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Abstract

In epidemiologic studies, researchers often calculate the relative risk or
the odds ratio in order to quantify associations between a disease and
a covariate. For decades, epidemiologists have utilized the “rare disease
assumption” in order to simplify calculations by treating the odds ratio
and the relative risk as approximately equal. In genetic epidemiology, the
rare disease assumption is frequently made under various genetic condi-
tions. However, in the context of genetic epidemiology, this assumption
may merely be a necessary, but not a sufficient, condition. Thus rely-
ing on the rare disease assumption may lead to unintended consequences
including, but not limited to, misrepresented power levels, inflated Type
I error rates, and increased bias of estimators. I explore various genetic
scenarios through case studies toward the goal of defining circumstances
under which the rare disease assumption is sufficient and circumstances
under which the rare disease assumption is merely necessary. These case
studies show that the rare disease assumption can sometimes leads to
good results, sometimes to bad results, and sometimes to ugly results. In
particular, I explore three problems that are split into three sections based
on the articles which inspired the discussion of these problems.

The first problem concerns testing for association between a binary disease
and a single nucleotide polymorphism (SNP) marker using case-control
data. Specifically, I consider data simulated from case/control probabil-
ities derived based on the rare disease assumption and data simulated
from case/control probabilities derived independently of the rare disease
assumption. The power analysis based on the simulation study will show
that association testing methods generally have higher power when data
are simulated independently of the rare disease assumption, regardless of
whether the underlying disease is rare or common.

The second problem deals with Hardy-Weinberg testing for a population
by testing for Hardy-Weinberg equilibrium in controls only, as is custom-
ary in genetic epidemiology. If few individuals in a population have a
disease, then the control group should be almost equivalent to the entire
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population. Results show, however, that this method will lead to inflated
Type I error rates and that the rare disease assumption is necessary, but
not sufficient, for this method to be used.

The final problem involves fitting models based on paired mother/child
data for detecting maternal effects. By fitting a logistic regression model,
estimates of population relative risks can be found and analyzed. It has
been shown that appreciable biases of these estimates still exist even when
the disease considered is rare. A lengthy discussion of this problem is
follows, indicating that the rare disease assumption is likely not sufficient
to warrant the use of these methods.
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Chapter 1: Introduction

1.1 Introduction

This thesis delves into genetic epidemiology, which studies the effect of genetics on

diseases. This is an important area of research as diseases are often passed down from

parent to child. Before discussing the various genetic factors and their relationship

with a binary disease, however, it is appropriate to step back and explain the big

picture from a general perspective before diving into genetics and the specific research

problems presented in this thesis.

In order to conduct any sort of statistical analysis, one must possess data on which

to conduct the analysis. As such, the means by which one collects data is important.

Two main methods by which an investigator can collect data are experiments and

observational studies. In an experiment, the investigator manipulates a variable of

interest to gauge its effect on another variable. For example, a physician interested in

the impact of a new drug on a disease may split patients into two groups, administer

the new drug to one group, and administer a placebo to another group. Observational

studies, however, are conducted when it is unethical, difficult, or impossible to conduct

an experiment. For example, if one wanted to research the impact that living under

power lines had on incidence of cancer, it would be unethical to randomly select
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families to live under power lines in hopes that they contracted cancer at a higher

rate than families who do not live under power lines. As such, an observational study

would be appropriate - rather than manipulating who lives underneath power lines,

one could simply research individuals who already live under power lines and compare

the incidence of cancer in that group to individuals who already do not live under

power lines.

There are many types of observational studies. A survey, for example, is a very

common type of observational study. In epidemiology, when an investigator is inter-

ested in finding a relationship between one variable and whether or not someone has

a disease, one might conduct a “case-control” study. In case-control studies, investi-

gators have two sets of observations: “cases” and “controls.” Our variable of interest

must be binary; we refer to observations that possess the characteristic of interest

as cases whereas we refer to observations that do not possess the characteristic of

interest as controls. In epidemiologic studies, cases are individuals affected by the

disease of interest and controls are individuals not affected by the disease of interest.

For example, if we are interested in studying lung cancer, we would call an individual

who has lung cancer a “case” and an individual who does not have lung cancer a

“control.”

Epidemiologic studies lend themselves to a few quantities of interest that inves-

tigators seek to calculate in an attempt to quantify association between whether or

not an individual has a disease and some other variable. Among these quantities are

the “relative risk” and the “odds ratio.”

The relative risk, also called the “risk ratio,” is the probability of one having the

disease given that they are in the “at-risk” group divided by the probability of one

2



having the disease given that they are not in the “at-risk” group. The “at-risk” group

is the group exposed to the characteristic of interest. For example, if the independent

variable is smoking, we might say that the “at-risk” group consists of smokers whereas

individuals who do not smoke are in the “not at-risk” group. The odds ratio is, as

the name suggests, a ratio of two odds. Specifically, the odds ratio is the ratio of

the odds of having the disease given being “at-risk” to the odds of having the disease

given being “not at-risk.”

Examining these definitions within a table may illustrate exactly what each defi-

nition means. Consider Table 1.1.

Table 1.1: A 2-by-2 table of case-control and exposure data.

Exposed Not Exposed Total

Case pA pB pA + pB

Control pC pD pC + pD

Total pA + pC pB + pD pA + pB + pC + pD = 1

Assume that pA, pB, pC , and pD are parameters indicating the true proportion of

the population that falls into each category. Then, the relative risk, denoted RR, is

given by:

RR =
P (case|exposed)

P (case|not exposed)

=
pA

pA + pC

/
pB

pB + pD
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The odds ratio, denoted OR, is given by:

OR =
P (case|exposed)

P (control|exposed)

/
P (case|not exposed)

P (control|not exposed)

=

pA
pA+pC
pC

pA+pC

/ pB
pB+pD
pD

pB+pD

=
pA
pC

/
pB
pD

The rare disease assumption was first discussed by Jerome Cornfield of the Na-

tional Cancer Institute. Cornfield noted that one can use the odds ratio to approx-

imate the relative risk for rare diseases. For purposes of clarity, future references to

the rare disease assumption will be based on the following phrasing of the rare disease

assumption:

If the prevalence of a disease is sufficiently rare, then the odds ratio is
approximately equal to the relative risk.

In genetic epidemiologic studies, the goal is to study and explain the relationship

between disease status and various genetic factors. Whereas diseases like asthma,

cancer, and diabetes are common, there are a significant number of rare diseases.

Many of these rare diseases are caused (or believed to be caused) by genetic factors.

As such, when exploring whether or not an association between disease and genetic

factors exists, it is unsurprising that the rare disease assumption is applied in genetic

epidemiologic studies.

In genetic studies, it can be shown that treating the odds ratio as approximately

equal to the relative risk is tantamount to saying that the distribution of genotypes

in the control population is equivalent to the distribution of genotypes in only the
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entire population. Clearly, this simplifies many calculations. With rare diseases,

a case-control study generally overrepresents the proportion of individuals who are

cases within a population.

As with all assumptions, however, there are potential drawbacks. For example,

in situations where one relies on a Normal distribution for data that clearly does not

follow a Normal distribution, we might see decreased power of a statistical test. The

rare disease assumption is not immune to these deviations. In particular, we note

that relying solely on rarity of a disease in genetic contexts can lead to decreased

power of a statistical test, increased type I error of a statistical test, or increased bias

in estimators. The subject of this thesis is to examine the conditions under which

the rare disease assumption leads to positive or negative side effects. Ultimately, it

is shown that in order to treat the odds ratio as approximately equal to the relative

risk in the context of genetic epidemiologic studies, knowing that a disease is rare is

necessary but is not entirely sufficient. Potential other factors are explored toward

the goal of establishing the conditions under which the odds ratio approximates the

relative risk in a genetic context.

1.2 Terminology

There are a substantial number of technical terms that must be understood in

order to comprehend many of the results in this thesis. As such, terminology that is

related to genetic epidemiology and relevant to this work can be found here. Certain

terms that are more appropriately covered elsewhere can be found in later chapters.

