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Abstract 

 

In the last few decades, the finite element method (FEM) has become one of the 

most important computational tools for the simulation of engineering problems. Due to 

the increasing popularity of this method, a heavy body of research has focused its 

attention to the development of advanced FEM-based techniques for the treatment of 

complex phenomena, including intricate morphologies. This thesis introduces a 

hierarchical interface-enriched finite element method (HIFEM) for the mesh-independent 

treatment of the mentioned type of problems. The HIFEM provides a general, and yet 

easy-to-implement algorithm for evaluating appropriate enrichment in elements cut by 

multiple interfaces. In the automated framework provided by this method, the 

construction of enrichment functions is independent of the number and sequence of the 

geometries introduced to nonconforming finite element meshes. Consequently, the 

HIFEM algorithm eliminates the need to modify/remove existing enrichment every time 

a new geometry is added to the domain. The proposed hierarchical enrichment technique 

can accurately capture gradient discontinuities along material interfaces that are in close 

proximity, in contact, or intersecting with one another using nonconforming finite 

element meshes for discretizing the problem. The main contribution of this thesis is the 

development and implementation of the two-dimensional higher-order HIFEM, and in 

particular the development of a new hierarchical enrichment scheme for six-note 

triangular elements. Furthermore, this manuscript presents a new enrichment scheme to 
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simulate strong discontinuities (cracks) in linear elastic fracture mechanics problems. 

Special attention is given to the available strategies to improve the level of precision and 

efficiency of the simulations. A detailed convergence study for the enrichment technique 

that yields the highest precision and the lowest computational cost is also presented. 

Finally, the author illustrates the application of the higher-order HIFEM for simulating 

the thermal and deformation responses of a variety of engineering problems with 

complex geometries, including porous media, fiber-reinforced composites, and quasi-

static cracks in a heterogeneous domain.  
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Chapter 1:  Introduction  

 

1.1) Background  

During the past few decades, the finite element method (FEM) has become one of 

the top choices for the computational modeling of a variety of engineering phenomena. 

However, regardless of the underlying physics, generating the appropriate finite element 

(FE) mesh to achieve an adequate performance remains a key challenge in problems 

presenting complex geometries [1]. This occurs in part because of the often laborious and 

time consuming mesh generation process. The complexity of this process increases even 

further when dealing with problems with evolving morphologies such as transient 

phenomena and design optimization studies, which require the automated regeneration of 

new FE meshes or their adaptive refinement throughout the simulation [6], [7], [8]. In 

addition, the quality of this conforming FE mesh, i.e., its refinement level and aspect ratio 

of elements, has a crucial impact on the accuracy and stability of the FEM approximation 

[2], [3], [4], [5]. Even when employing state-of-the-art commercial software packages, 

creating such conforming meshes requires significant amount of human intervention, 

which can also lead to the creation of oversimplified models that neglect details in the 

geometry.  

Extensive research effort has been directed to ease the aforementioned difficulties 

in solving problems with localized features that are not efficiently determined by mesh 

refinement. Alternative numerical techniques such as the boundary elements method 



2 

 

(BEM) [9], [10], [11], meshfree methods (MMs) [12], [13], [14], [15], and mesh-

independent FEMs [16], [17], [18] have successfully been applied to a variety of 

engineering problems with intricate strong and weak discontinuities. One of the most 

popular methods in the latter category, the eXtended Finite Element Method (XFEM) 

[19], [20], employs the partition of unity method locally to enrich the interpolation. This 

method provides independence between the nonconforming mesh and the problem 

morphology to simulate discontinuous phenomena by incorporating a priori knowledge in 

the enrichment located on existing nodes. For example, in linear elastic fracture 

mechanics problems, discontinuous and singular functions are added to standard 

polynomial basis functions for nodes that belong to elements that are in close proximity 

to cracks to provide an accurate approximation. Contributions of the XFEM are not 

limited to fracture mechanics problems, though. In the literature we can find numerous 

applications of the XFEM to a variety of physics phenomena including contact problems, 

multiscale problems, and material or phase interfaces [21], [22]. The development of 

more accurate and robust XFEM schemes continues to be an active area of research to 

this day.  

While XFEM achieves accurate approximations in problems with discontinuities, 

handling blending elements and Dirichlet boundary conditions at enriched nodes remains 

a challenge in the implementation of this method. An alternative mesh independent 

technique that obviates the above intricacies is the Interface-enriched Generalized FEM 

(IGFEM). This method relies on enrichment functions associated with generalized 

degrees of freedom (dofs) to enrich the solution field along material interfaces to simulate 
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the mismatch between the phases involved. The IGFEM has been applied to several 

multiphase problems in [24], [25], [26] and [27]. Among the advantages of this method 

one can cite low computational cost and, unlike XFEM, a straightforward treatment of 

Dirichlet boundary conditions. However, a major limitation of the IGFEM is the inability 

to automatically enrich nonconforming elements cut by multiple material interfaces as it 

requires a case-by-case modification for special cases. Since the mentioned drawback can 

frequently happen in domains with geometries that are in close proximity or contact, the 

method is arguably a good choice for computer implementation in problems with 

complex morphologies. 

Recently, Soghrati [28] has introduced the hierarchical interface-enriched finite 

element method (HIFEM), a fully mesh-independent technique that completely 

eliminates the shortcomings of the IGFEM for modeling multiphase problems with 

complex geometries. The HIFEM can accurately capture field/gradient discontinuities 

associated with the presence of material interfaces that are in close proximity or contact, 

while using finite element meshes that are completely independent of the domain 

geometry. This is made possible through special hierarchical enrichments that can easily 

be formulated for nonconforming elements presenting strong and weak 

discontinuities. While yielding an optimal precision and convergence rate, one of the 

main advantages of the HIFEM is the ease of implementation and the ability to 

accommodate multiple material interfaces in nonconforming elements as shown in Figure 

1. In the automated framework provided by HIFEM, the construction of enrichment 

functions is independent of the number and sequence of the geometries introduced to 
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nonconforming finite element meshes. Consequently, the automated framework of the 

HIFEM obviates the difficulties associated with the creation of a new mesh at each 

solution step, and the computation of the enriched solution of not only interfaces (weak), 

but also cracks (strong discontinuities) propagating freely through heterogeneous media.  

 

 

Figure 1. Example of a structured mesh containing multiple inclusions with curved 

geometries. The insets show material interfaces intersecting nonconforming elements that 

can be hierarchically accommodated by HIFEM. 

 

Soghrati addressed details of the construction of HIFEM enrichments and their 

performance for problems discretized using three-node triangular FE meshes in [28]. The 

method was applied in heat conduction problems; however, for the simulation of stresses 

in structural problems, constant strain triangular (CST) elements yield a poor 

performance due to deficiencies such as shear locking [29]. Therefore, the use of higher-

order elements is more attractive for modeling such problems.  
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1.2) Overview of Thesis 

The objective of this thesis is to introduce a higher-order hierarchical interface-

enriched finite element method (HIFEM) to obviate issues associated with creating 

conforming meshes for simulating problems with field and gradient discontinuities. This 

manuscript describes the HIFEM algorithm implementation including specifications for 

the construction of children elements and integration scheme. In addition, different 

approaches for constructing higher-order HIFEM enrichment functions associated with 

six-node triangular Lagrangian elements are discussed. Quadratic distorted elements are 

implemented after considering the advantages and drawbacks of different approaches 

mentioned above for constructing hierarchical enrichments. Note that although the 

current manuscript is particularly focused on a practical implementation of six-node 

triangular elements in HIFEM, the proposed algorithm can be easily expanded to other 

types of higher-order Lagrangian elements. To demonstrate HIFEM accuracy with 

respect to the standard finite element method, convergence studies are presented for 

multi-phase thermal and structural problems. 

