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ABSTRACT

Cyanobacteria, or blue-green algae, present an increasing threat to the health of 

many people living in the Lake Erie Basin. Some o f these blue-green algae can have a 

significant and adverse effect on water quality. Blue-green algae can also provide an 

increase in disease-pathway availability, as well as an increase in toxic chemicals, such as 

microcystin, in water supplies. Concentrations of cyanobacteria can be detected by 

measuring chlorophyll-a in their cellular structure, although in situ detection of these 

toxic cyanobacteria on the scale necessary for water supply treatment and determination 

of beach closings is not generally economically feasible. Algorithms for chlorophyll-a 

concentration detection using imagery from the Sea-viewing Wide Field-of-View Sensor 

(SeaWiFS) have had successes in the ocean, but have not yet been applied extensively to 

fresh water, and use of these algorithms in the Great Lakes has been limited.

The main objective of this research is to examine how well five ocean color 

algorithms perform in predicting chlorophyll-a concentrations in fresh water. Values for 

the normalized water leaving radiance and the remotely sensed reflectance were 

determined for the wavelengths of 443, 490, 510, and 555 µm using the SeaWiFS Data 

Analysis System (SeaDAS). The normalized water leaving radiances and remotely 

sensed reflectances from SeaWiFS were used to approximate chlorophyll-a 

concentrations. Five ocean color algorithms, CalCOFI-3, Aiken-P, AikenC, OC4, and 

OC4v4, were evaluated. The nearest neighbor, spatial averaging, bilinear averaging, and
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inverse distance weighted (EDW) methods were used for estimating a SeaWiFS data 

value of chlorophyll to compare with measured ground truth data of chlorophyll-a 

concentration.

IDW produced less scatter in the prediction of chlorophyll-a concentrations for 

the in situ data examined, resulting in an average R2 value of 0.35. A similarity of three 

of these algorithms O C4v4, OC4, and CalCOFI-3) is by use of the 510:555 band ratio, 

which at concentrations greater than 3 µg/L, showed the best correlated index of 

chlorophyll-a. For the CalCOFI-3 algorithm, the 510:555 ratio is weighted less than the 

490:555 ratio. The OC4 ocean color algorithm uses the 510:555 ratio only when it is the 

maximum of three band ratios -  443:555, 490:555, and 510:555. The OC4v4 algorithm 

is the successor to the OC4 algorithm and was developed using other in situ data -  

specifically data where the concentrations were similar to those observed for this study 

area of Lake Erie. Twenty-six of the 37 data points for the study site used in this analysis 

were found to have concentrations greater than 3 µg/L. The OC4v4 ocean color 

algorithm was found to most accurately predict observed chlorophyll-a concentration 

when compared to in situ data (R2=0.38).

In conclusion, use of the OC4v4 algorithm and the IDW sampling method is best 

suited for determination of chlorophyll concentrations in Lake Erie using SeaWiFS 

imagery.
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CHAPTER 1 

INTRODUCTION 

The Great Lakes contain 84% of North America's supply of fresh surface water 

and 21% of the world's supply of fresh water. With increased development around and 

demand of water from the Great Lakes, and Lake Erie in particular, the quality of the lake 

water is becoming a concern. One of the concerns is the increasingly frequent blue-green 

algal blooms in the Great Lakes. These blooms have the potential not only to cause 

economic and social impacts, but are also a human health concern. Blue-green algal 

species, such as Microcystis, can release toxins into the water in concentrations that can 

cause liver cancer and gastro-enteritis, among other complications. 

The causes of these algal blooms are not completely understood at this time. One 

possible contribution could result from introduction of non-indigenous species, such as 

Dreissena polymorpha (zebra mussels) and Dreissena bugensis (quagga mussels). These 

invasive species are known to be a route of transfer and biomagnification of microcystin 

(a toxin released by some strains of Microcystis) through their feces and pseudofeces 

(Culver et al., 1999). Other potential contributing factors could result from increased 

light penetration due to decreases in Jake water levels, from increased production due to 

increases in nutrient loading from non-indigenous species, both from the introduction of 

non-indigenous species or changes to the ecosystem via anthropogenic influx. If the 
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distribution of these algal blooms could be predicted and mapped accurately, more 

information could be gathered to determine their causes. 

Monitoring of algal blooms is an expensive and time-consuming effort. In situ 

water samples must be collected and then analyzed by visible spectrophotometry in the 

laboratory. Accurate models have been shown to relate chlorophyll-a concentration to 

blue-green algal concentrations within a lake environment, allowing the spatial 

distribution of the chlorophyll to be mapped. The Sea-viewing Wide Field-of-view 

Sensor (SeaWiFS) is ideal for this purpose, because of its high radiometric resolution and 

its spectral band widths that have been specifically designed to be sensitive to changes in 

ocean color. 

Several models have been developed using SeaWiFS imagery for coastal and 

open ocean areas. These models range from power functions of simple band ratios in the 

case of the OCla algorithm to modified cubic polynomials of maximum band ratios, as in 

the case of the OC4 algorithm. All of the current algorithms were developed for open 

ocean conditions - classified as Case I waters, since living algal cells, associated debris, 

dissolved organic matter and gelbstoffe solely influence the optical properties by 

absorption and scattering (Gordon and Morel, 1983). However, Lake Erie is typically 

classified as a Case II water. This is because its optical properties are determined by 

resuspended sediments, terrigenous particles, dissolved organic matter from land 

drainage and anthropogenic influx, as well as the constituents that influence Case I 

waters. Only one of these extra four components is needed to define a Case II water. 

Lake Erie has all four components. Gordon and Morel (1983) suggested that improved 

accuracy of ocean color models for Case II waters might be achievable on a local basis 
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using adapted algorithms. This is because of the relationships that exist between the 

additional constituents and the water reflectance properties. Since the resuspended 

sediments, terrigenous particles, dissolved organic matter from land drainage, and 

anthropogenic influx can all be characterized as localized phenomena, it is possible that 

these factors can be studied in more detail and taken into account for modifying 

developed ocean color algorithms. 

Mupparthy and Merry (2004) evaluated 17 chlorophyll prediction models for 

Lake Erie that were initially developed for Case I waters using SeaWiFS data. The 

models were tested against a limited data set of in situ observations of chlorophyll-a and 

downwelling and upwelling radiance profiles taken at four locations in Lake Erie. They 

identified four out of the 17 models that showed promise. The goal of this research is to 

test these four models, and one additional model for historical purposes, against ground 

truth data acquired in western and central Lake Erie during two summers to determine 

which model provided the best prediction of chlorophyll-a concentration. 
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CHAPTER2 

BACKGROUND 

Understanding the water body characteristics of Lake Erie is iJUperative for 

interpreting the extent and distribution of chlorophyll-a concentrations. Lake Erie 

provides a dynamic area for the study of chlorophyll distributions and algal bloom 

causes, with its diverse bathymetry, biology, and history. This chapter provides a 

discussion of the study area, a review of blue-green algae species present in Lake Erie, 

and the remote sensing data sets that are available for mapping water quality parameters. 

2.1: Study Area Description 

Lake Erie is the oldest of the five Great Lakes (Figure 2.1). Formed after the 

glacial retreat approximately 9,000 years ago, Lake Erie is also the shallowest of the 

Great Lakes with an average depth of 19 m. Lake Erie is the smallest in terms of volume 

( 484 km 3
) and is the second smallest lake in terms of surface area (25, 700 km2

) 

(Environment Canada and USEP A, 1995). Lake Erie has survived three glacial 

expansions, numerous invasive species introductions, such as Dreissena polymorpha 

(zebra mussels), and nutrient loading from a variety of agricultural activities. Despite 

these threats, Lake Erie continues to provide both recreational and commercial fishing, 

and shipping. In addition to this, three major metropolitan areas (Cleveland, Ohio, 
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Toledo, Ohio, and Buffalo, New York) use Lake Erie as the source for the majority of 

their drinking water. 

In the 1950s and 60s, the Cuyahoga River in Cleveland, Ohio, caught fire 

numerous times from oil and debris that had been dumped into the river. The lack of 

environmental standards and monitoring had resulted in the lake being a repository for 

municipal, industrial and commercial waste, as well as nutrients- esp~cially phosphorous 

and nitrogen from non-point agricultural sources. Studies showed that the lake was 

overloaded with these nutrients, so much so that it was declared "dead" in the late 1960s 

(Leahy, 2003). 

Environmental standards were implemented starting in the 1970s, nutrient loading 

was reduced, and over time, the lake was thought to be improving. During the 1970s and 

80s phosphorous levels were observed to be decreasing. While still suffering from 

eutrophication, a condition in which biological productivity is high and the water is 

extremely rich in nutrients, the ecological health of Lake Erie was rebounding. One 

indicator of water quality improvements in recent years include the resurgence of 

Hexagenia (mayflies) (Environment Canada and USEPA, 2003). However, over the past 

few years Dreissena polymorpha (zebra mussels) and Dreissena bugensis (quagga 

mussels), as well as Lythrum salicaria (purple loosestrife), Phragmites australis, and 

Neogobius melanostomus (round gobies), have been introduced. With the introduction of 

these non-indigenous species, phosphorous levels have been observed to be increasing 

again. Algal blooms are now large enough where they can be easily seen on satellite 

images. One of the species that shows an increase in annual blooms isMicrocystis 

aeruginosa. 
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There are 12 different species of Microcystis found in eutrophic lakes (Park and 

Watanabe, 1996). While in their dormant stage, these coccolithic cyanobacteria form 

cysts that are denser than water. In approximately June or July, they "bloom" and rise to 

the surface, continuing growth typically throughout September, when they return to their 

dormant stage. The cyanobacteria typically grow in eutrophic or hypereutropic lakes 

(Park and Watanabe, 1996), making Lake Erie a perfect environment._. Though present in 

the lake during the 50s and 60s, few people thought to give the cyanobacteria credit for 

the massive fish kills, since xenobiotics manmade compounds with chemical structures 

foreign to a given organism were thought to be the culprit (NOAA Sea Grant, 1995). 

