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Abstract

The study of shifted convolution sums has acquired a prominent place in current

number theory research owing to its potential applications to the sub-convexity

problem, while quadratic forms have fascinated mathematicians since antiquity.

This thesis, which deals with both these topics, studies shifted convolution sums

involving the Fourier coefficients of Theta Series associated to a positive definite

integral quadratic form and a cuspidal Hecke eigenform of integral weight. Our

aim is to generalize the work of W. Luo, J. Hafner, and H. Iwaniec et al. in

this new setting. Three independent approaches are used in this endeavour – the

spectral theory of the hyperbolic Laplacian, the δ-symbol method (a variant of

the Hardy-Littlewood-Ramanujan circle method), and the theory of Poincaré series

via a Poisson-Voronoï summation formula. We establish asymptotic formulae in

all three aspects with the spectral theory approach providing the optimal estimate

for the error term when one of the forms involved is cuspidal, while the δ-symbol

method gives a sharp error term when only Theta Series are involved in the shifted

convolution sum.
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Chapter 1: Introduction

“I don’t know where to begin.”
“At the beginning, don’t you
think? I often feel that that is
best. Then work through the
middle and from there, taking
your time, carry on to the end.”

P.G. Wodehouse, Service with a
Smile

1.1 Prologue

To begin this dissertation, which contributes to the field of Analytic Number

Theory, at its beginning, we introduce its main object of study – the sum:

∑
n≥1

a(n+ b)rQ(n)φ(n), (1.1)

where b is a positive integer, rQ(n) is the number of ways of representing an in-

teger n by a positive definite quadratic form Q(x) of rank l and weight k = l/2,

a(n) is either the normalized Fourier coefficient of a holomorphic cusp form f(z)

(to be denoted by af(n) in the pages that follow) in Γ0(N) or rQ(n) itself and φ(x)

is a suitably nice test function on (0,∞). The sum in (1.1) is a specific example
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of a Shifted Convolution Sum, which has been extensively studied by contempo-

rary number theorists as a part of the Shifted Convolution Problem (henceforth

abbreviated as SCP, borrowing Philipe Michel’s notation from [26]). To put it suc-

cinctly (for the time being), the SCP refers to the problem of obtaining sufficient

non-trivial upper bounds for Shifted Convolution Sums.

In this expository chapter, we hope to shed some light on a few of the key players

involved in the study of the sum in (1.1). Along the way, we will also define the

SCP from a mathematically rigorous point of view and on a related note, furnish

a few details regarding its relevance to modern day analytic number theorists.

1.2 Statement of thesis results

Before we go on to explore the various facets to the study of the sum in (1.1), we

would like to provide a brief summary of the results that arise out of this research.

The results themselves were obtained using a variety of different approaches. In

light of this multi pronged approach, the chapters of this dissertation have been

organized on a methodological basis, as listed below:

(i) Chapter II – Poincaré Series Approach

(ii) Chapter III – Spectral Method

(iii) Chapter IV – δ-symbol Method

Each chapter devotes itself entirely to the exposition of a single approach to the

problem at hand. This way, we hope that the thesis will also serve to illustrate the

potential benefits and disadvantages of some of the more common techniques used

by analytic number theorists in action as it were.
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To begin with, Chapters II and IV are linked thematically even if the objects

under scrutiny in both the chapters differ. Here, we study the sum in (1.1) using

relatively ‘elementary’ (in the sense that a more mathematically sophisticated and

powerful approach is eschewed in favor of obtaining exploratory estimates) tech-

niques, such as the δ-symbol method and variations thereof. We can trace the

origins of these approaches back to the circle method of Hardy, Littlewood, and

Ramanujan used to study the asymtpotics of the partition function in 1916-17. We

also use ideas inspired by the work of Siegel (and even further beyond to Dirichlet,

as a matter of fact) in [36] wherein automorphic forms such as Θ functions asso-

ciated to quadratic forms Q(x) were extensively used to find, among other things,

formulae relating to rQ(n). Upon applying the aforementioned techniques to the

sum

Df(Θ, b) =
∑
n≤X

af(n+ b)rQ(n), (1.2)

we manage to exert a certain degree of control over the order of magnitude of the

sum in (1.2), by getting an upper bound that is marginally worse than the bound

predicted by the ‘square-root’ cancellation heuristic. This heuristic is the generally

reliable rule of thumb that in certain families of finite oscillating sums, the order

of magnitude is roughly given by the square root of the number of terms (the table

towards the end of this section shows this in a very concrete way). To wit, we

obtain the following result:

∑
n≥1

af(n+ b)rQ(n)φ(n)� Xl/2−(l−1)/4+εPg, (1.3)

where X, P are parameters whose values reflect the nature of the applications that

employ (1.3) by determining the support of the test function φ(x), while g is the
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smallest integer such that g ≥ l/2+ 1 with l representing the rank of the quadratic

form Q(x).

In Chapter IV, variations on the techniques used in Chapter II yield a similar

result for sums of the form

D(Θ,φ) =
∑
n≥1

rQ(n)rQ(n+ 1)φ(n),

giving us the following asymptotic expansion

D(Θ,φ) =

∫∞
0

g(x, x+ 1)dx+O
(
Pl/2+1/4(X+ Y)l/2−3/4(XY)1/4+ε

)
. (1.4)

Here, X, Y, P are, as mentioned in the previous paragraph, yet-to-be determined

parameters that control the support of the test function φ(x), while g(x, y) is

defined as follows:

g(x, y) = Γ(l/2)−2 (2π)l
∞∑
q=1

q−lµ(q)f(x, y)(xy)l/2−1 (1.5)

with µ(x) representing the Möbius function and f(x, y) being a smooth test-function

defined in terms of φ(x). The error term in (1.4) supersedes the trivial bound

D(Θ,φ)� (XY)(l−1)/2

whenever

Pl/2+1/4 � (X+ Y)−(l/2−3/4)(XY)l/2−3/4−ε.

Finally, in Chapter III, we shall resort to the far more powerful spectral theory

approach in order to study (1.1). However, sophistication notwithstanding, this

method has a drawback in that the bounds obtained are restricted to Θ functions

of integral weight. Owing to the non-obvious extension of one of the key ideas used,

the process of extending the result to include Θ functions of half-integral weight
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becomes a murky issue and one which we have not analysed to the fullest extent

possible. We obtain the following bound for the unsmoothed sum:

∑
n≤X

rQ(n)af(n+ b)� Xl/2−1/2+δ,

where δ is a positive number whose value depends on the locations of eigenvalues

of the non-Euclidean Laplacian operator on quotients of SL(2,R) by congruence

groups.

The following table summarizes all the results mentioned in this section for the

special case where f and Θ live in the full modular group, while Θ is assumed to

be of integral weight. We use r̃Q(n) to represent a normalized rQ(n), i.e., since

rQ(n) � nk−1, we set r̃Q(n) = rQ(n)/n
k−1, thus removing the main contributor

towards the size of rQ(n). We also assume that f is a normalized eigencuspform for

the full modular group. In so doing, all the shifted convolution sums considered in

this dissertation are placed on an equal footing. Since the size of each normalized

sum is trivially bounded by X (the ‘length’ of the sum), we get to see the extent

of the power saving affected by each method. Unsurprisingly, the spectral method

performs the best when one of the summands is cuspidal, while the δ-symbol method

provides a rather sharp estimate for the error term when the weight k is large,

implying that the main term in the asymptotic expansion approximates the shifted

convolution sum quite closely.
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Table 1.1: A table displaying the asymptotics obtained in terms of the weight k
for the unweighted shifted convolution sums considered in this dissertation across

three independent methods.

Sum under consideration Approach used Asymptotics∑
n≤X

r̃Q(n)af(n+ 1) Poincaré Series X1−
2k−1
4k+8

+ε

∑
n≤X

r̃Q(n)r̃Q(n+ 1) δ-symbol c(Q)X+ X1−
4k−3
4k+5

+ε

∑
n≤X

r̃Q(n)af(n+ 1) Spectral Theory X1−1/2+ε

On a final note, in the vein of the familiar adage, a picture is worth a thousand

words, we present a diagram from J.L. Hafner’s expository article [14] on the fol-

lowing page which highlights the areas pertinent to our research amidst the rich

interplay that exists between the various branches of modern number theory.

1.3 Automorphic forms in a (tiny) nutshell

Seeing as how automorphic cusp forms – mathematical objects that we have not

defined in any capacity so far – play an integral role in the course of this thesis, we

would like to take the opportunity to review their definitions at this juncture. A few

cursory paragraphs can hardly do justice to automorphic forms (along with their

equally well-known relatives, modular forms) and their role in modern mathematics

when entire tomes have been written about these tantalizing entities. We refer

the interested reader to H. Iwaniec’s [21] or Diamond and Shurman’s [3], both of

which devote considerable space and energy towards developing and motivating the
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Figure 1.1: The interrelated world of number theory and our areas of interest
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relevant theory. So without further ado, we shall jump headlong into the pertinent

definitions.

Let H denote the complex upper half-plane, i.e., those complex numbers x+ iy

with y > 0, and let H = H∪Q∪ {∞}. Let Γ = SL(2,Z), the group of 2× 2 matrices

with integer coefficients and determinant 1 under multiplication. It can be shown

that Γ acts on H by fractional linear transformations:(
a b

c d

)
(z) =

az+ b

cz+ d
.

Moreover, H also has an action by any subgroup of Γ . A central object in the theory

of modular forms is the set of cusps of Γ which is nothing more than the set of points

in the Γ -orbits of Γ\(Q ∪ {∞}). In this thesis, we pay particular attention to the

action of the subgroup Γ0(N) consisting of those matrices in SL(2,Z) for which the

lower left-hand entry is divisible by N.

Definition 1.3.1. Let f : H→ C be a holomorphic function and k ∈ N∪ {0}. The

function f is a (holomorphic) modular form of weight k and level N if

f(γz) = (cz+ d)kf(z) for z ∈ H, γ =

(
a b

c d

)
∈ Γ0(N), (1.6)

and f is “holomorphic at each cusp of” Γ0(N). We denote the space of modular

forms of weight k and level N by Mk(N).

As far as the notion of “being holomorphic at a cusp” is concerned, it suffices

(for our purposes) to merely say that the condition requires the function f(z) satisfy

a polynomial growth condition as z approaches a cusp of Γ0(N)\H.

Let f ∈ Mk(N). Since T =

(
1 1

0 1

)
∈ Γ0(N) for all N, then (1.6) with γ = T

says that f(z+1) = f(z), i.e., the function f is periodic with period 1. Hence, it has

8



a Fourier expansion

f(z) =
∑
n∈Z

ane
2πinz.

Setting q = e2πiz and expressing f(z) as the function F(q), we can re-write f(z) as

f(z) = F(q) =
∑

anq
n.

Thus, the Fourier expansion of f may be viewed as a power series expansion of F(q)

at q = 0, where we have used the fact that as z → i∞, q → 0. The condition

that f be holomorphic at the cusps forces an = 0 for n < 0 thereby removing the

possibility of negative powers of q from showing up in the F(q) series expansion. For

larger values of N, Γ0(N) has multiple cusps, and we can find similar q-expansions

for f(z) about each cusp.

Definition 1.3.2. Let f ∈Mk(N). We say that f is a cusp form if f vanishes at

each cusp, i.e., if a0 = 0 in the q-expansion

f(z) =
∑
n≥0

anq
n

about any cusp of Γ0(N). The space of cusp forms in Mk(N) is denoted Sk(N).

We proceed to define a multiplier system of weight k for Γ ⊂ SL(2,R) as a

precursor to the definition of an automorphic form from [21, p. 42]. Let A,B ∈

SL(2,R). The function w(A,B) is defined as follows:

2πw(A,B) = −arg jAB(z) + arg jA(Bz) + arg jB(z),

where jg(z) = cz+ d for any g =

(
∗ ∗
c d

)
∈ SL(2,R).

9



Definition 1.3.3. A multiplier system of weight k for Γ is a function ϑ : Γ → C

such that

|ϑ(γ)| = 1,

ϑ(γ1γ2) = w(γ1, γ2) ϑ(γ1) ϑ(γ2).

We shall also require that

ϑ(−1) = e(−k/2), if − 1 ∈ Γ,

which is called the consistency condition. Here, and for the rest of the dissertation,

e(z) = e2πiz.

For any A ∈ SL(2,R), we define the “slash” operator |A acting on functions

f : H→ C by

f|A(z) = jA(z)
−k f(Az).

Definition 1.3.4. A holomorphic function satisfying the transformation rule

f|γ = ϑ(γ)f, for any γ ∈ Γ

is called an automorphic form for Γ of weight k with respect to the multiplier

system ϑ.

We shall also require that an automorphic form be holomorphic not only in H

but also at every cusp. See [21, p. 43] for a more concrete explanation of this

condition.

We now focus on automorphic cusp forms (i.e., automorphic forms which vanish

at each cusp). We begin by noting that we can make the space of automorphic cusp
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forms a finite-dimensional Hilbert space with the Petersson inner product defined

as follows

〈f, g〉k =
∫∫
Γ\H

yk−2f(z)�g(z)dxdy.

On this note, we introduce the classical Poincaré series at∞ for Γ = Γ0(N) given

by

P(m,k,N; z) :=
∑

Γ∞\Γ0(N)

jγ(z)
−ke(mγz),

where Γ∞ =

{(
1 t

1

)
: t ∈ Z

}
is the stabilizer of the cusp ∞. The collection

{P(m,k,N; z)}m≥1 spans the finite-dimensional space of cusp forms on Γ0(N). This

is a fact that will be of some importance to us in Chapter II. See §3.3 of [21] for a

more comprehensive exposition on this topic.

1.4 To sub-convexity and beyond via shifted convolutions

In order to understand the relevance of the Shifted Convolution Problem (a.k.a

SCP) in modern analytic number theory, we will first need to phrase and un-

derstand the statement of the Sub-convexity Problem (a.k.a ScP). Much of what

follows has been inspired by the writings of P.Michel in [26] and [27].

We shall begin by defining L-functions in a rather broad and abstract context,

following H.Iwaniec and P. Sarnak in [20]. Succinctly put, L-functions are a type of

generating function associated to an arithmetic-geometric object or an automorphic

form. As a classical object whose origins can be traced back to Dirichlet (or even

Riemann, if one is willing to take a few liberties with the definition), L-functions

have been a fount of research in contemporary analytic number theory owing in
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no small part to the various sweeping conjectures that dot its mathematical land-

scape such as the Generalized Riemann Hypothesis (GRH), Generalized Ramanujan

Conjecture (GRC), Birch Swinnerton-Dyer Conjecture (BSC), etc.

To assist us in the definition, we shall denote L-functions by L(f, s) where the

symbol f merely imply that L-functions are usually attached to some interesting

arithmetic object and s refers to a point in the complex plane at which the L-

function is evaluated. Following §5.1 of [10], we shall say that L(f, s) is an L-function

if we have the following data and conditions:

1. A Dirichlet series with Euler product of degree d ≥ 1,

L(f, s) =
∑
n≥1

λf(n)n
−s =

∏
p

(1− α1(p)p
−s)−1 . . . (1− αd(p)p

−s)−1

with λf(1) = 1, λf(n) ∈ C, αi(p) ∈ C. The series and Euler products must

be absolutely convergent for Re(s) > 1. The αi(p), 1 ≤ i ≤ d, are called the

local roots or local parameters of L(f, s) at p, and they satisfy

|αi(p)| < p for all p.

2. A gamma factor

γ(f, s) = π−ds/2

d∏
j=1

Γ

(
s+ κj
2

)
where the numbers κj ∈ C are called the local parameters of L(f, s) at infinity.

We assume these numbers are either real or come in conjugate pairs. Moreover,

Re (κj) > −1. This last condition tells us that γ(f, s) has no zero in C and no

pole for Re(s) ≥ 1.

3. An integer q(f) ≥ 1, called the conductor of L(f, s) such that αi(p) 6= 0 for

p - q(f) and 1 ≤ i ≤ d. A prime p - q(f) is said to be unramified.
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Using these quantities, we can define the ‘complete’ L-function

Λ(f, s) = q(f)s/2γ(f, s)L(f, s).

