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Abstract

Online social networks (OSNs) allow Internet users all over the globe to share

information, exchange thoughts, and work collaboratively. Not only do OSNs pro-

vide a channel of broadcasting real-world events as they unfold, they also enable a

convenient way for users to exchange experience and opinions. Understanding the

relation among network topology, users, content, and their dynamics can have a sig-

nificant impact both from a theoretical standpoint as well as from a practical one, for

instance, to understand online user behaviors and predict future online activities.

In this dissertation, I study the interplay of three important factors that encode

most of the OSN dynamics: network structure, user-generated content, and user

characteristics. We first present our broader contribution to computer science: the

development of two novel graph algorithms for community detection and structural

role detection, which are scalable to handle networks containing millions of nodes

and edges. Both community and role assignments of nodes generate novel clusterings

of OSN users and provide valuable insights into OSN activities, but they are often

implicit or even unknown to OSN analysts. We bridge this chasm by designing al-

gorithms that can automatically infer community and role information in large-scale

OSN data. Our algorithms are (1) robust in the presence of noise in real-world data,

and (2) efficient in processing large network datasets. A key element to both of these

contributions is a practical approach for network sparsification which enables efficient
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processing. Evaluated on various social networks containing hundreds of millions of

edges, our algorithms outperform state-of-the-art approaches in terms of the ability

of recovering ground truth communities and roles of OSN users. By augmenting the

network structure with content information and performing joint inference, our al-

gorithms are able to combat the impact of noise. At the same time, careful design

and optimization of our algorithms render them highly efficient when compared with

existing approaches, and even non-trivial speedups on some networks.

Then we investigate three analytical tasks on OSN activities from the perspective

of a user: (1) predicting user engagement in online discussion, (2) understanding the

divergence of user-generated content, and (3) identifying patterns in the shift of user

sentiment over time. Underpinning this effort are scalable mechanisms to infer im-

portant topological characteristics of such networks including community affiliation

and structural roles, as discussed above. Experiments with large-scale datasets con-

structed from real OSNs show that our approaches, which incorporate information on

network, content, and users, have demonstrated significant improvements over exist-

ing work which only focuses on one single aspect. More importantly, the findings from

our studies on large-scale OSN data often reflect similar phenomena observed in social

networks in the traditional face-to-face setting, making it promising to apply these

quantitative approaches in the analysis of a broader spectrum of social networks.
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Chapter 1: Introduction

Online social networks (OSNs) have revolutionized the way information spreads

in the cyber-space, as Internet users are not only direct recipients of information from

mass media outlets, but also creators and critical relays of information themselves. By

sending or forwarding statuses, images, and videos from computers or mobile devices,

OSN users can easily disseminate content, interact with others, and engage in online

discussions. As pointed out in a report by Pew Research Center [38], the proportion of

Internet users who use social network sites has increased dramatically from 8% in 2005

to 73% in 2013, and the growth is expected to continue along with the deployment

of faster Internet access to a broader population. Not only have OSNs become a

convenient means for private communication, their ubiquitousness and the capability

as information hubs have also played an important role in events with varied social

significance, audience, and duration. To name a few examples, OSNs have been

adopted in the scenarios of crisis response [119, 101], disease surveillance [36, 53],

political campaigns [134, 31], and brand marketing [72, 80].

To analyze large scale OSNs, we first need a firm grasp of the structure of the

underlying networks. While it is relatively easy to directly spot interesting patterns

within small networks [150, 5, 51], the size of OSNs nowadays renders the workload
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overwhelming for human analysts.1 As a result, scalable graph algorithms are in an

urgent need, in order to achieve comprehensive OSN analytics. Several exemplary

graph-based problems are listed below, and they are open-ended in nature. Research

advances made in these problems will create a broader impact not only to OSN

analytics, but to computer science in general.

• Community Detection: One central prerequisite of community dynamic

analysis is the information on community structure in a network. However,

for many real-world OSNs, the knowledge of community assignment is either

inaccessible or nonexistent. To combat this rarity of information, it is often nec-

essary to mine meaningful communities from the given networks. How should

we identify clusters of network users that are well-connected among themselves

but are weakly linked to the rest of the network? Especially given the affluence

of million-to-billion-users network data, how can communities be discovered in

an efficient manner?

• Structural Role Detection: Network nodes can be categorized into roles ac-

cording the connectivity characteristics of their local neighborhoods and beyond,

and a node’s role signifies its behavior and functionality, providing a comple-

mentary aspect to network communities. For instance, a central hub user with

many links can be an ideal candidate of starting an information cascade, whereas

a gateway bridge user connects several sub-networks that would otherwise be

sparsely linked or even completely disconnected. In this sense, structural role

1A monitor screen with a 1024X768 resolution displays less than 1 million nodes, if each node
only occupies one pixel. Even the latest 4K standard allows no more than 9 million nodes.
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detection offers to cluster users in a different approach from community detec-

tion. In reality, again, information on structural roles is hardly available, calling

for methods that can automatically infer the role assignment of users from large

networks.

• Network Simplification: The quality and efficiency of graph algorithms

largely hinge on the underlying network, as (1) the complexity of many al-

gorithms is proportional to network size, and (2) noise in forms of incorrect

links and missing links are abundant in real-world networks, including OSNs.

Given a network, and possibly other auxiliary information associated with the

network, can we simplify the network (i.e. sample the network) such that graph

algorithms can run faster while retaining the same level of output quality?

We also note that interactions among individuals in OSNs are often dynamic, so

are the development of events in real life. As a result, OSN activities should not be

viewed as disconnected from each other, and dynamic analytics of OSNs has become

an appealing research area. While much effort has been invested in analyzing OSNs

activities as static episodes [93, 81, 78, 114], less emphasis has been afforded to the

temporal development of user characteristics, content, and network structure. To

better understand the social dynamics of OSNs, several central problems have arisen

to researchers’ attention:

• Can we predict user engagement in online activities? OSN users often

engage in online activities that correspond to an offline event, be it a natural

disaster, a political campaign, or a newly-released movie. The perspective of

accurately predicting online user engagement is compelling, as it enables one to
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gain insight into the future development of online activities, and even to provide

feedback into the offline event itself. Here, the task is to predict whether, when,

and how much will OSN users engage in the online activities surrounding a

real-world event.

• What factors can help us understand the content divergence in online

social groups? One way for groups of OSN users to engage in online activ-

ities is to join in the discussion by writing or sharing event-relevant content.

Naturally, the evolution of user-generated content provides a new dimension to

characterize the cohesion of online social groups, apart from the change of group

structure. Therefore, given a principled definition of a group’s discussion diver-

gence, it is intriguing to learn the relationship between discussion divergence

and group structure as well as that with user characteristics, and perhaps more

importantly, to predict the group’s future discussion divergence.

• What makes users shift their sentiments during online conversations?

OSN users often express their sentiments on specific events and topics in the

content they generated, and such sentiments may shift over time. While prior

work has already identified evidences supporting the existence of sentiment shift

in OSNs, we would like to model sentiment shift at a finer level, by studying the

patterns of sentiment shift over events from various domains, in addition to the

impact on sentiment shift by other factors, such as content property, network

structure, and user properties.

This dissertation will cover my research contributions to scalable graph algorithms

and dynamic OSN analytics. Both thrusts naturally complement the effort of each
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other. As aforementioned, graph algorithms serve as important primitive operators

in OSN analytics, often being used to infer latent user characteristics (e.g. communi-

ties, structural roles) when understanding OSN activities. On the other hand, novel

problems identified in OSN analytics have also motivated the research of graph algo-

rithms, one example being the need for overlapping community detection algorithms

since the social circles of OSN users are hardly disjoint.

1.1 Limitations of Existing Work

Since the early stage of online social media, researchers have invested enormous

amount of efforts in understanding OSNs and their dynamics [1, 83]. The study of

graph algorithms also boasts a long history, and many problems have been extensively

investigated [84, 46, 104, 105]. In spite of progress made over the past several decades,

many challenges have not been fully addressed. Specifically, we identify three main

obstacles as follow:

First of all, real-world OSNs data are way more complex than what idealistic sta-

tistical models are able to describe, due to the inherent noise in the data. In terms

of network structure, noise is present in the forms of both incorrect link (false posi-

tive) and missing link (false negative). Not only does noise increase the complexity

of network and impact the efficiency of network algorithms, it also jeopardizes the

quality of analysis results when blindly included. The dual challenges are especially

pronounced for graph algorithms such as community detection and structural role de-

tection, which aim at inferring user groupings based on the structural information. A

number of solutions have emerged in the literature to address the challenges. Broadly

speaking, they either focus on speeding up the algorithm via sampling the underlying
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network (nodes or edges) [91, 70, 2, 122], or attempt to combat noise by augmenting

the network with auxiliary information [30, 152, 100, 149, 25, 153, 41, 59, 62, 137].

Given the presence of additional knowledge, the latter approach outperforms the for-

mer in terms of quality, but often at the cost of additional complexity. Therefore, is

has become critical to design graph algorithms that are efficient and robust to noise,

especially considering the vast scale of OSN data.

Moreover, many studies in (static or dynamic) OSN analytics have focused on one

isolated aspect each time: network [33, 6, 123, 9], content [147, 127, 115, 139, 58, 74],

or user [19, 114, 110, 106], Consequently, there lacks the thrust for an integrative

study that fuses knowledge from multiple facets. Although a limited number of ap-

proaches have considered network, content, and users [7, 141], they are not designed

to analyze OSN dynamics in an event-based setting. As discussed earlier, it is im-

portant to understand the interplay among these factors in event-based activities, as

it allows one to capture predictive patterns in OSN dynamics and even real-world

event developments. Therefore, a more holistic approach is needed when studying

the dynamics of event-based content and online user groups.

Finally, rich theories in socio-psychology and other relevant fields have been

under-investigated in the setting of OSN. While OSNs have blessed computational

social scientists with an unprecedentedly huge volume of data for large-scale experi-

ments [6, 111, 123, 69, 74], relatively few work has examined the link between socio-

psychological theories and OSN analytics [58, 55]. To better model OSN dynamics,

there is a strong motivation to seek guidance from existing research results on so-

cial group behaviors, and connecting those theories and various features inspired by
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network structure, language usage, and behavioral characteristics, that have been

adopted in the OSN literature.

These challenges lead to the statement of this dissertation as below.

1.2 Dissertation Statement

The large scale, rich information, and evolving nature of online social networks

call for developing scalable graph algorithms and analyzing their dynamics by exam-

ining the interplay among network structure, user-generated content, and user char-

acteristics. We envision that a holistic approach incorporating all these aspects will

lead to a more comprehensive understanding of OSN dynamics, as well as its impact

on the real world.

1.3 Contributions and Organizations of the Dissertation

This dissertation is composed of two main components. The first part (Chapters 2

and 3) consists of contributions to robust and efficient graph algorithms, which in turn

serve as the foundation supporting dynamic analytics of OSN activities (Chapters 4

– 6). We will conclude this dissertation and discuss directions for future work in

Chapter 7.

Robust and Efficient Graph Algorithms for OSN Analytics:

In Chapter 2, we will detail CODICIL2, a family of highly efficient graph simplifi-

cation algorithms leveraging both content and graph topology to identify and retain

import edges in OSNs. Our approach relies on fusing content and topological (link)

information in a natural manner. The output of CODICIL is a transformed variant

of the original graph (with content information), which can serve as input to any fast

2COmmunity Discovery Inferred from Content Information and Link-structure
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content-insensitive community detection algorithm, such as METIS or Markov Clus-

tering. Through extensive experiments on real-world datasets drawn from Flickr,

Wikipedia, and CiteSeer, and across several community detection algorithms, we

demonstrate the effectiveness and efficiency of our methods. We find that CODICIL

runs several orders of magnitude faster than state-of-the-art approaches, and it often

identifies communities of comparable or superior quality on these datasets.

Next in Chapter 3, we will present RC-Joint3, a novel algorithm that simultane-

ously identifies community and structural role assignments in a network. Prior work

in graph algorithms addresses community detection and structural role detection as

two separate problems, despite the fact that they are inter-related with each other.

Members in a community often have different roles, whereas users of the same role are

distributed in different communities. Rather than being agnostic to one assignment

(community or role) while inferring the other, RC-Joint employs a principled approach

to guide the detection process in a nonparametric fashion and ensures that the two

sets of assignments are sufficiently different from each other. Roles and communi-

ties generated by RC-Joint are both soft assignments, reflecting the fact that many

real-world networks have overlapping community structures and role memberships.

By comparing with state-of-the-art methods in community detection and structural

role detection, we demonstrate that RC-Joint harvests the best of two worlds and

outperforms existing approaches, while still being competitive in efficiency. We also

investigate the effect of initializing the algorithm with different schemes, and find

that using the results of RC-Joint on a sparse network as the initialization seed often

leads to faster convergence and higher quality.

3R(ole)-C(ommunity)-Joint
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Dynamic Analytics of OSN Activities:

In the second part, we first study the problem of predicting user engagement in

event-oriented discussions. An OSN user is said to engage in an event-oriented dis-

cussion, in a specific time frame, if the user composes new messages that are relevant

to the underlying event or shares existing relevant messages during that period of

time. For example, during Hurricane Sandy in 2012, local residents tweeting about

the hurricane and its impact would be considered part of the Hurricane Sandy event-

oriented community. We use Twitter as a social information source and manage to

build an analytical model, which involves a broad range of features in four categories:

content, author, network, and history. Using this integrated framework, we go beyond

previous work which resort to isolated subsets of features, and perform classification

as well as regression tasks to predict whether, when and how much OSN users will

engage in event-oriented discussion in the future. Experiments on various real-world

events demonstrate that the holistic approach is able to achieve better performance

than considering individual sector of features. Further, we find that correlations exist

between event types and features, which can help understand user engagement in

better scientific ways. This part is described in Chapter 4.

In Chapter 5, we will study online social group dynamics based on the content

divergence in group members’ online discussions around events. Particularly, we use

Jensen-Shannon divergence to measure the divergence of topics in user-generated

contents, and how it progresses over time. We study tweets relevant to real-world

events of varying duration and demographics, such as natural disasters, social activism

and political campaigns. We discover that the discussion divergence of a typical

online social group increases as the event is unfolding, and ebbs away when the
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event finishes. We also model structural and user features with guidance from two

socio-psychological theories, namely, social cohesion and social identity, to learn their

implications on group discussion divergence. We found that strong correlation exists

between selected features and discussion divergence. Using those features, we are

able to train a machine learning classifier to predict the future increase or decrease

in discussion divergence. The classifier is able to achieve an area under the curve

of 0.84 and an F-1 score of 0.8. The ability to predict future divergence can help

to identify and prioritize which cohesive groups to engage with in scenarios such as

disaster response coordination.

Finally, we move forward to Chapter 6 to study the shift of topic-specific sentiment

by OSN users over time, and investigate its relation with the information users receive

from others in the network. We analyze more than 5 million tweets composed by

Twitter users, and identify tweet content features that can drive sentiment shifts

of users. Our experimental results signal the important role that content plays in

sentiment shift, especially in changing opinions from positive to negative. We also

find that users become less likely to shift to the dominant sentiment of a topic after

multiple turns of tweets from influencers. We also show that in order to maximize the

spread of a certain sentiment in a network, influencers should use tweets containing

the target sentiment as well as supporting quotations.

Conclusion and Future Work:

In the long term, the goal of this dissertation is to promote a holistic approach in

OSN analytics, instead of focusing on one aspect each time. In the realm of graph

algorithms, we advocate fusing structural and content similarity in community detec-

tion, as well as guiding structural role discovery with community information. For
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tasks in analyzing dynamic OSN activities, we have also proposed methods that con-

sider network structure, content information, and user characteristics simultaneously.

With the increasing richness of OSN information (e.g. user profile, multimedia con-

tent, connection heterogeneity), we believe this paradigm will see wider applicability

in the future. We will conclude this dissertation, point out limitations of the present

work, and also outline directions for future work in Chapter 7.
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Chapter 2: Efficient Community Detection in Large Networks

using Content and Links

In this chapter, we discuss the first part of our contributions to graph algorithms

in OSN analytics — that of combining link and content information for the purposes

of inferring communities of interest. This work directly addresses the open-ended

problems of community detection and network simplification, described in Chapter 1,

and brings benefits to structural feature extraction in OSN analytics (Chapter 5).

As noted earlier, the challenges are manifold. The topological characteristics of such

problems (graphs induced from the natural link structure) makes identifying com-

munity structure difficult. Further complicating the issue is the presence of noise in

forms of incorrect link (false positive) and missing link (false negative). Determining

how to fuse this link structure with content information efficiently and effectively is

unclear. Finally, underpinning these challenges, is the issue of scalability as many of

these graphs are extremely large running into millions of nodes and billions of edges,

if not larger.

Given the fundamental nature of this problem, a number of solutions have emerged

in the literature. Broadly these can be classified as: (1) those that ignore content

information (a large majority) and focus on addressing the topological and scalability

challenges, and (2) those that account for both content and topological information.
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From a qualitative standpoint the latter presumes to improve on the former (since

the null hypothesis is that content should help improve the quality of the inferred

communities) but often at a prohibitive cost to scalability.

We shall present CODICIL4, a family of highly efficient graph simplification algo-

rithms leveraging both content and graph topology to identify and retain important

edges in a network. Our approach relies on fusing content and topological (link) infor-

mation in a natural manner. The output of CODICIL is a transformed variant of the

original graph (with content information), which can then be clustered by any fast

content-insensitive graph clustering algorithm such as METIS or Markov clustering.

Through extensive experiments on real-world datasets drawn from Flickr, Wikipedia,

and CiteSeer, and across several graph clustering algorithms, we demonstrate the

effectiveness and efficiency of our methods. We find that CODICIL runs several or-

ders of magnitude faster than those state-of-the-art approaches and often identifies

communities of comparable or superior quality on these datasets.

2.1 Related Work

Community Discovery using Topology (and Content): Graph clustering/partitioning

for community discovery has been studied for more than five decades, and a vast

number of algorithms (exemplars include Metis [71], Graclus [37] and Markov clus-

tering [138]) have been proposed and widely used in fields including social network

analytics, document clustering, bioinformatics and others. Most of those methods,

however, discard content information associated with graph elements. Due to space

limitations, we suppress detailed discussions and refer interested readers to recent

4COmmunity Discovery Inferred from Content Information and Link-structure
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surveys (e.g. [46]) for a more comprehensive picture. Leskovec et al. compared a

multitude of community discovery algorithms based on conductance score, and dis-

covered the trade-off between clustering objective and community compactness [82].

Various approaches have been taken to utilize content information for commu-

nity discovery. One of them is generative probabilistic modeling which considers

both contents and links as being dependent on one or more latent variables, and

then estimates the conditional distributions to find community assignments. PLSA-

PHITS [30], Community-User-Topic model [152] and Link-PLSA-LDA [100] are three

representatives in this category. They mainly focus on studies of citation and email

communication networks. Link-PLSA-LDA, for instance, was motivated for finding

latent topics in text and citations and assumes different generative processes on cit-

ing documents, cited documents as well as citations themselves. Text generation is

following the LDA approach, and link creation from a citing document to a cited

document is controlled by another topic-specific multinomial distribution.

Yang et al. [149] introduced an alternative discriminative probabilistic model,

PCL-DC, to incorporate content information in the conditional link model and esti-

mate the community membership directly. In this model, link probability between

two nodes is decided by nodes’ popularity as well as community membership, which is

in turn decided by content terms. A two-stage EM algorithm is proposed to optimize

community membership probabilities and content weights alternately. Upon conver-

gence, each graph node is assigned to the community with maximum membership

probability.

Researchers have also explored ways to augment the underlying network to take

into account the content information. The SA-Cluster-Inc algorithm proposed by
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Zhou et al. [153], for example, inserts virtual attribute nodes and attribute edges

into the graph and computes all-pair random walk distances on the new attribute-

augmented graph. K-means clustering is then used on original graph nodes to assign

them to different groups. Weights associated with attributes are updated after each

k-means iteration according to their clustering tendencies. The algorithm iterates

until convergence.

Ester et al. [41] proposed an heuristic algorithm to solve the Connected k-Center

problem where both correctness and radius constraints need to be satisfied. The com-

plexity of this method is dependent on the longest distance between any pair of nodes

in the feature space, making it susceptible to outliers. Biologists have studied meth-

ods [62, 137] to find functional modules using network topology and gene expression

data. Those methods, however, bear domain-specific assumptions on data and are

therefore not directly applicable in general.

Recently Günnemann et al. [59] introduced a subspace clustering algorithm on

graphs with feature vectors, which shares some similarity with our topic. Although

their method could run on the full feature space, the search space of their algorithm

is confined by the intersection, instead of union, of the epsilon-neighborhood and the

density-based combined cluster. Furthermore, the construction of both neighborhoods

are sensitive to their multiple parameters.

While decent performance can be achieved on small and medium graphs using

those methods, it often comes at the cost of model complexity and lack of scalability.

Some of them take time proportional to the number of values in each attribute.

Others take time and space proportional to the number of clusters to find, which is

often unacceptable. Our method, in contrast, is more lightweight and scalable.
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Clustering/Learning Multiple Graphs: Content-aware clustering is also related

to multiple-view clustering, as content information and link structure can be treated

as two views of the data. Strehl and Ghose [126] discussed three consensus functions

(cluster-wise similarity partitioning, hyper-graph partitioning and meta-clustering) to

implement cluster ensembles, in which the availability of each individual view’s clus-

tering is assumed. Tang et al. [130] proposed a linked matrix factorization method,

where each graph’s adjacency matrix is decomposed into a characteristic matrix and

a common factor matrix shared among all graphs. The purpose of factorization is

to represent each vertex by a lower-dimensional vector and then cluster the vertices

using corresponding feature vectors. Their method, while applicable to small-scale

problems, is not designed for web-scale networks.

Graph Sampling for Fast Clustering: Graph sampling (also known as sparsi-

fication or filtering) has attracted more and more focus in recent years due to the

explosive growth of network data. If a graph’s structure can be preserved using fewer

nodes and/or edges, community discovery algorithms can obtain similar results using

less time and memory storage. Maiya and Berger-Wolf [91] introduced an algorithm

which greedily identifies the node that leads to the greatest expansion in each iter-

ation until the user-specified node count is reached. By doing so, an expander-like

node-induced subgraph is constructed. After clustering the subgraph, the unsam-

pled nodes can be labeled by using collective inference or other transductive learning

methods. This extra post-processing step, however, operates on the original graph as

a whole and easily becomes the scalability bottleneck on larger networks.

Satuluri et al. [122] proposed an edge sampling method to preferentially retain

edges that connect two similar nodes. The localized strategy ensures that edges
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in the relatively sparse areas will not be over-pruned. This proposed method has

yielded significant empirical improvements of community detection algorithms on a

series of real-world network datasets, and its theoretical underpinning was recently

investigated by Gupta et al. [60]. Their method, however, does not consider content

information either.

Edge sampling has also been applied to other graph tasks. Karger [70] studied the

impact of random edge sampling on original graph’s cuts, and proposed randomized

algorithms to find graph’s minimum cut and maximum flow. Aggarwal et al. [2]

proposed using edge sampling to maintain structural properties and detect outliers in

graph streams. The goals of those work are not to preserve and discover community

structure in graphs, however.

2.2 Methodology

We begin by defining the notations used in the rest of Chapter 2. Let Gt =

(V , Et, T ) be an undirected graph with n vertices V = v1, . . . , vn, edges Et, and a

collection of n corresponding term vectors T = t1, . . . , tn. We use the terms “graph”

and “network” interchangeably as well as the terms “vertex” and “node”. Elements in

each term vector ti are basic content units which can be single words, tags or n-grams,

etc., depending on the context of underlying network. For each graph node vi ∈ V ,

let its term vector be ti.

Our goal is to generate a simplified, edge-sampled graph Gsample = (V , Esample)

and then use Gsample to find communities with coherent content and link structure.

Gsample should possess the following properties:
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• Gsample has the same vertex set as Gt. That is, no node in the network is added

or removed during the simplification process.

• |Esample| � |Et|, as this enables both better runtime performance and lower

memory usage in the subsequent clustering stage.

• Informally put, the resultant edge set Esample would connect node pairs which

are both structure-wise and content-wise similar. As a result, it is possible for

our method to add edges which were absent from Et since the content similarity

was overlooked.

2.2.1 Key Intuitions

The main steps of the CODICIL algorithm are:

1. Create content edges.

2. Sample the union of content edges and topological edges with bias, retaining

only edges that are relevant in local neighborhoods.

3. Partition the simplified graph into clusters.

The constructed content graph and simplified graph have the same vertices as the

input graph (vertices are never added or removed), so the essential operations of the

algorithm are constructing, combining edges and then sampling with bias. Figure 2.1

illustrates the work flow of CODICIL.

From the term vectors T , content edges Ec are constructed. Those content edges

and the input topological edges Et are combined as Eu, which is then sampled with bias

to form a smaller edge set Esample where the most relevant edges are preserved. The
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Topological edges Et
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2. Combine edges

3. Sample edges with bias

4. Cluster

Figure 2.1: Work flow of CODICIL

graph composed of these sampled edges is passed to the graph clustering algorithm

which partitions the vertices into a given number of clusters.

2.2.2 Basic Framework

The pseudo-code of CODICIL is given in Algorithm 1.

CODICIL takes as input (1) Gt, the original graph consisting of vertices V , edges

Et and term vectors T where ti is the content term vector for vertex vi, 1 ≤ i ≤

|V| = |T |, (2) k, the number of nearest content neighbors to find for each vertex, (3)

normalize(x), a function that normalizes a vector x, (4) α, an optional parameter

that specifies the weights of topology and content similarities, (5) l, the number of

output clusters desired, (6) clusteralgo(G, l), an algorithm that partitions a graph

G into l clusters, and (7) similarity(x,y) to compute similarity between x and y.

Note that any content-insensitive graph clustering algorithm can be plugged in the

CODICIL framework, providing great flexibility for applications.
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Algorithm 1 COmmunity Discovery Inferred from Content Information and Link-
structure (CODICIL)
Require: Gt = (V , Et, T ), k, normalize(·), α ∈ [0, 1], l, clusteralgo(·, ·),

similarity(·, ·)
1: return C (a disjoint clustering of V)
2: {Create content edges Ec}
3: Ec ← ∅
4: for i = 1 to |V| do
5: for all vj ∈ TopK(vi, k, T ) do
6: Ec ← Ec ∪ (vi, vj)
7: end for
8: end for
9: {Combine Et and Ec. Retain edges with a bias towards locally relevant ones}
10: Eu ← Et ∪ Ec
11: Esample ← ∅
12: for i = 1 to |V| do
13: {Γi contains vi’s neighbors in the edge union}
14: Γi ← ngbr(vi, Eu)
15: for j = 1 to |Γi| do simt

ij ← similarity(ngbr(vi, Et), ngbr(γj, Et))
16: simnormt

i ← normalize(simt
i)

17: for j = 1 to |Γi| do simc
ij ← similarity(ti, tγj)

18: simnormc
i ← normalize(simc

i)
19: for j = 1 to |Γi| do simij ← α · simnormt

ij + (1− α) · simnormc
ij

20: {Sort similarity values in descending order. Store the corresponding node IDs
in idxi}

21: [vali, idxi]← descsort(simi)

22: for j = 1 to
⌈√
|Γi|
⌉
do

23: Esample ← Esample ∪ (vi, vidxij)
24: end for
25: end for
26: Gsample ← (V , Esample)
27: C ← clusteralgo(Gsample, l) {Partition into l clusters}
28: return C
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Creating Content Edges

Lines 2 through 7 detail how content edges are created. For each vertex vi, its k

most content-similar neighbors are computed5. For each of vi’s top-k neighbors vj,

an edge (vi, vj) is added to content edges Ec. In our experiments we implemented the

TopK sub-routine by calculating the cosine similarity of ti’s TF-IDF vector and each

other term vector’s TF-IDF vector. For a content unit c, its TF-IDF value in a term

vector ti is computed as

tf -idf(c, ti) =
√
tf(c, ti) · log

(
1 +

|T |∑|T |
j=1 tf(c, tj)

)
. (2.1)

The cosine similarity of two vectors x and y is

cosine(x,y) =
x · y

‖x‖2 · ‖y‖2

. (2.2)

The k vertices corresponding to the k highest TF-IDF vector cosine similarity

values with vi are selected as the top-k neighbors of vi.

Local Ranking of Edges and Graph Simplification

Line 9 takes the union of the newly-created content edge set Ec and the origi-

nal topological edge set Et. In lines 10 through 24, a sampled edge set Esample is

constructed by retaining the most relevant edges from the edge union Eu. For each

vertex vi, the edges to retain are selected from its local neighborhood in Eu (line 13).

We compute the topological similarity (line 14) between node vi and its neighbor γj

as the relative overlap of their respective topological neighbor sets, I = ngbr(vi, Et)

5Besides top-k criteria, we also investigated using all-pairs similarity above a given global thresh-
old, but this tended to produce highly imbalanced degree distributions.
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and J = ngbr(γj, Et), using similarity (either cosine similarity as in Equation 2.2 or

Jaccard coefficient as defined below):

jaccard(I, J) =
|I ∩ J |
|I ∪ J |

. (2.3)

After the computation of the topological similarity vector simt
i finishes, it is

normalized by normalize (line 15). In our experiments we implemented normalize

with either zero-one, which simply rescales the vector to [0, 1]:

zero-one(~x) = (xi −min(~x))/(max(~x)−min(~x)) , (2.4)

or z-norm6, which centers and normalizes values to zero mean and unit variance:

z-norm(~x) =
xi − µ̂
σ̂

, µ̂ =

∑|~x|
i=1 xi
|~x|

, σ̂2 =
1

|~x| − 1

|~x|∑
i=1

(xi − µ̂)2 . (2.5)

Likewise, we compute vi’s content similarity to its neighbor γj by applying similarity

on term vectors ti and tγj and normalize those similarities (lines 16 and 17). The

topological and content similarities of each edge are then aggregated with the weight

specified by α (line 18).