In genetic epidemiology, we seek to discover the relationship between one’s ge-

netic makeup and a disease. The genetic makeup of living beings is stored within
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deoxyribonucleic acid, more commonly referred to as DNA. DNA is made up of many

different molecules, the most important of which are nucleotides. There are four dif-

ferent types of nucleotides found in DNA: adenine, cytosine, guanine, and thymine,

which are frequently abbreviated as A, C, G, and T, respectively. We often represent

DNA as a sequence of these nucleotides. Consider taking a sequence of DNA from

two individuals at the same location in the genome. For example, let one individ-

ual have sequence GATTC and the other individual have sequence GACTC. We see that

these sequences are almost identical, however they differ at the third nucleotide in this

sequence. This third nucleotide is referred to as a single nucleotide polymorphism,

or a SNP. In genetic epidemiology, the goal is to look at this SNP and see if there

appears to be a link between disease status and the nucleotide found at that location.

For example, if 80% of the population has C in the third location above and 20%

of the population has T in the third location above, and a higher proportion of the

individuals who have T in that location have a disease than those who have C, this

might suggest that the disease is associated with the SNP in question.

Being able to locate these SNPs is important so that researchers can establish

relationships between particular SNPs and diseases. To assist with this, there are

certain locations on the genome that have a known and documented DNA sequence,

referred to as genetic markers. As such, researchers can more precisely define where

a SNP of interest is by indicating its location relative to these genetic markers. A

human’s DNA is organized into 23 chromosomes, where each chromosome is identified

as 1, 2, . . ., 22, and a sex chromosome. Though we do not refer to it as such, this

sex chromosome can be thought of as the 23rd chromosome. The sex chromosome

determines the biological sex of a child. A particular location on a specific chromosome
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is called a locus. We refer to these locations as genetic markers. While we can more

precisely define a particular location on a given chromosome, the results in this thesis

will be generalizable to any locus, thus this will suffice for this thesis.

Consider some locus, called L. L refers to a specific location on a specific chro-

mosome. Since one’s genetic makeup is inherited from his/her biological mother and

father, then the genetic makeup at locus L in a child can be thought of as a combi-

nation of the genetic makeup of the father at locus L and the genetic makeup of the

mother at locus L. At each locus, an individual has two alleles, where one is inherited

from each parent. An allele is a variation of a gene and, for a SNP, can take on one of

two forms: A and a. According to Gregor Mendel’s Law of Segregation, each parent

randomly passes exactly one of their two alleles to their child so that the child will

inherit one allele from the father and one allele from the mother. More complicated

scenarios exist where a gene takes more than two forms, but within this thesis, I as-

sume that there are only two possible alleles at a given locus. In this case, we refer to

the locus as diallelic. For simplicity, we assume that all loci being considered within

this thesis are diallelic.

If an individual inherits two copies of allele A from his/her parents, then we say

that individual has genotype AA. If an individual inherits one copy of allele A and

one copy of allele a, we say that individual has genotype Aa. Genotype aa is defined

similarly. However, we are often interested in the physical manifestation or result

of having a particular genotype. A phenotype is the set of all observable traits and

characteristics of an organism. In many cases, an individual’s genotype will influence

that individual’s phenotype. For example, a human’s brown eyes is part of a human’s

phenotype. In genetic epidemiology, researchers study disease status as part of a
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human’s genotype and are interested in whether or not a relationship exists between

one’s genotype and one’s phenotype.

In a diallele SNP, one allele is usually seen more frequently than the other. We

generally write A to be the more common allele and a to be the less common allele,

and refer to a as the minor allele. The frequency of a in a population is called the

minor allele frequency. In the context of diseases, the minor allele a is usually the

allele considered to put a person “at risk” of having a disease. Let RR1 be the relative

risk of having the disease given one copy of at-risk allele a compared to having the

disease given zero copies of at-risk allele a and let RR2 be the relative risk of having

the disease given two copies of at-risk allele a compared to having the disease given

zero copies of at-risk allele a. RR1 and RR2 are known as the genotypic relative risks.

The relationship between RR1 and RR2 gives rise to multiple genetic models.

There are an infinite number of genetic models as there are an infinite number of

values that RR1 and RR2 can take on, but there are four models that are studied

particularly frequently: dominant, recessive, additive, and multiplicative. Consider

a SNP that determines whether or not one contracts breast cancer and let a be the

at-risk allele. If an individual with genotype Aa or aa will necessarily have breast

cancer, then having breast cancer is a dominant trait, as the presence of one or two

at-risk alleles means an individual will contract breast cancer. In a dominant model,

RR1 = RR2 = γ. If, on the other hand, an individual with genotype AA or Aa

will certainly not have breast cancer, we say that having breast cancer is a recessive

trait, as one can only have breast cancer if he/she has two copies of a. In a recessive

genetic model, RR1 is 1 and RR2 is γ, where γ > 1. One can also define a relationship
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between the genotypic relative risks when a model is additive (that is, the RR1 = γ

and RR2 = 2γ − 1) or multiplicative (that is, RR1 = γ and RR2 = γ2).

Although there are intuitive explanations for dominant, recessive, additive, and

multiplicative models, genetic diseases need not behave according to these models.

Since RR1, RR2 ∈ R+ and genetic models are defined by the values of RR1 and RR2,

we can define many more genetic models. For example, later in this thesis we consider

the situation where RR1 = 1.3 and RR2 = 1.4, which falls somewhere in between a

purely dominant model and a purely additive model.

1.3 Structure of Thesis

Within the context of genetic epidemiology, we are interested in detecting a rela-

tionship between genotype and disease status. The rare disease assumption is relied

upon in numerous circumstances where its usage makes analysis of genetic data sim-

pler or even possible. This thesis provides an exploration of the rare disease assump-

tion in such situations and the subsequent unintended effects toward the ultimate goal

of demonstrating that rarity of a disease is necessary but not sufficient to warrant

use of methods outlined in this thesis. As such, the remainder of this thesis is split

into two body chapters and a lengthy discussion in the conclusion based on three

applications of the rare disease assumption as it currently stands in order to assess

these unintended effects:

• In Chapter 2, I discuss a number of statistical tests derived to detect an associ-

ation between two categorical variables. Most of these these have been derived

specifically to deal with genetic epidemiologic data and have been applied to

detecting an association between binary disease status and genotype.
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• In Chapter 3, I discuss Hardy-Weinberg equilibrium. In particular, I address the

situation where, within a case-control study, investigators may test for Hardy-

Weinberg equilibrium in controls only as a means to test for Hardy-Weinberg

equilibrium in the entire population.

• In Chapter 4, I discuss the use of case-mother/control-mother pairs in an at-

tempt to quantify the risk of particular genotypes as well as analyze the impact

of maternal genetic effects on children. I examine the use of the logistic regres-

sion model to analyze these case-mother/control-mother pairs.

As the name “The Good, The Bad, and The Ugly” suggests, there will be both positive

and negative aspects to the rare disease assumption: the “good” focuses on where

the rare disease assumption improves the accuracy and reliability of statistical work;

the “bad” entails where the rare disease assumption has a slightly negative impact;

the “ugly” refers to situations where the rare disease assumption is unwarranted and

its use gravely impacts the statistical analyses in question.
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Chapter 2: Association Testing Using Case-Control Data

2.1 Introduction

In the context of testing the relationship between the genotypes of a genetic marker

and a binary disease outcome (i.e. affected/unaffected), one might check for whether

the presence of the disease is associated with some particular genotype(s). Consider

a single nucleotide polymorphism (SNP) with alleles A and a, where allele a is the

minor allele. Typically, the minor allele is considered to be the allele of interest as it

may be the at-risk allele itself or is in linkage disequilibrium with a disease-causing

locus.

2.2 Overview of Methods for Detecting SNP-Binary Disease
Association

When testing for an association between two categorical variables, many turn to

significance tests. Perhaps the simplest and most common method of testing for an

association between two categorical variables is the chi-squared test. Though the

chi-squared test is robust in detecting associations, the chi-squared merely tests for

the existence of any relationship (Cornfield, 1951). More powerful tests have been

developed within the context of genetic epidemiology that take into account more
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information, such as the trend of relative risks. We consider the Cochran-Armitage

trend test (Agresti, 2002), the maximum of the three most popular CATT settings

(Freidlin et al., 2002), the genetic model selection method (Guo and Thompson, 1992),

and the maximin efficiency robust test (Zheng et al., 2006).

