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Abstract

This dissertation presents approaches to solve the multi-scale and wideband prob-

lems using surface integral equation methods based on the skeletonalization technique,

which in essence identifies the numerically independent elements from a larger set of

unknowns. In the low frequency or multi-scale scenario, overly dense mesh is gener-

ated in a global or local scale. The method is extended to composite material through

the integral equation discontinuous Galerkkin method via enhanced enforcement of

transmission conditions.

Conventional multi-level fast multipole method(MLFMM) faces low frequency

breakdown since a large number of basis functions are concentrated within the leaf

level groups, whose size is typically larger than λ/4. The computational complexity

rapidly approaches that of conventional MoM, which is O(N2) for both CPU time and

memory consumption for iterative solvers. In this dissertation a hierarchical multi-

level fast multipole method (H-MLFMM) is proposed to accelerate the matrix-vector

multiplication for low frequency and multi-scale problems. Two different types of

basis functions are proposed to address these two different natures of physics corre-

sponding to the electrical size of the elements. Moreover, the proposed H-MLFMM

unifies the procedures to account for the couplings using these two distinct types of

basis functions. O(N) complexity is observed for both memory and CPU time from

a set of numerical examples with fixed mesh sizes. Numerical results are included

ii



to demonstrate that H-MLFMM is error controllable and robust for a wide range of

applications.

On the other hand, condition number of the system matrix deteriorates due to

the overly dense mesh. This would greatly affect the convergence of iterative solvers,

if convergence can ever be attained. Direct solver This thesis proposes an algorithm

exploits the smoothness of the far field and computes a low rank decomposition of

the off-diagonal coupling blocks of the matrices through a set of skeletonalization

processes. Moreover, an artificial surface (the Huygens’ surface) is introduced for

each clustering group to efficiently account for the couplings between well-separated

groups. Furthermore, a recursive multi-level version of the algorithm is developed

subsequently. Through numerical examples, we found that the proposed multi-level

direct solver can scale as good as O(N1.3) in memory consumption and O(N1.8) in

CPU time, for moderate-sized EM problems as the electrical size grows.

An novel IEDG method with enhanced enforcement of transmission conditions is

proposed based on the IEDG algorithm scheme, this makes it possible to solve surface

integral equation without being confined to conformal mesh and basis functions with

inter-element continuity. Basis functions with different definitions and polynomial

orders can be mixed flexibly to form a robust surface integral equation solver for multi-

scale structures. IEDG algorithm allows local mesh refinement and greatly facilitates

wideband analysis. This algorithm is then enhanced by improved enforcement of the

transmission conditions, particularly for highly resonant structures. Finally, infinite

ground plane effect is integrated into the algorithm for some more practical problems.

Numerical results demonstrated the robustness of the algorithm.
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Chapter 1: Introduction

1.1 Surface Integral Equation

Surface integral equation (SIE) methods have been widely employed to solve elec-

tromagnetic wave scattering and radiation problems. Particularly, they are most

effective in dealing with electromagnetic (EM) wave radiation and scattering in the

presence of non-penetrable and homogeneous or stratified targets. It is mainly due

to the fact that only the surface of the target needs to be discretized, and subse-

quently requiring much less number of unknowns by orders of magnitude compared

to the volume discretization counterparts. Additionally, in recent years, we have wit-

nessed quite a few fast integral equation methods developed and successfully applied

to reduce the computational resources needed for computations involving electrically

large structures. Among them, we mention the adaptive integral method (AIM) [1],

and the multi-level fast multipole method (MLFMM) [2]. Above all, the MLFMM

is arguably the most successful and most widely embraced for addressing electrically

large EM problems [3] [4]. However, conventional MLFMM encounters great difficulty

addressing the multi-scale and low frequency problems efficiently, even for problems

with moderate number of DoFs.
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1.2 Multi-scale and Low Frequency Problems

Integral equation methods usually discretize the geometries into piecewise ele-

ments whose size is typically 0.1λ. Trial functions are later on assigned to these

elements to represent the electric and magnetic sources that resides on. Testing func-

tions are selected, typically from the dual space of the trial functions, and matrix

equations can be established from numerical procedures, e.g., method of moment[5].

Real-life simulations involves calculation of complicated structures across a wide

band spectrum as demonstrated by Figure.1.1. While the mesh size is dependent on

the calculating frequency, the physical configuration of the geometry is not. For the

components that contain intricate structures such as antennas and microwave instru-

ments, dense meshes have to be adopted to maintain the integrity of the geometry,

regardless of the frequency of interest. Consequently, large number of unknowns may

resides within certain leaf level groups from conventional multi-level fast multipole

method (MLFMM) and this would lead rapid increase of computation complexity in

terms of both memory and CPU consumption, destroying the O(NlogN) complexity.

Figure 1.1: Multipole antenna mounted on a mock up aircraft and a battleship
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Moreover, practical antennas are almost always mounted on certain platforms

such as the fuselage of aircraft, which could be smooth and contain less geometry

details as shown in Figure.1.1. In this figure, the smooth forward fuselage of the

aircraft are meshed using 0.1λ at 3GHz while the spiral antenna is discretized using

0.015λ to maintain its geometry. Compared with the antennas, coarser meshes can be

applied to these platforms to help reduce the total number of unknowns. These mesh

densities that range across several orders pose the so-called “multi-scale” problem.

It results in system matrices with deteriorated condition number, especially for the

electric field integral equation(EFIE)[6]. Not only does this poses serious challenges

for iterative solvers such as Krylov methods, it jeopardizes the accuracy of results

from direct solvers as well [7].

Figure 1.2: Problems with drastically different mesh densities

On the other hand, frequency responses from a wide spectrum range are usually

desired for imaging purpose, etc.. One conventional approach divides the spectrum

range into several frequency sections and discretizes the object for each particular
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section. This helps to keep the computational complexity under control across the

whole spectrum by limiting the number of DoFs within each 0.25λ sized group. How-

ever, generation of mesh with high fidelity from complicated geometry poses another

practical challenge. Poor quality meshes with ill shaped elements, e.g. sharp triangu-

lation shown in Figure.1.3, lead to escalation of numerical dependency among basis

functions. Consequently, they jeopardize the condition number of the system matri-

ces and result in inferior convergence or even non-physical results. Intense human

intervention is usually required to maintain the quality of the mesh and thus making

this process tedious and laborious. To make it worse, this difficulty is compounded

when the responses from a wide frequency spectrum are desired, which requires a set

of mesh for each frequency band of interest.

Figure 1.3: Mesh with sharp triangular elements

Another type of difficulty arises if the conventional 0.1λ mesh density cannot

discretize the object without jeopardizing the integrity of the geometry. For instance,

mesh size of 0.5m are supposed to be adopted at 60MHz to discretize the object

based on the conventional requirement, consequently a 1m radius sphere would be

discretized as shown in Figure.1.4a. Also, large amount of singular shaped elements
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(a) Sphere (b) Mock-up aircraft

Figure 1.4: Coarse mesh with inferior quality

could be generated and cause the condition number of the system matrix to deteriorate

severely. Take a mock-up aircraft geometry for example, it contains large smooth

facets as well as certain detail structures, naive implementation of 0.1λ mesh size at

5MHz would result in a discretization shown in Figure.1.4b.

One potential solution to the two issues aforementioned is to recycle the mesh at

higher frequencies for the calculation of lower frequencies. Human intervention can

thus be reduced drastically and the mesh at higher frequencies is generally better

in preserving the geometry as well. However, conventional MLFMM encounters the

“sub-wavelength breakdown” since the mesh generated at higher frequencies would be

overly dense for the calculation at lower frequencies. Consequently, the computational

complexity escalates rapidly from O(NlogN) towards O(N2) in terms of both CPU

time and memory consumption, rendering conventional MLFMM inefficient in these

scenarios.

1.3 Sub-wavelength Breakdown

Conventional MLFMM relies on the plane wave basis to accelerate matrix-vector

product. It starts by partitioning the DoFs into a hierarchical set of groups until the
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leaf level group is no less than 0.25λ [8][9]. Assume DoF i from group m and DoF j

from group m′ reside in each others far-region or secondary neighbors, the coupling

between them can be expanded as follows [8],

Zij =

(
k

4π

)2 ∮
Vrev
im · Tmm′(k̂ · r̂mm′) ·Vrad

m′jd
2k̂ (1.1)

where k is the wave propagation constant, Vrev
im is the aggregation matrix that serves

as a radiation pattern. It projects the DoFs into plane wave basis. Vrad
m′j is the

disaggregation matrix that maps the plane wave basis back to the original DoFs, it

can be interpreted as a receiving pattern. T1mm′(k̂ · r̂mm′) is the translator and it is

defined as,

Tmm′(k̂ · r̂mm′) =
L∑
l=0

(−j)l(2l + 1)h
(2)
l (k · rmm′)Pl(r̂mm′ · k̂) (1.2)

where h
(2)
l denotes the spherical Hankel functions of the second kind, Pl is the Leg-

endre polynomial of degree l and L is the number of multipole expansion terms. The

coupling between groups that reside in the near field region are accounted for through

conventional MoM representation.

The near field complexity of MLFMM is expected to scale as O(N) since the

number of DoFs per leaf level group is less than a constant assuming conventional

mesh density is adopted. Sub-wavelength breakdown issue emerges when the mesh is

overly dense, either in a local scale in the multi-scale scenario shown in Figure.1.2 or

in a global scale. In both cases, large number of DoFs still reside in certain leaf level

groups since the size of the finest group cannot be less than 0.25λ [8]. Mathematically,

this is due to the reason that the arguments of the spherical Hankel functions appear-

ing in the translator expression equation(1.2) are very small. Due to the asymptotic
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behaviors of the spherical Hankel functions with small arguments, the multipole am-

plitudes of the spherical waves are very singular. , i.e., they are either very large or

very small at any level, resulting in large errors in equation(1.2)[10][11]. The expan-

sion equation(1.1) is useless if the error aforementioned is not suppressed since the

values of the elements in the translator can easily yield floating-point overflows and

halting the computation. Consequently, the accumulation of DoFs in the leaf level

groups leads to rapid escalation of near field complexity towards O(N2).

1.4 Previous Efforts on the Overly Dense Mesh Issue

A number of approaches have been attempted to tackle the dense mesh issue.

One category of the methods utilize different formulations to expand the couplings

between groups smaller than λ/4. In [10], Zhao and Chew introduced scaling factors to

smooth the transition from Helmholtz FMM down to Laplace FMM. It assumes that

the multipoles required at very low frequencies (k → 0) for small structures (k ·d→ 0)

are almost constant and one can afford to adopt an undiagonalized alternative of the

translation operator. k is adopted as a normalized factor and the small argument

approximation of the Hankel function constitutes the new undiagonalized translator.

This new type of expansion allows further partition of the groups and this helps to

brings the near field complexity under control once again. This methodology focuses

on the extremely low frequencies approaching quasistatic spectrum, e.g. h/λ < 1.e−6

and extremely small structures such as circuits, etc., it is cumbersome for the scenario

where h is between the range of conventional 0.1λ and quasistatic. However, it was

pointed out that this approach is not suitable for problems with discretization sizes

across multiple orders, i.e., multiscale problems[12]. This is due to the reason that a
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connection between the two types of expansion adopted in the quasistatic region and

radiation region is yet to be established, excluding the possibility of a non-uniform

oct-tree[12] ,which allows the number of DoFs per level group to be approximately

the same.

Another work conducted in [12] named accelerate Cartesian expansion (ACE) em-

ployed the Cartesian harmonics for multipole and local expansions for levels beneath

the MLFMM leafs. ACE allows partitioning the DoFs into a non-uniform oct-tree

such that the number of DoFs per each leaf cube at various level is approximately

constant. A mapping procedure can be performed between accelerated Cartesian ex-

pansion and fast multipole expansion to accomplish the integration with the expansion

adopted in equation(1.1). Mathematically, ACE mainly utilizes Taylor expansion of

the MLFMM multipoles[12]. However, unlike the conventional MLFMM which es-

tablishes a close connection between the mathematics and the physics, ACE is still

yet to suggest a physical interpretation of its mathematics, e.g. the relationship be-

tween the Cartesian basis and the underlying physics it is representing. Reference [13]

expresses the spectral Green’s function in terms of evanescent plane wave and prop-

agating plane wave. It is applicable for both spatial and frequency scalings, however,

an infinite integral has to be evaluated in the k -space.

The second category of the fast methods focuses on exploiting the rank deficiency

property of the interaction matrices between two over populated groups. The kernel

independent adaptive cross approximation (ACA) technique [14] belongs to this cate-

gory. It decomposes the dense interaction between two well-separated groups, through

simply applying algebraic maneuver, into the multiplications of two reduced dimen-

sion dense matrices. A hierarchical version of the ACA algorithm was introduced in
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[15] to further reduce the computational resources. Nevertheless, the error controlla-

bility for the ACA algorithms remains yet elusive. Some other matrix compression

methods include, but not limited to, the compressed block decomposition (CBD) [16],

matrix decomposition algorithm (MDA) [17], etc.. Fast direct solver algorithms have

been developed on top of these data sparsification techniques [18]. These fast methods

based on data sparsification algorithms accomplish high efficiency for densely meshed

problems of small or moderate electrical size, however, their efficiency for problems of

large electrical size is yet to be comparable with that of MLFMM. This is mainly due

to the reason that while these data sparsification algorithm can effectively represent

the evanescent phenomenon in the near field, conventional MLFMM is more efficient

to represent the propagation phenomenon.

The aforementioned methods seek alternative representations of the interaction

process between a pair of groups and compress the coupling matrices in a pairwise

manner. On the other hand, the skeletonalization algorithm proposed in [19] utilizes

a low rank decomposition of the off-diagonal coupling blocks of the dense matrices

using a single reduced set of the original DoFs for each group. This set of DoFs is

named as skeletons since they are capable of representing all the interactions between

this group and the other groups that are well separated from it.

1.5 Direct Solver for Integral Equation Methods

Although in recent years, we have witnessed significant advancements of fast inte-

gral equation methods, most of them mainly address the issue of speed-up the matrix-

vector multiplications. Nonetheless, the overall success still relies on the availability

of a robust and effective preconditioner for the integral equation methods. Even
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though, there are many substantial developments in this regard [20], the existence of

a preconditioner that guarantees the convergence in the iterative matrix solution pro-

cess remains largely elusive. Direct solvers for integral equation methods are another

important and interesting branch, they are sometimes favored compared to their it-

erative counterparts, especially in solving ill-conditioned matrices that may seriously

challenge iterative solvers. Moreover, they often exhibit high efficiency in multi-

ple right-hand-sides (RHSs) owing to the small constant in front of the complexity

asymptotic when dealing with small or moderate electrical size problems. However,

the conventional direct solver, based on the LU factorization, scales as O(N2), O(N3)

for memory consumption and the factorization time, respectively. The inherent high

complexities of the conventional LU direct solvers severely limit their application to

solve practical EM problems. To circumvent these difficulties, in recent years, several

fast direct solvers have been proposed in the literature. In reference [18], the author

reported solving an one-million unknown problem using Multi-level Adaptive Cross

Approximation (ML-ACA) algorithm. Also, in reference [7], a local-global solution

method separates the radiating current from the non-radiating counterpart and re-

ported to achieve O(N1.3) complexity in terms of memory consumption for electrically

large problems. Additionally, reference [21] discussed a compressed block decompo-

sition (CBD) method and demonstrated a complexity of O(N1.5) for the memory

consumption. Another work conducted in [22] and [23] adopt the non-uniform grid

(NG) based matrix compression method, it introduces a non-redundant coarse spher-

ical non-uniform sampling grid to effectively skeletonalize the coupling process and

compress the matrix using Schur’s complement. [24] claimed to find the H2 represen-

tation of the inverse of the dense matrix in an error-controllable manner and reported
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a linear complexity both in terms of CPU time and memory consumption. However,

we disagree with the complexity analyses presented in [24] and remain unconvinced

of the performance reported. One of the recently published works, [25] shares some

similarities with the proposed algorithm in this dissertation. It also seeks for a unique

mapping matrix for each group to represent the coupling.

