SRR data set from the LR image stacks

(using 3 LR image stacks, 4 LR image stacks and 5 LR image stacks). Images were

visually reviewed and quantitative parameters are calculated and compared to the

original HR 3D data set.

45



3.2.2.3 In vivo experiment

For in vivo imaging, the live mouse is scanned using a Bruker Biospin AvanceTM

400 9.4T magnet (Bruker Biospin, Karlsruhe, Germany). The mouse is prepared for

imaging following the procedure outlined in 2.2.4 and placed prone on a temperature

controlled mouse bed. Five set of LR image stacks (three orthogonal stacks along

with 45◦, 135◦ along an axis perpendicular to the coronal orientation) (voxel AR of

1:1:10) of the live mouse were acquired using a respiratory-gated T1-weighted FLASH

imaging sequence (TR = 200 ms, TE = 2.8 ms, FA = 55.0, FOV = 2.5*2.5 cm, navgs

= 4, matrix = 256*256, 1 mm slice thickness, acquisition time = 7.5 min). The

respiration and temperature of the animal are monitored during the course of the

experiment. Contiguous slices covering 25 mm of the upper abdominal region were

acquired. Images were visually reviewed and quantitative parameters calculated from

SRR images are compared to the HR image acquired from in-plane view as acquiring

3D HR image in in vivo settings is difficult.

3.2.3 Quantitative Measures

The image quality of the SRR image is evaluated by visual inspection. SNR, CNR,

mean edge width and contrast metric were commonly used for quantitative evaluation

of MR images. SNR and CNR were calculated using 20*20 pixel window within

homogenous regions as shown in Figure 3.1. The mean edge width was calculated from

8 edge profiles obtained across the boundary of ellipsoid as shown in the Figure 3.1.

The measurement of these parameters is discussed in detail in 2.2.2.1 and 2.2.3.1.
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Figure 3.1: Image of SLP showing line profiles along which edge width is measured
and CNR, SNR measurement windows

3.3 Method 2: Gradient Guided Sigmoid Based Interpola-
tion Model

3.3.1 Theory

Linear interpolation was used for upsampling the MRI images in the SRR algo-

rithm [39]. Linear interpolation has a strong degradation for boundaries between

tissues, which should have an abrupt difference in signal strength. However linear

interpolation smooths boundaries as gradual (linear) transitions. Interpolations rep-

resenting a high degree of upsampling cause considerable smoothing of edges. To
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mitigate this problem we used the gradient information available from the corre-

sponding orthogonal views of the same object to aid in controlling a sigmoid-based

interpolation at tissue boundaries to upsample each LR image.

The sigmoid interpolation model provides a level of smoothing along the bound-

aries while maintaining sharp intensity contrast across the boundaries [47]. The

sigmoid function used for interpolation is given below

S(zi) = 1 + exp
[
−sgn

{
f

′
(zi)
}
∗ a ∗ (x− η)

]
(3.1)

The smoothness of the transition between the structural boundaries can be con-

trolled by modifying the slope (a) of the sigmoid interpolation kernel, and η allows us

to choose the location of the inflection point. Using the gradients from the orthogonal

views can help to better localize the inflection point instead of just assigning it to

the center of the LR slice. As a part of this experiment we explore how model-based

interpolation affects the location and sharpness error in SRR images.

Figure 3.2 shows the error (difference image) obtained while comparing the HR

3D image of ex vivo embryo and SRR result from section 2.3.2 with AR 1:1:8 (using

linear interpolation) overlaid on top of the edge profile obtained from thresholding the

2D gradient magnitude (red mask) obtained from isotropic 3D HR image. It is clear

that the edges are more susceptible to distortions resulting in error to be high along

the structural boundaries [Figure 3.2]. Figure 3.3 shows that mislocalization of blood

vessels in the liver is apparent in orthogonal SRR image reconstructed (with linear

interpolation) from LR multi-slice image with AR 1:1:8 (section 2.3.2). The average

image (average of three linear interpolated LR image stacks) used as starting guess for

the orthogonal SRR algorithm also has similar mislocalization artifact [Figure 3.3],
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which implies the artifact is not introduced by the SRR algorithm, but is because of

the linear interpolation used for upsampling LR image stack with a high AR. The

mislocalization observed in the axial view of the average image is also observed in the

axial view of interpolated coronal image but absent in interpolated axial and sagittal

images. The reason for presence of mis localized blood vessel in the interpolated

coronal image stack is due to the partial volume mixing caused by through-plane

interpolation. The average of two linear interpolated axial and sagittal images does

not have mislocalization of blood vessels in this direction as it is high resolution

direction in both the images. The effects of linear interpolation in axial and sagittal

images along their through-plane direction are low in the high resolution direction

of both the images. Making use of this gradient to aid the interpolation of coronal

image in through-plane direction will help reducing the mislocalization artifact.

Figure 3.2: Gradient from the HR sagittal view (red mask) overlaid on the error
resulting from the orthogonal SRR algorithm. Brighter the intensity, higher the
error, it is evident that the homogeneous regions have lesser error when compared to
the areas with higher gradients (structural boundaries or edges)
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Figure 3.3: a) Isotropic 3D image of liver, b) HR volume reconstructed from LR image
stacks with AR 1:1:8 by orthogonal SRR, c) average image used as initial guess for
orthogonal SRR, d) average of two images orthogonal to image with partial volume
mixing, e) gradients from average upsampled image

3.3.2 Algorithm

The step-by-step implementation of the algorithm is shown in the flow chart [Fig-

ure 3.4]. In this figure, the algorithm is using sigmoid interpolation for the LR

interpolating slice-selection direction (z) of axial images (IA) by using information

from the sagittal images (IS) and coronal images (IC) which have high resolution in

the z-direction. To find the best sigmoid interpolation for the axial LR multi-slice

stack IA, the linearly interpolated versions of sagittal ÎS(X, Y, Z) and coronal im-

ages ÎC(X, Y, Z) are averaged, and the gradient of this average image is calculated
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using first order derivative masks along z-direction, which is axial slice selection di-

rection 3.2. Here the linear interpolation of the sagittal and coronal image sets has

modest effect on the z-direction, which is high resolution in both sagittal and coronal

views.

f
′
(zi) ≈

f (zi)− f (zi−1)

zi − zi−1
≈ f (zi)− f (zi−1) (3.2)

The inflection point is the position of the local maximum of magnitude of the

gradient in the sampling window which occurs at zimax. The position of inflection

point η (in eq 3.1) is set as zimax +0.5 as the gradients are shifted by a half pixel. The

parameter a (in eq 3.1) is determined from the gradient. The parameter a linearly is

mapped to the magnitude of the gradients by

a = amin + (amax − amin) ∗
∣∣∣∣∇I lmax

∇Imax

∣∣∣∣ (3.3)

Where as |∇Imax| is the maximum intensity gradient of the image, |∇I lmax| is

the local maximum of sampling window which occurs at zimax and ∇Imax

∇Ilmax
is the

normalized gradient. amin and amax delimit linear mapping between the |∇I| and a,

so that a will fall into a user defined range. amin and amax are empirical values which

are set as 0 and 20 for this experiment and more information on this can be found

in the study carried out by Mishra et.al. [47]. Well-defined values of amin and amax

allow adjustment of the sharpness across structural boundaries and smoothness along

structural boundaries to a desired user defined level [47]. If the gradients are equal

for all the points in sampling window or when local maximum occurs at more than

one point in sampling window, then linear interpolation is chosen.
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The method for choosing the parameters η and a are further explained by the

following numerical example. The 1D plot of the intensity along the interpolation

window (line highlighted in the Figure 3.5) is obtained from ex vivo biological phan-

tom experiment outlined in section 2.2.3. The sampling window along which the data

is interpolated is highlighted with line profile. The local maximum |∇I lmax| is found

to be 0.62 which occurs at zimax = 7 (inflection point, η = 7.5). The maximum in-

tensity gradient |∇Imax| of the image is 3.54, and by substituting these values along

with amin = 0 and amax = 20 in eq 3.3, we get a = 3.5. The parameters η and a are

substituted in sigmoid equation (eq 3.1) and plotted (Figure 3.5).

Similar interpolation procedure is repeated for interpolating sagittal and coronal

orientations. To interpolate sagittal image stack the gradient from average of coro-

nal and axial image stacks along the x-direction is used. The gradient from average

of sagittal and axial images along the y-direction is used to interpolate coronal im-

age stack in through-plane direction. The average of interpolated axial, sagittal and

coronal images is used as starting guess for IBP algorithm. The SRR images are re-

constructed using the IBP approach proposed by Irani and Peleg (detailed discussion

in 2.2.1).

3.3.3 Experiments

To test the effectiveness of the sigmoid interpolation in reducing the sharpness

and location errors in interpolated image, the experiments are done using simulated

phantoms (3D wedge phantom, concentric sphere and simulated SLP), a biological

phantom (ex vivo embryo) and an in vivo experiment. In all these experiments LR
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image stacks are simulated/acquired with anisotropy factor equal to or greater than

6.

3.3.3.1 3D wedge phantom

A 3D wedge phantom of size 300*300*300 is created (Figure 3.6). The advantage

of using simulated phantom is that, we have an original HR image which can be used

as ground truth for comparison and wedge shape is used as it has regular geometric

structure and the staircase effect caused by the interpolation is apparent along the

diagonal edge separating two gray levels. Three LR 2D multi-slice image stacks

were obtained from the high resolution data set by mean subsampling in one of

three orthogonal directions: axial (300*300*50), sagittal (50*300*300), and coronal

(300*50*300). All three LR image stocks have a AR of 1:1:6. Algorithm as shown in

the flowchart in Figure 3.4 is implemented in a simulated 3D wedge phantom.

3.3.3.2 Concentric sphere phantom

The structural boundaries present in the in vivo studies don't have planar bound-

ary structure like the wedge phantom, hence a sphere phantom is used to study

the effects of sigmoid interpolation on rounded boundaries with the orthogonal SRR

approach. The presence of small structures can complicate the problem, so for pre-

liminary experiment, a simulated 256*256*256 phantom consisting of two concentric

spheres is used to study the effect of the interpolation algorithm along the surface

of the sphere. Three sets of orthogonal anisotropic LR slices with the matrix size of

256*256*42, 256*42*256, 42*256*256 are simulated from isotropic phantom. From

these three LR images orthogonal SRR images of size 256*256*256 are reconstructed
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by linear, cubic, sigmoid interpolation followed by IBP algorithm. The 3D isotropic

image of size 256*256*256 is used as the ground truth for comparison.