2.2.1 Cochran-Armitage Trend Test and MAX3

As mentioned above, the chi-squared test is robust to detecting associations be-

tween two categorical variables. However, noting that there appears to be some

relationship is not the same as providing inferences as to the direction of that rela-

tionship, merely that one exists. For example, in the context of a case-control study,

the results of a chi-squared test may indicate that the binary outcome of disease may

not be independent of the genotypes of individuals in the study. However, the rela-

tionship may be that an individual with genotype AA (or Aa or aa) is likelier to have

the disease than other individuals. The chi-squared test provides no information as

to details of this relationship. If a is the at-risk allele, then it is reasonable to believe

that a person having two copies of the at-risk allele would have a risk of contracting

the disease that is as high, or higher, than a person having only one copy of the at-risk

allele - that is, the chi-squared test fails to consider the “trend” of relative risks.

The Cochran-Armitage Trend Test (CATT) serves to address this issue. This

test was designed for a 2 × I table where there are I different categories. For our

purposes, I = 3 where each category is a different genotype. Cochran and Armitage

used the ideas of linear regression to fit a line to describe the probability in each of the

categories, implying a linear relationship among the genotypes (Agresti, 2002). That

is, the relative risk of having two at-risk alleles compared to having zero at-risk alleles
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is twice the relative risk of having one at-risk allele compared to having zero at-risk

alleles. We might more simply write this RR2 = 2RR1. In a genetic context, Cochran

and Armitage collapse the 2× 3 table shown in Table 2.1 into various 2× 2 tables, as

shown in Table 2.2. In Table 2.1, we see that there are r1 individuals who are cases

and have genotype AA, r2 individuals who are cases and have genotype Aa, and r3

individuals who are cases and have genotype aa. As such, there are r1 + r2 + r3 = r

cases. We define s1, s2, s3, and s analogously for controls and let r1 + s1 = n1,

r2 + s2 = n2, r3 + s3 = n3 and r + s = n.

Table 2.1: A 2-by-3 table of SNP data.

AA Aa aa Total

Case r1 r2 r3 r

Control s1 s2 s3 s

Total n1 n2 n3 n

Based on the additive model, the CATT statistic is given by

χ2
CATT =

n

rs
× (2r3s− 2rs3 + r2s− s2r)

2

2n3n+ (2n3 + n2)(n1 − n3)

where χ2
CATT follows a χ2 distribution with one degree of freedom (Ziegler and Konig,

2010).

A generalization was developed for genetic models for which the relative risks

may not be additive. Consider the triple (x1, x2, x3) where values for x1, x2 and x3

characterize the underlying genetic model and x̄ =
∑3

i=1 xi
n

. Then, this general trend
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Table 2.2: Collapsed 2-by-2 tables of genotypic frequencies.

Dominant Recessive

AA or Aa aa AA Aa or aa

Case r1 + r2 r3 r1 r2 + r3

Control s1 + s2 s3 s1 s2 + s3

Total n1 + n2 n3 n1 n2 + n3

test has test statistic

χ2
general =

n2

rs
× ((

∑3
i=1 xiri)− rx̄)2∑3
i=1 ni(xi − x̄)2

and follows the same χ2
(1) as above (Ziegler and Konig, 2010). If (x1, x2, x3) = (2, 0, 0),

then the derived test statistic is appropriate for a recessive genetic model and we

denote that test statistic by χ2
rec. If (x1, x2, x3) = (2, 2, 0), then the derived test

statistic is appropriate for a dominant genetic model and we denote that test statistic

by χ2
dom. Thus, CATT can be generalized to include a number of popular genetic

models (Ziegler and Konig, 2010).

MAX3, although discussed as a separate test in the literature, is based on the

CATT statistics. Using Monte-Carlo simulations, the mean and standard deviations

of χ2
CATT , χ2

dom, χ2
rec are estimated, then the statistics are standardized. The MAX3

statistic is then given by

MAX3 = max{χ2′

CATT , χ
2′

dom, χ
2′

rec}
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where χ2′
a is the standardized version of χ2

a and a ∈ A = {CATT, dom, rec} (Freidlin

et al., 2002). It is important to note that the asymptotic distribution is not available,

but the power of MAX3 is based on simulation (Freidlin et al., 2002).

2.2.2 Genetic Model Selection

The Cochran-Armitage Trend Test is appropriate when a model is known and

common - that is, if a model is additive, dominant, or recessive, a simple form for

the test statistic exists. Though MAX3 provides some flexibility in misspecification

of the model, often the model underlying a disease is more complex than any of the

previously listed models or the true genetic model of the disease is simply unknown.

In response to this issue, Zheng et. al. proposed a two-phase genetic model selection

(GMS) process that was more robust to an unknown model than existing methods

(Guo and Thompson, 1992).

The first stage was to select one of three genetic models based on the data. In

order to do this, given the distribution of genotypes in cases, controls, and the popu-

lation, one can divide the relative risks (RR1 and RR2) parameter space (R+ × R+)

into four regions: R1, R2, R3, and R4. In this stage, based on the value of test

statistic ZHWDTT = (rs/n)1/2(∆̂p−∆̂q)

[1−n2/n−n1/(2n)][n2/n+n1/(2n)]
, where ∆̂p = P (AA|D)− (P (AA|D)+

P (Aa|D))2 and ∆̂q is defined analogously for controls, then the genetic model can

be classified as recessive (R1), dominant (R4), or either additive or multiplicative

(R2,R3). The second stage selects a test statistic for association ZMODEL that is con-

tingent upon the value of ZHWDTT and its relation to c that is taken from a cumulative

Normal for a prespecified level of significance.
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Zheng and coauthors state that based on this method, for p ≥ 0.3, the probabilities

of accurately selecting the proper recessive/dominant model is above 65% and the

probabilities of accurately selecting the correct additive/multiplicative model is above

85%. Zheng et. al. further state that these probabilities are robust to departure from

Hardy-Weinberg equilibrium.

2.2.3 Maximin Robust Efficiency Test

A natural problem arising in statistics is, “Which estimator is best?” For example,

in the context of regression, one might prefer to useX1 orX2 to predict Y , but perhaps

not both. Often statisticians keep in mind that they want the mean squared error of

their estimator to be low. To measure the variance, one can measure the asymptotic

relative efficiency of one estimator compared to another and see which is preferable.

Consider a parameter β that helps to define a particular distribution F . Then two

estimators of β might be β̂1 and β̂2. We would define the asymptotic relative efficiency

of β̂2 to β̂1 as:

ARE(β̂2, β̂1, F ) =
V1(F )/n

V2(F )/n

where Vi(F )/n is the variance of β̂i. Note that β̂i should be approximately Normally

distributed with mean β and variance Vi(F )
n

for i = 1, 2 (Serfling, 2014).

Gastwirth developed the Maximin Efficiency Robust Test (MERT) to identify

whether or not a genetic association exists when the true underlying genetic model is

unknown (Gastwirth, 1985). Consider the class of optimal tests Z where an optimal

test zi exists for each plausible genetic model i ∈ I. Consider further the class of tests

C for all plausible genetic models, where this consists of all asymptotically Normal,

consistent tests. We seek to find an optimal test zi ∈ Z ⊂ C for our unspecified
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genetic model. This optimal test can be found by satisfying

inf
i∈I

ARE(z∗, zi, N) = sup
z∗∈C

inf
i∈I

ARE(z∗, zi, N)

where N signifies a Normal distribution with mean µ and variance σ2

n
. The test z∗

that satisfies the previous equation is the MERT (Zheng et al., 2006).

2.2.4 The W -Statistics

For incredibly rare diseases or diseases whose transmission is affected by non-

genetic factors, it is often difficult to specify an exact model. As such, there exists

a need to establish a method that both takes the trend of relative risks into account

and is also robust under an unspecified genetic model. Chen sought to derive a set of

tests that incorporate relative risk and are also robust to misspecified or unspecified

genetic models (Chen, 2013). Consider Table 2.3, which represents SNP data. As

above, there are r1 individuals who are cases and have genotype AA, s1 individuals

who are controls and have genotype AA, and r1 + s1 = n1 individuals who have

genotype AA. The remaining cells are similarly defined for genotypes Aa and aa.

Note that the number of cases r = r1 + r2 + r3 and that the number of controls s and

the number of observations n are analogously defined.