Λ(f, s) is a holomorphic function in the half-plane Re(s) > 1, and admits an analytic

continuation to a meromorphic function for s ∈ C of order one with at most poles

at s = 0 and s = 1. Moreover, it must satisfy the functional equation

Λ(f, s) = ε(f)Λ(f, 1− s), (1.7)

where f is an object associated with f for which λf(n) = λf(n), γ(f, s) = γ(f, s),

q(f) = q(f) and ε(f), also known as the ‘root number’ of L(f, s), is a complex

number of absolute value 1.

Analytic number theorists are primarily interested in uniform estimates for var-

ious analytic quantities related to L(f, s) such as the conductor, degree, local pa-

rameters, etc. To this end, as in [20], one can define the analytic conductor, Q(f, s),

which encapsulates all the relevant information about L(f, s) and in so doing, allows

us to measure the ‘size’ of L(f, s). We start by defining

Q∞(s) =

d∏
j=1

(|s+ κj|+ 3).

Multiplying this q(f), we get the analytic conductor

Q(f, s) = q(f)Q∞(s) = q(f)

d∏
j=1

(|s+ κj|+ 3).

We also denote

Q(f) = Q(f, 0) = q(f)

d∏
j=1

(|κj|+ 3).

Following [10], we note that Q(f, s) ≥ 3dq(f), so d < logQ(f), and that

Q(f, s) ≤ Q(f)(|s|+ 3)d,
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which allows us to perform estimates in terms of Q(f) without sacrificing a lot in

terms of powers of the quantities s and d.

The ScP addresses the question of the size of L(f, s) when s is on the critical line.

As a consequence of the functional equation (1.7), one has the convexity bound,

∀ε > 0, for Re(s) =1/2,

L(f, s)� Q(f, s)1/4+ε.

The convexity bound can typically be obtained by applying the Phrágmen Lindelöf

interpolation method together with bounds on L(f, s) in <(s) > 1 and <(s) < 0.

The ScP then, simply put, asks for any non-trivial improvement over the convexity

bound. Thus, the ScP then can be stated as:

Definition 1.4.1. [Sub-convexity Problem] Find an absolute δ > 0 such that

L(f, s)� Q(f, s)1/4−δ.

This interest in the ScP arises out of its applications to problems that, at first

glance, have nothing at all to do with L-functions. Any progress made towards the

ScP, in turn, can be used in the resolution of equidistribution problems arising

from ‘Quantum Chaos’ and Hilbert’s 11th Problem. In the interests of brevity, we

shall refrain from expounding on these topics, instead referring the reader to §6 in

[20] for a more in-depth explanation pertaining to these topics.

We shall now proceed to define the Shifted Convolution Problem, i.e., the SCP.

Given g(z), a primitive modular form of some levelD, with Hecke eigenvalues λg(n),

the SCP involves the non-trivial estimation of the following kinds of sums:

∑
(g, l1, l2, h) =

∑
l1m−l2n=h

λg(m)λg(n)V(m,n) (1.8)
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where h 6= 0 and V is a smooth compactly supported function in [M,2M]× [N, 2N].

The trivial bound for this sum is given by

∑
(g, l1, l2, h)� (MN)εmax(M,N).

The SCP can then be defined as follows:

Definition 1.4.2. [Shifted Convolution Problem] Find δ > 0 such that

∑
(g, l1, l2, h) = Main Term(h) +O

(
M1−δ

)
A.E. Ingham first studied a sum as in (1.8) in [19] where g = ∂

∂s
E(z, s)|s=1/2

with E(z, s) referring to the Eisenstein series for SL(2,Z) (see Chapter IV for a

definition). The divisor function of n, τ(n) under standard notation, played the

role of λg(n). We shall be using this historical fact again in later chapters, as an

analogy that will serve to motivate the various problem(s) we will be studying.

Now, in order to finally tie the knot that binds the SCP and ScP together,

we note that many instances of the SCP have been solved for the L-functions

of GL(1,Q) and GL(2,Q) automorphic forms (via work done by Good in [11],

Meurman in [25], Duke-Friedlander-Iwaniec in a series of papers [5], [8], [7], [6],

[9], etc.) and – this is the key – all can be reduced to an instance of the SCP.

Thus, any improvement in the error term of a shifted convolution sum could have

potential ramifications in breaking the convexity barrier of a related L-function.

This marks the end of our brief exposé on the relevance of the role played by the

SCP in modern analytic number theory. However, a caveat is in order. Ours is

a sum quite unlike the ones traditionally considered in a SCP. The cause of this

unlikeness is the subject of the next section.
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1.5 On rQ(n) and related historical perspectives

A distinguishing feature of the Shifted Convolution Sum under consideration

in (1.1) is the presence of the rQ(n) term. If we were to leaf through the pages

of relatively recent mathematical history as it pertains to analytic number theory,

we would notice the repeated attempts of mathematicians to solve and improve

upon existing solutions to SCPs. In these attempts, one is drawn to the fact that

questions concerning the SCP were, to get to the heart of the matter, mainly fo-

cused on summands involving the Hecke eigenvalues of Hecke-Maass cusp forms (see

Chapter IV for a defintion). Remarks outlining the reasons behind this emphasis

were made in the previous section. Seen in the light of prior research then, the sum

in (1.1) does not, strictly speaking, fall under the purview of the SCP. This is be-

cause Θ(z,Q), i.e., the theta function associated to the quadratic form Q(x) whose

Fourier coefficient is given by rQ(n), is not a Hecke-Maass cusp form. However, in

spite of this apparent dissimilarity, we can use the SCP and other techniques that

crop up in its study as a motivating analogy for our own research.

Moreover, sums such as (1.1) and variations thereof have also been studied by

earlier mathematicians and deemed worthy of interest aside from any considera-

tions involving the SCP. So, this thesis could be seen as an attempt to translate

the established SCP techniques to this new setting and study their efficacy. An

example of antecedent work, albeit one using rather different methods of investiga-

tion, similar to this dissertation can be seen in [18] ,where the following result was

established:

∑
1≤n≤X

r2(n)τ(n+ 1) =
∑
1≤n≤X

τ(n2 + 1) = XP(logX) +O
(
X8/9+ε

)
. (1.9)

16



Here, τ(n) is the divisor function , while P(x) is a polynomial of degree one. In

fact, [18] was itself an attempt by C. Hooley to place R. Bellman’s flawed paper [1]

of 1950 on a mathematically rigorous footing. Further improvements to the error

term in [18] were made by Deshouillers/Iwaniec, Sarnak, and Bikovski. See the

expository survey [2] by Deshouillers for more details regarding related research.

In fact, the question of studying rQ(n) as a mathematical entity in its own right

sports an illustrious history, judging solely by the various mathematical luminaries

who have pondered this question and made serious contributions towards its long

and interesting history. As a specific example, when Q(x) = x21 + . . . + x
2
m, then

rQ(n) boils down to the question of studying the representation of an integer n

by a sum of m squares. In this instance, we shall henceforth denote rQ(n) by

rm(n). Recounting the history of the various attempts made at obtaining formulae

for rm(n) pertaining to specific values of m and n takes up more than a hundred

pages in volume II of L.E. Dickson’s encyclopedic history of number theory [4].

Various approaches to this problem have been developed from two of the best-

known results of elementary number theory: Fermat’s theorem that any prime of

the form p = 4m+ 1 is representable in a unique way as a sum of two squares and

Lagrange’s theorem that every positive integer is a sum of at most four squares of

integers. Moreover, to quote directly from [31]:

the crowning achievement of the modern theory of modular forms per-
taining to the problem of representing integers as a sum of squares is
the clear understanding of the role played by the theta series

θ(z) =
∑
n∈Z

qn
2

, where q = e2πiz

in the representation theory of the group of SL(2) of 2× 2 matrices.

17



A key, yet deceptively simple, observation that underlies the importance of θ(z)

towards an understanding of rm(n) is given by

θm(z) = 1+

∞∑
n=1

rm(n)q
n.

Combinatorial arguments involving this Fourier series expansion of θm(z) leads us

to expressions of the following type for specific instances of rm(n), many of which

were first derived by Jacobi (as noted in [16]):

r2(n) = 4
∑
2l+1|n

(−1)l

r4(n) = 8 · 3δ
∑
2l+1|n

(2l+ 1), where δ =

{
1, if n is even.

0, otherwise.

r6(n) = 4
∑
2l+1|n

(−1)l

{(
2n

2l+ 1

)2
− (2l+ 1)2

}
.

Jacobi’s successes in this matter can be attributed to the many identities he

had established earlier in the course of his investigation into the intricacies of θ(z),

some of which are reproduced below:

θ(z)2 = 1+ 4

(
q

1− q
−

q3

1− q3
+

q5

1− q5
+ · · ·

)
θ(z)4 = 1+ 8

(
q

1− q
+

2q2

1+ q2
+

3q3

1− q3
+ · · ·

)
θ(z)8 = 1+ 16

(
q

1+ q
−
23q2

1− q2
+
33q3

1+ q3
+ · · ·

)
Exact expressions for rm(n) can be derived from these alternative expansions of

powers of θ(z) by equating coefficients between the Fourier series expansions of

powers of θ(z) and the generating-function identities quoted above.

An analytic tool that we have failed to mention so far is the Hardy-Littlewood

circle method. Important as it is, we will not be touching upon this topic in this
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thesis. Besides having been applied towards the study of rQ(n), this method has

also been used with marked success in dealing with the intricacies of the partition

function and some success towards a solution of Waring’s Problem. Lest it be

considered an antiquated tool, H. Helfgott also uses it in his solution of the ternary

Goldbach Problem [17] announced last year.

The work in this dissertation is based on an historical idea that exploits the

relationship between a particular instance of rQ(n) and the divisor function τ(n).

In order to describe this idea in further detail, we consider two classical examples:

Dirichlet’s divisor problem and Gauss’ circle problem. Both these problems have

geometric interpretations, with Dirichlet’s divisor problem counting lattice points

in the region {x, y > 0, xy ≤ X}, and Gauss’ circle problem counting lattice points

in the disc {x2 + y2 ≤ X}. To formulate the problems in a more precise manner,

Gauss’ circle problem involves finding the ‘correct’ error term E(X) for the following

asymptotic expression
X∑
n=1

r2(n) = πX+ E(X),

while Dirichlet’s divisor problem concerns itself with estimating the error term ∆(X)

of
X∑
n=1

τ(n) = X logX+ (2γ− 1)X+ ∆(X),

where γ ≈ 0.5772 is Euler’s constant. A lot of work has gone into improving the

estimates for E(X) and ∆(X). See [32, p. 106 - 114].

From the geometric perspective, the analysis involved in optimizing the error

term for
∑
r2(n) differs rather crucially from that of

∑
τ(n) in that the former

counts the number of lattice points enclosed by a closed curve (i.e., a circle in this

case), while the latter counts the number of lattice points enclosed by an unbounded
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curve (i.e., a hyperbola).While this difference might seem rather trivial, we expect

– and this is perhaps borne out by the chronological order of the discovery of

the results in question and a perusal of the reasoning required to establish these

classical results – that the nature of the analysis involved becomes a bit easier

when confronting a closed curve as opposed to an unbounded one. However, the

counterintuitive nature of what we are professing here is not to be understated – one

the one hand, it would not be surprising to expect the analysis involved in sums

comprising rQ(n) to be more complicated than the analysis of sums containing

τ(n) owing to the more complicated structure (and definition) of the former as

compared to the latter; on the other hand, what we actually predict is an easier

analysis of the sums containing rQ(n). As history goes on to show, one could

conceivably develop similar techniques to study the two aforementioned kinds of

sums concurrently. In a series of papers starting with [39] in 1904, G. Voronoï

developed similar geometric and analytic methods to improve both Dirichlet’s and

Gauss’ initial bounds simultaneously. This set the stage for the development of the

Voronoï Summation Formula, a technique of great import which will be discussed

in greater detail in the next section.

Motivated by the work of Voronoï, in this dissertation, we base our techniques

for studying the sum (1.1) on comparable work dealing with the case involving the

divisor function τ(n). However, the path of discovery is seldom smooth and our

efforts at clearing the hurdles that bar our way will be the subject of the pages to

come.
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1.6 On Voronoï Summation

In this final section of the introduction, we would like to describe the Voronoï

Summation Formula, an oft-used tool belonging to a broader class of summation

formulae. It is this Voronoï formula, first seen in Chapter II, which serves as the

foundation for much of the work done in later chapters. Summation formulae in

general have played an important role in the analysis and number theory, with some

accounts (as in [28]) dating their origins back to the Poisson Summation Formula,

a variant of which when applied to functions f(x) of bounded variation supported

on a finite interval assumes the following shape:∑ ′

a<n≤b

f(n) =

∫b
a

f(x)dx+ 2

∞∑
n=1

∫b
a

f(x) cos(2πnx)dx. (1.10)

Another prominent example of a summation formula is the Euler-Maclaurin for-

mula which is often used by analytic number theorists as a way of passing from the

analysis of sums of certain types of smooth functions to its corresponding integrals

accompanied by a relatively simple error term. The Euler-Maclaurin formula man-

ifests itself in rather diverse versions, with its most useful incarnation as follows:
b∑
n=a

f(n) ∼

∫b
a

f(x)dx+
f(a) + f(b)

2
+

∞∑
k=1

B2k

(2k)!

(
f(2k−1)(b) − f(2k−1)(a)

)
.

See Chapter IV of [10] for examples of summation formulae in action.

In what follows, amidst the various notable summation formulae clamoring for

attention, we will be confining our attention solely on the Voronoï Summation

Formula and its journey through history. The following account has been inspired

by the excellent expository article [28] of W. Schmid and S. Miller.

Picking up the narrative thread of the previous section once again, we note

that in its manifestation as (1.10), the Poisson Summation Formula appealed to
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mathematicians like Voronoï and his contemporaries because of the promise it held

in evaluating certain finite sums of arithmetic quantities. Such sums featured quite

prominently in several questions of analytic number theory and hence, were (and

continue to be) much studied by number theorists.

G. Voronoï, in his seminal work of 1904-05, managed to generalize the Poisson

Summation Formula as stated in (1.10) by considering weighted sums involving

piecewise continuous and piecewise monotone functions f(x). His formula for the

divisor function runs as follows :

∑ ′

a<n≤b

τ(n)f(n) =

∫b
a

f(x)(log x+ 2γ)dx+

∞∑
n=1

τ(n)

∫b
a

f(x)(4K0(4π
√
nx)

− 2πY0(4π
√
nx))dx, (1.11)

where Y0, K0 denote Bessel functions.

Under the same hypotheses for f(x), he also asserted a formula for r2(n) as

displayed below (using notation established earlier, r2(n) refers to the number of

ways of representing an integer as the sum of two squares), later rigorously proved

by Hardy and Sierpenski.

∑ ′

a<n≤b

r2(n)f(n) =

∞∑
n=0

r2(n)

∫b
a

f(x)πJ0(2π
√
nx)dx, (1.12)

with J0 referring to the J-Bessel function.

From (1.10), (1.11), and (1.12), Voronoï conjectured the existence of analogous

formulae for sums
∑

a≤n≤b anf(n) corresponding to any ‘arithmetic’ sequence of

coefficients an. In modern parlance, such formulae are collectively referred to as

Voronoï Summation Formulae. While the phrase ‘arithmetic sequence of coeffi-

cients’ in the statement of Voronoï’s conjecture may come across as a bit vague

in scope and meaning, modern number theorists prefer to think of the phrase as
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alluding to the coefficients of L-functions, around the understanding of which much,

if not all, of analytic number theory revolves. These coefficients are regarded as the

natural class of coefficients (an)n≥1 for which Voronoï summation formulae can be

proved. In fact, and this point is to be emphasized as far as the utility of Voronoï

formulae is concerned, the properties of an L-function (as encountered in §2 of this

chapter) serve as a wellspring of summation formulae. These formulae can then

be used, via related analytic techniques, towards an attempt at understanding the

nature of the coefficients (an)n≥1 of the L-function itself. Thus, the Voronoï Sum-

mation Formula is a worthwhile tool that gives us an additional insight (albeit in a

roundabout manner) into the behavior of the L-function itself.

