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Abstract

The normal mean estimation problem has a central role in statistical estimation.

The maximum likelihood estimator (MLE) is a traditional estimator for this prob-

lem. Under the squared error loss, the MLE is unbiased, minimax, best invariant,

and admissible when the parameter’s dimension is one or two. However, when the

parameter’s dimension is three or higher, it is inadmissible and can be uniformly

dominated by other estimators.

In the past half century, a great amount of research has been devoted to developing

optimal estimators in high dimensional settings. The Bayesian approaches are highly

appealing for this problem. However, selecting a prior becomes challenging when the

parameter’s dimension is high. Subjective elicitation of prior knowledge is almost

infeasible. Therefore, we have to turn to some formal methods. In this dissertation,

we develop a class of new prior distributions, namely, the adaptive inverted-Beta

(AIB) priors, that lead to Bayesian estimators that often outperform many common

estimators in the literature when the parameter is high dimensional.

In the first part, Chapter 2, we focus on the situations where the observations

are independent from a high dimensional normal distribution. We incorporate both

global and local parameters in our AIB priors, so that different dimensions of the

parameter can be shrunk by different factors. Most existing priors in the literature

assume that data have a certain sparsity level. Instead, we utilize a hierarchical
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structure which allows the shrinkage powers of the corresponding Bayesian estimators

to be adaptive to the data sparsity levels. We establish theoretical properties of

the Bayesian estimators under the AIB priors. We show that they provide strong

shrinkage to noise close to 0, while providing essentially no shrinkage to large signals.

We also demonstrate the estimation performances of these Bayesian estimators in

many simulation scenarios with different sparsity levels and different signal sizes, and

compare the performances with those of many common estimators in the literature.

Then in the second part of this dissertation, Chapter 3, we extend the AIB priors

to the linear regression settings. We consider both n ≥ p (that is, the number

of observations is larger than the number of parameters) and n < p (that is, the

number of observations is smaller than the number of parameters) situations. For

both situations, we conduct simulation studies to investigate the performances of the

Bayesian estimators under the AIB priors. We further demonstrate the use of the

AIB priors using NIR spectroscopy data.

In the end, Chapter 4, we summarize the main findings of our work and discuss

potential extensions. In particular, we generalize the AIB priors for estimating the

mean from multivariate normal distributions with general covariance structures. We

again investigate the performances of the corresponding Bayesian estimators through

simulation studies. We also discuss the connection between the normal mean estima-

tion problem and the portfolio choice problem. We apply the generalized AIB prior

to portfolio choice based on the Fama–French 25 portfolios data, and show that the

resulting portfolios have superior performances.
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Chapter 1: Introduction

1.1 The Normal Mean Estimation Problem in High-Dimensional
Spaces

The normal mean estimation problem holds a central place in statistical estima-

tion. Let X | θ,Σ ∼ Np(θ,Σ) be a p-dimensional multivariate normal vector with

unknown mean θ and unknown positive definite covariance matrix Σ. Based on ob-

servations X1,X2, · · · ,Xn, this problem aims at estimating θ under the invariant

squared error loss

L(θ, θ̂) = (θ̂ − θ)TΣ−1(θ̂ − θ). (1.1)

An estimator θ̂ is evaluated by its expected loss or risk function

R(θ, θ̂) = EθL(θ, θ̂). (1.2)

When the covariance matrix Σ is known or can be estimated independently, through

a sufficiency reduction and a variable transformation, the problem is equivalent to

estimating the normal mean θ where the components of X are independent and have

a common unknown variance σ2, that is

X | θ, σ ∼ N(θ, σ2Ip), (1.3)

1



where Ip is the p× p identity matrix. The loss function is then reduced to

L(θ, θ̂) =
1

σ2
(θ̂ − θ)T (θ̂ − θ). (1.4)

For the majority of this dissertation, we assume the normal distributions to have the

independent structure (1.3), and at the end, we generalize to normal distributions

with general covariance structures.

In statistical estimation, there are several principles for choosing an estimator.

The first principle is admissibility. Given a risk function, an estimator δ is called

inadmissible if there exists another estimator δ′ such that R(θ, δ′) ≤ R(θ, δ) for all

values of θ in the parameter space and R(θ, δ′) < R(θ, δ) for some θ. In such case, the

estimator δ′ is said to dominate the estimator δ. In contrast, an estimator δ is called

admissible if it cannot be dominated by any other estimators. For the normal mean

estimation problem under the model (1.3) with σ2 = 1, Brown (1971) showed that

all admissible estimators are (generalized) Bayesian estimators. The second principle

is minimaxity. An estimator δ∗ is said to be minimax with respect to a risk function

R(θ, δ), if it minimizes supθ R(θ, δ), that is,

sup
θ
R(θ, δ∗) = inf

δ
sup
θ
R(θ, δ). (1.5)

Given one observation X, a traditional estimator of the normal mean estimation

problem is the maximum likelihood estimator (MLE) θ̂MLE = X. It has many

attractive properties. Under the likelihood (1.3) with σ2 = 1, θ̂MLE is unbiased,

minimax, best invariant (Lehmann and Casella 1998) and admissible when p = 1 or

2 (Berger 1985). Its risk is a constant

EθL(θ,X) = E(θ −X)T (θ −X) = pσ2. (1.6)
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Moreover, it is the Bayesian estimator under the improper uniform prior distribution

π(θ) = 1. However, when p is 3 or higher, θ̂MLE is inadmissible. In fact, Stein (1956)

showed that for large p,

‖X‖2
2 = p+ ‖θ‖2

2 +Op(
√
p+ ‖θ‖2

2), (1.7)

where Xn = Op(an) means that the set of values Xn/an is stochastically bounded,

i.e., for any ε, there exists Aε such that for all n,

P (|Xn| ≤ Aεan) ≥ 1− ε.

Therefore, in high dimensional spaces, the L2-norm of X is greater than the L2-norm

of the true parameter θ. In other words, the MLE X is outside the sphere at which θ

is located. Therefore, intuitively, appropriate shrinkages can yield better estimators.

The estimation accuracy can be improved by trading a small increase of bias for a

large reduction of variance. Also, the overall performance of the estimator vector can

be improved by borrowing information from all components even if observations from

different dimensions are assumed to be independent from each other. When the true

parameter value is close to the shrinkage target, the potential risk reduction can be

large. Most of the common improved estimators for the normal mean problem in the

literature can be viewed as shrinkage estimators of the MLE to some constant values

or some subspaces. In the following a few sections, we summarize them into a few

classes.

1.2 Empirical Bayes Approaches: The James-Stein Estima-
tor and Its Extensions

In the seminal work of James and Stein (1961), they proposed the famous James–

Stein estimator for the normal mean problem: Assuming the likelihood function (1.3)
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with σ2 = 1,

θ̂JS =

(
1− p− 2

‖X‖2
2

)
X. (1.8)

When p ≥ 3, the risk of the James–Stein estimator is

EθL(θ, θ̂JS) = E‖θ̂JS − θ‖2
2 = p− E (p− 2)2

p− 2 + 2K
< p = EθL(θ,X), ∀θ, (1.9)

where K follows a Poisson distribution with parameter ‖θ‖2
2/2. Therefore, the James–

Stein estimator dominates the MLE X as p ≥ 3.

Figure 1.1: Risks of the James–Stein estimator, the James–Stein Positive-Part esti-
mator and the MLE against the squared L2-norm of θ when p = 4.

Figure 1.1 plots the squared L2-norm of θ versus the risks of the MLE, the James–

Stein estimator and the James–Stein Positive-Part estimator (introduced later) when

p = 4 under squared error loss. It shows that the risk reduction can be large when

θ is close to the shrinking target 0. When the true value of θ moves away from

the shrinkage target, the risk of the James–Stein estimator approaches the risk of

4



the MLE, but is always smaller. From the expression (1.8) we can see that each

individual element’s estimate borrows information from other dimensions, and the

overall performance is improved.

The James–Stein estimator can be interpreted as an empirical Bayes estima-

tor. Again assume that the likelihood function is (1.3) with σ2 = 1, and put a

p-dimensional multivariate normal prior distribution on θ: θ | τ ∼ N(0, τ 2I). When

τ is known, the posterior mean of θ is:

E(θ |X) =
τ 2

τ 2 + 1
X =

(
1− 1

τ 2 + 1

)
X. (1.10)

When τ is unknown, Judge and Bock (1978) showed that (p−2)/‖X‖2
2 is an unbiased

estimator of 1/(τ 2 + 1). Plugging it into (1.10) yields the James–Stein estimator.

The shrinkage target, or the prior mean in the empirical Bayes approach for the

James–Stein estimator, does not have to be 0. Instead, it can be an arbitrary con-

stant or a subspace. Suppose that our prior information suggests that θ is close

to a constant ν ∈ IRp, then the James–Stein estimator shrinking towards ν can be

represented by

θ̂
ν

JS = ν +

(
1− p− 2

‖X − ν‖2
2

)
(X − ν). (1.11)

Same as above, the risk reduction is large when the true θ is close to the shrinkage

target ν, and diminishes as θ moves away. Similarly, if our prior information suggests

that the true θ lies in a subspace V ⊂ IRp, then the James–Stein estimator can be

modified as

θ̂
V

JS = PVX +

(
1− q − 2

(X − PVX)T (X − PVX)

)
(X − PVX) , (1.12)

where V has dimension p−q with q ≥ 2, and PV is a projection operator that projects

from IRp into V . For example, if the elements of θ are believed to be the same, then
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the subspace V is [1]p. The James–Stein estimator shrinking towards this subspace

can be written as:

θ̂
V

JS = X̄ +

(
1− p− 3

(X − X̄)T (X − X̄)

)(
X − X̄

)
, (1.13)

where X̄ = X̄1p and X̄ is the sample average of X.

More generally, when vague or conflicting prior information suggests multiple

shrinkage targets, that is, any one of the subspaces V1, · · · ,VK ⊂ IRp might be

an appropriate shrinkage target, George (1986) developed a class of multiple shrink-

age Stein estimators. Suppose that the K shrinkage targets are constants and denote

the James–Stein positive-part estimator (introduced later) for the target k by δk,

k = 1, · · · , K. A multiple shrinkage Stein estimator can be written as

δ∗(X) =
K∑
k=1

ρk(X)δk(X), (1.14)

where ρ1, · · · , ρK satisfy
∑K

k=1 ρk(X) = 1 and are adaptive weights of the shrinkage

estimators δ1, · · · , δK . The author also showed that δ∗ is minimax and able to offer

substantial risk reduction at each target.

In the above discussion, we have assumed that σ2 is known, without loss of gen-

erality, as 1. However, in practice, the variance of the normal likelihood is usually

unknown. James and Stein (1961) provided the modified James–Stein estimators for

such situations. Assume that X ∼ N(θ, σ2I) where σ is unknown and S is another

random variable, independent of X, such that S ∼ σ2χ2
n. The James–Stein estimator

can be modified as

θ̂
σ

JS =

(
1−

p−2
n+2

S

‖X‖2
2

)
X. (1.15)

The corresponding risk is

EθL(θ, θ̂
σ

JS) = σ2

(
p− n

n+ 2
(p− 2)2E

1

p− 2 + 2K

)
, (1.16)
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where K follows a Poisson distribution with parameter ‖θ‖2
2/2σ

2. Thus, as p ≥ 3, it

has a lower risk than the risk of X which is pσ2. Similarly, when X ∼ N(θ,Σ) where

Σ is unknown, assume that S is another random variable, independent of X, having

a p × p Wishart distribution with n degrees of freedom and expectation nΣ. Then

the James–Stein estimator has the following form

θ̂
Σ

JS =

(
1−

p−2
n−p+3

XTS−1X

)
X. (1.17)

Under the loss function (1.1), the risk is

EθL(θ, θ̂JS) = p− n− p+ 1

n− p+ 3
(p− 2)2E

1

p− 2 + 2K
, (1.18)

where K has a Poisson distribution with parameter 1
2
θTΣ−1θ. Again it has a lower

risk than the MLE as p ≥ 3 (James and Stein 1961).

Although the James–Stein estimator and its extensions are good for the normal

mean problem, they sometimes shrink too much and lead to an opposite sign asX. To

address this issue, James and Stein (1961) proposed using the following James–Stein

Positive-Part estimator

θ̂JS+ =

(
1− p− 2

‖X‖2
2

)+

X, (1.19)

where (•)+ = max(0, •). Baranchik (1964) showed that this positive part estimator

dominates the original James–Stein estimator when p ≥ 3. However, it is still inad-

missible as it is not smooth enough to be a generalized Bayesian estimator. Shao and

Strawderman (1994) provided several estimators that further dominate the James–

Stein Positive-Part estimator.
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1.3 Full Bayesian Approaches Under Shrinkage Priors

1.3.1 Introduction

Bayesian estimators are studied for several reasons among which an important one

is that any proper Bayes rule is admissible and so could not be uniformly improved

upon. For the normal mean estimation problem, a specially successful strand of

Bayesian approaches are through using scale mixture of normals priors in the form of

π(θ) =

∫
N(θ | 0,Λ)G(dλ), (1.20)

where λ = (λ1, · · · , λp), Λ is the p × p diagonal matrix Diag(λ) and G(dλ) is the

mixing distribution. When λ1 = · · · = λp = λ, this prior is called a global shrinkage

prior and λ is called a global parameter. When λi’s are not equal, this prior is called

a local shrinkage prior and λi’s are called local parameters. The Bayesian estimator

under this prior and the squared error loss is the posterior mean of θi given κi

E(θi | κi, Xi) = (1− κi)Xi, (1.21)

where κi = σ2/(σ2 + λi). As shown in (1.21), this Bayesian estimator can be viewed

as a shrinkage estimator of X. Under a global shrinkage prior, all components of

X receive the same shrinkage degree, while under a local shrinkage prior, different

components of X receive different degrees of shrinkage.

1.3.2 Global Shrinkage Priors

A simple example of global shrinkage priors is the prior π(θ) = N(0, τ 2I) used in

the construction of the James–Stein estimator. The global shrinkage parameter τ is

estimated by an empirical Bayes method, and then plugged into equation (1.10) to

yield the James–Stein estimator.
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Using a full Bayesian approach, Strawderman (1971) slightly extended the class of

minimax estimators in Baranchik (1964), and provided a class of Bayesian estimators

under the following global shrinkage priors

θ | τ ∼ Np

(
0,

1− τ
τ

I

)
,

τ ∼ Beta(1− a, 1). (1.22)

He showed that the Bayesian estimator, θ̂a, is minimax when 1
2
≤ a < 1 and p = 5,

or when 0 ≤ a < 1 and p ≥ 6. The commonly used Strawderman–Berger prior

(Strawderman 1971, Berger 1980), is a special case of (1.22) with a = 1/2. Stein

(1981) and Fourdrinier, Strawderman and Wells (1998) further investigated the con-

struction of Bayesian minimax estimators, under a few classes of global shrinkage

priors, including the Strawderman–type priors

θ | τ ∼ N(0, τI),

h(τ) = c(τ + 1)1−(b+p/2), (1.23)

where c is the normalizing constant and b ≤ 0. The corresponding Bayesian estimator

is minimax when 2 − p/2 ≤ b ≤ 0. Also they considered the shifted inverse gamma

priors:

θ | τ ∼ N(0, τI),

h(τ) = c exp

(
− a

τ + 1

)
(τ + 1)1−(b+p/2), (1.24)

where c is the normalizing constant, a > 0 and b ≤ 0. The corresponding Bayesian

estimator is minimax when 2− p/2 ≤ b ≤ 0 as well.

In addition, Polson and Scott (2010) emphasized the appropriateness of using a

half-Cauchy prior on the scale parameter τ instead of the usual conjugate choice of an
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inverse-gamma prior in the normal prior θ | τ ∼ N(0, τ 2I). Their argument is that,

consider the marginal likelihood of X as a function of τ , this marginal likelihood does

not vanish as τ = 0, therefore neither should the prior on τ . In contrast, the inverse-

gamma prior density vanishes when τ = 0. Furthermore, the authors extended the

half-Cauchy distribution on τ to the class of hypergeometric inverted beta priors on

τ 2:

p(τ 2) = C−1(τ 2)b−1(τ 2 + 1)−(a+b)exp

(
− s

τ 2 + 1

)(
δ2 +

1− δ2

τ 2 + 1

)−1

, (1.25)

where C is the normalizing constant, a > 0, b > 0, δ2 > 0, and s is a real number.

Important summary statistics, for example, the posterior moments, marginal densities

and frequentist risks, were provided under this family of priors.

1.3.3 Local Shrinkage Priors

When the true parameter θ is high dimensional and the signal in it is sparse,

global shrinkage priors are not appropriate because they provide the same degree of

shrinkage to all coordinates. On the other hand, as seen in (1.21), local shrinkage

priors allow different shrinkage degrees for different coordinates. Therefore, they

have been widely used in high dimensional estimation and in variable selection for

regression models. A common local shrinkage prior is the “spike-and-slab” prior

provided by Mitchell and Beauchamp (1988), which is a mixture of a point mass at

0 and a uniform distribution:

π(θi) = h0iIθi=0 +
1− h0i

2fi
I−fi≤θi≤fi . (1.26)

The bounds of the uniform distribution, ±fi, are assumed to be large to express

prior uncertainty. The weight of the point mass at 0 can be determined by the
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Bayesian cross-validation method or the goodness-of-fit plot. George and McCulloch

(1997) proposed a similar prior by replacing the uniform “slab” by a normal “slab”.

Their work was further extended to multivariate regressions in Brown and Vannucci

(1998). Johnstone and Silverman (2004) considered other densities as the “slab”, for

example, a double exponential distribution or a distribution with tails that decay

at polynomial rate. The probability mass at zero of the i-th component, h0i, is

estimated by ĥ0i, which is the maximizer of the density of Xi conditional on h0i.

Then ĥ0 = (ĥ01, · · · , ĥ0p) is plugged back into the prior of θ and θ is estimated using

the posterior median or the posterior mean.

It is interesting to note that some widely used estimators in the literature, although

not constructed as Bayesian estimators, also have Bayesian interpretations. For ex-

ample, it is well known that Tibshirani’s Lasso (Tibshirani 1996) can be interpreted

as the posterior mode under a double exponential (Laplacian) prior distribution on

θ, that is,

X | θ, σ2 ∼ N(θ, σ2I),

θi | τ
iid∼ DE(τ). (1.27)

This prior is in fact a scale mixture of normals with local parameters, where the local

parameters follow independent exponential distributions, that is, the prior can be

represented by the following hierarchical form

θ | λ ∼ N(0,Diag(λ)),

λi | τ
iid∼ Exp

(τ
2

)
. (1.28)

In the models (1.27) and (1.28), the hyperparameter τ controls the shrinkage

degree of the Bayesian estimator. In contrast to fixing this hyperparameter at a
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pre-specified constant, Figueiredo (2003) proposed the Normal-Jeffreys prior which

removes τ by placing the Jeffreys prior on λi in (1.28). Integrating out the hyperpa-

rameter τ yields

θ | λ ∼ N(0,Diag(λ)),

p(λi) ∝
1

λi
, (1.29)

and if we further integrate out λi, the prior on θi can be written as

p(θi) ∝
1

| θi |
. (1.30)

From (1.30) we can see that the Normal-Jeffreys prior has an infinite peak at 0 and also

thick tails. This shape property offers strong shrinkage around 0 and little shrinkage

for large signals. We will see the details in Chapter 2.

As extensions of the double-exponential prior or the normal-exponential prior,

Griffin and Brown (2005) proposed another two priors which are members in the

family of scale mixture of normals. The first one is called the normal-gamma (NG)

prior, which generalizes the exponential hyperprior in (1.28) to a gamma distribution:

θ | λ ∼ N(0,Diag(λ)),

λi | γ, τ
iid∼ Gamma(γ, τ). (1.31)

The exponential density can be regained from the gamma distribution with the shape

parameter γ fixed at 1. An important motivation for this generalization is that the

double exponential prior has only one hyperparameter to control the shrinkage power,

which is restrictive, for example, a known issue of the double exponential prior is the

over shrinkage of large signals. By using the gamma distribution with both shape

and scale parameters, the normal gamma prior can provide more flexible shrinkage
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patterns under different parameter specifications (more details are given in Chapter

2). The second generalized family of priors is known as the normal-exponential-

gamma (NEG) prior which puts a gamma hyperprior on the scale parameter of the

exponential mixing distribution:

θ | λ ∼ N(0,Diag(λ)),

λi | τ
iid∼ Exp(τ),

τ | γ, δ ∼ Gamma(γ, δ). (1.32)

Interestingly, there are another two ways to rewrite (1.32). In the first way, integrating

out τ leads to the prior of λi conditional on γ and δ:

θ | λ ∼ N(0,Diag(λ)),

λi | γ, δ ∼
γ

δ
(1 +

λi
δ

)−(γ+1). (1.33)

In Chapter 2 we will see that the prior (1.33) is a special case of the inverted-Beta

prior which is defined later. The second way comes from the fact that the parameter

τ in (1.32) is a global scale parameter. Therefore, we can also represent the NEG

prior in (1.32) as

θ | τ,λ∗ ∼ N(0, τDiag(λ∗)),

λ∗i
iid∼ Exp(1),

τ | γ, δ ∼ Gamma(γ, δ). (1.34)

Scheipl and Kneib (2008) applied the NEG model on the parameters under the lo-

cally adaptive Bayesian P-splines to estimate the nonlinear dependence between the

response and the predictor variables.
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Recently, Armagan, Dunson and Lee (2013) introduced the generalized double

Pareto (GDP) prior which is similar the NEG prior. The differences between the

GDP and the NEG priors are that λi’s in the GDP prior are assumed to follow an

exponential distribution with parameter τ 2/2 instead of τ in (1.32), and a gamma

hyperprior is again placed on τ :

θ | λ ∼ N(0,Diag(λ)),

λi | τ
iid∼ Exp

(
τ 2

2

)
,

τ | γ, δ ∼ Gamma(γ, δ). (1.35)

Although the differences are subtle, the GDP prior leads to an analytic form of the

marginal density of θi’s:

θi | ξ =
δ

γ
, γ

iid∼ GDP(ξ, γ), (1.36)

with distribution density

1

2ξ

(
1 +
|θi|
γξ

)−(γ+1)

.

