
HEAVY TRUCK MODELING AND ESTIMATION FOR
VEHICLE-TO-VEHICLE COLLISION AVOIDANCE

SYSTEMS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for the Degree Doctor of

Philosophy in the Graduate School of The Ohio State University

By

Sage M. Wolfe, MSME

Graduate Program in Mechanical Engineering

The Ohio State University

2014

Dissertation Committee:

Dennis A. Guenther, PhD, Advisor

Gary J. Heydinger, PhD

Junmin Wang, PhD

Anthony F. Luscher, PhD



� Copyright by

Sage M. Wolfe

2014



ABSTRACT

This dissertation details the development of a state and position estimator for

articulated heavy trucks based entirely on freely available on-board signals. The

estimator consists of a quasi-linear vehicle dynamics model, tire cornering stiffness

estimator, Kalman filter, and position integrator. Results from testing show that the

estimator can provide lane-level (1.5 m) positioning accuracy in urban environments

for the duration of typical GPS outages. A hybrid kinematic-dynamic model allows

estimation of hitch angle to within half of a degree over the practical range of artic-

ulation angles. This presents novel contributions to the state of the art of trailer tire

cornering stiffness estimation and hitch angle estimation.

Government research has estimated that vehicle-to-vehicle (V2V) collision avoid-

ance systems can address 72% of heavy truck crashes, but this requires localization

of the truck and trailer in a variety of environments. Studies have shown that GPS

cannot be reliably used for V2V in urban and some suburban environments. This

estimator offers a potential supplement to GPS for V2V systems in these environ-

ments.

Moreover, the current V2V messaging framework does not include an estimate of

hitch angle. This can lead to missed warnings and false positives when the implicit

assumption of zero hitch angle is grossly violated, such as turning at an intersection.

Results from this research indicate that a reliable estimate can be provided without

the addition of new sensors.
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CHAPTER 1

INTRODUCTION

Today’s passenger cars and heavy trucks contain more safety systems than ever before,

yet crashes continue to occur. This chapter begins by describing the benefits of a new

active safety paradigm known as ‘V2V’ (vehicle-to-vehicle). The limitations of the

system are explored and research is proposed to address the needs of the system. The

chapter concludes with an overview of the research conducted and an outline of this

dissertation document.

1.1 Literature Review

This chapter section presents a review of publications related to V2V and general

vehicle dynamics modeling. Publications related to more specific topics of interest

are discussed in later chapters for the sake of clarity. As examples: references that

discuss the tuning of a Kalman filter are presented in Section 2.4 where the details

of the Kalman filter are laid out. Prior art relating to the estimation of hitch angle

is presented alongside new models for the same in Section 3.2.3.

1.1.1 V2V Benefits and Motivation for Research

In recent years, vehicles at all price points have incorporated a variety of impressive

and capable active safety systems [1]. These systems, e.g. adaptive cruise control
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and active lane keeping, autonomously perform a variety of tasks using on-board

controllers that take in sensor data from the vehicle. In literature, this is termed the

‘egocentric’ approach.

Despite these advancements, heavy truck fatal crashes per 100 million vehicle miles

traveled increased from 1.11 to 1.42 during the period of 2009–2012 – an increase of

28% (2012 is the last year for which such data are currently available). Similarly,

injury (nonfatal) crashes involving heavy trucks and resulting in injuries increased

from 19 per 100 million vehicle miles to 29, a 53% increase over the four year period

[2]. For two-vehicle fatal crashes, the three most common pre-crash scenarios were

head-on (31%), other vehicle front to truck rear (19%), and truck front to other

vehicle left (14%) as seen in Table 1.1.

Table 1.1: Percentage of Principal Impact Points in Two-Vehicle Fatal Crashes
Involving Large Trucks, 2012 [2]

Front Left Side Right Side Rear Total
Front 31 14 11 6 62

Left Side 9 1 1 0 11
Right Side 6 1 0 0 7

Rear 19 1 0 0 20
Total 65 17 12 6 100

Impact Point on 
Large Truck

Impact Point on Other Vehicle (%)

In layman’s terms, we need to prevent head-on collisions, keep people from rear

ending trucks, and stop trucks from striking other vehicles in intersections. Studies

conducted by researchers at Battelle and Virginia Tech indicate that radar- or video-

based forward collision warning (FCW) systems have the ability to reduce heavy truck

rear-end collisions by 21%, but head-on and intersection collisions virtually require
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a vehicle-to-vehicle (V2V) approach to obtain significant benefits [3]. Under this

paradigm, vehicles broadcast their locations, speeds, headings, vehicle sizes, etc. over

the air using a communications protocol known as Dedicated Short Range Commu-

nications (DSRC), similar to a Wi-Fi connection. A 2010 National Highway Traffic

Safety Administration (NHTSA) study found that a combined V2V/V2I (vehicle-

to-infrastructure) safety system could address 72% of heavy truck crashes involving

unimpaired drivers, whereas an egocentric system could only address 64% of crashes

[4]. V2V technology allows for a suite of collision avoidance programs aimed at mit-

igating various types of crashes – head-on, lane changing, intersections, road depar-

tures, and so on. Additionally, the sister technology, V2I, allows for curve speed

warnings and a wide variety of information exchange, e.g. traffic conditions.

Work is being done on V2V outside the United States as well. Following a num-

ber of research projects, the German vehicle manufacturers Audi, BMW, Daimler,

and Volkswagen formed an organization known as the Car 2 Car Communication

Consortium (C2C-CC) in order to standardize V2X (vehicle-to-x, where x might be

‘vehicle’ or ‘infrastructure’) communications. Today members of C2C-CC include

all European car manufacturers, a large number of suppliers, academia, and the

telecommunications industry. Their studies have shown that 86% of crashes resulting

in injury or death are due to driver error (including impairment, misjudgment of road

conditions, etc.) that could potentially be addressed with V2V systems [5]. Efforts

are shifting from small-scale research to large-scale field operational testing. In their

first phase, C2C-CC intends to augment egocentric sensors by providing data about

vehicles further ahead in the same direction of travel (ignoring, for example, vehicles

crossing at intersections). Even with this limited approach, they expect to address

up to 35% of crashes [5].

The effect of this first phase, or ‘Early Warning’ approach, is that the driver
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receives a warning some seconds before they reach the potential danger – and before

a warning could be provided by an egocentric system. This warning means the driver

can react sooner, creating a safety margin. Because V2V systems can ‘see’ further

than egocentric sensors, the ‘Early Warning’ V2X approach can be more effective

than the egocentric approach.

1.1.2 Selected V2V Limitations: GPS Accuracy and Availability

The efficacy of V2V safety systems critically depends upon GPS (Global Position-

ing System) accuracy and availability. The Crash Avoidance Metrics Partnership

(CAMP), an industry consortium, published a study in 2011 regarding the poten-

tial benefits of V2V systems. A significant portion of this effort was devoted to

studying the accuracy and availability of GPS in a variety of environments using a

range of GPS receivers and processing algorithms. CAMP has defined an accuracy

of 1.0–1.5 m (RMS relative position error) as being precise enough to enable lane-

level positioning and 5–10 m as being precise enough to enable road-level positioning

[6][7]. In urban canyons, they achieved RMS relative accuracy of 9.5–12.2 m and thus

concluded, “GNSS-only techniques cannot be used reliably in this particular environ-

ment.” Additionally, they found that on a tree-lined street typical of a residential

neighborhood, positioning data were unavailable for approximately 21% of the time

[7].

GPS availability gaps were also studied. Gaps were defined as the time interval

when no relative positioning solution is available. This interval was affected by the

positioning method used. In the single-point (SP) method, each vehicle calculates

and broadcasts its own position (requiring a minimum of four satellite signals). In

the real-time kinematic (RTK) method, raw GPS observables are shared and relative
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positioning is performed autonomously by each vehicle, resulting in enhanced accu-

racy. This requires that the vehicles exchange four common satellite observables.

This more stringent requirement leads to more frequent and longer gaps [7].

With the SP method, 96–100% of gaps were less than 15 s and the average gap was

2–3.5 s depending on GPS receiver type. In general, the SP method would produce

a position estimate almost immediately after seeing four satellites. With the RTK

method, gap length varied widely with receiver type. Average gaps ranged from 8.6–

19.7 s and some gaps were 70 s or higher. Additionally, the RTK method required

4–5 s to produce a position estimate after four common satellites were available [7].

In research conducted in parallel with [8], it was shown that warning timing (i.e.,

the temporal difference between when a warning should be issued and when it is

actually issued) degrades rapidly with decreasing GPS accuracy.

1.1.3 Selected V2V Limitations: Current V2V Message Set

The current V2V message set does not include a field for the articulation angle of

heavy trucks; they are implicitly assumed to be straight at all times [9]. This oversim-

plification can lead to both false positives and missed warnings. While articulation

angles are small in highway driving, consider the case of a heavy truck turning left

in an urban intersection as an example. This poses two problems. First, the vehicles

traveling straight ahead to the right of the truck may receive a forward collision warn-

ing (FCW) since their on-board threat arbitration module will project the trailer into

their lane. Secondly, vehicles who are oncoming to the truck’s final lane may receive

no warning even though the trailer is still blocking the intersection.
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1.1.4 Vehicle Dynamics Modeling

Vehicle dynamics modeling is a mature field and many books are dedicated to the

topic, such as [10], [11], and [12]. Theoretical work began in the 1920s with Rolls-

Royce, but as Bill Milliken notes in Race Car Vehicle Dynamics, “the beginning of

a systematic attack on automobile stability and control” came from British engineer

Maurice Olley in the 1930s during his time with Cadillac. Within three years of

taking the position, he was responsible for the introduction of the independent front

suspension in the United States [10]. Olley’s early work, including what can be

considered the earliest vehicle dynamic models, can be found in the comparatively

recently released (circa 2002) Chassis Design: Principles and Analysis [13].

Milliken discusses a concept in [10] called the “Ladder of Abstraction.” At the

top of this ladder is the complete reality of the vehicle-driver combination. Near

the top of the ladder are advanced driving simulators on mobile platforms. Such

simulators provide users with visual, aural, and tactile feedback and are well-suited to

studying naturalistic driver behavior in a safe environment [14]. The development of

a vehicle dynamics model for such a simulator is described in [15]. As one moves down

the ladder, additional simplifying assumptions are added to the model. Multibody

dynamics programs remove the real driver from the simulation and instead use a

closed-loop driver model or open-loop inputs. This class of programs simulates the

dynamics (and often elastic compliance) of individual components and has broad

applications beyond vehicle dynamics. One specific example is ADAMS (Automatic

Dynamic Analysis of Mechanical Systems) and its various ADAMS/Car packages

[16]. Slightly further down the ladder of abstraction are lumped-parameter vehicle

dynamics simulation programs. TruckSim, which was used as a reference simulation to

develop the models in Chapters 2 and 3, is an example of a lumped-parameter vehicle

dynamics simulation program. In contrast to ADAMS, users of TruckSim would enter
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curves that describe suspension kinematics rather than describe individual suspension

components, hence the lumped-parameter nature [17].

The models discussed so far have hundreds of degrees of freedom (DOF) and are

intended to run on relatively high-performance computers. Near the middle of the

ladder of abstraction are n-DOF models of modest n, say 4 > n > 30. Ghike et

al. describe the development of a 14-DOF model suitable for use in active chassis

control systems [18]. Segal describes the validation of a 15-DOF model used to study

the effects of the roadside environment on safety [19]. Berntop describes a 6-DOF

model to be used for general vehicle dynamics simulation [20]. At the bottom of

the ladder of abstraction are extremely simple models, perhaps with a single DOF.

Gillespie describes such a model – at this level of reduction, a single equation – used

to study longitudinal acceleration in [12].

The modeling choices an engineer must make center around a tradeoff between

two goals: fidelity and simplicity. A racing team engaged in driver training will

need such fidelity that an advanced driving simulator is required. A car company

engaged in simulation of ride comfort will value the fidelity of a multibody dynamics

program to the faster runtime of a moderate DOF simulation. When designing active

chassis controls, a car company will be forced to use a lower order model capable of

running in real-time on an automotive ECU. This research faces similar limitations,

i.e. the vehicle dynamics model must be developed with the goal of feasible real-time

implementation on an automotive ECU.

1.1.4.1 Lateral Dynamic Models

The simplest type of model useful for this research is the linear 2-DOF lateral dynamic

model, or ‘bicycle’ model. It is described in [10] as having lateral velocity and yaw

rate as its degrees of freedom with steer angle as the control input. It is termed a
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‘bicycle’ model because it neglects lateral load transfer and accordingly compresses

the vehicle to a single track. It neglects longitudinal load transfer, pitch motion, roll

motion, aerodynamic effects, and compliance effects. Forward speed is treated as a

constant parameter rather than a state variable (DOF). Tires are considered to be

in their linear range, below about 0.4 g [10]. References [11] and [12] also contain 2-

DOF lateral dynamic models, as does [21]. Pacejka provides a model of a single-track

car-trailer combination [21].

1.1.4.2 Parameter Estimation

If a lateral acceleration sensor is present, the bicycle model can also be used to

estimate some vehicle parameters. Estimation of linear tire cornering stiffness in

conjunction with a bicycle model can be found in [22] and [23]. Several authors used

a bicycle model and GPS data to estimate tire cornering stiffness (see [24], [25], [26]).

Baffet et al. use a bicycle model in conjunction with a sliding mode observer and

Kalman filter to estimate tire cornering stiffness [27].

1.1.4.3 Heavy Truck Models

According to a historical survey of heavy truck dynamic modeling by Bernard et

al., theoretical work on heavy trucks began in the 1950s and simulations on analog

computers were carried out in the 1960s [28]. The earliest known work, on the snaking

of trailers, was published by Williams in 1951 [29].

A number of more recent articulated heavy truck lateral dynamic models were also

identified and studied. However, a new model was developed due to the incompati-

bility of other models with this research or other inconveniences presented by those

found in the literature. Rao produced a model that assumed a measured hitch angle

[30]. Alexander et al. produced a tractable model, but it was intended only for use

when hitch angle is small [31]. Salaani also produced a feasible model, but it used an
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inconvenient coordinate system [32]. Hac and Deng both created car-trailer models

extensible to the heavy truck case, but required calculation of hitch forces [33], [34].

Luijten used a bicycle model to study the yaw (jackknife) stability of articulated

heavy vehicles [35]. Bareket et al. produced a lateral dynamic model for a driving

simulator that used a table lookup approach for roll and pitch motion [36].