In lines 20 through 23, the edges with highest similarity values are retained. As

stated in our desiderata, we want |Esample| � |Et| and therefore need to retain fewer

than |Γi| edges. Inspired by [122], we choose to keep d
√
|Γi|e edges. This form has

the following properties: 1) every vertex vi will be incident to at least one edge,

therefore the sparsification process does not generate new singletons, 2) concavity

and monotonicity ensure that larger-degree vertices will retain no fewer edges than

6Montague and Aslam [96] pointed out that z-norm has the advantage of being both shift and
scale invariant as well as outlier insensitive. They experimentally found it best among six simple
combination schemes discussed in [48].
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smaller-degree vertices, and 3) sublinearity ensures that smaller-degree vertices will

have a larger fraction of their edges retained than larger-degree vertices.

Partitioning the Sampled Graph

Finally in lines 25 through 27 the sampled graph Gsample is formed with the retained

edges, and the graph clustering algorithm clusteralgo partitions Gsample into l clusters.

Extension to Support Complex Graphs

The proposed CODICIL framework can also be easily extended to support com-

munity detection from other types of graph. If an input graph has weighted edges,

we can modify the formula in line 18 so that simij becomes the product of combined

similarity and original edge weight. Support of attribute graph is also straightfor-

ward, as attribute assignment of a node can be represented by an indicator vector,

which is in the same form of a text vector.

2.2.3 Key Speedup Optimization

TopK Implementation

When computing cosine similarities across term vectors t1, . . . , t|T |, one can trun-

cate the TF-IDF vectors by only keeping m elements with the highest TF-IDF values

and set other elements to 0. When m is set to a small value, TF-IDF vectors are

sparser and therefore the similarity calculation becomes more efficient with little loss

in accuracy.

We may also be interested in constraining content edges to be within a topological

neighborhood of each node vi, such that the search space of TopK algorithm can be

greatly reduced. Two straightforward choices are (1) 1-hop graph in which the content
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edges from vi are restricted to be in vi’s direct topological neighborhood, and (2) 2-hop

graph in which content edges can connect vi and its neighbors’ neighbors.

Many contemporary text search systems make use of inverted indices to speed

up the operation of finding the k term vectors (documents) with the largest values

of Equation 2.2 given a query vector ti. We used the implementation from Apache

Lucene for the largest dataset.

Fast Jaccard Similarity Estimation

To avoid expensive computation of the exact Jaccard similarity, we estimate it

by using minwise hashing [17]. An unbiased estimator of sets A and B’s Jaccard

similarity can be obtained by

ˆjaccard(A,B) =
1

h

h∑
i=1

I(min(πi(A)) = min(πi(B))) , (2.6)

where π1, π2, · · · , πh are h permutations drawn randomly from a family of minwise

independent permutations defined on the universe A and B belong to, and I is the

identity function. After hashing each element once using each permutation, the cost

for similarity estimation is only O(h) where h is usually chosen to be less than |A|

and |B|.

Fast Cosine Similarity Estimation

Similar to Jaccard coefficient, we can apply random projection method for fast esti-

mate of cosine similarity [22]. In this method, each hash signature for a d-dimensional

vector x is h(x) = sgn (x, r), where r ∈ {0, 1}d is drawn randomly. For two vectors

x and y, the following holds:
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Pr[h(x) = h(y)] = 1− arccos (cosine(x,y))

π
. (2.7)

2.2.4 Performance Analysis

Lines 3–7 of CODICIL are a preprocessing step which compute for each vertex its

top-k most similar vertices. Results of this one-time computation can be reused for

any k′ ≤ k. Its complexity depends on the implementation of the TopK operation.

On our largest dataset Wikipedia this step completed within a few hours.

We now consider the loop in lines 11–24 where CODICIL loops through each

vertex. For lines 14 and 16 we use the Jaccard estimator from Section 2.2.3 for which

runs in O(h) with a constant number of hashes h. The normalization operations in

lines 15 and 17 are O(|Γi|) and the inner loop in lines 21–23 is O(
√
|Γi|). Sorting

edges by weight in line 20 is O(|Γi| log |Γi|). The size of Γi, the union of topology and

content neighbors, is at most n but on average much smaller in real world graphs.

Thus the loop in lines 11–24 runs in O(n2 log n).

The overall runtime of CODICIL is the edge preprocessing time, plus O(n2 log n)

for the loop, plus the algorithm-dependent time taken by clusteralgo.

2.3 Experiments

We are interested in empirically answering the following questions:

• Do the proposed content-aware clustering methods lead to better

clustering than using graph topology only?

• How do our methods compare to existing content-aware clustering

methods?
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• How scalable are our methods when the data size grows?

2.3.1 Datasets

Three publicly-available datasets with varying scale and characteristic are used.

Their domains cover document network as well as social network. Each dataset is

described below, and Table 2.1 follows, listing basic statistics of them.

CiteSeer

A citation network of computer science publications7, each of which labeled as

one of six sub-fields. In our graph, nodes stand for publications and undirected

edges indicate citation relationships. The content information is stemmed words from

research papers, represented as one binary vector for each document. Observe that

the density of this network (average degree 2.74) is significantly lower than normally

expected for a citation network.

Wikipedia

The static dump of English Wikipedia pages (October 2011). Only regular pages

belonging to at least one category are included, each of which becomes one node.

Page links are extracted. Cleaned bi-grams from title and text are used to represent

each document’s content. We use categories that a page belongs to as the page’s class

labels. Note that a page can be contained in more than one category, thus ground

truth categories are overlapping.

7http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html
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|V| |Et| # CC |CCmax| DimT Avg |ti| # Class
Wikipedia 3,580,013 162,085,383 10 3,579,995 1,459,335 202 595,355
Flickr 16,710 716,063 4 16,704 1,156 44 184,334

CiteSeer 3,312 4,536 438 2,110 3,703 32 6

Table 2.1: Basic statistics of datasets. # CC: number of connected components.
|CCmax|: size of the largest connected component. DimT : number of unique content
units. Avg |ti|: average number of non-zero elements in term vectors. # Class:
number of (overlapping) ground truth classes.

Flickr

From a dataset of tagged photos8 we removed infrequent tags and users associated

with only few tags. Each graph node stands for a user, and an edge exists if one user

is in another’s contact list. Tags that users added to uploaded photos are used as

content information. Flickr user groups are collected as ground truth. Similar to

Wikipedia categories, Flickr user groups are also overlapping.

2.3.2 Baseline Methods

In terms of strawman methods, we compare the CODICIL methods with three ex-

isting content-aware graph clustering algorithms, SA-Cluster-Inc [153], PCL-DC [149]

and Link-PLSA-LDA (L-P-LDA) [100]. Their methodologies have been briefly intro-

duced in Section 2.1. When applying SA-Cluster-Inc, we treat each term in T as

a binary-valued attribute, i.e. for each graph node i every attribute value indicates

whether the corresponding term is present in ti or not. For L-P-LDA, since it does

not assume a distinct distribution over topics for each cited document individually,

only citing documents’ topic distributions are estimated. As a result, there are 2313

8http://staff.science.uva.nl/~xirong/index.php?n=DataSet.Flickr3m
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citing documents in CiteSeer dataset and we report the F-score on those documents

using their corresponding ground-truth assignments.

Previously SA-Cluster-Inc has been shown to outperform k-SNAP [131] and PCL-

DC to outperform methods including PLSA-PHITS [30], LDA-Link-Word [40] and

Link-Content-Factorization [154]. Therefore we do not compare with those algo-

rithms.

Two content-insensitive clustering algorithms are included in the experiments as

well. The first method, “Original Topo”, clusters the original network directly. The

second method samples edges solely based on structural similarity and then clusters

the sampled graph [122], and we refer to it as “Sampled Topo” hereafter.

Finally, we also adapt LDA and K-means9 algorithm to cluster graph nodes using

content information only. When applying LDA, we treat each term vector ti as a

document, and one product of LDA’s estimation procedure is the distribution over

latent topics, θti , for each ti (more details can be found at the original paper by

Blei et al. [15]). Therefore, we treat each latent topic as a cluster and assign each

graph node to the cluster that corresponds to the topic of largest probability. We use

GibbsLDA++10, a C++ implementation of LDA using Gibbs sampling [56] which is

faster than the variational method proposed originally. Results of this method are

denoted as “LDA”.

9We do not report running time of K-means as it is not implemented in C or C++.
10http://gibbslda.sourceforge.net/
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2.3.3 Experiment Setup

Parameter Selection

There are several tunable parameters in the CODICIL framework, first of which

is k, the number of content neighbors in the TopK sub-routine. We propose the

following heuristic to decide a proper value for k: the value of k should let |Ec| ≈

|Et|. As a result, k is set to 50 for both Wikipedia (|Ec| = 150, 955, 014) and Flickr

(|Ec| = 722, 928). For CiteSeer, we experiment with two relatively higher k values (50,

|Ec| = 103, 080 and 70, |Ec| = 143, 575) in order to compensate the extreme sparsity

in the original network. Though simplistic, this heuristic leads to decent clustering

quality, as shown in Section 2.3.5, and avoids extra effort for tuning.

Another parameter of interest is α, which determines the weights for structural

and content similarities. We set α to 0.5 unless otherwise specified, as in Section 2.3.7.

The number of hashes (h) used for minwise hashing (Jaccard coefficient) is 30, and

512 for random projection (cosine similarity). Experiments with both choices of

similarity function are performed. As for m, the number of non-zero elements in

term vectors, we let m = 10 for Wikipedia and Flickr. This optional step is omitted

for CiteSeer since the speedup is insignificant.

Clustering Algorithm

We combine the CODICIL framework with two different clustering algorithms,

Metis11 [71] and Multi-level Regularized Markov Clustering (MLR-MCL)12 [120].

Both clustering algorithms are also applied on strawman methods.

11http://glaros.dtc.umn.edu/gkhome/metis/metis/download
12http://www.cse.ohio-state.edu/~satuluri/research.html
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2.3.4 Effect of Simplification on Graph Structure

In this section we investigate the impact of simplification on the spectrum of

the graph. For both CiteSeer and Flickr (results for Wikipedia are similar to that

of Flickr) we compute the Laplacian of the graph, before and after three different

types of simplification (topology-only, CODICIL with cosine similarity, CODICIL

with Jaccard similarity), and examine the top part (the smallest 2000 eigenvalues) of

each eigenspectrum. Specifically, in Figure 2.2 we order the top parts in the ascending

order and plot their values.

The multiplicity of 0 as an eigenvalue in such a plot corresponds to the number of

independent components within the graph [95]. For CiteSeer we see an increase in the

number of components after topological simplification (green versus red marks) and

it further disconnects the network, whereas for Flickr (similarly for Wikipedia) the

number of components is unchanged. Our hypothesis is that for sparse datasets like

CiteSeer topology-only simplification will have a negative impact on the quality of

the resulting clustering, and our content-based enhancements will help in overcoming

this shortfall. This is reflected on the plots, as there are fewer zero eigenvalues after

simplification using CODICIL (purple and blue marks).

Note that the sum of eigenvalues for the complete spectrum is proportional to

the number of edges in the graph [95], so this explains why the plots for the original

graphs are slightly above those for the simplified graph even though the overall trends

(e.g. spectral gap, relative changes in eigenvalues) are quite similar for both datasets.

On the other hand, the plots of graphs after CODICIL are further above those of the

original graphs, signifying its ability to recover links that were missed in the original

networks.
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Figure 2.2: First 2000 eigenvalues of graph Laplacian before and after simplification
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2.3.5 Clustering Quality

We are interested in comparison between the predicted clustering and the real com-

munity structure since group/category information is available for all three datasets.

Later in Section 2.4 we will evaluate CODICIL’s performance qualitatively. While it

is tempting to use conductance or other cut-based objectives to evaluate the quality

of clustering, they only value the structural cohesiveness but not the content co-

hesiveness of resultant clustering, which is exactly the motivation of content-aware

clustering algorithm. Instead, we use average F-score with regard to the ground truth

as the clustering quality measure, as it takes content grouping into consideration and

ensures a fair comparison among different clusterings. Given a predicted cluster p

and with reference to a ground truth cluster g (both in the form of node set), we

define the precision rate as |p∩g||p| and the recall rate as |p∩g||g| . The F-score of p on g,

denoted as F (p, g), is the harmonic mean of precision and recall rates.

For a predicted cluster p, we compute its F-score on each g in the ground truth

clustering G and define the maximal obtained as p’s F-score on G. That is:

F (p,G) = max
g∈G

F (p, g) . (2.8)

The final F-score of the predicted clustering P on the ground truth clustering G

is then calculated as the weighted (by cluster size) average of each predicted cluster’s

F-score:

F (P,G) =
∑
p∈P

|p|
|V|

F (p,G) . (2.9)
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This effectively penalizes the predicted clustering that is not well-aligned with the

ground truth, and we use it as the quality measure of all methods on all datasets.

CiteSeer

In Figure 2.3 we show the experiment results on CiteSeer. Since it is known

that the network has six communities (i.e. sub-fields in computer science), there is

no need to vary l, the number of desired clusters. We report results using Metis

(similar numbers were observed with Markov clustering). For PCL-DC, we set the

parameter λ to 5 as suggested in the original paper, yielding an F-score of 0.570.

The F-scores of SA-Cluster-Inc and L-P-LDA are 0.348 and 0.458, respectively. As

we can see clearly in the bar chart, clustering based on topology alone results in a

performance well below the state-of-the-art content-aware clustering methods. This

is not surprising as the input graph has 438 connected components and therefore most

small components were randomly assigned a prediction label. Although such approach

has no impact on topology-based measures (e.g. normalized cut or conductance), it

greatly spoils the F-score measure against the ground truth. Moreover, topology-

based simplification further deteriorates the clustering performance as it creates even

more connected components, as we projected in Section 2.3.4. Neither is LDA able

to provide a competitive result, as it is oblivious to link structure embedded in the

dataset. Surprisingly though, K-means only manages to produce a very unbalanced

clustering (the largest cluster always contains more than 90% of all papers) even after

50 iterations, and its F-score (averaged over five runs) is only 0.336.
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Figure 2.3: F-score of Metis on CiteSeer

On the other hand, our content-aware approaches (using Metis as the clustering

method) were able to handle the issue of disconnection as they also include content-

similar edges. For both similarity measures, the F-scores are within 90% range of

PCL-DC, and it outperforms PCL-DC when k increases to 70.

While achieving the quality that is comparable with existing methods, the COD-

ICIL series are significantly faster. PCL-DC takes 234 seconds on this dataset and

SA-Cluster-Inc requires 306 seconds. LDA finishes in 40 seconds. In contrast, the sum

of CODICIL’s edge sampling and clustering time never exceeds 1 second. Therefore,

the CODICIL methods are at least one order of magnitude faster than state-of-the-art

algorithms.
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Wikipedia

For the Wikipedia dataset, we were unable to run the experiment on SA-Cluster-

Inc, PCL-DC, L-P-LDA, LDA and K-means as their memory and/or running time

requirement became prohibitive on this million-node network. For example, storing

10,000 centroids alone in K-means requires 54 GBs).

Figures 2.4a and 2.4c plot the performances using MLR-MCL and Metis, respec-

tively. Since category assignments as the ground truth are overlapping, there is no

gold standard for the number of clusters. We therefore varied l in both clustering

algorithms. Our content-aware clustering algorithms consistently outperform Sam-

pled Topo by a large margin, indicating that CODICIL methods are able to simplify

the network and recover community structure at the same time. CODICIL methods’

F-scores are also on par or better than those of Original Topo.

Flickr

Figure 2.5a shows the performances of various methods with MLR-MCL on Flickr,

where SA-Cluster-Inc, PCL-DC, LDA and K-means can also finish in a reasonable

time (L-P-LDA still takes more than 30 hours). Again, l was varied for the clustering

algorithm. Similar to results on CiteSeer, CODICIL methods again lead the base-

lines by a considerable margin. The F-scores of SA-Cluster-Inc, LDA, and K-means

never exceed 0.2, whereas CODICIL methods’ F-scores are often higher, together with

Original & Sampled Topo.

Readers may have noticed that for PCL-DC only three data points (l = 50, 75, 100)

are obtained. That is because its excessive memory consumption crashed our work-

station after using up 16 GBs of RAM for larger l values. We also observe that while
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Figure 2.4: Experiment results on Wikipedia
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Figure 2.5: Experiment results on Flickr

PCL-DC generates a group membership distribution over l groups for each vertex,

fewer than l communities are discovered. That is, there exist groups of which no

vertex is a prominent member. Furthermore, the number of communities discovered

is decreasing as l increases (45, 43 and 39 communities for l = 50, 75, 100), which is

opposite to other methods’ trends. All three clusterings’ F-scores are less than 0.25.

Similarly, multiple runs of K-means (K is set to 400, 800, 1200, and 1600) can only

identity roughly 200 communities.

2.3.6 Scalability

The running time on CiteSeer has already been discussed, and here we focus on

Flickr and Wikipedia. For CODICIL methods, the running time includes both edge

sampling and clustering stage. The plots’ Y-axes (running time) are in log scale.

Flickr

We first report scalability results on Flickr (see Figure 2.5b). For SA-Cluster-

Inc, the value of l (the desired output cluster count), ranging from 100 to 5000,
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does not affect its running time as it always stays between 1 and 1.25 hours with

memory usage around 12GB. The running time of LDA appears, to a large extent,

linear in the number of latent topics (i.e. l) specified, climbing up from 2.56 hours

(l = 200) to 15.88 hours (l = 1600). For PCL-DC, the running time with three l

values (50, 75, 100) is 0.5, 2.0 and 2.8 hours, respectively.

As for our content-aware clustering algorithms, running them on Flickr requires

less than 8 seconds, which is three to four orders of magnitude faster than SA-Cluster-

Inc, PCL-DC and LDA. Original Topo takes more than 10 seconds, and Sampled Topo

runs slightly faster than CODICIL methods.

Wikipedia

Original Topo, Sampled Topo and all CODICIL methods finished successfully.

The running time is plotted in Figures 2.4b and 2.4d. When clustering using MLR-

MCL, our methods are at least one order of magnitude faster than clustering based

on network topology alone. For Metis, CODICIL is also more than four times faster.

The trend lines suggest our methods have promising scalability for analysis on even

larger networks.

2.3.7 Effect of Varying α on F-score

So far all experiments performed fix α at 0.5, meaning equal weights of structural

and content similarities. In this sub-section we track how the clustering quality

changes when the value of α is varied from 0.1 to 0.9 with a step length of 0.1.

On Wikipedia (Figure 2.6a) and Citeseer (Figure 2.6b), F-scores are greatest

around α = 0.5, supporting the decision of assigning equal weights to structural and
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Figure 2.6: Effect of varying α on F-score (avg. # clusters for Wikipedia: 29,414,
avg. # clusters for Flickr: 1,911)

content similarities. Results differ on Flickr where F-score is constantly improving

when α increases (i.e. more weight assigned to topological similarity).

2.3.8 Effect of Ec Constraint on F-score

In Section 2.2.3 we discuss the possibility of constraining content edges within a

topological neighborhood for each node vi. Here we provide a brief review on how

the qualities of resultant clusterings are impacted by such constraint. For the sake of

space, we focus on the F-scores on Wikipedia and Flickr.

Figures 2.7a and 2.7b show F-scores achieved on Wikipedia, using different Ec con-

straints. Full means no constraint and TopK sub-routine searches the whole vertex

set V , whereas 1-hop constrains the search to within a one-hop neighborhood, and

likewise for 2-hop. Plots of full and 2-hop almost overlap with each other, suggesting

that searching within the 2-hop neighborhood can provide sufficiently strong content

signals on this dataset. For Flickr (Figures 2.7c and 2.7d), interestingly 2-hop and
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Figure 2.7: Effect of Ec constraint on F-score

1-hop have a slight lead over full. This may be an indication that in online social net-

works, compared with information networks, content similarity between two closely

connected users emits stronger community signals.

2.3.9 Discussions

An interesting observation on the biased edge sampling is that it always results in

an improvement in running time. However, sampling just the topology graph results

in a clear loss in accuracy whereas content-conscious sampling is much more effective

40



with accuracies that are on par with the best performing methods at a fraction of the

cost to compute. We observe this for all three datasets.

We also find that for probabilistic-model-based methods (PCL-DC, L-P-LDA and

LDA) as well as K-means, their running time is at least linear in l, the desired

number of output clusters, which becomes a critical drawback in face of large-scale

workloads. As the network grows, the number of clusters also increases naturally.

Plots on CODICIL methods’ running time, on the other hand, suggest a logarithmic

increase with regard to the number of clusters, which is more affordable.

2.4 Case Studies

In this section, we demonstrate the benefits of leveraging content information on

two Wikipedia pages: “Machine Learning” and “Graph (Mathematics)”.

In the original network, “machine learning” has a total degree of 637, and many

of its neighbors (including “1-2-AX working memory task”, “Wayne State University

Computer Science Department”, “Chou-Fasman method”, etc.) are at best peripheral

to the context. When we sample the graph according to its link structure only, 119

neighbors are retained for “machine learning”. Although this eliminates some noise,

many others, including the three entries above, are still preserved. Moreover, it also

removes during the process many neighbors which should have been kept, e.g. “naive

Bayes classifier”, “support vector machine”, and so on.

The CODICIL framework, in contrast, alleviates both problems. Apart from re-

moving noisy edges, it also keeps the most relevant ones. For example, “AdaBoost”,

“ensemble learning”, “pattern recognition” all appear in “machine learning” ’s neigh-

borhood in the sampled edge set Esample. Perhaps more interestingly, we find that
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CODICIL adds “neural network”, an edge absent from the original network, into

Esample (recall that it is possible for CODICIL to include an edge even it is not in the

original graph, given its content similarity is sufficiently high). This again illustrates

the core philosophy of CODICIL: to complement the original network with content

information so as to better recover the community structure.

Similar observations can be made on the “Graph (Mathematics)” page. For ex-

ample, CODICIL removes entries including “Eric W. Weisstein”, “gadget (computer

science)” and “interval chromatic number of an ordered graph”. It also keeps “clique

(graph theory)”, “Hamiltonian path”, “connectivity (graph theory)” and others, which

would otherwise be removed if we sample the graph using link structure alone.

2.5 Conclusion

We have presented an efficient and extremely simple algorithm for community

identification in large-scale graphs by fusing content and link similarity. Our algo-

rithm, CODICIL, selectively retains edges of high relevancy within local neighbor-

hoods from the fused graph, and subsequently clusters this backbone graph with any

content-agnostic graph clustering algorithm.

Our experiments demonstrate that CODICIL outperforms state-of-the-art meth-

ods in clustering quality while running orders of magnitude faster for moderately-sized

datasets, and can efficiently handle large graphs with millions of nodes and hundreds

of millions of edges. While simplification can be applied to the original topology alone

with a small loss of clustering quality, it is particularly potent when combined with

content edges, delivering superior clustering quality with excellent runtime perfor-

mance.
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Chapter 3: Simultaneous Detection of Communities and Roles

from Large Networks

This chapter covers the second part of my work in efficient graph algorithms for

OSN analytics, as I study the problems community detection and structural role de-

tection jointly. Both tasks are essential in the realm of network science, and they

have received extensive research interests. Community detection, with its roots in

graph partitioning is concerned with the inter-connectivity among nodes, as it aims

at identifying groups of nodes that are densely connected compared with their neigh-

bors. Exemplar applications include finding clusters of users from social networks

and functional protein complexes from bioinformatics networks. On the other hand,

structural role detection focuses on finding sets of nodes (i.e. roles) that share simi-

lar structural properties (such as degree, clustering coefficient, and betweenness) and

characterizing different roles. Structural roles can often be associated with functions

of nodes in a network, and it is a promising approach to characterize OSN users (e.g.

in Chapters 5 and 6) using their structural roles. For example, hub nodes with high

degree in an epidemic network are more likely to spread diseases, whereas bridge nodes

with low degree and high betweenness are gatekeepers and important candidates for

immunization. Recent work has leveraged role detection techniques for identity reso-

lution [64, 50], exploratory network analysis [50], and anomaly detection [116].
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To date, however, studies on these two topics have been performed independently,

and there has been little synergy between them. When an algorithm is performing

community (role) detection, it often ignores any role (community) information that

is available. In this work we argue that community and structural role discovery

should be interdependent and complementary to each other. Real-world communities

often contain nodes with various roles for it to function, such as ones that interface

with other communities and ones that are peripheral to community cores. On the

other hand, the role assignment of a node also depends on the communities it, its

neighbors and beyond belong to. Therefore there exists a strong and crucial need to

detect communities and roles jointly, and we provide such a method in this paper.

As shown in the following sections, the joint discovery of communities and roles can

generate communities and roles of higher quality, as compared with identifying them

separately.

Problem statement: Given an undirected, unweighted network G(V,E) as the

input, our goal is to design an algorithm that outputs both community and structural

role assignments for nodes simultaneously. To overcome limitations in prior work, we

state the following desiderata:

• Nonparametric Guidance: Utilize role information when inferring commu-

nity assignment, and vice versa, so that assignment information is able to pro-

vide guidance to the detection process in a nonparametric fashion.

• Iterative update: Improve community and role assignments iteratively, so

that the guidance is no longer static and always using the latest assignment

information.
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• Overlapping communities and roles: Generate soft assignments for both

community and role, since in many real-world networks nodes naturally belong

to multiple communities and share multiple roles, though not uniformly. For

example, one researcher can have several research interests, and a star node also

acts as a bridge when connecting multiple tight knit communities.

• Diversity: Produce heterogeneous role assignment in each community, and

vice versa, so that community and role assignments are as diverse from each

other as possible.

The last desideratum regarding diversity is because community and role assign-

ments are expected to characterize graph nodes from two different aspects, and thus

nodes in the same community are expected to possess diverse roles. To illustrate the

validity of this assumption in practice, we studied the composition of roles in several

networks that have ground truth community assignments. Specifically, we download

three networks (Google Plus, Facebook, and Twitter) from the SNAP network repos-

itory13, and run RolX [64], a role detection algorithm, on them. The number of roles

is set to 4, as is automatically determined by RolX. In Google Plus, among all large

communities that altogether cover more than 95% of all labeled nodes, 94% of them

contain nodes that altogether have at least 2 majority roles, and 48% of them have

nodes that altogether have all 4 majority roles. Similar results are found on Facebook

and Twitter, where 92% and 62%, respectively, of large communities contain nodes

that belong to at least 2 majority roles. This shows that many real world communities

indeed have diverse role assignment inherently.

13http://snap.stanford.edu/data/index.html

45

http://snap.stanford.edu/data/index.html


Building on those observations and desiderata, we present RC-Joint, our algorith-

mic solution to the above problem. It treats community detection as a likelihood

maximization problem with diversity constraints by role assignment, and it updates

role assignment by performing soft clustering of nodes with features derived from com-

munity memberships. One iteration of each process is performed alternately, until

both community and role assignments converge. This bootstrapping paradigm satis-

fies all four desiderata, and is therefore able to mine community and role assignments

with the up-to-date knowledge of each other. We will describe RC-Joint in details in

Section 3.2. An added benefit is that RC-Joint is naturally parallel since inference is

done on each node, therefore parallel computing paradigms (such as OpenMP) can

be easily leveraged. This fact makes it possible to scale RC-Joint to large networks.

In Section 3.3, we will discuss several optimizations in the implementation of

RC-Joint, including parallelism, that yield significant speedup. We also investigate

efficient initialization schemes for RC-Joint, which lead to faster execution and often

higher accuracy. We demonstrate the efficacy of RC-Joint by experimenting on a

wide array of real and synthetic networks (Section 3.4). We compare RC-Joint with

state-of-the-art algorithms in both community detection and role detection, includ-

ing BigClam [148], Markov Clustering [120], Graclus [37], RolX [64] and GLRD [50].

Quality of the output are measured by F-score using ground truth information. Re-

sults show that RC-Joint is able to detect communities and roles of higher quality,

compared with existing methods. The improvement is up to 15% on real networks

and 75% on synthetic networks.
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3.1 Related Work

3.1.1 Community Detection

Community detection, with its root in graph clustering and graph partitioning,

has been pivotal to network science. A plethora of algorithms have been proposed

to address this task over the years, be it heuristic-motivated [71], cut-based [37],

modularity-based [29], information theoretic [117], or stochastic flow-driven [120]. To

cover all community detection algorithms is beyond the scope of this paper, and

interested readers can refer to survey articles such as [46].

Among many challenges faced in the community detection literature, a prominent

one is the need to find overlapping communities. That is, community assignment

is rather “soft”. This desideratum is motivated by the observation on many real-

world networks that, by nature, community memberships are not mutually exclusive.

Various algorithms have been proposed to address this need [146]. For example, clique

percolation method by Palla et al. [102] operates on the assumption that overlapping

communities consist of adjacent small cliques. Airoldi et al. [4] extend the standard

stochastic block model [124] by letting a node’s community indicator vector be drawn

from a multinomial distribution, creating the mixed membership stochastic block

model.

Another family of methods approach the problem by converting edges in a network

to nodes in a new graph (called line graph) and then applying regular non-overlapping

community detection algorithms to create clusters of new nodes [3]. Since a node in

the input network is incident to multiple edges which may in turn be assigned to

various clusters in the line graph, it may belong to multiple communities. The line
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graph, however, contains significantly more nodes than the original network, making

the algorithm too costly for large networks.

Recently, Yang and Leskovec propose an affiliation-based model to handle over-

lapping communities [148]. Each node has an affiliation score with each community,

and the affiliation strength is decided by its value. The probability that an edge

exists between two nodes is decided by the nodes’ community affiliations. Compared

with block models, this approach grants individual nodes more flexibility since the

linkage probability is no longer subject to the community-specific values. None of

those methods, however, consider the structural roles of individual nodes.