We propose in this dissertation a fast direct solver, based on the algorithm out-

lined in [26], [19], is presented to solve matrix equations from 3D SIE methods for

electrodynamic applications. This algorithm utilizes a low rank decomposition of

the off-diagonal coupling blocks of the dense matrices [27]. Moreover, a multi-level

version in-conjunction with a Huygen’s surface to account for couplings between well-

separated groups is also discussed in detail. Although, we believe that the algorithm

will not alter the complexities of matrix solutions in SIEs in the worst case scenario

for electrically large problems, O(N2) and O(N3) for memory and CPU time, the pro-

posed algorithm can be fast and efficient for many practical numerical examples. Par-

ticularly, during the process of h−refinement, where the discretization size decreases

to improve the accuracy, the complexities observed are O(N) and (N1.5) for memory

and CPU time, respectively. The reported complexities agree well with the theoretical

predictions in [19] for smooth integral kernels on general two-dimensional surfaces. A

few numerical results are included to validate the algorithm. Additionally, numerical

experiments are conducted for fixed mesh size, while the frequency increases, as well

as for fixed frequency, while the mesh size decreases (the h-refinement).
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Chapter 2: A Fast Direct Matrix Solver for Surface Integral

Equation Methods for Electromagnetic Wave Scattering

from Non-penetratable Targets

The implementation details of a fast direct solver is described herein for solving

dense matrix equations from the application of surface integral equation methods

for electromagnetic field scatterings from non-penetrable targets. The proposed algo-

rithm exploits the smoothness of the far field and computes a low rank decomposition

of the off-diagonal coupling blocks of the matrices through a set of skeletonalization

processes. Moreover, an artificial surface (the Huygens’ surface) is introduced for

each clustering group to efficiently account for the couplings between well-separated

groups. Furthermore, a recursive multi-level version of the algorithm has also been

presented. Although asymptotically the algorithm would not alter the bleak outlook

of the complexity of the worst case scenario, O(N3) for required CPU time with N de-

notes the number of unknowns, for electrically large electromagnetic (EM) problems;

through numerical examples, we found that the proposed multi-level direct solver

can scale as good as O(N1.3) in memory consumption and O(N1.8) in CPU time,

for moderate-sized EM problems as the electrical size grows. Note that, our conclu-

sions are drawn based on a few sample examples that we have conducted, and should

not be taken as a true complexity analysis for general electrodynamic applications.
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However, for the fixed frequency (h-refinement) scenario, where the discretization size

decreases, the computational complexity observed agree well with the theoretical pre-

dictions. Namely, the algorithm exhibits O(N) and O(N1.5) complexities for memory

consumption and CPU time, respectively.

2.1 Problem Statement

Figure 2.1: Illustration of the boundary value problem

For electromagnetic wave scattering from a non-penetrable target, we have the

following boundary value problem statement. (with the factor eiωt suppressed, i =

√
−1) 

O× O× E− k2E = 0 in Ω

n̂× E = 0 on Γs

lim|r|⇀∞ |r|(O× Esca + ikr̂× Esca) = 0

(2.1)

As illustrated in Figure.2.1, an incident plane wave Einc impinges on the boundary Γs

of a PEC object Ωs. The complement of the scatter is denoted by Ω (= R3 \ Ωs) and

Γs is the bounding surface of Ωs. The wavenumber is denoted by k = ω
√
µ0ε0, with

µ0 and ε0 being the permeability and the permittivity of the free space, respectively.
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Subsequently, we have the following boundary condition to be satisfied:

πtE = 0 on Γs (2.2)

where πt denotes the tangential trace operator on the surface and it is defined as

πtu = n̂× u× n̂. Expanding the total field, E = Einc + Esca, we have

−πtEinc = πtE
sca on Γs (2.3)

Moreover, both the electric E and the magnetic H fields in the exterior region, Ω,

can be obtained through the Stratton-Chu representation formulae in terms of the

surface electric current density, J = (n̂×H) ∈ H−1/2 (divΓ; Γs). Consequently, we

write the electric field integral equation (EFIE) as:

πtE
inc(x) = −πtL(J)(x) on Γs (2.4)

where L(J)(x) = −ıkη
∫

Γs
[¯̄I + 1

k2 5(x)
Γ O

(x)
Γ ·]G(x,y)J(y)dy. Note that, we denote O(x)

Γ

and O(y)
Γ as the surface gradient operators operate on the observation and the source

coordinates, respectively.

Magnetic field integral equation (MFIE) can also be derived for closed surface

targets as:

π×Hinc =
1

2
J +K(J)(x) (2.5)

where K(J)(x) = −n̂× p.v.
∫

Γs
5(x)

Γ G(x,y)× J(y)dy, p.v. stands for principle value,

π×u = n̂ × u and G(x,y) = e−ik|x−y|

|x−y| is the Green’s function in free space. Note

that the MFIE formulation, equation (3.5), is only applicable for closed-surfaced

non-penetrable targets.
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The combined field integral equation (CFIE) combines the EFIE and the MFIE

to yield:

απtE
inc + (1− α)ηπ×Hinc =

1− α
2

ηJ− α(πtL(J)(x)) + (1− α)ηK(J)(x) (2.6)

where η =
√
µ0/ε0 is the free space intrinsic impedance. The CFIE formulation

mitigates the notorious internal resonances by treating Γs as an impedance surface

[28], and thus renders the resonance frequencies complex so long as <α 6= 0.

2.2 Theory of Direct Solver

2.2.1 Single-level Direct Solver

The fast algorithms of direct solution of integral equations are usually developed

by exploiting the redundancy in the couplings between well-separated groups. This

is mainly due to the fact that the discretization size employed in the SIEs is usu-

ally much higher than the Nyquist sampling rate in order to capture the near-field

evanescent-mode phenomena. However, discretization thus employed will often be an

overkill for computing the radiation between well-separated groups. Subsequently,

this redundancy would manifest as the rank deficiency in the off-diagonal matrix

blocks. Herein, we seek the inverse of the system matrix through exploitation of the

rank deficiency of the coupling matrices hierarchically, both in terms of geometry

partitions and matrix operations.

For the application of method of moments, one first discretizes the problem ge-

ometry, followed by choosing proper basis functions (commonly Rao-Wilton-Glisson

(RWG) basis functions [29]), to span the unknown surface electric current density J.

Explicitly, we write J ≈
∑N

i=1 ciλi with λi denotes ith RWG basis function. In order
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to take advantage of the rank deficiency of the couplings, a hierarchical decomposi-

tion of the original geometry would be desirable. For problems in 3D, a hierarchical

oct-tree would be constructed and the RWG basis functions are sorted into separate

boxes from each level of the oct-tree according to their coordinates. The oct-tree

partitioning continues until the smallest boxes include no more than 100 unknowns.

Subsequently, the RWG basis functions would be reordered such that the first n1 un-

knowns belongs to the box number 1, the second n2 unknowns belongs to box number

2, etc. By testing the EFIE and MFIE with proper testing functions [30], we obtain

a dense linear matrix equation Ax = b. To assist our discussions, we assume that the

unknowns are partitioned into three groups, see Figure.2.2. As a consequence, the

impedance matrix can be written accordingly as: A11 A12 A13

A21 A22 A23

A31 A32 A33

 �
 x1

x2

x3

 =

 b1

b2

b3

 (2.7)

where Aij denotes the coupling matrix between box i and box j, xi denotes the

coefficients of the basis functions in box i while bi represents the right hand sides

vector of box i. Assuming the off-diagonal sub-matrices, Aij, i 6= j, are low rank and,

subsequently, can be decomposed as (with ki < ni, kj < nj):

A
ni×nj

ij ≈ Lni×ki
i S

ki×kj
ij R

kj×nj

j (2.8)

where ni, nj are the numbers of unknowns and ki, kj are the effective ranks in box i and

box j, respectively. This decomposition [26] proves beneficial since Li and Rj associate

only with boxes i and j. Unlike other data-sparse-representation techniques such as

ACA, which generates separate low rank decomposition for each distinct coupling

pair, the Li matrix produced herein by the proposed skeletonalization process can be

shared by Aij,∀j 6= i. Yet another interesting characteristic of equation(3.22) is that
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Figure 2.2: Partitioning of the problem geometry into 3 groups.

the entries of Sij are comprised of the original entries of Aij. The reduced set of basis

functions employed for Sij are thus named ”skeletons”.

To obtain the decomposition in equation(3.22) for block i, we concatenate all the

Aij sub-matrices or ATij sub matrices with i 6= j:

ALi =
[
Ai1 Ai2 · · · AiNj

]ni×(Ntot−ni) , (2.9)

ARi =
[
AT1i AT2i · · · ATNji

]ni×(Ntot−ni)
(2.10)

whereNtot is the total number of DoFs of the problem and Nj is the number of geomet-

rical partitions in the current level. Following the approach proposed in [27], which

involves a column pivoted QR decomposition, we perform the desired decompositions

of ALi and ARi . Subsequently, the matrices Li and Ri can be computed separately and,

accordingly, the incoming (receiving) and the outgoing (radiating) skeletons. Namely,

for each of the groups, there would be two skeletons responsible for radiating and re-

ceiving operations, respectively. However, an alternative enables us to consolidate
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the L and R matrices, through concatenating all Aij and ATij sub-matrices. We write:

Ai =
[
ALi ARi

]
=
[
Ai1 Ai2 · · · AT1i AT2i · · ·

]ni×2(Ntot−ni) (2.11)

When decomposing the matrix Ai in equation (3.23), it can be shown:

Li = RT
i (2.12)

As a consequence, only one QR decomposition needs to be performed for each of the

groups. Specifically, we have:

ATi PR ≈ Q
[
R11 R12

]
(2.13)

where PR is the permutation matrix generated during the QR decomposition process.

Moreover, we note that P T
R = P−1

R . The numerical rank ki would be determined from

the diagonal entries of R = [R11 R12] matrix.

Denote R11T = R12, and we have:

Ai ≈ PR

 I

T T

ARS (2.14)

where I is the ki×ki identity matrix. ARS is the first ki rows of P T
RAi. Consequently,

the first ki rows of the permutated Ai matrix are the skeleton indices while the rest of

the (ni − ki) rows are linear combinations of the ki skeletons and the coefficients are

stored in T T matrix. After the QR decomposition, the Li matrix is readily available:

Li = PR

 I

T T

 (2.15)

It is worth pointing out that the skeletonalization process could be highly parallelized.
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With the mappings Li computed, the matrix equation (2.7) can be rewritten as: A11 0 0
0 A22 0
0 0 A33

 �
 x1

x2

x3

N×1

+

 0 L1S12 L1S13

L2S21 0 L2S23

L3S31 L3S32 0

 �
 y1

y2

y3

Nk(1)×1

≈

 b1

b2

b3

 (2.16)

with yj = LTj xj. From equation(2.16), it is obvious that the solution of the original

problem, x, can be expressed in terms of the new y vector with much reduced dimen-

sion Nk(1) (if the effective ranks are much smaller than the number of unknowns in

each block). Written explicitly, we have x1

x2

x3

 ≈
 A11 0 0

0 A22 0
0 0 A33

−1

�

 b1

b2

b3

−
 0 L1S12 L1S13

L2S21 0 L2S23

L3S31 L3S32 0

 �
 y1

y2

y3


(2.17)

Evidently, the computation of the solution vector, x, hinges on our ability to compute

y. To do so, we shall rewrite equation(2.16) into:
A11 0 0 0 L1S12 L1S13

0 A22 0 L2S21 0 L2S23

0 0 A33 L3S31 L3S32 0
LT1 0 0 −I1 0 0
0 LT2 0 0 −I2 0
0 0 LT3 0 0 −I3

 �


x1

x2

x3

y1

y2

y3

 ≈


b1

b2

b3

0
0
0

 (2.18)

Left multiply equation (2.18) with
R1 0 0 0 0 0
0 R2 0 0 0 0
0 0 R3 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I




A−1

11 0 0 0 0 0
0 A−1

22 0 0 0 0
0 0 A−1

33 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

 (2.19)
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results in 
I 0 0 0 LT1A

−1
11 L1S12 LT1A

−1
11 L1S13

0 I 0 LT2A
−1
22 L2S21 0 LT2A

−1
22 L2S23

0 0 I LT3A
−1
33 L3S31 LT3A

−1
33 L3S32 0

I 0 0 −I 0 0
0 I 0 0 −I 0
0 0 I 0 0 −I



�


LT1 x1

LT2 x2

LT3 x3

y1

y2

y3

 =


LT1A

−1
11 b1

LT2A
−1
22 b2

LT3A
−1
33 b3

0
0
0


(2.20)

Equation (2.20) can be simplified by removing the redundant equations, and we

have:  y1

y2

y3

 ≈
 E11 S12 S13

S21 E22 S23

S31 S32 E33

−1

�

 C1 0 0
0 C2 0
0 0 C3

 �
 b1

b2

b3

 (2.21)

where Eii = (LTi A
−1
ii Li)

−1, Ci = EiiL
T
i A
−1
ii . Substituting equation(2.21) to equation(2.17)

gives:

A−1 ≈ A−1
D − A

−1
D LDS(E + S)−1CD (2.22)

with E =

 E11 0 0
0 E22 0
0 0 E33

 and S =

 0 S12 S13

S21 0 S23

S31 S32 0

. Moreover, from the

simple fact that S = (E + S)− E, equation(2.22) can be rewritten as:

A−1 ≈ A−1
D − A

−1
D LDCD + A−1

D LDE(E + S)−1CD (2.23)

where AD, LD, CD are all block diagonal matrices whose diagonal blocks are Aii,

Li, Ci, respectively. Finally, the approximate A−1 can be displayed as:

(A−1)N×N ≈ D +B((E + S)−1)Nk(1)×Nk(1)C (2.24)
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with B = A−1
D LDE , C = CD, D = A−1

D −A
−1
D LDCD, N is the number of RWG basis

functions, and Nk(1) is the sum of all effective ranks of all groups, which in many

applications can be notably less than N .

The use of equation(2.24) leads to a significant reduction in memory consumption

since for all the matrices involved in equation(2.24), B,C,D,E matrices are all block

diagonal. The S matrix is off-diagonal dense matrix, namely, Sii = 0. However, con-

sidering its entries are nothing but a permuted subset of the original MoM impedance

matrix in equation (2.7), we need only store the indices of the skeleton DoFs. This

is crucial for the multi-level implementation. Even the four block diagonal matrices

aforementioned, not all the entries need to be stored explicitly. One obvious approach

stores only A−1
ii , Eii and Li matrices, and subsequently, all operations involved in the

direct solver can be fully accounted for.

2.2.2 Skeletons & Skeletonalization

Figure 2.3: Skeletonalization

The skeletons, or the skeleton DoFs are the reduced set of DoFs that are capa-

ble of representing the receiving and/or radiating phenomena. Herein this section
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we visually describe the skeleton and the related skeletonalization process through

Figure.2.3. Take the example of an wedge geometry as illustrated in Figure.2.3 (a),

the DoFs are partitioned into groups and their supports are depicted using distinct

colors as in Figure.2.3 (b). The skeletonalization process would then be evoked to

identify the skeleton of each group, i.e. the reduced set of DoFs, whose supports are

colored the same as in Figure.2.3 (c). Thereafter, the indices of these reduced DoFs

(or skeleton), are stored and utilized to assemble the S matrix.

2.2.3 Multi-level Direct Solver

Single-level direct solver takes advantage of the rank deficiency property of the off-

diagonal coupling matrices and use the Shur’s complement to represent the solution of

the original problem in terms of a reduced set of unknowns, i.e., skeletons. Note that

this reduced set of unknowns are a subset of the original unknowns, which implies

that the redundancy exist between the first level partitions could still exist among

couplings between different partitions of this reduced set of skeletons. Then these

coupling matrices could still possess rank deficient property, if properly re-grouped.

This can be seen clearly from the expression of (E + S) matrix in equation(2.24),

where the [S] are nothing but the coupling matrices between the skeleton unknowns.

It would be logical to extend the algorithm to further compress the (E+S) matrix

in (2.24). Mathematically, one can simply substitute the original A matrix with

the (E + S) matrix obtained in equation(2.24). Subsequently, we cluster the DoFs

within the current children groups into groups in higher levels, i.e., those children

groups share the same parent in the tree structure. This re-grouping process can be

straightforwardly demonstrated by Figure.2.4, i.e., the skeleton DoFs resulted from
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the previous level operation as in Figure.2.4 (a) would be re-grouped into coarser level

groups as in Figure.2.4 (b). In terms of matrix operation, this procedure is equivalent

Figure 2.4: Multi-level Skeltonalization

to clustering the diagonal matrix groups as illustrated in Figure.2.5. After the 1st

level direct solver, the resulting (E + S) matrix could be represented by the first

square in Figure.2.5, where gray blocks represent matrices that are recalculated and

updated, while dark blocks represents matrices that are not changed beyond row and

column permutations. Subsequently, the red square lines would cluster the group to

the next level and generate a (E+S) matrix. Next, we perform the algorithm to this

Figure 2.5: Matrix representation of the direct solver process. Gray blocks represents
matrices that are updated, dark blocks represents matrices that are not changed
beyond row and column permutation.
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re-clustered (E + S) matrix, i.e., identifying the skeletons and mapping matrices Li

of these new set of DoFs in the current level. The supports of the resulted skeletons

are then plotted in Figure.2.4 (c). Mathematically, the corresponding expression can

be written explicitly as:

(A−1)N×N ≈ D+ B[D(2) +B(2)((E(2) + S(2))
−1)Nk(2)×Nk(2)C(2)]

Nk(1)×Nk(1)C (2.25)

Note that the dimension of (E(2) +S(2)), i.e., Nk(2), is further compressed. Continuing

this algorithm recursively, one ends up with a multi-level version of the direct solver

and consequently achieves gain in a telescope manner. The current multi-level direct

solver would come to a halt and switch to direct LU factorization when it reaches the

coarsest level, e.g., the level with no more than 8 groups left.

2.2.4 Skeletonalization Using A Huygen’s Surface

Skeletons revealed in this algorithm are the effective basis functions that can ac-

curately account for both the near field and far field couplings. For the group i, whose

support of DoFs is depicted by red triangulation in Figure.2.6, its near field exhibits

higher degree of oscillations/variations. However, the couplings between group i and

the groups reside outside group i’s Huygen’s surface are smooth. Consequently, for

DoFs that reside in groups outside group i (whose supports are colored black), the

couplings could be accounted for much more efficiently using the Huygen’s surface.