Moreover, model (1.35) degenerates to the double exponential prior as γ → ∞ and

0 < 1/ξ < 1, and to the Norma–Jeffreys prior as δ = γ = 0.

Moreover, Carvalho, Polson and Scott (2010) developed another prior in the form

of the scale mixture of normals class, the horseshoe (HS) prior, which can be repre-

sented by

θ | λ ∼ N(0,Diag(λ)),√
λi | τ

iid∼ Cauchy+(0, τ),

τ | σ ∼ Cauchy+(0, σ), (1.37)

where σ is the standard deviation of Xi. When σ2 = τ 2 = 1, the positive Cauchy

prior on
√
λi implies a Beta (1/2, 1/2) distribution on κi = 1/(1 + λi), which goes to
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infinity when κi → 0 or κi → 1. Similar to the NEG prior, the hyperparamter τ is a

global parameter, so we can write the model as

θ | λ∗, τ ∼ N(0, τ 2Diag(λ∗)),√
λ∗i

iid∼ Cauchy+(0, 1),

τ | σ ∼ Cauchy+(0, σ). (1.38)

Alternatively, using κ as the parameter, we can rewrite the model as

θ | κ, τ ∼ N

(
0, τ 2Diag

(
1− κ
κ

))
,

κi
iid∼ Beta

(
1

2
,
1

2

)
,

τ | σ ∼ Cauchy+(0, σ). (1.39)

Furthermore, Polson and Scott (2009) generalized the horseshoe prior to a bigger

class of scale mixture of normals priors using hypergeometric-beta as the mixture

distribution, that is

θ | κ ∼ N

(
0, diag

(
1− κ
κ

))
,

κi
iid∼ HB(a, b, τ, s)

= C−1κa−1
i (1− κi)b−1

{
1

τ 2
+

(
1− 1

τ 2

)
κi

}−1

exp(−sκi), (1.40)

where C is the normalizing constant

C = exp(−s)Beta(a, b)Φ1(b, 1, a+ b, s, 1− 1/τ 2), (1.41)

where Beta(a, b) is the beta function and Φ1 is the degenerate hypergeometric function

of two variables. The author studied the roles of the four hyperparameters and

found that a and b mainly control the shape of the distribution analogous to the
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two parameters in a beta distribution, and τ and s are two global scaling factors.

However, the effects of the two scale parameters τ and s are not clearly separated.

Similar shrinkage performances can be attained from different combinations of τ and

s.

1.4 Penalized Least Squares Approaches

Another strand of shrinkage estimators that have had great successes are penalized

least squares estimators. Consider the general multivariate normal likelihood with

unknown mean θ and unknown covariance matrix Σ. A penalized least squares

estimator of θ can be expressed as the minimizer of (X − θ)TΣ−1(X − θ) subject to

a constrained function P (θ) ≤ t, that is, the minimizer of

L(θ) = (X − θ)TΣ−1(X − θ) + λP (θ), (1.42)

where λ is a positive tuning parameter and can be selected via cross validation, and

P (θ) is the penalty function. Differentq shrinkage estimators have been derived using

different penalty functions. The followings are a few examples.

Under the L0 norm penalty, the penalty function P (θ) =
∑

j I(θj 6= 0) is the

number of non-zero components. Assume the normal likelihood (1.3) with σ2 = 1,

the loss function (1.42) can be rewritten as:

L(θ) = ‖X − θ‖2
2 + λ

∑
j

I(θj 6= 0).

For any fixed λ > 0, the solution to this minimization problem is

θ̂L0
i =


Xi, when Xi ≥

√
λ

0, when |Xi| <
√
λ

Xi, when Xi ≤ −
√
λ

. (1.43)
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It shrinks Xi to zero if Xi falls in the range (−
√
λ,
√
λ) and leaves it as it is if Xi

is outside of the range. The estimator (1.43) has a simple form and is easy to be

calculated. However, it is discontinuous and may be very sensitive to small changes

in the data. As shown in Figure 1.2, when Xi is close to the cutoff points, which are

±
√

2 here, a small change in Xi may change the estimate of θi from 0 to ±
√

2 or

more extreme.

The L1 norm penalty function uses the penalty function P (θ) = ‖θ‖1. The corre-

sponding estimator is known as the Lasso (Tibshirani 1996), which can be represented

by

θ̂i
L1

= sign(Xi)

(
|Xi| −

1

2
λ

)+

. (1.44)

Compared to the L0 norm penalty, the L1 norm penalty estimator or the Lasso

estimator is continuous with a constant shrinkage amount λ/2 beyond the range

(−λ/2, λ/2). As discussed in Section 1.3.3, the Lasso estimator has a Bayesian

interpretation as the posterior mode under the double exponential prior.

In addition, the L2 norm penalty function uses the function P (θ) = ‖θ‖2
2. The

corresponding estimator is known as the ridge estimator, which can be represented

by:

θ̂
L2

= θ̂Ridge =
X

1 + λ
. (1.45)

Similar to the Lasso estimator, the ridge estimator also has a Bayesian interpretation.

Given a normal likelihood with mean θ, the ridge estimator can be obtained as the

posterior mean (median and mode) of θ under a normal prior.
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Figure 1.2: Shrinkage estimator comparison when p = 1 and λ = 2. The horizontal
axis is the MLE.

Figure 1.2 plots the MLE versus the penalized least squares estimators under the

L0, L1 and L2 penalty functions when p = 1 and λ = 2 for all three methods. We

can see that the ridge estimator does not shrink the MLE to exactly zero but instead

shrinks by a constant proportion to the origin. However the other two methods both

shrink the MLE to exactly zero in some ranges. People sometimes prefer the Lasso to

the ridge estimator due to this issue for the purpose of variable selection and model

simplicity.

The generalized double Pareto prior in Armagan et al. (2013) induces another

penalty function. Suppose that

Y | β, σ ∼ N(Xβ, σ2I), (1.46)
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then the penalized least square estimator can be written as:

β̃
GDP

= arg min
β

{
1

2σ2
‖Y −Xβ‖2 +

p∑
i=1

p(|βi|)

}
, (1.47)

with the penalty function

p(|βi|) = (γ + 1) log(σδ + |βi|).

Armagan et al. (2013) showed that this penalty function can lead to estimators with

the good properties from Fan and Li (2001): (i) nearly unbiased when the signal is

large, (ii) able to set small estimated coefficients to zero and (iii) continuous in data

to avoid instability.

Another penalized least squares estimator, the elastic net estimator, is raised by

Zou and Hastie (2005). Their motivation comes from the following limitations of

the Lasso in variable selection problems. First, when the parameter dimension p is

larger than the number of observations n, the Lasso can give at most n estimated

components. Second, when a group of variables are highly correlated, the Lasso

may select only one variable from the group but not care which one is selected. To

improve the Lasso in such situations, Zou and Hastie (2005) provided two estimators:

the naive elastic net estimator and the elastic net estimator. The first one is defined

as the minimizer of

L(β) = ‖Y −Xβ‖2
2 + λ1‖β‖1 + λ2‖β‖2

2, (1.48)

where Y is the response vector, X is the design matrix and λ1 and λ2 are two tuning

parameters. Equation (1.48) points out that the naive elastic net can be treated as a

combination of the Lasso and the ridge estimators. To find the solution when p > n,
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one augmented dataset need to be defined first:

X∗(n+p)×p =
1√

1 + λ2

(
X√
λ2I

)
, Y ∗n+p =

(
Y
0

)
.

Furthermore, define γ = λ1/
√

1 + λ2 and β∗ =
√

1 + λ2β. Then the target function

(1.48) can be expressed as

L(β) = L(β∗) = ‖Y ∗ −X∗β∗‖2
2 + γ‖β∗‖1. (1.49)

When the design matrix is orthogonal, the solution is

β̂NENi =
sign(β̂Oi )

1 + λ2

(
|β̂Oi | −

λ1

2

)+

, (1.50)

where β̂
O

= XTY . Now the problem is transformed to finding a Lasso type solution

with the values of λ1 and λ2 selected via cross-validation. The authors showed that

the naive elastic net estimator can solve the issues of the Lasso in the above situations.

However, this estimator tends to give over shrinkage to large observations. To cure

this problem and make it comparable to the Lasso and the ridge estimators, the elastic

net estimator is constructed:

β̂EN =
√

1 + λ2β̂
NEN . (1.51)

It is easy to see that when the design matrix is orthogonal, β̂EN has a similar form

as the lasso.

Most above estimators own the global shrinkage property, which is that all non-

zero estimates have the same shrinkage amount or proportion. For example, the Lasso

has a constant shrinkage amount λ/2 beyond the range (−λ/2, λ/2). However, this

shrinkage amount may be too much when the observation X i is large. The lack of the

adaptive shrinkage property and moderate shrinkage strength motivated the research

20



on frequentist shrinkage estimators with local shrinkage property. There is a large

literature in this area, among which one important approach is the adaptive Lasso

(Zou 2006). The main idea of this method is to assign different weights to different

components of θ in the L1 penalized function. Suppose that an initial estimator θ̃ is

available. For any given γ, define

wi =
1

θ̃γi
. (1.52)

Then the adaptive lasso estimator is the minimizer of

L(θ) = ‖X − θ‖2
2 + λ

∑
i

wi|θi|. (1.53)

Zou (2006) suggested using two-dimensional cross-validation to select the values of γ

and λ.

1.5 Comparison Between Penalized Likelihood Approaches
And Bayesian Approaches

In the previous sections we see many examples of connections between classical

methods and Bayesian works. Besides those, there is a noticeable connection between

the penalty functions and the Bayesian priors. Given a prior distribution, a penalized

least squares estimator can be derived with the penalty function being the negative

logarithm of the corresponding prior. In other words, the penalized least squares

estimator can be viewed as the Maximum A Posteriori (MAP) estimate given that

prior density. For example, the Lasso can be expressed as the posterior mode given a

double exponential prior and the ridge estimator is equivalent to the posterior mode

(which equals to the posterior mean) given a normal prior.

Compared to the penalized likelihood methods, Bayesian methods have a few im-

portant advantages. First of all, Bayesian methods allow us to apply prior knowledge
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about the parameters and to use observed data to update this prior information. A

good prior should yield an estimator with superior performances.

Secondly, as introduced at the beginning of section 1.3, proper Bayesian rules are

admissible. This can be easily verified. Let θ be the parameter. A decision rule δ

is called a Bayes rule if it minimizes the Bayes risk r(π, δ) = EπR(θ, δ). A Bayes

rule δ is admissible. If it is not, then there exists another rule δ′ with smaller risk

R(θ, δ′) for all values of θ. Then automatically δ′ will have a smaller Bayes risk which

contradicts with the definition of Bayes rules. It is noticeable that under the squared

error loss, the posterior mean is the Bayes rule.

In this dissertation we use squared error loss as the loss function and the posterior

mean as the estimator of θ. When the conditions (B1) − (B5) in Lehmann and

Casella (1998) hold, we further have

√
n(θ̃n − θ0)

L→ N

(
0,

1

I(θ0)

)
, (1.54)

where θ̃n is the posterior mean given sample size n and θ0 is the true value of θ. That

is, the posterior mean is consistent and asymptotically efficient.

1.6 Outline of the Dissertation

The major thrust of this dissertation is to develop a class of new prior distribu-

tions: the adaptive inverted-Beta priors (AIB). In addition to the above Bayesian

advantages, our method has several other nice properties. First of all, the class of

AIB priors have the adaptive shrinkage property and the flexibility to handle different

types of data with a large variety of sparsity levels and signal sizes. Secondly, the

class of AIB priors include several well known Bayesian shrinkage priors as special
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cases. Our method behaves similarly as these members in some situations and pro-

vides substantial improvements in other situations. Thirdly, focusing on scale mixture

of normals priors of the form (1.20), we investigate the substantial impact from the

global shrinkage parameter to the shrinkage performance.

The remaining chapters of this thesis are organized as the following. Chapter 2

proposes the adaptive inverted-Beta priors, investigates their theoretical properties,

and demonstrates their performances for IID observations through simulation studies.

Chapter 3 extends the AIB priors to linear regressions and demonstrates the superior

performances using simulation studies and one real data example. Chapter 4 sum-

marizes our main findings and extends the AIB priors for the normal mean problem

with unknown covariance structures.
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Chapter 2: Adaptive Inverted-Beta Priors For IID

Observations

The shape of the marginal distributions on θ has a big impact on the shrinkage

properties of the Bayesian estimators. In this chapter, we first study a few important

shrinkage priors in the literature. Next we propose a new class of adaptive priors,

the adaptive inverted-Beta (AIB) priors, which allows the data to decide the shrink-

age degree and provides strong shrinkage to noises while little shrinkage to signals.

We conduct simulation studies where the observations are IID. The performances of

the Bayesian estimators under the AIB priors are compared with those under the

horseshoe prior, the Strawderman-Berger prior, the normal-exponential-gamma prior

and the double-exponential prior. A few important features are worth noting: 1) the

proposed priors have the adaptive shrinkage property and the flexibility to handle

different sparsity levels and signal sizes; 2) the global shrinkage parameter introduces

extra variability but improves the shrinkage performances.

2.1 Existing Local Shrinkage Priors

In high dimensional spaces, the following properties are desirable for shrinkage

priors. 1) Signal detectability: the prior distribution should be able to distinguish
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the noises from the signals and give strong shrinkage for small noises and little shrink-

age for signals. 2) Adaptivity: the prior density should be flexible enough to handle

different data sparsity levels. That is, the corresponding Bayesian estimator should

perform well under a large range of sparsity levels. 3) Invariance: the prior distribu-

tion should be invariant to the measurement units. Next we investigate the connection

between the shapes of shrinkage priors and shrinkage properties.

Recall that under the likelihood function (1.3) with σ2 = 1, and a scale mixture

of normals prior (1.20) on θ, the posterior mean of θi is:

E(θi | Xi) =

(
1− E

(
1

1 + λi
| Xi

))
Xi = (1− E(κi | Xi))Xi, (2.1)

where κi = 1/(1 + λi) is the shrinkage factor. Strong shrinkage is given when κi

approaches 1, or equivalently when λi approaches 0, and little shrinkage is given

when κi approaches zero or λi approaches infinity. Therefore, the density of π(κi)

near 0 controls the tail robustness of the prior, and the density near 1 controls the

shrinkage strength to noises. Integrating out κ yields the marginal prior of θ, π(θ).

The density of π(θ) around 0 controls the shrinkage power to noises and the tail

thickness controls the shrinkage power to signals. To provide additional insight of

how π(κi) and π(θi) affect the shrinkage performance, we choose a few shrinkage

priors mentioned in Chapter 1 as examples to construct a direct comparison. Since

some priors do not have an analytic form of π(θ), only kernel densities of λ and κ

in the one dimensional case are summarized in Table 2.1. The densities of π(κ) and

π(θ) are given in Figure 2.1.

The comparison is among the horseshoe prior (1.38) with τ fixed at 1, the Strawderman–

Berger prior (1.22) with a = 1/2, the NEG prior (1.32) with γ = 2 and δ = 1, the

NG prior (1.31) with γ = 2 and δ = 1 and the standard double exponential prior. We
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Prior for θ Prior for λ Prior for κ

Horseshoe λ−
1
2 (1 + λ)−1 κ−

1
2 (1− κ)−

1
2

Strawderman–Berger (1 + λ)−
3
2 κ−

1
2

NEG(2,1) (1 + λ)−3 κ
NG(2,1) λe−λ 1−κ

κ3
e−(1−κ)/κ

Double Exponential e−λ/2 1
κ2
e−(1−κ)/2κ

Table 2.1: Priors on λ and κ of some common shrinkage priors in one dimensional case.
The two parameters in both the normal-exponential-gamma and the normal-gamma
priors are fixed at 2 and 1. The priors are given up to constants.

use model (1.32) rather than (1.34) to represent the NEG prior because that if the

global shrinkage parameter τ in (1.34) is fixed at 1, then the NEG prior degenerates

to the double exponential prior. We choose these priors as they are typical examples

that work well when the data have some certain sparsity properties.

The left graph in Figure 2.1 compares the densities of κ, the middle one compares

the peak behaviors of π(θ) and the right one compares the tail behaviors of π(θ).

Explicitly, when the closed form of π(θ) is not available, we approximate this density

by taking the average of the normal priors on θ over a set of κ values, which are

sampled from their corresponding distribution respectively. The horseshoe prior has

unbounded π(κ) near 1, reflecting the infinite peak of π(θ) and strong shrinkage to

small noises. In contrast, all other priors have π(κ) bounded at 1, reflecting the

lower peaks of π(θ). Although π(θ) of the NEG(2, 1) prior has a finite peak, the high

densities around zero, for example in the range (−1, 1), also offers the advantage in

handling small noises. The unbounded π(κ) of the Strawderman–Berger prior and

the horseshoe prior near 0 correspond to the thick tails of π(θ) and little shrinkage to
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Figure 2.1: Density comparison of π(κ) and π(θ) in the one dimensional case among
the horseshoe prior, the Strawderman–Berger prior, the NEG(2,1) prior, the NG(2,1)
prior and the standard double exponential prior. The left graph compares the den-
sities of κ, the middle graph compares the densities of θ and the right one compares
the tail behaviors of π(θ).

large signals. However, the other three priors have π(κ) vanish at 0 leading to thin

tails of π(θ) and over shrinkage issue to large signals.

In fact, the NEG priors can have very different shapes by varying the two hyper-

parameter values. The shape parameter γ controls the tail thickness and the rate

parameter δ controls the scale. When the ratio between γ and δ is small, the peak

is low and tails are thick; when the ratio is large, the peak is high and tails are thin.

Similar to Figure 2.1, Figure 2.2 shows the shapes and behaviors of π(κ) and π(θ) of

a few NEG priors. We use the NEG(2, 1) prior as a base level and compare it with

the NEG(1,1), NEG(5,1) and NEG(0.1,1) priors.

Similarly, the NG priors can have very different shapes, even an infinite peak of

π(θ) by changing the two hyperparameters. More details are given in Griffin and
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Figure 2.2: Density comparison of π(κ) and π(θ) in the one dimensional case among
NEG priors with different hyperparameter values. The left graph compares the den-
sities of κ, the middle graph compares the densities of θ and the right one compares
the tail behaviors of π(θ).

Brown (2005) and Griffin and Brown (2010). Instead of unfixing the two hyperpa-

rameters, the priors can gain shape flexibility by introducing another global shrinkage

parameter. The over shrinkage issue of the NEG(2, 1) prior is cured by doing so. More

details are given in Section 2.4.

As we seen, these priors have pre-specified shrinkage properties, so work well only

when the data has certain sparsity levels. In the next section, we generalize them and

provide a new class of adaptive priors.

2.2 The Class of Adaptive Inverted-Beta Priors

Motivated by the series of paper mentioned, we find that satisfying the following

conditions would yield estimators with the good properties described at the beginning

of section 2.1.

First, put a scale mixture of normals prior on θ. The choice of hyperprior on

the local variances of θ can adjust the peak height and the tail thickness of π(θ)
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and further yields adaptive estimators. In addition, Stein (1981) stated that under

likelihood (1.3) with σ2 = 1 and the squared error loss, the posterior mean of θ can

be expressed as

E(θ |X) = X +
d

dX
logm(X), (2.2)

where m(X) is the marginal likelihood of X. Equation 2.2 indicates that a prior

distribution with shrinkage adaptivity should satisfy limXi→∞
d

dXi
logm(X) = 0.

Second, to make the prior distribution flexible, more than one hyperparameter or

an extra global shrinkage parameter is needed.

Third, as in model (1.38), putting σ, the standard deviation of Xi given θi, inside

the prior of θ as a scale parameter can easily link the prior density with the data

variance, and therefore, satisfy the invariance property.

