
Characterization of Data Locality Potential of CPU and GPU
Applications through Dynamic Analysis

DISSERTATION

Presented in Partial Fulfillment of the Requirements
for the Degree Doctor of Philosophy

in the Graduate School of The Ohio State University

By

Naznin Fauzia,

Graduate Program in Computer Science and Engineering

The Ohio State University

2015

Dissertation Committee:

P. Sadayappan, Advisor

Atanas Rountev

Gagan Agrawal

c© Copyright by

Naznin Fauzia

2015

ABSTRACT

Emerging computer architectures will feature drastically decreased flops/byte (ratio of

peak processing rate to memory bandwidth), as highlighted by recent studies on Exascale

architectural trends. Further, flops are getting cheaper while the energy cost of data move-

ment is increasingly dominant. The understanding and characterization of data locality

properties of computations is critical in order to guide efforts to enhance data locality.

Reuse distance analysis of memory address traces is a valuable tool to perform data lo-

cality characterization of programs. A single reuse distance analysis can be used to estimate

the number of cache misses in a fully associative LRU cache of any size, thereby provid-

ing estimates on the minimum bandwidth requirements at different levels of the memory

hierarchy to avoid being bandwidth bound. However, such an analysis only holds for the

particular execution order that produced the trace. It cannot estimate potential improvement

in data locality through dependence preserving transformations that change the execution

schedule of the operations in the computation.

In this dissertation, we present a novel dynamic analysis approach to characterize the

inherent locality properties of a computation and thereby assess the potential for data local-

ity enhancement via dependence preserving transformations. The execution trace of a code

is analyzed to extract a computational directed acyclic graph (CDAG) of the data depen-

dences. The CDAG is then partitioned into convex subsets, and the convex partitioning is

used to reorder the operations in the execution trace to enhance data locality. The approach

ii

enables us to go beyond reuse distance analysis of a single specific order of execution of the

operations of a computation in characterization of its data locality properties. It can serve

a valuable role in identifying promising code regions for manual transformation, as well as

assessing the effectiveness of compiler transformations for data locality enhancement. We

demonstrate the effectiveness of the approach using a number of benchmarks, including

case studies where the potential shown by the analysis is exploited to achieve lower data

movement costs and better performance.

Effective parallel programming for GPUs requires careful attention to several factors,

including ensuring coalesced access of data from global memory. There is a need for tools

that can provide feedback to users about statements in a GPU kernel where non-coalesced

data access occurs, and assistance in fixing the problem. In this dissertation, we address

both these needs. We develop a two step framework, where dynamic analysis is first used

to detect uncoalesced accesses by instrumenting PTX code to generate traces. Transforma-

tions to optimize global memory access by introducing coalesced access whenever possible

are achieved using feedback from the dynamic analysis or using a model-driven approach.

Experimental results demonstrate the benefits of use of the tools on a number of bench-

marks from the Rodinia and Polybench suites.

iii

ACKNOWLEDGMENTS

First and foremost, I would like to thank Dr. Sadayappan from the bottom of my heart.

I would be nowhere near where I am today without his guidance and help as an advisor.

Thank you for all your patience with me during my struggling times and giving me hopes.

It was an honor to work with you and learn from you. I would also like to sincerely thank

Dr. Louis-Noël Pouchet for mentoring me throughout this whole process. I have learnt a

lot from you and I do appreciate all your help.

I am thankful to my dissertation committee, Dr. Gagan Agrawal and Dr. Atanas Nasko

Rountev. Thank you Nasko for all those brainstorming meetings and helping me to find

the path whenever I was looking for one. I would also like to thank my collaborators

Dr. Fabrice Rastello and Dr. J Ramanujam for their contributions. Special thanks to my

colleague and friend Venmugil Elango for his help and contributions for the TACO paper.

Thanks to my dear friends Tanima Dey and Ingy Youssef who were beside me during

my ups and downs. Thanks Pai Wei Lai for proof reading my papers. Also thanks to all my

labmates, specially - Arash, Sanket, Mahesh, Qingpeng, Kevin, Martin, Tom and Justin.

Finally, thanks to my loving husband Humayun Arafat for having faith in me. You were

and always will be a true inspiration for me and I could not do this without you being on my

side. Thanks to my parents for all their love and wishes for me. Thanks to the Almighty

for everything He has given me. And thanks to my unborn angel for bringing light and

laughter to my life.

iv

VITA

June 3, 1984 . Born: Dhaka, Bangladesh

June 2007 . Bachelor of Science
Computer Science and Engineering
Bangladesh University of Engineering
and Technology,
Dhaka, Bangladesh

2007-2008 .Lecturer,
Computer Science and Engineering
Bangladesh University of Engineering
and Technology,
Dhaka, Bangladesh

September 2010—May2012Graduate Research Associate,
Computer Science and Engineering,
The Ohio State University,
Columbus, OH, USA

September 2012—Present .Graduate Teaching Associate,
Computer Science and Engineering,
The Ohio State University,
Columbus, OH, USA

Summer 2012 .Graduate Intern,
Intel Compiler Group,
Intel Corporation,
Santa Clara, CA, USA

Summer 2013 .Graduate Intern,
CCE Compiler Group,
Cray Inc.,
Saint Paul, MN, USA

PUBLICATIONS

v

Research Publications

Naznin Fauzia, Louis-Nol Pouchet and P. Sadayappan
Characterizing and Enhancing Global Memory Data Coalescing on GPUs.
In The International Symposium on Code Generation and Optimization (CGO), 2015

Naznin Fauzia, Venmugil Elango, Mahesh Ravishankar, J. Ramanujam, Fabrice Rastello,
Atanas Rountev, Louis-Nol Pouchet and P. Sadayappan
Beyond Reuse Distance Analysis: Dynamic Analysis for Characterization of Data Locality
Potential.
In The ACM Transactions on Architecture and Code Optimization (TACO), 2014

Naznin Fauzia, Venmugil Elango, Mahesh Ravishankar, J. Ramanujam, Fabrice Rastello,
Atanas Rountev, Louis-Nol Pouchet and P. Sadayappan
Beyond Reuse Distance Analysis: Dynamic Analysis for Characterization of Data Locality
Potential.
Technical Report OSU-CISRC-9/13-TR19, 2013

Jun Shirako, Kamal Sharma, Naznin Fauzia, Louis-Nol Pouchet, J. Ramanujam, P. Sa-
dayappan and Vivek Sarkar
Analytical Bounds for Optimal Tile Size Selection.
In International Conference on Compiler Construction (CC), 2012

Justin Holewinski, Ragavendar Ramamurthi, Mahesh Ravishankar, Naznin Fauzia, Louis-
Nol Pouchet, Atanas Rountev and P. Sadayappan
Dynamic trace-based analysis of vectorization potential of applications.
In Programming Language Design and Implementation (PLDI), 2012

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Studies in:

High Performance Computing Prof. P. Sadayappan
Software Engineering Prof. Atanas Rountev
Computer Networks Prof. Dong Xuan

vi

TABLE OF CONTENTS

Page

Abstract . ii

Acknowledgments . iv

Vita . v

List of Figures . x

List of Tables . xiii

List of Algorithms . xiv

Chapters:

1. Introduction . 1

2. Background . 7

2.1 Reuse Distance Analysis . 7
2.1.1 Example . 9
2.1.2 Limitations of reuse distance analysis 12

2.2 Dynamic Analysis . 14
2.3 DDG Generation . 16

3. Beyond Reuse Distance Analysis: Dynamic Analysis for Characterization of
Data Locality Potential . 17

3.1 Introduction . 17
3.2 Background & Overview of Approach 20

3.2.1 Benefits of the proposed dynamic analysis 21

vii

3.2.2 Overview of Approach . 22
3.3 Convex Partitioning of CDAG . 26

3.3.1 Definitions . 27
3.3.2 Forming Convex Partitions . 29
3.3.3 CDAG Traversal: Breadth-first Versus Depth-first 31
3.3.4 Multi-level Cache-oblivious Partitioning 33
3.3.5 Complexity Analysis . 34

3.4 Experimental Results . 36
3.4.1 Experimental Setup . 37
3.4.2 Case Studies . 38
3.4.3 Dataset Sensitivity Experiments 58

3.5 Related Work . 62
3.6 Discussion . 63
3.7 Conclusion . 66

4. Convex Partitioning using Loop Induction Variable Information 68

4.1 Introduction . 68
4.2 Background . 70

4.2.1 Canonical Induction Variables 70
4.2.2 Impact of Heuristic Parameters 71

4.3 Overview of Approach . 75
4.3.1 Formatting the Induction Variables 76
4.3.2 Preprocessing of Dynamic Dependency Graph 77
4.3.3 Convex-partitioning heuristic 79

4.4 Experimental Results . 83
4.4.1 Experimental Setup . 83
4.4.2 Results . 84

4.5 Conclusion . 88

5. Characterizing and Enhancing Global Memory Data Coalescing on GPUs . . . 90

5.1 Introduction . 90
5.2 Background and Overview . 92

5.2.1 GPU Architecture . 92
5.2.2 Global Memory Coalescing . 93
5.2.3 Overview of the Framework . 94

5.3 Dynamic Analysis of Uncoalesced Accesses 96
5.3.1 Instrumentation and Execution 96
5.3.2 Dynamic Analysis Algorithm 97

5.4 Compiler Transforms for Data Coalescing 99
5.4.1 Overview . 99

viii

5.4.2 Computing a New Thread Block Geometry 100
5.4.3 Geometry and Thread Code Transformations 103
5.4.4 Other Static Transformations 109

5.5 Experimental Results . 112
5.5.1 Experimental Protocol . 112
5.5.2 Dynamic Analysis Results . 112
5.5.3 Static Transformation Results 115
5.5.4 Discussions . 119

5.6 Related Work . 120
5.7 Conclusion . 121

6. Conclusion . 122

Bibliography . 124

ix

LIST OF FIGURES

Figure Page

2.1 Example data reference trace . 7

2.2 Example: Single-sweep two-point Gauss-Seidel code, (a) Untiled and (b)
Tiled . 9

2.3 Reuse distance profile:cache hit rate . 10

2.4 Reuse distance profile:cache miss rate . 11

2.5 Reuse distance profile:memory bandwidth demand 11

3.1 Reuse distance analysis for Householder and Floyd-Warshall 22

3.2 CDAG for Gauss-Seidel code in Fig. 2.2. Input vertices are shown in black,
other vertices represent operations performed. 24

3.3 Convex-partition of the CDAG for the code in Fig. 2.2 for N = 10. 25

3.4 Floyd-Warshall all-pairs shortest path . 39

3.5 Floyd-Warshall: Analysis and performance improvements due to tiling . . 40

3.6 Tiled Floyd-Warshall implementation . 42

3.7 Givens Rotation . 43

3.8 Results with different heuristics for Givens Rotation 44

3.9 Modified Givens Rotation before tiling . 45

x

3.10 Modified and automatically tiled Givens Rotation 46

3.11 Givens Rotation: performance improvements due to tiling 47

3.12 Householder computation . 48

3.13 Results with different heuristics for Givens Rotation 49

3.14 Results with different heuristics for 470.lbm 51

3.15 Results with different heuristics for 410.bwaves 52

3.16 Results with different heuristics for 437.leslie3d 53

3.17 Odd-Even sort on linked list . 54

3.18 Tiled odd-even sort . 55

3.19 Odd-Even sort: Performance improvements due to tiling 56

3.20 LU Decomposition . 58

3.21 Sensitivity analysis for odd-even sort . 59

3.22 Sensitivity analysis for LUD . 59

3.23 Performance for odd-even sort . 61

3.24 Performance for LUD . 61

4.1 Results with different heuristics for Jacobi-2D 72

4.2 Results with different heuristics for matrix multiplication 74

4.3 Convex Partitioning Approach for 2D Loop Iteration Space with T = 3 . . 80

4.4 Matmult . 84

4.5 Jacobi 2D . 85

4.6 Floyd-Warshall all-pairs shortest path . 86

xi

4.7 Givens Rotation . 87

4.8 Householder . 87

5.1 Overall Flow Chart of Our Approach . 95

5.2 Partial Sum Method for Load Optimization 110

5.3 Effective bandwidth on Tesla K10. Y-axis is in logarithmic scale 116

5.4 Effective bandwidth on Tesla K20. Y-axis is in logarithmic scale 117

xii

LIST OF TABLES

Table Page

5.1 Sample Output of Dynamic Analysis . 112

5.2 Benchmarks with Uncoalesced Access in Rodinia and Polybench/GPU . . . 113

5.3 Execution times of applications on Tesla K20 114

5.4 Execution times using different thread block geometry on Rodinia 118

xiii

LIST OF ALGORITHMS

Algorithm Page

3.1 GenerateConvexComponents(G, C, CF) 29

3.2 UpdateListOfReadyNodes(R, n) . 30

3.3 updateLiveSet(p, n, C) . 31

3.4 selectBestNode(R, cc, priority, n) . 32

3.5 MultiLevelPartitioning(G, C, Priority, factor) 34

3.6 updateLiveSet(p, n, C) . 34

4.1 GenerateConvexPartitions(G,T) . 81

5.1 Memory Trace Analysis Algorithm . 98

5.2 Polyhedral optimization flow . 105

5.3 Transform Consecutive Load Operations by Single Thread 111

xiv

CHAPTER 1

Introduction

Data locality optimization is an important problem in the modern high-performance

era. Advances in technology over the last few decades have yielded significantly different

rates of improvement in the computational performance of processors relative to the speed

of memory access. Computation latency has been decreasing in a much higher rate than

the memory access latency. Therefore, efficient memory access is required to optimize

the overall program performance. The problem is equally important for both sequential

CPU applications and highly parallel GPU applications. In this dissertation, we approach

the problem of program characterization in terms of their memory access efficiency with a

novel dynamic analysis strategy and show the effectiveness of our tools over existing ones.

Dynamic Analysis for Characterization of Data Locality Potential of Sequential

Programs. The recent Intel Core i7 processor has an operation latency of 4ns and a mem-

ory latency of 37 ns, illustrating an order of magnitude shift in the ratio of operation latency

to memory access latency. Because of the significant mismatch between computational la-

tency and throughput when compared to main memory latency and bandwidth, the use of

hierarchical memory systems and the exploitation of significant data reuse in the higher

(i.e., faster) levels of the memory hierarchy is critical for high performance. Techniques

1

such as pre-fetching and overlap of computation with communication can be used to miti-

gate the impact of high memory access latency on performance, but the mismatch between

maximum computational rate and peak memory bandwidth is much more fundamental; the

only solution is to limit the volume of data movement to/from memory by enhancing data

reuse in registers and higher levels of the cache.

With future systems, the cost of data movement through the memory hierarchy is ex-

pected to become even more dominant relative to the cost of performing arithmetic oper-

ations, both in terms of throughput and energy. Optimizing data access costs will become

ever more critical in the coming years. Given the crucial importance of optimizing data

access costs in systems with hierarchical memory, it is of great interest to develop tools

and techniques to assess the inherent data locality characteristics of different parts of a

computation, and the potential for data locality enhancement via dependence preserving

transformations.

Although reuse distance analysis has found many uses in characterizing data locality

in computations, it has a fundamental constraint: The analysis is based on the memory ad-

dress trace corresponding to a particular execution order of the operations constituting the

computation. Thus, it does not in any way account for the possibility of alternate valid ex-

ecution orders for the computation that may exploit much better data locality. While reuse

distance analysis provides a useful characterization of data locality for a given execution

trace, it fails to provide any information on the potential for improvement in data locality

that may be feasible through valid reordering of the operations in the execution trace.

In this dissertation, we present a novel dynamic analysis approach to provide insights

beyond that possible from standard reuse distance analysis. The analysis seeks to char-

acterize the inherent data locality potential of the implemented algorithm, instead of the

2

reuse distance profile of the address trace from a specific execution order of the constituent

operations. We develop graph partitioning techniques that could be seen as a generalization

of loop tiling, but considering arbitrary shapes for the tiles that enable atomic execution of

tiles.

Instead of simply performing reuse distance analysis on the execution trace of a given

sequential program, we first explicitly construct a computational directed acyclic graph

(CDAG) to capture the statement instances and their inter-dependences, then perform con-

vex partitioning of the CDAG to generate a modified dependence-preserving execution

order with better expected data reuse, and finally perform reuse distance analysis for the

address trace corresponding to the modified execution order. We apply the proposed ap-

proach on a number of benchmarks and demonstrate that it can be very effective.

Characterizing and Enhancing GPU Global Memory Access. While the previous

tool targets sequential CPU applications, in another piece of work we target highly parallel

GPU applications. Parallel programming is hard and programming GPUs is even harder.

In order to achieve high performance, it is essential to address many aspects, such as avoid-

ance/minimization of control divergence among threads, ensuring sufficiently high degrees

of parallelism to effectively mask main memory latency, and achieving coalesced access to

global memory. In contrast to shared-memory parallel programs for CPUs, where stride-

1 access to memory by each thread is very efficient, for effective utilization of memory

bandwidth on GPUs, adjacent threads must access adjacent data elements in global mem-

ory. Thus coalesced access generally implies that a single thread will not access contiguous

3

memory locations in adjacent iterations of a loop. Therefore many programs directly con-

verted from OpenMP to CUDA without a fundamental change to the loop structure exhibit

uncoalesced access to global memory.

While attempts have been made to develop tools to ease the development of GPU ap-

plications, many existing CUDA applications still suffer from uncoalesced accesses. Thus,

there is a strong need for tools to assist application developers develop codes that exhibit a

high fraction of coalesced accesses. Unless the programmer is able to detect the problem,

other optimization tools depending on programmer input are of little help. If uncoalesced

access is detected, the programmer can then seek to transform the code.

Existing static transformation approaches to enhance coalesced access are only applica-

ble to restricted classes of programs. In this thesis, we propose a new method to overcome

the limitations of purely static approaches by combining the benefits of dynamic analysis

with static transformations. When dynamic analysis on traces generated from the program

detects uncoalesced accesses, some recommendations are made depending on the overall

memory access pattern. In many cases, static transformations can then be applied to convert

the uncoalesced access to coalesced access. We provide a static transformation framework

that transforms CUDA/PTX code to improve data coalescing.

This dissertation makes the following contributions:

• It is the first work, to the best of our knowledge, to develop a dynamic analysis

approach that seeks to characterize the inherent data locality characteristics of algo-

rithms.

• It develops effective algorithms to perform convex partitioning of CDAGs to en-

hance data locality. While convex partitioning of DAGs has previously been used

4

for estimating parallel speedup, to our knowledge this is the first effort to use it for

characterizing data locality potential.

• It demonstrates the potential of the approach to identify opportunities for enhance-

ment of data locality in existing implementations of computations. Thus, an analysis

tool based on this approach to data locality characterization can be valuable to: (i)

application developers, for comparing alternate algorithms and identifying parts of

existing code that may have significant potential for data locality enhancement, and

(ii) compiler writers, for assessing the effectiveness of a compiler’s program opti-

mization module in enhancing data locality.

• It demonstrates, through case studies, the use of the new dynamic analysis approach

in identifying opportunities for data locality optimization that are beyond the scope of

the current state-of-the-art optimizing compilers. Based on the insights provided by

the tool, such as the existence of 3D tiles for Floyd-Warshall, we focused our design

effort on high-potential codes, leading to significant reduction in data movement.

• It develops a dynamic analysis tool for analyzing arbitrary PTX codes for identifying

loops with uncoalesced accesses in GPU kernels, and categorization of uncoalesced

accesses to different groups, along with suggestions for potential improvement strate-

gies.

• It constructs a static transformation framework that implements a remapping of work

among threads to optimize CUDA/PTX codes exhibiting uncoalesced global memory

access.

5

• It demonstrates the effectiveness of the tool by characterizing well-known GPU bench-

mark suites and transforming a number of them, including irregular applications

and generating transformed versions ensuring coalesced access and improved per-

formance.

The rest of the dissertation is organized as follows:

Chapter 2 provides pertinent background information on reuse distance analysis, dynamic

analysis and GPU architecture.

Chapter 3 provides a detailed description of the tool for characterization of CPU applica-

tions.

Chapter 4 presents an enhancement of the characterization tool that uses loop induction

variable information.

Chapter 5 presents the approach to characterize and enhance data coalescing on GPUs.

Chapter 6 concludes the dissertation.

6

CHAPTER 2

Background

2.1 Reuse Distance Analysis

Reuse distance analysis is a widely used metric that models data locality [29, 65]. The

reuse distance of a reference in a memory address trace is defined as the number of dis-

tinct memory references between two successive references to the same location. Since its

introduction in 1970 by Mattson et al. [65], reuse distance analysis has found numerous

applications in performance analysis and optimization, such as cache miss rate predic-

tion [46, 64, 111], program phase detection [87], data layout optimization [112], virtual

memory management [19] and I/O performance optimization [45].

Time 0 1 2 3 4 5 6 7 8 9
Data Ref. d a c b c c e b a d

Reuse Dist. ∞ ∞ ∞ ∞ 1 0 ∞ 2 3 4

Figure 2.1: Example data reference trace

An example data reference trace of length N = 10 is shown in Fig. 2.1. It contains

references to M = 5 distinct data addresses {a, b, c, d, e}. As shown in the figure, each

7

reference to an address in the trace is associated with a reuse distance. The first time an

address is referenced, its reuse distance is ∞. For all later references to an address, the

reuse distance is the number of distinct intervening addresses referenced. In the figure,

address c is referenced three times. Since b is referenced in between the first and second

references to c, the latter has a reuse distance of 1. Since the second and third references to

c are consecutive, without any other distinct intervening references to any other addresses,

the last access to c has a reuse distance of 0.

A significant advantage of reuse distance analysis (RDA) is that a single analysis of

the address trace of a code’s execution can be used to estimate data locality characteristics

as a function of the cache size. In contrast, cache simulation to determine the number of

hits/misses would have to be repeated for each cache size of interest. Although real caches

have non-unit line size and finite associativity, the data transfer volume estimated from the

cache miss count via reuse distance analysis can serve as a valuable estimate for any real

cache. Efficient parallel algorithms [25, 68] have also been developed for reuse distance

analysis.

Given an execution trace, a reuse distance histogram for that sequence is obtained as

follows. For each memory reference, M in the trace, its reuse distance is the number

of distinct addresses in the trace after the most recent access to M (the reuse distance is

considered to be infinity if there was no previous reference in the trace to M). The number

of references in the trace with reuse distance of 0, 1, 2, ..., are counted to form the reuse

distance histogram. A cumulative reuse distance histogram plots, as a function of k, the

number of references in the trace that have reuse distance less than or equal to k. The

cumulative reuse distance histogram directly provides the number of cache hits for a fully

associative cache of capacity C with a LRU (Least Recently Used) replacement policy,

8

since the data accessed by any reference with reuse distance less than or equal to C would

result in a cache hit.

2.1.1 Example

We use a simple example to illustrate both the benefits as well as a significant limitation

of standard RDA. Fig. 2.2 shows code for a simple Seidel-like spatial sweep, with a default

implementation and a fully equivalent tiled variant, where the computation is executed in

blocks.

1 f o r (i = 1 ; i < N−1; i ++)
2 f o r (j = 1 ; j < N−1; j ++)
3 A[i] [j] = A[i −1][j] + A[i] [j −1];

(a) Untiled

1 /∗ B −> T i l e s i z e ∗ /
2 f o r (i t = 1 ; i t < N−1; i t += B)
3 f o r (j t = 1 ; j t < N−1; j t += B)
4 f o r (i = i t ; i < min (i t +B , N−1) ; i ++)
5 f o r (j = j t ; j < min (j t +B , N−1) ; j ++)
6 A[i] [j] = A[i −1][j] + A[i] [j −1];

(b) Tiled

Figure 2.2: Example: Single-sweep two-point Gauss-Seidel code, (a) Untiled and (b) Tiled

Fig. 2.3 displays the cumulative reuse distance histogram for both versions. As ex-

plained above, it can be interpreted as the number of data cache hits (y axis) as a function

of the cache size (x axis). The same data is depicted in Fig. 2.4, showing the number of

cache misses (by subtracting the number of hits from the total number of references). For

9

the untiled form of the code, a cache with capacity less than 400 words (3200 bytes, with 8

bytes per element) will be too small to effectively exploit reuse. The reuse distance profile

for the tiled code is quite different, suggesting that effective exploitation of reuse is feasible

with a smaller cache of capacity of 50 words (400 bytes). This example illustrates the ben-

efits of RDA: i) For a given code, it provides insights into the impact of cache capacity on

the expected effectiveness of data locality exploitation, and ii) Given two known alternative

implementations for a computation, it enables a comparative assessment of the codes with

respect to data locality.