3.3.3.3 Simulated SLP experiment

The SLP phantom experiment simulates another case in which the acquisition

model is accurately known. This SLP phantom has many small ellipsoids embed-

ded in an outer ellipsoid, so we can study about how the interpolation algorithm

affects both the surface of outer ellipsoid and the small structures within them.

Three set of orthogonal anisotropic LR slices with the matrix size of 300*300*50,

300*50*300, 50*300*300 are simulated from 300*300*300 isotropic SLP volume cre-

ated using MATLAB program [33]. From these three LR images orthogonal SRR

images of matrix size 300*300*300 are reconstructed by linear, cubic, sigmoid inter-

polation followed by IBP algorithm. The 3D isotropic image is used as the ground

truth for comparison.

3.3.3.4 Simulated biological phantom

The ex vivo embryo is used as biological phantom as it possesses anatomic struc-

tures similar to those observed in live animals but does not suffer from motion artifacts

observed for in vivo imaging. The various advantages of using biological phantom are

discussed in 2.2.3. LR image stacks with AR of 1:1:8 of an ex vivo E17.5 wild type

embryo in obtained using the protocol described in section 2.2.3. 3D isotropic images

of the same embryo were acquired using a T1-weighted 3D FLASH sequence (TR =

11.3 ms, TE = 4.0 ms, FA = 90.0, FOV = 2.2*2.2*1.2 cm, matrix = 512*512*256,

navg=1). Orthogonal SRR is used to reconstruct images using linear, cubic and

sigmoid interpolation.
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3.3.3.5 In vivo experiment

For in vivo experiment, the live mouse is prepared for imaging following the pro-

cedure outlined in 2.2.4 and the mouse is laid prone so that the flank tumor is not

disturbed. A T2-weighted RARE imaging sequence (TR = 4500 ms, TE = 36 ms,

FA = 180, FOV=2.5*2.5 cm, navgs = 4, rare factor = 8, matrix=256*256, 1 mm

slice thickness, acquisition time = 8 min) is used. The respiration and temperature

of the animal are monitored during the course of the experiment. Contiguous slices

covering 25 mm of the flank region are acquired. Images are visually reviewed and

quantitative parameters calculated from SRR images are compared to the HR image

acquired from in-plane view as acquiring 3D HR image for in vivo settings is difficult.

3.3.4 Quantitative Measures

Mean edge width is calculated for all experiments. SNR and CNR measurements

are calculated for the ex vivo and in vivo experiments. SNR and CNR are not

evaluated in 3D wedge phantom and concentric sphere as there are very few grey

levels in the histogram of these images and no noise is present. A HR 3D isotropic

image acquired using a direct acquisition or HR image acquired in-plane (in the case

of the in vivo experiment) is used as ground truth for comparison. More information

about the quantitative parameters can be found in 2.2.2.1 and 2.2.3.1.

The ability to correctly identify the location of inflection point (maximum gradi-

ent) in the image to be interpolated based on the gradient of the orthogonal view is

very important in implementing the sigmoid interpolation. Location of the inflection

point is plotted along line profiles chosen in the phantom experiments. A line profile

is plotted along the surface (in the sphere experiment) and along the small structures
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(in SLP experiment). The line profile of ground truth and all SRR images formed by

different interpolation (linear, cubic and sigmoid) are plotted together for the com-

parison. Location of inflection point is not analyzed for 3D wedge phantom, biological

phantom and in vivo experiments. Analyzing the location of inflection point will not

be useful in wedge phantom as there only two grey scale levels present in the phantom.

The ex vivo and in vivo experiments are acquired in the MRI scanner and therefore

they are susceptible to noise. If there is too much noise in the images, the line plot

over a small profile does not provide much useful information and noise affects the

accuracy of the detected inflection point.

3.4 Results for Method 1: Adding Additional Oblique Views

3.4.1 Simulated Shepp-Logan Phantom

3.4.1.1 Qualitative evaluation

Figure 3.7 shows the result for the addition of oblique views in 45◦ increments

to the standard orthogonal geometry with LR image stacks of AR 1:1:8. The visual

inspection of the image shows that all SRR images are able to resolve three ellipsoids

(highlighted by arrow), but three ellipsoids are not resolved in linear interpolation.

The addition of one or more oblique views reduces the streaking effect (highlighted

in the Figure 3.7c and Figure 3.7d). When two oblique views are added, the image

looks smoother than the 4-view ortho SRR. Similar results are observed when LR

image stacks with AR of 1:1:10 are used. The SRR images reconstructed by adding

oblique views in 30◦ increments to the orthogonal SRR acquisition geometry with AR

of 1:1:8 are shown in Figure 3.8. The streaking artifacts observed in 3-view ortho

SRR are reduced when oblique views are added. The images obtained from 6-view
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and 7-view ortho SRR are smoother than the images obtained from other ortho SRRs.

We observed similar results when LR image stacks with AR of 1:1:10 are used.

3.4.1.2 Quantitative evaluation

SNR, CNR, mean edge width, contrast metric (with respect to reference image)

for SLP experiment when oblique views are listed in Table 3.1 for various SRR ac-

quisition geometries with ARs of 1:1:8 and 1:1:10. As expected SNR increased when

number of LR image stacks used is increased. The CNR and mean edge width are

also improved when oblique views are added to the basic orthogonal geometry. The

percentage of increase in CNR is high when first oblique view is added, for additional

oblique views, the percentage goes down. The mean edge width and contrast metric

remains the same for both 4-view and 5-view ortho SRR. The quantitative parameters

followed similar pattern as observed in chapter 2 when AR is increased from 1:1:8 to

1:1:10. The quantitative parameters for SLP orthogonal SRR experiment with 30◦

incremental oblique views are listed in Table 3.2. The results show similar pattern as

the SRR images with additional 45◦ oblique views.

3.4.2 Simulated Biological Phantom

3.4.2.1 Qualitative evaluation

Figure 3.9 shows the coronal view of the ex vivo embryo for the various SRR

orthogonal geometries. SR reconstructed images based on three orthogonal views

and one additional oblique view resulted in improved visual quality and reduced

streaking artifacts in simulations based on LR data sets with voxel ARs of 1:1:8

and 1:1:10. Addition of a fifth oblique view did not improve the visual quality of

the SRR image for either voxel AR. Although streaking was still apparent in SRR
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images reconstructed from four LR views, the streaking was significantly less at high

contrast boundary regions such as lung-liver boundary (white arrow in Figure 3.9c),

whereas a typical staircase pattern due to linear interpolation is observed in the 3-

view orthogonal SRR (white arrow in Figure 3.9b). In addition, the stomach wall is

well defined in the four-view SRR image (yellow arrow in Figure 3.9c) and is almost

similar to the ground truth (yellow arrow in Figure 3.9d), whereas the stomach wall

from the three-view orthogonal SRR looks blurry (yellow arrow in Figure 3.9b).

3.4.2.2 Quantitative evaluation

The CNR, SNR and edge width for the simulated ex vivo experiment are listed in

Table 3.3. As expected SNR increased when additional LR image stacks are added.

The increase in SNR is higher for AR with 1:1:8 (SNR increased by 6%) when com-

pared with AR of 1:1:10 (SNR increased by 3%). Adding one LR view to 3-view ortho

SRR increased the CNR, but when one more view is added to 4-view ortho SRR, the

increase in CNR is not substantial. Adding one LR view to standard orthogonal ge-

ometry has decreased the mean edge width, but 5-view ortho SRR doesn't improve

the edge width substantially.

3.4.3 In vivo Experiment

3.4.3.1 Qualitative evaluation

Figure 3.10 shows the in vivo SR image reconstructed from 3 orthogonal views

and one oblique view. The SRR image is compared with the HR image acquired in-

plane. Visual review of Figure 3.10 shows that the spinal cord (highlighted by yellow

arrow) and intestinal tract (white arrow) are clearly defined in the 4-view SRR when

compared with 3-view SRR. There is no obvious improvement observed during the
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visual inspection in 5-view SRR when compared with 4-view SRR. The streaking

artifact apparent in 3-view ortho SRR is highlighted with red arrow, the appearance

of the streaking artifact is reduced in 4-view and 5-view ortho SRR. It should be noted

that streaking artifact is not completely eliminated or reduced uniformly across the

image and still some of the streaking can be observed in both 4-view and 5-view ortho

SRR images.

3.4.3.2 Quantitative evaluation

Quantitative parameters such as CNR, SNR and mean edge width are calculated

and are tabulated in Table 3.4. Adding one LR view to 3-view ortho SRR improved

the CNR and mean edge width by 8% and 2% respectively. Mean edge width remained

the same and CNR decreased by 4% when five LR image stacks are used. As expected

SNR is increased when number of views used for the reconstruction is increased. The

total acquisition time for 4-view ortho SRR is 30 minutes and adding one more view

to obtain 5-view ortho SRR increases the acquisition time by 25%.

3.5 Results for Method 2: Gradient Guided Sigmoid Based
Interpolation Model

3.5.1 3D Wedge Phantom

3.5.1.1 Qualitative evaluation

Figure 3.11 shows the 2D view of the wedge phantom reconstructed from nearest

neighbor, linear, cubic and sigmoid interpolation. The edge in the result [Figure 3.11e]

appears to be smoother than the other interpolation schemes. The difference between

the linear and sigmoid interpolation shows [Figure 3.11f] the typical staircase in the
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lower side and smooth edge in the upper side, which shows that the staircase pattern

in linear interpolation is replaced by smooth edge in the sigmoid.

3.5.1.2 Quantitative evaluation

The mean edge width is listed in Table 3.5. The mean edge width is increased

by 29%, 19% and 10% in linear, cubic and sigmoid interpolations respectively. The

lesser the mean width, better is the quality of the image.

3.5.2 Concentric Sphere

3.5.2.1 Qualitative evaluation

The orthogonal SRR images reconstructed from different interpolation techniques

are shown in Figure 3.12. Visual inspection of the results shows that the resultant

image from sigmoid interpolation is marginally better than the cubic interpolation.