Following these conditions, we develop a large new class of prior distributions that

have flexible shapes and can give adaptive shrinkages to observations.

2.2.1 Introduction of The Adaptive Inverted Beta Prior

As shown in Table 2.1, under the horseshoe, the Strawderman–Berger and the

NEG(2, 1) priors, the distributions of λi have the form λsi (1 + λi)
t for some constants

s and t. They can be viewed as special cases of the inverted-Beta (IB) distribution,

which is also called the beta prime distribution, with the density function

λ | a, b ∼ IB(a, b) =
1

Beta(a, b)

λb−1

(1 + λ)a+b
, (2.3)

where Beta(a, b) is the beta function. In fact, many other priors can be viewed as

special cases of IB priors. For example, the IB prior degenerates to the Jeffreys prior

when both a and b approach 0. When δ = 1, the prior (1.33) simplifies to

p(λ | γ, δ = 1) = γ(1 + λ)−(γ+1), (2.4)
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which is IB(γ, 1).

It is easy to check that κ = 1/(1 + λ) follows a beta distribution

κ ∼ Be(a, b) =
κa−1(1− κ)b−1

Beta(a, b)
. (2.5)

The beta distribution behaves like κa−1 near the origin and like (1−κ)b−1 near κ = 1.

Therefore the values of the constants a and b decide the shape of the distribution of κ,

and thus, the shrinkage properties. For example, a = b = 1/2 results in the U-shape

of π(κ) in the horseshoe prior and furthermore the adaptive shrinkage property. For

another example, when a > 1, π(κ) vanishes at the origin which causes the over

shrinkage issue of the NEG(2, 1) prior.

This observation motivated us to let data decide the values of the hyperparameters,

a and b, and thus decide the shrinkage degrees. Instead of putting diffuse priors on a

and b directly, we consider putting priors on the transformed parameters M = a + b

and N = a/(a + b). The main reason of doing so is that, N is the mean of the

shrinkage factors κi, i = 1, · · · , p. Putting a diffuse prior on N will allow the data to

determine its posterior distribution which reflects the overall shrinkage strength from

local shrinkage parameters. For example, the posterior mean of N is expected to be

greater than 0.5 for sparse data. When the signal size is fixed, a larger posterior mean

of N is expected, indicating strong shrinkages, when the sparsity level increases. For

a fixed sparsity level, a smaller posterior mean of N is expected when the signal size

increases. In order to trace this parameter directly, we put priors Gamma(2, 1) and
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Beta(1, 1) on M and N respectively, and propose the AIB prior

θ | λ, τ, σ ∼ N(0, τ 2σ2Diag(λ)),

τ ∼ Cauchy+(0, 1),

p(σ2) ∝ 1

σ2
,

λi |M,N
iid∼ IB(MN,M(1−N)),

M ∼ Gamma(2, 1),

N ∼ Beta(1, 1). (2.6)

Here we follow the suggestion from Polson and Scott (2010) and put the half Cauchy

distribution on the global shrinkage parameter τ . In Section 2.4, we will see that

unfixing N and excluding τ give the AIB prior flexibility to handle different types of

data. Unfixing both parameters involves more variability, but improves the flexibility

and the shrinkage performances substantially in some scenarios.

Furthermore, when τ = 1, the AIB prior (2.6) is equivalent to the hypergeometric

inverted beta prior (1.25) with s = 0 and δ = 1. But differently, the AIB prior has

only one global shrinkage parameter τ and thus the impact from the global shrinkage

parameter to shrinkage performances is much clearer.

2.2.2 Properties of AIB prior

In this section, we focus on the theoretical properties of the AIB priors. Essentially,

Theorem 1 shows the tail robustness of the AIB priors in one dimensional case and

Corollary 1 shows that the posterior mean under an AIB prior has a bounded risk.

Theorem 1. Suppose X ∼ N(θ, 1) and the AIB prior (2.6) on θ. Let m(X) denote

the marginal likelihood of X and let E(θ | X = x) denote the posterior mean of θ
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given one observation x. Then

| X − E(θ | X) |≤ B, (2.7)

where B is a constant and

lim
|X|→+∞

d

dX
logm(X) = 0. (2.8)

Proof. It is easy to see that

lim
|X|→+∞

d

dX
logm(X) = lim

|X|→+∞

1

m(X)

d

dX
m(X).

In model (2.6), when a = MN , b = M(1−N) and τ are fixed, the joint distribution

of X and λ is

p(X,λ | a, b, τ) =

∫ +∞

−∞
p(X | θ)π(θ | λ, τ)π(λ | a, b)dθ

=
1√

2π(1 + λτ 2)

1

B(a, b)

λb−1

(1 + λ)a+b
exp

(
− X2

2(1 + λτ 2)

)
,

where B(a, b) is the beta function. Let z = 1/(1 + λτ 2), then λ = (1− z)/(zτ 2), and

dλ = dz/(τ 2z2). Therefore, the distribution of X conditional on a, b and τ is

m(X | a, b, τ) =

∫ +∞

0

p(X,λ | a, b, τ)dλ

=

∫ +∞

0

1√
2π(1 + λτ 2)

1

B(a, b)

λb−1

(1 + λ)a+b
exp

(
− X2

2(1 + λτ 2)

)
dλ

=

∫ 1

0

√
z√

2π

1

B(a, b)

(
zτ 2

1− z + zτ 2

)a+b(
1− z
zτ 2

)b−1

e−
X2z
2

1

τ 2z2
dz

=

∫ 1

0

C(a, b, τ)za−
1
2 (1− z)b−1e−

X2z
2

(
1

τ 2
+

(
1− 1

τ 2

)
z

)−(a+b)

dz,

where C(a, b, τ) = 1√
2π

1

B(a,b)

1
τ2b

.
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Applying the Taylor expansion of the exponential function ex =
∑∞

m=0
xm

m!
and

letting η = 1− z yields

m(X | a, b, τ)

=

∫ 1

0

C(a, b, τ)(1− η)a−
1
2ηb−1e−

X2

2
(1−η)

(
1

τ 2
+

(
1− 1

τ 2

)
(1− η)

)−(a+b)

dη

= C(a, b, τ)e−
X2

2

∫ 1

0

(
1−

(
1− 1

τ 2

)
η

)−(a+b)

e
X2η
2 (1− η)a−

1
2ηb−1dη

= C(a, b, τ)e−
X2

2

∞∑
m=0

(X2/2)m

m!

∫ 1

0

ηb+m−1(1− η)a−
1
2

(
1−

(
1− 1

τ 2

)
η

)−(a+b)

dη.

Implementing formulas (15.1.1) and (15.3.1) in Abramowitz and Stegun (1964), we

obtain

m(X | a, b, τ)

= C(a, b, τ)e−
X2

2

∞∑
m=0

(X2/2)m

m!
F

(
a+ b, b+m, a+ b+m+

1

2
, 1− 1

τ 2

)
B

(
b+m, a+

1

2

)
= C(a, b, τ)e−

X2

2

∞∑
m=0

(X2/2)m

m!

∞∑
n=0

(a+ b)n(b+m)n(
a+ b+m+ 1

2

)
n

(1− 1/τ 2)
n

n!

B

(
b+m, a+

1

2

)
= C(a, b, τ)e−

X2

2

∞∑
m=0

∞∑
n=0

(a+ b)n(b)m+n(
a+ b+ 1

2

)
m+n

B

(
b, a+

1

2

)
(X2/2)m (1− 1/τ 2)

n

m!n!

= C(a, b, τ)e−
X2

2 Φ1

(
b, a+ b, a+ b+

1

2
,
X2

2
, 1− 1

τ 2

)
, (2.9)

where F(a, b, c, d) denotes the hypergeometric function, (q)n is the rising factorial,

defined by

(q)n =

{
1, n = 0

q(q + 1) · · · (q + n− 1), n > 0
, (2.10)

and Φ1 is the degenerate hypergeometric function of two variables.
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Gordy (1998) showed that

Φ1(a, b, c, x, y) =

{
ex
∑∞

n=0
(a)n(b)n

(c)n

yn

n!
F1(c− a, c+ n,−x), for 0 ≤ y < 1, 0 < a < c

ex(1− y)−bΦ1(c− a, b, c,−x, y
y−1

), for y < 0, 0 < a < c

(2.11)

where F1 is the Kummer’s function of the first kind. In addition, it is shown in

Chapter 4 of Slater (1960) that

F1(a, b, x) =

{
Γ(a)
Γ(b)

exxa−b{1 +O(x−1)}, x > 0
Γ(a)

Γ(b−a)
(−x)−a{1 +O(x−1)}, x < 0

. (2.12)

When the parameters a, b and τ are random, the marginal distribution of X can

be represented by

m(X)

=

∫ 1

0

∫ 1

0

∫ ∞
0

m(X | a, b, τ)π(M)π(N)π(τ)dMdNdτ

+

∫ ∞
1

∫ 1

0

∫ ∞
0

m(X | a, b, τ)π(M)π(N)π(τ)dMdNdτ

= mτ<1(X) +mτ>1(X)

=

∫ 1

0

∫ 1

0

∫ ∞
0

C(M,N, τ)τ 2M

∞∑
n=0

(MN + 1/2)n(M)n
(M + 1/2)n

(1− τ 2)n

n!

Γ(M −MN)

Γ(M + 1/2 + n)(
X2

2

)−(MN+1/2+n){
1 +O

(
1

X2

)}
π(M)π(N)π(τ)dMdNdτ

+

∫ ∞
1

∫ 1

0

∫ ∞
0

C(M,N, τ)
∞∑
n=0

(M −MN)n(M)n
(M + 1/2)n

(1− 1/τ 2)n

n!

Γ(MN + 1/2)

Γ(M −MN + n)(
X2

2

)−(MN+1/2){
1 +O

(
1

X2

)}
π(M)π(N)π(τ)dMdNdτ. (2.13)

Recall that a and b are functions of M and N , we change the notations to M and N

in the last equation.
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Taking the derivative with respect to X, we obtain

dmτ<1(X)

dX

=

∫ 1

0

∫ 1

0

∫ ∞
0

d

dX
m(X | a, b, τ)π(M)π(N)π(τ)dMdNdτ

=

∫ 1

0

∫ 1

0

∫ ∞
0

−C(a, b, τ)Xe−
X2

2 Φ1

(
b, a+ b, a+ b+

3

2
,
X2

2
, 1− 1

τ 2

)
π(M)π(N)π(τ)dMdNdτ

= − 2

X

∫ 1

0

∫ ∞
0

∫ 1

0

C(M,N, τ)τ 2M

∞∑
n=0

(MN + 3/2)n(M)n
(M + 3/2)n

(1− τ 2)n

n!

Γ(M −MN)

Γ(M + 3/2 + n)

(
X2

2

)−(MN+1/2+n){
1 +O

(
1

X2

)}
π(M)π(N)π(τ)dNdMdτ

= − 2

X

∫ 1

0

∫ 1

0

∫ ∞
0

C(M,N, τ)τ 2M

∞∑
n=0

(
MN + 1

2

)
n

(M)n(
M + 1

2

)
n

(1− τ 2)n

n!

Γ(M −MN)

Γ
(
M + 1

2
+ n
) (X2

2

)−(MN+1/2+n){
1 +O

(
1

X2

)}
MN + 1

2
+ n(

M + 1
2

+ n
)2π(M)π(N)π(τ)dMdNdτ. (2.14)

Since 0 ≤ N ≤ 1,

0 ≤ MN + 1/2 + n

(M + 1/2 + n)2
≤ M + 1/2 + n

(M + 1/2 + n)2
≤ 1

1/2
= 2.

Therefore

0 ≤ −X
2

dmτ<1(X)

dX
≤ 2mτ<1(X).

35



Similarly,

dmτ>1(X)

dX

= − 2

X

∫ ∞
1

∫ 1

0

∫ ∞
0

C(M,N, τ)
∞∑
n=0

(M −MN)n(M)n
(M + 3/2)n

(1− 1/τ 2)n

n!

Γ(MN + 3/2)

Γ(M −MN + n)

(
x2

2

)−(MN+1/2){
1 +O

(
1

X2

)}
π(M)π(N)π(τ)dMdNdτ

= − 2

X

∫ ∞
1

∫ 1

0

∫ ∞
0

C(M,N, τ)
∞∑
n=0

(M −MN)n(M)n
(M + 1/2)n

(1− 1/τ 2)n

n!

Γ(MN + 1/2)

Γ(M −MN + n)

(
x2

2

)−(MN+1/2){
1 +O

(
1

X2

)}
MN + 1/2

M + 1/2 + n

π(M)π(N)π(τ)dNdMdτ, (2.15)

and

0 ≤ −X
2

dmτ>1(X)

dX
≤ mτ>1(X),

since

0 ≤ MN + 1/2

M + 1/2 + n
≤ M + 1/2

M + 1/2 + n
≤ 1.

Combining equations (2.13), (2.14) and (2.15) together, we have

d

dX
logm(X) =

dmτ<1(X)
dX

+ dmτ>1(X)
dX

mτ<1(X) +mτ>1(X)
, (2.16)

and (2.16) belongs to (−4/X, 0) when X > 0 or (0,−4/X) when X < 0. Therefore,

equation (2.8) holds as X →∞.

The inequality (2.7) comes from the continuity of d logm(X)/dX. Plugging equa-

tion (2.2) into (2.7) gives

| X − E(θ | X) |=
∣∣∣∣ ddX logm(X)

∣∣∣∣ . (2.17)

The continuity of d logm(X)/dX along with the facts that d logm(X)/dX = 0 when

X = 0 and lim|X|→+∞ d logm(X)/dX = 0 shows that B exists.
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Notice that in Theorem 1, the dimension is one and σ is assumed fixed. Under

the independence assumption, it is very easy to extend it to multi-dimensional case.

As a direct consequence from Theorem 1, Corollary 1 proves that the risk of the

posterior mean with the AIB prior is bounded.

Corollary 1. Suppose X ∼ N(θ, I) and the AIB prior (2.6) on θ, then E(‖θ− θ̂‖2)

is bounded for all θ where θ̂ = E(θ |X).

Proof.

E(‖θ − θ̂‖2) = E(

p∑
i=1

(θi − θ̂i)2)

= E(

p∑
i=1

(θi −Xi +Xi − θ̂i)2)

≤
p∑
i=1

E((| θi −Xi | + | Xi − θ̂i |)2)

≤
p∑
i=1

E((| θi −Xi | +B)2)

= p+ 2

√
2

π
pB + pB2

2.3 Computational Algorithms

In the Bayesian framework, a posterior distribution

π(θ |X) =
f(X | θ)π(θ)∫
f(X | θ)π(θ)dθ

(2.18)

is of great interest. We can draw inferences of θ from a posterior distribution or

use it as new prior information for future study. When a posterior distribution has

a complicated form, even no closed-form, the Markov Chain Monte Carlo (MCMC)

37



methods offer a class of tools to get samples from the posterior distribution. An

MCMC algorithm is an iterative sampling process whose stationary distribution, in

our case, is the posterior distribution. Initializing the process with arbitrary values

in the domain, we obtain an ergodic process and the effect from the initial values will

be “washed out”. In the process of updating parameters, we apply a hybrid of Gibbs

sampler and Metropolis–Hastings algorithms.

2.3.1 Monte Carlo Markov Chain Algorithm With Gibbs
Sampler

Given a set of observations {X1, · · · ,Xn} with likelihood (1.3) and the AIB prior

in (2.6), we use the first iteration as an example to illustrate the Gibbs sampler

procedure: Starting with initial values M0, N0, λ0, τ0, σ2
0 and θ0,

(1) Update M with M (1) from p(M | N0,λ0).

(2) Update N with N (1) from p(N |M (1),λ0).

(3) Update λ with λ(1) from p(λ |M (1), N (1),θ0, τ0, σ
2
0).

(4) Update τ with τ (1) from p(τ | θ0,λ
(1), σ2

0).

(5) Update σ2 with σ2(1) from p(σ2 |X1, · · · ,Xn,θ0,λ
(1), τ (1)).

(6) Update θ with θ(1) from p(θ |X1, · · · ,Xn, σ
2(1),λ(1), τ (1)).

Here p(• | •) stands for a full conditional distribution. Starting from the second iter-

ation, the initial values are replaced by the current states to update the parameters.

When it is not analytically or computationally feasible to get a sample from the

full conditional distribution, the Metropolis–Hastings algorithm is applied to generate
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a future state which is accepted according to an acceptance ratio. Next, we show the

derivation of conditional distributions and acceptance ratios in detail.

(1) For updating M , the prior is not conjugate for the IB likelihood function and

the Metropolis–Hastings algorithm is applied. Let M denote the current state

and let M∗ denote the future state. Considering the domain of M , a normal

distribution centered at log(M) is used as the proposal distribution to generate

log(M∗), which is then transformed back to get M∗. The acceptance ratio of

M∗ is

RatioM =

1
M

∏
i

1

Beta(M∗N,M∗(1−N))

λ
M∗(1−N)−1
i

(1+λi)M
∗ f(M∗)

1
M∗

∏
i

1

Beta(MN,M(1−N))

λ
M(1−N)−1
i

(1+λi)M
f(M)

, (2.19)

where 1/M and 1/M∗ are the Jacobian determinants from the logarithm trans-

formation, and f(M) is the Gamma(2,1) density for the current value M .

(2) For updating N , the prior is not conjugate. Considering the domain of N , a

normal proposal distribution centered at logit(N) is used to generate logit(N∗),

which is transformed back to get N∗. The acceptance ratio is:

RatioN =

1
N(1−N)

∏
i

1

Beta(MN∗,M(1−N∗))
λ
M(1−N∗)−1
i

1
N∗(1−N∗)

∏
i

1

Beta(MN∗,M(1−N∗))
λ
M(1−N)−1
i

, (2.20)

where the first terms in both the numerator and the denominator are the Jaco-

bian determinants from the logit transformation. Note that the (1 + λ)M part

inside the IB prior does not involve N and that the Beta(1, 1) prior on N is

equivalent to the standard uniform distribution, so they are both omitted.

(3) For updating λ, since the elements of λ are conditionally independent, we use

one dimension as an example to show the computation details and the accep-

tance ratio. Considering the domain of λi and the prior on it, a normal proposal
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distribution centred at log(λi) is used to generate log(λ∗i ). Then log(λ∗i ) is trans-

formed back to get λ∗i . The acceptance ratio is:

Ratioλi =

1
λi

1√
2πλ∗i τσ

e
− 1

2λ∗
i
τ2σ2

θ2i λ
∗M(1−N)−1
i

(1+λ∗i )M

1
λ∗i

1√
2πλiτσ

e
− 1

2λiτ
2σ2

θ2i λ
M(1−N)−1
i

(1+λi)M

, (2.21)

with the constant part inside the IB prior cancelled.

(4) For updating τ , a normal proposal distribution centred at log(τ) is used to

generate log(τ ∗), which is transformed back to get τ ∗. The acceptance ratio is:

Ratioτ =

1
τ

∏
i

1√
2πλiτ∗σ

e
− 1

2λiτ
∗2σ2

θ2i 2
π(1+τ∗2)

1
τ∗

∏
i

1√
2πλiτσ

e
− 1

2λiτ
2σ2

θ2i 2
π(1+τ2)

. (2.22)

(5) For updating σ2, the inverse gamma prior is a conjugate prior for normal dis-

tributions and the Jeffreys prior is a special case of the inverse gamma family.

Therefore, the full conditional distribution is

σ2 |X,θ,λ, τ ∼ IG

(
pq + p

2
,
∑
i

θ2
i

2τλi
+
∑
i,j

(Yi,j − θi)2

2

)
, (2.23)

where IG stands for the inverse gamma distribution.

(6) For updating θ, since the prior is conjugate and the elements of θ are condi-

tionally independent, the full conditional distribution of θi is:

θi | X̄i, σ, λi, τ ∼ N

(
nλiτ

2X̄i

nλiτ 2 + 1
,
λiτ

2σ2

nλiτ 2 + 1

)
, (2.24)

where X̄ is the sample average of {X1, · · · ,Xn} and X̄i is the i-th element of

X̄.

40



2.3.2 Monte Carlo Markov Chain Algorithm With Partially
Collapsed Gibbs Sampler

Although the Gibbs sampler is very popular for its simplicity, it is often criticized

for its slow convergence speed, especially when the model structure is complex (Park

and Dyk 2009). Instead of using the Gibbs sampler, we can use the partially collapsed

Gibbs sampler to accelerate the convergence speed by drawing λ, τ and σ from the

full conditional distributions in which θ is integrated out. Similar to Section 2.3.1,

we use the first iteration as an example to illustrate the partially collapsed Gibbs

sampler procedure. Starting with initial values M0, N0, λ0, τ0, σ2
0 and θ0,

(1) Update M with M (1) from p(M | N0,λ0).

(2) Update N with N (1) from p(N |M (1),λ0).

(3) Update λ with λ(1) from p(λ |X1, · · · ,Xn,M
(1), N (1), τ0, σ

2
0)).