 40000

 50000

 60000

 70000

 80000

 90000

 0 500 1000 1500 2000 2500 3000 3500 4000

H
it
 C

o
u

n
t

Machine Cache Size (Bytes)

2D-Seidel : N = 200, Tile Size = 25

Untiled
Tiled

Figure 2.3: Reuse distance profile:cache hit rate

10

 40000

 50000

 60000

 70000

 80000

 90000

 0 500 1000 1500 2000 2500 3000 3500 4000

M
is

s
 C

o
u

n
t

Machine Cache Size (Bytes)

2D-Seidel : N = 200, Tile Size = 25

Untiled
Tiled

Figure 2.4: Reuse distance profile:cache miss rate

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 500 1000 1500 2000 2500 3000 3500 4000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

2D-Seidel : N = 200, Tile Size = 25

Untiled
Tiled

Figure 2.5: Reuse distance profile:memory bandwidth demand

11

2.1.2 Limitations of reuse distance analysis

The Seidel example also illustrates a fundamental shortcoming of RDA that we ad-

dress through the work presented in this article: Given an execution trace for a code, RDA

only provides a data locality characterization for one particular execution order of the con-

stituent operations, and provides no insights on whether significant improvements may be

possible via dependence preserving reordering of execution of the operations. The tiled

and untiled variants in Fig. 2.2 represent equivalent computations, with the only differ-

ence being the relative order of execution of exactly the same set of primitive arithmetic

operations on exactly the same sets of array operands. Although state-of-the-art static com-

piler transformation techniques (e.g., using polyhedral loop transformations) can transform

the untiled code in Fig. 2.2(a) to a tiled form of Fig. 2.2(b), many codes exist (as illus-

trated through case studies later in this article), where data locality characteristics can be

improved, but are beyond the scope of the most advanced compilers today. The main ques-

tion that RDA does not answer is whether the poor reuse distance profile for the code due

to a sub-optimal execution order of the operations (e.g., untiled code version of a tileable

algorithm) or is it more fundamental property of the computation that remains relatively un-

changeable through any transformations that change the execution order of the operations?

This is the question our work seeks to assist in answering. By analyzing the execution trace

of a given code, forming a dynamic data dependence graph, and reordering the operations

by forming convex partitions, the potential for improving the reuse distance profile is eval-

uated. The change to the reuse distance profile after the dynamic analysis and reordering,

rather than the shape of the initial reuse distance profile of a code, provides guidance on

the potential for further improvement.

12

Fig. 2.5 presents the information in Fig. 2.4 in terms of memory bandwidth required

per operation. It translates the cache miss count into the bandwidth demand on the memory

system in bytes/second per floating-point operation. For this code, we have one floating

point operation per two memory references. With a cache miss rate m, assuming double-

precision (8 bytes per word), the demand on the main-memory bandwidth would be 16 ∗m

bytes per Flop. If this ratio is significantly higher than the ratio of a system’s main memory

bandwidth (in Gbytes/sec) to its peak performance (in GFlops), the locality analysis indi-

cates that achieving high performance will be critically dependent on effective data locality

optimization. For example, on most current systems, the performance of this computation

will be severely constrained by main memory bandwidth for problem sizes that are too

large to fit in cache.

A point of note is that while the estimated cache hit rates/counts by using RDA can

deviate quite significantly from actually measured cache hit rates/counts on real systems

(due to a number of aspects of real caches, such as non-unit line size, finite associativity,

pre-fetching, etc.), the bytes/flop metric serves as a good indicator of the bandwidth re-

quirement for real caches. This is because pre-fetching and non-unit line sizes only affect

the latency and number of main memory accesses and not the minimum volume of data that

must be moved from memory to cache. Finite cache associativity could cause an increase

in the number of misses compared to a fully associative cache, but not a decrease. All the

experimental results presented later in the article depict estimates on the bytes/flop band-

width demanded by a code. Thus, despite the fact that RDA essentially models an idealized

fully associative cache, the data represents useful estimates on the bandwidth demand for

any real cache.

13

A key observation is in the cache size required to achieve full reuse: for the untiled

version, cache misses are lowest for a cache size of 400 elements or more. For the tiled

version, a cache size of about 10 elements is enough to achieve the same number of misses,

a reduction of 40x in cache size, by considering an alternative execution order for the pro-

gram operations. Therefore, depending on whether the input application on which RDA is

performed has been optimized or not, one may get totally different RDA profiles. Therefore

RDA alone is not enough to characterize what could be achieved, in terms of data locality,

through program/software modification.

Another feature expected from a data locality analysis tool is the ability to drive the

programmer’s implementation efforts towards code regions with high locality potential. If

the reuse distance profile shows low reuse (for instance, a large cache size is required to

achieve 80% or more cache hits), then efforts should be put to improve the implementation

so as to try to reduce the reuse distance. This is clear for instance with the example of

Fig. 2.2 where a simple tiled variant leads to a 40x reduction in the cache size needed.

2.2 Dynamic Analysis

Previous efforts that use dynamic analysis focus on finding potential parallelism. Ku-

mar’s [52] approach performs time-stamp based analysis of instrumented statement level

execution of the sequential program, using shadow variables to maintain last modifica-

tion times for each variable. Each run-time instance of a statement is associated with a

timestamp that is one greater than the maximum among the last-modify times of all input

operands of the statement. A histogram of the number of operations at each time value

provides a fine-grained parallelism profile of the computation, and the maximal timestamp

14

represents the critical path length for the entire computation. Other prior efforts with a

similar overall approach include [7, 52, 53, 63, 67, 78, 81, 88, 89, 100].

The analysis of potential parallelism from [52] computes a timestamp for each DDG

node, representing the earliest time this node could be executed. The largest timestamp,

compared to the number of nodes, provides a characterization of the inherent fine-grain

parallelism in the program; this largest timestamp gives the length of the critical path in

the dynamic dependence graph. In essence, the computed timestamps implicitly model the

best parallel execution of all possible dependence-preserving reordering of the operations

performed by the program. All nodes with the same timestamp are independent and can be

executed in parallel.

In contrast to the above fine-grained approach, an alternate technique developed by

Larus [55] performed analysis of loop-level parallelism at different levels of nested loops.

Loop-level parallelism is measured by forcing a sequential order of execution of statements

within each iteration of a loop being characterized, so that the only available concurrency

is across different iterations of that loop.

A related technique is applied in the context of speculative parallelization of loops,

where dynamic dependences across loop iterations are tracked [82]. A few recent ap-

proaches of similar nature include [18, 73, 90, 91, 105, 110].

Our approach uses the idea of shadow variables to create the dynamic dependence graph

but does not focus on loop level parallelism. Instead, a dynamic dependence graph is

generated with all necessary flow dependences, where each node carries its loop induction

variables information. The graph is later processed as a whole, looking for a valid convex

partitioning. The details of the method are described in later sections.

15

2.3 DDG Generation

Generating a dynamic data-dependence graph (DDG) requires an execution trace of the

program (or a contiguous subtrace), containing run-time instances of static instructions,

including any relevant run-time data such as memory addresses for loads/stores, procedure

calls, etc. Our implementation uses LLVM [96] to instrument arbitrary C/C++/Fortran

code. The Clang [94] front-end is used to compile C/C++ code into LLVM IR, and the

DragonEgg [95] GCC plugin is used to compile Fortran 77/90 code into LLVMIR. The

LLVMIR is instrumented to generate a run-time trace to disk, and the instrumented code is

compiled to native code. Once an execution trace is available, the construction of the DDG

creates a graph node for each dynamic instruction instance. Edges are created between

pairs of dependent nodes (i.e., one instruction instance consumes a value produced by the

other). In our implementation each graph node represents a dynamic instance of an LLVM

IR instruction, and dependences are tracked through memory and LLVM virtual registers.

To construct the graph edges, information is maintained for each memory/register about the

graph node that performed the last write to each location. Note that the graph represents

only flow dependences. Anti-dependences and output dependences are not considered,

since they do not represent essential constraints of the computation, and could potentially

be eliminated via transformations such as scalar/array expansion. Control dependences

are also not considered, since our goal is to focus on the data flow and the optimization

potential implied by it. It is straightforward to augment the DDG with additional categories

of dependences, without having to modify in any way the subsequent graph analyses.

16

CHAPTER 3

Beyond Reuse Distance Analysis: Dynamic Analysis for
Characterization of Data Locality Potential

3.1 Introduction

As data access time has become the bottleneck in program performance, we need to

re-think program performance in terms of their data locality. To assess how well written

an algorithm is, we need to be able to characterize them by their data reuse potential. A

program that has better reuse potential is more likely to perform better in terms of memory

access time compared to the one that has less data reuse potential. Sometimes we need to

transform the program from its original form to measure its actual data locality potential.

Therefore, we need a tool that can characterize applications for us in terms of their inherent

data reuse potential, considering possible program transformation.

Advances in technology over the last few decades have yielded significantly different

rates of improvement in the computational performance of processors relative to the speed

of memory access. The Intel 80286 processor introduced in 1982 had an operation exe-

cution latency of 320 ns and a main memory access time of 225 ns [41]. The recent Intel

Core i7 processor has an operation latency of 4ns and a memory latency of 37 ns, illustrat-

ing an order of magnitude shift in the ratio of operation latency to memory access latency.

17

Since processors use parallelism and pipelining in execution of operations and for memory

access, it is instructive to also examine the trends in the peak execution throughput and

memory bandwidth for these two processors: 2 MIPS and 13 MBytes/sec for the 80286

versus 50,000 MIPS and 16,000 MBytes/sec for the Core i7. The ratio of peak computa-

tional rate to peak memory access bandwidth has also changed by more than an order of

magnitude.

Because of the significant mismatch between computational latency and throughput

when compared to main memory latency and bandwidth, the use of hierarchical memory

systems and the exploitation of significant data reuse in the higher (i.e., faster) levels of the

memory hierarchy is critical for high performance. Techniques such as pre-fetching and

overlap of computation with communication can be used to mitigate the impact of high

memory access latency on performance, but the mismatch between maximum computa-

tional rate and peak memory bandwidth is much more fundamental; the only solution is to

limit the volume of data movement to/from memory by enhancing data reuse in registers

and higher levels of the cache.

A significant number of research efforts have focused on improving data locality, by

developing new algorithms such as the so called communication avoiding algorithms [8,

9, 28] as well as automated compiler transformation techniques [16, 44, 48, 101]. With

future systems, the cost of data movement through the memory hierarchy is expected to

become even more dominant relative to the cost of performing arithmetic operations [14,

34, 86], both in terms of throughput and energy. Optimizing data access costs will become

ever more critical in the coming years. Given the crucial importance of optimizing data

access costs in systems with hierarchical memory, it is of great interest to develop tools

and techniques to assess the inherent data locality characteristics of different parts of a

18

computation, and the potential for data locality enhancement via dependence preserving

transformations.

While reuse distance analysis provides a useful characterization of data locality for a

given execution trace, it fails to provide any information on the potential for improvement in

data locality that may be feasible through valid reordering of the operations in the execution

trace. In particular, given only the reuse distance profile for the address trace generated

by execution of some code, it is not possible to determine whether the observed locality

characteristics reveal fundamental inherent limitations of an algorithm, or are merely the

consequence of a sub-optimal implementation choice.

In this chapter, we present a tool that characterizes application with a view to measure

their data locality potential. We use dynamic analysis approach where we get profile in-

formation from an actual execution of the program. The profile/trace contains information

about the actual data accessed in the program. We then build a dependence graph and apply

a convex partitioning heuristic to obtain tiling of the computation space. The tiling is de-

pendence preserving and therefore equivalent to a valid program transformation. We then

compare the reuse distance profile of different algorithms or different versions of the same

program to assess their inherent data locality potential. Given an execution trace from a

sequential program, we seek in addition to estimate the inherent data locality characteris-

tics of an algorithm and thereby determine if there exists potential for enhancement of data

locality through execution reordering. It is the first work, to the best of our knowledge, to

use a dynamic analysis approach to solve the problem of characterization of the inherent

data locality characteristics of algorithms. We have proposed and developed two alternate

convex partitioning heuristics of the dependence graph and demonstrate the potential of the

approach to identify opportunities for enhancement of data locality in existing applications.

19

The analysis tool based on this approach to data locality characterization can be used by

application developers, for comparing alternate algorithms and identifying parts of existing

code that may have significant potential for data locality enhancement. Compiler writers

can also test the effectiveness of a compiler’s program optimization module in enhancing

data locality. Based on the insights provided by our end-to-end tool, such as the existence of

3D tiles for Floyd-Warshall, we focused our design effort on high-potential codes, leading

to significant reduction in data movements.

Previous techniques depending dynamic analysis looks for parallel loops [7, 18, 52, 53,

55, 63, 67, 73, 78, 81, 88–90, 100, 105, 110]. To the best of our knowledge, none attempted

to apply the technique to solve the problem of loop tiling.

The rest of this chapter is organized as follows. Section 3.2 presents background on

reuse distance analysis, and a high-level overview of the proposed approach for locality

characterization. The algorithmic details of the approach to convex partitioning of CDAGs

are provided in Section 3.3. Section 3.4 presents experimental results. Related work is

discussed in Section 3.5, followed by concluding remarks in Sections 3.6 and 3.7.

3.2 Background & Overview of Approach

Reuse distance analysis (RDA) is particularly meant to characterize, as a function of

the cache size, what is the quantity of memory references that can be cache hits. More

precisely, for a given implementation, reuse distance analysis can drive the hardware design

exploration (esp. for the cache size parameter) to best execute this particular computation.

But a severe limitation of RDA is that it ignores any kind of software design exploration that

could be used to improve the data locality of a computation. For instance, the program’s

20

computations may be reordered so as to minimize the reuse distance, therefore leading to

possibly vastly different RDA on this transformed program. It could lead to significantly

smaller cache size requirement to exploit the program’s data reuse.

3.2.1 Benefits of the proposed dynamic analysis

Using results from two case studies presented later in the chapter, we illustrate the

benefits of the approach we develop. Fig. 3.1 shows the original reuse distance profiles as

well as the profiles after dynamic analysis and convex partitioning, for two benchmarks:

Householder transformation on the left, and Floyd-Warshall all-pairs shortest path on the

right.

As seen in the upper plot in Fig. 3.1, with the Householder code, no appreciable change

to the reuse distance profile results from the attempted reordering after dynamic analy-

sis. In contrast, the lower plot in Fig. 3.1 shows a significantly improved reuse distance

profile for the Floyd-Warshall code, after dynamic analysis and reordering of operations.

This suggests potential for enhanced data locality via suitable code transformations. As

explained later in the experimental results section, manual examination of the convex par-

titions provided insights into how the code could be transformed into an equivalent form

that in turn could be tiled by an optimizing compiler. The reuse distance profile of that tiled

version is shown as a third curve in the lower plot in Fig. 3.1, showing much better reuse

than the original code. The actual performance of the modified code was also significantly

higher than the original code. To the best of our knowledge, this is the first 3D tiled imple-

mentation of the Floyd Warshall algorithm (other blocked versions have been previously

developed [75, 98], but have required domain-specific reasoning for semantic changes to

form equivalent algorithms that generate different intermediate values but the same final

21

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000 7000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

Householder : Configuration = Multi:Breadth, Maxlive 100

Original
Convex-partitioning

 0

 2

 4

 6

 8

 10

 12

 0 2000 4000 6000 8000 10000 12000 14000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

Floyd-Warshall:Configuration=Single:Depth, Maxlive 100

Original
Convex-partitioning

Tiled

Figure 3.1: Reuse distance analysis for Householder and Floyd-Warshall

results as the standard algorithm).

3.2.2 Overview of Approach

The new dynamic analysis approach we propose attempts to characterize the inherent

data locality properties of a given (sequential) computation, and to assess the potential

for enhancing data locality via change of execution ordering. To achieve this goal, we

22

proceed in two stages. First, a new ordering of the program’s operations is computed, by

using graph algorithms (that is, convex partitioning techniques) operating on the expanded

computation graph. Then, standard reuse distance analysis is performed on the reordered

set of operations. We note that our analysis does not directly provide an optimized program.

Implementing the (possibly very complex) schedule found through our graph analysis is

impractical. Instead, our analysis highlights gaps between the reuse distance profile of a

current implementation and existing data locality potential: the task of devising a better

implementation is left to the user or compiler writer. In Sec. 3.4, we show the benefits of

the approach on several benchmarks.

To implement our new dynamic analysis, we first analyze the data accesses and depen-

dences between the primitive operations in a sequential execution trace of the program to

extract a more abstract model of the computation: a computational directed acyclic graph

(CDAG), where operations are represented as vertices and the flow of values between op-

erations as edges. This is defined as follows.

Definition 1 (CDAG [15]) A computation directed acyclic graph (CDAG) is a 4-tuple C =

(I, V, E,O) of finite sets such that: (1) I ∩ V = ∅; (2) E ⊆ (I ∪ V)× V is the set of arcs;

(3) G = (I ∪ V,E) is a directed acyclic graph with no isolated vertices; (4) I is called the

input set; (5) V is called the operation set and all its vertices have one or two incoming

arcs; (6) O ⊆ (I ∪ V) is called the output set.

Fig. 3.2 shows the CDAG corresponding to the code in Fig. 2.2 for N=6 — both ver-

sions have identical CDAGs since they perform exactly the same set of floating-point com-

putations, with the same inter-instance data dependences, even though the total order of

execution of the statement instances is different. The loop body performs only one addition

and is executed a total of 16 times, so the CDAG has 16 computation nodes (white circles).

23

Figure 3.2: CDAG for Gauss-Seidel code in Fig. 2.2. Input vertices are shown in black,
other vertices represent operations performed.

Although a CDAG is derived from analysis of dependences between instances of state-

ments executed by a sequential program, it abstracts away that sequential schedule of opera-

tions and only imposes an essential partial order captured by the data dependences between

the operation instances. Control dependences in the computation need not be represented

since the goal is to capture the inherent data locality characteristics based on the set of

operations that were actually execution in the program.

They key idea behind the work presented in this chapter is to perform analysis on the

CDAG of a computation, attempting to find a different order of execution of the operations

that can improve the reuse-distance profile compared to that of the given program’s sequen-

tial execution trace. If this analysis reveals a significantly improved reuse distance profile,

24

1 2

3

4 5

Figure 3.3: Convex-partition of the CDAG for the code in Fig. 2.2 for N = 10.

it suggests that suitable source code transformations have the potential to enhance data lo-

cality. On the other hand, if the analysis is unable to improve the reuse-distance profile of

the code, it is likely that it is already as well optimized for data locality as possible. The

dynamic analysis involves the following steps:

1. Generate a sequential execution trace of a program.

2. Run a reuse-distance analysis of the original trace.

3. Form a CDAG from the execution trace.

4. Perform a multi-level convex partitioning of the CDAG, which is then used to change

the schedule of operations of the CDAG from the original order in the given input

code. A convex partitioning of a CDAG is analogous to tiling the iteration space of

25

a regular nested loop computation. Multi-level convex partitioning is analogous to

multi-level cache-oblivious blocking.

5. Perform standard reuse distance analysis of the reordered trace after multi-level con-

vex partitioning.

Finally, Fig. 3.3 shows the convex partitioning of the CDAG corresponding to the code

in Fig. 2.2.

After such a partitioning, the execution order of the vertices is reordered so that the

convex partitions are executed in some valid order (corresponding to a topological sort of a

coarse-grained inter-partition dependence graph), with the vertices within a partition being

executed in the same relative order as the original sequential execution. Details are pre-

sented in the next section.

3.3 Convex Partitioning of CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs,

which is at the heart of our proposed dynamic analysis. In the case of loops, numerous

efforts have attempted to optimize data locality by applying loop transformations, in par-

ticular involving loop tiling and loop fusion [16, 44, 48, 101]. Tiling for locality attempts

to group points in an iteration space of a loop into smaller blocks (tiles) allowing reuse

(thereby reducing reuse distance) in multiple directions when the block fits in a faster mem-

ory (registers, L1, or L2 cache). Forming a valid tiling for a loop requires that each tile can

be executed atomically, i.e., each tile can start after performing required synchronizations

for the data it needs, then execute all the iterations in the tile without requiring intervening

synchronization. This means that there are no cyclic data dependencies between any two

26

tiles. Our goal in this work is to extend this notion of “tiling” to arbitrary CDAGs that

represent a computation: we form valid partitioning of CDAGs into components such that

the components can be scheduled and executed, with all vertices in a component being ex-

ecuted “atomically,” i.e., without being interleaved with vertices in any other components.

For this, we rely on the notion of convex partitioning of CDAGs, which is the generalization

of loop tiling to graphs.

3.3.1 Definitions

We first define what is a convex component, that is a tile in a graph.

Definition 2 (Convex component) Given a CDAG G, a convex component Vi in G is de-

fined as a subset of the vertices of G such that, for any pair of vertices u and v in Vi, if

there are paths between u and v in G, then every vertex on every path between u and v also

belongs to Vi.

A convex partition of a graph G is obtained by assigning each vertex of G to a single

convex component. Since there are no cycles among convex components, the graph in

which nodes are convex components and edges define dependences among them, is acyclic.

Therefore, we can execute the convex components using any topologically sorted order.

Executing all the convex components results in executing the full computation.

A convex partition of a graph G = (V,E) is a collection of convex components

{V1, . . . , Vk} of G such that
⋃

V k
i=1 = V and for any i, j s.t. 1 ≤ i, j ≤ k and i 6= j,

Vi ∩Vj = ∅. We remark that tiling of iterations spaces of loops results in convex partitions.

The component graph C = (VC, EC) is defined as a graph whose vertices VC represent

the convex components, i.e., VC = {V1, · · · , Vk}. Given two distinct components Vi and

27

Vj , there is an edge in C from Vi to Vj if and only if there is an edge (a, b) in the CDAG,

where a ∈ Vi and b ∈ Vj .

For a given schedule of execution of the vertices of convex component Vi, we define

maxlive to be the maximum number of simultaneously live nodes for this schedule. A node

can be in one of the following states throughout its life:

Initial state: at the beginning no node is live. They are in the initial state.

Birth: any node is considered live right after it is fired (executed). Whenever we pick a

node and include it in a partition, then the node is born and live.

Resurrection: if not part of the convex component, it is also considered as live when used

by another node of the component (predecessor of a fired node belonging to the compo-

nent). During convex partitioning, a node might be already included in a partition but has

unprocessed successors. Whenever one of its successor is born or picked from the list to

be included in a partition, the predecessor node also becomes live and contributes to the

maxlive computation. We denote this process as resurrection. A node may be resurrected

whenever one of its successors is getting fired.

Live: a born or resurrected node stays alive until it dies, which happens if all its successor

nodes have executed (are part of a partition).

Death: a node dies right after its last successor is fired.

Our goal is to form convex components along with a scheduling such that the maxlive of

each component does not exceed the local memory capacity. We consider the nodes we add

to the component (just fired and alive), and their predecessors (resurrected) in computing

the maxlive.

28

3.3.2 Forming Convex Partitions

We show in Algorithm 3.1 our technique to build convex partitions from an arbitrary

CDAG. It implements a convex-component growing heuristic that successively adds ready

vertices into the component until a capacity constraint is exceeded. The key requirement in

adding a new vertex to a convex component is that if any path to that vertex exists from a

vertex in the component, then all vertices in that path must also be included. We avoid an

expensive search for such paths by constraining the added vertices to be those that already

have all their predecessors in the current (or previously formed) convex component.

Algorithm 3.1 GenerateConvexComponents(G, C, CF)
Input : G : CDAG; C : Cache Size;

CF: Cost function to decide next best node
InOut: P : Partition containing convex components
begin

P ←− ∅
R←− getTheInitialReadyNodes(G)
while R 6= ∅ do

n←− selectReadyNode(R)
cc←− ∅
while R 6= ∅ ∧ updateLiveSet(cc, n, C) do

cc←− cc ∪ {n}
R←− R− {n}
UpdateListOfReadyNodes(R, n)
priority ←− CF()
n←− selectBestNode(R, cc, priority, n)

P ←− P ∪ {cc}

The partitioning heuristic generates a valid schedule as it proceeds. At the beginning,

all input vertices to the CDAG are placed in a ready list R. A vertex is said to be ready

if all its predecessors (if any) have already executed, i.e., have been assigned to some

29

convex component. A new convex component cc is started by adding a ready vertex to it

(the function selectReadyNode(R) simply picks up one element of R) and it grows

by successively adding more ready nodes to it (selectBestNode(R, cc, priority, n)

selects one of the ready nodes, as shown in Algorithm 3.4 – the criterion is described

later). Suppose a vertex n is just added to a component cc. As a result, zero or more of

the successors of n in G may become ready: a successor s of n becomes ready if the last

predecessor needed to execute s is n. The addition of newly readied vertices to the ready list

is done by the function updateListOfReadyNodes(R, n), as shown in Algorithm 3.2.

In this function, the test that checks if s has unprocessed predecessors is implemented using

a counter that is updated whenever a node is processed.

Algorithm 3.2 UpdateListOfReadyNodes(R, n)
Input : n: Latest processed node
InOut: R: List of ready nodes
begin

for s ∈ successors(n) do
if s has no more unprocessed predecessors then

R←− R ∪ {s}

Before adding a node to cc, the set cc.liveset, the liveout set of cc, is updated through the

call to updateLiveSet(p, n, C), as shown in Algorithm 3.3. updateLiveSet exactly

implements our definition of liveness previously described: (birth) if n has some successors

it is added to the liveset of cc; (resurrect) its predecessor nodes that still have unprocessed

successors are added to the liveset (if not already in it); (die) predecessor nodes for which

n is the last unprocessed successor are removed from the liveset.

30

Algorithm 3.3 updateLiveSet(p, n, C)
Input : n : New node added in the partition p

C : Cache size
InOut : p.liveset : Live set of p
Output: true if |p.liveset| ≤ C, false otherwise
begin

lset←− p.liveset
if n has unprocessed successors then

p.liveset←− p.liveset ∪ {n}
for n′ ∈ predecessors(n) do

if n′ has unprocessed successors then
p.liveset←− p.liveset ∪ {n′}

else if n′ ∈ p.liveset then
p.liveset←− p.liveset− {n′}

if |p.liveset| > C then
p.liveset←− lset return false

return true

3.3.3 CDAG Traversal: Breadth-first Versus Depth-first

The heuristic selectBestNode to select the next processed node within the ready

list uses two affinity notions: a node is a ready-successor of cc (thus element of the

cc.readySuccessors list) if it is a ready successor of some nodes of cc; a node is a ready-

neighbor of cc (thus element of cc.readyNeighbors list) if it has a successor node that is

also a successor of some node in cc. We note that those two lists can overlap. The growing

strategy picks up ready nodes, using a first-in first-out policy, from one of those two lists.