3.1.2 Role Detection

While having a shorter history than community detection, role detection is a field

of growing research interest. Here, we focus on structural roles in a network, although

role has also been used to encompass latent topics in document corpus [92]. Henderson

et al. have proposed RolX, a non-negative matrix factorization-based (NMF) approach

to decompose a node-feature matrix into node-role and role-feature matrices [64].

They show that RolX is able to find roles with distinct characteristics, and the role

representation learned on one network can be transferred to another.

Rossi et al. extend role analyses to the dynamic environment, where a series of

network snapshots are available [116]. By performing role detection on each snapshot

first and then calculating the transition of roles over snapshots, temporal patterns

of nodes are extracted. Here role detection serves to provide high-level features for

temporal behavior extraction, and its end applications include anomaly detection and

nodal behavior prediction.
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Recently, Gilpin et al. study the possibility of supplying extra guidance to role

detection in order to incorporate external knowledge or requirements [50]. Their

framework, GLRD, models role detection as a constrained NMF problem, where the

guidance is provided as convex constraints and specified per role. Instead of optimiz-

ing matrices as a whole, they opt for an alternating least square formulation to im-

prove the efficiency. Three types of guidance are described: sparsity (role assignment

and/or representation being sparse for each role), diversity (role assignment and/or

representation being different among roles), and alternative role discovery (role assign-

ment and/or representation being different from a given assignment/representation).

There are still two limitations in GLRD: (1) It treats community assignment as static

input; (2) The recursive feature extraction scheme [64] it relies on incurs a complexity

that is cubic to the number of nodes.

Lastly, one common drawback in existing literature of role detection is the ab-

sence of direct quality evaluation on proposed algorithms, possibly due to the lack

of network data with ground truth on roles. Therefore previous work is confined to

exploratory analyses or transfer learning tasks where roles themselves are utilized as

high-level features.

3.2 Algorithm

Key intuitions: We view edges in the network as a result of nodes being affiliated

to communities. The stronger two nodes are associated with a same community, the

more likely it is to observe an edge between them. Furthermore, nodes in one commu-

nity have diverse structural roles, thus the assignment vectors of any community and

any role ought to be dissimilar. As for a node’s role assignment, we consider it to be
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dependent on how clique-like the node is as well as how many of the node’s neighbors

belong to the same community as it does. We will elaborate on the materialization

of those intuitions in the following sections.

RC-Joint is designed to be an iterative algorithm that improves community and

role assignments alternately. It takes as input a connected, undirected, unweighted

graph G = (V,E), the number of communities (Nc) and the number of roles (Nr).

The convergence threshold (δcomm and δrole) and maximal number of iterations can

also be specified. The output is a community score cvi for each node v ∈ V and each

community i = 1 · · ·Nc, and a role score rvj for each v ∈ V and each role j = 1 · · ·Nr.

Both community and role scores are non-negative. Table 3.1 lists notations used in

the rest of the paper.

G(V,E) Network with the vertex set V and edge set E
Nc Number of communities to detect
Nr Number of roles to detect
δcomm Community assignment convergence threshold
δrole Role assignment convergence threshold
C |V |-by-Nc non-negative matrix of community scores
c•i Column vector of community scores for community i
cv• Row vector of community scores for node v
R |V |-by-Nr non-negative matrix of role scores
r•j Column vector of role scores for role j
rv• Row vector of role scores for node v
Γv Set of nodes adjacent to node v
π Permutation on the set V (Equation 3.1)
fv Feature vector of v for role assignment (Equation 3.3)
β Softness parameter for role assignment (Equation 3.3)
ε Angular cosine threshold for the diversity constraint (Equation 3.9)

Table 3.1: Table of notations
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Algorithm 2 shows the pseudo code of the workflow, and each component will be

introduced below. RC-Joint starts by initializing community and role assignments,

and they can be either specified by some user-provided configurations (e.g. results

from a previous run) or inferred automatically (Sections 3.2.1 and 3.2.2). After that,

community and role assignments are updated one after each other iteratively. The

algorithm stops when both communities and roles converge, or if the maximal number

of iterations has been reached14. For the convergence check of community assignment,

we impose that the relative improvement on network likelihood is less than δcomm,

since its value range is network-dependent. When checking the convergence of roles,

we require the maximal change of any role score itself is less than δrole, since role

scores are always in the range [0, 1].

Algorithm 2 Workflow of RC-Joint
Require: G, Nc, Nr, δcomm, δrole
1: C0 ← InitComm(G,Nc)
2: R0 ← InitRole(G,Nr)
3: i← 1
4: while not (convcomm and convrole) and i ≤ MaxIter do
5: Ci = UpdateComm(G,Ci−1,Ri−1, Nc)

6: if Likelihood(G,Ci)−Likelihood(G,Ci−1)
Likelihood(G,Ci−1)

< δcomm then
7: convcomm ← true {Communities converge}
8: end if
9: Ri = UpdateComm(G,Ri−1,Ci, Nr)
10: if ||Ri −Ri−1||max < δrole then
11: convrole ← true {Roles converge}
12: end if
13: iter← iter + 1
14: end while
15:
16: return Ci−1,Ri−1

14Empirically the algorithm often converges within far fewer iterations.
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3.2.1 Initializing Community Assignment

One naive way to initialize community scores of nodes is to randomly assign com-

munity labels (1 · · ·Nc) to nodes. Though fast, this method does not leverage the

network’s connectivity information, and it is highly probable that nodes sharing the

same initial label are far apart. Another simple approach is to choose several vantage

points, and to send their labels via breadth-first traversal. While this guarantees con-

nectivity in each initial community, it does not always capture community structures

since high-degree hub nodes will pass a label to a large number of nodes with little

inter-connectivity. On the other hand, the initialization scheme should be lightweight,

otherwise it defeats the purpose of creating an efficient algorithm. For example, we

find empirically that identifying neighborhoods with minimal local conductance [52]

runs three orders of magnitude slower than our proposed initialization method below,

on the Google Plus network (with 108K nodes and 12M edges).

Our solution (InitComm) hinges on the intuition that two nodes are likely to belong

to the same community if they share a large number of common neighbors. Therefore,

we want to group nodes according to relative amount of neighbors they are sharing

with each other, and to treat those groups as initial communities.

One established method to efficiently calculate the proportion of shared neighbors

is via min-wise hashing [17]. The adjacency list of a node can be viewed as a set,

whose elements are from the universe of V , and we can generate one min-wise hash

of the adjacency list by applying π, a permutation of V , on the set and taking the

minimal value after the permutation. Let Γv be the neighborhood of node v, then its
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min-wise hash value under π, hπ(Γv) (or hπ(v) for short), is:

hπ(v) ≡ hπ(Γv) = min
u∈Γv

(π(u)) , (3.1)

where π(u) is the value of u after permutation π. A min-wise hash signature of length

k for v is generated by randomly drawing k permutations π1 · · · πk and concatenating

the corresponding hash values hπ1(v) · · ·hπk(v). The same set of permutations are

applied to all adjacency lists to generate the corresponding length-k signature for

each node.

Given all min-wise hash signatures, we create a top-down hierarchy of nodes ac-

cording to signature values. This process will be referred to as grouping below. We

start with the first hash value (hπ1(v), ∀v ∈ V ), and split nodes into groups such

that all nodes in one group have the same hash value. If a group is small enough

(we use a size threshold of |V |
Nc

), all nodes in it are given one initial community label.

Otherwise, the group is further split based on the second hash value, and so on. This

continues until either all k hash values are used, or no more split is required. After

grouping, each node has one and only one initial community label.

If there are more than Nc initial community labels, we merge nodes in the smaller

groups to larger groups. To achieve this, we perform a label propagation algorithm

in the following manner. We rank all groups in the descending order of their sizes,

and visit them in sequence. When visiting a group, we assign its group label to the

immediate neighborhood of each member node. It is further required that if a node

has received any label from its neighbors, it can no longer propagate labels to its

neighbors. This makes sure that labels “stay” within the local neighborhood.Label

propagation terminates whenNc labels have been successfully propagated, after which
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a node can possibly have multiple community labels. For a node v and each label i

it has, we let the initial community score c0
vi = 1, otherwise it is 0.

Lemma 1 below shows that after InitComm, any node in the network will find

some other nodes belonging to the same initial community in close proximity.

Lemma 1. Given a connected, undirected, unweighted network G(V,E), and InitComm

is run to produce the initial community score matrix C0. For any node v and com-

munity i such that c0
vi = 1, if there exist a non-empty set of other nodes φvi such that

c0
ui = 1, ∀u ∈ φvi, then there is at least one node u ∈ φvi whose shortest path distance

to v on G is at most 2.

Proof. There are three different scenarios:

I. v obtains label i after the grouping process, and it has propagated i to its

neighbors. Then any node u ∈ Γu also has label i, and their shortest path

distance is 1.

II. v obtains label i after the grouping process, and it does not propagate i. Since

φvi is non-empty, there exists at least one node u that also obtains label i after

the grouping process because v does not propagate i. Since v and u are in the

same group in the grouping process, hπ1(v) = hπ1(u). Because any π (including

π1) is a one-to-one self-mapping on V , there is at least one element that exists

in the adjacency lists of both v and u, i.e. Γv ∩ Γu 6= ∅. Therefore, v and u have

at least one common neighbor, and the shortest path distance between them is

at most 2.

III. v receives label i from the propagation of one of its neighbors, u. Therefore

v ∈ Γu, and their shortest path distance is 1.
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To conclude, for any node v and label i such that c0
vi = 1, if φvi 6= ∅, there always

exists a node u such that v and u have the same label and the shortest path distance

between them is at most 2.

3.2.2 Initializing Role Assignment

Role detection in RC-Joint is achieved by soft k-means clustering on nodes using

various structural features described below. During the initialization stage, we assume

no knowledge of communities, and therefore we do not use any feature that is derived

from the community assignment. While recursive feature aggregation [65] has been

shown to capture richer structural information than local features (e.g. degree) alone,

we choose not to use it because its complexity is cubic to the number of nodes. To

trade off between feature richness and efficiency, we reuse the min-wise hash signatures

created in Section 3.2.1 to effectively approximate the similarity of a node’s adjacency

list and its neighbors’ adjacency lists.

The purpose of using adjacency list similarity as node features is to gauge the

distribution of a node’s structural similarity with its neighbors. Intuitively, the more

similar two nodes’ adjacency lists are, the more triangles there are that consist of both

nodes. If a node has high similarity with most of its neighbors, then it is more likely

to be part of a clique-like substructure. In contrast, a node having low similarity with

most of its neighbors resembles a star, and it connects multiple communities.
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Assuming the hash signatures for nodes v and u have length k, then according

to [17], the following statistic is an unbiased estimator of the Jaccard similarity be-

tween Γv and Γu:

ˆsim(v, u) ≡ 1
k

∑k
n=1 I[hπn(v) = hπn(u)] (3.2)

E[ ˆsim(v, u)] = |Γv∩Γu|
|Γv∪Γu|

where I[•] is the identity function. For each node, we use the minimum, maximum and

three quartiles of the estimated Jaccard similarity with all neighbors as its features.15

We also include the logarithm of a node’s degree as a feature in order to alleviate

the large variance of node degree itself. We note that there exist other definitions

of structural similarity that one can possibly employ, such as SimRank [68] and its

variants. However, they do not fit our purpose because the costly computation is

performed for all pairs of nodes, and we will not be able to reuse hash signatures

either.

To assign initial role information to nodes, we randomly choose Nr nodes as cen-

troids of k-means, and calculate a node v’s role affiliation rvj with each centroid j

using an exponential kernel. Affiliation scores are L1-normalized over all centroid for

each node, that is:

rvj =
exp (−β||fv − fsj ||2)∑Nr

n=1 exp (−β||fv − fsn||2)
(3.3)

where fv (fsj) denotes the feature vector of node v (centroid sj). The parameter β

is used to control the “softness” of the assignment, and a larger β value suppresses

minor affiliation scores. In our implementation the default value for β is 1.

15We find that k = 30 is sufficient for the hash signature length.
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3.2.3 Updating Community Assignment

Our goal in updating community assignment is to increase the likelihood of net-

work’s edge set E, given the community affiliation of nodes. At the same time, we

want the community assignment to be diverse with regard to the role assignment by

imposing the requirement of diversity in any pair of community and role.

Formally, the goal can be expressed as a constrained optimization problem:

maxC (Likelihood(G,C)) (3.4)

subject to c•i · r•j < εij,∀i ∈ 1 · · ·Nc, j ∈ 1 · · ·Nr

Note that the desideratum of diversity is implemented as constraints to the optimiza-

tion problem, and this is where role information is introduced to facilitate community

detection. For each community i and role j, it is required that their inner product is

less than a specified threshold value εij.

We use the following setting to model the relationship between C and the network

G. Given the community affiliation score matrix C, we define the probability of an

edge existing between v and u as a result of their affiliations with the community i:

P [(v, u) ∈ E | cvi, cui] ≡ 1− exp (−cvi · cui) . (3.5)

By treating the edge probability as independent when conditioned on each community,

it is easy to show that the probability of observing the edge (v, u) with regard to the

whole community assignment matrix C is:

P [(v, u) ∈ E | C] = 1− exp (−cv• · cu•) (3.6)

Intuitively, the larger affiliation scores to the same community two nodes v and u

have, the more likely it is to observe the edge (v, u).
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This setting can also be explained by viewing the multiplicity of edge (v, u) under

community i as a Poisson random variable with parameter cvi · cui. Due to the

additivity of Poisson distribution, the total multiplicity of edge (v, u) in G is also

a Poisson random variable with parameter cv• · cu•. Therefore, higher community

affiliation scores lead to higher edge multiplicity, and in terms of unweighted edge,

higher possibility of observing the edge.

Given C, the log-likelihood of the whole network is:

Likelihood(G,C) =
∑

(v,u)∈E

log (1− e−cv•·cu•)−
∑

(v,u)/∈E

cv• · cu• (3.7)

For a specific node v, when the community affiliation scores of all other nodes c−v• are

fixed, the unconstrained version of Equation 3.4 becomes convex on cv•, and gradient

ascent (lines 1 to 6 in Algorithm 3) can be utilized to solve it since the likelihood’s

gradient has a closed form:

∇cvi =
∑
u∈Γv

cui ·
exp (−cv• · cu•)

1− exp (−cv• · cu•)
−
∑
u/∈Γv

cui (3.8)

Because the gradient ascent algorithm optimizes the community assignment for

one node each time, it is difficult to directly factor in the diversity constraints in

Equation 3.4, each of which is community-specific. Therefore, we purpose to relax

the problem by first solving the unconstrained version as described above, and then

projecting the updated community assignment to the closest possible point in the

feasible region that satisfies all diversity constraints. For each community, the pro-

jection can be viewed as a quadratic programming problem with inequality constraints

(lines 7 to 9 in Algorithm 3), and it can be handled by various high-level solvers.

εij in the constraints are threshold parameters of the inner product between each

pair of community and role vectors. Since εij = cos (∠(c•i, r•j)) · ||c•i||2 · ||r•j||2, all
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εij parameter values can be controlled by one single parameter ε:

εij ≡ ε · ||c•i||2 · ||r•j||2 (3.9)

where ε represents the angular cosine between two vectors, and its domain is [0, 1] since

community and role affiliation scores are all non-negative. ε = 0 means the community

and role vectors are strictly orthogonal whereas ε = 1 indicates no constraint. In our

experiments we use ε = 0.5 (i.e. the angle is no less than π
3
) as the default.

Algorithm 3 outlines the two steps to update communities in each iteration.

Algorithm 3 UpdateComm(G,C,R, Nc)

Require: Learning rate l (fixed or learned from line search)
1: for all v ∈ V do
2: Calculate ∇cv• according to Equation 3.8
3: for all i ∈ 1 · · ·Nc do
4: cvi ← max (cvi + l∇cvi, 0) {Gradient ascent}
5: end for
6: end for
7: for all i ∈ 1 · · ·Nc do
8: c′•i ← arg minĉ ||ĉ− c•i||2, s.t. ĉ · r•j < εij,∀j ∈ 1 · · ·Nr and ĉ ≥ 0

{Diversity constraints by roles}
9: end for
10:
11: return C′

3.2.4 Updating Role Assignment

In RC-Joint, influences of community and role assignments go both ways. In order

to let up-to-date community information have impact on the role detection process,

we need to incorporate it into node features. To this end, we append to fv, the feature

vector of node v, one extra feature: the proportion of v’s neighbors that have the same
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dominant community label as v has.

|{u ∈ Γv| arg maxi′ (cui′) = arg maxi′ (cvi′)}|
|Γv|

(3.10)

Intuitively, a gateway node is more likely to belong to a different community than

most of its neighbors, while a central node in one community will mostly connect to

other core nodes in the same community.

Given updated feature values for each node, the next step is to update all Nr

centroids. Features of centroids are recalculated as the sum of feature values from all

nodes, weighted by their role affiliation scores. The step of adjusting role affiliation

scores for nodes has the same form as Equation 3.3, except that the underlying feature

vector is slightly different since the feature from Equation 3.10 was not used during

role initialization. Algorithm 4 lists the steps to update roles.

Algorithm 4 UpdateRole(G,C,R, Nr)

1: for all v ∈ V do
2: fv[intra-community neighbor ratio]← Equation 3.10 {Update node features}
3: end for
4: for all j ∈ 1 · · ·Nr do
5: fsj =

∑
v∈V rvjfv∑
v∈V rvj

{Update centroids}
6: end for
7: for all v ∈ V do
8: for all j ∈ 1 · · ·Nr do
9: r′vj ← Equation 3.3 {Update role assignment}
10: end for
11: end for
12:
13: return R′
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3.3 Design Choices and Techniques for Speedup

We dedicate this section to how RC-Joint can be implemented efficiently and the

selection of parameters. First we show how results of RC-Joint on a sparse network

can be used to initialize the algorithm on the original network. Then we discuss

leveraging the inherent parallelism in RC-Joint via parallel computing paradigms.

Reusing computed results and reducing subroutine’s problem size also help decrease

the computation cost. Finally we shed light on the process of selecting Nc and Nr

values.

3.3.1 Initialization with Results from Sparse Networks

In Sections 3.2.1 and 3.2.2 we present our default methods of initializing com-

munities and roles. Here we present a refinement that is analogous to the use of

sampling in initializing various clustering algorithms such as K-means, Expectation-

Maximization and even Graph Clustering [122]. Specifically, here we first sample

(sparsify) the edges of the original graph. Next we run RC-Joint on the sampled

(sparse) graph and obtain the community membership and role associations. We re-

fer to this as the first run. We use the results of the first run to initialize a second

run of RC-Joint on the full network. We refer to the latter as the second run.

Given the network G = (V,E), the sampled or sparse version of it is denoted

Gsparse = (V,Esparse) has the same set of nodes but a smaller set of edges (Esparse ⊂

E). The process of deciding which edges to keep in Esparse can be viewed as a

sparsification exercise. We examine two strategies described below:

• Random Sparsification: Sample edges uniformly at random. Retain sampled

edges in Esparse.
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• Local Rank Sparsification: Rank all edges according to an edge similarity

metric (e.g. estimate of the Jaccard similarity in Equation 3.3). Edges that have

a higher triangle density (participate in a greater number of triangles within the

network) will be ranked higher. For each node, rank its incident edges according

to the above metric, and retain a number of top-ranked edges. This approach

has been shown to preserve salient community structure especially in graphs

with communities of varying densities, and to deliver high-quality results at a

fraction of the cost [122]. Our hope is this strategy can also help in our context.

To reiterate, given a sparse network Gsparse, we first supply it to RC-Joint and

obtain community and role score matrices Csparse and Rsparse. Then RC-Joint is run

on the original network G, using C0 = Csparse and R0 = Rsparse. The key intuition

here is that using those initial values will allow the second run to finish much faster

than using the default because (1) Csparse and Rsparse yield better objective function

values, so that fewer iterations are needed to converge, and (2) Csparse and Rsparse are

more sparse (i.e. more zeros in affiliation scores), thus fewer operations are performed

when updating communities and roles iteratively.

In Section 3.4.3, we will report results from this sparse graph initialization ap-

proach. The default strategy we adopt is local rank sparsification, and for a node

of degree d,
⌈√

d
⌉
incident edges of the highest Jaccard similarity are preserved. As

expected, using Csparse and Rsparse indeed reduces the total running time of RC-Joint

(two runs combined), and on several datasets it also improves the quality of detected

communities and roles.
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3.3.2 Parallelizing RC-Joint

Main stages of UpdateComm (Algorithm 3) and UpdateRole (Algorithm 4) are

inherently parallelizable. When computing the community assignment, gradient cal-

culation can be performed on each node independently. Quadratic programming with

diversity constraints can also be done on each community separately. During the pro-

cess of updating role affiliation scores, each node can be updated individually. Lastly,

updating centroids in role detection are parallelizable as well, although in practice

the improvement may not be as significant since Nr is usually quite small.

In our implementation, we use OpenMP to exploit such parallelism, and the

speedup is significant. Distributed computing architecture such as MPI can also

be used, and we leave this as one direction of future work.

3.3.3 Reusing Computed Results

We have already mentioned one instance of result reusing, where min-wise hash

signatures are used for both community initialization and role feature calculation.

Another case is introduced in [148], where the authors point out that when calculating

the gradient of a node’s community affiliation scores (Equation 3.8), the last item can

be rewritten as ∑
u/∈Γv

cui =
∑
v∈V

cvi −
∑
u∈Γv

cui (3.11)

and that
∑

v∈V cvi remains the same in each iteration. This reduces the complexity

of gradient calculation from O(|V |2) to O(|E|).
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3.3.4 Reducing Quadratic Programming Problem Size

In the second part of Algorithm 3, community affiliation scores for each community

are adjusted by being projected to the closest point in the feasible region that satisfies

all Nr diversity constraints (one for each role). In its original form, each quadratic

programming problem need to solve for |V | variables, and this becomes a performance

bottleneck when the network is large. However, the following lemma shows that the

problem size can be reduced to the number of non-zeros in each community.

Lemma 2. For a community i, let

c′•i = arg min
ĉ
||ĉ− c•i||2

such that ĉ ·r•j < εij,∀j ∈ 1 · · ·Nr and ĉ ≥ 0. For any v ∈ V , if cvi = 0, then c′vi = 0.

Proof. Assume there exists a node v ∈ V such that cvi = 0 and c′vi > 0. Let another

assignment vector c′′•i be that c′′−vi = c′−vi and c′′vi = 0. Apparently c′′•i satisfies the

non-negativity constraint.

For any role j ∈ 1 · · ·Nr, c′′•i · r•j = c′•i · r•j − c′virvj ≤ c′•i · r•j < εij. Therefore

c′′•i also satisfies all diversity constraints.

Finally,

||c′′•i − c•i||2 (3.12)

=

√∑
v′ 6=v

(c′′v′i − cv′i)2 + (c′′vi − cvi)2 (3.13)

=

√∑
v′ 6=v

(c′v′i − cv′i)2 + (c′′vi − cvi)2 (3.14)

<

√∑
v′ 6=v

(c′v′i − cv′i)2 + (c′vi − cvi)2 (3.15)

=||c′•i − c•i||2 (3.16)
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which contradicts with the claim that c′•i is closest to c•i.

Therefore, if cvi = 0, c′vi must be 0, too.

From Lemma 2, it is easy to see that one can obtain c′•i by:

1. Creating a compact vector c̃i from c•i by keeping only all non-zero elements.

2. Finding c̃′i, the closest projection of c̃i in the feasible region.

3. Expanding c̃′i back to length |V | by filling corresponding elements with 0.

Here, the number of variables in the optimization problem is only the number of

non-zeros in c•i, which is much smaller than |V |.

3.3.5 Choosing Nc and Nr

The number of communities and roles to find are two parameters provided by end

users to RC-Joint, and there are several strategies to select them. One can perform

grid search of Nc and Nr on a held-out development set, and choose values that result

in the highest likelihood. Alternatively, measures like Bayesian Information Criterion

(BIC) or Minimum Description Length (MDL) can be calculated, and Nc, Nr that

minimize the combination of modeling and error costs can be selected.

For our network dataset, we compare total numbers of bits under different Nr val-

ues as in RolX [64], and find that Nr = 4 often yields the minimum description length.

Therefore we use this value for all networks in experiments. For networks without

ground truth of communities, we pick Nc by following the empirical evidence that

community structure is most pronounced when the community size is approximately

100 [82].
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3.4 Experiments and Evaluation

In this section, we apply RC-Joint to both real and synthetic networks, aiming to

understand its performance on both community detection and role detection under

various scenarios. We first evaluate RC-Joint and state-of-the-art algorithms on the

community detection task (Section 3.4.1), then compare it with existent role detection

algorithms (Section 3.4.2). We also investigate the effects of different initialization

schemes on the algorithm’s execution and performance (Section 3.4.3).

3.4.1 Performance on Community Detection

Networks for Community Detection

We download a collection of real-world networks that have ground truth on the

community membership16, and discard edge directions if the original network is di-

rected. The type of networks varies from social network to product network, and they

have different levels of density as well as community size. Table 3.2 summarizes the

basic information of those networks. All networks considered have ground truth on

overlapping communities.

Evaluation Metric and Comparisons

Because ground truth information is available, we can gauge the performance

of each community that an algorithm has discovered and whether a ground truth

community has been successfully identified.

16They are all available from the SNAP network repository.
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Network |V | |E| # Comm. Avg. Comm. Size Ground Truth
Facebook 4039 88234 193 23 Facebook friend list
Twitter 81306 1342303 4065 14 Twitter list
Google Plus 107614 12238285 468 136 Google Plus list
Amazon 334863 925872 120999 20 Product category
YouTube 1134890 2987624 14870 8 User group
LiveJournal 3997962 34681189 576120 12 User-defined group

Table 3.2: Information of networks for community detection. Communities may be
overlapping.

Since affiliation scores are real values instead of binary, we filter off nodes with

low affiliation scores from each community to get a compact representation of com-

munities. The filtering threshold can be set to
√

2|E|
|V |2 , square root of the empirical

edge probability [148].

For each ground truth community cĩ, we create a length-|V | vector c̃•̃i where

c̃vĩ = 1 if v belongs to cĩ, or 0 otherwise. The standard F-score formula is then

extended to handle affiliation scores (assuming C and C̃ have been L1-normalized

over nodes):

precision(i, ĩ) =
c•i·c̃•ĩ
||c•i||1 , recall(i, ĩ) =

c•i·c̃•ĩ
||c̃•ĩ||1

, (3.17)

f-score(i, ĩ) = 2·precision(i,̃i)·recall(i,̃i)
precision(i,̃i)+recall(i,̃i) (3.18)

Let Ñc be the total number of ground truth communities, we then calculate the

overall F-score using the following formula:

F (C, C̃) = 1
2
(
∑Nc

i=1 maxÑc
ĩ=1

(f-score(i,̃i))

Nc
(3.19)

+
∑Ñc

ĩ=1
maxNc

i=1 (f-score(i,̃i))

Ñc
)
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We compare RC-Joint with three representative community detection algorithms,

BigClam [148], MLR-MCL [120], and Graclus [37]. BigClam employs the same set-

ting of community affiliation scores in Section 3.2.3 to discover overlapping com-

munities. It has been shown that BigClam outperforms many existing overlapping

community detection algorithms, including line graph clustering [3], clique percola-

tion model [102], and mixed membership stochastic block model [4]. However, it does

not detect roles, nor does it exploit the influence of roles on communities. MLR-MCL

takes a multi-level approach and identifies communities by propagating stochastic

flows over a network and identifying each flow attractor as well as its contributors

as one cluster. Similarly, Graclus performs multi-level clustering where at each level

kernel k-means is run to optimize a partitioning’s normalized cut. MLR-MCL and

Graclus do not have the ability to detect overlapping communities.

Results

Table 3.3 summarizes the evaluation results, with F-scores of all algorithms on

each network. We provide the actual number of communities in each network as the

input parameter to each algorithm.

The largest network, LiveJournal, only successfully finishes on RC-Joint with local

rank sparsification, and MLR-MCL. This demonstrates the benefits of using proper

initialization, which will be further discussed in Section 3.4.3. Moreover, Graclus

crashes when running on Amazon and YouTube, too. Comparing with BigClam, we

find that RC-Joint has better performance on most networks. This demonstrates the

efficacy of RC-Joint’s inherent design to provide auxiliary information via the role

assignment, in order to facilitate the process of community detection. When initializ-

ing RC-Joint with communities and roles identified from a sparse network, the results
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are still highly competitive, and for Google Plus the performance is significantly im-

proved. On the other hand, non-overlapping community detection methods do not

fare well in general, except for MLR-MCL on Amazon.

The advantage of RC-Joint is also reflected in the log likelihood of the network

edge set (Equation 3.7), as we find that RC-Joint achieves better log likelihood values

than BigClam on all networks except Google Plus (Table 3.4). This shows the same

trend as in Table 3.3.

RC-Joint RC-Joint w/ sparse init. BigClam
Facebook -171085 -167758 -182284
Twitter -3305980 -3341592 -3381248
Google+ -57249698 -49624553 -52169083
Amazon -5452800 -5434790 -5476358
YouTube -19101405 -18713629 -19138838

Table 3.4: Log likelihood of the network, given the extracted community assignment
values. The closer the log likelihood value is to 0, the higher the quality.

3.4.2 Performance on Role Detection

In this section, we investigate the performance of RC-Joint on its second task:

role detection.

Networks for Role Detection

Real-world networks: One challenge that the role detection literature has been

facing is the availability of ground truth on roles for real-world networks, and most

work [64, 116] has to use some relevant tasks to indirectly measure the quality and

meaningfulness of roles extracted. To alleviate the problem, we propose to use a
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node’s behavior in diffusing and blocking information flows as the surrogate of its

role.