However, today more and more scientists are recognizing how toxic these single celled 

organisms can be. 

WhileMicrocystis is active, toxins known as microcystins are produced as a 

product of photosynthesis. In nature, blooms containing various species of Microcystis 

have been found to produce up to 23 different microcystins (Sivonen and Jones, 1999). 

Microcystis aeruginosa, one of the species tentatively identified as being present in Lake 

Erie, produces Microcystin-LR, a highly toxic hepatotoxin. Hepatotoxins are substances 

capable of causing damage to the liver. While the primary target in mammals is the liver, 

microcystins have also been shown to target the kidney, lungs, and intestines. In Qidong 

county in the People's Republic of China, an epidemiological study showed that a high 

incidence of primary liver cancer was strongly correlated to microcystin contamination of 

the water supply (Fujiki et al., 1996). Studies on mice have shown that ingestion of 

microcystins induce neoplastic liver nodules (Kuiper-Goodman et al., 1999). In Harare, 

Zimbabwe, human gastro-enteritis was linked to a water source where an annual bloom 
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of Microcystis occurred (Zilberg, 1966). A study on Lake Erie during the summers of 

1995 and 1996 showed that the concentrations of microcystins are x 10·10 times below 

the human liver toxicity threshold (Culver et al., 1999). The earlier studies by Fujiki 

(1996) and Zilberg (1966) demonstrate a need for monitoring and controlling the 

Microcystis species. Even if Lake Erie shows such small concentrations, the potential 

exists for increases in Microcystis levels in Lake Erie that could prov~ to be of concern. 

2.2: Available Remote Sensing Data Sets for Use in Water Quality 

There exists a historical basis for mapping ocean properties utilizing satellite 

imagery. In 1978, NASA launched the NIMBUS-7 environmental satellite. One of the 

sensors on this satellite was the Coastal Zone Color Scanner (CZCS) sensor that focused 

on water quality. Launched as a proof-of-concept mission, this scanner allowed scientists 

"their first opportunity to observe the [variability] of global biological productivity" 

(Acker, 1994). Six spectral bands were included on the CZCS sensor (Table 2.1 ). 

Channel 
1 
2 
3 
4 
5 
6 

Wavelength (µm) 
0.43-0.45 
0.51-0.53 
0.54-0.56 
0.66-0.68 
0.70-0.80 

10.50-12.50 

Principal Parameter 
Chlorophyll absorption 
Chlorophyll absorption 
Gelbstoffe (yellow substance) 
Chlorophyll concentration 
Surface vegetation 
Surface temperature 

Table 2.1: Spectral Bands of the Coastal l.one Color Scanner (Lillesand et al., 2004) 

The NIMBUS Experiment Team (NET) was formed as a group of optical 

physicists and biological oceanographers that wanted to validate the radiometric 
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measurements observed by the CZCS, as well as to relate the satellite data to 

standardized measurements of biological productivity and optical seawater clarity. Using 

the NET data set, consisting of oceanographic stations in the Atlantic and Pacific Oceans, 

the Gulf of Mexico and the Gulf of California, the team developed atmospheric 

correction methods, as well as pigment algorithms. Virtually all of these algorithms 

utilize band ratios to quantify the chlorophyll concentrations, phaeopi_gment 

concentrations, and total pigment concentrations. The results of these CZCS experiments 

were used in recommending the spectral bands for the next generation satellite sensor, 

SeaWiFS, that was focused on water properties. 

The SeaStar satellite was launched in 1997 as part ofNASA's Earth Science 

Enterprise (ESE) mission (Chandler, 1998). The mission of the ESE is "to develop a 

scientific understanding of the Earth system and its response to natural and human­

induced changes to enable improved prediction of climate, weather, and natural hazards 

for present and future generations" (NASA Earth Observatory, 2002). Under an 

arrangement known as a "data buy," "NASA contracted with Orbital Sciences 

Corporation (OSC) to build, launch and operate SeaWiFS on the OSC OrbView-2 

satellite (which was later renamed to SeaStar) to meet NASA's science requirement for 

ocean monitoring data" (Lillesand et al., 2004). This was one of the first commercial 

satellites to provide daily images of the earth. NASA purchased the SeaWiFS data and 

offered it free of charge to authorized SeaWiFS research users until 23 December 2004, 

when the existing data buy agreement expired. Data acquired after that date are 

available, but must be purchased directly from OSC. As of February 14, 2005, the 

NASA Stennis Space Center Acquisition Management Office announced that it planned 
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to issue a contract to OSC for SeaWiFS imagery, which could potentially extend the 

period of free access to SeaWiFS data for authorized SeaWiFS researchers (NASA 

Procurement Office, 2005). 

The SeaStar satellite travels in a sun-synchronous orbit at an altitude of 705 km 

with an inclination angle of 98.2°. The satellite crosses the equator at noon daily on its 

descending node. SeaWiFS is an across-track or "whiskbroom" scan9er. The orbital 

path provides the north/south movement, while the rotating scanning telescope coupled 

with the half-angle scan mirror arrangement provides the east-west movement. The scan 

mirror goes through six revolutions per second (Hooker et al., 1992). The instantaneous 

field of view (IFOV) of SeaWiFS results in a spatial resolution of 1.13 km for Local Area 

Coverage (LAC) images at nadir, which are then resampled for the 4.5 km spatial 

resolution Global Area Coverage (GAC) images. The swath width is 2,801 km (LAC) 

and 1,502 km (GAC). The geometric error in location of a ground resolution cell can be 

±0.5 pixel. 

SeaWiFS images are received by OSC HRPT stations, which create level la 

images. "Level 1 a image data are raw, and all spacecraft and instrument telemetry are 

retained in raw form as in the Level 0 data. In addition, geolocation data, instrument 

telemetry and selected spacecraft telemetry are converted and appended" (SeaDAS 

Development Group, 2002). Users can download the level la images from the 

Distributed Active Archive Centers (DAACs) and process them with the SeaWiFS Data 

Analysis System (SeaDAS) to generate their own level lb (sensor calibration applied), 

level 2 (atmospherically corrected, sensor calibration and bio-optical algorithms applied), 

or level 3 (spatially projected level 2) image products. Functions in SeaDAS allow 
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queries of latitude and longitude or pixel/line coordinates for use in data extraction. The 

SeaWiFS sensor has eight spectral bands (Table 2.2). 

Band Wavelength (nm) MidQoint of SQectral Band 
1 402-422 412 
2 433-453 443 
3 480-500 490 
4 500-520 510 
5 545-565 555 
6 660-680 670 
7 745-785 765 
8 845-885 865 

Table 2.2: Spectral Bands of the Sea-viewing Wide Field-of-view Sensor (Lillesand et al., 2004) 

The SeaWiFS sensor is unique in that the spectral bands are sensitive to 

fluctuations in ocean color that are due to pigment changes caused by variations of 

phytoplankton, changes in suspended matter, and changes in organic carbon, among 

others. Other satellite data, such as Landsat Thematic Mapper and the Advanced Very 

High Resolution Radiometer (A VHRR), have been used to monitor changes in ocean 

color, although these sensors were not specifically designed for deriving water properties. 

Stumpf (1987) utilized A VHRR data to study sediment and chlorophyll in the 

turbid coastal water of the Chesapeake Bay. The A VHRR is an 11-bit sensor on the 

NOAA satellites, with twice daily coverage and a spatial resolution of 1.1 km at nadir. 

However, its spectral resolution is significantly less than SeaWiFS (Table 2.3) with wider 

bandwidths and a reduced number of spectral bands. 
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Band Wavelength (µm) 
1 0.58-0.68 
2 0.72-1.10 
3 3.55-3.93 
4 10.3-11.30 
5 11.5-12.50 

Table 2.3: Spectral Bands of the A VHRR sensor (Lillesand et ~-1., 2004) 

Stumpf (1987) found that measurement of sediment concentration may be as 

accurate as ±30%, and estimates of chlorophyll may be estimated to within 60% at 

concentrations greater than 10 µg/L. At concentrations below 10 µg/L, the error is ±5 

µg/L. The greatest error in estimating chlorophyll concentrations was attributed to the 

uniform atmospheric correction being applied to the image data. The atmospheric 

correction scheme is sensitive to heterogeneities in the atmosphere or incorrect estimates 

of the atmosphere resulting in a scene bias. Corrections made to SeaWiFS data would 

later attempt to take this problem into account by utilizing localized meteorological data 

when performing the atmospheric correction. 