(4) Update τ with τ (1) from p(τ |X1, · · · ,Xn,λ
(1), σ2

0).

(5) Update σ2 with σ2(1) from p(σ2 |X1, · · · ,Xn,λ
(1), τ (1)).

(6) Update θ with θ(1) from p(θ |X1, · · · ,Xn, σ
2(1),λ(1), τ (1)).

Again, starting from the second iteration, we use the updated values instead of the

initial values to get future states of the parameters in the above procedure.

Since the elements of X i are mutually independent given θ and σ2 and the ele-

ments of θ are mutually independent given τ , σ2 and λ, the elements of X i are still

mutually independent after integrating θ out. By some straightforward algebra, we

get the joint distribution of {Xij, j = 1, · · · , n} given σ2, τ and λi:

p(Xi1, · · · , Xin | σ2, τ, λi) ∝ (σ2)n/2(nτ 2λi+1)−1/2 exp

{
−
∑

j X
2
ij

2σ2
+
λiτ

2(
∑

j Xij)
2

2σ2(nτ 2λi + 1)

}
.
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Similar to section 2.3.1, we get the acceptance ratios and conditional distributions as

follows:

(1) For updating M

RatioM =

1
M

∏
i

1

Beta(M∗N,M∗(1−N))

λ
M∗(1−N)−1
i

(1+λi)M
∗ f(M∗ | 2, 1)

1
M∗

∏
i

1

Beta(MN,M(1−N))

λ
M(1−N)−1
i

(1+λi)M
f(M | 2, 1)

. (2.25)

(2) For updating N

RatioN =

1
N(1−N)

∏
i

1

Beta(MN∗,M(1−N∗))
λ
M(1−N∗)−1
i

1
N∗(1−N∗)

∏
i

1

Beta(MN∗,M(1−N∗))
λ
M(1−N)−1
i

. (2.26)

(3) For updating λi

Ratioλi =

1
λi
p(Xi1, · · · , Xin | σ2, τ, λ∗i )

λ
∗M(1−N)−1
i

(1+λ∗i )M

1
λ∗i
p(Xi1, · · · , Xin | σ2, τ, λi)

λ
M(1−N)−1
i

(1+λi)M

. (2.27)

(4) For updating τ

Ratioτ =

1
τ

∏
i p(Xi1, · · · , Xin | σ2, τ ∗, λi)

2
π(1+τ∗2)

1
τ∗

∏
i p(Xi1, · · · , Xin | σ2, τ, λi)

2
π(1+τ2)

. (2.28)

(5) For updating σ2, the distribution of σ2 conditional on Xi1, · · · , Xin, τ,λ is

IG(α, β), where

α =
np

2
,

β =
∑
i,j

X2
ij

2
−
∑
i

λiτ
2(
∑

j Xij)
2

2(nτ 2λi + 1)
.

(6) For updating θi, the full conditional distribution is

θi | X̄i, σ, λi, τ ∼ N

(
nλiτ

2X̄i

nλiτ 2 + 1
,
λiτ

2σ2

nλiτ 2 + 1

)
. (2.29)
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2.4 Simulation Studies

2.4.1 Simulation 1 – Comparison Between The AIB Prior
And Other Shrinkage Priors

In this section, we compare the estimation performances of the AIB prior with

those of the horseshoe prior (HS), the Strawderman–Berger prior (SB), the NEG(2, 1)

prior (NEG) and the double-exponential prior (DE) under different scenarios. For the

purpose of fair comparisons, we let these priors have the common structure

θ | λ, τ, σ ∼ N(0, τ 2σ2Diag(λ)),

p(σ2) ∝ 1

σ2
,

τ ∼ C+(0, 1), (2.30)

with the priors on λi being IB(MN,M(1−N)), IB(1/2, 1/2), IB(1/2, 1), IB(2, 1) and

the standard double-exponential distribution, respectively.

Considering different sparsity levels and signal sizes, we select the combinations

of three nonzero percentages 5%, 20% and 50%, and three nonzero values 1, 4, 10.

For each combination, 100 data sets are generated with the parameter dimension

p = 100. To generate the true θ and Y , we let all nonzero elements of θ have the

same value. In order to increase the stability, we fix the number of nonzero θi’s

and randomly select their locations. For example, for the 20% nonzero value at 4

scenario, we first randomly select 20 dimensions of θ setting to 4 and then set the

rest to 0. Without loss of generality, two observations Y 1, Y 2, are generated using

the likelihood function (1.3). The sufficient statistics in this case are (Ȳ , S2), where

Ȳ =
1

2
(Y 1 + Y 2) ∼ N

(
θ,
σ2

2
I

)
,

S2 = (Y 1 − Y 2)T (Y 1 − Y 2) ∼ σ2χ(100).
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We set σ2 = 2, so that Ȳ has variance 1.

To fit each method, 40000 iterations are run with a burn-in of the first 20000

iterations. The sum of squared error loss is used as the comparison criterion, that is,

L(θ, θ̂) = (θ̂ − θ)T (θ̂ − θ), (2.31)

where θ̂ is a posterior mean of θ.

When the nonzero value is fixed at 1, the signals are hard to distinguish from

the noises, over shrinkage may result in less losses, so the NEG model and the DE

model may work well in such scenarios. When the nonzero value is 4, the noises and

signals are partially mixed. Incorrect discriminations of noises and signals will lead

to severely large losses. Therefore, all methods are expected to have larger losses in

these scenarios than those when the signal is 1. When the nonzero value is 10, noises

and signals are much separated and incorrect discriminations may hardly happen.

The AIB, the HS and the SB models are expected to have losses greater than those

when the signal is 1, but less than those when the signal is 4. But the NEG and

the DE models may suffer from the over shrinkage issue and have greater losses than

those when the signal size is 1 or 4.

Table 2.2 reports the averaged square error losses across 100 datasets in upper rows

and the standard deviations of the average losses in lower rows in each cell. The risks

of the MLE are given as benchmarks. Similarly, Table 2.3 and Table 2.4 report the

parameter estimates in the upper rows and the average posterior standard deviations

in the lower rows. Figure 2.3 plots the mean values Ȳi against the posterior means of

θi for each models in different scenarios. Figure 2.4 and Figure 2.5 plot the posterior

means of the global shrinkage parameter τ and the local shrinkage parameters λi

for all models, offering a closer look at underlying signal/noise discrimination. Note
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that all dimensions of λ are plotted in one box in Figure 2.5 for each model in each

scenario.

Scenario AIB HS SB NEG DE MLE

1

5%
5.42 5.35 5.34 5.67 5.94 101.67
0.18 0.16 0.18 0.22 0.25 1.48

20%
17.67 18.08 18.24 17.74 17.88 100.82
0.20 0.20 0.21 0.22 0.25 1.34

50%
37.49 42.20 41.90 37.24 36.40 99.86
0.42 0.36 0.39 0.41 0.43 1.60

4

5%
21.07 18.55 18.76 26.50 31.87 98.55
0.93 0.88 0.90 0.83 0.79 1.43

20%
55.21 52.54 54.01 61.00 63.78 99.46
1.31 1.25 1.23 1.12 1.09 1.55

50%
90.44 90.79 91.67 90.91 90.76 98.63
1.24 1.67 1.53 1.33 1.28 1.30

10

5%
12.73 13.24 13.46 27.96 46.11 100.08
0.67 0.66 0.68 0.88 0.99 1.52

20%
37.53 44.56 45.50 68.70 76.45 100.61
1.09 1.10 1.11 1.29 1.36 1.57

50%
80.03 80.36 86.83 92.41 93.72 101.73
1.42 1.23 1.28 1.32 1.33 1.38

Table 2.2: Comparison of losses among the AIB, the HS, the SB, the NEG and the
DE models under the IID assumptions in different scenarios. The losses of the MLE
estimate are given as benchmarks. The averaged squared error losses across 100
datasets are reported in the upper rows and the standard deviations of the average
losses are reported in the lower rows. For all datasets, p = 100 and 2 observations
are generated for each dimension. The signal sizes are listed in the first column and
the nonzero percentages are in the second column.

Generally speaking, all methods have smaller losses than those of the MLE in all

scenarios. For any fixed signal size, all models have greater losses when the sparsity

decreases. For a fixed sparsity level, as we expected, the AIB, the HS and the SB

models have the largest losses when the signal is 4. However, the NEG prior and the
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DE prior always have greater losses under bigger signal sizes. This shows that the

over shrinkage issue is very severe to both models.

When the signal is 1, all models work well for sparse datasets. The AIB, the

NEG and the DE models work a little better than the other two methods when the

nonzero percentage is 50. When the signal is 4 and the nonzero percentage is 5 or 20,

the NEG and the DE models have bigger losses than other models. The AIB model

has slightly bigger losses than the HS and the SB models but is still better than the

NEG and the DE models. When the nonzero percentage is high, all models have

similar performances. When the signal size is 10, the AIB prior consistently gives the

smallest losses, especially when the nonzero percentage is 20. This shows that the

AIB prior has the ability to yield better performances than other models when they

work normally or poorly. The SB, the NEG and the DE models have larger losses

than the other two models.

Figure 2.3 provides explanations to the patterns found in Table 2.2. When the

signal is 1 (first row in Figure 2.3), all methods have similar shrinkage patterns near 0,

but the HS and the SB model have sharper slope changes, especially when the nonzero

percentage is 50. However, this shrinkage pattern is not favored by the data which

leads to bigger losses. When the signal is 4, especially when the nonzero percentage

is 5 or 20, the over shrinkage issues of the NEG and the DE model are obvious. The

AIB prior has similar but lighter issues in these scenarios. Carefully looking at the

last row in Figure 2.3, we can see that the AIB model has stronger shrinkage for

noises which is desired for these scenarios and this explains why the AIB model has

smaller losses.
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Scenario M N τ(AIB) τ(HS) τ(SB) τ(NEG) τ(DE)

1

5%
2.75 0.76 0.35 0.04 0.03 0.25 0.24
1.325 0.148 0.198 0.026 0.017 0.090 0.141

20%
2.79 0.75 0.43 0.06 0.04 0.32 0.31
1.582 0.172 0.328 0.072 0.038 0.193 0.155

50%
3.08 0.71 0.54 0.09 0.06 0.47 0.46
1.467 0.147 0.393 0.093 0.066 0.195 0.168

4

5%
1.90 0.73 0.97 0.17 0.10 0.70 0.69
0.859 0.128 0.616 0.069 0.044 0.160 0.141

20%
2.59 0.74 2.50 0.57 0.35 1.47 1.33
1.002 0.087 1.473 0.132 0.078 0.218 0.193

50%
6.23 0.53 2.10 1.43 0.90 2.65 2.19
2.064 .132 0.820 0.306 0.180 0.406 0.301

10

5%
0.91 0.67 0.67 0.19 0.12 0.95 1.25
0.329 0.107 0.366 0.069 0.039 0.172 0.166

20%
1.62 0.90 12.24 0.80 0.46 2.78 2.79
0.814 0.067 5.197 0.197 0.105 0.373 0.342

50%
3.05 0.84 15.17 3.60 2.09 6.78 5.60
1.262 0.060 5.395 0.697 0.391 0.907 0.690

Table 2.3: Comparison of hyperparameters among the AIB, the HS, the SB, the NEG
and the DE models under the IID assumptions in different scenarios. The averaged
posterior means across 100 datasets are reported in the upper rows. The averaged
posterior standard deviations are reported in the lower rows. For all datasets, p = 100
and 2 observations are generated for each dimension. The signal sizes are listed in
the first column and the nonzero percentages are in the second column.

Next we look at the estimates of hyperparameters. The estimates of τ of the

HS, the SB, the NEG and the DE models increase as the sparsity decreases or the

signal size increases. The NEG and the DE models have larger estimates of τ than

the HS model, and the HS model has larger estimates than the SB model across all

scenarios. The reason for this pattern is that, the NEG model has greater value of N .

As described in section 2.2.1, N is a measurement of the overall shrinkage strength

from the local shrinkage parameters. A larger N tends to give stronger shrinkage and

vice versa. The N value for the NEG model is 2/3, while the N values for the HS
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and the SB models are 1/2 and 1/3 respectively. Therefore, the NEG prior tends to

provide smaller estimates of λi’s which leads to bigger estimates of τ than the other

two models. Although the DE prior does not follow the IB form in (2.3), the density

of κi’s vanishes at 0 which avoids λi’s to be very large and results in bigger estimates

of τ .

The estimates of τ and N in the AIB prior do not have consistent changing pat-

terns individually. The estimates of τ have clearly larger posterior standard deviations

than the other four methods. The posterior standard deviations of N are also big.

This is because that both N and τ are closely associated with the local shrinkage

parameters λi’s. The N value governs the shape of the prior on λi’s and τ corporates

with λi’s to determine the shrinkage degrees. When both parameters are unfixed,

more variability exists. Although the estimates of τ in the AIB model are not as

stable as those in other priors, and do not have a clear changing pattern, it does

consistently increase or decrease as the estimate of N decreases or increases.

Figure 2.4 clearly shows the observations found in Table 2.3. The NEG and the

DE models have larger estimates of τ than the HS model and the HS model has larger

estimates than the SB model across all scenarios. When the sparsity decreases, all

methods have larger estimates of τ , which indicates that less shrinkage degrees are

given from the global shrinkage parameter. The changes in the AIB prior are more

than those of other priors. In every scenario, the estimates of τ in the AIB model

have a clearly wider range than the other four methods. The range of the AIB prior

becomes larger as the signal size increases, but those of other priors are relatively

stable. Again this shows the increased variability when both N and τ are unfixed.

Interestingly, when there are 20% or 50% nonzero values at 10, the estimates of τ in
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the AIB prior are much larger than those from the NEG and the DE priors. This

indicates that the local shrinkage parameters in the AIB prior give more shrinkage to

noises than those in the NEG and the DE priors. In addition, this also indicates that

when both N and τ are unfixed, the global shrinkage parameter τ is more sensitive

to the large signals than the local shrinkage parameters. In other words, when the

percentage of large signals increases, the change of shrinkage power in the AIB prior

is mainly expressed through the global shrinkage parameter τ .

Figure 2.5 supports the indications from Figure 2.4 and shows some new patterns.

The NEG and the DE models have small estimates of λi’s in all scenarios, which

indicates strong shrinkage powers from the local shrinkage parameters. The AIB prior

has similar performances in most scenarios but not in the combination of 5% nonzero

value at 10. The boxes of the other four priors vary little in different scenarios, but

the boxes of the AIB prior vary quite obviously. This is consistent with the pattern

in Figure 2.4 and provides more evidence to support the great variability in the AIB

prior.

Other than the above observations, a few new phenomena need to be noticed.

First of all, fixing the nonzero percentage at 5, the estimates of λ in the AIB prior

have a much wider range when the signal size is 10. Associating this graph with the

corresponding graph in Figure 2.4, we can see that most estimates of τ in this scenario

are less than 2. Considering the large signal size, more large estimates of λi are on

demand to reserve the shrinkage adaptivity. Secondly, when there are 50% nonzero

values at 4 or 10, the boxes of λ from the AIB prior barely have tails. When the

signal size is 4, most estimates of τ are in the range (1.5, 3). Considering the signal

size and the range of τ , λi’s do not need to be extremely large. Similarly, when the
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signal is 10, most estimates of τ are in the range (10, 25). Given large estimates of τ ,

λi’s do not need to be large as well. On the other hand, in the 20% nonzero values at

10 scenario, we see a few small estimates of τ less than 5 in Figure 2.4. For those τ ,

large estimates of λi’s are needed to provide little shrinkage. These findings support

the claim we made previously, that is the global shrinkage parameter τ in the AIB

prior is more sensitive to the increased amount of large signals.

Scenario σ(AIB) σ(HS) σ(SB) σ(NEG) σ(DE)

1

5%
1.40 1.40 1.40 1.39 1.38
0.073 0.072 0.073 0.072 0.081

20%
1.42 1.44 1.44 1.41 1.41
0.087 0.085 0.084 0.091 0.081

50%
1.46 1.50 1.50 1.45 1.43
0.098 0.098 0.104 0.095 0.098

4

5%
1.37 1.37 1.37 1.36 1.36
0.087 0.086 0.085 0.090 0.090

20%
1.37 1.37 1.37 1.37 1.37
0.096 0.098 0.099 0.098 0.094

50%
1.46 1.48 1.48 1.46 1.46
0.109 0.115 0.114 0.109 0.107

10

5%
1.35 1.35 1.35 1.32 1.33
0.074 0.073 0.073 0.076 0.082

20%
1.35 1.35 1.35 1.35 1.36
0.081 0.082 0.082 0.091 0.091

50%
1.36 1.35 1.37 1.38 1.39
0.091 0.091 0.094 0.095 0.097

Table 2.4: Comparison of estimates of σ among the AIB, the HS, the SB, the NEG
and the DE models under the IID assumptions in different scenarios. The averaged
posterior means across 100 datasets are reported in the upper rows. The averaged
posterior standard deviations are reported in the lower rows. For all datasets, p = 100
and 2 observations are generated for each dimension. The signal sizes are listed in
the first column and the nonzero percentages are in the second column.
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All methods have estimates of σ close to the true value
√

2. Fixing the signal size,

a slightly increasing pattern can be detected in the estimates and in the averaged

posterior standard deviations.

2.4.2 Simulation 2 – Study Of The Global Shrinkage Param-
eter τ In The AIB prior

In this section, we study the effect of the global shrinkage parameter τ in the AIB

prior, by comparing the AIB model in (2.6) with the AIB model when τ is fixed at

1. We use the same datasets in Simulation 1 to fit the AIB model with τ = 1. The

averaged square error losses and the average posterior means of parameters across the

100 datasets are reported in the upper rows of Table 2.5. The standard deviations

of the average losses and the averaged posterior standard deviations are reported in

the lower rows. The columns with (τ) stand for the AIB model with τ , and others

represent the one without τ . Similar to Simulation 1, Figure 2.6 plots the posterior

means of θi’s against Ȳi using the 100 datasets for each model. Figures 2.7 and 2.8

compare the boxplots of N and λi’s in each model.

Table 2.5 shows that adding τ improves the performance a little in most scenarios,

and remarkably in the last scenario. For the estimates of N , the decreasing pattern in

the AIB without τ model is clear when the sparsity level decreases or the signal size

increases. This reflects that the AIB prior is able to detect the changes in sparsity

levels and signal sizes, and adjust the shrinkage strength via N . This also illustrates

the flexibility of the AIB prior in handling different types of data with variety sparsity

levels and signal sizes. However, in contrast, this pattern is not clear in the with

τ model. Furthermore, the posterior standard deviations of N become larger after

adding τ into the model in most scenarios. As shown in Figure 2.7, when τ is unfixed,
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the posterior mean of N becomes less stable. Figure 2.8 shows that, without the help

of τ , the estimates of λi are clearly larger when the signal size is large and the sparsity

is not high. All these observations again support the arguments we made previously:

(1) When both N and τ are unfixed, more variability exists; (2) When the data

appear to have more large signals, the global shrinkage parameter is more sensitive

to this change and the global shrinkage power increases outstandingly. Although the

AIB with τ model has the potential unstable issue, Figure 2.6 clearly shows that

adding τ provides more shrinkage for small observations and less shrinkage for large

observations. Thus, we recommend to use the AIB with τ model as a conclusion.

2.5 Discussion

In this chapter, we focus on the normal mean estimation problem for IID obser-

vations. The maximum likelihood estimator (MLE), a standard estimator for this

problem, is inadmissible under squared error loss when the parameter’s dimension is

high. We propose the adaptive inverted-Beta prior (AIB), which can yield adaptive

Bayesian estimators for the normal mean parameter and improve the MLE outstand-

ingly and consistently.

By putting a general inverted-Beta prior (IB) on the local shrinkage parameters

λi, many common shrinkage priors are included as special cases, for example, the

horseshoe prior, the Strawderman-Berger prior and the normal-exponential-gamma

prior with the second parameter fixed at 1. These priors are proposed to handle

data with certain sparsity properties. We demonstrate through simulation studies

that the AIB prior can yield similar performances as these priors when they work

well, and can substantially improve them when they work normally or poorly. By
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putting a beta(1,1) prior (or the standard uniform prior) on N , we allow the data

to determine the overall shrinkage degrees from the local shrinkage parameters. This

idea offers the AIB prior the flexibility to handle different types of data. Further-

more, we study the global shrinkage parameter τ in the AIB prior. We illustrate the

advantages and disadvantages of including this parameter through simulation stud-

ies. Although including τ involves more variability, it offers more improvement in

shrinkage performances.

In our simulations, we assume two observations available per dimension. In appli-

cation, when there are more data available, we can split the dataset into a training

dataset and a testing dataset, and use the training data to fit the AIB model to

draw inferences about the parameters, especially about N . Then when we analyse

the testing data, we can modify the prior on N by putting more densities around the

inferred value which can effectively stabilize the posterior distributions and may have

better performances. This is another unique advantage by unfixing N compared to

the priors with fixed N .

