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Abstract 
 

This thesis details the development, implementation, and experimental testing of a 

supervisory energy management control strategy for the vehicle electrical system of a 

passenger car.  The control strategy commands the alternator duty cycle such that vehicle 

fuel economy is optimized whilst the instantaneous load current demand is met and 

constraints on the system voltage and battery state of charge are satisfied. 

 

To this extent, Pontryagin's Minimum Principle (PMP) is utilized alongside a vehicle 

plant model in order to evaluate the behavioral characteristics of the vehicle electrical 

system subjected to optimal control.  These observations are employed in the 

development of an adaptive, PMP-based supervisory strategy capable of real-time 

control.  Experimental testing of the in-house developed control strategy, termed "A-

PMP", is benchmarked against a baseline production control strategy, demonstrating 

consistent improvements in vehicle fuel economy. 
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Chapter 1:  Introduction 
 

The modern era within the United States automotive industry has experienced 

tremendous growth, with the number of registered motor vehicles increasing steadily by 

an estimated 3.69 million units annually from 1960 to 2008 [1].  Only in 2009, following 

the automotive industry crisis, did the U.S. fleet decrease in size.  Light vehicle sales in 

the U.S. have rebounded since 2009; Ford Motor Company, Chrysler LLC and GM 

experienced an overall sales increase of approximately 13.5% between 2012 and 2013 

[2].  Furthermore, by the year 2020, global profits for automotive OEMs are expected to 

increase by almost 50% [3].  Figure 1 illustrates the growth in the number of registered 

motor vehicles from 1960 to 2009. 
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Figure 1: Growth in the number of U.S. Motor Vehicles [4] 

 

From an environmental standpoint, this rapid growth presents a two-fold issue; an 

increasing number of petroleum-consuming vehicles both diminishes already dwindling 

oil supplies and invokes concern regarding the impacts of automotive exhaust byproducts 

on the ecosystem.  For these reasons, the EPA and NHTSA have enacted stringent fuel 

economy and emissions policies on OEMs, with manufacturers who fail to achieve these 

policies either forced to purchase surplus credits from other manufacturers or pay heavy 

fines.  Therefore, there is tremendous pressure on OEMs to look towards new and 

innovative methods to improve fuel economy across their entire fleet.  Figure 2 depicts 

the United States CAFE compliance targets (in miles per gallon) for light-duty passenger 

vehicles up to model year 2025.  With the EIA estimating a 40.3 mpg fleet-wide average 
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for light-duty vehicles by model year 2021, it is clear that OEMs need to invest 

significant research into reducing vehicle fuel consumption. 

 

Figure 2: CAFE Compliance Targets [5] 

 

The effort to improve vehicle fuel economy and emissions quality without compromising 

vehicle performance has resulted in an industry-wide push towards powertrain 

optimization, with OEMs investing significant effort in a wide variety of fuel-reduction 

technologies such as engine downsizing, cylinder deactivation, powertrain hybridization 

and electrification, and flexible valve actuation.  Improvements in vehicle fuel economy, 

however, are not only limited to the benefits realized through optimizing engine 

efficiency.  As illustrated in Figure 3, coolant losses, exhaust energy losses, and the 

losses associated with providing power to the ancillary loads all contribute to overall 

vehicle fuel economy and therefore provide suitable grounds for vehicle efficiency 

improvements. 
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Figure 3: EPA City/Highway Fuel Consumption [6] 

 

The parasitic losses associated with the ancillary electrical loads, induced by the 

alternator and transmitted through the auxiliary belt to the crankshaft, supply the 

electrical power required for automotive necessities and appliances such as component 

actuation, lighting, and infotainment systems.  The management and control of these 

electrical loads, with the objective of minimizing vehicle fuel consumption, has been 

largely neglected in years past.  However, as fuel economy mandates continue to 

challenge powertrain designers in the coming years, the vehicle electrical system will 

become an increasingly attractive reservoir of potential fuel savings.  

 

The passenger vehicle electrical system has undergone dramatic changes throughout 

history in order to compensate for ever-increasing vehicular load demands.  What began 

as a power system designed to satisfy in-cylinder ignition, cranking, and few (if any) 

lighting loads has developed over time into a complex electrical system which supplies 

power to various driver safety features, infotainment systems, control units, and electrical 
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assist systems.  For example, the Volkswagen Golf, a typical passenger vehicle, 

experienced a nearly 300% increase in the number of integrated ECUs from the 1998 to 

2010 production model [7].   Furthermore, it is predicted that by the model year 2020, 

dual-voltage electrical systems composed of a 12/48V (nominal) battery pair will be 

commonplace within the automotive industry [8].  This will allow for the electrification 

of loads once mechanically coupled to the engine crankshaft, as well as the recuperation 

of the automobile’s kinetic energy upon braking, improving overall vehicle fuel 

economy.  Figure 4 illustrates the evolution and predicted trajectory of the typical 

commercial automotive electrical system, whereas Figure 5 demonstrates the increase in 

automotive electric power demand over time.  Given the incorporation of increasingly 

complex electrical systems, one can easily imagine how quickly automotive electric 

power requirements will grow in the future.  

 

Figure 4: Evolution of the Automotive Electrical System [9]. 
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Figure 5: Predicted Automotive Electric Power Requirements [10]. 

 

Figure 5 depicts one possible trajectory for automotive electrical power requirements up 

to model year 2025, with power requirements predicted to more than double to 

approximately 4.5kW (6 HP) between 2000 and 2025.  The automotive electrical system 

is inarguably responsible for a small, but increasingly significant percentage of overall 

vehicle fuel consumption compared with years past, and the relevance of these electrical 

systems can no longer be overlooked when optimizing for vehicle fuel economy.  This, 

coupled alongside increasingly stringent fuel consumption and emissions policies 

enforced by the EPA (reference Figure 3), signifies that appreciable benefits may be 

recognized through control optimization and management of the automotive electrical 

system.  
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Section 1.1: Overview on the Role of Optimal Control Theory in the 

Energy Optimization of Advanced Vehicles  

One promising method of vehicle electrical system control and optimization lies in the 

domain of optimal control theory.  Optimal control theory, an extension of the well-

known calculus of variations, allows for the control of the trajectory of a dynamic system 

in some “best way”, as defined by the user (i.e. minimization of fuel consumption).  

