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Abstract

This dissertation contains three articles pertaining to the social science of

obesity. All three chapters address the inherent dynamics of the obesity

problem, which is surprisingly under-represented in the current literature.

The first chapter uses microsimulation to recreate the incidence of obesity

in the United States. The calibrated model is then subjected to tax and

access policies in order to envisage possible outcomes from such policy

intervention. Results show that the effect of taxation and increased access

for the poorest individuals had little effect on average weight outcomes.

Since the poorest individuals were shown to be the most obese, the results

from this simulation imply that the most effective policy will be ones which

aim to shift individual preferences toward healthful foods. While taxes

did have a slight abatement effect, perhaps the most efficacious use of tax

revenue could be used to fund programs that promote healthy eating.

The second chapter utilizes panel data from the China Health and Nutri-

tion Survey to conduct a dynamic estimation of the occurrence of obesity

in China. The results show that income has a positive effect on weight,

while education was negatively associated with weight gain. Upon esti-

mating food consumption behavior, there is evidence that shows that as
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individuals become richer they substitute away from carbohydrate rich

foods toward proteins and fat. This behavior maybe attributable to dif-

fering perceptions of weight relative to Western societies. Countries like

China, with a relatively recent history of food scarcity may perceive weight

gain as a sign of health and prosperity. Therefore, consumption of calorie

dense foods like meat and fat maybe thought of as health-seeking behav-

ior.

Finally, the third chapter is a dynamic estimation of obesity in the United

States. Using pseudo-panel techniques, a dynamic model is constructed

at the cohort-level using repeated cross-sectional data from the National

Health and Nutrition Examination Survey (NHANES). An inverse re-

lationship between socioeconomic status and weight was only detected

among women. Interestingly, the lagged BMI variables were positive and

significant in most cases for women, but was generally not for men. This

seems to indicate that men are resistant to a “weight legacy” and are

much more able to change current weight despite previous weight sta-

tus. When studying food consumption behavior, women are more prone

to sugar consumption as a result of increased socioeconomic status and

marriage. Considering that the preponderance of overweight and obesity

is higher among women, it may indicate that dietary differences across

genders particularly in sugar consumption may be a contributing factor

to female obesity.
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Chapter 1: Simulating Meal Choices

1.1 Introduction

Obesity is a pervasive problem in the United States and is associated with in-

creased morbidity and illness. Simply by the scale of the problem (over two thirds of

Americans are overweight (Flegal et al. 2012), the cost associated with obesity has

potential to become economically large and diminishes human welfare. In particular,

it increases medical care costs (Finkelstein et al. 2009,Cawley and Meyerhoefer 2012)

and attenuates the labor supply (Cawley 2004).

The obstacles in studying obesity are that the determinants of obesity are nu-

merous and often interact with each other. In fact, the Foresight Programme of the

Government of Science Office in the United Kingdom propose a systems dynamics

model of obesity containing over 100 contributing factors with over 300 connections

and an additional 100 endogenous processes.1 Moreover, obesity is well suited to be

framed as a complex adaptive, public health issue.2

Healthful foods often cost more than their less nutritious counterparts (Rao et al.

2013), which are typically calorically dense yet devoid of nutrients. Additionally, more

1For an illustration refer to https://www.gov.uk/government/publications/reducing-obesity-
obesity-system-map

2See Hammond (2009), Prince (2009) , Finegood 2011 and Bruzzone, Novak, and Madeo (2012).
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nutritious foods are also often capital and labor intensive to store and prepare which

may be particularly burdensome to poorer individuals who may not have the requisite

resources for meal preparation. It is therefore reasonable to hypothesize that poorer

individuals will have a higher propensity to be overweight since they maybe out priced

by health, but have access to an abundance of low quality calories. Furthermore, it

maybe the case that overconsumption by poorer individuals may in fact be a rational

response to income scarcity and nutritional deficiencies in their diets despite leading

to weight gain.

The purpose of this paper is to characterize individual’s optimal food choices. To

do so, this paper utilizes microsimulation to address the relationship between income

and obesity and whether consumptive behavior changes as a result of an individual’s

environment. In this case, simulation methods are an appropriate treatment and

framework of the issue for three reasons. First, simulation is a platform that can be

used to forecast many future scenarios in a much smaller time frame than that of real

life. This is of particular relevance to obesity as informed policies have the potential

to circumvent further spread of obesity. Second, the obesity epidemic possesses many

of the characteristics of a complex system (Hammond 2009; Finegood 2011). Par-

ticularly, the pathways in which an individual becomes obese are numerous and are

often studied across many disciplines. This high level of heterogeneity among agents

is further compounded by an equally varied set of environmental factors. Finally,

interactions between agents and their environments are complex in that exchanges

are numerous and often endogenous. However, these non-linear, cyclical interactions

make it quite challenging to study obesity in an empirical setting and as a result are

not well understood.
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Most articles that tie the application of complex systems to the obesity epidemic

have largely been expositional in nature and do not present a formal structural model

(Hammond 2009; Prince 2009; Bruzzone, Novak, and Madeo 2012). The exception

is Auchincloss et al. (2011) whereby they present an agent based model, which looks

at how the presence of food deserts in poor communities may attribute to higher

preponderance of obesity. This paper is similar with Auchincloss et al. (2011)’s for-

mation of local environments and more specifically, mobility constraints. A Tiebout

(1956) sorting model is used to geographically distribute individuals by income class

to form relevant income based neighborhoods. As a result, individuals will exhibit

consumption behavior that optimizes their recursive utility maximization problem,

which may not necessarily preclude them from unhealthy choices, but may differ with

the level of access to meals. By subjecting agents to different price environments and

access levels, the results may become an informative resource to constructing effective

obesity policy.

To gain early insight, a deterministic model controlling for calorie consumption

and mobility was run to illuminate the growth rate of BMI over time. Because of

a lagged metabolic response to caloric intake, it was shown that unlike conventional

wisdom, which states that weight gain increases linearly over time, BMI actually

increased logarithmically. This relationship implies that the short-term response to

high caloric intake has much larger effects on body weight and tapers off over time

as the individual acclimatizes to higher food intake.

The results from the status quo model with no policy changes show that average

BMI was approximately within one standard deviation of average BMI from the Na-

tional Health and Nutrition Survey 2009-2010 (NHANES) dataset. The simulations

3



did in fact show that the poorest individuals were on average more obese then their

richer counterparts, but were also more likely to be underweight, a phenomenon which

is more commonly seen in developing nations. The average mortality rate attributed

to malnutrition was much higher in the simulation than what is quoted by the World

Health Organization (WHO), which calculates a mortality rate of about 0.045% in

the United States, but this maybe in part due to the simplification of the model,

which does not include adaptive production behavior of households and restaurants.3

Middle and the richest classes where not far behind as average BMI was still in the

overweight category, but variance was much smaller for these subpopulations where

there was little preponderance of underweight individuals. When implementing a tax

on foods there was a slight decrease in both average BMI and standard deviation,

but increased mortality rates. Upon increasing access for the poorest individuals in

the taxed model I found no significant difference in average BMI, but found that

increasing access promoted a are larger inverse correlation between income class and

BMI. This suggests policies, which aim to increase access to food will also need to

work toward changing individual preferences for meals, which at least partially is

determined by income.

Section 1.2 presents a theoretical model. Section 1.3 describes the computational

model using the standardized ODD (Overview, Design Concepts and Details) pro-

tocols (Grimm et al. 2006; Grimm et al. 2010; Rand and Rust 2011). Section 1.4

3 The mortality rate was calculated based on biological limitations of BMI established by the
WHO which state that a minimum BMI of 16 is considered to be severely underweight and associated
with increased mortality (Berrington de Gonzalez et al. 2010; WHO 1995). Both the NHANES 2009-
2010 and simulated datasets excluded individuals with BMI’s less than 16 to first increase symmetry
between datasets and because very low BMI’s maybe correlated to other non-obesity related diseases.
The mortality rate was calculated as the percent of individuals below a BMI of 16.
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discusses results from Monte Carlo simulations. Section 1.5 highlights the limitations

and scope of this simulation. Finally, the section 1.6 contains conclusions.

1.2 Theoretical Model

The model proposed assumes that individuals exhibit optimal behavior. At each

time increment individuals must make meal choices. This choice is a function of an

individual’s desire for satiety and health, which often result in divergent in weight

outcomes. And, the preferences for satiety and health are themselves functions of

socioeconomic status and weight, which changes over time. Individuals are subjected

to a mobility constraint such that individuals are relegated to meals only within their

permitted travel distance. The outcomes from these meal choices result in weight

changes of the individual, which subsequently impact choices of future meals.

1.2.1 Ex-Ante Formation of Neighborhoods

There is much discussion surrounding the implications of limited access to health-

ful foods and its affects on obesity among the poor. It would be unreasonable to

assume individuals face equally randomized environmental effects. For this reason, I

use the Tiebout sorting model Tiebout (1956) to form neighborhoods of like income

households.4 The rationale behind this is as Tiebout illuminates; households will

locate to communities with like attributes of their household. In this model I use

income to distribute the geography of households. Households with similar income

ranges will inevitability face similar, but not identical environmental constraints. The

result is the formation of poor, middle class and rich neighborhoods where agents are

4 See appendix A for an illustration of the Tiebout Sorting model.
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either restaurants or households producing meals or individuals who must choose

what meals to consume at every t.

1.2.2 Utility Maximization Problem

In this model individuals maximize their utility by consuming calories, but are

also conflicted by their preferences to maintain weight. As such, an individual’s

biological desire to consume a maximal amount of calories at each meal is diminished

by her desire to also stay healthy. And, these preferences of satiety versus health

differ among individuals and over time. Comparably, Richards and Patterson (2006)

assume that ex-ante, each individual decides his or her idealized nutrient profile5 . In

their model a consumer’s cost minimization problem is subject to some technology

of producing nutrients from a time-dependent condition of food stock, which defines

the depreciation of the individual’s nutrient stock over time.6

Individual behavior relies on utility maximization over time and is shown in equa-

tion 1.1. Individuals derive a Cobb-Douglas utility by choosing levels of two goods:

satiety and health which are functions of calories and weight. I ignore genetic and

physiological factors. In other words, a calorie from fat is metabolically indistin-

guishable from a calorie of protein or carbohydrate. A simplification of Richards and

Patterson (2006)’s model is that rather than having people decide their preferred

nutrient profiles, in this model each individual inherits an initial body mass index

5 A nutrient profile is considered to be the combination of the three macronutrients: carbo-
hydrates, fat and protein and each person’s preferred nutrient profile is a reflection of his or her
preferences for satiety and health. The total amount of calories is calculated as a linear combination
of all three nutrients.

6 Stigler and Becker (1977), Becker and Murphy (1988) and Iannaccone (1986) previously mention
the idea of depreciation of nutrient stocks over time. Richards and Patterson (2006) incorporate
this into their model.
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(BMI) a priori from a distribution calibrated to data7. A person’s preferences for

satiety and health are informed by their weigh status and income class. Since overall

an individual desires to maintain his or her weight it is assumed that as weight status

increases an individual will prefer health, hi,t over satiety, si,t and thus αi,t is de-

creasing in weight status, wi,t.
8 Likewise, as income increases, food scarcity decreases

thus poorer individuals will tend to prefer satiety over health and thus αi,t is also

decreasing with income. Utility in the current period is also a function of a previous

utility as it is reasonable to assume that utility from previous meals influences the

choices of an individual in the current period.

Ui,t = δUi,t−1 + si,t(., .)
αhi,t(., .)

1−α (1.1)

0 < αi,t(wi,t−1, Yi)

∂αi,t
∂wi,t

,
∂αi,t
∂Yi

< 0 and 0 < δ < 1

where

∂αi,t
∂wi,t

,
∂αi,t
∂Yi

< 0

s.t.

Yi ≥ pprpr + pff + pcc

mi ≥ TCFi ∗ dj (1.2)

7 National Health and Nutrition Examination Survey (NHANES) 1999-2000 dataset

8In reality this assumption may not hold for everyone. A person’s biological state may in fact
induce them to seek out more calorie dense foods. In other words, obesity may induce individuals
to seek less nutritious foods because of a physiological and metabolic compulsion. The justification
for making such an assumption is that broadly speaking it is safe to assume that most individuals
strive to be at a healthy weight.
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Each individual is subjected to prices of each macronutrient ppr,pc,pf which were

calculated using average monthly food price data for metro areas gathered from the

Bureau of Labor Statistics (BLS).9 The total price of a meal was calculated as the

composition of protein, carbohydrate and fat times their prices. Since the price of

protein was highest, meals that were protein rich tended to be the most expensive.

Each individual was also subjected to a mobility constraint, mi,t. Mobility was

decided as a function of income class. Poorer individuals are most restricted since

it is reasonable to assume that access to transportation is also a function of income

hence their travel cost factor should be higher than richer individuals. The mobility

constraint essentially creates a travel radius for each individual and is centered on

each person’s household location.

1.2.3 Satiety

Equation 1.3 illustrates the functional form of satiety. Satiety is modeled as a

sinodial curve with dampening amplitude. The functional form is such that the

argmax is exactly one third of the individual’s Basal Metabolic Rate (BMR) or the

daily amount of calories burned by the individual at time t.10

si,t =
BMRi,t−1

3
e
−kcalsj

BMRi,t−1 sin

(
1

4BMRi,t−1

5

)
πkcalsj (1.3)

Figure 1.1 is a depiction of a person’s satiety curve whose BMR is precisely 1500

calories. The first segment of the curve can loosely be interpreted as a Laffer curve.

The more calories an individual consumes the more utility she receives up until a

global maximum where argmax ≡ BMR/3. Furthermore, the argmax is set where

9 Refer to appendix B for a list of food prices used to calculate macronutrient prices.

10For a more thorough definition of BMR refer to section 1.4.1.
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Figure 1.1: Change in Utility as a Function of Satiety

BMR/3 because it is assumed that individuals perfectly smooth calorie consumption

throughout the day. Specifically, ideally individuals eat three meals a day and eat

equal amounts of calories at each meal. Beyond this point the individual receives

decreasing levels of utility, as she would prefer to maintain her weight. Utility from

excess calories further decreases to the point of negative utility levels, however at

some point, utility levels start to increase again. The justification for this is that at

some point, excess calories are so much larger than what is ideal that the individual

changes his preferences in favor of more satiety. The minimum point can be thought

of as the point of resignation and consumption of calories at or beyond this point will

increase utility because individuals value less of maintaining weight in favor of meal

satisfaction, but the maximal amount will not exceed the utility derived from eating

the calorie equivalent of a third of ones BMR.
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1.2.4 Health

The functional form of health is modeled much simpler and is measured as the

inverse of the distance between calories consumed from the meal and a third of the

individual’s BMR at time t. Health is represented simplistically due to how the

meals are defined in the simulation. Meals are characterized by their macronutrient

content only and as a result, there is no consistent way of assigning micronutrient

levels to meals without fully disclosing what foods are in each meal. As a result, more

accurate health measures such as the Healthy Eating Index (HEI) cannot be used in

the context of this simulation. Equation 1.4 is the functional form for health.

healthi,t =
1∣∣∣kcalj − BMRi,t−1

3

∣∣∣ (1.4)

1.2.5 Cost Minimization Problem

The caloric content of meals produced by restaurants and households is determined

by a cost minimization problem subject to ppr,pc,pf . The cost minimization problem

and input factor demand functions for protein, carbohydrate and fat are as follows.
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min
c,pr,f

= pcc+ pprpr + pff (1.5)

s.t.

Q̄j = F (c, pr, f) = Acωprβfγ

The optimal input factor demands:

c∗ =
Q̄j(

β
ω
∗ pc
ppr

)β × (γω ∗ pcpf
)γ

(1.6)

pr∗ =
pc
ppr
× β

ω
× c∗ (1.7)

f ∗ =
pc
pf
× γ

ω
× c∗ (1.8)

1.3 Computational Model

The structure of the computational model follows the ODD protocols laid out by

Grimm et al. (2006). ODD protocols where created to fulfill a need for standardized

methods to effectively describe the components of social simulation models, which are

often numerous and can be overwhelming to explain as the complexity of the model

increases.

1.3.1 Overview

This model was designed to explore questions about obesity outcomes. In this sim-

ulation I am interested in unraveling obesity outcomes of populations under different

price and access environments.

There are four kinds of entities: individuals, households, restaurants and patches

of land. The patches make up a square grid landscape that is 25 × 25. Each patch is

categorized by type. Type 0 or null type is designated as an empty patch, type 1 is a
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Table 1.1: Households and Restaurants

State Variables Units Distribution/Equation

Q̄ N(45,4)

ppr, pc, pf USD BLS data

ω, β, γ [4/17, 4/17, 9/17]

Calculated Variables

Carbohydratesj g 1.6

Proteinj g 1.7

Fatj g 1.8

kcalsj 4(Proteinj + Carbohydratej) + 9× Fatj

Pricej USD Proteinj × ppr + Carbohydratej × pc + Fatj × pf

Price Class

1, if pricej ∈ first tertile
2, if pricej ∈ second tertile
3, if pricej ∈ third tertile

residential patch and type 2 is a commercial patch. Households can only exist on type

1 patches while restaurants may only occupy type 2 patches. Each household and

restaurant offers one representative meal, which is characterized by the following state

variables illustrated in table 1.1: output Q̄, prices, ppr,pf ,pc and output elasticities ω,

β, γ. Q̄ is determined by random normal draws such that the average caloric content

of each meal is approximately 800 calories. Input prices for the macronutrients are

imputed using average monthly food prices of metropolitan areas collected by the

BLS. Output elasticities are taken from normalized grams to calories conversion rates

for each macronutrient. Each gram of carbohydrate and protein is equivalent to four

calories while one gram of fat is equal to nine calories.
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Table 1.2: Individuals

State Variable Units Distribution/Equation

Sexi 1 = female B(n, 0.5)

Agei,t=0 years U[18..80]

BMIi,t=0 Gumbel Distribution] (λ = 20, κ = 5)

Heighti cm U[152..183]

Incomei US Dollars f(pricej)

Leisurei Hours (weekly) U[5..20]

Calculated Variable

Activity Leveli



U [1.2 1.375]
if leisurei ∈ first tertile

U [1.2 1.375 1.55 1.725]
if leisurei ∈ second tertile

U [1.2 1.375 1.55 1.725]
if leisurei ∈ third tertile

Weighti kg BMIi,t × height2i

BMRi,t 1.9 and 1.10

IncomeClassi

1, if incomei ∈ first tertile
2, if incomei ∈ second tertile
3, if incomei ∈ third tertile

Travel Cost Factori [high, medium, low]

Travel Radiusi

 5, if income classi = 1
7, if income classi = 2
10, if income classi = 3
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Levels of carbohydrates, fat and protein is in grams and each are calculated as the

optimal level of their input factor demands given by equations 1.6, 1.7 and 1.8. Total

calories is equal to each macronutrient in grams multiplied by the appropriate gram

to calorie conversion rate. Price is calculated similarly as the sum of each macronu-

trient times the price while price class is determined by the household or restaurant’s

percentile score. Similarly, individuals are also characterized by many state variables.

Table 1.2 shows the distributions for each state variable. Each individual is assigned

a sex, age, body mass index (BMI), height, income and leisure hours. Sex is deter-

mined by a binomial distribution. Age is bounded between 18 and 80 and draws are

from a discrete uniform distribution. Using the National Health and Nutrition Ex-

amination Survey (NHANES) 1999-2000 dataset I use maximum likelihood methods

to fit a maximum extreme value distribution (λ= 20, κ= 5) to BMI data. Starting

BMI levels were drawn from this distribution. Height was determined from a uniform

distribution and is bounded by 152 to 183 centimeters. Leisure hours are determined

from a discrete uniform distribution bounded by 5 and 20 hours. Lastly, income is

endogenous to household prices of meals. Since the household is viewed as a producer

of meals the price of the meal reflects the household income devoted to the production

of that meal. And, at each time period each individual then decides whether to use

that income to produce meals at home or to forego production and seek meals outside

of the household.11

The timeline for each simulation is ten years. Each time increment (tick) is inter-

preted as one meal event and three consecutive ticks are considered to be one day.

11In order to rid rounding errors, income is initially calculated to be 1.05*pricej .

14



Therefore, the simulation runs for 10 years or 10950 ticks12. Prior to the optimization,

each household and restaurant must migrate to the appropriate neighborhood. The

order in which agents move is irrelevant during this step as the process assumes that

agents move simultaneously. The aggregate result is the formation of neighborhoods

by income. During the optimization only individuals move. Each individual selects

his optimal choice and moves to that destination. After each individual moves to his

optimal destination he “consumes” the meal and moves back to his household. Each

meal has a caloric content, which is inherited by the individual and incrementally

changes the person’s weight. Here BMR also adjusts to accommodate the caloric in-

take. Over time each person’s weight changes as a consequence of his or her historical

caloric intake and as a result, his or her preferences for satiety and health also change

over time. Again, the succession of individuals is unimportant since it is assumed

that all individuals consume meals simultaneously at each time increment while the

scarcity assumption is relaxed.13

1.3.2 Design Concepts

This model tries to understand how food choices and food environments affect

the long-run weight status of individuals. Individual behavior is based on economic

foundations of utility maximization and cost minimization. When faced with varying

food environments individuals make food choices that affect their health differently.

As a consequence of individual local food environments individuals make food choices

in order to maximize their utility differently from one environment to the next. These

12 (3× 365× 10) = 10950

13 It is assumed that each restaurant/household can supply infinite number of meals. Therefore,
there are no restrictions on the number of patrons per restaurant/household at any time.
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preferences also evolve overtime in response to their changing weight status. Vari-

ability of the agents is determined using pseudo-random generators to create relevant

variables, which characterize each agent and influence their decision process and re-

sponse to calorie consumption. Sensing in this model is particularly important for the

individual agents. At each time increment individuals are assumed to have knowl-

edge of nutrient profiles and prices of all meals within their travel radius. The level of

sensing affects the food choices of individuals as mobility restrictions may force indi-

viduals to choose sub-optimal (non-weight-maintaining meals), which lead to weight

gain or decline.

A simplification of the model in this case is that households and restaurants do

not exhibit adaptive behavior in the production of foods. As individual preferences

change over time it is perhaps more realistic for households and restaurants to alter

the nutrient profiles of meals in order to attract patronage. However, in favor of

tractability this complication was not added, but maybe a source of exploration in

the future.

1.3.3 Details

In each simulation there are 300 individuals and households as well as an addi-

tional 201 restaurants. As stated earlier, neighborhoods are formed using a Tiebout

sorting model, which establishes the locations of restaurants and households prior to

the optimization. Every individual, household and restaurant is characterized by their

initial state variables explained in Tables 1 and 2. First restaurants and households

are categorized by income/price level. The poorest households and restaurants corre-

spond to the first tertile of the income/price distribution while middle and rich classes
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correspond to the second and third tertile respectively. Initially, households and

restaurants are distributed onto the landscape randomly. Each restaurant/household

randomly moves to a vacant patch if less than 66% of neighboring patches are not

also occupied by like households or restaurants. The sorting model converges when

all agents have stopped moving. Once sorting has completed each restaurant and

household inherit the patch’s coordinates as its permanent location.

Table 1.3: Alpha by BMI Status

BMI Range Obesity Classification α
< 18.5 Underweight 0.5
[18.5, 25) Normal 0.3
[25, 30) Overweight 0.2
[30, 34.9) Obese I 0.1
[34.9, 39.9) Obese II 0.05
≥ 39.9 Obese III 0.01

Once the neighborhoods are formed the actual optimization occurs. All restau-

rants within the person’s travel radius and his or her own household are included as

possible destinations. Then, restaurants whose meal price exceeds the individual’s in-

come constraints are excluded from possible destinations. This forms the individual’s

feasible choice set, Fi,t. For each destination a utility is calculated at time t using

equation 1.1. Individual’s preferences for satiety and health are determined by their

current BMI and are further augmented by income class. Table ?? shows the corre-

sponding α by BMI status. Once utilities are calculated the individuals move to the

destination that offers the highest level of utility. Once each individual moves to his

or her optimal destination the individual consumes the meal. The individual banks
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the caloric content of the meal. The net calorie amount, which is given as calories

consumed minus a third of the individuals BMR incrementally updates the person’s

weight. BMR is also adjusted to correspond to each iterative change in weight. BMR

is calculated using the Harris Benedict Equation 1.9 and 1.10 (Roza and Shizgal

1984). Since the HB equation is also dependent on age, age is also updated every

representative year.