This thesis is structured as follows. In the following Chapter, the weak forms of 

the conductive heat conduction and linear elasticity problems together with an overview 

of the linear elastic fracture mechanics and the HIFEM formulations are presented. In 

Chapter 3 we briefly present different techniques for the implementation of quadratic 

triangular elements to the higher-order HIFEM algorithm followed by a discussion of 

some challenges presented. Chapter 4 reports a higher-order HIFEM convergence study 

of a simple heat conduction problem with straight material interfaces and a plane stress 



6 

 

problem with circular inclusions. In Chapter 5, several numerical simulations are 

provided to evince the higher-order HIFEM capabilities in applications for modeling 

porous materials, corrosion stress concentration in metals, reinforced fiber composites, 

and stationary cracks in heterogeneous media. Finally, a summary of the topics covered 

and directions for future work are given in Chapter 6. 
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Chapter 2:  Governing Equations and Formulations 

 

This chapter is devoted to the mathematical formulation of the physical 

phenomena corresponding to problems discussed in Chapters 4 and 5, together with a full 

description of the HIFEM formulation. The first part of this chapter presents the classical 

heat conduction and solid mechanics governing equations, including the specifications 

for modelling non-smooth situations associated with strong discontinuities existing in 

cracked domains for fracture solid mechanics problems. The next section is dedicated to 

fundamental aspects of the HIFEM formulation, including its roots in the Interface-

enriched Generalized FEM and the description of the general implementation. 

 

2.1) Heat Conduction Problems Governing Equations 

Consider an open domain Ω ⊂ ℝ2 with the closure Ω̅ composed of 𝑚 different 

material phases represented as non-overlapping partitions Ω̅ ≅ Ω̅ℎ ≡ ⋃ Ω̅𝑖
𝑚
𝑖=1 . The 

domain boundary 𝜕Ω =  Ω̅\Ω = Γ𝐷 ∪ Γ𝑁with outward unit normal vector 𝐧 is divided 

into two distinct regions (Γ𝐷 ∩ Γ𝑁 = ∅) corresponding to Dirichlet and Neumann 

boundary conditions (BCs), respectively. By decomposing the temperature field 𝑢: Ω̅ →

ℝ into 𝑢 = 𝑢0 + 𝑢𝑑, where 𝑢𝑑: Ω̅ → ℝ such that 𝑢𝑑|Γ𝐷
= 𝑢̅, and 𝑢̅: Γ𝐷 → ℝ is the 

prescribed temperature on Γ𝐷, the weak form of the conductive heat transfer governing 

equations is expressed as: Find 𝑢0 ∈  𝒱 ≔ {𝑢0: Ω̅ → ℝ,  𝑢0|Γ𝐷
= 0} such that 
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∑∫ ∇(𝑢0 + 𝑢𝑑). 𝜅𝑖∇𝑣𝑑Ω + 

Ω𝑖

∫ 𝑣𝑄𝑑Ω + 
Ω𝑖

𝑚

𝑖=1

∫ 𝑣𝑞𝑑Γ 
Ω𝑖

= 0   ∀𝑣 ∈ 𝒱, (1) 

 

where 𝜅𝑖: Ω̅𝑖 → ℝ2x ℝ2 is the thermal conductivity tensor associated with the 𝑖th material 

phase, 𝑄:Ω → ℝ is the heat source, and 𝑞: Γ𝑁 → ℝ is the applied heat flux. The continuity 

of temperature and heat flux conditions are weakly enforced along the interface between 

two adjacent subdomains Ω̅𝑖 and Ω̅𝑗 as follows 

  u|Γ𝑖
− u|Γ𝑗

= 0 

𝜅𝑖∇𝑢. 𝐧𝒊 + 𝜅𝑗∇𝑢. 𝐧𝒋 = 0 

On    Ω̅𝑖 ∩ Ω̅𝑗 , 

On    Ω̅𝑖 ∩ Ω̅𝑗. 
(2) 

  

The Galerkin approximation 𝑢ℎ for (1) can be evaluated by replacing 𝒱ℎ ⊂ 𝒱 

with proper finite dimensional space (e.g., the space of Lagrangian shape functions in the 

standard FEM). 

 

2.2) Linear Elasticity Problems Governing Equations 

Similar to the heat conduction formulation, assuming u = u0 + ud as the 

deformation response of a linear elastic continuum such that ud: Ω̅ → ℝ2 and ud|ΓD
= u̅, 

the weak form of the linear elasticity governing equations can be written as: Find 

u0 ∈  𝒲 ≔ {u0: Ω̅ → ℝ2, ud|ΓD
= 0} such that 

 

 
∑∫ L(u0 + ud). ℂiL

TwTdΩ + 
Ωi

∫ wbdΩ + 
Ωi

m

i=1

∫ wtdΓ 
Ωi

= 0   ∀w ∈ 𝒲 (3) 
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Where ℂi denotes the fourth-order elasticity tensor associated with the ith material phase, 

b: Ω → ℝ2 is the body force, u̅: ΓD → ℝ2 is the prescribed displacement, t: ΓN → ℝ2 is the 

applied traction field, and the differential operator L is given by 

 

L =

[
 
 
 
∂

∂x
   0    

∂

∂x

0    
∂

∂y
   

∂

∂y]
 
 
 

. (4) 

 

Given Ei: Ωi → ℝ as the as the elastic modulus, and vi: Ωi → ℝ as the prescribed 

Poisson ratio of each material phase, the matrix form of ℂi for a plane stress problem can 

be written as 

 

ℂi =
Ei

1 − υi
2 [

1 υi 0
υi 1 0

0 0
1 − υi

2

] (5) 

 

The continuity of displacements and tractions along the interface between 

adjacent subdomains Ω̅𝑖 and Ω̅𝑗 is given by 

  u|Γ𝑖
− u|Γ𝑗

= 0 

ℂiL
TuT. 𝐧𝒊 + ℂjL

TuT. 𝐧𝒋 = 0 

On    Ω̅𝑖 ∩ Ω̅𝑗 , 

On    Ω̅𝑖 ∩ Ω̅𝑗. 
(6) 

 

The Galerkin approximation uh for (3) can be evaluated by replacing 𝒲h ⊂ 𝒲 

with proper finite dimensional space. 

 

Fracture mechanics problem formulation 

Consider a cracked domain Ω following the same governing equations described 

above for structural problems. A crack is denoted by ΓC such that ΓD, ΓN and ΓC are 
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partitions of 𝜕Ω; and that ΓD and ΓN are on the boundary of the non-cracked domain Ω̅. 

Assuming a traction free condition on the crack, equation (3) is used with the following 

modification in the definition of the space of the admissible displacement: 𝒲 =

{𝑤 ∈ 𝒱 ∶ w = u̅ = on Γu, w discontinuous on ΓC}.  

In Williams’ asymptotic displacement [31], u = 𝑢𝑑  (𝑑 = 1, 2) in the 

neighborhood of the tip in polar coordinates is given by 

 𝑢𝑑(𝑟, 𝜃) = 𝑎𝑘 + 𝑏𝑘(𝜃)𝑟1/2 + 𝑐𝑘(𝜃)𝑟 + 𝑑𝑘(𝜃)𝑟3/2 + ⋯,  (7) 

 

where 𝑟 is the distance to the tip, and 𝜃 is the angle formed between the slope of the 

crack at the tip and 𝑟. Note that strains and stresses components derived from equation 

(7) will have a component as a function of 𝑟−1/2, which results in a singularity when 

𝑟 = 0. 

 

2.3) HIFEM Formulation  

In this section, we first review the standard FEM, GFEM, XFEM, and IGFEM 

formulations followed by the formulation and implementation of the HIFEM. 

 

FEM and GFEM formulations 

A given problem can be modeled using the standard FEM by discretizing the 

domain into 𝑚 finite elements and employing a set of 𝑛 shape functions 𝑁𝑖(𝐱) for 

approximating the field in each element, as described by the following expression: 
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𝑢ℎ(𝐱) =  ∑𝑁𝑖(𝐱)𝑢𝑖

𝑛

𝑖=1

 (8) 

The above equation cannot accurately capture gradient discontinuities unless the 

elements of the FE mesh conform to those geometries. If nonconforming meshes are to 

be used instead, the simulations can be performed using the generalized FEM (GFEM) 

framework [32]. In this method, a set of local enrichment functions are multiplied by the 

standard Lagrangian shape functions to provide a sparse linear system of equations. In the 

GFEM approximation given by 

 

𝑢ℎ(𝐱) =  ∑𝑁𝑖(𝐱)𝑢̃𝑖 + ∑𝑁𝑖(𝐱)

𝑛

𝑖=1

∑𝜑𝑖𝑗(𝐱)𝑢̂𝑖𝑗

𝑛𝑒𝑛

𝑗=1

𝑛

𝑖=1

, (9) 

the variable 𝑢̃𝑖 does not necessarily approximate the field at node 𝑖 since the contribution 

of the second term has to be taken into account in enriched regions of the domain.  