Both cubical and sigmoid interpolations produce SRR images which are qualitatively

superior to the linear interpolation. The boundary of the sphere reconstructed by

SRR-linear shows a typical staircase pattern formed by linear interpolation; the stair-

case pattern is reduced in case of sigmoid and cubical interpolation. The line profile

which is plotted for the qualitative comparison is showed in Figure 3.12e.

3.5.2.2 Quantitative evaluation

20 line profiles are considered across the boundary of the sphere for the calculation

of edge width. The mean of 20 edge widths is reported in Table 3.6. The inflection

points in ground truth and the inflection point (maximum change of intensity) iden-

tified based on the gradient of orthogonal views in sigmoid SRR are highlighted in

the graph to verify whether they are correctly identified. The line plot shows that

the inflection point of the ground truth and the inflection point identified by the
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algorithm both coincides (at pixel location= 14.5) and as expected the transition of

the HR image is the steepest followed by sigmoid and cubic interpolated SRR images.

Edge width measurement from the Table 3.6 shows that the linear SRR has wider

edge width when compared to others which makes the edges less sharp.

3.5.3 Simulated SLP Experiment

3.5.3.1 Qualitative evaluation

Figure 3.13 shows all the reconstructed SRR images along with the HR image for

the SLP experiment. Visual inspection of the images shows that sigmoid interpolated

SRR has performed better in resolving the small ellipsoids from each other when

compared with linear and cubic interpolated SRR. The structure of the ellipsoids

resolved in the sigmoid interpolation image is almost comparable to that of HR image

(highlighted in the Figure 3.13) whereas they are not resolved clearly in linear and

cubic SRR. The line plot [Figure 3.13e] across the ellipsoid shows that the boundary

between the first and second ellipsoid is not resolved clearly in linear and cubic SRR

images whereas the line plot of the sigmoid SRR closely approximates the line plot

of HR image.

3.5.3.2 Quantitative evaluation

Figure 3.13e shows that the inflection points in the sigmoid SRR images occur

closely to those of HR image. The SNR, CNR, contrast metric (with respect to HR

image) and mean edge width for the SLP experiment are listed in Table 3.7. The

quantitative measurements of mean edge width suggest that edges are 19% wider in

both linear and cubic SRR and 15% wider in sigmoid SRR when compared with HR

edge profile. The SNR of the cubic and sigmoid interpolation schemes are higher than
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the linear interpolated version. The contrast metric is reduced by 19%, 17% and 14%

in linear, cubic and sigmoid SRR images respectively (with respect to HR image).

3.5.4 Biological Phantom

3.5.4.1 Qualitative evaluation

The orthogonal SRR images reconstructed from different interpolation techniques

along with 3D isotropic image is shown in the Figure 3.14. The visual inspection of

the images shows that the boundary of the pleural cavity which is filled with contrast

agent and fixative (highlighted with arrow) is clearly resolved in sigmoid interpolated

SRR image when compared with cubic and linear SRR images.

3.5.4.2 Quantitative evaluation

The SNR, CNR and mean edge width are listed in the Table 3.8. The SNR and

CNR of the sigmoid SRR are better than the other two interpolation schemes. The

mean edge width of the sigmoid SRR is marginally better than the cubic and linear

SRR images. But the mean edge width of the edge profile chosen in the sigmoid SRR

is much wider than (43% wider) the HR edge width.

3.5.5 In vivo Experiment

3.5.5.1 Qualitative evaluation

The orthogonal SRR images reconstructed from linear, sigmoid and cubic inter-

polation techniques along with the 3D HR image acquired in-plane is shown in the

Figure 3.15. These images are acquired in in vivo setting so it is susceptible to mo-

tion artifacts and noise. Visual inspection of the images shows that the structures

in cubic interpolated SRR are smoother than the linear SRR and certain structures
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(highlighted by white and yellow arrows) are better resolved in sigmoid interpolation.

The streaking is less apparent in cubic interpolated SRR.

3.5.5.2 Quantitative evaluation

The quantitative measures of SNR, CNR and mean edge width are given in the

Table 3.9. The SNR, CNR and mean edge width of the sigmoid SRR are better than

the other two interpolation schemes. But the mean edge width of the edge profile

chosen in the sigmoid SRR is 94% wider than the HR edge width.

3.6 Discussion

The above phantom and in vivo experiments show that adding one oblique view

improves the image quality on visual inspection, but adding more views doesn't pro-

vide substantial improvement. Adding more oblique views resulted in SRR images

which appear smoother than the SRR images obtained from basic orthogonal geome-

try. Streaking artifacts may not be as apparent in the SRR images with oblique views

because the interpolation is occurring at oblique angles to the view plane. Adding

oblique views which are rotated along the phase encoding direction to the orthogonal

SRR is like combining orthogonal SRR architecture with rotational SRR architecture.

We have already observed in chapter 2 that in rotational SRR architecture the re-

constructed images have smoother edges owing to the interpolation along the circular

grid.

Adding more LR image stacks to standard orthogonal SRR architecture would

result in improved quantitative parameters. It was observed from the in vivo results

that the streaking artifacts are not uniformly reduced across the image, and this might

be because of anisotropic sampling in oblique direction. Since only one/two oblique
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angle is used, the whole grid is not covered uniformly by these oblique stacks. This

might be the reason for reduction of streaking artifacts in certain areas when compared

to other. As we have already discussed in chapter 2, in MRI studies along with views

required for the study, additional views are always acquired to aid the acquisition of

required geometry. It might be useful to add those views to the standard orthogonal

SRR to improve the image quality. LR image stacks acquired along any angle can

be added to standard orthogonal SRR architecture to improve the quality of the

reconstructed image.

There is always a trade-off between the number of LR images used in SRR al-

gorithm, image quality and the total acquisition time. Increase in LR images will

enhance the quantitative parameters, even when there is no noticeable improvement

in image quality detected upon visual inspection. The improvement in CNR and edge

width is not substantial between 4-view and 5-view SRR. In these cases the addition

of one oblique view suffices. The total acquisition time is an important parameter

to consider for in vivo imaging. The phantom and in vivo experiments (AR =1:1:8,

1:1:10) indicate that the quality of an SRR image based on orthogonal acquisition

may be improved by the addition of a fourth view acquired obliquely to the through-

plane direction of the coronal or sagittal view and the addition of fifth oblique doesn't

provide noticeable visual enhancement in image quality. Thus in this case, observed

increase in image quality would be worth the minimal increase in acquisition time

required for the one additional view.

When comparing between SRR with one oblique view of 45◦ and 30◦, visual in-

spection shows that the results are similar, but the quantitative parameters show

that the 4-view ortho SRR with 45◦ yields marginally better results. This might
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be because that LR image stacks acquired along 45◦ is positioned midway between

two orthogonal acquisitions. It still needs to explored, whether adding LR view at

certain angle is better than another or adding LR views oblique to one particular

axis is better than the other and the optimum number of LR images to be added

to the orthogonal SRR to get the required image quality with optimum increase in

acquisition time.

If the resolution of LR is very poor compared to HR image (for example 10 times

less), then linear interpolation is a not a precise way to interpolate the image, as the

relationship between the pixels are not always linear over a large interpolation window.

Linear interpolation is used for upsampling in MRI images as the relationship between

pixels over the upsampling window is usually not known. In case of orthogonal

SRR algorithm three orthogonal views of each object are already acquired and it is

advantageous to use the available information from one or two views to interpolate the

orthogonal view. This gradient information can be incorporated in an interpolation

model for LR images.

To summarize, the sigmoid based interpolation method using the gradient of the

orthogonal view is applied in orthogonal SRR and the quantitative and qualitative

evaluations are done in various phantoms and in vivo studies. As seen from the

phantom experiments, in the absence of noise and multiple inflection points, the basic

sigmoid model based interpolation described in this work has improved the location

and sharpness of the edges in the reconstruction of surfaces and small objects. The

quantitative and qualitative evaluation of the in vivo experiment shows that sigmoid

SRR performs better than other two interpolation schemes. But the mean edge

width of the edge profile chosen is 94% wider than the HR edge width. This might
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be because of the fact that the above mentioned sigmoid SRR deals with only one

inflection point identification and assignment in a single interpolation window.

Images which have very minute anatomical structures (of the order of 40 µm)

can have multiple structures crossing in the same interpolation window which might

lead to two or more inflection points owing to the presence of multiple local maxi-

mum in the gradient values. In this case assigning the location of global maximum

within the interpolation window as a single inflection point will not yield good results.

The accurate detection of inflection point is crucial for this algorithm which in turn

dictates the location of the edges in the interpolated image both in reconstructing

surfaces and small objects. Noisy images can affect the gradient measurement which

can in turn affect the accuracy of the detection of inflection points. In this algorithm,

the gradient from the average of two orthogonal images is used. Using the gradient

from the average image essentially reduces some of the rapid changes in the intensity,

which might correspond to the edges/ structures located in slightly different location

in orthogonal data sets because of the partial volume averaging. Some edge profiles

might be stronger in one orientation than the other because of partial volume mixing

in different orientations. In using the average image we may lose the significant gra-

dients or end up with a reduced gradient intensity corresponding to these structures.