Females:

BMR = 88.362 + 4.799× height(m2) + 13.397× weight(kg)

− 5.677age× activity level (1.9)

Males:

BMR = 447.593 + 3.098× height(m2) + 9.247× weight(kg)

− 4.330age× activity level (1.10)

Three rounds of 1000 Monte Carlo simulations each with different initial conditions

were run. The first model or status quo model was run to calibrate the simulation

to existing NHANES BMI data and does not contain any policy interventions. Upon

successful calibration, two subsequent models altering initial conditions are run. A

taxed model is run implementing producer and consumer taxes on macronutrients. A

third model then builds off of the taxed model incorporating increased access levels

for the poorest individuals.

18



1.4 Results

1.4.1 Weight Gain Overtime

Figure 1.2 shows the results of a deterministic model, which controls for the calorie

content of meals and mobility constraints and age. Using the male archetype used in

the Roza and Shizgal (1984), this model depicts the weight gain of an individual who

is initially 1.7m in height, 70kgs and is 50 years old. This amounts to an initial BMI

of 24.2 and a resting BMR of 1558 kcals/day. Each plot shows weight gain over time

from eating the corresponding daily excess calories over 10 years. Unsurprisingly, the

individual experiences no weigh gain in the 0+ simulation where the individual eats

exactly 1/3 of his initial BMR at each meal. More interestingly are the 200+ and

500+ plots. A daily excess of 200 calories shows quite a significant increase in BMI.

In fact, over ten years the individual’s BMI increased by 21.29%. This is consistent

with empirical findings found by Cutler, Glaeser, and Shapiro (2003) who found that

a daily excess of just 200 calories leads to significant weight gain. Lastly, the 500+

line shows a very dramatic weight gain. In ten years this person increased his BMI by

53.22%. This plot is in reference to the common adage that an extra 500 calories a

day will lead to a 1 pound increase in weight per week because there are 3500 calories

in one pound of fat. However, this graph quite pessimistically suggests otherwise and

would propose that weight gain at least initially increases far quicker.

The logarithmic growth is attributable to lagged BMR. At t, net calories equals

kcalsj−BMRi,t−1. When the individual consumes more than his daily caloric amount

he is essentially only equipped with a metabolism, which burns less and as a result

gains weight. Over time the difference between BMR and caloric intake decreases as
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Figure 1.2: BMI Growth over 10 Years by Varying Excess Daily Calorie Consumption

the person’s BMR adjusts to the weight gain. The end result is ∂BMI
∂t

< 0. Specifically,

we see that BMI grows logistically.

1.4.2 Monte Carlo Simulations

Table 1.4 shows results from the status quo model are consistent with the BMI

distribution from NHANES 2009-2010 data. After truncating the data to exclude

individuals with BMI’s lower than 16, the results from 1000 Monte Carlo simulations

show that the average mean and standard deviation from the simulated data are

within one standard deviation to the average and standard deviation of the NHANES

2009-2010 data. This provides a sufficient burden of proof that the status quo model is

calibrated to NHANES 2009-2010 empirical findings and justifies further exploration

of different pricing environments and access levels, which may support weight loss.
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Table 1.4: Summary Statistics for 1000 Monte Carlo Simulations

J µ σ Min Max
Status Quo

No Truncation

Average BMI 1000 29.24 0.72 27.24 32
Standard Deviation 1000 7.13 0.58 5.64 9.46

With Truncation

Average BMI 1000 29.6 0.73 27.55 32.26
Standard Deviation 1000 6.77 0.56 5.29 8.9
Mortalities 1000 6.8 2.61 0 18
Mortality Rate 1000 0.02 0.01 0 0.06

Tax

No Truncation

Average BMI 1000 28.46 0.64 26.74 30.99
Standard Deviation 1000 6.98 0.54 5.64 9.11

With Truncation

Average BMI 1000 28.93 0.65 27.01 31.46
Standard Deviation 1000 6.54 0.52 5.26 8.52
Mortalities 1000 8.94 3.17 0 22
Mortality Rate 1000 0.03 0.01 0 0.07

Tax and Increase Access

No Truncation

Average BMI 1000 28.51 0.68 26.65 30.94
Standard Deviation 1000 7.03 0.55 5.62 9.17

With Truncation

Average BMI 1000 28.99 0.69 27.02 31.44
Standard Deviation 1000 6.58 0.53 5.2 8.51
Mortalities 1000 9.06 3.04 0 20
Mortality Rate 1000 0.03 0.01 0 0.07

Note: Data from NHANES (2009-2010) show that BMI had average,

µ=29.02 and standard deviations, σ=6.87.
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One should make note that WHO estimates for mortality due to starvation in the

United States is approximately 0.0045. The average mortality rate from the simulated

data was much higher than WHO estimates. Uncharacteristically high mortality rates

maybe a consequence of a simplification of the model, which does not implement

adaptive production behavior of the household or restaurants. More specifically,

household and restaurants are not able to alter the meals they provide as individual

tastes change over time thus the restaurant environment in the simulation is static and

restaurants or households that produce meals that are not attractive to individuals

are not eliminated from the model nor are they replaced by more relevant restaurants

or changes in meal production for the households.

The taxed model implements a producer tax on fat such that the relative price

with respect to the price of carbohydrates goes from $1.71 to $0.47 and with respect

to protein goes from $0.88 to $2.10. In addition, the output price of carbohydrates

increased such that the relative price to protein goes from $0.52 to $2.59. Results

show that this tax policy yields only a slight decrease in average BMI. This may indi-

cate that producers substitute toward relatively cheaper macronutrients to maintain

similar caloric content in foods while individuals also exhibit inelastic demand for

calories. This suggests that taxing foods may not be the most effective policy to curb

obesity, but could be a source of tax revenue, which could be used to fund programs

that fight obesity. These results are similar to previous empirical work by Kuchler,

Tegene, and Harris (2004), Jacobson and Brownell (2000) and Powell (2011).

The third scenario maintained the tax, but also increased mobility for the poorest

individuals. Results from table 1.4 show that increasing access did not amount to

an appreciable change in average BMI or standard deviation when compared to the
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tax-only model. Mortality rates did not change in the increased access environment

and this suggests that increased access may not be enough to overcome price barriers

for poor individuals.

1.4.3 Simulated Data

To understand the simulated data at an individual level, the data from 1000 Monte

Carlo Simulations were aggregated for each of the three scenarios. Again, individuals

with BMI’s lower than 16 were dropped resulting in the number observations for each

scenario where 293,201, 291,040 and 290,939 respectively. Table 1.5 shows summary

statistics of all relevant variables. In the status quo model, the simulation yielded

an average meal, composing 45.61 grams of carbohydrates, 23.59 grams of protein

and 59.92 grams of fat resulting in the average caloric content of a meal to be 816

calories. The taxed model shows that on average the meals where composed more

of carbohydrate, while average protein content went up and average fat content went

down. This is to be expected as the relative producing price of fat increased in this

scenario. Lastly, the average caloric intake decreased by approximately 20 calories in

the taxed model. As to be expected, in the taxed and increased access model similar

averages for carbohydrates, fat, protein and calorie content were observed since the

price regime did not change in this scenario when compared to the tax model.

Table 1.6 shows the breakdown of BMI by income class. The overall average BMI

was 29.61, higher than the average BMI from NHANES 2009-2010, but within the

first standard deviation of the NHANES data. The results are consistent with previ-

ous empirical literature which indicates that the poorest individuals tend to be the
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Table 1.5: Summary Statistics for Truncated Simulated Data

Coefficient N µ σ Min Max

Status Quo

Carbohydrates 293,201 45.61 3.97 27.69 63.44
Protein 293,201 23.59 2.05 14.32 32.81
Fat 293,201 59.92 5.22 36.38 83.36
kcals 293,201 816.04 71.08 495.44 1135.23
α 293,201 0.55 0.2 0.33 1
Travel Radius 293,201 15.11 2.82 10 20

Tax

Carbohydrates 291,040 72.04 6.27 43.72 100.18
Protein 291,040 37.26 3.24 22.61 51.81
Fat 291,040 39.94 3.48 24.24 55.54
kcals 291,040 796.7 69.34 483.47 1107.8
α 291,040 0.55 0.2 0.33 1
Travel Radius 291,040 15.11 2.82 10 20

Tax and Increased Access

Carbohydrates 290,939 72.05 6.26 100.18
Protein 290,939 37.27 3.24 22.61 51.81
Fat 290,939 39.95 3.47 24.24 55.54
kcals 290,939 796.81 69.21 483.47 1107.8
α 290,939 0.55 0.2 0.33 1
Travel Radius 290,939 16.6 2.33 15 20

Note: Data from NHANES (2009-2010) show that BMI had average,

µ=29.02 and standard deviations, σ=6.87.
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most overweight with an average BMI of 31.33. Surprisingly, the poorest individu-

als were also more likely to be underweight, which is expressed in the much higher

standard deviation for income class 1 across all three scenarios. This phenomenon is

more commonly seen in developing countries and may reflect the simplification of the

model which does not include adaptive behavior of restaurants or meal production in

households. Table 1.6 also shows that each income class experienced a small decrease

in average BMI and standard deviation in the taxed and taxed and increased access

models. However, the poorest individuals remained to be the most overweight in all

three models.

Futhermore, table 1.7 shows correlation coefficients for relevant variables. The

status quo model is consistent with previous findings (Sobal and Stunkard 1989;

McLaren 2007), which showed that income and income class were negatively corre-

lated with BMI. In the status quo model, income class is found to increase BMI by

approximately 6% as income class goes down. Satiety, which is a function of income

and weight is positively correlated with BMI and suggests that while increased BMI

should promote a decrease in α, low income makes propensity toward high calorie

consumption overwhelmingly positive. Calories is surprisingly not significantly cor-

related to BMI but was in the expected positive direction. Provision of calories in

the household and income class is positively correlated. In combination with the

positive correlation between BMI and α and the negative correlation with BMI and

income class suggest that while richer individuals have access to more calories, poor

individuals exhibit behavior which preclude them to consume weight gaining foods.

The taxed model shows a smaller negative correlation with income class and sim-

ilarly α is less strongly positively correlated with BMI. Calories is now significant
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Table 1.6: Summary Statistics of BMI for Truncated Simulated Data

N µ σ

Status Quo
Income Class

Income Class 1 43,456 31.33 9.54
Income Class 2 200,036 29.2 6.23
Income Class 3 49,709 29.74 5.95
Total 293,201 29.61 6.82

Tax
Income Class

Income Class 1 43,271 30.32 9.09
Income Class 2 198,376 28.54 6.03
Income Class 3 49,393 29.27 5.82
Total 291,040 28.93 6.58

Tax and Increased Access
Income Class

Income Class 1 43,340 30.55 9.22
Income Class 2 197,748 28.58 6.06
Income Class 3 49,851 29.25 5.84
Total 290,939 28.99 6.63
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Table 1.7: Correlations of Truncated Simulated Data

Status Quo
BMI Income Class α Calories

BMI 1
Income Class -0.0607* 1
α 0.0914* -0.9212* 1
Calories 0.0026 0.8286* -0.7619* 1

Tax
BMI Income Class α Calories

BMI 1
Income Class -0.0399* 1
α 0.0714* -0.9213* 1
Calories 0.0220* 0.8299* -0.7619* 1

Tax & Increased Access
BMI Income Class α Calories

BMI 1
Income Class -0.0499* 1
α 0.0821* -0.9255* 1
Calories 0.0158* 0.8350* -0.7719* 1
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and positively correlated with BMI. Interestingly, increasing access to the poorest

individuals promotes the negative correlation between BMI and income class. This

suggests that increasing access has a small deleterious effect on BMI. This could

be attributable to the fact that increasing mobility for the poorest individuals gives

them greater exposure to healthy foods, but also more calorie dense foods. Since

their proclivities toward higher calorie foods (correlation between α and income class

only changes marginally from the status quo model) they may be more opt to pick

unhealthy foods because of an increased F choice set which includes more unhealthy

foods.

1.5 Limitations of Research

There are two limitations of this model, which should be discussed. The model

does not incorporate adaptive behavior for the restaurants and households in terms

of the provision of calories. Restaurants and households do not adjust to individ-

ual’s food consumption behavior and this maybe a reflection of higher than usual

mortality rates. Additionally, the measure of access is incomplete in this simulation

since it only measures access to preexisting meals which as discussed do not update

with individuals or over time. The static food environment means that access only

changes in the construct of increasing mobility for the individuals and not necessarily

increasing access by propagating more restaurants that offer more relevant meals.

Second, in this model calories from each nutrient are considered equal and the idea

of propensity to be converted into and stored as body fat is neglected. For example,

glycemic index (GI) is a measure which indicates which foods are more readily stored

as fat. For example, table sugar has a GI of 100 and would be considered to be
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very fattening since the body readily metabolizes and converts it to body fat despite

there being no actual consumptive fat in table sugar itself. Contrastingly, protein has

the same gram to calorie conversion as carbohydrates. However, the way protein is

metabolized dictates that only in very larger amounts of consumption will protein be

converted and stored as fat. Unfortunately, GI’s of foods can only be determined by

laboratory methods and so cannot be incorporated in this model.

1.6 Conclusion

This paper examines the effects of price and access environments on incidence of

obesity in a simulation context. The status quo model shows many characteristics

that it is well calibrated to actual NHANES 2009-2010 BMI data. Much like the

predominant empirical literature, BMI was found to be higher among the poorest

individuals. This serves as a good basis for applying tax and access policy. The taxed

model showed a decrease in BMI both overall and for each income class, but this

decrease was not dramatic. These findings are similar to what is found in existing

literature and suggests that taxation may not be an effective mitigating policy. As

suggested by previous papers, the tax revenue could be used to fund more effective

policies. The tax and increased access model showed similar results to just the taxed

model in terms of average BMI for the overall sample and by income class. However,

when looking at the correlation between relevant variables, increasing access actually

promoted a more negative correlation with income class. As discussed in the previous

section access is defined as mobility. The results from this simulation suggest that

while increasing mobility for the poorest individuals increases exposure to healthier

meals, their proclivities toward calories which is a function of income does not change
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and thus poor individuals still choose unhealthy options despite increased exposure

to healthier meals. Therefore, an effective policy would include increasing taxes to

funding policies geared toward first increasing access to foods (either by increasing

mobility and/or by increasing meal availability) and fundamentally changing prefer-

ences for unhealthy foods, which is at least are partially determined by income.
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Chapter 2: A Dynamic Model of Obesity in China

2.1 Introduction

Thirty years ago obesity was assumed to be a problem reserved only for the devel-

oped world. In fact, concerns for impoverished nations primarily focused on malnutri-

tion and spread of infectious diseases. The belief was that obesity was non-existent in

developing countries where people were protected by poverty as low incomes did not

permit a sufficient amount calorie attainment. However, this future would turn out

to only be partially true. With decreasing food prices, particularly grain-based and

oil foods, what we now observe is a paradoxical coexistence of undernutrition and

obesity in developing countries (Sawaya et al. 1995; Sichieri, Siqueira, and Moura

2000; Doak et al. 2004; Misra and Khurana 2008). This dual phenomenon is par-

ticularly burdensome for developing worlds with inadequate medical services as they

are forced to deal not only with medical legacies relating to undernutrition, but also

new deleterious diseases associated with obesity like type-2 diabetes, stroke and heart

disease.

This paper studies the growing adult obesity problem in contemporaneous China.

While rates of obesity are still dwarfed by those observed in the western world, the

rapid spread of obesity in China (Popkin 1998; Popkin 2001; Wu 2006) is cause

to study this phenomenon. Technological advancements have rapidly decreased the
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relative prices of edible oils and refined carbohydrates. China in particular has shown

a greater consumption of edible oils in recent years. We have also observed increases

in consumption of sugars, animal-based foods and consumption of food outside the

home (Popkin 2001; Popkin, Adair, and Ng 2012). This fact and the increased usage

of motorized transportation, transition toward human-capital intensive, sedentary

employment and preference shifts toward more inactive leisure activities have shaped

the current obesegenic environment in China.

We are particularly interested in how income affects obesity outcomes in China.

In the United States, obesity prevalence is overwhelmingly associated with low socio-

economic status (Sobal and Stunkard 1989; McLaren 2007; Ogden et al. 2010). Ac-

cordingly, obesity has been shown to adversely affect cognitive ability early in life (Li

1995; Campos et al. 1996; Mikkilä et al. 2003), which may deter future educational in

adulthood (Kristjánsson, Sigfúsdóttir, and Allegrante 2010). There is also increasing

evidence that obese adults endure wage penalties. Several theories exist which may

explain this phenomenon. Cawley (2007) finds that obese individuals are less produc-

tive and exhibit higher absenteeism in the workplace due to weight related sickness.

Bhattacharya and Bundorf (2009) suggest that obese individuals may forego higher

earnings for better health benefits because of the higher expected future medical costs.

Obese people may also be subjected to discrimination in the workforce as Conley and

Glauber (2007) found average employment status was lower among obese individuals.

Additionally, obesity contributes to higher medical costs; Finkelstein et al. (2009)

found that in aggregate, medical costs attributable to obesity-related conditions were

about $147 billion in 2008.
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In developing countries economic growth has increased access to more calories.

As a result, countries like China have experienced great changes in nutritional pro-

files (Popkin 2001; Popkin, Adair, and Ng 2012). As noted by Cawley, Han, and

Norton (2009) there is repeated evidence that the correlation between weight and

wages is positive in developing countries. We hypothesize that income will be a pos-

itive contributing factor to obesity rates in China due to the relative newness of the

obesity phenomenon and its correspondence with recent economic prosperity in the

country. In fact, social norms pertaining to weight may actually encourage weight

gain, as negative connotations associated with excess weight commonly held in west-

ern societies may not be established in Chinese society yet. Weight gain may still

culturally-speaking connote better health and affluence in a culture which histori-

cally suffered from long-term food scarcity (McLaren 2007). Therefore, individuals

with newfound financial autonomy and recollection of past food scarcity may increase

food consumption and forgo certain investments in long-term health such as calorie

restriction and physical leisure activities.

There are several challenges to conducting empirical analysis of obesity studies.

First, weight outcomes are likely a result of many endogenous processes. For exam-

ple, excessive carbohydrate intake may lead to weight gain, but having a high weight

may also induce more carbohydrate consumption. Additionally, unobservable char-

acteristics that determine income may also contribute to a person’s weigh status. For

example, a person with high levels of perseverance might receive higher wages as he is

more likely to invest in higher education, but it may also contribute to more persistent

weight maintenance and result in normal weight status and may attribute to negative

correlations with wage and obesity in developed countries. Issues with endogeneity
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can be circumvented using panel data as the lags of the endogenous variables can be

used as instruments to estimate consistent models.

The existing empirical literature on obesity in China is largely static and has ig-

nored issues with endogeneity inherent in the consumptive variables (Xu et al. 2005;

Shimokawa, Chang, and Pinstrup-Andersen 2009; Cai et al. 2013; Xiao et al. 2013).

Du et al. (2004) and Chen and Meltzer (2008) use random effects (RE) and fixed

effects (FE) models respectively to address individual heterogeneity but fail to instru-

ment for income which is endogenous. Furthermore, the RE model is only consistent

if the individual heterogeneity is assumed to be independent of the regressors, which

is mostly like not the case. Additionally, while the FE model does control for the

correlation between unobserved individual idiosyncrasies it also removes important

time invariant (ie. gender) and nearly time-invariant variables (ie. education). More-

over, both the RE and FE does not permit the use of the lagged dependent variables

of the regressors, which in the case of dynamic models is important for consistent

estimation. To ameliorate this gap in the literature we estimate a dynamic model

for the demand of health stock and health inputs, which allows us to make casual

inference on the contributing factors of weight. 14

As the basis for our empirical framework, we turn to Grossman’s seminal paper

(Grossman 1972a; Grossman 1972b) on the demand for health capital for a dynamic

model of health. The critical contribution of the Grossman Model is acknowledgement

that health inputs such as medical care are not in and of themselves demanded, but

rather are the investment goods used to beget health, a durable capital stock that

14Ng et al. (2012) provide a dynamic correlative analysis of obesity in China. Their analysis does
not use a multi-stage estimation as is specified by the Grossman Model and as such their results
cannot be used to make causal inference.
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depreciates over time. In essence, the Grossman Model partially assumes individual

sovereignty over one’s length of life through investment choices made on health inputs

at each time period.

The purpose of this paper is to understand the long-run effects of income on

obesity. To do so, we estimate the production function for health and health inputs

of adults in China, which are functions of income. We use the Grossman Model as a

theoretical platform to model obesity as a dynamic problem and to implement this

framework we use a system GMM estimation.

This paper makes a number of contributions. First, we extend the Grossman

Model to incorporate dietary regimen as a health input, which to our knowledge has

not been estimated previously for developing nations.15 Second, our use of panel

data allows us to make empirical refinements to the existing, predominantly static

empirical literature. Furthermore, we are able to make causal inference of the effect

of income and education on BMI since we control for endogeneity present in these

variables.

Our results show that income and education both have a direct impact on the

demand for health stock. We find that income promotes increased BMI. Contrastingly,

education was found to be negative and suggests that increased education mitigates

weight gain. When analyzing results from the input demands we find evidence which

shows that income contributes negatively toward the demand for carbohydrates, but

is positive for both protein and fat demands. In the case of developing countries

cultural perceptions of health and in particular weight maybe we different than those

15 Goldman, Lakdawalla, and Zheng (2009) do present a dynamic model for health using nutri-
tional inputs of elder individuals in the United States, but do not explicitly estimate the demands
for these nutritional inputs.
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held in developed countries. As a result, health seeking behavior may illustrate itself

differently in developing countries. Our results show evidence of this behavior as

measures of socio-economic status (income) where shown to increase the consumption

of protein and fat; macronutrients which are more likely to be perceived as weight

gaining.

The paper is organized as follows. Section 2.2 presents a derivation of the Gross-

man Model using nutritional regime as the health inputs. Section 2.3 provides the

empirical model, which addresses the dynamic nature of obesity. Section 2.4 de-

scribes the results from our model and section 2.5 provides limitations of research

and discussion.

2.2 Theoretical Model

The customary approach to modeling long-run health is to use the Grossman

Model, which assumes that individuals act as producers of their own health stock by

investing in inputs such as medical care and dietary regimen. Grossman also defines

health as a durable capital stock different from other forms of human capital such as

education. Specifically, knowledge stock is used to increase market and non-market

productivity while health stock controls the amount of time that can be devoted to

producing income. Equations 2.1 - 2.4 presents the individuals optimization problem.

∫ T

0

eρtU [s(H(t)), Z(t))], (2.1)

Ḣ(t) = I(D(t), tp)− δ(t, R(t))H(t) (2.2)
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T = {t : Ht ≤ Hdeath} (2.3)

Ȧ(t) = rA(t) + Y [sH(t)]− πH(t)I(t)− πZ(t)Z(t) (2.4)

2.1 presents the individual’s inter-temporal utility as a function of sick days, s(.)

and consumption of non-health input goods, Z(t). ρ is a time discount factor and H(t)

is health stock at t. It is assumed that utility decreases as the number of sick days

increases ∂U(t)
∂s(t))

< 0, utility increases with increases in non-health good consumption,

∂U(t)
∂Z(t)))

> 0 and the number of sick days decreases as health stock increases, ∂U(t)
∂H(t))

< 0. Each individual receives initial endowments of health stock H0. Ht is the net

investment of health and is considered to be a durable capital stock and varies over

time according to 2.2, where, I(.) captures gross investments in dietary regimen,

D(t) used to augment health and tp is time spent toward preventing illness. δ(.) is

the depreciation rate and is a function of time and environmental factors R(t) that

impact health.