Despite the simplicity of the formulation, some implementation issues need to be 

addressed in the GFEM. In (9), a prescribed value of the solution field cannot be assigned 

to enriched nodes in a boundary with essential condition. Hence, to enforce Dirichlet 

boundary conditions, Lagrange multipliers or the penalty method might be required. In 

addition, the existence of incomplete terms of the enrichment in cases where only some 

of the nodes are enriched (e.g., in blending elements) compromises the accuracy and rate 

of convergence. Furthermore, in order to achieve a good accuracy, the GFEM employs 

integration schemes such as subdividing the enriched elements into subdomains and 

integrating over the resulting sub-elements. To apply the mentioned approach, the sub-
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element must be created in a way such that their edges are aligned with the geometry of 

the discontinuities while maintaining the aspect ratio within a desired range. 

 

The IGFEM formulation 

The IGFEM formulation extends the GFEM to 

 

𝑢ℎ(𝐱) =  ∑𝑁𝑖𝑢𝑖 + ∑𝑠𝑗𝜓𝑗𝛼𝑗

𝑛𝑒𝑛

𝑗=1

,

𝑛

𝑖=1

 (10) 

where the first term corresponds to the FEM portion of the approximation. In the second 

term, the coefficients 𝑠𝑗 are scaling factors introduced to guarantee a well-conditioned 

stiffness matrix, 𝜓𝑗 are the enrichment functions, and 𝛼𝑗 are the generalized dofs. The 

main difference between equations (9) and (10) is the approach for assembling the 

generalized dofs. The IGFEM no longer uses the concept of partition of unity, but 

achieves a unified enrichment by sharing the same generalized dofs between enriched 

nodes of adjacent elements [23]. These enrichment functions vanish at the location of the 

nodes of the nonconforming mesh; hence, the approximations 𝑢𝑖 directly yield the 

solution field at the location of the nodes of the original mesh. Note that the enrichment 

holds no physical meaning, but represents the magnitude of departure from the root 

solution of the nonconforming mesh. 

 Implementing the IGFEM for simulating problems with highly complex and 

heterogeneous domains is a challenging task. Several cases must be considered for 

discretizing nonconforming elements by multiple materials interfaces. Although the 

development of an algorithm to systematically handle all possible cases is feasible, this 
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approach is no longer practical since it involves the tedious labor of adding the special 

cases one by one. Furthermore, the sequence of the material interfaces added to the 

problem can also be an issue since the IGFEM removes existing sub-elements and 

redefines the discretized parent element for each interface cutting the background mesh.  

 

The HIFEM formulation 

The HIFEM overcomes the IGFEM limitation associated with constructing 

enrichment functions in elements cut by multiple interfaces via a recursive algorithm for 

evaluating the enrichment functions [28]. The HIFEM approximation of the field 𝑢ℎ for a 

domain Ω ≅ Ωℎ discretized into M nonconforming elements can be written as 

 

𝑢ℎ(𝐱) =  ∑𝑁𝑖
𝑝𝑢𝑖 + ∑𝑠𝑗

(ℎ)
𝜓𝑗

(ℎ)
𝛼𝑗

(ℎ)

𝑛𝑒𝑛

𝑗=1

𝑛

𝑖=1

, (11) 

where the first term of the right hand side is associated with the standard FEM 

formulation, and the second terms represents the degrees of freedom corresponding to the 

enrichment for the strong and weak discontinuities. In (11), 𝑢𝑖 represents the value of the 

variable to be solve for at the 𝑖th node of the nonconforming element; 𝛼𝑗
(ℎ)

 is the 

generalized degree of freedom corresponding to the 𝑗th node created at the intersection of 

the ℎth material interface with the element edges; {𝑁𝑖
𝑝}

𝑖=1

𝑛
 and {𝜓𝑗

(ℎ)
}
𝑗=1

𝑛𝑒𝑛

 are sets of 𝑛 

Lagrangian shape functions and 𝑛𝑒𝑛 hierarchical enrichment functions at the ℎth 

hierarchical level, respectively; and 𝑠𝑗
(ℎ)

 is a scaling factor applied to the enrichment to 

avoid an ill-conditioned stiffness matrix due to bad aspect ratios of sub-elements. For 
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higher-order elements the general formulation need not be modified since the underlying 

concepts of the method remains the same. The details of the computation of the scaling 

factor will be revisited in the next section.  

The HIFEM enrichments attached to the generalized degrees of freedom are 

hierarchically introduced to the approximate field in the regions where material interfaces 

cut the edges of the nonconforming mesh. Figure 2 shows a simple scheme that illustrates 

the construction of these enrichments to a single three-node triangular element cut by two 

interfaces. For each cut, we discretize the affected area into smaller triangular (children) 

elements that conform to each material interface. As seen in Figures 2b and 2c, these 

children elements will then serve as parent elements for the next material interface 

following the same hierarchical discretization scheme until all interfaces cutting the 

original parent element (root element) are handled. The order in which the multiple 

material interfaces are processed does not affect the HIFEM accuracy. 

The computation of enrichment functions associated with the 𝑗th interface node at 

the ℎth level of hierarchy of 𝑛ℎ𝑙 hierarchical levels is given by  

 

𝜓𝑡𝑜𝑡𝑎𝑙 = ∑ 𝜓ℎ

𝑛ℎ𝑙

ℎ=1

= ∑ ∑ ∑ 𝑁𝑟
𝑘 ,

𝑛𝑐
(ℎ)

𝑘=1

𝑛𝑖𝑛
(ℎ)

𝑗=1

𝑛ℎ𝑙

ℎ=1

 (12) 

where 𝑛𝑖𝑛
(ℎ)

 is the number of interface nodes at the ℎth level of hierarchy,  𝑛𝑐
(ℎ)

is the 

number of children elements connected to the 𝑗th interface node at this level, and 𝑁𝑟
𝑘 is 

the 𝑟th Lagrangian shape function of the 𝑘th child element. 
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Figure 2. Process of creating HIFEM children elements in nonconforming three-node 

triangular element: (a) root element cut by two material interfaces; (b) children elements 

and interface nodes created at the first level of hierarchy; (c) children elements and 

interface nodes created at the second level of hierarchy from the intersection between 

material interface 2 and child element 𝐶3
(1)

 of the first level of enrichment; (d, e, f) 

enrichment functions belonging to the total enrichment (a), the first level of hierarchy (b), 

and the second level of hierarchy (c),  respectively. 

 

As depicted in Figure 2, the construction of children elements is straightforward 

for linear enrichment. Enriched nodes are placed at the intersection points of each 

interface with the elements constructed at the highest level of hierarchy. However, for 

higher-order elements, more than one configuration of the HIFEM enrichment can be 

adopted. In order to implement the optimal approach, next chapter is devoted to the 

analysis of different configurations of quadratic enrichment. 

 

Scaling factor 

Ill-conditioning of the stiffness matrix can affect the performance of iterative 

linear solvers, or interfere with the convergence of solvers for nonlinear problems. In the 

(a) (b) (c) 

(d) (e) (f) 
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standard FEM, special consideration must be given to children elements with high aspect 

ratios since these elements deteriorate the conditioning of the stiffness matrix. The 

HIFEM obviates the issue of monitoring the quality of the children elements constructed 

for enrichment by employing a simple and efficient scaling factor 𝑠𝑗
(ℎ)

 (see equation (11)) 

based on the geometrical features of the element and the location of the enriched node 

being scaled with respect to the nodes in its neighborhood. As a consequence, children 

elements can have any type of size and shape configurations without compromising the 

conditioning of the system. 