The use of the Huygen’s surface to compute far field couplings is justified through

the Huygen’s principle. Namely, any field radiating from any current enclosed inside

the Huygen’s surface is equivalent to the field radiating from the induced currents

on the Huygen’s surface [26]. We remark that the Huygen’s surface could be any

shape as long as Huygens principle is respected. In the current implementation, the
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Figure 2.6: Near field and far field region of group i

Huygen’s surfaces are constructed by simply setting dΓa
i
≈ 3di, where di is the box

size at ith level as in Figure.2.7. As a consequence, the skeletonalization process can

be accelerated via Huygen’s surfaces through the following steps. First, these surfaces

denoted by Γa are discretized based on the precision required [26] as in Figure.2.7,

and assigned basis functions to the corresponding traingulations. After this, instead

of calculating the matrix equation(3.23), we assemble the following matrix AΓa
i ,

(AΓa
i )ni×2(Nnb

i +2K) =[
Ai,j1 Ai,j2 · · · Ai,jnb

Ai,Γa ATj1,i ATj2,i · · · ATjnb,i
ATΓa,i

]
(2.26)

where, Nnb
i is the number of basis functions in the neighboring groups of group i, K is

the number of basis functions on Γa, Ai,k denotes the coupling matrices where DoFs

in group i serves as receiver and DoF jnb serves as radiator while ATi,k denotes the

alternative scenario. Therefore, the adoption of the Huygen’s surface Γa separates

the far field from the near field.

Subsequently, the AΓa
i matrix is passed onto the pivoted QR decomposition as in

equation (2.13). For a m× n matrix, the complexity of pivoted QR decomposition is
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Figure 2.7: Artificial boundary of group i

u2v, where u = min{m,n}, v = max{m,n}. For the case of direct solver, it is almost

always valid that (Ntot − ni) >> (Nnb
i + 2K). Thus, the QR decomposition of AΓa

i is

notably more efficient than its Ai counterpart.

2.3 Numerical Results

2.3.1 Sphere

The first example to validate the proposed algorithm is a plane wave, at 300 MHz,

scattering from a 4m sphere radius PEC sphere discretized using an averaged mesh

size of 0.1λ. The discretization gives rise to 74,169 unknowns. The entire problem

geometry is decomposed hierarchically, via an oct-tree structure, and results in 3

levels of partitions. At the leaf level, we have total 272 non-empty groups, which

corresponds to approximately 272 DoFs per group on average. CFIE with α=0.5

and QR threshold of 1.e-3 are adopted. The computed far fields are plotted against

Mie series in Figure.2.8. On an Intel Xeon platform with X5450 CPUs at 3.00GHz,

it takes 4 hours 55 minutes 14 seconds and 6.23 GB memory using double precision
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arithmetic. While the direct LU factorization, we estimate, would take 595 hours 21

minutes 32 seconds.

Figure 2.8: Computed RCS of a 4 λ radius sphere compared against the Mie Series
results

2.3.2 Complexity and Error Studies

Two numerical experiments are conducted to study the computational complexity

of the proposed direct solver, both the memory consumption and CPU computational

time. Specifically, we aim to determine the computational complexity under two sce-

narios: the first one by fixing the mesh size with respect to the wavelength and

increasing the frequency; and, the second one is to fix the operating frequency while

decreasing the mesh size with respect to the wavelength. In all cases reported herein,

the results are obtained using the CFIE with double precision and the tolerance of

the QR decomposition is set to be 1.e-3. Moreover, we have parallelized the proposed

algorithm using openMP and the computational results reported here are computed

with 8 threads. The first complexity studies is a PEC sphere of 1.5m radius and
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is discretized using mesh size of 0.1λ with varying frequency. The computational

statistics are listed in Table 2.1, in which N denotes the number of DoFs for the

problem and n denotes the size of the matrix that is subjected to direct LU factoriza-

tion at the final level. complexity of approximately O(N1.3) is observed for memory

consumption and O(N1.8) for CPU time. Note that our conclusion is simply based

on the numerical results for this particular example. However, it does demonstrate

the common trend that we have observed for many other examples. Since we can

only apply the proposed direct solver, even with the aids of openMP parallelization,

to moderate electrical size problems, we should not extrapolate the results to the

asymptotic complexity of electrically large structures, where the unknowns may be

in the range of hundreds of millions. Nevertheless, the computational complexity

illustrated here are still very encouraging since for electrically large EM problems,

the proposed direct solver will often be used in-conjunction with the Krylov iterative

solver as an effective preconditioner.

Secondly, for the same sphere at 30MHz, we study the computational complexity

with respect to the decrease of the mesh size (h-refinement). Computational statistics

are obtained for different mesh sizes ranging from 0.01 to 0.0015 wavelengths; and,

complexity of O(N) for memory and O(N1.5) for CPU times are observed from Table

2.2. Our observed complexity for both memory and CPU time agree well with the

predictions described in [19].

Furthermore, we define three sets of error to investigate the accuracy of the solu-

tion. They are: (1). The solution error, i.e., εsol, defined as ‖ xexact− x̃ ‖ / ‖ xexact ‖,

with xexact denotes the solution computed from the usual LU factorization wherever

possible; and, (2). The factorization error, denoted by εfac = max
z
{‖ z − AÃ−1z ‖
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Table 2.1: Computational Statistics for Fixed Mesh Size Study

freq. level N n Memory CPU εfac εapp

300MHz 3 10,242 3,515 0.46GB 4.90e+2s 6.43e-4 4.82e-4
375MHz 3 16,020 4,640 0.86GB 1.15e+3s 6.48e-4 4.83e-4
500MHz 4 28,806 6,450 1.87GB 3.39e+3s 7.64e-4 5.68e-4
600MHz 4 41,415 7,716 2.89GB 6.20e+3s 8.75e-4 7.23e-4
1000MHz 5 116,253 13,925 10.59GB 4.13e+4s 1.07e-3 8.84e-4
2000MHz 6 465,012 28,565 64.02GB 5.03e+5s 2.12e-3 9.23e-4

Table 2.2: Computational Statistics for Fixed Frequency Study

h (λ) level N n Memory CPU εfac εapp

0.01 3 10,242 2,644 0.31GB 6.80e+2s 3.42e-3 3.87e-4
0.008 3 16,020 3,396 0.52GB 1,38e+3s 4.25e-3 4.01e-4
0.006 4 28,806 4,597 1.03GB 3.41e+3s 5.80e-3 4.08e-4
0.005 4 41,415 5,474 1.50GB 5.88e+3s 6.47e-3 4.12e-4
0.003 5 116,253 9,256 4.32GB 2.78e+4s 1.06e-2 4.30e-4
0.0015 6 465,012 18,971 17.02GB 2.29e+5s 2.42e-2 5.65e-4

/ ‖ z ‖ }, where Ã is the approximate matrix to A through the skeletonization pro-

cess; and, (3). The approximation error, εapp = max
z
{‖ Az − Ãz ‖ / ‖ Az ‖ }. We

randomly generated 10 sets of independent and identically distributed (i.i.d.) vectors

and perform the error calculations, the results of the maximum errors are included in

Table 2.1 and Table 2.2 for fixed mesh size and fixed frequency scenarios, respectively.

Examine Table 2.1 and Table 2.2, we observe that the approximation errors are all

less than the specified tolerance 1.e-3. However, both the solution and factorization

errors increase monotonically as the number of DoFs increases. Especially in the

fixed frequency case, where smaller discretization sizes translate directly to larger

matrix condition numbers, (κ (A) ∝ 1
(kh)2 ), without any low frequency regularization
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techniques [31]. Moreover, the largest singular value of the coupling matrices of any

group grows as O( 1
h
) since the smallest coupling capacitance between two neighboring

groups decreases as O(h); whereas the small singular values of the off-diagonal blocks

are almost independent of the mesh size since they are predominantly associated with

the MFIE operator. Behavior of similar nature was also reported in some literature,

e.g. [7]. This phenomenon reinforces the statement that the condition number of

the matrix would affect the performance of the direct solution algorithms, especially

the ones rely on the rank deficiency of the system matrix [7]. So even for the direct

solvers, it is still desirable to have formulations that are capable of yielding good

conditioned system matrices.

2.3.3 Machine Gun

In this section, we consider a more complex and somewhat practical target. The

current distribution on a free-standing machine gun subjected to an EM plane wave

at 2 GHz is shown in Figure. 2.9. The target gives rise to 74,310 unknowns after

being discretized, and 201 non-empty groups are established for the 1st level, and 370

DoFs per group on average. Multi-scale structures like the machine gun discussed here

would usually yield ill-conditioned matrix equations, that will be costly for the Krylov

iterative methods to solve. In circumstances like this, the proposed direct solver will

then be highly desirable. Particularly, when it is combined with the newly developed

integral equation domain decomposition method (IEDDM) [20] as an effective sub-

domain solver for sub-domains that involve singularities and/or small features. As an

example, we mount the machine gun to a tank and calculate the EM scattering from

it with the same incident plane wave. The entire target, after discretization, results

30



in 1,027,554 unknowns using a mesh size, on the average, h = 0.1λ. The current

distribution is plotted in Figure. 2.10. In this example, the proposed direct solver

serves as a sub-domain solver for the sub-domains, and therefore, the convergence

of these sub-domains are guaranteed. At initial running, it took 5 hours 25 minutes

to obtain the inverse representation of the impedance matrix for the machine gun

domain alone. For the IE-DDM iterations other than the first one, responses from

this subdomain can be solved by simply applying the existing inverse to the RHSs.

Figure 2.9: current distribution on a free-standing gun

Figure 2.10: current distribution of a gun mounted on a tank
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2.3.4 Mock-up Aircraft

For the final example, an electromagnetic wave scattering from a mock-up air

platform at 75MHz is considered. The positive x polarized plane wave impinges from

positive z direction. For this problem, we have a discretization of the surface with the

average mesh size of approximately λ/40, which gives rise to 60,495 unknowns. It is

usually difficult for a mesh generation software to guarantee the quality of each and

every triangle when facing geometries of such complexity. However, the presence of ill-

shaped triangles with inferior qualities would greatly affect the convergence behavior

of the iterative solver, though the percentage of these bad triangles are usually very

small. Additionally, the condition number of EFIE deteriorates [31] when it is applied

to such a low frequency application. Combinations of these technical difficulties result

in the failure of the Krylov iteration methods. Specifically we employed the CGS, and

the relative residual stagnates around 0.1 after a few hundred iterations. To combat

the above mentioned difficulties, we apply the proposed direct solver and it results

in 4-level partitioning and with 221 non-empty groups and 273 DoFs per group on

average for the leaf level. Figure 2.11 plots the computed current distribution on the

platform, without the dielectric radome of the nose of the airplatform. Moreover, the

mono-static far field pattern is also calculated and included in Figure. 2.12. On an

Intel Xeon platform with 8 X5450 CPUs at 3.00GHz, it takes 3 hours 11 minutes 53

seconds to obtain the inverse representation. Then it takes 27 minutes 24 seconds to

calculate the RHS response from 360 mono-static incident angles on φ = 0o plane.
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Figure 2.11: current distribution of a mock up platform at 75MHz

Figure 2.12: mono-static far field pattern of a mock up platform at 75MHz, observa-
tion plane φ = 0o
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2.4 Conclusion

In this chapter, a hierarchical direct solver algorithm is developed to solve integral

equations in 3D electromagnetic wave scattering from non-penetrable targets. The

proposed algorithm utilizes the skeletonalization process to effectively compress the

rank-deficient off-diagonal blocks, which correspond to the couplings between groups.

Huygen’s surfaces are also introduced to account for the far field couplings efficiently,

and thus further accelerate the algorithm. It has been demonstrated that the con-

dition number of the system matrix would still affect the solution errors of direct

solvers. Despite the limitations, for problems of small or medium electrical sizes, the

multi-level version of the proposed algorithm features O(N1.3) and O(N) complexity

for memory consumption and O(N1.8) and O(N1.5) for CPU times for fixed mesh

size and for h-refinement scenarios, respectively. We emphasize that the complexity

reported herein are based on a finite number of moderate electrical size problems that

we have studied, and should not be taken asymptotically into electrically large wave

problems. Finally, the proposed direct solver when combined with the newly devel-

oped IEDDM equip us a versatile tool to solve complex electromagnetic problems

with multiscale geometrical features.
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Chapter 3: Hierarchial Multi-level Fast Multipole Method

A hierarchical multi-level fast multipole method (H-MLFMM) is elucidated herein

to accelerate the solutions of surface integral equation (SIE) methods. The proposed

algorithm is particularly suitable for solutions of wideband and multi-scale electro-

magnetic problems. As documented in [10] that the multi-level fast multipole method

(MLFMM) achieves O(NlogN) computational complexity in the fixed mesh size sce-

nario, hk = cst. where h is the mesh size and k is the corresponding wavenumber,

for problems discretized under conventional mesh density. However, its performance

deteriorates drastically for overly dense meshes where the couplings between differ-

ent groups are dominated by evanescent waves or circuit physics. In the H-MLFMM

algorithm, two different types of basis functions are proposed to address these two

different natures of physics corresponding to the electrical size of the elements. Specif-

ically, for the propagating wave couplings, the plane wave basis function adopted by

MLFMM are effective and they are inherited by H-MLFMM. Whereas in the circuit

physics and for the evanescent waves, H-MLFMM employs the so-called skeleton ba-

sis. Moreover, the proposed H-MLFMM unifies the procedures to account for the

couplings using these two distinct types of basis functions. O(N) complexity is ob-

served for both memory and CPU time from a set of numerical examples with fixed
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mesh sizes. Numerical results are included to demonstrate that H-MLFMM is error

controllable and robust for a wide range of applications.

The contributions of the proposed H-MLFMM are mainly two folds. First, it

distinguishes the evanescent wave interactions from the propagating wave interactions.

Two different sets of basis functions are utilized to address these two different nature

of physics, respectively. Second, H-MLFMM unifies these two interaction physics in

a framework that the procedures are almost parallel to each other.

The rest of the chapter is organized as follows: Firstly, we present the problem

statement, followed by the blueprint of the proposed H-MLFMM and an explanation

of algorithm from a physical point of view. Subsequently, we detail the treatment

of wave physics within H-MLFMM. Moreover, in this section, we offer an alterna-

tive interpretation of MLFMM from a transmitting-receiving model. Additionally, a

two-step mapping is implemented to accelerate the aggregation and disaggregation

operations within the proposed H-MLFMM for treating the wave physics interactions.

Next section focuses on the treatment of circuit physics, or the evanescent wave inter-

actions, via a skeletonalization algorithm. The proposed skeletonalization algorithm

for addressing the circuit physics almost parallels the conventional MLFMM. Further-

more, a block diagonal pre-conditioner based on the same skeletonalization algorithm

is also introduced. The details of the implementation of skeletonalization algorithm

utilized in this chapter is elucidated. The error controllability, scalability and perfor-

mance of the proposed H-MLFMM are documented in Section VII through several

numerical examples. Finally, we conclude our studies and provide a brief summary

of our findings.
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3.1 Problem Statement

For electromagnetic wave scattering from a non-penetrable target, we have the

following boundary value problem statement.
O× O× E− k2E = 0 in Ω

n̂× E = 0 on Γs

lim|r|⇀∞ |r|(O× Esca + kr̂× Esca) = 0

(3.1)

An incident plane wave Einc impinges on the boundary Γs of a PEC object Ωs,

the complement of the scatter is denoted by Ω (= R3 \ Ωs) and Γs is the bounding

surface of Ωs. The wavenumber is denoted by k = ω
√
µ0ε0, with µ0 and ε0 being the

permeability and the permittivity of the free space, respectively. Subsequently, we

have the following boundary condition to be satisfied:

πtE = 0 on Γs (3.2)

where πt denotes the tangential trace operator on the surface and it is defined as

πtu = n̂× u× n̂. Expand E = Einc + Esca, we have

−πtEinc = πtE
sca on Γs (3.3)

By introducing an equivalent electric current J = (n̂×H) ∈ H−1/2 (divΓ,Γs), both

the electric E and the magnetic H fields in the exterior region, Ω, can be well repre-

sented by J as a result of Stratton-Chu representation formulae. Thus, we have the

electric field integral equation (EFIE):

πtE
inc = −πtL(J)(x) on Γs (3.4)

where L(J)(x) = −kη
∫

Γs
[¯̄I + 1

k2 5(x)
Γ O(y)

Γ ·]G(x,y)J(y)dy. O(x)
Γ and O(y)

Γ are re-

spectively the surface gradient operators operated on the observation and the source

coordinates.
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Magnetic field integral equation (MFIE) can also be derived by invoking the

boundary condition (n̂×H) (x) = J (x) for closed surface targets,

π×Hinc = K(J)(x) (3.5)

where K(J)(x) = J(x)− n̂×
∫

Γs
5(x)

Γ G(x,y)× J(y)dy, π×u = n̂× u and G(x,y) =

e−k|x−y|

|x−y| is the Green’s function in free space. Note that the MFIE formulation equa-

tion (3.5), is only applicable to closed-surfaced non-penetrable targets.

The combined field integral equation (CFIE) combines the EFIE and the MFIE

to yield:

απtE
inc + (1− α)ηπ×Hinc = α(−πtL(J)(x)) + (1− α)ηK(J)(x) (3.6)

where η =
√
µ0/ε0 is the free space intrinsic impedance. The CFIE formulation mit-

igates the notorious internal resonances by effectively using the impedance boundary

condition on Γs, which renders the resonance frequencies complex, so long as the

coefficient <α 6= 0.