For an exemplar of the point made in the previous line, we refer the interested

reader towards §2 of [28]. There, the authors exhibit an ‘equivalence’ between

1. the functional equation of the Riemann ζ-function, and

2. the Poisson Summation Formula for Schwartz functions.

Riemann, in his seminal work [33], used 1) to prove 2). This is a classical result and

a proof can be found, for example, in §2.4 of [38]. The opposite implication, wherein

the functional equation of the ζ-function implies the Poisson Summation Formula

follows from an application of the following techniques in order: Mellin inversion,

a contour shift assisted by employing Cauchy’s Residue Theorem, an application of

the functional equation of the ζ-function, and an application of the classical integral

identity ∫
R
cos(2πx)|x|s−1 dx =

π−s/2 Γ
(
s
2

)
π(s−1)/2 Γ

(
1−s
2

)
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which is valid for s ∈ C by meromorphic continuation. This example also illustrates

to great effect the basic model followed by contemporary analytic number theorists

in deriving Voronoï formulae from the functional equations of the L-functions. As

the brief sketch provided above may prove to be rather cryptic in its brevity to the

point of incomprehensibility, we urge the reader to consult §2 of [28] to see this

rather elegant argument written in unarguably more lucid detail.

A similar argument also allows us to derive Voronoï summation formulae (1.11)

and (1.12) from the functional equations of the Dirichlet series

∞∑
n=1

d(n)n−s, and
1

4

∞∑
n=1

r2(n)n
−s. (1.13)

More pertinently, modular forms and automorphic forms on ]GL(2,Z) are a rich

source of L-functions, and each such L-function satisfies a functional equation from

which a Voronoï formula can be deduced. In analytic number theory, the Voronoï

Summation Formula for GL(2,Z) has become an essential tool in dealing with

problems such as the sub-convexity of L-functions or the analysis of Petersson and

Kuznetsov trace formulae. The Voronoï Summation Formula for GL(2,Z) mainly

deals with sums of the following form:

∑
n6=0

ane

(
−na

c

)
f(n). (1.14)

To quote [29] directly, ‘The presence of the additive twists in (1.14), as signified

by the factors of e(−na/c), are absolutely crucial. These additive twists lead to

estimates for sums of modular form coefficients over arithmetic progressions.’ An-

other feature of Voronoï summation that plays an important role in applications

is the phenomenon of ‘dualizing’ whereby the Voronoï formula lengthens the sum

on one side of the equation while simultaneously shortening the sum on the other
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side. This fundamental technique in analytic number theory allows one to detect

and exploit cancellation in sums. Attempts at generalizing the Voronoï formula

to GL(3,Z) proved futile because additively twisted L-functions for GL(3,Z) do

not satisfy functional equations, a necessary precursor of the Voronoï formula as

explained earlier in this section. This obstacle was surmounted by S. Miller and

W. Schmid in [29] by relying on the notion of an automorphic distribution coupled

with the use of representation theoretic methods.

With this, we draw to a close this section (and thence, this chapter) on Voronoï

summation formulae and their role in modern analytic number theory. We have

yet to introduce the other methods pertinent to our study – such as the δ-symbol

method and the spectral method – in this chapter. In order to prevent inundating

the reader with details divorced from their applications in this introductory chapter,

we will expound on the relevant techniques later in this dissertation.
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Chapter 2: An Approach using Poincaré Series

2.1 Introduction and motivation

In this chapter, we focus our attention on getting estimates for sums of the form

Df(Θ, b) =
∑
n≥1

af(n+ b)rQ(n)φ(n), (2.1)

where b is an integer, rQ(n) is the number of ways of representing an integer n by

a positive definite quadratic form Q(x), af(n) is the normalized Fourier coefficient

of a holomorphic cusp form f and φ is a suitable nice weight function on (0,∞).

Variations of such shifted convolution sums have been studied extensively by an-

alytic number theorists of yore such as in works such as [12] and [25] (see §2 of

the Introduction for further elucidation regarding this matter) and continue to be

a source of further research conducted by modern analytic number theorists. As

we noted in the Introduction, a primary reason for the relative importance of such

sums in the field of analytic number theory lies in its application towards the study

of the Sub-convexity Problem (ScP) which, as described in complete generality by

H. Iwaniec and P. Sarnak in [20], addresses the size of certain families of L-functions

on the real half line. One of the earliest examples of a result involving such shifted

convolution sums was obtained by A.E. Ingham in 1927 wherein he proved∑
n≤X

τ(n)τ(n+ 1) =
6

π2
X log2 X+O (X logX) , as X→∞.
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He was the first to obtain an asymptotic formula for the shifted convolution sum in

question, in turn spurring further research attempting to improve upon his estimate

of the error term.This quest for a better estimate is nowadays referred to as the

Shifted Divisor Problem and concerns, in particular, the study of the following sum:

D(τ, b) =
∑
n≤N

τ(n+ b)τ(n).

While Df(Θ, b) and D(τ, b) look like unrelated number theoretic entities, the

tie that binds them together is a strong and deep one. In order to realize the

analogy between the two sums under consideration, one must look towards the field

of modular forms and their resulting Fourier expansions. Seen in this light, τ(n) is

the n-th Fourier expansion of the modular form ∂
∂s
E(z, s)|s=1/2 where E(z, s) is the

Eisenstein series for SL2(Z), while rQ(n) is the n-th Fourier coefficient of the Θ-

function associated to the quadratic form Q(x). Under this analogy then, the only

difference between Df(Θ, b) and D(τ, b) lies in the fact that D(τ, b) involves the

Fourier coefficients of the same modular form, while Df(Θ, b) involves two different

modular forms.

This paper can be seen as a straightforward generalization of [24] which uses the

framework introduced in [5] for studying the shifted convolution sums as in (2.1).

This involves combining an ‘elementary’ approach using Poincaré series, with a

Voronoï-type summation formula followed by an application of Weil’s estimate for

the individual Kloosterman sums that arise.

This chapter (together with [24] and [23]) make no use of the δ-symbol method.

Rather, we resort to the Petersson trace formula in order to capture the shift. The δ-

symbol method has the advantage of employing characters of much smaller moduli

relative to the shift thereby. This makes it useful in establishing sub-convexity
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estimates (see §20.5 of [10] for an explanation), while the sort of estimates we’re

interested in are much more exploratory in nature. Consequently, we’re not that

concerned about controlling the moduli of the characters involved and moreover,

using the Petersson trace formula allows us the freedom of not having to worry

about controlling the variation of any additional auxiliary functions introduced in

the course of applying the δ-symbol method. See Chapter IV for further clarification

in this matter.

2.2 Background on the theta function Θ(z,Q) associated to a
quadratic form Q(x)

Let Q(x) be a positive definite quadratic form in l ≥ 2 variables. In Siegel’s

notation Q(x) = 1
2
A[x], where A = (aij) is a symmetric, positive definite matrix

of rank l. We assume that A has integral entries which are even on the diagonal.

Then, Q(x) has integral coefficients. Now, we define the theta function Θ(z,Q)

associated to the quadratic form Q(x) as follows

Θ(z,Q) =
∑
m∈Zl

e(Q(m)z) =

∞∑
n=0

r(n,Q)e(nz)

where the representation numbers r(n,Q) are the Fourier coefficients of Θ(z,Q).

For a positive integer N satisfying NA−1 ∈ Ml(Z), we note (as in [21, p. 185])

that Θ(z,Q) is an automorphic form for Γ0(4N) of weight k = l/2 and multiplier

θ(τ) =

(
|A|

d

)(
�εd

( c
d

))l
where τ =

(
a b

c d

)
∈ Γ0(4N). (2.2)

Here,
( ·
·

)
denotes the Kronecker symbol, while N is a positive integer such that

NA−1 is an integral matrix and might not be the minimal level. εd denotes the sign
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of the Gauss sum

εd =

{
1 if d ≡ 1 (mod 4)

i if d ≡ 3 (mod 4)

as usual. For our purposes, we let N = |A|. Consequently, if A is a unimodular

matrix, then N = 1. We also define

LQ

(
s,
a

c

)
=

∞∑
n=1

r(n,Q)e (an/c)n−s,

which is absolutely convergent for <(s) > k.

2.3 Statement of results

Let f(z) =
∑

n≥1 af(n)n
(k−1)/2e(nz) ∈ Sk(Γ0(N)) and φ(x) be a smooth function

with support in [X/2, 5X/2], satisfying φ(p)(x)� (X/P)−p for integers p ≥ 0, where

1 ≤ P ≤ Xβ, β < 1. Let Q(x) be a positive definite quadratic form in l ≥ 2

variables. Our object of interest is the shifted convolution sum

∑
n≥1

af(n+ b)rQ(n)φ(n), (2.3)

where b > 0 is a fixed integer, and l ≥ 2, k ≥ l/2+3. Here, X and P are parameters

whose values can be determined depending upon the type of application. We wish

to prove the following theorem.

Theorem 2.3.1. With notation and assumptions as in the preceding paragraph

and defining g as the smallest integer such that g > l/2+ 1, we have that

∑
n≥1

af(n+ b)rQ(n)φ(n)� Xl/2−(l−1)/4+εPg. (2.4)

The proof of Theorem (in all its detailed glory) will be given in §6 of this chapter.

We now apply the bound obtained from Theorem 2.3.1 to get the following result

for an unsmoothed sum.
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Corollary 2.3.2. When l ≥ 2, k ≥ l/2 + 3, we have the following bound on the

sum ∑
n≤X

af(n+ b)rQ(n)� X
l
2
− l−1
4(g+1)

+ε
, (2.5)

where g is defined as in Theorem 2.3.1.

Proof of the Corollary. We shall prove (2.5) for the restricted range X ≤ n ≤ 2X

first. The following analysis can then be extended to the required range 1 ≤ n ≤ X

by means of a standard ‘dyadic partition’ argument. Please see §5 of [15] for further

discussion regarding this technique. Let φ(x) be a smooth function with Supp(φ)

⊂ [X− X/P, 2X+ X/P], satisfying

φ(x) = 1, if x ∈ [X, 2X], and φ(p)(x)� (X/P)−p, ∀p ∈ Z. (2.6)

Using the definition of φ(x) (to be specific, we are using the fact that its support

lies in [X− X/P, 2X+ X/P]), we obtain the following breakdown of the sum

∑
X≤n≤2X

af(n+ b)rQ(n) =
∑
n≥1

af(n+ b)rQ(n)φ(n) −
∑

X−X/P≤n≤X

af(n+ b)rQ(n)φ(n) (2.7)

−
∑

2X≤n≤2X+X/P

af(n+ b)rQ(n)φ(n).

Upon applying the standard bound rQ(n)� nl/2−1, the inequality φ(x) ≤ 1 from

(2.6), and the fact that the normalized Fourier coefficient af(n) satisfies af(n)� nε

directly to the second term on the right-hand side of (2.7), we get the following

inequality

∑
2X≤n≤2X+X/P

af(n+ b)rQ(n)φ(n) +
∑

X−X/P≤n≤X

af(n+ b)rQ(n)φ(n)� (X/P)l/2+ε. (2.8)

Using Theorem 2.3.1, we also know that

∑
n≥1

af(n+ b)rQ(n)φ(n)� Xl/2−(l−1)/4+εPg, (2.9)
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where g is as defined as in Theorem 2.3.1. Putting all of the these inequalities into

(2.7), we get∑
X≤n≤2X

af(n+ b)rQ(n) = O
(
Xl/2−(l−1)/4+εPg

)
+O

(
(X/P)l/2+ε

)
.

We now proceed to optimize the error term by setting the two Big-O terms equal

to each other and solving for P, giving us P = X(l−1)/(2l+4g).

2.4 Some Lemmas pertaining to Voronoï summation

We now proceed to state and prove two important results that will help us set

the stage for things to come.

Lemma 2.4.1. [ A functional equation for LQ (s, a/c)] The completed L-function(
c
2π

)s
Γ(s)LQ

(
s, a

c

)
admits a meromorphic continuation to C, with only simple

poles at s = 0, k. Moreover,

Res
s=0

( c
2π

)s
Γ(s)LQ

(
s,
a

c

)
= −1, (2.10)

and

Res
s=k

( c
2π

)s
Γ(s)LQ

(
s,
a

c

)
= ik

(
|A|

a

)−1(
�εa

(
−2c

a

))−2k

. (2.11)

It also satisfies the functional equation( c
2π

)s
Γ(s)LQ

(
s,
a

c

)
= ik

(
|A|

a

)−1(
�εa

(
−2c

a

))−2k ( c
2π

)k−s
× Γ(k− s)LQ

(
k− s,

−d

c

)
. (2.12)

Let φ ∈ C∞
0 (R+) be a smooth function with compact support in (0, ∞),and

define its Mellin transform

G(s) =

∫∞
0

φ(x)xs−1 dx, (2.13)
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which is entire on C. Moreover, for any positive A and B, we have

G(s)�A,B (1+ |s|)−A, (2.14)

uniformly for |R(s)| ≤ B.

We proceed to sketch a proof of (2.14). The main ingredient in the proof turns

out to be integration by parts. Integrating the right-hand side of (2.13) by parts

once, we get ∫∞
0

φ(x)xs−1 dx = φ(x)
xs

s

∣∣∣∣∞
0

−
1

s

∫∞
0

φ ′(x)xs dx.

Since φ(x) has compact support on the open interval (0,∞), the first term on the

right evaluates to zero. Continuing to integrate by parts, we get the following

relation: ∫∞
0

φ(x)xs−1 dx =
(−1)k

(s)(s+ 1) · · · (s+ k− 1)

∫∞
0

φk(x)xs+k−1 dx.

Note that the higher derivatives of φ(x) also have compact support in (0,∞).

Within the vertical strip |R(s)| ≤ B, we note that for |z| > B, we can use the

expression above to get the following bound for G(s):

G(s) =
(−1)k

(s)(s+ 1) · · · (s+ k− 1)

∫∞
0

φk(x)xs+k−1 dx�B (1+ |s|)−k.

The rest of the values within the strip (i.e., those with |R(s)| ≤ B and |z| ≤ B)

form a compact set H. Since G(s) is holomorphic in this region, and 1/(1+ |s|)k is

a continuous function over a compact set H, we have

G(s)�B (1+ |s|)−k.

Finally, putting all the bounds together, and by letting k = dAe, we get (2.14).

We now proceed to state our Voronoï summation formula for LQ (s, a/c) which

we obtain from Lemma 2.4.1.
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Lemma 2.4.2. [A Voronoï summation formula for LQ (s, a/c)] Let φ(x) be a

smooth function of compact support in (0,∞). Then, we have the following

Voronoï-type summation formula:

∞∑
n=1

rQ(n)e(an/c)φ(n)

=
(2π)k

ck
Γ(k)−1G(k)ik

(
|A|

a

)−1(
�εa

(
−2c

a

))−2k

+
2π

c
ik
(
|A|

a

)−1(
�εa

(
−2c

a

))−2k

×
∞∑
n=1

(
rQ(n)e(−dn/c)n

(1−k)/2

∫∞
0

φ(x)x(k−1)/2Jk−1

(
4π
√
nx

c

)
dx

)

2.5 Proof of the Lemmas

Proof of Lemma 1. Consider the integral

IQ(s, a/c) =

∫∞
0

(Θ(a/c+ iy) − 1)ys−1 dy. (2.15)

Note that via (2.2), Θ(z) satisfies the transformation law given by

Θ(z) =

(
|A|

a

)(
�εa

(
−c

a

))−2k

(−cz+ a)−kΘ

(
dz− b

−cz+ a

)
, where

(
a b

c d

)
∈ Γ0(4N).