We assume that depreciation of health increases over time, δ̇ > 0. 2.3 shows that

death occurs at T, when the depreciation is so high and the cost of investment to

replenish health is so excessive that the health stock depreciates to Hdeath, the death

stock. In a sense this model grants autonomy to the individual by allowing him or

her to choose the length of life through investment choices made at each time interval

leading to death.

Over their lifetimes, individuals accumulate pecuniary assets A(t) given by 2.4.

For every time period t, individuals accrue income from investment earnings, rA(t)

and wages, Y(.) minus outlays of health and consumption goods. We assume that r
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is exogenous and Y(.) decreases as the number of sick days increase ∂Y (t)
∂s(t))

< 0; πH

and πZ are marginal/average costs for health investments and consumption goods

respectively.

Individuals choose their optimal time paths for H(t) and Z(t) given in 2.1 subject

to 2.2 -2.4. The resulting first order condition for health capital is (see Appendix II

for derivation)

{
∂U(t)/δs(t)))

∂π(0)
e−(ρ−r)t) +

∂Y (t)

∂s(t)

}
∂s(t)

∂H(t)
=

{
r + δ(t)− π̇H(t)

πH(t)
πH(t)

}
(2.5)

where π(0) is the shadow price of initial assets and π̇H(t)
πH(t)

πH(t) is the change in

marginal cost of health investments. The first term on the LHS of 2.5 represents

the marginal benefit due to increased consumption of health from a reduction in sick

days, while the second term denotes the change in production as a result of health

investments that reduce sick days. The RHS of 2.5 illustrates the marginal cost of

health capital and is composed of interest foregone from pecuniary investments in

health, depreciation, and the change in price of health investments.

The Grossman Model is characterized by two simultaneous demand equations: the

demand for health and the demands for health inputs. To get estimable equations

for the demand for health and health inputs we simplify the model such that the
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remainder of our analysis will refer to the pure investment model.16 The pure invest-

ment model assumes that ∂U(t)
∂s(t))

= 0. Therefore, we derive the demand for health by

simplifying 2.5 and taking logs to get the following

ln
∂s(t)

∂H(t)
− lnw(t) = lnδ(t) + lnπh(t)− lnΨ(t) (2.6)

where w(t) is the market wage and Ψ(t) = δ(t)
r+δ(t)−π̇H(t)/πH(t)

. To get an estimable

form of 2.6 we used disclosed functional forms for s(.), δ(.) and π(.) presented by

Grossman (1972b), Wagstaff (1986) and Cropper (1981). We assume that s(.) takes

on the form

s(t) = α1H(t)−α2 (2.7)

and α1, α2 >0. The depreciation function is defined to be

lnδ(t) = δ0 + α3t+ α4Z(t). (2.8)

We assume that the investment function is Cobb-Douglas with constant returns

to scale and is produced by time and dietary intake,

I(t) = D(t)α5(tp)1−γ−α5E(t)α6 (2.9)

16Following Grossman (1972b), Cropper (1981), Wagstaff (1986), Wagstaff (1993) and Nocera and
Zweifel (1998), we estimate the pure investment sub-model. The main appeal with this approach is
that is avoids non-linear estimation.
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where E(t) is education and is an environmental variable and α5 + 1 - γ - α5 +

α6 ≡ 1 and 0 < γ ≤1. Constant returns to scale gives rise to the marginal cost of

investment given by,

lnπH(t) = (1− γ − α5)lnw(t) + α5lnP
D(t) + α6E(t). (2.10)

We assume that the cost for health investment does not change over time such

that π̇H(t) = 0. After simplifying, Ψ(t) = δ(t)
r

+δ(t) which we assume to be increasing

with t so Ψ is defined as

Ψ(t) = α7t (2.11)

Substituting 2.7 and 2.11 into 2.6, the demand for health function is as follows

lnH(t) =
1

1 + α2

(A1+(α5 + γ)lnw(t)− α5lnP − (α3 − α7)t

+ α6E(t)− α4Z(t) + u1(t)) (2.12)

where A1 = ln(α1α2) and u1(t) = −lnδ0 and α3 -α7 > 0.

The demand for health inputs must also be estimated. Using 2.2, 2.9 and the cost

minimizing condition for health investment we get the demand for health inputs

lnD(t) =A2 +H(t) + (1− α5)lnw(t)− (1− α5)lnPD(t)

+ α3(t) + α4(t)Z + α6E(t) + u2(t) (2.13)

where A2 = −(1 − α5)ln
[

1−α5

α5

]
, PD is a vector of prices of macronutrients and

u2(t) = lnδ0 + ln
(

1 + H(t)

Ḣ(t)
/δ(t)

)
. If we substitute 2.12 in to 2.13 we get the following

reduced form function of health inputs,
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lnD(t) =A2 +
A1

1− α2

+

(
1− α5 +

α5

1− α2

)
lnw(t)

−
(

1− α5 −
α5

1− α2

)
lnPD(t) +

(
α3 +

α9 − α3

1− α2

)
t

+

(
α4 −

α4

1− α2

)
Z + α6 +

(
α6

1− α2

)
E(t) +

u1(t)

1− α2

+ u2(t). (2.14)

To make 2.12 dynamic, a lagged health term must be included on the RHS side.

Moving to discrete time, 2.2 is analogous to H(t)−H(t−1) = I(t−1)−δ(t)H(t−1).

In addition, we deduce from 2.12 that

H(t) = F (X(t),W (t)) (2.15)

where X and W are variables related to the procurement and production of health

respectively. In order to be able to include lagged levels of health stock as regressors,

a relaxation of the Grossman model allowing partial adjustment of health stock over

time is needed. Thus H(t) − H(t − 1) = κ(H̃(t) − H(t)) where H̃(t) represents

the ideal level of health stock at t and 0 ≤ κ ≤ 1 and is the fractional health

adjustment. In Grossman’s original formulation κ ≡ 1, which assumes instantaneous

health adjustment. Since in reality this is surely not the case, substituting the partial

adjusted health stock condition into 2.15 yields

H(t) = G(H(t− 1), X(t),W (t)) (2.16)

2.12 then becomes

lnH(t) = κH(t− 1) +
1

1 + α2

(A1+(α5 + γ)lnw(t)− α5lnP − (α3 − α7)t

+ α6E(t)− α4Z(t) + u1(t)) (2.17)
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In this paper we estimate the structural demand for health 2.17 and both reduced

form and structural estimates for the demand for health inputs 2.13 and 2.14.

2.3 The Econometric Model

To estimate our model we employ a dynamic panel data estimation pioneered by

Holtz-Eakin, Newey, and Rosen (1988)and later popularized by Arellano and Bond

(1991). Blundell and Bond (1998) further refine this work to extend the estimator

to a system GMM. The estimator uses a set of moment conditions of both the levels

equation and the differenced equation. Arellano and Bover (1995) and Blundell and

Bond (1998) later found that lagged levels performed poorly for the transformed

equations particularly if variables behaved closely to random walks. As a result,

the estimation was expanded to include both lagged levels and lagged differences as

instruments. In our estimation we use the expanded system GMM estimation for our

analysis.

The Grossman Model is a multi-level estimation. We start by estimating the

demand for health stock thus giving rise to the following AR(1)

Bi,t = βBi,t−1 + ΘYi,t + Z′i,tζ + P′i,tϕ+ T ′ξ + ωi + εi,t (2.18)

where Bi,t represents the current level of health proxied by BMI for individual

i at t; Bi,t−1 is the lagged value of health thus making the estimation dynamic and

|β| < 1; Yi,t is total current income; Zi,t is a vector of consumption and environmental

variables which includes education; Pi,t is a vector of food prices; T is time; ωi is the

time invariant fixed effects and εi,t is the disturbance term.17

17This is also supported in the scientific literature, which has found lagged measures of BMI to
be a significant determinant of current BMI (Block et al. 2013). In addition, previous empirical
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To remove fixed effects the traditional approach is to use the first difference (FD)

transformation. However, in the case of unbalanced panels the disadvantage of using

the FD transformation is that it amplifies gaps in the data. As an alternative, Arellano

and Bover (1995) suggest to instead use forward orthogonal deviations (FOD). In

contrast with the FD transformation which subtracts the lagged values from the

current values, the FOD transformation subtracts the average of all available future

periods from the current value. Thus, the FOD transformation is computable for

each individual even in the presence of data gaps. Our transformed equation is the

following:

BFOD
i,t = βBFOD

i,t−1 + ΘY FOD
i,t + ZFOD′

i,t ζ + P FOD′

i,t ϕ+ εFODi,t
18 (2.19)

The demands for inputs are similarly estimated using system GMM. The depen-

dent variables are the three macronutrients: protein, fat and carbohydrates. Follow-

ing Grossman, structural estimation of inputs is a function of the predicted values of

health stock, B̂i,t calculated in 2.19. As a result, the levels model for each macronu-

trient is

Ni,t = βNi,t−1 + γB̂i,t + ΘYi,t + Z
′

i,tζ + P
′

i,tϕ+ ωi,t + εi,t
19 (2.20)

analysis from Wagstaff (1993), Goldman, Lakdawalla, and Zheng (2009) and Ng et al. (2012) also
specify that the demand for health stock to be an AR(P) process.

18For example, the FOD of the dependent variable is: BFOD
i,t = Bi,t −

∑T
t=1 Bi,t+1

T .

19While we only specify the structural form for the demand for health inputs the reduced form
equations can easily be deduced. Our estimation follows Nocera and Zweifel (1998) analysis and we
also estimate reduced form estimates for comparative purposes.
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Ni,t is a 3 × 1 vector indicating the macronutrient profile of person i at t and is

a function of previous consumption levels of N. Similarly, we use FOD to transform

2.20 to get the following

NFOD
i,t = βNFOD

i,t−1 + γB̂FOD
i,t + ΘY FOD

i,t + ZFOD′

i,t ζ + P FOD′

i,t ϕ+ εFODi,t (2.21)

Obesity studies are plagued with many econometric hurdles. In particular, weight

outcomes are a result of many endogenous processes. For example, excessive carbohy-

drate intake may lead to weight gain, but a higher weight may also induce increased

carbohydrate consumption. Additionally, unobservable characteristics that determine

income may also contribute to a person’s weigh status. For example, a highly dedi-

cated individual might receive higher wages because of more investments he or she is

willing to put forth toward education. This attribute may also make this individual

more apt to invest in health. As a result, he or she may be more likely to be of nor-

mal weight. Measures of obesity such as Body Mass Index (BMI) are subject to high

amounts of inertia since intertemporal changes in BMI maybe small in consecutive

periods.20 However, small perturbations in weight related behavior may eventually

lead to large changes in weight outcomes in the long-run.21

We choose to estimate our model using system GMM to take advantage of several

analytical conveniences. The use of instruments to control endogenity is best practice,

but consistent estimation is dependent upon finding strictly exogenous instruments

(Cameron and Trivedi 2005). System GMM allows us to exploit the longitudinal

nature of our dataset and use lagged values as instruments for endogenous variables.

20 BMI is equal to weight (kg)/height2(cm)

21 Cutler, Glaeser, and Shapiro (2003) found that an average daily caloric excess of 100 calories
explains the spread of obesity in the United States observed from the last 30 years.
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Additionally, we are able to capture the dynamic behavior for health stock and health

inputs with the autoregressive specification of the model.

2.3.1 Data

This paper uses data from the China Health and Nutrition Survey (CHNS), a

longitudinal dataset conducted across nine Chinese provinces.22 In our estimation

we use the four most recent complete waves (2009, 2006, 2004, 2000).23 We limit

our analysis to adults 18 years and older as health markers may not be appropriate

for children who usually cannot make individual decisions about their health. CHNS

contains extensive individual and household-specific information on health outcomes,

dietary intake, demographic and economic variables. Additionally, pricing data for

foods came from the National Bureau of Statistics of China annual data. Pricing

information is made available from 1996 onward in the form of annual price indices

for each province.

The original data set contains 60,332 observations with 17,653 individuals. Upon

restricting our sample to adults with information on variables included in the estima-

tion we are left with 6,665 observations for 4064 groups.24 The large amount of sample

attrition is similar to attrition rates found in Ng et al. (2012). This is attributable

22The provinces surveyed are: Liaoning, Heilongjiang, Jiangsu, Shandong, Henan, Hubei, Hunan,
Guangxi and Guizhou.

23The latest round of data was collected in 2011; however nutritional information is not yet
available and thus was excluded from this study.

24At first glance it may appear that there are less than two waves of data on average for each
individual. However, the number of observations is a bit misleading. Recall that the minimum
number of waves required to execute system GMM is three. Differencing reduces the number of
observations to two and using the lagged dependent variable further reduces to one. Therefore,
individuals with one reported observation have at least three waves of data.
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to missing information from non-responsiveness of individuals as well as exclusion of

new entrants since there were not at least two rounds of data for these individuals.

Previous empirical applications of the Grossman Model have typically used num-

ber of healthy days to measure health stock. In this paper, we use the log of BMI to

measure obesity which was collected during physical exams. Standard BMI thresholds

established by the World Health Organization (WHO) have been proven to underes-

timate adiposity and health risk among Asian populations (Zhou 2002; Misra 2003).

For this reason adjusted BMI categorizes determined by Wu (2006) are used instead.

Table 2.1 shows the differences between WHO standards and adjusted standards.

Table 2.1: BMI Classification

WHO Standardized Asian Adjusted (Wu 2003)
BMI Range Obesity Classification BMI Range Obesity Classification
< 18.5 Underweight < 18.5 Underweight
[18.5, 25) Normal [18.5, 23.9) Normal
[25, 30) Overweight [24, 27.9) Overweight
[30, 34.9) Obese I ≥ 28 Obese
[34.9, 39.9) Obese II
≥ 39.9 Obese III

We restrict our data sample to include only individuals with a BMI of least 18.5

or the minimum normal adjusted BMI value the first time entering the survey. We

limit our analysis to only these individuals because deviations from the ideal BMI

could signify worsening of health for those who were normal, but dropped weight

in subsequent periods such that they were underweight. Table 2.2. shows a steady

increase in average BMI from 1997 to 2009. Logged values of BMI show an increase
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from 3.14 to 3.16, which roughly translates to geometric BMI levels of 22.6 and 23.6

respectively and is just within the normal adjusted BMI range. This constitutes

roughly about a 7 pound increase in weight on average.

Table 2.2: Summary Statistics

Means
Variable 2000 2004 2006 2009

log(BMI) 3.14 3.14 3.15 3.16
log(CarbohydrateIntake)(g) 5.76 5.72 5.68 5.64
log(FatIntake)(g) 4.18 4.15 4.07 4.15
log(ProteinIntake)(g) 4.15 4.13 4.13 4.13
log(Income) 9.83 9.55 9.74 10.23
Urban 0.33 0.35 0.34 0.32
Female 0.52 0.52 0.52 0.52
Age 46.38 49.12 50.48 53.19
Age2 2363.45 2623.28 2754.77 3018.74
Education 6.78 7.44 7.48 7.2
Job Sedentary 0.18 0.22 0.2 0.19
Alcohol 0.36 0.33 0.32 0.34
Household Chores(days) 0.05 0.04 0.04 0.04
Sedentary time per day(days) 0.2 0.19 0.2
log(Pricegrain 4.75 4.89 4.92 5.08
log(Priceoil & fat) 4.64 4.69 4.55 5.03
log(Pricemeat & poultry) 4.74 4.95 4.98 5.43
log(Priceeggs) 4.5 4.58 4.63 4.83
log(Priceaquatic products) 4.6 4.71 4.8 5
log(Pricevegetables) 5.02 5.19 5.38 5.66
log(Pricefruit) 4.94 4.94 5.06 5.35
log(Pricealcohol) 4.75 4.75 4.75 4.87

Log(Carbohydrates), log(Fat) and log(Protein) compose the vector of dependent

variables for the demand for health inputs estimation. Carbohydrate, fat and protein

consumption are represented in average daily intake in grams and should be thought
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of a proxies for consumption of carbohydrate, fat and protein rich foods respectively.

To collect these variables each household member was observed and evaluated by a

surveyor over the course of three consecutive days. Once their dietary consumption

was collected, macronutrient information was compiled from these records and then

averaged over three days. From table 2.2. we see that there is a clear decrease in

consumption of carbohydrate and protein intake over the 12 years. Average fat intake

decreased up till 2006, but quickly rises again in 2009.

2.3.2 Independent Variables

Many studies of developed countries have found that in fact low income is as-

sociated with higher incidence of obesity (e.g. Sobal and Stunkard (1989), McLaren

(2007)). Conversely, Cawley, Han, and Norton (2009) note past correlational evidence

to suggest that income and weight are in fact positively correlated in developing coun-

tries. We hypothesize that in developing countries such as China increases in income

will in fact promote weight gain because cultural perceptions of weight may interpret

weigh gain as a sign of affluence (Sobal and Stunkard 1989; Monteiro et al. 2004). We

treat income as endogenous because it is a reflection of labor market choices made by

the individual which may be influenced by weight. For example, overweight individ-

uals may select jobs with better medical benefits and forego income because of future

expectations of illness. Table 2.2. shows that log real income increased consistently

throughout the 12 years and is a reflection of new economic prosperity experienced

in China.
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We include dummy variables for living in an urban area, gender and alcohol con-

sumption. Age and age2 is also included as demographic variables. Table 2.2. indi-

cates that between 32%-35% of the population lived in urban areas across all years.

Approximately 52% of the sample is female and the percentage of sedentary jobs

stays relatively constant over the years from approximately 18% to 19%. Again, the

increase in sedentary jobs maybe a reflection of economic growth and employment

shifts toward skilled labor.

Education is also included in our estimation. Much like income, we assume that

schooling is also endogenous both in the demand for health stock and demand for

health inputs estimation. Li (1995) found that obesity adversely affected cognitive

skills of a sample of Chinese elementary-aged children. Likewise, Campos et al. (1996)

studied the intellectual disparities between Brazilian children and found that obese

children had lower IQs and Mikkilä et al. (2003), found similar results, using a sample

of Finnish students. Obesity may therefore deter educational attainment in adulthood

(Kristjánsson, Sigfúsdóttir, and Allegrante 2010).

Education is treated as endogenous in the demand for health inputs estimation

because it is likely that cognitive abilities may influence the demand for health inputs

(eg. decisions about consuming healthy foods), while health inputs may also en-

courage cognitive ability through physiological and metabolic processes (Smith et al.

2011). Table 2.2. shows that the average number of years of education increased over

the 12 year span, though decreasing slightly in 2006. The overall increasing trend is

a reflection of economic growth as the demand for skilled labor may encourage the

demand of more schooling.
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To capture time allocation behavior we also include daily averages of time spent

doing household chores and sedentary pastimes.25 Over the 12 year span time de-

voted to household chores decreases. When converted to minutes time devoted to

sedentary activities went from 72 minutes per day in 2000 to 57.6 minutes in 2004

and beyond. The amount of sedentary time stayed relatively constant and accounts

for 283.7 minutes per day.

In our estimation we use the logged prices of grain, vegetables, fruit, alcohol, meat

and poultry, eggs, aquatic products and oil and fats. From table 2.2 we see that all

prices increased during the 12 year period. Prices of meat and poultry experienced

the most rapid price increase over the 12 year span. The price of vegetables was the

highest overall for all years while the prices for fruit were second highest until 2009

when the relative price of meat superseded fruits. Grain, aquatic products and eggs

exhibited similar price growth while the price of oil experienced a decrease in price

in 2006 followed by a dramatic increase in price in 2009.

2.4 Results

2.4.1 Demand for Health

Table 2.3 shows that lagged BMI is significant and positive. The short-run income

elasticity is positive and significant and is consistent with previous empirical studies,

which find higher socioeconomic status is associated with weigh gain (McLaren 2007;

Nube, Asenso-Okyere, and Van den Boom 1998; Monteiro, Conde, and Popkin 2004;

Mendez et al. 2004; Shah et al. 2004; Chee et al. 2004; Ulijaszek 2003; Reddy 1998;

Townsend et al. 2001). Income elasticity was slightly higher (0.03) in the long-run. It

25Sedentary pastime includes time allocated to watching television, playing video games, using
the internet and reading.
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Table 2.3: Demand for Health Stock

VARIABLES VARIABLES contd.

log(BMIt−1) 0.36*** 2000 0.10***
(0.05) (0.03)

log(Income) 0.02* Job Sedentary 0.04**
(0.01) (0.02)

log(Pricegrain) 0.09** Female -0.03
(0.04) (0.05)

log(Priceoil & fat) -0.01 Age 0.01***
(0.03) (0.00)

log(Pricemeat & poultry) 0.09*** Age2 -0.00***
(0.03) 0.00

log(Priceeggs) -0.15*** Urban 0.01
(0.03) (0.01)

log(Priceaquatic products) 0.08*** Education -0.01**
(0.03) (0.01)

log(Pricevegetables) 0.03* Alcohol -0.00
(0.02) (0.09)

log(Pricefruit) 0.04* Sedentary Activities (days) 0.01
(0.02) (0.01)

log(Pricealcohol) -0.07* Household Chores(days) 0.04**
(0.04) (0.02)

2006 0.05* Constant 1.19***
(0.03) (0.41)

2004 0.08***
(0.02)

Observations 6,665
Groups 4,064
Instruments 27
AR(2) Test 0.975
Sargan test 0.376
Hansen Test 0.549

Standard errors in parentheses

∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

suggests that over longer periods of time, income impacts weight outcomes more so.

This makes intuitive sense as individuals have more opportunities to consume calorie
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dense food and perhaps are more likely to form habits conducive to weight gain. For

example, persistently higher income households may choose to eat more food away-

from-home since it is time-saving. This behavior may eventually become habitual

if households continue to consistently eat away-from-home. Since these meals are

typically more calorie dense, it may lead to weight gain. The prices of meat and

poultry and aquatic products are significant and positive while the price of eggs is

negative. It might be expected that the sign of the coefficients should all be the same

since all three foods are sources of animal proteins. However, the negative sign on

eggs may illustrate less substitution toward other cheaper weight gaining foods or that

individuals are substituting to other cheap proteins like legumes and vegetable-based

proteins, which may not lead to weight gain. As expected, having a sedentary job

contributed positively to a higher BMI. Education was surprisingly a slightly negative

factor for weight gain and differs from previous literature. On possible explanation

for this is that education may enforce healthier eating habits and thus mitigates

weight gain. The negative coefficient on education may signify increased awareness

of weight promoting behavior and more educated individuals maybe more likely to

make healthful choices.

2.4.2 Demand for Health Inputs

The context and interpretation of the dependent variables is imperative here.

Wagstaff (1986) considers the derived demand hypothesis, which leads us to expect

a positive coefficient from the predicted health stock values in the structural estima-

tion. Table 4. shows that for significant estimates of log BMI our coefficient is in

fact negative. But, unlike Wagstaff (1986) and even Nocera and Zweifel (1998) our
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dependent variable interprets higher deviations of BMI (health capital) as decreases

in health stock and as such when health stock is lower than ideally we should expect

a decrease in consumption of food inputs since it contributes to weight gain.

Our first observation should be that both reduced form and structural estimates

across all three inputs only vary slightly and are comparable in sign. In fact the

variables which do have opposite sign prove to be all insignificant in the corresponding

estimation. Like Nocera and Zweifel (1998), the use of panel data to capture dynamics

of health ameliorates the estimation inconsistencies faced by Wagstaff (1986), in which

his estimates found opposing signs in the coefficients. More explicitly, to address

estimation concerns mentioned by Wagstaff (1986), for the most part log BMI is

negative in the structural estimation and education and income have expected signs.

It should also be noted that Table 4. shows that we fail to reject the null hypothesis

of the Hansen test for the reduced form estimation of protein. Since the structural

estimation does pass the Hansen test, our discussion for the demand of protein is

restricted to the structural estimates.