At last, the AIB prior can be applied in other settings, for example, in normal

linear regressions or when there is a general covariance matrix in the likelihood.

Chapter 3 focuses on the application of the AIB prior in normal linear regressions.
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Figure 2.3: Shrinkage performance comparison among the AIB, the HS, the SB, the
NEG and the DE models under the IID assumptions in different scenarios. All graphs
plot the posterior means of θi’s against Ȳi using 100 datasets. For all datasets, p = 100
and 2 observations are generated for each dimension. The signal size is fixed at 1 in
the upper row, 4 in the middle row and 10 in the lower row. The nonzero percentage
is fixed at 5 in the left column, 20 in the middle column and 50 in the right column.
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Figure 2.4: Boxplots of posterior means of τ in the AIB, the HS, the SB, the NEG and
the DE models under the IID assumptions. Each box contains 100 posterior means.
For all datasets, p = 100 and 2 observations are generated for each dimension. The
signal size is fixed at 1 in the upper row, 4 in the middle row and 10 in the lower row.
The nonzero percentage is fixed at 5 in the left column, 20 in the middle column and
50 in the right column.
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Figure 2.5: Boxplots of posterior means of λi’s in the AIB, the HS, the SB, the NEG
and the DE models under the IID assumptions. All dimensions of λ are plotted in one
box using 100 datasets for each model. In each dataset, p = 100 with 2 observations
per dimension. The signal size is fixed at 1 in the upper row, 4 in the middle row
and 10 in the lower row. The nonzero percentage is fixed at 5 in the left column, 20
in the middle column and 50 in the right column.
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Scenario AIB AIB(τ) M M(τ) N N(τ) σ σ(τ)

1

5%
7.82 5.42 3.26 2.75 0.91 0.76 1.36 1.40
0.29 0.18 1.569 1.325 0.025 0.148 0.072 0.081

20%
18.74 17.67 3.05 2.79 0.90 0.75 1.39 1.42
0.32 0.20 1.311 1.582 0.050 0.172 0.077 0.087

50%
37.72 37.49 3.38 3.08 0.84 0.71 1.43 1.46
0.45 0.42 1.371 1.467 0.064 0.147 0.084 0.098

4

5%
21.34 21.07 1.79 1.90 0.83 0.73 1.36 1.37
0.90 0.93 0.667 0.859 0.041 0.128 0.082 0.087

20%
57.42 55.21 2.07 2.59 0.71 0.74 1.39 1.37
1.29 1.31 0.369 1.002 0.044 0.087 0.098 0.096

50%
92.27 90.44 6.77 6.23 0.30 0.53 1.51 1.46
1.26 1.24 2.188 2.064 0.046 0.132 0.114 0.109

10

5%
16.17 12.73 0.86 0.91 0.81 0.67 1.34 1.35
0.68 0.67 0.169 0.329 0.032 0.107 0.072 0.074

20%
37.82 37.53 0.60 1.62 0.64 0.90 1.35 1.35
1.04 1.09 0.198 0.814 0.068 0.067 0.085 0.081

50%
92.02 80.03 4.91 3.05 0.15 0.84 1.43 1.36
1.40 1.42 2.611 1.262 0.034 0.060 0.101 0.091

Table 2.5: Comparison of losses and estimates of parameters between the AIB model
with τ = 1 and the AIB model in (2.6) under the IID assumptions in different
scenarios. The signal sizes are listed in the first column and the nonzero percentages
are in the second column. The averaged square error losses across 100 datasets are
reported in column 3 and 4. The averaged posterior means of parameters are listed in
columns 5 to 10. The columns with (τ) represent the model in (2.6) and those without
stand for the AIB model with τ = 1. The averaged losses or posterior means are in
the upper rows and the standard deviations of the averaged losses and the averaged
posterior standard deviations are reported in the lower rows. In all datasets, p = 100
with 2 observations per dimension.
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Figure 2.6: Shrinkage performance comparison between the AIB without τ model and
the AIB with τ model under the IID assumptions in different scenarios. All graphs
plot the posterior means of θi’s against Ŷi’s using 100 datasets. For all datasets,
p = 100 and 2 observations are generated for each dimension. The signal size is fixed
at 1 in the first row, at 4 in the second row and at 10 in the third row. The nonzero
percentage is fixed at 5 in the left column, at 20 in the middle column and at 50 in
the right column.
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Figure 2.7: Boxplots of posterior means of N in the AIB without τ model and the
AIB with τ model under the IID assumptions in different scenarios. All boxes are
created with 100 datasets. In each dataset, p = 100 and 2 observations are generated
for each dimension. The signal size is fixed at 1 in the upper row, 4 in the middle
row and 10 in the lower row. The nonzero percentage is fixed at 5 in the left column,
20 in the middle column and 50 in the right column.
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Figure 2.8: Boxplots of posterior means of λi’s of the AIB without and with τ models
under the IID assumptions in different scenarios. All dimensions of λ are plotted
in one box using 100 datasets for each model. In each dataset, p = 100 with 2
observations per dimension. The signal size is fixed at 1 in the upper row, 4 in the
middle row and 10 in the lower row. The nonzero percentage is fixed at 5 in the left
column, 20 in the middle column and 50 in the right column.
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Chapter 3: The Adaptive Inverted-Beta Prior in Normal

Linear Regression

3.1 Introduction

In Chapter 2 we introduced the family of adaptive inverted-Beta priors for the

normal mean problem with IID observations from

Y | θ, σ ∼ N(θ, σ2I). (3.1)

Two natural extensions of this problem are generalizing the mean θ to a regression

form Xβ and generalizing the independent covariance structure to general covariance

structures. In this chapter, we focus on the first extension.

The standard multivariate linear regression model can be written as

Y = µ1 +Xβ + ε, (3.2)

where Y is the vector of responses, µ is the intercept, 1 is the vector of 1’s, X is

the n × p design matrix, β is the vector of regression coefficients and ε ∼ N(0, σ2I)

is the vector of random errors. An important topic in multivariate regression is the

variable selection problem, i.e., choosing relevant predictive variables to the response.

Ordinary least squares solutions are standard estimators, but do not exist when p >
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n. The best subset selection method selects the best model among the 2p possible

models based on a well-defined criterion, for example the model with the largest

adjusted R-squared value. However, it suffers from the long computation time and

instability as stated in Breiman (1996). Stepwise selection methods are often used

as a computational surrogate. We use the forward selection method as an example

here. Assume that the response vector Y and the columns of the design matrixX are

centralized at their means. For a predetermined subset size k, the forward selection

method selects the first variable Xj which minimizes the residual sum of squares

S =
n∑
i=1

(Yi − bjXi,j)
2,

or equivalently maximizes

(
n∑
i=1

Xi,jYi)
2/

n∑
i=1

X2
i,j. (3.3)

After the first variable X(1) is selected, it is forced to remain in all further subsets.

The next variable is selected among the spaces orthogonal toX(1), so for each variable

Xj other than X(1), the candidate can be written as

Xj(1) = Xj − bj(1)X(1),

where bj(1) is the regression coefficient of Xj upon X1. A variable Xj is selected if

Xj(1) satisfies equation (3.3) with Yi replaced by Yi − b(1)Xi,(1), and Xi,j replaced by

Xi,j(1). Repeating the above procedures yields a series of selected variables X(1), · · · ,

X(k). The subset size k can be determined by Mallows’ Cp criterion. Efroymson’s

algorithm and the backward elimination method are another two stepwise selection

strategies. More details are given in Miller (2002). However, the stepwise selection

methods do not explore the whole model space, and thus the final selected model is

usually not optimal under any criterion. In contrast, the Lasso is a continuous (in
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the tuning parameter λ) and stable process for the variable selection problem, but it

also has its own disadvantages as stated in Chapter 1.

Bayesian variable selection methods involve placing prior distributions on the

unknown parameters. One important method is the “spike-and-slab” prior in Mitchell

and Beauchamp (1988) which is studied and developed by George and McCulloch

(1993), Chipman (1996) and Clyde, DeSimone and Parmigiani (1996), etc. Another

important method is the g-prior in Zellner (1986). Under model (3.2), let γ denote

a p-dimensional indicator vector where γi = 1 indicates that variable X i is included

and γi = 0 indicates that X i is excluded. The posterior probability of model Mγ is

defined by

p(Mγ | Y ) =
p(Mγ)p(Y |Mγ)∑
γ′ p(Mγ′)p(Y |Mγ′)

,

where p(Mγ) is the prior probability of model Mγ and p(Y | Mγ) is the marginal

likelihood of the data under model Mγ :

p(Y |Mγ) =

∫
Θγ

p(Y | θγ ,Mγ)p(θγ |Mγ)dθγ ,

where Θγ = (µ,βγ , σ). Using the Bayes factor for pairs of hypotheses, the posterior

probability can also be expressed as

p(Mγ | Y ) =
p(Mγ)BF(Mγ : Mb)∑
γ′ p(Mγ′)BF(Mγ′ : Mb)

, (3.4)

where BF(Mγ : Mb) represents the Bayes factor for comparing model Mγ to a base

model Mb. Under model Mγ , Zellner’s g-prior can be written as

p(µ, σ2) ∝ 1

σ2
,

β | σ ∼ N(β0, gσ(XT
γXγ)−1),
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where β0 is the anticipated value of β, g is the hyperparameter to be determined and

Xγ is the n× pγ design matrix. This prior is widely adopted because of its compu-

tational efficiency in calculating the marginal likelihood and its simple interpretation

as the connection with the design matrix Xγ . The hyperparameter g can be prede-

termined by many model selection criteria, such as the Akaike information criterion

(AIC), the Bayesian information criterion (BIC) (George and Foster 2000), or using

empirical Bayes methods (George and Foster 2000, Clyde and George 2000, Hansen

and Yu 2001).

Liang, Paulo, Molina, Clyde and Berger (2008) explored fully Bayes approaches of

using g-priors and raised the mixture of g-priors by putting a prior distribution on g.

The authors provided two examples. In the first example, they rewrote the Cauchy

prior from Zellner and Siow (1980) as:

β | σ ∼ N(β0, gσ(XT
γXγ)−1),

π(g) =
(n/2)1/2

Γ(1/2)
g−3/2e−n/(2g), (3.5)

and developed a new approximation to Bayes factors having simple and tractable

expressions to the posterior model probabilities. In the second example, they raised

another prior on g, the hyper-g priors:

π(g) =
a− 2

2
(1 + g)−a/2, g > 0, (3.6)

which is proper when a > 2. This family of priors leads to marginal likelihoods

with closed forms in terms of the Gaussian hypergeometric function. Both examples

provide computational efficiency and adaptive and nonlinear shrinkage effects.

Assuming that the regression coefficients β is sparse, many Bayesian variable

selection methods are developed under the prior distributions introduced in Chapter 2,
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such as the Normal-Jeffreys prior (Figueiredo 2003), the Normal-Exponential-Gamma

prior (Griffin and Brown (2005), Griffin and Brown (2007)) and the Normal-Gamma

prior (Griffin and Brown (2010)). In this chapter, we implement the AIB prior to

normal linear regression models. We show that it can successfully select important

predictors and estimate the regression coefficients simultaneously.

The structure of this chapter is as follows: Section 3.2 sets up the regression

model under the AIB prior and develops the computational algorithm for the p > n

case. Section 3.3 provides simulation studies for the n > p case and the p > n case

respectively. Section 3.4 implements our method to the NIR spectroscopy data.

3.2 Model Structure And Computational Details

3.2.1 When n > p

For simplicity in this section we assume that the response variable Y and the

columns of the design matrix X are centralized at their means. Suppose that the

regression response Y satisfies

Y | β, σ ∼ N(Xβ, σ2I). (3.7)

When n > p it is easy to derive the full conditional posterior distribution of β as

β | Y ,X, σ, τ,λ ∼ N(α,Σ), (3.8)

where

α = τ 2Diag(λ)(τ 2Diag(λ) + (XTX)−1)−1β̂OLS, (3.9)

Σ = σ2τ 2Diag(λ)(τ 2Diag(λ) + (XTX)−1)−1(XTX)−1, (3.10)
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and β̂OLS = (XTX)−1XTY is the ordinary least squares estimate following a multi-

variate normal distribution with mean β and covariance matrix σ2(XTX)−1. There-

fore, using similar steps as in Section 2.3 we can easily update the parameters with

the MCMC algorithms.

3.2.2 When p > n

When p > n, the ordinary least squares estimator does not exist, and we derive

the conditional posterior distribution of β using the singular value decomposition

method (West 2003). Assuming Xr×p is full rank, we can express X as

X = UTDV T , (3.11)

where U is an n × n matrix such that UTU = UUT = In×n, D is an n × n diagonal

matrix and V is a p × n matrix such that V TV = In×n. Using this decomposition,

Xβ can be rewritten as

Xβ = UTDγ, (3.12)

where γ = V Tβ. Now the ordinary least squares estimate of γ exists, which is

γ̂ = ((UTD)T (UTD))−1(UTD)TY = D−1UY . (3.13)

Next let β ∼ N(0,Φ), and define Φ0 = V TΦV and Λ = σ2D−2, then the conditional

distributions of γ̂ given γ and γ given Φ are

γ̂ | γ ∼ N(γ,Λ), (3.14)

γ | Φ ∼ N(0,Φ0) (3.15)

respectively. Therefore the posterior distribution of γ given γ̂, Φ is

γ | γ̂,Φ ∼ N(Φ0(Φ0 + Λ)−1γ̂, (Λ−1 + Φ−1
0 )−1). (3.16)
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To get the posterior distribution of β, consider the full singular value decomposition

of X:

X = UTD∗V ∗T , (3.17)

where D∗ is an n × p matrix with the first r columns same as D and 0 for the last

(p − n) columns, V ∗ is a p × p matrix with the first n columns same as V and the

last (p − n) columns such that V ∗TV ∗ = V ∗V ∗T = Ip×p. For simplicity we write V ∗

as V ∗ = (V C). With the new decomposition, define γ∗ = V ∗Tβ. Note that the first

n elements of γ∗ are exactly same as γ. We call the last (p − n) elements of γ∗, ε,

which represents those dimensions gaining no information from data. So γ∗ can be

written as

γ∗ = (γT εT )T . (3.18)

Now β = V ∗γ∗, and the posterior distribution of γ∗ given γ̂ and Φ can be derived

as:

π(γ∗ | γ̂,Φ) = π((γ, ε) | γ̂,Φ)

= π((γ, ε) | γ,Φ)π(γ | γ̂,Φ)

= π(ε | γ,Φ)π(γ | γ̂,Φ), (3.19)

where

γ | γ̂,Φ ∼ N(Φ0(Φ0 + Λ)−1γ̂, (Λ−1 + Φ−1
0 )−1),

ε | γ,Φ ∼ N(CTΦV Φ−1
0 γ, C

TΦC − CTΦV Φ−1
0 V TΦC).

The normality of π(ε | γ,Φ) and π(γ | γ̂,Φ) combined with the fact that the mean

of π(ε | γ,Φ) is a linear function of γ imply the normality of π(γ∗ | γ̂,Φ) and

π(β | γ̂,Φ). To get the conditional posterior mean and covariance of (β | γ̂,Φ), we
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get these for (γ∗ | γ̂,Φ) first. For the posterior mean, we have

E(γ∗ | γ̂,Φ) =

(
E(γ | γ̂,Φ)
E(ε | γ̂,Φ)

)
=

(
E(γ | γ̂,Φ)

CTΦV Φ−1
0 E(γ | γ̂,Φ)

)
. (3.20)

For the posterior covariance, we have

V ar(γ∗ | γ̂,Φ)

= V ar(E(γ∗ | γ) | γ̂,Φ) + E(V ar(γ∗ | γ) | γ̂,Φ)

= V ar

(
γ | γ̂,Φ

CTΦV Φ−1
0 γ | γ̂,Φ

)
+ E

(
0 0
0 CTΦC − CTΦV Φ−1

0 V TΦC

)
,(3.21)

where

V ar

(
γ | γ̂,Φ

CTΦV Φ−1
0 γ | γ̂,Φ

)
=

(
Vγ V T

γ A
T

AVγ AVγA
T

)
, (3.22)

and Vγ = V ar(γ | γ̂,Φ), A = CTΦV Φ−1
0 .

Let B = CTΦC − CTΦV Φ−1
0 V TΦC, after combining the two terms in equation

(3.21), we obtain

V ar(γ∗ | γ̂,Φ) =

(
Vγ V T

γ A
T

AVγ AVγA
T +B

)
. (3.23)

Applying the equation β = V ∗γ∗, we can write the posterior mean and covariance of

β given γ̂ and Φ as

E(β | γ̂,Φ) = V E(γ | γ̂,Φ) + CCTΦV Φ−1
0 E(γ | γ̂,Φ), (3.24)

V ar(β | γ̂,Φ) = V VγV
T + CAVγV

T + V V T
γ A

TCT + CAVγA
TCT . (3.25)
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Since V ∗TV ∗ = V ∗V ∗T = I, it is easy to see that CCT = I − V V T . Plugging it into

(3.24) and (3.25), we obtain

E(β | γ̂,Φ) = V E(γ | γ̂,Φ) + ΦV Φ−1
0 E(γ | γ̂,Φ)− V E(γ | γ̂,Φ)

= ΦV (Φ0 + Λ)−1γ̂, (3.26)

V ar(β | γ̂,Φ) = Φ− ΦV Φ−1
0 V TΦ + ΦV Φ−1

0 VγΦ−1
0 V TΦ

= Φ− ΦV (Φ−1
0 − Φ−1

0 VγΦ−1
0 )V TΦ. (3.27)

Using the Taylor expansion of Vγ :

(Φ−1
0 + Λ−1)−1 = Φ0 − Φ0Λ−1Φ0 + Φ0Λ−1Φ0Λ−1Φ0 − · · · ,

we get

Φ−1
0 − Φ−1

0 VγΦ−1
0 = Λ−1 − Λ−1Φ0Λ−1 + Λ−1Φ0Λ−1Φ0Λ−1 − · · ·

= (Φ0 + Λ)−1. (3.28)

Therefore,

V ar(β | γ̂,Φ) = Φ− ΦV (Φ0 + Λ)−1V TΦ. (3.29)

3.3 Simulation Studies

3.3.1 Scenario 1 – when n > p

In this scenario, we generate β from the following fixed nonzero value model:

βi | w, δ0, δ1 =

{
δ0, with probability 1− w,
δ1, with probability w,

(3.30)

where δ0 = 0 and δ1 is the fixed nonzero value. Considering different sparsity levels

and signal sizes, we choose the combinations of three nonzero values (δ1): 1, 4, 10,

and three nonzero percentages (w): 5%, 20% and 50%. The rows of the design matrix
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Xn×p are identically and independently generated from N(0, 1/(n − p)I), then the

columns of X are centered. The response vector Y is generated from N(Xβ, σ2I)

with σ = 1 and then centered. The scalar 1/(n− p) is selected to make the variance

of the least squares estimate (XTX)−1XTY not too small. For each combination,

p = 50, n = 100 and 100 datasets are generated with 40000 iteration total and a

burn-in period of 20000. The estimation performances are evaluated using the sum

of squared loss function:

Loss = (β̂ − β)T (β̂ − β).

We compare the averaged risks of the AIB prior with those of the horseshoe

prior (HS), the Strawderman–Berger prior (SB), the NEG(2,1) prior (NEG), and the

double-exponential prior (DE). Similar to the first simulation study in Chapter 2, we

let all models share one common structure:

β | λ, σ2, τ ∼ N(0, σ2τ 2Diag(λ)),

p(σ2) ∝ 1

σ2
,

τ ∼ C+(0, 1), (3.31)

and let the priors on λi be IB(MN,M(1 − N)), IB(1/2, 1/2), IB(1/2, 1), IB(2, 1)

and the standard double-exponential distribution, respectively. The averaged losses

across 100 datasets are reported in the upper rows of Table 3.1, and the standard

deviations of the averaged losses are reported in the lower rows. The estimates of

hyperparameters and σ2 along with the averaged posterior standard deviations are

reported in Table 3.2 and Table 3.3.

Generally speaking, the simulation results are very similar to the those in Chapter

2. All models are consistently better than the MLE. Fixing the sparsity level, the
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Scenario AIB HS SB NEG DE MLE

1

5%
2.19 2.32 2.32 2.21 2.22 51.84
0.071 0.106 0.098 0.071 0.067 1.550

20%
8.49 8.73 8.76 8.44 8.42 52.71
0.148 0.183 0.186 0.143 0.138 1.551

50%
16.19 17.81 17.64 15.90 15.42 52.93
0.296 0.293 0.298 0.293 0.291 1.229

4

5%
4.57 3.52 3.58 6.22 10.19 54.51
0.327 0.276 0.279 0.334 0.349 1.566

20%
17.61 15.35 16.29 21.76 23.95 52.35
0.781 0.687 0.710 0.721 0.734 1.420

50%
44.59 44.03 45.44 44.73 44.22 53.11
1.334 1.663 1.542 1.383 1.320 1.744

10

5%
2.61 2.78 2.84 6.51 14.65 55.85
0.215 0.204 0.215 0.335 0.533 1.720

20%
11.68 13.44 13.97 26.04 31.33 52.84
0.481 0.495 0.511 0.751 0.868 1.441

50%
33.89 34.17 38.93 43.86 44.99 52.75
1.155 0.934 1.057 1.187 1.214 1.514

Table 3.1: Comparison of losses among the AIB, the HS, the SB, the NEG and the
DE models in normal linear regressions when n > p. The losses of the MLE estimate
are given as benchmarks. The averaged squared error losses across 100 datasets are
reported in the upper rows. The standard deviations of the average losses are reported
in the lower rows. For all datasets, p = 50 and n = 100. The signal sizes are listed in
the first column and the nonzero percentages are in the second column.