3.2 An Overview of the Hierarchical MLFMM

Depending on the electrical sizes and the distance separated between two groups,

the interactions between them are dominated by either propagating wave or circuit

(evanescent wave) physics. Accordingly, different numerical treatments should be ap-

plied to reflect the two distinct natures of physics. Assuming two groups of DoFs

whose supports are denoted as Γi and Γj in Figure.3.1. If Dij > dmin, the interaction

between group i and group j mainly corresponds to the propagation physics, where

EM energy travels and exchanges between group i and group j. Moreover, dmin is

a chosen minimum distance to separate predominately the wave and circuit physics
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Figure 3.1: Propagation and evanescent wave physics

(herein, we set dmin = λ/4). For groups that are well separated, i.e., Dij > dmin, en-

ergy is predominantly exchanged through wave propagation between the transmitting

and receiving groups. The plane wave basis adopted by the conventional MLFMM

is well-suited to represent propagating EM waves, hence they are inherited herein to

deal with the propagating wave physics effectively.

Another class of interactions is illustrated in Figure. 3.1 between group γi and

group γj. We name this type of coupling “Huygens’ coupling”, and they mainly occur

between groups with small separation distances, namely dij < dmin. For interactions

involved in the Huygen’s coupling, the majority of the energy is trapped locally and

converts back and forth between the capacitive and inductive stored energy. The

plane wave basis adopted for the wave physics would not be adequate for the Huygen’s

coupling. Alternatively, we employ the so-called skeletons as the basis to account for

the interactions between γi and γj. Unlike the conventional MLFMM, which requires

its leaf level group size to be no less than λ/4 regardless the number of DoFs resides

in, H-MLFMM enforces no restrictions on the electrical size of the groups. As a
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consequence, the average number of DoFs at the leaf level of the H-MLFMM can

always be brought under a certain threshold nt (typically, we set nt = 50 in this

work).

3.3 Propagating Wave Physics

As discussed earlier, interactions between two well-separated groups, Dij > dmin,

are dominated by propagating waves. Consequently, the MLFMM is capable of com-

puting the couplings between them efficiently via the use of plane wave basis. In

this section, we present a slightly different perspective of the MLFMM and further

introduce a two-step mapping to accelerate the projection between the RWG basis

and the plane wave basis.

3.3.1 Revisit the MLFMM

Conventional MLFMM projects the original basis to plane wave basis and ac-

celerates the coupling process in an efficient and error controllable manner. In the

following paragraphs an alternative prospective would be elucidated to re-examine the

conventional MLFMM, a close connection would be established between the MLFMM

and the H-MLFMM afterwards. Conventional MLFMM starts by partitioning the 3D

geometry into hierarchical oct-tree groups and then assigns DoFs into corresponding

groups according to their geometrical positions. For the sake of simplicity, we assume

a binary-tree partition for the following discussion. For a group i at level L, there

exists a surface Γ
(L)
i that encapsulates the support of its DoFs, where i is the group

number. Then the coupling phenomena can be classified into two categories.

We refer to the first type of interaction as radiation coupling, where group i and

group j satisfy Γ
(L)
i

⋂
Γ

(L)
j = ∅. The corresponding matrix blocks R are denoted
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Figure 3.2: Matrix representation corresponding to level 1 (a), level 2 (b) and level 3
(c) binary partition of conventional MLFMM.

by green squares in Figure.3.2, while S represents self coupling and N stands for

near field coupling between groups that touching each other. Conventional MLFMM

adopts the projection between the original basis function and the plane wave basis

to accelerate this type of coupling. Take Figure.3.2(c) for example, R
(3)
ij denotes the

radiation coupling between group i and group j at level 3.

R
(3)
ij = (XH

i )(3)T
(3)
ij X

(3)
j =

[
XH
θ XH

φ

](3)

i

[
Tij 0

0 Tij

](3) [
Xθ

Xφ

](3)

j

(3.7)

where (Xθ)
M×N(3)

i =
∫
Si


θ̂1e
−j ~k1·~d

θ̂2e
−j ~k2·~d

...

θ̂Me
−j ~kM ·~d

 · [ ~α1(~d′) ~α2(~d′) · · · ~α
N

(3)
i

(~d′)
]

,

(Xφ)M×N
(3)
i =

∫
Si


φ̂1e

−j ~k1·~d

φ̂2e
−j ~k2·~d

...

φ̂Me
−j ~kM ·~d

 · [ ~α1(~d) ~α2(~d) · · · ~α
N

(3)
j

(~d)
]

and

(T
(3)

ij )M×M =


ω(k̂1)T1 0 · · · 0

0 ω(k̂2)T2 · · · 0
...

...
...

...

0 0 · · · ω(k̂M)TM

.
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Among the expressions, X
(3)
j is the so-called aggregation matrix and (XH

i )(3) is the

disaggregation matrix. ~ακ(~d) denotes the original basis functions (usually the RWG

functions), κ = 1, 2, · · ·N (3)
i , here N

(3)
i is the number of DoFs within group i at level

3. Tm(~km · ~Dij) =
L∑
l=1

(−j)l(2l + 1)h
(2)
l (kDij)Pl(D̂ij · k̂m), m = 1, 2, ...,M and M is

the number of plane wave basis adopted, usually M = 2L2, where L is the mode

number[32]. h
(2)
l is the spherical Hankel function of the second kind, Pl is a Legendre

polynomial. ω(k̂m) is the weight of the quadrature point at each plane wave direction

k̂m.

Physically, this can be explained via the antenna communication model as follows.

Assuming a given current ~Jt(
~d′) as a transmitting antenna, The radiation pattern at

direction k̂(θ, φ) can be expressed as follows,

~E
t
(k̂) =

(
θ̂ ·
∫
Si

e−j
~k·~d′~Jt(

~d′)

)
θ̂ +

(
φ̂ ·
∫
Si

e−j
~k· ~d ′~Jt(~d

′
)

)
φ̂ (3.8)

Next, the transmitting antenna’s outgoing radiation pattern is transformed to the

incoming radiation pattern as follows (at k̂ direction),

~E
t

I(k̂) = T(k̂)~E
t
(k̂) (3.9)

Now suppose we have another receiving antenna with current ~Jr(~d), and subsequently

its receiving pattern at direction k̂ can be expressed by

~E
r
(k̂) =

(
θ̂ ·
∫
Si

ej
~k·~d~Jr(~d)

)
θ̂ +

(
φ̂ ·
∫
Si

ej
~k·~d~Jr(~d)

)
φ̂ (3.10)

Consequently, the reaction density Pr(k̂) for the receiving antenna at the direction k̂

is:

Pr(k̂) = ~E
r
(k̂) · ~E

t

I(k̂) (3.11)
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And, the total reaction Pr can be obtained by integrating over the unit sphere,

Pr =

∫
d2k̂Pr(k̂) ≈

M∑
m=1

ω(k̂m)Pr(k̂m) =
M∑
m=1

ω(k̂m)~E
r
(k̂m) · ~E

t

I(k̂m) (3.12)

where M is the number of quadrature points on the unit sphere, each quadrature

point corresponds to a plane wave basis (usually M = 2L2); and, ω(k̂m) is the weight

associated with the quadrature direction k̂m.

The incoming radiation pattern can be recast as

~E
t

I(k̂m) = T(k̂m)[Etθ(k̂m)θ̂m + Etφ(k̂m)φ̂m] (3.13)

where Etθ(k̂m) = θ̂m ·
∫
Si
e−j

~km· ~d
′
~Jt(

~d′) and Etφ(k̂m) = φ̂m ·
∫
Si
e−j

~km· ~d ′~Jt(
~d′)

Similarly, ~E
r
(k̂m) can be re-written as

~E
r
(k̂m) = Erθ(k̂m)θ̂m + Erφ(k̂m)φ̂m (3.14)

Consequently, the numerical integration process in equation (3.12) can be cast into

the following matrix form,

Pr =
[
(Er

θ)
T (Er

φ)T
] [ T 0

0 T

] [
Et
θ

Et
φ

]
(3.15)

where Et
θ =

[
Etθ(k̂1) Etθ(k̂2) · · · Etθ(k̂M)

]T
,

Et
φ =

[
Etφ(k̂1) Etφ(k̂2) · · · Etφ(k̂M)

]T
,

Er
θ =

[
Erθ(k̂1) Erθ(k̂2) · · · Erθ(k̂M)

]
, Er

φ =
[
Erφ(k̂1) Erφ(k̂2) · · · Erφ(k̂M)

]
,

T =
[
ω(k̂1)T1 ω(k̂2)T2 ... ω(k̂M)TM

]
· ¯̄I, where ¯̄I is the identity matrix.

Using the expression in equation (3.7), the current in the transmitting group can

be re-written as

~Jt(
~d′) =

[
~α1(~d′) ~α2(~d′) · · · ~α

N
(3)
j

(~d′)
]
· J̃j while the current in the receiving

group is re-written as ~Jr(~d) =
[
~α1(~d) ~α2(~d) · · · ~α

N
(3)
i

(~d)
]
· J̃i. Consequently,
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the aggregation and disaggregation matrix in equation (3.7) can be decomposed as

Et
θ = Xθ · J̃tj, Et

φ = Xφ · J̃tj, Er
θ = X∗θ · J̃ri and Er

φ = X∗φ · J̃ri , where J̃tj and J̃ri are the

column coefficient vectors of basis functions in the transmitting and receiving groups,

respectively. Finally, the relationship between the reaction Prij and the radiation

coupling Rij in equation (3.7) can be established as follows,

Prij ≈ (J̃ri )
TRij(J̃

t
j) (3.16)

Similar expansion as equation (3.7) can be derived for higher levels as well. For

instance, the radiation coupling between group i and group j at level 2 illustrated by

Figure.3.2(b) can be cast into the following expansion,

R
(2)
ij ≈ (XH

i )(2)T
(2)
ij X

(2)
j (3.17)

A naive implementation of equation (3.17) requires assembling and storing two types

of dense matrices, i.e.,
(
X

(2)
i

)M×N(2)
i

and
(
X

(2)
j

)M×N(2)
j

. Normally M ∝ (kd)2 and

N
(2)
i ∝ (kd)2 for surface integral problems, large kd at coarser levels would render

equation (3.17) expensive and inefficient. Instead, MLFMM further expands X
(2)
i

through interpolating the aggregation and disaggregation matrices of its children’s

groups. Physically this is equivalent to approximate the far field via interpolation

from far fields of the children groups. Take Eθ for example,

E1θ
...

EMθ

E(M+1)θ
...

E(4M)θ



(2)

= I
(2,3)
j ·

 (E1θ)j,1 + (E1θ)j,2
...

(E4Mθ)j,1 + (E4Mθ)j,2


(3)

(3.18)

44



where I
(2,3)
j =



1 · · · 0
...

. . .
...

0 · · · 1
cM+1,1 · · · cM+1,M

...
. . .

...
c4M,1 · · · c4M,M



(2,3)

and ca,b denotes the weight of bth spec-

trum at level 3 that is used in the interpolation of ath spectrum at level 2, a =

1, 2, · · · , 4M and b = 1, 2, · · · ,M . In [10] a local interpolation results in a sparse

matrix and it reveals that the interpolation error decreases exponentially as the num-

ber of interpolation points is increased. Plug equation (3.18) into equation (3.16),

the reaction received by group i that is transmitted by group j at level 2 can be

formulated as:

P
(2)
ij ≈ (J̃

(2)
i )T

(
X

(2,3)

i

)H (
I

(2,3)

i

)T [ Tij 0

0 Tij

](2) (
I

(2,3)

j

)(
X

(2,3)

j

)
J̃

(2)
j (3.19)

where J̃
(2)
j is the coefficient column vector for group j at level 2. Explicitly, we

have J̃
(2)
j =

[
J̃

(3)
j,1

J̃
(3)
j,2

]
, assuming a binary-tree partition is adopted. Also

(
X

(2,3)

j

)
=[

(Xθ)
(3)
j,1 (Xθ)

(3)
j,2

(Xφ)
(3)
j,1 (Xφ)

(3)
j,2

]
. Subsequently, the radiation coupling between group i and group

j at level 2, illustrated by Figure.3.2(b), can be approximated by:

R
(2)
ij ≈

(
X

(2,3)

i

)H (
I

(2,3)

i

)T [ Tij 0

0 Tij

](2) (
I

(2,3)

j

)(
X

(2,3)

j

)
(3.20)

The second type of coupling takes place between two groups that fail to satisfy

Γ
(L)
i

⋂
Γ

(L)
j = ∅. Matrix blocks correspond to this type of coupling are represented

by red and orange blocks in Figure.3.2, where red blocks denote the self-term S and

orange blocks denote neighboring coupling N. For self-term and neighboring coupling

matrices, the original DoF basis functions, e.g. RWGs are directly employed for the

computations. Inherently, MLFMM does not require the existence of a rectangular

45



grid, however, it facilitates the identification of the aforementioned couplings by sim-

ply enforcing the Γ
(L)
i to be the rectangular brick from the Cartesian partition. Also

this Cartesian grid creates repetitive partition patterns such that one set of translators

Tij can be shared for each level of partition. Lastly, this helps to admit interpolation

techniques such that the plane wave contributions can be projected between adjacent

partition levels in a highly efficient manner.

3.3.2 Far Field Skeleton Basis for Aggregation/Disaggregation
Matrix

The matrices Xi in equation (3.7) that accomplish the change of basis from RWG

to plane wave basis, i.e., aggregation and disaggregation matrices, prove to be highly

rank deficient [33] when the original DoFs are overly populated. Some work has been

done previously to reduce the linear dependencies via the singular value decomposition

(SVD) [33]. H-MLFMM herein takes advantage of the linear dependencies through a

two-step change of basis procedure.

Take the aggregation matrix (Xj)
M×Nj from equation (3.7) for instance, where M

is the number of plane wave basis employed and Nj is the number of the original DoFs

within this group. This dense matrix accomplishes the projection from the original

DoFs to the plane wave basis. It can be interpreted as a set of Nj column vectors.

These Nj columns become increasingly linearly dependent as the number of DoFs per

square wavelength grows. This is mainly because of the smoothness of the far field,

which is independent of the number of original DoFs within the group. H-MLFMM

extracts the kj numerically independent columns up to a preset tolerance. These

columns relates to kj DoFs and they are a subset of the original DoFs. The rest of

the columns can then be expressed as linear combinations of these skeleton columns.
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Subsequently, the aggregation process can be rewritten as a two-step mapping as

follows,

(Xj)
M×Nj ≈ (Fj)

M×kj (Pj)
kj×Nj (3.21)

where Pj is a mapping matrix that maps the original Nj DoFs to kj far field skele-

tons, Fj is a subset of the original Xj matrix and it continues mapping the kj far

field skeletons to M plane wave basis. Note that this far field skeleton should be

distinguished from the near field skeleton adopted in the next section.

3.4 Evanescent Modes Spectrum

Interactions within this regime reflect predominantly evanescent waves phenomena

as the mesh density increases. Conventional MLFMM fails to address this category of

coupling effectively via plane wave basis. H-MLFMM adopts a new set of basis, i.e.,

near field skeleton basis, and takes advantage of the Huygens’ principle to account

for this type of physics. A single level skeletonalization algorithm would be presented

first. Next, a hierarchical skeletonalization algorithm is developed to expedite the ma-

trix vector multiplication. Even after the change of basis, the compressed interaction

matrices may still be numerically rank deficient and we shall exploit the redundancy

by ACA algorithm to further reduce the needed computational resources.

3.4.1 Near Field Skeletons For Huygens’ Couplings

For the sake of simplicity, we assume a binary tree partition and the impedance

matrix can be illustrated as in Figure.3.3 to demonstrate the skeletonalization algo-

rithm. Figure 3.3(a) offers a zoom-in view of the upper-left conner of Figure.3.2(c),

i.e., H
(0)
ij = R

(3)
ij . For each of the groups from level 0 to level 2 in Figure.3.3, there
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Figure 3.3: Matrix representation corresponding to level 0 (a), level 1 (b) and level 2
(c) binary paritition of H-MLFMM.

exists a minimum Huygens’ surface Γ
(L)
i that encapsulates the support of its DoFs,

where i is the group number. The skeleton basis can then be employed to represent

the interactions between group i and any group j that satisfies Γ
(L)
i

⋂
Γ

(L)
j = ∅.

Take the H-MLFMM leaf level illustrated by Figure.3.3(c) for instance. Each of

the Huygens’ coupling pairs can be decomposed as,

H
(2)
ij ≈ V

(2)
i S

(2)
ij

(
V

(2)
j

)T
(3.22)

where H
(2)
ij denotes the Huygens’ coupling between group i and group j from level 2,

V
(2)
i denotes the mapping matrix that projects the skeletons to the original DoFs in

the receiving group i,
(
V

(2)
j

)T
denotes the mapping matrix that projects its original

DoFs to its skeletons in the transmitting group j and S
(2)
ij is the dense coupling matrix

between the skeletons of two corresponding groups. Instead of calculating the original

dense coupling matrix H
(2)
ij , H-MLFMM only assembles and stores a reduced dense

matrix S
(2)
ij . The first subsection of Part VI would explain the algorithm to accomplish

decomposition equation (3.22) in greater details.
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An interesting analogy can be observed from equation (3.22) and equation (3.7),

where V
(2)
i in equation (3.22) and (XH

i )(3) in equation (3.7) both serve as the projection

from new basis, i.e., plane wave basis and skeletons basis, to the original DoFs, and

S
(2)
ij in equation (3.22) serves similar purpose as the translation matrix T

(3)
ij in equation

(3.7) does. However, they do exhibit different mathematical properties. Owning to

the orthogonality of spherical harmonics, T
(3)
ij in equation (3.7) is a diagonal sparse

matrix while the S
(2)
ij in equation (3.22) is dense.