Suppose that (r1, r2, r3) follows a multinomial distribution with r trials and prob-

ability vector {p1, p2, p3}. We denote this (r1, r2, r3) ∼ Multinomial(r, {p1, p2, p3}).

Similarly suppose that (s1, s2, s3) ∼ Multinomial(s, {q1, q2, q3}). Because the purpose

of the aforementioned tests is to detect an association between disease status and

genotype, one would test the hypothesis H0 : (p1, p2, p3) = (q1, q2, q3) versus the al-

ternative HA : (p1, p2, p3) 6= (q1, q2, q3). If one concludes that pi 6= qi for at least one

i = 1, 2, 3, then the distribution of genotypes must be different for cases and controls.
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Table 2.3: A 2-by-3 table of SNP data.

AA Aa aa Total

Case r1 r2 r3 r

Control s1 s2 s3 s

Total n1 n2 n3 n

This suggests that a particular allele may be responsible for increased risk of the

disease.

Chen collapses the 2-by-3 table above into four distinct 2-by-2 tables. Two of

the tables reflect dominant and recessive models as in Table 2.2 above. One of the

remaining tables is obtained by taking Table 2.3 and removing the aa column while

the final table is obtained by taking Table 2.3 and removing the AA column. From

these tables, Chen defines statistics T1, T2, T3, and T4 by taking the four innermost

cells and calculating the difference of the products of the diagonal elements. For

example, T2 is calculated from the table corresponding to a dominant model (Table

2.2) and is given by T2 = r3 × (s1 + s2)− (r1 + r2)× s3.

Through standardization, the asymptotic properties of these statistics, and uncer-

tainty surrounding whether a or A is the true at-risk allele, Chen derives six additional

statistics that are asymptotically distributed according to a χ2 distribution with 4

degrees of freedom. These statistics are W 12, W 34, W 13, W 24, W 14, and W 23. We

refer to these henceforth as the W -statistics. Chen proposes W 12 and W 34 as robust
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to improperly specified genetic models and powerful based on the results of his simu-

lation study. He also proposes W 13 and W 24 as having these properties, but the two

are asymptotically equivalent. As such, we need only consider W 13 (Chen, 2013).

2.3 The Rare Disease Assumption and its Relationship with
Odds Ratio and Relative Risk in Genetic Epidemiology

When one seeks to simulate genetic data, one must define a genotypic distribution

for cases and controls. One can define case-genotypic probabilities in terms of the

relative risks and the population-wide genotypic probabilities. Let D be the event

that a person has the disease and ND be the event that a person does not have

the disease. Then, the probability that a case has genotype AA is P (AA|D) and the

probability that a control has genotype AA is P (AA|ND). We can define probabilities

for genotypes Aa and aa analogously.

Toward the goal of seeing how the rare disease assumption relates to genotypic

distributions, consider first the relationship between the odds ratio and the relative

risk. Let RR1 be the relative risk of having the disease given one copy of at-risk allele

a compared to having the disease given zero copies of at-risk allele a and let RR2 be

the relative risk of having the disease given two copies of at-risk allele a compared

to having the disease given zero copies of at-risk allele a. We define OR1 and OR2
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analogously for odds ratios. Then, we have the following:

RR1 =
P (D|Aa)

P (D|AA)

=

P (D|Aa)
P (ND|Aa)P (ND|AA)

P (D|AA)
P (ND|Aa)P (ND|AA)

=

P (D|Aa)
P (ND|Aa)

P (D|AA)
P (ND|AA)

× P (ND|Aa)

P (ND|AA)

= OR1 ×
P (ND|Aa)

P (ND|AA)

= OR1 ×
P (Aa|ND)

P (Aa)
× P (AA)

P (AA|ND)
.

It follows that, if P (Aa|ND) ≈ P (Aa) and P (AA|ND) ≈ P (AA), the relative risk

will be approximately equal to the odds ratio. Because we focus on a diallele SNP

and there are three possible genotypes, we can equivalently state that for the odds

ratio and the risk ratio to be approximately equal, the distribution of genotypes in

the population and the distribution of genotypes in the control group must be similar.

Note that we selected the relative risk and odds ratio of Aa to AA without loss of

generality, and using the relative risk and odds ratio of aa to AA will imply that the

same approximate equivalency of the genotypic distributions is necessary in order for

the relative risk and the odds ratio to be approximately equal.

One interpretation of the rare disease assumption is that the distribution of geno-

types in the population and the distribution of genotypes in the control group are

approximately equal. Thus, reliance on this fact constitutes reliance upon the rare

disease assumption. In order to assess the impact of the rare disease assumption on

Type I error rates and power of association tests, we seek to run two simulation stud-

ies: one where the controls are simulated relying on the rare disease assumption and

one where the controls are simulated independently of the rare disease assumption.
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2.4 Evaluation of Impact of Rare Disease Assumption on
Type I Error Rates and the Assessment of Power of As-
sociation Tests

To evaluate the impact of the rare disease assumption, we use the publicly available

software R with packages devtools, Rassoc, and expm to simulate 100,000 replicates

of genotypes under a variety of genetic models. In particular, we evaluated the Type

I error rates and power of the chi-squared test, CATT, MAX3, GMS, MERT, and

W -statistics. In order to evaluate Type I error, we consider the case where RR1 =

RR2 = 1. In order to evaluate power, we fix RR2 to be 1.4 and consider RR1 at 1,

1.1, 1.18, 1.2, 1.3 and 1.4. Note that, if RR2 = 1.4, when RR1 = 1, 1.18, 1.2, 1.4, the

models we consider are respectively recessive, multiplicative, additive, and dominant.

We consider each of these with disease population prevalence k = 0.05 and 0.15. We

simulate three genotypic distributions under Hardy-Weinberg equilibrium (HWE)

with minor allele frequency (maf) of 0.1, 0.3 and 0.5.

Most importantly, to assess the impact of relying upon the rare disease assump-

tion, we generate probabilities under two different distributions. The genotype dis-

tribution for cases is the same regardless of reliance on the rare disease assumption.

However, treating the control-genotypic distribution as approximately equivalent to

the population-wide genotypic distribution, one relies upon the rare disease assump-

tion. As such, we simulate control data using this distribution and refer to these

probabilities as “RDA probabilities.” We can derive the true control-genotypic distri-

bution independently of the rare disease assumption. These probabilities are referred

to as “non-RDA probabilities.” The simulation study is run by simulating controls

from the control-genotypic distribution relying on the rare disease assumption and
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cases from the undisputed case-genotypic distribution. Then, the simulation study is

run again by simulating cases in the same manner, but by simulating controls from

the control-genotypic distribution that is defined by the non-RDA probabilities. Type

I error rates and power are calculated for the two simulation studies and compared

for the below analysis.

We briefly summarize the Type I error results here. Based on the simulation

study, the differences in Type I error rates for data simulated by relying on the rare

disease assumption and data simulated independently of the rare disease assumption

is minimal. As seen in Table 2.4, the Type I error rates for tests using data from

RDA probabilities are between 4.84% and 5.17%. In Table 2.5, the Type I error rates

for tests using data from non-RDA probabilities are between 4.72% and 5.09%. As

such, the Type I error rates of these tests are not significantly affected by reliance on

the rare disease assumption.

When data are simulated by relying on the reare disease assumption, the power

of aforementioned tests appears to be smaller than when data are simulated indepen-

dently of the rare disease assumption. For example, when HWE holds, maf = 0.1

and k = 0.05, we have an average decrease of 10.77% in power across the 66 combi-

nations of tests and relative risks. We note that this decrease in power can be as low

as 0.26% and as high as 75.92%. It is clear that, if one simulated data independently

of the rare disease assumption, the power of the test statistics would be represented

properly and methods would be shown as more powerful than they might appear if

one relied on the rare disease assumption when simulating data.