Optimal control theory’s origins may be traced all the way back to the 17th century, when 

the calculus of variations was first developed [11].  However, it was not until the 

development of the digital computer, first commercially available in the 1950’s, that 

optimal control theory truly found widespread application.  In more recent years, the rise 

of the hybrid electric vehicle (HEV) has brought optimal control to the forefront of the 

automotive industry.  The potential benefits brought about by the management and 

optimization of the various energy flows which accompany automotive hybridization 

makes optimal control-based strategies an attractive field of study [12-14].  For instance; 

dynamic programming (DP), while not implementable in real-time control systems, 

allows one to easily observe the optimal “power-split” trajectory of an HEV, given that 

the vehicle driving schedule is known a priori.  This task is performed via a DP 

algorithm, which examines all possible trajectories between two points and selects the 

most “optimal” solution.  A very simple illustration of how dynamic programming 

functions may be observed in the “shortest path” example featured in Figure 6.  If the 

objective of the dynamic programming sequence is minimization of the total distance 

travelled from point A to point Z, then clearly path 2, with a net “distance” of 7 units, is 
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the optimal trajectory.  This same logic may be expanded to very complex engineering 

problems, however care should be taken as dynamic programming can become very 

computationally expensive when analyzing particularly detailed systems. 

 

 

Figure 6: Shortest Path Dynamic Programming Example. 

 

Referencing [15], the advantages that dynamic programming present over a baseline rule-

based control strategy are significant, and upwards of an 18% reduction in fuel 

consumption may be achieved over a single UDDS drive cycle.  Dynamic programming 

may therefore be utilized as a benchmarking tool to evaluate the efficacy of online, sub-

optimal control strategies.  In the same study, a control strategy termed the Equivalent 

Consumption Minimization Strategy (ECMS), based off of Pontryagin’s Minimum 

Principle, yields fuel savings of approximately 12%.  The ECMS control strategy 

effectively weights usage of the chemical energy stored within the automotive battery 
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against the consumption of fuel by the internal combustion engine in order to determine 

the optimal power split and, similar to dynamic programming, cannot be implemented 

into real-time control without some adaptions being made first.  The development of an 

adaptive-ECMS controller, implementable in real-time, utilizes feedback from the battery 

state of charge to realize fuel savings only 1-2% lower than that of an ideally tuned 

ECMS model [16].  In a study performed at OSU, a control strategy utilizing 

Pontryagin’s Minimum Principle demonstrates the flexibility of optimal control theory, 

minimizing cumulative PHEV tailpipe and corresponding power-plant carbon dioxide 

emissions in place of fuel consumption [17].   

 

The benefits of optimal control within the automotive sector certainly are not limited to 

applications involving hybrid electric vehicles.  Conventional powertrain automobiles 

with a standard, 12V charging system exhibit significant improvements in fuel economy 

when subjected to implementable control.  Research indicates that quadratic 

programming has been successfully applied to the electrical system of a conventional 

powertrain automobile, leading to experimental fuel economy improvements of up to 

2.6% on a Ford Mondeo [18].  In a separate study performed at The Ohio State 

University’s Center for Automotive Research, the efficacy of the well-known ECMS 

control strategy is evaluated side-by-side, in simulation, with a standard commercial 

control scheme, demonstrating fuel economy improvements of up to 1.5% on a vehicle 

[19]. 
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The rapid rise of information and communication technology, particularly developments 

in Vehicle-to-Vehicle and Vehicle-to-Infrastructure communication, has allowed for a 

very promising application of optimal control; intelligent transportation systems (ITS).  

By enabling inter-vehicle communication, large, densely-packed arrangements of 

automobiles (termed “platoons”) may be formed.  These tight formations ideally reduce 

the cumulative aerodynamic drag on the platoon, improving fuel economy while cutting 

down on roadway congestion.  One particular study even points towards fuel savings 

ranging from 5-15% in an optimal control, heavy-truck platooning application [20].  

Figure 7 illustrates the general concept of platooning and intelligent transport systems.   

 

 

Figure 7: Intelligent Transport Systems, Platooning Scenario [Volvo]. 

 

The benefits of optimal control in the ITS industry go beyond improving vehicle fuel 

economy; by allowing automobiles to access information regarding surrounding road 

conditions, the optimal vehicle trajectory with respect to net time travelled may be 

developed and adapted in real time.  This not only improves driver comfort, but also 

provides a partial solution to the issue of increasingly crowded metropolitan 
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transportation systems.  As ITS-enabling technologies gain a foothold in the United 

States and become commonplace in the automotive sector, significant research effort will 

likely be dedicated towards the study of automotive platooning and fleet management 

optimal control. 

 

With the advent of the digital age in the 1950’s, optimal control theory has become an 

increasingly valuable tool to engineers.  The adaptability of optimal control theory allows 

for widespread application in the automotive sector, from determining the most time-

effective path to an end destination, to minimizing an individual vehicle’s fuel 

consumption and exhaust emissions, and even utilizing Intelligent Transport System data 

to reduce net time spent in traffic and maximize fleet fuel economy.  As consumer 

dependence on automotive electronics continues to grow and CAFE regulations stress 

OEMs to look to new and innovative methods of reducing fuel consumption, the 

integration of optimal control-based strategies will prove a cost-effective solution.   

 

Section 1.2: Scope of Work 

The Ohio State University’s Center for Automotive Research (OSU-CAR) is working in 

conjunction with Chrysler Group LLC and the U.S. Department of Energy in order to 

develop advanced powertrain technologies which demonstrate an overall fuel economy 

improvement, on a Vehicle, of 25% over the Federal Test Procedure drive cycle.  As part 

of the team dedicated to this effort, OSU-CAR is responsible for the development of a 

supervisory vehicle energy control strategy for vehicle ancillary loads which should 
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improve fuel economy through an improved coordination of the main vehicle energy 

consumers.  These improvements are recognized through the management and reduction 

of the ancillary loads, as well as the management of the vehicle thermal system.  The 

focus of this document is on the development and implementation of an ancillary load 

reduction (ALR) control strategy. 

 

Section 1.3: Document Layout 

The remainder of this thesis is structured as follows: 

 Chapter 2 first describes the various experimental setups used to develop the 

comprehensive Vehicle Electrical System (VES) model.  An in-depth discussion 

regarding the numerous designs of experiments used to develop the model is then 

laid out.  The structure of the VES model is discussed from a component level, 

followed by validation of the VES model. 