2.4.3 Carbohydrates

A closer look at the estimation for the demand for carbohydrates shows that lagged

carbohydrate consumption is significant and positive in determining current carbohy-

drate consumption. This suggests that long-run carbohydrate consumption has some

explanatory power on current consumption. We found income to be significant in the

reduced form estimation with the expected sign since we expect increases in socioeco-

nomic status in developing countries to induce a shift in diet away from cheap grains

and toward more expensive, calorie density animal-products and fat (Popkin 1998;

53



Popkin 2001). In the long-run, the income elasticity (-0.10) was found to decrease

carbohydrate consumption only slightly. Living in an urban area was significant and

is shown to decrease the demand for carbohydrates. As expected, women are shown

to demand less carbohydrates then men. In terms of the price variables, the logged

price of vegetables was significant and negative, which is expected since vegetables

are carbohydrate rich foods. In the long-run the price elasticity for vegetables was

-0.24 indicating that individuals progressively consume less carbohydrates when high

prices of vegetables persist. The logged price of oil and fat was found to be signif-

icant and negative which suggests that carbohydrates and fat are complements of

each other and the price of meat and poultry was significant and positive for the

reduced form estimates and reflects substitutive behavior between carbohydrates and

protein. Lastly, logged BMI was not significant in the structural estimation, but was

of the expected sign as we should expect a high BMI to induce a decrease in food

consumption.

2.4.4 Protein

The structural estimation shows that income is highly significant and positive in

determining the demand for protein. This effect is even more pronounced in the long

run since income elasticity is 0.19. Again, these findings support the theory of nu-

tritional transition discussed by Popkin (1998) and Popkin (2001). As expected we

should see a rise in protein demand when individuals become richer and can afford to

purchase more expensive meat-based products. The demand for protein as a health

input may originate from cultural perceptions of health. Protein and more specifi-

cally, animal protein maybe believed to be a weight gaining food. In a country which
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historically suffered from food scarcity, higher weight may signify better health and

so we see a positive relationship with income and demand for protein. Contrastingly,

education is found to be a negative and significant determinant of the demand for pro-

tein, which suggests that education may mitigate the consumption of protein because

of increased awareness of the impact on health from meat consumption. Moreover,

age was shown to be a positive influence on the demand for protein, but was only

very slightly quadratic while time allocated to household chores was also positive

and significant. Similar to the demand for health stock results, the price elasticities

for aquatic products and meat and poultry are significant and positive while eggs is

negative and these effects increase in magnitude by 1% in the long-run. The price of

grain also shows a negative impact on the demand for protein. Finally, logged BMI

was as expected, very significant and negative.

2.4.5 Fat

Income was found to be a positive and significant factor to determining demand

for fat in both the structural and reduced form estimations. In the long-run, income

has a larger effect of the demand for fat as the elasticities were 0.19 and 0.25 for

the structural and reduced form estimations respectively. Again, this may be due to

cultural perceptions of weight and thus could induce more consumption of fat. Sur-

prisingly, the price of oil and fat had an increasing effect on demand for fat and may

signify that individuals substitute toward other sources of fat like that found in meat

products when the price of oil increases. Again, this effect is far more pronounced

in the long run as the price elasticities for oil and fat indicate 0.52 and 0.67 for the
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reduced and structural estimations, a 5 and 6% increase from the short run. Addi-

tionally, the price of meat and poultry is negative and suggest that fat consumption

is a complement to meat consumption. Finally, logged BMI was shown to be a posi-

tive contributor to demand for fat. This is somewhat surprising as we would expect

individuals with high BMI’s to demand less fat. However, the positive sign of the

variable maybe attributable to higher calorie demands of heavier individuals.
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Table 2.4: Demand for Health Inputs

VARIABLES Carbohydrates Protein Fat
Structural Form Reduced Form Structural Form Reduced Form Structural Form Reduced Form

log(CarbohydrateIntaket−1) 0.09*** 0.09***
(0.03) (0.03)

log(ProteinIntaket−1) 0.03 0.04
(0.03) (0.03)

log(FatIntaket−1) 0.10*** 0.09**
(0.03) (0.04)

log(BMI) -0.17 -1.99*** 1.17***
(1.85) (0.63) (0.41)

log(Income) -0.08 -0.09* 0.18*** 0.12*** 0.17*** 0.23***
(0.08) (0.05) (0.03) (0.03) (0.05) (0.06)

2009 0.17 0.18 -0.26*** -0.07 -0.03
(0.29) (0.12) (0.08) (0.06) (0.12)

2006 0 0.01 -0.10*** -0.02 -0.02 0.17
(0.15) (0.06) (0.04) (0.03) (0.05) (0.16)

2004 0.02 0.02 -0.04 0 -0.01 0.18
(0.08) (0.04) (0.03) (0.03) (0.04) (0.14)

2000 0.2
(0.18)

Education -0.01 -0.01 -0.05*** -0.03*
(0.04) (0.03) (0.02) (0.02)

JobSedentary 0.01 0 0.09 0.04 -0.08** -0.13**
(0.13) (0.08) (0.06) (0.06) (0.04) (0.06)

Female -0.39** -0.38* -0.05 -0.11 0.23 0.75**
(0.16) (0.19) (0.11) (0.11) (0.22) (0.38)

Age 0.02 0.02** 0.02*** 0 -0.01 -0.01
(0.02) (0.01) (0.01) (0.01) (0.01) (0.02)

Age2 0 -0.00*** -0.00*** 0 0 0
0.00 0.00 0.00 0.00 0.00 0.00

Urban -0.05* -0.05* 0.01 0.02 0.01 -0.07
(0.03) (0.03) (0.03) (0.02) (0.04) (0.06)

Alcohol -0.38 -0.37 0.38* 0.17 0.58 1.55**
(0.24) (0.38) (0.20) (0.18) (0.40) (0.68)

HouseholdChores(days) 0.06 0.05 0.29*** 0.20*** 0.17 0.30*
(0.09) (0.07) (0.07) (0.06) (0.11) (0.16)

Sedentarytime(days) 0.06 0.05 0.04 0.06 0 -0.07
(0.07) (0.05) (0.05) (0.05) (0.07) (0.11)

Continued on next page
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Table 2.4 – continued from previous page
log(Pricevegetables) -0.22** -0.22***

(0.10) (0.08)
log(Pricefruit) -0.06 -0.07

(0.13) (0.08)
log(Pricealcohol) -0.02 0.01

(0.26) (0.13)
log(Priceaquatic products) -0.27 -0.29*** 0.39*** 0.11

(0.20) (0.10) (0.13) (0.08)
log(Priceeggs) 0.07 0.11 -0.34*** 0.01

(0.45) (0.11) (0.13) (0.07)
log(Priceoil & fat) -0.36*** -0.35*** 0.47*** 0.61**

(0.11) (0.13) (0.14) (0.24)
log(Pricegrain) -0.09 -0.09 -0.28*** -0.27*** -0.23 -0.17

(0.31) (0.15) (0.11) (0.10) (0.15) (0.24)
log(Pricemeat & poultry) 0.37 0.34*** 0.27** 0 -0.49*** -0.42***

(0.29) (0.10) (0.12) (0.09) (0.08) (0.11)
Constant 9.38** 8.84*** 8.24*** 3.87*** -0.35 0.74

(4.21) (1.31) (1.52) (0.54) (1.57) (2.26)

Observations 6,958 6,958 6,958 6,958 6,958 6,958
Groups 4,231 4,231 4,231 4,231 4,231 4,231
Instruments 29 27 29 27 27 25
AR(2) Test 0.201 0.352 0.394 0.331 0.437 0.256
Sargan test 0.155 0.133 0.105 0 0.623 0.458
Hansen Test 0.137 0.122 0.121 0 0.593 0.748

Standard errors in parentheses
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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2.5 Discussion

2.5.1 Limitations of Research

While there are many estimation advantages associated with panel analysis, specif-

ically its ability to control for individual heterogeneity and variable persistence, a

looming problem is its high vulnerability to attrition bias. This is of particular con-

cern in our study since only 18% of the observations were retained for the estimations.

Sources of attrition can be attributable to i) death of the individual in the survey,

ii) non-response to questions in the survey and iii) non-participation of individuals

in subsequent rounds. Because of this, it brings question to the accuracy and gen-

erality of our findings. Previous analysis using the CHNS have had similar attrition

rates (Ng et al. 2012). Popkin et al. (2010) further discuss the collection problems

with CHNS. In particular, there are issues with non-participation of individuals in

later waves as they found difficulties in finding previous participants either because

of migration, natural disaster and participant refusal to be subjected to the exams.

For this analysis we apply Lee Bounds (Lee 2005) to limit the the possible val-

ues of the variable effects. Since our analysis is concerned with socioeconomic status

we calculate these bounds for income and education. Lee Bounds require that a

treatment variable and a binary selection indicator variable be defined. In this case,

the treatment variable is income or education in which we create a dummy variable

indicating whether the individual is in the top quartile of the relevant distribution.

The selection indicator was created from the post-estimation of the Arellano-Bond

regressions and indicates whether the observation was included in the estimation or

not. The 95% confidence interval for income and education are [−0.1303, 0.1684] and
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[−0.0925, 0.0802] respectively. This is of concern since both intervals imply that in-

come and education are not significantly different from zero. However, this result may

not necessarily be unexpected. McLaren (2007) provide a tabulation of all previous

associations between measures of socioeconomic status and obesity in medium and

low developed countries. Her findings show that there are relatively equal numbers

of articles, which show positive or non-significant associations. The Lee Bounds may

then be a reflection of previous mixed results. For future research, techniques such

as pseudo-panel analysis (utilized in chapter 3) can be used to mitigate these effects.

2.5.2 Conclusion

Obesity is a relatively new problem for developing countries, however the rate

of obesity in China is spreading at an alarming rate. Developing countries are par-

ticularly vulnerable to the damaging economic effects obesity has as coexistence of

malnutrition and obesity put a double burden on the medical systems of developing

countries. Therefore, informative policy should be implemented to combat this phe-

nomenon. In this paper we have estimated production functions of health stock and

for health inputs. Our results show that income and education both have a direct

impact on the demand for health stock. We find that income promotes increased

BMI. Contrastingly, education was found to be negative and suggests that increased

education mitigates weight gain. When analyzing results from the input demands

we find evidence which shows that income contributes negatively toward the demand

for carbohydrates, but is positive for both protein and fat demands. In the case of

developing countries cultural perceptions of health and in particular weight maybe we

different than those held in developed countries. As a result, health seeking behavior

60



may illustrate itself differently in developing countries. Our results show evidence

of this behavior as measures of socio-economic status (income) where shown to in-

crease the consumption of protein and fat; macronutrients which are more likely to

be perceived as weight gaining.
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Chapter 3: A Pseudo-Panel Analysis of Obesity Prevalence

using NHANES Data

3.1 Introduction

At present more than two thirds of adults are overweight and over a third are

considered obese in the United States (Flegal et al. 2012). While this might seem

alarming, current projections indicate that the incidence of obesity will rise to 42% by

the year 2030 (Finkelstein et al. 2012), but could be as high as 50% (Levi et al. 2012).

Obesity is related to increased morbidity from weight related illnesses such as diabetes,

heart disease and stroke. It is estimated that $190 billion was spent on health care

in 2005 related to obesity illnesses (Cawley and Meyerhoefer 2012). And, spending

is only expected to rise as more obese individuals become sick (Wang et al. 2011).

Indirect costs are additionally incurred through higher absenteeism due to obesity

related illness (Cawley 2004), higher insurance premium payments (Bhattacharya and

Bundorf 2009) and possible workforce discrimination (Conley and Glauber 2005). As

such, considerable public attention is given to the obesity epidemic because of the

economic burden it poses and the damaging effects on individual welfare.

The increased concern from obesity has spurred an extensive literature on its

causes and incidence. The determinants of obesity are plenty and somewhat nebulous
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making it difficult to both treat and understand (Finegood 2011; Hammond 2009).

Current social science literature has placed focus on the socioeconomic and behavioral

factors of obesity. However,the vast majority of these studies are relegated to cross-

sectional analysis despite having several explanatory limitations. Specifically, they

cannot give insight into time dependent effects nor can they resolve issues related to

variable persistence. Furthermore, when endogeneity is suspected it is a much more

strenuous task to find viable instruments using cross-sectional data. When put in

the context of obesity studies, which is inherently dynamic (Auld and Grootendorst

2011; Block et al. 2013) cross-sectional analysis does not lend itself particularly well

to explaining the incidence of obesity.

McLaren (2007) updates Sobal and Stunkard (1989) seminal review on the liter-

ature and reports 333 journal articles all of which utilize cross-sectional data, while

Ball and Crawford (2005) conducts a review of only longitudinal studies and found

just 34 articles where less than half used US data all of which pre-date 2000. The

predominance of cross-section analysis is due in part to a greater availability of pub-

licly available cross-sectional data. Among studies which control for endogeneity in

the socioeconomic variable (most often measured in income), Cawley, Moran, and

Simon (2010) conduct a study on the effect of income on weight among the elderly.

To control for endogeneity they exploit a natural experiment in which retirees receive

different Social Security payments based on age. Their findings show that among the

elderly there was no significant effect from income on weight. Similarly, Schmeiser

(2009) takes advantage of inter-state variation in Earned Income Tax Credit (ETIC)

allotted to young (25-43) and poor individuals. He found no significant effect of

income on obesity among men, but found an inverse relationship with women.

63



This paper is consistent with the work by Cawley, Moran, and Simon (2010) and

Schmeiser (2009) in addressing endogeneity in income, but extends their work to

include dynamics in the model. To do so pseudo-panel methods are used to con-

duct a panel study. Of course, the best recourse when genuine panel data (GPD)

is available is to use more typical panel methods. However, in the absence of GPD,

as is in this case, pseudo-panel analysis is an alternative that first does not rely on

GPD, but still allows for dynamic estimation. Pseudo-panel data are constructed

by exploiting repeated cross-sectional data (RCS) in which at each cross-section in-

dividuals are pooled together to form statistically representative cohorts based on

time invariant criteria26. Panel estimation can then be done at the cohort-level in

which each time-stable cohort is represented in consecutive rounds of data despite the

fact that individual membership to each cohort is different in each year. This paper

applies pseudo-panel techniques to the Continuous National Health and Nutrition

Examination Survey (NHANES) and aims to fill the deficiency of panel estimation in

the literature. The estimation is framed by the Grossman Model (Grossman 1972b;

Grossman 1972a), the standard dynamic human health capital model. As such, the

system first estimates the demand for health stock, represented by body mass index

(BMI) and persistence of overweight and obesity catergories, which is then used as

a determinant for the estimation of demand for health inputs represented by food

intake.

Previous applications of the Grossman Model have traditionally looked at the

impact of medical services usage on health outcomes. Furthermore, these papers

assume instantaneous health adjustment, precluding the use of past realizations of

26Alternatively, pseudo panel data is also known as synthetic panels
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health as a contributing factor to current demands for health (Nocera and Zweifel

1998; Wagstaff 1986). Furthermore, Wagstaff (1993) states that exclusion of the

lagged health stock “fails to take into account the inherently dynamic character of

the health investment process”. Goldman, Lakdawalla, and Zheng (2009) present

a dynamic model of health, but their empirical analysis is not generalizable to the

general public as they are confined to data on individuals of retirement age, who may

not show considerable weight variation (Block et al. 2013).

This paper contributes to the literature in several ways. As discussed previously,

there is a major research paucity in panel estimation on the incidence of obesity. To

my knowledge this is the first paper to apply pseudo panel techniques in investigating

the determinants of health status using US data. In addition, pseudo-panel techniques

allow for the opportunity to exploit the rich nutritional data collected by NHANES,

which is surprisingly absent in concurrent longitudinal studies. Finally, previous

articles that have applied Grossman’s Model typically have estimated static models

(Wagstaff 1986; Nocera and Zweifel 1998). This paper extends the Grossman Model

such that a dynamic model is estimated.

Results show that consistent with past cross-sectional studies, women show an

inverse relationship with socioeconomic status and weight. Additionally, marriage

was also a decreasing factor for women’s weight outcomes. There was no apparent

relationship between socioeconomic status and men (also consistent with prior liter-

ature), but they seemed to show moderate amounts of weight gain with marriage.

Interestingly, past realizations of weight were positive and significant for women only

as the results for men were largely variable and insignificant. This would indicate that

men are resistant to a “weight legacy” and are more able to transform their current
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weight despite previous weight status, which does not seem to be the case for women.

In terms of food consumption, there was a general trend showing that the youngest

cohorts eat less animal protein and more added sugar. Female demand for added

sugar was shown to be positively determined by socioeconomic factors, marital sta-

tus and elevated weight status. This behavior may explain the differences in obesity

incidence between gender, women being more likely to be overweight and obese.

The paper is organized in the following manner. Section 3.2 is a literature review.

Section 3.3 presents a brief summary of the the theoretical and empirical framework,

essentially laid out by Wagstaff (1993). Section 3.4 provides descriptive statistics and

results and section 3.5 provides conclusions.

3.2 Literature Review

The obesity epidemic is a widespread problem particularly pronounced in devel-

oped countries like the United States. The current social science literature has focused

on the impact of socioeconomic factors on weight gain, the results of which have been

largely mixed. In McLaren (2007)’s literature review of cross-sectional studies, she

finds that the prevalence of studies finding negative associations between income and

obesity among women are approximately equal in number to studies which found no

particular significance. With men this disparity is much more pronounced as there

were more than 4 times the number of insignificant associations as there were ones

that found a negative correlation. Amongst studies that pooled both genders the

number of articles finding no significance was slightly more common then those that

found a negative significance. And, for all categories only a small minority of studies

found income and obesity to be positively related.
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In what predates the pseudo–panel literature by Moffitt (1993) and Verbeek and

Vella (2005), Flegal, Harlan, and Landis (1988a) and Flegal, Harlan, and Landis

(1988b) present a model which compares the average BMI of sub-populations de-

termined by race, gender, age, education and income across time. Their findings

show varied associations between BMI and education and a positive relationship to

income for men. Women were found to have a distinctively negative relationship

between education, income and average BMI. Racial disparities where only detected

among women where average BMI for black women was significantly higher than

white women. Alternatively, Zhang and Wang (2004) found no significance between

incidence of obesity and socioeconomic inequality among women. However, this as-

sociation was positive and significant for male incidence of overweight, but was more

pronounced among white males then in minorities. The findings on women were more

consistent and were shown to be negatively correlated with socioeconomic inequality.

Behavioral factors are also important in determining obesity and are not consid-

ered in Flegal, Harlan, and Landis (1988a), Flegal, Harlan, and Landis (1988b) and

Zhang and Wang (2004). Of the articles that incorporate food intake, Jeffery and

French (1996) found that fat consumption was much higher among women with lower

socioeconomic (SES) standing and efforts to control weight were less likely among low

SES women. Alternatively, Lin, Huang, and French (2004) found that food away from

home, which is typically more fat dense was a more pronounced positive factor for

wealthy women, while vegetarianism elicited lower BMI’s among the poorest women.

This paper makes two refinements from the previous work described above. First,

while Flegal, Harlan, and Landis (1988a) and Flegal, Harlan, and Landis (1988b) may

not have intended to do so, they lay the ground work for pseudo-panel analysis by
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essentially constructing cohort-level means and variance trends. However, stratifying

the cross-sections by age, education and income which are time variant does not

guarantee cohort stability and thus cannot be used to make causal inference using

pseudo-panel analysis. Second, Jeffery and French (1996) and Lin, Huang, and French

(2004) incorporate behavioral variables as determinants for weight. Alternatively,

following the Grossman Model this paper estimates the demand for food intake and

uses measures of average BMI as one of the determining factors. Like Cawley, Moran,

and Simon (2010) and Schmeiser (2009) this paper also controls for endogeneity, but

extends their work to include dynamics in the model. The findings from this study

will provide evidence of causal relationships between income and obesity and food

intake behavior and obesity.

3.3 Theoretical and Empirical Framework

3.3.1 The Grossman Model

The Grossman Model characterizes the optimizing individual as one who maxi-

mizes utility, subject to a time-dependent process of health stock, 3.1.27

Ht −Ht−1 = It−1 − δt−1Ht−1 (3.1)

Individuals are endowed withH0 while succeeding periods of health are determined

by 3.1. Ht is current health stock, It−1 is gross investment on health in the previous

period and δt−1 is the depreciation rate of health. The individual must weigh the

27For a thorough derivation of the pure investment model refer to section 1 of chapter 2 and
appendix C.
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benefits of good health with the costs of procuring and maintaining it over time. As

derived in chapter 2 (equation 2.5) , the resulting optimal condition is

it + ct = (r + δt − π̃t−1)πt (3.2)

where it is the monetary benefit, ct is the non-monetary benefit from good health,

r is the interest rate, πt is the marginal cost of investment and π̃t−1 is the percent

change.

To make the Grossman Model estimable, simplifications are made to 3.2 such

that either it or ct are only estimated.28 Grossman’s Model is implemented first by

estimating the demand for health stock, which is then used as a determinant for

the structural estimation of health inputs. To make such computations possible,

functional forms for it(or ct), δt and πt are assumed.29 As derived in equation 2.12,

the demand for health stock for the pure investment model is

lnHt = β1lnwt − β2P
D
t + β3t+ β4Et + β5Zt (3.3)

where wt is wage, PD is the price of inputs , Et is education and Zt is a vector of

behavioral variables, which effect the production of health.30

28The simplified models are aptly named the pure investment model and the pure consumption
model (Grossman 1972a; Grossman 1972b).

29See appendix C for derivations

30Examples of Zt are marital status, smoking, alcohol consumption, marital status etc · · ·
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To derive the demand for health inputs the cost minimization condition for health

investment, the Cobb-Douglas investment production function, It = f(Ft, t, Et) and

the log of 3.1 are used. The structural equation is the following

lnFt = lnHt + (1− β1)lnwt − (1− β2)lnPD
t + β3 + β4Et + β5Zt (3.4)

where Ft is a vector of health inputs (food intake).

3.3 is notably missing a lagged health stock term. This is because the typical

derivation of the Grossman Model assumes instantaneous health adjustment. Specif-

ically, under instantaneous adjustment 3.3 states that

Ht = H̄t = f(wt, P
D
t , t, Et, Zt). (3.5)

where H̄t is the ideal level of health stock. In the case of partial adjustment of

health stock, let H̄t be the ideal level of health stock such that

Ht ≤ H̄t = f(wt, P
D
t , t, Et, Zt). (3.6)

and

Ht −Ht−1 = α(H̄t −Ht−1). (3.7)

The special case of instantaneous adjustment is when α ≡ 1 and the ideal health

stock corresponds to the actual level of health. If 0 ≤ α ≤ 1 then substituting 3.6

into 3.7 results in

Ht = g(Ht−1, wt, P
D
t , t, Et, Zt). (3.8)
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Then 3.3 can be written as

lnHt = αlnHt−1 + β1lnwt − β2P
D
t + β3t+ β4Et + β5Zt (3.9)

and is the full dynamic estimable model.

3.3.2 Pseudo–Panel Data Sets

First proposed by Deaton (1985), when repeated cross-sectional (RCS) data is

available, cohorts can be constructed where membership is based on relevant time-

stable criteria.31 The result being that the constructed data can be treated as if it

were GPD at the cohort-level. There are several advantages to using pseudo panels.

As Deaton (1985) shows, pseudo-panels can be constructed per cohort as long as the

same time invariant variables are collected each year. This flexibility affords potential

to combine datasets which collect the same information. Second, the construction of

pseudo panels has a mitigating effect on data attrition where the averaged values

smooth over instances of non-response in each cohort. In fact, even in cases where

GPD is available, when T is large, pseudo-panels maybe still have an upper hand in

answering long-run questions since it is less subject to attrition bias.

Suppose we wish to estimate the following dynamic regression model:

yit = γyi,t−1 + x
′

i,tβ + αi + ui,t. (3.10)

In the context of RCS data it is obvious that yi,t−1 is unobservable. In order to

estimate 3.10 the data can be pooled together to form synthetic panels and unlike,

GPD each cross-section contains a new set of individuals. Cohorts are then created

31For example, Deaton (1985) creates cohorts based on birth year intervals

71



such that member i of cohort C will always belong to cohort C for any given T.