The enrichment function associated with the 𝑗th enriched node of a child element 

created at the ℎth hierarchical level is scaled down by using the following expression:  

 

𝑠𝑗
(ℎ)

= 
min(‖x1 − x𝑖𝑛𝑡‖, ‖x2 − x𝑖𝑛𝑡‖, ‖x3 − x𝑖𝑛𝑡‖)

𝑙𝑝
√

𝐽𝑝

𝐽𝑐
, (13) 

where x1 and x2 are the adjacent nodes located over the intersecting edge, x𝑖𝑛𝑡 is the 

intersection point over the edge, x3 is a point over the opposite edge perpendicular to 

x𝑖𝑛𝑡, 𝑙𝑝 represents the length of the parent element, and 𝐽𝑝 and 𝐽𝑐 correspond to the 

determinant of the Jacobians of the parent and child elements containing the node located 

at x𝑖𝑛𝑡, respectively. 

The scaling factor is employed to mitigate the effect of either large gradients of 

the Lagrangian enrichment functions, or extremely small determinants of the child 

element Jacobian. The former is a result of children nodes located extremely close to an 

adjacent node or an element edge, while the latter occurs when the size of a child element 
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associated with the enriched node is extremely small in comparison with the 

corresponding parent. Both situations are shown in Figure 3.  

 

 

 

Figure 3. Examples of children elements that could deteriorate the conditioning of the 

system of equations in absence of a proper scaling factor. In (a), the conditioning can be 

affected by the small relative distance between enriched node 5 and parent node 3. In (b), 

the small area of 𝐶1 can also influence the condition number. 

 

Note that not all the enriched nodes need to be scaled, but only those below a 

given threshold defined in the algorithm. Furthermore, scaling factors are used in the 

computation of element stiffness matrices. Thus, unlike most of the strategies introduced 

for improving the conditioning of other mesh-independent methods (e.g., preconditioners 

in XFEM [33], [34]), no additional computation/modification is needed for the global 

stiffness matrix. 

 

Numerical Integration 

For the numerical integration, the HIFEM uses a recursive framework to evaluate 

the smallest children elements (e.g., the ones located at the highest level of hierarchy) 

contained in each root element together with the corresponding portion of the parent 

elements of subsequent hierarchical levels. The algorithm computes the enrichment for 

(a) (b) 
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interface nodes at each level, choosing material properties assigned to the highest level of 

hierarchy.  

 

 

 

Figure 4. Integration process of a three-point quadrature rule over a triangle. (a) Gauss 

points (𝜉𝑖
(2)

, 𝜂𝑖
(2)

) are integrated simultaneously on child element C1
(2)

, and portions of 

elements C3
(1)

 and R1. (b) Location of the mapped gauss points (𝜉𝑖
(2)

, 𝜂𝑖
(2)

) in the 

isoparametric domains of elements C1
(1)

and R1. 

 

Figure 4 illustrates how HIFEM enrichment functions are integrated 

simultaneously at all levels of hierarchy. In this example, the algorithm integrates 

element C1
(2)

, together with the portions of elements C3
(1)

 and R1 corresponding to the 

area of C1
(2)

. Each quadrature point (𝜉𝑖
(2)

, 𝜂𝑖
(2)

) is mapped from the global coordinates 

system to the corresponding local coordinates system so that (𝜉𝑖
(1)

, 𝜂𝑖
(1)

) and (𝜉𝑖, 𝜂𝑖) 

(a) (b) 
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integrate smaller portions of the isoparametric reference triangle. Since enriched nodes 

are evaluated at the level they were created, only nodes 6 and 7, and node 4 are evaluated 

at the second and first level of enrichment, respectively. Note that all nodes 

corresponding to the root element are always evaluated at the root level. After repeating 

this integration scheme for all elements at the highest level of hierarchy, the elements 

contained in lower levels will also be integrated. Figure 5 presents the flow chart 

associated with this algorithm. 
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Figure 5. Simple flow chart that describes the process of hierarchical integration of parent 

and children elements simultaneously. 
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Basic HIFEM algorithm 

Figures 6 shows the process of creating hierarchical enrichments in the HIFEM. 

 

Figure 6. Simple flow chart for the HIFEM algorithm.  
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Chapter 3:  Higher-order HIFEM Algorithm 

 

While the recursive algorithm described in the previous section remains 

unchanged for the higher-order formulation, the construction of the children elements 

must be studied in more detail. Linear elements cannot be used for enrichment when the 

approximation of the root solution is described by a quadratic field since they fail the 

reconstruction of a linear field with gradient discontinuities. Higher order polynomial 

terms of order 𝑛𝑟 in the Lagrangian shape functions of the root elements can only be 

eliminated by enrichment constructed by shape functions of order 𝑛𝑒, with 𝑛𝑒 ≥ 𝑛𝑟 . For 

example, if the HIFEM algorithm receives a nonconforming quadratic FE mesh as input 

to solve a given problem, the enrichment functions should be at least second order 

polynomial basis functions. 

 

3.1) 1D Higher-order HIFEM 

To illustrate the aforementioned concept, consider the one-dimensional steady-

state heat conduction problem shown in Figure 7. In this example, one quadratic element 

mesh simulates a domain consisting of three infinite plane homogeneous walls with 

different thicknesses and thermal conductivities, no heat generation, and boundary 

conditions of temperature 𝑢0 and heat flux 𝑞0. The HIFEM algorithm identifies the three-

node element as a root element and creates quadratic enrichment about each interface in 

subsequent levels as follows. Children elements 𝐶1
(1)

 and 𝐶2
(1)

, together with enriched 
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nodes 4 and 5, are constructed in the first level of enrichment from the intersection of 

Interface 1 with the root/parent element. Similarly, children elements 𝐶1
(2)

and 𝐶2
(2)

, and 

enriched nodes 6 and 7, are generated in the second level of enrichment from the 

intersection of Interface 2 with element 𝐶1
(1)

, which is now acting as parent element. The 

combined solution is obtained by adding the higher-order enriched nodes solutions 

(nodes 4, 5, 6 and 7) to the interpolated value of the field of the root solution (nodes 1, 2 

and 3) at the location of the corresponding nodes. As mentioned earlier, this approach 

passes the patch test using quadratic functions for both root and enrichment portions of 

the solution.  

The piecewise linear thermal response is captured by the HIFEM approximation 

since the quadratic term 𝑥2 in the Lagrangian shape functions of the root element is 

eliminated by similar terms in the enrichment functions. Figure 8 shows the resulting 

hierarchical structure for this simple example. Note that children elements 𝐶1
(2)

 and 

𝐶2
(2)

 utilize nodes 2 and 5, respectively, instead of defining new enriched nodes at the 

midpoints of their edges. This results in a distorted configuration. A detailed explanation 

of the reasons for using this configuration is provided in the next section.  
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Figure 7. A three-phase one-dimensional heat conduction problem. The root element is 

enriched by children elements constructed sequentially from the intersection of each 

interface with the discretized domain. The combined solution is calculated adding the 

enrichment to the root solution.  

 

 

Figure 8.  Hierarchical structure of the children elements constructed for the example 

problem presented in Figure 7. 
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3.2) 2D Higher-order HIFEM 

In a two-dimensional domain, the HIFEM algorithm follows a similar procedure 

to the one described above. For nonconforming meshes consisting of six-node triangular 

elements, we must implement the same type of element (six-node triangular elements) as 

children elements to compute the enrichment. Different Lagrangian shape functions for 

enrichment cannot be used (e.g., three-node triangular or transition elements), since they 

fail to reconstruct a linear field with gradient discontinuities and hence, do not pass the 

patch test. Although this manuscript is focused on the implementation of six-node 

triangular elements in HIFEM, the proposed algorithm can be expanded to other types of 

higher-order Lagrangian elements. 