In 1984, the Thematic Mapper (TM) sensor was launched onboard the Landsat-5 

satellite. This sensor features much higher spatial resolutions (30 m for bands 1-5 and 7, 

120 m for band 6), however, the temporal resolution is much less than SeaWiFS - 16 

days rather than 1 day. The radiometric resolution is also lower for the TM sensor, 8-bit 

(256) as opposed to 10-bit (1024) data. The TM sensor spectral band widths are wider 

than SeaWiFS (Table 2.4). 
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Band Wavelength (µm) 
1 0.45-0.52 
2 0.52-0.60 
3 0.63-0.69 
4 0.76-0.90 
5 1.55-1.75 
6 10.4-12.5 
7 2.08-2.35 

Table 2.4: Spectral Bands of the Landsat-5 TM sensor (Lillesand et al., 2004) 

Budd et al. (2001) utilized Landsat TM imagery in conjunction with data from the 

A VHRR to observe Microcystis blooms in western Lake Erie. The study found that it 

was impossible to separate chlorophyll and sediment using the A VHRR data. However, 

with only seston (a measure of particulate matter, such as plankton, organic detritus and 

inorganic particles) data, and no shipboard sampling data collected during the blooms, 

chlorophyll concentrations were not directly estimated utilizing the A VHRR data. 

According to Budd et al. (2001), Landsat TM's ability to "resolve fine-scale spatial 

patterns allows for separation of the sediment and pigment signals". Budd et al. (2001) 

states that "TM' s four visible channels are ample for estimating chlorophyll 

concentrations, as well as sediment". Landsat TM images were used by Budd et al. 

(2001) to estimate the chlorophyll concentrations, but only in a qualitative sense to 

illustrate the areal extent of the blooms. A shortcoming of Budd et al. (2001) is that no 

clear method for estimating chlorophyll concentrations, nor sediment concentrations, was 

given. 

SeaWiFS has the same radiometric resolution as the A VHRR sensor (IO-bit), and 

is comparable in temporal and spatial resolution. Where SeaWiFS truly demonstrates its 
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usefulness as an ocean color sensor following the CZCS, TM, and the A VHRR for ocean 

color applications is in the spectral resolution, having eight bands between 400-900 nm 

(Figure 2.2). The CZCS only has five bands in this range, lacking any between 450-500 

nm, which were included on SeaWiFS to monitor gelbstoff and sediments (Hooker, 

1992). Thematic Mapper only has four bands between 400-900 nm, with much wider 

band widths than those for SeaWiFS. SeaWiFS bands 3 and 4 were s7lected by the 

design team to focus on ocean color due to the properties of chlorophyll in these regions. 

These two spectral bands are not separate on the Landsat TM sensor. Cyanobacteria have 

a distinct absorption from 540 nm to 560 nm (Bisset et al., 2001). SeaWiFS band 5 

(centered on 555 nm) is primarily designed to monitor this region of the spectrum to 

facilitate detection of blue-green algae. Since the Landsat TM band widths are much 

wider (0.45-0.52 and 0.52-0.60 µm), the TM sensor cannot detect this absorption band. 

13 



Figure 2.1: Location of Lake Erie in the northeastern United States (source: Shape file from ESRI 
ArcGIS software). 

I 

czcs ,... I II 1• ·-SeaWiFS - 1111 I 11 -

AVHRR,... ·- I II 
TM- .... • • • I I 

100 101 

Wavelength (µm) 

Figure 2.2: Spectral band coverage of the CZCS, SeaWiFS, AVHRR, and Thematic Mapper satellite 
sensors. 
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CHAPTER 3 

LITERATURE REVIEW 

The previous chapter examined different approaches to satelli}e observation of 

ocean color. This chapter will provide an examination of algorithms designed for 

chlorophyll monitoring utilizing SeaWiFS imagery, as well as different sampling 

methodologies used to extract representative data from SeaWiFS images. 

3.1: Description of ocean color algorithms 

Aiken et al. (1995) examined the NET and Bio-optical Synthetic Model (BSM) 

data to generate a band ratio algorithm for the SeaWiFS sensor data that would offer 

continuity with CZCS measurements. One algorithm was required for chlorophyll and 

pigment concentrations and another algorithm was needed for strictly chlorophyll 

concentrations. They settled on equations that best fit the data for seawater conditions 

using an analytical form of the equations and empirical coefficients. Both of the 

equations were based on the ratio of the water leaving radiances (LwN) at 490 and 555 

nm. The water leaving radiance equation, Lux, is: 

(3.1) 

where F0 is the extraterrestrial irradiance, n is the refractive index of seawater, R is the 

irradiance reflectance, pis the Fresnel reflectance at normal incidence, p is the Fresnel 
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reflectance for sun and sky irradiance, r is the air-water reflectance for diffuse irradiance, 

and Q is the ratio of upwelling irradiance to radiance. 

Aiken et al. (1995) states that the main determinant of the radiance ratio, LwN, 1s 

the irradiance reflectance, R, expressed as: 

(3.2) 

where G(f../<J,AJ represents the effect of the downwelling light field, bb(A) is the backscatter 

coefficient; and a(A,) is the absorption coefficient. They combined the ratios of the air-

sea interface effects, the effects of the light field, and the relative spectral variation of Q 

to obtain the constant g, which they assumed to be unity. The radiance ratio R,, becomes: 

(I - p XI - j5'p(µ0 , A f ~g;] 
n2 (1-rRyj ____ _ 

After analyzing the NET and BSM data, the best chlorophyll (C) algorithm 

(Aiken-C) defined by Aiken et al. (1995) was determined to be: 

c = e04&H 989log(R) if('> 2.0 µg 
L 

C= (R- 5.29) ifC<2.0µg 
(0.719-4.23R) L 
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The best pigment (P) and chlorophyll concentration algorithm (Aiken-P) defined by 

Aiken et al. (1995) was determined to be: 

C = eo696-2oss1og(RJ = [c + p] if [c + p] > 2.0 µg 
L 

C= (R- 5·29) =[C+P] if[C+P]<2.0µg 
(0.592- 3.48R) L 

(3.5) 

In 1998, the California Cooperative Oceanic Fisheries Investigations (CalCOFI) 

team analyzed data from the Southern California Bight region (Mitchell and Kahru, 

1998). They explored ratios of remotely sensed radiance (Rrs), as well as the water 

leaving radiance (LwN), and determined that algorithms utilizing band ratios of Lw,v 

resulted in slightly higher r2 values and lower root-mean-squared (RMS) error. One of 

the equations developed by Mitchell and Kahru (1998) was a three-band ratio algorithm 

(CalCOFI-3) defined as: 

c = el025-l.622R1-1238R2 

This equation was found to have better results than a similar equation using remotely 

sensed reflectance (R,.s) instead of Lwv The definition of Rrs is: 

R = LWN 
rs £ 

D 

where LwN is the water leaving radiance and ED is the downwelling irradiance. 
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Later the same year, O'Reilly et al (1998) examined the CalCOFI algorithms 

(using Rrs instead of LwN) along with many others, including the Aiken-C and Aiken-P 

equations. The CaJCOFI-3 equation was found to be better suited to the results of the 

SeaWiFS Bio-optical Algorithm Mini-Workshop (SeaBAM) dataset. Another algorithm, 

OCTS-C, resulted in a higher r2 value (0. 933) and a non-linear trend. The OCTS-C 

algorithm is defined as: 

R Jog(LwN(520)+ LWN(565)J 
LwN(490) 

c 10-055006+3497R 

(3.8) 

Due to the SeaBAM data set having only Rrs values for the in situ data (since all of the 

data was from before SeaWiFS was launched), the algorithms examined did not consider 

LwN. Of 12 ocean chlorophyll (OC) algorithms considered by O'Reilly et al. (1998), a 

modified cubic polynomial maximum 4-band ratio (OC4) was found to fit their data best. 

The OC-4 algorithm is defined as: 

R max 
(3.9) 

c }004708-38469R+45338R1 +-24434R3 -0.0414 

O'Reilly et al. (2000) used 2,853 in situ observations from all over the world and 

further refined the form of the equation which was a modified cubic polynomial to a 

fourth order polynomial with associated coefficients to create the OC4 version 4 (OC4v4) 

algorithm, defined as: 

18 



('::::: 100366-3067Rtl930R2 +0649R3 -1532R4 (3.10) 

In a similar study within the region of the western basin of Lake Erie, Mupparthy 

and Merry (2004) used in situ observations of chlorophyll-a and downwelling radiance 

profiles and upwelling radiance profiles to evaluate 17 algorithm~ selected from the 

ocean color literature. The Aiken-C, Aiken-P, CalCOFI-3, and OC4v4 were the best­

suited algorithms for the current atmospheric correction scheme. Consequently, these 

four algorithms were selected to be evaluated using available in situ data on water quality 

acquired during 2002 and 2003 in the western and central basins of Lake Erie. 

3.2: Mapping a satellite pixel value to correspond to a ground truth sample point 

The simplest method of selecting a corresponding satellite pixel to correspond 

with a ground truth data point is the nearest neighbor method (Figure 3.1). When a point 

is selected from a satellite image, the value of the pixel (whether it is a digital number, a 

reflectance value, or some other geophysical value) that is nearest to the coordinates of 

the given point - the nearest neighbor - is returned. This method does not account for 

variations over an area, but is commonly used due to its simplicity (Lillesand et al., 

2004). In addition, this method preserves the true radiometric characteristics of the 

image data. 