(2.16)

We first need to make sure that the integral in (2.15) converges for large and

small values of y. As y→∞, we note that (Θ(a/c+ iy) − 1)� e−2πy. Hence, the

integral given by (2.15) converges for all values of s as y tends to infinity. Moreover,

(2.16) tells us that (Θ(a/c+ iy) − 1)ys−1 � y<(s)−k−1 as y → 0. Therefore the

integral in (2.15) is convergent and analytic for <(s) > k in a small neighborhood

of the origin. In the region <(s) > k, we also have the relation

IQ(s, a/c) =

(
1

2π

)s
Γ(s)LQ (s, a/c) . (2.17)
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Thus, we see that

IQ(s, a/c) =

∫∞
1/c

(Θ(a/c+ iy) − 1)ys−1 dy+

∫ 1/c
0

(Θ(a/c+ iy) − 1)ys−1 dy

=−
c−s

s
− ik

(
|A|

a

)−1(
�εa

(
−2c

a

))−2k
c−s

k− s
+

∫∞
1/c

(Θ(a/c+ iy) − 1)ys−1 dy

+ ik
(
|A|

a

)−1(
�εa

(
−2c

a

))−2k

ck−2s
∫∞
1/c

(Θ(−d/c+ iy) − 1)yk−s−1 dy.

(2.18)

This gives the meromorphic continuation of
(
c
2π

)s
Γ(s)LQ (s, a/c). Moreover, we can

also establish the functional equation

csIQ(s, a/c) = i
k

(
|A|

a

)−1(
�εa

(
−2c

a

))−2k

ck−sIQ(k− s,−d/c) (2.19)

in a straightforward manner by replacing IQ(k− s,−d/c) on the right-hand side of

the equation with its equivalent expression from (2.18). Hence, using the definition

of IQ(s, a/c) from (2.15), (2.12) follows and this proves Lemma 2.4.1.

Proof of Lemma 2. By Mellin inversion,

φ(x) =
1

2πi

∫
(2)

G(s)x−s ds.

Consequently, following an interchange of sums and integrals justified by an appli-

cation of the Lebesgue Dominated Convergence Theorem, we have that

1

2πi

∫
(k+1)

LQ(s, a/c)G(s)ds =

∞∑
n=1

rQ(n)e(an/c)φ(n).

We then shift contour lines from <(s) = (k + 1) to <(s) = (−k − 1), following

an application of Cauchy’s Theorem along a (gradually enlarging) rectangle. The

bound given in (2.14) guarantees that the integral vanishes as we move the hori-

zontal line of integration upwards, as a result of which only the vertical sides of the
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rectangle contribute towards the contour integral. In the process we pick up the

residue at the pole s = k, this giving giving us the following equation

1

2πi

∫
(k+1)

LQ(s, a/c)G(s)ds =
1

2πi

∫
(−k−1)

LQ(s, a/c)G(s)ds

+
( c
2π

)−k
Γ(k)−1G(k)ik

(
|A|

a

)−1(
�εa

(
−2c

a

))−2k

(2.20)

We now proceed to replace the first term on the right-hand side of (2.20) with

its equivalent expression from the functional equation (2.12). In addition, we also

shift contour lines from <(s) = (−k − 1) to <(s) = −1 in order to make use of an

integral identity towards the end.

1

2πi

∫
(k+1)

LQ(s, a/c)G(s)ds

= ik
(
|A|

a

)−1(
�εa

(
−2c

a

))−2k
1

2πi

∫
(−1)

( c
2π

)k−2s Γ(k− s)
Γ(s)

LQ

(
k− s,

−d

c

)
G(s)ds

+
( c
2π

)−k
Γ(k)−1G(k)ik

(
|A|

a

)−1(
�εa

(
−2c

a

))−2k

= ik
(
|A|

a

)−1(
�εa

(
−2c

a

))−2k ∞∑
n=1

rQ(n)e(−dn/c)ψ(n, c)

+
( c
2π

)−k
Γ(k)−1G(k)ik

(
|A|

a

)−1(
�εa

(
−2c

a

))−2k

,

where

ψ(n, c) =
1

2πi

∫
(−1)

( c
2π

)k−2s Γ(k− s)
Γ(s)

ns−kG(s)ds.

Upon regrouping terms within the integral above and using Mellin-Barnes integral

representation of the Bessel function given below,

Jk−1(x) =
1

2πi

∫
(σ)

Γ(k− s)

Γ(s)

(x
2

)2s−k−1
ds,

we have

ψ(n, c) =
2π

c
n(1−k)/2

∫∞
0

φ(x)x(k−1)/2Jk−1

(
4π
√
nx

c

)
dx.
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This proves Lemma 2.4.2.

2.6 Proof of Theorem 2.3.1

As in [24], we use the idea of Poincaré series reduction. We first note that

Sk(Γ0(N)) ⊂ Sk(Γ0(4N)) as a result of which, we can consider Sk(Γ0(N)) as a linear

space spanned by the following Poincaré series (see §3.3 of [21]) for m ≥ 1,

Pm(z) =
∑

γ∈ Γ∞\Γ0(4N)

e(mγz)

(cz+ d)k
=
∑
n≥1

aPm(n)n
(k−1)/2e(nz), (2.21)

where γ = ( a bc d ), and

m(k−1)/2aPm(n) = δmn +
∑

c≥1,4N|c

c−1S(m,n; c)Jk−1

(
4π
√
mn

c

)
. (2.22)

For any normalized cuspform f(z) =
∑

n≥1 af(n)n
(k−1)/2e(nz) ∈ Sk(Γ0(N)), we

can use the above embedding to express af(n) as a linear combination of aPm(n).

thus, instead of estimating the shifted convolution sum
∑

n≥1 af(n+ b)rQ(n)φ(n),

we replace af(n) with the right hand side of (2.22). Moreover, in view of the bound

Jk−1(z)� min(|z|k−1, |z|−1/2) and the Weil-Salié bound for Kloosterman sums, viz.

|Sk(m,n; c)| ≤ (m,n, c)1/2d(c)c1/2,

we may assume that c� XA for sufficiently large A > 0.

By replacing aPm(n+b) with the right-hand side of (2.22), we have the following

upper bound∑
n≥1

aPm(n+b)rQ(n)φ(n)�
∑

c≥1,4N|c

c−1
∑
n≥1

rQ(n)φ(n)S(m,n+b; c)Jk−1

(
4π
√
m(n+ b)

c

)
.

We now proceed to open up the Kloosterman sum via its definition, resulting

in the following expression for the right-hand side of the above inequality∑
c≥1,4N|c

c−1
∑∗

a mod c

e

(
m�a

c

)∑
n≥1

rQ(n)φ(n)e

(
(n+ b)a

c

)
Jk−1

(
4π
√
m(n+ b)

c

)
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We now apply Lemma 2.4.2 to the innermost sum in the expression above,

noting that the role of the smooth function with compact support in Lemma 2.4.2 is

played by φ(x)Jk−1(4π
√
m(x+ b)/c). We also note that in the following lines, after

applying Lemma 2.4.2, we leave the Mellin transform of φ(x)Jk−1(4π
√
m(x+ b)/c)

in its integral form, as opposed to condensing the expression and writing it out as

G (l/2). This will allow us to better understand the role played by the individual

terms in the estimates for the resulting expression. Thus, we can rewrite (2.23)

in the following manner (which renders it more suitable for any analysis that we

might do)

∑
c≥1,4N|c

c−1
∑∗

a (mod c)

e

(
m�a+ ba

c

)( c
2π

)−l/2
Γ

(
l

2

)−1

il/2
(
|A|

a

)(
�εa

(
−c

a

))−l

×
∫∞
0

φ(x)Jk−1

(
4π
√
m(x+ b)

c

)
xl/2−1 dx

+
∑

c≥1,4N|c

c−1
∑∗

a (mod c)

e

(
m�a+ ba

c

)
2π

c
il/2
(
|A|

a

)(
�εa

(
−c

a

))−l ∞∑
n=1

rQ(n)e(−dn/c)n
1−l/2
2

×
∫∞
0

φ(x)x(l/2−1)/2Jl/2−1

(
4π
√
nx

c

)
Jk−1

(
4π
√
m(x+ b)

c

)
dx

=
∑
1

+
∑
2

.

We now focus on getting an estimate for
∑

1 . We begin by showing that∫∞
0

φ(x)Jk−1

(
4π
√
m(x+ b)

c

)
xl/2−1 dx�

(
cP√
X

)p
Xl/2, (2.23)

for any integer p ≥ 0. Then, for a fixed ε > 0, the contribution of the above integral

is negligible unless cP � X1/2−ε. Hence, we can ignore the first few terms of the sum∑
1 satisfying cP � X1/2−ε since by choosing a value of p large enough in (2.23),

we can essentially nullify the contribution of these terms towards the value of sum.

37



Consequently, (2.23) allows us to focus our attention on the tail-end of the series

where cP � X1/2−ε in order to estimate
∑

1 .

In order to prove (2.23), we will use an iterative procedure, where p in (2.23)

represents the number of iterations, which makes use of repeated integration by

parts and a ‘recurrence’ relation satisfied by the Bessel function which goes as

(zkJk(z))
′ = zkJk−1(z). (2.24)

We proceed to show the first few steps of this iterative method in all its gory detail.

By rearranging the terms occurring in (2.24), we can rewrite the ‘recurrence’ relation

in a slightly more suggestive form

Jk−1

(
4π
√
nx

c

)
dx =

d

[(
4π
√
nx

c

)k
Jk

(
4π
√
nx

c

)]
(
4π
√
nx

c

)k (
4π
√
nx

c

) ′ . (2.25)

Consider the integral under consideration in (2.23). By first replacing the Bessel

function Jk−1
(
4π
√
m(x+ b)/c

)
occurring in the integral with the equivalent ex-

pression given by the right hand side of (2.25), we can then integrate by parts to

get the following relation

∫∞
0

φ(x)xl/2−1Jk−1

(
4π
√
m(x+ b)

c

)
dx =

∫∞
0

φ ′(x)xl/2−1
Jk

(
4π
√
m(x+b)

c

)
(
4π
√
m(x+b)

c

) ′ dx +

∫∞
0

φ(x)xl/2−2
Jk

(
4π
√
m(x+b)

c

)
(
4π
√
m(x+b)

c

) ′ (l− 22
)
dx +

∫∞
0

φ(x)xl/2−1
Jk

(
4π
√
m(x+b)

c

)
(
4π
√
m(x+b)

c

) ′
×
(
1− k

2x

)
dx . (2.26)

We shall now see why we expect the bound in (2.23) to be true. Let I1 refer

to the first term on the right-hand side of (2.26). Then, I1 can be rewritten in the
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following manner:

I1 =

∫∞
0

(
x+ b

2πP
φ ′(x)

(
x+ b

X

)−1/2
)
xl/2−1Jk

(
4π
√
m(x+ b)

c

)
cP

(mX)1/2
dx.

The function φ(x) was assumed to be a smooth function with support in [X/2, 5X/2]

satisfying the bound φ(p)(x) � (P/X)p. In fact, the properties of φ(x) carry over

to that of g(x) = ((x+ b)/2πP)φ ′(x) ((x+ b)/X)−1/2, in that g(x) is also a smooth

function with support in [X/2, 5X/2] satisfying the bound g(p)(x) � (P/X)p. Uti-

lizing a standard bound satisfied by the J-Bessel functions, Jk(x) ≤ 1 where k ≥ 1,

we bound the integral in question by

I1 �
∫ 5X/2
X/2

1 · xl/2−1 · 1 · cP

(mX)1/2
dx�

(
cP√
X

)
Xl/2,

which agrees with (2.23) when p = 1.

Similarly, let I2 and I3 refer to the second and third integrals, respectively, on

the right-hand side of (2.26). Getting upper bounds for these integrals mirrors the

process that we have outlined for I1 above, giving us

I1, I2 �
(
c√
X

)
Xl/2.

Putting all of these bounds together, we get∫∞
0

cP

(mX)1/2
g(x)xl/2−1Jk

(
4π
√
m(x+ b)

c

)
dx�

(
cP√
X

)
Xl/2 + 2

(
c√
X

)
Xl/2

�
(
cP√
X

)
Xl/2

We note that the last line of the series of inequalities above agrees with (2.23) when

p = 1.

Proceeding further into the iterative steps laid out by integrating each of the

integrals I1, I2, and I3 by parts, we see that all subsequent steps follow the same
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basic paradigm laid out previously. Upon performing the integration by parts and

estimating each term with the standard estimates as shown above, we notice that

each additional bout of integration picks up a factor of (cP/
√
X) . Therefore, upon

performing integration by parts p times, we will get the desired bound as in (2.23).

When cP � X1/2−ε, we can bound the integral in (2.23) directly by appealing

to a standard bound for the Bessel functions given by Jk−1(z)� min
(
|z|k−1, |z|−1/2

)
.

This bound is then given by∫∞
0

φ(x)Jk−1

(
4π
√
m(x+ b)

c

)
xl/2−1 dx� min

(√X
c

)k−1
,

(√
X

c

)−1/2
Xl/2.

(2.27)

We now proceed to establish a bound for the ‘finite sum’ component of
∑
1

, viz.,

∑∗

a (mod c)

e

(
m�a+ ba

c

)(
|A|

a

)(
�εa

(
−c

a

))−l

� (m,b, c)1/2 c1/2 τ(c), (2.28)

where τ(·) is the divisor function.

When l is odd, (2.28) can be rewritten as∑∗

a (mod c)

e

(
m�a+ ba

c

)(
|A|

a

)(
−c

a

)
(�εa)

−l

=
∑∗

a (mod c)
a≡1 (mod 4)

e

(
m�a+ ba

c

)(
|A|

a

)(
−c

a

)
+ il

∑∗

a (mod c)
a≡3 (mod 4)

e

(
m�a+ ba

c

)(
|A|

a

)(
−c

a

)
.

We complete the sum in the first term above as follows∑∗

a (mod c)
a≡1 (mod 4)

e

(
m�a+ ba

c

)(
|A|

a

)(
−c

a

)

=
∑

a (mod c)
a≡1 (mod 4)

e

(
m�a+ ba

c

)(
|A|

a

)(
−c

a

) ∑
χ (mod 4)

1

φ(4)
χ(a)

=
∑

χ (mod 4)

1

φ(4)

∑
a (mod c)

(
|A|

a

)(
−c

a

)
χ(a)e

(
m�a+ ba

c

)
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We now note that since |A| is the determinant of a symmetric, positive definite

matrix, |A| ≡ 0, 1 (mod 4). Hence,
(

|A|

·

)
is a character mod |A|. Moreover, since we

are working with Poincaré series in Sk(Γ0(4N)), we also have the following condition

c ≡ 0 (mod 4N). As noted earlier, N can be taken to be |A|, and by virtue of the

fact that c ≡ 0 (mod 4), we know that
(
−c
·

)
is a character mod c. And since c ≡ 0

(mod |A|), the product of the two characters
(
−c
·

)
,
(

|A|

·

)
also gives rise to a character

mod c, say χ̃c. In light of this analysis, we have∣∣∣∣∣∣∣∣
∑∗

a (mod c)
a≡1 (mod 4)

e

(
m�a+ ba

c

)(
|A|

a

)(
−c

a

)∣∣∣∣∣∣∣∣ �
∣∣∣∣∣∣
∑

a (mod c)

χ̃c(a)e

(
m�a+ ba

c

)∣∣∣∣∣∣
� (m,b, c)1/2 c1/2 τ(c),

where we have used a bound for the Salié sum (cf. [21], Chapter 4) in order to get

the last inequality.

Similarly, we can deal with the second term in the following manner

∑∗

a (mod c)
a≡3 (mod 4)

e

(
m�a+ ba

c

)(
|A|

a

)(
−c

a

)

=
∑

χ (mod 4)

1

φ(4)

∑
a (mod c)

(−1)a
(
|A|

a

)(
−c

a

)
χ(a)e

(
m�a+ ba

c

)
� (m,b, c)1/2 c1/2 τ(c).