Two different schemes for constructing quadratic children elements from 

elements cut by a material interface are presented in Figure 9. In the first approach shown 

in Figure 9a, we require a total of 8 enriched nodes to create the children elements since 

the midpoint parent nodes 4 and 6 on the edges cut by the interface are not included. This 

approach results in the formation of a singular global stiffness matrix due to redundant 

enriched degrees of freedom. In order to eliminate this issue, one can enforce the 

enrichment approximation to be zero at the location of the parent nodes. Nevertheless, 

this approach creates two additional degrees of freedom and the enrichment needs to be 

constrained with respect to the location of the corresponding parent mid-side nodes. 
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Figure 9. Two approaches for constructing children elements in a six-node triangular 

nonconforming element cut by a single interface. In the approach shown in (a), nodes 4 

and 6 of the parent element are not considered in the construction of the children 

elements. Conversely, in the approach in (b), all parent nodes are also part of the 

enrichment. 

 

An additional alternative to avoid a singular stiffness matrix can be seen in Figure 

9b, where all parent nodes are included in the next hierarchical level as part of the 

children elements. However, even in parent elements with straight edges and straight 

material interfaces, this approach yields distorted children elements with non-constant 

Jacobians in an isoparametric formulation because such non-corner nodes of the children 

elements are not located in the middle of its edges. Since the HIFEM allows the material 

interfaces to cut the edges at arbitrary locations, the element distortion can be severe 

when the intersection point is close to a parent node. As a possible consequence, the use 

of distorted elements can have serious drawbacks in terms of computational cost and 

accuracy. More integration points are needed to perform accurate quadrature in distorted 

elements [30]. Furthermore, to compute the non-constant Jacobian of distorted children 

elements, a nonlinear problem must be iteratively solved at each quadrature point to map 

them to the local coordinates of its corresponding quadrature point in the parent element 

[28]. 

 

(a) (b) 
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Figure 10.  Mapping of a six-node triangular child element to the reference coordinates 

system. Parameteres 𝜆1, 𝜆2, and 𝜆3 represent the ratios of the distance between the non-

corner and corner nodes to the length of their corresponding edges of the child element. 

 

In order to eliminate the difficulties associated with the use of distorted children 

elements in the higher-order HIFEM, a third approach shown in Figure 10 is proposed. 

Here, the isoparametric mapping is no longer used as reference element of distorted 

children elements in the local coordinates system. In its place, the HIFEM algorithm 

employs a geometrical mapping that preserves the relative location of the non-corner 

nodes for both the local and global coordinates systems. The dimensionless 

parameters 𝜆1, 𝜆2, and 𝜆3 are defined from the ratio of the relative distance of a non-

corner node to the length of the edge. For example, in Figure 10, the relation 𝜆2 =
𝐿2

𝐿
 is 

kept in both the local and global coordinate systems. Thus, the six-node quadratic shape 

functions used for enrichment are not only functions of the local coordinates 𝜉 and 𝜂, but 

also functions of scalar values 𝜆1, 𝜆2, and 𝜆3, as described in the set of equations listed in 

Table 1. The benefit of using the proposed mapping is that it yields a constant Jacobians 

for problems using distorted elements for the enrichment.  
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 Quadratic shape functions for enrichment   

 
𝑁1 

(𝜉 + 𝜂 − 1)(𝜆2𝜉 − 𝜆1𝜆2 + 𝜆1𝜂)

𝜆1𝜆2
 

 

 

 
𝑁2 

−𝜉(𝜆3𝜉 − 𝜆1𝜆3 − 𝜂 + 𝜆1𝜂 + 𝜆3𝜉)

𝜆3(𝜆1 − 1)
 

 

 
𝑁3 

𝜂(𝜆2 − 𝜂)

(𝜆2 − 1)
+

𝜉𝜂(𝜆2 − 𝜆3)

(𝜆2 − 1)(𝜆3 − 1)
 

 

 
𝑁4 

𝜉(𝜉 + 𝜂 − 1)

𝜆1(𝜆1 − 1)
 

 

 
𝑁5 

−𝜉𝜂

𝜆3(𝜆3 − 1)
 

 

 
𝑁6 

𝜂(𝜉 + 𝜂 − 1)

𝜆2(𝜆2 − 1)
 

 

 

Table 1.  Parametric quadratic shape functions for six-node triangular elements used for 

enrichment.  

 

When creating children elements with straight edges, the proposed mapping 

yields distorted children elements with constant Jacobians. Otherwise, the distortion of 

children elements is minimal, and only as a result of the curvature of the interface rather 

than inappropriate locations of their midpoints. Note that the parametric shape functions 

given in Table 1 can also be utilized in the global coordinates system. However, this 

representation in the local coordinates system can be more beneficial since it reduces the 

computational cost associated with constructing enrichment functions, and facilitates the 

numerical integration by using local quadrature points. 
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3.2.1) Enrichment for Weak Discontinuities 

Although the triangulation is not unique, this code follows the schemes shown in 

Figures 11 and 12 for the construction of enrichment for weak discontinuities. If a child 

node coincides with one of the parent nodes, no enrichment is attached to that node since 

that intersected node already yields the value of the field.  

 

 

Figure 11: Configurations of enrichment for weak discontinuities cutting elements on a 

corner node and an edge. Two children elements and three enriched nodes are generated 

in all three cases. 

 

 
 

Figure 12: Configurations of enrichment for weak discontinuities cutting elements on two 

of its edges. Three children elements and up to six enriched nodes are generated. 
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Using a similar mapping scheme as the one described at the beginning of this 

section for the one-dimensional example, we can hierarchically create higher-order 

(quadratic) distorted children elements as shown in Figure 13. Interfaces can cut a 

triangular element into either two triangular children elements, or one triangular and one 

quadrilateral sub-element. For the former case, the HIFEM algorithm decomposes further 

the quadrilateral sub-element to have only triangular children elements following one of 

the configurations shown in Figures 11 and 12.  

 

 

 

Figure 13. Hierarchical process of creating higher-order children elements for evaluating 

the enrichment function of a nonconforming six-node triangular element cut by two weak 

discontinuities: (a) configuration of interfaces; (b,c) children elements and enriched 

nodes at the first and second levels of hierarchy, respectively. 

 

3.2.2) Enrichment for Strong Discontinuities (Cracks) 

The HIFEM recursive algorithm can also accommodate higher-order polynomial 

enrichment functions along multiple strong discontinuities. A slightly different approach 

is used for the discretization of the children elements, though. Three new variations in the 

construction of the enrichment need to be implemented to the HIFEM algorithm.  

First, elements intersected by cracks but not containing a crack tip are treated in a 

similar fashion as elements cut by weak discontinuities. The algorithm generates a set of 

triangular sub-domains whose boundaries align with the crack geometry. However, in 

(a) (b) (c) 
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order to approximate the jump in the displacement field, the number of nodes (and thus, 

dofs) generated over crack interfaces will be double. Figure 14 shows the enrichment of 

two triangular elements intersected by straight cracks. In both cases, three additional 

nodes over the interface are required. Note that this configuration must be implemented 

to all 12 cases presented in the previous section (Figures 11 and 12).  

Second, elements containing crack tips are also subdivided into a set of triangular 

elements whose boundaries align with the crack geometry. In this situation, only one 

enriched node is generated over the crack tip, and this node is being shared by all 

children elements created. As shown in Figure 15, 3 or 4 children elements are 

constructed from parent elements containing crack tips depending on whether the crack is 

intersecting a corner node. 

Third, the critical √𝑟 behavior of the displacement field given in equation (7) is 

incorporated by using quarter-point crack tip isoparametric elements developed in [35]. 

The singularity around crack tips is reproduced by moving non-corner midpoint nodes 

closer to the node located at the tip. The new location will be one quarter of the length of 

the corresponding edge from the tip as shown in Figure 15. Note that more quadrature 

points are needed for the integration of these elements. 

 

 

 
(a) (b) 
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Figure 14: Examples of configurations of enrichment for elements cut by cracks: in (a), a 

crack intersects an edge and a node, and thus only two children elements and 6 enriched 

nodes are generated. In (b), two edges are cut by the crack, resulting in three children 

elements and 9 enriched nodes. In both cases, 3 additional nodes are required over the 

material interface to simulate the strong discontinuity. 

 

 

 
Figure 15: Configurations of enrichment for elements containing a cracks tip. In (a) and 

(b) three and four children elements are constructed from a crack intersecting a corner 

node and an edge, respectively. 

 

3.3) Higher-order HIFEM Implementation Issues. 

Number of cases for the construction of children elements. 