SeaWiFS is an across-track scanner. Inherent in this type of scanner is overlap of 

the raw data pixels (Figure 3.2). For SeaWiFS at nadir (when the sensor is viewing the 

ground directly underneath) the spatial resolution is 1.13 km. During preprocessing, the 

scan line is resampled to 1.1 km pixels. Because of this overlapping nature of adjacent 

pixels in a scan line, the surrounding pixels have an influence on a pixel's value. 
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Another way to select a representative pixel value to correlate with a ground 

sample point is to do spatial averaging (Figure 3.3). A 3x3 matrix of pixels surrounding 

the location of the in situ data point is extracted and averaged. 

Another way to represent a pixel value is to perform a bilinear average (Figure 

3.4). Since the point is affected more by the adjacent pixels, only the four neighboring 

pixels (north, south, east, and west) are taken into account. .· 

These two methods (spatial averaging and bilinear averaging) give equal weight 

to the nearby pixels. Another option would be to use the Inverse Distance Weighted 

(IDW) method, specifically the Inverse Distance Squared Weighted Interpolation method 

(ESRI, 2003). This general formula is: 

(3 .11) 

where z(so) is the value being predicted for location So, N is the number of measured 

sample points surrounding the prediction location that will be used in the prediction (9 in 

this case), A.i are the weights for each measured sample point, decreasing with increasing 

distance, and Z(si) is the observed value at each measured sample point. The weights are 

determined by: 

(3.12) 

where dw is the distance between the measured sample point and the prediction location. 
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For this research, the IDW method was used to select a representative satellite 

pixel value to be used in the ocean color algorithm calculations. 

In summary, based upon work by Mupparthy and Merry (2004), five algorithms 

were investigated and found to be applicable towards Lake Erie. Sampling 

methodologies were examined for selecting appropriate pixel values to correlate with the 

in situ data points. The inverse distance weighted interpolation meth~d was used for 

selecting the satellite data values to compare with the in situ data points. The next chapter 

will examine the procedures used in data preparation, extraction, processing and analysis. 
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Interpolated Z Va!W! = Z(2,2) 

Figure 3.1. Nearest Neighbor Sampling Method 

Flight Line • Nadir 

Not To Scale 

Figure 3.2. Across-track, or whiskbroom, scanner system. The instantaneous field of view (IFOV) is 
represented as J3. 
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Figure 3.3. Spatial Average Sampling Method 

Figure 3.4. Bilinear Average Sampling Method 
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CHAPTER4 

METHODOLOGY 

4.1: In Situ Data Collection and Image Selection 

In situ data were provided by J. Conroy (The Ohio State University) and included 

chlorophyll concentrations at sample site locations in the western and central basins of 

Lake Erie, for the summer 2002 and 2003. Water samples were obtained by utilizing a 5 

cm PVC integrated tube sampler at depths of twice the secchi depth measured. 

Chlorophyll concentrations were determined by Method 446 by Arar (1997). After 

receiving the in situ data for the western and central basins of Lake Erie (Table 4.1, 

Figure 4.1), the coordinates for each sampling point provided were converted from 

degrees/decimal minutes to decimal degrees (Figures 4.2-4.5). Next, the data set was 

screened for days that had corresponding cloud-free SeaWiFS images available. These 

images were downloaded from the Distributed Active Archive Center (DAAC) at the 

NASA Goddard Space Flight Center (GSFC) in Greenbelt, Maryland (see 

http://w-vv\v.daac.gsfc.nasa.gov). 

The SeaWiFS images were examined to determine if the sample site was visible. 

The image data were initially examined to ensure that accurate normalized water-leaving 

radiance and remotely-sensed reflectance values could be obtained with no level 2 flags 

(these are pixels that are flagged by the SeaDAS software that could contain high sun 
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glint, land, or cloud shadows). If level 2 flags were found when selecting the image data, 

the data points were eliminated. 

4.2: Satellite Data Preparation 

After examining the available data, nine satellite images that corresponded to 37 

in situ water samples were found (Appendix A). The corresponding level I local area 

coverage (LAC) image files with 1.1 km spatial resolution were processed using the 

SeaDAS software. Level 2 images of chlorophyll concentrations using the OC4v4 

algorithm - the default algorithm presently available in SeaDAS - such as shown in 

Figure 4.6, were prepared. Also, the normalized water leaving radiances and remotely 

sensed reflectance at all wavelength bands were calculated for the nine SeaWiFS images. 

Generation of the level 2 images consisted of providing the appropriate 

meteorological (.met) and ozone (.ozone) data files provided by NASA with the SeaWiFS 

data, as well as the appropriate sensor calibration files (seawifs_sensor_cal.tbl) to the 

SeaDAS software. The multiple scattering aerosol model with 7/8 algorithm (Ruddick et 

al., 2000) and the Siegel Near-InfraRed (NIR) algorithm (Siegel et al., 2000) with up to 

10 iterations was used to perform the atmospheric correction on the level la images. This 

is the default atmospheric correction algorithm in SeaDAS. 

Next, input text files were prepared with pixel/line values corresponding to the 

adjacent pixels of the selected sample point. These were then input into the Rline widget 

in SeaDAS, generating the OC4, and the Rrs and Lwn values for each SeaWiFS spectral 

band for the 3x3 pixel matrix for each image. These data were used as input to the four 

other ocean color algorithms to predict chlorophyll concentrations. 

25 



4.3: Bathymetry Data 

With the latitudes and longitudes calculated for the SeaWiFS data points, the data 

sets (in table form) were brought into Arc View. This Arc View table was added to a view 

as an XY theme and converted to a shape file. Using ArcCatalog, the shapefile was 

assigned to the World Geographic System Universal Transverse Mercator ( 1984 Zone 

17N) coordinate system to match the coordinate system of a National .. Oceanographic and 

Atmospheric Administration (NOAA) bathymetry map. The bathymetry map was 

created from an x-y-z file obtained from the National Geophysical Data Center (NGDC) 

at NOAA that was generated from the Great Lakes Bathymetry Grids Database taken at a 

3-sec grid size. Secchi depth at each sample point was measured in the dataset provided 

by J. Conroy. 

4.4: Calculations of chlorophyll concentration using the ocean color algorithms 

The algorithms (Aiken-P, Aiken-C, OC4, OC4v4 and CalCOFI-3) were used to 

determine approximate chlorophyll concentration values that corresponded to the 

locations of the in situ data points. Comparisons between the four sampling methods and 

the in situ observations were examined. Linear regressions of the predicted and observed 

chlorophyll concentrations were calculated using the method in Chatterjee and Hadi 

(1986) in Matlab. 
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Year Julian Day Sample ID 
Corrected Chlorophyll-a Secchi Depth Depth 

(µg/L)_ (m) (m) 

l 1.104 5.1 -21 

222 2 0.077984 5.5 -17 
9Aug 3 1.2723 6.1 -22 

4 0.83705 1.4 -11 

1 9.8474 1.1 -6 
242 

2 3.8547 u· 
30Aug -9 

2002 3 6.9838 1.2 -10 

I 8.6521 0.9 -7 

2 9.4211 1.4 -13 

249 3 3.6873 4.6 -21 
6 Sep 4 3.5217 3.6 -17 

5 4.045 3.6 -22 

3.835 3 -15 

1 1.6073 2.5 -21 

2 1.6679 1.8 -17 
174 

3 3.2067 
23 June 4.2 -22 

4 1.5219 3 -19 

5 2.419 1.7 -II 
1 10.653 2.4 -6 

176 2 5.4228 1.2 -6 
25 June 3 4.8701 4.3 -9 

4 5.4575 2.7 -9 
···········-----· ··········-

l 6.0956 1.8 -10 

2 15.144 1.2 -
3 2.2561 6 -13 

2003 195 
4 4.1518 

14 July 1.2 -6 

5 12.225 1.6 -6 

6 9.321 1.5 -9 

7 8.9365 1.8 -9 
···-····~~- --··-· 

l 3.8154 1.2 -6 

210 2 6.4427 0.9 -6 
29 July 3 6.0823 2.4 -9 

4 5.l)436 2.1 -7 

253 
l 3.1186 

10 Sep -U -21 

1 2.9904 0.6 -6 
280 

2 6.3546 ?Oct 0.6 -6 

3 2.8462 1.2 -9 

Table 4.1: In situ data with derived depth (from J. Conroy, Dept of EEOB, OSU) 
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Figure 4.6: Level 2 OC4v4 image (6 September 2002) of Lake Erie generated in SeaDAS showing 
chlorophyll concentration (in mg/m3

). 

33 



CHAPTER 5 

RESULTS 

To detennine the accuracy of the five ocean color algorithms and the accuracy of 

the sample point prediction methodology, a simple linear regression of the results of each 

of the algorithms and the observed chlorophyll concentration at each location was 

perfonned using the method outlined by Chatterjee and Hadi (1986). The inverse distance 

weighted (IDW) method was found to provide increases in R2 values of an average of 

0.11 over the nearest neighbor method (0.35 as opposed to 0.24) (Table 5.1). Of the five 

algorithms examined, the OC4v4 algorithm had the highest correlation (R2 of0.38) 

between observed and predicted chlorophyll concentrations. 

5.1: Sampling Methodologies 

Of the four sampling methodologies (nearest neighbor, bilinear averaging, spatial 

averaging, and inverse distance weighted), the inverse distance weighted method had the 

highest correlation to the observed chlorophyll values for all five ocean color algorithms. 