AIB, the HS and the SB priors have the greatest losses when the signal size is 4, the

NEG and the DE priors have the greatest losses when the signal size is 10. Again,

this is because that when the signal is 4, the observations of noises and signals are

partially mixed. Incorrect discriminations between the noises and signals cause great

losses. The NEG prior and the DE prior suffer from the over shrinkage issue, and this

issue is more severe when the signal size is large. Fixing the signal size, all methods

have the greater losses when the sparsity decreases.
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When the signal size is 1, the noises and signals are hardly distinguishable, so

incorrect discriminations may not be fatal. All methods are good when the nonzero

percentage is 5 or 20. The AIB prior, the NEG prior and the DE prior work better

than the HS and the SB priors when the nonzero percentage is 50. As the signal size

increases to 4, the AIB prior is worse than the HS and the SB priors, but still better

than the NEG and the DE priors, especially when the sparsity is high. When the

nonzero percentage is 50, all methods have similar losses. When the signal is 10, the

over shrinkage issue of the NEG and the DE priors become more obvious. The AIB

prior works consistently best across all sparsity levels. The HS and the SB priors are

worse than the AIB prior but better than the NEG and the DE priors.

The estimates of τ in the HS, the SB, the NEG and the DE models show a

clear increasing pattern when the signal size or the nonzero percentage increases. In

most scenarios, the NEG and the DE priors have similar estimates of τ which are

consistently larger than those of the HS and the SB priors. Again, this is because

that the local shrinkage parameters λi in the NEG and the DE priors offer more

shrinkage strength than those in the HS and the SB priors. The estimates of τ from

the AIB prior have the similar changing pattern but larger posterior variances in

most scenarios. This is because that N is not fixed in the AIB prior which offers

more variability to τ . Similarly, the estimates of N have large posterior standard

deviations which supports the great variability in the AIB prior. Compared to the

simulation study for IID observations, extending the normal mean problem to normal

linear regressions involves more variability, and the estimates of hyperparameters have

greater posterior variances.
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Scenario M N τ(AIB) τ(HS) τ(SB) τ(NEG) τ(DE)

1

5%
2.887 0.675 0.211 0.012 0.005 0.142 0.121
1.425 0.139 0.145 0.050 0.019 0.272 0.201

20%
2.930 0.661 0.459 0.037 0.015 0.340 0.293
1.521 0.187 1.034 0.083 0.035 0.461 0.323

50%
3.227 0.630 0.870 0.090 0.038 0.728 0.612
1.637 0.162 0.878 0.068 0.031 0.379 0.313

4

5%
1.877 0.601 0.629 0.047 0.019 0.661 0.738
0.953 0.195 0.450 0.057 0.024 0.511 0.512

20%
2.118 0.639 8.035 0.690 0.264 4.462 3.727
1.160 0.200 10.027 0.472 0.173 2.269 1.591

50%
4.741 0.524 11.774 4.965 1.939 16.094 10.868
1.826 0.133 8.631 2.851 1.066 6.853 4.097

10

5%
1.329 0.491 0.211 0.056 0.022 0.989 2.327
0.656 0.177 1.066 0.038 0.014 0.457 0.764

20%
1.033 0.501 12.460 0.998 0.336 14.400 15.440
0.431 0.163 4.736 0.708 0.232 5.385 4.701

50%
2.626 0.754 348.044 24.943 8.354 90.676 61.875
1.739 0.189 213.849 13.314 4.637 36.095 21.505

Table 3.2: Comparison of hyperparameters among the AIB, the HS, the SB, the NEG
and the DE models in normal linear regressions when n > p. The averaged posterior
means across 100 datasets are reported in the upper rows, and the averaged posterior
standard deviations are reported in the lower rows. For all datasets, p = 50 and
n = 100. The signal sizes are listed in the first column and the nonzero percentages
are in the second column.

The estimates of σ2 are similarly well for all methods across all combinations. For

a fixed signal size, the estimates have a general increasing pattern as the sparsity level

decreases. For a fixed sparsity level, a general decreasing pattern can be detected.

However, compared to the results in Chapter 2, these patterns are less consistent.

Again, this is because that the general design matrix introduces more variability.
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Scenario σ2(AIB) σ2(HS) σ2(SB) σ2(NEG) σ2(DE)

1

5%
0.988 0.989 0.988 0.983 0.982
0.142 0.143 0.147 0.151 0.145

20%
1.027 1.040 1.036 1.018 1.010
0.178 0.175 0.187 0.171 0.165

50%
1.088 1.144 1.133 1.075 1.052
0.202 0.198 0.194 0.187 0.191

4

5%
0.944 0.947 0.945 0.938 0.949
0.128 0.130 0.127 0.133 0.135

20%
0.928 0.919 0.914 0.944 0.948
0.234 0.209 0.209 0.239 0.238

50%
1.033 1.052 1.040 1.036 1.027
0.204 0.213 0.212 0.203 0.216

10

5%
0.928 0.930 0.928 0.893 0.894
0.149 0.145 0.149 0.153 0.172

20%
0.929 0.922 0.914 0.963 0.987
0.164 0.162 0.164 0.189 0.192

50%
1.008 1.000 1.017 1.045 1.051
0.201 0.192 0.197 0.214 0.197

Table 3.3: Comparison of σ2 among the AIB, the HS, the SB, the NEG and the DE
models under regression setups when n > p. The averaged posterior means across 100
datasets are reported in the upper rows. The averaged posterior standard deviations
are reported in the lower rows. For all datasets, p = 50 and n = 100. The signal sizes
are listed in the first column and the nonzero percentages are in the second column.

3.3.2 Scenario 2 – when p > n

For the true regression coefficients, we generate γ in (3.12) from the following

fixed nonzero value model:

γi | w, δ0, δ1 =

{
δ0, with probability 1− w,
δ1, with probability w,

(3.32)

and fix ε in (3.18) with zeros to get γ∗ = (γT 0T )T . For the design matrix Xn×p,

we first generate each row of X from N(0, (1/n)I) independently, and then centralize

the columns of X. The scalar 1/n is aimed to make Λ in (3.14) not too small. With
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the full singular value decomposition, we get V ∗ in (3.17) and the true values of β

from β = V ∗γ∗. Next Y is generated from N(Xβ, σ2In×n) with σ = 1.

We consider the same combinations nonzero values and nonzero percentages as in

Scenario 1. For each combination, p = 100, n = 50 and 100 datasets are generated

with 40000 iteration total and a burn-in period of 20000. The shrinkage performances

are evaluated by the sum of squared error loss function (3.31).

Again we compare the averaged risks among the AIB, the HS, the SB, the NEG

and the DE models. For all models, we let

γ | λ, σ2 ∼ N(0, σ2Diag(λ)),

p(σ2) ∝ 1

σ2
, (3.33)

and let the priors on λi be the same as those in Scenario 1. Notice that in this scenario,

we fix τ = 1 in all models. This is because that when p > n, the parameters τ 2 and

σ2 are not jointly identifiable. To see this, consider the singular value decomposition

(3.11), then the likelihood function (3.7) can be transformed to

Y ∗ ∼ N(θ, σ2I), (3.34)

where Y ∗ = UY , θ = Dγ. Including τ 2 inside the prior of γ implies the prior on θ

being N(0, σ2τ 2Diag(λ∗)), where Diag(λ∗) = DDiag(λ)D. After integrating θ out,

we get the distribution of Y ∗ conditional on σ2, τ 2 and λ∗:

Y ∗ | σ2, τ 2,λ∗ ∼ N(0, σ2(τ 2Diag(λ∗) + I)). (3.35)

Consider the following two situations: In the first one, let σ = 1, τ = τ0 and λ∗i = ω,

where τ0 and ω are two positive numbers. This situation corresponds to the one when

σ is accurately estimated and

Var(Y ∗i | σ2, τ 2, λ∗i ) = ω + 1. (3.36)
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In the second situation, let σ = ε, τ = τ0/ε and λ∗i = ω + 1, where ε is a very small

constant. This situation corresponds to the one when σ is underestimated, and

Var(Y ∗i | σ2, τ 2, λ∗i ) = ω + (1 + ε). (3.37)

As ε→ 0, the variance of Y ∗i conditional on σ2, τ 2 and λ∗i converges to (ω + 1), and

thus, σ2 and τ 2 are not identifiable. In fact, in the literature of using sparse priors

on the regression coefficients when there are more variables than observations, τ is

usually fixed at 1 (Griffin and Brown 2005, Griffin and Brown 2010).

Again the average losses across 100 datasets are reported in Table 3.4 along with

the standard deviations of the averaged losses in the lower rows. The estimates of

M , N and σ2 along with the averaged posterior standard deviations are reported in

Table 3.5.

Generally speaking, the losses of all methods increase as the sparsity level decreases

or the signal size increases. When the signal is 1, the AIB, the NEG and the DE priors

work better than the HS and the SB priors. When the signal is 4, the AIB, the NEG

and the DE priors are still better than the HS and the SB priors when the nonzero

percentage is 5, but when the percentage increases to 20, the AIB and the HS prior

work better than the other three methods. The over shrinkage issue of the NEG

and the DE priors becomes severe and results in greater losses for these two models.

When the sparsity is low, the SB prior works best, the HS prior works better than

the AIB prior, and both models work better than the NEG and the DE prior. A

similar pattern can be observed when the signal is 10. The AIB prior and the NEG

prior work best for the high sparsity scenario, the AIB and the HS prior work best for

the moderate high sparsity scenario and the SB prior works best for the low sparsity

scenario.
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Scenario AIB HS SB NEG DE

1

5%
3.28 21.09 30.59 3.61 3.39
0.362 1.108 1.335 0.142 0.110

20%
8.58 20.17 29.24 7.95 7.79
0.237 0.821 1.057 0.161 0.134

50%
17.08 22.26 30.22 16.06 15.34
0.277 0.738 0.969 0.182 0.184

4

5%
10.37 21.02 29.70 8.86 11.14
0.640 0.898 1.068 0.682 0.692

20%
29.75 26.48 32.82 46.63 49.77
1.251 1.257 1.359 1.440 1.440

50%
97.84 71.77 49.09 150.16 129.85
2.850 1.356 1.276 1.516 1.654

10

5%
11.57 22.88 32.60 8.36 26.48
1.023 1.016 1.165 1.197 2.552

20%
26.37 24.74 32.09 133.98 186.65
1.464 1.197 1.328 6.080 5.985

50%
315.72 251.56 92.39 799.90 645.10
19.966 5.987 3.564 7.117 7.503

Table 3.4: Comparison of losses among the AIB, the HS, the SB, the NEG and the
DE models in normal linear regressions when p > n. The averaged squared error
losses across 100 datasets are reported in the upper rows. The standard deviations
of the average losses are reported in the lower rows. For all datasets, p = 100 and
n = 51. The signal sizes are listed in the first column and the nonzero percentages
are in the second column.

In Table 3.5, the estimates of N of the AIB prior have a clearly decreasing pattern,

indicating less shrinkages are offered from the local shrinkage parameters, as the

nonzero percentage or the signal size increases. Again, this shows that the AIB prior

allows data to determine the shrinkage degrees.

The estimates of σ2 of all models are not consistently around the true value which

is very different from Scenario 1. The estimates from the SB prior are consistently

smaller than those from other models, especially when there are 50% nonzero values
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Scenario M N σ2(AIB) σ2(HS) σ2(SB) σ2(NEG) σ2(DE)

1

5%
2.714 0.810 0.759 0.315 0.161 0.546 0.485
1.364 0.177 0.166 0.048 0.027 0.074 0.063

20%
2.841 0.772 0.869 0.392 0.203 0.666 0.588
1.668 0.166 0.293 0.113 0.065 0.137 0.115

50%
3.361 0.714 1.093 0.565 0.294 0.925 0.800
1.464 0.177 0.363 0.121 0.064 0.179 0.153

4

5%
1.881 0.712 0.686 0.333 0.172 0.637 0.643
0.992 0.179 0.192 0.062 0.033 0.116 0.107

20%
2.018 0.550 0.696 0.567 0.302 1.828 1.877
0.893 0.155 0.362 0.172 0.102 0.526 0.461

50%
4.106 0.505 4.493 2.858 1.446 6.505 5.459
1.985 0.189 2.969 1.130 0.591 1.693 1.370

10

5%
1.155 0.696 0.624 0.330 0.170 0.672 1.118
0.927 0.202 0.361 0.125 0.063 0.212 0.297

20%
1.381 0.477 0.367 0.551 0.312 5.444 8.108
0.993 0.178 0.223 0.156 0.088 1.821 1.882

50%
3.774 0.412 19.417 12.771 5.227 38.450 31.973
1.956 0.167 12.541 5.505 2.773 9.721 7.570

Table 3.5: Comparison of M , N and σ2 among the AIB, the HS, the SB, the NEG
and the DE models in normal linear regressions when p > n. The averaged posterior
means across 100 datasets are reported in the upper rows. The averaged posterior
standard deviations are reported in the lower rows. For all datasets, p = 100 and
n = 51. The signal sizes are listed in the first column and the nonzero percentages
are in the second column.

at 4 or 10. Connecting Table 3.5 with Table 3.4, we can see that the SB model has

outstandingly better performances in these two situations. The inaccurate estimates

and the advantages of the SB prior are caused by three factors. First of all, σ2 plays

a global shrinkage parameter role in the prior of γ. Excluding τ from the prior makes

the impact from the prior to the estimates of σ2 stronger. Secondly, when p > n,

the small number of observations compared to the number of parameters limits the

estimation accuracy of σ2, and σ2 and λi are barely identifiable. To see this, consider
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the normal mean problem with one observation per dimension:

yi
ind∼ N(θi, σ

2),

θi
ind∼ N(0, σ2λi).

The distribution of yi given σ2 and λi is N(0, σ2(λi + 1)). When yi is large and σ2

is accurately estimated, the total variance of yi is approximately (ω + 1), where ω is

the estimate of λi and is large. In contrast, when the estimate of σ2 is ω and the

estimate of λi is 1/ω, the total variance of yi is also (ω+1), and thus σ2 and λi are not

identifiable. In normal linear regressions, when p > n and the columns of X and the

response vector Y are centralized, we use n observations to estimate n−1 dimensions

of β and σ2. As the dimension increases, the help from the extra observation to the

estimation of σ2 becomes smaller and σ2 and λi are less identifiable. This explains

why the estimates of σ2 are not consistently around the true value. At last, the

impact from the prior distribution on λi cannot be ignored. The SB prior prefers

little shrinkage, so the estimates of λi are larger than those of other priors as shown

in Figure 3.1. This explains why the SB prior always gives the smallest estimates of

σ2 across all scenarios and works better than other methods when the sparsity is low

and the signal size is large.

In addition, the estimates of σ2 in the HS, the SB, the NEG and the DE models

have an increasing pattern as the nonzero percentage or the signal size increases.

However, this pattern is not clear in the AIB prior. The estimates in the AIB prior

have much larger posterior variances than other methods. Again this is caused by

the extra variability when N is not fixed in the AIB prior.
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Figure 3.1: Boxplots of posterior draws of one λi when the corresponding θi = 10.
The dataset is selected from the 20% nonzero value at 10 scenario with p = 100 and
n = 51. 40000 iterations are run with a 20000 burn-in period.

3.4 NIR Spectroscopy Data Analysis

In this section, we analyse the NIR spectroscopy data, which is available at

http://lib.stat.cmu.edu/datasets/tecator, using the AIB model. The data are records

from a Tecator Infratec Food and Feed Analyzer, working in the wavelength range

of 850 - 1050 nm, by the Near Infrared Transmission (NIT) principle from the com-

pany Tecator. Each observation contains a 100-channel absorbance spectrum along

with the contents of moisture, fat and protein of a meat sample. Taking a − log 10

transformation of the original transmittance measured by the spectrometer, gives

the absorbance data. The other three components are the percentage of the corre-

sponding content determined by analytic chemistry. The data was originally used
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by Borggaard and Thodberg (1992), and recently analyzed by Eilers, Li and Marx

(2009) and Griffin and Brown (2010). The source data contains 240 observations with

the last 25 rows for the purpose of extrapolation test. Following Griffin and Brown

(2010), we use the first 215 observations consisting a training dataset with the first

172 observations (all data) and a testing dataset with the last 43 observations, and

use the 100 absorbance data to predict the fat content.

In Griffin and Brown (2010), the authors considered both n > p and p > n cases.

They used the “all data” as the training dataset for n > p scenario and randomly drew

60 samples from the first 172 observations to construct a p > n dataset. For both

scenarios, they drew inferences of the regression coefficients by putting the normal-

gamma prior on them and used the posterior means as estimators to predict the fat

content using the testing dataset. They compared the roots of mean squared errors

(RMSEs) from the normal-gamma prior with those from the Lasso, and found that

the normal-gamma prior is much better than the Lasso in both scenarios. When

n > p, both methods capture the coefficients that are far from 0, but the normal-

gamma prior shrinks others strongly to 0 while the Lasso overestimates them. When

p > n, the normal-gamma prior has similar shrinkage performances, but the Lasso

underestimates the large coefficients while overestimating others.

Following Griffin and Brown (2010), we use the “all data” for the n > p scenario,

and randomly choose 60 observations from the “all data” to create a p > n dataset.

For both scenarios, we use the testing dataset for testing and compare the RMSEs of

the AIB prior with those of the HS, the SB, the NEG and the DE models. Again,

we fix τ at 1 for all methods when p > n. The RMSEs are reported in Table 3.6
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along with those in Griffin and Brown (2010) as benchmarks. Since the “small” data

is randomly selected, it may be different from that in Griffin and Brown (2010).

AIB HS SB NEG DE NG
All Data 1.97 2.14 2.07 1.92 1.90 1.94

Small 2.54 3.01 2.93 3.25 4.60 2.59

Table 3.6: RMSEs for fat predictions under different models. The “All Data” contains
100 predictors and 172 observations. The “Small” data contains 100 predictors and 60
randomly chosen observations from the training dataset. NG stands for the normal-
gamma model in Griffin and Brown (2010) .

Apparently, using “all data” gives much better performances than the “small”

data for all methods. When n > p, the DE model is the best, the AIB, the NEG

and the NG models are a little worse but better than the HS and the SB models.

When p > n, the AIB and the NG models are better than others. Figure 3.1 plots

the posterior means of β from the AIB, the NEG and the DE priors. The left graph

is for the “all data” and the right one is for the “small” data. From the left one,

we can see that all three methods capture the coefficients far from 0. However, the

AIB prior shrinks most others to 0 or very close to 0 while the other two methods

overestimate them. For the “small” data, the AIB model still captures most large

signals while shrinking others close to 0, but the other two methods shrink the large

coefficients too much and overestimate others.
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Figure 3.2: Predictor estimation performance comparison among different models.
The “All Data” contains 100 predictors and 172 observations, and the “Small” data
contains the same 100 predictors but 60 randomly chosen observations from the “All
Data”.

3.5 Discussion

In this chapter, we implement the AIB prior in normal linear regressions and

demonstrate through simulation studies and a data example that the AIB prior is

able to accurately estimate the regression coefficients which are far from 0 and shrink

others close to 0. When there are more observations than the number of parameters,

the AIB prior can yield consistently good performances across different types of data

with different sparsity levels and signal sizes. When other priors work well, the AIB

prior has similar performances, when they perform normally or poorly, the AIB prior

has remarkably improvements. When there are less observations than the number

of parameters, we illustrated how to estimate the regression coefficients using the

singular value decomposition strategies. In such situation, the AIB prior can still
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improve the performances of other priors or give similar performances except when

the sparsity is low and the signal size is large.

In fact, when p > n and the data appear to be low sparse and have large signals,

using empirical Bayes techniques may improve the performances of the AIB prior. For

example, assume that the true regression coefficients are sparse. When Y ∗ = UY

appears to be low sparse and have large signals, instead of putting a Beta(1,1) prior

on N , we can modify the prior as Beta(a, b) with a and b such that the distribution

puts most densities around a/(a + b) = n/(
∑
Y ∗2i ), or simply let N = n/(

∑
Y ∗2i ).

When the sparsity level is low and the signal size is large, n/(
∑
Y ∗2i ) will be small.

Similar to the SB prior, using this hyperprior or fixing N at small values forces the

prior on λi to put more densities on large values which leads to small estimate of σ2

and consequently may yield better performances.