For level L other than the leaf level, expansion as equation (3.22) can be calculated

for each Huygens’ coupling pair straight-forwardly. Consequently, one would have to

calculate and store V
(L)
i for every group on each level. Instead, H-MLFMM further

expands the V
(L)
i matrix as an interpolation of the two matrices V

(L+1)
i,1 and V

(L+1)
i,2 via

mapping matrix V
(L,L+1)
i . For instance, the H

(1)
ij matrices illustrated by green blocks

in Figure.3.3(b) can be expressed as

H
(1)
ij ≈ V

(1)
i S

(1)
ij

(
V

(1)
j

)T
(3.23)

where V
(1)
i =

[
V

(2)
i,1

V
(2)
i,2

]
·V(1,2)

i . Here V
(2)
i,1 and V

(2)
i,2 are the mapping matrices of the two

children groups of group i while V
(1,2)
i is the interpolative mapping matrix. Mathemat-

ically, it accomplishes projection from the children’s skeleton basis to their parent’s

skeleton basis. S
(1)
ij denotes the dense coupling matrix between the skeleton of group

i and group j at level 1. The expansion equation (3.23) can be applied recursively

until it reaches the leaf level of H-MLFMM.

The remaining coupling does not satisfy Γ
(L)
i

⋂
Γ

(L)
j = ∅, they are the self-term

S denoted by red blocks and neighboring coupling term N denoted by orange blocks

in Figure.3.3. For each level, Huygens’ coupling blocks are identified and accounted
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for via equation (3.23) for levels other than leaf level and equation (3.22) for the

leaf level. The remaining coupling blocks S and N in the finest level illustrated by

Figure.3.3(c) are represented via the original basis functions, e.g., RWG basis, and

the conventional MoM representations of such are assembled and stored explicitly.

3.4.2 Hierarchical Skeletonalization

As discussed in equation (3.23), H-MLFMM uses cascaded mapping matrices to

project the skeletons to its parent in the adjacent level. A skeletonalization technique

is developed to calculate matrices V
(1,2)
i for each level. Just as the leaf level Vni×ki

i

matrix in equation (3.26) maps the original DoFs to its skeleton basis, V
(1,2)
i maps

the skeleton basis of children level to the parent level. Thus, the algorithm applied

to solve for V
(2)
i can be applied to solve for V

(1,2)
i in a recursive manner. Assume

the original DoFs within group i and group j at level 1 are replaced by the union of

the skeletons DoFs revealed from their children groups at level 2. Subsequently the

coupling matrix A
(1)
ij between group i and group j can be decomposed as follows,

A
(1)
ij ≈ V

(1,2)
i S

(1,2)
ij (V

(1,2)
j )T (3.24)

where V
(1,2)
i maps the skeleton basis from children level to their counterparts at par-

ents level. Subsequently, the original coupling matrix A
(1)
ij between the group i and

group j can be expressed in a telescoped manner as follows,

A
(1)
ij ≈

[
V

(2)
i,1

V
(2)
i,2

]
V

(1,2)
i S

(1,2)
ij (V

(1,2)
j )T

[
(V

(2)
j,1)T (V

(2)
j,2)T

]
(3.25)
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3.4.3 Acceleration of Sij Assembly via Adaptive Cross Ap-
proximation

MLFMM algorithm diagonalized the translator Tij in equation (3.7) and only one

set of such translators needs to be assembled for each partition level. Unfortunately,

the Sij matrices in equation (3.22), which represent the couplings between the skeleton

DoFs, have to be assembled and stored for each coupling pair. Dense as Sij matrices

are, they are generally numerically rank deficient. This is true due to the fact that

coupling between group i and group j is directional in the solid angle sense, yet they

are accounted for via the skeleton DoFs that are capable of representing couplings

across the whole angular spectrum. The redundancy can be systematically allured

through data sparsification algorithms. Specifically, herein we apply the adaptive

cross approximation (ACA) algorithm [14] to accelerate the assembly of Sij matrices

and to reduce the memory consumption as well.

3.4.4 Block-diagonal Pre-conditioner based on Skeletonaliza-
tion Algorithm

A suitable pre-conditioner can effectively accelerate the convergence of Krylov

solvers. Block diagonal pre-conditioner, which is in essence a diagonal scaling opera-

tion, has been one of the most widely applied pre-conditioners. The implementation

of this pre-conditioner usually involves direct factorization of the self term from the

MLFMM, which could be expensive in the low frequency or multi-scale scenario where

large numbers of DoFs may still reside in one group. An extreme case would be the

one provided in the next section, where there are 131,745 DoFs per cube in average.

For groups like this, an O(N3) direct factorization could be extremely expensive. In

[34], we developed a fast direct solver for surface integral equations. The algorithm is
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based on the skeletonalization algorithm discussed in section III as well. The perfor-

mance of this direct solver can be found at Table 3.4. For details of this direct solver,

readers are referred to references [35], [34].

3.5 Implementation of Skeletonalization Algorithm

One of the properties that has been widely recognized and utilized in fast integral

equation algorithms is the redundancy that manifests in the interactions between

well separated groups. Numerically, the coupling matrices are often rank deficient.

Specifically, the discretization densities employed usually need to be quite fine in order

to capture the highly oscillatory near field phenomena. However, this desired local

sampling well exceeds the Nyquist rate and proves to be an over-kill for computing

the far field radiations. MLFMM expands the Green’s function and calculates the far

field interactions in terms of plane waves. This new set of basis functions would then

be aggregated and translated in a highly efficient manner to account for the far field

interactions.

Another category of algorithms seek to compress the far field coupling matrix

itself. For these methods, the canonical singular value decomposition (SVD) has been

shown to be optimal [26] in terms of spectral radius. Nonetheless, the formidable cost

of direct SVD renders the method too expansive to be a fast algorithm. Recently,

there are quite a few rank-revealing algorithms that compute the effective rank and

the corresponding approximate SVD within the specified tolerance without the need

to fully assemble the matrices [14, 36]. The skeletonalization algorithms originally
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proposed in [27] managed to express the coupling between a group and all its well-

separated groups using a single set of skeleton DoFs, i.e, a reduced set of the original

DoFs.

3.5.1 Skeletonalization based on Huygens’ Principle

Assume the supports of group i are plotted using red triangulations, denoted by Γi

in Figure.3.4(a). These DoFs are marked by Λi. The supports of Huygens’ coupling

groups are plotted using green triangulations and connoted by Γi,B. Then each of

these Huygens’ coupling blocks Hi,j can be decomposed as:

H
ni×nj

ij ≈ Vni×ki
i S

ki×kj
ij

(
(Vj)

T
)kj×nj

(3.26)

where ni, nj are the number of unknowns in box i and box j, respectively. ki, kj

are the corresponding numerical ranks, and moreover we also expect ki < ni and

kj < nj. This decomposition proves to be quite beneficial since Vi and Vj associate

only with indexes i and j, respectively. In other words, one single set of near field

skeleton basis of group i can be employed in all Hij where j 6= i. Another important

characteristic of equation (3.26) is that the entries of Sij matrices are comprised of

the original entries from Hij, which means that the new basis functions are a subset

of the original DoFs. These new basis functions are named ”skeletons” or “skeleton

DoFs”.

Next, a Huygens’ surface Γa that satisfies Γa
⋂

Γi = Ø, Γa
⋂

Γi,B = Ø is con-

structed to encapsulate Γi, as illustrated by the blue triangulations in Figure.3.4(b).

Physically any field that can be induced on Γi could be equally well induced by cur-

rent distributions on Γa by virtue of the Huygens’ principle[26]. Subsequently, the
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couplings between Γi and any DoFs outside Γa can be well represented via the inter-

actions between Γi and Γa up to a prescribed tolerance ε, which is dependent on the

mesh density on Γa [26].

To fully account for the couplings between Γi and Γa, electric currents JΓa ∈

H−1/2 (divΓ,Γa) and magnetic currents MΓa ∈ H−1/2 (divΓ,Γa) are both assigned to

Γa and represented via the div-conforming RWG basis functions. Afterwards, four

reaction matrices are assembled,

Ai1 =< J,E(JΓi
) >Γa (3.27)

Ai2 =< M,H(JΓi
) >Γa (3.28)

Ai3 =< J,E(JΓa) >Γi
(3.29)

Ai4 =< J,E(MΓa) >Γi
(3.30)

where < J,E >Γa=
∫

Γa
J·E dS, and E(JΓa) and E(MΓa) are the electric fields pro-

duced by the electric and magnetic currents, JΓa and MΓa , respectively. Concatenate

these 4 matrices into one single matrix Ai, one has

Ai = [ Ai1
T

Ai2
T

Ai3 Ai4 ]ni×4NΓa (3.31)

where NΓa is the number of DoFs associated with the discretization on Γa.

By applying a rank revealing QR decomposition [37] to equation (3.31) yields,

ATi PR =

[
Q11 Q12

Q21 Q22

] [
R11 R12

0 R22

]
=

[
Q11

Q21

] [
R11 R12

]
+

[
Q12

Q22

] [
0 R22

]
(3.32)
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Figure 3.4: (a) Γi (red triangulations) as the support of group i and Γi,B (green
triangulations) as the support of its secondary neighbors (b) Γi and Γi,B with the
Huygens’ surface Γa (blue triangulations) (c) Γi and Γa only

where Q11 and R11 are of size k × k. Note that R11 is an upper triangle matrix and

its diagonal entries are positive and non-increasing, then numerical rank k can be

identified by looking for the first diagonal entry Rk that satisfies ‖Rk‖ < ε‖ · R1‖,

where R1 is the first diagonal entry of R11. It can be proved [27] that ‖σ1(R22)‖ ≤

σk+1(Ai) ·
√

1 + k(n− k), where σ1(R22) is the largest singular value of R22 and

σk+1(Ai) is the (k + 1)th largest singular value of Ai. Subsequently,

ATi PR ≈
[
Q11

Q21

] [
R11 R12

]
(3.33)

where PR is the permutation matrix produced by the QR decomposition.

R11T = R12 (3.34)

Then

Ai ≈ PR

[
I
T T

]
ARS (3.35)

where I is the k × k identity matrix. ARS is the first k rows of P T
RAi. Consequently,

DoFs that correspond to the first ki rows of the matrix P T
RAi constitute the skeletons
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or skeleton DoFs of this group. The rest of the (ni− k) rows are linear combinations

of the k skeletons and the coefficients are stored in T T matrix. The Vi matrix is

readily available, i.e.,

Vi = PR

[
I
T T

]
(3.36)

Theoretically, the discretization size on Γa depends solely on the prescribed pre-

cision ε regardless of the mesh density on Γi. For matrix AH in equation (3.31), the

complexity of the rank revealing QR decomposition scales as O(ni · NΓa · k), where

k is the numerical rank and k ≤ min{ni, NΓa}. The electrical size of the Huygens’

surface is bounded by λ/4 in H-MLFMM, so NΓa is bounded as well. Consequently,

the complexity of the rank revealing QR decomposition is under control for the skele-

tonalization algorithm aforementioned. Another benefit of Huygens’ surface allows

the Huygens’ couplings H between any two groups to be accounted for directly as

long as their DoFs reside completely outside one another’s Huygens’ surface, even if

they are from different partition levels.

We note that the shape of Γa is largely irrelevant as long as it satisfies Γa
⋂

Γi = Ø

and Γa
⋂

Γi,B = Ø. Practically, a desirable design of Γa should be the one with

the maximum dimension that doesn’t violate Γa
⋂

Γi,B = Ø, simply because the

Huygens’ surface is only designed to capture the couplings with its secondary neighbor

groups that does not intersect with its Huygens’ surface. Note that Γ cannot intersect

the group DoFs, nor is it allowed to intersect its secondary neighbor DoFs. One

convenient approach involves constructing a sphere as Γa, whose radius rΓa is the

maximum distance from the group center to its closest secondary neighbor DoF. This

sphere is then discretized according to the precision requirement and basis functions

are assigned. Practically, since rΓa ≤ λ/4, namely the size of the leaf level group
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from conventional MLFMM, rΓa is assigned in such a way such that the discretized

geometrical description of Γa will not intersect the DoFs within the group and its

secondary neighbor DoFs. We choose to use 150 triangles to discretize Γa for all

the examples shown in this work, which gives to 300 basis function for JΓa and

MΓa , respectively. Consequently, hΓa is typically much less than 0.1λ and thus the

accuracy of the algorithm would only depend on the prescribed accuracy from the

skeletonalization algorithm. It is worth pointing out that the skeletonalization process

of different groups are completely independent and thus can be executed in a highly

parallelized manner. For more details of the skeletonalization algorithm, references

[26][27] [35][34] could be helpful.

3.6 Numerical Results

In this section, we study the error controllability and performance of the pro-

posed H-MLFMM algorithm. The error controllability of H-MLFMM is investigated

through some canonical as well as complex targets. Whereas the scalability and ac-

curacy of the algorithm would be demonstrated by means of a set of experiments.

QR tolerance of 10−3 and double precision are assumed unless otherwise specified.

Furthermore, we employ the combined field integral equation (CFIE) with α = 0.5

for our studies herein.

3.6.1 Error Controllability Study

To assess the error controllability of the proposed H-MLFMM, matrix-vector mul-

tiplication (MVM) errors εm are calculated for various targets,

εm =
||ZI − Z̃I||
||ZI||

(3.37)
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where Z denotes the impedance representation from MLFMM, Z̃ is the impedance

representation from H-MLFMM and I is the input current vector. || · || denotes the

2-norm. Huygens’ theorem states that any field that can be induced on Γi could

be equally well induced by current distributions on Γa [26]. The previous sections

have elucidated a systematic analysis on the parameters of the Huygens’ surface and

provide a guideline for general construction of the Huygens’ surface. The following

experiments demonstrates that the error is kept under control for this implementation.

First example is a PEC cone-sphere shown in [12] at 1800 MHz, MVM error

from 6 level H-MLFMM are calculated against that from 4 level MLFMM. Then a

3m×3m×3m PEC cube is calculated at 100MHz, for this example 3 level H-MLFMM

is adopted, while 2 level MLFMM is used as reference. For a more sophisticated model,

part of a PEC aircraft platform as shown in Figure.3.5 at 200MHz is calculated using

6 level H-MLFMM and 4 level MLFMM, respectively. ε = 10−3 tolerance is adopted.

As mentioned in section 5.1, 150 triangles are employed to discretize Γa, which gives

rise to 300 basis functions for JΓa and MΓa , respectively. For each of the three

aforementioned cases, 30 sets of i.i.d. complex vectors are randomly generated and

the error calculations are performed afterwards, the maximum results are listed in

Table 3.1. It can be observed that the MVM errors of all 3 examples are kept under

the the tolerance adopted in the QR decomposition.

3.6.2 Scalability Study

Having established the error controllability of H-MLFMM, we continue to conduct

a series of experiments to illustrate the scalability of H-MLFMM from several aspects.
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Figure 3.5: Part of a mock-up aircraft

Table 3.1: MVM Error

example DoFs. DoFs per DoFs per εm

MLFMM H-MLFMM

leaf cube leaf cube

cone-sphere 58,764 408 27 2.42×10−4

cube 18,648 333 63 3.61×10−4

aircraft part 146,265 504 26 4.95×10−4

Fixed mesh size complexity study

We intend to study the scalability of the H-MLFMM under constant mesh size.

For this study, kh = 10−2π is used to discretize a series of PEC spheres whose radius

are listed in the first column of Table 3.2. CPU time consumed by skeletonalized

algorithm(S.A.) and Sij assembly are listed together with peak memory consumption.