For example, a non-Hispanic white male born in 1970 will belong to the cohort of

white, male individuals born between 1970-1974. And, if it were possible to survey

that individual in a later cross-section he would still belong to the same cohort. The

results are statistically representative cohorts, which can be tracked over time despite

the fact that membership in each cohort is different from year-to-year. In lieu of 3.10,

3.11 is estimated such that

ȳct = γȳc,t−1 + x̄′ctβ + ūct (3.11)

with error

ūct = αc + γ(ȳ∗ct − ȳct)− ect (3.12)

where ȳc,t−1 is the predicted lagged dependent variable equal to the sample average

lagged dependent variable, x̄′ct and ūct are the average cohort independent regressors

and ȳ∗ct is the cohort population mean. As Moffitt (1993) proved, averaging the

data by cohort is analogous to instrumenting the individual data with a vector of

cohort dummies interacted with time and ensures that the regressors are exogenous

assuming that the cohort dummies pass the usual criteria for instruments. However,

Verbeek and Vella (2005) find that these criteria drastically limit the number of

viable instruments. To relax the instrument criteria they exploit several asymptotic

assumptions of the data. Particularly, they assume that as N → ∞, C, the number

of cohorts is assumed to be fixed such that the number of members in each cohort, nc

tends to infinity. In this case, time invariant cohort effects can be isolated in much

the same manner as with traditional fixed effects by including the cohort dummies
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in the main equation. This gives way to the augmented IV estimator (Verbeek and

Vella 2005)

ȳct = γȳc,t−1 + x̄′ctβ + αc + ūct. (3.13)

Under the illustrated asymptotic assumptions, 3.13 is assumed to be a one-way

error component model where ūct is expected to contain time varying cohort effects,

but since nc → ∞ it is assumed that the time varying unobservable component

is zero in expectation such that the regressors and the error is uncorrelated to the

instruments (cohort dummies).

Collado (1997) provide an alternative model. Essentially, she proposes a two-way

error component model where the time varying cohort effects are not assumed to be

zero in expectation. To estimate such a model, Collado (1997) uses the Arellano-Bond

estimator. While there is a gain in generality it comes at the expense of efficiency

since second lags are used as instruments for the differenced equation.

In equation 3.13, ȳct and ȳc,t−1 are the current and lagged dependent variables.

The log of BMI and cohort percentages of overweight and obese categories were used

as the dependent variable. x̄′ct is composed of a vector of variables effecting the

production of health including: age, age2, indicator variables for marital status and

food security and the log of income. The use of these variables are consistent with

previous studies (Cawley, Moran, and Simon 2010; Schmeiser 2009; Griffiths et al.

2013; Laraia, Siega-Riz, and Evenson 2004; CDC et al. 2003; Dinour, Bergen, and

Yeh 2007). Year indicators where also included to control for time trends. αc is a

vector of indicator variables for each time stable cohort. The cohort dummies interact

race, gender and birth generation.
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3.3.3 Data

This paper uses RCS data collected by the National Health and Nutrition Exam-

ination Survey (NHANES). NHANES is designed to evaluate health and nutritional

status of adults and children in the United States. The NHANES program has been

an ongoing survey since the 1960s. However, in 1999 the survey became continuous,

collecting information on people’s health on a yearly basis. Each year, 15 counties

are chosen to be surveyed from which a group of approximately 5000 nationally rep-

resentative individuals are sampled. The NHANES data is an extensive repository

for information on demographic, economic, health outcomes and particularly dietary

information. To gather this information, the respondents are subjected to a medical

exam, laboratory work, an interview and are required to self-report food consumption.

The Continuous NHANES survey currently has six rounds of completed data

starting in the 1999-2000 survey year and ending in 2009-2010. Cohorts were formed

using race, gender and birth year ranges. Deaton (1985) was the first to use birth

year ranges for cohort formation. Like, Russell and Fraas (2005) birth year, race and

gender are used to form cohorts. Cohorts were formed using such variables because of

evidence indicating weight differentials by age (Flegal et al. 1998; Cook and Daponte

2008; Baum II and Ruhm 2009), gender (Flegal et al. 2010) and race (Hedley et al.

2004; Flegal et al. 2010). There were three categories for race: non-Hispanic white,

non-Hispanic black and Mexican American/other Hispanic/multi-racial. Gender in-

cludes both males and females while there are 16 birth year ranges composed of 5 year

spans starting in 1915 in the earliest round through to 1992 in the last wave of data.

The cohort formation variables produce 96 potential cohorts. However, as shown by

Verbeek and Vella (2005), a necessary condition for identification of the model is, at
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a minimum, 3 rounds of data are needed to insure time variation and avoid multico-

linearity. Eliminating cohorts with less than 3 rounds of data resulted in elimination

of the oldest and youngest groups leaving 84 unique cohorts to be estimated.

Table 3.1 shows the member participation for each cohort by year where each

number represents the number of individuals in each cohort. From the tables it shows

that there are more non-hispanic white men and women relative to non-Hispanic

Blacks and Mexican American/ Other Hispanic/Multi-race. The missing values in

each table are a reflection of the oldest cohorts aging out of the survey and being

replaced by younger ones.
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Table 3.1: Cohort Size

Women Men

Non-Hispanic White

2000 2002 2004 2006 2008 2010 2000 2002 2004 2006 2008 2010

Born 1920− 1924 69 89 170 124 71 87 139 109
Born 1925− 1929 83 92 103 73 180 84 117 87 100 169
Born 1930− 1934 76 83 96 77 106 226 87 78 108 84 123 227
Born 1935− 1939 85 94 84 78 100 125 83 87 94 73 101 111
Born 1940− 1944 50 87 99 82 108 88 72 84 87 96 97 99
Born 1945− 1949 75 115 85 79 112 97 76 133 88 66 116 113
Born 1950− 1954 71 102 96 76 88 106 63 101 84 97 84 105
Born 1955− 1959 80 100 88 87 103 104 77 112 93 103 126 114
Born 1960− 1964 85 115 92 102 121 127 86 95 105 107 111 114
Born 1965− 1969 109 130 96 88 107 130 76 89 86 91 105 116
Born 1970− 1974 110 138 132 101 107 144 70 82 91 84 109 124
Born 1975− 1979 97 128 115 125 98 109 70 83 80 78 97 113
Born 1980− 1984 57 82 113 139 70 124 62 95 90 87 92 98
Born 1985− 1989 127 114 81 117 137 113 87 99
Mean 81 104 107 96 106 125 75 96 98 92 109 119

Non-Hispanic Black

2000 2002 2004 2006 2008 2010 2000 2002 2004 2006 2008 2010

Born 1920− 1924 26 18 19 19 17 18 13 10
Born 1925− 1929 29 29 17 17 39 29 22 16 13 29
Born 1930− 1934 30 33 21 21 26 46 38 47 15 30 11 35
Born 1935− 1939 50 52 24 40 42 33 40 49 29 37 46 29
Born 1940− 1944 25 28 40 38 50 38 21 28 35 52 52 40

Continued on next page
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Table 3.1 – continued from previous page
Born 1945− 1949 28 32 32 40 71 47 31 34 37 44 81 54
Born 1950− 1954 44 49 40 43 61 42 36 55 35 41 34 55
Born 1955− 1959 49 57 45 58 45 58 50 54 37 51 56 71
Born 1960− 1964 51 54 62 53 58 52 33 43 48 43 46 49
Born 1965− 1969 59 44 44 52 48 45 42 35 39 50 44 41
Born 1970− 1974 40 47 41 47 52 46 25 32 42 48 57 38
Born 1975− 1979 37 62 42 62 55 49 35 46 46 50 46 29
Born 1980− 1984 60 84 68 61 50 47 66 92 54 54 45 52
Born 1985− 1989 123 134 60 55 124 133 65 50
Mean 41 45 44 49 51 47 36 43 41 47 47 45

Hispanic/Mexican/Other

2000 2002 2004 2006 2008 2010 2000 2002 2004 2006 2008 2010

Born 1920− 1924 32 18 24 16 42 18 17 11
Born 1925− 1929 53 43 30 10 46 59 39 29 9 33
Born 1930− 1934 78 49 39 16 40 58 63 36 39 17 35 44
Born 1935− 1939 89 70 51 30 58 54 94 62 61 36 37 43
Born 1940− 1944 49 27 64 46 63 63 34 29 56 47 65 71
Born 1945− 1949 72 43 50 46 112 113 50 49 40 38 79 82
Born 1950− 1954 79 63 35 34 68 85 59 72 33 32 74 75
Born 1955− 1959 82 85 55 40 99 80 80 73 47 49 107 89
Born 1960− 1964 73 77 43 69 82 104 76 63 53 50 75 100
Born 1965− 1969 78 88 66 61 76 126 60 71 59 82 90 85
Born 1970− 1974 97 104 58 93 105 101 74 84 59 70 96 106
Born 1975− 1979 133 119 80 110 100 97 78 92 78 67 75 90
Born 1980− 1984 176 110 60 125 83 112 156 129 65 91 94 88
Born 1985− 1989 155 162 122 102 121 132 107 106
Mean 84 69 58 61 81 91 71 63 54 52 74 82
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3.3.4 Descriptive Statistics

The estimations presented in this paper use several different measures of health

stock. Table 3.2. illustrates that the continuous variable ln(BMI) was used as well as

a proportional variable indicating the prevalence of obesity. The average cohort BMI

is 28, which is in the overweight category. Furthermore, on average 76% of individuals

were at least overweight by cohort, 41% were at least classified as obese 1, 21% were

obese 2 and 13% were obese 3. This weight stratification is consistent with national

averages for overweight and obesity rates (NIDDK 2012).

By design there were equal numbers of male and female cohorts and equal number

of cohorts that were white, black and Mexican American/ Other Hispanic/ Multi-

racial. The average cohort age was 49.8 years. Upon running a fractional polynomial

analysis it was found that the quadratic transformation of age fit much better relative

to the untransformed variable. For this reason age2 was included. Over 50% of

individuals were married in each cohort. Food security is an indicator variable where

1 represents food secure.

Table 3.2 shows that on average each cohort was 84% food secure. Income is a

continuous variable and is in real 1990 USD. When converted to levels, the average

cohort income was just over $37,000.

The time variables indicate that the number of observations is roughly equal over

all the years with fewer observations in the first and last round of data. This is to be

expected as the youngest and oldest cohorts were eliminated due to having less then

3 rounds of data.
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Table 3.2: Descriptive Statistics

Variable µ σ

Health Stock Variables
log(BMI) 3.334 0.066
log(% overweight) -0.271 0.201
log(% obese1) -0.881 0.314
log(% obese2) -1.549 0.451
log(% obese3) -2.072 0.547

Demographic Variables
sex 0.5 0.501
white 0.333 0.472
black 0.333 0.472
hisp 0.333 0.472
age 49.83 19.067
age2 2845.789 1935.707
married 0.561 0.211

Time Variables
2000 0.165 0.371
2002 0.165 0.371
2004 0.177 0.382
2006 0.177 0.382
2008 0.165 0.371
2010 0.152 0.359

Socioeconomic Variables
log(income) 10.53 0.209
food security .839 .091

Cohort Indicator Variables
Born 1920− 1924 0.051 0.219
Born 1925− 1929 0.063 0.244
Born 1930− 1934 0.076 0.265
Born 1935− 1939 0.076 0.265
Born 1940− 1944 0.076 0.265
Born 1945− 1949 0.076 0.265
Born 1950− 1954 0.076 0.265

Continued on next page
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Table 3.2 – continued from previous page
Born 1955− 1959 0.076 0.265
Born 1960− 1964 0.076 0.265
Born 1965− 1969 0.076 0.265
Born 1970− 1974 0.076 0.265
Born 1975− 1979 0.076 0.265
Born 1980− 1984 0.076 0.265
Born 1985− 1989 0.051 0.219

Health Input Variables
log(meat) 3.648 0.277
log(added sugar) 4.117 0.643
log(fat) 4.11 0.258

Finally, to make use of NHANES’ extensive nutritional data, consumption of

meat, added sugar and fat was first calculated per individual using data from a

two-day dietary interview. Individuals recorded and self-reported quantities of food

consumed on two days at least three days apart and the nutritional values of their

diets were imputed by surveyors. The totals were averaged to get mean individual

daily consumption levels. These values were then averaged again over cohort and

then logged. Table 3.2. shows the logged values of the consumption of each food item

in grams. The average cohort daily consumption of meat, added sugar and fat were

38, 61, and 60.9 grams respectively. This indicates that on average individuals eat

over 1.5 times as much added sugar and fat as they do meat.

3.4 Results

3.4.1 Demand for Health Stock

Tables 3.3 and 3.4 show the results from the demand for health stock estimation

for women and men respectively. While the cohort indicator variables were only

significant for women, the general trend across both genders is that the oldest cohorts
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tend to be the heaviest and this disparity between oldest to youngest progressively

widens with increasing weight class. This is not surprising since the highest prevalence

of obesity is among 60-69 year olds (Flegal et al. 2002).

For women, marital status had a decreasing effect on average BMI and incidence

of obesity for all categories. Sobal, Rauschenbach, and Jr. (1992) also find a negative

effect but, it was not statistically significant in their study. Since women typically

bare more household responsibility for food preparation, marriage may impose in-

creased nutritional accountability for other members of the household including chil-

dren, which in turn may make women more prone to eat healthy. Estimates show that

being food secure spurs weight loss for women, but was only significant for overweight

and obese 2 categories. This negative effect is consistent with prior literature, which

found that in developed countries women in particular exhibit an inverse relationship

with weight and food insecurity (Dinour, Bergen, and Yeh 2007). Elevated weight

may actually be demonstrative of rational behavior by food insecure individuals as

it may induce over-consumption during periods of relative food abundance to com-

pensate for future periods of food scarcity, which may lead to weight gain (Dinour,

Bergen, and Yeh 2007; Townsend et al. 2001). Furthermore, food insecurity may

induce consumption of highly processed, non-perishable foods and fast foods which

are conducive to rapid weight gain. Income was found to be a negative determinant

for the continuous BMI variable, overweight and obese 1, though was only significant

for overweight. For obese 2 and obese 3, the coefficients were both positive, but only

significant for obese 2. One possible explanation for the positive coefficient in the

obese 2(3) estimation is that for individuals with the highest BMIs, a positive income

effect may facilitate excess calorie consumption. This would be particularly true if the
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most obese individuals have formed eating habits which promote overconsumption.

These findings differ from Cawley, Moran, and Simon (2010) and Schmeiser (2009)’s

analysis which find no significant effect from income, but is consistent with many

other cross-sectional studies (Sobal and Stunkard 1989; McLaren 2007). The lagged

dependent variable was also significant and positive for women in all estimations ex-

cept in the case of obese 3. This highly suggests that female weight outcomes is a

dynamic process for all but the the heaviest individuals.

For men, marriage is a positive effect for overweight incidence, but is shown to be

a decreasing factor for higher obesity categories. The positive coefficient in the over-

weight estimation maybe a reflection of behavioral changes induced by marriage. As

a result, moderate male weight gain may be caused by more consistent consumption

of meals and a less active lifestyle brought upon by the advent of marriage (Sobal,

Rauschenbach, and Jr. 1992). For higher obese categories, the negative coefficients

may reflect heightened spousal concern for health when body weight is very high

and signify increased spousal support for weight loss efforts. Food security is not

a significant determinant for men’s weight outcomes of which the coefficients were

generally positive. Unlike women, income was not significant for men and was pos-

itive. Surprisingly, the lagged dependent variable for men was insignificant for all

but the continuous BMI variable. Moreover, the sign of each coefficient was inconsis-

tent across estimations as the obese 1 and obese 3 lagged dependent variables were

negative. This suggests that for men, past weight outcomes is not a factor for cur-

rent weight. Men maybe less hindered by a weight “legacy” as they may be more

adaptable to weight loss (or weight gain) then women.
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Table 3.3: Demand for Health Stock: Women

(1) (2) (3) (4) (5)
VARIABLES log(BMIt) log(% overweightt) log(% obese1t) log(% obese2t) log(% obese3t)

log(BMIt−1) 0.37***
(0.067)

log(% overweightt−1) 0.18***
(0.066)

log(% obese1t−1) 0.17**
(0.071)

log(% obese2t−1) 0.15**
(0.069)

log(% obese3t−1) 0.02
(0.079)

age -0.00 -0.06** -0.06 -0.06 -0.08
(0.010) (0.029) (0.055) (0.077) (0.118)

age2 -0.00*** -0.00*** -0.00*** -0.00*** -0.00***
(0.000) (0.000) (0.000) (0.000) (0.000)

married -0.15*** -0.28*** -0.74*** -1.26*** -1.72***
(0.027) (0.068) (0.133) (0.183) (0.274)

food secure -0.06 -0.36*** -0.32 -0.61* -0.09
(0.045) (0.136) (0.247) (0.345) (0.526)

log(income) -0.05 -0.23** -0.20 0.57** 0.42
(0.032) (0.093) (0.174) (0.244) (0.370)

2004 0.15** 0.64*** 0.78** 0.80 0.91
(0.064) (0.186) (0.350) (0.491) (0.748)

2006 0.14** 0.63*** 0.80** 0.74 0.74
(0.064) (0.185) (0.348) (0.488) (0.743)

2008 0.17** 0.84*** 1.03** 0.95 1.01
(0.081) (0.234) (0.441) (0.618) (0.940)

2010 0.22** 1.04*** 1.26** 1.18 1.29
(0.101) (0.291) (0.548) (0.769) (1.168)

Continued on next page
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Table 3.3 – continued from previous page
Born 1920− 1924 1.15* 6.54*** 7.97** 9.47** 11.21

(0.603) (1.736) (3.271) (4.589) (6.982)
Born 1925− 1929 1.05* 5.95*** 7.18** 8.49** 10.11

(0.555) (1.597) (3.009) (4.220) (6.422)
Born 1930− 1934 0.97* 5.42*** 6.51** 7.63* 8.93

(0.514) (1.477) (2.784) (3.903) (5.940)
Born 1935− 1939 0.90* 4.95*** 5.99** 7.00* 8.11

(0.468) (1.345) (2.534) (3.552) (5.406)
Born 1940− 1944 0.79* 4.40*** 5.32** 6.10* 7.19

(0.421) (1.212) (2.284) (3.201) (4.873)
Born 1945− 1949 0.71* 3.97*** 4.77** 5.37* 6.25

(0.378) (1.088) (2.050) (2.873) (4.373)
Born 1950− 1954 0.62* 3.43*** 4.16** 4.65* 5.57

(0.331) (0.951) (1.793) (2.513) (3.826)
Born 1955− 1959 0.51* 2.95*** 3.53** 3.95* 4.63

(0.285) (0.819) (1.542) (2.163) (3.292)
Born 1960− 1964 0.43* 2.46*** 2.92** 3.22* 3.80

(0.238) (0.685) (1.291) (1.809) (2.754)
Born 1965− 1969 0.34* 1.98*** 2.38** 2.62* 3.16

(0.192) (0.553) (1.042) (1.460) (2.222)
Born 1970− 1974 0.29** 1.60*** 1.97** 2.13* 2.51

(0.146) (0.419) (0.789) (1.106) (1.682)
Born 1975− 1979 0.20** 1.06*** 1.31** 1.38* 1.70

(0.098) (0.282) (0.530) (0.742) (1.129)
Born 1980− 1984 0.10* 0.54*** 0.64** 0.72* 0.80

(0.053) (0.153) (0.287) (0.403) (0.613)
Constant 2.62*** 2.99*** 2.18 -5.80** -4.88

(0.415) (0.889) (1.669) (2.332) (3.548)

Observations 195 195 195 195 195
R2 0.747 0.710 0.549 0.469 0.417

Standard errors in parentheses
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table 3.4: Demand for Health Stock: Men

(1) (2) (3) (4) (5)
VARIABLES log(BMIt) log(% overweightt) log(% obese1t) log(% obese2t) log(% obese3t)

log(BMIt−1) 0.19***
(0.072)

log(% overweightt−1) 0.12
(0.074)

log(% obese1t−1) -0.04
(0.071)

log(% obese2t−1) 0.01
(0.077)

log(% obese3t−1) -0.04
(0.077)

age 0.01 0.03 0.04 0.04 0.00
(0.008) (0.035) (0.067) (0.111) (0.132)

age2 -0.00*** -0.00*** -0.00*** -0.00*** -0.00*
(0.000) (0.000) (0.000) (0.000) (0.000)

married 0.02 0.32*** -0.27 -0.70** -0.83**
(0.024) (0.101) (0.188) (0.319) (0.371)

food secure 0.03 0.04 0.10 0.19 -0.55
(0.041) (0.169) (0.325) (0.543) (0.636)

log(income) 0.05 0.09 0.37 0.32 0.60
(0.030) (0.126) (0.242) (0.411) (0.482)

2004 0.04 0.06 0.31 0.21 0.21
(0.053) (0.224) (0.428) (0.709) (0.843)

2006 0.04 0.05 0.34 0.23 0.20
(0.053) (0.221) (0.423) (0.699) (0.835)

2008 0.05 0.04 0.42 0.37 0.24
(0.066) (0.278) (0.532) (0.881) (1.054)

2010 0.06 0.06 0.51 0.44 0.21
(0.082) (0.347) (0.663) (1.098) (1.312)

Continued on next page
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Table 3.4 – continued from previous page
Born 1920− 1924 0.25 0.62 3.39 4.36 5.48

(0.493) (2.066) (3.953) (6.560) (7.804)
Born 1925− 1929 0.25 0.62 3.14 3.93 4.94

(0.455) (1.909) (3.651) (6.055) (7.220)
Born 1930− 1934 0.23 0.53 2.85 3.46 4.36

(0.422) (1.769) (3.383) (5.615) (6.681)
Born 1935− 1939 0.20 0.37 2.46 2.95 3.54

(0.383) (1.609) (3.077) (5.107) (6.078)
Born 1940− 1944 0.18 0.32 2.18 2.68 3.26

(0.345) (1.450) (2.772) (4.600) (5.477)
Born 1945− 1949 0.14 0.22 1.85 2.24 2.80

(0.309) (1.298) (2.482) (4.119) (4.905)
Born 1950− 1954 0.11 0.16 1.46 1.75 2.28

(0.270) (1.135) (2.171) (3.599) (4.287)
Born 1955− 1959 0.09 0.10 1.13 1.43 1.82

(0.233) (0.978) (1.871) (3.103) (3.697)
Born 1960− 1964 0.08 0.05 0.94 1.08 1.45

(0.195) (0.819) (1.567) (2.600) (3.098)
Born 1965− 1969 0.07 0.10 0.93 1.27 1.50

(0.157) (0.657) (1.257) (2.087) (2.489)
Born 1970− 1974 0.07 0.11 0.73 1.01 1.37

(0.118) (0.495) (0.949) (1.576) (1.879)
Born 1975− 1979 0.04 0.10 0.58 0.79 1.05

(0.080) (0.336) (0.644) (1.072) (1.278)
Born 1980− 1984 0.03 0.06 0.34 0.42 0.47

(0.045) (0.187) (0.358) (0.595) (0.708)
Constant 1.93*** -2.23* -6.37*** -6.38 -8.55*

(0.339) (1.267) (2.427) (4.079) (4.810)

Observations 195 195 195 193 191
R2 0.701 0.624 0.399 0.206 0.247

Standard errors in parentheses
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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3.4.2 Demand for Health Inputs

Determinants for the consumption of meat, added sugar and fat were estimated

by gender using the appropriate predicted values from the demand of health stock

estimations. The estimates show that food security induced more meat consumption

from women. The only other significant factor for women was lagged meat consump-

tion. This suggests that women’s consumption of meat is highly driven by habitual

behaviors and the magnitude of each coefficient was relatively consistent over all

weight categories.