As mentioned before, the implementation of six-node triangular elements includes 

the creation of 12 cases for the construction of the children elements (see Figures 11 and 

12). While the number of cases is not a major issue in the implementation of quadratic 

elements, defining individually all possible cases when dealing with higher-order 

polynomials of degree 𝑝 > 2 can be problematic (e.g., 25 cases for cubic elements, 49 

cases for quartic elements).   

 

Scaling factor for higher-order HIFEM 

While the proposed formulation for the scaling factor (see equation (13)) 

effectively stabilizes the conditioning of enrichment constructed by linear elements, this 

(a) (b) 
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is not always true when dealing with quadratic elements. The gradient of the shape 

functions for enriched nodes close to a midpoint node has a different behavior than for 

those close to a corner node. Thus, applying a scaling factor to quadratic enrichment 

ameliorates the conditioning of the stiffness matrix, but it does not stabilize it. It must be 

noted, however, that the accuracy of the results presented in next chapters are not 

compromised by the condition number of the global stiffness matrix since a direct solver 

was used for all the computations. Still, the conditioning of the linear systems computed 

for the example problems was monitored to verify that the approximations were not 

compromised by a high condition number. 

 

Numerical integration for cracked domains. 

A special numerical integration scheme is used for the computation of the 

enrichment of elements containing the crack tip to achieve more accurate approximations. 

We build a polar mapping of the integrand functions on a triangle from a quadrature rule 

on a square via a geometric transformation. In this configuration, more gauss points are 

located relatively close to the crack tip than in any ordinary quadrature rule on a triangle. 

This quadrature scheme, found in the literature as ‘almost polar integration’ or ‘singular 

mapping’, has been proof to perform better in other FEM-based techniques [36], [34]. 

The classical Gauss quadrature is kept on elements not containing crack tip nodes to 

avoid unnecessary computational cost. 
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Effectiveness of enrichment for crack tips. 

While the configuration for the construction of enrichment for strong 

discontinuities described in the previous section is able to capture the discontinuous 

displacement field in a cracked domain, the accuracy of the HIFEM approximations is 

greatly dependent on the mesh employed. For example, consider two situations: (i) a 

crack tip is located at the centroid of an existing element, and (ii) a crack tip is in close 

proximity to the boundaries of the parent element. In (i), children elements are 

constructed with appropriate shapes and sizes, and are able to capture the high gradients 

close to the singularity. On the other hand, in (ii), children elements are unevenly 

distributed, which leads to a bad approximation of stress gradients. This issue is not 

mitigated by incorporating blending elements in a ring-shaped subdomain around the tip 

since in this approach only crack tip elements reproduce the singularity. Thus, the 

accuracy of the approximation on regions surrounding crack tips will rely upon the 

relative location of the tips with respect to the edges of the elements of all the levels of 

enrichment, regardless of the quadrature rule or blending strategy employed. 

In an attempt to improve the level of precision in the approximations, several 

strategies to hierarchically accommodate higher-order polynomial enrichment functions 

in the vicinity of crack tips were investigated. The optimal strategy to circumvent the 

issue mentioned above is depicted in Figure 16. This approach generates a high number 

of degrees of freedom in regions surrounding crack tips after creating the children 

elements resulting from crack paths. Pseudo-interfaces are defined from the crack tip to 
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nodes of the nonconforming mesh in such way that a considerable number of enriched 

nodes are placed in all directions. The materials properties remain the same on both sides 

of the intersected elements, since the sole reason for adding these pseudo-interfaces is to 

generate more enriched nodes in the critical zones around crack tips.  

 

Figure 16: Strategy to improve the enrichment around crack tips. Pseudo interfaces are 

added sequentially to a small region containing a crack tip to increase the number of 

enriched nodes in its surroundings. 

 

Two remarks need to be made for this approach. First, the enrichments for 

elements other than the parent crack tip element are constructed using the regular six-

node triangular Lagrangian element. Blending elements are not considered since 

implementing them would require manipulation of enriched nodes. Moving these nodes 

closer to the tip to reproduce the singularity might be a daunting and inadequate task due 

to the varied distributions, sizes, and aspect ratios of elements surrounding the tips. 

Second, regardless of the sequence in which the pseudo-interfaces are added, a 

concentration of enriched nodes in a small region is inevitable. This uneven distribution 



36 

 

of enrichments results in configurations that are more sensible to the stress singularities 

on only a portion of the enriched region.  
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Chapter 4:  Convergence Study 

 

 In this chapter, we investigate the accuracy and convergence of HIFEM with 

respect to standard FEM. We study the 𝐿2- and 𝐻1- norms of the error for the higher-

order HIFEM benchmark problems simulations (a similar work for linear enrichment can 

be found in [28]). Two second-order HIFEM approximations with straight and curved 

material interfaces are presented in the following section. The first benchmark problem 

corresponds to a thermal problem with heat generation, and the second one models the 

stresses in a solid mechanics problem. To analyze the accuracy and convergence rate of 

this method, we study the variations of the 𝐿2- and 𝐻1-norms of the error defined as 

follows: 

 

𝐸𝐿2(Ω) = √∫‖𝑢 − 𝑢ℎ‖2𝑑Ω
Ω

 

𝐸𝐻1(Ω) = √∫(‖𝑢 − 𝑢ℎ‖2 + ‖∇𝑢 − ∇𝑢ℎ‖2)𝑑Ω
Ω

. 

(14) 

 

As shown in the following benchmark problems, the higher-order HIFEM yields a 

similar precision and convergence rate as those of the standard FEM with respect to both 

norms of the error. 
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4.1) Benchmark Problems: Heat Conduction Example 

In this first example problem, we study the performance of six-node triangular 

elements for the HIFEM simulation of the conductive heat conduction in an adhesive 

bonded joint (see Figure 17a for a full description of the problem). The thermal 

conductivities of the steel adherends and the adhesive layer are 𝜅st = 50.0 W/m K and 𝜅st 

= 1.00 W/m K, respectively. The boundary conditions consists of the prescribed 

temperatures 𝑢̅ = 0 °C and 𝑢̅ = 100 °C along the bottom and top edges of the domain, 

respectively, while the side edges are insulated. A linearly varying heat source of 𝑄st = 

120𝑦 W/m
2
 is also applied to the adherends (𝑄ad = 0 W/m

2
). The analytical solution for 

the temperature field in this problem is given by 

 

  𝑇 =  −0.4𝑦3 + 43.83𝑦 

𝑇 =  568.9𝑦 − 2786.7 

𝑇 = −0.4𝑦3 + 45.09𝑦 + 49.14 

0 cm ≤ 𝑦 ≤ 5.2 cm 

5.2 cm ≤ 𝑦 ≤ 5.3 cm 

5.3 cm ≤ 𝑦 ≤ 10 cm 

(15) 

 

The HIFEM approximation of the thermal response of this problem using a 16x8 

structured mesh of six-node triangular elements is depicted in Figure 17b. The figure also 

illustrates the temperature profile in the y-direction, which clearly demonstrates the 

ability of the second-order HIFEM to capture gradient discontinuities in the temperature 

field. 
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Figure 17. First convergence study problem: (a) domain geometry, material properties 

and boundary conditions for a system of two metallic sheets bonded by a thin adhesive 

layer. Additionally, the nonconforming and children elements belonging to the highest 

level of hierarchy are depicted in the inset. (b) HIFEM approximation of the temperature 

field using a 16x8 structured mesh of six-node triangular elements for discretizing the 

domain. 

 

(a) 

(b) 
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Figure 18.  Convergence study for problem presented in Figure 17. Variations of the 𝐿2-  

and 𝐻1- norms of the error versus the element size (h) for the second-order HIFEM 

approximation. 

 

Figure 18 provides the variations of the 𝐿2- and 𝐻1-norms of the error for the 

second-order HIFEM approximation of the temperature field versus the element size (h). 