When l is even and 4 - l, the bound obtained for (2.28) is exactly the same as the

case when l is odd, with the only difference being that after completing the sum,

the character by which we are twisting the exponential term is slightly different

than in the preceding case. However, that does not affect our bound for (2.28) in

any way.
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When 4|l, the ‘finite sum’ component of
∑
1

reduces to

∑∗

a mod c

e

(
m�a+ ba

c

)(
|A|

a

)
� (m,b, c)1/2 c1/2 τ(c),

where we are using the bound for the Salié sum, since as noted in the case when l

is odd,
(

|A|

·

)
can be thought of as a character mod c.

When P is ‘small’, i.e., when
√
X/P ≥ 1, we can use the bounds given by (2.27)

and (2.28) and establish a series of inequalities for
∑

1, culminating in our bound

for the sum.

∑
1

� Xl/2
∑

c≥
√
X/P

c−1−l/2+1/2d(c) min

(√X
c

)k−1
,

(√
X

c

)−1/2


� Xl/2
∑

√
X/P≤c≤

√
X

c−(1+l)/2d(c)

(√
X

c

)−1/2

+ Xl/2
∑
c≥
√
X

c−(1+l)/2d(c)

(√
X

c

)k−1
� Xl/2−1/4

∑
c≥
√
X/P

c−l/2d(c) + Xl/2+(k−1)/2
∑
c≥
√
X

c(−l+1)/2−kd(c)

� Xl/2−1/4

(√
X

P

)−l/2+1+ε

+ Xl/2+(k−1)/2
(√
X
)(−l+3)/2−k+ε

� Xl/2−(l−1)/4+εPl/2−1.

When P is ‘large’, i.e., when
√
X/P ≤ 1, then (2.23) is not quite helpful. This

is because the inequality in (2.23) doesn’t help us isolate the tail-end of the sum.

In fact, when c ≥ 1, then we automatically have c ≥
√
X/P. So, for no value of c

within the given range of the sum does the integral actually manage to dominate

the rest of the terms within the sum. This forces us to deal with the sum as a

whole. However, there is a workaround this issue as shown in the following steps.
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Let P0 =
√
X. Note that P ≥ P0. Then, we see that

∑
1

�
∑
c≥1

c−1−l/2+1/2d(c) min

(√X
c

)k−1
,

(√
X

c

)−1/2
Xl/2

=
∑

c≥
√
X/P0

c−1−l/2+1/2d(c) min

(√X
c

)k−1
,

(√
X

c

)−1/2
Xl/2

� Xl/2−(l−1)/4+εP
l/2−1
0

≤ Xl/2−(l−1)/4+εPl/2−1, as desired.

We now wish to get an estimate for
∑
2

. To this end, we have the inequality

∫∞
0

φ(x)x(l/2−1)/2Jk−1

(
4π
√
m(x+ b)

c

)
Jl/2−1

(
4π
√
nx

c

)
dx

�
([
Pc(Xn)−1/2

]p
+ n−p/2

)
X(l/2+1)/2 min

(√X
c

)k−1
,

(√
X

c

)−1/2


× min

1,(√nX
c

)−1/2
 . (2.29)

This inequality plays the same role as (2.23) in that it allows us to control
∑

2 in

terms of the parameters X and P.

The method of proof is quite similar to the one used to prove (2.23). We shall

once again use an iterative method relying on integration by parts, the relation

(2.24), together with an additional relation involving Bessel functions in the form

of

J ′k(z) = kz
−1Jk(z) − Jk+1(z). (2.30)

For the sake of brevity, we won’t go into the minutiae of the proof, as we did

for (2.23). However, we shall provide an outline of the details starting with the
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integration by parts of the integral that we are interested in.∫∞
0

φ(x)Jk−1

(
4π
√
m(x+ b)

c

)
Jl/2−1

(
4π
√
nx

c

)
dx

=

∫∞
0

φ ′(x)Jk−1

(
4π
√
m(x+ b)

c

)
Jl/2

(
4π
√
nx
c

)
(
4π
√
nx
c

) ′ dx
+

∫∞
0

φ(x)J ′k−1

(
4π
√
m(x+ b)

c

)
Jl/2

(
4π
√
nx
c

)
(
4π
√
nx
c

) ′ dx
+

∫∞
0

φ(x)Jk−1

(
4π
√
m(x+ b)

c

)
Jl/2

(
4π
√
nx
c

)
(
4π
√
nx
c

) ′ (1− l/22x

)
dx . (2.31)

We shall now proceed to rewrite (2.30) in a more functional form given by

J ′k−1

(
4π
√
m(x+ b)

c

)
= (k− 1)

J ′k−1

(
4π
√
m(x+b)

c

)
(
4π
√
m(x+b)

c

) − Jk

(
4π
√
m(x+ b)

c

)
.

Using the relation above to replace the J ′k−1
(
4π
√
m(x+ b)/c

)
occurring in the

second term of the right-hand side of (2.31), together with a slight rearrangement

of terms within each integral gives us the following inequality∫∞
0

φ(x)Jk−1

(
4π
√
m(x+ b)

c

)
Jl/2−1

(
4π
√
nx

c

)
dx (2.32)

�

∣∣∣∣∣
∫∞
0

1

n1/2

(
x

x+ b
φ(x)

)
Jk

(
4π
√
m(x+ b)

c

)
Jl/2

(
4π
√
nx

c

)
dx

∣∣∣∣∣
+

∣∣∣∣∣
∫∞
0

cP

(nX)1/2

(
x

P
φ ′(x)

( x
X

)−1/2)
Jk−1

(
4π
√
m(x+ b)

c

)
Jl/2

(
4π
√
nx

c

)
dx

∣∣∣∣∣
+

∣∣∣∣∣
∫∞
0

c

(nX)1/2

(
x

x+ b
φ(x)

( x
X

)−1/2)
Jk−1

(
4π
√
m(x+ b)

c

)
Jl/2

(
4π
√
nx

c

)
dx

∣∣∣∣∣
+

∣∣∣∣∣
∫∞
0

c

(nX)1/2

(
φ(x)

( x
X

)−1/2)
Jk−1

(
4π
√
m(x+ b)

c

)
Jl/2

(
4π
√
nx

c

)
dx

∣∣∣∣∣
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We now note that the functions f(x) = x/P φ ′(x) (x/X)−1/2, x/(x+b)φ(x) (x/X)−1/2,

x/(x+b)φ(x), and φ(x) (x/X)−1/2 all share the same properties as φ(x), viz. , f(x)

is a smooth function with support in [X/2, 5X/2] satisfying the bound f(p)(x) �

(P/X)p. Upon applying this bound directly to each of the right-hand side inte-

grals of (2.32) together with the standard bound for the Bessel functions given by

Jk−1(z)� min
(
|z|k−1, |z|−1/2

)
– keeping in mind all the while that we do not wish to

lose our dependency on n, c, and P – we obtain the following upper bound for the

integral constituting the left-hand side of (2.32):∫∞
0

φ(x)x(l/2−1)/2Jk−1

(
4π
√
m(x+ b)

c

)
Jl/2−1

(
4π
√
nx

c

)
dx

�
(

cP

(nX)1/2
+

1

n1/2

)
X(l/2+1)/2 min

(√X
c

)k−1
,

(√
X

c

)−1/2
min

1,(√nX
c

)−1/2
 ,

which agrees with (2.29) when p = 1. Integrating by parts each of the integrals

occurring on the right-hand side of (2.32) p − 1 more times and repeating the

analysis seen above will yield (2.29).

The bound (2.29) tells us that for a fixed ε > 0, the contribution of the integral

towards the sum in
∑

2 is negligible unless cP � (Xn)1/2 X−ε. Consequently, when

n � X4ε, the contribution of the integral in
∑

2 is negligible unless cP � X1/2+ε.

Using (2.28) in conjunction with (2.29), we now proceed to estimate the contribution

of those terms in
∑

2 with n� X4ε, i.e.,

∑
c≥1,4N|c

c−1
∑∗

a mod c

e

(
m�a+ ba

c

)
2π

c
il/2
(
|A|

a

)(
�εa

(
−c

a

))−l ∑
n�X4ε

rQ(n)e(−dn/c)n
1−l/2
2

×
∫∞
0

φ(x)x(l/2−1)/2Jl/2−1

(
4π
√
nx

c

)
Jk−1

(
4π
√
m(x+ b)

c

)
dx

(2.33)
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�
∑
c≥1

c−3/2d(c)
∑
n�X4ε

rQ(n)n
1−l/2
2 X

l/2+1
2 min

(√X
c

)k−1
,

(√
nX

c

)−1/2


×min

1,(√nX
c

)−1/2


� X
l/2+1
2

+ε
∑
c≥1

c−3/2d(c)min

(√X
c

)k−1
,

(√
X

c

)−1/2


� X
l/2+1
2

+ε
∑
c≤
√
X

c−3/2d(c)

(√
X

c

)−1/2

+ X
l/2+1
2

+ε
∑
c≥
√
X

c−3/2d(c)

(√
X

c

)k−1
� X

l/2+1
2

− 1
4
+ε
∑
c≤
√
X

c−1d(c) + X
l/2+1
2

+k−1
2

+ε
∑
c≥
√
X

c−1/2−kd(c)

� X
l/2+1
2

− 1
4
+ε

Dealing with the tail-end of the double sum, i.e., when cP � X1/2+ε and n � X4ε

proceeds in more or less the same manner. Here, the difference is that, in order

to force convergence in n (which constitutes the outer sum of the double sum), we

will need to utilize the full expression from (2.29). Thus, the tail-end of the sum is

going to be no bigger than

X
l/2+1
2

∑
n�X4ε

rQ(n)n
1−l/2
2

∑
c≥1

c−3/2d(c)
([
Pc(Xn)−1/2

]p
+ n−p/2

)

×min

(√X
c

)k−1
,

(√
nX

c

)−1/2


� X
l/2+1
2

+ε
∑
n�X4ε

n
l/2−1−p

2

∑
c≥1

c−3/2d(c)min

(√X
c

)k−1
,

(√
X

c

)−1/2


� X
l/2+1
2

− 1
4
+ε Pp

∑
n�X4ε

n
l/2−1−p

2 .

In order to guarantee the convergence of the sum in n, we choose p (where p repre-

sents the number of times integration by parts has been performed to the integrals
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in (2.32)) such that p is the smallest integer satisfying p > 1+ l/2. Upon combin-

ing all the bounds obtained in estimating Σ2, we see that it is O
(
X(l/2+1)/2−1/4+ε

)
Pg,

where g is as in Theorem 2.3.1. Merging together the bounds for Σ1 and Σ2 gives the

estimate we stated in Theorem 2.3.1. This marks the end of its proof and thence,

that of the chapter as well.
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Chapter 3: An Approach using Spectral Theory

3.1 Introduction and motivation

In this chapter, our object of interest will be the sum

∑
m≤X

rQ(m)�~ag(m+ n), (3.1)

where n is a positive integer, rQ(n) is the number of ways of representing an integer

n by a positive definite quadratic formQ(x) of weight k, and ~ag(n) is the normalized

Fourier coefficient of a holomorphic cusp form G(z) also of weight k, i.e., ~ag(n) =

ag(n)/n
(k−1)/2.

Over the last half-century or so, inspired by the work of A. Selberg in [35], a lot of

work has been done in Number Theory building on the connections linking together

the seemingly disparate fields of spectral theory and number theory. It is a very

natural question to ask what in the world L-functions attached to automorphic

forms have to do with the spectral theory of hyperbolic manifolds. Rather than

write an expository account affirming this connection (which, we would like to

point out, has been done already by J.L. Hafner in [14] and that too with aplomb),

we hope to convince the reader of the relevance of spectral theory by illustrating

its use in a specific example. The methods utilized in this chapter are based upon

the works of J.L. Hafner in [13] and A. Good in [11]. Much as complex variables
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empowered mathematicians in the nineteenth century to make great inroads towards

a theory of primes, spectral theory has allowed modern mathematicians to make

significant headway in problems such as the Artin conjecture for primitive roots,

the Brun-Titchmarsh theorem, etc.

In what follows, let Q(x) be a positive definite quadratic form in l ≥ 2 variables.

For much of this chapter, we shall mainly concern ourselves with the case where

Θ(z,Q) is an automorphic form for the full modular group SL(2,Z) and is of integral

weight k = l/2 (i.e., we are assuming that l is an even integer). Such a theta function

Θ(z,Q) is guaranteed to exist if the symmetric matrix A giving rise to the quadratic

form Q satisfies the following conditions:

(i) |A| =1.

(ii) All the diagonal components of A and A−1 are even.

This follows from corollaries 4.9.5 and 4.9.6 from [30]. An example of such a matrix

A, attributed to Minkowski, is given on the following page. We also assume, for

now, that G(z) is a holomorphic cusp form on SL(2,Z) as well.

While these restrictions may seem rather binding, they allow us to focus on the

crux of the argument used without getting sidetracked in the numerous little details

that would have plagued us had we inadvisably jumped in at the deep end as far

as the generality of our results are concerned. Towards the end of this chapter, we

shall attempt at relaxing these restrictive conditions, taking care to point out any

deviations from the methods of the full modular group case.
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Figure 3.1: An example of a symmetric unimodular matrix A generating a
quadratic form Q(x) whose Θ function is an automorphic form for the full

modular group.

We shall now introduce some of the salient details regarding the application of

spectral theory to number theory. Our exposition in this section will be a mere

echo of related material from texts such as [10], [37] and [22] among others.

Let Γ = SL(2,Z) and X = Γ\H. The hyperbolic metric ds2 = y−2
(
dx2 + dy2

)
induces the volume element dz = y−2 dxdy. With these, X has finite volume with

a corresponding fundamental domain of

F := {z ∈ H| |z| ≥ 1, |x| ≤ 1/2} .

X is non-compact, having a cusp which corresponds to the point i∞ in the

fundamental domain. The hyperbolic Laplacian

∆ = −y2
(
∂2

∂x2
+
∂2

∂y2

)
is a positive, self-adjoint, unbounded operator on L2(X). Under its action, L2(X) is

a direct sum of closed, infinite-dimensional subspaces

L2(X) = L2disc ⊕ L2cont,
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such that, as the name suggests, ∆ has its discrete spectrum on L2disc(X) and purely

continuous spectrum on L2cont(X). We shall now proceed to briefly describe the

spectra.

3.1.1 The discrete spectrum: Hecke-Maass forms

Before we proceed to define the discrete spectrum, we shall begin by explicitly

defining the Hecke operators Tn, for n ≥ 1, as follows:

Tn(f(z) =
1√
n

∑
n=ad
a,d≥1

∑
b (mod d)

f

(
az+ b

d

)
.

To these Tn’s, we add the following “symmetry” operator:

T−1f(z) = f(−z),

and finally, let T∞ = ∆. Then, {Tn}−1≤n≤∞ is a commuting family of self-adjoint

operators, each of which preserves the subspaces L2disc and L2cont.

Returning to the spectral decomposition of ∆ on L2(X), the discrete part of

the spectrum is characterized by an orthonormal basis {ej(z)} which consists of the

constant function e0(z) =
√
π/3 and the L2 - normalized, joint eigenfunctions of all

Tn:

∆ej(z) = λjej(z), 0 = λ0 < λ1 ≤ · · · , λj →∞
Tnej(z) = λj(m)ej(z), n ≥ 1
T−1ej(z) = εjej(z), εj = ±1.∫ 1

0

ej(x+ iy)dx = 0, y > 0. (Cuspidality condition)


(3.2)

Following the usual notation, we write

λj = sj(1− sj) =
1

4
+ r2j , whereupon we have that sj =

1

2
+ irj.
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The eigenfunctions {ej(z)}0≤n≤∞ are called the Hecke-Maass cusp forms. The

ones with εj = 1 are called even, while those with εj = −1 are called odd. A

theorem of Hecke identifies the Hecke eigenvalues with the coefficients of the Fourier

expansion, giving us the following Fourier series expansion for the Hecke-Maass cusp

forms

ej(z) =
∑
n6=0

ρj(n)
√
yKirj(2π|n|y)e(nx), (3.3)

where Kirj is the modified Bessel function of the second kind, ρj(1) is a normalizing

factor ensuring ‖ej‖ = 1 and ρj(−n) = εjρj(n).