 Chapter 3 begins with a general discussion regarding the VES optimal control 

problem.  An in-depth analysis of a single VES optimal control scenario is then 

performed.  The robustness of the control strategy is then investigated through 

various sensitivity analyses.  Finally, this analysis is expanded to numerous 

scenarios, and the overall behavior of the optimal control strategy is 

characterized. 

 Chapter 4 discusses, in effect, how the gap was bridged between a non-

implementable optimal control strategy and a real-time capable VES controller.  

The adaptations made to the optimal control strategy in order to realize an online 
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controller are first discussed.  The impact of these adaptations on both plant 

behavior and fuel economy are then investigated.  Finally, the experimental 

improvement in vehicle fuel economy for the Chrysler Town & Country over 

numerous drive cycles is presented. 

 Chapter 5 concludes the work performed on the Ancillary Load Reduction (ALR) 

project, highlighting the critical findings of the study and indicating potential 

directions for future work.  
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Chapter 2: Model Development, Calibration, and Validation 
 

The development, design, and integration of a control strategy is typically an iterative 

process, which requires the designer to build, calibrate, test and modify new designs.  The 

use of physics-based or empirically-derived system models are essential to this process, 

allowing the designer to perform several tasks in an accelerated environment with little to 

no hardware in hand.  When considering a complex, multi-domain system, for instance 

the electrical infrastructure of a conventional automobile, the advantages that a system 

model presents become quite evident.  The lengthy process of designing an experimental 

setup, testing a control algorithm, performing data acquisition, and post-processing may 

be significantly expedited, with time instead spent on control design improvements.  For 

this reason, a Vehicle Electrical System (VES) model has been developed to facilitate in 

the energy analysis of an automotive electrical system and control algorithm 

development.  This chapter first outlines the various experimental setups employed for 

the calibration and validation of the VES model.  A brief overview of the vehicle fuel 

consumption model is then presented, followed by a more in-depth discussion regarding 

the development and validation of the vehicle electrical system model. 

 

 

 

Section 2.1: Experimental Setup Overview 
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A reliable and robust design of experiment is required to ensure that a simulation model 

provides realistic and accurate results, a basic requirement for any energy management 

supervisory control.  Numerous experimental setups are utilized for this purpose.  The 

use of a chassis dynamometer, a 2011 Vehicle, and ETAS rapid prototyping equipment 

were employed to allow for the development and validation of the VES model, as well as 

for the proceeding implementation of the energy management control strategy.  In 

addition, the development of the battery model required a separate experimental set-up, 

consisting of an environmental chamber and a programmable load/supply system. 

2.1.1: Description of the Test Vehicle Setup 

A 2011 Chrysler Town and Country minivan was available for testing at The Ohio State 

University Center for Automotive Research (OSU-CAR).  The main vehicle 

specifications are given in Table 1 below.   

Table 1: Vehicle Specifications 

Make, Model, and Year Chysler Town & Country, 2011 

Engine DOHC 24-valve V-6, 3604 cc 

Transmission 62TE 6-Speed Automatic 

Gear Ratio:1 4.127 – 2.842 – 2.284 – 1.452 – 1.0 – 0.69 

Axle Ratio 3.16 

Mass (kg) 2154 

Frontal Area (𝐦𝟐) 2.42 

Drag Coefficient (𝐂𝐝) 0.33 

 

The test vehicle was installed on a light-duty chassis dynamometer available at CAR with 

real-time driver feedback monitoring and recording live data from the vehicle.  This setup 

allowed for a level of experimental repeatability that may otherwise be difficult to 
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achieve.  The use of a chassis dynamometer, as opposed to an engine dynamometer, also 

allows one to observe the complex, multi-domain (electro-mechanical) dynamics that 

exist within modern-day automobiles.  Take, for example, the interactions between an 

engine, the vehicle electrical system, and the numerous peripheral devices that are driven 

by the auxiliary belt.  By utilizing a chassis dynamometer, the effects of the various 

electrical loads may be investigated, whereas with an engine dynamometer these effects 

are typically ignored.  The light-duty chassis dynamometer at The Center for Automotive 

Research is equipped with two 24” rollers and is capable of handling up to 150 HP.  A 

Labview VI containing both the vehicle velocity profile and the desired vehicle speed 

trace (if any) is displayed on a monitor to facilitate the driver in reproducing regulatory or 

custom-made drive cycles.  Figure 8 depicts the experimental chassis dynamometer 

setup, complete with the drivers-aid display and the 2011 Vehicle. 
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Figure 8: Overview of the Test Vehicle and Light-Duty Chassis Dynamometer at 

CAR.  

 

 

2.1.2: Description of the Vehicle Electrical System Test Setup 

Real-time measurement and data acquisition of the various dynamic variables and states 

that exist within the vehicle’s electrical system is of the utmost importance in the 

development of the Vehicle Electrical System model and validation of the vehicle energy 

supervisory control strategy.  An ETAS ES1000.3 rapid prototyping platform coupled 

with Intecrio software allows for data acquisition and control testing.  Shunts routed to an 
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ES1303 A/D board allow for measurement of the battery current, alternator current, and 

cumulative electrical load demand, while an ETAS ETK-ECU interface gives direct 

access to the control variables and parameters of the vehicle ECU.  In addition to the data 

acquisition setup, an ETAS ES1310 D/A board in conjunction with a PWM driver allows 

for the override of the production control strategy for the vehicle alternator.  This feature 

allows one to implement and test control algorithms for the electrical system, as 

discussed in Chapter 4.  Finally, a programmable load was also required for fully 

characterizing the vehicle electrical system, simulating the impact of auxiliary electrical 

loads in a controllable and repeatable fashion.  The use of a chassis dynamometer, ETAS 

rapid prototyping and data acquisition platform, and the programmable load/supply 

allows for a full characterization of the vehicle electrical system.  A simplified schematic 

of this experimental setup is featured in Figure 9.  The physical setup of the ETAS 

system, in the backseat area of the minivan, is pictured in Figure 10.  
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Figure 9: Schematic of the Vehicle Electrical System Test Setup. 
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Figure 10: ETAS Experimental Setup 

 