The adverse effects of the averaging is more prominent in the biological phantom and

in vivo experiments as the images have more anatomical structures as opposed the

simulated phantom with well-defined geometrical structures.
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AR Inta 3-view ortho 4- view ortho 5-view ortho 3Db

SNR

1:1:8 27.4 32.9 34.2 35.7 45.1

1:1:10 24.1 30.5 32.6 34.4 45.1

CNR

1:1:8 6.1 9.3 9.9 10.1 12.4

1:1:10 5.8 8.9 9.4 9.3 12.4

Mean edge width (in HR pixels)

1:1:8 1.6 0.7 0.5 0.5 0.4

1:1:10 1.9 0.8 0.6 0.6 0.4

Contrast metric (with respect to 3D HR image)

1:1:8 -26% -16% -13% -13% 100%

1:1:10 -31% -18% -16% -16% 100%

a – linear interpolated from LR image stack

b – simulated 3D SLP

Table 3.1: Quantitative parameters for the SLP with added oblique views at 45◦

increment
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Figure 3.4: Flowchart for gradient based sigmoid interpolation in orthogonal SRR
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Figure 3.5: 1D line profile is highlighted in HR image (left), the plot of pixel intensities
for HR image, linear interpolated image and gradient guided interpolation image along
the line profile (right)

Figure 3.6: Three dimensional wedge phantom
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Figure 3.7: SRR orthogonal images with oblique views added at 45◦ increments; AR
of LR image stack is 1:1:8 a) 3D, b) interpolated, c) 3-view ortho SRR, d) 4-view ortho
SRR, e) 5-view ortho SRR. Arrow highlights the three ellipsoids which are resolved
in ortho SRR but not in linear interpolated image stack
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Figure 3.8: SRR orthogonal images with oblique views added at 30◦ increments; AR
of LR image stack is 1:1:8 a) 3D, b) interpolated, c) 3-view ortho SRR, d) 4-view
ortho SRR, e) 5-view ortho SRR, f) 6-view ortho SRR, g) 7-view ortho SRR
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Figure 3.9: a) Isotropic 3D image and the area enlarged for the comparison is high-
lighted, b) HR volume simulated from LR image stacks with AR 1:1:10 by 3-view
orthogonal SRR (enlarged ROI to show the area of interest), c) HR volume simu-
lated from LR image stacks with AR 1:1:10 by 4-view orthogonal SRR, d) ground
truth (isotropic 3D image). Lung-liver boundary is highlighted with white arrow and
stomach wall is highlighted with yellow arrow.
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Figure 3.10: a) Interpolated image, b) HR volume reconstructed using 3-view orthog-
onal SRR, c) HR volume reconstructed using 4-view orthogonal SRR, d) HR volume
reconstructed using 5-view orthogonal SRR, e) HR volume acquired in-plane. The
spinal cord and the intestinal tract are highlighted by yellow arrow and white arrow
respectively. Red arrow highlights the streaking artifact
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Figure 3.11: a) HR image from which LR images are simulated, LR images inter-
polated in through-plane direction using: b) nearest neighbor, c) linear, d) cubic, e)
gradient based sigmoid interpolation, f) difference between the linear and gradient
based sigmoid interpolation
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Figure 3.12: a) HR image from which LR images are simulated, orthogonal SRR
images reconstructed direction using: b) linear, c) cubic, d) gradient based sigmoid
interpolation, e) line profile for plotting and edge width calculation, f) line plot across
the boundary of the sphere and the inflection point in the HR image and sigmoid SRR
is denoted by dotted line and asterisk respectively
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Figure 3.13: a) HR image from which LR images are simulated and the line profile
(highlighted by blue line) to study the effect of SRR in small structures, and the line
profiles (highlighted by yellow line) used for edge width calculations, orthogonal SRR
images reconstructed using: b) linear, c) cubic, d) gradient based sigmoid interpola-
tion, e) line profile across the boundary of the small ellipsoids, showing the location
of the structures in sigmoid SRR is comparable with HR image. Red arrow highlights
the three small ellipsoids
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Figure 3.14: Enlarged thoracic area of ex vivo embryo showing developing heart, lungs
and liver in: a) 3D isotropic image, b) linear SRR, c) cubic SRR, d) sigmoidal SRR
(pleural cavity which is filled with contrast and fixative is highlighted with arrow)
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Figure 3.15: Flank area of in vivo mouse showing tumor in: a) interpolated, b) linear
SRR, c) cubic SRR, d) sigmoidal SRR, e) HR in-plane (white and yellow arrows
highlight the fat filled cavity in tumor and tail muscle). AR of LR image stacks used
is 1:1:10
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AR Inta
3-view
ortho

4-view
ortho

5-view
ortho

6-view
ortho

7-view
ortho

3Db

SNR

1:1:8 27.4 32.9 34.6 35.6 37.1 39.7 45.1

1:1:10 24.1 30.5 31.8 33.9 36.3 39.8 45.1

CNR

1:1:8 6.1 9.3 9.7 9.9 10.1 10.0 12.4

1:1:10 5.8 8.9 9.2 9.3 9.5 9.5 12.4

Mean edge width (in HR pixels)

1:1:8 1.6 0.7 0.6 0.6 0.6 0.5 0.4

1:1:10 1.9 0.8 0.6 0.5 0.5 0.5 0.4

Contrast metric (with respect to 3D HR image)

1:1:8 -26% -16% -16% -14% -13% -13% 100%

1:1:10 -31% -18% -17% -17% -15% -14% 100%

a – linear interpolated from LR image stack

b – simulated 3D SLP

Table 3.2: Quantitative parameters for the SLP with added oblique views at 30◦

increment
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AR Inta 3-view ortho 4-view ortho 5-view ortho 3Db

SNR

1:1:8 24.7 36.5 38.7 39.9 26.8

1:1:10 28.1 42.2 42.9 44.1 26.8

CNR

1:1:8 6.4 8.2 8.8 8.7 5.6

1:1:10 6.9 8.1 8.9 8.9 5.6

Mean edge width (in HR pixels)

1:1:8 6.5 4.7 4.1 4.1 2.4

1:1:10 6.8 4.9 4.6 4.5 2.4

a – linear interpolated from LR image stack

b – isotropically acquired 3D image

Table 3.3: Quantitative parameters for biological phantom when oblique LR views
are added
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Parameter Inta
3-view
ortho

4-view
ortho

5-view
ortho

In-plane
HR

SNR 16.2 24.6 27.2 29.5 18.4

CNR 1.9 2.6 2.8 2.7 3.5

Mean edge
width (in

HR pixels)
8.2 6.5 6.4 6.4 2.4

Acquisition
time (in
mins)

7.5 22.5 30.0 37.5 7.5

a – linear interpolation from LR image stack

Table 3.4: Quantitative parameters for in vivo experiment when oblique LR views
are added

Parameter Linear SRR Cubic SRR
Sigmoid

SRR
HR image

Mean edge
width (in

HR pixels)
2.7 2.5 2.3 2.1

Table 3.5: Mean edge width of wedge phantom for gradient guided sigmoid based
interpolation
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Parameter Linear SRR Cubic SRR
Sigmoid

SRR
HR image

Mean edge
width (in

HR pixels)
3.1 2.8 2.7 2.5

Table 3.6: Mean edge width of concentric sphere phantom for gradient guided sigmoid
interpolation

Parameter Linear SRR Cubic SRR
Sigmoid

SRR
HR image

SNR 32.3 34.4 35.7 45.1

CNR 7.4 7.9 8.4 12.4

Contrast
metric (with

respect to
HR image)

-19% -17% -14% 100%

Mean edge
width (in

HR pixels)
3.2 3.2 3.1 2.7

Table 3.7: Quantitative parameters for gradient guided sigmoid interpolation in SLP

Parameter Linear SRR Cubic SRR
Sigmoid

SRR
HR image

SNR 26.1 28.3 29.8 36.5

CNR 6.0 6.1 6.5 7.2

Mean edge
width (in

HR pixels)
3.5 3.5 3.3 2.3

Table 3.8: Quantitative parameters for gradient guided sigmoid interpolation in bio-
logical phantom
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Parameter Linear SRR Cubic SRR
Sigmoid

SRR
HR image

SNR 32.4 32.9 35.1 28.2

CNR 4.6 4.6 4.9 5.8

Mean edge
width (in

HR pixels)
6.6 6.7 6.2 3.3

Table 3.9: Quantitative parameters for gradient guided sigmoid interpolation in in
vivo experiment
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Chapter 4: Motion Correction Using Orthogonal Images

4.1 Introdution

Modulation of k -space data caused by cardiac, respiratory, peristaltic motion,

subject movement, or flow produces severe ghosting artifacts in MRI. The ghosting

artifacts caused by these various types of motion poses a big challenge in small animal

imaging. The breath-hold technique which is primarily used to decrease respiratory

artifacts in human clinical studies [64] cannot be applied to small animal studies. Even

though the animal is under anesthesia, motion cannot be eliminated completely [2].

Especially when the scans have long acquisition times, the images are more susceptible

to ghosting artifacts due to motion.

The modulation in k -space data which causes the motion artifacts in MRI occurs

only in one direction (i.e., the phase encode direction). By acquiring multiple datasets

with different phase encode directions image information is correlated between the

data sets but the modulation caused by motion is uncorrelated. Previous works have

exploited this property to reduce ghosting artifacts [35], [70]. The advantages of

these methods are that no a priori knowledge about the type of motion is required for

their implementation. They are post processing techniques and no changes in pulse

sequence or hardware are needed for their implementation. These methods require
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increased acquisition time, but have shown to improve the SNR and the quality of

the image.

The above studies have shown that combining two MRI images acquired over the

same FOV with their readout and phase encode directions interchanged can reduce

motion artifacts and improve the SNR of the resultant image [35]. However, these

studies used the same slice-select directions. The concept of using two MRI images

acquired over the same region of interest using different slice-select directions (i.e.,

orthogonal views) has not been explored. In most small animal imaging studies both

long axis (coronal or sagittal) and short axis (axial) images of the region of interest

are obtained. In 2D MRI pulse sequences, the slice select gradients are followed by

spatial encoding.

Figure 4.1 shows the encodings in different direction for both axial and coronal

acquisitions. The axial view has phase encoding, readout, and slice selection along the

y- x- and z-axis, respectively. The coronal view has phase, readout and slice encoding

along x-, z- and y-axis respectively. For these two views the phase encoding direction

is not the same, but the phase and readout encode directions are not reversed as

in [35], instead, there is a three-way permutation of the MRI coding directions for this

set. Phase encoding direction in the axial acquisition becomes slice-select direction in

the coronal acquisition; slice-select direction in the axial acquisition becomes readout

encoding in the coronal acquisition; and readout direction in the axial acquisition

becomes phase encoding direction in the coronal acquisition. Note that these two

sets of images would have motion artifacts in different (phase encoding) directions,

and have different in-plane FOVs and slice-select directions.
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Figure 4.2 shows coronal and axial images of the thoracic cavity of a mouse ob-

tained for a rib tumor study. In this study the same region of interest is covered in

two different acquisition geometries. The coronal and axial views are acquired or-

thogonal to each other. Typically more than one view is obtained in the small animal

imaging studies and sometimes it includes orthogonal views that meet the condition

for studying the geometry shown in Figure 4.1. It can be useful to study whether

combining these orthogonal images will help in reducing the motion artifacts. There-

fore, the goal of this study is to explore whether combining two orthogonal views

obtained with different slice-select directions could improve the quality of the image

by reducing artifacts due to motion.

To achieve this goal we investigate the effects of combining two orthogonal images

in the motion simulated Shepp-Logan phantom (SLP) and ex vivo biological phantom

and study the effects of the algorithm in the presence of various types of motion.