If we consider the case where HWE holds and maf = 0.1 as above, but where k =

0.15, the different representations of power become even more exaggerated. Across
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Table 2.4: Type I Error Rates for Tests with Data Simulated Using the Rare Disease
Assumption

maf=0.1 maf=0.1 maf=0.3 maf=0.3 maf=0.5 maf=0.5

k=0.05 k=0.15 k=0.05 k=0.15 k=0.05 k=0.15

W12 0.04948 0.05048 0.05157 0.04863 0.04954 0.04914

W34 0.04984 0.05068 0.0516 0.04895 0.04947 0.04881

W13 0.0493 0.05054 0.05171 0.04883 0.04932 0.04896

Chi-Squared 0.04953 0.04838 0.05027 0.04982 0.05005 0.05006

MAX3 0.04907 0.04909 0.05072 0.05089 0.05025 0.0499

GMS 0.0486 0.04854 0.04878 0.05009 0.05039 0.04903

CATT 0.05005 0.0495 0.04996 0.05076 0.05044 0.04957

MERT 0.04936 0.04985 0.04892 0.05029 0.05011 0.04925

the 66 combinations of tests and relative risks, the average difference in power is

17.49%, with a minimum of 0.51% and a maximum of 83.05%. We can also see

that, for the W -statistics and the Cochran-Armitage Trend Test, the loss of power is

monotonically increasing as RR1 increases from 1 to 1.4. This exaggeration of power

loss stands to reason, as the rare disease assumption requires that the prevalence of

a disease is sufficiently rare. Since k = 0.15 would be considered a common disease,

it would be unwise to rely on the rare disease assumption in such a situation.

A set of figures are presented to illustrate the different representations of power

of methods based on RDA probabilities versus non-RDA probabilities for different

values of maf and k. For clarity, only four tests were included in each figure. In each
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Table 2.5: Type I Error Rates for Tests with Data Simulated Independently of the
Rare Disease Assumption

maf=0.1 maf=0.1 maf=0.3 maf=0.3 maf=0.5 maf=0.5

k=0.05 k=0.15 k=0.05 k=0.15 k=0.05 k=0.15

W12 0.04894 0.04957 0.05034 0.05011 0.04991 0.05057

W34 0.04886 0.0493 0.04994 0.04919 0.05088 0.05052

W13 0.04869 0.04928 0.05035 0.04984 0.05012 0.05062

Chi-Squared 0.0499 0.04797 0.05066 0.04954 0.05033 0.04989

MAX3 0.04855 0.04765 0.0494 0.05024 0.04869 0.04937

GMS 0.04722 0.04725 0.05022 0.04943 0.05057 0.05011

CATT 0.0502 0.0488 0.0503 0.05054 0.05038 0.049

MERT 0.04985 0.04968 0.0508 0.04999 0.04902 0.04999

figure, the solid lines indicate tests were conducted on data simulated based on the

rare disease assumption and the dashed lines indicate that tests were conducted on

data simulated independently of the rare disease assumption.

First consider Figure 2.1, where we examine the three robust W -statistics and

CATT. When comparing a solid line to the dashed line of the same color, we note

each dashed line is entirely above the solid line of the same color. This indicates that

for a multiplicative model (that is, where RR1 = 1.18 and RR2 = 1.4), the power is

greater when the data are simulated independently of the rare disease assumption,

irrespective of the other factors, including maf and prevalence.
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Next consider Figure 2.2, where we examine the chi-squared test, MAX3, GMS,

and MERT under the same multiplicative genetic model considered in Figure 2.1.

Again the dashed lines are entirely above the corresponding solid lines, indicating the

power is uniformly higher when working independently of the rare disease assumption.

As a result, if the underlying genetic model of a disease is believed to be multiplicative,

the power of these methods will not be correctly reflected when the data are simulated

under the rare disease assumption.

Figures 2.3 and 2.4 both concern a dominant genetic model, where RR1 = RR2 =

1.4. In Figure 2.3 we once again note that the power of these significance tests

are represented to be higher when data are simulated independently of the rare dis-

ease assumption. In Figure 2.4, we see that the methods do not appear uniformly

more powerful when data are simulated independently of the rare disease assumption.

Specifically, for maf = 0.5 and k = 0.05, all four tests actually appear to have higher

power better when data are simulated while relying on the rare disease assumption.

However, the tests appear to have, at most, 5% more power when data are simulated

based on the rare disease assumption than when data are simulated independently

of the rare disease assumption. As such, an overall recommendation would be to

simulate these data without relying upon the rare disease assumption in order for the

representation of power to be accurate.

Based on the direction of the lines on the figures, there appears to be a general

trend that, as maf and k increase, the power of these tests increase as well. Although

Figure 2.3 appears to defy this trend, note that the scale of the y-axis is significantly

different from the scale of the other figures as the power of these tests is high for all

considered values of maf and k. Based on these graphs, it appears that maf and
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k may have some impact on the power of a statistical test and that this should be

explored further.

Figure 2.1: Power by (maf , prevalence) for Test Statistics under RR1 = 1.18 and
RR2 = 1.4 (solid line indicates RDA, dashed line indicates non-RDA)

Based on the results of the simulation study, if a population is in HWE, it is

inadvisable to simulate data based on the rare disease assumption when testing for

equivalent genotypic distributions between the case and control populations as this

26



will almost always cause an underrepresentation of the power of the methods being

examined.
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Figure 2.2: Power by (maf , prevalence) for Test Statistics under RR1 = 1.18 and
RR2 = 1.4
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Figure 2.3: Power by (maf , prevalence) for Test Statistics under RR1 = RR2 = 1.4
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Figure 2.4: Power by (maf , prevalence) for Test Statistics under RR1 = RR2 = 1.4
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Chapter 3: Testing for Hardy-Weinberg Equilibrium in

Controls: Is it justifiable?

3.1 Introduction

When working with genetic data, often one of the first tests run is a test for

Hardy-Weinberg equilibrium (HWE). HWE is a state of a population’s genetics that

occurs when there is random mating and when there are no evolutionary forces acting

upon the population. Although the required conditions are never satisfied in reality,

we say that HWE holds if the assumptions below are not too severely violated. If a

population is in HWE, then allele frequencies and genotype frequencies are constant

from one generation to the next and are related through a simple function, allowing

for us to significantly simplify our calculations and increase the power of some tests.

In order for HWE to hold, one must make five assumptions about the genetics

underlying population in question:

1. All mating occurs randomly.

2. There is no genetic drift. (This is equivalent to stating that the population size

is infinitely large.)

3. There is no natural selection.
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4. There are no mutations.

5. The allele and genotype frequencies are constant after one generation of mating.

Some textbooks or lists may have slightly different assumptions or may have more,

however of these five assumptions, the most important is that mating occurs randomly.

If these five assumptions hold, we will state that a population is in Hardy-Weinberg

equilibrium. This allows us to simplify many calculations. For example, consider a

diallele single nucleotide polymorphism with alleles A and a. If a population is in

HWE, then we can use the genotype frequencies to calculate the allele frequencies

and vice versa (Reece et al., 2014).

3.2 Methods for Testing for Hardy-Weinberg Equilibrium

Because many individuals rely on Hardy-Weinberg equilibrium in analyses, it is

important to make sure the HWE assumptions are valid. As with many other as-

sumptions, tests exist by which we can measure the likelihood that the assumption

holds. The most commonly used test for HWE is Pearson’s chi-squared test where the

distribution of genotypes in the population in question is compared to the expected

distribution of genotypes - that is, the distribution of genotypes under HWE. This is

unsurprising because it provides means by which one can compare a categorical vari-

able to its expected distribution. More sophisticated tests, however, have developed

over time to meet the needs of geneticists. Emigh published a comparison of various

methods including the standard chi-squared test, a conditional chi-squared tests, and

the Freeman-Tukey and Mantel-Li tests (Emigh, 1980). These tests are asymptotic

parametric tests, which may not be satisfied if the sample size is small. Issues also

arise when certain genotypic frequencies are small, as is often the case with rare
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diseases. As such, robust alternatives were desired. Guo and Thompson proposed

and compared two algorithms for calculating the exact significance level of Hardy-

Weinberg tests that did not rely on asymptotic arguments and were computationally

superior to existing methods (Zheng and Ng, 2008). Wigginton et. al. discuss exact

tests of Hardy-Weinberg equilibrium in populations, drawing from Fishers exact test

for cross-tabular data (Wigginton et al., 2005).