They are calculated using H-MLFMM with tolerance ε = 10−3 at 15MHz. The

memory and CPU time per iteration statistics are presented in Table 3.2. The memory

scales as O(N) while O(N) scalability is also observed from Figure.3.7 for CPU time

per iteration, at least for the sphere example.
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Table 3.2: Computational statistics for fixed mesh size problems

radius DoFs DoFs per Setup Setup CPU time(s) CPU time

(λ) leaf cube Memory(MB) S.A. Sij per MVM (s)

0.100 18,291 16 402 27 57 5.26×10−2

0.150 41,415 36 930 52 105 1.32×10−1

0.200 74,169 16 1,715 115 239 3.21×10−1

0.225 93,873 21 2,151 137 291 3.73×10−1

0.250 116,253 26 2,606 161 339 4.82×10−1

0.275 141,063 31 3,166 188 385 5.51×10−1

0.400 298,863 17 6,773 480 902 1.28×100

0.800 1,183,665 17 26,883 2,233 3,406 5.28×100

Figure 3.6: Complexity of memory consumption for fixed mesh size problems
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Figure 3.7: Complexity of CPU time for fixed mesh size problems

Fuselage structure

We intend to demonstrate the wide band simulation capability offered by H-

MLFMM. EM response from 1MHz up to 8GHz are calculated based on one single

mesh. The object adopted for this set of experiments is shown in Figure.3.8, where

computational adversaries such as cavity, sharp corners, etc. are presented in this

geometry. For the frequency range from 1,000MHz up to 8,000MHz, straight-forward

automatic surface refinement helps to keep the mesh size h ≈ 0.1λ. i.e., kh ≈ 0.2π,

where k is the wave number. For the remaining frequency range lower than 1000MHz

down to 1MHz, the mesh at 1000MHz is adopted in all cases. Positive Z polarized

plane wave impinges upon the target along positive X direction, i.e, propagates to-

wards the intake. Table 3.4 shows the memory consumption for setup stage and

pre-conditioner, respectively. ε = 10−3 tolerance is adopted for all cases. For fre-

quency under 125MHz, the memory requirement of MLFMM exceeds the hardware
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Figure 3.8: Front, top and bottom view of central fuselage part of an aircraft model

resources available to us, and therefore, the memory requirements for those frequen-

cies shown in Table 3.4 are estimated and printed in bold italic font. CPU time for

near field assembly and each MVM operation are shown in Table 3.5 and 3.6 where

results for frequency lower than 125MHz are unavailable for MLFMM. On the Krylov

solver side we adopt Generalized Conjugate Residual (GCR) [38] algorithm with 30

restart and converged with the relative residual smaller than 10−2.

The computational parameters from the frequency band from 1MHz to 8,000MHz

are listed in Table 3.3. Note the difference in average DoFs per leaf level between

H-MLFMM and MLFMM at low frequencies.

Based on the statistics from Table 3.4, Table 3.5 and Table 3.6 , we plot the scaling

curves for memory consumption in Figure.3.9 and CPU time per MVM operation in

Figure.3.10, on log-log scale, where N is the number of DoFs. Note that the memory

scalability curve of H-MLFMM matches up with that of MLFMM for the hk = 0.2π

spectrum and no significant reduction in CPU time and memory consumption is
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Table 3.3: Computational Parameters

Freq. hk DoFs DoFs per DoFs per

(MHz) MLFMM H-MLFMM

leaf cube leaf cube

8,000 0.2π 8,350,452 9 9

4,000 0.2π 2,087,613 9 9

2,000 0.2π 529,827 9 9

1,000 0.2π 131,745 9 9

500 0.1π 131,745 38 9

250 0.05π 131,745 156 9

125 0.025π 131,745 813 9

60 0.012π 131,745 4,392 9

30 0.006π 131,745 32,936 9

15 0.003π 131,745 32,936 9

1 0.0002π 131,745 131,745 9

observed, this is due to the reason that H-MLFMM automatically degenerates to

conventional MLFMM under these discretization scenarios, where the number of DoFs

per leaf level group in conventional MLFMM is less than 50. At the low frequency end,

memory consumption for both algorithms approach constants as expected. However,

the constant is much smaller for the H-MLFMM than the MLFMM.

The incorporation of ACA accelerates the assembly of Aij matrices and reduces

the memory consumption, as shown in Table 3.7. The ACA tolerance is set to 10−3.

Looking at the data from Table 3.4 at the low frequency spectrum, we have observed

significant data compression using the ACA algorithm.
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Figure 3.9: Complexity comparison of memory consumption, H-MLFMM vs.
MLFMM. 1MHz–1GHz, N is constant. 1GHz– 8GHz, N ∝ f

Figure 3.10: Complexity comparison of CPU time per MVM, H-MLFMM vs.
MLFMM. 1MHz–1GHz, N is constant. 1GHz – 8GHz, N ∝ f
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Table 3.4: Memory Statistics

Freq. Setup Memory(MB) Pre-cond. Memory(MB)

(MHz) MLFMM H-MLFMM MLFMM H-MLFMM

8,000MHz 37,910 36,339 1,390 1,390

4,000MHz 9,423 8,940 348 348

2,000MHz 2,399 2,273 91 91

1,000MHz 598 568 22 22

500MHz 1,281 1,146 91 91

250MHz 5,529 5,310 400 400

125MHz 30,737 21,468 1,993 1,993

60MHz 134,976 15,683 12,502 4,078

30MHz 264,845 12,036 66,390 4,953

15MHz 264,845 11,081 66,390 4,820

1MHz 264,845 9,321 66,390 4,761

Table 3.5: CPU Time Statistics from 1GHz to 8GHz

Freq. Near field (s) CPU time per MVM (s)

(MHz) MLFMM H-MLFMM MLFMM H-MLFMM

8,000MHz 1,206 1,201 33.20 31.02

4,000MHz 302 302 8.32 7.79

2,000MHz 170 172 2.10 2.01

1,000MHz 26 27 0.49 0.48

To examine the accuracy of the far field, we define the far field difference εf as

follows:
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Table 3.6: CPU Time Statistics from 1MHz to 500MHz

Freq. Near field(s) CPU time per MVM (s)

(MHz) MLFMM H-MLFMM MLFMM H-MLFMM

S.A. Sij

500MHz 60 65 49 0.90 0.85

250MHz 317 126 303 1.17 1.10

125MHz 1,845 193 1,031 2.72 1.28

60MHz 8,162 225 832 10.23 1.41

30MHz 16,051 244 682 19.98 1.31

15MHz 16,051 241 632 19.98 1.41

1MHz 16,051 235 530 19.98 1.28

Table 3.7: Memory Statistics of H-MLFMM with ACA

Freq. Setup Memory(MB)

(MHz) MLFMM H-MLFMM H-MLFMM + ACA

250MHz 5,529 5,310 3,371

125MHz 30,737 21,468 6,516

60MHz 134,976 15,683 5,847

30MHz 264,845 12,036 5.628

15MHz 264,845 11,081 5,335

1MHz 264,845 9,321 4,698

εf =

√∑
θ,φ |Ẽ− E|2√∑

θ,φ |E|2
(3.38)
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Table 3.8: CPU Statistics of H-MLFMM with ACA

Freq. Setup CPU Time(s)

(MHz) MLFMM H-MLFMM H-MLFMM+ACA

S.A. Sij S.A. Sij

250MHz 317 126 303 126 137

125MHz 1,845 193 1,031 193 305

60MHz 8,162 225 832 225 312

30MHz 16,051 244 682 244 301

15MHz 16,051 241 632 241 289

1MHz 16,051 235 530 235 273

where Ẽ is the far field results calculated from H-MLFMM, and E is computed us-

ing MLFMM. Real part of both solutions are plotted side-by-side in Figure.3.12,

Figure.3.14 and Figure.3.16.

Results of far fields computed using both H-MLFMM and MLFMM with different

discretization sizes are shown in Figure. 3.11, Figure. 3.13 and Figure. 3.15. As

evidenced from these plots, the results computed using these two algorithms agree

well with each other.

To validate the accuracy of the H-MLFMM at low frequency with very small

discretization size, we apply MLFMM to the same object, as shown in Fig 3.8, using a

different discretization size, namely hk = 0.01π. The result computed using MLFMM

is used as a reference to compare against the result from the proposed H-MLFMM

algorithm with a much finer discretization size. For the far field patterns, it can

be seen from Figure. 3.17 very good agreement between these two results. However,
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Figure 3.11: Far field of H-MLFMM vs. MLFMM on φ = 0o plane at 1000MHz

Figure 3.12: Real part of current at 1GHz (a)H-MLFMM (b)MLFMM

Figure 3.13: Far field of H-MLFMM vs. MLFMM on φ = 0o plane at 8000MHz

68



Figure 3.14: Real part of current at 8GHz (a)H-MLFMM (b)MLFMM

Figure 3.15: Far field of H-MLFMM vs. MLFMM on φ = 0o plane at 125MHz

Figure 3.16: Real part of current at 125MHz (a)H-MLFMM (b)MLFMM
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Figure 3.17: Far field comparison of hk = 0.003π using H-MLFMM and hk = 0.01π
using MLFMM on φ = 0o plane at 15MHz

Figure 3.18: Imaginary part of current at 15MHz (a)hk = 0.01π (b)hk = 0.003π

there are noticeable differences in the near field distributions between these numerical

results. Some subtle and fine features in the near field distribution can be observed

from the result obtained using the much finer discretization, hk = 0.003π, by the

H-MLFMM. Furthermore, a closer look at the local field distribution near the intake

is provided in Figure. 3.19.

70



Figure 3.19: A zoom-in view of Figure.3.18(b)

3.6.3 Mock-up aircraft

For this example, a mock-up PEC aircraft model is illuminated by a y-polarized

plane wave propagating from nose direction at 0.5MHz. The average mesh size of

the geometry is 10−4λ at 0.5MHz, resulting in 242,778 unknowns. Conventional

MLFMM, without low frequency treatments, would require 899.4 GB memory and

21 hours. The H-MLFMM without the aid of ACA takes 15.4 GB and 23 minutes.

The application of the ACA algorithm further reduces the computational resources

to 8.8 GB in memory and 16 minutes in CPU time. Figure. 3.20 plots the real part of

the electric current as well as a zoom-in view to highlight very small elements locally.

3.6.4 Circuit Board

The last example is a PEC circuit board model, discretized with 69,870 DoFs,

which is illuminated by a z-polarized plane wave at 10GHz from negative x direction.
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Figure 3.20: Real part of the electric current on a mock-up aircraft at 0.5MHz

The average mesh size is h = 10−3λ. Finer elements are adopted to describe the

geometrical details while coarser elements are employed to discretize the part of the

geometry that is smooth. The ratio between the maximum and the minimum sizes

of the triangles is 164. Conventional MLFMM requires 74.5 GB memory while H-

MLFMM takes 2.2 GB. The electric current distribution on the circuit board is shown

in Figure. 3.21 on logarithmic scale.

3.6.5 Monopole antenna radiation problem in the presence
of mock-up aircraft

As shown in the previous mock-up aircraft example, H-MLFMM enables the sim-

ulation within a wide spectrum using only the mesh that is adequate at the highest

frequency. In this example, the objective is to simulate the electromagnetic interfer-

ence between 10 antennae, including a Vivaldi antenna array, in the presence of a
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Figure 3.21: Real part of the electric current on a circuit board at 10GHz in logarith-
mic scale

mock-up aircraft from 75MHz up to 18GHz using only the mesh obtained at 3GHz.

For the frequency band from 3GHz to 18GHz, the mesh can be adaptively refined

to accommodate the frequency of interest and this is out of the scope of this work.

We mainly focuse on the low frequency and multi-scale problems. These problems

deteriorates as the ratio of mesh size and wavelength decreases and we would solve

this problem at the low frequency end, specifically, we are interested in the electro-

magnetic interference of a monopole antenna radiating in the presence of a mock-up

aircraft platform at 75MHz as shown in Figure.3.22 using the mesh obtained at 3GHz,

in other words, the average mesh size at 75MHz is 0.0025λ.

The mock-up aircraft is decomposed into 53 PEC domains and 25 composite

domains with 3,723,921 surface unknowns in total. For the dielectrics composite

material on 10 antennae and 25 sub-domains from the aircraft, the recently developed
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Table 3.9: Problem Configuration

Region Material Type No. of No. of Sub-domain

Domains Surface DoFs Solver

aircraft P.E.C. 53 3,098,568 H-MLFMM

aircraft dielectric 25 504,336 GCFIE+H-MLFMM

antenna PEC+dielectric 10 121,017 GCFIE+H-MLFMM

generalized combined field integral equation (GCFIE) [39] is adopted as the sub-

domain solver. Note that H-MLFMM concept is also implemented in the GCFIE

solver as well. Detailed configuration of domains are listed in Table.3.9.

The simulation is carried out under the MS-DDM scheme[40] using 1. × 10−3 as

sub-domain convergence tolerance as 1.× 10−2 for the global residual. The real part

of the electric current is plotted in Figure.3.23 in log scale from 1.×10−6 to 1.×10−1.

Figure.3.24 demonstrates the current distribution in the vicinity of the aircraft more

closely. Note that the dielectric radome is not shown in this figure to demonstrate

the current distribution on the Vivaldi array installed on the nose of the aircraft.

One of the most concerned issue in this EMC problem is the interference inflict to

other 9 antennae due to the radiation of the monopole antenna. Table.3.10 shows the

S21 received by the other 9 antennae. Note that the S21 from the first antenna unit

is sampled and presented for monopole array and Vivaldi array. The second column

of Table.3.10 gives the designed working frequency for each of these antennae.

The computational statistics are presented in terms of sub-domain solver and

coupling, respectively. In Table.3.11, peak memory requirement for the sub-domain
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Figure 3.22: Mock-up aircraft partition

Figure 3.23: Real part of current for EMC simulation at 75MHz in log scale

75



Figure 3.24: Real part of current for EMC simulation at 75MHz in log scale

Figure 3.25: Real part of current for EMC simulation at 75MHz in log scale
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Table 3.10: S21 Results

Antenna type Designed S21 (dB)

frequency(MHz)

02spiral 10,000 1.00× 10−5

03spiral 9,000 1.26× 10−5

04monopole 1,089 5.57× 10−5

07blade 1,600 1.38× 10−5

08monopole array 1,575 2.55× 10−5

15blade 2,000 1.65× 10−5

16monopole 18,000 3.90× 10−5

19patch 4,250 1.34× 10−4

Vivaldi array 10,000 9.50× 10−7

Table 3.11: Computational Statistics for Sub-domain Solvers

1st iteration non-1st iteratoin

Peak memory 43 GB 43 GB

CPU time per MS-DDM iteration 150 hr 11 hr

Hard disk 380 GB 380 GB

solvers in both 1st iteration and non-1st are presented. Note that 1st iteration con-

sumes significantly more CPU time due to the skeletonalization process. The itera-

tions afterwards can recycle the skeleton data without re-evaluating the skeleton.
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Table 3.12: Memory requirement comparison of MLFMM and H-MLFMM

Sub-domain No. of DoFs MLFMM H-MLFMM

CenterFuselage 467,955 1,699 GB 43 GB

AftFuselage 337,368 863 GB 30 GB

IntakeFrame 205,431 644 GB 19 GB

To demonstrate the performance of H-MLFMM, we digest 3 of the most compu-

tationally intensive sub-domains and list the memory requirements using convention

MLFMM and H-MLFMM in Table.3.12.

3.7 Conclusion

In this chapter, we propose the H-MLFMM algorithm for surface integral equa-

tion method for solving low frequency and multi-scale electromagnetic problems. H-

MLFMM alleviates the sub-wavelength breakdown problem of conventional MLFMM

by compressing the near field matrix and near to far mapping matrices via their skele-

ton DoFs, respectively. Particularly, Huygens’ principle is exploited to expedite the

skeletonalization process in an error controllable fashion. Additionally, we employ

the ACA algorithm to further reduce the needed computational resources. Numerical

results demonstrate that H-MLFMM is error controllable and robust within a wide

range of spectrum.
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Chapter 4: Multi-trace Integral Equation Discontinuous

Galerkin Method

A discontinuous Galerkin surface integral equation method (IEDG )[41] is pro-

posed for electromagnetic responses from composite targets. Conventional surface

integral equation methods typically employ div-conforming basis functions, e.g, RWG

basis functions, for both trial and testing functions. Consequently, the algorithms are

closely associated with the discretization scheme, making the mixing of multiple types

of basis functions difficult. Some work has been done in this attempt. [42] develops

a meshless scheme for solving surface integral equations. [43] proposed a general-

ized method of moment based on the partition of unity approach. Formulations of

both of these methods entails the evaluation of strongly singular and hyper-singular

integrals[44][45][46][47][48]. It should be pointed out that as electric current and

magnetic current belongs to the div-conforming functions space, this is the tightest

function space to solve for the solution. Basis functions from function spaces that

include div-conforming space as a sub-space, e.g., L2 functions space [49], can also be

employed.

Discontinuous Galerkin methods [50][51] proposed another appealing approach

to solve partial differential equations on finite non-conformal discretizations. It was
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later on extended from time-domain Maxwell equations to frequency-domain equa-

tions[52][53]. The requirement of basis functions are greatly relaxed since the tan-

gential continuity of electric and magnetic field are weakly enforced[52]. The IEDG

algorithm is inspired by this methodology and allows the conventional combined field

integral equation (CFIE) to be implemented with square-integrable L2 basis func-

tion. Since the L2 basis functions are defined locally, non-conformal mesh can be

employed to discretize the target based on the local geometrical features. Moreover,

basis functions of different orders can be applied to different elements based on the

same mesh. In other words, IEDG is highly flexible for hp-refinement. Not only does

IEDG brings about the aforementioned flexibility to the problem setup stage, it also

allows the magnetic field integral equation (MFIE) to be tested in such a way that

dual pairing principle is obeyed.

The electromagnetic problems demonstrated in the previous chapters mainly in-

volves free space Green’s function after applying surface equivalence principle to the

original problem. Another class of widely encountered problems involves the analysis

of EM responses from a target in the presence of a infinite PEC or PMC ground

plane. In this chapter, we applied the image theory to the Green’s functions of IEDG

formulation to account for the infinite ground plane effect. First, we will briefly intro-

duce the IEDG formulation. The IEDG formulation with infinite PEC ground plane

effect will be presented. Numerical experiments from both scattering and radiation

problem demonstrates the effectiveness of the algorithm.
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4.1 General Galerkin Weak Statement

Here we start by inheriting the notation and operator definition from Chapter 2.