In practice, we observe that favoring nodes of the ready-successor list would favor growing

depth-first in the CDAG, while favoring nodes that belongs to the ready-neighbor list would

favor a breadth-first traversal.

The heuristic uses a combination of growing alternately in these two different direc-

tions till the Maxlive of the component exceeds the capacity of the cache. The priority is

31

controlled by a number that represents the ratio of selected ready-neighbors over selected

ready-successors. If the ratio is larger than 1, we refer to it as breadth-priority; if lower

than 1, we refer to it as depth-priority, otherwise it is referred to as equal-priority. Function

neighbor(n) will return the list of all nodes (excluding n) that have a common successor

with n.

Algorithm 3.4 selectBestNode(R, cc, priority, n)
Input : R: List of ready nodes

cc: current convex component
priority: Give priority to neighbor or successor
n: Latest node added in the partition

InOut : cc.readyNeighbors : Ready neighbors of current growing partition nodes
cc.readySuccessors : Ready successors of current growing partition nodes

Output: next : Next node to add in the partition
begin

for a ∈ neighbors(n) ∩R− cc.readyNeighbors do
cc.readyNeighbors.enqueue(a)

for a ∈ successors(n) ∩R− cc.readySuccessors do
cc.readySuccessors.enqueue(a)

cc.readyNeighbors←− cc.readyNeighbors− n
cc.readySuccessors←− cc.readySuccessors− n
if cc.takenNeighbors < cc.takenSuccessors× priority
∧ cc.readyNeighbors 6= ∅ then

next←− dequeue(cc.readyNeighbors)
cc.takenNeighbors←− cc.takenNeighbors + 1

else if cc.readySuccessors 6= ∅ then
next←− dequeue(cc.readySuccessors)
cc.takenSuccessors←− cc.takenSuccessors + 1

else
next←− selectReadyNode(R)

return next

32

3.3.4 Multi-level Cache-oblivious Partitioning

Here we address the problem of finding a schedule that is cache-size oblivious, and

in particular suitable for multi-level memory hierarchy. In order to address this problem,

we construct a hierarchical partitioning using the multi-level component growing heuristic

shown in Algorithm 3.5. This algorithm combines individual components formed for a

cache of size C using the heuristic in Algorithm 3.1 to form components for a cache of size

factor * C. In this approach, each component of the partition built at level l of the heuristic

is seen as a single node at level l + 1. We call these nodes “macro-nodes” as they typically

represent sets of nodes in the original CDAG.

This approach could be compared with multi-level tiling for multi-level cache hierar-

chy, a classical scheme to optimize data locality for multi-level caches. In our multilevel

approach, each component is actually made of Macro-nodes which correspond to compo-

nents created by the lower level heuristic. For the first level of this heuristic, a macro-node

corresponds to a node in the original CDAG. The heuristic then proceeds with the next level,

seeing each component of the partition at the previous level as a macro-node at the current

level. The heuristic stops when only one component is generated at the current level, that is,

all macro-nodes were successfully added to a single convex component without exceeding

the input/output set size constraints.

The number of levels in the multi-level partitioning varies with each CDAG, and is not

controlled by the user. When a component cc0 formed at a lower level is added to the current

component cc1 being formed at a higher level, the liveset of cc1 has to be updated, just as if

all the nodes composing cc0 have been added to cc1. This leads to the modified version of

updateLiveSet(p,n,C) reported in Algorithm 3.6, where the function FirstLevel-

BaseNodes(np) returns the actual CDAG nodes (that we call first level base nodes) the

33

macro-node np is built upon. At the first level FirstLevelBaseNodes(np) may be

understood as returning just np.

Algorithm 3.5 MultiLevelPartitioning(G, C, Priority, factor)
Input : G : CDAG

C : initial cache Size
Priority : priority to Neighbor or Successor
factor : multiplication factor of Cache size for each level

InOut : G.M : memory footprint of the CDAG
Output: P : Final single partition
begin

P ←− GenerateConvexComponents(G, C, Priority)
while C < G.M do

G′ ←− formMacroNodeWithEachPartition(P , G)
C ←− factor ∗ C
P ′ ←− GenerateConvexComponents(G′, C, Priority)
P ←− P ′

return P

Algorithm 3.6 updateLiveSet(p, n, C)
Input : n : New macro-node added in the partition p
InOut : p.liveset : Live set of p
Output: true if |p.liveset| ≤ C, false otherwise
begin

b←− true
plset←− p.liveset for nb ∈ FirstLevelBaseNodes(n) do

b←− b ∧ updateLiveSet(p, nb, C)
if b = false then

p.liveset←− plset
return false

return true

3.3.5 Complexity Analysis

Finally, we analyze the computational complexity of the steps in the algorithm.

34

1. First, the code is instrumented to generate an execution trace of all operations and

memory accesses.

2. Next, the trace is analyzed on-line [50] to generate the corresponding CDAG of the

execution instance. Let the program size be |P |, the size of the trace be |T |, and

the size of the programs footprint (used memory) be |M |. The time complexity

(execution) is O(|T |) and space complexity (shadow memory + CDAG) is O(|M |+

|T |).

3. Third, this CDAG for which the number of nodes and edges is O(|T |) is used off-line

as input to the CDAG partitioning heuristic.

• Counters for each node are initialized. Time and space complexity are O(|T |).

• For each node, its set of neighbors is computed. Considering that each node has

at most two predecessors (3-address code), the number of neighbors is twice the

number of edges of the CDAG, so O(|T |). Computing the set for each node is

linear in the size of the result, i.e., O(|T |).

• When a node is processed, for each of its successors a counter is updated to

determine if it is ready to fire. The amortized time complexity is the number of

edges, i.e., O(|T |).

• When a node gets ready, it is pushed into the ready list. The space complexity

of this list can be the total number of nodes, i.e., O(|T |) in the worst case.

• When a node gets ready, or respectively gets processed its set of neighbors is

scanned to update the ready-neighbors list (to either push itself or respectively

some of its neighbors in it). The amortized time complexity for this is thus the

number of edges, i.e., O(|T |).

35

• Whenever a node gets ready, or respectively gets processed its set of prede-

cessors (respectively successors) is scanned to update the ready-successors list.

Amortized time complexity for this is thus the number of edges i.e. O(|T |).

• Prior to actually processing a node, the live-set of the convex component is

updated. Each of its predecessors is scanned to add it or remove it from the

component’s live-set (counters are used to check if it should be added or re-

moved). Amortized complexity is thus the number of edges plus the number of

components (for the last node we do not commit, because maxlive may get too

large), i.e., O(|T |).

4. Fourth, given a partitioning evaluating the number of cache misses can be done ei-

ther by over-approximating it adding live-in and live-out sets of each convex partition

leading to an O(|T |) (for updating the live-in set of each component during the grow-

ing process) or by simulating a LRU cache on the so obtained schedule. LRU cache

can be simulated linearly using both a double-linked list and a map.

The overall complexity of the single-level version is thus linear with the size of the

trace. The multi-level version is run logfactor

(
|M |
|C|

)
times GenerateConvexCompo-

nents, thus leading to an overall time complexity of O(|T | log(|M |)).

3.4 Experimental Results

In the following chapter, we evaluate the impact of the various parameters of the convex

partitioning heuristics in Sec. 4.2.2, using two well understood benchmarks: matrix mul-

tiplication and a 2D Jacobi stencil computation. With these benchmarks, it is well known

how the data locality characteristics of the computations can be improved via loop tiling.

36

The goal therefore is to assess how the reuse distance profiles after dynamic analysis and

operation reordering compares with the unoptimized untiled original code as well as the

optimized tiled version of code.

In this chapter, the experimental results are organized as follows: Sec. 3.4.1 describes

the experimental environment. In Sec. 3.4.2 we detail several case studies where we use

dynamic analysis to characterize the locality potential of several benchmarks for which

the state-of-the-art optimizing compilers are unable to automatically optimize data locality.

We demonstrate the benefits of dynamic analysis in providing insights into the inherent data

locality properties of these computations and the potential for data locality enhancement.

Finally we discuss in Sec. 3.4.3 the sensitivity of our techniques to varying datasets.

3.4.1 Experimental Setup

The dynamic analysis we have implemented involves three steps. For the CDAG Gener-

ation, we use automated LLVM-based instrumentation to generate the sequential execution

trace of a program, which is then processed to generate the CDAG. The trace generator was

previously developed for performing dynamic analysis to assess vectorization potential in

applications [43]. For the convex partitioning of the CDAG, we have implemented the al-

gorithms explained in detail in the previous section. Finally for the reuse distance analysis

of the reordered address trace after convex partitioning, it is done using a parallel reuse

distance analyzer PARDA [69] that was previously developed.

The total time taken to perform the dynamic analysis is dependent on the input program

trace size. In our experiments, computing the trace and performing the full dynamic analy-

sis can range between seconds for benchmarks like Givens, Householder, odd-even sort or

Floyd-Warshall to about one hour for SPEC benchmarks such as 420.LBM. For instance,

37

for Givens rotation (QR decomposition) the trace is built in 4 seconds, the analysis takes an-

other 14 seconds, and computing the reuse distance analysis on the partitioned graph takes

well below a second. We note that while CDAGs are often program-dependent, the shape

of the CDAG and the associated dynamic analysis reasoning can usually be performed on

a smaller problem size: the conclusion about the data locality potential is likely to hold for

the same program running on larger datasets. A study of the impact of the sensitivity of our

analysis to different datasets is provided in later Sec. 3.4.3. All performance experiments

were done on an Intel Core i7 2700K, using a single core.

3.4.2 Case Studies

We next present experimental results from applying dynamic analysis to several bench-

marks: the Floyd-Warshall algorithm to find all-pairs shortest path in a graph represented

with an adjacency matrix, two QR decomposition methods: the Givens rotation and the

Householder transformation, three SPEC benchmarks, a LU decomposition code from the

LAPACK package, and an implementation of odd-even sorting using linked list. None

of these benchmarks could be fully tiled for enhanced data locality by state-of-the art re-

search compilers (e.g., Pluto [76]) or by production compilers (e.g., Gnu GCC, Intel ICC).

For each benchmark, we study the reuse distance profile of the original code and the code

after convex partitioning. Where significant potential for data locality enhancement was

revealed by the dynamic analysis, we analyzed the code in greater detail. For two of the

four benchmarks we manually optimized (namely, Floyd-Warshall and Givens rotation)

have static control-flow. Therefore, the performance for these will be only a function of

the dataset size and not the content of the dataset. For all optimized benchmarks, we report

performance on various dataset sizes (and various datasets when relevant).

38

Floyd-Warshall

Original program We show in Fig. 3.4 the original input code that we used to implement

the Floyd-Warshall algorithm. We refer to this code as “out-of-place” Floyd-Warshall be-

cause it uses a temporary array to implement the all-pairs shortest path computation.

1 f o r (k = 0 ; k < N; k ++) {
2 f o r (i = 0 ; i < N; i ++)
3 f o r (j = 0 ; j < N; j ++)
4 temp [i] [j] = MIN(A[i] [j] , (A[i] [k] + A[k] [j])) ;
5 k ++;
6 f o r (i = 0 ; i < N; i ++)
7 f o r (j = 0 ; j < N; j ++)
8 A[i] [j] = MIN(temp [i] [j] , (temp [i] [k] + temp [k] [j

])) ;
9 }

Figure 3.4: Floyd-Warshall all-pairs shortest path

Analysis Fig. 3.5-(a) shows the reuse distance profile of the original code, and the best

convex-partitioning found by our heuristics for the Floyd-Warshall algorithm, for a matrix

of size 30 by 30. Since the convex-partitioning heuristic shows significantly better reuse

distance profile than the original code, there is potential for improvement of data locality

through transformations for this program. Studies on the impact of the various heuristic

parameters on the quality of the convex partitioning obtained can be found in [30].

Indeed, the Floyd-Warshall algorithm is immediately tilable, along the two loops i and

j. Such tiling can for instance be achieved automatically with polyhedral model based

compilers such as Pluto [16]. Since the three loops are not fully permutable, it has been

believed that the Floyd-Warshall code cannot be 3D-tiled without transformations using

semantic properties of the algorithm to create a modified algorithm (i.e., with a different

39

 0

 2

 4

 6

 8

 10

 12

 0 2000 4000 6000 8000 10000 12000 14000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

Floyd-Warshall:Configuration=Single:Depth, Maxlive 100

Original
Convex-partitioning

Tiled

(a)

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1000 2000 3000 4000 5000 6000 7000 8000 9000

G
F

L
O

P
S

Problem Size, N

Floyd-Warshall: Performance Comparison

Untiled
3D tiled - Ours

3D tiled - Venkataraman et al.

(b)

Figure 3.5: Floyd-Warshall: Analysis and performance improvements due to tiling

CDAG) that provably produces the same final result [75,98]. However, a careful inspection

of the convex partitions revealed that valid 3D tiles can be formed among the operations

40

of the standard Floyd-Warshall algorithm. This non-intuitive result comes from the non-

rectangular shape of the tiles needed, with varying tile size along the k dimension as a

function of the value of k. This motivated us to look for possible transformations that

could enable 3D tiling of the code without any semantic transformations.

Modified implementation The modified implementation we designed is shown in Fig-

ure 3.6. It has an identical CDAG, i.e., it is semantically equivalent, to the code in List-

ing 3.4. To create this version, we fist split the original iteration space into four distinct

regions through manual index splitting, followed by tiling of each loop nest.

Performance comparison Fig. 3.5 compares the performance of the tiled version against

the original code. From Fig. 3.5(a), we can observe that the tiled code is able to achieve bet-

ter data locality, that is close to the potential uncovered by the convex partitioning heuris-

tics. Fig. 3.5(b) shows the improvement in actual performance of our tiled code (3D tiled

- Ours), due to reduced cache misses. A performance improvement of about 1.6× (se-

quential execution) is achieved, across a range of problem sizes. Further, to the best of our

knowledge, this is the first development of a tiled version of the standard Floyd-Warshall

code that preserves the original code’s CDAG. We also compared with the performance

achieved by the semantically modified 3D-tiled implementation from [98] and found it to

have slightly lower performance.

Givens Rotation

Original program Fig. 3.7 shows the original input code for the Givens rotation method

used for QR decomposition.

41

1 /∗ Region 4 ∗ /
2 f o r (k = 0 ; k < N; k+=B1)
3 f o r (i = k , i e n d = N; i < i e n d ; i +=B2)
4 f o r (j = k , j e n d = N; j < j e n d ; j +=B3)
5 f o r (k t = k , k t e n d = MIN(k+B1 ,N) ; k t < k t e n d ; ++ k t) {
6 f o r (i t = MAX(i , k t) , i t e n d = MIN(i +B2 ,N) ; i t < i t e n d ; ++ i t)
7 f o r (j t = MAX(j , k t) , j t e n d = MIN(j +B3 ,N) ; j t < j t e n d ; ++ j t)
8 temp [i t] [j t] = MIN(A[i t] [j t] , (A[i t] [k t] + A[k t] [j t])) ;
9 ++ k t ;

10 f o r (i t = MAX(i , k t) , i t e n d = MIN(i +B2 ,N) ; i t < i t e n d ; ++ i t)
11 f o r (j t = MAX(j , k t) , j t e n d = MIN(j +B3 ,N) ; j t < j t e n d ; ++ j t)
12 A[i t] [j t]=MIN(temp [i t] [j t] , (temp [i t] [k t]+ temp [k t] [j t])) ;
13 }
14 /∗ Region 3 ∗ /
15 f o r (k = 0 ; k < N; k+=B1)
16 f o r (i = k , i e n d = N; i < i e n d ; i +=B2)
17 f o r (j = 0 , j e n d = k+B1 ; j<j e n d ; j +=B3)
18 f o r (k t = k , k t e n d = MIN(k+B1 ,N) ; k t < k t e n d ; ++ k t) {
19 f o r (i t = MAX(i , k t) , i t e n d = MIN(i +B2 ,N) ; i t < i t e n d ; ++ i t)
20 f o r (j t = j , j t e n d = MIN(j +B3 , k t) ; j t < j t e n d ; ++ j t)
21 temp [i t] [j t] = MIN(A[i t] [j t] , (A[i t] [k t] + A[k t] [j t])) ;
22 ++ k t ;
23 f o r (i t = MAX(i , k t) , i t e n d = MIN(i +B2 ,N) ; i t < i t e n d ; ++ i t)
24 f o r (j t = j , j t e n d = MIN(j +B3 , k t) ; j t < j t e n d ; ++ j t)
25 A[i t] [j t]=MIN(temp [i t] [j t] , (temp [i t] [k t]+ temp [k t] [j t])) ;
26 }
27 /∗ Region 2 ∗ /
28 f o r (k = 0 ; k < N; k+=B1)
29 f o r (i = 0 , i e n d = k+B1 ; i<i e n d ; i +=B2)
30 f o r (j = k , j e n d = N; j<j e n d ; j +=B3)
31 f o r (k t = k , k t e n d = MIN(k+B1 ,N) ; k t < k t e n d ; ++ k t) {
32 f o r (i t = i , i t e n d = MIN(i +B2 , k t) ; i t < i t e n d ; ++ i t)
33 f o r (j t = MAX(j , k t) , j t e n d = MIN(j +B3 ,N) ; j t < j t e n d ; ++ j t)
34 temp [i t] [j t] = MIN(A[i t] [j t] , (A[i t] [k t] + A[k t] [j t])) ;
35 ++ k t ;
36 f o r (i t = i , i t e n d = MIN(i +B2 , k t) ; i t < i t e n d ; ++ i t)
37 f o r (j t = MAX(j , k t) , j t e n d = MIN(j +B3 ,N) ; j t < j t e n d ; ++ j t)
38 A[i t] [j t] = temp [i t] [j t] + (temp [i t] [k t] + temp [k t] [j t]) ;
39 }
40 /∗ Region 1 ∗ /
41 f o r (k = 0 ; k < N; k+=B1)
42 f o r (i = 0 , i e n d = k+B1 ; i<i e n d ; i +=B2)
43 f o r (j = 0 , j e n d = k+B1 ; j<j e n d ; j +=B3)
44 f o r (k t = k , k t e n d = MIN(k+B1 ,N) ; k t < k t e n d ; ++ k t) {
45 f o r (i t = i , i t e n d = MIN(i +B2 , k t) ; i t < i t e n d ; ++ i t)
46 f o r (j t = j , j t e n d = MIN(j +B3 , k t) ; j t < j t e n d ; ++ j t)
47 temp [i t] [j t] = MIN(A[i t] [j t] , (A[i t] [k t] + A[k t] [j t])) ;
48 ++ k t ;
49 f o r (i t = i , i t e n d = MIN(i +B2 , k t) ; i t < i t e n d ; ++ i t)
50 f o r (j t = j , j t e n d = MIN(j +B3 , k t) ; j t < j t e n d ; ++ j t)
51 A[i t] [j t] = MIN(temp [i t] [j t] , (temp [i t] [k t]+ temp [k t] [j t]))

;
52 }

Figure 3.6: Tiled Floyd-Warshall implementation

42

Analysis Fig. 3.11 shows the reuse distance profile of the original code and after convex-

partitioning for the Givens rotation algorithm, for an input matrix of size 30 by 30. Studies

on the impact of the various heuristic parameters on the quality of the convex partitioning

is shown in Fig. 3.8.

The convex partitioning analysis shows good potential for data locality improvement.

Similarly to Floyd-Warshall, this code can be automatically tiled by a polyhedral-based

compiler [16], after implementing simple loop normalization techniques. However, this

is not sufficient to tile all dimensions. Subsequent transformations are needed, as shown

below.

Modified implementation Based on the indicated potential for data locality enhance-

ment, the code in Listing 3.7 was carefully analyzed and then manually modified to enhance

the applicability of automated tiling techniques. Fig. 3.9 shows this modified version.

It was obtained by first applying loop normalization [47] which consists in making all

loops iterate from 0 to some greater value while appropriately modifying the expressions

involving the loop iterators within the loop body. Then, we applied scalar expansion on c

1 f o r (j = 0 ; j < N; j ++) {
2 f o r (i = M−2; i >= j ; i−−) {
3 double c = A[i] [j] / s q r t (A[i] [j]∗A[i] [j] + A[i + 1] [j]∗A[i

+ 1] [j]) ;
4 double s = −A[i + 1] [j] / s q r t (A[i] [j]∗A[i] [j] + A[i + 1] [j]∗A[i

+ 1] [j]) ;
5 f o r (k = j ; k < N; k ++) {
6 double t 1 = c ∗ A[i] [k] − s ∗ A[i + 1] [k] ;
7 double t 2 = s ∗ A[i] [k] + c ∗ A[i + 1] [k] ;
8 A[i] [k] = t 1 ;
9 A[i + 1] [k] = t 2 ;

10 }
11 }
12 }

Figure 3.7: Givens Rotation

43

 0

 0.5

 1

 1.5

 2

 0 1000 2000 3000 4000 5000 6000 7000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

Givens : Maxlive=100, Varying Priorities

Single:Depth
Single:Equal

Single:Breadth
Multi:Depth
Multi:Equal

Multi:Breadth
Original

(a)

 0

 0.5

 1

 1.5

 2

 0 1000 2000 3000 4000 5000 6000 7000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

Givens : Configuration = Depth:Multi, Varying Maxlive

Maxlive:25
Maxlive:50

Maxlive:100
Maxlive:200
Maxlive:500
Maxlive:800

Original

(b)

Figure 3.8: Results with different heuristics for Givens Rotation

and s [47] to remove dependences induced by those scalars which make loop permutation

illegal. As a result, the modified code is an affine code with fewer dependences, enabling

it to be automatically tiled by the Pluto compiler [76]. The final tiled code obtained, with

default tile-sizes, is shown in Fig. 3.10.

44

1 f o r (j = 0 ; j < N; j ++) {
2 f o r (i = 0 ; i <= M−2 − j ; i ++) {
3 c [i] [j] = A[(M−2)−(i)] [j] / s q r t (A[(M−2)−(i)] [j]∗A[(M−2)−(i)] [j]
4 + A[(M−2) − (i) + 1] [j]∗A[(M−2) − (i) + 1] [j]) ;
5 s [i] [j] = −A[(M−2)−(i) + 1] [j] / s q r t (A[(M−2)−(i)] [j]∗A[(M−2)−(i)] [j]
6 + A[(M−2)−(i) + 1] [j]∗A[(M−2)−(i) + 1] [j]) ;
7 f o r (k = j ; k < N; k ++) {
8 A[(M−2)−(i)] [k] = c [i] [j]∗A[(M−2)−(i)] [k] − s [i] [j]∗A[(M−2)−(i) + 1] [k] ;
9 A[(M−2)−(i) + 1] [k] = s [i] [j]∗A[(M−2)−(i)] [k] + c [i] [j]∗A[(M−2)−(i) + 1] [k] ;

10 }
11 }
12 }

Figure 3.9: Modified Givens Rotation before tiling

Performance comparison Fig. 3.11(a) shows the improvements in the reuse distance

profile using the convex partitioning heuristics and the improved reuse distance profile of

the tiled code. A better profile is obtained for the tiled version than for convex partitioning.

Similarly to Matmult, this is because our convex partitioning heuristic makes simplification

for scalability and is therefore not guaranteed to provide the best achievable reuse profile.

Fig 3.11(b) shows a two-fold improvement in the performance of the transformed code

for a matrix of size 4000.

Householder Transformation

Original program Fig. 3.12 shows the original input code for the Householder trans-

form, another approach for QR decomposition.