These focus on testing for Hardy-Weinberg equilibrium in the entire population,

as classical Hardy-Weinberg tests are designed for random samples. However, in data

collection, rarely does one attain a truly random sample. Thus, a question arises when

a population is clearly not homogeneous. For example, population stratification may

occur due to a mixture racial or ethnic groups where one may expect differences

among the groups in terms of their genetic makeup. Schaid et. al. suggest an

exact test for HWE across strata and demonstrate its superiority to previous tests,

including minimum exact p-value tests (Schaid et al., 2006). A similar, but not quite

analogous, occurrence in sampling is clustering. Whereas stratification will divide a

sample into groups based on a variable of interest, clustering will divide a sample

into groups typically based on ease or accessibility. Strata are generally regarded

as entities with different characteristics, but clusters are entities that, optimally, are

similar. As such, a population that is sampled in clusters must be addressed differently

than a random sample or a stratified sample. In surveys, complex designs arise

when one combines both stratification and clustering. Li and Graubard incorporated

appropriate weights and extensions of Pearson’s X2 statistic based on the Rao-Scott

correction and quadratic test statistics to develop a Wald statistic for testing HWE

in complex surveys (Li and Graubard, 2009).
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One may also want to test for Hardy-Weinberg equilibrium in the context of

various studies. For example, Ziegler and coauthors argue that one could test for

HWE in a study that combines case-control data and cohort data in a meta-analysis

context or data from exactly one case-control or cohort study (Ziegler et al., 2011).

We focus our attention on case-control studies where the outcome of interest is a

binary variable indicating simply whether or not one has the disease in question.

3.3 Testing for Hardy-Weinberg Equilibrium in Case-Control
Studies

When testing for Hardy-Weinberg equilibrium, one assumes the that the popula-

tion is in HWE as the null hypothesis and tests for significant deviation from HWE

as the alternative hypothesis. Consider Table 3.1.

Table 3.1: Expected Distribution of Genotypes under HWE and Observed Distribu-
tion of Genotypes

Genotype Observed Expected

AA nAA nqAA = nq2
A

Aa nAa nqAa = 2nqAqa

aa naa nqaa = nq2
a

One can calculate the deviation from HWE by computing

X2 =
∑
g∈G

(ng − nqg)2

nqg
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where G = {AA,Aa, aa} is the set of genotypes, ng indicates the observed count of

individuals with genotype g ∈ G, qg indicates the probability that an individual has

genotype g ∈ G, qa is the minor allele frequency, and 1 − qa = qA is the probability

that a randomly chosen allele is A. X2 follows a χ2 distribution with one degree

of freedom. A small p-value indicates that there is significant deviation from the

theorized distribution of genotypes and provides evidence that HWE does not hold.

In the context of case-control studies, one can test HWE separately within cases

and controls. However, it is unwise to test within the case population as cases are

expected to deviate from HWE proportions if the test locus is in linkage disequilibrium

except under a model of multiplicative relative risks (Clayton, 1999). In case-control

studies, one may believe that if a disease is rare enough, then we can test for HWE

in the entire population by testing for HWE in the controls (Wang and Shete, 2010).

This intuitively makes sense - if very few people in the population have a disease,

then the population and the control population are nearly identical. This relies upon

the rare disease assumption as it implies that the distribution of genotypes in the

control population is approximately equal to the distribution of genotypes in the entire

population. What we will show, however, is that rarity of the disease is necessary but

not sufficient to test for HWE in controls only.

In order to assess whether its warranted to test HWE in a population by testing

the controls only, especially if the disease is rare, we conduct a simulation study. We

assume that Hardy-Weinberg holds and examine the Type I error rates of the HWE

test under a variety of scenarios. For each scenario considered in terms of prevalence of

the disease (k), minor allele frequency (maf) and a set of relative risks, we simulated

1,000 cases and 1,000 controls under HWE. In particular, the distribution of genotypes
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in the control population was constructed by using the true control probabilities. The

observed frequencies were compared to expected frequencies by way of the chi-squared

test and a p-value was recorded. 10,000 replicates of this study were run to empirically

estimate the Type I error rate of using this test. As expected, HWE is violated in

the cases, as discussed in the literature (Bourgain et al., 2004), and therefore we only

present our results for the controls.

In Figure 3.1, we consider where the minor allele frequency maf ranges from 0.1

to 0.5 in increments of 0.1. We hold RR2 constant at 1.4 and consider RR1 at 1, 1.1,

1.18, 1.2, 1.3, and 1.4. Note again that when RR1 = 1, 1.18, 1.2, and 1.4, the model

is exactly recessive, multiplicative, additive, and dominant.

From Figure 3.1, it is immediately apparent that, for k = 0.15, the Type I error

rates are vastly inflated - in four circumstances the error rate is more than double

the nominal significance level and in one case it is as high as 11.87%! Note that

the nominal significance level, α = 0.05, is surpassed by the Type I error rates for

nearly every combination of maf and RR1. For k = 0.15, Type I error seems to

be an increasing function of maf and RR2, particularly when maf is lower than

0.4. Based on this information alone, we are inclined to conclude that testing for

Hardy-Weinberg equilibrium in controls is extremely inadvisable when the disease is

not rare. Now consider only the case where the disease is rare - that is, k = 0.05.

It is immediately apparent that the Type I error rate is much better controlled. We

attribute these Type I error rates to random variability in the simulated data and

consider any “inflation” negligible.

In Figure 3.2, we similarly consider where the minor allele frequency maf ranges

from 0.1 to 0.5 in increments of 0.1. However, in this case we hold RR2 constant at
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Figure 3.1: Type I Error Rates for Control Populations with RR2 = 1.4

2 and consider RR1 from 1 to 2 in increments of 0.1. There is increased granularity

in this graph as there are nearly twice as many observations at each level of maf in

Figure 3.2 compared to Figure 3.1.

First and foremost, though the Type I error rates visually appear to lie closer to

the nominal level of 0.05, we note that the y-axis in Figure 3.2 is different from Figure

3.1 in that it extends from 0.04 to 0.40 in Figure 3.2 rather than from 0.04 to 0.12.

There appears to be a similar trend in this graph as in Figure 3.1: as maf and RR1

increase, the Type I error will in general increase.
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Figure 3.2: Type I Error Rates for Control Populations with RR2 = 2

For k = 0.15, we see that the Type I error rate reaches as high as 39.5% and as

low as 5.1%. The disparity between the Type I error curves for k = 0.15 and k = 0.05

are further evidence that the rare disease assumption is required for this method of

HWE testing. Focusing only on k = 0.05, the Type I error rate peaks at 7.3%. Of

the 55 combinations of maf and RR1, there are only six where the Type I error rate

is below our nominal level α = 0.05 and occur when maf = 0.1 and RR1 is 1.5 or

below. As such, the Type I error rates are significantly inflated above 0.05.
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Figure 3.3: Type I Error Rates for k = 0.05

Examining Figure 3.3, one can better see the impact of maf and RR1 on Type

I error: as maf and RR1 increase, Type I error will, on average, increase. Thus, as

the underlying model of the disease shifts farther from a recessive model and closer

to a dominant model, the Type I error rate increases. We also note that simulations

conducted where RR2 = 2 appears to generally have greater Type I error rates than

simulations conducted where RR1 = 1.4. This suggests that, as the relative risks

increase, the effective Type I error rates will become more inflated.

As evidenced by the simulation study above, testing population-wide HWE by

examining only controls requires the rare disease assumption. However, the fact that

Type I error rates are still inflated stands to show that the rare disease assumption

is not sufficient.
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Chapter 4: Conclusion

4.1 Results

This thesis considered the rare disease assumption and showed the direct impact

that the rare disease assumption has on genetics analysis methods. In particular, two

methods have been explored:

• Significance Testing for Association between Two Categorical Variables

• Testing for Hardy-Weinberg Equilibrium in a Population by Testing Controls

In each of these chapters, the rare disease assumption is applied in order to simplify

calculations. For example, in a case-control study, one can estimate the odds ratio

but cannot meaningfully estimate the relative risk. The rare disease assumption is

relied upon in order to use the odds ratio to approximate the relative risk. In the

context of Hardy-Weinberg equilibrium, using the rare disease assumption to test for

HWE in the controls as a proxy for testing for HWE in the population at large may

prove beneficial. In many cases, however, there are unanticipated effects of relying

upon this assumption.