For men, when marital status was significant, marriage decreased the demand for

meat. This behavior could be caused by two effects. First, a perceived health assump-

tion linking consumption of saturated fat, often found in meat, to decreasing health

may induce familial accountability. Specifically, men maybe more motivated to make

perceived health conscious decisions like reducing meat consumption to prevent pre-

mature death and familial abandonment as a result. Second, this behavior could also

be a reflection of spousal peer effects. Particularly, if women are predominantly in

charge of food preparation lower consumption of meat by women may also influence

male consumption. Being food secure seemed to induce more meat consumption, but

income is found to be a negative determinant of meat consumption. These findings

are somewhat counterintuitive as one would expect a consistent sign between both

variables. A possible explanation is that the positive coefficient on food security

may reflect capital intensity relevant to food preparation in food secure households.

Specifically, for meals-at-home, fresh meat consumption generally requires adequate

refrigeration and preparation tools, which may not necessarily be available in food

insecure households. Additionally, as an effort to hedge for unknown future food
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scarcity, food insecure households may be more inclined to purchase non-perishable

food items, which are typically more carbohydrate intense, require little preparation

and have low risk of spoilage. Contrastingly, the negative coefficient on income maybe

reflective of health investments by richer households in which they substitute away

from animal protein toward perceived health foods. Somewhat eluded in the descrip-

tive statistics, the birth cohort variables show a decrease in meat consumption from

the oldest to the youngest cohorts. Again, this could reflect generational changes in

in eating habits where mitigating meat consumption is believed to be health promot-

ing. This trend is consistent with an overall decline in national meat consumption

(Johnson 2012).

Table 3.6 shows that marriage increased added sugar consumption with increas-

ing magnitude by weight class for women. In particular women who were the most

obese (obese 3) show that marriage has a tremendous effect on sugar consumption

as the coefficient was over 8.5 times larger then the second largest coefficient from

the remaining weight categories. Food security and income also induced more added

sugar consumption for women. A conceivable reason for this is again a reflection of

changing food habits over time. Increase in consumption of fat-free or low-fat foods

as they are perceived to be health boosting may have inadvertently increased added

sugar consumption since these food often contain more sugar to increase palatability.

Weight status was positive, significant and increasing in magnitude by weight classi-

fication. This may suggest that some physiological aspect of obesity maybe driving

the demand for added sugar consumption. Added sugar consumption may also be de-

termined by habit formations as lagged sugar consumption was also significant for all

female estimations and is relatively consistent in magnitude across all BMI categories.
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Weight status also seemed to be a positive factor in sugar demand and appears to

increase in magnitude with higher weight status. It suggests that some physiological

factor may drive the demand for sugar in women.

Income was a positive factor in demand for added sugar for men and increased

in magnitude by weight status. Similar to the women, lagged sugar consumption

was consistent across all BMI categories and was positive and significant. For both

genders it appears that habitual sugar consumption plays a significant role in current

added sugar consumption. As for cohort effects there was an obvious increasing tread

of added sugar consumption among women. The results for men where however, not

easily interpretable across categories. For obese 1 and obese 3, there is an increase in

sugar consumption from oldest to youngest while obese 2 showed an decreasing trend.

Obesity is more prevalent in women across all obese categories (Flegal et al. 2010)

and the cohort results suggest that increased added sugar in women’s diets maybe

attributing to higher preponderance of obesity in women relative to men.

Men and women exhibit comparable behavior for fat consumption. Food secu-

rity and lagged fat consumption were both positive, significant determinants for food

consumption. For both genders, fat consumption was also influenced by habit forma-

tion as the lagged consumption for both genders is positive and significant across all

weight categories.
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Table 3.5: Demand for Meat: Women

(1) (2) (3) (4) (5)
VARIABLES log(BMIt)32 log(% overweightt) log(% obese1t) log(% obese2t) log(% obese3t)
age -0.03 0.03 0.01 0.00 0.06

(0.032) (0.041) (0.035) (0.035) (0.126)
age2 0.00 0.00 0.00 0.00 0.00

(0.000) (0.000) (0.000) (0.000) (0.001)
married 0.04 0.03 0.35 0.38 1.48

(0.151) (0.150) (0.227) (0.277) (2.457)
food secure 0.14 0.47** 0.29* 0.30* 0.12

(0.150) (0.238) (0.168) (0.179) (0.186)
log(income) -0.03 0.10 0.03 -0.39** -0.56

(0.111) (0.144) (0.116) (0.150) (0.613)
2004 0.14 -0.24 -0.22 -0.04 -0.55

(0.228) (0.340) (0.291) (0.270) (1.329)
2006 0.07 -0.29 -0.29 -0.07 -0.44

(0.230) (0.337) (0.294) (0.260) (1.091)
2008 0.11 -0.40 -0.37 -0.09 -0.62

(0.288) (0.439) (0.374) (0.331) (1.481)
2010 0.14 -0.47 -0.44 -0.10 -0.79

(0.360) (0.542) (0.464) (0.411) (1.889)
Born 1920− 1924 0.92 -3.42 -3.21 -1.98 -8.47

(2.093) (3.387) (2.864) (2.789) (16.202)
Born 1925− 1929 0.79 -3.15 -2.91 -1.78 -7.66

(1.922) (3.091) (2.605) (2.532) (14.612)
Born 1930− 1934 0.76 -2.79 -2.54 -1.49 -6.62

(1.780) (2.827) (2.382) (2.306) (12.922)
Born 1935− 1939 0.65 -2.57 -2.38 -1.39 -6.02

(1.627) (2.582) (2.182) (2.107) (11.735)
Born 1940− 1944 0.67 -2.21 -2.03 -1.10 -5.25

(1.460) (2.304) (1.949) (1.867) (10.401)
Born 1945− 1949 0.57 -2.04 -1.86 -0.97 -4.54

(1.310) (2.077) (1.750) (1.662) (9.050)
Born 1950− 1954 0.52 -1.72 -1.59 -0.81 -4.05

(1.147) (1.804) (1.529) (1.448) (8.063)
Born 1955− 1959 0.46 -1.50 -1.35 -0.69 -3.34

(0.982) (1.553) (1.307) (1.241) (6.710)

Born 1960− 1964 0.38 -1.26 -1.11 -0.53 -2.73
(0.820) (1.295) (1.085) (1.023) (5.506)

Born 1965− 1969 0.36 -0.97 -0.88 -0.40 -2.26
(0.661) (1.045) (0.883) (0.831) (4.583)

Born 1970− 1974 0.22 -0.84 -0.79 -0.36 -1.82
(0.513) (0.835) (0.705) (0.650) (3.638)

Born 1975− 1979 0.13 -0.55 -0.52 -0.22 -1.23
(0.348) (0.557) (0.472) (0.429) (2.462)

Born 1980− 1984 0.08 -0.26 -0.22 -0.10 -0.55
(0.186) (0.287) (0.238) (0.226) (1.160)

log(meatt−1) 0.29*** 0.31*** 0.29*** 0.29*** 0.34***
(0.071) (0.069) (0.069) (0.070) (0.069)

log(% overweightt) 0.94**
(0.412)

log(% obese1t) 0.74***
(0.258)

log(% obese2t) 0.47**
(0.195)

log(% obese3t) 1.01
Continued on next page

32The BMI variables designated on the top of each column does not represent the dependent
variable but rather indicates the predicted BMI variable used in the food intake regression
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Table 3.5 – continued from previous page
(1.418)

Constant -1.51 1.24 2.69** 6.95*** 8.97
Observations 195 195 195 195 195
R2 0.650 0.650 0.656 0.651 0.640

Standard errors in parentheses
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

Table 3.6: Demand for Added Sugar: Women

(6) (7) (8) (9) (10)
VARIABLES log(BMIt) log(% overweightt) log(% obese1t) log(% obese2t) log(% obese3t)
age -0.05 0.03 -0.01 -0.02 0.23*

(0.035) (0.044) (0.038) (0.038) (0.132)
age2 0.00*** 0.00*** 0.00*** 0.00*** 0.00**

(0.000) (0.000) (0.000) (0.000) (0.001)
married 0.38** 0.38** 0.64*** 0.67** 5.78**

(0.159) (0.160) (0.240) (0.291) (2.568)
food secure 0.27 0.72*** 0.42** 0.41** 0.42**

(0.168) (0.253) (0.186) (0.195) (0.205)
log(income) 0.25** 0.43*** 0.29** -0.15 -1.31**

(0.118) (0.154) (0.124) (0.149) (0.634)
2004 -1.41*** -1.93*** -1.73*** -1.56*** -4.18***

(0.247) (0.362) (0.312) (0.292) (1.391)
2006 -1.14*** -1.64*** -1.48*** -1.23*** -3.35***

(0.253) (0.362) (0.321) (0.283) (1.148)
2008 -1.22*** -1.92*** -1.67*** -1.36*** -4.27***

(0.311) (0.467) (0.403) (0.356) (1.554)
2010 -1.27*** -2.10*** -1.80*** -1.43*** -5.16**

(0.386) (0.574) (0.497) (0.440) (1.981)
Born 1920− 1924 -1.17 -7.05* -5.03 -3.78 -36.37**

(2.252) (3.591) (3.050) (2.988) (16.942)
Born 1925− 1929 -0.97 -6.31* -4.42 -3.28 -32.68**

(2.069) (3.278) (2.776) (2.715) (15.280)
Born 1930− 1934 -0.90 -5.71* -3.97 -2.89 -28.80**

(1.916) (3.000) (2.540) (2.476) (13.515)
Born 1935− 1939 -0.80 -5.16* -3.60 -2.59 -26.08**

(1.752) (2.741) (2.328) (2.263) (12.274)
Born 1940− 1944 -0.69 -4.58* -3.19 -2.24 -23.11**

(1.572) (2.447) (2.080) (2.007) (10.880)
Born 1945− 1949 -0.56 -4.09* -2.81 -1.91 -20.01**

(1.411) (2.206) (1.868) (1.788) (9.469)
Born 1950− 1954 -0.48 -3.51* -2.43 -1.63 -17.82**

(1.236) (1.917) (1.633) (1.560) (8.436)
Born 1955− 1959 -0.33 -2.97* -2.01 -1.33 -14.75**

(1.059) (1.651) (1.398) (1.337) (7.022)
Born 1960− 1964 -0.24 -2.45* -1.62 -1.04 -12.06**

(0.885) (1.378) (1.161) (1.104) (5.763)

Born 1965− 1969 -0.19 -1.97* -1.33 -0.85 -10.06**
(0.715) (1.113) (0.946) (0.899) (4.797)

Born 1970− 1974 -0.16 -1.59* -1.09 -0.66 -7.95**
(0.555) (0.888) (0.754) (0.703) (3.808)

Born 1975− 1979 -0.11 -1.04* -0.71 -0.40 -5.36**
(0.376) (0.593) (0.506) (0.465) (2.577)

Born 1980− 1984 -0.03 -0.49 -0.30 -0.18 -2.48**
(0.201) (0.306) (0.255) (0.245) (1.215)

log(BMIt) 1.82***
(0.617)

Continued on next page
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Table 3.6 – continued from previous page
log(% overweightt) 1.26***

(0.426)
log(% obese1t) 0.78***

(0.264)
log(% obese2t) 0.50**

(0.199)
log(% obese3t) 3.35**

(1.480)
log(addedsugart−1) 0.26*** 0.26*** 0.25*** 0.27*** 0.24***

(0.081) (0.081) (0.081) (0.082) (0.082)
Constant -4.35 -0.85 1.43 5.88*** 19.61***

(2.827) (1.805) (1.303) (1.543) (7.303)
Observations 195 195 195 195 195
R2 0.954 0.954 0.954 0.954 0.953

Standard errors in parentheses
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

Table 3.7: Demand for Fat: Women

(11) (12) (13) (14) (15)
VARIABLES log(BMIt) log(% overweightt) log(% obese1t) log(% obese2t) log(% obese3t)
age -0.02 -0.02 -0.00 -0.00 -0.01

(0.027) (0.034) (0.029) (0.029) (0.105)
age2 -0.00 -0.00 0.00 0.00 -0.00

(0.000) (0.000) (0.000) (0.000) (0.001)
married -0.18 -0.21* -0.01 0.14 -0.15

(0.125) (0.126) (0.188) (0.226) (2.059)
food secure 0.48*** 0.43** 0.55*** 0.61*** 0.48***

(0.136) (0.204) (0.150) (0.158) (0.169)
log(income) -0.08 -0.11 -0.03 -0.20* -0.09

(0.093) (0.121) (0.098) (0.116) (0.509)
2004 0.13 0.20 -0.04 -0.08 0.12

(0.192) (0.283) (0.244) (0.224) (1.112)
2006 0.09 0.16 -0.08 -0.10 0.08

(0.193) (0.281) (0.246) (0.216) (0.913)
2008 0.12 0.21 -0.10 -0.13 0.10

(0.242) (0.365) (0.313) (0.275) (1.240)
2010 0.19 0.30 -0.08 -0.12 0.17

(0.302) (0.451) (0.388) (0.341) (1.582)
Born 1920− 1924 1.00 1.68 -0.73 -1.44 0.79

(1.757) (2.813) (2.388) (2.300) (13.575)
Born 1925− 1929 0.93 1.54 -0.64 -1.27 0.74

(1.614) (2.568) (2.173) (2.089) (12.243)
Born 1930− 1934 0.91 1.47 -0.51 -1.06 0.74

(1.495) (2.350) (1.988) (1.904) (10.826)
Born 1935− 1939 0.82 1.33 -0.48 -0.99 0.67

(1.366) (2.146) (1.821) (1.740) (9.832)
Born 1940− 1944 0.79 1.25 -0.36 -0.79 0.66

(1.226) (1.916) (1.628) (1.543) (8.715)
Born 1945− 1949 0.71 1.12 -0.33 -0.69 0.59

(1.100) (1.727) (1.462) (1.375) (7.584)
Born 1950− 1954 0.65 1.01 -0.26 -0.56 0.55

(0.964) (1.501) (1.278) (1.199) (6.756)
Born 1955− 1959 0.59 0.90 -0.19 -0.45 0.50

(0.825) (1.292) (1.093) (1.027) (5.622)
Born 1960− 1964 0.50 0.75 -0.14 -0.34 0.43

(0.689) (1.078) (0.908) (0.848) (4.613)
Born 1965− 1969 0.40 0.61 -0.12 -0.29 0.34

Continued on next page

92



Table 3.7 – continued from previous page
(0.556) (0.871) (0.739) (0.689) (3.841)

Born 1970− 1974 0.33 0.50 -0.11 -0.23 0.28
(0.431) (0.695) (0.589) (0.539) (3.050)

Born 1975− 1979 0.23 0.34 -0.06 -0.14 0.20
(0.293) (0.464) (0.395) (0.356) (2.064)

Born 1980− 1984 0.11 0.17 -0.03 -0.07 0.10
(0.156) (0.239) (0.200) (0.188) (0.973)

log(BMIt−1) -0.01
(0.489)

log(% overweightt) -0.10
(0.336)

log(% obese1t) 0.20
(0.209)

log(% obese2t) 0.23
(0.155)

log(% obese3t) 0.02
(1.189)

log(fatt−1) 0.40*** 0.40*** 0.39*** 0.39*** 0.40***
(0.071) (0.071) (0.071) (0.071) (0.073)

Constant 3.25 3.53** 2.76*** 4.48*** 3.30
(2.171) (1.369) (0.972) (1.216) (5.911)

Observations 195 195 195 195 195
R2 0.755 0.755 0.756 0.758 0.755

Standard errors in parentheses
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

Table 3.8: Demand for Meat: Men

(1) (2) (3) (4) (5)
VARIABLES log(BMIt) log(% overweightt) log(% obese1t) log(% obese2t) log(% obese3t)
age -0.07* -0.10** 0.02 -0.19* -0.03

(0.034) (0.039) (0.042) (0.104) (0.030)
age2 -0.00 0.00 -0.00*** 0.00 -0.00***

(0.000) (0.000) (0.001) (0.002) (0.000)
married -0.34*** -0.65*** -0.83*** 2.13 -1.07***

(0.098) (0.208) (0.243) (1.597) (0.404)
food secure 0.35** 0.37** 0.57*** -0.28 -0.18

(0.150) (0.146) (0.166) (0.467) (0.315)
log(income) -0.30** -0.33*** 0.50 -1.33* 0.37

(0.134) (0.123) (0.326) (0.730) (0.317)
2002 -0.43** -0.47** -1.14*** 0.30 -0.78***

(0.191) (0.189) (0.348) (0.505) (0.265)
2004 -0.20***

(0.061)
2006 0.08** 0.10*** 0.17*** 0.05 -0.11*

(0.031) (0.029) (0.044) (0.046) (0.058)
2008 0.18*** 0.23*** 0.44*** -0.33

(0.059) (0.059) (0.119) (0.353)
2010 0.36*** 0.42*** 0.83*** -0.41 0.14**

(0.114) (0.113) (0.221) (0.528) (0.066)
Born 1920− 1924 4.46** 4.59*** 11.96*** -10.65 9.11***

(1.764) (1.749) (3.615) (9.980) (3.187)
Born 1925− 1929 4.11** 4.23*** 11.10*** -9.44 8.34***

(1.630) (1.615) (3.351) (8.984) (2.899)
Born 1930− 1934 3.76** 3.92*** 10.11*** -8.20 7.47***

(1.512) (1.497) (3.056) (7.934) (2.603)
Born 1935− 1939 3.48** 3.71*** 8.98*** -6.74 6.43***

(1.373) (1.364) (2.684) (6.772) (2.205)
Continued on next page
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Table 3.8 – continued from previous page
Born 1940− 1944 3.17** 3.40*** 8.06*** -6.11 5.89***

(1.237) (1.229) (2.392) (6.154) (2.010)
Born 1945− 1949 2.85** 3.10*** 6.99*** -4.95 5.15***

(1.107) (1.103) (2.063) (5.163) (1.756)
Born 1950− 1954 2.51** 2.74*** 5.79*** -3.61 4.34***

(0.967) (0.966) (1.692) (4.049) (1.474)
Born 1955− 1959 2.26*** 2.48*** 4.84*** -2.76 3.69***

(0.833) (0.835) (1.374) (3.319) (1.221)
Born 1960− 1964 1.90*** 2.12*** 4.05*** -1.89 3.04***

(0.698) (0.702) (1.145) (2.521) (0.997)
Born 1965− 1969 1.58*** 1.70*** 3.66*** -2.85 2.82***

(0.561) (0.559) (1.040) (2.924) (0.919)
Born 1970− 1974 1.15*** 1.24*** 2.80*** -2.31 2.35***

(0.426) (0.420) (0.802) (2.308) (0.785)
Born 1975− 1979 0.77*** 0.80*** 2.04*** -1.95 1.69***

(0.289) (0.286) (0.602) (1.807) (0.584)
Born 1980− 1984 0.45*** 0.47*** 1.20*** -1.00 0.86***

(0.162) (0.159) (0.347) (0.971) (0.276)
log(meatt−1) 0.00 0.02 0.01 0.03 0.02

(0.074) (0.072) (0.071) (0.072) (0.072)
log(BMIt) 1.44

(1.362)
log(% overweightt) 0.99*

(0.525)
log(% obese1t) -2.00**

(0.854)
log(% obese2t) 3.41

(2.265)
log(% obese3t) -0.98**

(0.486)
Constant 3.47 9.58*** -4.63 28.10** -1.24

(3.404) (1.836) (5.037) (14.143) (4.194)
Observations 195 195 195 194 193
R2 0.742 0.745 0.748 0.741 0.745

Table 3.9: Demand for Added Sugar: Men

(6) (7) (8) (9) (10)
VARIABLES log(BMIt) log(% overweightt) log(% obese1t) log(% obese2t) log(% obese3t)
age -0.08* -0.04 0.04 -0.28** -0.03

(0.040) (0.046) (0.050) (0.124) (0.036)
age2 0.00*** 0.00 -0.00* 0.01** -0.00

(0.000) (0.000) (0.001) (0.003) (0.000)
married -0.15 -0.14 -0.60** 3.91** -1.05**

(0.110) (0.250) (0.288) (1.906) (0.485)
food secure -0.03 0.04 0.24 -1.05* -0.66*

(0.180) (0.179) (0.200) (0.562) (0.382)
log(income) 0.26* 0.43*** 1.20*** -1.34 1.21***

(0.156) (0.149) (0.388) (0.872) (0.381)
2002 1.38*** 1.33*** 0.63 3.43*** 0.74*

(0.225) (0.227) (0.415) (1.221) (0.384)
2004 0.91 -0.37**

(0.629) (0.162)
2006 0.34*** 0.38*** 0.46*** 1.21** 0.01

(0.105) (0.107) (0.113) (0.589) (0.134)
2008 0.31*** 0.35*** 0.60*** 0.39* 0.01

(0.117) (0.122) (0.174) (0.215) (0.079)
2010 0.32* 0.38** 0.84***

Continued on next page
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(0.160) (0.165) (0.281)

Born 1920− 1924 0.48 0.62 8.30* -23.95** 7.19*
(2.069) (2.096) (4.312) (11.897) (3.829)

Born 1925− 1929 0.36 0.54 7.68* -21.54** 6.49*
(1.912) (1.936) (3.996) (10.710) (3.482)

Born 1930− 1934 0.32 0.54 7.01* -18.96** 5.77*
(1.773) (1.794) (3.645) (9.459) (3.127)

Born 1935− 1939 0.42 0.58 6.17* -16.06** 4.80*
(1.612) (1.635) (3.201) (8.073) (2.649)

Born 1940− 1944 0.35 0.51 5.47* -14.61** 4.39*
(1.452) (1.473) (2.852) (7.336) (2.414)

Born 1945− 1949 0.39 0.50 4.70* -12.18** 3.81*
(1.300) (1.323) (2.461) (6.156) (2.109)

Born 1950− 1954 0.48 0.51 3.86* -9.40* 3.20*
(1.136) (1.158) (2.018) (4.828) (1.771)

Born 1955− 1959 0.43 0.45 3.07* -7.67* 2.59*
(0.980) (1.002) (1.639) (3.958) (1.466)

Born 1960− 1964 0.37 0.42 2.59* -5.72* 2.11*
(0.821) (0.842) (1.366) (3.007) (1.198)

Born 1965− 1969 0.26 0.33 2.44* -6.88* 2.10*
(0.659) (0.671) (1.240) (3.487) (1.105)

Born 1970− 1974 0.13 0.25 1.90** -5.43* 1.89**
(0.500) (0.505) (0.956) (2.753) (0.944)

Born 1975− 1979 0.15 0.19 1.48** -4.26** 1.46**
(0.339) (0.343) (0.717) (2.155) (0.701)

Born 1980− 1984 0.04 0.10 0.85** -2.29** 0.66**
(0.190) (0.191) (0.414) (1.158) (0.332)

log(BMIt) 3.41**
(1.563)

log(% overweightt) 0.23
(0.636)

log(% obese1t) -2.07**
(1.018)

log(% obese2t) 5.60**
(2.701)

log(% obese3t) -1.25**
(0.585)

log(addedsugart−1) 0.28*** 0.29*** 0.29*** 0.30*** 0.29***
(0.071) (0.073) (0.071) (0.071) (0.071)

Constant -10.07** -1.31 -13.90** 31.98* -11.86**
(3.963) (2.183) (6.030) (16.223) (5.077)

Observations 195 195 195 194 193
R2 0.952 0.950 0.951 0.952 0.952

Standard errors in parentheses
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

Table 3.10: Demand for Fat: Men

(11) (12) (13) (14) (15)
VARIABLES log(BMIt) log(% overweightt) log(% obese1t) log(% obese2t) log(% obese3t)
age -0.04 -0.00 0.03 -0.03 -0.01

(0.030) (0.035) (0.038) (0.094) (0.027)
age2 0.00 -0.00 -0.00 0.00 0.00

(0.000) (0.000) (0.001) (0.002) (0.000)
married -0.13 -0.01 -0.33 0.36 0.21

(0.084) (0.186) (0.217) (1.438) (0.366)
food secure 0.32** 0.37*** 0.46*** 0.25 0.55*

(0.135) (0.135) (0.153) (0.420) (0.288)
Continued on next page
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Table 3.10 – continued from previous page
log(income) 0.04 0.18 0.53* -0.04 -0.04

(0.117) (0.113) (0.294) (0.656) (0.288)
2002 -0.04 -0.06 -0.42 0.08 0.04

(0.168) (0.169) (0.312) (0.454) (0.240)
2004 0.00

(0.055)
2006 0.02 0.04 0.08** 0.04 0.05

(0.027) (0.027) (0.040) (0.041) (0.053)
2008 -0.00 0.01 0.14 -0.08

(0.052) (0.054) (0.107) (0.318)
2010 0.03 0.06 0.30 -0.07 0.05

(0.100) (0.101) (0.198) (0.475) (0.059)
Born 1920− 1924 1.13 1.23 5.03 -1.55 -0.89

(1.555) (1.568) (3.246) (8.979) (2.893)
Born 1925− 1929 0.91 1.05 4.57 -1.45 -0.87

(1.438) (1.448) (3.009) (8.083) (2.631)
Born 1930− 1934 0.81 0.96 4.16 -1.26 -0.76

(1.333) (1.343) (2.744) (7.139) (2.363)
Born 1935− 1939 0.79 0.87 3.67 -1.01 -0.53

(1.211) (1.223) (2.410) (6.092) (2.002)
Born 1940− 1944 0.68 0.76 3.25 -0.94 -0.52

(1.092) (1.103) (2.148) (5.537) (1.825)
Born 1945− 1949 0.63 0.66 2.79 -0.76 -0.44

(0.977) (0.990) (1.853) (4.645) (1.594)
Born 1950− 1954 0.62 0.59 2.30 -0.52 -0.31

(0.853) (0.867) (1.519) (3.643) (1.338)
Born 1955− 1959 0.57 0.53 1.88 -0.38 -0.20

(0.735) (0.750) (1.234) (2.986) (1.108)
Born 1960− 1964 0.44 0.42 1.55 -0.27 -0.16

(0.616) (0.630) (1.028) (2.268) (0.905)
Born 1965− 1969 0.37 0.39 1.46 -0.41 -0.19

(0.495) (0.502) (0.934) (2.631) (0.835)
Born 1970− 1974 0.20 0.27 1.10 -0.37 -0.25

(0.376) (0.377) (0.720) (2.077) (0.713)
Born 1975− 1979 0.14 0.18 0.81 -0.32 -0.22

(0.255) (0.257) (0.540) (1.626) (0.530)
Born 1980− 1984 0.08 0.12 0.49 -0.15 -0.06

(0.143) (0.142) (0.312) (0.874) (0.251)
log(BMIt) 2.14*

(1.195)
log(% overweightt) -0.16

(0.472)
log(% obese1t) -1.02

(0.767)
log(% obese2t) 0.58

(2.039)
log(% obese3t) 0.32

(0.441)
log(fatt−1) 0.29*** 0.31*** 0.31*** 0.32*** 0.31***

(0.070) (0.070) (0.069) (0.069) (0.070)
Constant -3.82 0.84 -4.60 4.96 3.93

(3.012) (1.632) (4.525) (12.715) (3.805)
Observations 195 195 195 194 193
R2 0.807 0.803 0.805 0.800 0.799

Standard errors in parentheses
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

It is suspect that food security maybe over controlling for income. To investigate

further, additional estimations excluding food security can be found in appendix D.
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When comparing results from both models the estimates show that in general the

coefficients are similar in magnitude and sign. In fact, in some instances the inclusive

model yields more significant results for income.33 The only major discrepancies in

income are for male demand for health stock and demand for fat, which are significant

in the controlled model, but not in the inclusive model.