Spatial averaging was found to be the next best sampling method, followed by bilinear 

averaging, and then the nearest neighbor method (Table 5 .1 ). 

These results were as expected, due to the overlapping nature of the pixel data 

resulting from the across-track design of the SeaWiFS scanner. With each increase in 
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spatial weight to neighboring pixels, an increase in R2 was observed. For the nearest 

neighbor method, no weight is given to neighboring pixels, and the average R2 value was 

found to be 0.24. The bilinear averaging method only gives weight to the adjacent four 

pixels, with an average R 2 value of 0 .29. The spatial average method gives weight to the 

adjacent nine pixels and the average R2 value was found to be 0.33. The inverse distance 

weighted (IDW) method gives decreasing weight to pixels located further from the in situ 

sample point for the entire 3x3 pixel matrix. The average R2 value for the IDW method 

was found to be 0.35. As shown in Figure 5.1, the spatial variation of the constituents in 

the western basin of Lake Erie can be significant. 

5.2: Algorithm Results 

Individual algorithm and methodology results can be found in Tables 5.2-5.5. 

The graphs showing the predicted vs. observed chlorophyll concentrations for the five 

algorithms are shown in Figures 5.2 through 5.6. The dashed lines indicate a 95% 

confidence interval, while the solid line is the linear regression equation. All of the 

regressions had several points outside of the 95% confidence interval. These points 

occurred when the models consistently overpredicted the concentrations for three samples 

that were determined to have approximately 3-4 µg/L chlorophyll-a and two samples that 

were determined to have approximately 6 µg/L chlorophyll-a. These five samples were 

located in the western part of the Western basin, the easternmost point in the Bass Island 

region, and the northernmost point in the Central basin. 

A quantile-quantile plot (Figure 5. 7) of the OC4v4 algorithm results against the in 

situ data illustrates the differences in their distributions (Figures 4.1 and 5.8), specifically 
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the differences in the means and standard deviations. While the in situ data has a mean of 

5.24 µg/L and a standard deviation of3.4 µg/L (Figure 4.1), the OC4v4 algorithm results 

had a mean of 8.01 µg/L and a standard deviation of 6.03 µg/L (Figure 5.8). This wider 

range of prediction using the OC4v4 algorithm results from samp.les where the algorithm 

overpredicted the chlorophyll concentration. The sample sites typically occurred at low 

secchi depth measurements(< 1.5 m) and shallow water depths(< 7 m). This 

discrepancy may result from the atmospheric correction process. In some cases, it is 

possible the near infrared reflection was higher than normal due to higher sediment 

and/or chlorophyll concentration in the surface water. The atmospheric correction 

algorithm uses these bands (7 and 8) to obtain "black body" values, which are then used 

to correct the other bands. In this case, the "black body" value obtained would be 

incorrect, and would result in an overcompensation for atmospheric scattering. 

Figure 5.9 shows a plot of the data values used for the maximum band ratio in the 

OC4v4 algorithm vs. the in situ chlorophyll concentration. For comparison the OC4 

(solid line) and OC4v4 (dashed line) model equations are also plotted. As shown, the 

fourth order polynomial equation of the OC4v4 algorithm seems to represent the 

observed data better than the modified cubic polynomial equation of the OC4 model. 

Figure 5.10 is taken from O'Reilly et al. (2000) and is shown at the same scale as 

Figure 5.9. Figure 5.10 illustrates the data values used for the maximum band ratio in 

their development of the OC4v4 algorithm vs. the in situ chlorophyll concentration. This 

figure was not developed using data from Lake Erie, but from other eutrophic waters with 

chlorophyll concentrations similar to Lake Erie, as well as data from oligotrophic waters. 

When comparing Figure 5.9 with 5.10, all but one of the sample data points in Figure 5.9 
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is within the scatter observed for the OC4v4 algorithm. The outlying data point was 

taken on August 9, 2002 in the Central Basin (Figure 4.5 - the southwesternmost sample 

point, Table 4.1 sample point 2). This data point is abnormal not only because of the low 

concentration of chlorophyll (0.08 mg/L), but also because the data point is one of the 

highest secchi depth measurements (5.5 m). The OC4v4 algorithm predicted the 

chlorophyll concentration to be 2.13 µg/L. While the relative error is.high for this 

prediction, the absolute error is 2.05 µg/L. 

Figure 5.11 shows that the six highest prediction errors occurred at water depths 

of 6 m (the shallowest depth recorded for this data set). These sample points also 

corresponded to secchi depths of 1.5 m or less (Figure 5.12). Spatially, these points were 

located either in the western basin or closer to the shoreline (Figure 4.3 all points, Figure 

4.4 southernmost two points, and Figure 4.5, southeasternmost data point). Secchi depths 

can be correlated to the water depth at the sample sites with an R2 of0.54 (Figure 5.13). 

This makes it difficult to determine if secchi depth or water depth or both are the major 

factors contributing to error in the algorithm, as absolute errors (predicted - observed 

values) were most significant when water depths were shallow or secchi depths were low. 

Secchi depth is only a measure of contrast through water and not upwelling or 

downwelling irradiances alone (Estep and Arnone, 1993). The bottom reflectance 

occurring at these shallow water depths or the scattering due to the high seston 

concentration indicated by low secchi depth cannot be isolated as single factors causing 

the errors. Chlorophyll concentrations were typically higher at low secchi depths (Figure 

5.14), as well as at shallow depths (Figure 5.15). The algorithm prediction errors were 

also typically higher in these areas (Figures 5.11 and 5.12). This was expected due to the 
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low secchi depth resulting from increased chlorophyll (among other constituents) 

concentrations and the shallow water depths, resulting in decreased light penetration. 

These two conditions might result in a lower band ratio being recorded by the satellite. 

Overall, the OC4v4 ocean color algorithm outperformed t~e other four algorithms 

examined, however, only marginally. This was because for the sample sites examined, 

the 510:555 band ratio was consistently the maximum band ratio compared to the 

443:555 and 490:555 band ratios, and was always used in the OC4v4 algorithm. This is 

important, because this ratio is the best correlated index of chlorophyll-a concentrations, 

when values exceed 3 mg/m3 (O'Reilly et al., 2000). For this study 26 out of 3 7 sample 

points exceeded 3 mg/m3
. Of the algorithms examined, only the OC4v4 and OC4 

algorithms were maximum band-ratio algorithms. The modified cubic polynomial form 

of OC4 was found to not fit the data. For the Aiken-C and Aiken-P algorithms that rely 

on the ratio of the water leaving radiances (LwN) at 490 and 555, use of the 490:555 band 

ratio was found to be less important for Lake Erie. In eutrophic waters, the signal to noise 

ratio (SNR) increases as the wavelength value used in the numerator of the ratio increases 

(i.e., SNR is higher at the 510 nm wavelength than at the 412 nm wavelength) (O'Reilly 

et al., 2000). The CalCOFI-3 algorithm uses the 510:555 band ratio, but weighs this ratio 

less than the 490:555 band ratio (1.238 as opposed to 1.622). Also of note is that for the 

atmospheric correction scheme used in SeaDAS, "the 510 band is much less prone to 

extrapolation errors (resulting from a NIR atmospheric correction scheme) than the 490 

nm and 443 nm bands" (O'Reilly et al., 2000). Therefore, algorithms using the 510:555 

band ratio are likely to generate more accurate results. 
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The OC4v4 algorithm seems to be the best suited ocean color algorithm for Lake 

Erie. However, further refinement of this algorithm for the Lake Erie environment is 

warranted. As can be seen in Figure 5.9, the OC4v4 ocean color algorithm overpredicts 

the chlorophyll concentration for a majority of the in situ sample~. Additional 

measurements of in situ chlorophyll concentrations are recommended to develop 

additional values of the 510:555 band ratio ofRrs to test in the OC4v4 algorithm. In this 

way, the coefficients shown in equation 3.6 could be refined to result in a geographic­

specific ocean color algorithm for Lake Erie. 
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··-····· 

M__J 
2 ·-- ~-------, 

! Method Algorithm b R R average : 

Aiken-P 0.78 3.61 0.24 

Nearest Aiken-C 0.56 2.69 0.25 
Neighbor OC4 3.22 5.25 0.18 0.24 

CalCOFI-3 1.44 5.07 0.25 
OC4v4 0.99 3.03 0.30 
Aiken-P 0.82 3.42 0.2& 

Bilinear Aiken-C 0.60 2.51 0.29 
averaging OC4 3.54 3.50 0.27 0.29 

CalCOFl-3 1.52 4.65 0.29 
OC4v4 0.97 2.92 0.34 
Aiken-P 0.99 3.09 0.30 : 

; 

Aiken-C 0.71 2.30 0.31 
Spatial Average OC4 4.55 0.99 0.31 0.33 

CalCOFl-3 1.82 3.95 0.33 
OC4v4 1.06 2.62 0.37 
Aiken-P 0.97 2.91 0.34 

Inverse Distance 
Aiken-C 0.70 2.17 0.35 

Weighted OC4 4.22 1.19 0.33 0.35 
CalCOFl-3 1.78 3.78 0.36 

OC4v4 1.07 2.53 0.38 

Table 5.1: Linear regression results for the five ocean color algorithms for predicting chlorophyll 
concentration. 
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Year Julian Day Sample ID In Situ Aiken-P Aiken-C OC4 CalCOFI-3 OC4v4 