Moreover, the Bayesian estimator under the AIB priors will not shrink the regres-

sion coefficients to exactly 0, but will shrink some to very close to 0. When n > p, we

can construct a threshoding rule based on the estimates of τ and λ for the variable

selection purpose in regressions. For example, let

κ = τ̂ 2Diag(λ̂)(τ̂ 2Diag(λ̂) + (XTX)−1)−1.

We can call βi a signal if 1 − κi ≥ α and call βi a noise otherwise. A natural choice

for α would be 0.5 (see, for example, Carvalho et al. (2010)), but more research are

needed to find an optimal thresholding rule. For example, α may depend on the

sparsity level and the signal size. When the sparsity is high and the signal size is

small, α is expected to be greater than 0.5 to express aggressively strong shrinkage.

On the other hand, when the sparsity is low and the signal size is large, α < 0.5 may

be more appropriate to be conservative.
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Chapter 4: Conclusion Remarks And Future Work

4.1 Summary

The maximum likelihood estimator (MLE) is a standard estimator for the normal

mean estimation problem, but is inadmissible when the parameter’s dimension is

greater than 2. Shrinking the MLE towards some constant values or subspaces can

remarkably improve the performance in high dimensional spaces. In this thesis, we

propose a new family of shrinkage priors, the adaptive inverted-Beta priors (AIB),

which allows the data to determine the shrinkage degree for each dimension and offers

adaptive shrinkage to different dimensions of the parameter. Because the shrinkage

power is determined by data, the AIB prior has great flexibility to handle different

types of datasets with a large variety of sparsity levels and signal sizes.

The general inverted-Beta prior on λi’s includes several common shrinkage priors

as special cases. These priors are designed for data with certain sparsity proper-

ties. We demonstrate through simulation studies and a data example that when

these priors work well, the AIB prior can have similar performance, and when these

priors work poorly, the AIB prior has the ability to have substantial improvements.

Compared to frequetist shrinkage estimators, using the posterior means as estimators

automatically guarantees the admissibility under the squared error loss.
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The implications of the AIB prior extend beyond the normal mean estimation

problem to other settings where shrinkage estimators are valuable. As we showed,

the normal linear regression model can be transformed as a normal mean problem by

pre-multiplying the response vector by (XTX)−1XT when n > p, where X is the

design matrix, or using the singular value decomposition strategy when p > n.

Moreover, because of the connection between Bayesian approaches and penalized

likelihood approaches, the negative logarithm of the AIB prior can be used as a new

penalty function.

4.2 Extension of The Adaptive Inverted-Beta Prior for The
Normal Mean Problem With General Covariance Struc-
tures

4.2.1 Introduction

Another extension of the normal mean estimation problem under IID assumptions

is the problem with unknown covariance matrix. Let X | θ,Σ ∼ N(θ,Σ) be a p-

dimensional multivariate normal vector with unknown mean θ and unknown positive

definite covariance matrix Σ. The problem is estimating θ under loss function (1.1)

or other similar invariant loss functions.

As introduced in Chapter 1, Stein (1956) demonstrated that when Σ = I and

p ≥ 3, the usual estimator X is still minimax but inadmissible. James and Stein

(1961) provided the corresponding modified James–Stein estimator (1.15) and (1.17)

when Σ is assumed to be σ2I with unknown σ2 or totally unknown.

Berger and Bock (1976) considered the above problem using the quadratic loss

L(δ,θ,Σ) = (δ − θ)TQ(δ − θ)/tr(QΣ),
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where Q = diag(q1, · · · , qp) with qi > 0 and tr denotes the trace, and raised a class of

minimax estimators. In this paper, they made the independence assumption among

the elements of X, so Σ is assumed to be diagonal with unknown diagonal elements

σi’s. They further assumed that an estimate of Σ, S = diag(s1, · · · , sp) is available,

with si/σi following a chi-square distribution with ni ≥ 3 degrees of freedom. The

si’s are assumed mutually independent and si is assumed independent of Xi. Then

estimators of the form

δ(X,W ) = (I − r(X,W )‖X‖−2
W Q−1W−1)X, (4.1)

are minimax and have risks lower than 1 (the risk of X) under certain conditions on

r(X,W ), where W = diag(W1, · · · ,Wp) with Wi = si/(ni − 2), and

‖X‖2
W = XTW−1Q−1W−1X. (4.2)

For practical purpose, the authors recommended using the estimator

δc+i (X,W ) = (1− c/(‖X‖2
W qiWi))

+Xi, (4.3)

under the assumption that 0 ≤ c ≤ 2(p − 2τ), where τ = E(T−1), T = min(χ2
ni
/ni)

and χ2
ni
, i = 1, · · · , p, denotes independent chi-square random variables with corre-

sponding degrees of freedom ni. This estimator is recommended for its simplicity and

considerable better risk than X.

Chetelat and Wells (2012) studied the normal mean estimation with unknown

covariance problem under loss function (1.1), but focused on the p > n case. Assume

that S is observed along with but independent of X, having a Wishart distribution

with n degrees of freedom. The authors constructed a class of estimators based on

the sufficient statistics (X, S), which generalizes several previous estimators to the
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p ≥ n setting, including the estimator (4.1) and the James–Stein estimator (1.17).

Assuming min(p, n) ≥ 3, under certain conditions on a function r, the estimator

δr(X, S) =

(
I − r(XTS+X)SS+

XTS+X

)
X = X + g(X, S) (4.4)

is minimax and dominates X. Explicitly, when p > n ≥ 3, the estimator (4.4)

dominates X if r is nondecreasing, differentiable and satisfies

0 ≤ r ≤ 2(n− 2)

p− n+ 3
.

More computational details are given in Chetelat and Wells (2012).

When n > p − 3, still assuming X ∼ N(θ,Σ) and observing S ∼ Wishart(n,Σ),

independent of X, Lin and Tsai (1973) extended the James-Stein estimator (1.17)

by replacing (p− 2)/(n− p+ 3) with a function of y = XTS−1X, r(y). The authors

showed that when p ≥ 3, estimators of the form

δ(X, S) = (1− r(y)/y)X (4.5)

are minimax under loss function (1.1), if r(y) is nonnegative, non-decreasing function

and r(y) ≤ 2(p − 2)/(n − p + 3). Furthermore, this paper also showed that under

prior

θ | λ,Σ ∼ N

(
θ,

1− λ
λ

Σ

)
,

p(Σ−1) ∝ |Σ|
1
2
ν ,

p(λ) ∝ λ−a, (4.6)

where ν ≤ n is an integer and a < p/2 + 1, the posterior mean of θ given X and

S has the form (4.6) by letting r(y) = yE(λ | X, S). Under certain conditions, this

estimator is a generalized Bayes minimax estimator.
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Tsukuma (2009) studied the problem of estimating a normal mean matrix with an

unknown covariance matrix. The author extended the prior in Lin and Tsai (1973)

to include the p > n case and showed that the resulting generalized Bayes estimators

are minimax under certain conditions. Let X be an n × p random matrix with the

row vectors mutually independent. Assume that the i-th row vector X i follows a

multivariate normal distribution with mean θi and unknown covariance matrix Σ,

and observe S independent of X following Wishart(m,Σ), then these models can be

written as

X ∼ N(Θ, I ⊗Σ),

S ∼ Wishart(m,Σ), (4.7)

where ⊗ represents the Kronecker product. Let n
∧
p = min(n, p) and n

∨
p =

max(n, p). Konno (1990), Konno (1991) and Konno (1992) showed that the estimator

δK =

{
(I −RF−1Φ(F )RT )X if n < p,

X(I −QF−1Φ(F )Q−1) if n ≥ p,
(4.8)

is minimax with respect to the loss function

L(δ,Θ,Σ) = tr(δ −Θ)Σ−1(δ −Θ)T (4.9)

under certain conditions, where R is an n× n orthogonal matrix such that

XS−1XT = RFRT , (4.10)

F = diag(f1, · · · , fn∧
p) is a diagonal matrix based on ordered eigenvalues, Φ(F ) =

diag(φ1(F ), · · · , φn∧
p(F )) with elements φi(F ) being functions of F and Q is a p× p

nonsingular matrix such that QTSQ = I and QTXTXQ = F . Tsukuma (2009)
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extended the prior (4.6) to

Θ ∼ N(0,Ω⊗Σ),

p(Ω) ∝ |I + Ω|−a/2−n,

p(Σ−1) ∝ |Σ−1|(b+p)/2, (4.11)

if n < p, and to

Θ ∼ N(0, I ⊗ Ξ),

p(Ξ) ∝ |I + Σ−1/2ΞΣ−1/2|−a/2−p,

p(Σ−1) ∝ |Σ−1|(b+p)/2, (4.12)

if n ≥ p. This paper also showed that the generalized Bayes estimator

δ =

{
EΘ,Ω,Σ−1|X,S(ΘΣ−1)(EΘ,Ω,Σ−1|X,S(Σ−1))−1, if n < p,

EΘ,Ξ,Σ−1|X,S(ΘΣ−1)(EΘ,Ξ,Σ−1|X,S(Σ−1))−1, if n ≥ p,
(4.13)

belongs to (4.8) and therefore is minimax with respect to loss (4.9) under certain

conditions.

4.2.2 Model Structure and Computational Details

Model Structure

Most literature on the normal mean estimation with unknown covariance matrix

problem are in the decision theory field and assume observing S independent of X.

Not many papers discuss how to put prior distributions on Σ, perhaps because the

prior selection of Σ is a difficult task due to the large number of parameters in a

covariance matrix and the non-negative definite constraint. One common choice is the

usual inverse-Wishart prior, because it is a conjugate prior of a multivariate normal

distribution. However, under this prior, all standard deviation components share a
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single degree of freedom. This is a big restriction especially when the dimension is

large (Barnard, McCulloch and Meng 2000). Instead of putting a prior distribution on

the whole covariance matrix, we consider the standard deviation and the correlation

matrix decomposition:

Σ = SRS, (4.14)

where S is a diagonal matrix of standard deviations and R is the correlation ma-

trix. This decomposition strategy offers two benefits: First, it has more flexibility

to deal with different standard deviation components. Second, i has the ability to

incorporate prior information about the standard deviations. Based on this decom-

position, to make the prior distributions diffuse, we put independent Jeffreys priors

on the standard deviations and apply the marginally uniform priors from Barnard et

al. (2000) on the correlation matrix R:

π(σi) ∝
1

σi
,

π(R) ∝ |R|−(p+1) (
∏
i

rii)−
p+1
2 , (4.15)

where rii is the i-th diagonal element of R−1. The prior distribution (4.15) implies a

marginal uniform(-1, 1) distribution for each individual correlation element.

Extending the model structure in Chapter 2 to this general covariance matrix

case, we modify the prior distribution on θ as follows:

θ | S,R,λ, τ ∼ N(0, τ 2SRHDiag(λ)RT
HS), (4.16)

where RH is such that RHR
T
H = R. Using this extension, we can see that if Y is

pre-multiplied by R−1
H S−1, then the transformed parameter θ∗ = R−1

H S−1θ follows

N(0, τ 2Diag(λ)) and Y ∗ = R−1
H S−1Y follows N(θ∗, I), which is same as model (2.6)

with σ = 1.
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Method For Updating The Correlation Matrix

To update the correlation matrix R in the MCMC procedure, we need to pay

attention to two restrictions. First, all correlations need to be in the range [−1, 1].

Second, the updated correlation matrix R∗ need to be positive definite. Let Ri,j(r)

be the updated correlation matrix by changing the correlation between the i-th com-

ponent and the j-th component to r. Barnard et al. (2000) showed that

f(r) = |Ri,j(r)| > 0 (4.17)

is a sufficient and necessary condition for Ri,j(r) to be positive definite. Without loss

of generality, assume i > j. To calculate f(r), expanding Ri,j(r) along the i-th row

yields

f(r) =

p∑
k=1

(−1)i+krik|R−ik|

= (−1)i+jr|R−ij|+ |R−ii|+
∑
k 6=i,j

(−1)i+krik|R−ik|, (4.18)

where rik is the correlation between the i-th component and k-th component and R−ik

is the remaining correlation matrix after removing the i-th row and the k-th column.

From equation (4.18), it is easy to see that the matrix R−ij contains r. Expanding

this matrix by the j-th row shows that f(r) is a quadratic function of r which can be

written as

f(r) = ar2 + br + c, (4.19)

where

a =
1

2
(f(1) + f(−1)− 2f(0)),

b =
1

2
(f(1)− f(−1)),

c = f(0).
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Therefore, the range of r that makes the updated correlation matrix valid, is deter-

mined by the roots of f(r) and ±1. Furthermore, the only term involving r from

expanding R−ij along the j-th row is

(−1)j+i−1r|R−ij−ji|, (4.20)

where the -1 inside the index comes from the fact that the j-th column has been

removed and R−ij−ji stands for the remaining correlation matrix by removing the

i-th and j-th rows and columns. Thus, a is always negative and the lower and the

upper bound for the range are

BL = max(−1,
−b+

√
b2 − 4ac

2a
), (4.21)

BU = min(1,
−b−

√
b2 − 4ac

2a
). (4.22)

After the new value is generated from a uniform distribution Unif(BL, BU), we can

simply apply the Metropolis-Hasting Algorithm to calculate the acceptance ratio and

get the updated R.

4.2.3 Preliminary Simulation Studies

In this section, we conduct simulation studies of the normal mean estimation

problem with unknown covariance structures by considering three types of covariance

matrices. In the first scenario, Σ is assumed to have an independent structure. In the

second scenario, Σ is assumed to have a local-dependent correlation structure. In the

third one, Σ is assumed to have an exchangeable correlation structure. Because of

the large number of parameters in the correlation matrix R and the time consuming

issue in running MCMC procedures, we set p = 5 and the studies are preliminary. In
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the future, with better computation algorithms, the parameter dimension should be

increased to yield better simulation studies for high dimensional problems.

Scenario 1 – When Σ Has an Independent Structure

In this scenario, we generate θ using model (3.30) with the combinations of three

nonzero values: 1, 4, 10, and three nonzero percentages: 5, 20 and 50. The response

vectors (Y 1, · · · ,Y n) are independently generated from N(θ, σ2I) with p = 5 and

n = 20. We set σ2 = 20 so that Ȳi has variance 1, where Ȳ is the sample average

of (Y 1, · · · ,Y n). For each combination, 2000 datasets are generated with 40000

iterations total and a burn-in period of 20000. The results are evaluated using the

invariant squared error loss function:

L(θ̂,θ) = (θ̂ − θ)TΣ−1(θ̂ − θ). (4.23)

We compare the estimation performances of the AIB prior with those of the HS,

the SB and the NEG priors by letting all priors have the same model structure:

θ | λ, σ2, τ ∼ N(0, σ2τ 2Diag(λ)),

p(σ2) ∝ 1

σ2
,

τ ∼ C+(0, 1), (4.24)

with different priors on λi as those in previous chapters. The performances of the

MLE estimator are also reported as benchmarks. Similar to the simulation studies

in previous chapter, the average losses across 2000 datasets are reported in Table 4.1

along with the standard deviations of the averaged losses in the lower rows. The esti-

mates of hyperparameters are reported in Table 4.2 along with the averaged posterior

standard deviations. Figure 4.1 and 4.2 show the boxplots of standard deviations
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in S and correlations in R. Because the standard deviations of all dimensions and

the correlations between any two different dimensions are equal, all dimensions are

plotted in one box for each method in both figures.

Scenario AIB HS SB NEG MLE

1

5%
4.67 5.33 5.73 4.96 25.24
0.109 0.122 0.127 0.108 0.331

20%
6.32 6.90 7.18 6.56 23.78
0.111 0.122 0.128 0.111 0.310

50%
11.77 12.23 12.67 11.92 27.21
0.207 0.221 0.229 0.210 0.416

4

5%
9.69 10.15 10.56 9.84 26.32
0.278 0.271 0.272 0.268 0.360

20%
17.73 18.04 17.98 17.98 24.19
0.312 0.302 0.295 0.300 0.295

50%
22.61 22.32 22.29 22.48 24.01
0.294 0.289 0.291 0.295 0.322

10

5%
7.61 8.46 8.49 9.96 23.22
0.235 0.245 0.235 0.236 0.308

20%
17.19 17.75 17.60 17.77 23.64
0.348 0.353 0.340 0.341 0.327

50%
24.61 24.73 24.59 24.58 25.34
0.453 0.448 0.451 0.452 0.447

Table 4.1: Comparison of the averaged invariant squared error losses among the AIB,
the HS, the SB and the NEG models when Σ = 20I. The losses of the MLE estimator
are given as benchmarks. The averaged squared error losses across 2000 datasets are
reported in the upper rows. The standard deviations of the average losses are reported
in the lower rows. For all datasets, p = 5 and 20 observations are generated for each
dimension. The signal sizes are listed in the first column and the nonzero percentages
are in the second column. All values are multiplied by 100.

All methods give better performances than the MLE in all combinations, but the

improvements are little when there are 50% nonzero values at 10. Given p = 5 it
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is reasonable to expect the performance differences between these methods and the

MLE to small, especially when the sparsity is low and the signal size is large. The

improvements may be more obvious when p is large. An increasing pattern can be

detected in the losses for all methods as the nonzero percentage increases.

When the signal is 1, the AIB prior and the NEG prior give better performances

than the HS and the SB priors. But the differences decrease as the nonzero percentage

increases. When the signal is 4 or 10, the AIB prior and the NEG prior give better

performance when the data is highly sparse. When the nonzero percentage increases

to 20 or 50, these methods have similar performances.

Compared to the first simulation study in Chapter 2, all models are less better

than the MLE, especially when the sparsity is low and the signal size is large. The low

dimension is one factor to this change. Another factor is that without the indepen-

dence assumption, we have more parameters need to be estimated. This automatically

increases the estimation difficulty which leads to less improvements compared to the

MLE.

The patterns in the estimates of the hyperparameters are very similar to those in

Chapter 2. When the nonzero percentage or the signal size increases, the estimates

of τ of all methods increase and the estimates of N decrease. Both patterns indicate

that less shrinkage is given as the sparsity decreases. Among the HS, the SB and

the NEG priors, the SB prior gives smallest estimates of τ and the NEG prior gives

largest estimates of τ across all combinations, which is consistent with the simula-

tions in Chapter 2 and Chapter 3. The estimates of τ in the AIB prior have larger

posterior variances than those of other methods. Again, this is because that unfixing
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Scenario M N τ(AIB) τ(HS) τ(SB) τ(NEG)

1

5%
2.47 0.66 0.37 0.22 0.13 0.29
1.419 0.204 0.508 0.165 0.103 0.218

20%
2.46 0.66 0.40 0.24 0.14 0.32
1.444 0.198 0.625 0.226 0.137 0.311

50%
2.46 0.65 0.46 0.28 0.17 0.39
1.473 0.207 0.575 0.341 0.210 0.360

4

5%
2.46 0.65 0.45 0.28 0.17 0.39
1.410 0.189 0.550 0.371 0.210 0.383

20%
2.46 0.62 0.73 0.47 0.30 0.69
1.421 0.196 0.975 0.521 0.251 0.530

50%
2.44 0.57 0.96 0.68 0.45 1.04
1.393 0.210 0.614 0.325 0.187 0.333

10

5%
2.48 0.64 0.57 0.39 0.25 0.56
1.408 0.197 0.225 0.177 0.084 0.191

20%
2.46 0.57 1.07 0.78 0.53 1.26
1.487 0.189 0.307 0.174 0.104 0.209

50%
2.39 0.51 1.58 1.19 0.83 2.12
1.337 0.217 3.216 0.908 0.582 1.173

Table 4.2: Comparison of hyperparameters among the AIB, the HS, the SB and the
NEG models when Σ = 20I. The averaged posterior means across 2000 datasets are
reported in the upper rows. The averaged posterior standard deviations are reported
in the lower rows. For all datasets, p = 5 and 20 observations are generated for each
dimension. The signal sizes are listed in the first column and the nonzero percentages
are in the second column.

N introduces more variability. The estimates of τ in the AIB prior consistently in-

crease when those of N decrease. This shows that the global shrinkage parameter τ

corporates with the local shrinkage parameters λi to balance the shrinkage powers.

As shown in Figures 4.1 and 4.2, all methods similar estimates of the standard

deviations and the correlations. The standard deviations are slightly overestimated,

while most estimates of correlations are around the true value.
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Scenario 2 – When Σ Has a Local-Dependent Correlation
Structure

In this scenario, we use the same model as in Scenario 1 to generate θ with the

same combinations of nonzero values and sparsity levels. Again 20 response vectors

(Y 1, · · · ,Y n) are independently generated from N(θ,Σ) with p = 5. The standard

deviations of all dimensions are still
√

20, but the correlations along the off-diagonal

lines of R are set to be 0.5. For each combination, 2000 datasets are generated with

40000 iterations total and a burn-in period of 20000. The invariant squared error

loss function (4.23) is used to compare the estimation performances among the AIB,

the HS, the SB and the NEG models. The model structure and priors on λi are

the same with those in Scenario 1. The average losses are reported in Table 4.3 and

the estimates of hyperparameters are reported in Table 4.4. Figure 4.3 and Figure

4.4 show the boxplots of standard deviation and correlation estimates. For the same

reason, one box for each method is reported in Figure 4.3. Two boxes for each method

are reported in Figure 4.4 for the two correlation values: 0, 0.5.