When conducting hypothesis testing to detect an association between two cate-

gorical variables, simulating the data while relying upon the rare disease assumption
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may cause the methods to appear less powerful than if the data were simulated in-

dependently of the rare disease assumption. This misrepresentation of power was

exacerbated when prevalence of the disease k was 0.15 compared to when k = 0.05,

suggesting that the rare disease assumption is necessary. However, there are still

significant power misrepresentations when k = 0.05. In this case, it would be prudent

to simulate the data independently of the rare disease assumption rather than relying

upon the rare disease assumption when simulating data.

When testing for HWE in controls as a means to test for HWE in the population

as a whole, the type I error rates were significantly inflated for common diseases. For

a disease with prevalence k = 0.15, RR2 = 2, and a nominal type I error rate of

α = 0.05, type I error rates reached up to nearly 40%. In the case where RR2 = 1.4,

the type I error rates for k = 0.15 were still inflated (up to approximately 12%) but

were significantly better than the case where RR2 = 2. For both RR2 = 1.4 and

RR2 = 2, when k = 0.05, the Type I error rates were much closer to α = 0.05 than

for a common disease. This implies that the rare disease assumption is necessary for

this method of HWE testing. However, in comparing the Type I error rates for rare

diseases under both of the aforementioned settings of relative risk, the Type I error

rates are larger when RR2 = 2, increasing to above 7%. This indicates that relative

risk plays a role in Type I error rates. This is further supported by the fact that,

as RR1 increases, Type I error rates tend to increase as well. It is also important to

note that, as maf increases, Type I error rates will in general increase.
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4.2 Discussion

In Chapter 2, reliance upon the rare disease assumption when simulating data

was found to be ill-advised. Using the rare disease assumption may lead to misrepre-

sented power of association testing methods. Though the misrepresentation of power

was more significant for common diseases, simulating data independently of the rare

disease assumption showed to be the appropriate course.

In Chapter 3, we saw that the Type I error rates in Chapter 3 were significantly

more inflated for common diseases. It is clear that the methods used in this chapter

require the rare disease assumption.

Perhaps the most strongly recurring theme from the previously mentioned prob-

lems is the role of the minor allele frequency. In Chapter 2, when maf increased, the

power of statistical tests appeared to increase. In Chapter 3, when the rare disease

assumption was used in testing for Hardy-Weinberg equilibrium, as maf increased,

the Type I errors increased as well. With respect to the Hardy-Weinberg problem in

Chapter 3, Type I error rates were far better controlled for small maf . Ultimately,

the simulation studies and discussion of the results in this thesis indicate that the

minor allele frequency plays a significant role in the statistical analysis of methods

relying upon the rare disease assumption.

Based on the simulation studies, other factors seemed to affect power and Type

I error rate. For example, the misrepresentation of power in Chapter 2 became

more significant as the relative risks of having one and two copies of at-risk allele

a increased. In Chapter 3, the periodic shape of the Type I error graphs suggest that

RR1 is positively correlated with Type I error rate. In addition, as Type I error rates

are more inflated when RR2 = 2 than when RR2 = 1.4.
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4.3 Impact of the Rare Disease Assumption on Parameter
Estimation in Studying Maternal Effects

A problem discussed at length by Yang and Lin (2009) is the use of the rare

disease assumption when using case-mother/control-mother pairs to study the impact

of maternal genetic effects on presence or absence of a disease in the child. It was

shown that relying upon the rare disease assumption in this case would cause there

to be significant biases in parameter estimates when fitting log-linear models.

4.3.1 Introduction

When considering the relationship between binary disease status and genotype,

one natural question to ask is whether or not that relationship is affected by which

alleles are passed from which parents. For example, Prader-Willi syndrome is caused

by a mutation inherited from one’s father while Angelman syndrome is caused by a

mutation inherited from one’s mother. These two diseases are very different; Prader-

Willi is marked by significant obesity arising from a slow metabolism and excessive

hunger and Angelman syndrome is similar to autism and cerebral palsy. The fasci-

nating part is that both syndromes are caused by the exact same mutation at the

exact same locus on chromosome 15 (Ziegler and Konig, 2010). As such, the only

genetic factor affecting whether one is afflicted with Prader-Willi syndrome or with

Angelman syndrome is, “From which parent was the mutation inherited?” As such,

the parent from whom an allele is inherited may impact the phenotype of a disease.

This effect is known as imprinting, where paternal imprinting indicates that the effect

of the paternal allele is suppressed and maternal imprinting is defined analogously
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(Ziegler and Konig, 2010). As such, we would say that Prader-Willi syndrome arises

from maternal imprinting and Angelman syndrome arises from paternal imprinting.

In order to account for this issue and to gain a greater understanding of imprinting

and similar genetic effects, a researcher may design a study by using a case-parent

triad design, where information is collected from a mother, father, and child. However,

recruiting fathers is often far more difficult than recruiting mothers and maternity is

easier to establish than paternity (Shi et al., 2008). As such, robust alternatives are

desired. A number of imputation techniques to treat missing fathers as missing data

have been developed, but models have also been developed that rely solely on genetic

data gathered from child-mother pairs. Called a case-mother/control-mother study,

both children who have the disease and children who do not have the disease are

recruited to the study, then the mother’s genetic information is gathered along with

the child’s. This paired data allows one to explore maternal genetic effects (Ainsworth

et al., 2011).

4.3.2 Establishing the Genotype Distribution of Child-Mother
Pairs

In order to examine the relationships among the mother’s genotype, the child’s

genotype, and the presence or absence of a disease in the child, we examine the

number of at-risk alleles a possessed by the mother and child. The goal is to estimate

four relative risks that quantify the risk that the child will have the disease given

certain maternal or child genotypes. In particular, we seek to estimate the relative

risk of the child possessing one copy of a, the relative risk of the child possessing

two copies of a, the relative risk of the child with mother possessing one copy of a

and the relative risk of the child with mother possessing two copies of a. In order to
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distinguish among these relative risks, we add some notation. Let the relative risk

of the child possessing one copy of at-risk allele a be R1 and the relative risk of the

mother possessing one copy of at-risk allele a be S1. We use R2 and S2 in the case

where the child and/or mother have two copies of allele a.

As we have a binary response variable - that is, whether or not a child is affected

by the disease - we can fit a logistic regression model using the aforementioned relative

risks as explanatory variables. Let Y be a random variable such that Y = 1 if the

child has the disease and Y = 0 if the child does not have the disease. Then consider

the logistic regression model

ln

(
P (Y = 1|C = c,M = m)

P (Y = 0|C = c,M = m)

)
= µ+ β1I(C=1) + β2I(C=2) + γ1I(M=1) + γ2I(M=2),

where C = c indicates that the child has c copies of at-risk allele a and M = m

indicates that the mother has m copies of at-risk allele a. This model is discussed

extensively by Shi et. al. (2008).

In the above model, there are parameters β1, β2, γ1, and γ2. Shi et. al. define the

following:

β1 = ln(R1),

β2 = ln(R2),

γ1 = ln(S1),

γ2 = ln(S2).

Note that β1, β2, γ1 and γ2 are parameters of a logistic regression model and are thus

the log-odds ratios. ln(R1), ln(R2), ln(S1), and ln(S2) are the natural logarithms of

the relative risks. Thus Shi equates the relative risks and odds ratios.
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In defining the distribution of the case-mother and control-mother pairs, we must

consider the distribution of the mother’s genotypes as well as the distribution of

the child’s genotypes. Assume, for simplicity, that the population in question is in

Hardy-Weinberg equilibrium and thus we can express genotypic frequencies in terms

of allele frequencies. Further assume that the minor allele frequency is p. Then the

joint probability that the mother and father have (M = m,F = f) alleles is given in

Table 4.1.

Table 4.1: Probability that mother and father have (m, f) copies of at-risk allele a.