1 LIO 1.35 1.11 2.04 2.18 1.74 

222 2 0.08 2.12 1.27 2.58 2.74 2.11 
9Aug 3 1.27 2.68 2.10 16 3.51 2.47 

= 
4 0.84 5.08 3.86 7.07 4.21 

1 9.85 I 14.42 10.44 95.3l 28.40 23.16 
242 

2 3.85 6.37 4.79 13.69B.18 7.13 30Aug 
2002 3 6.98 14.74 10.66 34.62 .89 12.88 

1 8.65 11.07 8.11 25.41 17.94 10.64 

2 9.42 11.72 8.57 38.28 20.39 13.69 

249 3 3.69 4.78 3.64 4.80 6.23 3.40 
6 Sep 4 3.52 6.35 4.77 5.55 8.07 3.79 

5 4.05 3.43 2.65 3.16 4.25 2.47 

6 3.84 10.69 7.85 10.30 14.23 5.88 

I 1.61 2.18 1.29 2.60 2.80 2.12 

2 1.67 3.46 2.68 4.60 4.79 3.30 
174 

3 3.21 1.41 1.16 2.22 2.36 1.87 23 June 
4 l.52 2.80 2.19 3.56 3.77 2.71 

5 2.42 5.67 4.29 11.20 8.87 6.22 

1 10.65 11.40 8.35 37.62 19.88 13.54 

176 2 5.42 I 8.91 6.60 27.69 15.43 11.23 
25 June 3 4.87 4.53 3.46 10.35 7.30 5.89 

4 5.46 2.65 2.07 38 3.84 3.18 

1 6.10 5.03 3.82 9.84 7.83 5.69 

2 15.14 14.76 10.68 50.19 25.72 16.08 

3 226~ 1.17 2.16 2.36 1.83 
2003 195 

I 4 4.15 9.90 46.72 23.85 15.41 14 July 
5 12.23 11.13 8.16 28.05 18.40 11.32 

6 9.32 6.66 4.99 16.76 11.03 8.15 

7 8.94 5.53 4.18 10.67 8.60 6.02 

1 3.82 24.59 17.38 115.59 44.54 25.74 

210 2 6.44 11.28 8.26 37.27 19.68 13.47 
29 July 3 6.08 4.58 3.49 8.33 6.98 I 5.01 

4 5.04 6.21 4.67 11.87 9.66 6.47 
253 

1 3.12 1.27 1.04 2.08 2.04 1.77 
10 Sep 

-

1 2.99 17.68 12.68 62.20 30.81 18.21 
280 

2 6.35 14.05 10.19 44.00 24.13 14.88 ?Oct 
3 2.85 4.29 3.29 7.59 6.48 4.75 

Table 5.2: Algorithm Results (µg/L) using Nearest Neighbor Sampling. 
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Year Julian Day Sample ID In Situ Aiken-P Aiken-C OC4 CalCOFI-3 OC4v4 

l 1.10 1.84 1.23 2.43 2.60 2.01 

222 2 0.08 2.25 1.48 2.88 3.03 2.30 
9 Aug 3 1.27 2.68 1.99 3.1 l 3.50 2.44 

4 0.84 4.07 3.13 5.17 5.62 3.58 

1 9.85 14.56 10.50 67.74 26.63 18.34 
242 

2 3.85 6.01 4.53 11.90 9.-n 6.47 30 Aug 
2002 3 6.98 8.12 6.00 16.84 12.80 7.73 

l 8.65 9.53 7.01 22.44 15.43 9.44 

2 9.42 12.34 8.99 4l.l3 21.41 13.96 

249 3 3.69 4.06 3.12 4.12 5.26 3.03 
6 Sep 4 3.52 6.49 4.87 6.66 8.64 4.31 

5 4.05 4.37 3.34 4.49 5.70 3.21 

6 3.84 19.03 13.37 14.58 23.88 7.00 
·--

1 l.61 2.07 1.29 2.71 2.85 2.19 

2 1.67 3.44 2.66 4.69 4.79 3.33 
174 

3 3.21 l.46 l.15 2.17 2.32 1.83 
23 June 

4 l.52 2.70 l.95 3.47 3.63 2.65 

5 2.42 5.42 4.10 9.77 8.25 5.57 

l 10.65 15.66 11.20 78.92 28.32 17.73 

176 2 5.42 9.78 7.19 34.47 17.12 12.08 
·------- .•. 

25 June 3 4.87 3.96 3.04 8.62 6.29 5.18 

4 5.46 2.72 2.13 4.59 3.97 3.29 

1 6.10 4.82 3.67 8.26 7.24 4.99 

2 15.14 19.64 13.79 77.87 33.47 16.83 

3 2.26 2.06 l.35 2.91 2.90 2.31 
2003 195 

4 4.15 16.08 11.57 57.58 28.l l 17.18 
14 July 

5 12.23 16.60 11.83 58.64 28.34 15.48 

6 9.32 7.34 5.48 18.82 12.19 8.73 

7 8.94 5.50 4.16 10.51 8.53 5.95 

1 3.82 20.14 14.21 104.49 36.11 20.43 
.. _ 

210 2 6.44 14.19 10.23 48.39 24.46 14.77 
29 July 3 6.08 4.56 3.48 8.37 6.96 5.08 

4 5.04 5.43 4.11 10.66 8.46 5.96 
253 

1 3.12 1.29 1.06 2.14 2.10 1.81 
10 Sep 

1 2.99 21.39 15.17 74.44 36.64 19.42 
280 

2 6.35 15.0l 10.84 51.65 26.09 16.06 70ct 
3 2.85 4.19 3.21 7.51 6.34 4.69 

---·-'--·-· ·····~ 

Table 5.3: Algorithm Results (µg/L) using Spatial Average Sampling. 

42 



Year Julian Day Sample ID In Situ Aiken-P Aiken-C OC4 CaICOFI-3 OC4v4 

1 LIO 1.90 1.24 2.49 2.65 2.04 

222 2 0.08 I 2.23 I.43 2.85 2.94 2.28 
9Aug 3 1.27 2.65 1.97 3.12 3.47 2.45 ,..... 

4 0.84 4.24 3.24 5.21 5.80 3.60 

I 9.85 13.22 9.59 69.63. 24.85 18.64 
242 

2 3.85 5.80 4.38 11.66 9.11 6.39 
30Aug 

2002 3 6.98 l0.55 7.71 22.77 16.79 9.55 

I 8.65 9. 1 22.15 9.62 

2 9.42 12.08 I 38.59 .60 

249 3 3.69 4.13 3.17 4.28 12 
6 Sep 4 3.52 6.28 4.72 6.34 8.31 4.16 

5 4.05 3.80 2.92 3.71 4.83 2.80 

6 3.84 11.60 8.46 l0.33 15.lO 5.87 

1 1.61 2.10 1.30 2.70 2.86 

2 1.67 3.56 2.75 4.81 4.96 3.39 
174 

3 3.21 1.40 1.15 2.19 1.85 
23 June 

4 1.52 2.66 1.88 3.4 2.64 

5 2.42 5.63 4.26 lO. 8.62 5.81 

1 10.65 15.57 11.14 69.38 7.73 16.92 

176 2 5.42 9.03 6.67 28.26 15.58 l l.11 
25 June 3 4.87 4.06 3.12 9.02 6.49 5.35 

4 5.46 2.73 2.13 4.61 3.99 3.30 

1 6.10 5.42 4.11 9.64 8.26 5.61 

2 15.14 12.61 9.16 40.21 21.50 13.32 

3 2.26 1.91 1.26 2.70 2.76 2.18 
2003 195 

4 4.15 15.27 11.02 53.93 26.69 16.59 14 July 
5 12.23 15.11 10.83 51.95 25.74 14.52 

6 9.32 7.18 5.36 18.52 11.94 8.63 

7 8.94 5.51 4.17 l0.49 8.54 5.95 
-··· 

1 3.82 19.37 13.79 88.30 34.80 20.97 

210 2 6.44 12.91 9.37 42.13 22.28 14.08 
29 July 3 6.08 4.59 3.51 8.50 7.03 5.14 

4 5.04 5.92 4.47 11.85 9.29 6.43 

253 
1 3.1 1.28 1.06 2.12 2.09 1.80 

10 Sep 
I 2.99 20.14 14.34 64.33 34.22 18.35 

280 
2 6.35 14.54 I0.52 47.89 25.16 15.53 70ct 
3 2.85 4.22 3.23 7.66 6.41 4.76 

Table 5.4: Algorithm Results (µg/L) using Bilinear Averaging Sampling. 
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Year Julian Day Sample ID In Situ Aiken-P Aiken-C OC4 CalCOFI-3 OC4v4 

I I.IO l.62 l.18 2.26 2.41 l.89 

222 2 0.08 2.13 l.30 2.62 2.78 2.13 
9Aug 3 l.27 2.70 2.05 3.15 3.53 2.47 

4 0.84 3.56 2.71 4.49 4.94 2.98 

l 9.85 12.70 9.22 69.69 24.06 18.53 
242 

2 3.85 30 Aug 6.18 4.65 12.92 9.81 6.85 
2002 3 6.98 13.86 I0.03 30.72 22.16 11.72 