1.2 Outline of Research

1.2.1 Research Goals

The goal of this research is to address the limitations of V2V systems as outlined in

Sections 1.1.2 and 1.1.3 without adding hardware costs to the vehicle. This means

providing a sensor-less solution for positioning the vehicle and determining the artic-

ulation angle based on already available on-board signals.

Since position is an integrated quantity, the error of such an estimator naturally

grows without bound over long time scales. Accordingly, the position estimate pro-

vided by this system is not designed to replace GPS – it is intended to augment GPS.

It is expected that the V2V system will primarily use GPS for positioning and that

this estimate will be used when GPS is unavailable or unreliable (and perhaps to

determine when GPS is unreliable). Since the goal is to keep the system functioning

in the face of GPS gaps, the work done by CAMP referenced in Section 1.1.2 gives

some insight into what the capabilities of this system should be. Accuracy of 1.0–1.5

m RMS (lane-level positioning) should be maintained for average gaps, which may

be up to 20 s depending on the positioning method and receiver type. Accuracy of

5 m RMS (road-level positioning) should be maintained for the longer gaps of up to

70 s.

A single GPS receiver cannot provide a measurement of hitch angle. This requires

9



additional sensors, such as dual GPS receivers on the trailer (and communication

with the tractor) or direct measurement via a sensor located on the tractor. Even

a simple kinematic model of trailer motion requires knowledge of side slip velocity.

(GPS provides velocity data, of course, but not longitudinal and lateral velocity –

only their vector sum.) Thus this system will also be useful when GPS is available

as it solves the hitch angle problem without adding additional sensors. With some

assumptions, a target for hitch angle accuracy can be derived. For example, consider

a 53 ft (16.2 m) trailer and a desired accuracy (of the rear of the trailer) of 1.0 m. If

the tractor’s position and heading are correct, this implies that the hitch angle must

be accurate to ± arctan
(
1.0/16.2

)
= ±3.5 deg. In accordance with the fact that the

tractor’s position and heading may be known imperfectly, an accuracy of ±2 deg has

been chosen as a goal for this research.

This research is supported by NHTSA, the division of the Department of Trans-

portation responsible for vehicle safety. They are currently researching V2V safety

systems. This project helps them to advance the state of the art of V2V, under-

stand its limitations, and consider what regulatory changes might be necessary for

its success.

1.2.2 Dissertation Outline

Chapter 1 has explained the benefits attainable with V2V safety systems and their

current limitations. The remainder of the dissertation will be devoted to explaining

research designed to address these issues.

Chapter 2 describes the modeling for the unarticulated (trailer-less) case (or

‘three-axle model’). This consists of a quasi-linear vehicle lateral dynamics model

that uses wheel speeds and steer angle as input. A parameter estimation scheme

has been developed to provide the model with values of tire cornering stiffness. The
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estimates provided by the vehicle dynamics model are fused via Kalman filtering with

on-board measurements of lateral acceleration and yaw rate, both available from the

tractor’s electronic stability control (ESC) system. Finally, Chapter 2 concludes with

a brief validation of the model using TruckSim as a reference.

Chapter 3 describes the modeling for the articulated (tractor-trailer) case (or ‘five-

axle model’) and discusses some of the modeling issues encountered with this more

complex system. It also explains the modifications made to the cornering stiffness

estimator and Kalman filter to extend them to the articulated case. A kinematic

(as opposed to dynamic) method of estimating articulation angle is derived. Finally,

TruckSim is used to validate the articulated model and compare the kinematic and

dynamic methods for estimating articulation angle.

Chapter 4 contains an experimental validation of the models. First, the test

vehicle and instrumentation are discussed. The remainder focuses mostly on the

more complex five-axle model. Several scenarios were developed to examine cornering

stiffness estimation, urban driving, and highway driving. The results are examined

and the kinematic and dynamic models for estimating articulation angle are again

compared.

Chapter 5 examines how this research benefits the state of the art of V2V safety

systems. This chapter also describes some of the additional work required to imple-

ment this research and what limitations might be faced in practice.

1.2.3 Conclusion

This chapter has introduced the dissertation. It began with a literature review of

V2V and vehicle dynamics modeling. Respectively, these represent the motivation

for this research and the means by which it was accomplished. The goals of the

research program were specified and an overview of the dissertation was provided.
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CHAPTER 2

THREE-AXLE LATERAL DYNAMIC HEAVY TRUCK

MODEL

2.1 Introduction

This chapter describes the development of the three-axle lateral dynamic model of

the heavy truck. The term ‘three-axle’ refers to the front steer axle and the tandem

rear axles of a heavy truck (without trailer).

First, the structure of this model (i.e. its states and parameters) and its derivation

are presented along with the assumptions and approximations employed therein. The

derivation is examined using both Newton’s Second Law and Lagrange’s Equation.

The coupled differential equations of motion are converted to a continuous-time state

space representation using MATLAB�. MATLAB� is then used to discretize the

system. Next, a recursive least squares cornering stiffness estimation scheme based on

two different measurements is introduced. A Kalman filter is then developed based on

extant signals available from the electronic stability control (ESC) system. Finally,

the model is validated using TruckSim as a reference.
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2.2 Derivation

A quasi-linear three-axle bicycle model was derived using Newton’s Second Law

(Equation 2.1) and Lagrange’s Equation (Equation 2.2). The model is quasi-linear

in that the cosine of road wheel steer angle appears in the state and input matrices,

though it could be neglected as this is very near unity. Forward velocity, u, is treated

as a constant parameter instead of a state variable. This is because the model is

intended to run at 100 Hz, which far exceeds the bandwidth of forward velocity (i.e.,

it can be considered constant for 1/100 s). At each time step, the model is updated

with new values for u and the cosine of steer angle.

∑
�F = m�a (2.1)

d

dt

(
δT

δq̇i

)
− δT

δqi
= Qqi (2.2)

In Lagrange’s Equation, the Lagrangian, L, represents the difference of the sums of

kinetic energy (T ) and potential energy (V ) in terms of the generalized coordinates,

q. This is expressed in body-fixed coordinates of lateral position, y, and yaw angle,

Ψ. A free-body diagram of the system, along with details of its parameters, are given

in Figure 2.1. This is a right-handed coordinate system with ‘forward’ positive in the

longitudinal direction, ‘left’ positive in the lateral direction, and counterclockwise (as

viewed from above) positive in the yaw direction. Note that since the coordinates

are body-fixed, y(t) = 0 ∀ t despite the fact that ẏ(t) = v �= 0 in general. (Energy

is independent of position, it is dependent only on velocity.) The Lagrangian, L, for

this system is given in Equation 2.3. Note that potential energy, V, is zero.

L = T − V = T =
1

2
m1(u

2 + v2) +
1

2
J1Ψ̇

2 (2.3)

Applying Equation 2.2 to Equation 2.3 results in two coupled differential equations

which form the “inertial terms” of the system. They are coupled due to the relation-

ship shown in Equation 2.4. This relationship, well-known in vehicle dynamics, exists
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Figure 2.1: Free-Body Diagram, Three-Axle Model
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because the body-fixed frame is moving with forward velocity u and rotating with

angular velocity Ψ̇. A formal derivation of this relationship is given in [1]. Since we

wish to track Ψ, we augment the system with the equation Ψ̇ = Ψ̇. When converted

to discrete time, this will result in the equation Ψk+1 = Ψk + Ψ̇kTs (which is more

obviously an integrator). Due to the coupling and quasi-linearity of this problem,

we ultimately wish to deal with it in a state space representation. Thus the inertial

terms, augmented with what will become the yaw angle integrator, are expressed as

Mẋ where M is given in Equation 2.5 and ẋ is given in Equation 2.6.

d

dt
(v) = v̇ + uΨ̇ (2.4)

M =

⎡
⎢⎢⎢⎢⎣

m1 0 um1

0 J1 0

0 0 1

⎤
⎥⎥⎥⎥⎦ (2.5)

ẋ =

⎛
⎜⎜⎜⎜⎝

v̇

Ψ̈

Ψ̇

⎞
⎟⎟⎟⎟⎠ (2.6)

Where:

v̇ : side-slip acceleration of tractor CG

Ψ̈ : yaw acceleration of tractor

Ψ̇ : yaw rate of tractor

Rows 1 and 2 of Mẋ correspond to the ma terms derived using Equation 2.1.

From inspection, we can see that the generalized forces, Qqi , will be equal to the

sum of forces in the y direction for qi = y and the sum of moments about the CG

for qi = Ψ. (These can also be independently derived via virtual work expressions.

Virtual work expressions are further explained in Section 3.2.1, where they are more
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useful.) This yields the following equations (please refer to Figure 2.1 for a depiction

of the forces and parameters):

Qy =
∑

Fy = F1 cos δ + F2 + F3 (2.7)

QΨ =
∑

MCG = aF1 cos δ − b1F2 − b2F3 (2.8)

Equations 2.7 and 2.8 require that the lateral tire forces, Fi, be calculated. Here,

several assumptions common to the field of vehicle dynamics are applied. Forces are

calculated using a lumped, linear cornering stiffness (Cαi
), i.e. Fi = Cαi

αi, Cαi
>

0 ∀ i. Slip angle, αi, is defined as the angle between the instantaneous velocity vector

and the heading angle of the tire. For a diagram and expressions for slip angles, refer

to Appendix A.1. Consistent with the coordinate system, slip angles are considered

positive counterclockwise so that a positive slip angle produces a positive lateral force

using a positive value of cornering stiffness. (Correspondingly, a positive steer input

produces a positive yaw rate response.) Linearity of cornering stiffness is a valid

assumption for low-g (sub-limit) maneuvers [2]. Furthermore, heavy truck tires tend

to be more linear in cornering stiffness than light vehicle tires ([3], [4] and comparison

of validated tire models in CarSim/TruckSim). Additionally, slip angles are assumed

small. This is because each slip angle contains a term for the arctangent of (negative)

lateral velocity divided by forward velocity. Thus arctanαi ≈ αi [2]. Finally, since this

is a bicycle model, slip angles are treated as being equal for tires on a given axle. In a

turn, the forward velocity of the outside wheel will be increased by an amount equal

to the yaw rate multiplied by half the track width, while the inside wheel’s velocity

will be retarded by the same amount. Thus this is a good approximation as the slip

angle of the outside wheels will be overestimated in magnitude by an amount similar

to which the slip angle of the inside wheels is underestimated. Furthermore, these
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contributions to forward velocity are generally small relative to the mean forward

velocity of the tractor, u.

Now that the tire forces have been quasi-linearized, they can be expressed in the

form Kx + Fu, where K is given in Equation 2.9 and F is given in Equation 2.10.

The state vector, x, and input, u, are given in Equation 2.11. (Note: this input, u,

is not to be confused with forward velocity, u. It is simply due to the conventions of

state space and vehicle dynamics that they share the same character.)

K =

⎡
⎢⎢⎢⎢⎣

1

u
[−cos(δ)Cα1 − Cα2 − Cα3]

1

u
[−acos(δ)Cα1 + b1Cα2 + b2Cα3] 0

1

u
[−acos(δ)Cα1 + b1Cα2 + b2Cα3]

1

u

[−a2cos(δ)Cα1 − b21Cα2 − b22Cα3

]
0

0 1 0

⎤
⎥⎥⎥⎥⎦(2.9)

F =

⎡
⎢⎢⎢⎢⎣

cos(δ)Cα1

acos(δ)Cα1

0

⎤
⎥⎥⎥⎥⎦ (2.10)

x =

⎛
⎜⎜⎜⎜⎝

v

Ψ̇

Ψ

⎞
⎟⎟⎟⎟⎠ , u = δ (2.11)

Where:

v : side-slip velocity of tractor CG

Ψ̇ : yaw rate of tractor

Ψ : yaw angle of tractor

δ : road wheel steer angle of tractor

With the inertial (left hand side) and stiffness/forcing (right hand side) terms

formulated, they can be combined as shown in Equation 2.12. This is essentially the

matrix form of Equation 2.1 with the right and left hand sides exchanged. This is
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readily converted to state space form by inverting the mass matrix and multiplying

each side by M−1, as shown in Equation 2.13. This continuous-time representation

can then be converted to the discrete-time representation shown in Equation 2.14. In

both cases, these matrix manipulations are carried out numerically in MATLAB�,

i.e. after the values of parameters, etc. have been used to fill in the matrices.

Mẋ = Kx+ Fu (2.12)

ẋ = M−1Kx+M−1Fu = Ax+Bu (2.13)

xk+1 = Akxk +Bkuk (2.14)

The model requires values for tire cornering stiffness. The estimation of these

quantities is described in Section 2.3. Since the vehicle position estimator is intended

to provide localization under normal driving conditions, a simple linear tire model is

used. It is expected that in practice the lateral acceleration of the truck will rarely

exceed 0.3 g. Nonetheless, the estimator has shown good results even with peak

lateral accelerations exceeding 0.5 g (see Section 4.4).

The model, as presented thus far, predicts and tracks the states of the system. In

order to track position, it is augmented with two simple integrators. Equation 2.15

is an integrator for global X position and Equation 2.16 is an integrator for global Y

position.

X̂k+1 = X̂k +
(
ûk cos Ψ̂k − v̂k sin Ψ̂k

)
Ts (2.15)

Ŷk+1 = Ŷk +
(
ûk sin Ψ̂k + v̂k cos Ψ̂k

)
Ts (2.16)

Because the goal of this system is to track the position of the truck, the problem is

significantly difficult. State estimates that would be acceptable for dynamic controls,

e.g. vehicle stability control, are inadequate for position estimation. This is because
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small errors in yaw rate are integrated to become significant errors in yaw angle (or

heading). If the vehicle is traveling at significant speeds (e.g. highway driving), error

accumulates very rapidly with time if the heading is incorrect. For this reason, the

estimator was augmented with a Kalman filter. The Kalman filter uses measurements

of lateral acceleration and yaw rate – both freely available signals from the electronic

stability control (ESC) system. The specifics of the Kalman filter implementation are

described in Section 2.4.

2.3 Tire Cornering Stiffness Estimator

To be reasonably accurate, the vehicle position estimator must have good values

for tire cornering stiffness. Since the vehicle manufacturer is likely to be the entity

programming such a position estimator in practice, one may think that cornering

stiffness is a ‘fair’ thing to take as a known value. However, due to tire replacement,

tire wear, varied inflation pressure, road surface conditions, and so on, an on-line

estimator is required.