2.1.3: Description of the Battery Testing Experimental Setup 

A standalone experimental setup for the battery present in the Chrysler vehicle allows for 

one to conduct tests in a more controlled environment than what is possible with a test 

vehicle.  Battery parameter calibration and model validation are more easily performed 

on a standalone battery setup due to the ability to accurately control the input current 

profile and the thermal boundary conditions.  Table 2, featured below, summarizes the 

main specifications of the VES battery. 
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Table 2: Automotive Battery Specifications 

Type Lead-Acid, Flooded 

Nominal Voltage (V) 12 

Nominal Capacity (Ah) 75 

Maximum Charging Current (A) 120 

 

In order to control the electrical loads on the battery, determine the temperature-

dependent battery model parameters, and facilitate the deployment of the numerous 

experiments required to fully characterize a battery model, a Testequity Model 140 

environmental chamber and a Maccor Series 4000 programmable load/supply are 

utilized.  The Maccor battery cycler allows for the user to define current profiles, such as 

constant current – constant voltage (CC-CV) charge/discharge profiles or custom-made 

current profiles, integrate looped combinations of these profiles, and record the resultant 

current and voltage traces to a test computer for data post-processing.  These tests may be 

repeated at numerous set temperatures through the use of the environmental chamber.  

Figure 11 depicts this experimental setup. 
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Figure 11: Experimental Setup for Battery Testing (Left: Environmental Chamber 

with Instrumented Batteries; Right: Maccor Battery Cycler). 

 

Section 2.2: Overview of the Engine Fuel Consumption Model 

The development of an accurate engine fuel consumption map is crucial to evaluating the 

impact of a vehicle energy supervisory control strategy on fuel economy.  To this extent, 

Chrysler provided a set of engine experimental data (termed “Big Grid”) consisting of 

247 steady-state engine speed and torque combinations.  For each engine operating point, 

a complete set of variables characterizing the breathing, fuel injection, combustion, 

torque generation and emissions performance of the engine was available.  From the 

given experimental data, a simple fuel consumption map was built as a function of the 

engine speed and torque inputs.  This model is purely algebraic, and therefore does not 

take into account any dynamic effects on the engine fuel consumption.  While this 

approximation would be inaccurate for the simulation of the engine dynamics, it is 
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compatible with the purpose of evaluating vehicle fuel consumption over extended 

periods of time, such as drive cycles.  In this case, the breathing and fuel dynamics of the 

engine, which affect the fast dynamics of the engine torque output, are negligible, 

allowing for a static fuel consumption model to be considered sufficiently accurate.  

Figure 12 depicts the block diagram of the fuel consumption model. 

 

 

Figure 12: Block Diagram of the Engine Fuel Consumption Model. 

 

The fuel consumption model takes both the engine speed and the sum of the engine and 

alternator torques as inputs, and outputs the fuel mass flow-rate.  This allows one to 

quantify the impact of the alternator power consumption on the vehicle fuel economy 

once the engine fuel consumption model is integrated into the Vehicle Electrical System 

model.  The additional input, termed DFSO, accounts for the engine deceleration fuel 
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shut off, and sets the instantaneous fuel consumption to zero when active.  A linear 

curve-fitting approach is utilized as the method of interpolation to interpolate the 

experimental fuel consumption and populate the map.  Figure 13 depicts the fuel 

consumption data points and resulting fitted lines. 

 

 

Figure 13: Linear Fit of Fuel Mass Flow Rate. 

 

Section 2.3: Description of the Vehicle Electrical System Model 

A model of the Chrysler Town and Country’s electrical system is necessary for the 

successful design of an energy management control strategy.  In order to develop the 

vehicle electrical system model, three subsystem models, namely the alternator, battery 

and Chrysler controller (termed “Electronic-Voltage Regulator, or “EVR”), are 

developed and independently validated.  Figure 14 presents a block diagram showing the 

cause and effect relationships of the three interconnected models. 
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Figure 14: Block Diagram of the Vehicle Electrical System Model. 

 

The Electronic-Voltage Regulator is a model that mimics the production control strategy 

for the electrical system.  The algorithm monitors the battery voltage and outputs the 

appropriate duty-cycle (DC) PWM signal to the alternator with the objective of 

maintaining a nominal, temperature-dependent reference battery voltage.  The duty-cycle 

command results in an increase in the alternator field current, thus increasing the 

alternator output current.  The difference between the electrical load demand and the 

alternator current is the current directed to the battery.  The alternator, battery, and EVR 

model will all be described in greater depth in the following sections, followed by an 

analysis of the entire vehicle electrical system model. 
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2.3.1: Alternator Model 

Numerous methods are available to model the input-output response of an automotive 

alternator, ranging from the more complex and calibration-intensive circuit models to the 

simpler, empirically-derived “black-box” models.  [21] discusses the development of an 

alternator circuit model in great detail.  This type of approach is useful in capturing the 

high-frequency dynamics of the electric generator and the switching behavior of the 

AC/DC converter, and is typically used for electrical system fault diagnosis or actuator-

level control design.  In this work, an experimentally-derived, map-based alternator 

model will be integrated into the vehicle electrical system model.  Maps provided by 

Chrysler for both the alternator torque and alternator efficiency were supplemented by 

OSU-generated maps for the field current and the resultant alternator current.  The 

general form of these four look-up tables is described in Equations 1, 2, 3 and 4 below, 

followed by Figure 15 which features contour plots depicting each output variable for a 

fixed battery voltage: 

 

𝑇𝑎𝑙𝑡 = 𝑇𝑎𝑙𝑡(𝜔𝑎𝑙𝑡, 𝐼𝑓 , 𝑉𝑏𝑎𝑡) (1) 

𝜂𝑎𝑙𝑡 = 𝜂𝑎𝑙𝑡(𝜔𝑎𝑙𝑡, 𝐼𝑓 , 𝑉𝑏𝑎𝑡) (2) 

𝐼𝑎𝑙𝑡 = 𝐼𝑎𝑙𝑡(𝜔𝑎𝑙𝑡, 𝐷𝐶, 𝑉𝑏𝑎𝑡) (3) 

𝐼𝑓 = 𝐼𝑓(𝜔𝑎𝑙𝑡, 𝐷𝐶, 𝑉𝑏𝑎𝑡) (4) 
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Figure 15: Alternator Contour Plots for a Fixed Battery Voltage. 