1 8.65 I0.65 7.81 24.70 17.28 I0.35 

2 9.42 11.61 8.49 37.06 20.06 13.28 

249 3 3.69 4.32 3.31 4.36 5.61 3.16 
6 Sep 4 3.52 6.15 4.63 5.91 8.01 3.96 

5 4.05 3.85 2.96 3.80 4.91 2.84 

6 3.84 15.10 I0.76 12.39 19.26 6.39 

1 l.61 2.19 l.31 2.69 2.87 2.18 

2 l.67 3.48 2.69 4.64 4.82 3.32 
174 

3 3.21 l.47 1.16 2.18 2.34 l.84 23 June 
4 1.52 2.71 l.95 3.43 3.62 2.63 

5 2.42 4.46 3.36 8.58 6.92 4.70 

1 I0.65 12.99 9.42 50.26 22.93 15.00 

176 2 5.42 8.87 6.56 27.77 15.33 11.07 
25 June 3 4.87 4.45 3.40 IO.IO 7.16 5.79 

4 5.46 2.68 2.IO 4.49 3.90 3.23 

1 6.IO 5.05 3.84 9.06 7.69 5.36 

2 15.14 19.47 13.73 78.56 33.65 17.95 

3 2.26 l.96 l.31 2.73 2.79 2.19 
2003 195 

4 4.15 14.38 I0.41 50.65 25.18 16.01 14 July 
5 12.23 15.06 I0.80 49.67 25.52 14.33 

6 9.32 6.78 5.08 16.77 11.18 8.12 

7 8.94 5.53 4.19 I0.68 8.60 6.03 

1 3.82 20.23 14.36 94.91 36.43 21.51 

210 2 6.44 15.46 11.12 54.12 26.86 16.20 
29 July 3 6.08 4.58 3.50 8.39 7.00 5.09 

4 5.04 6.06 4.57 11.64 9.43 6.38 
253 

1 3.12 l.28 l.05 2.11 2.08 l.80 IO Sep 
1 2.99 18.54 13.26 64.65 32.14 18.48 

280 
7 Oct 2 6.35 15.12 I0.92 51.18 26.24 16.11 

3 2.85 4.20 3.22 7.49 6.35 4.69 

Table 5.5: Algorithm Results (µg/L) using IDW Sampling 
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83 YJ'O'W 83fJO'W 8230'0'W 81 YJ'O'W 81 fJO'W 

42-'30'0"N 
42"'30'0"N 

42 fJO"N 
A2 fJO"N 

'1''30'0"N 

41 O'O"N 
4 1"0'0"N 

83'30'0'W 83 fJO'W 82'30'0'W 81 YJ'O'W 81 fJO'W 

25 12.5 0 25 50 75 Legend 
P""'l~~~iiiiiil--~iiiiiiiiiiiiiiiiii~~~iiiiiiiiiiiiiiiiiiiiiil' km 

• In Situ Data Collection Points 

Figure 5.1: Landsat-7 image of Western and Central Basins of Lake Erie for August 1, 2002. The 
locations of the 2002 and 2003 sampling points used in this analysis are also plotted. 
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CHAPTER6 

DISCUSSION 

To investigate the significance of the R2 values obtained in the Jinear regressions 

performed, the t test was examined. The student t test determines whether the observed 

sample correlations are significantly different from zero. If the two variables are 

independent, then the R values occurred because of randomness. For a sample of37 

pairs of measurements (3 5 degrees of freedom) and a 95% level of significance, the 

critical value fort is~ 1.69. For the OC4v4 method, the t statistic was found to be 4.63. 

Because the test statistic falls into the upper critical region, the correlation between the in 

situ data and the predicted chlorophyll concentrations is statistically significant. The 

results of the t test for the five algorithms can be found in Table 6.1. 

-----·· 
Method lobserved Significant at 95% level 

Aiken-P 4.25 Yes 
Aiken-C 4.34 Yes 
CalCOFI-3 4.44 Yes 
OC4 4.15 Yes 
OC4v4 4.63 Yes 

Table 6.1: Results of student t test for the IDW method for the algorithms examined. 
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The results from this t test imply that the predicted chlorophyll concentrations for 

all of the models are indeed related to the in situ chlorophyll concentrations observed. 

This implies that differences in both the normalized water leaving radiances and remotely 

sensed reflectances are, at least in part, due to differences in chlorophyll concentrations. 

The R2 values of approximately 0.35 indicate that only 35% of the variability in the 

predictions can be accounted for by the remote sensing measurement;. Also, the 

correlations observed in this studywere lower than those found for the studies used in the 

development of the algorithms. 

When predicted chlorophyll concentrations were plotted vs. the observed 

chlorophyll for all five algorithms (Figures 5.2 through 5.6), using the t test method 

outlined by Zar (1984), no statistical differences were found in either the slopes (a(2) 

0.05,DF 70,t=0.25,P 0.71)ortheintercepts(a(2) 0.05,DF=70,t=O.ll,P= 

0.78) between the OC4v4 and Aiken-P models (Table 6.2). The Aiken-P and Aiken-C 

algorithms were found to also have no statistical differences in the intercepts (a(2) 

0.05, DF 70, t = -1.85, P 0.07), however, their slopes differed. 

-------~ .. -

Algorithms OC4v4 vs. Aiken-P Aiken-P vs. Aiken-C 
j>roperty 

~ 

Slopes Intercepts Inter~]!!~-~-
a(2) 0.05 0.05 0.05 
Degrees of Freedom 70 70 70 
t 0.25 0.11 -1.85 
p . 0.71 0.78 0.07 

Table 6.2. Results of regression analysis for the IDW method for relationships found to be significant 

55 



This implies that the two Aiken models tend to overpredict chlorophyll 

consistently, however, there is a base constant difference (2.91 - 2.17 = 0.74 µg/L), 

between their overprediction. The Aiken-P and OC4v4 algorithms might have the same 

slope and intercept values, indicating that the prediction results are similar. The higher 

R2 value of the OC4v4 algorithm (0.38 as opposed to 0.34 -Table 5.1) indicates that the 

algorithm results are influenced slightly more ( 4%) by changes in th~ optical properties 

of the water, resulting from changes in the chlorophyll concentrations than in the Aiken-P 

algorithm. Statistical differences were found in the slopes and intercepts between all 

other models, since the relationships failed t tests. 

The current goal of the SeaWiFS project is to be able to predict chlorophyll to 

within ±35% in open ocean water (Hooker et al., 1992). However, this standard when 

applied to Case II watersmay not be achievable. Work by Hu et al. (1998) in the North­

Central Gulf of Mexico showed that at low concentrations (~0.7 mg/L), even modified 

chlorophyll algorithms, specifically designed to account for turbidity, experience errors 

as high as 655%. Hu et al. (1998) indicated that in shallow water (<IO m) where 

chlorophyll concentrations are low, the bottom reflected light contributes to the measured 

remote sensing reflectance. This is not likely in the case of the western and central basins 

of Lake Erie examined for this study, as secchi depth was never greater than half the 

water depth, making suspended sediment a more likely factor in the measured remote 

sensing reflectance than bottom reflectance. A linear regression of secchi depth against 

predicted chlorophyll concentration (Figure 6.1) illustrates the relationship. The t test for 

this linear regression (a=0.05, DF=35, tcnt=l.69, t=5.43) signifies that the correlation is 

significantly different than zero. The R2 value from the linear regression implies that 
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46% of the variability in the model is due to constituents in the water column. The secchi 

depth gives us a relative measure of the depth where these constituents occur. This is 8% 

more than the effects of chlorophyll (R2=0.46 from Figure 6.1 as opposed to R2=0.38 

from Table 5.1), although chlorophyll most likely has a direct effect on the secchi depth. 

This implies that at least 16% (1 - 0.46 - 0.38 = 16%) of the variability in the model 

cannot be explained by secchi depth or chlorophyll concentrations. 1:his remaining error 

most likely results from the atmospheric correction scheme used in the SeaDAS software. 

The guidelines for chlorophyll detection established by Stumpf (1987) for 

A VHRR imagery are within 60% for concentrations greater than 10 µg/L and within 5 

µg/L at concentrations below 10 µg/L. Using these guidelines, three of the algorithms 

(Aiken-C, Aiken-P, and OC4v4) on average performed within the margin of error. For 

concentrations greater than 10 µg/L, the Aiken-P algorithm overpredicted thechlorophyll 

concentration on average by 25%, while the Aiken-C algorithm predicted below the 

measured concentration on average by 11% (Table 6.2). The OC4v4 algorithm averaged 

26% overprediction of chlorophyll. However, there were only three in situ data where 

chlorophyll was greater than 10 µg/L, making these findings inconclusive. For 

concentrations less than 10 µg/L (which comprised 34 of the 37 data points), the Aiken-P 

algorithm averaged 2.73 µg/L overpediction, the Aiken-C algorithm averaged 0.81 µg/L 

overprediction, and the OC4v4 algorithm averaged 2.90 mg/L overprediction. CalCOFI-

3 did not meet either of the guidelines, averaging 7.15 µg/L over prediction for 

chlorophyll concentrations less than 10 µg/L, and an average of 115% overprediction for 
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chlorophyll concentrations greater than 10 µg/L. The OC4 algorithm did not meet either 

of these guidelines. 

The standard deviations of the absolute errors were 4. 71 µg/L for the Aiken-P 

algorithm, 3 .48 µg/L for the Aiken-C algorithm, and 4. 75 µg/L f~r the OC4v4 algorithm. 