The surface of the target is first discretized by a union of non-overlapping elements

Si, i = 1, ..., N and ∂Ωs = S1

⋃
S2 · · ·

⋃
SN . Physics points out that the smooth-

ness requirement for electric current J should be normal continuous. Consequently,

the trial function needs to be div-conforming at most [54]. IEDG relaxes this re-

quirement by elevating the function space of J from div-conforming to L2 space, i.e.,

J(r) =
N∑
m=1

jm(r), where jm(r) is the local basis function adopted by each element.

Consequently, each basis function is completely defined on one single element. No con-

tinuity requirement is enforced in the basis function definition, allowing non-conformal

discretization on ∂Ωs. The normal continuity requirement will be considered later on

in the form of a penalty term. Next we define the contour boundaries between two

adjacent elements S1 and S2 are depicted in Figure.4.1, where C21 is the contour line

on S2 with outpointing unit vector t̂21 and C12 is the contour on S1 with outpointing

unit vector t̂12.

Figure 4.1: Illustration of the boundary value problem
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4.1.1 Electric Field Integral Equation and Penalty Terms

The conventional EFIE resulted in the following equation on each element after

∂Ωs is discretized in to N elements:

eincm = −
∑
n

πtL(jn) on Sm (4.1)

Penalty methods replaces this constraint problem by a unconstrained problems by

defining a surface residual term associated with equation(4.1) element m as:

R(1)
m = eincm +

∑
n

πtL(jn) on Sm (4.2)

Physically this residual term can be interpreted as the error tangential electric field

on Sm. Based on the proper dual pairing theorem, R
(1)
m should be tested by a div-

conforming test function vm ∈ Wm, which is the same functions space used to expand

jm. The surface penalty term for any given m reads,

〈vm,R(1)
m 〉Sm = 〈vm, eincm 〉Sm + 〈vm

∑
n

πtL(jn)〉Sm (4.3)

where the reaction integral is defined as

〈v,u〉Sm =

∫
Sm

(v · u)dS (4.4)

We further expand equation(4.3) using the vector potential and scalar potential form

as follows,

〈v,u〉Sm = 〈vm, eincm 〉Sm + ık
∑
n

〈vm, πt(ΦA(jn))〉Sm

− 1

ık

∑
n

〈vm, πt(55 ·ΦA(jn))〉Sm (4.5)

where ΦA(f)(r) =

∫
∂Ω

f(r′)G(r, r′)dr′.
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Instead of evaluating the last term of equation(4.5), which involves a hyper-

singular integral, a common practice is to perform integration by parts and reduce

the order of singularity as follows,

∑
n

〈vm, πt(55 ·ΦA(jn))〉Sm

=−
∑
n

〈5 · vm,ΦF (5′ · jn)〉Sm

+
∑
n

〈t̂m · vm,ΦF (5′ · jn)〉Cm

+
∑
Cn

〈5 · vm,ΦF (t̂n · jn)〉Sm

+
∑
Cn

〈t̂m · vm,ΦF (t̂n · jn)〉Cm (4.6)

where Cm denotes all the line contours of elements Sm and the single layer scalar

potential is defined as ΦF (f(r)) =

∫
S

f(r′)G(r, r′)dS

4.1.2 Magnetic Field Integral Equation

Apply the Galerkin scheme to the MFIE in chapter 2, a residual can be defined

for each current on element Sm,

R(2)
m := η(jincm +

1

2
jm +

∑
n

π×K(jn)) on Sm (4.7)

where η denotes the relative wave impedance. This residual can be interpreted as

the error electric field on Sm after the introduction of relative wave impedance. This

residual is then tested with div-conforming testing function vm in Wm, forming the

following reaction term,

〈v,R2
m〉Sm =〈vm, ηjinc〉Sm +

1

2
〈vm, ηjm〉Sm

〈vm, η
∑
n

π×K(jn)〉Sm (4.8)
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It is worth pointing out that R
(2)
m carries the physical implication of error electric

current, it should be expanded by λm ∈ H(div∂Ω, ∂Ω) and paired with basis func-

tions from H(curl∂Ω, ∂Ω). Traditional implementation employ both λm for both jm

and mm, a seemingly proper testing would render R
(2)
m tested by n̂m × λm and un-

fortunately this results in singular or almost singular matrix system with inferior

condition number. A common practice is to adopt λm as testing function to circum-

vent this numerical issue, which violates the dual-pairing principle. There has been

basis functions, e.g., Buffa-Christiansen (BC) basis [55], [56] proposed to alleviate

this issue. It is worth pointing out that the BC basis is based on the concept of dual

grid and barycentric dual grids[57][58]. Multi-trace IEDG formulation elevates the

function space of both trial and testing function to L2 space, which includes both

div-conforming and curl-conforming basis as sub-spaces, it naturally satisfy the dual-

pairing principle . Improvement in MFIE solution accuracy has been reported in

[41].

4.1.3 Boundary Contour Integral Penalty Term

The L2 trial function adopted by IEDG does not enforce normal continuity across

the boundaries of adjacent elements, electric charges could accumulate at these ele-

ment boundaries. The discontinuity across the boundaries results in a residual R(3)

on the contour as follows,

R(3)
m =

∑
Cmn

1

ik
(t̂mn · jm + t̂nm · jn) (4.9)
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Note that a scaling factor 1
ik

is adopted based on the current continuity equation.

R
(3)
m is paired with testing function associated with the contour as a penalty term,

〈t̂m · vm,R(3)
Cm
〉Cm

= β〈t̂m · vm,
∑
Cmn

1

ik
(t̂mn · jm + t̂nm · jn)〉 (4.10)

An additional augmentation PCmn is proposed to due to the error charges from dis-

continuity of normal component across the contour.

PCmn =
1

ik

∫
Cmn

(t̂mn · jm + t̂nm · jn)(r′)G(r, r′)dr′ (4.11)

where G(r, r′) is the free space Green’s function. Physically it can be interpreted as

the electric potential induced by the error charges accumulated at the boundaries of

the elements. The objective is to minimize the measurable energy due to the error

charges, consequently this error electric potential should be paired with charges to

form energy term ρφ, namely,

〈t̂m · vm,R(4)
Cm
〉Cm

〈t̂m · vm,
∑
Cmn

1

ik

∫
Cmn

(t̂mn · jm + t̂nm · jn)(r′)G(r, r′)dr′〉Cm (4.12)

4.1.4 Galerkin Weak Formulation

A linear combination of the weighted residuals from equation(4.3), equation(4.7),

equation(4.9), equation(4.12) results in

c1〈v,R(1)〉∂Ω + c2〈v,R(2)〉∂Ω + c3〈v,R(3)〉C + c4〈v,R(4)〉C = 0 (4.13)

In general, the coefficient c1,c2,c3,c4 are determined based on the accuracy, stability

and convenience. Inspired by the conventional CFIE combination, c1 and c2 are both

85



chosen to be 1
2

to combat internal resonances. c4 is chosen to be −1
2

and it is more

out of convenience consideration such that the problematic double contour integral

term can be canceled out. c3 has been demonstrated to be crucial to the stability of

the algorithm. Herein c3 = 1
10
h−1 is adopted and more details are available in [41].

4.2 Multi-trace IEDG for composite targets

Numerical solutions of EM response from composite metallic and dielectric struc-

tures has attracted tremendous interests from both research and engineering commu-

nity. Many formulations has been proposed in terms of surface integral equations. A

comprehensive study of the existing surface integral equation methods can be found in

[59]. We proposed a non-overlapping surface integral equation domain decomposition

method in [39]. As shown in 4.14, the original electromagnetic scattering problem

Figure 4.2: An electromagnetic scattering problem from composite targets

from a composite target is decomposed into interior sub-domain and exterior sub-

domain, so-called generalized combined field integral equation (G-CFIE) and local

electric and magnetic traces are applied to these two domains, respectively. Robin
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type transmission conditions (TCs) [60] are prescribed across the surface of the exte-

rior and interior sub-domains. One of the most attractive features of this G-CFIE is

that it decouples the interior problem, which corresponds to the Maxwell’s equation

solution of the interior region, from that of the exterior problem, which is the solu-

tion in the free-space. The communication between two regions are achieved by the

Robin Type transmission conditions that is capable of enforcing the continuity for

both electric and magnetic field. So the performance of this formulation is insensitive

to the permittivity and permeability of the interior region. Also, non-conformal mesh

is supported and this provide unprecedented flexibility and modularity for problems

such as antenna array simulation. More details of this work can be found at [39].

4.2.1 Residual Definition

We denote the exterior and interior region by using superscripts - and +, they tags

the trace operators from the sub-region surface ∂Ωm from Ωm. The surface normal

n̂+ points from Ωm to the exterior region Ωext while n̂− points from the interior

region Ωext to Ωm. We introduce two surface trace operators on ∂Ω, the tangential

component trace operator πτ (•) and twisted tangential trace operator γτ (•), defined

as follows:

γτ = n̂× u|∂Ω (4.14)

πτ = n̂× (u× n̂)|∂Ω (4.15)

By letting the observation point r approaches ∂Γ+
m, the scattered electric field esm(j+

m, e
+
m×

n̂+
m) and scattered magnetic field jsm(j+

m, e
+
m × n̂+

m) can be represented as follows with
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the scaled surface current jsm = η0n̂
+ ×Hs

m on ∂Ω+
m:

esm(j+
m, e

+
m × n̂+

m)

= πτ (Lk0(j+
m; ∂Ω+

m)) +
1

2
e+
m − πτ (K̄k0(e+

m × n̂+
m; ∂Ω+

m)) on ∂Ω+
m (4.16)

jsm(j+
m, e

+
m × n̂+

m)

= γτ (Lk0(e+
m × n̂+; ∂Ω+

m)) +
1

2
j+
m + γτ (K̄k0(j+

m; ∂Ω+
m)) on ∂Ω+

m (4.17)

where K̄ stands for the principle value of K. Subsequently, we can define two residuals

by invoking the EFIE and MFIE, respectively:

R1 =
1

2
e+ − πτLk0(j+

m; ∂Ω+
m)) + πτKk0(e+

m × n̂+
m; ∂Ω+

m))− eINC (4.18)

R2 =
1

2
j+ − γτLk0(e+

m × n̂+; ∂Ω+
m))− γτKk0(j+

m; ∂Ω+
m))− jINC (4.19)

To satisfy the continuity of tangential electric and magnetic field across the two

regions, Robin type transmission conditions are prescribed and the third residual can

be defined as:

R3 = e+
m − j+

m − e−m − j−m (4.20)

These residuals can be defined similarly in the interior domain as:

R4 =
1

2
e− − πτLk0(j−m; ∂Ω−m)) + πτKk0(e−m × n̂−m; ∂Ω−m)) (4.21)

R5 =
1

2
j− − γτLk0(e−m × n̂−; ∂Ω−m))− γτKk0(j−m; ∂Ω+

m)) (4.22)

R6 = e−m − η−j−m − e+
m − η−j+

m (4.23)

where η− is the wave impedance in the interior sub-domain.

These residuals are tested with λ+ ∈ H(div∂Ω+ , ∂Ω+), λ− ∈ H(div∂Ω− , ∂Ω−),

w+ ∈ H(curl∂Ω+ , ∂Ω+), w− ∈ H(curl∂Ω− , ∂Ω−) to arrive at the following sesquilinear
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form :

(1− α) < w+,R1 > +α < w+,R2 > −α < λ+,R1 > −(1− α) < λ+,R2 >

+ (1− α) < w−,R4 > +α < w−,R5 > −α < λ−,R4 > −(1− α) < λ−,R5 >

+
1

2
< w−, R6 > +

1

2
< λ−, R6 > +

1

2
< w+, R3 > +

1

2
< λ+, R3 >= 0 (4.24)

where α ∈ R,α ∈ [0, 1] is needed to push the resonance frequency to be a complex

number and thus immune from internal resonance for real frequencies. We adopt

α = 0.5 unless otherwise specified.

4.2.2 Finite Dimensional Discretization

For the exterior, these three residuals can be linearly combined and weighted to

give rise to the following linear equations:

−αR1 − (1− α)R2 +
1

2
R3 = 0 (4.25)

(1− α)R1 + αR2 +
1

2
R3 = 0 (4.26)

The original surface ∂Ωm is discretized using triangulations denoted by T±. The

electric current j±m and magnetic current m±m are expanded in each element using

half-RWG elements. Test equation(4.25) with λ+ and equation(4.26) with w+, the

multi-trace matrix system can be casted as follows:

G
jj
+ G

jm
+ N

jj
+− N

jm
+−

G
mj
+ Gmm+ N

mj
+− Nmm

+−

N
jj
−+ N

jm
−+ G

jj
− G

jm
−

N
mj
−+ Nmm

−+ G
mj
− Gmm−


·



j+

m+

j−

m−


=



bj+

bm+

bj−

bm−


(4.27)

89



(a) Re(j+
m + j−m) (b) Im(j+

m + j−m) (c) Re(m+
m+m−m) (d) Im(m+

m+m−m)

Figure 4.3: Error j and m on dielectric interface using j±m = span{λ′} and m±m =
span{λ′}

where the matrix entries are essentially
G
jj
+ α < λ+

j , πτL(j+) > +(1− α) < λ+
j , γτK(j+)− 1

2
j+ > +1

2
< λ+

j , j
+ >

G
jm
+ (1− α) < λ+

j , γτL(m+) > −α < λ+
j , πτK(m+) + 1

2
n̂+ ×m+ > −1

2
< λ+

j , n̂
+ ×m+ >

N
jj
+−

1
2
< λ+

j , j
− >

N
jm
+−

1
2
< λ+

j , n̂
− ×m− >

bj+ α < λ+
j , e

INC > +(1− α) < λ+
j , j

INC >

G
mj
+ −(1− α) < n̂+ × λ+

m, πτL(j+) > −α < n̂+ × λ+
m, γτK(j+)− 1

2
j+ > +1

2
< n̂+ × λ+

m, j
+ >

Gmm+ −α < n̂+ × λ+
m, γτL(m+) > +(1− α) < n̂+ × λ+

m, πτK(m+) + 1
2
n̂+ ×m+ > −1

2
< n̂+ × λ+

m, n̂
+ ×m+ >

N
mj
+−

1
2
< n̂+ × λm, j− >

Nmm
+− +1

2
< n̂+ × λ+

m, n̂
− ×m− >

bm+ −α < n̂+ × λm, jINC > −(1− α) < n̂+ × λm, eINC >

4.3 Multi-trace IEDG with Enhanced Enforcement of Trans-
mission Conditions

For some highly resonant structures, e.g., antenna and frequency selective surface,

etc., we observed that the G-CFIE formulation elucidated in the previous section pro-

duces less accurate result. Further investigation reveals that this is highly related with

the energy loss, i.e., the transmission conditions that satisfy the continuity between

the tangential electric and magnetic field on ∂Ωm is not well enforced, especially at

the interface of PEC and dielectrics.

90



4.3.1 Issues with the Enforcement of Transmission Condi-
tions

For a PEC hemisphere shell example shown in Figure.4.3a to Figure.4.3d, we

observed obvious large electric error current and large magnetic error current on the

interface. This is particularly obvious on the ring where PEC and dielectric interface.

Figure 4.4: Real part of magnetic current along the PEC-dielectric interface

Recall that the transmission conditions only apply on the dielectric part of the

surface, no transmission conditions are enforced on the PEC side. Observe Figure.

4.4 and strong magnetic currents that flows tangentially along the PEC-dielectric

interface is observed. This suggests that the basis functions for magnetic currents

should be able to effectively represent this tangential component. However, as is

shown on Figure.4.5, the magnetic current m±m = span{λ′} on the PEC-dielectric
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interface, where λ′i is defined as:

λ′i =

{
(~r−~ri)li

2A
~r ∈ T

0 elsewhere

where ~r is the evaluation point, T is the triangulation that serves as the support of λ′i,

li is the length of the edge associated with λ′i and A is the area of the triangle. Assume

edge r1r2 is on the PEC-dielectric interface, it can be observed that λ′0 is dominated

by components that flow normal to the edge. A more intuitive explanation involve the

Figure 4.5: Current pattern of λ′0

relationship between the basis function for electric current and electric field revisit

the Robin type transmission conditions in R3 and R6, physically electric field e±

should be normal to magnetic field h±, thus electric current j± = n̂ × h± should be

somewhat parallel to e±. However, conventional implementation expand the electric

current j± and magnetic current m± in terms of the same type of basis function,

e.g., div-conforming RWG basis for conformal G-CFIE case or half-RWG basis for
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(a) Re(j+
m + j−m) (b) Im(j+

m + j−m) (c) Re(m+
m +m−m) (d) Im(m+

m +m−m)

Figure 4.6: Error j and m on dielectric interface using j±m = span{λ′} and m±m =
span{n̂± × λ′}

multi-trace IEDG formulation. This implies that the electric field e± = n̂ × m± is

expanded in terms of rotated RWG basis and this contradicts the physics.

4.3.2 Proposed Solution

To correct this discrepancy, we propose to expand j±m ∈ X±m and m±m ∈ n̂± ×X±m,

such that j± and e± parallel each other in terms of basis functions definition. Note

that equation(4.26) carries the physical quantity of electric current and it should

be paired with electric field e±m = n̂± × m±, so it should be tested by λ′ as well.