Specifically, we calculate two sets of measures for each node and use them to

define ground truth on roles. The first set is influence and passivity values of each

node, as described in [114], where nodes (i.e. users) of information networks start

and/or selectively relay cascades (e.g. URLs, photos, memes). The influence of a

user is based on how many users it mobilizes and how difficult to mobilize those users

are. The passivity of a user, on the other hand, is determined by how unlikely it is

for him to forward information and how influential his friends are. For a network,

we rank influence and passivity values over all users and divide both into two bins,

respectively. Bin combinations (four types) are then considered to be the ground

truth label for the network’s role assignment. The second set of measures is influence

and blockade, as defined in [27]. Influence is defined as the proportion of re-shares a

user receives among all information he has shared. Blockade is calculated as the ratio

of the number of cascades a user does not re-share to the total number of cascades he

has received. Similarly, influence and blockade values are binned to create role labels.

Both sets of measures attempt to capture the duality of propagating and impeding

information flows, though the former set is updated iteratively until convergence and

the latter is not.

We use two information networks for our experiments: Digg [79] and Flickr [20].

The Digg network has 19609 nodes and 161650 edges, where all votes on a particular

story is viewed as a cascade. The Flickr network has 33887 nodes and 2441316 edges,

where all favorites of a particular photo is considered to be a cascade.

71



Synthetic networks: Apart from information networks, we also create a collection

of synthetic networks where role assignments are known in advance. We consider four

different nodal types here:

• Member of a 10-clique. We create five such cliques, corresponding to 50 nodes

in total.

• Member of a 5-clique. We create ten such cliques, corresponding to 50 nodes in

total.

• Bridge of degree 2. We create 25 of them.

• Star of degree 10. We create 25 of them.

Bridges and stars are randomly connected to cliques, in order to make the whole

network connected. The last step is to add noise edges between any pair of nodes

with a fixed probability ρ. The value of ρ is ranged to generate networks with varying

difficulty. Each node type described above is treated as one role, and this forms the

ground truth for all synthetic networks.

Evaluation Metric and Comparisons

We use the same formula (Equation 3.19) to calculate the F-score on role detec-

tion. Apart from RC-Joint, we also compare with RolX and three variants of GLRD

(sparsity, diversity17, alternative role discovery constraints on role vectors). Because

details on the selection of constraint thresholds in GLRD are not specified, we choose

them in the following manner. For the sparsity constraint (on the target role vector’s

L1-norm), we let the threshold be |V |
Nr

. For the diversity constraint (on the inner

17This is different from the diversity constraints in RC-Joint (Equation 3.4).
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product of the target role vector and every other role vector) and alternative role

discovery (on the inner product of the target role vector and any externally-specified

vector), we set the threshold of angular cosine (similar to ε in Equation 3.9) to 0.5.

We use communities identified by BigClam as the guideline for GLRD’s alternative

role discovery.

Results

F-scores of various algorithms on Digg and Flickr are reported in Table 3.5. Results

for synthetic networks are listed in Table 3.6. We separate the results on real networks

and synthetic networks because the sources of ground truth are different.

Influence/Passivity [114] Influence/Blockade [27]
Digg Flickr Digg Flickr

RC-Joint 0.2032 0.1372 0.1407 0.0565
(8%) (5%) (15%) (14%)

RC-Joint w/ sparse init. 0.2033 0.1371 0.1406 0.0563
(8%) (5%) (15%) (14%)

RolX 0.1886 0.1301 0.1225 0.0496

GLRD Alternative 0.1885 0.1291 0.1228 0.0536
(0%) (-1%) (2%) (8%)

GLRD Sparsity 0.1792 0.1295 0.1217 0.0509
(-5%) (0%) (-1%) (3%)

GLRD Diversity 0.1866 0.1304 0.1231 0.0522
(-1%) (0%) (0%) (5%)

Table 3.5: F-scores on role detection on real-world networks with two sets of influence-
induced ground truth labels, and the value in brackets is the percentage of improve-
ment from RolX.
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ρ = 0.01 ρ = 0.05 ρ = 0.10

RC-Joint 0.7189 0.5531 0.3735
(35%) (75%) (34%)

RC-Joint w/ sparse init. 0.7275 0.5132 0.3689
(37%) (62%) (33%)

RolX 0.5314 0.3168 0.2782

GLRD Alternative 0.4877 0.3182 0.2822
(-8%) (0%) (1%)

GLRD Sparsity 0.5044 0.3186 0.2808
(-5%) (1%) (1%)

GLRD Diversity 0.5061 0.3270 0.2787
(-5%) (3%) (0%)

Table 3.6: F-scores on role detection on synthetic networks with different amount of
noise edges, and the value in brackets is the percentage of improvement from RolX.

It can be seen that RC-Joint obtains results of higher quality than both RolX

and GLRD, uniformly. Initialization using sparse network also performs well. F-

scores of GLRD fall between those of RC-Joint and RolX, demonstrating the power

of providing community information to guide role detection, and the downside of

treating community information as static input.

3.4.3 Effects of Initializing with Sparse Networks

Local Ranking

Previously in Section 3.3.1, we discuss the possibility of seeding RC-Joint with

results from a preliminary run on a sparse version of the network. Moreover, we have

already seen the quality improvement this technique can provide in Sections 3.4.1

and 3.4.2. Those sparse networks are produced by local rank sparsification, where

each node of degree d keeps
⌈√

d
⌉
incident edges with the highest Jaccard similarity

of adjacency lists.
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In this section, we report the impact on RC-Joint’s time consumption by this

technique. Figure 3.1 shows the amount of time it takes to run RC-Joint (with and

without sparse network initialization) as well as BigClam. Implementations of both

RC-Joint and BigClam are in C/C++, using OpenMP with 8 threads. Experiments

are run on a desktop with an Intel i7 quad-core processor and 16GB of RAM.

RC−Joint
RC−Joint with sparse network initialization
BigClam
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Figure 3.1: Comparison of time consumption (OpenMP with 8 threads). For RC-Joint
with sparse network initialization, the running time include both runs.

As the plot suggests, using initialization from results of the sparse network always

leads to lower total running time (both runs combined), as anticipated in Section 3.3.1.

In the cases of Facebook, Twitter, Google Plus and YouTube, it is also faster than

BigClam. This could be because proper initialization lets RC-Joint start at a state

closer to convergence.

It is worth pointing out again that using sparse network initialization enables us

to operate on even larger networks when RC-Joint itself or other methods becomes

too slow. For example, experiments on the LiveJournal network do not finish in two
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days with either RC-Joint or BigClam. However, by first processing on the sparse

version of it and then initializing another run with those results, RC-Joint manages

to finish the computation in 25 hours.

Benefits of Sparsification

One may ask if the benefits of edge sparsification to RC-Joint can be precisely

quantified with respect to efficiency and quality. To evaluate, we consider Twit-

ter, Google Plus, two networks in our study. Similar results are observed for other

networks in our study. Edge retention probability values are set up so that both

strategies retain roughly the same number of edges in each network. Table 3.7 sum-

marizes the amount of time each edge sparsification strategy takes for two runs, as

well as the quality of results. F-score of the first run is from the results of RC-Joint

on the sparse network itself, and F-score of the second run is from the results of

RC-Joint on the original network. We also calculate the percentage of time saved

and F-score increased compared with the default RC-Joint, and report those values

in corresponding brackets.

Not all edge sparsification strategies are equal in terms of efficiency and quality.

Edge ranking leveraging similarity information and local sparsification is more effi-

cient than random sparsification, and the results have higher F-scores. Intuitively,

local ranking is effective in capturing the skeleton of the network and enables faster

convergence. In terms of quality of communities and roles, results from the local edge

ranking sparsification procedure is also significantly better than random sparsifica-

tion.

We note that numbers of RC-Joint iterations in the second run of local ranking

for Twitter and Google Plus are 55 and 66, respectively (not shown in the table).
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In contrast, RC-Joint with default initialization takes 64 on Twitter and 100 on

Google Plus. The reduction in number of iterations is consistent with the speedup

in running time. Therefore, the first run on the sparse network helps to find a better

initialization, decrease the number of iterations required, and therefore reduce the

total running time.

3.5 Discussion

Across the board, RC-Joint achieves higher quality than baseline methods which

identify only communities or roles. Existing single-tasked community (role) detection

algorithms suffer from not exploiting the latest knowledge on roles (communities),

accounting for lower performance. For all experiments, we have reported absolute

F-score values as well as relative improvements over baseline methods. We note that,

in general, the problem we tackle is quite challenging (the absolute F-score values

are not very high, also observed in other contemporary studies [148]). This reflects

the inherent difficulty of community and role detection as well as room for future

improvement.

Different initialization schemes also impact the efficiency and performance of RC-

Joint, and we investigate the potential of edge sparsification techniques in the context

of creating good seeds of communities and roles. We find that edge sparsification

based on structural similarity is more effective than selecting edges by random, and

local edge sparsification yields the most speedup and performance gain.

The RC-Joint approach we describe offers a marked departure from most existing

algorithms. In terms of community discovery, BigClam [148] is somewhat related

in that the relationship between community affiliation scores and the edge set has
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a similar formulation. However, BigClam only optimizes likelihood of the network

without any constraint, and RC-Joint differs from it by being able to adjust the com-

munity assignment to accommodate the latest role assignment after each iteration.

This difference we believe accounts for RC-Joint’s qualitative improvements over Big-

Clam. With respect to role discovery, RC-Joint also bears important difference from

existing NMF-based role detection algorithms, such as RolX [64] and GLRD [50], as

it uses soft k-means to identify roles, and it considers guidance from the community

structure. The guidance is non-parametric and does not require extrinsic input from

the domain. Essentially, in RC-Joint, roles are treated as the external knowledge

to guide community detection, and such external knowledge is dynamically updated

after each iteration.

3.6 Conclusion

We propose RC-Joint, a principled algorithm to mine communities and struc-

tural roles from networks simultaneously. RC-Joint operates on the observation that

community and role assignments are complement to each other, and utilizing infor-

mation from one component can benefit the discovery process of another. During

each iteration, RC-Joint updates communities and roles alternately by improving the

network likelihood and soft k-means objective function, respectively. The end result

is an algorithm that is capable of identifying overlapping community and role assign-

ments simultaneously. Empirical evaluations of RC-Joint and other state-of-the-art

single-tasked mining algorithms on real-world as well as synthetic networks show that

RC-Joint indeed produces communities and roles that have higher quality with regard

to the gold standard. Furthermore, we find that algorithm speedup as well as quality
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improvement can be achieved by running RC-Joint on a sparse version of the network

and using its results to initialize another run on the original network.

In order to extend RC-Joint, there are multiple fronts to explore. It is promising

to investigate networks from a multilevel perspective, i.e. a community of nodes be-

ing viewed as a super node, whose role and community membership in the resultant

collapsed network is in turn highly intriguing. The multilevel approach also allows

one to efficiently identify communities and (potentially) roles in a crude network, and

to then project them back to the original network, as successfully exploited previ-

ously [71, 37, 120]. It will also be beneficial to extend RC-Joint to directed, weighted

and/or signed networks, because some real-world networks have those properties. A

third direction is to explore other community-induced node features to be used in up-

dating role affiliation scores. Finally, implementations of RC-Joint using other more

sophisticated parallel computing paradigms need to be investigated to realize even

more speedup.
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Chapter 4: Predicting User Engagement with Structural,

Content, Profile, and Behavioral Features

In this chapter, we discuss the problem of predicting the engagement of OSN users

in event-oriented discussion, where user engagement is defined as a user’s writing or

sharing messages about the specific topic related to the event. The accurate prediction

of user engagement enables one to reason the event’s future development, and it has a

multitude of potential applications. A first example is movie studio’s strategy making

on spreading the message of a movie’s release in social media. If they can identify

prominent factors affecting user engagement, those factors can be emphasized accord-

ingly to maximize the word-of-mouth effect. In another use case, during an event of

crisis, emergency teams are looking forward to help the victims. User engagement

analysis could help us understand how effectively the community surrounding this

event can grow to reach potential donors and people in need of resources (food, wa-

ter, first aids etc.), also what are the best possible ways to communicate between

these resource providers and people in need for resources.

The study of user engagement is by no means simple, as there is a three-dimensional

dynamic at play: social network structure, user-generated content, participant be-

havior. Historical information of user engagement is also part of the knowledge one

could exploit. Given a discussion topic on social media, what motivates a user to
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engage in the discussion? Can we predict whether and when the engagement will

happen, and, if so, how strong the engagement will be? Here, a topic is formalized as

a real-world event, discussions are thus surrounding this event, and all participants

compose a community (which will be formally defined as an event-oriented community

in section 4.1.2). For example, during Japan Earthquake 2011, an event of natural

disaster, people tweeting about “Japan Earthquake” would be considered to be part

of the Japan Earthquake topic discussion community. The task of finding factors

which drive user to engage in topic discussion, therefore, can also be considered as

identifying factors that influence user to join the corresponding community.

We use Twitter as a social information source and manage to build a prediction

model for user engagement in topic discussion about events. Compared with pre-

vious work which resort to small subsets of features, and isolated study of factors

with different characteristics, we investigate a range of features in four categories

(content, author, network, and past activity) to study the factors responsible for user

engagement on social media.

4.1 Problem Statement

4.1.1 Terminology Definition

As described in introduction, user engagement in a topic discussion can be under-

stood in terms of user participation in community formed around topic of discussion.

We define some terminologies used in the context here and then give our problem

statement:

• Event-Oriented Community: We define an event-oriented community as

an implicit group of social network users who have joined discussion on topic
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about an event, or more precisely who have posted messages about the topic.

In different online social networks, posts may appear in different forms (e.g.

status, share and comment for Facebook or tweet and retweet for Twitter). A

social network user is considered to become engaged in the topic discussion and

hence, a member of the event-oriented community if he writes or forwards the

event-related post. For instance, all the twitterers who are posting about Emmy

Awards and thus joining topic of discussion during Aug 10 to Sept 20, 2010 are

regarded as members of Emmy Awards community.

• Slice and Snapshot: A slice refers to the collection of event-related messages

(tweets) or in other words, messages relevant to topic of discussion, posted dur-

ing a fixed-length period of time (e.g. 24 hours). A snapshot refers to state

of the network at a certain point of time at which user profile and connection

information are stored. In the current context, we take the snapshots for the

network of users who are members of the community formed around topic of

discussion.

Depending on the inherent characteristics of event, we set two different slice

lengths (one day and eight hours, respectively) in order to capture the dynamics

of community more promptly, since some event-oriented topics of discussion

draw a quick attention of users, which in turn engages huge number of users.

More detailed discussion is available in section 4.2.2.

• Temporal Weight of Information: While the total size of community sur-

rounding topic of discussion keeps increasing as it evolves, the freshness of it
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should also be taken into account when we study users’ behavior. Most online

social networks’ layout designs show the latest information first, and users have

to scroll down to see earlier news feed. Therefore, it is natural to assume that

later the information is generated, the higher possibility it get consumed [145]

and the higher weight it carries on influencing user decision about engaging in

topic discussion.

To leverage this observation, we set a hard margin of 3 slice units and only

consider information tweets within this time window as we believe they are

most likely to be viewed. Users who wrote or shared event-related messages

during this period are called active users, and we would like to focus on how

they joined the event-oriented communities, forming the active community, and

how their followers (i.e. audience) will react in accordance. For each active user

and the content he/she generated, a temporal weight is leveraged based on the

time that has elapsed since its creation.

Figure 4.1 illustrates the notions of slice, snapshot and active community, to

provide the readers a clearer conception.

4.1.2 Problem Definition

Using the terminologies introduced so far, the problem of finding factors impacting

user engagement can be defined as user engagement prediction problem for joining a

topic of discussion:

Definition 1. User Engagement Prediction Problem: Given 1) an event-

oriented community C formed around a topic of discussion; 2) a Twitter user U /∈
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Figure 4.1: Illustration of slice, snapshot and active community

C, predict whether U will be engaged in C (by composing a new tweet or retweeting an

existing tweet which contains keywords or hashtags related to C’s underlying event)

in a future slice. If so, U is said to be a positive record. Otherwise, it is a negative

record.

Although there has been literature studying user engagements in OSNs [128, 108,

76, 26], engagement is often defined as the sharing of existing information, excluding

the spontaneous creation of relevant information. Among the few that tackle a prob-

lem that is more similar to ours [147, 90], the focus is often on the aggregated level,

instead of at individual users. Our work, therefore, presents novel contribution to a

more comprehensive understanding of how OSN users engage in online discussions.

4.2 Methods

This section introduces methodologies involved in building the prediction model.

Particularly, a detailed discussion about the groups of features used to build the model

85



in order to solve the user engagement prediction problem, as defined in section 4.1.2,

is provided.

4.2.1 Twitter as a Data Source

Launched in 2006, Twitter has been well-known both as a micro-blogging service

provider and a social network platform. A message posted by the user is called a tweet,

which typically contains plain texts, hashtags (e.g. #nsn3d, #MusicMonday) that

indicate explicit topic categorization, and hyperlinks to other multi-media content

that promote the spread of information from all over the Web. The length of each

tweet is limited to 140 characters.

Users of Twitter have directed follower connections with other users of the site

that allows them to keep track or follow those other users. Members can post tweets,

respond to a tweet which is called reply, or forward a tweet to all followers which is

called retweet. Replies to any tweet are directed to a user (not the conversation thread)

by placing a @user reference in the tweet while retweets are means of participating in

a diffuse conversation. The @user reference can also be used to refer to a particular

user in the tweet content, which is called a mention of that user. Tweets are generally

available as feeds from follower networks and also via a searchable interface. Apart

from the 140-character text itself, time-stamp and location information are all publicly

retrievable unless privacy control is turned on by the user. We store most of this data

to construct features.

To investigate the users’ behavior after perceiving activities of the community, it is

infeasible to randomly pick users from millions of Twitter accounts since it is unclear

if they are aware of the event at all. Instead, all active users and the users who follow
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at least one active user at that snapshot are considered. There are two indications

here. Firstly, most users are guaranteed to have access to the event information

from the topic related tweets posted or retweeted by their online friends. Therefore,

sophisticated social network features can be used to analyze information propagation

in networks. Secondly, a user may be inactive for several snapshots before joining the

community, resulting in many negative records and one positive record. The collection

of all records and the edges joining them forms an active network.

4.2.2 Community Categorization by Event Characteristics

Popular events on social networks belong to diverse domains and differ in char-

acteristics and behavior. Some events like FIFA World Cup drive attention of global

populace, while Health Care debate events are of national interest, and few other

events similar to Iowa State Fair are attractive to a relatively small region. An-

other categorization is based on the event occurrence and duration. FIFA World Cup

event is scheduled long time in advance while events such as Earthquake in Haiti has

sudden occurrence. Apparently the characteristics of an event-oriented community

largely depends on the triggering event, and it is intriguing to explore the relation of

user participation behavior with communities’ nature. We expect a variety of com-

munity gathering around events and one characteristic from each of the following

categorizations is assigned to each event-oriented community (see section 4.3.1 for

details):

• Global vs. Local: Depending upon the interest level, an event can be global

(such as Emmy Awards) or local (such as Iowa State Fair). Local communities

can further be distinguished by national interest (for example, fans of NFL
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championship in US) and regional interest (For example, Ohio State Fair in

Ohio), though it is not explicitly specified in the present work.

• Compact vs. Loose: Events may interest varying audiences within which the

level of existing interaction among users changes significantly. For example, two

fans mentioning the release of a new movie may not have talked to each other

previously at all, thus the community formed around this topic is very loose.

Meanwhile, interested authors for a technical conference topic like LinuxCon

are highly likely to have interacted with each other before, and therefore belong

to a relatively compact community.

• Deterministic vs. Unexpected: A few events are known to us beforehand

while others have sudden occurrence. Therefore, the corresponding communities

are deterministic and unexpected, respectively.

• Transient vs. Lasting: Different events create different level of buzz in the

community and so the community might be either transient or lasting. As an

example of transient community, there was hardly anyone talking about the

hostage incident in Discovery Channel Building in Seattle three days after it

since the crisis was resolved within hours. Meanwhile, discussion of the movie

Avatar lasted for months. For the transient communities, a unit length of eight

hours for time slice is used to capture fast-changing trends better. For the

lasting communities, we use one day as the unit length for time slice.
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4.2.3 Feature Categorization

Previous works have employed a wide range of features, which generally fall into

three categories: community, author and content. Those works, however, seldom

incorporated multiple groups of knowledge into a single model. We organize these

features in one integrated framework, and investigate which ones contribute most to

the predictability. Apart from that, we also introduce novel features into the system,

which is another contribution. The three groups of features for each U are described

as follows.

Community Features

Community features involve several measurements of the event-oriented commu-

nity including the size of the active community, the total number of active users that

U is following, the size of the weakly connected component (WCC) in the active

network that U belongs to, and the ratio of this WCC’s size to the active network’s

size.

Author Features

Author features involve statistics about the active users that U is following, as

they are the main source of U ’s awareness and knowledge of the topic. We would like

to discover if those users’ social network states have any influence on U ’s participation

behavior. We consider the counts of followers, followees as the features since they

implicitly reflect authors’ influences.

The influence and passivity scores proposed by Romero et al. [114] can also be

meaningful author features. However, the original Influence-Passivity algorithm re-

quires the appearance of hyperlinks in each tweet, which may not fit well in the
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current scenario. As an alternative, a composite score called Klout18 takes most of

those measures into account and is publicly available. Therefore, each author’s Klout

score is included in author features.

Moreover, not all users are equally active. As described in section 4.1.1, temporal

weight is applied to author features, therefore the values are weighted w.r.t. the

elapsed time since his last activity in the community (i.e. writing or sharing a tweet

related to the topic).

Content Features

Content analysis in the context of social network is more than pure language

analysis as information is conveyed in a variety of formats. As a result, number of

occurrences of platform-specific features for Twitter (retweet, mention, hashtag) as

well as relevant keywords are kept track of.

Hyperlinks in tweets also play an important role in the process of information

diffusion, as the content of external pages that is referred to can build better context

for the topic of discussion and may motivate U . In our practice, each tweet can

either have a relevant link, an irrelevant link or no link. To determine whether a

link is relevant, we rely on searching for event keywords in the web page that the link

points to. If there is a match, the link is considered relevant; otherwise it is irrelevant.

The count of hyperlinks in each tweet is therefore adjusted to 1, -1 and 0 for the three

cases, respectively.

We also compute the extent of subjectivity of those tweets as part of the con-

tent features. The reason is that we can study if there is any preference of objective,

18http://klout.com
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fact-sharing messages to subjective, emotional messages in terms of information prop-

agation and thus attracting user to the community. As measuring subjectivity is a

non-trivial task in the study of natural language processing [103], a simple heuristic

is designed, focusing on two groups of explicit features. The key components used

towards the score calculation are the subjectivity of (word, part-of-speech tag) pairs

and that of emoticons found in the tweet. For the former, we start by feeding tweets

into a part-of-speech tagger [132], keep all content words (noun, verb, adjective or

adverb) and then classify those word-tag pairs using a pre-compiled subjectivity lex-

icon [143]. Entries in the lexicon are labeled as either strongly subjective or weakly

subjective, and we assign 2 points to each strongly subjective pair, 1 point to each

weakly subjective pair and 0 point otherwise. For the latter component, we compiled

a lexicon19 which holds more than 130 commonly-used emoticons. The scoring scheme

for emoticon is the same as that for word-tag pair. The final subjectivity score for a

tweet m is computed as the average of those segments’ scores:

Sscore(m) =

∑
(w,t)∈WT (m)

subjpair(w, t) +
∑

e∈EMOT (m)

subjemot(e)

|WT (m)|+ |EMOT (m)|
, (4.1)

where WT (m) is the list of word-tag pairs in m, and EMOT (m) is the list of emoti-

cons in m.

Content analysis is further enriched by linguistic cues in text, which are ex-

tracted from analysis through Linguistic Inquiry and Word Count (LIWC)20 dictio-

nary. LIWC provides statistics of words grouped by grammatical (e.g. preposition)

19http://www.cs.umbc.edu/courses/331/spring10/2/hw/hw7/hw7/data/sentislang.txt
http://en.wikipedia.org/wiki/List_of_emoticons

20http://www.liwc.net
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or semantic (e.g. words that describe an occupation) components. We apply Principle

Component Analysis (PCA)21 to find out top 3 features in the LIWC analysis results,

which are included as content features.

Moreover, as described in section 4.1.1, temporal weight is applied to content

features. Here content features are computed for content posted by active friends of

U .

4.2.4 Model Fitting

As there are two possible outcomes of user participation behavior and all the

aforementioned features take real values, we treat the User Engagement in Topic

Discussion Problem as a binary classification problem operated on feature vectors

of the following format.

• Label: Fact of whether the user joining the community or not. The value for

is binary variable can be either positive or negative, and it serves as the class

label.

• Community Features:

– wccSize: Size of the WCC which the user belongs to in the active network.

– wccPercent : Ratio of the WCC’s size to that of the whole active network.

– connectivity : Number of active friends (i.e. followees) in the active com-

munity.

– communitySize: Size of the active community.

• Author Features:
21Modified from http://www.neuroshare.org
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– logFollower : Logarithm of the weighted geometric mean of active friends’

counts of followers.

– logFollowee: Logarithm of the weighted geometric mean of active friends’

counts of followees.

– klout : Weighted means of active friends’ Klout scores.

• Content Features:

– url, retweet, mention, hashtag, keyword : Weighted means of the counts

of relevancy-adjusted url, retweet, mention, hashtag, keyword in all active

friends’ tweets.

– sentiment subjectivity : Weighted mean of sentiment subjectivity score.

– pca1, pca2, pca3 : Weighted means of the top 3 PCA features on LIWC

results applied to all active friends’ tweets.

The temporal weight vector is set as (1, 0.8, 0.6). That is, assuming the current

slice of consideration is slice k, the temporal weight for each tweet is 1, 0.8, or 0.6 if

it was written in slice k, k− 1 or k− 2, respectively. Any tweets written earlier than

two slices ago are no longer considered active.

Algorithm 5 describes the pseudo-code for generating all records for the classifi-

cation problem.
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Algorithm 5 Classification feature record generation
Require: Dataset D
1: timeWgt← (1.0, 0.8, 0.6) {Temporal weight}
2: winLen← 3 {Active window length}
3: for all Slice S ∈ D do
4: for all Author A ∈ S do
5: activeCommunity[S.id]← activeCommunity[S.id] ∪ {A}
6: end for
7: for all I = 1 to min(winLen− 1, S.id) do
8: activeCommunity[S.id − I] ← activeCommunity[S.id − I] ∪

activeCommunity[S.id]
9: end for
10: end for
11: for all Slice S ∈ D do
12: for all Author A ∈ S do
13: for all I = 0 to min(winLen− 1, D.size− S.id− 1) do
14: activeNetwork[S.id+ I]← activeNetwork[S.id+ I]∪{A}∪A.followers
15: for all User F ∈ A.followers do
16: F.activeFriends[S.id+ I]← F.activeFriends[S.id+ I] ∪ {A}
17: for all Tweet T ∈ A.tweets[S.id] do
18: F.partialRecords[S.id + I] ← F.partialRecords[S.id + I] ∪

{timeWgt[I]× (A.features[S.id], T.features)}
19: end for
20: end for
21: end for
22: end for
23: for all User U ∈ activeNetwork[S.id] do
24: print U.id
25: if U ∈ activeCommunity[S.id] then
26: print “Positive”
27: else
28: print “Negative”
29: end if
30: print activeNetwork[S.id].wccSize[U ]
31: print activeCommunity[S.id].size
32: print U.activeFriends[S.id].size
33: print avg(U.partialRecords[S.id])
34: end for
35: end for
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4.3 Experiments

4.3.1 Data Collection

Tweet stream for topics was crawled with Twitter’s Search API22 using an initial

seed of manually compiled keywords and hashtags relevant to the event. For a keyword

k, we crawl all tweets that mention k, K, #k and #K. The seed list of keywords

and hashtags is kept up-to-date by first automatically collecting other hashtags and

keywords that frequently appear in the crawled tweets and then manually selecting

highly unambiguous hashtags and keywords from this list. We avoid the query drift

problem by placing a human in the loop to ensure that ambiguous keywords are

not crawled outside of context but only in combination with a contextually relevant

keyword.

Data crawl was performed at fixed time intervals, here every 30 seconds. For every

issued query, the Twitter search API responds with 1500 tweets. Crawling at regular

and frequent intervals allows us to make an assumption that the data collected is a

close approximation of the actual population of the tweets generated for the event in

that time period. We also crawl the social graph (i.e. follower list) of these tweet

posters, who are part of this event-oriented community at specific timestamps of the

day. Duration for the time gap between subsequent snapshots of the network for

different communities depend on the type of event. We also collect tweet posters’

profile information like location, followers and followees counts, description about the

tweet poster, etc. For those users who activated privacy setting, no information was

crawled, and their tweets are discarded from the slice.

22https://dev.twitter.com/rest/public/search
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A total of 14 events are considered, and information of these communities are

crawled. They were popular topics (i.e. buzz words) at the period of crawling23,

showing steady growth in number of related tweets in the real-time search result.

Furthermore, they are all social events with impacts beyond the online world. For

most of predefined events the crawl was started in advance and extended after the

event duration. The following list introduces each event and its categorization as de-

fined in section 4.2.2. Due to the space constraint, only a summarization is provided.

• ClevelandShowPremiere: Second Season premiere of animated TV series

Cleveland Show. September 26. Global, loose, deterministic, transient.

• DiscoveryBuildingCrisis: Hostage crisis at the headquarters of Discovery

Channel, Maryland. September 1. Local, loose, unexpected, transient.