Parameter estimation, at its core, is similar to solving an algebraic equation. If

you apply an unknown force to a one pound block and measure its acceleration to be

one g, you can surmise that you have applied one pound of force.

In this case, we are interested in estimating three parameters – the cornering

stiffness of each axle of the vehicle (this is the vector φ̂). Since this is compared to

a single measured quantity, y (not to be confused with the generalized coordinate),

multiple measurements are taken and the three cornering stiffnesses are fitted to the

data in a least squares sense (since it is done by looking backwards, it is termed

‘recursive least squares’ or RLS). Additionally, new data is weighted more heavily

than old data, a technique known as ‘forgetting,’ or ‘recursive least squares with

forgetting.’ To continue the analogy, the process is complicated by the fact that
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the equivalent of the known mass, X, is a changing vector made up mostly of state

variables. Equations 2.17 – 2.19 give the structure of the RLS scheme [5].

φ̂(k) = φ̂(k − 1) + L(k)(y(k)−XT (k)φ̂(k − 1)) (2.17)

L(k) = P (k − 1)X(k)(λ+XT (k)P (k − 1)X(k))−1 (2.18)

P (k) = (I − L(k)XT (k))P (k − 1)
1

λ
(2.19)

Where:

φ̂ : parameter estimate column vector

X : row vector that scales φ̂ to y

L : gain vector

P : covariance matrix

λ : forgetting factor

RLS schemes were created based on two different measurements: lateral accelera-

tion (y1) and yaw acceleration (y2). (Yaw acceleration was calculated by numerically

differentiating the measured yaw rate.) The details are given below in Equations 2.20

– 2.24. Note that although the vehicle position estimator is intended for cases when

GPS is unavailable, the tire cornering stiffness estimator would only run when GPS is

available and thus the most recent information is available to construct high-fidelity

state estimates. Although the measurements and states used to make up the X vec-

tors are supplied to the tire cornering stiffness estimator by the dynamic model, the

tire cornering stiffness values used by the dynamic model are not updated throughout

a run. The tire cornering stiffness values used by the dynamic model are constant for

a given run. On a real vehicle, with a real V2V system, a formal algorithm for how
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and when to update the tire cornering stiffnesses of the dynamic model would need

to be developed.

Figure 2.2 shows an example of the estimator at work. Note that it is typical for

the estimator to converge to different values based on the level of excitation. Here the

solid lines (Cαi(1)) correspond to the estimate from lateral acceleration and the dashed

lines (Cαi(2)) correspond to the estimate from the yaw acceleration measurement. In

general, the estimates from lateral acceleration measurements were more reliable and

accurate. This is fortunate since it is a commonly available quantity and does not

involve taking a (noisy) derivative. This favored formulation – RLS with forgetting,

single-track ‘bicycle’ model, linear cornering stiffness, and lateral acceleration as a

measurement – is a popular method for on-line estimation [6],[7].

It is worth emphasizing the ‘lumped’ nature of Equations 2.20 and 2.21. Consider

Equation 2.20. It is a restatement of Newton’s Second Law, i.e. that the lateral

acceleration of the tractor is equal to the lateral force applied by the tires divided

by the mass of the tractor. This lateral force is modeled as the sum of products

of slip angle estimates and cornering stiffness estimates. In addition to the fact

that the slip angle estimates are built from state estimates (refer to Appendix A.1.2

for slip angle expressions), this neglects several other effects such as steering gear

compliance, body roll, static toe, suspension compliance, normal load variation, etc.

This scheme provides an estimate of the lumped cornering stiffness of the entire axle,

i.e. the scaling factor that best defines (in a least squares sense) the input-output

relationship between slip angle estimates and estimated lateral force. In practice, this

in situ estimation can provide cornering stiffness estimates that differ significantly

from what would be measured ex situ on a tire test machine [8]. Pacejka refers to

this as the ‘effective axle cornering stiffness’ [4]. Owing to uncertainties both in tires

(inflation pressure, wear, road friction coefficient, construction, compound) and trucks
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(Ackerman, alignment, steering compliance, loaded weight, axle loads), no party has

the information necessary to predict in situ effective axle cornering stiffness and thus

it must be estimated online.

y1 = ay =
1

m1

X1φ (2.20)

y2 = Ψ̈ =
1

J1
X2φ (2.21)

φ =

⎛
⎜⎜⎜⎜⎝

Cα1

Cα2

Cα3

⎞
⎟⎟⎟⎟⎠ (2.22)

X1 =

[ (
δcos(δ)− cos(δ)

v + aΨ̇

u

)
−v + b1Ψ̇

u

−v + b2Ψ̇

u

]
(2.23)

X2 =

[
acos(δ)

(
δ − v + aΨ̇

u

)
b1
v − b1Ψ̇

u
b2
v − b2Ψ̇

u

]
(2.24)
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Figure 2.2: Cornering Stiffness Estimate, Three-Axle Model.
[(1): y = ay, (2): y = Ψ̈]

2.4 Kalman Filter

Even with accurate cornering stiffness values, a Kalman filter (KF) is required for

acceptable positioning accuracy. This is because small errors in yaw rate integrate

with time to significant errors in heading (yaw) angle. Once the heading is mis-

aligned, positioning errors grows rapidly. Thus the Kalman filter’s primary function

is to maintain the correct heading angle. The Kalman filter is well-known and its

background and derivation will not be provided (for the original paper, see [9]). How-

ever, the equations and the specifics of its implementation will be discussed. While

many formulations of the Kalman filter are possible, the convention followed here is
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similar to that outlined in [10]. The measurements used, zk, are lateral acceleration

and yaw rate, both available from the tractor ESC system.

Initialization proceeds as outlined in Equations 2.25-2.28, where E〈·〉 denotes the
expected value operator. First, the best estimate of the current state vector is loaded

as in Equation 2.25. In practice, this would be the last known data from before

the loss of GPS. Second, the state covariance matrix, P, is initialized. The diagonal

terms represent the mean squared error in the initial values of the state vector. If

these errors are unbiased and uncorrelated, the off-diagonal elements are zero (this

is what is done here) [11]. Next, the measurement noise covariance matrix, R, is

initialized. It has a similar significance as the state covariance matrix: its diagonal

terms represent the mean squared error of the measurements. The off-diagonal terms

represent cross-correlations of measurement error and are set to zero as in [10]. Lastly,

the process noise covariance matrix, Q, is initialized. This matrix represents errors

in the model due to noise and unmodeled disturbances (e.g. gusts of wind) and its

off-diagonal terms are also set to zero [10]. Essentially, the process noise covariance

matrix is used to account for the fact that the lateral dynamic model is only an

approximation to the true physical system and accordingly the model’s predictions

will tend to be imperfect.

While the initialization of covariance matrices has been presented in terms of

their mathematical significance, they are used by engineers as tuning parameters

[12]. At its core, a Kalman filter is an intelligent scheme for averaging the results of a

model and one or more measurements in such a way as to produce the best estimate

(the estimate with the lowest mean squared expected error). It accomplishes this by

calculating filter gains based on, among other things, the relative magnitude of the

entries in the covariance matrices. For instance, setting the values ofR comparatively

low implies that the sensors make accurate measurements. As seen in Equation 2.32,
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a smaller R in the denominator results in a larger value of K. In the update step,

Equation 2.33, this will increase the magnitude of the second term, which is the

correction term based on the measured values, zk. Thus setting the values of R low

causes the Kalman filter to ‘trust’ the sensors more (and the model comparatively

less). Although the covariance matrices are largely used as tuning parameters, there

have been some published efforts to determine these matrices numerically based on

acquired data [13].

First, the following parameters are initialized:

x̂−
0 = E〈x0〉 (2.25)

P−
0 = E〈x̃ix̃

T
i 〉 (2.26)

R = E〈z̃iz̃Tj 〉 (2.27)

Q = E〈wiw
T
j 〉 (2.28)

The following time (model) update occurs at each time step (refer to the text

following these equations for a discussion of Equation 2.30):

x̂−
k = Ak−1x

+
k−1 +Bk−1uk−1 (2.29)

Hk =

⎡
⎢⎣ 0 uk 0

0 1 0

⎤
⎥⎦ (2.30)

The covariance matrix is also updated at each time step:

P−
k = Ak−1P

+
k−1A

T
k−1 +Q (2.31)

The gain is calculated to minimize the expected variance of the estimate:

Kk = P−
k H

T
k

(
R+HkP

−
k H

T
k

)−1
(2.32)
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Using the Kalman gain and residual term, the estimate is updated:

x+
k−1 = x−

k +Kk

(
zk −Hkx

−
k

)
(2.33)

Finally, covariance propagation is calculated to be used at the next time step:

P+
k = (I−KkHk)P

−
k (2.34)

Where:

x̃k = x̂k − xk (2.35)

z̃k = ẑk − zk (2.36)

zk =
[
ay Ψ̇

]T
(2.37)

The Kalman filter works by comparing a measured value to that predicted by

a model. In this case, one of the measurement is lateral acceleration. However,

lateral acceleration is not a state of the model. It is the role of the H matrix to

map states to measurements. Lateral acceleration includes a term for pure side slip

acceleration (v̇), which is not an available model state (though it could be estimated

using the continuous time A and B matrices). This is theoretically available by

taking a numerical derivative of v but this will not be done due to the noise concerns

imposed by a real system. Instead, the following approximation is used (reflected in

Equation 2.30). This approximation has been shown to work well with real truck

data, even when maneuvers exceed 0.5 g of lateral acceleration.

ẑk (1) = ay = v̇ + uΨ̇ ≈ uΨ̇ (2.38)
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2.5 TruckSim Validation

A scenario was devised in TruckSim to test the performance of the vehicle state

and positioning estimation system. The scenario shown in Figure 2.3 was created

to represent typical highway driving. It includes a double lane change as well as

two gradual ninety degree curves. This scenario is two minutes long. In each of

the following plots, ‘Model’ refers to the three-axle lateral dynamic model without

the Kalman filter augmentation (or ‘open-loop’), ‘KF’ refers to the Kalman filtered

model, and ‘TruckSim’ represents the reference data provided by TruckSim. In this

plot (as well as Figures 2.5–2.6), the ‘TruckSim’ line is lying directly over top of the

‘KF’ line for the majority of the data.

A plot of the position error (the Euclidean distance between the estimated and

TruckSim-reported positions) as a function of time for both the ‘open-loop’ model

and the Kalman filtered (‘KF’) model is shown in Figure 2.4. While the KF model

remains within four meters of the TruckSim results, the open-loop model diverges

significantly (>60m). Note that the error in the open-loop model is actually quite

small until approximately one minute. At this point, error grows rapidly. The yaw

angle estimate, given in Figure 2.5, begins to diverge at about this time and is the

reason for the rapid accumulation of error. And of course, the source of error in yaw

angle is due to an error in yaw rate (which is integrated to yield yaw angle). This is

shown in Figure 2.6. Since the Kalman filter is using TruckSim-generated values of

yaw rate, the agreement between the KF model and TruckSim is expected. Although

not shown, lateral acceleration has similarly good agreement for the same reason.

This validation exercise shows that the KF model does a good job of predicting

the position of the heavy truck when given accurate signals to feed back on. Noise

was not added to the signals; the effects of using ‘real’ truck data (with its noise) will

be explored in Section 4.4.
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2.6 Conclusion

This chapter has presented the development and simulation-based validation of the

three-axle lateral dynamic heavy truck model. The derivation of the bicycle model has

been presented from the perspective of Newtonian and Lagrangian mechanics. The

details of its accompanying mathematical constructs, the Kalman filter and the RLS

tire cornering stiffness estimator, have been explained. Analysis has shown that the

lateral acceleration approximation of the Kalman filter works well (ay ≈ uΨ̇). Testing

of the RLS tire cornering stiffness estimator has shown that lateral acceleration is a

suitable measurement for parameter estimation. Results from TruckSim simulation

have shown that the model can accurately predict the location of the heavy truck when

supplied with accurate measurements. The work presented here will be extended in

the next chapter to the tractor-trailer combination, or five-axle case.
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CHAPTER 3

FIVE-AXLE LATERAL DYNAMIC ARTICULATED

HEAVY TRUCK MODEL

3.1 Introduction

This chapter describes the development of the five-axle lateral dynamic model of the

articulated heavy truck. The term ‘five-axle’ refers to the front steer axle, tandem

rear truck axles, and tandem trailer axles.

First, the structure of this model (i.e. its states and parameters) and its deriva-

tion are presented along with the assumptions and approximations employed therein.

Owing to the complexity of this system, the derivation is based entirely on Lagrange’s

Equation. Virtual work expressions are explained and an example is given. The effects

of various assumptions embedded in the Lagrangian are examined. The coupled dif-

ferential equations of motion produced by Lagrange’s Equation are converted to a

continuous-time state space representation using MATLAB�. MATLAB� is then

used to discretize the system. Next, the extension of the cornering stiffness estimation

scheme and Kalman filter from the three- to five-axle case are presented. Finally, the

model is validated using TruckSim as a reference.
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3.2 Derivation

A quasi-linear five-axle model for the articulated heavy truck was derived using

Lagrange’s equation (Equation 2.2). The model is not completely linear because

the mass and stiffness matrices of the model, M and K, include terms for the cosine

of hitch angle. Additionally, the stiffness and forcing matrices, K and F, include

terms for the cosine of road wheel steer angle. As in Section 2.2, forward velocity, u,

is treated as a constant parameter instead of a state variable. Accordingly, the model

matrices are recomputed at each time step. A sketch of the model with states, lateral

tire forces, and parameters can be seen in Figure 3.1. The states of the model are

listed below. Since the position estimator is intended to provide localization under

normal driving conditions, a simple linear tire model is used. It is expected that in

practice the lateral acceleration of the truck will rarely exceed 0.3 g.

v : lateral velocity of tractor CG

Ψ̇ : yaw rate of tractor

Ψ : yaw angle of tractor

γ̇ : hitch rate

γ : hitch angle

Equation 3.1 shows the Lagrangian for the five-axle model. Note that the first

two terms, corresponding to tractor energy, are the same as Equation 2.3 and the

following two, corresponding to trailer energy, are of similar form. The generalized

coordinates are lateral position, y, yaw angle, Ψ, and hitch angle, γ. Again, potential

energy is zero. Equations 3.2–3.4 contain the details of the trailer velocity terms. A

comparison of results based on the treatment of Equation 3.3 can be found in Section

3.2.2. Diagrams detailing slip angles and equations for the calculation of tire forces

can be found in Appendix A.1.
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Figure 3.1: Five-Axle Articulated Bicycle Model
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Thus:

L = T − V =
1

2
m1(u

2 + v2) +
1

2
J1Ψ̇

2 +
1

2
m2(u

2
trailer + v2trailer) +

1

2
J2ω

2
2 (3.1)

Where:

ω2 = Ψ̇ + γ̇ (3.2)

This equation states that the total angular velocity of the trailer is equal to the

sum of the tractor angular velocity and the angular velocity of the hitch coupling.

utrailer = u+ d sin γ
(
Ψ̇ + γ̇

)
≈ u (3.3)

This equation states that the forward velocity of the trailer CG (in the tractor’s

local frame) is equal to the tractor forward velocity plus some terms which can be

neglected as being comparatively small. These terms arise when the truck is not

straight (sin γ �= 0) and the trailer is yawing (ω2 �= 0), but these are both small

numbers compared to u.

vtrailer = v − (c+ d cos γ) Ψ̇− d cos γγ̇ (3.4)

This equation states that the side-slip velocity of the trailer CG (in the tractor’s

local frame) is equal to the tractor side-slip velocity plus some other terms multiplied

by the tractor yaw rate and the hitch rate. Unlike Equation 3.3, these other terms

cannot be neglected. In this case, the angular rates are being multiplied by cos γ,

which is generally very close to unity.