For this benchmark problem, we use four nonconforming structured meshes of six-node 

triangular elements with resolutions 8x4, 16x8, 32x16, and 64x32 to discretize the 

domain. The middle row of elements in all these meshes is cut by both the upper and 

lower adhesive-adherend interfaces as depicted in Figure 17a. Under these conditions, 

higher-order HIFEM algorithm creates two levels of quadratic enrichment that yields 

optimal convergence rates with respect to both norms of the error, i.e., similar to those of 

the second-order standard FEM with conforming meshes (𝐸𝐿2(Ω) = 3, 𝐸𝐻1(Ω) = 2). 
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4.2) Benchmark Problems: Solid Mechanics (Plane Stress) Example 

In this example, we compare the accuracy and convergence rates of the second-

order HIFEM with those of the standard FEM for simulating the deformation response of 

the plane stress problem shown in Figure 7a. The 100 𝜇m x 100 𝜇m domain consists of 

an aluminum matrix (𝐸al = 70 GPa, 𝜈al = 0.334) with embedded iron (𝐸fe = 200 GPa, 𝜈fe = 

0.17) and silicon (𝐸si = 160 GPa, 𝜈si = 0:28) circular inclusions. A compressive uniform 

load of 𝑓 ̅= 50 kN/m is applied along the top edge while its bottom edge is constrained 

against horizontal and vertical displacements. Figure 19b illustrates the second-order 

HIFEM approximation of the normal stress field in the x-direction using an 80x80 

structured mesh of six-node triangular elements for modeling the problem. Note that due 

to the close proximity of the embedded inclusions, several nonconforming elements are 

cut by two material interfaces in this simulation.  

The Variations of the 𝐿2- and 𝐻1- norms of the error versus ℎ for the second-

order HIFEM and the standard FEM approximations of the deformation response of this 

second example problem are depicted in Figure 20. Five structured meshes of six-node 

triangular elements with resolutions 10x10, 20x20, 40x40, 80x80, and 160x160 are used 

to create discretized models for the HIFEM simulations. Conforming FE meshes with 

similar levels of refinement are used to discretize the domain in the standard FEM 

analyses, although creating finer elements in the vicinity of inclusions located close to 

one another is inevitable. Since there is no analytical solution to this problem, a second-

order standard FEM approximation using a highly refined conforming FE mesh with max 

(ℎ) ≈ 0.12 𝜇m (688,731 elements) is adopted as the reference solution for the error 
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analysis. As shown in Figure 20, the HIFEM yields a similar precision and convergence 

rate as those of the standard FEM with respect to both norms of the error for simulating 

this problem. 

 

 
 

 

 
 

Figure 19.  Second convergence study problem: (a) domain geometry, material 

properties, and boundary conditions; (b) and (c) second-order HIFEM approximation of 

the plane stress field in the x- and y- directions respectively, using an 80x80 structured 

mesh of six-node triangular elements for modeling the problem. 

(a) 

(b) (c) 
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Figure 20.  Comparison between the variations of the 𝐿2-  and 𝐻1- norms of the error 

versus the element size (h) for the second-order HIFEM and standard FEM simulations of 

the deformation response of the second convergence study problem shown in Figure 19. 
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Chapter 5:  Application Problems 

 

In this chapter we demonstrate the application of the higher-order HIFEM for 

simulating the thermal and deformation responses of several engineering problems with 

complex morphologies. Higher-order elements are more appropriate for simulating the 

stress field in structural problems compared to linear triangular elements. For this reason, 

all the simulations are conducted using structured FE meshes composed of six-node 

triangular elements for discretizing the domain.  

In the following application problems, the mesh-independent approach of the 

second-order HIFEM algorithm provides an easy-to-implement computational tool for 

the simulation of highly intricate morphologies. The HIFEM automated framework can 

easily handle Dirichlet boundary conditions along the side edges of this domain, and 

successfully capture sites of stress concentrations.  

 

5.1) Application 1: Thermal and Mechanical Responses of a Porous Media 

FE simulation of porous materials has been traditionally addressed using overly 

simplified microstructures. Issues associated with porous structures, such as overlapping 

interfaces, are frequently excluded or approximated to a simpler geometry. In our first 

application problem, we show the temperature and stress fields for a titanium matrix with 

pores arranged in a high level of complexity. In this example, the HIFEM algorithm 

evaluates the thermal response and the stress fields for two similar porous microstructures 



45 

 

of a titanium foam, as shown in Figures 21a and 22a, respectively. The titanium has a 

thermal conductivity of 𝜅ti = 21.9 W/m K, an elastic modulus of 𝐸ti =110 GPa, and a 

Poisson ratio of 𝜈ti = 0:33. To construct HIFEM models of this porous microstructure, 

circular shape pores are hierarchically added to the 100x100 background structured FE 

mesh at arbitrary locations, resulting in pores that are located in close proximity and even 

overlapping with one another, as depicted in the insets of Figure 10a. 

The boundary conditions of the thermal problem consists of the fixed temperature 

𝑢̅ =100 °C along the side edges, a constant heat flux of 𝑞̅ = 170 W/m K along the bottom 

edge, and a convective upper boundary with the heat transfer coefficient ℎ̅ = 20 W/m K 

subjected to an ambient temperature of 𝑢∞ = 21 °C (Figure 21a). The HIFEM 

approximation of the temperature field in this porous titanium composite is illustrated in 

Figure 21(b). Note that unlike XFEM/GFEM, the HIFEM can easily handle the Dirichlet 

boundary conditions along the side edges of this domain [23]. 

To simulate the mechanical behavior of the porous titanium microstructure shown 

in Figure 22(a), we assume the plane stress condition with a fixed displacement constraint 

along the bottom edge and constant applied tractions of 𝑓 ̅ = 3.5 kN/m along the side 

edges of the domain. The deformed configuration and the HIFEM approximations of the 

x- direction normal stress and shear stress fields are depicted in Figures 22b and 22c, 

respectively. As shown in those figures, the second-order HIFEM can successfully 

capture sites of stress concentrations in this plane stress problem. 
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Figure 21. First application problem: (a) 4.5 mm x 4.5 mm porous titanium and boundary 

conditions of the thermal problems; (b) second-order HIFEM approximation of the 

temperature field. 

 

 

(b) 

(a) 
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Figure 22. First application problem: (a) 5 mm x 5 mm porous titanium microstructure 

and boundary condition of the plane stress linear elasticity problem; (b,c) second-order 

HIFEM simulation of the normal and shear stresses, respectively. 

(b) 

(a) 

(c) 
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5.2) Application 2: Pitting Corrosion Induced Stress Concentrations 

Corrosion pits induce stress concentrations and thus serve as sites of crack 

nucleation, which can considerably accelerate the mechanical failure in structures such as 

aircrafts, bridges, and pipelines that are prone to the pitting corrosion phenomenon. Due 

to the complex evolving morphology of corrosion pits, creating conforming FE meshes to 

simulate the mechanical behavior of the corroded material with the standard FEM can be 

a challenging task. In contrast, the mesh-independent approach of the HIFEM provides an 

easy-to-implement computational tool for the treatment of this problem.  

In this example problem, we demonstrate the application of the higher-order 

HIFEM for evaluating the stress field in a 20 cm x 5 cm axially loaded steel beam (𝐸st = 

200 GPa, 𝜈st = 0.355) subjected to the pitting corrosion, as shown in Figure23(a). The 

simulated stress concentrations in the corroded beam of Figure 23(a) are illustrated in 

Figures 23(b) and 23(c), where a 360x90 structured FE mesh is implemented to discretize 

the bounding box of the domain. As shown in the insets of these figures, the HIFEM can 

easily capture the stress concentrations in the vicinity of interacting pits, i.e., in elements 

cut by two or more intersecting pit boundaries. 
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Figure 23. Second application problem: (a) 20 cm x 5 cm axially loaded steel beam 

subjected to pitting corrosion; (b,c) HIFEM approximation of normal stresses in the x- 

and y- directions. 