 

The field current and alternator current maps, both considered functions of the alternator 

duty-cycle, rotor speed, and battery voltage, are developed with the assistance of the 

vehicle experimental setup (reference Section 2.1.3).  The light-duty chassis 

dynamometer, a vehicle modified with shunts to monitor the alternator and field currents, 

a programmable load to fix the battery voltage, and a PWM driver which controls the 

duty cycle are utilized for this purpose.  With all three model inputs fully controlled, 

steady-state data is then extracted via an ETAS ES1000.3 rapid prototyping platform, 

post-processed, and incorporated into the corresponding look-up tables.  The block 
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diagram depicting the alternator model may be observed in Figure 16.  Take note that 

𝑅𝑅𝑎𝑙𝑡 is the reduction ratio across the engine crank and alternator pulleys. 

 

 

Figure 16: Block Diagram of the Alternator Model. 

 

2.3.2: Battery Model 

Modeling the voltage response of lead-acid batteries is a well-known process, which has 

been approached by many researchers in the past [22-24].  In this context, several 

modeling approaches have been proposed, depending upon the particular requirements 

and the objectives of the model.  For instance, electrochemical lead-acid battery models 

have been developed to predict the very complex thermal and chemical interactions 

between the electrodes and electrolyte [24].  Such models, while useful to explain the 

voltage output behavior from first principles, are often too complex for integration into an 

electrical system model for control development.  On the other hand, equivalent electrical 
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circuit models offer a trade-off between accuracy and complexity that favors the 

application of model-based control.  These models typically relinquish a certain degree of 

accuracy and physical consistency in exchange for increased simplicity.  Despite the 

simplistic nature of such a model, the overall input-output behavior of a battery may be 

captured for a variety of operating conditions assuming that proper calibration of all 

parameters is performed [22, 23].   

In this work, the dynamics of the battery are modeled as a 1st order Randle equivalent 

circuit [25].  Figure 17 depicts the equivalent circuit used in the model, with the relevant 

model parameters.  

 

 

Figure 17: First-Order Battery Equivalent Circuit Model 

 

The model consists of an ideal voltage source, 𝐸0, a linear resistive element, R, and a 

parallel combination of a resistor and capacitor, 𝑅0 and 𝐶0, connected in series with the 

voltage source and resistive element.  The battery voltage, as observed at the battery 

terminals, may be determined from the following circuit equation: 
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𝑉𝑏𝑎𝑡 = 𝐸0 − 𝑅𝐼𝑏𝑎𝑡 − 𝑉𝑐 (5) 

The dynamics of the battery voltage are therefore contingent upon the capacitive term       

(𝑉𝑐) in Equation 5.  The governing equation for the voltage drop across 𝑅0 and 𝐶0 can be 

expressed as follows [26]: 

𝑑𝑉𝑐

𝑑𝑡
= −

𝑉𝑐

𝑅0𝐶0
+

𝐼𝑏𝑎𝑡

𝐶0
 

(6) 

In order to fully define the battery model, it is necessary to calibrate the four battery 

parameters: 𝐸0, 𝑅, 𝑅0 and 𝐶0.  It is common practice to model these parameters as 

functions of the battery state of charge (SOC), temperature (𝑇𝑏𝑎𝑡), C-rate, and the sign of 

the battery current [27, 28].  To reduce the complexity of the required calibration 

procedure and the resulting parameter maps, the sign of the battery current and the C-rate 

are combined into a single variable, termed the current level (𝐼𝑙𝑒𝑣𝑒𝑙).  The battery SOC 

and current level are defined as follows: 

𝑆𝑂𝐶 = 𝑆𝑂𝐶0 −
1

𝐴ℎ𝑛𝑜𝑚
∫ 𝐼𝑏𝑎𝑡𝑑𝑡

𝑡𝑓

𝑡0

 (7) 

𝐼𝑙𝑒𝑣𝑒𝑙 = 𝑠𝑖𝑔𝑛(𝐼𝑏𝑎𝑡) ∙ 𝐴ℎ𝑛𝑜𝑚 ∙ 𝐶 − 𝑟𝑎𝑡𝑒 (8) 

 

Where 𝐴ℎ𝑛𝑜𝑚 is the nominal battery capacity in ampere-hours, 𝑆𝑂𝐶0 is the initial battery 

capacity, and 𝑠𝑖𝑔𝑛(𝐼𝑏𝑎𝑡) denotes the sign of the battery current (positive for discharge, 

negative for charge). 

The battery parameters can therefore be expressed in the following form: 

𝐸0 = 𝑓(𝑆𝑂𝐶, 𝑇𝑏𝑎𝑡) (9) 
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𝑅, 𝑅0, 𝐶0 = 𝑓(𝑆𝑂𝐶, 𝑇𝑏𝑎𝑡, 𝐼𝑙𝑒𝑣𝑒𝑙) (10) 

The calibration and validation of the battery model required a thorough set of 

experiments, which were performed on the battery test bench described in Section 2.1.3.  

Specific testing procedures were engineered to provide a set of experimental data that 

allowed for separately calibrating the key model parameters. 

Prior to the identification of the equivalent circuit parameters, the nominal capacity 

(𝐴ℎ𝑛𝑜𝑚) of the battery was determined.  This procedure is outlined as follows, and is 

graphically depicted in Figure 18 for clarity: 

1. The battery is fully charged utilizing a CC-CV (constant current, constant voltage) 

profile. 

2. The battery is fully discharged at a constant current of 0.1C. 

3. The battery is then fully charged to the upper voltage threshold by using a CC-CV 

profile. 
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Figure 18: Current and Voltage Profile for Battery Capacity Test 

 

The battery is considered fully discharged when the battery voltage reaches 10.5 V.  

Similarly, the battery is considered fully charged when the battery voltage reaches 14.5 V 

and the battery current drops below 2 A.  The charge and discharge capacities 

(determined by steps 2 and 3, respectively) are then averaged, resulting in a nominal 

battery capacity of 72.3 Ah.  This procedure was only performed once in order to 

minimize the excessive battery aging that would be induced by the deep-cycling of a 

flooded lead-acid battery.  The aging may manifest itself as sulfation on the plates of the 

lead-acid battery, reducing the apparent battery capacity and increasing the internal 

resistance [29].   
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The second experimental test conducted on the battery was oriented towards the 

determination of the open-circuit voltage (𝐸0) which is generally assumed a function of 

the battery SOC and temperature [27, 28].  The experimental procedure designed for 

determining 𝐸0 is summarized as follows: 

1) The battery is fully discharged. 