Before we move on to the continuous spectrum, we would like to point out that

the normalizing factor ρj(1) is related to the symmetric square L-function:

αj :=
|ρj(1)|

2

cosh(πrj)
=

2

L(1, sym 2ej)
.

This relation will be used implicitly in getting an estimate for ρj(n) later in this

chapter.

3.1.2 The continuous spectrum: Eisenstein series

The continuous part of the spectrum is characterized by the set of Eisenstein

series

Eη(z, s) =
∑

γ∈Γ∞\Γ

(=(γz))s , Rs ≥ 0,

where η is an index that runs through the set of cusps in X. Since there is only

one cusp in X, we will refer to the sole member of the set of Eisenstein series

as E∞(z, s). This series is absolutely convergent in the right half-plane where it

defines an automorphic function in z ∈ X such that ∆E(z, s) = s(1 − s)E(z, s).

Put succinctly (and rather vaguely), the Eisenstein series E(z, 1/2 + it) spans the
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space L2cont as a direct integral. We will see what this means in a more concrete

way shortly. The key to the spectral decomposition in this subspace lies in the

meromorphic continuation of the Eisenstein series (in the s-variable) to the entire

complex plane, which was first proved by Selberg.

Over the full modular group, the Eisenstein series has the following Fourier

series expansion

E∞(z, s) = ys + φ(s)y1−s +
2

ξ(2s)

∑
n6=0

τs−1/2(|n|)
√
yKs−1/2(2π|n|y)e(nx), (3.4)

where τα(n) =
∑

n=d1d2
dα1d

−α
2 is the generalized divisor sum, ξ(s) = π−s/2Γ(s/2)ζ(s)

is the completed zeta-function and φ(s) = ξ(2s− 1)/ξ(2s).

3.1.3 Non-holomorphic Poincaré Series

Before we proceed to reap the fruits of the automorphic Laplacian’s spectral

decomposition on X, we first define a collection of non-holomorphic Poincaré series

first introduced by A. Selberg. For n ≥ 1, and η representing one of the inequivalent

cusps of X, we define

P̃η(z, s, n) :=
(πn)s−1/2

Γ(s+ 1/2)

∑
γ∈Γη\Γ

(=(γz))s e(nγz)

which satisfies

Pη(γz, s, n) = P̃η(z, s, n), where γ ∈ Γ.

Since there is only inequivalent cusp in X (i.e., the one at i∞), we drop the index

η and henceforth, refer to the pertinent member(s) of this collection of Poincaré

series as P̃(z, s, n) for n ≥ 1. Even though P̃(z, s, n) fails to be an eigenfunction of

∆, by virtue of its automorphic nature, we can deduce its spectral decomposition
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in L2(X):

P̃(z, s, n) =
∑
j>0

(
ρj(n)Γ(s− 1/2− irj)Γ(s− 1/2+ irj)

Γ(2s)

)
ej(z)

+2
√
π

∫∞
−∞
(
τ−ir(|n|)Γ(s− 1/2− ir)Γ(s− 1/2+ ir)

ξ(1− 2ir)Γ(2s)

)
E∞(z, 1/2+ ir)dr (3.5)

As the reader will see shortly, the spectral decomposition of P̃(z, s, n) as dis-

played above will play a central role in the proof of Theorem 3.2.1.

3.2 Statement of results

We begin by introducing the series which plays

DΘ,G(s, n) =

∞∑
m=1

rQ(m)�ag(n+m)

(m+ n)s+k−1
, σ >

k+ 1

2
, n ≥ 1.

Recall that rQ(n)� nk−1, while ag(n)� n(k−1)/2+ε (Deligne’s bound).

Furthermore, we will also be using the notation

〈X, Y〉k =
∫∫
F

yk−2X(z)�Y(z)dxdy

whenever this integral converges absolutely.

We shall prove the following theorem about DΘ,G(s, n).

Theorem 3.2.1. Put

Q(s, n) =
(4π)s+k−1Γ(s+ 1/2)

Γ(s+ k− 1)(πn)s−1/2
.

Then DΘ,G has a meromorphic continuation to the region σ ≥ k/2 in the form

DΘ,G(s, n) =
Q(s, n)

Γ(2s)

(∑
j>0

ρj(n)Γ(s− 1/2+ irj)Γ(s− 1/2− irj) 〈Θ,G�ej〉k

+2
√
π

∞∫
−∞

τ−ir(|n|)

ξ(1− 2ir)
Γ(s− 1/2− ir)Γ(s− 1/2+ ir)
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×
〈
Θ,GE∞(·, 1/2+ ir)

〉
k
dr

)
, (3.6)

where all the series and integrals are absolutely convergent in the given region

of the s-plane.

Extending the region over which the sum DΘ,G is defined via meromorphic con-

tinuation allows us to obtain the following upper bound for the sum in (3.1) by an

inverse Mellin transform-type argument. Theorem 3.2.1 also explicitly exhibits the

location of the singularities of DΘ,G via a Petersson inner product by identifying

them with the location of the poles of the Poincaré series.

Theorem 3.2.2. Let δ is any positive number and n be as defined above in

the definition of DΘ,G(s, n). Let ~ag(n) represent the normalized n-th Fourier

coefficient of the holomorphic cusp form G(z). Then we have

∑
m≤X

rQ(m)�~ag(m+ n)� Xk−1/2+δ.

3.3 Application of the spectral method

The spectral approach can be traced back to the discovery of Rankin and Selberg,

that for a holomorphic cusp form

φ(z) =

∞∑
n=1

aφ(n)e(nz)

of weight k, level N, and arbitrary nebentypus, there is an integral representation

∞∑
n=1

|aφ(n)|
2

ns+k−1
=

(4π)s+k−1

Γ(s+ k− 1)

∫
Γ\H
yk−2 |φ(z)|2 E(z, s)dxdy, (3.7)
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where Γ0(N)\H is a fundamental domain for the action of the Hecke congruence

subgroup Γ0(N) on the upper half-plane H, and E(z, s) denotes the Eisenstein se-

ries introduced in the previous section. The identity above can be proved by an

‘unfolding’ technique, one which we ourselves shall recourse to as shown below.

To prove Theorem 3.2.1, we compute the Petersson inner product 〈Θ(z,Q),

GP̃(z, s, n)〉k in two different ways. On the one hand, by the same ‘unfolding’

technique mentioned in the previous paragraph, we obtain a similar integral repre-

sentation for the series DΘ,G as in (3.7) valid for σ > (k+ 1)/2,

〈Θ(z,Q),GP̃(z, s, n)〉k

=
(πn)s−1/2

Γ(s+ 1/2)

∑
M∈Γ∞\Γ

∫∫
Γ\H
yk−2Θ(z,Q)G(z) (=(Mz))s e(nMz)dxdy

=
(πn)s−1/2

Γ(s+ 1/2)

∫∫
Γ∞\H

ys+k−2Θ(z,Q)G(z)e(nz)dxdy

=
(πn)s−1/2

Γ(s+ 1/2)

∫∞
0

ys+k−2e−2πny
∫ 1
0

( ∞∑
m=1

rQ(m)e−2πmye(mx)

)

×

( ∞∑
d=1

�ag(d)e
2πdye(−dx)

)
e(nx)dxdy

=
(πn)s−1/2

Γ(s+ 1/2)

∞∑
m=1

rQ(m)

∞∑
d=1

�ag(d)

∫∞
0

ys+k−2e−2π(n+m+d)y dy

∫ 1
0

e2πi(m+n−d)x dx

=
(πn)s−1/2

Γ(s+ 1/2)

∞∑
m=1

rQ(m)�ag(m+ n)

∫∞
0

ys+k−2e−4π(n+m)y dy

=
1

Q(s, n)
DΘ,G(s, n). (3.8)

Here, we used the Γ -invariance of ykΘ(z,Q)G(z) in order to get the second line in

the series of equalities above.
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On the other hand, the same inner product 〈Θ(z,Q), GP̃(z, s, n)〉 can be decom-

posed according to the spectrum of L2(X) by using (3.5), giving us

〈Θ(z,Q), GP̃(z, s, n)〉 = 1

Γ(2s)

(∑
j>0

ρj(n)Γ(s− 1/2+ irj)Γ(s− 1/2− irj) 〈Θ,G�ej〉k

+2
√
π

∞∫
−∞

τ−ir(|n|)

ξ(1− 2ir)
Γ(s− 1/2− ir)Γ(s− 1/2+ ir)

×
〈
Θ,GE∞(·, 1/2+ ir)

〉
k
dr

)
, (3.9)

Upon equating the right-hand sides of (3.8) and (3.9), we get the expression for

DΘ,G(s, n) given in Theorem 3.2.1, thus completing its proof.

In order to prove Theorem 3.2.2. we introduce the following nonnegative C∞-

function (see [11, p. 546])on the real line such that

φP(z) =


1, if 0 ≤ z ≤ 1− 1/P.
≤ 1, if 1− 1/P ≤ z ≤ 1+ 1/P.
0, if z ≥ 1+ 1/P.

(3.10)

.

Then the Mellin transform of φP(z), which is defined as follows

KP(s) =

∫∞
0

φP(z)z
s−1 dz,

is analytic in σ > 0. On a related (and pertinent) note, KP(s) satisfies the following

bound which can be proved by integrating by parts

KP(s)�
PC

(1+ |t|)C+1
, ∀C > 0, in 1 ≤ σ ≤ k+ 1 and P ≥ 2. (3.11)

We then normalize the Fourier coefficient of the cusp form G(z) within the sum

DΘ,G(s, n) by setting �ag(n) = ag(n)/n
(k−1)/2 so that �ag(n) � nε. Finally, via the

inverse Mellin transform, we have for c > k,
∞∑
m=1

rQ(m)�ag(m+ n)φP

(n
X

)
=

1

2πi

∫
(c)

DΘ,G(s−

(
k− 1

2

)
, n)KP(s)X

s ds.
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We shift the path of integration to c = k− 1/2+ δ, where δ is any positive number,

so that the argument of DΘ,G within the integral becomes k− 1/2+ δ−(k− 1)/2 =

k/2 + δ. So, what we are doing, in essence, is that we are pushing the path of

integration all the way to left up to the line <(s) = k/2+δ, which acts as a natural

boundary owing to the presence of poles on the line <(s) = k/2 from Theorem

3.2.1. Then, upon pulling out the factor of Xk−1/2+δ from the integral, absorbing

the rest of the convergent integral into the implied constant, and realizing that

there are functions satisfying (3.10) such that the first sum in the inverse Mellin

transform is majorized by ∑
m≤X

rQ(m)�~ag(m+ n)

by manipulating the value of the parameter P, we obtain the bound in Theorem

3.2.2, barring one small detail.

In order to shift the path of integration of the inverse Mellin Transform, we

will be integrating along a rectangle of some arbitrary height T and width 1/2− δ.

Performing the calculation above would entail verifying that integral of DΘ,G(s −

(k− 1) /2, n)KP(s)X
s along the horizontal components of the rectangle goes to zero

as the height T of the rectangle tends to infinity. Since, from the previous paragraph,

we have that KP(s) � (1 + |t|)−(C+1), for any C > 0, we need to make sure that

DΘ,G(s, n) satisfies a polynomial estimate in |t| in order to complete the proof of

Theorem 3.2.2. This is what motivates the following calculations that make up the

rest of the section.

Since, as we stated at the beginning of the chapter, we have assumed that

Θ(z,Q) is a weight k automorphic form for the full modular group SL(2,Z), we can
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obtain a general decomposition of the Θ-function into

Θ(z,Q) = Ek(z) + F(z,Q) (3.12)

where Ek(z) is the unique Eisenstein series whose Fourier expansion is

Ek(z) = 1+
(2π)k

ζ(k)Γ(k)

∞∑
1

σk−1(n)e(nz),

and

F(z,Q) =

∞∑
1

a(n,Q)e(nz)

is a cusp form. Then, by the additivity of the inner product, each of the 〈Θ, ·〉 terms

in (3.9) splits into 〈F(z,Q), ·〉+ 〈Ek(z), ·〉. So, after decomposing the inner products

of the Θ-function, we rearrange the terms on the right-hand side of (3.9) to give us
∞∑
l=1

rQ(l)ag(n+ l)

(l+ n)s+k−1
=
Q(s, n)

Γ(2s)

(∑
j>0

f(rj, n, ρ, λ, Γ) 〈F(z,Q), G�ej〉k

+2
√
π

∞∫
−∞
g(r, n, τ, ξ, Γ)

〈
F(z,Q), GE∞(z, 1/2+ ir)

〉
k
dr

)

+
Q(s, n)

Γ(2s)

(∑
j>0

f(rj, n, ρ, λ, Γ) 〈Ek(z), G�ej〉k

+2
√
π

∞∫
−∞
g(r, n, τ, ξ, Γ)

〈
Ek(z), GE∞(z, 1/2+ ir)

〉
k
dr

)
= IF(s, n) + IIEk(s, n), (3.13)

where f(ρ, λ, Γ) and g(τ, ξ, Γ) represent the expressions in terms of Γ factors and/or

any other constants appearing in front of the inner products in (3.9). Conveniently,

estimates for the terms represented by IF, i.e., the cuspidal part of the Θ-function

decomposition appearing in the first two lines of (3.13), were already obtained by

J.L.Hafner in [13] telling us that, for s = σ+ it,

IF(s, n)� n1/2+ε|t|1+ε. (3.14)
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Hafner’s bounds are uniform in a variety of related parameters, but for our purposes,

we are only interested in dependencies on the parameters n and s absorbing the

rest into the implied constant.

This just leaves the Eisenstein series part, given by IIEk(s, n), of the Θ-function

inner product decomposition in (3.13). We expect the estimates for IIEk(s, n) to

be marginally worse than the estimates for the cuspidal part, since the Eisenstein

series lack exponential decay at the cusps, a distinguishing feature of cusp forms.

The main advantage of having the holomorphic Eisenstein series in the Petersson

inner products 〈Ek(z), GE∞(z, 1/2+ir)〉k, and 〈Ek(z), G�ej〉k is that its presence lends

itself to the same ‘unfolding’ technique last seen in the proof of Theorem 3.2.1. In

what follows, the analysis of the continuous spectrum can be carried out in the

same way as the discrete part, so we will confine our calculations to the discrete

part only. For a fixed value of j, upon ‘unfolding’ the inner product 〈Ek(z), G�ej〉k,

we have

〈Ek(z), G�ej〉k

=

∫∫
Γ∞\H

yk−2G(z)ej(z)dxdy

=

∫∞
0

yk−2
∫ 1
0

( ∞∑
d=1

�ag(d)e
2πdye(−dx)

)

×

( ∞∑
m=1

ρj(m)
√
yKirj(2πmy)e(mx)

)
dxdy

=

∞∑
m=1

�ag(m)ρj(m)

∫∞
0

yk−2+1/2e−2πmy Kirj(2πmy)dy

=
1

(2π)k−1/2

∞∑
m=1

�~ag(m)ρj(m)

mk/2

∫∞
0

vk−3/2e−v Kirj(v)dv
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=

( ∞∑
m=1

�~ag(m)ρj(m)

mk/2

)
21/2−k

√
π Γ(k− 1/2+ irj)Γ(k− 1/2− irj)

(2π)k−1/2 Γ(k)

(3.15)

In the sum

S(ρj, ~ag) =

∞∑
m=1

�~ag(m)ρj(m)

mk/2
,

~ag(m) refers to the normalizedm-th Fourier coefficient of G(z). From [34], we know

that we can choose an orthonormal basis ej of Hecke eigencuspforms coming from

new forms and old forms such that

ρj(m)�ε (m)ε cosh
(πrj
2

)
mθ (3.16)

Here, θ refers to the Ramanujan bounds for GL(2), which are the best possible

bounds obtained in the pursuit of the generalized Ramanujan conjecture for number

fields. We can choose θ = 7/64, utilizing the state of the art bound obtained by

Kim and Sarnak in 2003. For a large enough value of k, say k > 2, the sum S(ρj, ~ag)

converges and consequently, will not play a role in the estimate for the inner product

given below

〈Ek(z), G�ej〉k � e−πrj/2|rj|
2k−2. (3.17)

Here, we have used (3.16) in conjunction with Stirling’s bound for the Γ function

Γ(s) � e−π|t|/2|t|σ−1/2.