Comparing this with Givens (a different approach to compute the QR decomposition)

in terms of data locality potential is of interest: if one has better locality potential than the

other, then it would be better suited for deployment on machines where the data movement

cost is the bottleneck. It complements complexity analysis, which only characterizes the

total number of arithmetic operations to be performed. Indeed, on hardware where the

45

1 i f (((M >= 2) && (N >= 1))) {
2 f o r (c0 = 0 ; c0 <= min (f l o o r d ((M−2) , 256) , f l o o r d ((N−1) , 2 5 6)) ; c0 ++){
3 f o r (c1 = c0 ; c1 <= f l o o r d ((M−2) , 256) ; c1 ++) {
4 f o r (c2 = c0 ; c2 <= f l o o r d ((N−1) , 256) ; c2 ++) {
5 i f ((c0 == c2)) {
6 f o r (c3 = (256∗ c0) ; c3 <= min (min ((M−2) , (N−1)) , ((2 5 6∗ c0) +255)) ; c3 ++){
7 f o r (c4 = max ((2 5 6∗ c1) , c3) ; c4 <= min ((M−2) , ((2 5 6∗ c1) +255)) ; c4 ++){
8 c [((−1 ∗ c3) + c4)] [c3] = A[(M−2)−(((−1 ∗ c3) + c4))] [c3]
9 / s q r t (A[(M−2)−(((−1 ∗ c3) + c4))] [c3]

10 ∗ A[(M−2)−(((−1 ∗ c3) + c4))] [c3]
11 + A[(M−2)−(((−1 ∗ c3) + c4)) + 1] [c3]
12 ∗ A[(M−2)−(((−1 ∗ c3) + c4)) + 1] [c3]) ;
13 s [((−1 ∗ c3) + c4)] [c3] = −A[(M−2)−(((−1 ∗ c3) + c4)) + 1] [c3]
14 / s q r t (A[(M−2)−(((−1 ∗ c3) + c4))] [c3]
15 ∗ A[(M−2)−(((−1 ∗ c3) + c4))] [c3]
16 + A[(M−2)−(((−1 ∗ c3) + c4)) + 1] [c3]
17 ∗ A[(M−2)−(((−1 ∗ c3) + c4)) + 1] [c3]) ;
18 f o r (c5 = c3 ; c5 <= min ((N + −1) , ((2 5 6 ∗ c0) + 255)) ; c5 ++) {
19 A[(M−2)−(((−1 ∗ c3) +c4))] [c5] = c [((−1∗ c3) +c4)] [c3]
20 ∗ A[(M−2)−(((−1∗ c3) + c4))] [c5]
21 − s [((−1∗ c3) +c4)] [c3]
22 ∗ A[(M−2)−(((−1∗ c3) +c4)) + 1] [c5] ;
23 A[(M−2)−(((−1 ∗ c3) +c4)) + 1] [c5] = s [((−1∗ c3) +c4)] [c3]
24 ∗ A[(M−2)−(((−1∗ c3) +c4))] [c5]
25 + c [((−1∗ c3) +c4)] [c3]
26 ∗ A[(M−2)−(((−1∗ c3) +c4)) + 1] [c5] ;
27 } } } }
28 i f (c0 <= (c2 + −1)) {
29 f o r (c3 = (256∗ c0) ; c3 <= min ((M−2) , ((2 5 6∗ c0) +255)) ; c3 ++){
30 f o r (c4 = max ((2 5 6∗ c1) , c3) ; c4 <= min ((M−2) , ((2 5 6∗ c1) +255)) ; c4 ++){
31 f o r (c5 = (256∗ c2) ; c5 <= min ((N−1) , ((2 5 6∗ c2) +255)) ; c5 ++) {
32 A[(M−2)−(((−1 ∗ c3) +c4))] [c5] = c [((−1 ∗ c3) + c4)] [c3]
33 ∗ A[(M−2)−(((−1 ∗ c3) + c4))] [c5]
34 − s [((−1 ∗ c3) + c4)] [c3]
35 ∗ A[(M−2)−(((−1∗ c3) +c4)) + 1] [c5] ;
36 A[(M−2)−(((−1 ∗ c3) +c4)) + 1] [c5] = s [((−1 ∗ c3) + c4)] [c3]
37 ∗ A[(M−2)−(((−1∗ c3) +c4))] [c5]
38 + c [((−1 ∗ c3) + c4)] [c3]
39 ∗ A[(M−2)−(((−1∗ c3) +c4)) + 1] [c5] ;
40 } } } } } } } }

Figure 3.10: Modified and automatically tiled Givens Rotation

computation power has become increasingly cheaper relative to data access costs, stan-

dard complexity analysis alone is insufficient to capture the relative merits of alternative

algorithms for a computation such as QR decomposition.

Analysis Fig. 3.13 shows the reuse distance profile of the original code and the convex-

partitioning for the Householder algorithm, for an input matrix of size 30 by 30.

46

We observe a significant difference compared with Givens: the gap between the reuse

distance profile of the original code and that found by our dynamic analysis is negligible.

 0

 0.5

 1

 1.5

 2

 0 1000 2000 3000 4000 5000 6000 7000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

Givens : Configuration = Multi:Depth, Maxlive 100

Original
Convex-partitioning

Tiled

(a)

 0

 1

 2

 3

 4

 5

 1000 1500 2000 2500 3000 3500 4000

G
F

L
O

P
S

Problem Size, N

Givens Rotation: Performance Comparison

Original
Tiled

(b)

Figure 3.11: Givens Rotation: performance improvements due to tiling

47

1 f o r (j = 0 ; j < N; j ++) {
2 t o t a l = 0 ;
3 f o r (i = j +1 ; i < M; i ++) {
4 t o t a l += A[i] [j] ∗ A[i] [j] ;
5 }
6 norm x = (A[j] [j] ∗ A[j] [j] + t o t a l) ;
7 i f (norm x != 0) {
8 i f (A[j] [j] < 0)
9 norm x = −norm x ;

10 v [j] = norm x + A[j] [j] ;
11 norm v = (v [j] ∗ v [j] + t o t a l) ;
12 v [j] /= norm v ;
13 f o r (i = j +1 ; i < M; i ++) {
14 v [i] = A[i] [j] / norm v ;
15 }
16 f o r (j j = j ; j j < N; j j ++) {
17 d o t = 0 . ;
18 f o r (kk = j ; kk < M; kk ++) {
19 d o t += v [kk] ∗ A[kk] [j j] ;
20 }
21 f o r (i i = j ; i i < M; i i ++) {
22 A[i i] [j j] −= 2 ∗ v [i i] ∗ d o t ;
23 }
24 }
25 }
26 }

Figure 3.12: Householder computation

From this we conclude that the potential for data locality improvement of this algorithm is

limited, and therefore we did not seek an optimized implementation for it.

Furthermore, comparing the bytes/flop required with the Givens graph in Fig. 3.11(a)

shows that our tiled implementation of Givens achieves a significantly lower byte/flop ratio,

especially for small cache sizes. We conclude that the Givens rotation algorithm may be

better suited for deployment on future hardware, because of its lower bandwidth demand

than Householder, especially for small cache sizes.

Lattice-Boltzmann Method

Original program 470.lbm, a SPEC2006 [42, 77] benchmark, implements the Lattice-

Boltzmann technique to simulate fluid flow in 3 dimensions, in the presence of obstacles.

48

The position and structure of the obstacles are known only at run-time, but do not change

throughout the course of the computation.

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000 7000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

Householder : Maxlive=100, Varying Priorities

Single:Depth
Single:Equal

Single:Breadth
Multi:Depth
Multi:Equal

Multi:Breadth
Original

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000 7000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

Householder : Config. = Multi:Breadth, Varying Maxlive

Maxlive:100
Maxlive:200
Maxlive:500
Maxlive:800

Original

(b)

Figure 3.13: Results with different heuristics for Givens Rotation

49

Analysis The convex-partition heuristics account for the data dependent behavior of the

computation and are able to find valid operation reordering with enhanced data locality, as

shown Fig. 3.14. The test input size provided by the SPEC benchmark suite was used for

the analysis. To reduce the size of the generated trace the problem size was reduced by a

factor of 4 along each dimension. The reduced problem still has the same behavior as the

original problem.

For a cache size of 60KB, the reordering after convex partitioning obtained by the

heuristics show an improvement in the Bytes/FLOP ratio. For this benchmark all config-

urations of the heuristics yield essentially identical results. However, unlike the previous

benchmarks, the absolute value of the bytes/flop is extremely low (Fig. 3.14), indicating

that the computation is already compute-bound and a tiled version of the code would not

be able to achieve significant improvements in performance over the untiled code. On an

Intel Xeon E5640 with a clock speed of 2.53GHz, the untiled version already achieves a

performance of 4GFLOPS. But since the current trend in hardware architecture suggests

that the peak performance will continue to grow at a faster rate than the increase in main-

memory bandwidth, it is reasonable to expect that optimizations like tiling that improve

data locality will be critical in the future even for such computations that are currently

compute-bound.

410.bwaves

This benchmark is a computational fluid dynamic application from SPEC2006 [42].

We ran our analysis on the whole benchmark with test input size. For this benchmark too,

the size of the problem was reduced by a factor of 4 along each dimension. The result of

the analysis, shown in Fig. 3.15, indicate a limited potential for improving data locality.

50

Large-Eddy Simulations with Linear-Eddy Model in 3D

437.leslie3d is another computational fluid dynamic benchmark from SPEC2006 [42].

Here too, the analysis was done using the test dataset as given. As shown in Fig. 3.16,

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 100000 200000 300000 400000 500000 600000 700000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

LBM : Maxlive=100, Varying Priorities

Single:Depth
Single:Equal

Single:Breadth
Multi:Depth
Multi:Equal

Multi:Breadth
Original

(a)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 100000 200000 300000 400000 500000 600000 700000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

LBM : Configuration = Single:Depth, Varying Maxlive

Maxlive:100
Maxlive:200
Maxlive:500
Maxlive:800

Original

(b)

Figure 3.14: Results with different heuristics for 470.lbm

51

leslie3d achieves a lower bytes/FLOP ratio with the multi-level algorithm. The trend is not

sensitive to varying Maxlive. Therefore, from the results, we conclude that this benchmark

 1

 1.5

 2

 2.5

 3

 0 100000 200000 300000 400000 500000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

Bwaves: Maxlive=400, Varying Priorities

Single:Depth
Single:Equal

Single:Breadth
Multi:Depth
Multi:Equal

Multi:Breadth
Original

(a)

 1

 1.5

 2

 2.5

 3

 0 100000 200000 300000 400000 500000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

Bwaves: Configuration = Single:Equal, Varying Maxlive

Maxlive:25
Maxlive:50

Maxlive:100
Maxlive:400
Maxlive:800

Original

(b)

Figure 3.15: Results with different heuristics for 410.bwaves

52

has high potential for locality improvement. We however leave for future work the task of

deriving an optimized implementation for leslie3d.

 0

 1

 2

 3

 4

 5

 6

 7

 0 20000 40000 60000 80000 100000 120000 140000 160000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

Leslie3D: Maxlive=100, Varying Priorities

Single:Depth
Single:Equal

Single:Breadth
Multi:Depth
Multi:Equal

Multi:Breadth
Original

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 0 20000 40000 60000 80000 100000 120000 140000 160000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

Leslie3D : Configuration = Multi:Depth, Varying Maxlive

Maxlive:50
Maxlive:100
Maxlive:400

Maxlive:1000
Original

(b)

Figure 3.16: Results with different heuristics for 437.leslie3d

53

Odd-Even Sort

Original program Our dynamic analysis does not impose any requirement on the data

layout of the program: arrays, pointers, structs etc. are seamlessly handled as the trace ex-

traction tool focuses exclusively on the address used in memory read/write operations. To

illustrate this we show in Fig. 3.17 the original code for an odd-even sorting algorithm, us-

ing a linked-list implementation. CompareSwap compares the data between two consec-

utive elements in the list, and swaps them if necessary. Each swap operation is represented

by a node in the CDAG.

1 f o r (i =0 ; i<N/ 2 ; ++ i) {
2 node ∗ c u r r ;
3 f o r (c u r r =head−>n x t ; c u r r−>n x t ; c u r r = c u r r−>nxt−>n x t) {
4 CompareSwap (c u r r , c u r r−>n x t) ;
5 }
6 f o r (c u r r =head ; c u r r ; c u r r = c u r r−>nxt−>n x t) {
7 CompareSwap (c u r r , c u r r−>n x t) ;
8 }
9 }

Figure 3.17: Odd-Even sort on linked list

Analysis We have performed our analysis on the original code, for a input list of size 256,

with random values. The profile of the original, best convex partitioning (obtained with the

best set of heuristic parameters for this program) and tiled (our modified) implementation

are shown shown in the left plot in Fig. 3.19.

Modified implementation Based on careful analysis of the original code in Fig. 3.17, an

equivalent register-tiled version with a tile size of 4 was manually developed. It is shown

in Fig. 3.18.

54

1 r e g i s t e r f l o a t Ra , Rb , Rc , Rd ;
2 node ∗ t a i l 0 , ∗ t a i l 1 , ∗ t a i l 2 , ∗ t a i l 3 ;
3 t a i l 0 = t a i l ;
4 t a i l 1 = t a i l = t a i l −>p rev ;
5 t a i l 2 = t a i l = t a i l −>p rev ;
6 t a i l 3 = t a i l = t a i l −>p rev ;
7
8 / / Upper l e f t p a r t o f t h e i t e r a t i o n space
9 node ∗ c u r r = head ;

10 f o r (I =0 ; I<N; I +=4) {
11 p t r 0 = c u r r ; Ra = p t r 0−>d a t a ;
12 p t r 1 = p t r 0−>n x t ; Rb = p t r 1−>d a t a ;
13 p t r 2 = p t r 1−>n x t ; Rc = p t r 2−>d a t a ;
14 p t r 3 = p t r 2−>n x t ; Rd = p t r 3−>d a t a ;
15 c u r r = p t r 3−>n x t ;
16 / / F u l l t i l e s
17 f o r (T= I ; T>0; T−=4) {
18 CompareSwap (Ra , Rb) ; CompareSwap (Rc , Rd) ;
19 p t r 3−>d a t a = Rd ; p t r 3 = p t r 0−>p rev ; Rd = p t r 3−>d a t a ;
20 CompareSwap (Rd , Ra) ; CompareSwap (Rb , Rc) ;
21 p t r 2−>d a t a = Rc ; p t r 2 = p t r 3−>p rev ; Rc = p t r 2−>d a t a ;
22 CompareSwap (Rc , Rd) ; CompareSwap (Ra , Rb) ;
23 p t r 1−>d a t a = Rb ; p t r 1 = p t r 2−>p rev ; Rb = p t r 1−>d a t a ;
24 CompareSwap (Rb , Rc) ; CompareSwap (Rd , Ra) ;
25 p t r 0−>d a t a = Ra ; p t r 0 = p t r 1−>p rev ; Ra = p t r 0−>d a t a ;
26 }
27 / / Ha l f t i l e c o r r e s p o n d i n g t o T==0
28 CompareSwap (Ra , Rb) ; CompareSwap (Rc , Rd) ;
29 p t r 3−>d a t a = Rd ;
30 CompareSwap (Rb , Rc) ;
31 p t r 2−>d a t a = Rc ;
32 CompareSwap (Ra , Rb) ;
33 p t r 1−>d a t a = Rb ;
34 p t r 0−>d a t a = Ra ;
35 }
36 / / Lower r i g h t p a r t o f t h e i t e r a t i o n space
37 f o r (I =4 ; I<=N; I +=4) {
38 / / Ha l f t i l e c o r r e s p o n d i n g t o T==N
39 p t r 3 = t a i l 0 ; Rd = t a i l 0−>d a t a ;
40 p t r 2 = t a i l 1 ; Rc = t a i l 1−>d a t a ;
41 CompareSwap (Rc , Rd) ;
42 p t r 1 = t a i l 2 ; Rb = t a i l 2−>d a t a ;
43 CompareSwap (Rb , Rc) ;
44 p t r 0 = t a i l 3 ; Ra = t a i l 3−>d a t a ;
45 / / F u l l t i l e s
46 f o r (T=N−4; T>=I ; T−=4) {
47 CompareSwap (Ra , Rb) ; CompareSwap (Rc , Rd) ;
48 p t r 3−>d a t a = Rd ; p t r 3 = p t r 0−>p rev ; Rd = p t r 3−>d a t a ;
49 CompareSwap (Rd , Ra) ; CompareSwap (Rb , Rc) ;
50 p t r 2−>d a t a = Rc ; p t r 2 = p t r 3−>p rev ; Rc = p t r 2−>d a t a ;
51 CompareSwap (Rc , Rd) ; CompareSwap (Ra , Rb) ;
52 p t r 1−>d a t a = Rb ; p t r 1 = p t r 2−>p rev ; Rb = p t r 1−>d a t a ;
53 CompareSwap (Rb , Rc) ; CompareSwap (Rd , Ra) ;
54 p t r 0−>d a t a = Ra ; p t r 0 = p t r 1−>p rev ; Ra = p t r 0−>d a t a ;
55 }
56 p t r 0−>d a t a = Ra ; p t r 1−>d a t a = Rb ; p t r 2−>d a t a = Rc ; p t r 3−>d a t a

= Rd ;
57 }

Figure 3.18: Tiled odd-even sort

55

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

Odd-Even Sort : Configuration = Multi:Breadth, Maxlive 50

Original
Convex-partitioning

Tiled

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 100 150 200 250 300 350 400 450 500 550

G
F

L
O

P
S

Problem Size, N

Odd-Even sort: Performance Comparison

Untiled
Tiled

(b)

Figure 3.19: Odd-Even sort: Performance improvements due to tiling

Performance comparison The comparison of performance of the untiled and tiled ver-

sions of the code is shown in Fig. 3.19. Fig. 3.19(a) shows the improved data locality for

the tiled code compared to the original code. The actual improvement in performance of

56

the tiled code is shown in Fig. 3.19(b) for a random input. Experiments about sensitiv-

ity to datasets reported in later Sec. 3.4.3 confirm that our optimized variant consistently

outperform the original code.

LU Decomposition (LAPACK)

The last benchmark we analyze is an implementation of the LU decomposition for

dense matrices, from the LAPACK package [6]. It uses pivoting (therefore the computation

is input-dependent) and LAPACK provides both a base implementation meant for small

problem sizes, and a block decomposition for large problem sizes [54]. Both code versions

can be found in [6].

We have run our dynamic analysis on the non-blocked implementation of LU decom-

position, for a single random matrix of size 128 by 128. The results of varying heuristics

and maxlive can be found in [30].

A potential for locality improvement is established from the result of the analysis. On

Fig. 3.20-left, we plot the reuse distance profile of the non-blocked implementation; the

convex partitioning with the best heuristic parameters for this program; and tiled (i.e.,

blocked) implementation, in addition to the original (i.e., non-blocked) one. The blocked

version shows a better bytes/Flop than the convex partitioning for cache sizes larger than

35kB. This is likely due to inter-block reuse achieved in the highly optimized LAPACK

implementation, combined with a sub-optimal schedule found by our heuristic. Further,

Fig. 3.20-right shows actual performance, in GFLOPS, for non-blocked and blocked ver-

sions of the code.

57

 0

 1

 2

 3

 4

 5

 0 20000 40000 60000 80000 100000 120000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

LUD : Configuration = Multi:Depth, Maxlive 25

Original
Convex-partitioning

Tiled

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2000 3000 4000 5000 6000 7000 8000 9000 10000

G
F

L
O

P
S

Problem Size, N

LUD: Performance Comparison

Untiled
Tiled

(b)

Figure 3.20: LU Decomposition

3.4.3 Dataset Sensitivity Experiments

We conclude our experimental analysis with a study of the sensitivity of our analysis to

different datasets. In the set of benchmarks presented in the previous section, the majority

of them have a CDAG that depends only on the input dataset size, and not on the input

58

values. Therefore for these codes our dynamic analysis results hold for any dataset of

identical size.

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

Odd-Even Sort: Maxlive=50, Multi:Breadth, Varying Datasets

Original-Dataset 1
Convex partitioned-Dataset 1

Original-Dataset 2
Convex partitioned-Dataset 2

Figure 3.21: Sensitivity analysis for odd-even sort

 0

 1

 2

 3

 4

 5

 0 20000 40000 60000 80000 100000 120000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

LUD: Maxlive=25, Multi:Depth, Varying Datasets

Original
Convex partitioned-Dataset 1
Convex partitioned-Dataset 2
Convex partitioned- Dataset 3

Figure 3.22: Sensitivity analysis for LUD

59

Odd-even sort and LUD are two benchmarks that are input-dependent. To determine

the sensitivity of the convex-partitioning heuristics on the input, we ran the heuristics on

different datasets, as shown in Fig. 3.21 and Fig. 3.22.

Fig. 3.21 shows the result for two such datasets - one with random input elements

and the other with the reverse sorted input list, a worst-case dataset. We used multi-level

heuristics with breadth-first priority, which corresponds to the parameters of the best result,

which can be found in [30]. Fig. 3.21 shows that the potential for improvement exhibited

by the heuristics remains consistent with varying inputs, i.e., the “Convex partitioned”

reuse distance profile does not vary with the input value. We note that in the general case,

some variations are expected for different datasets. Similar to complexity analysis of such

algorithms, one needs to perform both worst-case analysis (i.e., reverse-sorted) and analysis

on random/representative datasets for best results.

Fig. 3.22 exhibits a similar behavior where the three tested datasets have a similar anal-

ysis profile. The first dataset has is a random matrix, the second was created so that the

pivot changes for about half the rows of the matrix, and for the third one the pivot changes

for all rows of the matrix.

Finally, we complete our analysis by reporting in Fig. 3.23-3.24 the performance of

our manually optimized programs for odd-even sorting and LU decomposition. For two

programs (Original, and our modified implementation Tiled), we plot the performance for

various datasets (different curves) and various sizes for those datasets (different points on

the x axis). We observe very similar asymptotic performance for the various datasets.

60

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 100 150 200 250 300 350 400 450 500 550

G
F

L
O

P
S

Problem Size, N

Odd-Even sort: Performance Comparison

Dataset 1 - Untiled
Dataset 1 - Tiled

Dataset 2 - Untiled
Dataset 2 - Tiled

Dataset 3 - Untiled
Dataset 3 - Tiled

Figure 3.23: Performance for odd-even sort

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2000 3000 4000 5000 6000 7000 8000 9000 10000

G
F

L
O

P
S

Problem Size, N

LUD: Performance Comparison

Dataset 1 - Untiled
Dataset 1 - Tiled

Dataset 2 - Untiled
Dataset 2 - Tiled

Dataset 3 - Untiled
Dataset 3 - Tiled

Figure 3.24: Performance for LUD

61

3.5 Related Work

Both algorithmic approaches (e.g., [8, 9, 28]) and compiler transformations (e.g., [16,

44, 48, 101]) have been employed to improve data locality. The applicability of these tech-

niques to arbitrary computations is limited. For example, compiler optimizations typically

require programs in which precise static characterization of the run-time behavior is possi-

ble; this is challenging in the presence of inter-procedural control flow, diverse data struc-

tures, aliasing, etc. Reuse distance analysis [29, 65], which considers the actual observed

run-time behavior, is more generally applicable and has been used for cache miss rate pre-

diction [46,64,111], program phase detection [87], data layout optimizations [112], virtual

memory management [19], and I/O performance optimizations [45]. Even though reuse

distance analysis provides insights into the data locality of software behavior, it has been

limited to analyzing locality characteristics for a specific execution order of the operations,

typically that generated by a sequential program. In contrast to all previous work on reuse

distance analysis, to the best of our knowledge, our upper-bounding approach is the first to

attempt a schedule-independent characterization of the inherent data locality characteristics

of a CDAG.

The idea of considering valid re-orderings of a given execution trace has been ap-

plied successfully to characterize the potential parallelism of applications. Kumar’s ap-

proach [52] computes a possible valid schedule using a timestamping analysis of an instru-

mented statement-level execution of the sequential program. Shadow variables are used

to store the last modification times for each variable. Each run-time instance of a state-

ment is associated with a timestamp that is one greater than the last-modify times of all

its operands. A histogram of the number of operations at each time value provides a fine-

grained parallelism profile of the computation, and the maximal timestamp represents the

62

critical path length for the entire computation. Other prior efforts with a similar overall

approach include [7, 35, 52, 53, 63, 67, 78, 81, 88, 89, 100].

In contrast to the above fine-grained approach, an alternate technique developed by

Larus [55] performed analysis of loop-level parallelism at different levels of a nested loop.

Loop-level parallelism is measured by forcing a sequential order of execution of statements

within each iteration of a loop being characterized, so that the only available concurrency

is across different iterations of that loop. A related technique is applied in the context of

speculative parallelization of loops, where dynamic dependences across loop iterations are

tracked [82]. A few recent approaches of similar nature include [18, 73, 90, 91, 105, 110].

In order to estimate parallel speedup of DAGs, Sarkar and Hennessy [85] developed con-

vex partitioning of DAGs. In previous work, we [43] used dynamic analysis of CDAGs

to assess the vectorization potential of codes that are not effectively vectorized by current

vectorizing compilers. However, we are not aware of any prior work on dynamic analy-

sis of CDAGs with the goal of characterizing and/or enhancing data locality properties of

computations.

3.6 Discussion

In this section, we discuss the potential and some of the current limitations of the dy-

namic analysis approach for data locality characterization/enhancement that we have de-

veloped in this article.

Dependence on Input Values As with any work that uses dynamic analysis of the actual

execution trace of a program, any conclusions drawn are only strictly true for that particular

execution. For programs where the execution trace is dependent on input data, the CDAG

63

will change for different runs. Due to space limitations, we only present RDA results for

a single problem size for each benchmark. However, we have experimented with different

problem sizes and the qualitative conclusions remain stable across problem size. Further,

as demonstrated by the case studies of the Floyd-Warshall and Givens rotation codes, the

modified codes based on insights from the dynamic analysis were demonstrated to exhibit

consistent performance improvement for different problem sizes.

Overhead of Analysis The initial prototype implementation of the partitioning algorithm

has not yet been optimized and currently has a fairly high overhead (about 4 orders of mag-

nitude) compare to the execution time. As discussed earlier, the computational complexity

of the partitioning algorithm is O(|T |) for the single-level version, and O(|T | log(|M |)) for

the multi-level version and can therefore be made sufficiently efficient to be able to analyze

large-scale applications in their entirety.

Trace Size Limitations A more significant challenge and limitation of the current system

we implemented is the memory requirement. The CDAG size is usually a function of the

problem size. For instance, for 470.lbm using the test dataset as is would generate a CDAG

of size 120GB. The additional data structures used by the tool quickly exhaust the memory

on our machines. For instance for 470.lbm we were able to easily create a smaller input

dataset (e.g., 1/64th) leading to a 3GB CDAG, that our tool could handle. However, there

are numerous benchmarks where such reduction of the input dataset is not possible, and/or

does not affect the CDAG size. For those codes, where the CDAG was beyond a few

GBs, our current implementation fails due to insufficient memory. The development of

an “out-of-core” analyzer is the focus of ongoing follow-up work. Another solution is to

compress the CDAG using a technique similar to trace compression [49] leading to a space

64

complexity of O(|M | + |P |) in the most favorable scenario (in which all dependences

turn out to be affine). More generally trace sampling techniques can be applied to tackle

scalability issues of this approach.