Evaluating Equation 2.2 using the Lagrangian from Equation 3.1 results in three

(one for each generalized coordinate) coupled differential equations which can be

expressed as Mẋ. These are the inertial terms; the left-hand side of Equation 2.12.

Though several derivations were carried through by hand, these calculations are some-

what involved and most were computed by a MATLAB� program. Products of states
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were ignored (treated as zeros) in most derivations. This is a common assumption in

vehicle dynamics modeling, see e.g. [1]. The effect of ignoring products of states will

be examined in Section 3.2.2.

Evaluation of the virtual work terms, explained in Section 3.2.1, results in coupled

stiffness and forcing terms of which can be expressed as Kx+Fu (the right-hand side

of Equation 2.12). The three differential equations were augmented with integrators

for yaw angle and hitch angle in order to track these states.

At this point in the derivation, the parameters of the matrices are replaced with

numerical values. MATLAB� can then be used to convert the model to state space

format by multiplying each side by M−1 as was done for the three-axle model. The

system is then transformed to a discrete time representation (see Equation 2.14).

Parametric values for the M, K, and F matrices; x and ẋ vectors; and control

input can be found in Appendix A.2.

3.2.1 Virtual Work Expressions

To formulate the right-hand side of Equation 2.12, the virtual work expressions, Qqi ,

must be calculated for qi = y, qi = Ψ, and qi = γ. These represent the work done

on the system by external forces. They are calculated graphically as follows. First,

the system is drawn in an arbitrary state. Next, the system is drawn as if it had

been displaced by the virtual displacement δqi while holding all other coordinates

fixed. Then, the sum of virtual work is expressed as in Equation 3.5. The virtual

work expression is calculated by dividing the sum of virtual work by the virtual

displacement as shown in Equation 3.6. These virtual work expressions are also

known as generalized forces, owing to the fact that they are force (or moment) terms

corresponding to generalized coordinates.

Wqi =
∑

F (δqi) (3.5)
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Qqi =
Wqi

δqi
(3.6)

A specific example is provided for the case of qi = Ψ in this section. Figure

3.2 shows the virtual displacement of the system by the generalized coordinate Ψ.

The sum of the virtual work, WΨ, is expressed in Equation 3.7. Note that the

terms are of the dimension F · L multiplied by δΨ. This is torque multiplied by

angular displacement, which has units of work (energy). The resulting virtual work

expression, QΨ, is shown in Equation 3.8. Even thoughQΨ represents a torque (i.e., its

terms are of the dimensions F · L), the appropriate expression is obtained through

the general method. This is because the moment arms are properly accounted for

through the displacement terms in Equation 3.7. Virtual displacement diagrams and

virtual work expressions for the other two coordinates are presented in Appendix A.1.

The virtual work is:

WΨ = a cos δF1δΨ− b1F2δΨ− b2F3δΨ− (c cos γ + f1)F4δΨ− (c cos γ + f2)F5δΨ (3.7)

Dividing by δΨ yields the virtual work expression:

QΨ =
WΨ

δΨ
= a cos δF1 − b1F2 − b2F3 − (c cos γ + f1)F4 − (c cos γ + f2)F5 (3.8)
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Figure 3.2: Virtual Displacement by δΨ
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3.2.2 Comparison of Derivations

The model behaves differently when various assumptions are used for Equations 3.3-

3.4. In all cases, the Kalman filter is ‘strong’ enough to produce good positioning

results if it has good signals available to it (for yaw rate in particular) and appro-

priately tuned covariance matrices (Q, R). However, some model revisions tend to

produce poor estimates of lateral velocity, hitch rate, and hitch angle (depending on

the maneuver, they may also produce good results – but they did not produce good

results for all maneuvers studied).

In each of the following plots, ‘Model’ refers to the five-axle model without the

Kalman filter augmentation (‘open-loop’), ‘KF’ refers to the Kalman filtered model

that feeds back on TruckSim signals, and ‘TruckSim’ represents the reference data

provided by TruckSim. For hitch rates and angles, ‘KinHat’ and ‘KinGPS’ legend

entries refer to computation of the hitch rate via Equation 3.12 and numerical inte-

gration to yield hitch angle. The difference between ‘KinHat’ and ‘KinGPS’ is that

in the ‘Hat’ case, values for u, v, and Ψ̇ are taken from the Kalman filtered model

whereas in the ‘GPS’ case they are taken from TruckSim data (equivalent to a perfect

dual GPS).

Figure 3.3 shows the global position estimates produced during a two-minute

highway driving scenario using Revision 3 of the model. Although the open-loop

model does not track the path well, the Kalman filtered model follows the path

closely due to the clean, accurate yaw rate signal from TruckSim. Figure 3.4 shows

the hitch angle estimates from Revision 3. The open-loop model shows incorrect

polarity (sign) and a very small amplitude relative to the TruckSim results. The

Kalman filter attempts to correct the magnitude by increasing it, but the sign is still

wrong. Figure 3.5 shows the hitch rate estimates produced by Revision 3. Similar

to the hitch angle, the sign of hitch angle is wrong and its amplitude too low for the
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open-loop model. This plot also shows one of the peculiarities of the Kalman filter.

At t ≈ 60 s, the hitch rate estimated by the Kalman filter model is nonzero, even

though the estimated hitch angle is not changing. This is because the Kalman filter

can independently adjust its estimate of each state (and therefore it is not as simple

as γk+1 = γk + γ̇kTs).

These plots should be contrasted with those in Section 3.5.1 where results from

Revision 4 are presented. Table 3.1 summarizes the results of a number of different

model revisions containing different implicit assumptions. Revision 3 may be con-

sidered representative of those models with ‘No’ in the last column while Revision 4

may be considered representative of those with ‘Yes’ in the last column.
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Figure 3.3: Highway Scenario Path Prediction, Five-Axle Model Revision 3
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Table 3.1: Effects of Various Assumptions on Model Performance

Rev cos(γ) sin(γ)
utrailer = 
utractor ?

Predicts γ 
well?

3 cos(γ) sin(γ) No. No.
4 1 0 Yes. Yes.
5 cos(γ) sin(γ) No. No.
6 cos(γ) 0 Yes. Yes.
7 1 γ No. No.
8 cos(γ) γ No. No.

Note that the models which work well, Revisions 4 and 6, both approximate

trailer longitudinal velocity to be the same as tractor longitudinal velocity (utractor =

utrailer ↔ sin γ = 0). This is believed to occur because of unmodeled longitudinal

dynamics acting as a noise input to the system. In the three-axle case, u only appears

in the mass matrix, M, due to the uΨ̇ term of lateral acceleration. (Of course,

u appears in the stiffness matrix of both systems due to slip angle relationships.)

Similarly, if utrailer ≈ utractor, then u only appears in the five-axle model’s mass

matrix as a uΨ̇ term (i.e., in the third column). However, if utrailer �= utractor, u also

appears in the mass matrix multiplied by γ̇, i.e. in the fifth column (cf. M3 and M4

in Appendix A.2).

When tested with TruckSim data, model Revisions 4 and 6 both worked equally

well (refer to Section 3.5). Accordingly, both were used for the field testing validation

shown in Chapter 4. The results in this case were again nearly identical, which

should be expected as the cosine of hitch angle is very close to unity most of the

time. However, Revision 4 predicted hitch angle slightly better for high articulation

angles (approximately 30 degrees). It is counterintuitive that Revision 4 (which

simplifies cosine of hitch angle to unity) would outperform Revision 6 (which uses its
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estimate of hitch angle and calculates its cosine) at high articulation angles, but it is

worth remembering that these are both very simple models of a very complex system.

Perhaps, then, the detail omitted by Revision 4 is offset by another unmodeled error

source.

How close is utrailer to utractor? Figure 3.6 shows three velocities for the highway

driving scenario: ‘Model,’ the tractor velocity as estimated by averaging wheel speeds

(tractor only) reported by TruckSim; ‘TruckSim,’ the longitudinal velocity of the

tractor CG as reported by TruckSim; and ‘Trailer,’ the velocity of the trailer in

the direction of the tractor’s heading as calculated by Equation 3.3 using TruckSim

signals. At this scale, the signals are indistinguishably similar. Figure 3.7 shows the

same plot with a much smaller scale, which indicates that the velocities are close

(within 0.03 m/s) for the duration of the maneuver.
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Figure 3.6: Longitudinal Velocities for Highway Driving Case
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In Table 3.1, the difference between Revisions 3 and 5 is not apparent. The

differential equations of motion were calculated using the same Lagrangian and were

derived both by hand and using MATLAB�. Revision 3 treats cos γ as a constant

parameter (like u) to be updated in the mass matrix at each time step. Revision 5,

on the other hand, uses closed-form operating point linearization via the Jacobian

(carried out via MATLAB�). This model does not neglect products of states. For

background on this form of linearization, refer to [2] or [3].

Revision 5 was calculated in the following manner: starting with the differential

equations of motion, MATLAB� was used to algebraically manipulate the system

into the form ẋ = f (x,u, u), i.e. explicitly in terms of ẋ (this is equivalent to M = I).

The resulting functions were used to calculate the Jacobian, which was decomposed

into two parts so that the system could be expressed in the form of Equation 2.13,

i.e. state space form. The resulting A matrix was very complex, with some entries
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containing hundreds of terms. This is not thought to be a tractable solution for

real-time implementation, but instead was used as a validity check for the quasi-

linearization accomplished in Revision 3 by placing terms such as cos γ inside the M

and K matrices.

The continuous-time A matrices of Revisions 3 and 5 were compared. During

a simulation run, the (numerical) A matrices and eigenvalues of both models were

saved for comparison. Equations 3.9 and 3.10 show the A matrices and eigenvalues

of model Revisions 3 and 5 respectively. These values are taken from the highway

driving case examined in Sections 2.5 and 3.5.1. Note the extremely close agreement,

suggesting that the quasi-linearization technique is valid and that products of states

are inconsequential.

A3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3.3416 −30.2102 0 −16.5485 −7.3492

−0.0740 −15.9041 0 −9.9695 2.9290

0 1 0 0 0

0.2557 14.3187 0 5.1522 −15.0846

0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, λ3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−3.7283 + 6.1068i

−3.7283− 6.1068i

−3.3185 + 1.4577i

−3.3185− 1.4577i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.9)

A5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3.3416 −30.2102 0 −16.5485 −7.3492

−0.0740 −15.9041 0 −9.9695 2.9289

0 1 0 0 0

0.2557 14.3187 0 5.1522 −15.0846

0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, λ5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−3.7283 + 6.1068i

−3.7283− 6.1068i

−3.3185 + 1.4577i

−3.3185− 1.4577i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.10)

3.2.3 Kinematic Hitch Rate

As listed in Section 3.2, hitch angle (γ) is a state of the five-axle model. Accordingly,

the dynamic model naturally produces an estimate of hitch angle while running. How-

ever, this dynamic model requires knowledge of a large number of vehicle parameters

(e.g. trailer inertia). For this reason, a simple kinematic model was investigated.
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The kinematic model was derived based on the assumption that the trailer wheels

do not side slip, a common assumption for low-speed turning [4]. This is, of course,

not true in practice. Side slip is necessary to produce lateral force, but side slip

velocity is small in comparison to the orthogonal ‘forward’ component of velocity [4].

In order for the trailer to be able to turn, the instant center of the trailer is located

between its wheels. In this case there are two rear axles, so the instant center is

located in between them (point F) to minimize side slip. A kinematic diagram of the

trailer is shown in Figure 3.8.

If the velocity of the hitch point and a few other parameters are known, the hitch

rate can be calculated. The hitch point velocities are shown in green. Rotating these

velocities by the angle γ results in the velocities shown in blue. The relationship

between the velocity of point F and the hitch point is shown in Equation 3.11 [5].

Substitution of the relevant velocities and parameters yields Equation 3.12. This hitch

rate is numerically integrated to estimate hitch angle. Since hitch angle appears in

Equation 3.12, this estimation process should begin at a time when hitch angle can

be assumed zero, such as straight driving.

Side slip velocity cannot be measured with a single GPS. A single GPS can only

provide the vector sum of side slip and longitudinal velocity (or ‘total’ velocity).

However, the five-axle model can provide an estimate. The effects of using estimated

and ‘known’ velocities will be shown in Section 3.5. Also note that the parameters c

and Lf are subject to adjustment by the user, as the kingpin and rear axle locations

can be moved. Refer to Figure 3.1 for a sketch of the model with parameters.