• EmmyAwards: 62nd Prime-time Emmy Awards. August 29. Global, loose,

deterministic, lasting.

• GoogleInstantSearch: Launch of Google Instant in United States. September

8. Global, loose, unexpected, transient.

• HeismanTrophy: Reggie Bush’s announcement to forfeit 2005 Heisman Tro-

phy. September 14. Local, compact, unexpected, lasting.

• IowaStateFair: Iowa State Fair. August 12-22. Local, loose, deterministic,

lasting.

• JewishNewYear: Jewish New Year 5771. September 8-10. Global, compact,

deterministic, transient.

23August and September, 2010
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• LindsayLohanHearing: Lindsay Lohan’s hearing on probation revocation and

verdict. September 24. Local, loose, deterministic, transient.

• LinuxCon: Annual convention organized by Linux Foundation. August 10-12.

Global, compact, deterministic, lasting.

• LondonTubeStrike: London tube strike. September 6. Local, loose, deter-

ministic, transient.

• RichCroninDeath: Death of singer and songwriter Rich Cronin. September

8. Local, loose, unexpected, transient.

• ScottPilgrimRelease: Release of movie Scott Pilgrim vs. the World. Aug 13.

Global, loose, deterministic, lasting.

• SESSanFrancisco: Search Engine Strategies 2010 at San Francisco. August

16-20. Global, compact, deterministic, lasting.

• StuxnetWorm: Confirmation of Stuxnet worm attack on Iranian nuclear pro-

gram. September 24. Global, loose, unexpected, lasting.

Macro-level Summaries

Table 4.1 summarizes various statistics for all events. #tweet is the total count

of tweets crawled. Following number of unique authors are the percentage of tweets

having relevant url, mention, retweet and emoticon, respectively. Average subjectivity

score is also reported here. The last two columns records the average size of active

community over each slice and the average connectivity over each record.
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4.3.2 Feature Vector Processing

First, all records are generated as described in Algorithm 5. Then, values of the

six non-PCA content features are standardized using z-score.

We randomly sample 70% of the records for training and the rest for testing. As

most information recipients did not join the community eventually, we experienced

huge imbalance in terms of class labels: there are way more negative records than

positive ones. To eliminate the impact of imbalanced dataset on training process,

SMOTE [23] with over-sampling ratio 400% is applied to positive records in the

training set. After that, random under-sampling on negative records is performed

for both training and testing sets to make the class distribution balanced. Finally,

all numerical values are scaled to the range (-1,1), and the records are ready for

evaluation. This setting is applied to dataset of each event-oriented community with

an exception that the over-sampling ratio for event ScottPilgrimRelease is changed to

100% for the purpose of computational efficiency.

4.3.3 Evaluation Settings

We run the experiments to analyze the role played by the various features and

how they help us to predict whether a user will engage in the topic discussion. We

use LibSVM [21] to build SVM classifiers (Gaussian RBF kernel with γ = 8 and

cost c = 32) based on the following feature subsets to see how they perform on the

prediction task. For each feature subset, the experiment is repeated five times and

average accuracy rate is computed. We run the following experiment groups:

• allFeatures (All): contains all three feature groups.

• onlyContent (Con.): contains only content feature.
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Events All Con. Aut. Com.
DiscoveryBuildingCrisis 77.86 75.95 71.31 69.65 U L
GoogleInstantSearch 76.25 74.92 72.23 52.60 U L
RichCroninDeath 90.68 90.96 90.36 68.47 U L
StuxnetWorm 76.05 76.46 72.05 57.51 U L
HeismanTrophy 76.88 75.28 69.94 61.85 U C
ClevelandShowPremiere 86.11 85.77 85.65 67.36 D L
EmmyAwards 77.00 77.39 70.93 56.23 D L
IowaStateFair 83.34 84.25 81.62 70.09 D L
LindsayLohanHearing 80.09 79.30 77.22 52.57 D L
LondonTubeStrike 82.40 82.96 80.07 56.22 D L
ScottPilgrimRelease 78.16 77.86 75.32 59.81 D L
JewishNewYear 75.15 74.14 69.16 55.63 D C
LinuxCon 80.77 82.17 76.97 71.97 D C
SESSanFrancisco 75.50 76.40 71.69 58.34 D C

Table 4.2: Summary of prediction accuracy (%)

• onlyAuthor (Aut.): contains only author feature.

• onlyCommunity (Com.): contains only community feature.

4.3.4 Evaluation Results

Table 4.2 demonstrates the accuracy achieved by SVMs on different topics and

feature sets. For each event, the highest accuracy score is in bold. Moreover, any

classifier which is considered equivalently good as the highest-scoring classifier by the

sign test is also in bold. We calculate the statistical significance of the improvement

by performing paired binomial sign test on two classifiers. The smaller the p-value,

the stronger evidence it is that one classifier has performance improvement over an-

other. The p-value threshold is 0.05. Characters in the last two columns stand for

U(nexpected), D(eterministic), L(oose) and C(ompact).
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Our observations on experiments are listed here:

1) We observe performance of onlyCommunity classifiers being worst. A possible

explanation for that is the latent nature of network features, which makes them

difficult to be perceived by a user directly and thus have lesser effect on user

engagement.

2) The onlyContent classifiers give the best performance over other single group fea-

tures, especially compared to onlyCommunity classifiers. One reason for content

being the dominant feature for predicting participation in a discussion is the fact

that some users end up participating in a discussion based on observing the in-

formation from the public timeline, and therefore, these ad-hoc users are hard to

observe via network analysis only. Moreover, content is engaging by its quality

and nature (information sharing or call for an action or crowd sourcing). For

example, link to an image or video (an evidential content) about Reggie Bush’s

surrender of Heisman Trophy in September, 2010 is likely to provoke lot more

thoughts in a user’s mind to engage in the discussion.

3) We observe comparable performance of onlyAuthor classifiers as onlyContent clas-

sifiers do for some of the topics. Here potential reason for this observation is the

effective presence of influential people in the discussion group. Hence, insufficiency

in content features, reflected by low average connectivity, can be compensated by

author features (e.g., Rich Cronin Death).

4) Using robust statistical significance testing method, we observe for 12 out of

14 topics, allFeatures classifiers have better or equivalent performance over any

single feature group classifier. In some cases (e.g. Discovery Building Crisis, a
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very evolving topic discussion group), the advantage is dominant, where degree

of randomness in individual dimensions can be really high. Therefore, it suggest

usefulness of allFeatures classifiers here.

5) We find no significant correlation between user engagement to topics and the

selection of feature groups, whether the event type is lasting or transient. On

the other hand, the advantage of allFeatures classifiers over other factor groups is

generally stronger on the unexpected topics than the deterministic ones. Moreover,

it is discovered that the performance of onlyAuthor is relatively better, explained

by a closer gap to the best classifier, for loose events than for compact events.

4.4 Extension for Volume Prediction

In this section, we discuss our extension of user engagement prediction to predict-

ing the amount/volume of engagements. Instead of the question whether a user will

write tweets or not in the given time frame which has a coarse granularity, we aim

at answering the question how many tweets will a user write which presumably can

provide a more precise estimate of social network dynamics. Here, we focus on two

tasks: predicting the microscopic (individual) and macroscopic (collective) volume of

topical tweets that Twitter users will generate within a time frame.

Most features used in the classification task are considered here, with changes as

described below.

• Community Features: Total tweet volume of user’s active friends is added as

a natural extension to connectivity (i.e. the number of active friends). We

also include the number of interactions (mentions and retweets), as interactions

shall reflect much stronger ties than ordinary follower-followee relationships.
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Topic Period # Tweets # Unique Authors
IAC 11/06 - 12/02 93,525 19,705
JSS 11/06 - 11/30 251,316 152,174
OWS 11/06 - 12/02 2,042,653 320,415

Table 4.3: Datasets statistics

Moreover, a subset of highly-engaged users (users whose tweet volumes are

within the top 3% percentile of all users in the active network) is identified, and

the count of highly-engaged friends is listed as a separate feature.

• Content Features: Besides adjusting the count of URLs by their relevancy to the

event, we also count the number of hyperlinks that point to multimedia contents.

This is based on heuristics that multimedia materials may have stronger effect

on user engagement, compared with text alone.

• Past Activity: We include the knowledge of users’ historical tweet volume in

order to capture users’ inertia of engaging in the event-oriented discussion more.

Past activity will be referred to as “past”, for the expository purpose.

Tweet streams based on three events that were frequently discussed in late 2011

are crawled: India’s anti-corruption movement (IAC ), the abuse scandal of former

Penn State football coach Jerry Sandusky (JSS ), and Occupy Wall Street movement

(OWS ). Table 4.3 lists basic information of the three datasets.

For each event, we build regression models using feature vectors for each user,

where each feature is a regressor, and the tweet volume of the user is the regressand.

Compared with other tools, linear regression has multiple advantages including higher

efficiency, low storage overhead and statistical interpretability on model coefficients.
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As it is impossible to evaluate the exponential number of all feature combinations,

we study each feature group (content, community, author, pass activity) as a unit.

One common measure of the regression model’s power is adjusted R2 value (R2
a). For

a regression model with n records and p regressors (i.e. features), it is defined as

R2
a = 1− (

n− 1

n− p
)
SSE

SSTO
, (4.2)

where SSTO and SSE are sum of squares of regressands and residuals, respec-

tively [77]. Higher R2
a value indicates that a larger proportion of total sum of squares

is explained, thus a higher explanatory power of the model.

4.4.1 Individual Volume Prediction

We first tested the prediction of individual users’ relevant tweet volume. Two

days of past information (i.e. h = 2) are used for model building, and R2
a values are

computed over the period. Figure 4.2 shows the results of five models using different

selections of features. The name of each model indicates which feature groups it

uses. As observed from the plot, higher R2
a values are obtained when extra features

are added on top of past activity. Another finding is that author features introduce

additional explaining power beyond network features and content features. Although

there is no guarantee of causality, it may suggest that the motivation behind users’

involvement in topical discussion is attributed more to the general influence of friends

than the specific content.

R2
a value could be inflated are the number of regressors increases. To address

this concern, we further performed partial F-tests on the full model against a simple

strawman that uses past activity alone. The null hypothesis H0 is that all additional
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Figure 4.2: R2
a on microscopic prediction with different feature groups, two days of

past activity

Topic maxP (f ≥ F ∗ | H0) Full vs. Strawman
IAC 2.094323× 10−3

JSS 1.142266× 10−10

OWS 9.977034× 10−156

Table 4.4: Partial F-tests results

features’ coefficients are zero, and a statistic F ∗ will follow an F distribution if H0

holds [77]. As shown in Table 4.4, for all topics the conditional probability P (f ≥ F ∗ |

H0) never exceeds 10−2 on any single day’s data. Therefore, we rejectH0 and conclude

that the additional explaining power from extra features is statistically significant.

For the JSS dataset we note that the overall user-level (microscopic) prediction

accuracies are low. We should point out that on this dataset the average number of

tweets per user is under 2. Thus, there is by and large insufficient information on most

105



 0

 0.2

 0.4

 0.6

 0.8

 1

IAC JSS OWS 

A
d
ju

s
te

d
 R

2

Topic

Past + Con. + Aut. + Com., h = 1
Past + Con. + Aut. + Com., h = 2
Past + Con. + Aut. + Com., h = 3
Past + Con. + Aut. + Com., h = 4
Past + Con. + Aut. + Com., h = 5

Figure 4.3: R2
a on microscopic prediction with varying past activity length (h)

users to predict how much they will tweet on this topic. However, it is interesting to

note that if we look at a subset of the users that tweet more frequently (> 5 tweets on

this topic, results not shown) and also when one aims at predicting the output of the

collection of users in its entirety, the accuracy increases significantly (see Figure 4.4

and the discussion below).

To investigate the impact of past information amount on model performance, we

ran another set of experiments where the number of days of past activity available

(parameter h) was varied from 1 to 5. Figure 4.3 shows the result. The first obser-

vation is that the more past information is available, the higher R2
a values. A second

observation is that improvement from additional past information is often diminish-

ing, suggesting that recent information has larger influence than older. Such a finding

is consistent with those from previous works.
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4.4.2 Collective Volume Prediction

Finally, we present the results on predicting the behavior of users en masse. For a

day of prediction, we use the coefficients learned from previous day’s regression model

to fit the newly observed feature vectors on that day. Then we compute the accuracy

value as

Accuracy = 1−
|
∑

U∈D [v̂ol(U )− vol(U )]|
max(

∑
U∈D v̂ol(U ),

∑
U∈D vol(U ))

, (4.3)

where D is the set of candidate users, and vol(U ), v̂ol(U ) are the actual and esti-

mated tweet volume of user U , respectively.

Figures 4.4 and 4.5 show results with varying models and h values, respectively.

For each topic, the average accuracy over days is reported. Compared with that

on microscopic prediction, the performance of topic JSS has significant improvement.

Again, the trend of diminishing return on the amount of past information is observed.

4.5 Conclusion

In this chapter, we present a systematic investigations into factors impacting user

engagement in topic discussion on social media. We study user engagement as their

participation in event-oriented community and build an effective prediction model to

estimate the engagement decision as well as the volume of event-oriented tweets as

a result of the user engagement. Evaluations on a large number of Twitter event-

oriented communities demonstrate that the capabilities of content, user, network

features and past activity vary greatly, motivating the incorporation of all the factors.

Therefore, a strong need can be felt to study dynamics of user engagement by using
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the integrated framework. Moreover, we find correlations between event types and

features, which can help understand user engagement in better scientific ways.

Future research should take the following points into consideration:

• Experiments on events with more diverse characteristics for better understand-

ing of the relation between event type and user engagement factors. Analysis of

related events can help in understanding how topics around events evolve over

time and shift the characteristics from one event to another.

• Sophisticated semantic analysis on user-generated content to provide content

features. For example, we can resort to external knowledge base like Wikipedia

to build proper context for discussion topic and then assess content quality to

get better insight into impact of content features on user engagement.

• Methods to resolve user profile information’s heterogeneity (e.g. missing or

outdated value, adversarial content) and profile types (news, trustee etc.), and

their use as people features.

• Application of the analysis framework to other OSNs such including Facebook,

LinkedIn, and StackOverflow.

• Expanding the event-oriented model to generic framework to identify users’

engagement in various co-occurring events during that timeline.
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Chapter 5: Understanding Content Divergence in Online

Social Group Discussion

In Chapter 1, we describe the motivation of studying content divergence in the

discussion of online social groups. When characterizing online social group dynam-

ics, most studies [6, 111, 123, 69] only investigate the implications of the network

structure, and they lack the insights of dynamics based on user-generated content. In

this chapter, we take a new perspective on characterizing group dynamics based on

divergence of group discussion topics.

We have also underlined the importance of linking well-established socio-psychological

literature with OSN analytics (Section 1.1). Social scientists have defined the groups

based on various common user characteristics. Here, we define a group as the set of

users interacting in discussions about a real-world event. We refer to group discussion

divergence as collectively diverging behavior in user-generated discussion topics, and

it is quantitatively measured as the Jensen-Shannon divergence among latent topic

distributions of a group’s messages (more details in Section 5.2). Understanding of

such collective behavior in discussions around events can lead to actions of prioritizing

for engagement, such as whom to engage with in communities for specific needs dur-

ing disaster response coordination, and for specific concerns and advocacy in brand

management.

110



In particular, we ask the following questions:

• How does the divergence of user discussion in a group change over time, within

and across different phases of events?

• Do existing theories of social group behavior have implications on the evolution

of group discussions?

• Can we predict the change of group discussion divergence in the future?

Answers to the above questions can aid in understanding which factors contribute

more in facilitating cohesion (lower divergence) in social group discussions. They

also enable us to predict the change of group discussion divergence, which in turn

allows fast identification of groups whose voices are showing less divergent shifts.

Such techniques may be highly valuable in scenarios like natural disaster response,

where a small number of less diverging, focused groups (with resource requests or

information supplies) need to be identified efficiently, so that their input will not be

buried under an overwhelming amount of noise in the social content stream. Moreover,

understanding of these factors will help us decipher behavior of self-organizing online

social groups.

Using Twitter as our experimental platform, we propose a systematic approach

to analyze discussions in online social groups, and understand the pattern of how

discussion divergence changes over time. We discover that the divergence of topics in

user-generated content starts with a low value prior to the event, peaks during the

event, and fades away after the event.

We also formally define structural and user features guided by social cohesion and

social identity, the two socio-psychological theories on group dynamics to be discussed
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in the next section. We represent a group’s structural features related to social

cohesion using network characteristics of its friendship-follower network. User features

related to social identity are modeled via self-presentation in user profiles, capturing

group members’ physical world identities, as well as their online identities. These

features incorporate guidance from the two theoretical approaches, while capturing

users’ social behavior from both physical and online worlds. We study the relation

between group discussion divergence and proposed features via correlation analysis.

We observe that a group’s network density, average length of pair-wise shortest path,

and entropy values of user identities are well-correlated with its discussion divergence.

Finally, we build machine learning models to predict the future increase or decrease

of social groups’ discussion divergence values by using features discussed above. Our

classifiers are able to achieve an AUC of 0.84 and an F-1 score of 0.8, reflecting a

33% improvement from the baseline method. As discussed earlier, this work can help

in various application domains, including identification of emergent concerns during

disasters, and the self-organizing group behavior of discussions.

5.1 Related Work

First, we briefly introduce two theories proposed by socio-psychologists to explain

the dynamics of traditional face-to-face social groups and their behaviors. We envision

that their roles in shaping user engagement in groups [39] will contribute to our

understanding of group discussion divergence. Then we describe related work on

online social group bonding and dynamics.

Socio-Psychological Theories. The social identity theory includes two closely

related parts: social identity [129] and self-categorization [136]. In [129], Tajfel
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defines the concept of social identity as “the individual’s knowledge that he be-

longs to certain social groups together with some emotional and value significance

to him of this group membership”. Therefore, group membership is the result of

“shared self-identification” rather than “cohesive interpersonal relationship”, and

such shared identity leads to cohesiveness and uniformity, among other features [135].

One commonly-cited piece of evidence for the social identity theory is team sports [16],

where teammates are representing the same organization (a school, a club, or a coun-

try) and they are well aware of desire to sustain the reputation of their associated

identity. In contrast, the social cohesion theory views social groups from a different

perspective. Its hypothesis is that the necessary and sufficient condition for individu-

als to work as a group is the cohesive social relationships between individuals.

We adopt the definition by Lott and Lott [88] that interprets cohesiveness as mutual

attraction between individuals, which is slightly different from that used in [45]. In

accordance with this definition, the positive correlation between group cohesion and

performance has been reported in various types of groups [98, 12]. A social cohesion

example will attribute the inter-personal friendship between teammates of a sports

club as the reasoning factor for group performance and its evolution.

User-Group Bonding. One study relevant to our work is by Grabowicz et

al. [55], where authors discussed methods to translate the common identity and com-

mon bond theories for group attachment into general metrics applicable to large social

graphs. They also devised a method to predict whether a group is social (formation

dependent on interpersonal bonds) or topical (formation based on role awareness).

Prior to that, Ren et al. [111] presented a study on the similar direction, focusing

on the implications of the two theories of group attachment and link these theories
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with design decisions for online communities. Our differing objective here is to rather

analyze a group’s discussion having the characteristics of identity and cohesion fea-

tures instead of predicting group type or evaluating community design decisions. In a

similar spirit, Farzan et al. [43] studied group commitment on Facebook within a con-

trolled environment and observed that designs that encourage relationships among

members or emphasize the community as an entity both increase the commitment

and retention of players. Budak and Agrawal [18] utilized data analytics and user

survey to study factors that drive group chats on Twitter, and found that social in-

clusion contributes most to user retention. Our objective here is slightly different,

in that it focuses on the effects of group commitment in discussion divergence in the

communities emerging around real-world events.

Group Dynamics. Most prior work on group dynamics has focused on struc-

tural dynamics. Notably, Backstrom et al. [6] proposed a structure-centric model

for network membership, growth and evolution by analyzing DBLP and LiveJour-

nal social networks. Their findings show how individuals join communities and how

communities grow depending on the underlying network structure, which supports

cohesion-based structural features in our study. Taking a different path of a user-

centric approach, Shi et al. [123] studied the user behavior of joining communities

on online forums. Among other features, the authors studied the similarity between

users and the similarity’s relation with community overlap. They found that user

similarity defined by the frequency of communication or number of common friends

was inadequate to predict grouping behavior, but adding node/user-level features

could improve the fit of the model. Kairam et al. [69] analyzed long term dynamics

of communities and modeled future community growth rate. They found that growth
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rate is correlated with current size and age of a group and the size of the largest clique

is the best feature for community sustainability. Relevant efforts on understanding

individual-level characteristics include a study by Rao et al. [110], where authors pre-

sented an approach for automatic creation of ethnic profiling of users, focusing on

names as the key factor. Pennacchiotti and Popescu [106] also proposed a machine

learning approach for user classification on Twitter by analyzing user’s friends, user

posts and profile information. These studies of group and individual characteristics

provide a base for the modeling of user and structural features in our study.

5.2 Problem Formulation

In this section we describe preliminaries including event-based discussion collec-

tion, social group identification, measure of group discussion divergence, and a formal

specification of the prediction task. Feature design, experiment results and analyses

are presented in subsequent sections.

5.2.1 Data Collection

We focus on Twitter user-generated contents and discussions based on particular

real-world events, and thus, proper filtering of the generic content stream is required.

We implemented a Twitter Streaming API-based crawler that collected an on-

going tweet stream relevant to the event based on a seed keyword set, similar to [118].

For a keyword k, we crawl all tweets that mention k, K, #k or #K. The seed list of

keywords and hashtags is kept up-to-date by first automatically extracting the top-N

most frequent hashtags and keywords from the crawled tweets, and then manually

selecting and adding highly unambiguous hashtags and keywords (e.g. hurricane

sandy, #sandy, #ows). This process provides a control for contextual relevance of
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Event Name Duration #Tweets #Users Type
Hurricane Irene (Irene) 08/24-09/19, 2011 183K 77K Transient

Hurricane Sandy (Sandy) 10/27-11/07, 2012 4.9M 1.8M Transient
India Anti-Corruption (IAC) 11/05-12/02, 2011 100K 21K Lasting
Occupy Wall Street (OWS) 11/05-12/02, 2011 2.1M 331K Lasting

Table 5.1: Twitter data statistics centered on diverse set of evolving events

tweet content to the event. Tweets containing seed hashtags/keywords and their cor-

responding authors then become our dataset. We also store metadata associated with

the dataset, such as each author’s location, followers/friends, and profile description.

In this study, we choose four events relating to natural disaster, social activism, or

political campaign, and collect relevant data using the mechanism described above.

Table 5.1 summarizes basic information about each dataset. We note that events

possess varying characteristics on the dimensions of activity, social significance, par-

ticipant types, etc. In Table 5.1, we specifically show temporal feature values as

“Lasting” and “Transient” that denotes how enduring an event is. For example, the

Occupy Wall Street movement was highlighted in social media discussion for a long

time frame, while Twitter users’ attention to Hurricane Sandy quickly decreased sig-

nificantly after it dissipated.

To enable temporal analysis and reasoning, tweets are grouped into three phases

(pre-, during-, and post-event). Our categorization of phases for each event is aligned

with its real-world timeline, and Table 5.2 shows the occurrences leading to phase

division.
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Event Timeline

Hurricane Irene During-phase Beginning (08/27): Landfall in North Carolina
During-phase End (08/30): Hurricane dissipated

Hurricane Sandy During-phase Beginning (10/29): Landfall in New Jersey
During-phase End (10/31): Hurricane dissipated

India Anti-Corruption During-phase Beginning (11/24): Minister Sharad Pawar got
slapped due to alleged corruption
During-phase End (11/29): No further substantial tweet w.r.t. the
incident of slapping

Occupy Wall Street During-phase Beginning (11/15): Raid of Zuccotti Park
During-phase End (11/23): President speech interrupted by
protesters

Table 5.2: Timeline and dates signifying the beginning and end of during-event phase
of each event

5.2.2 Identifying Social Groups

Social groups can be defined in many ways. Our focus here lies on those groups

of people who interact (and potentially emerge) in the times of evolving real-world

events.

Therefore, given all users in a community formed around discussions of an event, it

is necessary to identify appropriate social groups on which quantitative analyses will

be performed to understand the dynamics of group discussion divergence. Resultant

social groups should reflect online interaction among users that is beyond simply

using the same word in their tweets. Moreover, the grouping criterion needs to be

independent of any feature of social structure and user characteristics due to some of

our features being based on social cohesion and identity phenomena (defined in the

following sections), so that the results are not biased.
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To that end, we propose an approach of clustering users based on their interactions,

which can be either retweet, reply or mention. An interaction graph is created to

represent those relationships during each phase of the event, where vertices stand

for users and edges indicate at least one interaction between two users through the

phase. We apply Markov clustering [120], a commonly-used community detection

algorithm to identify social groups. Only groups that have at least 10 members and

are active (that is, at least one member posts a relevant tweet by mentioning event-

related keyword(s)) for at least two days are retained. Again, while there exist other

choices of identifying latent online user groups without ground truth labels, we believe

our simple approach can effectively capture online interactions and yield meaningful

groupings of users. Table 5.3 summarizes the information of each dataset’s social

groups.

Event # Groups # Users Average Group Size
Hurricane Irene 137 22,068 161
Hurricane Sandy 4,947 284,062 57

India Anti-Corruption 76 7,907 104
Occupy Wall Street 6,202 296,279 48

Table 5.3: Information of social groups

5.2.3 Defining Group Discussion Divergence

We use Jensen-Shannon divergence (JS-divergence) to quantify the divergence

of group discussions. Compared with other information-theoretic measures such as

Kullback-Leibler divergence, JS-divergence is always defined, bounded, and can be

generalized to more than two distributions [86]. JS-divergence has long been employed
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in computational linguistics [85, 89], though its usage in social network analytics has

been limited.

In order to calculate the JS-divergence, we first construct a dynamic topic model [14]

and infer the topics of discussion. Input into the topic model is a collection of vo-

cabulary vectors, each of which represents one event-related tweet and is indexed

by discrete time-stamps. The vocabulary includes words and phrases pertaining to

the event, as well as hashtags with the leading ‘#’ symbol stripped. The dynamic

topic model has the advantage of modeling a systematic topic shift (due to event’s

progress) automatically, which allows us to investigate the true difference of an indi-

vidual member’s topic distribution to the corresponding group’s topic distribution at

any given time.

For topic inference, we use the dtm package24 with default parameters. We eval-

uated results from 2 to 5 latent topics, and found that topics become similar and

redundant after 3. For expository simplicity we use 3 as the default number of topics

and report the top vocabulary in the different event phases for two events (Hurricane

Sandy and Occupy Wall Street) in Table 5.4.

The inference process of the topic model returns a latent topic distribution for

each tweet t, denoted as βt. A group g’s mean topic distribution at phase s over all

its users’ tweets (T sg ) can then be calculated as:

βsg(i) =

∑
t∈T s

g
βt(i)

|T sg |
, ∀i = 1, · · · , number of topics (5.1)

and g’s JS-divergence at phase s is defined as

JS(gs) = H(βsg)−
∑

t∈T s
g
H(βt)

|T sg |
(5.2)

24https://code.google.com/p/princeton-statistical-learning/downloads/detail?
name=dtm_release.tgz
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Hurricane Sandy
Pre-event During-event Post-event

Topic 1

tropical storm red cross red cross
east coast jersey shore staten island
canada caused mexico
path staten island caused

Topic 2

new york new york new york
state new jersey new jersey
google hurricane katrina states
android media hurricane katrina

Topic 3

frankenstorm frankenstorm frankenstorm
halloween fema knicks
east coast halloween fema
atlantic mitt romney nyc

Occupy Wall Street
Pre-event During-event Post-event

Topic 1

occupy occupy occupy
protest n17 oo

movement nypd occupyla
occupytogether brooklyn bridge movement

Topic 2

movement nypd nypd
us movement movement

bahrain protest anonymous
occupy movement time protest

Topic 3

occupy occupy p2
oo p2 tcot
p2 tcot republican
tcot oo teaparty

Table 5.4: Top vocabulary representing the latent topics of discussions at each event
phase
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where H(•) is the Shannon entropy function (with log base 2) [86]. Intuitively, JS-

divergence here gauges the divergence among topic distributions of a group’s tweets.

The greater the JS value, the larger the difference and the stronger indi-

cation of a group lacking conformity in discussion.

5.2.4 Prediction Problem Statement

Our goal is to solve a learning problem to predict the increase or decrease in the

divergence of a group’s discussion topics, measured by its discussion divergence, over

an event’s three phases: pre-, during-, and post-event (however, our analysis approach

is applicable in general beyond the three phases of interests here). Specifically:

Given a real-world event E, a collection of N Twitter users discussing about

E, and an assignment of them into K non-overlapping user groups gi(1 ≤ i ≤ K)

based on interactions, predict the change of each group’s discussion divergence JS(gi)

between two consecutive event phases (that is, from pre-event to during-event or from

during-event to post-event).

5.3 Feature Design

In this section, we describe the feature design driven by socio-psychological theo-

ries.

5.3.1 Structural Features Guided by Social Cohesion

To study the structural features driven by cohesion of social groups in a quan-

titative manner, we extract information from Twitter users’ follower network. For

each social group, we construct its corresponding node-induced sub-graph from the
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follower network. Because the follower relation is directional, there are three groups

of features:

• Reciprocal :

An undirected edge will be created between two users only when both of them

are following each other. This choice directly reflects the assumption of mutual

interpersonal attraction in the social cohesion theory. Features here include

density, transitivity25, average clustering coefficient26, and maximum average

length of pairwise shortest paths over all connected components (short-named

“average shortest path length”).