Tightness of Estimation The primary goal of our CDAG partitioning algorithm is to

find a more favorable valid reordering of the schedule of its operations so as to lower the

volume of data movement between main memory and cache. From the perspective of data

movement, the lowest possible amount, which corresponds to the best possible execution

order for a given CDAG and a given cache size, can be considered the inherent data access

complexity of that computation. Irrespective of how much lower the reordered schedule’s

data movement volume is compared to the original schedule’s data movement volume, how

do we determine how close we are to the best possible valid order of execution? A possible

solution is to work from the opposite direction and develop lower bound techniques for

the data access complexity of CDAGs. In a complementary work we are developing an

approach to establishing lower bounds on the data movement costs for arbitrary CDAGs.

One way of assessing the tightness of the upper bounds (this work) and lower bounds

(complementary work in progress) is to see how close these two bounds are for a given

CDAG.

Use of Analysis We envision several uses of a tool based on the dynamic analysis ap-

proach developed in this work. (1) For Application Developers: By running the dynamic

analysis on different phases of an application, along with standard performance profiling, it

is possible to identify which of the computationally dominant phases of the application may

have the best potential for performance improvement through code changes that enhance

data reuse. Dynamic analysis for data locality can also be used to compare and choose

65

between alternate equivalent algorithms with the same functionality – even if they have

similar performance on current machines. If the reuse distance profiles of two algorithms

after reordering based on dynamic analysis are very different, the algorithm with lower

bandwidth demands would likely be better for the future. (2) For Compiler Developers:

Compilers implement many transformations like fusion and tiling that enhance data reuse.

The results from the convex partitioning of the CDAG can be used to gauge the impact of

compiler transformations and potential for improvement. (3) For Architecture Designers:

Running the dynamic analysis tool on a collection of representative applications can guide

vendors of architectures in designing hardware that provides adequate bandwidth and/or

sufficient capacity for the different levels of the memory hierarchy.

3.7 Conclusion

With future systems, the cost of data movement through the memory hierarchy is ex-

pected to become even more dominant relative to the cost of performing arithmetic op-

erations [14, 34, 86], both in terms of throughput and energy. Therefore optimizing data

locality will become ever more critical in the coming years. Given the crucial importance

of optimizing data access costs in systems with hierarchical memory, it is of great interest

to develop tools and techniques for characterization and enhancement of the data locality

properties of an algorithm. Although reuse distance analysis [29,65] provides a useful char-

acterization of data locality for a given execution trace, it fails to provide any information

on the potential for improving the in data reuse through valid reordering of the operations

in the execution trace.

66

In this piece of work, we have developed a dynamic analysis approach to provide in-

sights beyond what is possible from standard reuse distance analysis. Given an execution

trace from a sequential program, we seek to (i) characterize the data locality properties

of an algorithm and (ii) determine if there exists potential for enhancement of data local-

ity through execution reordering. Since we first explicitly construct a dynamic compu-

tational directed acyclic graph (CDAG) to capture the statement instances and their inter-

dependences; perform convex partitioning of the CDAG to generate a modified, dependence-

preserving, execution order with better expected data reuse; and then perform reuse dis-

tance analysis on the trace corresponding to the modified execution order, we expect to

get a better characterization of the potential benefit of reordering. We have demonstrated

the utility of the approach in characterizing/enhancing data locality for a number of bench-

marks.

67

CHAPTER 4

Convex Partitioning using Loop Induction Variable Information

4.1 Introduction

For many loop optimization and parallelization transformations, loop induction vari-

ables play an important role. An induction variable is defined as a variable whose value

is systematically incremented or decremented by a constant value in a loop [2, 33]. Tech-

niques have been developed to detect and classify a full range of loop induction variables for

optimization and parallelization purposes [37, 102]. Loop induction variables are useful in

operator strength reduction [24], vectorization [103], array subscript range checking [51],

array privatization [92], software pipelining [80, 83, 84], reducing register pressure etc.

Most importantly, for data-dependence tests, the array subscripts should be known in terms

of the loop induction variables [74].

For data locality optimization and program characterization, our major focus lies on

the loops of the program. Our convex partitioning heuristic performs loop tiling where

the tiles can be of any arbitrary shape but convex and the final schedule must preserve the

program dependence structure. Loop induction variables may help us to achieve better

convex partitions.

68

The convex partitioning heuristic described in the previous chapter depends on some

parameters like priority selection, maxlive value, single level or multi level partitioning, etc.

Programs vary in their dependence structure, which results in different kinds of CDAGs.

Therefore they behave differently for different applications using the same combination of

parameters. No single configuration achieves the best results for all. In this chapter, we

propose a new approach to convex partitioning, where we use loop induction variables as

a major attribute for the partition building procedure. The new heuristic no longer uses

the other parameters and instead just relies on the induction variables and a tile diameter -

based on which a more conventional tiling is attempted initially. Then the tiles are expanded

appropriately to preserve dependences as well as the convexity property. Depending on the

CDAG of the programs, we may or may not end up with conventional cube tiles. We test

the new heuristic on a number of benchmarks and show that the new heuristics performs

comparably or better to the previous one, and provides the same level of insight about the

inherent data locality property of the program. The new algorithm is more general and

applicable to all programs. It no longer depends on proper parameter choice for different

applications.

The rest of this chapter is organized as follows. Section 4.2 presents background on

LLVM canonicalized induction variables and the impact of parameters on the heuristic.

Section 4.3 describes the new dynamic analysis approach in detail. Section 4.4 presents

experimental results, followed by concluding remarks in Section 4.5.

69

4.2 Background

In this section we provide the necessary background on the canonical induction variable

produced by LLVM and also discuss the impact of parameters on the previously described

heuristic (Chapter 3) and how the new approach based on loop induction variables can

provide reduction in the required number of parameters.

4.2.1 Canonical Induction Variables

Loops in general can have multiple induction variables. This is especially true in hand-

strength-reduced loops where arrays are referenced via incremented pointers [61]. Com-

piler optimizations that uses loop induction variables generally prefer to handle only a

single unit-stride induction variable in each loop. Allowing them to make this assumption

enables them to handle more forms of loops without additional implementation effort. This

simplification process for induction variables is called canonicalization. Loop induction

variable canonicalization normalizes loops by transforming the primary induction variable

so that it is incremented by 1 at the end of each iteration.

LLVM is able to generate canonical induction variable - an integer recurrence that starts

at 0 and increments by one each time through the loop. The IndVarSimplify pass transforms

loops to have a canonical induction variable, which in turn uses the LLVM pass for ana-

lyzing scalar evolution. Another analysis pass IndVars is then able to generate canonical

induction variables. Our loop pass for program instrumentation uses the getCanonicalIn-

ductionVariable method which checks whether the loop has a canonical induction variable

or not. If available, the instrumentation process includes the values in the trace file.

70

4.2.2 Impact of Heuristic Parameters

The convex partitioning heuristic described in Chapter 3 takes two parameters. First,

we have the Search Strategy: this includes (a) prioritization in selecting a new vertex to

include in a convex partition: depth-priority, breadth-priority, or alternation between depth

and breadth priority (equal priority); and (b) single level partitioning versus multi-level

partitioning. The second parameter is Maxlive: the parameter that sets a limit on the max-

imum number of live vertices allowed while forming a partition. In this section, we study

the impact of choosing different values for these parameters on two different benchmarks -

Jacobi 2D and Matmult.

Jacobi 2D

Fig. 4.1 presents the results of applying the dynamic analysis on a Jacobi stencil on a

regular 2-dimensional grid of size 32, and 30 time iterations.

Fig. 4.1(a) shows reuse distance profiles for a fixed value of Maxlive and different

configurations for single versus multi-level partitioning, and different priorities for next

node selection. With single-level partitioning, depth-priority is seen to provide the best

results. Using multi-level partitioning further improves the reuse distance profile. In order

to judge the effectiveness of the convex partitioning in improving the reuse distance profile,

we show both the reuse distance profiles for the original code and an optimally tiled version

of the Jacobi code. It can be seen that there is significant improvement over the original

code, but still quite some distance from the profile for the tiled code. Fig. 4.1(b) shows the

effect of varying Maxlive from 25 to 800, with multi-level depth-priority partitioning.

71

 0

 1

 2

 3

 4

 5

 6

 7

 2000 4000 6000 8000 10000 12000 14000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

Jacobi : Maxlive=25, Varying Priorities

Single:Depth
Single:Equal

Single:Breadth
Multi:Depth
Multi:Equal

Multi:Breadth
Original

Tiled

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 2000 4000 6000 8000 10000 12000 14000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

Jacobi : Configuration = Multi:Depth, Varying Maxlive

Maxlive:25
Maxlive:50

Maxlive:100
Maxlive:200
Maxlive:500
Maxlive:800

Original
Tiled

(b)

Figure 4.1: Results with different heuristics for Jacobi-2D

Here it can be seen that at large values of Maxlive, the profile is very close to that of the

optimized tiled code. Thus, with a large value of Maxlive and use of multi-level depth-

priority partitioning, the convex partitioning heuristic is very effective for the Jacobi-2D

benchmark.
72

Matrix Multiplication

Fig. 4.2 shows experimental results for matrix multiplication, for matrices of size 30 by

30. In Fig. 4.2(a), the selection priority is varied, for single and multi-level partitioning.

In contrast to the Jacobi benchmark, for Matmult, equal priority works better than breadth

or depth priority. Further, single level partitioning provides better results than multi-level

partitioning. In Fig. 4.2(b), we see performance variation as a function of Maxlive for

single-level equal-priority partitioning. Again the trends are quite different from those of

Jacobi-2D: the best results are obtained with the lowest value of 25 for Maxlive.

For Matmult, the tiled code has a better reuse distance profile than the best reported

heuristic in Fig. 4.2. Our heuristics for building convex partitions use several simplifica-

tions to improve scalability, in particular in the choice of candidates to be inserted in a

partition, and in scheduling the obtained partitions. In addition, we do not explore the

Cartesian product of all possible parameters values (priority and maxlive values) but in-

stead limit to a reasonable subset for scalability purposes. All these factors contribute to

our analysis possibly under-estimating the data locality potential of the application.

These results suggest that no single setting of parameters for the convex partitioning

heuristic is likely to be consistently effective across benchmarks. We conjecture that there

may be a relationship between graph properties of the CDAGs (e.g., low fan-out vs. high

fan-out) and the best parameters for the partitioning heuristic.

With the new approach, we use the loop induction variables for the convex partitioning

algorithm instead of the neighbor-successor strategy. Therefore we no longer require the

parameters used for the previous algorithm. We achieve similar or better reuse distance

73

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1000 2000 3000 4000 5000 6000 7000 8000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

Matmul : Maxlive=100, Varying Priorities

Single:Depth
Single:Equal

Single:Breadth
Multi:Depth
Multi:Equal

Multi:Breadth
Original

Tiled

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1000 2000 3000 4000 5000 6000 7000 8000

B
y
te

s
/F

L
O

P

Machine Cache Size (Bytes)

Matmul : Configuration = Single:Equal, Varying Maxlive

Maxlive:25
Maxlive:50

Maxlive:100
Maxlive:200
Maxlive:500
Maxlive:800

Original
Tiled

(b)

Figure 4.2: Results with different heuristics for matrix multiplication

profile from the new approach but are able to avoid the significant dependence on the pa-

rameters.

74

4.3 Overview of Approach

The new dynamic analysis approach we propose attempts to characterize the inherent

data locality properties of a given (sequential) computation, and to assess the potential

for enhancing data locality via change of execution ordering. We perform analysis on the

CDAG of a computation, attempting to find a different order of execution of the operations

that can improve the reuse-distance profile compared to that of the given program’s sequen-

tial execution trace. If this analysis reveals a significantly improved reuse distance profile,

it suggests that suitable source code transformations have the potential to enhance data lo-

cality. On the other hand, if the analysis is unable to improve the reuse-distance profile of

the code, it is likely that it is already as well optimized for data locality as possible. The

dynamic analysis involves the following steps:

1. Generate a sequential execution trace of a program.

2. Run a reuse-distance analysis of the original trace.

3. Form a CDAG from the execution trace.

4. Perform a convex partitioning of the CDAG, which is then used to change the sched-

ule of operations of the CDAG from the original order in the given input code.

5. Perform standard reuse distance analysis of the reordered trace after convex parti-

tioning.

After such a partitioning, the execution order of the vertices is reordered so that the

convex partitions are executed in some valid order (corresponding to a topological sort

of a coarse-grained inter-partition dependence graph), with the vertices within a partition

75

being executed in the same relative order as the original sequential execution. Details are

presented in the next section.

The key difference between the approach of the previous chapter and the approach pre-

sented in this chapter is the convex partitioning heuristic. We aim to reduce input parameter

dependence of the heuristic and apply a more generally applicable algorithm that works

well for any application. We use the loop induction variable generated from LLVM pass

IndVars, process it more to make it appropriate for our purpose and use this information

during the partitioning heuristic. While growing each partition we try to achieve tiles close

to size T d where d is the maximum loop depth and T is a tunable tile size. Section 4.3.1

describes the details of processing of the loop induction variables associated with the run-

time program instances. Then we explain the preprocessing performed on the CDAG in

section 4.3.2. Finally, section 4.3.3 covers the details of the new convex partitioning algo-

rithm.

4.3.1 Formatting the Induction Variables

For our new heuristic, we need to know the loop iterator values/induction variables for

the run time instances of program statements. The target code is instrumented in such way

that the run time trace contains the LLVM generated canonical induction variable (Sec-

tion 4.2.1) information for all statements. We further process the available loop induction

variables to better serve our purpose.

To differentiate between basic blocks in a loop, we use 2d+1 induction variables, where

d is the number of surrounding loops of the statement instance. For example, if the target

code has 3 nested loops Li, Lj and Lk, the statement instances that is perfectly nested by

all three loops will have a 7 element induction variables vector (i.e., (0, i, 1, j, 1, k, 0), i =

76

1 f o r (i =0 ; i<N; i ++){
2 S1 ; [0 , i , 0]
3 f o r (j =0 ; j<N ; j ++){
4 S2 ; [0 , i , 1 , j , 0]
5 }
6 S3 ; [0 , i , 2]
7 f o r (k =0; k<N; k ++) {
8 S4 ; [0 , i , 3 , k , 0]
9 }

10 S5 ; [0 , i , 4]
11 }

Listing 4.1: Induction Variables Before Pre-processing

Li loop iterator value, j = Lj loop iterator value and so on. The other elements are the basic

block numbers of the preceding loop to which this statement instance belongs to), while

the statement instance that is nested by only the Li loop will have a 3 element induction

variables vector (i.e., (0, i, 1)). Listing 4.1 demonstrates an example code and the induction

variables for each statement/basic block, before they are pre-processed (described later in

Section 4.3.2) .

These values will later be used during the analysis phase to differentiate between nodes

and tiles of different loop dimensions.

4.3.2 Preprocessing of Dynamic Dependency Graph

At the core of our approach lies the process of generating the dynamic dependence

graph from the program execution. The target code segment is instrumented to generate the

runtime information we need for the dependence analysis. Once a runtime execution trace

is available for a program, we can start the construction of the dynamic data-dependence

graph by creating a graph node for each dynamic instruction instance observed at runtime.

77

1 f o r (i =0 ; i<N; i ++){
2 S1 ; [0 , i , 0 , 0 , 0]
3 f o r (j =0 ; j<N ; j ++){
4 S2 ; [0 , i , 1 , j , 0]
5 }
6 S3 ; [0 , i , 2 , 0 , 0]
7 f o r (k =0; k<N; k ++) {
8 S4 ; [0 , i , 3 , k , 0]
9 }

10 S5 ; [0 , i , 4 , 0 , 0]
11 }

Listing 4.2: Induction Variables After Pre-processing

Edges between every pair of nodes are then created whose instructions depend on each

other. When a new node is encountered, we get the producer of the values read by this

node to detect the read after write (raw) dependences. We also keep track of all the readers

of a memory or register location. When a later node reads from or writes to such a location,

a read after read (rar) or a write after read (war) dependence is detected, respectively. Edges

are created for all these types of dependences. The result is a graph that encapsulates all

data-dependences that actually occurred during execution. Since our implementation is

based on LLVM, each graph node represents an LLVM IR instruction and dependences are

tracked through memory and LLVM virtual registers).

After generating the DDG, we preprocess it for our implementation purpose. Right

now, we are only concentrating on statements in a basic block level and so we do not

differentiate between several statements in a single basic block. Therefore, different DDG

nodes having the same induction variable (as they belong to the same basic block) are being

merged.

Our goal is to handle both perfectly and imperfectly nested loops. In order to do that,

we eliminate the difference between the instances of a perfectly nested statement and an

78

imperfectly nested statement. To consider all of them equal during the analysis phase de-

scribed later, the induction variables are extended and filled with trailing 0 values for the

imperfectly nested nodes to have a length of 2d+1, where d is maximum loop depth. These

nodes can be thought of as perfectly nested by all the loops, but with loops not surround-

ing them running from 0 to 0, implying no execution of that loop for this node/statement.

Listing 4.2 shows the preprocessed version of the example shown earlier in Listing 4.1.

4.3.3 Convex-partitioning heuristic

Tiling for locality attempts to group points in an iteration space of a loop into smaller

blocks (tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when

the block fits in a faster memory (registers, L1, or L2 cache). Forming a valid tiling for

a loop requires that each tile can be executed atomically, i.e., each tile can start after per-

forming required synchronizations for the data it needs, then execute all the iterations in

the tile without requiring intervening synchronization. This means that there are no cyclic

data dependences between any two tiles. Our aim is to achieve T d tiling without violating

any data dependence. The algorithm proceeds by repeating the following two steps unless

all the nodes in the CDAG belong to some partition:

• Pick the next ready node from the ready list and try to build a tile of size T d gathering

all the required nodes.

• Add any additional nodes that need to be included to make this a valid convex parti-

tion.

Fig. 4.3 depicts this approach on a two dimensional iteration space (d = 2). If the value

of T is 3, the first step will create a partition or tile that is covered by the blue rectangle in

79

Figure 4.3: Convex Partitioning Approach for 2D Loop Iteration Space with T = 3

the figure. Then to preserve dependence and maintain the convexity property, we need to

include all the nodes inside the pink triangle into the current growing partition. Therefore,

the first partition will contain 12 nodes instead of just 32 = 9 nodes.

We show in Algorithm 4.1 our technique to build convex partitions from an arbitrary

CDAG. It implements a convex-partition growing heuristic that successively formulates a

tile starting from a ready vertex. The key requirement in adding a new vertex to a convex

partition is that if any path to that vertex exists from a vertex in the partition, then all

vertices in that path must also be included. We first build the tile/partition and then add any

other nodes necessary to hold the convexity property.

The inputs to the algorithm are the CDAG and the tile diameter T . The partitioning

heuristic generates a valid schedule as it proceeds. At the beginning, all input vertices to the

80

Algorithm 4.1 GenerateConvexPartitions(G,T)
Input : G : CDAG; T : Tile diameter
InOut: P : Partition containing convex components
begin

P ←− ∅
R←− getTheInitialReadyNodes(G)
while R 6= ∅ do

cp←− ∅
n←− selectReadyNode(R)
cp←− cp ∪ {n}
UpdateListOfReadyNodes(R, n)
< i, j, k >←− Induction variable vector for n
for All vector IV in the range [< i, j, k >,< i + T − 1, j + T − 1, k + T − 1 >] do

if IV is a valid induction variable then
n←− Node with induction variable IV
if n is unprocessed then

cp←− cp ∪ {n}
UpdateListOfReadyNodes(R, n)

S ←− ∅
for n ∈ cp do

if Any predecessor p of n is unprocessed then
S.push(p)

while S 6= ∅ do
n←− S.top()
if n is unprocessed then

cp←− cp ∪ {n}
S.pop()
UpdateListOfReadyNodes(R, n)
if Any predecessor p of n is unprocessed then

S.push(p)

else
S.pop()

P ←− P ∪ {cp}

CDAG are placed in a ready list R. A vertex is said to be ready if all its predecessors (if any)

have already executed, i.e., have been assigned to some convex partition. A new convex

partition cp is started by adding a ready vertex to it (the function selectReadyNode(R)

81

simply picks up one element of R). Now we want to create a partition that starts at this

node and possibly is of size T d. Therefore, we compute all the valid loop induction variable

values that might belong to this new partition. For simplicity, we assumed d = 3 in the

Algorithm 4.1 (The actual implementation can handle loops of any depth). The growing

partition then adds any unprocessed node remaining that has loop induction variable value

that falls within the computed range. Note that, the nodes may or may not be in the ready

list R.

To ensure the convexity property, and produce a dependence preserving valid schedule

at the end of the partitioning process, we need to make sure that there exists no such node p

which does not belong to a partition yet (still unprocessed) but has a path to one or more of

the nodes in the current growing partition. Therefore the partitioning algorithm starts from

the current nodes in the partition and looks backwards as long as there is no unprocessed

node remaining that is a direct or indirect predecessor to the nodes in the current tile. We

use a stack S which is initially filled up with any unprocessed immediate predecessors of

the current partition nodes. Then we loop through the stack one node at a time. Each loop

iteration looks at the current stack top, includes it in the current tile if it is not already part

of any tile and removes it from the stack. Any immediate predecessor of this node that is

not part of any tile are pushed into S for future processing. The process ends when the stack

becomes empty, which indicates we have no more unprocessed predecessor (immediate or

transitive) or we have exhausted the predecessor lists. At this point of the algorithm, we

have a new valid partition.

After the addition of any node to a partition, we need to update the ready list R. Suppose

a vertex n is just added to a partition cp. As a result, zero or more of the successors

of n in G may become ready: a successor s of n becomes ready if the last predecessor

82

needed to execute s is n. The addition of newly readied vertices to the ready list is done

by the function updateListOfReadyNodes(R, n), as shown in Algorithm 3.2. In this

function, the test that checks if s has unprocessed predecessors is implemented using a

counter that is updated whenever a node is processed.

After such a partitioning, the execution order of the vertices is reordered so that the

convex partitions are executed in some valid order (corresponding to a topological sort of a

coarse-grained inter-partition dependence graph), with the vertices within a partition being

executed in the same relative order as the original sequential execution. Details are pre-

sented in the next section.

4.4 Experimental Results

4.4.1 Experimental Setup

The dynamic analysis we have implemented involves three steps. For the CDAG Gener-

ation, we use automated LLVM-based instrumentation to generate the sequential execution

trace of a program, which is then processed to generate the CDAG. The trace generator was

previously developed for performing dynamic analysis to assess vectorization potential in

applications [43]. For the convex partitioning of the CDAG, we have implemented the al-

gorithms explained in detail in the previous section. Finally, the reuse distance analysis of

the reordered address trace after convex partitioning is done using a parallel reuse distance

analyzer PARDA [69] that was previously developed. All performance experiments were

performed on an Intel Core i7 2700K, using a single core.

83

4.4.2 Results

In this section, we present experimental results of dynamic analysis on a number of

benchmarks - Matrix-matrix multiplication, 2D Jacobi, the Floyd-Warshall algorithm to

find all-pairs shortest paths in a graph, and two QR decomposition methods: the Givens

rotation and the Householder transformation. None of these benchmarks could be fully

tiled for enhanced data locality by state-of-the art research compilers (e.g., Pluto [76])

or by production compilers (e.g., Gnu GCC, Intel ICC). For each benchmark, we study

the reuse distance profile of the original code and the code after convex partitioning. We

compare the two convex-partitioning heuristics alongside the original code and also the

tiled version whenever applicable. The figures 4.4- 4.8 plots the reuse distance profile in

bytes/flop metric for different cache sizes. The lower the curve, the better the reuse profile

and the lower I/O cost.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1000 2000 3000 4000 5000 6000 7000 8000

By
te

s/
FL

O
P

Machine Cache Size (Bytes)

Matmult

Original
Tiled

Old Convex-partitioning
New Convex-partitioning

Figure 4.4: Matmult

84

Matmult Fig. 4.4 shows the experimental results for matrix-matrix multiplication for

problem size 30×30. We can see that the new heuristic is better than the old one by a large

margin. It is also almost overlapping with the reuse distance profile of the optimized tiled

version. The new heuristic achieves more regular shaped tiles for Matmult and therefore

the reuse distance profile is very similar to hand-tiled code of Matmult.

 0

 1

 2

 3

 4

 5

 6

 7

 2000 4000 6000 8000 10000 12000 14000

By
te

s/
FL

O
P

Machine Cache Size (Bytes)

2D-Jacobi

Original
Tiled

Old Convex-partitioning
New Convex-partitioning

Figure 4.5: Jacobi 2D

Jacobi Fig. 4.5 shows the results on 2D Jacobi for problem size of 32 × 32 and for 30

iteration. The new heuristic performs well for lower cache sizes. After a certain cache

size the performance is slightly worse but still remains comparable to the tiled code. Jacobi

tiled code has tiles more of a parallelogram shape than rectangular shape. The new heuristic

attempt close to rectangular shape tiles, which might be the reason behind the performance

difference.

85

 0

 2

 4

 6

 8

 10

 12

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

By
te

s/
FL

O
P

Machine Cache Size (Bytes)

Floyd-Warshall’s Out-of-place

Original
Tiled

Old Convex-partitioning
New Convex-partitioning

Figure 4.6: Floyd-Warshall all-pairs shortest path

Floyd-Warshall all-pairs shortest path Fig. 4.6 shows the results on Floyd-Warshall

all-pairs shortest path for problem size of 30× 30. We refer to this code as “out-of-place”

Floyd-Warshall because it uses a temporary array to implement the all-pairs shortest path

computation. The new heuristic shows potential for improvement as the previous heuristics.

The performance for the new heuristic is better than the tiled version. On further analysis,

we found that the tile shapes are still somewhat irregular with the new heuristic. Although

the heuristic attempts to find regular shaped tiles, due to the complex dependence struc-

ture for this algorithm, the final dependence preserving partitions end up being irregularly

shaped. The partitions we achieve have better reuse than the manually tiled version.