�vH = �vF + �rH/F × ω (3.11)

γ̇ =

(
v − cΨ̇

)
cos γ − u sin γ

Lf

− Ψ̇ (3.12)

Some previous work has been done to estimate articulation angle, but this has
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Figure 3.8: Diagram for Kinematic Determination of Hitch Rate

primarily been concerned with jackknife detection and prevention. Chu et al. designed

an estimator based on a state observer, but this study had several limitations. It

required lateral velocity as a measured signal, was not very accurate at high hitch

angles (ca. ±2 deg at γ = 10 deg), and was only tested against a 21-DOF simulation

(no physical validation) [6]. Dunn created a model to detect jackknifing under heavy

braking, but this required measuring longitudinal slip ratio and had similar accuracy

issues at higher hitch angles [7]. Zhou et al. also described prediction of hitch angle

based on a state space model in a paper regarding jackknife prevention. However, no

results of hitch angle prediction were shown, no physical validation was carried out,

and the system required a yaw rate sensor on the trailer [8].
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3.3 Tire Cornering Stiffness Estimator

The cornering stiffness estimation scheme detailed in Section 2.3 was modified for the

five-axle case. Equations 2.17–2.19 were used without modification. However, some

of the quantities in the equations themselves changed. Since there are five axles,

φ now contains five lumped axle cornering stiffnesses. In the three-axle case, both

lateral acceleration and yaw acceleration were investigated as measurements (y1 = ay,

y2 = Ψ̈). Based on the results of the three-axle case and the availability of sensors,

only lateral acceleration was investigated as a measurement for the five-axle cornering

stiffness estimator (y = ay).

However, the treatment of this measurement was not so simple due to the coupling

of the system. In the three-axle case, the first equation of the model can be stated

as “the sum of the lateral tire forces is equal to the tractor’s mass multiplied by its

lateral acceleration.” This made it very simple to separate the equation in terms of

the lateral acceleration measured, known mass, estimated slip angles, and cornering

stiffnesses to be estimated. In the five-axle case, the same equation would be stated

as “the sum of lateral tire forces is equal to the sum of tractor and trailer mass

multiplied by lateral acceleration plus coupling terms multiplied by yaw acceleration

and hitch acceleration.” These coupling terms complicated the matter and were

treated in several different ways. In the first case, these terms were neglected entirely

(y1 = ay). In the second case, the transient terms were estimated based on the

continuous time state space model and the measurement was augmented by this

value (y2 = ay + t̂1 + t̂2). In the final case, the transient terms were calculated

using TruckSim values (y3 = ay + t1 + t2). Though this is not feasible in practice, it

provided a benchmark by which y1 and y2 were measured. Equation 3.13 shows the

measurement term while Equations 3.14 and 3.15 give the exact form of the transient

coupling terms. Equation 3.16 lists the quantity to be estimated, i.e. the vector of

51



cornering stiffnesses and Equation 3.17 gives the vector that maps φ to lateral forces,

i.e. slip angle estimates.

y = ay + t1 + t2 =
1

m1 +m2

Xφ (3.13)

t1 =
−m2Ψ̈ (c+ d cos γ)

m1 +m2

(3.14)

t2 =
−m2γ̈d cos γ

m1 +m2

(3.15)

φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Cα1

Cα2

Cα3

Cα4

Cα5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.16)

X =

[(
δcos(δ)− cos(δ)

v + aΨ̇

u

)
−v + b1Ψ̇

u

−v + b2Ψ̇

u

− cos γv + cos γ (c+ f1 cos γ) Ψ̇ + cos2 γf1γ̇

u
+ γ cos γ

− cos γv + cos γ (c+ f2 cos γ) Ψ̇ + cos2 γf2γ̇

u
+ γ cos γ

]
(3.17)

Figure 3.9 shows the three measurements y1, y2, and y3 and Figure 3.10 shows the

corresponding cornering stiffness estimates during a ramp and hold maneuver. This

entails quickly ramping the steering to the value required to generate approximately

0.2 g and holding it there while maintaining constant forward speed. The ramp and

hold maneuver was found to be the most suitable for cornering stiffness estimation.

This was believed to be because constant lateral acceleration provided a strong signal

to the estimator while the quasi-steady nature caused Equations 3.14 and 3.15 to go

to zero. This suggests that in practice constant radius turns such as highway exit

ramps may provide suitable excitation for the cornering stiffness estimator.
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In steady state, y1 tracked y3 (the ‘truth’ value) better than y2. However, using

y2, the measurement that included estimates of the dynamic coupling terms of Equa-

tions 3.14 and 3.15, produced better estimates of tire cornering stiffness (refer to

Figure 3.10). For example, consider Cα1 and Cα5. The estimates generated using

y1 (appended by (1)) are vastly different (about an order of magnitude) while those

generated by y2 (appended by (2)) are less than a factor of two different, suggesting

the estimates produced by y2 are more physically reasonable. In simulation, using

estimates produced by y2 was found to work better than using estimates produced

by y1.
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Figure 3.9: Measurements for Tire Cornering Stiffness Estimation, Five-Axle Model

We now take note of the fact that this represents a new contribution to the field

of tire cornering stiffness estimation. Previous researchers have created methods to

53



0 5 10 15 20 25 30
0

1

2

3

4

5

6

7
x 105

Time [s]

C
α
[N

/
r
a
d
]

C
α1(1)

Cα1(2)

C
α1(3)

C
α2(1)

Cα2(2)

Cα2(3)

C
α3(1)

C
α3(2)

C
α3(3)

Cα4(1)

Cα4(2)

Cα4(3)

Cα5(1)

C
α5(2)

C
α5(3)

Figure 3.10: Cornering Stiffness Estimate, Five-Axle Model.
[(1): y = y1, (2): y = y2, (3): y = y3]

estimate the tire cornering stiffnesses (‘effective axle cornering stiffnesses’ in Pacejka’s

terminology) of passenger cars under a variety of assumptions. Anderson et al. devel-

oped a method to estimate the cornering stiffness of passenger car tires based on

a Kalman filter using dual GPS and a yaw rate gyro as measurements [9]. How-

ever, dual GPS is not typically available. Sienel produced an estimation scheme that

requires only lateral acceleration and yaw rate, but involves numerically calculating

time derivatives of steer angle (steer rate) and lateral acceleration (jerk) and thus

the signals must be filtered [10]. Wesemeier et al. developed a model that calcu-

lates static gains of the bicycle model, i.e. the input-output relationships that lateral

acceleration and yaw rate have with steer angle at a given steady trim. The advan-

tage of Wesemeier’s approach is that cornering stiffness can be estimated without

knowing the vehicle’s moment of inertia [11]. Baffet et al. created an observer model
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that calculates tire cornering stiffnesses based only on the following extant signals:

yaw rate, lateral acceleration, steer angle, and wheel angular velocities [12]. You et

al. described a model that identifies cornering stiffness based on extant signals and

also produces an estimate of road bank angle [13].

However, comparatively little work has been done to identify cornering stiffnesses

of trailer tires. Alexander et al. calculated trailer tire cornering stiffness by identifying

the transfer function coefficients relating steer angle to yaw rate at various constant

speeds (an off-line estimation method) [14]. Though the mathematics are unclear, it

seems that the researchers have considered only two effective axle cornering stiffnesses

– that of the steer axle and that of all other axles (rear tractor tandem and trailer

tandem), since the results are organized in this fashion and equal among the non-

steered axles. This is in contrast to other research which might lump tandem axles

(e.g. both trailer axles) but not all non-steered axles, presumably due to the wide

variations in normal force possible in practice [7]. Hac et al. estimated trailer tire

cornering stiffness using measurement of trailer lateral acceleration and yaw rate,

which are are not commonly available. This was done off-line with a least squares

method [15].

3.4 Kalman Filter

In contrast with the cornering stiffness estimator, very little modification was neces-

sary to extend the three-axle Kalman filter to the five-axle case. Equations 2.25–2.34

were used directly, though the terms in the equations were modified, e.g. Q became

a 5× 5 matrix instead of a 3× 3. The five-axle Kalman filter utilizes the same mea-

surements: lateral acceleration and tractor yaw rate. The same approximation of
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lateral acceleration was used, i.e. ay ≈ uΨ̇, and this results in the H matrix shown in

Equation 3.18.

Hk =

⎡
⎢⎣ 0 uk 0 0 0

0 1 0 0 0

⎤
⎥⎦ (3.18)

3.5 TruckSim Validation

The model presented in this chapter was tested with TruckSim and the various tuning

parameters (e.g. R) were adjusted to provide good results. Model Revisions 4 and 6

provided nearly identical results, and only the results from Revision 4 are presented

here. Both Revisions 4 and 6 will be investigated in Chapter 4 to determine if either

has an advantage when using field data. In each of the following plots, ‘Model’ refers

to the five-axle model without the Kalman filter augmentation, ‘KF’ refers to the

Kalman filtered model, and ‘TruckSim’ represents the reference data provided by

TruckSim. For hitch rates and angles, ‘KinHat’ and ‘KinGPS’ legend entries refer to

computation of the hitch rate via Equation 3.12 and numerical integration to yield

hitch angle. The difference between ‘KinHat’ and ‘KinGPS’ is that in the ‘Hat’ case,

values for u, v, and Ψ̇ are taken from the Kalman filtered model whereas in the

‘GPS’ case they are taken from TruckSim data (equivalent to a perfect dual GPS).

In general, the difference is slight and suggests that perhaps the kinematic solution

can be used without dual GPS. In neither case is a TruckSim signal for γ provided.

3.5.1 Highway Driving Scenario

First, the scenario from Section 2.5 was simulated for the five-axle case using the

cornering stiffness estimate shown in Figure 3.10. The path prediction of this model

is shown in Figure 3.11 and the RMS position error as a function of time is shown in
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Figure 3.12. Figure 3.13 shows the roadwheel steering input. The forward velocity

was given earlier in Figure 3.6.

200 400 600 800 1000 1200 1400

−1000

−800

−600

−400

−200

0

Global X [m]

G
lo
b
a
l
Y

[m
]

Model
KF
TruckSim

Figure 3.11: Highway Scenario Path Prediction, Five-Axle Model

It is clear from Figures 3.11 and 3.12 that the Kalman filter is greatly improving

the performance of the model. Because the Kalman filter is feeding back on very

clean TruckSim signals, it is able to provide excellent corrections. This can be seen

in Figures 3.14, 3.15, and 3.15 which show the lateral acceleration, yaw rate, and yaw

(heading) angle for this scenario respectively. Note that the Kalman filter data is

essentially ‘line-over-line’ with TruckSim due to the quality of the signals.
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Figure 3.12: Highway Scenario Global Position Error, Five-Axle Model

Figures 3.17 and 3.18 show the hitch angle and hitch rate, respectively. For this

case, the dynamic model predicts hitch angle more accurately than the kinematic

model and the Kalman filter is helpful for the dynamic model. However, it is worth

noting that the absolute value of hitch angle is fairly low (peak ≈ 2 deg). The

kinematic model using TruckSim data (‘KinGPS’) is slightly more accurate than the

model which uses Kalman filter model data (‘KinHat’).
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Figure 3.13: Highway Scenario Roadwheel Steering Angle, Five-Axle Model
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Figure 3.14: Highway Scenario Lateral Acceleration, Five-Axle Model
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Figure 3.15: Highway Scenario Yaw Rate, Five-Axle Model
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Figure 3.16: Highway Scenario Yaw Angle, Five-Axle Model
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Figure 3.17: Highway Scenario Hitch Angle, Five-Axle Model
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Figure 3.18: Highway Scenario Hitch Rate, Five-Axle Model
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3.5.2 Urban Driving Scenario

Next, an urban driving scenario was developed. This consists of three straight sections

connected by right and left turns (R = 20 m). The path prediction of this model

is shown in Figure 3.19 and the RMS position error as a function of time is shown

in Figure 3.20. Figure 3.21 shows the roadwheel steering input and speed is shown

in Figure 3.22. Due to the tight radius of curvature and correspondingly high hitch

angles, the trailer longitudinal velocity (in the tractor’s frame, not its own) differs

significantly from the tractor’s at some points.
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Figure 3.19: Urban Scenario Path Prediction, Five-Axle Model
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Figure 3.20: Urban Scenario Global Position Error, Five-Axle Model

It is clear from Figures 3.19 and 3.20 that the Kalman filter is improving the

performance of the model. While the open-loop model reaches a peak RMS position

error of nearly 1.5 m, the Kalman filtered model never exceeds 1 m of error.

Figures 3.26 and 3.27 show the hitch angle and hitch rate, respectively. For this

case, the kinematic model predicts hitch angle more accurately than the dynamic

model.
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Figure 3.21: Urban Scenario Roadwheel Steering Angle, Five-Axle Model
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Figure 3.22: Urban Scenario Speed, Five-Axle Model
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Figure 3.23: Urban Scenario Lateral Acceleration, Five-Axle Model
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Figure 3.24: Urban Scenario Yaw Rate, Five-Axle Model
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Figure 3.25: Urban Scenario Yaw Angle, Five-Axle Model
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Figure 3.26: Urban Scenario Hitch Angle, Five-Axle Model

66



0 5 10 15 20 25
−15

−10

−5

0

5

10

Time [s]

γ̇
[d
eg
/
s]

Model
KF
TruckSim
KinHat
KinGPS

Figure 3.27: Urban Scenario Hitch Rate, Five-Axle Model
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3.6 Conclusion

This chapter has presented the development and simulation-based validation of the

five-axle lateral dynamic heavy truck model. The model’s states and parameters

were introduced and the derivation was explained using Lagrange’s Equation. The

effects of various assumptions embedded in the Lagrangian were examined and two

feasible models were identified. A new method of estimating hitch angle, based on

kinematics, was introduced and its equations were derived. A new method for the

estimation of trailer tire cornering stiffness was proposed and a suitable measurement

was identified via simulation. Finally, TruckSim was used to validate the model. The

position estimate produced by the system was found to be acceptable as were both

methods (kinematic and dynamic) of estimating articulation angle. The effects of

using real truck data will be examined in the next chapter.
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CHAPTER 4

FIELD TESTING MODEL VALIDATION

4.1 Introduction

This chapter covers validation of the vehicle models introduced in Chapters 2 and 3.

These models were developed using a high-fidelity TruckSim model created by Rao

based on research conducted at NHTSA’s Vehicle Research and Test Center (VRTC)

[1]. The same vehicle was then used for physical testing, which was performed at the

Transportation Research Center (TRC) in East Liberty, Ohio.

This chapter begins by detailing the equipment and facilities used in the testing.

Following this is a validation of the three-axle model. Next, a more extensive valida-

tion of the five-axle model is presented. Finally, conclusions are drawn regarding the

performance of the estimation system.

4.2 Equipment

4.2.1 Tractor

The tractor used for validation of both models was a 2006 Volvo 6x4 VNL64T630,

VIN 4V4NC9GH16N441360. The tractor (with trailer attached) is pictured in Figure

4.1, where it is being weighed.
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Figure 4.1: Volvo Tractor with Fruehauf Box Trailer

4.2.2 Trailer

The trailer used was a 53-foot Fruehauf box trailer (this was also modeled by Rao in

[1]). It was loaded with concrete ballast blocks according to the diagram shown in

Figure 4.2. The boxes containing an ‘X’ are welded steel frames which support the

ballast blocks. The outriggers were not necessary for this testing and therefore were

not used.