2) The battery is charged at a constant current level in order to increase the battery 

SOC by 5%. 

3) The battery is rested sufficiently, and the open-circuit voltage is approximated as 

the voltage measured across the battery terminals. 

4) Steps 2 and 3 are repeated until the battery is charged to 100% SOC 

5) The battery is discharged at a constant current level in order to decrease the 

battery SOC by 5%. 

6) The battery is rested sufficiently, and the open-circuit voltage is approximated as 

the voltage measured across the battery terminals. 

7) Steps 5 and 6 are repeated until the battery is completely discharged. 

8) The battery is charged to 100% SOC. 

9) Steps 1-8 are performed at temperatures of C25 , C40 , and C50 . 

From the above procedure, two curves were generated for each temperature, one 

describing the relationship between the open-circuit voltage and the battery SOC when 

the battery is charging, and a similar curve for battery discharge.  The two curves were 

then averaged to produce the open-circuit voltage 𝐸0 as a function of the battery state of 
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charge.  The results for all three battery temperatures is illustrated in Figure 15.  The 

upper-left, upper-right, and lower-left plots show the open-circuit voltage curves for 

temperatures of 25, 40, and 50 degrees Celsius, respectively.  The lower right plot shows 

the averaged open-circuit voltage plots for all three temperatures. 

 

Figure 19: Summary of the Open-Circuit Voltage Characterization Test. 

 

Finally, the equivalent circuit model parameters, 𝑅, 𝑅0, and 𝐶0 were all determined 

through a single, extensive test where a transient current profile was imposed by the 

programmable load and supply system.  In order to develop a model accurate for a wide 

range of operating conditions, the battery was subjected to numerous current levels and 

current steps of varying magnitude.  The parameter values were then averaged across all 
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current steps at each current level.  A brief summary of this experimental procedure is 

detailed as follows: 

1) The battery is charged to 100% SOC utilizing a CC-CV profile 

2) A current profile composed of numerous current levels and current steps of 

various magnitudes and sign is imposed on the battery. 

3) The battery is discharged at constant current to a new state of charge. 

4) Steps 2 and 3 are repeated until a predetermined cutoff SOC is reached. 

5) Steps 1-4 are performed at temperatures of C25 , C40 , and C50 . 

Figure 20 illustrates the parameter identification procedure, evaluated for just one battery 

SOC value.  The numbers in the figure indicate the current profile for steps 1, 2 and 3 

described above. 
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Figure 20: Current Profile for the Identification of Battery Model Parameters. 

 

The values for 𝑅, 𝑅0, and 𝐶0 were then determined following the identification procedure 

described in [30]. 

Following the initial calibration procedure, the model parameter values were smoothed 

with respect to the battery state of charge and current level in order to ensure continuity 

of the predicted voltage output.   This task was performed by first developing a “surface” 

of battery parameter values for each battery temperature considered.  Each surface was 
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then fit with a 5th order polynomial with respect to both the battery SOC and current 

level.  The resulting parameter maps were found to be consistent with the experimental 

data, providing a smooth transition between battery operating points, and being consistent 

with the expected behavior typically exhibited by equivalent circuit battery model 

parameters (such as a growth in internal resistance due to a higher charging current) .  

Furthermore, the battery is not expected to operate outside of the SOC range considered 

during calibration, making smoothing of the battery parameters via curve-fitting a 

reasonable approach.  Figures 21, 22, and 23 illustrate the smoothed calibration results 

for 𝑅, 𝑅0, and 𝐶0 (respectively) at a temperature of C40 .  
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Figure 21: Battery Model Parameter Identification: Parameter R for 40 C 

 

Figure 22: Battery Model Parameter Identification: Parameter 𝑹𝟎 for 40 C 
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Figure 23: Battery Model Parameter Identification: Parameter 𝑪𝟎 for 40 C 

 

From Figures 21 and 22, the battery internal resistances (𝑅, 𝑅0) are observed to increase 

overall as the battery current changes directions from discharging to charging.  This is to 

be expected, as the charge acceptance of the battery is expected to decrease as charging 

currents of larger and larger magnitudes are imposed.  As the battery state of charge is 

increased towards 100%, the internal resistance (R) is also expected to increase 

significantly.  However, this behavior is not depicted in Figure 21 due to the SOC only 

achieving a value of approximately 98%.  Of particular interest in this experiment is the 

dependence of the battery parameters on the temperature (𝑇𝑏𝑎𝑡), as the temperature of the 

air and mounting brackets surrounding an automotive battery are expected to fluctuate 
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heavily depending on the particular testing environment.  Figure 24 illustrates the 

temperature-dependence of the battery internal resistance for 𝐼𝑙𝑒𝑣𝑒𝑙 = 50𝐴.  Note that not 

all constant-SOC lines are plotted to avoid overcrowding of the figure. 

 

 

Figure 24: R-values as a function of Battery Temperature 

 

The internal resistance of the battery exhibits an approximately inverse relation with the 

battery temperature.  While Figure 24 only depicts this relationship for a single current 

level, a large portion of the internal resistance map is consistent with these findings.  This 

behavior can be attributed to the well-known Arrhenius Equation: 

𝑘 = 𝐴𝑒
−𝐸𝑎
𝑅𝑇  

(11) 

 

25 30 35 40 45 50
3

3.5

4

4.5

5

5.5
x 10

-3

T
bat

 [oC]

R
 [

 
]

 

 
Battery SOC

83%

86%

95%

97%



41 

 

Where k is the rate constant of the chemical reaction, 𝐸𝑎 is the activation energy, R is the 

universal gas constant, and T is the absolute temperature in degrees Kelvin. 

According to Equation 11, as the temperature increases, the rates of the chemical 

reactions occurring within the battery increase significantly.  This facilitates faster current 

transport, translating to a lower internal resistance.  With the internal resistance maps 

largely in agreement with this, confidence in the calibration of the battery parameters 

may be achieved. 

 

2.3.3: Chrysler EVR Controller Model 

As the motivation for this project is to demonstrate the ability of a supervisory controller 

to provide improved fuel economy through the intelligent management of the vehicle 

electrical system, some baseline for comparison is necessary.  The control strategy 

currently employed in the vehicle is termed the Electronic-Voltage Regulator (EVR).  