Givens Rotation and Householder For the two QR decomposition methods, we find

similar results from both of the convex partitioning heuristics. Fig. 4.7 shows the results

86

 0

 0.5

 1

 1.5

 2

 0 1000 2000 3000 4000 5000 6000 7000

By
te

s/
FL

O
P

Machine Cache Size (Bytes)

Givens

Original
Tiled

Old Convex-partitioning
New Convex-partitioning

Figure 4.7: Givens Rotation

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000 7000

By
te

s/
FL

O
P

Machine Cache Size (Bytes)

Householder

Original
Old Convex-partitioning

New Convex-partitioning

Figure 4.8: Householder

87

for Givens rotation. Although the new partitioning heuristic performs slightly worse than

the previous one, it still shows scope of improvement from tiling, while householder shows

no potential. Therefore, we can reach similar conclusions from both of the heuristics about

the data locality potential for these two methods - Givens rotation algorithm may be better

suited for deployment on future hardware, because of its lower bandwidth demand than

Householder, especially for small cache sizes.

4.5 Conclusion

In this piece of work, we have developed a new and improved convex partitioning algo-

rithm that uses loop induction variable information for our existing dynamic analysis tool

for providing insights about the inherent data locality property of sequential programs. We

aim to get similar results from the new heuristic that is independent of parameters that de-

pend on program characteristics. We construct a dynamic computational directed acyclic

graph (CDAG) to capture the statement instances and their inter-dependences, where each

node has the loop induction variable associated with the statement instance; preprocess the

CDAG to merge nodes that belongs to the same loop iteration; perform convex partitioning

of the CDAG to generate a modified, dependence-preserving, execution order with better

expected data reuse; and then perform reuse distance analysis on the trace corresponding

to the modified execution order. The partitioning initially attempts to build regular shaped

tiles of size T d, where T is the tile diameter and d is the maximum loop depth, then in-

creases the tile size by adding any necessary node which is required to be executed for

preserving dependences and the convexity property, which might end up modifying the tile

88

shape. We demonstrated the effectiveness on a number of benchmarks, where we get simi-

lar or better results using the new heuristics. We conclude that the results obtained from this

new more general convex partitioning heuristic are consistent with the previous heuristic.

89

CHAPTER 5

Characterizing and Enhancing Global Memory Data Coalescing on
GPUs

5.1 Introduction

While the computing capability of GPU is far ahead than CPU nowadays, the memory

bandwidth and latency still remains the bottleneck. To make the best out of heterogeneous

systems, we need to understand and exploit the parallelism in the memory hierarchy. But

writing parallel applications for heterogeneous environments that efficiently use the com-

plex memory hierarchy is still not very intuitive to many programmers. Although the highly

parallel environment of GPUs makes it possible to run applications much faster than CPUs,

inefficient memory usage can significantly impact the overall performance gain. Due to its

large capacity and programming convenience, the GPU global memory is used the most

among all the memory levels available, but it is also the slowest among them all. With

advancement in GPU technology, the off-chip global memory is now cached, but still slow.

The slow dynamic random access memories (DRAMs) that are used to build them is the

primary reason behind this performance bottleneck. Therefore, optimal usage of the global

memory and taking advantage of the coalescing capability whenever possible is crucial.

90

There are existing tools that attempt to ease the development of GPU applications [10–

12, 39, 56–58, 99]. But existing CUDA applications still suffer from uncoalesced accesses.

Most often it is strenuous to manually find out the inefficiency in the complex computations,

specially for long, arbitrary codes. Unless the programmer is able to detect the problem,

other optimization tools depending on programmer input (e.g., [23,40,93]) are of little help.

If uncoalesced access is detected automatically, the programmer can then seek to transform

the code. Thus, there is a strong need for tools to assist application developers develop

codes that exhibit a high fraction of coalesced accesses.

In this chapter, we present our combined approach of dynamic analysis and static trans-

formations to overcome the above mentioned limitations. Dynamic analysis has the power

to look beyond affine codes. As it relies on actual program execution, we can handle non-

affine data dependent codes. When dynamic analysis on traces generated from the program

detects uncoalesced accesses, some recommendations are made depending on the overall

memory access pattern. In many cases, static transformations can then be applied to con-

vert the uncoalesced access to coalesced access. Our dynamic analysis tool is designed

for analyzing arbitrary CUDA/PTX codes for identifying loops with uncoalesced accesses,

and categorization of uncoalesced accesses to different groups along with suggestions for

potential improvement strategies. We also provide a static transformation framework that

implements a remapping of work among threads to optimize CUDA/PTX codes exhibiting

uncoalesced global memory access. To demonstrate the effectiveness of our tool, we have

characterized GPU benchmark suites using the dynamic analysis and transformed a num-

ber of them, including irregular applications. Our transformed version ensures coalesced

access and yields better performance.

91

The rest of the chapter is organized as follows. Section 5.2 contains background in-

formation on GPU global memory access and the PTX intermediate representation. Sec-

tion 5.3 elaborates on the design and implementation of our dynamic analysis, and Sec-

tion 5.4 presents our static transformation approach. Section 5.5 presents an experimental

evaluation of our approach. Finally, Section 5.6 discusses related work, followed by the

conclusion in Section 5.7.

5.2 Background and Overview

5.2.1 GPU Architecture

Computation GPUs are designed for high computational throughput. GPUs typically

contain hundreds of cores (streaming processors) arranged in tightly coupled groups of

8-32 scalar processors per streaming multi-processor (SMs). Parallel threads are grouped

into thread blocks that are scheduled on a SM and cannot migrate. Threads are spawned in

1-, 2-, or 3-dimensional rectangular groups of cooperative threads, called blocks (CUDA)

or work-groups (OpenCL). A 1-, 2- or 3-dimensional grid of blocks is used to schedule

the thread blocks. Both the size and number of thread blocks are fixed when launching

a GPU kernel and cannot be changed after the threads have launched. We note ~G =

(bdimx, bdimy, bdimz, tdimx, tdimy, tdimz) the geometry of the thread space: the sizes

of a thread block in each dimension are denoted tdimx, tdimy and tdimz. In the case

of a 2D or 1D geometry for a thread block, we simply set tdimz or tdimz and tdimy to

1. The grid of thread blocks also has a 3D geometry, the dimension in each dimension is

typically computed from the total number of threads (e.g., problem size) divided by the

thread block size in the dimension. A thread in the computation is uniquely identified by

92

~t = (bx, by, bz, tx, ty, tz) a vector of 6 integers, where each component can range between 0

and the size in ~G from the corresponding component.

Memory The GPU memory hierarchy consists of global memory (shared across thread

blocks), shared memory (shared only among the threads in a single block), local memory

and registers. Global memory is the largest in terms of size, but also the slowest. Shared

memory is faster than global memory but limited in size. In modern GPUs, each Streaming

Multiprocessor (SM) has 64KB of fast memory that can be partitioned between L1 cache

for global memory and shared memory. The 64KB space can be either divided into two

32KB partitions, or 48KB and 16KB. Global memory coalescing (described in Sec. 5.2.2)

leads to efficient usage of the available bandwidth between global memory and shared

memory or L1 cache.

5.2.2 Global Memory Coalescing

When a kernel is launched on a GPU, it is executed by all the threads in parallel. A

typical scenario is to have a global memory reference in the kernel that is executed by all

threads, but requesting different memory addresses for each thread, as shown in Lst. 5.1.

1 __global__ void kernel(float* a) {
2 int tid = threadIdx.x;
3 a[tid] = 1.0;
4 }

Listing 5.1: CUDA code

These memory requests are grouped into a number of memory transactions by the GPU

in the current scheduling unit for a thread block to maximize the bandwidth usage. That

is, the memory transaction is computed based on the region of data requested by a set of

active threads. When consecutive threads access consecutive global memory region (as

in Lst. 5.1) then a single transaction may be implemented, and accesses are coalesced.

93

With modern GPUs (compute capability 1.2 or higher) consecutive threads are no longer

required to get coalesced access, it is enough that the set of data accessed by the set of

threads considered (e.g., threads having the same ty, tz but different tx) is a contiguous

chunk of memory [72].

When the data region accessed by threads is not contiguous (e.g., for an access a[tid

* N] instead of a[tid] in Lst. 5.1, leading to a poor spatial data locality), then it is

not possible anymore to pack the data request into a single, large transaction: the ref-

erence leads to uncoalesced accesses. Up to one transaction per thread will be needed,

dramatically reducing the effective bandwidth. Accessing non-contiguous memory from

the global memory incurs significant performance penalties [72]. One approach to possi-

bly hide the effects of uncoalescing is to use the shared memory for caching the accesses

(see Sec. 5.4.4), however this requires complex code restructuring. In this work, we first

take the approach of changing the thread geometry (i.e., which threads will end up being

grouped together at the time of issuing the memory transactions) to improve spatial data

locality and global memory coalescing before resorting to shared memory usage.

5.2.3 Overview of the Framework

Fig. 5.1 depicts the overall steps of our approach, which consists of 4 stages: instru-

ment, execute, analyze, and transformation.

We use Parallel Thread Execution (PTX), an intermediate language for kernels designed

to run efficiently on NVIDIA GPUs [71]. High-level language compilers like nvcc [72] or

clang [94] can generate PTX instructions from CUDA or OpenCL codes. First, the input

PTX code is instrumented and executed on a GPU to generate its memory traces. We use

Ocelot [36], a compiler framework for PTX code analysis on heterogeneous systems, to

94

Instrument	

Input	 Kernel	

Instrumented	 PTX	

Execute	 on	
GPU	

Analyze	

Transforma<on	

Memory	 Trace	
Suggested	 Op<miza<on	

Transformed	 PTX/CUDA	

for(i=0;i<N;i++)
{ a[tid*N+i]=0;}

for(i=0;i<N;i++)
{ a[i*N+tid]=0;}

PTX	

PTX	

CUDA	

Figure 5.1: Overall Flow Chart of Our Approach

instrument PTX codes. Next, an analysis is performed on the memory traces to character-

ize coalesced and uncoalesced accessed, with recommendation of possible transformations

based on the dynamic analysis results (Sec. 5.3). Finally, based on the recommendation,

the code may be transformed. A small and always-applicable set of thread geometry per-

mutations can be applied on arbitrary PTX programs (Sec. 5.4.2), and the dynamic analysis

can be re-run on the resulting program to observe whether coalescing has improved on the

working dataset. Alternatively, a more powerful geometry transformation framework but

which operates only a subset of CUDA programs can be applied to maximize coalesced

accesses (Sec. 5.4.3).

95

5.3 Dynamic Analysis of Uncoalesced Accesses

5.3.1 Instrumentation and Execution

The input to the dynamic analysis is the PTX code of a kernel we wish to investigate.

First, the PTX kernel is instrumented by inserting a function call to a device function that

stores all the necessary information about the memory access after each global memory

access to compute and store a trace of the program. The memory trace of an instrumented

PTX code is generated simply by executing it on the GPU. The trace can be dependent on

the values of the input data, and so the results may vary with different input datasets. In such

cases, it is recommended to perform the dynamic analysis with a variety of representative

input datasets, determining such sets is out of the scope of this work. An example of a trace

excerpt is shown in Listing 5.2:

1 # t x t y t z s t a t i c i d Load (1) / S t o r e (2) Address Dyn id
2 0 0 0 31 1 30066082304 0
3 0 0 0 34 2 30066081792 0
4 0 0 0 31 1 30066082320 1
5 0 0 0 34 2 30066081796 1
6 0 0 0 31 1 30066082336 2
7 0 0 0 34 2 30066081800 2
8 0 1 0 31 1 30066082320 0
9 0 1 0 34 2 30066081796 0

10 0 1 0 31 1 30066082336 1
11 0 1 0 34 2 30066081800 1
12 0 1 0 31 1 30066082352 2
13 0 1 0 34 2 30066081804 2

Listing 5.2: Trace

where (tidx, tidy, tidz, static id, type, address, dynamic id) is the tuple forming a trace

entry. static id is the unique identifier of the memory instruction in the PTX code gen-

erating this trace entry. dynamic id is the unique identifier of the instance of the static

instruction, for a particular (tidx, tidy, tidz, static id) value. Dynamic ids correspond to

different run-time instances of a single static instruction.

The tuple (tidx, tidy, tidz, static id, dynamic id) is necessarily unique in a trace. The ac-

tual memory address accessed by this instruction as well as the type of access (load or store)

96

is also captured. In this work, only trace entries with identical (static id, dynamic id) val-

ues may execute in parallel and are candidate for coalescing analysis.

5.3.2 Dynamic Analysis Algorithm

Our analysis algorithm detailed in Algorithm 5.1 scans through the memory trace file

to characterize memory access patterns and produce meaningful, per-instruction statistics

about the access strides and the potential for coalescing. The algorithm takes as input W ,

the scheduled block size (e.g., W = 16 for a half warp for compute capability lower than

2.0).

The algorithm analyzes all memory traces from one single static instruction at a time.

The memory traces corresponding to the same static id and dynamic id are stored in M to

test for coalescing. The memory traces are sorted according to their thread ids lexicographic

order and stored in V . The entries in V are then analyzed in groups of size W . These are

the memory executions that happened during warp execution and need to be coalesced.

We compute the maximum, minimum and average stride for the half warp entries (W

consecutive entries from V). All the actual memory addresses accessed are also recorded

in AllAddrs. This step is required to test that a consecutive portion of memory is actually

accessed by the threads over time. Otherwise, no coalescing is possible. The algorithm then

outputs the information about the instruction - memory access type, the strides computed,

etc. If the maximum stride is less than the size of the data type (i.e., 4 for float, 8 for double

etc.), then the access is coalesced. Otherwise, the access is uncoalesced and we report

possible improvement strategies.

97

Algorithm 5.1 Memory Trace Analysis Algorithm
Input : T : Memory trace, viewed as a map T[static id][dynamic id][tidy][tidz][tidx] = addr

W : Warp scheduling size
Output: Report on coalescing and possible optimization strategy
begin

for all unique static id in T do
(min stride,max stride, avg stride, allStr)← (∞, 0, 0, 0)
AllAddrs←emptyVector()
for all unique dynamic id in T[static id] do

// Take the trace entries corresponding to candidate
// accesses for coalescing.
M ← T[static id][dyn id][*] // Build the linearized list of memory addresses accessed.
i← 0
for all (tidy, tidz, tidx) in M in lexicographic order do

V [i]←M[tidy][tidz][tidx]
i← i+ 1

c← 0
while c < i do

// Sort W consecutive elements of V to compute the sorted
// list of memory addresses accessed by W consecutive threads.
V [c..c+W]← sortByIncreasingValue(V [c..c+W])
for j ∈ [0..W − 1] do

stride← V [c+ j + 1]− V [c+ j]
min stride← min(min stride, stride)
max stride← max(max stride, stride)
avg stride← avg stride+ stride

avg stride← avg stride/W
c← c+W

AllAddrs← concat(AllAddrs, V)

// Check if the entire memory space accessed is contiguous.
AllAddrs← sortByIncreasingValue(AllAddrs)
for i ∈ [0..AllAddrs.size− 1] do

allStr ← max(allStr, AllAddrs[i+ 1]−AllAddrs[i])

// Produce report and suggestions.
Print(static id, load/store type)
Print(min stride,max stride,avg stride)
if max stride ≤ sizeof(data type) then

Print(”coalesced”)
else

Print(”uncoalesced”)
if allStr > sizeof(data type) then

Print(”accesses cannot be all coalesced”)
else

Print(”Suggest thread geometry transformations”) if instruction is a load then
Print(”Suggest also shared memory usage”)

98

5.4 Compiler Transforms for Data Coalescing

In this section we present a compiler framework to improve data coalescing. We first

present an approach that uses our dynamic analysis to empirically drive a re-scheduling

of the CUDA threads, that is a change of the thread block geometry in Sec. 5.4.2. This

approach operates on arbitrary CUDA/PTX programs. We then present a purely compile-

time approach that only requires very basic static analysis of the references in a CUDA/PTX

program to compute a new thread block geometry aimed at reducing the number of unco-

alesced accesses in Sec. 5.4.2. To address cases of uncoalesced accesses which require

using loops from the thread code to formulate a new thread geometry, we focus on a subset

of CUDA programs that can be handled with the polyhedral compilation framework [10]

and discuss our method in Sec. 5.4.3. Finally, complementary transformations for load

optimization is presented in Sec. 5.4.4.

5.4.1 Overview

Let us first denote by ~G = (bx, by, bz, tx, ty, tz) the geometry of the thread space: the

sizes of a thread block in the three dimensions are denoted tx, ty and tz. In the case of

a 2D or 1D geometry for a thread block, we simply set tz or tz and ty to 1. The grid of

thread blocks also has a 3D geometry, the size in each dimension is typically computed

from the total number of threads (e.g., problem size) divided by the thread block size in the

dimension. An uncoalesced access arises from non-consecutive data being accessed by two

consecutive threads along the tx dimension. A rescheduling of the threads is analogous to

loop permutation: for instance to permute dimensions tx and ty, we (1) update the geometry

to become ~G = (by, bx, bz, ty, tx, tz); and (2) substitute each occurrence of threadIdx.x

by threadIdx.y (and conversely) in the CUDA/PTX program.

99

Our dynamic analysis presented previously provides two key pieces of information to

drive the profitability of a program transformation: which reference is uncoalesced (and

its stride), and how often a reference is executed. To improve data coalescing, we seek a

program transformation essentially based on finding a new geometry for the threads, such

that accesses are consecutive in memory along the newly computed tx dimension.

5.4.2 Computing a New Thread Block Geometry

This transformation stage takes two inputs: (1) the original geometry, and (2) the AST

of the thread code. CUDA programs have the key property of allowing any bijective trans-

formation of the thread geometry. That is, all inter-block and inter-thread dimensions are

fully data-parallel and hence interchangeable without violating program semantics. We

remark that at this stage we do not require any additional property of the code such as hav-

ing affine control or data-flow: we simply exploit the parallelism readily available through

the thread geometry, and seek an alternative geometry with improved coalescing of data

accesses.

Empirical search using dynamic analysis

Given ~G the vector describing the geometry. An uncoalesced access on a reference R

arises typically because for two consecutive values of tx, the same reference accesses non-

consecutive data. Our first approach seeks a permutation of thread block dimensions so that

the fastest varying one does not incur non-unit stride accesses by R. An iterative approach

to test all possibilities is effective and straightforward in this case: only 3 possibilities exist

(one for each of the 3 original thread block dimensions when used as the tx component of

the geometry), they are all semantically correct, so one can implement the 3 alternatives

and run the dynamic analysis on each of the 3 cases. The rest of the permutation, that is

100

which of the original thread block dimensions will be used as the new ty and tz dimensions,

can be chosen arbitrarily.

Then, the dynamic analysis presented previously is run on each of the three cases,

the result is inspected and the configuration providing the lowest number of uncoalesced

accesses is retained. In our experiments, this simple approach successfully solved unco-

alesced accesses for the benchmarks Gaussian Elimination and Cell. We remark that this

approach implicitly assumes that the test data set used during dynamic analysis is repre-

sentative of the typical control-flow for the program.

Model-driven geometry transformation

Another approach that does not rely on dynamic analysis is possible when the reference

can be successfully characterized using standard static analysis. Contrary to the previous

empirical approach, this model-driven framework requires a static analysis of all the refer-

ences in the CUDA/PTX program to gather information for the cost model. The objective

and constraints do not change: we are seeking a permutation of the geometry, and support

arbitrary CUDA/PTX programs.

Given an array reference R A[pos]1, where pos is the expression used to index the

array, we first perform static analysis on pos (possibly inspecting the entire kernel code)

to uncover key properties on the relationship between thread ids in each dimension and the

value of pos. Precisely, we analyze each sub-expression involved in the computation of

pos, so as to determine:

1. if pos is of the form x + b, where x is a thread id and b is invariant to x; otherwise

pos is of the form b.

1We only discuss the case of linearized array references

101

2. If b above is of the form y*c + d where y is a thread id, and c is greater than 1.

3. The list of all thread ids used to compute pos.

In other words, we perform static analysis of the expression pos for the purpose of

finding (1) which thread id, if any, occurs without any multiplier (it will therefore be suit-

able for coalesced accesses along this dimension); (2) which thread id, if any, occurs with

a non-unit multiplying factor (it will not be suitable for coalesced accesses); and (3) which

thread id is used to compute the reference (any thread id not involved will be suitable for

stride-0 accesses). Standard dataflow analysis can be used, in particular computing reach-

ing definitions for pos [3] and the read/write sets of these definitions.

We denote ~c = (cx, cy, cz) a vector of 3 Booleans, such that if cx is set to 1 then the

thread dimension tx matches x in the pattern x + b above, 0 otherwise. Similarly for cy

when ty matches x in the pattern x+ b, etc. We denote ~u = (ux, uy, uz) another vector of 3

Booleans, with the semantics that ux is set to 1 if tx matches y in the pattern b = y ∗ c + d

above, and so on for the other coordinates. Finally we denote ~z = (zx, zy, zz) the vector

where zx is set to 1 if tx is not used to compute the value pos, and so on.

We are now equipped to formulate an Integer Linear Program whose optimization pro-

vides us with the thread dimension to use for tx. To achieve this, we implement the solution

in the form of a permutation matrix for the three thread block coordinates. We first intro-

duce 9 Boolean variables pi,j , one for each of the elements in a 3 × 3 permutation matrix

which models the 3D thread geometry permutation we need to apply to maximize coalesced

accesses. To ensure it is a true permutation matrix, we add the constraint
∑

i pi,j = 1, one

for each of the three values for j, and
∑

j pi,j = 1, for each value of i, that is a total of

six constraints. Then, for each reference R, we add constraints to capture the cost of large-

stride accesses (that is, tx would be true in ~u), stride-1 accesses (tx is true in ~c) and stride-0

102

accesses (tx is true in ~z). We use equal cost of 1 for stride-0 and stride-1 accesses, and a

fictitious large value N for the cost of large-stride accesses (N must be greater than the

number of references). We get for a reference R:

CR =
3∑

i=1

c(i).p1,i +
3∑

i=1

z(i).p1,i +
3∑

i=1

N.u(i).p1,i

where only the cost associated to the dimension used as “inner-most” (the first row of

the permutation matrix, capturing the output tx dimension) is being modeled. The final

optimization problem, where pi,j are Boolean unknowns, is then:

P =
∑
R

CR

minimize P s.t.
∑
i

pi,j = 1, ∀j ∧
∑
j

pi,j = 1, ∀i

Because of the constraints on P to output a permutation matrix, we are guaranteed

to find a permutation that minimizes the number of large-stride references. If multiple

solutions with identical cost exist, one may be selected randomly. Further refinement can

be achieved by weighting each cost by the number of times the reference is accessed. The

optimal solution is implemented as the geometry permutation encoded in the permutation

matrix is applied to the CUDA/PTX program, altering both the thread block geometry and

substituting thread ids in the code as necessary.

5.4.3 Geometry and Thread Code Transformations

Threads are grouped into the same warp according to their threadIdx.x. Therefore,

these threads should read/write consecutive global memory locations as much as possible.

Listing 5.3 shows a common example where each thread is assigned a complete row of a

matrix, which leads to strided memory access of threads in the warp.

103

1 __global__
2 void kernel(float *A, float value){
3 int tx = threadIdx.x + blockIdx.x*blockDim.x;
4 for (int i = 0; i < N; i++){
5 R: A[tx*N + i] = value;
6 }
7 }

Listing 5.3: Inefficient Global Memory Store Example

Loop i is a parallel loop and therefore we can re-distribute the stores among the threads

to ensure coalesced access. That is, we can use the i loop in the thread code as an additional

source of parallel threads, and compute a new 2D geometry in place of the original 1D one,

such that accesses will be coalesced for tx: in this example this amounts to (1) making i the

tx dimension, updating bx correspondingly to capture N threads; and (2) make the original

tx dimension ty in the transformed code.

The example above highlights a key issue when transforming codes for coalescing: that

intra-thread loops may need to be analyzed and transformed into CUDA threads to ensure

proper coalescing without data layout transformations. Indeed, in our benchmark suite the

Rodinia Myocyte and all PolyBench/GPU kernels are programmed using 1-dimensional

thread block geometry, with parallel loops inside the kernel code. Such programs require

deep static analysis and transformation of both the geometry and kernel codes to implement

efficient data accesses.

To address this problem, we now present a polyhedral-based framework to transform

CUDA programs by lifting loops inside the kernel code and producing a multi-dimensional

thread geometry. Because of the need for precise analysis, contrary to the previous sections

this framework applies only to a specific subset of CUDA kernels: those whose control-

and data-flow can be exactly characterized at compile-time using the polyhedral model

[10, 32], and which do not contain any synchronization primitives. We remark that this

framework uses the CUDA kernel source code as input, in place of the PTX representation.

Algorithm 5.2 outlines our polyhedral optimization flow, and is detailed in the following.

104

Algorithm 5.2 Polyhedral optimization flow
Input : AST : AST of the CUDA kernel code;

G: original thread geometry;
Output: AST,G: Output new CUDA code and geometry
begin

Poly←extractPolyhedralRepresentation(AST,G)
C ←computeLegalityConstraints(Poly)
Cp←computeParallelismConstraints(Poly)
C ←C ∩ Cp

P ←computeCostForAllRefs(Poly)
sol←minimize P s.t. C
AST ←polyhedralCodegen(Poly,AST ,sol)
AST,G←postProcessingAndTiling(AST)
return AST,G

Program representation

To represent a CUDA program in the polyhedral model, we first resort to classical

AST-to-polyhedron conversion (function extractPolyhedralRepresentation).