For this study qualitative and quantitative assessments were performed to study the

effects of motion artifact. The algorithm is implemented in two in vivo studies and

the resultant effect in image quality is studied.

4.2 Materials and Methods

4.2.1 Algorithm

The flowchart for the implementation of the algorithm is shown in the Figure 4.3.

Consider axial image stack Ia(X, Y, z) and coronal image stack Ic(x, Y, Z) acquired

orthogonally to each other. To correct for motion in the axial view, the coronal

view is upsampled along the x-axis and the axial view is upsampled along the z-axis.

Linear interpolation is used for upsampling the image stacks. It was chosen because
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it is conventionally used for projecting the data on to uniform grid and has been

used widely for interpolating MR images [37]. Îa(X, Y, Z) and Îc(X, Y, Z) represents

the upsampled axial and coronal image stacks respectively. The complex conjugate

product is obtained using the two upsampled views. The square root of the magnitude

of the complex conjugate can then be downsampled in either direction to obtain a

motion corrected image as shown in equation 4.1, 4.2 and 4.3.

{P (i, Y, Z)}Xi=1 =
{
Îc(Y, Z).Îa

∗
(Y, Z)

}X

i=1
(4.1)

ICORR(X, Y, Z) =
√
|P (X, Y, Z)| (4.2)

Icorr(x, Y, Z) = downsample {ICORR(X, Y, Z)}alongXdirection (4.3)

The effective resolution achieved in the corrected image is lower than the original

image. This resolution compromise is due to the combination of the in-plane view

from an image stack with the through-plane view of the orthogonal image stack.

4.2.2 Motion Experiments

The proposed technique was evaluated by simulating motion artifact in both a

Shepp-Logan phantom and in a set of ex vivo embryo images. Finally the technique

was applied in two in vivo experiments (with and without cardiac and respiratory gat-

ing) in mice. Both qualitative and quantitative assessments were to done to evaluate

the algorithm.
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4.2.2.1 Simulated motion in Shepp-Logan phantom

Images of a 3D standard Shepp-Logan phantom (256*256*256) were created using

MATLAB program [33]. Following the procedure outlined in 3.2.2.1, this standard

Shepp-Logan phantom image is downsampled in the corresponding slice-select di-

rections to simulate the axial and coronal views with AR 1:1:5. Typically in vivo

images in small animal MRI applications have an aspect ratio between 1:5 and 1:10.

Choosing a lower aspect ratio enables the algorithm to be tested with less impact from

interpolation related reconstruction errors. Different types of motion are simulated in

the Shepp-Logan phantom images and the effects of the motion correction algorithm

are explored. Finally the performance of algorithm is tested in the presence of added

Gaussian noise and the effects of the aspect ratio (AR) on the motion correction are

also explored.

• Random motion: Random motion is simulated in the coronal image stack using

the procedure outlined in [43] and [21]. Any particular line/part of the k -space

data, when shifted along the phase-encode direction, results in ghosting artifacts

in the image. This test was designed to assess the performance of algorithm

in imaging situations when an artifact occurs due to sudden subject motion or

peristaltic motion. The k -space data is simulated. The farther from the center

the shifting occurs in the k -space, the lesser pronounced the ghosting effect

occurs in the image space. Since the contrast is determined by center of the

k -space, shifting occurring farther from the center doesn't affect the contrast.
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• Periodic motion: Motion was simulated in the phase encode direction in both

orthogonal images using the method outlined in [43]. Periodic motion is sim-

ulated by shifting multiple lines of k -space in regular intervals which results

in ghosting artifacts in the simulated image. A higher degree of motion was

simulated in the coronal image stack than the axial image stacks to mimic in

vivo conditions. Usually the effects of motion corruption are more visible in

the coronal or sagittal views than the axial in the imaging. This is because

the motion is propagated along the axis of body and the FOV of coronal views

spans more area.

• Bulk Motion: This experiment is designed to evaluate the performance of the

algorithm when motion causes bulk misalignment in one of the images. Any

bulk movement of the subject being imaged is manifested as in plane rotation

with a translation component. The bulk motion is simulated in the images by

following the procedure outlined by Bones et al [4]. An arbitrary sequence of

small rotation of angle θ (here, θ = 4◦, 8◦) is applied in sampling of k -space

data which results in ghosting artifacts in the image space.

• Gaussian noise: Gaussian noise was added to the real and imaginary components

of an image in k -space and then reconstructed as described in [69]. Gaussian

noise with σ = 0.001 and σ = 0.005 is introduced to test the effectiveness of the

algorithm.

• Effect of AR: Since there is a resolution compromise, it is necessary to test the

behavior of the algorithm with different ARs. This experiment compares the

performance of motion correction algorithm with voxel ARs of 1:1:5 and 1:1:10.
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4.2.2.2 Simulated motion in biological phantom

Using a biological phantom to simulate motion and study the performance of

algorithm in the environment very similar to in vivo is very helpful in analyzing its

effectiveness and performance. The advantage of using biological phantom is discussed

in 2.2.3. An ex vivo E17.5 wild type (WT) embryo was used as a biological phantom

and the imaging protocol is discussed in detail in 2.2.3. There are many models

used in the literature to simulate motion similar to the one observed in in vivo cases.

Artificial motion as observed in in vivo case is simulated along the phase encode

direction in both the images using one of these models as described in [21]. The bulk

misalignment is simulated in these images by rotating the coronal image by 3◦.

4.2.3 Real Motion in In vivo Experiment

MR imaging of a live mouse was performed using a Bruker Biospin AvanceTM

400 MHz 9.4T magnet (Bruker Biospin, Karlsruhe, Germany). All animal protocols

were approved by the Institutional Laboratory Care and Use Committee of The Ohio

State University. The mouse was prepared for imaging as described in 2.2.4 and

placed prone on a temperature controlled mouse bed and inserted into the 35 mm

diameter quadrature volume coil.

4.2.3.1 In vivo gated experiment

For quantification of fat volume, coronal and axial image stacks of the abdominal

region were acquired using RARE T1 weighted sequence (TR = 1200 ms, TE = 7.5

ms, FA = 180.0, FOV = 3*3 cm, matrix = 256*256, slice thickness = 0.75 mm,

acquisition time = 12 min). The scans are respiratory triggered using Small Animal

Monitoring System.
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4.2.3.2 In vivo non-gated experiment

Coronal and axial MR images of the live mouse were acquired using a T1-weighted

FLASH imaging sequence (TR = 200 ms, TE = 2.72 ms, FA = 55.0, FOV = 2.5*2.5

cm, navgs = 8, matrix = 256*256, 1 mm slice thickness, acquisition time = 7 min).

Contiguous slices covering 25 mm of the thoracic and upper abdominal region were

acquired. The images were acquired without gated triggering.

4.2.4 Quantitative Measures

SNR and CNR were calculated using 20*20 pixel window within homogenous

regions shown in Figure 3.1. The mean edge width was calculated from 8 edge profiles

(shown in Figure 3.1) obtained across the boundary of ellipsoid. SNR, CNR and mean

edge width were discussed in detail in 2.2.3.1 and 2.2.2.1.

4.2.5 Motion Artifact Metric

4.2.5.1 Contrast metric

Contrast is defined as difference between the mean maximum (Smax from 20*20*20

window in outside ellipsoid) and mean minimum (Smin from 20*20*20 window in small

inner ellipsoid) signal intensities. The window used for the signal intensity calculation

is shown in Figure 3.1. More on the contrast metric can be found in section 2.2.2.1

4.2.5.2 Mean square error (MSE) and root mean square deviation (RMS)

MSE is used for quantifying the difference between reference and test images. In

the case of SLP, the simulated phantom image without motion is used as reference

image. The MSE for two images is given by the equation
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MSE =
1

XY

∑X

i=1

∑Y

i=1
{R(i, j)− T (i, j)}2 (4.4)

Where R(i, j) denotes the reference image and T (i, j) is test image, and X ∗ Y is

the dimension of the image.

RMS is defined as square root of MSE, given by this following equation

RMS =

√
1

XY

∑X

i=1

∑Y

i=1
{R(i, j)− T (i, j)}2 =

√
MSE (4.5)

The major disadvantage of MSE and RMS is that they are not invariant to the

translation and rotation of the images. If there is significant distortion because of

the motion, as in the in vivo case, it has to be combined with image registration

step to get a meaningful value. It has been observed that misregistration or errors

in registration step can result in significant difference in MSE values [43]. Because of

this we have used this metric only for SLP phantom experiment. Irrespective of the

disadvantages, because of the wide usage of MSE and RMS, they are included in this

study for phantom experiment.

4.2.6 Tests Using Automated Image Segmentation Algorithms

The ability to automatically extract exact contours of organs, tumors, or region

of interest is of vital importance in the field of medical image analysis. The presence

of moderate to severe motion artifact in the ROI can make even the manual tracing

of a structure difficult [46]. Accurate tracing of a structure influences quantitative

measurements like area and volume. The sharpness and the gradient intensity of

the edges are some of the features which influence the optimal segmentation. The

motion corruption artifacts often result in ghosting images with varying amplitude
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being superimposed on the structures within the ROI and hence reduction in the edge

sharpness. Ghosting artifact affects the accuracy of the edge detection and therefore

significantly hampers the performance of automated segmentation algorithms. The

reduction of ghosting artifacts in an image should result in an improved performance

with automated segmentation methods.

Comparing the performance of the segmentation algorithms in the images before

and after the application of motion correction helps in assessing the clinical applica-

bility of the algorithm. We compare the organs traced by segmentation algorithms in

both the motion-corrupted and motion-corrected images against segmentation traced

by an expert observer used as a golden standard [3], [9], [66], [68]. There are various

methods to compare outlines obtained from segmentation algorithms [6], [71]. We

have designed three experiments to compare the performance of automatic segmenta-

tion algorithm on motion-corrected images. The segmentation algorithm was chosen

based on the applicability for the specific application.

Organ or body volume was calculated from the automated segmentation and

manually-traced outlines. The following statistical metrics were calculated to evalu-

ate the performance of the automated segmentation algorithms used for calculating

volume when applied to the motion-corrected images as compared to that of the gold

standard method. The following statistical metrics were used for the comparison.