These standard deviations were slightly less than the 5 µg/L guidelines. For the OC4 and 

CalCOFI-3 algorithms, the standard deviations of the absolute errors·were 23.63 µg/L 

and 8.73 µg/L, respectively. These standard deviations exceeded the 5 µg/L guidelines. 

[C] > 10 µg/L [C] < 10 mg/L Standard Deviation of 
Algorithm % Error Error {µg/L l Absolute Errors {µg/L) 
Aiken-P 25% 2.74 4.71 
Aiken-C -11% 0.81 3.48 

OC4 366% 15.04 23.63 
CalCOFI-3 115% 7.15 8.73 

OC4v4 26% 2.90 4.75 

Table 6.3. Prediction Errors for the IDW method for the algorithms examined. 

Work by Mupparthy and Merry (2004) experienced similar complications, 

wherein all five models typically underpredicted the in situ concentration measurements 

(Table 6.3). 

Table 6.4. Prediction Error and Standard Deviation of Prediction Error from Mupparthy and 
Merry (2004). 

Model 
OC4 
OC4v4 
Aiken-P 
Aiken-C 

Average Prediction Error {µg/L) 
-22.5 
-2.1 
-1.7 
-2.3 
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Standard Deviation of Error (µg/L) 
25.7 
68.7 
36.0 
33.7 



CalCOFI-3 -14.6 3.5 

Mupparthy and Merry (2004) also examined in situ optical data and compared 

these data with the satellite-derived estimates. They found that their prediction errors 

principally resulted from errors in the atmospheric correction algorithm. The errors in the 

optical data "clearly indicate that atmospheric correction is still a big issue when dealing 

with lake systems like Lake Erie." The in situ chlorophyll concentrations examined by 

Mupparthy and Merry (2004) were on the same order of magnitude as this study (~9.2 ± 

10.6 µg/L in their study compared to 5.1 ± 3.4 µg/L for this study). Atthe higher 

concentrations examined (27 µg/L) the models evaluated in their stud)t.mderestimated 

the chlorophyll concentration by between 24 and 91 %, while at lower concentrations (2-4 

µg/L) "most of the algorithms overestimate the concentrations." 

Harding et al. (1995) also encountered prediction errors when developing an 

algorithm for the Chesapeake Bay using aerial remote sensing methods. Using a 

spectroradiometer with three bands: R 1=460 nm, R2=490 nm, and R3=520 nm, Harding 

et al. (1995) developed an algorithm using the following form: 

loglO[Chi]~ a+b(log!O( :,~,)) (6.1) 

Where a and b were empirically-derived constants. When the predicted chlorophyll 

concentrations were compared to the measured chlorophyll concentrations, R2 values 

ranged from 0.30-0.40. After binning (grouping) the data at 0.005 mg/L intervals, the R2 

values increased to 0.63-0.82. They found that at low chlorophyll concentrations (~2 
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mg/L), their results tended to be accurate. However, at high chlorophyll concentrations 

(> 10 mg/L) their algorithm results overestimated the in situ measurements by 200-400%. 

Clearly the models examined are reflecting changes in optical properties::>f the 

water due to increases in chlorophyll concentrations. However, other constituents in the 

Case II waters of Lake Erie are interfering with a direct calculation of chlorophyll 

concentration. Carder et al. (1991) found that substances, such as colored dissolved 

organic matter (CDOM) in Case II waters, can cause calculated chlorophyll pigment 

concentrations to have inaccuracies as high as 133%. Constituents affecting secchi depth, 

as well as possibly bottom reflectance, have been shown to affect the atmospheric 

correction scheme used. This will then resultin miscalculation of Rayleigh scattering in 

the atmosphere, directly affecting the results of the algorithms. A measurement of total 

suspended solids (TSS)" or turbidity data for the data set in this study would be necessary 

to understand the reflectance measurements being measured by the SeaWiFS instrument. 
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CHAPTER 7 

CONCLUSIONS 

.· 

Four methods to determine a representative satellite pixel value to be used in the 

ocean color algorithm calculations were examined. The method of inverse distance 

weighted (IDW) interpolation provided a slight benefit to the end results. The IDW 

method showed an increase in reliability (0.10 increase in R2
) of prediction for all five 

algorithms. 

Of the five ocean color algorithms evaluated, the OC4v4 algorithm was found to 

provide the best prediction for the western and central basins of Lake Erie. The OC4v4 

algorithm had the highest coefficient of determination (R2=0.38) between predicted and 

in situ chlorophyH concentrations. The CalCOFI-3 algorithm was found to be nearly as 

good (R2=0.36), with the Aiken-C algorithm (R2=0.35) ranking third. If more in situ data 

were available for statistical verification, an algorithm similar in form to the Ocean 

Chlorophyll fourth-order polynomial four-band algorithm (OC4v4) may be best suited for 

the Lake Erie area, since this algorithm seemed to perform best in this study. The 

accuracy of the model OC4v4 declined, as the water depth decreased below 7 m and the 

secchi depth decreased to 1.5 m. This may severely hinder monitoring of cyanobacteria, 

such as Microcystis, for drinking water intake purposes, since many of the water intakes 

are located in waters less than 15 m deep - where secchi depths are typically shal1ow. 
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CHAPTER 8 

FUTURE WORK 

Chlorophyll concentration mapping from satellite imagery of the Great Lakes, and 

in particular Lake Erie, is problematic due to the dynamic spatial variations of 

constituents. Influences from bottom reflectance, suspended sediments, and other 

suspended materials have effects on the ocean color algorithms examined. The 

atmospheric correction scheme used is also critical in determining the water reflectance 

characteristics. 

On May 4, 2002, the AQUA satellite was launched with the Moderate Resolution 

Imaging Spectroradiometer (MODIS) onboard. MODIS has 36 spectral bands and is a 

12-bit radiometric sensor with a 250-1000 m spatial resolution (depending upon the band) 

and a daily temporal resolution. "MOD IS is typically 2-3 times more [radiometrically] 

sensitive than SeaWiFS" (Gordon and Voss, 1999) and the bands are one-half to one­

fourth as wide as SeaWiFS, with comparable spectral coverages (Figure 7.1) (SeaWiFS 

bands 7 and 8 are 765 ± 20 nm and 865 765 ± 20 nm, respectively, while MODIS bands 

15 and 16 are 750 ± 5 nm and 865 ± 7 nm, respectively). With the additional sensitivity 

and spectral bands more alternatives exist for determining band ratio correlations and for 

developing better atmospheric correction schemes. 
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Carder et al. (2003) evaluated the viability of the MOD IS sensor in determining 

chlorophyll-a concentrations in Case II waters. They suggested that there be three 

classifications of regions of chlorophyll concentrations - packaged, transitional, and 

unpackaged based on the difference between the sea surface temperature and the nitrate 

depletion temperature. This was previously not possible due to the lack of a thermal 

sensor onboard the SeaStar satellite. This is because the difference "provides a means of 

estimating how packaged wer~ the pigments for a given pixel" (Carder et al., 2003). 

Packaged pigments are low ratios of photoprotective pigments to chlorophyll and high 

self-shading. Unpackaged pigments are "high ratios of photoprotective pigments to 

chlorophyll and low self-shading." (Carder et al., 2003). Transitional pigments are a 

global-average type. Preliminary results of this method produced results accurate to 

about 30% (Carder et al., 2003) for the SeaWiFS Bio-optical Algorithm Mini-Workshop 

(SeaBAM) dataset. 

While the algorithm examined by Carder et al. (2003) does not take into account 

the turbidity of the water directly, their method does take into account an absorption 

coefficient for phytoplankton, gelbstoff, and the diffuse attenuation coefficient, which 

can be related to secchi depth. Future work on MODIS or SeaWiFS data should examine 

turbidity and total suspended solids (TSS) data, as well as optical profiles. These 

measurements would provide more information on interference from bottom reflectance 

and scattering due to TSS, suspended sediment, chlorophyll or other optical constituents. 

The additional channels in MOD IS also provide more information to use in atmospheric 

correction algorithms used over lake and ocean waters (bands 24, 25, and 27-36) (Menzel 

et al., 2002). 
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Figure 8.1. Spectral band coverage of the MO DIS and SeaWiFS sensors. 
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Figure A.I: Quasi-true-color composite of SeaWiFS level IA bands 6, 5, and I for August 9, 2002 
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Figure A.2: Quasi-true-color composite of SeaWiFS level IA bands 6, 5, and I for August 30, 2002 
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Figure A.3: Quasi-true-color composite of SeaWiFS level IA bands 6, 5, and 1 for September 6, 2002 
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Figure A.4: Quasi-true-color composite of SeaWiFS level IA bands 6, 5, and 1 for June 23, 2003 
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Figure A.5: Quasi-true-color composite of SeaWiFS level lA bands 6, 5, and 1 for June 25, 2003 
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Figure A.6: Quasi-true-color composite of SeaWiFS level lA bands 6, 5, and 1 for July 14, 2003 
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Figure A.7: Quasi-true-color composite of SeaWiFS level IA bands 6, 5, and 1 for July 29, 2003 
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Figure A.8: Quasi-true-color composite of SeaWiFS level IA bands 6, 5, and I for September 10, 
2003 
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Figure A.9: Quasi-true-color composite of Sea WiFS level lA bands 6, 5, and 1 for October 7, 2003 
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