• Undirected :

An undirected edge will be created between two users if either of them is fol-

lowing the other. The underlying assumption is that one-way interpersonal

attraction is sufficient to keep the social group sustained. The same group of

features as in the reciprocal sub-graph are computed.

• Directed :

We also compute density and transitivity on the directed sub-graph for each

social group, without converting it to an undirected graph.

The range for all cohesion features is [0, 1], except for the average shortest path

length. Note that in existing sociology literature [97, 142] the term “structural cohe-

sion” is a specific measure, defined as the minimum number of nodes one needs to

25transitivity = 3×number of triangles
number of connected triples of vertices

26clustering coefficient of node i = 2×number of triangles in i’s neighborhood
degree(i)×(degree(i)−1)
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remove from a graph to disconnect it. We do not include this feature as we find that

almost all (more than 97% of total) social groups contain at least one fringe node

(whose degree is one) or singleton, meaning that the value of this feature for most

social groups will be at most one.

5.3.2 User Features Guided by Social Identity

To quantify the social identity-based features, we extract user’s profile informa-

tion as well as activity, as we note that social behavior tends to associate the user

with established identities (regional, organizational, etc.) via self-representation and

with incentive-based identity via user actions in the cyber-world. For example, “New

Yorker” in a user’s profile is an indicative signal of his location-based identity, and a

profile containing “professional NBA player” or “Emergency Management” is highly

suggestive of the user’s occupational expertise. A user’s action of adding such in-

dicative terms into the profile suggests his self-awareness of the identity. Moreover,

recently emerged social analytics services show online identities of users such as

“celebrity” on Klout, “Mayor of a place” on Foursquare, etc., and users often tend

to identify with them [35]. Thus, we are living with various social identities in both

our physical as well as cyber world. We use location and description metadata in

user profiles in addition to user actions (status updating, interacting, etc.) to extract

the following types of social identities. Each identity type is modeled as a discrete

attribute and for each social group under study, we compute the class distribution

entropy for each identity and serve them as user features for the analysis. The range

of identity features is from 0 to ln(C), where C is the number of unique classes in an

identity type.
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• Regional Identity feature:

Using location information in user profiles, we map users to regional classes that

is sometimes used to represent self-identification in our daily lives — state-based

(e.g., “Ohio” for Ohioans) and nation-based (e.g., “Brazil” for Brazilians). For

creating feature value, we choose a user’s state identity if it belongs to the host

nation of the event (e.g., user from Buffalo will have “NY” as the identity value

in the OWS event), otherwise, we choose the user’s nation identity (e.g., user

from London will have “UK” as the identity value in the OWS event). We use

the Geonames dataset on Linked Open Data (LOD) cloud and Google Maps

API to convert user profile locations into latitude-longitude, and then state and

nation identity. We note that this simple model of two regional levels (state

and nation) for self-identity can be expanded further.

• Expertise Identity feature:

Users generally write their interests, expertise and affiliations in the description

on Twitter user profiles. It is an example of self-representation of social identity

(e.g., artist, researcher, etc.). Therefore, we first derive expertise classes by 2

steps: a) collect occupation categories and titles from trusted knowledge sources

— Wikipedia and the US department of Labor Statistics reports, and b) classify

the resulting occupation lexicon into ten broad classes, inspired by the domain

classification on news websites and also from the super classes in the knowledge

bases:

{ACADEMICS, BUSINESS, POLITICS, TECHNOLOGY, BLOGGING, JOUR-

NALISM, ART, SPORTS, MEDICAL, OTHERS }
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Figure 5.1: Online Identity based on three action measures (Influence, Diffusion,
Activity)

For expertise identity assignment to a user, we first create N-grams from the

description metadata in the profile by tokenizing on punctuations, and filter out

those not containing any of the occupation lexicon terms. From the remaining

N-gram set, each N-gram is associated with one of the ten classes, and its

weight is determined by its position in the description text. Because users tend

to place terms that are more socially identifying and important to them at the

beginning, due to self-awareness of identity representation. Finally, the user is

assigned to the highest-weighted identity class.

• Online Identity feature:

Based on user actions on the platform (Twitter here), we use three metrics

following the work of expertise presentation in [109] and influence and passiv-

ity in [114] that contribute to building a user’s incentive-based identity (e.g.,
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“Celebrity” on Twitter) of cyber-world — an online identity in contrast to real-

world identities by capturing user activity, influence and diffusion strength. We

model the activity metric by number of posts of the user, influence metric by

number of mentions of the user, and diffusion strength by number of retweets

of the user’s posts during event time-frame. We compute scores on each of the

three metric dimensions for all users and then consider the basic 50th percentile

threshold to create two levels on each of the dimensions, yielding 8 user classes

as shown in Figure 5.1. The computation on number of mentions, number of

retweets, and number of posts here is different from the step of identifying social

groups in the interaction-only network, because here node-centric features (a lo-

cal viewpoint) are taken for identity measure, and not the connection-centric

feature set, (a global viewpoint), which is the basis of clustering.

In contrast with regional and expertise identities, which are meaningful in the

physical world, online identities exclusively define behavior in the cyber realm. From

our knowledge, few attempts have been made to study the impact of both online and

offline identities on group dynamics in online social networks.

In Table 5.5 we summarize the basic statistical information of each of the features

related to social cohesion and identity. The upper bounds of entropy values for user

features are included in brackets. From the assumptions of social cohesion and social

identity theories, we hypothesize the following:

• A more structurally cohesive social group has less diverse discussion. Therefore,

groups with higher density, transitivity, clustering coefficient, or lower shortest

path length are expected to have lower discussion divergence.
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• Groups whose members are similar in identities (those having lower entropy for

identity features) are speculated to have low discussion divergence, as motivated

by the social identity theory.

5.4 Analyses of Group Features and Discussion Divergence

In this section, we present the characteristics of structural and user features de-

scribed in the previous section on our dataset and their correlation with group discus-

sion divergence. It rationalizes the choice of features for the prediction task discussed

in the next section.

5.4.1 User & Structural Feature Statistics

We identify several interesting trends in the results reported in Table 5.5. First, in

general the entropy values27 are higher for the Occupy Wall Street (OWS) and India

Anti-Corruption (IAC) events, the two on-the-ground social activism events, possibly

because the offline interactions heavily involved in those events are not captured by

online social identity features. Such distinction is most pronounced when comparing

online identity entropy values of those two events with respect to the other two events.

The social groups in these two events tend to revolve around opinion leaders who often

help direct and orchestrate the movement (such individuals likely will have high online

identity values). Therefore social groups formed in those events generally have more

diverse online identity composition, reflecting the presence of opinion leaders as well

as followers in groups.

27Note, it is important to normalize these values against the maximum entropy possible for each
case.
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Another finding from Table 5.5 is that groups have great divergence in terms of

their memberships from different regions. This may simply be a reflection of the

times and the fact that online social networks are bringing people closer together and

almost all events have had significant media attention.

Lastly, we point out that the average directed transitivity (global clustering coef-

ficient) is at least 82% higher than that of the whole follower network (not shown in

the table), and results based on the reciprocal and undirected definitions are similar,

indicating that there is likely a community structure embedded in the social groups

we have identified.

5.4.2 Correlation Between Features & Group Discussion Di-
vergence

To investigate the relation between structural/user features and group discussion

divergence, we first compute their statistical correlation. Particularly, we use boot-

strap method (sampling with replacement) to construct the 95% confidence interval

of correlation coefficients. In Table 5.6, we report a subgroup of features whose cor-

relation with group discussion divergence is considered significant.

User features statistics: We note in Table 5.6 that user features (especially re-

gional identity entropy and online identity entropy) have a moderate to high positive

correlation with group discussion divergence, for the first three events. This find-

ing agrees with our hypothesis that group discussion divergence rises when group

members’ identities become less distinct and thus identity entropy values rise. Corre-

lation values for Occupy Wall Street are less significant, possibly due to some intrinsic

characteristics of its conversation [32].
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Irene Sandy IAC OWS
Directed Structural Features

Density [−0.37,−0.06] [−0.22,−0.16] [−0.38, 0.07] [−0.03, 0.05]
Reciprocal Structural Features

Density [−0.36,−0.06] [−0.20,−0.15] [−0.29, 0.06] [−0.01, 0.07]
Shortest Path [0.27, 0.52] [0.10, 0.15] [−0.14, 0.21] [0.10, 0.16]

Undirected Structural Features
Density [−0.36,−0.05] [−0.22,−0.17] [−0.43, 0.10] [−0.05, 0.04]

Shortest Path [0.31, 0.56] [0.16, 0.21] [0.02, 0.37] [0.09, 0.13]
User Features
Regional Entropy [0.23, 0.50] [0.25, 0.30] [0.07, 0.52] [0.09, 0.14]
Expertise Entropy [0.11, 0.51] [0.45, 0.50] [0.37, 0.66] [0.01, 0.06]
Online Entropy [0.45, 0.69] [0.20, 0.25] [0.11, 0.57] [0.26, 0.31]

Table 5.6: 95% confidence intervals of correlation coefficients between structure/user-
based features and group discussion divergence

For social groups with a stronger regional concentration, in-group discussions tend

to be more location-specific and consistent, leading to a smaller degree of member-

wise discussion divergence, compared with groups whose members’ locations are more

dispersed. Similarly, the presence of users with similar expertise or interest domain

in a social group tends to keep the scope of discussions more focused.

For the online identity feature, we note that it is reflective of user actions. There-

fore, we speculate that for the sake of maintaining their incentive-based action identity

via lesser change in their actions, users are likely to maintain a pattern of focused

topic discussions in the groups.

Structural features statistics: For structural features, we find that patterns of

correlation with group discussion divergence can be categorized into two types:
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• Density features have a moderate correlation with group discussion divergence

for Hurricane Irene and Hurricane Sandy, indicating that a better-connected

social group tends to have a more cohesive discussion.

We ask an event-type specific question, why is the correlation weaker for Oc-

cupy Wall Street and the India anti-corruption movements? As mentioned

earlier, both of them are long-lasting events accompanied by an arguably more

engaged offline component, whose information is not captured in cohesion fea-

tures. Therefore, the density of online social groups is low (see Table 5.5),

making it less indicative of sustainability for those two events.

• Average shortest path length (especially the undirected version) shows consis-

tency in its positive correlation with group discussion divergence, which also

agrees with our hypothesis. Compared with others structural features that re-

flect the tightness of a social group, average shortest path length shows clearer

dispersion in values, making the result from its correlation analysis more mean-

ingful.

• When comparing correlation strengths with content-divergence by reciprocal

features and undirected features, we find that they are often comparable. In

fact, a one-sided binomial test rejects the alternative hypothesis that “recip-

rocal features have stronger correlation with group discussion divergence than

undirected features” with a p-value of 0.89. This finding is particularly interest-

ing as the key premise of reciprocal structural features is mutual interpersonal

attractions (social cohesion theory), an assumption that undirected structural

features do not make. This leads to the question of whether mutual attraction
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is still a necessary condition for online communities to form and last, and we

believe it requires more research attention in the future.

5.4.3 Contrasting High & Low Divergent Groups

We performed a case study of 10 highest and lowest divergent groups in each event,

where we analyzed their content to check if there is contrast between the content

practices. Specifically, we compared the frequency of using hashtags, retweets (RT),

mentions, URL links, and emoticons in the content of candidate group members. An

interesting contrast was that the least divergent group members use practice of RT

heavily, while the most divergent groups use hashtags heavily, indicating diverging

nature of user classified topics. Therefore, we suspect content practices also play a

role in predicting trend of divergence.

5.4.4 Effects of Event Characteristics

From Table 5.6 we note that transient events (Hurricane Irene and Hurricane

Sandy) have stronger correlations with user features than with structural features.

We conjecture it is due to the fact that groups in such volatile events form in an ad-

hoc setting, where groups are less likely to have existing cohesively connected users,

undermining the effects of structural features. Therefore, discussions can be highly

dependent on the characteristics of participants of the group, their personal behavior

and identities.

Furthermore, Figure 5.2 shows the general pattern of lower topical divergence

in the pre-event phase, while increasing in the during-event phase and then again

decreasing to lower value in the post-event phase. OWS is an outlier here likely due

to high number of incidents even prior to the pre phase of the event in our dataset.
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Figure 5.2: Average discussion divergence of groups in each of the phases for various
events.

5.5 Predicting Trend of Group Discussion Divergence

In this section, we present the methodology and results for our main task: to

predict the trend of social groups’ discussion divergence. We plan to leverage obser-

vations from previous sections, including 1) statistical correlations between features

and group discussion divergence, and 2) disparities of a subgroup of feature values

between groups of high versus low group discussion divergence.

More precisely, our goal is to solve a learning problem where the label is whether

the discussion divergence of a group of users will increase or decrease over time.

Since each event is divided into three phases, there are two transitions: pre-event

to during-event, during-event to post-event. Features selection are guided by the

statistical analyses and case studies in previous sections.
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5.5.1 Feature Sets and Learning Instances

We consider three main categories of features to use in the prediction problem.

First, structural features focus on the cohesion and connectivity of each group’s fol-

lower network. Second, user features emphasize the conformity of group users’ offline

and online identities. We have defined a family of those features in previous sections,

and their significance varies. Lastly, content features capture the content practices of

user-generated content. Based on the analyses in previous sections, we select differ-

ent subsets of features from all of them, in order to reduce redundancy and improve

prediction performance. The subsets are as follows:

• Divergence: Discussion divergence of the group at the current phase.

• Structuresub: Directed density, reciprocal density, undirected density, reciprocal

average shortest path length, undirected average shortest path length.

• Structureall: All structural features described in the Feature Design section.

• Userall: Location entropy, occupation entropy, and online entropy.

• Contentsub: Average numbers of retweets and hashtags.

• Contentall: Contentsub and average numbers of mentions, URLs and emoticons.

For each event, we identify pairs of social groups that are overlapping (Jaccard

similarity28 is above 0.5) before and after transition between two phases. There are 69

instances of group pairs meeting this criterion, and for 35 pairs their group discussion

divergence values increase. We assign a label of increase or decrease to each group

pair, depending on the change of its group discussion divergence value.

28The Jaccard similarity between two sets A and B is |A∩B||A∪B| .
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5.5.2 Experiment Setup

For each pair of social groups of consideration, we use its features before the

transition for the prediction task. Both SVM (RBF kernel with γ = 0.5) (SVM ) and

logistic regression (logistic) are used.

We also create another baseline method (referred to as baseline), which relies its

classification on the current phase. In the preliminary analysis of content divergence

above, it is observed that groups’ content divergence in general increases from pre-

event to during-event, and decreases from during-event to post-event. Therefore,

baseline always predicts a group’s discussion divergence to be increase if it is currently

in the pre-event phase, or decrease if it belongs to the during-event phase.

5.5.3 Learning performance

To evaluate the performance of group discussion divergence prediction, we perform

a five-fold cross validation on SVM and logistic. For baseline, we directly compute

its F-1 score (0.54). Figures 5.3 and 5.4 show the performance of various feature sets

and learning models, measured by area under the curve (AUC) and F-1 score.

It is demonstrated from Figures 5.3 and 5.4 that classification based on features de-

scribed in previous sections are significantly more accurate than the baseline method

(F-1 of SVM using structural and user features is 0.75, a 39% improvement). Fur-

thermore, performance of classifiers varies according to the selection of features to

use. While user features have shown high correlation with static group discussion

divergence, our results suggest that structural features contribute most to accurately

predicting the dynamic change of content divergence. Using structural features only,

SVM achieves the best AUC (0.83) and F-1 score (0.76).
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Figure 5.3: AUC and F-1 of prediction for SVM, organized by feature set and sorted by
AUC. D=Divergence, U’=Userall, S=Structuresub, S’=Structureall, C=Contentsub,
C’=Contentall.

5.6 Discussion

We performed qualitative study on the content of the overlapping groups by tran-

sition of phase (e.g., mid to post), and the divergence shift (e.g., decrease) using the

Linguistic Inquiry Word Count (LIWC) software. We observe that groups who tend to

diverge in their discussions write more of general reporting type content based on past

incidents. While the groups with decreasing diverging behavior write more social and

future action related content, likely due to users being organized to inform the fellow

members about updates on the situation. For example, we found in the overlapping

candidate groups of Hurricane Sandy event that a group with decreasing diverging

behavior was highly focused on the updates of flight statuses of different airlines, first

delays and cancellation, and later on the resuming parts. Such focused and active

topic-specific groups will be valuable to engage with by the response coordinators.
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Figure 5.4: AUC and F-1 of prediction for logistic regression, organized by feature set
and sorted by AUC. D=Divergence, U’=Userall, S=Structuresub, S’=Structureall,
C=Contentsub, C’=Contentall.

To summarize our main contribution, we present an approach to understand fac-

tors that drive the shift of collective diverging behavior in the group discussion topics,

and illustrate by a prediction model to show that these factors can help track the be-

havior of group discussion divergence. Its application can be in several domains, such

as in brand management, or disaster response coordination. We can identify groups

of audience that are active and concerned about specific issues. In the massive social

media community after disasters, identifying reliable sources for engagement to coor-

dinate about specific needs is a daunting task and the proposed approach also helps

in identifying reliable sources of groups with specific information of needs. Another

application of the proposed approach is for deciphering the self-organizing behavior

of groups by learning the collective diverging trends.
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Summarizing limitations about our study, we note that other group formation

methods can be used and evaluated. We also limit ourselves to three phases in the

prediction model experiment, namely pre-, during- and post-event, based on the real-

world incidents on the event timeline. However, more phases may be considered

for longer events, as they could also possess long-term impact. Extended evaluation

needs to be performed across more events of diverse types in the future to validate

the work’s generalizability. We also did not consider other types of group behaviors

due to first time analyzing event-oriented group discussion for collective behavior and

thus, future studies can expand on that.

For our future work, we plan to extend our features of social identity and cohesion,

including ethnic and religious social relationships, and structural properties from

Twitter List subscriptions. We shall also validate models into other social networks,

such as Facebook, Google+, LinkedIn, and the DBLP co-authorship network, to

see if they show a similar social phenomena of group dynamics. Finally, we are

also interested in detecting transition point of group discussion divergence over time,

which may corresponds to the phase change from storming to norming in the group

developmental sequence theory [133].

5.7 Conclusion

This study focuses on characterizing the online social group dynamics using con-

tent of group discussion in contrast to structural properties studied earlier, and pro-

poses a measure of group discussion divergence. We include structural and user fea-

tures guided by two socio-psychological theories of group bonding and attachment —

social identity and social cohesion. Leveraging these features in addition to content
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features, our classifiers accurately predict the future change of collectively diverging

behavior in the group discussions. The classifiers achieve F-1 scores of up to 0.8,

which is a 33% relative improvement from the baseline method. This study provides

a framework to further research about collective behavior in online social groups.
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Chapter 6: Patterns of Sentiment Shift in Online

Conversations

In this chapter, we visit the third analytical task described in Section 1.3: studying

how the sentiments of OSN users shift over time. Human sentiment in OSNs and its

dynamics have attracted wide interest in recent years, since the increasing availability

of data makes it more viable to perform empirical analyses and evaluations. While

several methods have been proposed for measuring sentiment of users, the evolution

of sentiment in a user network and patterns of shifts in user sentiments have not been

afforded the same attention. Various applications such as marketing, advertising

and recommendation systems are motivated by a need to influence users to adopt

certain sentiments with particular products and services. It is therefore important to

understand the factors that can cause shifts in opinions of users of a social network.

Earlier studies of face-to-face interactions have looked at the evolution of sentiment

from the perspective of emotional contagion, which assumes that a person’s sentiment

can transmit to other individuals he is close to [63]. Experimental evidences have been

revealed that emotional contagion also exists in online social networks [57, 73, 34, 74].

However, existing work is limited in multiple aspects. Prior work focuses on the gen-

eral sentiment, and does not explore the difference in the pattern of emotion change

across topics in various domains. Moreover, little is known about the impact on
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emotion change by other factors, including the content’s property, as well as charac-

teristics of users and the social network itself.

In this chapter, we address the aforementioned limitations and in particular, de-

termine what factors are essential for causing shifts in user sentiment in online social

networks. By extracting more than 5 million tweets written by users that are ex-

erting and receiving influence, we identify patterns in sentiment shift. We consider

tweets over three different domains — movie, politics, and technology, enabling us to

study the difference of sentiment shift behavior across different topics. Furthermore,

we calculate the likelihood of sentiment shift when the influencer’s tweet has certain

content properties such as quotations, retweets or URLs, and compare it with the

average shift probability. This helps identify factors that can significantly boost the

probability of sentiment shift.

It is important to note that the focus of this work is the shift of sentiment by

users and its driving factors, instead of performing sentiment analysis on the dataset

itself. We believe insights into the process of sentiment shift will facilitate the design

of effective strategy in applications such as advertising, reputation management and

grassroot mobilization.

Our key findings include:

• The correlation between a user’s influence and his ability to induce sentiment

shift is very low.

• The appearance of negative content increases the likelihood of sentiment shift

from positive to negative, whereas having positive content has no significant

impact on sentiment shift from negative to positive.
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• The more turns of tweets there are with no sentiment shift, the more likely it

is for the influence receiver to drift away from the sentiment that the majority

of users hold.

• In order to maximize the spread of a given sentiment, one should select seed

users to produce tweets with the same sentiment, and also include quotation in

the tweet.

We will first review existing work in Section 6.1, and then show results from ana-

lyzing sentiment shifts (Section 6.2) and maximizing the sentiment spread in networks

(Section 6.3). In Section 6.4 we conclude this chapter by discussing the implication

of our results as well as directions for future work.

6.1 Related Work

Sentiment has been an import aspect in the study of social computing, because of

its critical role in the well-being of individual persons as well as the community as a

whole. While sentiment is certainly a function of the individual’s own psychological

state, prior researches also provide well-grounded evidences that person-to-person

interaction has non-trivial impact on one’s sentiment. The phenomenon of emotional

contagion, defined as “the tendency to . . . converge emotionally” [63], has been found

to exist in both short term [10] and long term [47] settings, and it further affects

individual attitudes and group behaviors. Data sizes in those experiments are usually

small, due to the complexity of organizing face-to-face studies as well as collecting

data.

More recently, researchers have empirically examined the existence of emotional

contagion in computer-mediated communication channels such as online chatting and
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social networks, and it persists whether the communication itself is mediated [61, 58,

74] or spontaneous [57, 34, 73]. In those studies, sentiment is captured from texts

(e.g. tweets or Facebook statuses), as an explicit indicator of sentiment is lacking.29

Except for [57] which focuses on one single event, all work concerns with the general

sentiment of users, regardless of the text’s underlying content or topic. Moreover,

existing studies do not investigate other potential factors in the spread of emotion,

such as network structure, user characteristics, etc. Gruzd et al. [57] inspect the

impact of a user’s network position on the inclination of sharing positive or negative

tweets, but not the sentiment shift from positive to negative, or vice versa.

Statistical modeling of the spread of sentiment has also been studied, and the

main approach is to extend the family of epidemiology contagion models such as the

Susceptible-Infected-Susceptible (SIS) model. Experiments are performed on syn-

thetic networks [151] or face-to-face networks [66, 87], and their applicability to online

social networks is yet to be verified.

Various automatic methods can be adopted to detect the sentiment in large num-

ber of documents in a scalable fashion. Performances vary, as algorithms designed

for longer, more formal documents often ignore the peculiarity of texts in online so-

cial networks [103]. Lexical features, such as the sentiment associated with a known

word/phrase/emoticon, are most frequently used, though it is challenging for any

single method to prevail over different text sources [54].

29Facebook has since then allowed users to explicitly choose a feeling when posting a status update.
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6.2 Methods and Experiments

In this section, we report major experiment results, following the intuitions listed

in the beginning of this chapter. We first describe the process of training classifiers

to automatically determine the sentiment subjectivity and polarity of social messages

with regard to the topic of interest. Its accuracy is on par with start-of-the-art

systems, as evaluated on established sentiment analysis benchmarks (Section 6.2.1).

We then outline basic characteristics of the Twitter datasets we are using (6.2.2) as

well as the composition of sentiment transitions (6.2.3), before proceeding to analyze

users’ sentiment shifts with respect to user characteristics (6.2.4), content (6.2.5), and

the length of interactions between influence sender and receiver (6.2.6).

6.2.1 Determining Subjectivity Sentiment and Polarity

The study of sentiment shift is built upon the ability of detecting the subjectivity

and sentiment polarity from user-generated contents. To scale up beyond the capac-

ity of human annotation, there is the need to construct an automatic classifier. Prior

studies of emotional contagion in online social networks often rely on simplistic ap-

proaches such as counting words that are indicative of polarized sentiments [34, 74].

Though easy to compute, it is unclear how such methods can effectively distinguish

between objective and subjective documents in a principled manner. Furthermore,

lexicons such as LIWC [107] cater poorly to the writing style of online social network

content, such as word variation (“tomorrow” written as “tmr”), and letter repetition

(for example, “greaaat”). Therefore using lexicons alone often leads to poor cover-

age [54].
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In our work, we purpose the usage of a two-level classifier to perform the task.

The classifier first determines if a document (in our case, a tweet) is objective or

subjective, and then classifies the tweet’s sentiment polarity (positive or negative) if

it is subjective. Therefore, each tweet is labeled either objective, positive, or negative.

We use the training dataset from SemEval-2013, Task 2B [99]30 to train two logistic

regression models. The first (subjectivity) model treats objective tweets as one class,

and all others as another. The second (polarity) model discards objective tweets,

and separates positive and negative tweets into two classes. When evaluated on

the SemEval testing dataset, the performance of our model is on par with the best-

performing system in the task [94]31.

Tweet features used in both models include:

• Unigrams and bigrams.

• World repetition: Whether a letter appears in a word consecutively for more

than twice. Repetitions are replaced with two letters.

• If all letters in a word are capital letters.

• If there is emoticon or interjection in the tweet.

• If there are two or more exclamation marks in the tweet.

• If there is first, second, or third personal pronoun in the tweet.

• Negated version of words from the negation to the end of corresponding clause.

30http://www.cs.york.ac.uk/semeval-2013/task2/
31Unfortunately the system’s implementation is not publicly available.

145

http://www.cs.york.ac.uk/semeval-2013/task2/


• Lexicons: Harvard General Inquirer [125], MPQA [143], SentiWordNet [42],

VADER [67].

• Word clustering to detect variation: Brown clusters of words with prefixes of 4,

8, and 12 bits [113].

6.2.2 Dataset Description

We collect tweets about topics in multiple domains, including movie32, politics

and technology. For each topic, a manually selected set of keywords and hashtags are

used to match all tweets from Twitter’s data stream. Those datasets differ in duration

and volume, and therefore provide a platform to study which characteristics about

sentiment shift are common to all topics, and which are domain-specific. Table 6.1

outlines basic information about the datasets.

Name [Domain] Duration # Tweets # Users
Avatar [Movie] 12/2009 – 03/2010 3584956 1391624
New Moon [Movie] 11/2009 – 03/2010 1191419 539145
Benghazi Select Committee (Benghazi) [Politics] 04/2014 – 06/2014 409722 66740
Affordable Care Act (ACA) [Politics] 04/2014 – 06/2014 246164 57843
IT Products (Products) [Technology] 07/2013 – 08/2013 219787 90408

Table 6.1: Basic dataset statistics.

Before proceeding to the analyses, we define several terms here. A turn consists of

a series of chronologically-ordered tweets written by two users: first by an influence

receiver (stage 1), then by an influence sender (stage 2), and finally by the same

receiver (stage 3). In each stage of the turn, one or more tweets can be composed.

32While we have tracked tweets about 54 different movies in total, we report results on the two
largest datasets here. Observations on other movie datasets are similar.
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Rather than enumerating all possible pairs of users, we require that the receiver needs

to have retweeted from the sender at least once in the dataset, as an indication of the

sender’s actual influence on the subject matter. It also implies that a receiver in one

turn can be the sender in another turn.

An exemplar turn is shown below. The influence sender is user “rosenfie”, and the

influence receiver is user “hmtangx”.

hmtangx: @tsangtammy one thing new moon was lacking:
some STRONG bella/edward passion i thought. . . didn’t
really feel it this time :S

rosenfie: #Imthankfulfor the fact that New Moon is still
trending. Keep it going guys! Even on a holiday! Awesome!

rosenfie: New Moon is great
rosenfie: @billy_burke Happy Thanksgiving!! Loved you in

New Moon - will continue in Eclipse and BD I’m sure! -
Tracy

hmtangx: New Moon is still trending after a weeeeek!!! :D
heheeh :)
hmtangx: NEW MOON <3 omg loveee, can’t wait for
eclipse!!

Table 6.2: Sample turn extracted from the New Moon dataset.

To determine the presence of sentiment shift by an influence receiver, we run

the sentiment classifier (Section 6.2.1) on his tweets in stages 1 and 3. At each

stage, the most frequently-occurring sentiment label is taken as the stage’s sentiment

label. If either stage is objective, the turn will be removed from further analyses.

The combination of sentiment labels in both stages is called a sentiment transition
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Figure 6.1: Histogram of turn durations (seconds) for New Moon, in log scale.

hereafter, and a transition contains a sentiment shift when the labels in two stages

are different.

We further calculate the duration of turns, and plot the distributions of turn dura-

tion for two representative topics: New Moon (Figure 6.1) and Benghazi (Figure 6.2).

The duration of a turn is the pairwise average of time differences between each tweet

in stage 1 and each tweet in sage 3. Most turns last more than 105 seconds (1.16

days), and some last as long as months.

6.2.3 Sentiment Composition and Sentiment Shifts

An overview of the sentiment of tweets is provided in Table 6.3. While less than

5% of tweets are subjective for the technological topic (Products), the proportion

is much higher for political issues (15%) and movies (35%), signifying their stirring
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Figure 6.2: Histogram of turn durations (seconds) for Benghazi, in log scale.

nature. Moreover, controversial political issues induce more polarizing sentiments

from users, whereas the majority of tweets about movies are positive.