4.2.6.1 Otsu's segmentation of brain in biological phantom

For the first test, we used multi-level Otsu's segmentation algorithm to segment

brain in ex vivo wild type embryo [50], [25]. The segmentation algorithm is applied

to the images with simulated motion and it is compared with the motion corrected

images and ground truth (no motion). Matlab was used for the Otsu segmentation
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and brain volume was calculated from the segmented images. The statistical metrics

described below in 4.2.7 were used to evaluate the segmentation algorithm. A compar-

ison of segmented regions was also done by subtracting the motion simulated image

from the original image and performing a pixel-by-pixel comparison of the boundary.

Three different threshold levels are used for this implementation of multi-level Otsu

algorithm.

4.2.6.2 Active contour body segmentation in in vivo mouse model

For the second test we used geodesic active contours to segment the outer body

contours from in vivo images of a mouse model of obesity [32], [27]. Active contours

segmentation from MIPAV [45] was used for segmenting the body in coronal images of

a live mouse and body volume was calculated from the segmentation. The parameters

used in this implementation of geodesic active contour models are step size = 0.05-0.75

with δ = 0.005, and cut off error threshold θ = 5 ∗ 10−4. Expert observer's tracings

of the outer body in the in vivo images were compared with the segmented results

from active contours before and after application of motion correction algorithm.

4.2.6.3 Active contour kidney segmentation in in vivo mouse model

For the third application we used the propagation active contour model to segment

kidney from the coronal in vivo images of abdomen [32]. The propagation of contours

in active contour is represented as a form of optimization problem [58]. This is a

semi-automatic method in which the initial contour selected manually is propagated

to all images in the stack using parametrical representation of contours and image

properties [49]. The parameters used to implement this algorithm are as follows, step

size = 0.2-0.5 with δ = 0.01, the gradient increase λ = 0.05 with the cut off error
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threshold, θ = 2 ∗ 10−3. The parameter which is measured in this application is the

volume of kidneys. Estimation of the kidney volume is important in the study of

chronic kidney diseases [76]. The expert observers'tracing of kidneys from before and

after the application of the motion correction algorithm are compared with the results

obtained from the segmentation using active contours in both the cases. Type I, type

II error, RE, BCE, and FVE of kidneys are tabulated for comparison.

4.2.7 Statistical Metrics Used for Evaluation of Tests Using
Automated Image Segmentation Algorithms

4.2.7.1 Type I and Type II error

Type I error denotes the number of pixels incorrectly classified as objects when

in fact they are not. This can be referred to as false positive or over-segmentation.

Type II error denotes the number of pixels incorrectly not classified as object when

in fact they belong in the category. Both these errors are represented as percentages

of ground truth segmentation.

4.2.7.2 Positive and negative predictive values

Positive predictive values (PPV) are the proportion of the true positives among the

positive results obtained from the diagnostic tests. False discovery rate (FDR) is the

ratio of false positives among all the positive calls. FDR is complementary to PPV.

Negative predictive values (NPV) are the proportion of the true negatives among the

negative results obtained from the diagnostic tests. False omission rate (FOR) is the

ratio of false negatives among all the negative results. FOR is complementary of NPV.

Both FDR and FOR are closely related with type I and type II errors respectively.
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PPV =
Number of true positives

Number of positive calls
(4.6)

FDR =
Number of false positives

Number of positive calls
= 1− PPV (4.7)

Where No. of positive calls = No. of true positives+No. of false positives

NPV =
Number of true negatives

Number of negative calls
(4.8)

FOR =
Number of false negatives

Number of negative calls
= 1−NPV (4.9)

Where No. of negative calls = No. of true negatives+No. of false negatives

4.2.7.3 Rand index and rand error

Rand index (RI) is based on nonparametric test in statistics literature which

measures the similarity between two data clustering methods [55]. The segmentation

algorithms can be considered as clustering of pixels. Each segmented area is a cluster

of pixels which shares the same label. Rand index is used as a metric to measure the

performance of a segmentation algorithm [65]. The Rand index can be computed by

using the formula

RI =
(a+ b) n

2

 (4.10)

Where, given two segments S1 and S2 obtained from the image I by observer's

manual tracing and by using auto/semi-auto segmentation algorithm, then a denotes

the pair of pixels in I which are classified as same object (in other words, belongs
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to same clusters sharing same labels) in both S1 and S2. b denotes the pair of

pixels in I which are classified as different object (in other words, belongs to different

clusters with different labels) in both S1 and S2. (a + b) denotes the number of

agreements between S1 and S2.

 n

2

 gives the summation of number of agreements

and disagreements between S1 and S2. n refers to number of pixels enclosed in the

area of interest chosen to exclude background noise in image I. This area of interest

is specific to each application. Rand error (RE) gives the measure of disagreement

between the methods, it can be calculated using the formula,

RE = 1−RI (4.11)

4.2.7.4 Fractional volume error

Fractional volume error (FVE) measures the difference in the volume calculated

using the manual segmentation and automated segmentation.

FV E =
abs (VM − VA)

VM
(4.12)

VM indicates the volume of the ROI obtained from the manual segmentation. VA

indicates the volume of the ROI obtained from using the automatic segmentation

algorithm.

4.3 Results

4.3.1 Simulated Motion in Shepp-Logan Phantom

4.3.1.1 Qualitative evaluation

• Random motion: Figure 4.4 shows the result for the motion correction when

simulated random motion is introduced to a noiseless Shepp-Logan phantom
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image. The ghosting artifact caused by the simulated motion is highlighted in

the Figure 4.4a. It is evident that the motion is reduced in the coronal view with

the help of the axial view which is not corrupted. The cross-correlated image

does a better job at reducing the motion than the simple averaging operation.

• Periodic motion: Figure 4.5b shows the simulated motion in the phase encode

direction which is similar to in vivo environment in the axial image stack. There

is a visible improvement in the motion corrected image after the algorithm is

applied as shown in Figure 4.5c. The point to be noted is that in the axial

image before the algorithm is applied the ghosting artifacts are spread across

only one axis, but the resultant image stack has ghosting artifact along both

the axes which is visibly of lower magnitude than the one in the original image.

• Bulk motion: Figure 4.6 shows the performance of the algorithm in the presence

of bulk misalignment used to simulate the case of sudden change in subject

position. It is shown that when bulk motion is caused by rotation of 4◦, the

correction algorithm still removes a substantial amount of artifacts and potential

misalignment in the resultant image is not evident, but when the rotation is

increased to 8◦, the misalignment between the structures when combining both

the images is evident.

• Gaussian noise: Figure 4.7 shows the performance of the algorithm in the in the

presence of Gaussian noise. The coronal and axial image stacks corrupted with

Gaussian noise with σ = 0.001 and σ = 0.005 are shown in Figure 4.7a, 4.7b

and Figure 4.7d, 4.7e, respectively. The correction algorithm works even in the
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presence of noise, but as Figure 4.7c and Figure 4.7f show the performance of

the algorithm deteriorates when the noise increases.

• Effect of AR: The result of the correction algorithm in the image stacks with

different ARs (1:1:5 and 1:1:10) are shown in Figure 4.8. Visual inspection of

the Figure 4.8 shows that the motion correction is more effective in case of

voxel AR = 1:1:5 (Figure 4.8c). When the voxel AR is increased, we notice

more ghosting artifacts (Figure 4.8f).

4.3.1.2 Quantitative evaluation

• Random motion: RMS, MSE, mean edge width, contrast metric (with respect to

reference image), SNR and CNR for SLP random motion experiment are listed

in Table 4.1 for both motion corrupted image stack and complex conjugate

motion corrected image stack . The SLP image before the motion simulation is

used as the reference image for the contrast metric comparison. SNR and CNR

increased with the application of algorithm. The contrast metric and mean edge

width is improved by 12% and 40%, respectively, after the motion correction

algorithm is applied. As expected MSE and RMS are decreased in the motion

corrected image stack.

• Periodic motion: Table 4.2 shows the quantitative parameters for the periodic

motion experiment in SLP. As seen from the Table 4.2, the quantitative param-

eters improved as a result of the motion correction algorithm.

• Bulk motion: The quantitative parameters for the 4◦ and 8◦ bulk motion ro-

tation are listed in Table 4.3. In case of 4◦ bulk motion, correction algorithm

99



improved the contrast metric and mean edge width by 13% and 25%, respec-

tively. When the bulk motion is increased to 8◦, the motion correction algorithm

improved the contrast metric and mean edge width by 9% and 11% only. The

improvements shown by the correction algorithm is reduced when the bulk mo-

tion is doubled.

• Gaussian noise: The CNR and SNR of image with motion and the motion

corrected image are listed in Table 4.4. The SNR and CNR are improved in

the motion corrected images by 56% and 54% respectively when Gaussian noise

with σ = 0.001 is introduced, when Gaussian noise with σ = 0.005 is added the

SNR and CNR are improved by 37% and 45% respectively. Similar pattern is

observed for mean edge width, contrast metric, MSE and RMS.

• Effect of AR: The quantitative parameters for the SLP motion stimulation ex-

periment with different ARs are listed in Table 4.5. The increase in AR reduces

the performance of the algorithm.

4.3.2 Simulated Motion in Biological Phantom

4.3.2.1 Qualitative evaluation

The axial image of the ex vivo embryo with simulated motion and the result of the

correction algorithm is showed in Figure 4.9. In Figure 4.9a motion artifact caused

by the simulated motion is evident in spinal cord region of coronal image. Figure 4.9c

shows the result of motion correction algorithm which has less motion artifacts when

compared to Figure 4.9a.
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Parameter Simulated motion Motion corrected

MSE 120.4 82.2

RMS 11.0 9.1

Contrast metric
(with respect to ideal

image)
-22% -10%

Mean edge width 1.5 0.9

SNR 39.4 43.8

CNR 9.3 11.2

Table 4.1: Quantitative parameters for SLP random motion simulation

4.3.2.2 Quantitative evaluation

The SNR, CNR and mean edge width are the quantitative parameters used for

the ex vivo (biological phantom) motion stimulation study and they are listed in

Table 4.6. Different sets of quantitative measures are chosen for evaluating different

experiments according to the suitability of the parameters to the experiment. MSE

and RMS are not rotational and translational invariant, because of this reason these

parameters are not used for biological phantom experiment. Contrast metric is not

a useful measure because the biological phantom has soft tissues which are typical

of in vivo and ex vivo experiments, and contributing to the wide range of gray scale

information in the images instead of having uniform (constant) gray levels within a

region. Finding contrast along the line profile might not be useful, as the variation in

the mean signal intensity would be high along line profile, even in an homogeneous

area. Mean edge width which measures the broadening of the edges is useful in ex
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Parameter Simulated motion Motion corrected

MSE 143.6 85.4

RMS 12.0 9.2

Contrast metric
(with respect to ideal

image)
-25% -14%

Mean edge width 1.8 1.3

SNR 37.2 41.6

CNR 9.0 10.8

Table 4.2: Quantitative parameters for SLP periodic motion simulation

vivo case. The SNR, CNR and mean edge width are improved by 12%, 14% and 23%

respectively when the motion correction algorithm is applied.