First we compute, for each syntactic statement in the program, its iteration domain. This

set captures all the statement run-time instances, with an integer set bounded by affine

inequalities. We then integrate the thread geometry (both for thread block geometry in the

grid and thread geometry within thread blocks) by viewing it as a loop nest with 6 loops,

each iterating from 0 to bx, etc. for the other 5. For instance for statement R above, its

iteration domain DS is:

DS = {(bx, by, bz, tx, ty, tz, i) ∈ Z7

| 0 ≤ bx < N/blDim.x ∧ 0 ≤ tx < blDim.x ∧

0 ≤ i < N ∧ by = bz = ty = tz = 1}

Access functions describe the location of the data accessed by a statement instance.

In static control parts, memory accesses are performed through array references (a scalar

105

variable being a particular zero dimensional case of an array). We restrict ourselves to

subscripts that are affine expressions of surrounding loop counters and global parameters.

For instance, the subscript function of a read reference A[i][k] surrounded by 3 loops i,

j and k is simply fA(i, j, k) = (i, k).

The execution order of the dynamic instances of statements captured in the iteration

sets is described using a scheduling function ΘSi for each statement Si. A schedule is

a function which associates a logical execution date (a timestamp) to each instance of a

given statement. In the case of multidimensional schedules, this timestamp is a vector.

In the target program, statement instances will be executed according to the increasing

lexicographic order of their timestamp. To construct a full program description, we build

a collection of schedules Θ = {ΘS1, . . . ,ΘSn}, that is a list of the statement scheduling

function for each statement in the program.

In this work, we restrict the scheduling function to model only the original program or-

der and any possible permutations of the loop dimensions, including intra-thread loops and

geometry dimensions. In other words, we seek a permutation matrix which will consider

all six geometry dimensions as well as any loop dimension in the code. For homogeneity if

two statements are not surrounded by the same number of loops, artificial one-time loops

are introduced in the representation before the statement’s inner loop, so that all statement

iteration domains and schedules have the same dimensionality for the program.

Computing the program transformation

Our objective to find a transformation of the program is extremely analogous to Sec-

tion 5.4.2: we formulate an ILP integrating the cost of accesses for each reference, seeking

a solution in the form of a permutation matrix. But we also need to now take into account

106

(1) legality conditions, as not all permutation of intra-thread loops may be semantically cor-

rect; and (2) parallelism conditions, as the intra-thread dimensions can be permuted with

geometry dimensions only if they are parallel loops. Finally, to generate correct CUDA

codes we must comply with the maximal thread block sizes as specified by the GPU and

resort to a complementary tiling phase if needed.

The function computeLegalityConstraints computes the legality conditions

that constrain the coefficients of the permutation matrix. The convex set of semantics-

preserving schedules can be built in the traditional manner, linearizing the constraints

provided by each dependence polyhedron using the Farkas Lemma [32, 79] to end up

with affine inequalities bounding the schedule coefficients (i.e., the permutation matrix) so

that each solution satisfying the inequalities necessarily preserves the program semantics.

The Ponos tool automatically computes these constraints from the polyhedral representa-

tion [1, 79]. The sets of statement instances between which there is a data dependence

relationship are modeled as equalities and inequalities describing a dependence polyhe-

dron [31]. All dependence polyhedra can be automatically extracted from the program

polyhedral representation, for instance using the Candl tool [1].

The function computeParallelismConstraints encodes a system of constraints

on the schedule coefficients so that for two instances ~xR and ~xS in dependence, the con-

straint ΘR(~xR) = ΘS(~xS) is enforced for all and only geometry dimensions. Indeed, for

the rest of the program, only the semantics-preserving condition ΘR(~xR) � ΘS(~xS) is

enforced, however for all dimensions/loop levels. This condition is the classical sync-free

parallelism condition [10, 60] to be enforced at the scheduling level, and is also linearized

using the Farkas Lemma [32]. The final set of constraints C is computed as the intersection

of the legality and parallelism constraints.

107

The function computeCostForAllRefs first analyzes each reference to compute

the various ~c, ~u and ~z vectors based on the reference access functions. We remark that these

vectors are extended to have one element per surrounding dimension (that is, the geometry

dimensions and any surrounding loop, including one-time loops), instead of only 3. We

then formulate an ILP to find the coefficients of a permutation matrix (the linear part of the

scheduling functions), in a manner analogous to Sec. 5.4.2. The permutation matrix size

is adapted to properly model all dimensions, and we encode the cost constraints not only

for the tx dimension (i.e., p4,j the coefficients of the permutation matrix corresponding to

the output tx dimension) but also for all intra-thread loops (i.e., p6+k,j , for each k ∈ [1..d]

with d intra-thread loops). We then minimize this ILP to obtain sol, the coefficients of the

permutation matrix subject to all constraints.

The function polyhedralCodegen embeds the permutation sol into a complete

schedule Θ and implements the transformation on the polyhedral representation of the

CUDA code, by generating a code scanning iteration domains following the order specified

by the schedule [13]. As we have modeled the geometry dimensions as standard loops in

the polyhedral representation, a final post-processing stage needs to be performed to trans-

late the geometry loops into CUDA geometry syntax, the function postProcessin-

gAndTiling performs this task. Finally, because of hardware GPU constraints, we may

need to apply tiling along the thread block dimensions to ensure the new tx, ty and tz do

not exceed their maximal allowed size. Returning to Listing 5.3, (bx, by, bz, tx, ty, tz, i)

is permuted to (bz, bx, by, i, tx, ty, tz), where a one-time loop tz is used inside the thread

code (in other words, after code generation there is no loop inside the thread code), and

loop i becomes the new tx dimension. Because i has N iterations, a strip-mining of i is

108

performed, updating bz and i, so that the new dimension tx has a size not exceeding the

hardware geometry constraints, with bx × tx = N .

5.4.4 Other Static Transformations

Listing 5.4 describes a common inefficient access pattern where a single thread is used

to compute a reduction operation on a row of a matrix.

1 __global__
2 void kernel(float *A, float *x, float *tmp){
3 int i = blockIdx.x*blockDim.x+threadIdx.x;
4 if (i < N){
5 for(j=0; j < N; j++){
6 tmp[i] += A[i * N + j] * x[j];
7 }}}

Listing 5.4: Inefficient Global Memory Load Example

This straightforward implementation leads to poor performance, because of uncoa-

lesced accesses. We propose an effective work re-distribution strategy to improve the per-

formance of such kernels.

During the dynamic analysis phase, such inefficiency is detected when we find a thread

performs two contiguous loads followed by a store to a single location, but only one of

the load operations is uncoalesced. It is highly likely, but not guaranteed that the thread

is performing a reduction operation. To ensure correctness, we find and analyze the loads

and the store in the original unoptimized PTX during the static transformation phase. The

reduction operation is detectable at this point as it appears as a sequence of ld.global (data

load from global memory), ld.global, fma (fused multiplication and add) and st.global (data

store in global memory) operations in the PTX code. The optimization pass then proceeds

with the transformation.

The transformation converts the reduction operation into a series of intermediate partial

result computations, followed by atomic operations. The overall idea is depicted in Fig. 5.2.

109

Block	 0	 Block	 1	

!d_x=0	 !d_x=0	

	 Atomic	 opera1on	

1.	 Par1al	 sum	 1.	 Par1al	 sum	

2	 2	

3.	 result	

Figure 5.2: Partial Sum Method for Load Optimization

The matrix is logically divided into blocks, where each block is loaded in a coalesced

fashion by a thread block into a shared memory buffer. The block size needs to be a perfect

square (e.g., 256) so that T is an integer. Another run-time requirement is the use of N2/T 2

blocks, so that each thread just loads one element from the NxN matrix. We allocate a

buffer in the shared memory to hold data from global memory, where the size of the buffer

is equal to the thread block size. The multiplication operation is performed on these data

and the results are stored back in the shared buffer, replacing the the old values. After

syncthreads, a subgroup of threads with ids a ∗ T + 0, where a = 0, 1, ...T − 1 computes

the partial sum of row a of the shared memory. Following another syncthreads, we need to

perform an atomic addition across the blocks to get the final result from the partial results.

The transformation steps are shown in Algorithm 5.3. The declaration of the 2-D shared

array is inserted in the first basic block. Lines 4-10 are the computations inserted and stored

in registers. For simplicity, we skipped using PTX level computations in the algorithm.

From the instID, we find the array base addresses of the two ld.global and the st.global

instructions that surround the fma. The original PTX instructions are moved out of the

loop that contained them. We replace them with new instructions. Then the uncoalesced

110

Algorithm 5.3 Transform Consecutive Load Operations by Single Thread
Input : instID: Static ID of the instruction to transform;

T : Shared Memory dimension TxT ;
C: Input PTX code;

Output: C ′: Output PTX code
begin

C ′ ←− C
Allocate shared memory S[TxT] in C ′

i←− threadID/T
j ←− threadID%T
t1 ←− blockID ∗BLOCK SIZE
t2 ←− (blockID ∗ T)%N
index1←− t1 + t2 + i ∗N + j
index2←− (blockID ∗ T + j)%N
index3←− (blockID ∗ T ∗ T)/N + i
load inst←−PTX instruction for instID
A←− Base address of load inst
x←− Base address of the next load instruction
y ←− Base address of the store instruction
Find loop containing load inst

Move reduction instructions out of loop
// Coalesced read from global memory

Load A[index1] into S[i][j]
S[i][j]←− S[i][j] ∗ x[index2]
Syncthreads
if j = 0 then
// Compute partial sum for block
for k = 0 to T do

sum←− sum + S[i][k]

Syncthreads
Insert atomic addition of sum in C ′

Store result of atomic add at y[index3]
return C ′

load instruction is transformed into a coalesced load by using the new computed offset

index1. The ld.global is now followed by a st.shared (store in shared location). The offset

of the second load operation is also replaced by index2. The multiplication is inserted after

the second load and the result is stored back in the shared buffer. Following a syncthreads

111

instruction, we add a code block that checks whether the thread has an ID that equals

a ∗ T + 0 for some a. Inside the true branch, we insert a loop to perform the partial sums.

After the if block, we add another syncthreads to make sure that all the partial results are

ready. Finally, the atomicadd instruction is inserted to add the partial sums and stores the

results at the new offset index3.

5.5 Experimental Results

5.5.1 Experimental Protocol

We have used Ocelot v2.1 to build the instrumentation and the optimization passes

for PTX codes. CUDA Toolkit v5.5 was used for the nvcc compiler and also to write

the CUDA driver API for executing PTX codes. Experiments were done on machines

with Tesla K20 and Tesla K10 - both had compute capability of 3.0. The benchmarks

presented are from Rodinia v2.4 [20,22] and PolyBench/GPU v1.0 [38]. The sparse matrix-

vector multiplication (SpMV) application is taken from SHOC [26]. The spmv csr kernel

from SHOC has uncoalesced access of the column vector that stores indices of the actual

elements in the matrix. This access is affine and we were able to apply the transformation.

The execution time is measured by taking the average of 100 executions.

5.5.2 Dynamic Analysis Results

Type C/U Stride Bandwidth
Load Coalesced 0 1
Load Uncoalesced N N
Store Uncoalesced N N

Table 5.1. Sample Output of Dynamic Analysis

112

Rodinia
Benchmark Kernel Total Uncoalesced

Gaussian Fan1 2N + 1 2N
Fan2 4N2 + 4N 3N2 +N

Kmeans invert mapping 2NK NK
MUMmerGPU printKernel 5N 5N

Myocyte solver 7N2 7N2

k-NN euclid 5N 4N
Cell evolve 2N3 2N3

StreamCluster compute cost 6N 5N

Polybench/GPU
Benchmark Kernel Total Uncoalesced

AtAx atax kernel1 N2 + 3N N2

BiCG bicg kernel2 N2 + 3N N2

Correlation corr kernel 7N2 +N 5N2

covariance covar kernel 8N2 5N2

GESUMMV gsumv kernel 2N2 + 8N 2N2

Gramschmidt gram kernel2 2N + 1 2N
mvt mvt kernel1 N2 + 3N N2

SYRK syrk kernel 6N2 N2

SYR2K syr2k kernel 8N2 2N2

Table 5.2. Benchmarks with Uncoalesced Access in Rodinia and Polybench/GPU

To evaluate our dynamic analysis tool, we characterized the global memory coalescing

properties of Rodinia and PolyBench/GPU benchmarks. The time for the dynamic analysis

depends on the size of the memory traces. The total time for the instrumentation, trace

generation and running the analysis of an application is generally in the order of hundreds

of milliseconds. The profile sizes are approximately in the range of ten kilobytes.

We feed one kernel at at time to the analysis tool and produce useful information for

each of the static global memory load/store operation. For each operation the tool is de-

signed to report the following: type (Load/Store), Coalesced/Uncoalesced, stride (distance

between memory accessed by consecutive thread in the thread space) and the bandwidth

of the operation. For example, for the Fan1 kernel of the Gaussian Elimination bench-

mark, the tool produces output like Table 5.1. Table 5.2 depicts a summary of the results

113

Benchmark
Kernel Execution Time Data Copy Times GFLOPS Kernel Speedup App. Speedup
Original Transformed Host to Device Device to Host Original Transformed

(R) Myocyte 79.81ms 2.25ms 43.81ms 29.25ms 1.8 63.5 35.5× 2.1×
(R) Gaussian 1.91s 0.43s 0.01s 0.01s 17.91 78.71 4.4× 4.3×

(R) Cell 6.73ms 1.74ms 1.37ms 1.55ms n/a n/a 3.9× 2.1×
(P) covariance 23.27s 4.61s 0.011s 0.01s 5.91 29.82 5.1 × 5.1×

(P) GESUMMV 82.67ms 10.59ms 20.63ms 0.01ms 3.25 25.35 7.8× 3.3×
(P) AtAx 28.71ms 15.28 ms 40.87ms 0.02ms 9.35 17.56 1.9× 1.3×

(P) Correlation 23.27s 4.61s 0.02s 0.01s 5.91 29.82 5.1 × 5.1×
(P) mvt 23.61ms 10.19ms 40.89ms 0.02ms 11.37 26.33 2.3× 1.3×

(P) BiCG 28.86ms 15.33ms 40.88ms 0.02ms 9.28 17.51 1.9× 1.2×
SpMV 27.49ms 8.01ms 10.44ms 0.01ms 5.22 17.23 3.4× 2.1×

Table 5.3. Execution times of applications on Tesla K20

of the analysis on Rodinia and Polybench/GPU. For space limitation, we only report the

benchmark kernels that has uncoalesced access detected by the tool. Seven Rodinia bench-

marks are identified to have uncoalesced accesses. Three out of these seven benchmarks

(MUMmerGPU, k-Nearest Neighbor and Stream Cluster) use array of structures where

each thread accesses all the members of a structure element. This results in a strided ac-

cess for the threads in a warp. Using existing APIs [23], the array of structures can be

converted to structure of arrays to achieve coalesced accesses. While our static transfor-

mation framework could be extended in the future to incorporate such an optimization, it

currently does not. Hence, we do not report performance for these applications. Myocyte,

on the other hand, assigns each thread to compute a full row of a matrix which is very in-

efficient. Gaussian elimination distributes a 2D matrix onto a 2D thread block but assigns

the fastest growing dimension to threadIdy, leading into strided access. Cell has the same

issue for 3D matrices and thread blocks. We optimize these three benchmarks using static

transformation (results in the next section).

The PolyBench/GPU suite has nine applications with uncoalesced memory accesses.

Among them, the Gramschmidt kernel2 requires re-writing of the whole application to

achieve coalesced access - which is out of scope for this work. Syrk and Syr2k do not have

114

much scope of improvement. We transform the remaining six applications. We also ana-

lyzed SHOC sparse matrix-vector (SpMV) multiplication as an representative for irregular

applications. The results are in the following section.

5.5.3 Static Transformation Results

From the dynamic analysis tool, the applications identified with improvement potential

are then fed to a static transformation framework for optimization. We report the improve-

ment of execution times for these applications for Tesla K20 in Table 5.3. Benchmarks

taken from Rodinia are marked with R while benchmarks taken from Polybench/GPU are

marked with P . For each kernel, we also measured the time for copying data between host

and device. We compared the performance in GFLOPS. Cell only performs copy operation,

therefore GFLOPS is not reported for this benchmark. The effective bandwidth compari-

son for K10 and K20 machines are reported in Fig. 5.3 and Fig. 5.4 respectively. Note that

y-axis is in logarithmic scale for these figures.

We observe significant speed up for all of the applications. The speedup ranges from

2× to 35× on K20. and 6× to 40× on K10. Myocyte in its original form suffers from a

high memory latency due to the high amount (refer to Table 5.2) of uncoalesced accesses.

Our transformation successfully re-distributed the workload so that threads now perform

the same number of reads and writes in a coalesced fashion, leading to a significant 35×

speedup. Similarly, simple geometric transformation of thread dimensions in Gaussian

Elimination and Cell improves their performances by around 4×. Although it seems that

Cell had more uncoalesced access, it uses a 3D thread block on O(N3) data vs Gaussian

Elimination using 2D thread block on O(N2) data. Therefore the speedup is similar. The

115

Polybench/GPU benchmarks and SpMV achieved 2× to 8× speedup after the transforma-

tion, which fixed the uncoalesced load operations. As the speed up is related to the amount

of uncoalesced access in the original code, GESUMMV has higher speedup compared to

AtAx, BiCG, etc due to its 2× more uncoalesced accesses.

1	

10	

100	

1000	

My
oc
yte
	

Ga
us
sia
n	

Ce
ll	

co
va
ria
nc
e	

GE
SU
MM

V	
At
Ax
	

Co
rre
la:
on
	

mv
t	

BiC
G	

Sp
MV

	

Eff
ec
:v

e	
Ba

nd
w
id
th
	 (G

B/
s)
	

Benchmarks	

Original	

Transformed	

Figure 5.3: Effective bandwidth on Tesla K10. Y-axis is in logarithmic scale

116

1	

10	

100	

1000	

My
oc
yte
	

Ga
us
sia
n	

Ce
ll	

co
va
ria
nc
e	

GE
SU
MM

V	
At
Ax
	

Co
rre
la:
on
	

mv
t	

BiC
G	

Sp
MV

	

Eff
ec
:v

e	
Ba

nd
w
id
th
	 (G

B/
s)
	

Benchmarks	

Original	
Transformed	

Figure 5.4: Effective bandwidth on Tesla K20. Y-axis is in logarithmic scale

Fig. 5.3 and 5.4 provides useful insights into the benefits of our transformation algo-

rithms. Five out of the ten benchmarks reached over 100GB/s bandwidth after our opti-

mization, and the high memory bandwidth directly contributes to overall application per-

formance, because the time for fetching data from global memory is significantly reduced

by coalesced accesses. Memory bounded kernels benefit more from our algorithms than

compute bounded ones. K20 has a wider memory bus than K10, which results into lower

117

execution times and copying times. It is for the same reason we presume that the perfor-

mance gain is more on K10. The uncoalesced kernels are penalized more on K10 compared

to K20. The average speedup is 6× for all of the applications tested.

2D Benchmarks Thread Geometry Kernel Execution Program Execution
backprop Y-X (X innermost) 0.63ms 0.081s

X-Y 0.91ms 0.14s
hotspot Y-X (X innermost) 0.38ms 0.39s

X-Y 0.51ms 0.45s
lud Y-X (X innermost) 57.6ms 68.6ms

X-Y 188.8ms 199.7ms
srad Y-X (X innermost) 8.28ms 0.25s

X-Y 27.06ms 0.31s
gaussian Y-X (X innermost) 3.97s 4.06s

X-Y 0.83s 0.93s
3D Benchmark Thread Geometry Kernel Execution Program Execution

Cell Z-Y-X(X innermost) 3.35ms 0.47s
X-Y-Z(Z innermost) 10.53ms 1.19s
X-Z-Y(Y innermost) 4.33ms 0.57s

Table 5.4. Execution times using different thread block geometry on Rodinia

We tested the importance and effect of thread block geometry permutation on the Ro-

dinia benchmark suite. We picked the Rodinia benchmarks that uses 2D or 3D thread block,

chose all possible permutation of the thread block geometry and measured the execution

times. The comparison is shown in Table 5.4. It is clear from the table that the best per-

formance always comes from choosing threaIdx.x as the innermost dimension. Our static

analysis method was able to detect the best permutation for all of these benchmarks. For

Gaussian and Cell, the benchmarks had less than optimal permutation which the static anal-

ysis corrected by choosing the correct permutation and then performing the transformation

118

according to the findings. For the others, the analysis correctly detected that the existing

permutation is the best and performed no transformation.

5.5.4 Discussions

Dynamic analysis, in general, can be inaccurate in some cases as the analysis might

be dependent on input data sets. But the effectiveness of our specific characterizing tool

does not depends on choosing appropriate input sets. To the best of our knowledge, we

are not aware of any real benchmark on which different input datasets can make the same

memory reference changing from being coalesced to uncoalesced, or vice-versa. The in-

put dataset may only change the run-time uncoalesced access count/stride/bandwidth usage

metric. But, ignoring corner/artificial cases, it will not change the fact whether a memory

reference is coalesced or not. However, the final performance of the transformed code can

be affected, of course, by the input dataset. In our test suite, for 6 out of 10 benchmarks

the control flow is independent of the input, therefore the same transformation is always

required whatever the input, and such transformation is automatically computed and im-

plemented in our framework.

Our dynamic analysis for detecting uncoalesced access operates on arbitrary CUD-

A/PTX codes. Our transformation scheme based on geometry permutation can also handle

any CUDA/PTX program. Therefore, we can analyze all Rodinia benchmarks and ap-

ply the geometric permutation on them. However our intra- and inter-thread optimization

framework using the polyhedral model is limited to affine CUDA programs, and cannot

handle all Rodinia benchmarks.

119

Coalesced access may increase the register pressure and result into higher amount of

spill. But we observe significant speedup by achieving coalesced access (as shown in Ta-

ble 5.3). Therefore, the effects of other factors, if any, must have been negligible.

5.6 Related Work

Many previous works focused on improving the programming productivity by automate

transformation tools such as from C to CUDA [10, 11] and OpenMP to CUDA [56–58].

PPCG [99] uses polyhedral analysis and convert legacy affine sequential C codes to CUDA

automatically. In contrast, our work can operate on arbitrary input CUDA/PTX codes and

takes as input a CUDA program, and our intra-thread optimization focuses exclusively on

data coalescing. Par4All [5] transforms C or Fortran code to CUDA or OpenCL code.

Par4All uses a polyhedral analysis tool called PIPS but the tool itself is not entirely based

on polyhedral analysis. Unlike PPCG, it does not use any shared memory. Optimization

techniques such as loop collapsing or thread coarsening are used in [62,106], they however

differ from coalescing-centric approach to find a new thread block geometry. Few works

have been proposed for specific algorithms such as [27, 59, 66, 70]. Inspector/executor

based strategies [97, 104] have been proposed to support non-affine irregular codes. An-

other set of work provides directive-based CUDA code optimizations [40, 93] or API to

transform CUDA codes [23] but rely on manual annotations from the programmer.

CUPL [4] uses polyhedral methods to detect possible uncoalesced accesses of affine

CUDA codes. In contrast, our dynamic analysis method can detect coalesced or uncoa-

lesced access pattern in any affine and irregular PTX codes. To the best of our knowl-

edge, CUPL limits to detecting uncoalesced accesses, and does not automatically transform

programs. Therefore CUPL cannot lead to any automatic improvement in performance,

120

in contrast to our approach which automatically transforms programs. GMRace [109],

GRace [108] and GMProf [107] was developed to detect data races in shared memory, us-

ing a similar approach to ours that combines dynamic analysis and static transformation.

Previous dynamic analysis techniques ([17, 21]) also focuses on program correctness and

aims to detect race conditions and bank conflicts. To the best of our knowledge, we present

the first dynamic analysis approach for improving the global memory access pattern on

GPU. In addition, our framework targets at PTX code that can be derived from any hetero-

geneous programming language or directives.

5.7 Conclusion

In this work, we have combined dynamic analysis approach with static transformation

with an aim to improve locality of global memory data during a thread warp execution.

Given a PTX code of a program, we (1) characterize its global memory access operations

and separate coalesced and uncoalesced access, (2) study access pattern of the uncoalesced

accesses and recommend some improvement strategy if possible and (3) implement trans-

formations of the input PTX (or CUDA) code to improve data coalescing. We have char-

acterized GPU benchmark suites using the dynamic analysis and transformed a number of

them, including irregular applications. Our transformed version ensures coalesced access

and improves the kernel computation time by 2× to 40×.

121

CHAPTER 6

Conclusion

In this dissertation, we have presented an approach to addressing a very important prob-

lem for both CPU and GPU architectures. Our tool for characterizing CPU applications

looks beyond the limitation of reuse distance analysis and considers possible valid reorder-

ing of execution. We have developed a dynamic analysis approach to provide insights about

the inherent data locality property of algorithm implementations. Given an execution trace

from a sequential program, we seek to characterize the data locality properties of an algo-

rithm and determine if there exists potential for enhancement of data locality through ex-

ecution reordering. We first explicitly construct a dynamic computational directed acyclic

graph (CDAG) to capture the statement instances and their inter-dependences. We then

perform convex partitioning of the CDAG to generate a modified, dependence-preserving

execution order with better expected data reuse. By performing reuse distance analysis on

the trace corresponding to the modified execution order, we expect to get a better charac-

terization of the potential benefit of reordering. We have demonstrated the utility of the

approach in characterizing/enhancing data locality for a number of benchmarks. We also

present another tool to characterize and enhance global memory coalescing in GPU appli-

cations. We have combined dynamic analysis with static transformation, with an aim to

improve locality of global memory data during a thread warp execution. Given the PTX

122

code of a program, we characterize its global memory access operations and separate co-

alesced and uncoalesced access, study access pattern of the uncoalesced accesses and rec-

ommend an improvement strategy if possible and implement transformations of the input

PTX (or CUDA) code to improve data coalescing. We have characterized GPU benchmark

suites using the dynamic analysis and transformed a number of them, including irregular

applications. Our transformed versions achieve significant improvement over the original

versions.