The EVR compares some temperature-dependent reference battery voltage with the 

immediate battery voltage, and attempts to minimize the difference between the two by 

commanding the alternator duty cycle.  Given this information, a model of the EVR is 

then developed and tuned to agree with experimental data.  A block diagram depicting 

the general underlying logic of the EVR controller may be studied in Figure 25.  
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Figure 25: Electronic-Voltage Regulator Block Diagram 

 

Calibration of the EVR was achieved through trial-and-error in regards to both the 

reference-voltage lookup table and the PID-controller parameters. 

 

2.3.4: Vehicle Electrical System Model Validation 

In order to ensure the validity of the alternator and battery models in a standalone 

environment and guarantee compatibility between all sub-components of the vehicle 

electrical system, each VES sub-model is first validated independently with experimental 

data collected via the ETAS ES1000.  The entire model is then validated with the same 

on-road experimental data.  This experimental data is collected over a wide range of 

operating conditions by subjecting the vehicle to an on-road driving cycle with the air-

conditioning (A/C) system switched to automatic to create a variable load current profile.  

The vehicle velocity, engine torque and speed, and vehicle electrical load are all depicted 

for this drive cycle in Figure 26.  Take note that a significant portion of this experimental 

data was collected on the highway. 
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Figure 26: VES Validation Experimental Data. 

 

The standalone alternator model results are compared with the experimental data in 

Figure 27.  The RMS error over the entire timespan of the on-road cycle is 5.1 A, or 

4.5%. 
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Figure 27: Results of Standalone Alternator Model Validation. 

 

In order to ensure the legitimacy of the battery parameter maps outside of the range of 

calibration, a verification of the standalone battery model is performed.  In conjunction 

with the verification of the alternator model, experimental data extracted from the on-

road drive cycle with the A/C set to automatic mode is used to mimic realistic driving 

conditions.  Figure 28 illustrates the electrical current input to the battery model, as well 

as both the experimental and simulated battery voltages.  The RMS error over the entire 

drive cycle is 0.25 V, or 1.8%.  Given the wide range of operating conditions that the 

vehicle is subjected to for this on-road driving cycle (i.e. city and highway driving, A/C 

and radiator fan switching on/off, etc…) this error may be considered acceptable. 
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Figure 28: Results of Standalone Battery Model Validation. 

 

Figures 29 and 30 depict the experimental battery voltage and alternator current 

(respectively) alongside the simulation results for the assembled vehicle electrical system 

model.  Note that the inaccuracies of each sub-model amplify as the entire vehicle 

electrical system model is assembled.  The RMS error of the battery voltage is 0.26 Volts, 

whereas the RMS error of the alternator current is 8.4 A. 
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Figure 29: Full Vehicle Electrical System Validation: Battery Voltage. 

 

Figure 30: Full Vehicle Electrical System Validation: Alternator Current. 
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The increase in the overall predictive error of the electrical system model, and in 

particular the alternator sub-model, is more than likely due to the inaccuracies of each 

subsystem compounding upon one another.  The model calibration procedures utilized for 

developing the alternator model, which obtains quasi-static steady-state data points, may 

be partially to blame for these inaccuracies.  A design of experiment which is able to take 

into account the dynamics of the alternator may yield a more accurate VES model.  

Referencing [31], a mean-value approach may be taken towards alternator modeling 

which includes lumped inductances and a bridge rectifier circuit and takes into account 

the fast dynamics of the alternator, and results in a very good match with experimental 

data over a wide range of operating conditions.  However, given that the fast dynamics of 

the vehicle electrical system are not of crucial importance when evaluating cumulative 

vehicle fuel consumption over an extended period of time such as a drive cycle, this error 

is acceptable for the purposes of developing the energy supervisory controller. 

 As an investigation into the effects of the VES model inaccuracies, the cumulative 

energy error of the battery over the drive cycle under consideration is studied.  This is 

achieved through simply taking the integral of the product of the battery voltage and 

current over the entire drive cycle for both the experimental and model data sets.  The 

results of the accumulated energy within the battery, for both the model and experimental 

data, are very similar and are summarized in Table 3. 
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Table 3: Impact of VES Model Inaccuracies on Accumulated Battery Energy 

Data Source 𝑬𝒃𝒂𝒕 Accumulated (kWh) 

Model -0.07 

Experimental -0.06 
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Chapter 3: Application of Optimal Control Theory to the Energy 

Management of a Vehicle Electrical System 

An accurate baseline controller, the Electronic Voltage Regulator, for evaluating the 

performance of an energy management control strategy has been developed in Chapter 2.  

While fuel economy improvements upon this baseline controller may be quantified, it is 

necessary to establish an understanding of the maximum possible fuel savings that may 

be recognized.  Optimal control theory allows for a relatively straightforward solution to 

this objective by addressing the issue of finding the control input trajectory which 

optimizes a specific performance criterion [32], i.e. minimization of the cumulative 

vehicle fuel consumption.  Therefore, the application of optimal control theory to the 

energy management of a vehicle electrical system provides a useful benchmarking tool to 

evaluate the efficacy and performance of implementable, sub-optimal control strategies.  

The present chapter investigates the potential benefits of optimal control theory, as 

applied to the vehicle electrical system. 

 Chapter 3 begins with a discussion of the optimal control problem and objectives.  An 

in-depth analysis of optimal control over a single drive cycle, as applied to the VES, is 

then performed.  The robustness of the control strategy is then investigated through 

various sensitivity analyses.  Finally, this analysis is expanded to numerous scenarios, 

and the overall behavior of the optimal control strategy is characterized.  
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Section 3.1: Optimal Control Objectives and Methodology 

The control problem, specific to the vehicle electrical system under investigation, is first 

defined in this section.  Electrical system constraints are then discussed, followed by an 

application-specific derivation of the selected optimal control solution. 

 

3.1.1: Alternator-Battery Power Split Problem 

The primary objective put forth is to improve the overall fuel economy of a vehicle 

through the development of a new electrical system control strategy.  The currently 

employed control strategy, termed “Electronic-Voltage Regulation” (or EVR for short) 

maintains battery voltage at a predetermined value in order to ensure a full charge, only 

utilizing the battery when the alternator is incapable of providing the desired load.  While 

this control strategy provides for reliable cold-cranking conditions, it is inherently 

inefficient for two reasons: 

1)  The charge acceptance of lead-acid batteries drops off considerably when fully 

charged, resulting in unnecessary system losses.     