Name # Objective Tweets # Positive Tweets # Negative Tweets
Avatar 2301897 1122305 160754
New Moon 721398 397981 72040
Benghazi 349408 22820 37494
ACA 204722 21291 20151
Products 209547 7615 2625

Table 6.3: Distribution of sentiment labels.
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Grouping turns according to their sentiment transitions (Table 6.4) reveals similar

trends. Topics whose majority of tweets are positive see a higher likelihood of tran-

siting into positive, and vice versa. While for all topics more than half of all turns

do not involve sentiment shifts, there is still a considerable proportion of sentiment

shifts present in user tweets. Therefore, investigating the relationship between them

and properties of the social conversations (user, network and content) is crucial in

achieving a fuller understanding of sentiment shift.

Name # Turns Pos. → Neg. Neg. → Pos. Pos. → Pos. Neg. → Neg.
Avatar 179556 12.61% 12.80% 70.46% 4.13%
New Moon 66030 12.34% 11.42% 73.25% 2.99%
Benghazi 24005 19.75% 19.66% 9.45% 51.14%
ACA 14644 24.67% 22.75% 19.65 % 32.93%
Products 2173 10.58% 12.20% 70.23% 6.99%

Table 6.4: Distribution of influence receivers’ sentiment transition in a turn.

One intriguing observation is the almost-equal percentages of positive-to-negative

shifts and negative-to-positive shifts for each topic. To ensure this is not an artifact

from the noise in sentiment classification (e.g. a false negative in a stream of positive

tweets will produce a positive-to-negative shift, immediately followed by a negative-

to-positive shift), we calculate the proportion of such sentiment “back-flips” among

all sentiment shifts. The values range from 25.46% (Avatar) to 36.81% (Benghazi),

accounting for only one-third of all sentiment shifts. This signifies the lasting effort

of most sentiment shifts that occurred.

One parallel explanation to the observation stems in the conjecture that people

may temporarily accommodate to others’ sentiments and opinions, in order to smooth
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inter-personal interactions. Should that have manifested in OSNs, a user would have

changed his sentiment, and later reverted back to his original stance. It warrants

further investigation to verify to which extent this explanation holds.

6.2.4 Sentiment Shift and User Influence

One may wonder what the link is between sentiment shift and user influence,

as the adoption of a certain sentiment can be viewed as being influenced to do so.

Intuitively, the more influential an (influence) sender is, the more likely he is to cause

a receiver to adopt the sentiment of his message(s).

To verify this hypothesis, we compute the influence metric of each sender, and

calculate the correlation coefficient between it and the probability of his influence

receivers showing sentiment shift. When the sender’s tweet is positive, the receiver’s

sentiment is anticipated to shift from negative to positive, and vice versa. We consider

two different influence metrics: out-degree and PageRank value, since they are shown

to be different proxies of a user’s true influence [19].

Results from Table 6.5 (columns 2–5), however, suggests that sentiment shift has

no significant correlation with a sender’s own influence. Similarly, we find trivial

correlation (columns 6–9) between a receiver’s propensity of changing sentiment and

his in-degree/PageRank values. The likelihood of an influence receiver also has low

correlation with the number of senders he is associated with (numbers not shown

here).

Those results provide little support for the relation between sentiment shift and

user/network characteristics. As a result, it is sensible to study the role of content
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in sentiment shift, and examine if certain properties in the senders’ tweets are more

likely to induce sentiment shift. We address this exact question below.

Influence Sender Influence Receiver
Pos. → Neg. Neg. → Pos. Pos. → Neg. Neg. → Pos.

Out-deg PageRank Out-deg PageRank In-deg PageRank In-deg PageRank
Avatar 0.02 0.00 0.01 0.00 -0.03 -0.02 -0.01 -0.01
New Moon -0.02 0.00 0.00 -0.00 -0.02 0.02 0.00 0.00
Benghazi -0.02 0.00 0.01 -0.00 0.01 -0.00 0.00 -0.00
ACA -0.05 -0.00 0.00 0.00 -0.00 -0.00 0.07 0.05
Products -0.06 0.00 -0.08 -0.00 -0.03 -0.04 0.01 0.01

Table 6.5: Correlation coefficient between user influence and sentiment shift prob-
ability. Columns 2–3 are for a sender changing the sentiment of his receivers from
positive to negative, given the sender’s tweet is negative. Columns 4–5 are for a
sender changing the sentiment of his receivers from negative to positive, given the
sender’s tweet is positive. Columns 6–7 are for a receiver changing the sentiment
from positive to negative, given the sender’s tweet is negative. Columns 8–9 are for
a receiver changing the sentiment from negative to positive, given the sender’s tweet
is positive.

6.2.5 Effect of Content on Sentiment Shift

As suggested in previous subsections, it is necessary to inspect content properties

of influence senders’ tweets, and their relationship with the sentiment shift of influence

receivers. More specifically, we are asking the question whether the appearance of

certain properties in senders’ tweets makes the likelihood of sentiment shift higher

than random?

This can be viewed as comparing the prior probability of sentiment shift (Ta-

ble 6.4) and the corresponding posterior probability, conditioned on the occurrence
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of given content properties. If the conditional probability is higher, then sentiment

shift is more likely to occur than by chance.

In this work, we study the following types of content property:

• Sentiment: The sentiment label of a sender’s tweet (objective, positive, or

negative).

• Retweet (RT): Whether the sender’s tweet is a retweet.

• Quotation: Whether the sender’s tweet contains a quotation.

• URL: Whether the sender’s tweet has any hyperlink that points to external

webpages.

Figures 6.3 and 6.4 show the comparison of sentiment shift probabilities in each

topic, grouped by the content property of influence senders’ tweets. Also included

are the prior probabilities of sentiment shift.

In Figure 6.3, it can be seen that for all topics the probability of sentiment shift

from positive to negative is higher than average when the sender’s content contains

negative sentiment. One-sided binomial test also shows that the difference is signifi-

cant for all topics (α = 0.1). The presence of quotations also significantly raises the

likelihood of changing sentiment to negative, for all topics except ACA.

On the other hand, when inspecting sentiment shifts from negative to positive

(Figure 6.4), there is not always significant increase even when the influence sender’s

tweet is positive. Therefore, although emotional contagion exists for both positive

and negative sentiments [63, 74], their powers are not equal. The finding of negative

sentiment being more “contagious” concurs with prior work’s observation that bad

feelings are easier to form and more difficult to shift [11].
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Figure 6.3: Probability of sentiment shift from positive to negative, over all turns
(“Overall”) and turns where tweets of the influence sender have specific content prop-
erties.

Furthermore, we find that objective tweets do not increase the chance of triggering

sentiment shift, regardless of the direction of shift. Therefore, in order to shift others’

sentiment, an influence sender will be more effective if his own tweets contain the

target sentiment.

6.2.6 Sentiment Shift as A Multi-Turn Process

Another element of interest is the effect of multiple turns on sentiment shift, since

the conversation between an influence receiver and a sender can involve more than

one turn. Therefore, it is possible that multiple non-changing sentiment transitions

(one for each turn) exist before a sentiment shift occurs.
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Figure 6.4: Probability of sentiment shift from negative to positive, over all turns
(“Overall”) and turns where tweets of the influence sender have specific content prop-
erties.

Two competing prepositions can be leveraged to predict the variation of sentiment

shift probability as more turns are present. On one hand, an increasing amount of

exposure to a sentiment is expected to increase the propensity of aligning one’s own

sentiment with it. On the other hand, a series of unsuccessful attempts to shift

sentiment are likely to further discount the receiver’s inclination of doing so.

In order to validate the two hypotheses empirically, we plot the probability of

sentiment shift against the number of non-changing turns until the shift occurs, For

example, if there are 3 turns between an influence receiver and a sender, and the

three turns’ transitions are positive → positive, positive → positive, and positive →
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negative, respectively, then the number of turns is 3. If the transition in the second

turn is positive → negative, then the number of turns is 2.

Results from two representative topics — New Moon (Figure 6.5) and Benghazi

(Figure 6.6) — are shown below. The results of Avatar and Products show similar

trends as New Moon, while ACA is similar to Benghazi.
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Figure 6.5: Probability of sentiment shift on the topic New Moon, conditioned on
the number of turns until shift happens. Logarithmically-fitted trend lines are also
plotted.

The plots clearly suggest that the way sentiment shift probability varies over time

is not always the same. As the number of turns increases, it is increasingly difficult for

the sentiment on New Moon to shift from negative to positive (the logarithmically-

fitted trend line has an R2 value of 0.93), for example. However, it becomes more

likely for the sentiment to become negative (R2 = 0.90). On the other hand, directions
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Figure 6.6: Probability of sentiment shift on the topic Benghazi, conditioned on
the number of turns until shift happens. Logarithmically-fitted trend lines are also
plotted.

of trends differ among topics. In Benghazi, for instance, the probability of changing

to negative decreases over the number of turns.

The dichotomy of trends cannot be fully explained by either preposition, but

rather by the observation that it is easier to sway sentiment away from the domi-

nant sentiment on the topic, and harder to shift the sentiment to it (recall that the

dominant sentiments in New Moon and Benghazi are positive and negative, respec-

tively). We believe this deserves future research efforts, as it may be linked to the

socio-psychological phenomenon of minority influence [144].

We note that such non-conformity in sentiment shifts does not imply that the

dominant sentiment will become the minority after a sufficiently large number of

turns. When dividing our datasets into 5 consecutive windows, for instance, we find

that the dominant sentiment remains the same. As the number of turns increases,
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fewer people will keep the minority sentiment and continue exerting their influence.

Therefore the amount of people being converted is low.

6.3 Maximizing Sentiment Spread in a Network

Using the insights learned from patterns of sentiment shift in social networks, we

can devise more effective strategies of steering the sentiment on particular topics. Such

techniques can be applied to applications such as brand management, advertising and

political mobilizations. One practical question is: Assume there exist a user network,

a target sentiment, the probability of sentiment shift, and a fixed budget of “seed”

turns where influence senders attempt to affect receivers’ sentiments. What is the

largest sentiment spread that can be created, and which properties should the seed

contents have?

This spread maximization problem can be viewed as an extension to the influence

maximization problem with an independent cascade model [72], where seed users act

as influence senders. Initially all users have the sentiment opposite to the target,

and seed users start by changing themselves to the target sentiment. At each round,

each newly-changed user has a success rate of switching the sentiment of his non-

changing friends. The distinction of the spread maximization problem from influence

maximization is that the success rate of a user is no longer static, as it varies according

to the number of turns he has made (Section 6.2.6).

To handle this challenge, we transform the spread maximization problem to a series

of standard influence maximization problems. Let the budget on number of turns be

K. We start by setting the weights of all edges to the probability of sentiment shift

conditioned on 1 turn. The influence maximization algorithm is then run to calculate
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the expected coverage by K seeds. The first seed user, who has the largest marginal

contribution to sentiment spread, is selected, and the weights of all of his out-edges are

updated to the probability of sentiment shift conditioned on 2 turns. On the updated

network, the influence maximization algorithm is run again, but picking only K − 1

seeds and computing the expected coverage. This process continues until the number

of required seeds becomes zero.33 The maximum of sentiment coverage under all

K subproblems becomes the greedy solution to the sentiment spread maximization

problem.

We solve the spread maximization problem on networks built from users’ retweet

activities, where each retweet forms a directed edge from the original author to the

user. To solve the influence maximization problem, we use PMIA [24], which utilizes

various heuristics to obtain a high-quality approximate to the otherwise NP-hard

problem.

Figure 6.7 plots the expected coverage of sentiment spread (the number of users

that have the goal sentiment) on New Moon, with K = 25 seed turns. For both target

sentiments, we solve the spread maximization problem with senders’ tweets having

different properties: positive, positive+quotation, negative, negative+quotation, and

quotation only. The property of having quotation is included because for most topics

the probability of sentiment shift becomes higher with it presented (Section 6.2.5).

As expected, positive tweets from senders lead to greater coverage of positive

sentiment than negative tweets, and vice versa. When tweets have quotations in

addition, the expected sentiment spread often increases as well.

33In our experiment, we limit a user to be selected by at most 5 times, given that the sentiment
shift probability varies little after 5 turns.
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Figure 6.7: The expected coverage of sentiment spread on New Moon, with 25 seed
turns.

6.4 Conclusion

To date, there have been limited number of empirical studies on sentiment shift

and sentiment spread in online social networks [57, 34, 74]. In this chapter, we have

conducted an analysis of patterns of sentiment shift for more than 2 million twitter

users and 5 million tweets on various topics. We believe the results from this work

will motivate more thorough multi-disciplinary research efforts in the future.

Our experimental results suggest that content properties of user posts have no-

ticeable impact on the inclination of people to adjust their sentiment regarding spe-

cific topics. For example, tweets containing negative content significantly boost the

transition of sentiment from positive to negative, and so do tweets that include quo-

tations. However, there is only weak evidence for the opposite, as positive tweets

do not necessarily make a user more likely to move away from negative sentiment.

The asymmetry of influence powers can be the evidence for the “bad is stronger than

good” phenomenon [11] in online social networks.
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The finding that people are increasingly likely to drift from the dominant sen-

timent is another topic worthy of future investigation. First, is it possible for the

minority sentiment to become dominant, as opposed to our dataset, given certain ini-

tial sentiment distribution? Second, can we promptly detect the dominant sentiment

at the dataset’s early stage, and thus infer the trend of sentiment shift over time?

Answers to these questions can help design more informed strategies for problems

including sentiment spread maximization.

Moreover, we believe that the roles of network and users still warrant more studies,

despite the low correlation between those characteristics and sentiment shift proba-

bilities. One limitation of our work is that since we were examining particular topics,

we did not have the complete graph information of the following relationship when

calculating users’ influence metrics. This will be addressed in future work. It will also

be interesting to conduct similar experiments on other network datasets to examine

the robustness of our findings.

Finally, we shall investigate the link between sentiment shift and the behavior

of information sharing. Many studies [112] have pointed out the motivation behind

sharing one’s emotion with others. What remains intriguing is the effect of sentiment

shift on information cascade in OSNs. Are people more like to share information when

there is sentiment shift, and from which polarity to which? Does it have different

effects on emotional content versus non-emotional content? These are all exciting

questions to social computing and communication researchers.

One limitation of our work is the assumption that turns represent true conver-

sations, even though tweets are broadcast to a larger number of audience instead of

directed at individuals. The long average duration of turns also raises the possibility
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that it is offline engagement or the inherent trend of topic itself that produces sen-

timent shifts, instead of the influence of online friends. Future researchers ought to

control these factors, in order to reach more confident conclusions.
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Chapter 7: Conclusions and Future Work

We conclude the dissertation in this chapter, by summarizing our contributions

to dynamic OSN analytics (Section 7.1), pointing out the limitations in present work

(Section 7.2) and possible directions for future work (Section 7.3). Dynamic OSN

analytics concerns with understanding the development and interplay of its key com-

ponents: network structure, user-generated content, and user characteristics. The

central statement of this dissertation is that a holistic approach that incorporates

the information on network, content, and users will leading to more robust graph

algorithms, as well as a more comprehensive understanding of content and network

dynamics in OSNs. We demonstrate the benefit of this approach through the de-

velopment of a series of analytical tasks: (1) community detection, (2) structural

role detection, (3) user engagement prediction, (4) online social group discussion di-

vergence prediction, and (5) OSN user sentiment shift analysis. In each study, we

combine the knowledge from multiple aspects, and show the advantage of this holis-

tic framework over methods that only focus on one single aspect. Our models are

well-tested on large-scale datasets collected from real social networks, including Face-

book, Google Plus, and Twitter, and always yield better empirical performance than

other state-of-the-art approaches.
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Below we summarize the key innovations and findings obtained from each of our

contributions.

7.1 Summary of Key Contributions

• Network Simplification and Community Detection Using Structural

and Content Information Chapter 2

We design an extremely simple by efficient algorithm for community identifica-

tion in large-scale graphs by fusing content and link similarity. Our algorithm,

CODICIL, selectively retains edges of high relevancy within local neighborhoods

from the fused graph, and subsequently clusters this backbone graph with any

content-agnostic graph clustering algorithm, such as METIS or Markov Clus-

tering. Our experiments demonstrate that CODICIL outperforms state-of-the-

art methods in clustering quality while running orders of magnitude faster for

moderately-sized datasets. Built on the simplification procedure, we are able to

handle large graphs with millions of nodes and hundreds of millions of edges,

which would otherwise be challenging to analyze. While simplification can be

directly applied to the original graph alone with a small loss of clustering quality,

it is particularly potent when combined with content edges, delivering superior

clustering quality with excellent runtime performance. Additionally, one dis-

tinct benefit provide by CODICIL over other network simplification algorithms

is that it can recover missing links (false negatives) by factoring in content

similarity.

• Joint Discovery of Communities and Structural Roles in Network

Chapter 3
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We propose a principled algorithm to mine communities and structural roles

from networks simultaneously. Communities and structural roles provide two

complementary angles in understanding network topology, and utilizing infor-

mation from one aspect can benefit the inference of another. Our algorithm,

RC-Joint operates in an alternately manner, and improve community and role

assignments iteratively until convergence. Furthermore, the design of RC-Joint

enables the identification of overlapping community and role assignments, which

occur more frequently in real-life scenarios than disjoint assignments. We com-

pare the outputs by RC-Joint and other state-of-the-art single-tasked mining

algorithms run on real-world and synthetic networks, and find that RC-Joint

indeed produce results that match better with gold standard information. The

node-centric computation paradigm lends the algorithm itself with easy paral-

lelism and significant speedup with OpenMP or other similar framework, making

it easily scalable for large networks. Additionally, we find that by running RC-

Joint on a sparse version of the network first and using the output to initialize

the second run, it actually yields faster convergence and better results.

• Prediction of User Engagement in Online Discussions Chapter 4

We systematically investigate factors that may affect the engagement of OSN

users in online discussions related with real-world events. We build an effective

prediction model to estimate the engagement decision as well as the volume of

event-relevant tweets as a result of user engagements. Our model utilizes fea-

tures extracted from network structure (e.g. degree, network component size),

content (e.g. usage of sentiment words, emoticons), user behavior (e.g. fre-

quency of retweet, influence measure), and historical information. Evaluations
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on a large number of Twitter event-oriented communities demonstrate that our

model can produce predictions of higher quality, compared with other more

parsimonious models. Moreover, we find there exist correlations between event

types and feature values, which grant future study of user engagement in an

event-specific setting.

• Analyses of Discussion Divergence on Online Social Groups Chapter 5

We focus on characterizing the online social group dynamics using content of

group discussion in contrast to structural properties that have been studied ear-

lier, and proposes a formal definition of group discussion divergence based on

Jensen-Shannon divergence. We study the link between online social groups’ dis-

cussion divergence and their structural and user features, which are inspired by

the theories of social identity and social cohesion, respectively. Although both

theories have their roots in the socio-psychology literature targeted at face-to-

face social interactions, we find that strong correlations still exist between a sub-

set of features and the discussion divergence of online groups. Leveraging these

features in addition to content features, our classifiers can accurately predict the

future change of collectively diverging behavior in the group discussions. The

classifiers achieve F-1 scores of up to 0.8, a significant improvement (33%) from

the baseline method. Furthermore, we find statistical evidence that features

derived from a weaker assumption of uni-directional interpersonal attraction

have obtained equivalent performance in predicting discussion divergence. This

result suggests that mutual attraction, as conjectured in the original proposal of

social cohesion theory, may not be a necessary condition for structural cohesion

in Twitter.
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• Patterns of Sentiment Shift in Online Conversations Chapter 6

We have conducted an analysis of patterns of sentiment shift for more than 2

million twitter users and 5 million tweets on topics including movies, politics,

and technology. Our experimental results suggest that content properties of

user posts have noticeable impact on the inclination of people to adjust their

sentiment regarding specific topics. For example, tweets containing negative

content significantly boost the likelihood of shifting sentiment from positive to

negative, and so do tweets that include quotations. However, the reverse does

not hold in our experiment. The asymmetry of influence powers provide new

evidence supporting the presence of “bad is stronger than good” phenomenon

in OSNs. We also find that people are increasingly likely to drift from the

dominant sentiment, and we believe it deserves future investigation. Finally, we

find very low correlation between sentiment shift probability and user’s degree

as well as PageRank value, and this aligns with the observation of “million

follower fallacy” on Twitter [19].

7.2 Limitations in Present Work

Reviewing the research methodology and conclusion in this dissertation, we find

that despite the contributions to OSN analytics in multiple fronts, there are still

limitations in our studies. Briefly speaking, the drawbacks come from three aspects:

modeling approach, theoretical connection, and algorithm complexity.

Data Quality:

The value of OSN analytics algorithms often hinges on the underlying data’s

quality. For based using real social network site data, we have strived for the highest
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data quality as possible by expanding seed list in the crawling process, as well as spam

filtering and other data cleansing operations. However, public access to live streams of

services such as Twitter are often subject to volume constraint, making the collected

data only a sample of the full traffic. The mechanism behind such sampling is not

disclosed to the public, leading to the question of whether the sample is representative

(i.e. unbiased) of the complete dataset. Until we are able to obtain a concrete answer

to this concern, it is advised to always treat the results from relevant studies with

care. A more constructive approach is to apply a notion similar to confidence interval

on the results, and to use principled statistical methods to quantify the uncertainty

as a result of the upstream data sampling. If multiple samples of the same traffic are

available, it is also feasible to adopt bagging-like methods to produce robust analytical

results.

Another limitation regarding data quality is the lack of offline activity information.

While users have spent significant amount of time online, they also participate in

offline activities and engage with each other. In an ideal world, information of both

online and offline activities is analyzed, user identities are matched, and influence in

decision making is attributed to both channels properly. For our large-scale studies,

however, it is too costly to collect offline data, creating challenges in accounting for

any effect of offline data.

Modeling Approach:

For most analytical tasks discussed in this dissertation, we have defined, engi-

neered, and used quantitative features to construct both supervised and unsupervised

machine learning models. Although some features can relate to qualitative description

in existing theories (such as those discussed in Chapter 5), many others are created
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in a more ad hoc fashion. One disadvantage of such an approach is that correlations

may exist among subsets of features, both affecting model complexity and prediction

quality. While there are various methods (such as Principle Component Analysis and

Singular Value Decomposition) to alleviate this issue, and some of them have been

leveraged (e.g. Chapter 4), they often apply complex transformation to the original

feature space, making the resultant features less interpretable and intuitive to end

analysts. Also, the correlation analyses performed in the dissertation are only able

to gauge linear relationship between a feature and the response variable, and it falls

short in capturing any nonlinear relationship.

Moreover, the output from predictive tasks in this work is always a single attribute

(i.e. a discrete label or a numerical value). However, OSN activities in real life may

also have other types of representation, such as time series or graphs. The ability of

producing such structured output is very valuable, as it encodes more information

in the output. Achieve this goal, however, will require more sophisticated model

specification and the corresponding algorithm to solve it.

Theoretical Connection:

In this dissertation, we have described our preliminary efforts in bridging existing

socio-psychological theories and dynamic OSN analytics (Chapters 5 and 6). Given

the plethora of relevant theories, what we have studied is just the tip of the iceberg,

and they are often more nuanced than how they are modeled in the current ap-

proaches. To illustrate, when analyzing the probability of sentiment shift and factors

behind it, we have limited ourselves to one influencer at a time. In the real world,

however, the behavior of sentiment shift by an individual is more likely to be the

result of the collective influence from his or her social circle.
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Furthermore, the scope of the data we have analyzed could have been further

broadened. This is pertinent to the generalizability of our research findings. While we

have always experimented with datasets from various domains and events in different

categories, by no means have they covered every single possible domain. In terms of

data sources, they should not be limited to Twitter and other smaller OSNs either,

although data availability may soon become an practical issue. As social media

companies grow larger, they share the unfortunately tendency of tightening control

on site data and usage, making it more difficult for OSN researchers to deploy their

studies on real-world datasets.

Algorithm Complexity:

Finally is the challenge of algorithm complexity, as it is often the sole factor of

stopping us from developing more realistic models to capture the nuance in OSN

activities. As already mentioned in the previous sections, there is often a trade-off

between the complexity and result quality of an analytical model. Although adding

an interaction item in the model may seem intuitive and trivial during the designing

phase, only in a later stage may we find that it renders an otherwise-polynomial in-

ference algorithm exponential. Without significant advances in the algorithm design,

we may only rely on more simplistic models, if we still want to obtain results in a

reasonable amount of time.

7.3 Future Work

In this last section, we discuss some directions for future work. With a growing

interest in OSN analytics, those fundamental directions will surely benefit its further

development.
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7.3.1 Feature Learning and Structured Prediction in OSN An-
alytics

One promising solution to feature design is to automatically learn features via re-

cursively aggregating features. The aggregation process keeps creating new features

until they become sufficiently correlated with each other, and it has been successfully

used in deriving network features for each node in the network [65]. In that work,

the scope of aggregation is over the expanded neighbor of a node, and it may re-

quire modification when applying to other types of features, such as content and user

characteristics.

Another thread to investigate is to use structured learning in predictive tasks. In

the present work, all predictive models are designed to output one label for each input

data record (i.e. a feature vector containing features regarding the user or group of

interest). The interaction among users/groups is only encoded as aggregated features,

and rich information collapsed and lost in this feature representation. Structured

learning has been proposed to address this issue, and has proven itself useful in various

machine learning algorithm [8], such as natural language processing [140] and visual

recognition [44]. We plan to explore the possibility of applying structured learning

by expressly modeling the interactions among different units as first-class objects.

In terms of analyzing the association between features and the output value, we

can adopt the notion of maximal correlation, which is a generalized version of correla-

tion coefficient. The maximal correlation between two populations can be calculated

via a modified alternating conditional expectations algorithm.
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7.3.2 Finer and Stronger Links between OSN Analytics and
Established Theories

Many existing approaches, including ours, have made assumptions in order to

simplify the model. The exact effect of this practice, however, is far from clear.

To this end, we need to extend our framework to accommodate more details in those

established theories, while ensuring the resultant model not becoming too complicated

and thus intractable. In order to generalize our findings here, a broader coverage of

event domains as well as data sources should be considered. Even if one cannot

exhaustive all events, it will help alleviate any bias in the present studies.

Many other theories in communication and human behavior should be studied in

the setting of OSN, too. For example, prior work [112] has reasoned the motivation

behind sharing one’s emotion with others, and it is intriguing to study the link between

sentiment shift and the behavior of information sharing in OSNs. Are people more

like to share information when there is sentiment shift, and if so, from which polarity

to which? Does it have different effects on the sharing of emotional content versus

non-emotional content? If there is access to corresponding offline activity information,

is there ways to distinguish the effect of online versus offline influence? These are all

exciting questions to social computing and communication researchers.

The link should also be strengthened between network analytics and graph the-

ories. For instance, in Section 2.3 we have compared the spectra of networks before

and after different simplification procedures. While this provides some qualitative

cues on the effect of simplification, deeper analyses can be pursued to link it with

the rich literature in spectral graph theory [28]. Recently there has been a growing

172



interest in giving a more theoretical treatment [60] to network simplification tech-

niques that have demonstrated their effectiveness. This effort may help explain the

empirical superiority of network simplification with regard to network size reduction

while preserving the internal community structure, as well as provide insights on the

advantages of leveraging content information in network simplification.

7.3.3 Improved Algorithm Complexity and Quality Guarantee

When working on novel OSN analytics algorithms, we can design them in a way

such that the output quality can be bounded in a principled way, for instance, sub-

modular functions [75], or conjugate priors in Bayesian models [121]. At the same

time, we should exploit data parallelism and task parallelism, such as the optimiza-

tion for RC-Joint. Frameworks including but not limited to OpenMP, MPI, and

Map-Reduce can be adopted, depending on the underlying computing procedure and

the problem size.

Another aspect of interest is the convergence guarantee of iterative algorithms,

such as that used in Chapter 3. Without the constrained programming component,

the coordinate ascend algorithm will always converge to local maximum. However,

the addition of constraints makes the proof more involved, if the algorithm will indeed

converge. Such analysis is not only of theoretical interest, but also have practical im-

plication, as analysts can have more precise expectation on the algorithm’s behavior.

7.3.4 Real-time OSN Analytics

Our world is full of rapidly-evolving events, thus real-time automatic decision

making is of high societal and economical values. Analyses presented in this disser-

tation are largely done in a batched manner, meaning that the outcome does not
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change as soon as new data arrives. To achieve real-time OSN analytics, it is crucial

to creatively adapt methods that are designed for streaming data [49, 13]. The com-

mon premise of streaming algorithms is that new data input is constantly arriving,

while the computer’s memory capacity is finite. By assuming a streaming model,

the next-generation OSN analytics algorithms should update their decision models

(e.g. machine learning classifier, or probability distribution) and produce new results

whenever new data comes in.

174



Bibliography

[1] Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us
election: divided they blog. In Proceedings of the 3rd international workshop
on Link discovery, pages 36–43. ACM, 2005.

[2] C.C. Aggarwal, Y. Zhao, and P.S. Yu. Outlier detection in graph streams. In
Data Engineering (ICDE), 2011 IEEE 27th International Conference on, pages
399–409. IEEE, 2011.

[3] Yong-Yeol Ahn, James P Bagrow, and Sune Lehmann. Link communities reveal
multiscale complexity in networks. Nature, 466(7307):761–764, 2010.

[4] Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. Mixed
membership stochastic blockmodels. Journal of Machine Learning Research,
9(1981-2014):3, 2008.

[5] Alex Arenas, Alberto Fernandez, and Sergio Gomez. Analysis of the structure
of complex networks at different resolution levels. New Journal of Physics,
10(5):053039, 2008.