 

5.3) Application 3: heterogeneous material mechanical behavior 

In this example problem, we implement the HIFEM to simulate the mechanical 

behavior of a 4.5 𝜇m x 4.5 𝜇m composite with copper matrix and randomly oriented 

embedded carbon fibers (𝐸f = 300 GPa, 𝐸m = 85 GPa, and 𝜈f = 𝜈m = 0.3), as shown in 

(b) 

(a) 

(c) 
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Figure 24(a). The left edge of this heterogeneous material is constrained against 

horizontal and vertical displacements while a uniform distributed load of 𝑓 ̅= 30 N/m is 

applied along its right edge. Figures 24(b) and 24(c) illustrate the HIFEM approximation 

of the normal stress fields using a 100x100 structured FE mesh for discretizing the 

domain. Note that despite the intricate hetero-structure of this composite material system, 

the HIFEM provides the ability to simulate the stress concentrations along the fiber-

matrix interfaces. 

 

5.4) Application 4: Stationary Crack on a Heterogeneous Domain 

In this final application example, we present the implementation of the HIFEM 

algorithm to linear elastic fracture mechanics problems. Figure 25 depicts two 

heterogeneous microstructures comprised of randomly distributed circular inclusions with 

a stationary crack. The two different 10 𝜇m x 10 𝜇m domains have the following material 

properties: 𝐸m = 200 GPa, 𝐸in = 300 GPa; 𝜈m = 0.33, 𝜈in = 0.25. The bottom edge of this 

heterogeneous material is constrained against horizontal and vertical displacements while 

a uniform distributed load of 𝑓 ̅= 50 N/m is applied along the top edge. As shown in both 

insets, the element containing the crack tip is further discretized in smaller children 

elements with the crack tip node common to all of them. In addition, the strong 

discontinuity is reproduced by a double number of dofs is introduced along the crack.  
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Figure 24. Third application problem: (a) 4.5 𝜇m x 4.5 𝜇m of a copper matrix carbon 

reinforced composite microstructure and boundary conditions; (b,c) HIFEM 

approximation of normal stresses using a 100x100 structured FE mesh for discretizing the 

domain. 

(b) 

(a) 

(c) 
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Figure 25. Fourth application problem: Simulation of two cracked heterogeneous 

domains using 51x51 structured FE meshes. (a, b) Normal stress distributions in the x- 

and y- directions with mesh insets for a straight and a curved crack, respectively. 

  

(b) 

(a) 
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Chapter 6:  Conclusions and Future Work 

 

6.1) Conclusions 

This thesis describes the development of a mesh-independent FEM technique that 

eases the laborious and time-consuming process of modeling problems with complex 

and/or evolving morphologies by automatically introducing hierarchical enrichment in 

regions surrounding the discontinuities. The algorithm for a hierarchical interface-

enriched finite element method (HIFEM) was improved to include the evaluation of 

enrichment functions of higher-order Lagrangian elements. While the focus of this thesis 

is the implementation of six-node triangular elements and its applications, the proposed 

approach is general and can be expanded to other types of higher-order Lagrangian 

elements. The higher-order HIFEM algorithm relies on the hierarchical construction of 

distorted children elements in nonconforming elements cut by multiple material 

interfaces for the numerical approximations of domains with weak discontinuities. A 

special mapping that maintains a constant Jacobian was introduced to evaluate distorted 

children elements in the local coordinates system. This approach minimizes the 

computational cost and obviates the difficulties associated with the construction of 

distorted integration elements.  

For the simulation of cracked domains, additional enriched nodes are added along 

crack paths to reproduce the strong discontinuity, and triangular quarter point elements 

are constructed around crack tips to reproduce the singularity of the stress fields. 
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Furthermore, pseudo-interfaces are hierarchically introduced to a small region around the 

tips to increase the number of enriched nodes and achieve a more accurate 

approximation.  

A convergence study was performed to show that the second order HIFEM yields 

a similar precision and convergence rate as those of the standard FEM with conforming 

meshes of quadratic triangular elements. The higher-order HIFEM was also applied in the 

mesh-independent modeling of the thermal and structural responses of varying 

engineering problems with complex weak and strong discontinuities. Example of realistic 

simulations using the proposed method, including a porous titanium composite, a 

cantilever beam subjected to pitting corrosion, a heterogeneous metal matrix composite, 

and a stationary crack were also presented.  

 

6.2) Future Work  

Geometrical representation of the discontinuities 

The Lubachevsky-Stillinger algorithm (LS algorithm) can be employed to 

generate virtual microstructures modeled with the HIFEM (see Appendix A). To improve 

the geometrical representation of weak and strong discontinuities, the LS algorithm can 

be combined with Non-Uniform Rational B-Splines (NURBS). Besides describing a 

more realistic geometry, NURBS would allow the HIFEM to directly import CAD 

drawings, which can significantly automate the process of incorporating embedded 

particles, as well as voids, in microscopic models.  
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Hybrid approaches for crack simulations 

Numerical techniques, such as the Level Set Method (LSM), could be 

incorporated into the HIFEM algorithm to ease the handling of evolving complex 

geometries in heterogeneous domains. In addition, other mesh-independent techniques, 

such as the extended finite element method (XFEM) could be integrated with the HIFEM 

to achieve improved precision and efficiency for certain problems. In a “hybrid 

XFEM/HIFEM” approach, the HIFEM enrichment could still be used to capture weak 

discontinuities (e.g., inclusions and voids) and part of strong discontinuities (e.g., crack 

paths). The XFEM enrichment could be blended with the HIFEM enrichments at the first 

level of hierarchy to provide an accurate approximation of stress concentrations in 

regions surrounding crack tips. This hybrid approach would be attractive to analyze the 

perturbation of the local stress field near crack tips and the behavior of cracks 

propagating quasi-statically in complex microstructures. 

  

Optimization problems 

The HIFEM is an appropriate method for the computational design of material 

microstructure to achieve improved performance. Its recursive algorithm can easily 

automate the modeling process of discrete optimization problems to match desired 

material properties with the integration of numerical tools, such as the genetic algorithm 

(GA). An example of this could be the virtual characterization and optimization of 

functionally graded composite microstructures.  
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Appendix A: Programs Assisting the HIFEM Code. 

 

2D Mesh Generator 

The graphical user interface (GUI) presented in Figure 27 creates ‘.inp’ files, 

which are required as input to run the HIFEM Matlab code. This program generates 

structured nonconforming triangular meshes for two-dimensional problems following the 

Abaqus standard format (See Figure 26b). The user needs to define the dimensions of the 

domain and grid number in x and y direction, as well as the nature of the problem (heat 

conduction or structural) with the respective material properties and boundary conditions. 

While the configurations for the boundary conditions are restricted to simple Neumann 

and Dirichlet prescribed constant values, the HIFEM code has the capability to redefine 

such values to more complex, but realistic conditions.  

             
 

 

(a) (b) 

Figure 26. (a) Example of a structured nonconforming mesh representing a rectangular 

domain, and (b) example of an input file generated by the GUI shown in Figure 27. 
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Figure 27. Matlab GUI to generate input files for the HIFEM code for thermal and 

structural problems using either linear (three-node) or quadratic (six-node) triangular 

elements.  

 

Ellipsoidal inclusions generator 

To generate random closely packed inclusions in a base material matrix we use an 

algorithm called Lubachevsky-Stillinger algorithm (LS algorithm) that simulates the 

process of compressing an assembly of particles as shown in Figure 28. The information 

used includes the coordinates of the center of each shape, and their corresponding radius. 
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No additional information is required if the geometry of the problem consists of only 

circular and/or ellipsoidal inclusions. 

 

Fig. 28. Example of closely packed circles generated from the LS algorithm. 

 

 

Inclusions geometry generator 

For more realistic geometrical features, a set of arbitrary shape inclusions can be 

obtained from a scanning electron microscope (SEM) image of actual composite material.  

To accomplish this, a number of boundary points coordinate are identified for each 

inclusion in the figure. Then, using these data, the boundary curves are interpolated and 

normalized so the center is the origin and then each inclusion. Finally, the resulting 

vectors containing the geometry of the inclusions are combined with the coordinates and 

scale obtained from the LS algorithm to distribute them randomly in a given domain. 

Note that any given inclusions geometrical configuration (ellipsoidal or from SEM 

image) input to the HIFEM code can be manipulated in terms of size, volume fraction 

and/or number of particles.  
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(a) (b) 

Fig. 29. SEM image of composite material. (a) Control points are taken around the 

boundary of each inclusion, and (b) the geometry resulting from the control points.  

 

 

 