Moreover, since we are uninterested at the moment in obtaining uniform estimates

in terms of all the remaining parameters that make up the right-hand side of (3.15),

we have absorbed all such extraneous factors (such Γ(k), etc.) into the implied

constant.
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In order to estimate the contribution of the discrete part of the spectrum towards

the size of IIEk(s, n), we split the sum over j into two parts as shown below

∑
j>0

ρj(n)Γ(s− 1/2+ irj)Γ(s− 1/2− irj)〈Ek(z), G�ej〉k =
∑
j>0,

|rj|≤|t|

+
∑
j>0,
|rj|>|t|

.

Estimating the first sum using the bounds from (3.17), (3.16), and Stirling’s

bound rather liberally, we get

∑
j>0,

|rj|≤|t|

ρj(n)Γ(s− 1/2+ irj)Γ(s− 1/2− irj)〈Ek(z), G�ej〉k �
∑
j>0,

|rj|≤|t|

|rj|
2k−2 e−π|t| |t|2σ−2

� e−π|t| |t|2σ+2k−3.

In a similar way, we can bound the remaining sum to get

∑
j>0,
|rj|>|t|

ρj(n)Γ(s− 1/2+ irj)Γ(s− 1/2− irj)〈Ek(z), G�ej〉k � e−π|t| |t|2σ+2k−4.

Combining these bounds together with the following estimate for Q(s, n)/Γ(2s),

Q(s, n)

Γ(2s)
� eπ|t||t|2−k−2σn1/2−σ,

and implicitly using the fact that the continuous part of the spectrum returns the

same estimates for the error term as does the discrete part, we get the following

bound for IIEk(s, n):

IIEk(s, n)� |t|k−1+εn1/2−σ. (3.18)

Hence, upon combining the estimates from (3.18) and (3.14), we see that DΘ,G(s, n)

satisfies an upper bound in terms of |t|k−1+ε, allowing us to proceed with the proof

of Theorem 3.2.2.
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3.4 Extension of the spectral method to Γ0(4N)

Having dealt with the case where both G(z) and Θ lie in the full modular group,

we can now proceed to the ‘congruence group of level 4N’ case with exactly the

same method as before. We assume Θ(z,Q) is an automorphic form for Γ0(4N) of

integral weight k = l/2, and that G(z) is a cusp form of weight k for Γ0(N). Even

though G and Θ may appear to live in different levels, since Sk(Γ0(N)) ⊂ Sk(Γ0(4N)),

we can perform any pertinent inner product calculations by considering G(z) as a

cusp form in Γ0(4N). As before, we are interested in the sum

∑
m≤X

rQ(m)�~ag(m+ n),

where b is a positive integer. To this end, we consider the sum DΘ,G(s, n). The

meromorphic continuation to its critical strip (via the spectral decomposition of

the non-homolorphic Poincaré series) is our method of choice once again. The only

deviation from the previous section is that we have to deal with additional cusps in

this scenario as opposed to the one cusp in the full modular group case. However,

as we will see, they make a negligible difference to the final estimate of the sum we

are interested in.

In the general decomposition of the Θ-function for Γ0(4N), we now have

Θ(z,Q) =
∑

a singular

φa(Q)Ea,k(z) + F(z,Q) (3.19)

where Ea,k(z) is the holomorphic Eisenstein series associated to each cusp a and

F(z,Q) =

∞∑
1

a(n,Q)e(nz)

is a cusp form. As in the previous section, we use this decomposition in order to get

polynomial estimates in |t| for the discrete and continuous parts of the spectrum.
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The constant φa(Q) , which is just value of the Θ(z,Q) at the cusp a, will not play

a role in the |t|-estimate and can be absorbed into the implied constant.

Before we proceed with the ‘unfolding’ done in the previous section, we will

write down the Fourier expansion of Eη at a cusp κ

Eη(z, s) = δηκy
s + φηκ(s)y

1−s +
∑
m 6=0

αmηκ(s)
√
yKs−1/2(2π|m|y)e(mx).

Generally speaking, the Fourier coefficients of these Eisenstein series are mysterious

quantities, but in the context of congruence groups, they have been pretty well

studied with the following explicit formulae (see [13])

φηκ(s) =
π1/2 Γ(s− 1/2)

Γ(s)
L0ηκ(2s),

αmηκ(s) =
2πs |m|s−1/2

Γ(s)
Lmηκ(2s),

and

Lmηκ(2s) =
∑∗

c,d
0≤d<c

e(md/c)c−s, (3.20)

where
∑∗

ranges over those pairs not necessarily integral. From [13, p. 14], we

also know that Lmηκ satisfies the following upper bound in terms of the parameters

t and N

Lmηκ(1+ it)� (4mN|t|+ 1)ε. (3.21)

This upper bound in conjunction with Stirling’s bound gives us the following esti-

mate for the size of the Fourier coefficients αnκ∞ on the critical line

αnκ∞(1/2− ir)� eπr/2(8nN|r|+ 1)ε.

.
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Let Λ represent the set of inequivalent cusps in Γ0(4N). Since we performed the

t-estimate in detail for the discrete part of IIEk(s, n), we shall now calculate the

r-estimate for the continuous part of the spectrum. This involves estimating the

sum of inner products given below

∑
a∈Λ

∑
κ∈Λ

αnκ∞(1/2− ir)
〈
Ea,k(z), GEκ(z, 1/2+ ir)

〉
k
. (3.22)

Upon unfolding the integral in the inner product above, we get the expression

∑
a∈Λ

∑
κ∈Λ

αnκ∞(1/2− ir)

(2π)k−1/2

( ∞∑
m=1

�~ag(m)αmκ∞(1/2+ ir)

mk/2

)

×
√
π 21/2−k Γ(k− 1/2+ ir)Γ(k− 1/2− ir)

Γ(k)

Using the bounds on αnκ∞(1/2− ir) established earlier, the expression in (3.22)

is estimated to be of size O
(
|r|ε(8nN|r|+ 1)ε|r|2k−2

)
, which is exactly the kind of

polynomial-type dependency we need in terms of r. The rest of the proof follows

the framework laid down in the previous section.

Let b = max
j

|< irj|, where λj = 1/4+ r2j is the eigenvalue of the ej’s comprising

the discrete part of the spectrum of the hyperbolic Laplacian. Selberg’s eigenvalue

conjecture is equivalent to the statement that b = 0. The locations of these excep-

tional eigenvalues act as a natural barrier preventing us from shifting the line of

integration in the inverse Mellin transform as close to k− 1/2 as we did in the full

modular group case. Consequently, to conclude this chapter, we have the following

theorem.

Theorem 3.4.1. Let δ = b if b 6= 0, else let δ be any positive number. Let n

be as in the definition of DΘ,G(s, n). Let ~ag(n) represent the normalized n-th
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Fourier coefficient of the holomorphic cusp form G(z). Then we have

∑
m≤X

rQ(m)�~ag(m+ n)� Xk−1/2+δ.

66



Chapter 4: An Approach using the δ-symbol Method

4.1 Introduction and motivation

In Chapter II, we studied the shifted convolution sum

Df(Θ, b) =
∑
n≥1

af(n+ b)rQ(n)φ(n),

using a methodology that was similar in spirit to the one used to study shifted

convolution sums in [5]. To put it succinctly, this involved the combination of

an ‘elementary’ Poincaré series approach together with a Voronoï-type summation

formula, finally followed by an application of Weil’s estimate for Kloosterman sums.

In this chapter, we use an analogous approach to study the sum

∑
n≥1

rQ(n)rQ(n+ b)f(n), (4.1)

where rQ(n) is the number of ways of representing an integer n by a positive definite

quadratic form Q(x), and f(x) is a suitable nice weight function on (0,∞). Our

main source of inspiration in this case will be the following paper by H. Iwaniec et

al. [8]. The main ingredients used to obtain the results of this chapter will be the

δ-symbol method, together with a Voronoï-type summation formula once again.
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In order to motivate the study of the sum in (4.1), we use a familiar object

D(τ, b), last seen in Chapter II, defined in the following manner:

D(τ, b) =
∑
n≤X

τ(n)τ(n+ b). (4.2)

The behavior of D(τ, b) was studied as the classical additive divisor problem. To

reiterate the basis of the analogy used in Chapter II, τ(n) is the n-th Fourier

expansion of the modular form ∂
∂s
E(z, s)|s=1/2 where E(z, s) is the Eisenstein series

for SL2(Z), while rQ(n) is the n-th Fourier coefficient of the Θ-function associated

to the quadratic form Q(x). Thus, D(τ, b) and D(Θ, b) are variants of each other

in the sense that the shifted convolution sums in (4.1) and (4.2) only differ by

involving the Fourier coefficients of two rather different modular forms in their

respective definitions. A. E. Ingham first gave an asymptotic formula for (4.2) in

1927 and then, in 1931, T. Estermann estalished the asymptotic expansion

D(τ, b) = XPb(logX) +O
(
X1−1/12 log3 X

)
, (4.3)

where Pb(T) is a quadratic polynomial with leading coefficient 6π−2σ−1(h). A cru-

cial element in Estermann’s proof of (4.3) is an estimate for Kloosterman sums.

Further study by mathematicians such as Kuznetsov, Y. Motohashi, and Jutila,

among others, made use of techniques from the more sophisticated spectral theory

of automorphic forms leading to substantial improvements on the error term of Es-

termann. Other examples of results using such techniques (taken from [2]) which

deal with the Ramanujan τ-function (not to be confused with the divisor function)

include

∑
n≥1

e−n/Xτ(n)τ(n+ 1) = O
(
X12−1/2+ε

)
by D. Goldfeld, and
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∑
1≤n≤X

τ(n)τ(n+ 1) = O
(
X12−1/3+ε

)
by A Good.

At this point, we would like to mention that the bounds that we are seeking for

(4.1) are far more exploratory in nature, and as a result, we are not interested in

optimizing the resulting error term to the fullest extent possible. Moreover, in order

to simplify the exposition of the underlying calculations that make up the rest of

this chapter, we assume that b = 1.

4.2 Statement of results

Before we state the main theorem that is the focus of this chapter, we shall

proceed to rewrite the sum in question as

D(Θ, f) =
∑
m∓n=1

rQ(m)rQ(n)f(m,n), (4.4)

where f(x, y) is a nice smooth weight function on R+ × R+. In what follows, we

will only present the case m − n = 1, which corresponds to (4.1). The remaining

case m+n = 1 can be obtained by merely changing signs where appropriate in our

resulting calculations. For the applications we have in mind, we also place a small

restriction on f(x) and its partial derivatives in that the following estimate must be

satisfied

xiyjf(i,j)(x, y)�
(
1+

x

X

)−1 (
1+

y

Y

)−1
Pi+j (4.5)

with some P, X, Y ≥ 1 for all i, j ≥ 0. As noted in [8], this condition allows for f(x, y)

to oscillate mildly.

In addition, let us also recall, from chapter II, that Q(x) is a positive definite

quadratic form in l ≥ 2 variables. In Siegel’s notation Q(x) = 1
2
A[x], where A =

(aij) is a symmetric, positive definite matrix of rank l. We assume that A has
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integral entries which are even on the diagonal. Then, Q(x) has integral coefficients.

Now, we define the theta function Θ(z,Q) associated to the quadratic form Q(x)

as follows

Θ(z,Q) =
∑
m∈Zl

e(Q(m)z) =

∞∑
n=0

r(n,Q)e(nz), (4.6)

where the representation numbers r(n,Q) are the Fourier coefficients of Θ(z,Q).

For a positive integer N satisfying NA−1 ∈ Ml(Z), we note (as in [30]) that

Θ(z,Q) is an automorphic form for Γ0(4N) of weight k = l/2 and multiplier

θ(τ) =

(
|A|

d

)(
�εd

( c
d

))l
where τ =

(
a b

c d

)
∈ Γ0(4N). (4.7)

Here,
( ·
·

)
denotes the Kronecker symbol, while N is a positive integer such that

NA−1 is an integral matrix and might not be the minimal level. εd denotes the sign

of the Gauss sum

εd =

{
1 if d ≡ 1 (mod 4)

i if d ≡ 3 (mod 4)

as usual. For our purposes, we let N equal |A|. Consequently, if A is a unimodular

matrix, then N = 1.

Theorem 4.2.1. Suppose f satisfies (4.5) and Θ(z,Q) is as in (4.6) of weight

k. Then we have the following asymptotic expansion

D(Θ, f) =

∫∞
0

g(x,∓x± 1)dx+O
(
Pk+1/4(X+ Y)k−3/4(XY)1/4+ε

)
, (4.8)

where g(x, y) = f(x, y)(xy)k−1Γ(k)−2 (2π)2k
∑∞

q=1 q
−2kµ(q), µ(x) is the Möbius

function, and the implied constant depends on ε only.

Before we state the corollary, we would like to point out that Theorem 1 of [8]

corresponds to the case where k = 1 in the theorem above.
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Corollary 4.2.2. For, M ≥ 1, we have

∑
m≤M

rQ(m)rQ(m+ 1) =

∫X
0

g(x, x+ 1)dx+O
(
M2k−1− 4k−3

4k+5
+ε
)
,

where g(x, y) is defined as in the theorem above.

Proof. In proceeding from an estimate for a weighted sum to an unweighted one,

we basically follow the same steps as in the proof of the corollary of [8]. We ap-

ply Theorem 4.2.1 for the test function f(x, y) = f1(x, y)f2(x, y) where f1, f2, are

single variable functions, smooth, non-negative, supported on [X,X+XP−1], [0, 2Y],

respectively, such that

f1(x) = 1, when 0 ≤ x ≤ X, f(j)1 �
(
P

X

)j
,

and

f2(y) = 1, when 0 ≤ y ≤ Y, f(j)2 � Y−j.

We set X = M, and Y = M + 1, so the sum
∑

m≤X rQ(m)rQ(m + 1) will be

majorized by D(Θ, f). Since f, as chosen, satisfies the condition given by (4.5),

upon applying Theorem 4.2.1 to D(Θ, f), we get

D(Θ, f) =

∫∞
0

g(x, x+ 1)dx+O
(
Pk+1/4Mk−1/4+ε

)
. (4.9)

Moreover, we can also directly estimate the difference between the integral above

and that given in Theorem 4.2.1 to obtain an upper bound of∫∞
0

g(x, x+ 1)dx−

∫M
0

g(x, x+ 1)dx� M2k−1

P
. (4.10)

We then set P = M(4k−3)/(4k+5) in order to make an optimal choice of the error

term by setting the error estimates of (4.9) and (4.10) equal to one another and
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solving for P. Upon substituting this value of P back into the estimate for the

error term obtained in either (4.9) or (4.10), we get the desired bound seen in the

statement of the corollary.

4.3 An Introduction to the δ-symbol method

We follow the δ-symbol method used in [8] without any modification whatsoever.

For the sake of completeness of exposition, we proceed to restate the main lemmas

without proof. A good exposition that motivates the techniques and results used

forthwith is also given in §20.5 of [10].

Take a smooth, compactly supported function w(u) on R such that w(u) =

w(−u) and w(0) = 0. We normalize w(u) by requiring
∞∑
q=1

w(q) = 1. (4.11)

Then for any n ∈ Z, we have

δ(n) =
∑
q|n

(
w(q) −w

(
n

q

))
=

{
1, if n = 0.

0, if n 6= 0.
(4.12)

The following idea had its origins in [5]. Using additive characters to detect the

divisibility q|n, we can get the following expression for ‘capturing’ the condition

n = 0 which, in a nod to the Dirac delta function, will henceforth be expressed as

δ(n).