4.3.2.3 Otsu's segmentation of brain in biological phantom

The Table 4.7 shows the comparison between ex vivo images with no motion and

ex vivo images with simulated motion and ex vivo images with motion correction

algorithm by tabulating the type I, type II errors, PPV, NPV , FVE and RE for the

manual and automatic segmentation algorithm. The results tabulated in the Table 4.7

show that the introduction of motion increased the type I and type II error to 4.35%

and 3.86%. After the application of motion correction algorithm, type I and type II

errors have been reduced to 3.94% and 3.33% respectively. These errors are still higher

than the ex vivo images without motion, but lower than the simulated motion images

without correction. The fractional volume error which indicates the change in the

volume of ROI between manual tracing and the automated segmentation algorithm is
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Parameter
Simulated

bulk motion
θ = 4◦

Motion
corrected
θ = 4◦

Simulated
bulk motion
θ = 8◦

Motion
corrected
θ = 8◦

MSE 150.9 116.7 168.2 132.5

RMS 12.3 10.8 13.0 11.5

Contrast
metric (with

respect to
ideal image)

-28% -15% -61% -50%

Mean edge
width

2 1.6 3.1 2.8

SNR 33.5 38.7 31.1 34.6

CNR 8.3 10.4 7.1 8.5

Table 4.3: Quantitative parameters for SLP bulk motion simulation

increased after the addition of simulated motion. The application of motion correction

algorithm to the ex vivo image with simulated motion decreased the FVE by 23%

compared to the uncorrected image set. The RE which denotes the disagreement

between the manual and automatic segmentation methods has increased due to the

addition of simulated motion to the ex vivo images. The motion correction algorithm

applied to ex vivo images brings down the RE by 31% compared to the uncorrected

data.

4.3.3 Gated In vivo Experiment

4.3.3.1 Qualitative evaluation

The coronal image of in vivo mice abdomen with visible motion and the result of

the correction algorithm are shown in Figure 4.10. The ghosting caused by motion
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Parameter

Simulated
motion

Gaussian
noise

θ = 0.001

Motion
corrected
Gaussian

noise
θ = 0.001

Simulated
motion

Gaussian
noise

θ = 0.005

Motion
corrected
Gaussian

noise
θ = 0.005

MSE 183.6 151.6 219.4 189.0

RMS 13.5 12.3 14.8 13.7

Contrast
metric (with

respect to
ideal image)

-47% -67% -146% -159%

Mean edge
width

3.7 3.1 4.9 4.5

SNR 26.9 28.1 15.3 18.2

CNR 4.3 4.9 2.9 3.4

Table 4.4: Quantitative parameters for SLP simulation with Gaussian noise

(highlighted in the coronal image by red arrow) is reduced by the correction algorithm.

Due to the presence of motion in the coronal view, the anatomical details inside the

kidneys are blurred and those details are visible in the upsampled and rotated axial

image stack, and by using the correction algorithm, some of these structures are

recovered (highlighted by white arrow).

4.3.3.2 Quantitative evaluation

SNR, CNR and mean edge width are the quantitative parameters used in the

evaluation. The correction algorithm improved the SNR, CNR and mean edge width

by 44%, 27% and 11%respectively as shown in Table 4.8.

104



Parameter
Simulated
motion AR

= 1:1:5

Motion
corrected

AR = 1:1:5

Simulated
motion AR

= 1:1:10

Motion
corrected

AR = 1:1:10

MSE 116.5 92.4 128.2 103.6

RMS 10.8 9.6 11.3 10.2

Contrast
metric (with

respect to
ideal image)

-20% -13% -21% -17%

Mean edge
width

1.6 0.8 3.9 3.1

SNR 39.7 43.5 34.5 37.2

CNR 9.3 11.4 8.1 10.8

Table 4.5: Quantitative parameters for SLP simulation experiment with different ARs

4.3.3.3 Active contour body segmentation in in vivo mouse model

Table 4.9 shows comparison results of active contour segmentation for the in vivo

case. The results show that with the application of motion correction algorithm, type

I and type II errors are reduced to 5.98% and 7.27%. The motion correction algorithm

decreased the FVE by 34% compared to the uncorrected image set, and the RE was

decreased by the motion correction algorithm by 25.6%.

4.3.3.4 Active contour kidney segmentation in in vivo mouse model

The results tabulated in the Table 4.10 show that with the application of the

motion correction algorithm, type I and type II errors are reduced to 10.50% and

12.64%. The application of the motion correction algorithm decreased the FVE by
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Parameter Simulated motion Motion corrected

Mean edge width 3.8 3.1

SNR 22.5 25.1

CNR 4.3 4.9

Table 4.6: Quantitative parameters for ex vivo (biological) phantom simulation ex-
periment

6.27% compared to the uncorrected data and RE is decreased by the motion correction

algorithm by 9.8%.

4.3.4 Non-gated In vivo Experiment

4.3.4.1 Qualitative evaluation

An in vivo coronal axis image of a mouse with no gating is shown in Figure 4.11

along with the result of correction algorithm. In this case the correction algorithm

doesn't improve the quality of the image substantially.

4.3.4.2 Quantitative evaluation

Although visual inspection of the non-gated in vivo experiment doesn't show sub-

stantial improvement of the ghosting artifacts caused by motion, quantitative pa-

rameters like SNR, CNR and mean edge width are improved by 25%, 10% and 6%,

respectively, as a result of the motion correction algorithm (Table 4.11).

4.4 Discussion

The results of this study illustrate that the motion correction algorithm based

on combining orthogonal images improves the image quality. In the Shepp-Logan
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Image
stack

Type I
error

Type II
error

PPV NPV FVE RE

Ex vivo 3.69% 0.90% 96.3% 99.10% 1.86% 2.86%

Ex vivo
with
simu-
lated

motion

4.35% 3.86% 95.65% 96.14% 3.37% 5.50%

Ex vivo
with
simu-
lated

motion
and

motion
correc-

tion
algo-
rithm

3.94% 3.33% 96.06% 96.67% 2.60% 3.81%

Table 4.7: Statistical metrics when multi-level Otsu is used for segmentation of brain
in biological phantom images with simulated motion

phantom experiment, considerable improvement in SNR, CNR, mean edge width,

MSE and contrast metric are observed in the motion corrected image. It can be also

noted from the SLP experiment with addition of Gaussian noise that the performance

of algorithm decreases with increase in the noise. The motion correction algorithm

combines a high resolution image with interpolated low resolution image by taking

complex conjugate product. As a result, theoretically there should be a resolution

compromise along with the motion reduction (i.e., decrease in the in-plane resolution

compared to the original image).
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Parameter Simulated motion Motion corrected

Mean edge width 7.8 7.0

SNR 16.9 24.4

CNR 3.7 4.7

Table 4.8: Quantitative parameters for in vivo gated study

Image
stack

Type I
error

Type II
error

PPV NPV FVE RE

In vivo 6.32% 8.71% 93.68% 91.29% 2.86% 8.63%

Motion
corrected
In vivo
images

5.98% 7.27% 94.02% 92.73% 1.88% 6.42%

Table 4.9: Statistical metrics when active contour body segmentation is used in in
vivo mouse model

In image processing terms, the spatial resolution of an image is defined as the

smallest discernible detail in the image, in other words, how closely lines can be

resolved in an image [16]. Spatial resolution is defined as line pairs per unit dis-

tance [16], [29]. In MRI, spatial resolution is typically defined as size of imaging

voxels. In-plane resolution is given by FOV divided by the in-plane matrix size [19].

Therefore, the spatial resolution in MRI image depends on its FOV, matrix size and

slice-thickness (through-plane resolution). The compromise in the resolution due to

the motion correction algorithm noted above refers to the resolution in classical image
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Image
stack

Type I
error

Type II
error

PPV NPV FVE RE

In vivo 10.75% 13.06% 89.25% 86.94% 8.05% 12.60%

Motion
corrected
In vivo
images

10.50% 12.64% 89.50% 87.36% 6.74% 10.10%

Table 4.10: Statistical metrics when active contour kidney segmentation is used in in
vivo mouse model

Parameter Simulated motion Motion corrected

Mean edge width 10.4 9.8

SNR 13.6 17.2

CNR 2.5 3.1

Table 4.11: Quantitative parameters for in vivo non-gated rib tumor study

processing definition (the ability to resolve two lines as distinct). Actual spatial reso-

lution in this sense is usually measured by calibration line pair phantom [54], [40] be-

cause of the difficulty in fabricating a line pair phantom [11], it is common to estimate

the resolution by estimating reconstructed line with as a parameter for quantitative

evaluation [52]. The resolution estimate is calculated by fitting sigmoid model and

measuring the rise length and is defined as edge width (in HR pixels) [17], [60]. In

this method, it should be noted that the mean edge width is not the actual resolution

measured from the image, but rather a quantifiable estimation that provides some
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insight into image resolution. In general, smaller line width represents higher image

resolution.

The mean edge width measured from SLP reference image (with no added motion)

is calculated as 0.4. Various types of simulated motion were observed to increase the

mean edge width, because of the ghosting artifact which in turn reduced the sharpness

of edges. However, when introducing the motion correction algorithm, there is a

tradeoff due to the interpolation of the lower resolution from the orthogonal view

which can compromise edge width when combined with the finer detail in the in-plane

images. As a result, the mean width in the motion corrected never reached the 0.4

value from the in-plane images from the motion free data. The effective resolution

achieved in the corrected image is lower than the original in-plane image, because

of the combination of the in-plane view from an image stack with the interpolated

through-plane view of the orthogonal image stack. In other words, the broadening

of the mean edge width in the motion corrected image can be attributed to the

interpolated through-plane image used in the algorithm. Apart from the increase in

mean edge width, introduction of motion artifacts along the readout direction (which

is absent in original image) is also observed, as a result of complex conjugate product

obtained with orthogonal image which has motion artifact along that direction.