Consequently, all the residuals are well tested, especially the transmission conditions

in R3 and R6. Here we give the proposed sesquilinear form :

(1− α) < λ+,R1 > +α < λ+,R2 > −α < λ+,R1 > −(1− α) < λ+,R2 >

+ (1− α) < λ+,R4 > +α < λ+,R5 > −α < λ−,R4 > −(1− α) < λ−,R5 >

+
1

2
< λ−, R6 > +

1

2
< λ+, R3 >= 0 (4.28)

X±m = λ′

Our first attempt employed conventional half-RWG basis λ′ as X±m. Numerical

results in Figure.4.6a through Figure.4.6d demonstrates that the error j and m is
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reduced by 2 to 3 orders of magnitude. However, loss of accuracy is observed for a

dielectric coated PEC sphere example as is shown in Figure.4.7. This is due to the fact

that 5 · (n̂± × λ′) = 0, recall that integration by part is performed in equation(4.6),

adoption of divergence free basis function for m±m set terms involving 5 · vm to zero,

consequently leads to loss of interpolative accuracy.

Figure 4.7: Far field comparison with MIE series

X±m = LB × n̂±

For a triangle element, each edge relates to one λ′ basis and they span a subset

of the full linear space, but unfortunately 5 · (n̂± × λ′) = 0 and this leads to loss of

solution accuracy. Herein we propose X±m = span{LB × n̂±}, where LB stands for

linear basis and they originates from the 6 basis defined on edges from the definition

of H1curl basis [61]. Originally, each one of the 6 basis function has support on both

triangles that share the same edge, they are split into two independent basis that has
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support only in the corresponding triangle patch in the IEDG scheme. Now the 6

basis within each triangle span the full linear space and the definition of the basis

function together with its divergence and curl are given as follows,

c1 = v5 w − w5 v 5 · c1 = 0 5×c1 = − 2

Ly′2
n̂

c2 = v5 w + w5 v 5 · c2 = 2
x′2 − L
y′22

5×c2 = 0

c3 = w5 u− u5 w 5 · c3 = 0 5×c3 = − 2

Ly′2
n̂

c4 = w5 u+ u5 w 5 · c4 = −2
y′22 + x′2(x′2 − L)

L2y′22
5×c4 = 0

c5 = u5 v − v5 u 5 · c5 = 0 5×c5 = − 2

Ly′2
n̂

c6 = u5 v + v5 u 5 · c6 = 2
x′2 − L
y′22

5×c6 = 0 (4.29)

where u, v, w are the barycentric coordinate of the evaluating point. L = |r1 − r3|

where r1, r2, r3 are the 3 vertices of a triangle following the right hand rule. x′2 and

y′2 is the coordinate of r2 in the normalized system. The divergence of the rotated

basis, i.e., LB × n̂±m can be found by invoking the vector identity.

5 · (ci × n̂±m) = n̂±m · 5 × ci (4.30)

4.3.3 Numerical Results

In this section we validate the proposed multi-trace IEDG formulation by calcu-

lating both canonical and more complicate examples. Both the far field accuracy and

near field error currents are investigated.

Dielectric Coated PEC Sphere

We employ the proposed method to calculate the dielectric coated PEC sphere

calculated in Figure.4.7, the far field result is compared again MIE series results in
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Figure.4.8, excellent agreements have been observed. Having established the accuracy

Figure 4.8: Far field comparison against MIE series

of the method, we examine the near field error j and m currents. Compared with

Figure.4.3a to Figure.4.3d, the error currents shown from Figure.4.9a to Figure.4.9d

are successfully reduced by 2 to 3 orders of magnitude.

Slot Example

Highly resonant structures such as frequency selective surfaces (FSS) contains

complicated geometrical structures including the hybrid of PEC and dielectric struc-

tures. The multi-trace IEDG formulation proposed are employed herein to calculate

a slot example to demonstrate the improvement in performance. The geometry of the

slot example is shown in Figure.4.10 together with the incident wave setup.
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(a) Re(j+
m + j−m) (b) Im(j+

m + j−m) (c) Re(m+
m +m−m) (d) Im(m+

m +m−m)

Figure 4.9: Error j and m on dielectric interface using j±m = span{LB × n̂±m} and
m±m = span{LB}

Figure 4.10: Geometry of a small slot example
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The far field result of the proposed method corresponds to the black curve in

Figure.4.11, it demonstrates improved accuracy against the existing multi-trace IEDG

result in blue curve where X±m = λ′.

Figure 4.11: Far field comparison of the small slot example

Comparing with Figure.4.12, where strong error current has been observed close

to the interface of PEC and air slot, especially in the vicinity of corners. Figure.4.13

shows error currents that are 2 to 3 orders lower in terms of magnitude.

We define the normalized energy loss as follows:

Ploss = −
Re[1

2

∫
∂Ω

( ~J∗ × ~M) · n̂dS]

Re[1
2

∫
∂Ωxsec

( ~Einc ×
(
~H inc

)∗
) · n̂dS]

× 100% (4.31)

where ∂Ωxsec denotes the cross section of the target with respective to the incident

wave. Note that Ploss > 0 indicates energy loss, Ploss < 0 indicates energy gain. The

normalized energy loss for the case shown in Figure.4.12 is 4.15% or −13.8dB, the
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(a) Re(j+
m + j−m) (b) Im(j+

m + j−m) (c) Re(m+
m +m−m) (d) Im(m+

m +m−m)

Figure 4.12: Error j and m in slot using j±m = span{λ′} and m±m = span{λ′}

(a) Re(j+
m + j−m) (b) Im(j+

m + j−m) (c) Re(m+
m +m−m) (d) Im(m+

m +m−m)

Figure 4.13: Error j and m in slot using j±m = span{LB× n̂±m} and m±m = span{LB}
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new formulation with enhanced enforcement of transmission conditions reduce the

energy loss to 0.42% or −23.7dB.

4.4 Multi-trace IEDG with Infinite PEC Ground Plane

In practical applications, antenna structures are usually radiating in complex en-

vironment, including infinite ground plane. In this section, IEDG formulation is

extended to incorporate the infinite PEC ground plane effect. Numerical examples

involving both scattering and radiation problems are conducted to demonstrate the

effect of the infinite ground plane.

4.4.1 Boundary Value Problem

Figure 4.14: Illustration of the boundary value problem with infinite PEC ground
plane
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As illustrated in Figure.4.14, the boundary value problem can be considered as

follows,

5×5× ~Escat − k2
o
~Esca = 0 in Ωext

πt( ~E
inc + ~Esca) = πt ~EΩ on ∂Ω

π×(5× ~Einc +5× ~Esca) = π×5× ~EΩ on ∂Ω

πt( ~E
inc + ~Esca) = 0 on ΓPEC

lim|~r|→∞|~r|(5× ~Esca + ik0r̂ × ~Esca) = 0

(4.32)

The aforementioned boundary value statement can be updated by introducing

another set of imaginary sources ~J∂Ω′ and ~M∂Ω′ on the imaged equivalence surface

∂Ω′, as demonstrated in Figure.4.15.

Figure 4.15: Illustration of the updated boundary value problem with infinite PEC
ground plane
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4.4.2 Multi-trace IEDG with Infinite PEC Ground Plane

Note that any external excitation source, including the source that is infinitely far

away and generates the plane waves, should be imaged according to the image theory.

5×5× ~Escat − k2
o
~Esca = 0 in Ωext

πt( ~E
inc + ~Esca) = πt ~EΩ on ∂Ω

π×(5× ~Einc +5× ~Einc′ +5× ~Esca) = π×5× ~EΩ on ∂Ω

πt( ~E
inc + ~Einc′ + ~Esca) = 0 on Γ′PEC

lim|~r|→∞|~r|(5× ~Esca + ik0r̂ × ~Esca) = 0

(4.33)

Considering the fact that the scattering field ~Esca = L( ~J∂Ω) −K( ~M∂Ω) + L( ~J∂Ω′) −

L( ~K∂Ω′). Subsequently, the fourth condition can be satisfied separately by the in-

cident wave and equivalent sources after invoking the Stratton-Chu representation

in terms of the electric current ~J∂Ω, ~J∂Ω′ and ~M∂Ω, ~M∂Ω′ , provided that the imaged

sources satisfy the image theory.

πt( ~E
inc + ~Einc′)|Γ′PEC

= 0 (4.34)

πt(L( ~J∂Ω)−K( ~M∂Ω) + L( ~J∂Ω′)− L( ~K∂Ω′))|Γ′PEC
= 0 (4.35)

Consequently, the IEDG formulation from last section can be employed with the

additional image sources for the problems in the presence of infinite PEC ground

plane.

For the scenario that the part of the geometry is touching or below the ground

plane surface as demonstrated in Figure.4.16. For the currents that resides below

the infinite PEC ground plane, the electromagnetic field identically zero everywhere

below the ground plane, this part of the currents will be dropped. Also, for the

equivalent electric current resides right on the ground plane will cancel out with its

image. While the magnetic current will also be zero since the total tangential electric
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Figure 4.16: Illustration of the problem with part of the geometry below the infinite
PEC ground plane

field on the ground plane surface is zero. The equivalent problem with these currents

removed is demonstrated in Figure.4.17

Figure 4.17: Illustration of the equivalent problem with part of the geometry below
the infinite PEC ground plane

4.5 Numerical Results

4.5.1 Tank example

In this example a mock-up PEC tank resides on a infinite PEC ground is impinged

upon by a plane wave at 2GHz as demonstrated in Figure.4.18. After discretization,

the free standing tank gives rise to 1,027,554 DoFs. The free standing tank consumes

14.6 GB RAM while the tank on the ground plane examples consumes 28.8 GB
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memory. This is consistent with the O(N) complexity of conventional MLFMM,

which is adopted to accelerate the IEDG. Strong electric field has been observed at

Figure 4.18: Total far field electric field result for the tank example with and without
infinite PEC ground plane

the reflection direction as expected. In the near field result, strong electric current is

observed in Figure.4.22 compared with the free standing tank in Figure.4.20.

4.5.2 Monopole Antenna

For this monopole antenna at 75MHz, we employed the multi-solver domain de-

composition method (MS-DDM) [40] to solve for this radiation problem. First order

Robin type transmission condition [40] is enforced as the field continuity condition.

The interior domain is modeled by FEM while the exterior surface modeled by IEDG

is used to terminate the solution region. This model is simulated with and without

the infinite PEC ground plane. Note that the length of the original PEC base from

the monopole antenna is only 0.0875λ. Total electric far field from both simulations
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Figure 4.19: Top view of the real part of the electric current on a free standing tank
without infinite PEC ground plane

Figure 4.20: Bottom view of the real part of the electric current on a free standing
tank without infinite PEC ground plane
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Figure 4.21: Top view of the real part of the electric current on a tank in the presence
of the infinite PEC ground plane

Figure 4.22: Bottom view of the real part of the electric current on a tank in the
presence of the infinite PEC ground plane
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Figure 4.23: Radiation pattern for the monopole antenna with and without infinite
PEC ground plane

is compared and plotted in Figure.4.23, maximum far field in the broad size is en-

hance from 6.6 dB to 13.9 dB after the installation of infinite PEC ground plane.

On the other hand, the S11 of the monopole antenna drops from -2.4 dB in the free

standing case to -17.5 dB with the infinite PEC ground plane. Compared with the

free standing case shown in Figure.4.24, stronger electric current is observed after the

installation of ground plane as shown in Figure.4.25.

4.5.3 NGC Wideband Antenna Array

In this example, we employed the multi-trace IEDG with infinite ground plane in

the MS-DDM scheme and solve for a real life antenna array problem. The multi-trace

IEDG with infinite ground plane serves as the truncation boundary for the FEM-DDM

solver. Good agreements between numerical simulation and measurement results are

107



Figure 4.24: Top view of the real part of the electric current on the free standing
monopole antenna

Figure 4.25: Top view of the real part of the electric current on the monopole antenna
mounted on infinite PEC ground

108



observed. The geometry of the 8 by 8 antenna array is depicted in Figure.4.26. Each

antenna unit contains two ports and the port excited in this study is demonstrated in

Figure.4.26. The frequency range of this antenna array is from 500MHz to 4GHz, we

simulate the antenna at 3.0GHz with infinite ground plane prescribed on XOY plane.

Figure 4.26: NGC 8x8 antenna array

We excite the array element based on purely array factor such that it scans 60o

in positive Y direction. S11 distribution for the array is plotted in Figure.4.27

A 3D view of the theta polarization far field is provided in Figure.4.28. Figure.4.29

shows the 2D far field on E plane, where the maximum radiation direction points at

51o instead of 60o due to the mutual coupling between elements.

This shift of maximum radiation direction is also observed in measurement results

shown in Figure.4.30.

It should be pointed out that the measurement is the result from the antenna

array with finite, but reasonably large ground plane. We modeled the finite ground
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Figure 4.27: S11 distribution of NGC 8x8 antenna array scanning 60o toward positive
Y direction

Figure 4.28: 3D far field of theta polarization, NGC 8x8 antenna array scanning 60o

toward positive Y direction
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Figure 4.29: Far field of theta polarization on E plane, NGC 8x8 antenna array
scanning 60o toward positive Y direction

Figure 4.30: Comparison of normalized far field on E plane with measurement, NGC
8x8 antenna array scanning 60o toward positive Y direction
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plane based on the actual size of the ground plane applied in the measurement and

the E plane far field results are compared against measurement result in Figure.4.31,

good agreements has been observed.

Figure 4.31: Comparison of far field on E plane with finite ground plane, NGC 8x8
antenna array scanning 60o toward positive Y direction

4.6 Conclusion

An novel IEDG method with enhanced enforcement of transmission conditions is

proposed, together with the IEDG algorithm scheme, this makes it possible to solve

surface integral equation without relying on the conformal mesh and basis functions

with inter-element continuity. Various basis functions with different definitions and

orders can be chosen flexibly to form a robust surface integral equation solver for

multi-scale structures. IEDG algorithm allows local mesh refinement and greatly fa-

cilitates wideband analysis. This algorithm is enhanced by improved enforcement
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of the transmission conditions for highly resonant structures. Lastly, ground plane

capability is incorporated with this IEDG algorithm and good agreements with mea-

surements have been observed.
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Chapter 5: Conclusion

Surface integral equation methods have been quite attractive for solving electro-

magnetic wave scattering and radiation problems since only the surface of the target

needs to be discretized, and subsequently requiring much less number of unknowns

by orders of magnitude compared to the volume discretization counterparts. Quite

a number of methods and algorithms have been proposed to accelerate SIE solution,

yet the multi-scale and low frequency nature of some problems still pose serious chal-

lenges due to the sub-wavelength breakdown problem resulted from the dense mesh

either in local or global scale. Consequently, multiple meshes based on multiple fre-

quency bands are usually needed for a wide-band analysis. Unfortunately, meshing

and discretization of real-life models often pose difficulties that requires tremendous

amount of human intervention. The capability to recycle the mesh obtained at higher

frequencies, where mesh with good quality can be obtained with less effort, for lower

frequencies greatly alleviates this meshing problem. The first part of this disserta-

tion focuses on solving the multi-scale and low frequency problem using direct and

iterative methods.
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Firstly, a hierarchical direct solver algorithm is developed to solve integral equa-

tions in 3D electromagnetic wave scattering from non-penetrable targets. The pro-

posed algorithm utilizes the skeletonalization process to effectively compress the rank-

deficient off-diagonal blocks, which correspond to the couplings between groups. Huy-

gen’s surfaces are also introduced to account for the far field couplings efficiently, and

thus further accelerate the algorithm. It has been demonstrated that the condition

number of the system matrix would still affect the solution errors of direct solvers.

Despite the limitations, for problems of small or medium electrical sizes, the multi-

level version of the proposed algorithm features O(N1.3) and O(N) complexity for

memory consumption and O(N1.8) and O(N1.5) for CPU times for fixed mesh size

and for h-refinement scenarios, respectively.

Secondly, we propose an iterative solver oriented H-MLFMM algorithm for solving

low frequency and multi-scale electromagnetic problems. H-MLFMM alleviates the

sub-wavelength breakdown problem of conventional MLFMM by compressing the near

field matrix and near to far mapping matrices via their skeleton DoFs, respectively.

Particularly, Huygens’ principle is exploited to expedite the skeletonalization process

in an error controllable fashion. Numerical results demonstrate that H-MLFMM is

error controllable and robust within a wide range of spectrum. It should be pointed

out that rather than accelerating the matrix vector multiplication of the original

problem, it could be a promising topic to extract the skeleton unknowns and directly

employ them as the new basis for the original problem, thus reducing the size of the

problem and potential improve the condition number of the system.

For the composite targets, an novel IEDG method with enhanced enforcement

of transmission conditions is proposed, together with the existing IEDG algorithm

115



scheme, this makes it possible to solve surface integral equation without relying on

the conformal mesh and basis functions with inter-element continuity. Various basis

functions with different definitions and orders can be chosen flexibly to form a robust

surface integral equation solver for multi-scale structures. IEDG algorithm allows

local mesh refinement and greatly facilitates wide-band analysis. This algorithm is

enhanced by improved enforcement of the transmission conditions for highly resonant

structures. Lastly, ground plane capability is incorporated with this IEDG algorithm

and good agreements with measurements have been observed. The skeletonalization

based direct solver and H-MLFMM can be extended to this novel IEDG to alleviate

the multi-scale and low frequency problems encountered in composite targets.
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