δ(n) =

∞∑
q=1

∑∗

d( mod q)

e

(
dn

q

)
∆q(n), (4.13)

where

∆q(n) =

∞∑
r=1

(qr)−1
(
w(qr) −w

(
n

qr

))
. (4.14)

The following lemma tells us that ∆q(n) approximates the Dirac distribution

quite closely.
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Lemma 4.3.1. For any f ∈ C∞
0 (R), we have

∞∫
−∞
f(u)∆q(u)du = f(0)

∞∫
0

w(r)dr− qj
∞∫
0

ψj

(
r

q

) ∞∫
−∞

(
f(u)

(
w(r)

r

)(j)

−w(u)ujf(j)(ru)

)
dudr, (4.15)

where j ≥ 1 and

ψj(z) = −

∞∑
m=1

(2πim)−j(e(mz) + (−1)je(−mz)).

The proof of Lemma 4.3.1 is obtained by using the definition of ∆q(u) in the

left-hand side of (4.15) followed by a change of variable in the second integral getting

∞∫
−∞
f(u)∆q(u)du =

∞∫
−∞
f(u)

( ∞∑
r=1

(qr)−1w(qr)

)
du−

∞∫
−∞
w(v)

( ∞∑
r=1

f(qrv)

)
dv.

(4.16)

The proof is then completed by evaluating the individual sums in (4.16) using the

Euler-Maclaurin summation formula.

We shall now impose a few conditions on w(u) in order to further capture the

Dirac distribution-like behavior exhibited in Lemma 2.4.1. Suppose w(u) is sup-

ported in Q ≤ |u| ≤ 2Q and it has derivatives bounded by wj � Q−j−1, j ≥ 0. Using

the fact that |ψj(z)| ≤ 1, the terms on the right-hand side of (4.16) are bounded

by f(0)
(
1+O

(
Q−j−1

))
, qjQ−j−1

∣∣∫ f(u)du∣∣, and qjQj−1
∫ ∣∣f(j)(u)∣∣ du, respectively.

Then we have the following corollary from Lemma 2.4.1.

Corollary 4.3.2. Let j ≥ 1. We have

∞∫
−∞
f(u)∆q(u)du = f(0) +O

(
qjQ−1

(∫
Q−j |f(u)|+Qj

∣∣f(j)(u)∣∣ du)) . (4.17)
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If q < Q1−ε, Corollary 4.3.2 tells us that ∆q(u) approximates to the Dirac

distribution very well on test functions satisfying f(j) � (qQ1+ε)−j.

Finally, the following Lemma allows us, in the words of [10], to ‘control the

variations of ∆q(u) in both variables q, u while separating q from u at a low cost’.

Lemma 4.3.3. We have the following bound on ∆q(u):

∆q(u)� (qQ+Q2)−1 + (qQ+ |u|)−1. (4.18)

4.4 Application of the δ-symbol method

We shall first investigate D(Θ, f) for smooth test functions f(x, y) which are

supported in a box [X, 2X]× [Y, 2Y] and has partial derivatives bounded by

f(i,j) � X−iY−jPi+j. (4.19)

Towards the end of the paper, we shall derive Theorem 4.2.1 by employing a parti-

tion of unity and decomposing a smooth test function f(x, y) which satisfies (4.5).

As f(x, y) is supported in [X, 2X]×[Y, 2Y], we can assume that X, Y ≥ 1/2 elseD(Θ, f)

vanishes trivially. As in [8], we shall also attach a redundant factor φ(x − y − h)

to f(x, y) where φ(t) is a smooth function supported on |t| < U such that φ(0) = 1

and φi � Ui. Here, not only does the redundant factor φ(t) help smooth out the

sum D(Θ, f), it also renders the sum vulnerable to certain analytic techniques that

we will employ shortly. Finally, the parameter U also allows us a measure of control

in choosing the optimal size of the error terms. Rather than deal with U directly,

for the ease of computation, we will choose

U =
XY

P(X+ Y)
, (4.20)
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so that, by (4.19), the new function

F(x, y) = f(x, y)φ(x− y− 1)

has partial derivatives bounded by

F(i,j) � U−(i+j). (4.21)

Now, we can use the expression for δ(n) from (4.13) to capture the shiftm−n =

1 in the sum D(Θ, f). Before we proceed, in order to optimize the magnitude of

the moduli appearing in the expression of δ(n), we choose the compact support of

the function w(u), last seen in §3, to be U1/2 ≤ |u| ≤ 2U1/2 (or equivalently, we

set Q = U1/2, where Q is the parameter that determines the compact support of

w(u)). Consequently, we get the following expression for D(Θ, f):

D(Θ, f) = D(Θ, F)

=
∑
m−n=1

rQ(m)rQ(n)F(m,n)

=
∑
m

∑
n

rQ(m)rQ(n)F(m,n)δ(m− n− 1)

=
∑

1≤q≤2Q

∑∗

d (mod q)

e

(
−d

q

)∑
m

∑
n

rQ(m)rQ(n)e

(
dm− dn

q

)
E(m,n),

(4.22)

where we replaced δ(m−n−1) with the right-hand side of the equation from (4.13)

and switched the order of summation thereafter to get (4.22). In the process, we

also combined the two auxiliary functions ∆q(x − y − 1) and F(x, y) into a single

function as follows: E(x, y) = F(x, y)∆q(x− y− 1).
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4.5 Implementation of the Voronoï summation formula

We shall execute the summation over m,n in (4.22) via the following Voronoï

summation formula from Chapter II:

Proposition 4.5.1. Let φ(x) be a smooth function of compact support in (0,∞).

Recall that Θ(z,Q) is an automorphic form for Γ0(4N) of weight k = l/2. Then,

we have

∞∑
n=1

rQ(n)e(an/c)φ(n)

=
( c
2π

)−k
Γ(k)−1G(k)ik

(
|A|

a

)−1(
�εa

(
−2c

a

))−2k

+
2π

c
ik
(
|A|

a

)−1(
�εa

(
−2c

a

))−2k

×
∞∑
n=1

(
rQ(n)e(−dn/c)n

(1−k)/2

∫∞
0

φ(x)x(k−1)/2Jk−1

(
4π
√
nx

c

)
dx

)
By Proposition 4.5.1 applied once to each variable in the innermost double sum

of (4.22), we get the following expression

∑
m

∑
n

=
1

Γ(k)2

(
2π

q

)2k
I

+
1

Γ(k)

(
2π

q

)k+1 ∞∑
m=1

rQ(m)e

(
−dm

q

)
m(1−k)/2 I1

+
1

Γ(k)

(
2π

q

)k+1 ∞∑
n=1

rQ(n)e

(
dn

q

)
n(1−k)/2 I2

+

(
2π

q

)2 ∞∑
n=1

∞∑
m=1

rQ(n)rQ(m)e

(
�dn− �dm

q

)
(nm)(1−k)/2 I3, (4.23)

where

I =

∫∞
0

∫∞
0

E(x, y)(xy)k−1 dydx,

I1 =
∫∞
0

∫∞
0

x(k−1)/2Jk−1

(
4π
√
mx

q

)
E(x, y)yk−1 dydx,

I2 =
∫∞
0

∫∞
0

y(k−1)/2Jk−1

(
4π
√
ny

q

)
E(x, y) xk−1 dxdy, and finally,
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I3 =
∫∞
0

∫∞
0

(xy)(k−1)/2Jk−1

(
4π
√
mx

q

)
Jk−1

(
4π
√
ny

q

)
E(x, y)dxdy

Inserting (4.23) into (4.22), we obtain complete Kloosterman sums S(n,m;q).

Recall that the Kloosterman sum S(n,m;q) is defined as follows:

S(n,m;q) =
∑

e

(
na+ma

q

)
.

Upon rearranging and collecting the terms which are affected by the summation in

d, we obtain the following formula:

DQ(a, b;h) =
∑
q<2Q

(
Γ(k)−2

(
2π

q

)2k
S(1, 0;q) I

+

∞∑
m=1

Γ(k)−1
(
2π

q

)k+1
rQ(m)m(1−k)/2 S(1,m;q) I1

+

∞∑
n=1

Γ(k)−1
(
2π

q

)k+1
rQ(n)n

(1−k)/2S(1,−n;q) I2

+

∞∑
m=1

∞∑
n=1

(
2π

q

)2
rQ(m)rQ(n)(mn)

(1−k)/2S(1,m− n;q) I3
)

(4.24)

To the Kloosterman sums in this formula, we apply Weil’s bound

S(h,m− n;q)� q1/2τ(q).

When m = n = 0, we get the Ramanujan sum for which we have

cq(h) = S(h, 0;q) =
∑
ν|(h,q)

νµ
(q
ν

)
� (h, q).

4.6 Evaluation of the main term

Upon rearranging and regrouping terms within the integral I, we have:

I =

∫∫
C(x, y)∆q(x− y− 1)dxdy
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=

∫∫
C(x, x− 1+ u)∆q(u)dudx,

where we set C(x, y) = F(x, y)(xy)k−1 and performed a change-of-variable by setting

y = x − 1 + u in the last line. We note that, at a similar point, [8] defines C(x, y)

in terms of log x and log y, while we have the k-th powers of x and y occurring

in our Mellin transforms. This allows us to draw a rather loose analogy with the

elementary fact from calculus that the anti-derivative of xk is yet another power of

x, except in the case where k = 0 (which returns log x). So, we could conceivably

consider the work of Iwaniec, et al. in [8] as dealing with the ‘singular’ case, i.e.

k = 0, while we seem to be dealing with the easier and non-singular scenario. By

(4.3.2) and (4.19), we obtain the following estimate∫
C(x, x− 1+ u)∆q(u)du = C(x, x− 1) +O

((
q

Q

)j)
.

We can make the error term very small by first assuming that q < Q1−ε and then

adopting a large value of j. Upon doing so, we obtain

I =

∫
C(x, x− 1)dx+O

(
Q−A

)
.

We also have another upper bound for I, namely,

I � (XY)k−1
∫∫

|F(x, y)∆q(x− y− 1)| dxdy

= (XY)k−1
∫∫

|F(x, x− 1− u)∆q(u)| dxdu

� (XY)k−1min(X, Y)

∫U
−U

|∆q(u)|du�
(XY)k

X+ Y
logQ,

where the last inequality follows from (4.18). Moreover, the above inequality holds

for all q as well. Putting together all the error terms obtained in this section, the
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first term on the right-hand side of (4.24) yields

∞∑
q=1

q−2kµ(q)

∫
C(x, x− 1)dx+O

(
(XY)k

X+ Y
Q−1 logQ

)
, (4.25)

where we are dealing with q in the range q < Q1−ε.

4.7 Estimation of the error term

We now proceed to obtain estimates for the integrals given by I1, I2, and I3.

We begin by first getting a bound for the function E(x, y) = F(x, y)∆q(x − y − 1).

Using (4.18) in conjunction with integration by parts gives us

E(ij) � 1

qQ

(
1

qQ

)i+j
, i+ j > 0. (4.26)

The integrals I1, I2, and I3 are reminiscent of the integrals last seen in §6 of

Chapter II. As in that chapter, we hope to obtain upper bounds on these integrals

in terms of their arguments. These bounds will then help us identify those terms

that contribute the most in the sums comprising (4.24). One of the most common

ways to do this is by the method of ‘estimating via integration by parts’ which uses

the recurrence relation

(zkJk(z))
′ = zkJk−1(z) (4.27)

and follows exactly the same line of reasoning as that in §6 of Chapter II. Since

we have already expounded on this a great deal in a previous chapter, we will not

repeat the same calculation again. Moreover, as before, since we are keeping the

weight k constant, we are not concerned with stationary phase arguments.

Upon integrating I1 by parts once, and keeping in mind that we are interested

in bounds depending on q, Q, X, and m, we see that the size of the resulting

79



expression changes by a factor of

q
√
X√
m

min

(
1

X
,
1

qQ

)
where we are using (4.26) in our estimation of dE(x, y)/dx. Consequently, if we

integrate I1 by parts p times and keep track of the pertinent parameters, then its

size is given by

I1 �

(
q
√
X√
m

min

(
1

X
,
1

qQ

))p
.

The definitions of the parameter U and Q from §4 imply that qQ ≤ Q2 = U� Y,

as a result of which the estimate above can be modified to get

I1 �

( √
X√
mQ

)p
. (4.28)

So, if Q
√
X/
√
m < 1, i.e., m > X/Q2, then the contribution of I1 towards the

error term will be negligible (since we can make its estimate as small as possible by

simply increasing the number of times we integrate I1 by parts). A similar process

can be repeated in terms of n with a resulting bound for I2 as in (4.28). This

upshot of all these calculations is that we are only interested in the contribution

towards the error term obtained by summing m and n in (4.24) within the range

m < X/Q2−ε, n < Y/Q2−ε (4.29)

.

For m, n in this range, we estimate the integrals trivially using the bound

Jk(z)� z−1/2, which gives

I1(m)�
(
q2

mX

)1/4
X(k−1)/2 Yk−1

∫∫
I2(n)�

(
q2

nY

)1/4
Y(k−1)/2 Xk−1

∫∫
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I3(m,n)�
(

q4

mnXY

)1/4
(XY)(k−1)/2

∫∫
where ∫∫

=

∫∫
E(x, y)dxdy� (XY)

X+ Y
Qε.

Next, summing over m, n in the range (4.29), we obtain

∑
m

rQ(m)m(1−k)/2 I1(m)� q1/2
X(k+1/2) Yk

X+ Y
Q−k−1/2+ε

∑
n

rQ(n)n
(1−k)/2 I2(n)� q1/2

Xk Y(k+1/2)

X+ Y
Q−k−1/2+ε

∑
m

∑
n

rQ(m)rQ(n)(mn)
(1−k)/2 I3(m,n)� q

(XY)k+1/2

X+ Y
Q−2k−1+ε.

Introducing these bounds, along with (4.25), into (4.24), we get Theorem 4.2.1

with the error term

(XY)k

X+ Y
Q−2k+1+ε +

(XY)k+1/2

X+ Y
Q−2k−1/2+ε.

On using the relation U = Q2 = XY/(P(X+Y)) from §4 in the expression above and

picking out the term that contributes the largest power of XY, the above error term

becomes that of Theorem 4.2.1. This completes the proof of the theorem in the

case where f(x, y) is supported in a dyadic box. In order to derive Theorem 4.2.1

in its general form for any function satisfying (4.5), we first consider an arbitrary

smooth function

ρ : (0,∞)→ R

whose support lies in [1, 2] and which satisfies the following identity on the positive

axis: ∞∑
k=−∞ ρ(2

−k/2 x) = 1.
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At this juncture, we would like to note that the following procedure was borrowed

from §5 of [15]. To obtain such a function, we take an arbitrary smooth η : (0,∞)→
R which is 0 on (0, 1) and 1 on (

√
2,∞) and we then define ρ as follows

ρ(x) =

{
η(x), if 0 < x ≤

√
2.

1− η(x/
√
2), if

√
2 < x <∞.

With this partition of unity, we decompose f(x, y) as

f(x, y) =

∞∑
k=−∞

∞∑
l=−∞ fk,l(x, y) ,where

fk,l(x, y) = f(x, y) ρ
( x

2k/2X

)
ρ
( y

2l/2Y

)
.

We note the following relations, for P ≥ 1,

supp fk,l ⊆ [Ak, 2Ak]× [Bl, 2Bl], Ak = 2
k/2 X, Bl = 2

l/2 Y, and

(1+ 2k/2)(1+ 2l/2) f
(i,j)
k,l � A−i

k B
−j
l P

i+j.

Consequently, the function gk,l(x, y) satisfies the condition give in (4.19) (with

X = Ak, and Y = Bl) where gk,l is given by

gk,l(x, y) = (1+ 2k/2)(1+ 2l/2) fk,l(x, y).

The error term in Theorem 4.2.1 is finally acquired by noting that

D(Θ, f) =

∞∑
k=−∞

∞∑
l=−∞D(Θ, fk,l),

and summing up the error term arising from the summand across the double sum

in k and l.
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