3.5 Conclusions

Obesity continues to be a pervasive problem in the United States. Without in-

tervention obesity has the potential to impose financial stress on the economy and

decrease individual welfare. Despite this looming crisis, much of the social science lit-

erature studies the determinants of obesity as a static model. But, as can be attested,

obesity is a time dependent problem and thus most social science obesity studies are

merely correlational. To the best of my knowledge this is the first paper to exploit

RCS to form a dynamic model using US data. In this paper I construct cohorts

based on birth year, race and gender. The transformed data is then used to apply

the Grossman Model for dynamic health human capital.

The results suggest that men experience moderate amounts of marital induced

weight gain, while women were much more likely to be less heavy because of increased

nutritional accountability for other household members. Like the previous literature,

women exhibited an inverse relationship with socioeconomic factors (in this case food

security and income). Men also did not show evidence that past realizations of weight

effect current weight status. This was not the case for women in which the lagged

regressor was positive and significant for most estimations. This implies that men do

33For example, tables D.3 and D.6 show less significance in income.
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not suffer from a “weight legacy” and can change current weight outcomes despite

previous weight status.

In terms of food consumption there were general trends suggesting that the youngest

cohorts eat more sugar and increasingly less meat. It suggests that there are gener-

ational shifts in food consumption toward a less animal protein, higher added sugar

diet. The preponderance of obesity is distinctly higher among women for overweight

and all obese categories. The findings in this study found that women’s demand for

added sugar is driven by socioeconomic factors, marital status and weight status.

This may suggest that elevated levels of obesity in women may at least partially be

determined by added sugar consumption which may be amplified by physiological

factors inducing increased sugar consumption as weight increases. Habit formation

was also a recurring factor for both genders. These results imply that effective in-

tervention will involve efforts to reduce sugar consumption, increase animal protein

consumption and break habit formation.
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Appendix A: Tiebout Sorting Model

Figure A.1 is an illustrative example of the Tiebout Sorting Model for one simu-

lation. The sorting criterion is based on income class and is determined by teritiles.

The first teritile or the poorest individuals are represented in red while the middle

teritile agents are yellow and green agents represent the last teritile. There are two

icons represented in figure A.1. The icons, which look like people, are the individual

agents. Size corresponds to their current BMI and their initial coordinates represent

the position of their household, which effects their local food environment. The other

icon represents the restaurants and color and coordinates are similarly representative

of income class and location.
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Figure A.1: Depiction of Tiebout Sorting Model
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Appendix B: Monthly Food Prices
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Table B.1: U.S. City Average Price Data

Carbohydrate Rich Foods
Food item Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999
Flour, white, all purpose, per lb. (453.6 gm) 0.297 0.293 0.289 0.283 0.306 0.303 0.308 0.311 0.31 0.288 0.272 0.267
Rice, white, long grain, uncooked, per lb. (453.6 gm) 0.551 0.54 0.544 0.548 0.551 0.553 0.55 0.557 0.547 0.511 0.488 0.502
Spaghetti and macaroni, per lb. (453.6 gm) 0.872 0.88 0.883 0.888 0.887 0.882 0.88 0.877 0.882 0.849 0.882 0.881
Bread, white, pan, per lb. (453.6 gm) 0.872 0.88 0.883 0.897 0.886 0.885 0.893 0.884 0.878 0.889 0.899 0.899
Bread, whole wheat, pan, per lb. (453.6 gm) 1.302 1.308 1.319 1.27 1.332 1.306 1.344 1.348 1.342 1.371 1.361 1.363
Cookies, chocolate chip, per lb. (453.6 gm) 2.61 2.594 2.607 2.564 2.573 2.54 2.609 2.602 2.583 2.584 2.627 2.673
Crackers, soda, salted, per lb. (453.6 gm) 1.59 1.559 1.52 1.615 1.595 1.696 1.714 1.643 1.612 1.535 1.608 1.65
Apples, Red Delicious, per lb. (453.6 gm) 0.86 0.87 0.852 0.87 0.881 0.893 0.905 0.921 0.972 0.919 0.902 0.918
Bananas, per lb. (453.6 gm) 0.489 0.509 0.506 0.482 0.492 0.502 0.494 0.49 0.481 0.471 0.48 0.494
Oranges, Navel, per lb. (453.6 gm) 0.83 0.889 0.869 0.944 0.884 0.641
Oranges, Valencia, per lb. (453.6 gm) 0.865 0.942 0.959 0.989 0.974 0.955
Grapefruit, per lb. (453.6 gm) 0.543 0.545 0.546 0.556 0.606 0.712 0.778 0.803 0.762 0.71 0.631 0.582
Lemons, per lb. (453.6 gm) 1.402 1.274 1.167 1.188 1.159 1.183 1.282 1.397 1.463 1.535 1.538 1.414
Pears, Anjou, per lb. (453.6 gm) 0.923 0.925 0.942 0.953 0.96 0.913 1.034
Peaches, per lb. (453.6 gm) 1.856 1.941 1.413 1.16 1.098 1.1
Strawberries, dry pint, per 12 oz. (340.2 gm) 2.102 1.96 1.751 1.419 1.49 1.375 1.557 1.679 1.664 1.948
Grapes, Thompson Seedless, per lb. (453.6 gm) 2.341 1.663 1.613 2.262 1.864 1.678 1.522 1.453 1.557 1.897 2.403
Potatoes, white, per lb. (453.6 gm) 0.381 0.382 0.384 0.38 0.388 0.391 0.411 0.429 0.413 0.393 0.384 0.395
Lettuce, iceberg, per lb. (453.6 gm) 0.649 0.658 0.774 0.753 0.691 0.652 0.627 0.652 0.623 0.669 0.677 0.668
Tomatoes, field grown, per lb. (453.6 gm) 1.904 1.476 1.395 1.298 1.284 1.304 1.287 1.232 1.272 1.279 1.3 1.405
Cabbage, per lb. (453.6 gm) 0.425 0.412 0.396 0.406 0.421 0.42 0.402 0.414 0.429 0.435 0.445 0.424
Celery, per lb. (453.6 gm) 0.59 0.563 0.563 0.55 0.556 0.621 0.63 0.607 0.586 0.554 0.56 0.563
Carrots, short trimmed and topped, per lb. (453.6 gm) 0.552 0.575 0.578 0.578 0.604 0.587 0.574 0.572 0.521 0.527 0.544 0.523
Peppers, sweet, per lb. (453.6 gm) 1.429 1.311 1.334 1.456 1.622 1.308 1.429 1.25 1.321 1.308 1.617 1.53
Cucumbers, per lb. (453.6 gm) 1.07 0.91 0.833 0.764 0.709 0.726 0.798 0.955 0.976 0.841
Broccoli, per lb. (453.6 gm) 1.123 0.999 0.99 1.012 0.952 0.944 0.993 0.962 1.052 1.028 1.001 1.004
Orange juice, frozen concentrate, 12 oz. can, per 16 oz. (473.2 ml) 1.753 1.78 1.741 1.779 1.764 1.758 1.813 1.825 1.825 1.784 1.841 1.822
Potatoes, frozen, French fried, per lb. (453.6 gm) 1 1.022 0.969 0.995 1.03 1.003 0.955 1.042 1.036 1.076 1.032 1.039
Sugar, white, all sizes, per lb. (453.6 gm) 0.436 0.43 0.437 0.432 0.436 0.431 0.432 0.431 0.437 0.438 0.426 0.426
Sugar, white, 33-80 oz. pkg, per lb. (453.6 gm) 0.421 0.412 0.421 0.415 0.42 0.415 0.417 0.415 0.422 0.422 0.408 0.408
Cola, nondiet, per 2 liters (67.6 oz) 1.044 1.023 1.012 1.031 1.074 1.02 1.052 1.044 1.034 1.052 1.004 1.029
Potato chips, per 16 oz. 3.217 3.223 3.249 3.264 3.212 3.235 3.255 3.279 3.237 3.289 3.299 3.33

Continued on next page
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Table B.1 – continued from previous page

Protein Rich Foods
Food Item Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999

Ham, rump or shank half, bone-in, smoked,per lb. (453.6 gm) 2.03 1.961 1.974 2.118 2.152
Ham, boneless, excluding canned, per lb. (453.6 gm) 2.718 2.813 2.837 2.721 2.793 2.866 3.007 3.032 3.025 2.947 2.838 2.766
Sausage, fresh, loose, per lb. (453.6 gm) 2.362 2.311 2.366 2.387 2.45 2.441 2.485 2.498 2.457 2.439 2.385 2.502
Bologna, all beef or mixed, per lb. (453.6 gm) 2.41 2.451 2.448 2.388 2.424 2.382 2.315 2.417 2.346 2.514 2.481 2.521
Chicken, fresh, whole, per lb. (453.6 gm) 1.072 1.064 1.057 1.057 1.026 1.041 1.045 1.043 1.08 1.055 1.078 1.053
Chicken breast, bone-in, per lb. (453.6 gm) 2.072 2.036 2.084 2.111 2.039 2.077 2.062 2.063 2.103 2.088 2.111 2.075
Chicken legs, bone-in, per lb. (453.6 gm) 1.274 1.28 1.281 1.253 1.237 1.283 1.316 1.284 1.269 1.274 1.268 1.168
Turkey, frozen, whole, per lb. (453.6 gm) 0.969 1.001 0.984 0.936 0.975 1.005 1.031 1.034 1.018 1.025 0.964 0.976
Tuna, light, chunk, per lb. (453.6 gm) 2.095 2.071 2.04 2.119 2.145 2.018 2.038 2.071 2.05 2.036 2.112 2.032
Beans, dried, any type, all sizes, per lb. (453.6 gm) 0.689 0.696 0.697 0.695 0.7 0.707 0.7 0.703 0.689 0.689 0.704 0.688
All uncooked ground beef, per lb. (453.6 gm) 1.849 1.887 1.87 1.884 1.869 1.889 1.861 1.877 1.916 1.925 1.93 1.933
All Uncooked Beef Roasts, per lb. (453.6 gm) 2.654 2.668 2.688 2.71 2.67 2.701 2.724 2.712 2.745 2.786 2.75 2.739
All Uncooked Beef Steaks, per lb. (453.6 gm) 3.69 3.676 3.669 3.697 3.746 3.783 3.78 3.772 3.782 3.822 3.862 3.882
All Uncooked Other Beef (Excluding Veal), per lb. (453.6 gm) 2.176 2.209 2.237 2.222 2.217 2.233 2.215 2.241 2.248 2.288 2.33 2.337
All Ham (Excluding Canned Ham 2.009 1.983 2.019 1.926 1.99 2.017 2.074 2.084 2.097 2.182 2.172 2.116
and Luncheon Slices), per lb. (453.6 gm)
All Pork Chops, per lb. (453.6 gm) 2.866 2.99 2.937 2.951 3.007 3.026 3.043 3.066 3.112 3.057 3.056 3.061
All Other Pork (Excluding Canned Ham 1.632 1.646 1.647 1.651 1.67 1.666 1.654 1.675 1.71 1.654 1.713 1.673
and Luncheon Slices), per lb. (453.6 gm)

Fat Rich Foods

Food Item Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999

Butter, salted, grade AA, stick, per lb. (453.6 gm) 3.002 2.801 2.739 2.703 2.546 2.648 2.67 2.722 2.628 2.656 2.449 2.272
Shortening, vegetable oil blends, per lb. (453.6 gm) 1.053 1.053 1.055 1.05 1.053 1.046 1.052 1.053 1.041 1.027 0.996 1.037
Peanut butter, creamy, all sizes, per lb. (453.6 gm) 1.769 1.788 1.818 1.822 1.809 1.817 1.831 1.819 1.823 1.83 1.835 1.861
(Source: http://www.bls.gov/data/)
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Appendix C: Derivation of Optimal Solution for Health

Stock

Taking into account equations 1.1-1.5, the Hamiltonian is the following:

Λ = eρtU [s(H(t)), Z(t)] + λ(t)[rA(t) + Y [s(H(t))]

− π(t)HI(t)− π(t)ZZ(t)] + µ(t)[I(D(t), tp)− δ(t, R(t))H(t)] (C.1)

λ(t) and µ(t) are time dependent shadow prices for pecuniary assets and health

stock respectively. H(t) and A(t) are state variables while I(t) and Z(t) are control

variables. Taking the partial derivatives with respect to the control variables I(t) and

Z(t) and setting to zero yields the following:

∂Λ

∂I(t)
= µ(t)− λ(t) πH(t) (C.2)

And

∂Λ

∂Z(t)
= e−ρt

∂U(t)

∂Z(t)
− λ(t)πZ(t) = 0 (C.3)

Taking derivatives of C.2 with respect to t results in,

µ̇(t) = λ̇(t)πH(t) + λ(t)π̇H (C.4)
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The derivative of the Hamiltonian with respect to the state variables should be

equal the negative of the derivative of the Lagrangian multiplier with respect to time

and yields,

∂Λ

∂H(t)
= −µ̇(t) = e−ρt

∂U(t)

∂s(t)

∂s(t)

∂H(t)
+ λ(t)

∂Y (t)

∂s(t)

∂s(t)

∂H(t)
− µ(t)δ(t, R(t)) (C.5)

And

∂Λ

∂A(t)
= −λ̇(t) = rλ(t) (C.6)

We integrate C.6 with respect to t to get a value for λ(t),

λ(t) = λ(0)e−rt (C.7)

Setting C.4 equal to C.5 and

−(λ̇(t)πH(t) +λ(t)π̇H) = e−ρt
∂U(t)

∂s(t)

∂s(t)

∂H(t)
+λ(t)

∂Y (t)

∂s(t)

∂s(t)

∂H(t)
−µ(t)δ(t, R(t)) (C.8)

Substituting using C.2, C.4, C.6 and C.7,

rλ(0)e−rtπH(t) + λ(0)e−rtπ̇H =

e−ρt
∂U(t)

∂s(t)

∂s(t)

∂H(t)
+ λ(0)e−rt

∂Y (t)

∂s(t)

∂s(t)

∂H(t)

− λ(0)e−rtπH(t)δ(t, R(t)) (C.9)

Finally, we rearrange to get 2.5{
∂U(t)/δs(t)))

∂π(0)
e−(ρ−r)t) +

∂Y (t)

∂s(t)

}
∂s(t)

∂H(t)
=

{
r + δ(t)− π̇H(t)

πH(t)
πH(t)

}
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Appendix D: Demand for Health Stock and Health Inputs

Excluding Food Security

Table D.1: Demand for Health Stock: Women

(1) (2) (3) (4) (5)
VARIABLES log(BMIt) log(% overweightt) log(% obese1t) log(% obese2t) log(% obese3t)

log(BMIt−t) 0.37***
(0.067)

log(% overweightt−1) 0.23***
(0.065)

log(% obese1t−1) 0.17**
(0.071)

log(% obese2t−1) 0.15**
(0.069)

log(% obese3t−1) 0.01
(0.079)

age -0.00 -0.06* -0.05 -0.05 -0.08
(0.010) (0.030) (0.055) (0.077) (0.117)

age2 -0.00*** -0.00*** -0.00*** -0.00*** -0.00***
(0.000) (0.000) (0.000) (0.000) (0.000)

married -0.15*** -0.26*** -0.73*** -1.27*** -1.72***
(0.027) (0.069) (0.133) (0.184) (0.274)

log(income) -0.07** -0.36*** -0.33** 0.33 0.39
(0.028) (0.082) (0.147) (0.205) (0.310)

2004 0.15** 0.64*** 0.79** 0.83* 0.91
(0.065) (0.189) (0.351) (0.494) (0.746)

2006 0.15** 0.64*** 0.81** 0.78 0.75
(0.064) (0.188) (0.349) (0.491) (0.740)

2008 0.18** 0.86*** 1.05** 1.02 1.02
(0.082) (0.238) (0.441) (0.621) (0.936)

2010 0.23** 1.08*** 1.31** 1.28* 1.31
(0.101) (0.295) (0.548) (0.771) (1.162)

Born 1920− 1924 1.14* 6.40*** 7.91** 9.46** 11.21
(0.604) (1.766) (3.277) (4.617) (6.962)

Born 1925− 1929 1.04* 5.81*** 7.12** 8.48** 10.10
(0.556) (1.624) (3.014) (4.246) (6.404)

Born 1930− 1934 0.96* 5.29*** 6.45** 7.60* 8.92
(0.514) (1.502) (2.789) (3.927) (5.923)

Born 1935− 1939 0.89* 4.81*** 5.92** 6.95* 8.10
(0.468) (1.368) (2.538) (3.574) (5.391)

Born 1940− 1944 0.78* 4.29*** 5.27** 6.07* 7.18
(0.422) (1.233) (2.288) (3.221) (4.859)

Continued on next page
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Table D.1 – continued from previous page
Born 1945− 1949 0.70* 3.86*** 4.72** 5.34* 6.24

(0.379) (1.106) (2.053) (2.890) (4.360)
Born 1950− 1954 0.61* 3.35*** 4.13** 4.65* 5.56

(0.331) (0.968) (1.796) (2.529) (3.815)
Born 1955− 1959 0.51* 2.87*** 3.50** 3.94* 4.62

(0.285) (0.833) (1.545) (2.176) (3.282)
Born 1960− 1964 0.42* 2.39*** 2.89** 3.21* 3.79

(0.238) (0.697) (1.293) (1.820) (2.746)
Born 1965− 1969 0.33* 1.93*** 2.37** 2.63* 3.16

(0.193) (0.562) (1.044) (1.469) (2.216)
Born 1970− 1974 0.28* 1.56*** 1.96** 2.13* 2.51

(0.146) (0.426) (0.791) (1.113) (1.678)
Born 1975− 1979 0.20** 1.04*** 1.31** 1.39* 1.70

(0.098) (0.286) (0.531) (0.746) (1.126)
Born 1980− 1984 0.10* 0.53*** 0.63** 0.72* 0.80

(0.053) (0.155) (0.288) (0.405) (0.611)
Constant 2.76*** 3.90*** 3.09** -4.03* -4.63

(0.400) (0.836) (1.514) (2.117) (3.196)

Observations 195 195 195 195 195
R2 0.744 0.698 0.545 0.459 0.416

Standard errors in parentheses
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

Table D.2: Demand for Health Stock: Men

(1) (2) (3) (4) (5)
VARIABLES log(BMIt) log(% overweightt) log(% obese1t) log(% obese2t) log(% obese3t)

log(BMIt) 0.19***
(0.072)

log(% overweightt−1) 0.12
(0.073)

log(% obese1t−1) -0.04
(0.071)

log(% obese2t−1) 0.01
(0.076)

log(% obese3t−1) -0.04
(0.077)

age 0.01 0.03 0.04 0.04 0.01
(0.008) (0.035) (0.067) (0.110) (0.132)

age2 -0.00*** -0.00*** -0.00*** -0.00*** -0.00**
(0.000) (0.000) (0.000) (0.000) (0.000)

married 0.02 0.32*** -0.27 -0.71** -0.79**
(0.024) (0.100) (0.187) (0.316) (0.369)

log(income) 0.06** 0.11 0.42** 0.41 0.34
(0.023) (0.096) (0.186) (0.317) (0.370)

2004 0.04 0.06 0.31 0.23 0.17
(0.053) (0.223) (0.426) (0.705) (0.842)

2006 0.04 0.05 0.35 0.23 0.20
(0.052) (0.220) (0.421) (0.697) (0.834)

2008 0.05 0.04 0.42 0.37 0.25
(0.066) (0.277) (0.530) (0.879) (1.053)

2010 0.06 0.06 0.51 0.44 0.23
(0.082) (0.346) (0.661) (1.096) (1.311)

Born 1920− 1924 0.27 0.65 3.47 4.55 5.09
(0.491) (2.057) (3.932) (6.523) (7.785)

Born 1925− 1929 0.27 0.65 3.23 4.11 4.56
Continued on next page
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Table D.2 – continued from previous page
(0.453) (1.901) (3.630) (6.018) (7.201)

Born 1930− 1934 0.26 0.55 2.93 3.63 4.00
(0.420) (1.761) (3.364) (5.581) (6.663)

Born 1935− 1939 0.21 0.40 2.54 3.10 3.21
(0.382) (1.602) (3.059) (5.076) (6.061)

Born 1940− 1944 0.20 0.34 2.25 2.82 2.97
(0.344) (1.444) (2.756) (4.573) (5.462)

Born 1945− 1949 0.16 0.24 1.90 2.36 2.56
(0.308) (1.293) (2.469) (4.096) (4.893)

Born 1950− 1954 0.12 0.17 1.50 1.85 2.07
(0.269) (1.130) (2.159) (3.580) (4.277)