The lateral dynamic model originally used mass values taken from the TruckSim

model, but these were adjusted slightly based on the measurements taken on the

scale (shown in Figure 4.1). The small discrepancies arise from three sources: slightly

different ballast blocks were used (e.g. a 4006 pound block was used in place of a 4000

pound block), the outriggers were not mounted on the trailer, and the weight of the
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Figure 4.2: Fruehauf Box Trailer with High-CG Load

load frames were neglected in the original model. Figure 4.3 shows some of the ballast

blocks used to load the trailer. Also visible attached to the ceiling is a mount for a

GPS antenna (without antenna; directly above the kingpin).
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Figure 4.3: Ballast in Fruehauf Box Trailer

4.2.3 Sensors

The vehicle was outfitted with a number of sensors for testing. A United Eletronic

Industries (UEI) ‘Cube’ data acquisition system was installed to collect data from

several sources. The J1939-standard truck CAN bus was monitored to collect vehicle-

reported wheel-based vehicle speed, lateral acceleration, yaw rate, and handwheel
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steering angle [2]. Discrete sensors were also connected to the Cube, such as a string

potentiometer used to measure handwheel steer angle. An RT3003 from Oxford

Technical Solutions was also connected to the Cube to collect high-accuracy inertial

measurements (lateral acceleration, yaw rate) and GPS-based speed.

In addition to the GPS antenna connected to the RT3003, three dual-frequency

(L1/L2 band) Novatel GPS antennas were connected. The first antenna was mounted

on the tractor, just aft of the cab on the vehicle centerline. The second antenna was

mounted on the trailer, just under its fiberglass roof and directly above the kingpin.

This point is common to both the tractor and trailer and thus served as a ‘virtual

sensor’ for the tractor. The third antenna was mounted near the rear of the trailer

just below its roof on the centerline. The first and second antenna (here acting as

a ‘virtual sensor’) allowed the heading angle of the tractor to be calculated. By

comparing this with the velocity heading (i.e. the direction in which the tractor is

traveling), the body sideslip angle and sideslip velocity were also calculated. The

second and third antenna allowed the heading angle of the trailer to be calculated.

The difference between tractor and trailer heading is the hitch (articulation) angle.

Though handwheel steering angle was measured via CAN and a string poten-

tiometer, road wheel steer angle is needed for the model. The steering gear ratio,

i.e. the linear best fit of handwheel steer angle divided by road wheel steer angle, was

reported by Rao as being 20.5 deg/deg (degree of handwheel angle per degree of road

wheel angle) [1]. Thus the plots of road wheel steer angle in this chapter are in fact

plots of handwheel steer angle divided by the steering gear ratio. This is the same

signal that was provided to the estimator.
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4.3 Facilities

4.3.1 Vehicle Dynamics Area (VDA)

The Vehicle Dynamics Area (VDA) at TRC is a wide, open expanse of asphalt approx-

imately 50 acres in area. Adjacent to the VDA are two loops (the ‘north loop’ and

‘south loop’) that can be used to accelerate before entering the testing area. A draw-

ing of the VDA can be found in Figure 4.4. The VDA was utilized for the ramp

and hold maneuver as well as the urban driving scenario. For the ramp and hold

maneuver, the tractor-trailer was driven out of the north (south) loop and turned to

the right (left) at both 0.1 and 0.2 g. For the urban driving scenario, cones were set

up near the north end of the VDA to mark low-speed left and right turns with radii

of 20 m. A photograph of the urban driving scenario setup can be seen in Figure 4.5.

The tire marks on the pavement are from the test vehicle, which can be seen at the

far left of the frame.
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Figure 4.5: Experimental Setup for Urban Driving Scenario on VDA

4.3.2 7.5 Mile Test Track

TRC’s 7.5-mile test track is a smooth, asphalt-paved track with banked lanes. Testing

was conducted in Lane 0, which has the smallest amount of banking and the lowest

minimum and maximum speeds (0 and 60 mph, respectively). A diagram of the track

can be found in Figure 4.6. This test track was used to conduct the highway driving

scenario tests.
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nario Testing

4.4 Three-Axle Model Validation

The National Highway Traffic Safety Administration’s (NHTSA’s) Vehicle Research

and Test Laboratory (VRTC) is responsible for a wide range of vehicle testing.

Because of VRTC’s role in testing heavy truck ESC systems, large amounts of data

are available. One of these tests was used to validate the three-axle model. Although

these ESC test maneuvers are often severe, this provides ‘worst-case’ tests for the

position estimator.
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Figure 4.7: Path Prediction with Real Data, Three-Axle Model

Figure 4.7 shows the results of such a maneuver, which had a peak lateral accel-

eration of approximately 0.6 g. Figure 4.8 shows the position error corresponding to

the open-loop and KF models. The maximum error for the KF model is about 4 m

while the error of the open-loop model exceeds 15 m. Errors in û were found to be a

significant source of error in the estimate of global position. While TruckSim wheel

speeds are very close to the CG velocity, the measured wheel speeds were not as close.

Figure 4.9 shows a plot of u for this same scenario. ‘Model,’ the speed used by the

position estimator (û), is estimated by averaging all six wheel speeds. ‘DAQ’ is taken

directly from the recorded data. ‘GPS Calc’ is calculated using GPS Northings and

Eastings velocity along with the GPS heading angle. Note that the ‘Model’ value

exceeds the actual speed, especially during the period from 20 – 35 s. This could be
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Figure 4.8: Global Position Error with Real Data, Three-Axle Model
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addressed in future work by better estimating the scale factor (effective loaded wheel

radius) between wheel angular velocity and vehicle longitudinal velocity during times

that GPS is available.

4.5 Five-Axle Model Validation

4.5.1 Ramp and Hold

Based on experience developing the tire cornering stiffness estimator using TruckSim,

data was collected during several ramp and hold maneuvers. This involved driving

the vehicle in a straight line for several seconds at approximately 70 kph and then

linearly increasing steering angle until the desired lateral acceleration was reached.

This level of lateral acceleration was then maintained for approximately 10 seconds.

The vehicle was driven by a test driver (as opposed to a steer robot) because the tire

cornering stiffness estimator should work despite natural driving behaviors (e.g. small

steering oscillations) if it is to be feasible for a real embedded system. This test was

repeated for left and right turns at nominal lateral accelerations of 0.1 and 0.2 g.

4.5.1.1 Ramp and Hold, Model Revision 4

Figures 4.10–4.18 show the results of ramp and hold maneuver #1338. This was a

right-hand ramp at a nominal lateral acceleration of 0.2 g (in this case, 0.25–0.3 g).

Figure 4.10 shows the tire cornering stiffness estimates generated by this run. For

the purpose of tire cornering stiffness estimation, this scenario was initially processed

using TruckSim values of tire cornering stiffness. The remainder of the plots were

generated using estimated values of tire cornering stiffness. The estimates produced

by y2 (i.e. those appended with (2)) were found to be better, particularly because

Cα1(1) (generated using y1) is estimated as being too high.
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From Figure 4.12 we can see that the vehicle position estimator maintained lane-

level positioning for approximately 7 s and road-level positioning for the duration of

the run. This accuracy is achieved by having the Kalman filter highly ‘trust’ the

CAN-based yaw rate measurement as can be seen in Figure 4.15. This is achieved

through proper tuning of theRmatrix, i.e.R(2, 2) is set small, as explained in Section

2.4. As a result, the state estimate for heading angle is quite accurate, as can be seen

in Figure 4.16.

Figure 4.17 shows that the estimate of hitch angle produced by the dynamic model

(i.e. the trace labeled ‘KF’) is quite good, generally within about a tenth of a degree.

Interestingly, here the kinematic model which results on estimated states (‘KinHat’)

is actually more accurate than the kinematic model relying on GPS measurements

(‘KinGPS’).
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Figure 4.10: Ramp #1338 (Right, 0.2 g) Tire Cornering Stiffness Estimation, Five-
Axle Model Revision 4

83



−150 −100 −50 0 50 100 150

−250

−200

−150

−100

−50

Global X [m]

G
lo
b
a
l
Y

[m
]

Model
KF
DAQ

Figure 4.11: Ramp #1338 (Right, 0.2 g) Path Prediction, Five-Axle Model Revision
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Figure 4.12: Ramp #1338 (Right, 0.2 g) Global Position Error, Five-Axle Model
Revision 4
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Figure 4.13: Ramp #1338 (Right, 0.2 g) Road Wheel Steering Angle, Five-Axle
Model Revision 4
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Figure 4.14: Ramp #1338 (Right, 0.2 g) Lateral Acceleration, Five-Axle Model Revi-
sion 4
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Figure 4.15: Ramp #1338 (Right, 0.2 g) Yaw Rate, Five-Axle Model Revision 4
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Figure 4.16: Ramp #1338 (Right, 0.2 g) Yaw Angle, Five-Axle Model Revision 4
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Figure 4.17: Ramp #1338 (Right, 0.2 g) Hitch Angle, Five-Axle Model Revision 4
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Figure 4.18: Ramp #1338 (Right, 0.2 g) Hitch Rate, Five-Axle Model Revision 4

Figures 4.19–4.27 show the results of ramp and hold maneuver #1342. This was

a left-hand ramp at a nominal lateral acceleration of 0.1 g (in this case, about 0.11

g). Figure 4.19 shows the tire cornering stiffness estimates generated by this run. For

the purpose of tire cornering stiffness estimation, this scenario was initially processed

using TruckSim values of tire cornering stiffness. The remainder of the plots were

generated using estimated values of tire cornering stiffness. The estimates produced

by y2 were again found to be better, because Cα1(1) is estimated as being too high

and Cα4(1) is estimated as being nearly zero.

In this case, lane-level positioning was maintained for the entire duration of the

run as can be seen in Figure 4.21. The estimates of hitch angle, shown in Figure 4.26,

were also very good with the KF estimate generally being within a tenth of a degree.

However, in steady state the kinematic model relying on estimated states (‘KinHat’)

was more accurate than the dynamic model (‘KF’).
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Figure 4.19: Ramp #1342 (Left, 0.1 g) Tire Cornering Stiffness Estimation, Five-
Axle Model Revision 4
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Figure 4.20: Ramp #1342 (Left, 0.1 g) Path Prediction, Five-Axle Model Revision 4
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Figure 4.21: Ramp #1342 (Left, 0.1 g) Global Position Error, Five-Axle Model Revi-
sion 4
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Figure 4.22: Ramp #1342 (Left, 0.1 g) Road Wheel Steering Angle, Five-Axle Model
Revision 4
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Figure 4.23: Ramp #1342 (Left, 0.1 g) Lateral Acceleration, Five-Axle Model Revi-
sion 4

0 2 4 6 8 10 12 14 16 18
−1

0

1

2

3

4

5

6

Time [s]

Ψ̇
[d
eg
/
s]

Model
KF
GPS
CAN

Figure 4.24: Ramp #1342 (Left, 0.1 g) Yaw Rate, Five-Axle Model Revision 4
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Figure 4.25: Ramp #1342 (Left, 0.1 g) Yaw Angle, Five-Axle Model Revision 4
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Figure 4.26: Ramp #1342 (Left, 0.1 g) Hitch Angle, Five-Axle Model Revision 4
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Figure 4.27: Ramp #1342 (Left, 0.1 g) Hitch Rate, Five-Axle Model Revision 4

4.5.1.2 Ramp and Hold, Model Revision 6

Figures 4.28–4.36 show the results using the Revision 6 model for ramp maneuver

#1338. Figures 4.37–4.45 show the results using the Revision 6 model for ramp

maneuver #1342. Close examination reveals that these curves are in fact distinct

from those produced by the Revision 4 model, but no significant differences were

observed.

93



0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 106

Time [s]

C
α
[N

/
r
a
d
]

C
α1(1)

Cα1(2)

C
α2(1)

C
α2(2)

Cα3(1)

Cα3(2)

C
α4(1)

C
α4(2)

C
α5(1)

Cα5(2)

Figure 4.28: Ramp #1338 (Right, 0.2 g) Tire Cornering Stiffness Estimation, Five-
Axle Model Revision 6
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Figure 4.29: Ramp #1338 (Right, 0.2 g) Path Prediction, Five-Axle Model Revision
6
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Figure 4.30: Ramp #1338 (Right, 0.2 g) Global Position Error, Five-Axle Model
Revision 6
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Figure 4.31: Ramp #1338 (Right, 0.2 g) Road Wheel Steering Angle, Five-Axle
Model Revision 6
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Figure 4.32: Ramp #1338 (Right, 0.2 g) Lateral Acceleration, Five-Axle Model Revi-
sion 6
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Figure 4.33: Ramp #1338 (Right, 0.2 g) Yaw Rate, Five-Axle Model Revision 6
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Figure 4.34: Ramp #1338 (Right, 0.2 g) Yaw Angle, Five-Axle Model Revision 6
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Figure 4.35: Ramp #1338 (Right, 0.2 g) Hitch Angle, Five-Axle Model Revision 6
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Figure 4.36: Ramp #1338 (Right, 0.2 g) Hitch Rate, Five-Axle Model Revision 6
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Figure 4.37: Ramp #1342 (Left, 0.1 g) Tire Cornering Stiffness Estimation, Five-
Axle Model Revision 6
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Figure 4.38: Ramp #1342 (Left, 0.1 g) Path Prediction, Five-Axle Model Revision 6
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Figure 4.39: Ramp #1342 (Left, 0.1 g) Global Position Error, Five-Axle Model Revi-
sion 6
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Figure 4.40: Ramp #1342 (Left, 0.1 g) Road Wheel Steering Angle, Five-Axle Model
Revision 6
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Figure 4.41: Ramp #1342 (Left, 0.1 g) Lateral Acceleration, Five-Axle Model Revi-
sion 6
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Figure 4.42: Ramp #1342 (Left, 0.1 g) Yaw Rate, Five-Axle Model Revision 6
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Figure 4.43: Ramp #1342 (Left, 0.1 g) Yaw Angle, Five-Axle Model Revision 6

101



0 2 4 6 8 10 12 14 16 18
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Time [s]

γ
[d
eg
]

Model
KF
DAQ

KinHat
KinGPS

Figure 4.44: Ramp #1342 (Left, 0.1 g) Hitch Angle, Five-Axle Model Revision 6
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Figure 4.45: Ramp #1342 (Left, 0.1 g) Hitch Rate, Five-Axle Model Revision 6
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4.5.2 Urban Driving Scenario

The urban driving scenario consists of straight driving; a 90-degree, 20 meter radius

right turn; a 90-degree, 20 meter radius left turn; and then straight driving. The

maneuver was run at two different speeds which were selected to produce nominal

lateral accelerations of 0.1 and 0.2 g (16 and 22 kph respectively). This test was

devised to test the ability of the system to locate the vehicle during GPS dropouts and

accurately predict hitch angle during small radius (tight) turns. Urban environments

are the most likely to lack GPS accuracy or even availability. They are also the most

likely to have turns that result in high articulation angles. Accordingly, this is the

location where this research may be most useful.