[6] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation
in large social networks: membership, growth, and evolution. In SIGKDD’06,
pages 44–54. ACM, 2006.

[7] L. Backstrom and J. Leskovec. Supervised random walks: predicting and rec-
ommending links in social networks. In WSDM’11, pages 635–644. ACM, 2011.

[8] Gökhan BakIr. Predicting structured data. MIT press, 2007.

[9] E. Bakshy, B. Karrer, and L.A. Adamic. Social influence and the diffusion of
user-created content. In EC’09, pages 325–334. ACM, 2009.

[10] Sigal G Barsade. The ripple effect: Emotional contagion and its influence on
group behavior. Administrative Science Quarterly, 47(4):644–675, 2002.

[11] Roy F Baumeister, Ellen Bratslavsky, Catrin Finkenauer, and Kathleen D Vohs.
Bad is stronger than good. Review of general psychology, 5(4):323, 2001.

175



[12] D.J. Beal, R.R. Cohen, M.J. Burke, and C.L. McLendon. Cohesion and perfor-
mance in groups: a meta-analytic clarification of construct relations. Journal
of Applied Psychology, 88(6):989, 2003.

[13] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa:
Massive online analysis. The Journal of Machine Learning Research, 11:1601–
1604, 2010.

[14] D.M. Blei and J.D. Lafferty. Dynamic topic models. In ICML’06, ICML’06,
pages 113–120, New York, NY, USA, 2006. ACM.

[15] D.M. Blei, A.Y. Ng, and M.I. Jordan. Latent dirichlet allocation. JMLR,
3:993–1022, 2003.

[16] Nyla R Branscombe and Daniel L Wann. The positive social and self concept
consequences of sports team identification. Journal of Sport & Social Issues,
15(2):115–127, 1991.

[17] A.Z. Broder, M. Charikar, A.M. Frieze, and M. Mitzenmacher. Min-wise inde-
pendent permutations. In STOC’98, pages 327–336. ACM, 1998.

[18] Ceren Budak and Rakesh Agrawal. On participation in group chats on twitter.
In WWW’13, pages 165–176, 2013.

[19] M. Cha, H. Haddadi, F. Benevenuto, and K. Gummadi. Measuring user influ-
ence in twitter: The million follower fallacy. In ICWSM’04, 2010.

[20] Meeyoung Cha, Alan Mislove, and Krishna P Gummadi. A measurement-driven
analysis of information propagation in the flickr social network. In Proceedings
of the 18th international conference on World wide web, pages 721–730. ACM,
2009.

[21] C. Chang and C. Lin. LIBSVM: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[22] M.S. Charikar. Similarity estimation techniques from rounding algorithms. In
STOC’02, pages 380–388. ACM, 2002.

[23] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer. SMOTE: synthetic mi-
nority over-sampling technique. JAIR, 16(1):321–357, 2002.

[24] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for
prevalent viral marketing in large-scale social networks. In Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 1029–1038. ACM, 2010.

176

http://www.csie.ntu.edu.tw/~cjlin/libsvm


[25] H. Cheng, Y. Zhou, and J.X. Yu. Clustering large attributed graphs: A balance
between structural and attribute similarities. TKDD, 5(2):12, 2011.

[26] Justin Cheng, Lada Adamic, P Alex Dow, Jon Michael Kleinberg, and Jure
Leskovec. Can cascades be predicted? In Proceedings of the 23rd international
conference on World wide web, pages 925–936. International World Wide Web
Conferences Steering Committee, 2014.

[27] Sarvenaz Choobdar, Pedro Rebeiro, Srinivasan Parthasarathy, and Fernando
Silva. Dynamic inference of social roles in information cascades. Data Mining
and Knowledge Discovery, To Appear, 2014.

[28] F.R.K. Chung. Spectral graph theory, volume 92. Amer Mathematical Society,
1997.

[29] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community
structure in very large networks. Physical review E, 70(6):066111, 2004.

[30] D. Cohn and T. Hofmann. The missing link-a probabilistic model of document
content and hypertext connectivity. In NIPS’01, volume 13, page 430. The MIT
Press, 2001.

[31] Michael Conover, Jacob Ratkiewicz, Matthew Francisco, Bruno Gonçalves, Fil-
ippo Menczer, and Alessandro Flammini. Political polarization on twitter. In
ICWSM, 2011.

[32] Michael D Conover, Clayton Davis, Emilio Ferrara, Karissa McKelvey, Filippo
Menczer, and Alessandro Flammini. The geospatial characteristics of a social
movement communication network. PloS one, 8(3):e55957, 2013.

[33] D. Cosley, D. Huttenlocher, J. Kleinberg, X. Lan, and S. Suri. Sequential
influence models in social networks. In ICWSM’10, 2010.

[34] Lorenzo Coviello, Yunkyu Sohn, Adam DI Kramer, Cameron Marlow, Massimo
Franceschetti, Nicholas A Christakis, and James H Fowler. Detecting emotional
contagion in massive social networks. PloS one, 9(3):e90315, 2014.

[35] Henriette Cramer, Mattias Rost, and Lars Erik Holmquist. Performing a
check-in: emerging practices, norms and’conflicts’ in location-sharing using
foursquare. In MobileHCI’11, pages 57–66. ACM, 2011.

[36] Aron Culotta. Towards detecting influenza epidemics by analyzing twitter mes-
sages. In Proceedings of the first workshop on social media analytics, pages
115–122. ACM, 2010.

177



[37] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts with-
out eigenvectors a multilevel approach. IEEE Trans. Pattern Anal. Mach. In-
tell., 29(11):1944–1957, 2007.

[38] Maeve Duggan and Aaron Smith. Social media update 2013. Pew Internet and
American Life Project, 2013.

[39] Lata Dyaram and TJ Kamalanabhan. Unearthed: the other side of group
cohesiveness. Journal of Social Science, 10(3):185–90, 2005.

[40] E. Erosheva, S. Fienberg, and J. Lafferty. Mixed-membership models of scien-
tific publications. PNAS, 101(Suppl 1):5220, 2004.

[41] M. Ester, R. Ge, B.J. Gao, Z. Hu, and B. Ben-Moshe. Joint cluster analysis
of attribute data and relationship data: the connected k-center problem. In
SDM’06, pages 25–46, 2006.

[42] Andrea Esuli and Fabrizio Sebastiani. Sentiwordnet: A publicly available lexical
resource for opinion mining. In Proceedings of LREC, volume 6, pages 417–422,
2006.

[43] Rosta Farzan, Laura A. Dabbish, Robert E. Kraut, and Tom Postmes. Increas-
ing commitment to online communities by designing for social presence. In
CSCW’11, pages 321–330, 2011.

[44] Alan Fern and Robert Givan. Sequential inference with reliable observa-
tions: Learning to construct force-dynamic models. Artificial intelligence,
170(14):1081–1100, 2006.

[45] L. Festinger, S. Schachter, and K. Back. The spatial ecology of group formation.
Social pressure in informal groups, pages 33–60, 1950.

[46] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–
174, 2010.

[47] James H Fowler and Nicholas A Christakis. Dynamic spread of happiness in
a large social network: longitudinal analysis over 20 years in the framingham
heart study. Bmj, 337, 2008.

[48] E. Fox and J. Shaw. Combination of multiple searches. NIST SPECIAL PUB-
LICATION SP, pages 243–243, 1994.

[49] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Min-
ing data streams: a review. ACM Sigmod Record, 34(2):18–26, 2005.

178



[50] Sean Gilpin, Tina Eliassi-Rad, and Ian Davidson. Guided learning for role
discovery (glrd): framework, algorithms, and applications. In Proceedings of
the 19th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 113–121. ACM, 2013.

[51] Michelle Girvan and Mark EJ Newman. Community structure in social and bio-
logical networks. Proceedings of the National Academy of Sciences, 99(12):7821–
7826, 2002.

[52] David F Gleich and C Seshadhri. Vertex neighborhoods, low conductance cuts,
and good seeds for local community methods. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 597–605. ACM, 2012.

[53] J. Gomide, A. Veloso, W. Meira Jr, V. Almeida, F. Benevenuto, F. Ferraz, and
M. Teixeira. Dengue surveillance based on a computational model of spatio-
temporal locality of twitter. In WebSci’11. ACM, 2011.

[54] Pollyanna Gonçalves, Matheus Araújo, Fabrício Benevenuto, and Meeyoung
Cha. Comparing and combining sentiment analysis methods. In Proceedings of
the first ACM conference on Online social networks, pages 27–38. ACM, 2013.

[55] P.A. Grabowicz, L.M. Aiello, V.M. Eguíluz, and A. Jaimes. Distinguishing topi-
cal and social groups based on common identity and bond theory. In WSDM’13,
2013.

[56] T.L. Griffiths and M. Steyvers. Finding scientific topics. PNAS, 101(Suppl
1):5228, 2004.

[57] Anatoliy Gruzd, Sophie Doiron, and Philip Mai. Is happiness contagious online?
a case of twitter and the 2010 winter olympics. In System Sciences (HICSS),
2011 44th Hawaii International Conference on, pages 1–9. IEEE, 2011.

[58] Jamie Guillory, Jason Spiegel, Molly Drislane, Benjamin Weiss, Walter Donner,
and Jeffrey Hancock. Upset now?: emotion contagion in distributed groups.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 745–748. ACM, 2011.

[59] S. Günnemann, B. Boden, and T. Seidl. Db-csc: a density-based approach
for subspace clustering in graphs with feature vectors. In PKDD 2011, pages
565–580. Springer-Verlag, 2011.

[60] Rishi Gupta, Tim Roughgarden, and C Seshadhri. Decompositions of triangle-
dense graphs. In Proceedings of the 5th conference on Innovations in theoretical
computer science, pages 471–482. ACM, 2014.

179



[61] Jeffrey T Hancock, Kailyn Gee, Kevin Ciaccio, and Jennifer Mae-Hwah Lin. I’m
sad you’re sad: emotional contagion in cmc. In Proceedings of the 2008 ACM
conference on Computer supported cooperative work, pages 295–298. ACM, 2008.

[62] D. Hanisch, A. Zien, R. Zimmer, and T. Lengauer. Co-clustering of biological
networks and gene expression data. Bioinformatics, 18(suppl 1):S145–S154,
2002.

[63] Elaine Hatfield and John T Cacioppo. Emotional contagion. Cambridge uni-
versity press, 1994.

[64] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu,
D. Koutra, C. Faloutsos, L. Li, Y. Matsubara, et al. Rolx: Structural role
extraction & mining in large graphs. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1231–
1239. ACM, 2012.

[65] K. Henderson, B. Gallagher, L. Li, L. Akoglu, T. Eliassi-Rad, H. Tong, and
C. Faloutsos. It’s who you know: graph mining using recursive structural fea-
tures. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 663–671. ACM, 2011.

[66] Alison L Hill, David G Rand, Martin A Nowak, and Nicholas A Christakis.
Emotions as infectious diseases in a large social network: the sisa model. Pro-
ceedings of the Royal Society B: Biological Sciences, page rspb20101217, 2010.

[67] CJ Hutto and Eric Gilbert. Vader: A parsimonious rule-based model for sen-
timent analysis of social media text. In Eighth International AAAI Conference
on Weblogs and Social Media, 2014.

[68] Glen Jeh and Jennifer Widom. Simrank: a measure of structural-context simi-
larity. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 538–543. ACM, 2002.

[69] S.R. Kairam, D.J. Wang, and J. Leskovec. The life and death of online groups:
Predicting group growth and longevity. In ICWSM’12, pages 673–682. ACM,
2012.

[70] D.R. Karger. Random sampling in cut, flow, and network design problems.
Mathematics of Operations Research, 24(2):383–413, 1999.

[71] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on scientific Computing,
20(1):359–392, 1998.

180



[72] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of in-
fluence through a social network. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 137–
146. ACM, 2003.

[73] Adam DI Kramer. The spread of emotion via facebook. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 767–770.
ACM, 2012.

[74] Adam DI Kramer, Jamie E Guillory, and Jeffrey T Hancock. Experimental evi-
dence of massive-scale emotional contagion through social networks. Proceedings
of the National Academy of Sciences, page 201320040, 2014.

[75] Andreas Krause and Daniel Golovin. Submodular function maximization.
Tractability: Practical Approaches to Hard Problems, 3:19, 2012.

[76] Andrey Kupavskii, Liudmila Ostroumova, Alexey Umnov, Svyatoslav Usachev,
Pavel Serdyukov, Gleb Gusev, and Andrey Kustarev. Prediction of retweet
cascade size over time. In Proceedings of the 21st ACM international conference
on Information and knowledge management, pages 2335–2338. ACM, 2012.

[77] M.H. Kutner, C. Nachtsheim, and J. Neter. Applied linear regression models,
4th Edition. McGraw-Hill New York, NY, 2004.

[78] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or
a news media? In WWW’10, pages 591–600. ACM, 2010.

[79] Kristina Lerman and Rumi Ghosh. Information contagion: An empirical study
of the spread of news on digg and twitter social networks. ICWSM, 10:90–97,
2010.

[80] J. Leskovec, L.A. Adamic, and B. Huberman. The dynamics of viral marketing.
ACM Transactions on the Web (TWEB), 1(1):5, 2007.

[81] J. Leskovec, K.J. Lang, A. Dasgupta, and M.W. Mahoney. Statistical properties
of community structure in large social and information networks. In WWW’08,
pages 695–704. ACM, 2008.

[82] J. Leskovec, K.J. Lang, and M. Mahoney. Empirical comparison of algorithms
for network community detection. In Proceedings of the 19th international con-
ference on World wide web, pages 631–640. ACM, 2010.

[83] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. Meme-tracking and the
dynamics of the news cycle. In Proceedings of the 15th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 497–506.
ACM, 2009.

181



[84] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceed-
ings of the 12th ACM SIGKDD international conference on Knowledge discov-
ery and data mining, pages 631–636. ACM, 2006.

[85] Chin-Yew Lin, Guihong Cao, Jianfeng Gao, and Jian-Yun Nie. An information-
theoretic approach to automatic evaluation of summaries. In NAACL HLT’06,
pages 463–470. Association for Computational Linguistics, 2006.

[86] Jianhua Lin. Divergence measures based on the shannon entropy. Information
Theory, IEEE Transactions on, 37(1):145–151, 1991.

[87] Zhifeng Liu, Tingting Zhang, and Qiujun Lan. An extended sisa model for
sentiment contagion. Discrete Dynamics in Nature and Society, 2014, 2014.

[88] A.J. Lott and B.E. Lott. Group cohesiveness as interpersonal attraction: A
review of relationships with antecedent and consequent variables. Psychological
bulletin, 64(4):259, 1965.

[89] Annie Louis and Ani Nenkova. Automatically assessing machine summary con-
tent without a gold standard. Computational Linguistics, 39(2):267–300, 2013.

[90] Zongyang Ma, Aixin Sun, and Gao Cong. On predicting the popularity of newly
emerging hashtags in twitter. Journal of the American Society for Information
Science and Technology, 64(7):1399–1410, 2013.

[91] A.S. Maiya and T.Y. Berger-Wolf. Sampling community structure. In WWW
2010, pages 701–710. ACM, 2010.

[92] Andrew McCallum, Xuerui Wang, and Andrés Corrada-Emmanuel. Topic and
role discovery in social networks with experiments on enron and academic email.
J. Artif. Intell. Res.(JAIR), 30:249–272, 2007.

[93] A. Mislove, M. Marcon, K.P. Gummadi, P. Druschel, and B. Bhattacharjee.
Measurement and analysis of online social networks. In SIGCOMM’07, pages
29–42. ACM, 2007.

[94] Saif M. Mohammad, Svetlana Kiritchenko, and Xiaodan Zhu. Nrc-canada:
Building the state-of-the-art in sentiment analysis of tweets. In Proceed-
ings of the seventh international workshop on Semantic Evaluation Exercises
(SemEval-2013), Atlanta, Georgia, USA, June 2013.

[95] B. Mohar. The laplacian spectrum of graphs. Graph theory, combinatorics, and
applications, 2:871–898, 1991.

[96] M. Montague and J.A. Aslam. Relevance score normalization for metasearch.
In CIKM’01, pages 427–433. ACM, 2001.

182



[97] J. Moody and D.R. White. Structural cohesion and embeddedness: A hierar-
chical concept of social groups. American Sociological Review, pages 103–127,
2003.

[98] B. Mullen and C. Copper. The relation between group cohesiveness and
performance: An integration. Psychological Bulletin; Psychological Bulletin,
115(2):210, 1994.

[99] Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva, Veselin Stoyanov, Alan Rit-
ter, and Theresa Wilson. Semeval-2013 task 2: Sentiment analysis in twitter.

[100] R.M. Nallapati, A. Ahmed, E.P. Xing, and W.W. Cohen. Joint latent topic
models for text and citations. In SIGKDD’08, pages 542–550. ACM, 2008.

[101] Alexandra Olteanu, Carlos Castillo, Fernando Diaz, and Sarah Vieweg. Cri-
sislex: A lexicon for collecting and filtering microblogged communications in
crises. In Proceedings of the Eighth International Conference on Weblogs and
Social Media, ICWSM 2014, Ann Arbor, Michigan, USA, June 1-4, 2014., 2014.

[102] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering the
overlapping community structure of complex networks in nature and society.
Nature, 435(7043):814–818, 2005.

[103] B. Pang and L. Lee. Opinion mining and sentiment analysis. Foundations and
Trends in Information Retrieval, 2(1-2):1–135, 2008.

[104] S Parthasarathy, Y Ruan, and V Satuluri. Community discovery in social
networks: Applications, methods and emerging trends. Social Network Data
Analytics, pages 79–113, 2011.

[105] Srinivasan Parthasarathy and S. M. Faisal. Network clustering. In Data Clus-
tering: Algorithms and Applications, pages 415–456. 2013.

[106] M. Pennacchiotti and A.M. Popescu. A machine learning approach to twitter
user classification. In ICWSM’11, 2011.

[107] James W Pennebaker, Cindy K Chung, Molly Ireland, Amy Gonzales, and
Roger J Booth. The development and psychometric properties of liwc2007.
Austin, TX, LIWC. Net, 2007.

[108] Sasa Petrovic, Miles Osborne, and Victor Lavrenko. Rt to win! predicting
message propagation in twitter. In ICWSM, 2011.

[109] H. Purohit, A. Dow, O. Alonso, L. Duan, and K. Haas. User taglines: Alter-
native presentations of expertise and interest in social media. In Proceedings of
the first ASE International Conference on Social Informatics. IEEE, 2012.

183



[110] D. Rao, M. Paul, C. Fink, D. Yarowsky, T. Oates, and G. Coppersmith.
Hierarchical bayesian models for latent attribute detection in social media.
ICWSM’11, pages 598–601, 2011.

[111] Y. Ren, R. Kraut, and S. Kiesler. Applying common identity and bond theory
to design of online communities. Organization Studies, 28(3):377–408, 2007.

[112] Bernard Rimé. Interpersonal emotion regulation. Handbook of emotion regula-
tion, pages 466–485, 2007.

[113] Alan Ritter, Sam Clark, Oren Etzioni, et al. Named entity recognition in tweets:
an experimental study. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 1524–1534. Association for Computa-
tional Linguistics, 2011.

[114] Daniel M Romero, Wojciech Galuba, Sitaram Asur, and Bernardo A Huber-
man. Influence and passivity in social media. Machine learning and knowledge
discovery in databases, pages 18–33, 2011.

[115] D.M. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics of
information diffusion across topics: Idioms, political hashtags, and complex
contagion on twitter. In WWW’11, pages 695–704. ACM, 2011.

[116] Ryan A Rossi, Brian Gallagher, Jennifer Neville, and Keith Henderson. Model-
ing dynamic behavior in large evolving graphs. In Proceedings of the sixth ACM
international conference on Web search and data mining, pages 667–676. ACM,
2013.

[117] Martin Rosvall and Carl T Bergstrom. Multilevel compression of random walks
on networks reveals hierarchical organization in large integrated systems. PloS
one, 6(4):e18209, 2011.

[118] Y. Ruan, H. Purohit, D. Fuhry, S. Parthasarathy, and A. Sheth. Prediction of
topic volume on twitter. In Web Science 2012, WebSci ’12, Evanston, IL, USA
- June 22 - 24, 2012, pages 397–402. ACM, 2012.

[119] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes twitter users: real-
time event detection by social sensors. In WWW’10, pages 851–860. ACM,
2010.

[120] V. Satuluri and S. Parthasarathy. Scalable graph clustering using stochastic
flows: applications to community discovery. In SIGKDD’09, pages 737–746.
ACM, 2009.

184



[121] Venu Satuluri and Srinivasan Parthasarathy. Bayesian locality sensitive hashing
for fast similarity search. Proceedings of the VLDB Endowment, 5(5):430–441,
2012.

[122] Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan. Local graph sparsifi-
cation for scalable clustering. In Proceedings of the 2011 international confer-
ence on Management of data, pages 721–732. ACM, 2011.

[123] X. Shi, J. Zhu, R. Cai, and L. Zhang. User grouping behavior in online forums.
In KDD’09, pages 777–786. ACM, 2009.

[124] Tom AB Snijders and Krzysztof Nowicki. Estimation and prediction for stochas-
tic blockmodels for graphs with latent block structure. Journal of Classification,
14(1):75–100, 1997.

[125] Philip J Stone, Dexter C Dunphy, and Marshall S Smith. The general inquirer:
A computer approach to content analysis. 1966.

[126] A. Strehl and J. Ghosh. Cluster ensembles—a knowledge reuse framework for
combining multiple partitions. The Journal of Machine Learning Research,
3:583–617, 2003.

[127] B. Suh, L. Hong, P. Pirolli, and E. Chi. Want to be retweeted? large scale
analytics on factors impacting retweet in twitter network. In SocialCom’10,
pages 177–184. IEEE, 2010.

[128] Gabor Szabo and Bernardo A Huberman. Predicting the popularity of online
content. Communications of the ACM, 53(8):80–88, 2010.

[129] H. Tajfel, M.G. Billig, R.P. Bundy, and C. Flament. Social categorization and
intergroup behaviour. European Journal of Social Psychology, 1(2):149–178,
1971.

[130] W. Tang, Z. Lu, and I.S. Dhillon. Clustering with multiple graphs. In ICDM’09,
pages 1016–1021. IEEE, 2009.

[131] Y. Tian, R.A. Hankins, and J.M. Patel. Efficient aggregation for graph sum-
marization. In SIGMOD’08, pages 567–580, 2008.

[132] Y. Tsuruoka and J. Tsujii. Bidirectional inference with the easiest-first strategy
for tagging sequence data. In HLT/EMNLP’05, pages 467–474. ACL, 2005.

[133] B.W. Tuckman. Developmental sequence in small groups. Psychological bulletin,
63(6):384, 1965.

185



[134] A. Tumasjan, T.O. Sprenger, P.G. Sandner, and I.M. Welpe. Predicting elec-
tions with twitter: What 140 characters reveal about political sentiment. In
ICWSM’10, pages 178–185, 2010.

[135] J.C. Turner. Towards a cognitive redefinition of the social group. Social identity
and intergroup relations, pages 15–40, 1982.

[136] J.C. Turner, M.A. Hogg, P.J. Oakes, S.D. Reicher, and M.S. Wetherell. Redis-
covering the social group: A self-categorization theory. Basil Blackwell, 1987.

[137] I. Ulitsky and R. Shamir. Identification of functional modules using network
topology and high-throughput data. BMC Systems Biology, 1(1):8, 2007.

[138] S.M. van Dongen. Graph clustering by flow simulation. PhD Thesis, 2000.

[139] G. Ver Steeg and A. Galstyan. Information-theoretic measures of influence based
on content dynamics. In Proceedings of the sixth ACM international conference
on Web search and data mining, pages 3–12. ACM, 2013.

[140] Lu Wang and Claire Cardie. Improving agreement and disagreement identifi-
cation in online discussions with a socially-tuned sentiment lexicon. ACL 2014,
page 97, 2014.

[141] J. Weng, E.P. Lim, J. Jiang, and Q. He. Twitterrank: finding topic-sensitive
influential twitterers. In WSDM’10, pages 261–270. ACM, 2010.

[142] D.R. White and F. Harary. The cohesiveness of blocks in social networks: Node
connectivity and conditional density. Sociological Methodology, 31(1):305–359,
2001.

[143] Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. Recognizing contextual
polarity in phrase-level sentiment analysis. In Proceedings of the conference on
human language technology and empirical methods in natural language process-
ing, pages 347–354. Association for Computational Linguistics, 2005.

[144] Wendy Wood, Sharon Lundgren, Judith A Ouellette, Shelly Busceme, and
Tamela Blackstone. Minority influence: a meta-analytic review of social in-
fluence processes. Psychological bulletin, 115(3):323, 1994.

[145] F. Wu and B. Huberman. Popularity, novelty and attention. In EC’08, pages
240–245. ACM, 2008.

[146] Jierui Xie, Stephen Kelley, and Boleslaw K Szymanski. Overlapping commu-
nity detection in networks: The state-of-the-art and comparative study. ACM
Computing Surveys (CSUR), 45(4):43, 2013.

186



[147] Jaewon Yang and Jure Leskovec. Modeling information diffusion in implicit
networks. In Data Mining (ICDM), 2010 IEEE 10th International Conference
on, pages 599–608. IEEE, 2010.

[148] Jaewon Yang and Jure Leskovec. Overlapping community detection at scale:
a nonnegative matrix factorization approach. In Proceedings of the sixth ACM
international conference on Web search and data mining, pages 587–596. ACM,
2013.

[149] T. Yang, R. Jin, Y. Chi, and S. Zhu. Combining link and content for community
detection: a discriminative approach. In SIGKDD’09, pages 927–936. ACM,
2009.

[150] Wayne W Zachary. An information flow model for conflict and fission in small
groups. Journal of anthropological research, pages 452–473, 1977.

[151] Laijun Zhao, Jiajia Wang, Rongbing Huang, Hongxin Cui, Xiaoyan Qiu, and
Xiaoli Wang. Sentiment contagion in complex networks. Physica A: Statistical
Mechanics and its Applications, 394:17–23, 2014.

[152] D. Zhou, E. Manavoglu, J. Li, C.L. Giles, and H. Zha. Probabilistic models for
discovering e-communities. In WWW’06, pages 173–182. ACM, 2006.

[153] Y. Zhou, H. Cheng, and J.X. Yu. Clustering large attributed graphs: An
efficient incremental approach. In ICDM 2010, pages 689–698. IEEE, 2010.

[154] S. Zhu, K. Yu, Y. Chi, and Y. Gong. Combining content and link for classifi-
cation using matrix factorization. In SIGIR’07, pages 487–494. ACM, 2007.

187


	Abstract
	Acknowledgments
	Vita
	List of Tables
	List of Figures
	Introduction
	Limitations of Existing Work
	Dissertation Statement
	Contributions and Organizations of the Dissertation

	Efficient Community Detection in Large Networks using Content and Links
	Related Work
	Methodology
	Key Intuitions
	Basic Framework
	Key Speedup Optimization
	Performance Analysis

	Experiments
	Datasets
	Baseline Methods
	Experiment Setup
	Effect of Simplification on Graph Structure
	Clustering Quality
	Scalability
	Effect of Varying  on F-score 
	Effect of Ec Constraint on F-score
	Discussions

	Case Studies
	Conclusion

	Simultaneous Detection of Communities and Roles from Large Networks
	Related Work
	Community Detection
	Role Detection

	Algorithm
	Initializing Community Assignment
	Initializing Role Assignment
	Updating Community Assignment
	Updating Role Assignment

	Design Choices and Techniques for Speedup
	Initialization with Results from Sparse Networks
	Parallelizing RC-Joint
	Reusing Computed Results
	Reducing Quadratic Programming Problem Size
	Choosing Nc and Nr

	Experiments and Evaluation
	Performance on Community Detection
	Performance on Role Detection
	Effects of Initializing with Sparse Networks

	Discussion
	Conclusion

	Predicting User Engagement with Structural, Content, Profile, and Behavioral Features
	Problem Statement
	Terminology Definition
	Problem Definition

	Methods
	Twitter as a Data Source
	Community Categorization by Event Characteristics
	Feature Categorization
	Model Fitting

	Experiments
	Data Collection
	Feature Vector Processing
	Evaluation Settings
	Evaluation Results

	Extension for Volume Prediction
	Individual Volume Prediction
	Collective Volume Prediction

	Conclusion

	Understanding Content Divergence in Online Social Group Discussion
	Related Work
	Problem Formulation
	Data Collection
	Identifying Social Groups
	Defining Group Discussion Divergence
	Prediction Problem Statement

	Feature Design
	Structural Features Guided by Social Cohesion
	User Features Guided by Social Identity

	Analyses of Group Features and Discussion Divergence
	User & Structural Feature Statistics
	Correlation Between Features & Group Discussion Divergence
	Contrasting High & Low Divergent Groups
	Effects of Event Characteristics

	Predicting Trend of Group Discussion Divergence
	Feature Sets and Learning Instances
	Experiment Setup
	Learning performance

	Discussion
	Conclusion

	Patterns of Sentiment Shift in Online Conversations
	Related Work
	Methods and Experiments
	Determining Subjectivity Sentiment and Polarity
	Dataset Description
	Sentiment Composition and Sentiment Shifts
	Sentiment Shift and User Influence
	Effect of Content on Sentiment Shift
	Sentiment Shift as A Multi-Turn Process

	Maximizing Sentiment Spread in a Network
	Conclusion

	Conclusions and Future Work
	Summary of Key Contributions
	Limitations in Present Work
	Future Work
	Feature Learning and Structured Prediction in OSN Analytics
	Finer and Stronger Links between OSN Analytics and Established Theories
	Improved Algorithm Complexity and Quality Guarantee
	Real-time OSN Analytics


	Bibliography