Born 1955− 1959 0.10 0.11 1.17 1.52 1.64
(0.232) (0.974) (1.861) (3.086) (3.688)

Born 1960− 1964 0.09 0.06 0.98 1.16 1.30
(0.194) (0.816) (1.559) (2.586) (3.091)

Born 1965− 1969 0.08 0.11 0.96 1.33 1.39
(0.156) (0.654) (1.250) (2.076) (2.483)

Born 1970− 1974 0.08 0.12 0.75 1.05 1.27
(0.118) (0.493) (0.943) (1.566) (1.874)

Born 1975− 1979 0.05 0.10 0.59 0.83 0.97
(0.080) (0.334) (0.640) (1.064) (1.273)

Born 1980− 1984 0.04 0.07 0.35 0.45 0.42
(0.044) (0.186) (0.355) (0.590) (0.705)

Constant 1.82*** -2.39** -6.75*** -7.16** -6.29
(0.299) (1.051) (2.039) (3.425) (4.029)

Observations 195 195 195 193 191
R2 0.700 0.624 0.399 0.205 0.244

Standard errors in parentheses
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

Table D.3: Demand for Meat: Women

(1) (2) (3) (4) (5)
VARIABLES log(BMIt) log(% overweightt) log(% obese1t) log(% obese2t) log(% obese3t)

age -0.03 0.01 0.01 -0.00 0.06
(0.032) (0.036) (0.034) (0.034) (0.129)

age2 0.00 0.00 0.00* 0.00 0.00
(0.000) (0.000) (0.000) (0.000) (0.001)

married 0.03 -0.06 0.33 0.42 1.60
(0.148) (0.124) (0.221) (0.290) (2.565)

log(income) 0.02 0.17 0.13 -0.28** -0.54
(0.104) (0.158) (0.121) (0.112) (0.590)

2004 0.15 -0.07 -0.21 -0.08 -0.61
(0.228) (0.293) (0.288) (0.278) (1.389)

2006 0.07 -0.13 -0.28 -0.11 -0.50
(0.229) (0.294) (0.292) (0.269) (1.144)

2008 0.11 -0.19 -0.37 -0.15 -0.70
(0.287) (0.383) (0.374) (0.344) (1.555)

2010 0.13 -0.23 -0.45 -0.19 -0.90
(0.360) (0.477) (0.465) (0.430) (1.988)

Born 1920− 1924 1.01 -1.52 -2.96 -2.24 -9.20
(2.078) (2.842) (2.805) (2.855) (16.889)

Born 1925− 1929 0.88 -1.41 -2.69 -2.01 -8.31
(1.908) (2.595) (2.551) (2.588) (15.229)

Born 1930− 1934 0.84 -1.20 -2.33 -1.68 -7.19
(1.767) (2.376) (2.332) (2.354) (13.464)

Continued on next page
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Born 1935− 1939 0.73 -1.10 -2.18 -1.56 -6.53

(1.613) (2.164) (2.133) (2.148) (12.221)
Born 1940− 1944 0.73 -0.91 -1.86 -1.25 -5.71

(1.449) (1.938) (1.908) (1.904) (10.836)
Born 1945− 1949 0.63 -0.87 -1.70 -1.10 -4.94

(1.299) (1.744) (1.712) (1.693) (9.426)
Born 1950− 1954 0.56 -0.72 -1.47 -0.94 -4.42

(1.139) (1.522) (1.498) (1.479) (8.404)
Born 1955− 1959 0.50 -0.63 -1.24 -0.79 -3.64

(0.974) (1.308) (1.280) (1.265) (6.991)
Born 1960− 1964 0.42 -0.53 -1.02 -0.62 -2.97

(0.814) (1.092) (1.063) (1.042) (5.736)
Born 1965− 1969 0.38 -0.39 -0.81 -0.48 -2.46

(0.657) (0.883) (0.866) (0.849) (4.778)
Born 1970− 1974 0.24 -0.36 -0.73 -0.42 -1.98

(0.509) (0.697) (0.690) (0.665) (3.792)
Born 1975− 1979 0.14 -0.24 -0.49 -0.26 -1.34

(0.346) (0.467) (0.463) (0.440) (2.568)
Born 1980− 1984 0.09 -0.10 -0.20 -0.12 -0.60

(0.185) (0.243) (0.233) (0.230) (1.209)
log(meatt−1) 0.29*** 0.31*** 0.29*** 0.29*** 0.34***

(0.071) (0.068) (0.069) (0.070) (0.068)
log(BMIt) 1.38**

(0.602)
log(% overweightt) 0.67**

(0.315)
log(% obese1t) 0.71***

(0.250)
log(% obese2t) 0.50**

(0.205)
log(% obese3t) 1.07

(1.481)
Constant -1.73 1.08 1.91 6.19*** 8.92

(2.643) (1.657) (1.208) (1.377) (7.029)
Observations 195 195 195 195 195
R2 0.650 0.648 0.655 0.651 0.640

Table D.4: Demand for Added Sugar: Women

(6) (7) (8) (9) (10)
VARIABLES log(BMIt) log(% overweightt) log(% obese1t) log(% obese2t) log(% obese3t)

age -0.05 -0.00 -0.01 -0.02 0.25*
(0.035) (0.040) (0.037) (0.037) (0.135)

age2 0.00*** 0.00*** 0.00*** 0.00*** 0.00**
(0.000) (0.000) (0.000) (0.000) (0.001)

married 0.37** 0.26* 0.61*** 0.73** 6.15**
(0.157) (0.133) (0.235) (0.304) (2.687)

log(income) 0.34*** 0.53*** 0.43*** -0.01 -1.24**
(0.112) (0.169) (0.132) (0.112) (0.612)

2004 -1.42*** -1.70*** -1.73*** -1.62*** -4.41***
(0.246) (0.319) (0.310) (0.299) (1.457)

2006 -1.12*** -1.38*** -1.45*** -1.28*** -3.52***
(0.252) (0.316) (0.319) (0.293) (1.206)

2008 -1.21*** -1.59*** -1.65*** -1.43*** -4.52***
(0.311) (0.409) (0.403) (0.370) (1.636)

2010 -1.27*** -1.73*** -1.80*** -1.54*** -5.49***
(0.387) (0.509) (0.499) (0.461) (2.090)

Continued on next page
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Table D.4 – continued from previous page
Born 1920− 1924 -1.14 -4.46 -4.80 -4.24 -38.83**

(2.244) (3.076) (3.000) (3.048) (17.692)
Born 1925− 1929 -0.93 -3.95 -4.21 -3.68 -34.89**

(2.061) (2.810) (2.731) (2.766) (15.954)
Born 1930− 1934 -0.86 -3.55 -3.77 -3.25 -30.75**

(1.909) (2.575) (2.498) (2.519) (14.107)
Born 1935− 1939 -0.75 -3.16 -3.40 -2.90 -27.83**

(1.744) (2.347) (2.286) (2.299) (12.806)
Born 1940− 1944 -0.66 -2.82 -3.03 -2.52 -24.67**

(1.566) (2.102) (2.046) (2.040) (11.356)
Born 1945− 1949 -0.53 -2.50 -2.66 -2.15 -21.36**

(1.405) (1.892) (1.836) (1.816) (9.879)
Born 1950− 1954 -0.46 -2.15 -2.32 -1.86 -19.05**

(1.232) (1.651) (1.608) (1.587) (8.808)
Born 1955− 1959 -0.31 -1.80 -1.91 -1.52 -15.76**

(1.055) (1.420) (1.375) (1.359) (7.328)
Born 1960− 1964 -0.23 -1.47 -1.54 -1.19 -12.89**

(0.881) (1.186) (1.143) (1.121) (6.014)
Born 1965− 1969 -0.18 -1.19 -1.28 -0.99 -10.76**

(0.713) (0.961) (0.932) (0.914) (5.010)
Born 1970− 1974 -0.16 -0.95 -1.04 -0.77 -8.51**

(0.552) (0.759) (0.742) (0.716) (3.976)
Born 1975− 1979 -0.11 -0.62 -0.68 -0.47 -5.75**

(0.375) (0.509) (0.499) (0.474) (2.693)
Born 1980− 1984 -0.03 -0.28 -0.28 -0.21 -2.66**

(0.200) (0.264) (0.252) (0.249) (1.269)
log(BMIt−1) 1.76***

(0.606)
log(% overweightt) 0.87***

(0.331)
log(% obese1t) 0.75***

(0.257)
log(% obese2t) 0.54**

(0.209)
log(% obese3t) 3.56**

(1.548)
log(addedsugart) 0.29*** 0.30*** 0.28*** 0.28*** 0.27***

(0.076) (0.077) (0.076) (0.077) (0.077)
Constant -4.98* -1.35 0.21 4.77*** 19.29***

(2.843) (1.837) (1.314) (1.253) (7.248)
Observations 195 195 195 195 195
R2 0.954 0.954 0.954 0.954 0.953

Standard errors in parentheses
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

Continued on next page

Table D.5: Demand for Fat: Women

(11) (12) (13) (14) (15)
VARIABLES log(BMIt) log(% overweightt) log(% obese1t) log(% obese2t) log(% obese3t)

age -0.02 -0.04 -0.01 -0.01 -0.03
(0.028) (0.031) (0.030) (0.030) (0.112)

age2 -0.00 -0.00 0.00 0.00 -0.00
(0.000) (0.000) (0.000) (0.000) (0.001)

married -0.21 -0.27** -0.04 0.19 -0.45
(0.128) (0.109) (0.191) (0.246) (2.234)

log(income) 0.05 -0.07 0.13 0.00 0.14
Continued on next page
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Table D.5 – continued from previous page
(0.094) (0.138) (0.110) (0.090) (0.505)

2004 0.13 0.32 -0.02 -0.15 0.25
(0.198) (0.255) (0.251) (0.239) (1.209)

2006 0.09 0.27 -0.07 -0.18 0.17
(0.200) (0.255) (0.254) (0.232) (0.996)

2008 0.11 0.36 -0.10 -0.24 0.23
(0.250) (0.331) (0.325) (0.296) (1.355)

2010 0.16 0.47 -0.10 -0.28 0.31
(0.313) (0.412) (0.404) (0.371) (1.732)

Born 1920− 1924 1.20 3.13 -0.27 -1.79 2.78
(1.812) (2.458) (2.434) (2.444) (14.710)

Born 1925− 1929 1.11 2.87 -0.21 -1.58 2.53
(1.664) (2.246) (2.215) (2.217) (13.264)

Born 1930− 1934 1.08 2.67 -0.12 -1.34 2.32
(1.541) (2.058) (2.026) (2.018) (11.725)

Born 1935− 1939 1.00 2.45 -0.11 -1.21 2.12
(1.407) (1.874) (1.854) (1.842) (10.644)

Born 1940− 1944 0.94 2.22 -0.05 -1.01 1.93
(1.264) (1.679) (1.659) (1.634) (9.438)

Born 1945− 1949 0.84 2.01 -0.04 -0.87 1.70
(1.133) (1.511) (1.489) (1.454) (8.210)

Born 1950− 1954 0.75 1.76 -0.03 -0.75 1.51
(0.994) (1.319) (1.304) (1.271) (7.320)

Born 1955− 1959 0.67 1.55 0.02 -0.60 1.31
(0.851) (1.134) (1.114) (1.087) (6.089)

Born 1960− 1964 0.56 1.29 0.02 -0.47 1.08
(0.711) (0.947) (0.926) (0.897) (4.997)

Born 1965− 1969 0.44 1.03 -0.00 -0.41 0.88
(0.574) (0.767) (0.755) (0.731) (4.162)

Born 1970− 1974 0.38 0.85 0.00 -0.32 0.72
(0.444) (0.605) (0.601) (0.572) (3.304)

Born 1975− 1979 0.25 0.57 -0.00 -0.21 0.48
(0.302) (0.406) (0.404) (0.379) (2.238)

Born 1980− 1984 0.13 0.29 0.01 -0.10 0.23
(0.161) (0.211) (0.204) (0.199) (1.054)

log(BMIt) -0.22
(0.495)

log(% overweightt) -0.33
(0.265)

log(% obese1t) 0.13
(0.210)

log(% obese2t) 0.25
(0.170)

log(% obese3t) -0.17
(1.290)

log(fatt) 0.50*** 0.49*** 0.49*** 0.48*** 0.50***
(0.068) (0.067) (0.068) (0.068) (0.070)

Constant 2.62 3.17** 1.22 2.63** 0.88
(2.283) (1.440) (1.040) (1.011) (6.051)

Observations 195 195 195 195 195
R2 0.736 0.738 0.736 0.739 0.736

Standard errors in parentheses
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

Table D.6: Demand for Meat: Men

(1) (2) (3) (4) (5)
VARIABLES log(BMIt) log(% overweightt) log(% obese1t) log(% obese2t) log(% obese3t)

Continued on next page
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Table D.6 – continued from previous page

age -0.07** -0.10** 0.01 -0.19** -0.03
(0.034) (0.039) (0.042) (0.092) (0.031)

age2 -0.00 0.00 -0.00*** 0.00 -0.00***
(0.000) (0.000) (0.001) (0.002) (0.000)

married -0.36*** -0.63*** -0.87*** 2.07 -1.02***
(0.098) (0.213) (0.253) (1.525) (0.334)

log(income) -0.13 -0.14 0.77** -1.42 0.27
(0.127) (0.106) (0.363) (0.880) (0.162)

2004 0.47** 0.51*** 1.19*** -0.29 0.56***
(0.194) (0.192) (0.360) (0.513) (0.205)

2006 0.53*** 0.58*** 1.33*** -0.23 0.67***
(0.194) (0.191) (0.385) (0.520) (0.209)

2008 0.62** 0.69*** 1.58*** -0.59 0.78***
(0.243) (0.241) (0.469) (0.800) (0.264)

2010 0.79*** 0.89*** 1.97*** -0.65 0.92***
(0.303) (0.301) (0.575) (0.964) (0.316)

Born 1920− 1924 4.81*** 4.94*** 12.52*** -10.38 8.80***
(1.790) (1.778) (3.749) (9.749) (2.759)

Born 1925− 1929 4.46*** 4.57*** 11.65*** -9.21 8.06***
(1.654) (1.641) (3.478) (8.805) (2.506)

Born 1930− 1934 4.08*** 4.24*** 10.62*** -8.02 7.22***
(1.535) (1.521) (3.173) (7.796) (2.255)

Born 1935− 1939 3.77*** 3.99*** 9.45*** -6.59 6.21***
(1.394) (1.385) (2.788) (6.680) (1.924)

Born 1940− 1944 3.43*** 3.64*** 8.47*** -5.97 5.70***
(1.256) (1.249) (2.484) (6.059) (1.755)

Born 1945− 1949 3.07*** 3.29*** 7.34*** -4.83 4.99***
(1.123) (1.121) (2.141) (5.088) (1.544)

Born 1950− 1954 2.70*** 2.90*** 6.09*** -3.53 4.21***
(0.981) (0.982) (1.756) (4.010) (1.305)

Born 1955− 1959 2.42*** 2.62*** 5.10*** -2.70 3.58***
(0.845) (0.849) (1.427) (3.299) (1.087)

Born 1960− 1964 2.03*** 2.23*** 4.27*** -1.86 2.95***
(0.708) (0.713) (1.189) (2.522) (0.892)

Born 1965− 1969 1.68*** 1.79*** 3.83*** -2.77 2.74***
(0.569) (0.568) (1.078) (2.859) (0.808)

Born 1970− 1974 1.24*** 1.33*** 2.95*** -2.25 2.27***
(0.433) (0.427) (0.833) (2.265) (0.675)

Born 1975− 1979 0.85*** 0.87*** 2.15*** -1.91 1.63***
(0.293) (0.290) (0.627) (1.775) (0.492)

Born 1980− 1984 0.49*** 0.51*** 1.27*** -0.98 0.83***
(0.165) (0.161) (0.362) (0.956) (0.235)

log(meatt−1) 0.02 0.03 0.03 0.04 0.03
(0.075) (0.073) (0.072) (0.073) (0.073)

log(BMIt) 1.28
(1.393)

log(% overweightt) 0.87
(0.540)

log(% obese1t) -2.01**
(0.872)

log(% obese2t) 3.30
(2.120)

log(% obese3t) -0.93**
(0.417)

1.93 7.23*** -8.17 28.69* -0.99
Constant (3.268) (1.763) (5.717) (15.359) (2.711)
Observations 195 195 195 194 193
R2 0.731 0.734 0.738 0.730 0.736

Standard errors in parentheses
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table D.7: Demand for Added Sugar: Men

(6) (7) (8) (9) (10)
VARIABLES log(BMIt) log(% overweightt) log(% obese1t) log(% obese2t) log(% obese3t)

age -0.07* -0.04 0.04 -0.24** -0.02
(0.040) (0.046) (0.049) (0.107) (0.036)

age2 0.00*** 0.00 -0.00* 0.01** -0.00
(0.000) (0.000) (0.001) (0.002) (0.000)

married -0.15 -0.14 -0.62** 3.68** -0.86**
(0.108) (0.250) (0.294) (1.782) (0.394)

log(income) 0.25* 0.45*** 1.32*** -1.67 0.83***
(0.148) (0.131) (0.424) (1.030) (0.194)

2004 -1.39*** -1.33*** -0.61 -2.53*** -1.18***
(0.224) (0.226) (0.421) (0.600) (0.242)

2006 -1.04*** -0.95*** -0.16 -2.16*** -0.76***
(0.236) (0.238) (0.459) (0.606) (0.260)

2008 -1.07*** -0.98*** -0.02 -2.88*** -0.75**
(0.289) (0.294) (0.557) (0.931) (0.322)

2010 -1.06*** -0.95*** 0.22 -3.24*** -0.75*
(0.355) (0.361) (0.679) (1.122) (0.380)

Born 1920− 1924 0.44 0.65 8.55* -23.04** 5.80*
(2.061) (2.086) (4.382) (11.380) (3.259)

Born 1925− 1929 0.32 0.57 7.92* -20.79** 5.21*
(1.905) (1.927) (4.065) (10.279) (2.960)

Born 1930− 1934 0.28 0.56 7.23* -18.34** 4.61*
(1.767) (1.786) (3.709) (9.101) (2.663)

Born 1935− 1939 0.38 0.60 6.37* -15.59** 3.81*
(1.605) (1.626) (3.259) (7.799) (2.273)

Born 1940− 1944 0.32 0.53 5.65* -14.16** 3.50*
(1.447) (1.466) (2.903) (7.074) (2.073)

Born 1945− 1949 0.37 0.52 4.85* -11.81** 3.05*
(1.295) (1.316) (2.503) (5.941) (1.823)

Born 1950− 1954 0.45 0.53 3.98* -9.16* 2.57*
(1.131) (1.153) (2.053) (4.683) (1.542)

Born 1955− 1959 0.41 0.46 3.18* -7.50* 2.07
(0.975) (0.997) (1.669) (3.853) (1.284)

Born 1960− 1964 0.35 0.43 2.68* -5.63* 1.69
(0.818) (0.838) (1.391) (2.946) (1.054)

Born 1965− 1969 0.25 0.33 2.51** -6.62** 1.72*
(0.657) (0.668) (1.260) (3.339) (0.955)

Born 1970− 1974 0.12 0.26 1.96** -5.25** 1.54*
(0.499) (0.502) (0.974) (2.646) (0.798)

Born 1975− 1979 0.14 0.20 1.53** -4.12** 1.18**
(0.338) (0.341) (0.732) (2.073) (0.582)

Born 1980− 1984 0.04 0.10 0.88** -2.22** 0.53*
(0.190) (0.189) (0.423) (1.116) (0.278)

log(BMIt) 3.41**
(1.568)

log(% overweightt) 0.23
(0.641)

log(% obese1t) -2.08**
(1.018)

log(% obese2t) 5.18**
(2.475)

log(% obese3t) -1.07**
(0.493)

log(addedsugart−1) 0.29*** 0.30*** 0.30*** 0.30*** 0.29***
(0.069) (0.071) (0.069) (0.069) (0.070)

Constant -8.57** -0.18 -14.31** 36.66** -7.25**
(3.721) (2.059) (6.692) (17.907) (3.204)

Continued on next page
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Table D.7 – continued from previous page
Observations 195 195 195 194 193
R2 0.952 0.950 0.951 0.952 0.952

Standard errors in parentheses
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

Table D.8: Demand for Fat: Men

(11) (12) (13) (14) (15)
VARIABLES log(BMIt) log(% overweightt) log(% obese1t) log(% obese2t) log(% obese3t)

age -0.04 -0.00 0.02 -0.04 -0.01
(0.030) (0.035) (0.038) (0.083) (0.028)

age2 0.00 -0.00 -0.00 0.00 0.00
(0.000) (0.000) (0.001) (0.002) (0.000)

married -0.14 0.01 -0.36 0.39 0.06
(0.084) (0.190) (0.226) (1.375) (0.304)

log(income) 0.19* 0.34*** 0.72** 0.04 0.25
(0.114) (0.103) (0.329) (0.792) (0.153)

2004 0.07 0.10 0.46 -0.07 0.03
(0.172) (0.172) (0.324) (0.462) (0.186)

2006 0.08 0.12 0.52 -0.04 0.05
(0.171) (0.171) (0.346) (0.468) (0.190)

2008 0.05 0.08 0.56 -0.17 -0.00
(0.215) (0.216) (0.422) (0.721) (0.241)

2010 0.08 0.13 0.72 -0.17 0.04
(0.268) (0.269) (0.517) (0.868) (0.288)

Born 1920− 1924 1.47 1.59 5.46 -1.52 0.38
(1.582) (1.590) (3.371) (8.783) (2.515)

Born 1925− 1929 1.25 1.41 4.99 -1.40 0.31
(1.463) (1.468) (3.127) (7.932) (2.284)

Born 1930− 1934 1.13 1.28 4.55 -1.21 0.30
(1.357) (1.361) (2.853) (7.024) (2.056)

Born 1935− 1939 1.08 1.16 4.03 -0.95 0.37
(1.232) (1.240) (2.507) (6.018) (1.754)

Born 1940− 1944 0.94 1.01 3.56 -0.89 0.29
(1.111) (1.118) (2.233) (5.458) (1.600)

Born 1945− 1949 0.85 0.87 3.05 -0.72 0.26
(0.994) (1.004) (1.925) (4.584) (1.407)

Born 1950− 1954 0.80 0.77 2.53 -0.47 0.27
(0.868) (0.879) (1.579) (3.612) (1.189)

Born 1955− 1959 0.72 0.67 2.08 -0.34 0.28
(0.748) (0.760) (1.284) (2.972) (0.991)

Born 1960− 1964 0.57 0.54 1.72 -0.22 0.23
(0.627) (0.639) (1.070) (2.272) (0.813)

Born 1965− 1969 0.47 0.49 1.59 -0.40 0.16
(0.504) (0.509) (0.969) (2.576) (0.737)

Born 1970− 1974 0.29 0.36 1.21 -0.35 0.07
(0.383) (0.382) (0.749) (2.041) (0.616)

Born 1975− 1979 0.22 0.25 0.90 -0.31 0.03
(0.259) (0.260) (0.563) (1.599) (0.449)

Born 1980− 1984 0.12 0.17 0.54* -0.14 0.06
(0.146) (0.144) (0.325) (0.861) (0.215)

log(BMIt) 1.91
(1.224)

log(% overweightt) -0.25
(0.486)

log(% obese1t) -1.01
(0.783)

Continued on next page
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Table D.8 – continued from previous page
log(% obese2t) 0.64

(1.911)
log(% obese3t) 0.17

(0.381)
log(fatt−1) 0.34*** 0.36*** 0.36*** 0.36*** 0.36***

(0.069) (0.069) (0.068) (0.069) (0.070)
Constant -4.58 -0.92 -6.79 4.45 0.81

(2.915) (1.579) (5.147) (13.825) (2.475)
Observations 195 195 195 194 193
R2 0.797 0.795 0.796 0.791 0.789

Standard errors in parentheses
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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