The performance of the algorithm is affected as the bulk misalignment increases.

As long as there is no bulk misalignment the algorithm produces qualitatively better

images. It is shown that when the bulk misalignment is caused by a rotation of

4◦, the correction algorithm still removes a substantial amount of motion artifact

and potential misalignment in the resultant image is not evident, but when the bulk

motion is doubled to 8◦, the misalignment between the structures when combining
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the orthogonal images is evident. Increase in AR affects the quality of the motion

corrected image.

Increase in AR, implies an increase in interpolation factor for the orthogonal

image. As we have already discussed in chapter 2 for super resolution, increase

in AR increases the mean edge width, as it broadens the edges. This increase in

interpolation factor is the main reason for the reduction in the improvement of edge

width and contrast metric, thereby reducing the performance of motion correction

algorithm when the algorithm is applied to image stacks with high ARs.

The correction algorithm had a run time ranging from 4 min-6 min in a 2.20 GHz

Alienware system. Statistical metrics used for evaluation of tests using automated

image segmentation algorithms show that the type I and type II errors are both

reduced by the application of motion correction algorithm. This implies that the

algorithm decreased the number of instances a pixel belonging to object is classified

as nonobject and vice versa. The FVE and RE were also reduced in motion corrected

images. The FVE indicates the difference in the volume of a ROI, between manual

tracing and the automated segmentation algorithm. It is decreased in the motion

corrected image. Rand error which indicates the number of instances the manual seg-

mentation disagrees with automatic segmentation has decreased after the application

of motion correction algorithm which can be attributed to the improvement in the

image quality.

The improvement in SNR and CNR are higher in the phantom experiments than

the in vivo experiments. This is because the phantom experiments simulate an ideal

case for the testing of the algorithm. The improvement in CNR and SNR are much

lower in the in vivo images with no gating when compared with the in vivo images
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from gated acquisition. In non-gated acquisition, all the orthogonal views are affected

by severe motion artifacts due to the absence of gated triggering, so using additional

orthogonal views doesn't provide any useful information to improve the image qual-

ity . The motion correction algorithm is useful when orthogonal images are already

acquired, and the original image data have moderate motion artifacts similar to the

case of gated acquisitions. In these cases, it is advantageous to use the available or-

thogonal image(s) to improve the image quality by reducing ghosting artifacts caused

by motion. Future work could focus on implementing and testing the algorithm in in

vivo experiments with sufficient number of data samples to establish the statistical

significance of the result.
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Figure 4.1: Coronal and axial acquisition geometry along with encoding directions

113



Figure 4.2: Coronal (left) and axial (right) images of thoracic cavity of in vivo mouse
obtained for rib tumor study
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Figure 4.3: Flowchart of the motion correction algorithm
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Figure 4.4: Shepp-Logan phantom a) coronal image stack corrupted with random
motion, b) axial image stack with no motion rotated and viewed in coronal plane, c)
motion corrected image, d) average image. The motion artifacts are highlighted by
arrows

116



Figure 4.5: Shepp-Logan phantom a) coronal image stack corrupted with more peri-
odic motion than axial image stack, b) axial image stack corrupted with motion, c)
motion corrected image
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Figure 4.6: Shepp-Logan phantom with bulk motion a) motion corrupted coronal
image stack, b) axial image stack with bulk misalignment rotation of 4◦, c) motion
corrected image when bulk misalignment rotation is 4◦, d) motion corrupted coronal
image stack, e) axial image stack with bulk misalignment rotation of 8◦, f) motion
corrected image when bulk misalignment rotation is 8◦
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Figure 4.7: Shepp-Logan phantom with added gaussian noise a) coronal image stack
with gaussian noise σ = 0.001, b) axial image stack with gaussian noise σ = 0.001,
c) motion corrected image in case of gaussian noise with σ = 0.001, d) coronal image
stack with gaussian noise σ = 0.005, e) axial image stack with gaussian noise σ =
0.005, f) motion corrected image in case of gaussian noise with σ = 0.005
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Figure 4.8: Shepp-Logan phantom with different ARs a) motion corrupted coronal
stack, b) axial stack with AR 1:1:5, c) motion corrected image when AR is 1:1:5, d)
motion corrupted coronal stack, e) axial stack with AR 1:1:10, f) motion corrected
image when AR is 1:1:10
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Figure 4.9: Simulated motion in biological phantom experiment a) coronal view cor-
rupted with motion, b) axial view upsampled and rotated with motion, c) motion
corrected image, d) ex vivo image without motion
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Figure 4.10: In vivo gated experiment for obesity study, a) coronal with motion, b)
axial with motion, c) axial upsampled and rotated, d) motion corrected image. The
ghosting artifact in coronal view is highlighted by red arrow. Anatomical details
recovered by the correction algorithm are highlighted by white arrows
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Figure 4.11: In vivo non-gated experiment for rib tumor study a) axial image stack
with less pronounced motion, b) coronal image stack with motion, c) motion corrected
image
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Chapter 5: Conclusions and Future Work

5.1 Thesis Summary and Conclusions

The use of three different SRR acquisition geometries (i.e., shifted, rotational, or-

thogonal) for improving through plane resolution in 3D high resolution imaging was

discussed in chapter 2. We have shown that the SRR images based on orthogonal

acquisition geometry provide a better trade-off between resolution, acquisition time,

SNR, and CNR than those based on shifted and rotational acquisition geometries.

This was observed for LR images with voxel ARs less than 1:1:6. However, for the

orthogonal acquisition geometry, we observed when slice thickness was increased be-

yond voxel AR of 1:1:6, artifacts occurred in the SRR image. As these artifacts were

not consistently present in the same location with increasing voxel AR, we concluded

that the artifact is dependent upon the sampling and where a specific slice occurs in

the object being sampled. Finally, we demonstrated that SRR is applicable for in vivo

gated acquisitions. This observation along with the possibility of applying the SRR

algorithm with higher voxel AR has the potential to make SRR a practical alternative

to acquisition of 3D HR isotropic images in small animal phenotyping applications.

A post processing method that used gradient information from orthogonal images

to reduce streaking artifacts observed in orthogonal SR reconstructed image was
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discussed in chapter 3. As seen from phantom experiments, in the absence of noise

and multiple inflection points, basic sigmoid based interpolation model using the

gradient of the orthogonal view had improved the location and sharpness of the edges

in the reconstruction of surfaces and small objects. The quantitative and qualitative

evaluation of the in vivo experiment shows that the sigmoid SRR performs better than

linear and cubic interpolation schemes. In biological phantom and in vivo experiments

the adverse effects of using the gradient from the average image were prominent as

images have more anatomical structures as opposed the simulated phantom with well-

defined geometrical structures. In addition, we have shown that the quality of a SRR

image based on orthogonal acquisition was improved by the addition of a fourth view,

acquired obliquely to the through-plane direction of the coronal or sagittal view. The

observed increase in image quality would justify the minimal increase in acquisition

time required for one additional view.

The development of a post processing method that used two orthogonal views

obtained with different slice-select directions to correct for motion artifacts in 2D

images was discussed in chapter 4. We have shown that it was advantageous to make

use of available orthogonal images to reduce the ghosting artifacts caused by motion.

The efficacy of the algorithm was evaluated using phantom images with various types

of simulated motion. The performance of the algorithm declined with increase in

voxel ARs. Higher voxel ARs, have less effective motion reduction and hence lead to

more compromised effective resolution. The algorithm combined image stacks with

motion artifacts in different directions, so even as we noticed a reduction of motion

in one direction, we have to consider the fact that the method introduced artifacts

in another direction where motion was absent in the original image. The algorithm
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performed well when there was a slight misalignment between the acquisitions of

two orthogonal scans because of subject motion, but when the misalignment was

substantial, the effectiveness of the correction algorithm decreased. The performance

of the algorithm deteriorated with the increase in noise. However in case of severe

motion (like non-gated images), acquiring an additional image for the exclusive use

of correction algorithm, might not be worth the trade-off in time.

This dissertation aims to answer the question of whether or not it is possible to use

multiple imaging views obtained as part of the normal workflow of imaging studies

for improving the quality of the MR image. The main reason for this evaluation

is that typically in many small animal imaging studies, multiple imaging views are

already obtained as part of the normal workflow but the information taken from one

view is not generally combined with that from another view, except in the mind of

the expert observer. The development of techniques outlined in chapters 3 and 4

of this dissertation provide some answers this question. The techniques developed in

this dissertation make use of multiple low resolution image acquisitions to increase

through-plane resolution in 3D image data and to reduce motion artifacts for in-plane

2D images.

5.2 Suggested Future Work

In this work, IBP was used for reconstructing the SRR images. More recently

regularized least square methods that incorporate prior knowledge as a regularization

term have been proposed [53] for SRR implementation. These different optimization

algorithms, such as LASR and Tikhonov regularization(TIK), have shown improved
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resolution over IBP optimization when the number of LR stacks used for reconstruc-

tion is greater than three (i.e., TIK) [52] However SNR was observed to be greater for

IBP when a larger number of LR stacks were used for reconstruction. Plenge's study

suggests that different optimization schemes may perform better than others and may

be dependent upon the application and the number of LR stacks used for reconstruc-

tion [52]. Therefore, future work could focus on implementing these optimization

schemes and testing them.

In the gradient guided sigmoid based interpolation model, the location of global

maximum within the interpolation window was assigned as single inflection point.

In this algorithm the gradient from the average of two orthogonal images was used.

In using the average image we might lose the significant gradients or end up with

a reduced gradient intensity corresponding to these structures. Using the gradients

separately from both the orthogonal images might provide a more robust framework

for assigning the inflection point. The future studies should explore a robust frame-

work to detect the inflection point and to fuse the separate gradient information from

both orthogonal images to guide the interpolation.

The future studies could be directed towards extending the motion correction

algorithm to nearly or quasi-orthogonal images. The combination of orthogonal SRR

which improves the through-plane resolution in 3D images with the in-plane motion

reduction technique using orthogonal images was outside the scope of this dissertation.

Studying the combination of orthogonal SRR and in-plane motion correction using

orthogonal images presents an interesting venue for the future research.
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