123

BIBLIOGRAPHY

[1] the polyhedral compiler collection. http://www.cs.ucla.edu/ pouchet/software/pocc/ .

[2] AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compilers: Principles, Techniques,
and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1986.

[3] AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compilers: Principles, Techniques
and Tools. Addison Wesley, 1986.

[4] AMILKANTHWAR, M., AND BALACHANDRAN, S. Cupl: A compile-time uncoa-
lesced memory access pattern locator for cuda. In Proceedings of the 27th Inter-
national ACM Conference on International Conference on Supercomputing (New
York, NY, USA, 2013), ICS ’13, ACM, pp. 459–460.

[5] AMINI, M., GOUBIER, O., GUELTON, S., MCMAHON, J. O., XAVIER PASQUIER,
F., PAN, G., AND VILLALON, P. Par4all: From convex array regions to heteroge-
neous computing. http://www.par4all.org/.

[6] ANDERSON, E., BAI, Z., BISCHOF, C., BLACKFORD, S., DEMMEL, J., DON-
GARRA, J., DU CROZ, J., GREENBAUM, A., HAMMARLING, S., MCKENNEY,
A., AND SORENSEN, D. LAPACK Users’ Guide, third ed. Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1999.

[7] AUSTIN, T., AND SOHI, G. Dynamic dependency analysis of ordinary programs.
In ISCA (1992), pp. 342–351.

[8] BALLARD, G., DEMMEL, J., HOLTZ, O., AND SCHWARTZ, O. Graph expansion
and communication costs of fast matrix multiplication: regular submission. In Proc.
SPAA (New York, NY, USA, 2011), ACM, pp. 1–12.

[9] BALLARD, G., DEMMEL, J., HOLTZ, O., AND SCHWARTZ, O. Minimizing com-
munication in numerical linear algebra. SIAM Journal on Matrix Analysis and Ap-
plications 32, 3 (2011), 866–901.

124

[10] BASKARAN, M. M., BONDHUGULA, U., KRISHNAMOORTHY, S., RAMANUJAM,
J., ROUNTEV, A., AND SADAYAPPAN, P. Automatic data movement and computa-
tion mapping for multi-level parallel architectures with explicitly managed memo-
ries. In PPOPP (2008), pp. 1–10.

[11] BASKARAN, M. M., BONDHUGULA, U., KRISHNAMOORTHY, S., RAMANUJAM,
J., ROUNTEV, A., AND SADAYAPPAN, P. A compiler framework for optimization
of affine loop nests for gpgpus. In ICS (2008), pp. 225–234.

[12] BASKARAN, M. M., RAMANUJAM, J., AND SADAYAPPAN, P. Automatic c-to-
cuda code generation for affine programs. In CC (2010), pp. 244–263.

[13] BASTOUL, C. Code generation in the polyhedral model is easier than you think. In
IEEE Intl. Conf. on Parallel Architectures and Compilation Techniques (PACT’04)
(Juan-les-Pins, France, Sept. 2004), pp. 7–16.

[14] BERGMAN, K., BORKAR, S., ET AL. Exascale computing study: Technology chal-
lenges in achieving exascale systems. DARPA IPTO, Tech. Rep (2008).

[15] BILARDI, G., AND PESERICO, E. A characterization of temporal locality and its
portability across memory hierarchies. Proc. ICALP (2001), 128–139.

[16] BONDHUGULA, U., HARTONO, A., RAMANUJAN, J., AND SADAYAPPAN, P. A
practical automatic polyhedral parallelizer and locality optimizer. In Proc. PLDI
(2008).

[17] BOYER, M., SKADRON, K., AND WEIMER, W. Automated Dynamic Analysis
of CUDA Programs. In Third Workshop on Software Tools for MultiCore Systems
(2008).

[18] BRIDGES, M., VACHHARAJANI, N., ZHANG, Y., JABLIN, T., AND AUGUST, D.
Revisiting the sequential programming model for multi-core. In MICRO (2007),
pp. 69–84.

[19] CASCAVAL, C., DUESTERWALD, E., SWEENEY, P. F., AND WISNIEWSKI, R. W.
Multiple page size modeling and optimization. In Proc. PACT (2005), IEEE Com-
puter Society.

[20] CHE, S., BOYER, M., MENG, J., TARJAN, D., SHEAFFER, J., LEE, S.-H., AND

SKADRON, K. Rodinia: A benchmark suite for heterogeneous computing. In
Workload Characterization, 2009. IISWC 2009. IEEE International Symposium on
(2009), pp. 44–54.

[21] CHE, S., BOYER, M., MENG, J., TARJAN, D., SHEAFFER, J. W., AND SKADRON,
K. A performance study of general-purpose applications on graphics processors
using cuda. J. Parallel Distrib. Comput. 68, 10 (Oct. 2008), 1370–1380.

125

[22] CHE, S., SHEAFFER, J., BOYER, M., SZAFARYN, L., WANG, L., AND SKADRON,
K. A characterization of the rodinia benchmark suite with comparison to contem-
porary cmp workloads. In Workload Characterization (IISWC), 2010 IEEE Interna-
tional Symposium on (Dec 2010), pp. 1–11.

[23] CHE, S., SHEAFFER, J. W., AND SKADRON, K. Dymaxion: optimizing memory
access patterns for heterogeneous systems. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis
(New York, NY, USA, 2011), SC ’11, pp. 13:1–13:11.

[24] COOPER, K. D., SIMPSON, L. T., AND VICK, C. A. Operator strength reduction.
ACM Trans. Program. Lang. Syst. 23, 5 (Sept. 2001), 603–625.

[25] CUI, H., YI, Q., XUE, J., WANG, L., YANG, Y., AND FENG, X. A highly parallel
reuse distance analysis algorithm on GPUs. In 2012 IEEE 26th International Paral-
lel & Distributed Processing Symposium (IPDPS) (2012), IEEE, pp. 1080–1092.

[26] DANALIS, A., MARIN, G., MCCURDY, C., MEREDITH, J. S., ROTH, P. C., SPAF-
FORD, K., TIPPARAJU, V., AND VETTER, J. S. The scalable heterogeneous com-
puting (shoc) benchmark suite. In Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units (New York, NY, USA, 2010),
GPGPU ’10, pp. 63–74.

[27] DATTA, K., MURPHY, M., VOLKOV, V., WILLIAMS, S., CARTER, J., OLIKER, L.,
PATTERSON, D., SHALF, J., AND YELICK, K. Stencil computation optimization
and auto-tuning on state-of-the-art multicore architectures. In High Performance
Computing, Networking, Storage and Analysis, 2008. SC 2008. International Con-
ference for (Nov 2008), pp. 1–12.

[28] DEMMEL, J., GRIGORI, L., HOEMMEN, M., AND LANGOU, J. Communication-
optimal parallel and sequential QR and LU factorizations. SIAM Journal on Scien-
tific Computing 34, 1 (2012), 206–239.

[29] DING, C., AND ZHONG, Y. Predicting whole-program locality through reuse dis-
tance analysis. In PLDI (2003), ACM, pp. 245–257.

[30] FAUZIA, N., ELANGO, V., RAVISHANKAR, M., POUCHET, L.-N., RAMANUJAM,
J., RASTELLO, F., ROUNTEV, A., AND SADAYAPPAN, P. Beyond reuse distance
analysis: Dynamic analysis for characterization of data locality potential. Tech. Rep.
OSU-CISRC-9/13-TR19, Ohio State University, Sept. 2013.

[31] FEAUTRIER, P. Dataflow analysis of scalar and array references. Intl. J. of Parallel
Programming 20, 1 (Feb. 1991), 23–53.

126

[32] FEAUTRIER, P. Some efficient solutions to the affine scheduling problem, part II:
multidimensional time. Intl. J. of Parallel Programming 21, 6 (Dec. 1992), 389–420.

[33] FISCHER, C. N., AND LEBLANC, JR., R. J. Crafting a Compiler. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA, 1988.

[34] FULLER, S. H., AND MILLETT, L. I. The Future of Computing Performance: Game
Over or Next Level? The National Academies Press, 2011.

[35] GARCIA, S., JEON, D., LOUIE, C. M., AND TAYLOR, M. B. Kremlin: Rethinking
and rebooting gprof for the multicore age. In PLDI (2011), pp. 458–469.

[36] GEORGIA INSTITUTE OF TECHNOLOGY. GPUOcelot.
https://code.google.com/p/gpuocelot.

[37] GERLEK, M. P., STOLTZ, E., AND WOLFE, M. Beyond induction variables: De-
tecting and classifying sequences using a demand-driven ssa form. ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 17, 1 (1995), 85–122.

[38] GRAUER-GRAY, S., XU, L., SEARLES, R., AYALASOMAYAJULA, S., AND CAVA-
ZOS, J. Auto-tuning a high-level language targeted to gpu codes. In Innovative
Parallel Computing (InPar), 2012 (May 2012), pp. 1–10.

[39] GROSSER, T., COHEN, A., KELLY, P. H. J., RAMANUJAM, J., SADAYAPPAN,
P., AND VERDOOLAEGE, S. Split tiling for gpus: Automatic parallelization using
trapezoidal tiles. In Proceedings of the 6th Workshop on General Purpose Processor
Using Graphics Processing Units (New York, NY, USA, 2013), GPGPU-6, ACM,
pp. 24–31.

[40] HAN, T., AND ABDELRAHMAN, T. hicuda: High-level gpgpu programming. Par-
allel and Distributed Systems, IEEE Transactions on 22, 1 (Jan 2011), 78–90.

[41] HENNESSY, J., AND PATTERSON, D. Computer architecture: a quantitative ap-
proach. Morgan Kaufmann, 2011.

[42] HENNING, J. L. Spec cpu2006 benchmark descriptions. SIGARCH Comput. Archit.
News (2006).

[43] HOLEWINSKI, J., RAMAMURTHI, R., RAVISHANKAR, M., FAUZIA, N.,
POUCHET, L.-N., ROUNTEV, A., AND SADAYAPPAN, P. Dynamic trace-based
analysis of vectorization potential of applications. In Proc. PLDI (New York, NY,
USA, 2012), ACM, pp. 371–382.

[44] IRIGOIN, F., AND TRIOLET, R. Supernode partitioning. In Proc. POPL (1988),
pp. 319–329.

127

[45] JIANG, S., AND ZHANG, X. Making LRU Friendly to Weak Locality Workloads: A
Novel Replacement Algorithm to Improve Buffer Cache Performance. IEEE Trans.
Comput. 54 (August 2005), 939–952.

[46] JIANG, Y., ZHANG, E. Z., TIAN, K., AND SHEN, X. Is reuse distance applicable
to data locality analysis on chip multiprocessors? In Proc. Comp. Const. (2010),
pp. 264–282.

[47] KENNEDY, K., AND ALLEN, J. Optimizing compilers for modern architectures: A
dependence-based approach. Morgan Kaufmann, 2002.

[48] KENNEDY, K., AND MCKINLEY, K. S. Maximizing loop parallelism and improv-
ing data locality via loop fusion and distribution. In Languages and Compilers for
Parallel Computing (1993), Springer-Verlag, pp. 301–320.

[49] KETTERLIN, A., AND CLAUSS, P. Prediction and trace compression of data access
addresses through nested loop recognition. In Proc. CGO (2008), pp. 94–103.

[50] KETTERLIN, A., AND CLAUSS, P. Profiling data-dependence to assist paralleliza-
tion: Framework, scope, and optimization. In Proc. MICRO (2012).

[51] KOLTE, P., AND WOLFE, M. Elimination of redundant array subscript range
checks. In ACM SIGPLAN Notices (1995), vol. 30, ACM, pp. 270–278.

[52] KUMAR, M. Measuring parallelism in computation-intensive scientific/engineering
applications. IEEE Transactions on Computers 37, 9 (Sept. 1988), 1088–1098.

[53] LAM, M., AND WILSON, R. Limits of control flow on parallelism. In ISCA (1992),
pp. 46–57.

[54] LAPACK. http://www.netlib.org/lapack.

[55] LARUS, J. Loop-level parallelism in numeric and symbolic programs. IEEE Trans-
actions on Parallel and Distributed Systems 4, 1 (July 1993), 812–826.

[56] LEE, S., AND EIGENMANN, R. Openmpc: Extended openmp programming and
tuning for gpus. In High Performance Computing, Networking, Storage and Analysis
(SC), 2010 International Conference for (Nov 2010), pp. 1–11.

[57] LEE, S., AND EIGENMANN, R. Openmpc: Extended openmp for efficient pro-
gramming and tuning on gpus. Int. J. Computational Science and Engineering 7, 1
(2012), 116.

[58] LEE, S., MIN, S.-J., AND EIGENMANN, R. Openmp to gpgpu: A compiler frame-
work for automatic translation and optimization. SIGPLAN Not. 44, 4 (Feb. 2009),
101–110.

128

[59] LI, Y., DONGARRA, J., AND TOMOV, S. A note on auto-tuning gemm for gpus. In
Proceedings of the 9th International Conference on Computational Science: Part I
(2009), ICCS ’09, pp. 884–892.

[60] LIM, A. W., AND LAM, M. S. Maximizing parallelism and minimizing synchro-
nization with affine transforms. In Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (1997), ACM, pp. 201–214.

[61] LIU, S.-M., LO, R., AND CHOW, F. Loop induction variable canonicalization
in parallelizing compilers. In Parallel Architectures and Compilation Techniques,
1996., Proceedings of the 1996 Conference on (1996), IEEE, pp. 228–237.

[62] MAGNI, A., DUBACH, C., AND O’BOYLE, M. F. P. A large-scale cross-
architecture evaluation of thread-coarsening. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis
(New York, NY, USA, 2013), SC ’13, ACM, pp. 11:1–11:11.

[63] MAK, J., AND MYCROFT, A. Limits of parallelism using dynamic dependency
graphs. In WODA (2009), pp. 42–48.

[64] MARIN, G., AND MELLOR-CRUMMEY, J. Cross-architecture performance pre-
dictions for scientific applications using parameterized models. In SIGMETRICS
’04/Performance ’04 (2004), ACM.

[65] MATTSON, R., GECSEI, J., SLUTZ, D., AND TRAIGER, I. L. Evaluation tech-
niques for storage hierarchies. IBM Systems Journal 9, 2 (1970), 78–117.

[66] NATH, R., TOMOV, S., DONG, T. T., AND DONGARRA, J. Optimizing symmetric
dense matrix-vector multiplication on gpus. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis
(2011), SC ’11, pp. 6:1–6:10.

[67] NICOLAU, A., AND FISHER, J. Measuring the parallelism available for very long
instruction word architectures. IEEE Transactions on Computers 33, 11 (1984),
968–976.

[68] NIU, Q., DINAN, J., LU, Q., AND SADAYAPPAN, P. Parda: A fast parallel reuse
distance analysis algorithm. In 2012 IEEE 26th International Parallel & Distributed
Processing Symposium (IPDPS) (2012), IEEE, pp. 1284–1294.

[69] NIU, Q., DINAN, J., LU, Q., AND SADAYAPPAN, P. Parda: A fast parallel reuse
distance analysis algorithm. In Proc. IPDPS (may 2012), pp. 1284 –1294.

[70] NUKADA, A., AND MATSUOKA, S. Auto-tuning 3-d fft library for cuda gpus. In
High Performance Computing Networking, Storage and Analysis, Proceedings of
the Conference on (Nov 2009), pp. 1–10.

129

[71] NVIDIA CORPORATION. Parallel Thread Execution ISA.

[72] NVIDIA CORPORATION. NVIDIA CUDA C Programming Guide, June 2011.

[73] OANCEA, C., AND MYCROFT, A. Set-congruence dynamic analysis for thread-
level speculation (TLS). In LCPC (2008), pp. 156–171.

[74] PADUA, D. A., AND WOLFE, M. J. Advanced compiler optimizations for super-
computers. Communications of the ACM 29, 12 (1986), 1184–1201.

[75] PARK, J.-S., PENNER, M., AND PRASANNA, V. K. Optimizing Graph Algorithms
for Improved Cache Performance. IEEE Transactions on Parallel Distributed Sys-
tems 15, 9 (2004), 769–782.

[76] Pluto: A polyhedral automatic parallelizer and locality optimizer for multicores.
http://pluto-compiler.sourceforge.net.

[77] POHL, T. 470.lbm. http://www.spec.org/cpu2006/Docs/470.lbm.html.

[78] POSTIFF, M., GREENE, D., TYSON, G., AND MUDGE, T. The limits of instruction
level parallelism in SPEC95 applications. SIGARCH Computer Architecture News
27, 1 (1999), 31–34.

[79] POUCHET, L.-N., BONDHUGULA, U., BASTOUL, C., COHEN, A., RAMANUJAM,
J., SADAYAPPAN, P., AND VASILACHE, N. Loop transformations: Convexity, prun-
ing and optimization. In POPL (Austin, TX, Jan. 2011), pp. 549–562.

[80] RAU, B. R., AND FISHER, J. A. Instruction-level parallel processing: History,
overview, and perspective. J. Supercomput. 7, 1-2 (May 1993), 9–50.

[81] RAUCHWERGER, L., DUBEY, P., AND NAIR, R. Measuring limits of parallelism
and characterizing its vulnerability to resource constraints. In MICRO (1993),
pp. 105–117.

[82] RAUCHWERGER, L., AND PADUA, D. The LRPD test: Speculative run-time paral-
lelization of loops with privatization and reduction parallelization. In PLDI (1995),
pp. 218–232.

[83] RUTTENBERG, J., GAO, G. R., STOUTCHININ, A., AND LICHTENSTEIN, W. Soft-
ware pipelining showdown: Optimal vs. heuristic methods in a production compiler.
SIGPLAN Not. 31, 5 (May 1996), 1–11.

[84] RUTTENBERG, J., GAO, G. R., STOUTCHININ, A., AND LICHTENSTEIN, W. Soft-
ware pipelining showdown: Optimal vs. heuristic methods in a production compiler.
In Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language
Design and Implementation (New York, NY, USA, 1996), PLDI ’96, ACM, pp. 1–
11.

130

[85] SARKAR, V., AND HENNESSY, J. L. Compile-time partitioning and scheduling
of parallel programs. In SIGPLAN Symposium on Compiler Construction (1986),
pp. 17–26.

[86] SHALF, J., DOSANJH, S., AND MORRISON, J. Exascale computing technology
challenges. High Performance Computing for Computational Science–VECPAR
2010 (2011), 1–25.

[87] SHEN, X., ZHONG, Y., AND DING, C. Locality phase prediction. In Proc. ASPLOS
(2004), ACM.

[88] STEFANOVIĆ, D., AND MARTONOSI, M. Limits and graph structure of available
instruction-level parallelism. In Euro-Par (2000), pp. 1018–1022.

[89] THEOBALD, K., GAO, G., AND HENDREN, L. On the limits of program parallelism
and its smoothability. In MICRO (1992), pp. 10–19.

[90] TIAN, C., FENG, M., NAGARAJAN, V., AND GUPTA, R. Copy or discard execution
model for speculative parallelization on multicores. In MICRO (2008), pp. 330–341.

[91] TOURNAVITIS, G., WANG, Z., ZHENG, FRANKE, B., AND O’BOYLE, M. To-
wards a holistic approach to auto-parallelization. In PLDI (2009), pp. 177–187.

[92] TU, P., AND PADUA, D. Automatic array privatization. In Languages and Compil-
ers for Parallel Computing. Springer, 1994, pp. 500–521.

[93] UENG, S.-Z., LATHARA, M., BAGHSORKHI, S. S., AND HWU, W.-M. W. Lan-
guages and compilers for parallel computing. Berlin, Heidelberg, 2008, ch. CUDA-
Lite: Reducing GPU Programming Complexity, pp. 1–15.

[94] UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN. Clang. http://clang.llvm.org.

[95] UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN. DragonEgg.
http://dragonegg.llvm.org.

[96] UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN. Low-Level Virtual Machine.
http://www.llvm.org.

[97] VENKAT, A., SHANTHARAM, M., HALL, M., AND STROUT, M. M. Non-affine
extensions to polyhedral code generation. In Proceedings of Annual IEEE/ACM
International Symposium on Code Generation and Optimization (2014), CGO ’14,
pp. 185:185–185:194.

[98] VENKATARAMAN, G., SAHNI, S., AND MUKHOPADHYAYA, S. A Blocked All-
Pairs Shortest-Paths Algorithm. Journal of Experimental Algorithmics 8 (Dec.
2003), 2.2.

131

[99] VERDOOLAEGE, S., CARLOS JUEGA, J., COHEN, A., IGNACIO GÓMEZ, J., TEN-
LLADO, C., AND CATTHOOR, F. Polyhedral parallel code generation for cuda. ACM
Trans. Archit. Code Optim. 9, 4 (Jan. 2013), 54:1–54:23.

[100] WALL, D. Limits of instruction-level parallelism. In ASPLOS (1991), pp. 176–188.

[101] WOLF, M. E., AND LAM, M. S. A data locality optimizing algorithm. In PLDI
’91: ACM SIGPLAN 1991 conference on Programming language design and imple-
mentation (New York, NY, USA, 1991), ACM Press, pp. 30–44.

[102] WOLFE, M. Beyond induction variables. In ACM SIGPLAN Notices (1992), vol. 27,
ACM, pp. 162–174.

[103] WOLFE, M. J. High Performance Compilers for Parallel Computing. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[104] WU, B., ZHAO, Z., ZHANG, E. Z., JIANG, Y., AND SHEN, X. Complexity analysis
and algorithm design for reorganizing data to minimize non-coalesced memory ac-
cesses on gpu. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (2013), PPoPP ’13, pp. 57–68.

[105] WU, P., KEJARIWAL, A., AND CAŞCAVAL, C. Compiler-driven dependence pro-
filing to guide program parallelization. In LCPC (2008), pp. 232–248.

[106] YANG, Y., XIANG, P., KONG, J., AND ZHOU, H. A gpgpu compiler for memory
optimization and parallelism management. In Proceedings of the 2010 ACM SIG-
PLAN Conference on Programming Language Design and Implementation (New
York, NY, USA, 2010), PLDI ’10, pp. 86–97.

[107] ZHENG, M., RAVI, V., MA, W., QIN, F., AND AGRAWAL, G. Gmprof: A low-
overhead, fine-grained profiling approach for gpu programs. In High Performance
Computing (HiPC), 2012 19th International Conference on (Dec 2012), pp. 1–10.

[108] ZHENG, M., RAVI, V. T., QIN, F., AND AGRAWAL, G. Grace: A low-overhead
mechanism for detecting data races in gpu programs. SIGPLAN Not. 46, 8 (Feb.
2011), 135–146.

[109] ZHENG, M., RAVI, V. T., QIN, F., AND AGRAWAL, G. Gmrace: Detecting data
races in GPU programs via a low-overhead scheme. IEEE Trans. Parallel Distrib.
Syst. 25, 1 (2014), 104–115.

[110] ZHONG, H., MEHRARA, M., LIEBERMAN, S., AND MAHLKE, S. Uncovering
hidden loop level parallelism in sequential applications. In HPCA (2008), pp. 290–
301.

132

[111] ZHONG, Y., DROPSHO, S. G., AND DING, C. Miss rate prediction across all pro-
gram inputs. In Proc. PACT (2003).

[112] ZHONG, Y., ORLOVICH, M., SHEN, X., AND DING, C. Array regrouping and
structure splitting using whole-program reference affinity. In Proc. PLDI (2004),
ACM.

133

	Abstract
	Acknowledgments
	Vita
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background
	Reuse Distance Analysis
	Example
	Limitations of reuse distance analysis

	Dynamic Analysis
	DDG Generation

	Beyond Reuse Distance Analysis: Dynamic Analysis for Characterization of Data Locality Potential
	Introduction
	Background & Overview of Approach
	Benefits of the proposed dynamic analysis
	Overview of Approach

	Convex Partitioning of CDAG
	Definitions
	Forming Convex Partitions
	CDAG Traversal: Breadth-first Versus Depth-first
	Multi-level Cache-oblivious Partitioning
	 Complexity Analysis

	Experimental Results
	Experimental Setup
	Case Studies
	Dataset Sensitivity Experiments

	Related Work
	Discussion
	Conclusion

	Convex Partitioning using Loop Induction Variable Information
	Introduction
	Background
	Canonical Induction Variables
	Impact of Heuristic Parameters

	Overview of Approach
	Formatting the Induction Variables
	Preprocessing of Dynamic Dependency Graph
	Convex-partitioning heuristic

	Experimental Results
	Experimental Setup
	Results

	Conclusion

	Characterizing and Enhancing Global Memory Data Coalescing on GPUs
	Introduction
	Background and Overview
	GPU Architecture
	Global Memory Coalescing
	Overview of the Framework

	Dynamic Analysis of Uncoalesced Accesses
	Instrumentation and Execution
	Dynamic Analysis Algorithm

	Compiler Transforms for Data Coalescing
	Overview
	Computing a New Thread Block Geometry
	Geometry and Thread Code Transformations
	Other Static Transformations

	Experimental Results
	Experimental Protocol
	Dynamic Analysis Results
	Static Transformation Results
	Discussions

	Related Work
	Conclusion

	Conclusion
	Bibliography