4.5.2.1 Urban Driving Scenario, Model Revision 4

Figures 4.46–4.53 show the results using the Revision 4 model for urban driving

scenario #1325. This was a 0.1 g maneuver (16 kph). The algorithm was able to

maintain lane-level positioning for the duration of the maneuver. As in other cases,

the key to this accuracy is proper tracking of the heading angle shown in Figure

4.51. This is accomplished by having the Kalman filter trust the CAN-based yaw

rate signal as seen in Figure 4.50. Error still accumulates, though, largely because

this measurement is imperfect. The estimates of hitch angle for this maneuver can

be seen in Figure 4.52. The estimate produced by the Kalman filter model is within

1.5 deg of the measured angle. The kinematic model is nearly perfect when using

measured states and within about a tenth of a degree when using estimated states

(from the Kalman filter).
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Figure 4.46: Urban Driving Scenario #1325 (0.1 g) Path Prediction, Five-Axle Model
Revision 4
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Figure 4.47: Urban Driving Scenario #1325 (0.1 g) Global Position Error, Five-Axle
Model Revision 4
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Figure 4.48: Urban Driving Scenario #1325 (0.1 g) Road Wheel Steering Angle, Five-
Axle Model Revision 4
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Figure 4.49: Urban Driving Scenario #1325 (0.1 g) Lateral Acceleration, Five-Axle
Model Revision 4
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Figure 4.50: Urban Driving Scenario #1325 (0.1 g) Yaw Rate, Five-Axle Model Revi-
sion 4
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Figure 4.51: Urban Driving Scenario #1325 (0.1 g) Yaw Angle, Five-Axle Model
Revision 4

106



0 5 10 15 20 25 30 35 40
−40

−30

−20

−10

0

10

20

30

40

Time [s]

γ
[d
eg
]

Model
KF
DAQ

KinHat
KinGPS

Figure 4.52: Urban Driving Scenario #1325 (0.1 g) Hitch Angle, Five-Axle Model
Revision 4
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Figure 4.53: Urban Driving Scenario #1325 (0.1 g) Hitch Rate, Five-Axle Model
Revision 4
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Figures 4.54–4.61 show the results using the Revision 4 model for urban driving

scenario #1329. This was a 0.2 g maneuver (22 kph). The algorithm was able to

maintain lane-level positioning for the duration of the maneuver. The estimates of

hitch angle for this maneuver can be seen in Figure 4.60. The estimate produced by

the Kalman filter model is off by up to 2.4 deg, but the kinematic model (using esti-

mated states) is within half of a degree. When using measured states, the kinematic

model is nearly perfect.
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Figure 4.54: Urban Driving Scenario #1329 (0.2 g) Path Prediction, Five-Axle Model
Revision 4
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Figure 4.55: Urban Driving Scenario #1329 (0.2 g) Global Position Error, Five-Axle
Model Revision 4
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Figure 4.56: Urban Driving Scenario #1329 (0.2 g) Road Wheel Steering Angle, Five-
Axle Model Revision 4
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Figure 4.57: Urban Driving Scenario #1329 (0.2 g) Lateral Acceleration, Five-Axle
Model Revision 4

0 5 10 15 20 25 30
−20

−15

−10

−5

0

5

10

15

20

Time [s]

Ψ̇
[d
eg
/
s]

Model
KF
GPS
CAN

Figure 4.58: Urban Driving Scenario #1329 (0.2 g) Yaw Rate, Five-Axle Model Revi-
sion 4
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Figure 4.59: Urban Driving Scenario #1329 (0.2 g) Yaw Angle, Five-Axle Model
Revision 4
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Figure 4.60: Urban Driving Scenario #1329 (0.2 g) Hitch Angle, Five-Axle Model
Revision 4
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Figure 4.61: Urban Driving Scenario #1329 (0.2 g) Hitch Rate, Five-Axle Model
Revision 4

4.5.2.2 Urban Driving Scenario, Model Revision 6

Figures 4.62–4.69 show the results using the Revision 6 model for urban driving

scenario #1325. The positioning accuracy is unaffected by the model change, but the

hitch angle prediction is worsened. Figure 4.68 shows that the hitch angle estimated

by the Kalman filter model is about three and a half degrees less than the measured

hitch angle at the second peak (although the kinematic models remain within one

degree of the measured hitch angle). In contrast, the hitch angle estimate produced

by the Kalman filter of the Revision 4 model was only off by 1.5 deg.
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Figure 4.62: Urban Driving Scenario #1325 (0.1 g) Path Prediction, Five-Axle Model
Revision 6
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Figure 4.63: Urban Driving Scenario #1325 (0.1 g) Global Position Error, Five-Axle
Model Revision 6
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Figure 4.64: Urban Driving Scenario #1325 (0.1 g) Road Wheel Steering Angle, Five-
Axle Model Revision 6
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Figure 4.65: Urban Driving Scenario #1325 (0.1 g) Lateral Acceleration, Five-Axle
Model Revision 6
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Figure 4.66: Urban Driving Scenario #1325 (0.1 g) Yaw Rate, Five-Axle Model Revi-
sion 6
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Figure 4.67: Urban Driving Scenario #1325 (0.1 g) Yaw Angle, Five-Axle Model
Revision 6
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Figure 4.68: Urban Driving Scenario #1325 (0.1 g) Hitch Angle, Five-Axle Model
Revision 6
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Figure 4.69: Urban Driving Scenario #1325 (0.1 g) Hitch Rate, Five-Axle Model
Revision 6
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Figures 4.70–4.77 show the results using the Revision 6 model for urban driving

scenario #1329. Results were similar to using the Revision 6 model on the previous

scenario (#1325), i.e. lane-level positioning accuracy was maintained for the duration

of the scenario, but hitch angle prediction using the dynamic model (‘KF’) was up to

four degrees off of the measured value. The hitch angle estimated by the kinematic

model using estimated states (‘KinHat’) was relatively unaffected.
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Figure 4.70: Urban Driving Scenario #1329 (0.2 g) Path Prediction, Five-Axle Model
Revision 6

117



0 5 10 15 20 25 30
0

2

4

6

8

10

12

Time [s]

P
o
si
ti
o
n
E
rr
o
r
[m

]

Model
KF

Figure 4.71: Urban Driving Scenario #1329 (0.2 g) Global Position Error, Five-Axle
Model Revision 6
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Figure 4.72: Urban Driving Scenario #1329 (0.2 g) Road Wheel Steering Angle, Five-
Axle Model Revision 6
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Figure 4.73: Urban Driving Scenario #1329 (0.2 g) Lateral Acceleration, Five-Axle
Model Revision 6
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Figure 4.74: Urban Driving Scenario #1329 (0.2 g) Yaw Rate, Five-Axle Model Revi-
sion 6
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Figure 4.75: Urban Driving Scenario #1329 (0.2 g) Yaw Angle, Five-Axle Model
Revision 6
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Figure 4.76: Urban Driving Scenario #1329 (0.2 g) Hitch Angle, Five-Axle Model
Revision 6
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Figure 4.77: Urban Driving Scenario #1329 (0.2 g) Hitch Rate, Five-Axle Model
Revision 6

4.5.3 Highway Driving Scenario

The highway driving scenario consists of straight driving; a 180-degree, 732 meter

(2400 ft) radius right turn; and straight driving. The speed for this maneuver was

100 kph. GPS visibility is usually quite good during highway driving. However, a

single GPS on the tractor cannot measure the articulation angle of the heavy truck.

Therefore, the purpose of this test is primarily to test the ability of the estimator to

accurately estimate small hitch angles during highway driving.

Although data for several runs were collected, only one trial was found usable after

post-processing. As seen in Figure 4.6, there is a bridge crossing the track near the 1.0

mile marker. Passing underneath this bridge caused a lack of satellite visibility, and

as a result the data taken from the north end of this loop were useless. Additionally,

slow-moving test vehicles caused the driver to abort some of of the maneuvers from

the south end of the track, leaving one ‘good’ run.
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4.5.3.1 Highway Driving Scenario, Model Revision 4

Figures 4.78–4.86 show the results of the highway driving scenario using the Revision

4 model. It is clear from Figures 4.78 and 4.79 that the positioning accuracy is not

suitable for locating the vehicle for the duration of the maneuver. Figure 4.80 shows

that the position estimate is lane-level accurate for approximately 20 s and road-level

accurate for approximately 28 s.

This maneuver highlights some of the challenges of modeling a real vehicle during

highway driving. Figure 4.81 shows how ‘noisy’ the steer angle tends to be. Since

this plot shows two independent measurements, we can surmise that this is actual

driver behavior and not the defect of a sensor. However, the behavior of the vehicle

is not reflective of this noisy input. By comparing the steering input to the open-loop

model lateral acceleration trace in Figure 4.82, we can see that the model is predicting

larger variations in lateral acceleration than those experienced by the vehicle. (The

fact that the measured lateral acceleration is altogether lower than the estimated

lateral acceleration is due to the bank angle the vehicle is traveling on.) Variations

in yaw rate, Figure 4.83 exhibit a similar trend, i.e. lower variation than what the

change in steer angle would cause one to expect. The lack of response by the vehicle

suggests that though these variations are really occurring in the handwheel steer angle,

they are not really present in the road wheel steer angle. This is because moving

the steering through the lash in the steering gear box will change the handwheel

steer angle without changing the road wheel steer angle. This will cause significant

variations in hand wheel steer angle to be present in the data even during straight line

driving. Figure 4.83 shows how the Kalman filter is able to cope with this problem.

Another possible solution would be to measure the road wheel steer angle (i.e. tierod

movement) as opposed to hand wheel angle.

Figure 4.85 shows the estimates of hitch angle for this maneuver. Due to the
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high speed, this was only about 1.5 deg. Surprisingly, the kinematic model that

relies on estimated signals is significantly more accurate than the model relying on

measured signals. The ‘KinHat’ model is within a few tenths of a degree, and the

Kalman filter model is within about half of a degree. It is worth noting that the

goal for accuracy of hitch angle estimation was ±2 deg, which is satisfied by zero

(straight-truck assumption).
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Figure 4.78: Highway Driving Scenario Path Prediction, Five-Axle Model Revision 4
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Figure 4.79: Highway Driving Scenario Global Position Error, Five-Axle Model Revi-
sion 4
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Figure 4.80: Highway Driving Scenario Global Position Error (scale smaller), Five-
Axle Model Revision 4
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Figure 4.81: Highway Driving Scenario Road Wheel Steering Angle, Five-Axle Model
Revision 4
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Figure 4.82: Highway Driving Scenario Lateral Acceleration, Five-Axle Model Revi-
sion 4
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Figure 4.83: Highway Driving Scenario Yaw Rate, Five-Axle Model Revision 4
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Figure 4.84: Highway Driving Scenario Yaw Angle, Five-Axle Model Revision 4
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Figure 4.85: Highway Driving Scenario Hitch Angle, Five-Axle Model Revision 4
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Figure 4.86: Highway Driving Scenario Hitch Rate, Five-Axle Model Revision 4
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4.5.3.2 Highway Driving Scenario, Model Revision 6

Figures 4.87–4.95 show the results of the highway driving scenario using the Revision

6 model. No significant differences were observed as compared to the Revision 4

model.
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Figure 4.87: Highway Driving Scenario Path Prediction, Five-Axle Model Revision 6

128



0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

Time [s]

P
o
si
ti
o
n
E
rr
o
r
[m

]

Model
KF

Figure 4.88: Highway Driving Scenario Global Position Error, Five-Axle Model Revi-
sion 6
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Figure 4.89: Highway Driving Scenario Global Position Error (scale smaller), Five-
Axle Model Revision 6
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Figure 4.90: Highway Driving Scenario Road Wheel Steering Angle, Five-Axle Model
Revision 6
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Figure 4.91: Highway Driving Scenario Lateral Acceleration, Five-Axle Model Revi-
sion 6

130



0 20 40 60 80 100 120
−5

−4

−3

−2

−1

0

1

2

Time [s]

Ψ̇
[d
eg
/
s]

Model
KF
GPS
CAN

Figure 4.92: Highway Driving Scenario Yaw Rate, Five-Axle Model Revision 6
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Figure 4.93: Highway Driving Scenario Yaw Angle, Five-Axle Model Revision 6

131



0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

1.5

2

2.5

Time [s]

γ
[d
eg
]

Model
KF
DAQ
KinHat
KinGPS

Figure 4.94: Highway Driving Scenario Hitch Angle, Five-Axle Model Revision 6
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Figure 4.95: Highway Driving Scenario Hitch Rate, Five-Axle Model Revision 6
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4.6 Conclusion

This chapter has presented a physical validation of the overall estimation system.

The chapter began by highlighting the vehicle, trailer, instrumentation, and facilities

used in testing. The maneuvers were explained and data from various trials were

analyzed. Careful analysis of such data should answer the following three questions:

1. Did the system function using real data?

The first question presents a very basic hurdle. An estimation system which

works well in a simulation environment cannot be assumed to work well in a physical

environment. Sensor biases and inaccuracies, for example, could potentially hobble

a system with weak excitation. This was a very real risk in this research due to

the fact that the models and estimation schemes were developed entirely using high-

accuracy, low-noise TruckSim signals. The system passed this test in that it worked

(qualitatively speaking).

2. Did the performance of the system meet the research goals?

The research goals, as laid out in Section 1.2.1, were as follows: maintain lane-level

(1.5 m RMS) vehicle positioning accuracy for up to 20 s, road-level (5 m RMS) vehicle

positioning accuracy for up to 70 s, and hitch angle accuracy of ±2 deg for all time.