µmf F = 0 F = 1 F = 2

M = 0 (1− p)4 2p(1− p)3 p2(1− p)2

M = 1 2p(1− p)3 4p2(1− p)2 2p3(1− p)

M = 2 p2(1− p)2 2p3(1− p) p4

We denote these probabilities as µmf , where m is the number of at-risk alleles

the mother has and f is the number of at-risk alleles the father has. From this, we

can derive the probability that a child will have c = 0, 1, 2 copies of the at-risk allele,

assuming that at-risk alleles are inherited from the mother and father with equal

probability. (More complex situations arise when inbreeding parameters are nonzero,

but we set the inbreeding parameters equal to zero, simplifying our calculations.) For

example, if a mother has one copy of a and a father has two copies of a, then the child

has a 50% chance of inheriting a from the mother and a 100% chance of receiving a

copy of a from the father.
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Working within the context of case-mother/control-mother pairs, we can define

the joint distribution of the child/mother genotypes based on the possible genotypes

of the father. If a child has one copy of the disease allele and the mother has two

copies of the disease allele, then the father must have had either zero copies or one

copy of the disease allele. Logically, if the father had two copies, he must have passed

one to the child. However, the child has one copy of a and must have inherited this

from the mother, as the mother has two copies of a. As such, the father having

two disease alleles is impossible. We can define the probability of the child/mother

genotypes as a linear combination of the µmf parameters described in Table 4.1. In

this case, if the father had zero copies and the mother had two copies, then the child

would have exactly one copy with probability 1. If the father had one copy and the

mother had two copies, then the child would have exactly one copy with probability

50%. Thus, we would say that the probability of (M = 2, C = 1) is µ20 + 1
2
µ21. In

order to avoid confusion, we will denote the probability of event (M = m,C = c) as

P (M = m,C = c) = κmc. We use similar logic to define all κmc probabilities in terms

of the µmf parameters from Table 4.1 and list the κmc probabilities in Table 4.2.

Table 4.2: Probability that mother and child have (m, c) copies of at-risk allele a as
defined by µmf parameters.

κmc C = 0 C = 1 C = 2

M = 0 µ00 + 1
2
µ01

1
2
µ01 + µ02 0

M = 1 1
2
µ10 + 1

4
µ11

1
2
(µ10 + µ11 + µ12) 1

4
µ11 + 1

2
µ12

M = 2 0 µ20 + 1
2
µ21

1
2
µ21 + µ22
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Now that we have the joint child/mother genotypic distribution established, we

seek to define the genotypic distribution of case-mother pairs and the genotypic dis-

tribution of control-mother pairs. Because case-control studies are retrospective (that

is, events like disease presence are examined after the onset of disease), it is appropri-

ate to include additional information about the disease by conditioning on affection

status (Yang and Lin, 2009).

Table 4.3: Expected frequencies of case-mother pairs as established in (Yang and Lin,
2009).

C = 0 C = 1 C = 2

M = 0 B[µ00 + 1
2
µ01] BR1[1

2
µ01 + µ02] 0

M = 1 BS1[1
2
µ10 + 1

4
µ11] BR1S1[1

2
(µ10 + µ11 + µ12)] BR2S1[1

4
µ11 + 1

2
µ12]

M = 2 0 BR1S2[µ20 + 1
2
µ21] BR2S2[1

2
µ21 + µ22]

The distribution of control-mother pairs is similar to the distribution of case-

mother pairs, but we incorporate the prevalence of the disease.
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Table 4.4: Expected frequencies of control-mother pairs.

C = 0 C = 1 C = 2

M = 0 B(1− δ)[µ00 + 1
2
µ01] B(1− δR1)[1

2
µ01 + µ02] 0

M = 1 B(1− δS1)[1
2
µ10 + 1

4
µ11] B(1− δR1S1)[1

2
(µ10 + µ11 + µ12)] B(1− δR2S1)[1

4
µ11 + 1

2
µ12]

M = 2 0 B(1− δR1S2)[µ20 + 1
2
µ21] B(1− δR2S2)[1

2
µ21 + µ22]
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4.3.3 The Rare Disease Assumption and Bias in Parameter
Estimates

When constructing a model, one must keep the idea of bias in mind. Bias arises

when an estimate of a parameter is different from the true parameter value. As such,

minimizing bias is, in general, a good idea, and a model that has large amounts of

bias in its parameter estimates might be considered a poor model. Given a parameter

θ, one can calculate relative bias as θ̂−θ
θ
×100%, which measures how far the estimate

is from the true parameter value relative to the true parameter value and is expressed

as a percentage.

In Tables 4.3 and 4.4, B is a normalizing constant that will ensure the sum of all

expected frequencies will be the total number of control-mother pairs. In this case, B

is equal to 1 minus the prevalence of the disease. Under the rare disease assumption,

B will be approximately 1 as the prevalence of the disease will be low. If B = 1, one

could use the population-wide distribution (probabilities found in Table 4.2) as the

distribution of the control-mother pairs. This method was used by Shi et. al. (2008).

However, this is problematic as some of the cells are incredibly difficult to estimate

even when the disease is rare and the sample size is large. For example, consider the

cell pertaining to (M = 2, C = 2). This is given by

P (M = 2, C = 2) = κ22

=
1

2
µ21 + µ22

=
1

2
p3(1− p) + p4

If the frequency of the at-risk allele a is small, then κ22 will also be very close to 0

(Yang and Lin, 2009). For example, if p = 0.1, then κ22 = 0.00055. In order for the
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expected number of child/mother pairs with M = 2 and C = 2 to be 1, one must have

a sample of more than 1800 individuals. Therefore, estimation can be very difficult

when p is low and this can give rise to significant biases, even when the disease itself

is rare. If one considers the case where p = 0.9, the same potential for bias exists for

the cell corresponding to (M = 0, C = 0). It has been shown that biases of parameter

estimates relying on the rare disease assumption are significant - sometimes higher

than 50% (Yang and Lin, 2009). This suggests that, in addition to needing the rare

disease assumption, certain conditions on the minor allele frequency must also be

imposed in order to apply the rare disease assumption in this setting.

In summary, when assessing maternal genetic effects through case-mother/control-

mother studies by constructing models, there is a significant risk of bias in parameter

estimation under certain genetic conditions. The probability of a mother and father

having m and f at-risk alleles respectively can be defined entirely by the minor allele

frequency p. The probability that the mother and father each have two copies of

the disease allele is given by p4 and the probability that the mother and father each

have zero copies of the disease allele is given by (1− p)4. It is clear that for large or

small p, either µ00 or µ22 will be very small. Because these µmf parameters give rise

to the distributions of case child-mother and control child-mother pairs, attempting

to estimate counts can quickly become problematic for extreme values of p, even if

a disease is rare and with a large sample size. This will almost certainly cause the

parameter estimates in our model to be significantly biased, which indicates that the

model poorly describes the data and should not be used.
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4.4 Future Work

A natural direction in which to head is toward a better understanding of the re-

lationship between the minor allele frequency and the Type I error of tests or bias of

estimators. Though there is empirical evidence to suggest that certain restrictions on

the minor allele frequency may be necessary in order to use HWE testing methods

outlined in Chapter 3 and case-mother/control-mother modeling as discussed previ-

ously in this chapter, conducting more thorough simulation studies or gathering real

data may help to establish exactly what values of p are appropriate when using these

methods.

Perhaps better than simulations or real data would be to head toward a rigorous

treatment of the minor allele frequency. A proof could demonstrate exactly how the

minor allele frequency affects these methods would be beneficial in order to under-

stand when it is (and, perhaps more importantly, when it is not) proper to apply

methods that are negatively affected when the maf takes on certain values.

Though relative risks are generally unknown, one may also want to explore more

rigorously the relationship between the relative risks and these statistical measures,

as the data suggest that relative risks may have an effect on type I error and power.

For example, one important question is “For what settings of relative risk is Method

X appropriate?,” where Method X refers to any of the methods in this thesis.

4.5 Conclusion

Ultimately, this thesis served to examine statistical analyses of genetic data in a

case-control study and the impact of the rare disease assumption on these analyses.

Although rarity of a disease is sufficient to treat the odds ratio and relative risk as
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approximately equal in general epidemiology, the goal of this thesis is to show that

rarity of a disease may not be sufficient within the context of genetic epidemiology.

An understanding of this allows us to capitalize on the good as well as understand

when the rare disease assumption should not be relied upon by itself in order to

mitigate or avoid entirely bad and ugly effects of the rare disease assumption.

Through the simulation studies and discussions of the problems, it is clear that

the rare disease assumption is a necessary, but not sufficient, condition for using some

of the methods outlined in this thesis, and further exploration of the impact of the

rare disease assumption on these genetic analyses may be warranted.
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