All methods give better performance than the MLE in most combinations but

the improvements are very little when there are 50% nonzero values at 4 or 10.

An increasing pattern can be detected in the losses for all methods as the nonzero

percentage increases. When the data are highly sparse, all models have the largest

losses when the signal is 4. Again, this is because that the noises and signals are

partially mixed. Incorrect discriminations will cause great losses. When the nonzero

percentage is 20 or 50, this pattern is not obvious. When the signal is 1, the AIB prior

gives better performance than other three models. But the differences are smaller as

the nonzero percentage increases. When the signal is 4 or 10, all models give similar
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Scenario AIB HS SB NEG MLE

1

5%
5.24 5.99 6.43 5.73 25.56
0.141 0.159 0.168 0.151 0.354

20%
7.62 8.03 8.23 7.82 24.44
0.145 0.156 0.157 0.146 0.328

50%
11.81 12.21 12.28 11.97 25.83
0.193 0.205 0.208 0.197 0.378

4

5%
10.28 10.67 10.63 10.40 24.17
0.354 0.343 0.326 0.343 0.315

20%
19.86 19.67 19.23 19.51 24.41
0.439 0.415 0.405 0.428 0.335

50%
24.31 24.04 23.64 24.09 24.71
0.355 0.348 0.339 0.345 0.362

10

5%
8.49 9.19 9.27 8.76 24.76
0.268 0.280 0.272 0.267 0.359

20%
19.40 19.83 19.62 19.39 23.48
0.417 0.426 0.412 0.413 0.347

50%
24.56 24.79 24.51 24.60 25.52
0.346 0.349 0.343 0.348 0.342

Table 4.3: Comparison of invariant squared error losses among the AIB, the HS, the
SB and the NEG models when the off-diagonal elements of the correlation matrix
R are 0.5. The losses of the MLE estimate are given as benchmarks. The averaged
losses across 2000 datasets are reported in the upper rows. The standard deviations
of the average losses are reported in the lower rows. For all datasets, p = 5 and
n = 20. The signal sizes are listed in the first column and the nonzero percentages
are in the second column. All values are multiplied by 100.

performances. Compared to Scenario 1, we see that the losses are larger and the

differences among different models are less obvious. This shows that the correlated

observations increase the estimation difficulty and the advantage of the AIB prior still

exists but becomes less. It is reasonable to expect that the improvements by using

the AIB prior becomes more remarkable when p is large.
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Scenario M N τ(AIB) τ(HS) τ(SB) τ(NEG)

1

5%
2.47 0.66 0.37 0.22 0.13 0.30
1.385 0.188 0.405 0.219 0.108 0.221

20%
2.46 0.66 0.40 0.25 0.14 0.33
1.420 0.180 0.542 0.216 0.116 0.237

50%
2.46 0.66 0.46 0.28 0.17 0.38
1.480 0.212 0.531 0.362 0.203 0.421

4

5%
2.48 0.64 0.50 0.32 0.20 0.46
1.467 0.211 0.451 0.292 0.175 0.389

20%
2.46 0.61 0.75 0.50 0.32 0.72
1.433 0.196 0.634 0.526 0.314 0.515

50%
2.51 0.57 1.00 0.74 0.49 1.08
1.427 0.195 0.800 0.648 0.332 0.602

10

5%
2.49 0.63 0.63 0.43 0.28 0.65
1.499 0.200 0.425 0.259 0.140 0.249

20%
2.47 0.55 1.23 0.93 0.64 1.53
1.390 0.210 2.081 1.345 0.679 1.655

50%
2.47 0.50 1.73 1.35 0.93 2.28
1.418 0.205 1.732 1.083 0.559 1.220

Table 4.4: Comparison of hyperparameters among the AIB, the HS, the SB and
the NEG models when the correlations matrix has 0.5 along the off-diagonal lines.
The averaged posterior means across 2000 datasets are reported in the upper rows.
The averaged posterior standard deviations are reported in the lower rows. For all
datasets, p = 5 and 20 observations are generated for each dimension. The signal
sizes are listed in the first column and the nonzero percentages are in the second
column.

Similar to scenario 1, as the nonzero percentage or the signal size increases, the

estimates of τ of all methods increase and the estimates of N decrease. Excluding the

AIB prior, the SB prior still gives the smallest estimates of τ and the NEG prior gives

the largest estimates across all combinations. The estimates of τ in the AIB prior

have larger posterior variance than those of other methods. Compared to Scenario 1,

the non-equal correlations increase the posterior standard deviations of τ in the HS,

the SB and the NEG models. But those of N and τ in the AIB prior decrease. This
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shows that unfixing N and τ is more stable to correlation changes, which is another

unique advantage of the AIB prior.

Figure 4.3 and Figure 4.4 show that the estimates of σi and correlations are similar

for all methods. The standard deviations are still slightly overestimated, the estimates

of 0 correlations are good, but the 0.5 correlations are underestimated. Compared to

Scenario 1, involving nonzero correlations improves the estimates of σi.

Scenario 3 – When Σ Has an Exchangeable Correlation Struc-
ture

In this scenario, we use the same simulation setup as in previous scenarios, but

let the covariance matrix Σ have the aI + bJ form where J represents the square

matrix of 1. We set a = 10 and b = 10 so that Ȳi has variance 1. Now the correlation

between any pair of different dimensions is 0.5. Again, we use the invariant squared

error loss function (4.23) to compare the estimation performances among the AIB,

the HS, the SB and the NEG models. The averaged losses are reported in Table 4.5

and the estimates of hyperparameters are reported in Table 4.6. Figure 4.5 and 4.6

show the boxplots of standard deviations and correlations. As in Scenario 1, one box

for each method is reported in both figures.

When all dimensions are correlated, all models give better performance than the

MLE in most scenarios. But when there are 50% nonzero values at 4 or 10, they are

not distinguishable from the MLE. For fixed signal sizes, all models have increased

losses as the sparsity decreases. When the signal is 1, the AIB prior gives consistently

better performance than other three models. But the differences decrease as the

nonzero percentage increases. When the signal is 4 or 10, all models give similar

performances. Compared to the previous scenarios, all models have larger losses
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Scenario AIB HS SB NEG MLE

1

5%
4.83 5.43 5.69 5.09 23.42
0.133 0.145 0.151 0.134 0.311

20%
7.02 7.54 7.76 7.16 23.41
0.166 0.181 0.184 0.168 0.355

50%
8.62 8.92 9.04 8.68 24.35
0.115 0.123 0.128 0.117 0.293

4

5%
9.25 9.81 10.08 9.34 25.37
0.308 0.301 0.296 0.290 0.347

20%
23.64 23.55 23.18 23.31 27.67
0.515 0.494 0.472 0.497 0.354

50%
25.42 25.62 24.72 24.72 24.75
0.342 0.341 0.332 0.331 0.316

10

5%
11.09 11.92 11.63 11.32 23.91
0.356 0.364 0.347 0.351 0.366

20%
17.77 18.26 18.15 17.67 24.03
0.350 0.353 0.346 0.343 0.290

50%
24.38 24.68 24.53 24.46 24.15
0.347 0.352 0.347 0.347 0.334

Table 4.5: Comparison of invariant squared error losses among the AIB, the HS, the
SB and the NEG models when Σ = 10I + 10J . The losses of the MLE estimate
are given as benchmarks. The averaged losses across 2000 datasets are reported in
the upper rows. The standard deviations of the averaged losses are reported in the
lower rows. For all datasets, p = 5 and n = 20. The signal sizes are listed in the
first column and the nonzero percentages are in the second column. All values are
multiplied by 100.

when there are 20% or 50% nonzero values at 4, especially obvious for the 20% case.

This is because that the nonzero correlations increase the difficulty of estimation,

which makes the incorrect discriminations more harmful.

Similar to the previous 2 scenarios, as the nonzero percentage or the signal size

increases, the estimates of τ of all methods have an increasing trend and the estimates

of N have a decreasing trend. Excluding the AIB prior, the SB prior gives the smallest
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Scenario M N τ(AIB) τ(HS) τ(SB) τ(NEG)

1

5%
2.47 0.66 0.38 0.23 0.13 0.30
1.407 0.201 0.469 0.270 0.171 0.273

20%
2.47 0.66 0.42 0.26 0.15 0.34
1.379 0.194 0.530 0.187 0.118 0.247

50%
2.48 0.66 0.44 0.27 0.16 0.36
1.459 0.204 0.900 0.504 0.303 0.540

4

5%
2.44 0.65 0.48 0.30 0.19 0.43
1.429 0.196 0.538 0.279 0.156 0.310

20%
2.48 0.61 0.72 0.51 0.33 0.74
1.385 0.203 0.528 0.328 0.190 0.357

50%
2.52 0.58 0.97 0.70 0.47 1.04
1.573 0.213 1.263 0.491 0.376 0.583

10

5%
2.47 0.62 0.66 0.45 0.30 0.69
1.442 0.217 1.512 0.993 0.516 1.116

20%
2.48 0.57 1.11 0.85 0.57 1.35
1.388 0.192 0.356 0.189 0.119 0.228

50%
2.59 0.49 1.79 1.45 1.01 2.41
1.370 0.207 1.340 0.823 0.445 0.841

Table 4.6: Comparison of hyperparameters among the AIB, the HS, the SB and
the NEG models when Σ = 10I + 10J . The averaged posterior means across 2000
datasets are reported in the upper rows. The averaged posterior standard deviations
are reported in the lower rows. For all datasets, p = 5 and n = 20. The signal sizes
are listed in the first column and the nonzero percentages are in the second column.

estimates of τ while the NEG prior gives the largest across all combinations. The

estimates of τ in the AIB prior have larger posterior variances than those of other

methods.

All methods yield similar estimates of the standard deviations and the correlations.

Similar to the previous scenarios, the standard deviations are overestimated a little

and the nonzero correlations are underestimated.
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4.2.4 Real Data Analysis

Introduction of Portfolio Choice Problems

Portfolio choice problems are popular in financial research. The mean-variance

paradigm of Markowitz (1952) is one of the most common formulations of portfolio

choice problems. Consider N risky assets with random return vectorRt and a riskfree

asset with known return Rf
t at time t. Define the excess return vector

rt = Rt −Rf
t 1N , (4.25)

where 1N is a vector of 1 with length N . Suppose the excess returns are independently

and identically distributed with mean µ and covariance matrix Σ and denote the

weight vector on the N risky assets at time t by w and the weight on the riskfree

asset by 1− 1TNw. Then the mean-variance paradigm is to choose a weight vector w

to minimize the variance of the portfolio return

Rp,t+1 = wTRt+1 + (1− 1TNw)Rf
t+1 = wTrt+1 +Rf

t+1 (4.26)

at time t+ 1 for a pre-determined target expected portfolio return Rf
t+1 + µ̄. That is

to minimize

Var(Rp,t+1) = wTΣw, (4.27)

subject to

E(Rp,t+1) = wTµ+Rf
t+1 = Rf

t+1 + µ̄. (4.28)

The solution to the above problem when both µ and Σ are known is

wOpt =
µ̄

µTΣ−1µ
Σ−1µ. (4.29)

The mean-variance problem can be rewritten as the following maximization problem:

max
w

E(rp,t+1)− γ

2
Var(rp,t+1), (4.30)
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where rp,t+1 = wTrt+1 is the portfolio excess return and γ is the relative risk aversion

coefficient. The two problems are equivalent when

µ̄

µTΣ−1µ
=

1

γ
. (4.31)

In practice, µ and Σ are often unknown. One way to estimate wOpt in this case is

estimating µ and Σ first with the observed data and then plugging the estimates into

(4.29). However this method does not consider the uncertainty of the parameters, so

the estimated weight may be substantially different from the best weight when the

estimated parameters are substantially different from the truth. As a nature solution

to this issue, Bayesian approaches are applied in this field. Following Zellner and

Chetty (1965), a Bayesian estimate of the weight is defined by

ŵB = arg max
w

∫
Rt+1

U(w)p(Rt+1 |X)dRt+1

= arg max
w

∫
Rt+1

∫
µ

∫
Σ

U(w)p(Rt+1,µ,Σ |X)dµdΣdRt+1, (4.32)

where U(w) is the utility of holding the portfolio with weight w at time t+ 1 and X

is the data available. Various prior densities of µ and Σ are given in this literature.

For examples, the standard diffuse prior on µ and Σ has the form

p(µ,Σ) ∝| Σ |−
N+1

2 , (4.33)

the conjugate prior has the form

µ | Σ ∼ N

(
µ0,

1

τ
Σ

)
,

Σ ∼ IW(Σ0, ν0), (4.34)

where IW stands for an inverted Wishart distribution and the hyperparameters µ0, τ ,

Σ0, ν0 are assumed known or estimated using empirical Bayes methods. More details

are given in Jorion (1986) and Avramov and Zhou (2010).
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Considering the relationship between µ, Σ and the best weight in (4.29), an

alternative way to implement Bayesian approaches is to put priors on Σ and the

weight w directly. Since the weight w is of our interest, putting priors in this way

allows investors to apply their prior knowledge of wealth allocation. Tu and Zhou

(2010) gives an example of putting priors in this way. The prior on w is

w ∼ N

(
w0,

σ2
ρ

γs2
Σ−1

)
, (4.35)

or equivalently, using (4.29), the prior on µ is

µ ∼ N

(
γΣw0,

σ2
ρ

s2
Σ

)
, (4.36)

where σρ is a known parameter reflecting the degree of uncertainty about w or µ, s2

is the average of the diagonal elements of Σ and a standard Wishart distribution on

Σ. When there is no data or prior information about the risky assets available, an

equal weight is a reasonable choice for w0. That is

w0 ∝
1

N
1N . (4.37)

Other choices of w0 include the value-weighted market portfolio weight wm and the

data determined weight

w0 =
1

γ
Σ̂
−1
µ̂, (4.38)

where µ̂ and Σ̂ are the sample mean and covariance matrix of the available excess

returns.

Similar to Tu and Zhou (2010), we put priors on w and Σ, but instead of using a

standard Wishart distribution on Σ, we implement the standard deviation and corre-

lation decomposition strategy described in section 4.2.2. Without loss of generality,
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suppose γ = 1 and the observed excess returns are independently and identically

distributed as

rt | w,Σ ∼ N(Σw,Σ), (4.39)

where Σ = SRHR
T
HS. Assuming that the best weight is sparse, we put the AIB prior

on w

w | τ,λ, S ∼ N(0, τ 2S−1diag(λ)S−1),

λi |M,N, ∼ IB(MN,M(1−N)),

τ ∼ C+(0, 1),

p(σi) ∝
1

σi
, (4.40)

and the prior (4.15) on R. In model (4.40), we assume that the best weight is sparse

in priori and the elements are mutually independent. In fact, these are two common

assumptions in practice, especially when N is large.

Analysis of Fama-French 25 Portfolios Formed on Size and
Book-to-market

We consider the monthly returns of the Fama-French 25 portfolios formed on

size and book-to-market, covering from August 1963 to July 2007. The portfolios

are the intersections of 5 portfolios formed on size (market equity) and 5 portfolios

formed on prior returns. More information is available from Ken French’s website:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html. An old

version of this data is studied by DeMiguel, Garlappi and Uppal (2006). In this paper,

the authors claimed that “there is no single model that consistently delivers a Sharpe

ratio or a certainty equivalent return that is higher than that of the 1/N portfolio,

which also has a very low turnover”. To point against this argument, Chevrier and
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McCulloch (2008) applied Bayesian modelling techniques on this dataset but updated

to include the period up to July 2007. Using economically motivated priors (EMP) on

the parameters, they found that their approach outperforms the equal weight portfo-

lio by about 30%. In fact, both paper studied other datasets from the above website,

and the approach in Chevrier and McCulloch (2008) is consistently better than the

1/N portfolio.

Following Chevrier and McCulloch (2008), we subtract the riskfree rate from the

monthly returns and augment the data with the Fama French 3 factors which makes

the total number of risky assets N = 25 + 3 = 28. We use the data from August of

year t− 10 to July of year t to fit the model, and use the data from August of year t

to July of year t+ 1 to get the out-of-sample measures, the Sharpe Ratios:

SR =
µ̂

σ̂
, (4.41)

where µ̂ is the mean of the monthly portfolio excess returns and σ̂ is the standard

deviation of the monthly portfolio excess returns. We compare the out-of-sample

Sharpe ratios of the AIB prior to those of the HS, the SB and the NEG priors.

Every August, we use the past 10 years data to estimate the asset allocation

strategy and hold the determined portfolio for a year. The portfolios are rebalanced

every year. The results are reported in Table 4.7. The column named “EMP” stands

for the model in Chevrier and McCulloch (2008) and 1/N stands for equal weight

portfolio. We get both results from Chevrier and McCulloch (2008). Notice that the

EMP and the equal weight portfolios assume that all weights are greater than 0, while

model (4.40) does not have this constraint. In other words, the weights in our method

can be negative meaning assets can be held short. More explicitly, for example, when

the weight on a stock is negative, it means that we borrow certain amount of this
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stock from others, sell it at the beginning of August year t, and purchase back the

same amount at the end of July year t + 1 and return it to the lenders. Thus, using

model (4.40) is expected to improve the performances of the EMP and the equal

weight portfolios remarkably.

AIB HS SB NEG EMP 1/N
93.6 93.0 92.5 92.3 71.3 57.1

Table 4.7: Out-of-sample Sharpe ratios comparison for the 1963 - 2007 period. All
numbers are annualized and in percent. EMP stands for the model in Chevrier and
McCulloch (2008) and 1/N stands for equal weight portfolio.

Table 4.7 shows that, all four models outperforms the EMP model about 30%,

and outperforms the equal weight portfolio almost 65%. Among these four models,

the AIB prior works a little better.
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Figure 4.1: Boxplots of posterior means of σi’s in the AIB, the HS, the SB and
the NEG models when Σ = 20I. All dimensions are plotted in one box using 2000
datasets for each model. In all datasets, p = 5 and 20 observations are generated for
each dimension. The signal size is fixed at 1 in the upper row, 4 in the middle row
and 10 in the lower row. The nonzero percentage is fixed at 5 in the left column, 20
in the middle column and 50 in the right column.

110



Figure 4.2: Boxplots of posterior means of correlations between different dimensions
in the AIB, the HS, the SB and the NEG models when Σ = 20I. All dimensions are
plotted in one box using 2000 datasets for each model. In all datasets, p = 5 and
20 observations are generated for each dimension. The signal size is fixed at 1 in the
upper row, 4 in the middle row and 10 in the lower row. The nonzero percentage is
fixed at 5 in the left column, 20 in the middle column and 50 in the right column.
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Figure 4.3: Boxplots of posterior means of σi in the AIB, the HS, the SB and the
NEG models when the correlation matrix has 0.5 along the off-diagonal lines. The
true σi’s are

√
20. All dimensions are plotted in one box using 2000 datasets for each

model with p = 5 and n = 20. The signal size is fixed at 1 in the upper row, 4 in the
middle row and 10 in the lower row. The nonzero percentage is fixed at 5 in the left
column, 20 in the middle column and 50 in the right column.
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Figure 4.4: Boxplots of posterior means of correlations between different dimensions
in the AIB, the HS, the SB and the NEG models. The true correlation matrix has
0.5 along the off-diagonal lines and 0 for other non-diagonal correlations. Two boxes
are plotted using 2000 datasets for each model with p = 5 and n = 20. The first
one plots the posterior means of correlations with true values 0.5 and the second one
plots those ones with true values 0. The signal size is fixed at 1 in the upper row, 4
in the middle row and 10 in the lower row. The nonzero percentage is fixed at 5 in
the left column, 20 in the middle column and 50 in the right column.
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Figure 4.5: Boxplots of posterior means of σi’s in the AIB, the HS, the SB and the
NEG models when Σ = 10I + 10J . The true σi’s are

√
20. All dimensions are

plotted in one box using 2000 datasets for each model. In all datasets, p = 5 and
20 observations are generated for each dimension. The signal size is fixed at 1 in the
upper row, 4 in the middle row and 10 in the lower row. The nonzero percentage is
fixed at 5 in the left column, 20 in the middle column and 50 in the right column.
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Figure 4.6: Boxplots of posterior means of correlations between different dimensions
in the AIB, the HS, the SB and the NEG models. The true correlations between
different dimensions are all 0.5. All dimensions are plotted in one box using 2000
datasets for each model. In all datasets, p = 5 and 20 observations are generated for
each dimension. The signal size is fixed at 1 in the upper row, 4 in the middle row
and 10 in the lower row. The nonzero percentage is fixed at 5 in the left column, 20
in the middle column and 50 in the right column.
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