For the ramp maneuvers (about 17 s in duration at 70 kph), lane-level positioning

was maintained the entire time in one trial but only 7 s in the second trial (road-

level positioning was maintained for the duration). For the urban driving scenario

trials (30–40 s in duration at 16–22 kph), lane-level positioning was maintained for

the entire duration. Owing to its high speed (100 kph), lane-level and road-level

positioning accuracy were only maintained for about 20 and 28 s respectively in the

highway driving scenario.
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Hitch angle estimation was very promising, with the kinematic model based on

estimated signals (‘KinHat’) tracking the measured hitch angle very well in all maneu-

vers. Although the dynamic (‘KF’) model was able to best the kinematic model in

hitch angle estimation during ramp maneuvers, the dynamic model failed to meet the

accuracy target during the extreme articulation angles encountered in the urban driv-

ing scenario. Additionally, the ‘KinHat’ model performed best during the highway

driving scenario.

3. What was learned about the system as a result of the experimental validation?

The diversity of maneuvers indicate that this estimation system has the greatest

chance of proving beneficial in urban environments. This is due to a number of factors.

First, the high speeds encountered outside of urban environments quickly render the

positioning accuracy of the system unacceptable. Second, deep urban environments

typically only have GPS accuracy of about 10 m RMS, if GPS is available at all –

they are the environment where a non-GPS, CAN-based localization scheme is needed

most [3]. Third, the high articulation angles caused by the low speed, tight turns

common to urban environments (e.g. intersection) also suggest that these areas most

need such a system.

Physical testing also revealed the slight superiority of the Revision 4 model to

the Revision 6 model. Differences were only observed at high articulation angles,

which is to be expected since the difference is updating the value of cos γ (Revision

6) versus assuming it is unity (Revision 4). It is unclear, however, why Revision 4

outperformed Revision 6.
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CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

5.1 Introduction

This chapter details the contributions of the research described in this dissertation

as well as its limitations. It is expected that application of this research will allow

for enhanced reliability and performance of V2V systems without adding hardware

costs. Future research and integration work is required, though, and some limitations

may require user acceptance (e.g. the user might have to manually enter data).

5.2 Contributions

5.2.1 Modeling

Several models that existed prior to this research were discussed in Chapters 1 and

3. Accordingly, it is not claimed that the lateral dynamic model presented in this

text represents new art. Rather, the new contribution to the field is the validation

of a complete lateral dynamic model – position estimator – parameter estimator –

Kalman filter system which possesses the following attributes:

� Linear (quasi-linear)

� Feasible for on-line implementation

� Recursive in nature
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� Simple enough to run at 100 Hz

� Accurate enough positioning to fill in GPS outages

� Receives input and feedback from extant CAN signals

� Estimates cornering stiffness of all tires without additional sensors

� Estimates hitch angle without additional sensors

� Validated with a physical vehicle and CAN signals

This research represents an important contribution to the estimation of trailer

states and parameters. Some other prior models have estimated hitch angle, but not

as accurately, as well validated, or without the requirement to fit additional sensors

to the system [1],[2]. Much of this work had been done for jackknife detection and

prevention, where it may not be necessary to estimate hitch angle as accurately. It

is the first known recursive, on-line method for the estimation of trailer cornering

stiffness which does not rely on any signals not available on the CAN bus.

5.2.2 V2V

V2V safety systems hold great promise for mitigating collisions and saving lives, but

the current state of the art is immature. The primary issue stems from the inherently

unreliable nature of GPS. Because it requires a clear view of the sky, accuracy and

availability suffer when the view is obstructed. Accuracy of 1.0–1.5 m RMS is required

to enable lane-level positioning while 5–10 m is good enough for road-level positioning

[3]. Typical driving situations such as a city center or tree-lined street cause accuracy

to drop below what is required for V2V systems, and techniques that enable greater

relative positioning accuracy, i.e. RTK approach, increase the length of dropouts

[4]. This research allows lane-level positioning in urban environments, enhancing the

performance of V2V systems in situations with degraded GPS.

Another issue arises from the implicit assumption that articulated trucks are

137



straight at all times [5]. At high articulation angles, this can lead to false positives

and missed warnings. Even at low articulation angles this degrades performance

because other vehicles will improperly judge the location of the rear of the trailer.

This research shows that a kinematic model (fed with state estimates from a dynamic

model) can accurately estimate the tractor-trailer articulation angle, generally within

half of a degree or less. Providing an accurate estimate of hitch angle fixes this issue,

enhancing the performance of the V2V system.

This research also helps NHTSA to achieve its regulatory mission with regards to

V2V collision avoidance systems. Demonstration of a validated method for predicting

hitch angle, for example, allows them to understand how OEMs might overcome such

challenges. The work regarding position estimation enhances their knowledge of how

GPS limitations might be overcome and introduces issues that may arise in the future

(e.g. a need to measure road wheel steer angle instead of handwheel steer angle).

5.3 Future Research

This research holds promise for the enhancement of V2V functionality, but additional

work is required to integrate the algorithms into the onboard hardware. First, a

procedure must be developed to initialize the model. The model would definitely be

required once the number of observed satellites falls below the necessary four, but

it might also be used during times when positioning is available but at degraded

accuracy. GPS sensor models can calculate dilution of precision (DOP) based on

satellite geometry. If pseudorange errors are known, this can be converted to RMS

positioning accuracy at the ground, often termed user-equivalent range error or UERE

[6]. Once GPS is determined to be inaccurate or unavailable, the model can be

initialized from the last known good position. In practice, this might require that

a buffer of model inputs be stored so that the model can ‘catch up’ to real time
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(because GPS positioning is not likely to instantaneously transition from excellent to

poor and be detected immediately).

A formalized procedure would also need to be developed for updating tire cor-

nering stiffnesses. Based on this research, it appears that some excitations (such as

steady lateral acceleration) are better than others for estimating tire properties. This

supervisory program would be two-fold: first, it would detect that a suitable excita-

tion is present and begin estimating cornering stiffnesses. Next, it would test if the

new estimate was better than the old. This is readily accomplished because GPS is

available most of the time. The supervisory program could run two instances of the

model in parallel, one with the old cornering stiffness estimate and one with the new.

The cornering stiffness estimate would be updated if the new outperformed the old

based on some metric or set of metrics, such as maximum positioning error.

Additional validation of hitch angle prediction should be performed with different

tractors, trailers, and loading conditions. This would help elucidate differences in

performance between the kinematic and dynamic methods for estimating articula-

tion rate and angle. Integrators of V2V systems might use a single model, fuse the

models, or switch models depending on regime of operation. Parametric uncertainties

might also affect the relative performance. While the dynamic model requires more

parameters, the kinematic model may be more sensitive to errors in trailer wheel-

base. Since the kinematic model relies on the dynamic model for some signals (most

notably side-slip velocity), it should be investigated how parametric uncertainties in

the dynamic model filter into the kinematic model.
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5.4 Limitations

A number of parameters are required for the dynamic model and V2V systems in

general. Some of these are known to the manufacturer, some can be estimated, and

still others must be manually entered by the user.

First, the V2V system must determine whether or not a trailer is connected. This

can be accomplished by comparing the ECU’s mass estimate (available via CAN [7])

to the assumed known mass of the tractor. If the mass estimate is significantly greater

than the tractor mass, the system can conclude that a trailer is attached (the driver

weighs comparatively little and even fuel load is available via CAN [7]). Trailer inertia

is required for the dynamic model and remains unknown, but could be estimated from

the trailer mass (total mass minus tractor mass) and some assumptions about load

distribution.

Next, the system needs to know how long the trailer is (from kingpin to the rear

bumper). This information is required even in the current V2V implementation that

assumes the truck is straight. The driver could manually enter this information,

making it subject to human transcription error or forgetfulness. Another possibility

is to place low-cost radio frequency identification (RFID) tags on trailers, containing

such information as physical dimensions and empty weight. The V2V system on

the tractor would then need an RFID reader. RFID devices are already used for

other Intelligent Transportation System (ITS) applications. New York City uses

the ubiquitous RFID-based E-ZPass toll tags to estimate vehicle volume for adaptive

traffic signaling [8]. Bermuda uses RFID readers at major junctions to ensure vehicles

are properly licensed [9].

The load distribution of the trailer remains to be determined, i.e. the location of

CG2, which is parameter d in Figure A.1. This can be calculated if the axle loads

are known. The SAE J1939 standard includes a standardized message for axle loads,
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but it is unclear what proportion of vehicles broadcast this signal [7]. There are

several commercial systems that calculate axle loads by measuring suspension airbag

pressures. Examples include systems from WABCO [10], Vishay Precision Group

[11], and Air Weigh [12].

Some parameters can also be adjusted by the user and would need to be manually

entered. The location of the kingpin (parameter c in Figure A.1) can be moved on the

tractor to adjust axle weighting. This complicates things not only for the dynamic

model, but indeed for even the current V2V implementation as this changes the

effective length of the articulated vehicle. The location of the rear axles (parameters

f1 and f2) can also be adjusted by the user. This is irrelevant for the current V2V

implementation (straight truck assumption) but is a required parameter for both the

dynamic and kinematic models that predict articulation angle and rate.

Tractor parameters are a comparatively simple matter. Since the integrator of

the V2V system is likely to be the manufacturer of the tractor (or a closely-related

supplier), basic geometric and weight information is readily available. Although fuel

load and driver weight will affect the mass and CG1 location, these variations are

small relative to those of the trailer. Tractor inertia may not be measured, but could

be readily estimated from a CAD model.

5.5 Conclusion

This chapter has summarized the important contributions of this dissertation to the

field of vehicle modeling and estimation. More importantly, it has examined how these

contributions might be used to increase the feasibility, reliability, and effectiveness of

V2V collision avoidance systems. However, there are issues (particularly related to

the availability of parameters) that must be addressed before implementation is to

be successful.
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Appendix A

DETAILS OF FIVE-AXLE MATHEMATICAL MODELS

A.1 Diagrams

This section contains diagrams defining the parameters, tire forces, and virtual dis-

placements of the five-axle model. Alongside the diagrams, equations are presented

that model tire lateral forces and define generalized forces.

A.1.1 Model

Figure A.1 shows the states, lateral tire forces, and parameters of the five-axle model.
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Figure A.1: Five-Axle Articulated Bicycle Model Parameters
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A.1.2 Slip Angle Diagrams and Expressions

Figure A.2 is a kinematic diagram of the steer axle and is used to derive the slip angle

expression. Equation A.1 models the corresponding tire force. Note that it is valid

for both the three- and five-axle models.

Figure A.2: Kinematic Diagram of Steer Axle

F1 = Cα1α1 = Cα1

(
δ − arctan

(
v + aΨ̇

u

))
≈ Cα1

(
δ −

(
v + aΨ̇

u

))
(A.1)

Figure A.3 is a kinematic diagram of the first drive axle and is used to derive the

slip angle expression. Equation A.2 models the corresponding tire force. The diagram

and expression would be similar for the second drive axle and these are not included

here. Note that this expression is valid for both the three- and five-axle models.

F2 = Cα2α2 = Cα2

(
− arctan

(
v − b1Ψ̇

u

))
≈ Cα2

(
b1Ψ̇− v

u

)
(A.2)
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Figure A.3: Kinematic Diagram of First Drive Axle
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Figure A.4 is a kinematic diagram of the first trailer axle and is used to derive

the slip angle expression. Equation A.3 models the corresponding tire force. This

equation shows how articulation angle acts like a steering angle for the trailer tires.

The diagram and expression would be similar for the second trailer axle and these

are not included here.

Figure A.4: Kinematic Diagram of First Trailer Axle

F4 = Cα4α4 = Cα4

(
γ − arctan

(
v − (c+ f1 cos γ)Ψ̇− f1γ̇ cos γ

u+ f1 sin γ(Ψ̇ + γ̇)

))

≈ Cα4

(
γ −

(
v − (c+ f1 cos γ)Ψ̇− f1γ̇ cos γ

u+ f1 sin γ(Ψ̇ + γ̇)

))

≈ Cα4

(
γ −

(
v − (c+ f1 cos γ)Ψ̇− f1γ̇ cos γ

u

))
(A.3)
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A.1.3 Virtual Work Diagrams and Expressions

Virtual work diagrams and expressions for the coordinates y and γ are shown below.

Those corresponding to the coordinate Ψ can be found in Section 3.2.1.

Qy =
Wy

δy
= cos δF1 + F2 + F3 + cos γF4 + cos γF5 (A.4)

Qγ =
Wγ

δγ
= −f1F4 − f2F5 (A.5)

Figure A.5: Virtual Displacement by δy
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Figure A.6: Virtual Displacement by δγ
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The K matrices are the same for all model revisions. However, in Revisions 4 and

7 (refer to Table 3.1), cos(γ) is replaced by 1.

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k11 k12 0 k14 k15

k21 k22 0 k24 k25

0 1 0 0 0

k41 k42 0 k44 k45

0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.11)

Where:

k11 =
1

u
[−Cα1 − Cα2 − Cα3 − cos(γ)Cα4 − cos(γ)Cα5]

k12 =
1

u
[−Cα1a+ Cα2b1 + Cα3b2 + cos(γ)Cα4(c+ f1cos(γ)) + cos(γ)Cα5(c+ f2cos(γ))]

k14 =
1

u

[
cos2(γ)f1Cα4 + cos2(γ)f1Cα5

]
k15 = cos(γ)Cα4 + cos(γ)Cα5

k21 =
1

u
[−aCα1 + b1Cα2 + b2Cα3 + (f1 + ccos(γ))Cα4 + (f2 + ccos(γ))Cα5]

k22 =
1

u
[−a2Cα1 − b21Cα2 − b22Cα3 − (f1 + ccos(γ))Cα4(c+ f1cos(γ))

− (f2 + ccos(γ))Cα5(c+ f2cos(γ))]

k24 =
1

u
[−(f1 + ccos(γ))Cα4f1cos(γ)− (f2 + ccos(γ))Cα5f2cos(γ)]

k25 = −(f1 + ccos(γ))Cα4 − (f2 + ccos(γ))Cα5

k41 =
1

u
[f1Cα4 + f2Cα5]

k42 =
1

u
[−f1Cα4(c+ f1cos(γ))− f2Cα5(c+ f2cos(γ))]

k44 =
1

u

[−f 2
1Cα4cos(γ)− f 2

2Cα5cos(γ)
]

k45 = −f1Cα4 − f2Cα5

156



F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(δ)Cα1

acos(δ)Cα1

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.12)

ẋ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v̇

Ψ̈

Ψ̇

γ̈

γ̇

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v

Ψ̇

Ψ

γ̇

γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, u = δ (A.13)
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