2) Holding the battery to a near-constant state of charge negates many of its potential 

benefits as a dynamic, on-board energy storage system. 

The development of a less conservative control strategy (with respect to the battery’s cold 

cranking ability), which can exploit the battery’s ability to function as a reversible energy 

storage device, may therefore prove beneficial to vehicle fuel economy.  Such control 

strategies are commonplace in hybrid electric vehicles, being utilized to optimize the 
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“power-split” between the engine and electric motor.  The overall architecture of a 

conventional automotive electrical system is quite similar to that of a mild, parallel HEV. 

It is therefore reasonable to develop an electrical system control strategy for use in a 

conventional automobile centered around a similar “current-split” principle.  A block 

diagram depicting the vehicle electrical system of interest, and its interactions with the 

engine, may be observed in Figure 31. 

 

Figure 31: Vehicle Electrical System Schematic 

 

Take note that 𝑇𝑒𝑛𝑔 refers to the baseline engine torque, which is equivalent to the engine 

brake torque minus the torque required to drive the vehicle alternator.  During data 

acquisition, however, it is impossible to decouple these two torques from one another, as 

the vehicle ECU calculates the approximate net engine torque.  Therefore, in order to 

approximate the baseline engine torque as closely as possible, the vehicle electrical loads 

(and therefore the alternator torque) are minimized during all experimental data 
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collection discussed in Chapter 3.  The effects of the alternator torque on the calculated 

net engine torque therefore result in a small, near-constant offset error which may be 

neglected for the purposes of the analyses performed. 

 

Referencing Figure 31, it can be seen how the current-split is directly tied in to the 

vehicle fuel consumption.  Determining the optimal current-split between the battery and 

alternator, via the alternator duty-cycle command, is therefore the control problem of 

interest.  The optimal current-split is therefore defined as the control command which 

fulfills the following criteria: 

1) Provides the desired current to the electrical loads at any given point in time; 

2) Splits the current demand between the battery and alternator so to minimize 

energy consumption in relation with the operating conditions of the system; 

3) Satisfies a set of constraints on battery and electrical system performance. 

The latter of these requirements will be evaluated in the following section. 

 

3.1.2: Constraints of the Vehicle Electrical System 

Constraints on the vehicle electrical system, administered by the control strategy, are put 

in place in order to ensure driver comfort and safety and avoid damaging the alternator 

and coupled electrical loads, while the detrimental battery-aging effects that accompany 

rapid current and voltage swings are regulated and kept to a minimum.  The exact form of 

these constraints is explicitly laid out as follows: 
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𝑉𝑚𝑖𝑛 ≤ 𝑉𝑏𝑎𝑡(𝑡) ≤ 𝑉𝑚𝑎𝑥 (12) 

𝐼𝑏𝑎𝑡,𝑚𝑖𝑛 ≤ 𝐼𝑏𝑎𝑡(𝑡) ≤ 𝐼𝑏𝑎𝑡,𝑚𝑎𝑥 (13) 

𝐼𝑎𝑙𝑡(𝑡) ≤ 𝐼𝑎𝑙𝑡,𝑚𝑎𝑥 (14) 

|
𝑑

𝑑𝑡
𝑉(𝑡)| ≤ �̇�𝑚𝑎𝑥 (15) 

 

Where constraint 1 represents the minimum and maximum allowable battery 

voltages, and ensures that all electrical loads in the vehicle remain operating within 

specification (ex. cabin lights and blowers maintaining acceptable operating 

voltages).   Constraint 2 represents the minimum and maximum allowable battery 

currents, and is enacted for similar reasons.  Constraint 3 represents the maximum 

possible alternator current (which is dependent upon operating conditions), and 

constraint 4 represents the maximum allowable battery voltage time rate of change.  

The implementation of these constraints is carried out by means of defining a current-

split array (γ) which, in conjunction with the maximum alternator current value, 

provides a discrete representation of all possible current-split options within the 

vehicle electrical system.  The derivation of the current-split procedure is laid out 

below.  From this point forward, all variables in bold font exist as vectors. 

 

𝜸 = [0, 1] ∈ ℝ𝑛 (16) 

𝑰𝒂𝒍𝒕 = 𝜸 ∙ 𝐼𝑎𝑙𝑡,𝑚𝑎𝑥 (17) 

𝑰𝒃𝒂𝒕 = 𝐼𝑙𝑜𝑎𝑑𝑠(𝑡) − 𝑰𝒂𝒍𝒕 (18) 
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Where 𝐼𝑙𝑜𝑎𝑑𝑠(𝑡) represents the electrical load demand in amperes.  The resultant battery 

current array is passed through a 0th-order simplified battery model having the ability to 

approximate future battery voltage, given the battery’s present state and future current 

level.  Any battery current values that result in violations of the constraints can then be 

filtered out before the remaining suitable candidates are passed on to the next step in the 

control process.  Figure 32 graphically depicts the general structure of how the system 

constraints are implemented in the energy management strategy. 

 

Figure 32: Implementation of Vehicle Electrical System Constraints 

 

3.1.3: Optimal Control with Pontryagin’s Minimum Principle 

The desired outcome of the energy management strategy under consideration is the 

minimization of cumulative vehicle fuel consumption over a given drive cycle while 

sustaining battery charge.  To this extent, a global optimal control problem may be 

formulated.  An integral cost function, J, is first defined as follows: 
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𝐽 = ∫ �̇�𝑓𝑢𝑒𝑙

𝑡𝑓

𝑡0

𝑑𝑡 (19) 

Mathematically speaking, the optimal control solution 𝑢∗(𝑡) may be described as the 

control trajectory which minimizes this integral cost function.  As may be observed in 

Figure 32, the fuel mass flow rate depends in part on the alternator torque, which may 

ultimately be expressed as a function of the battery state of charge x(t) and battery power 

u(t).  Therefore, the following may be stated: 

�̇�𝑓𝑢𝑒𝑙 = 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡) ⇒ 𝐽 = ∫ 𝐿(𝑥, 𝑢, 𝑡)
𝑡𝑓

𝑡0

𝑑𝑡 (20) 

The evolution of the vehicle electrical system in time may be described by a differential 

equation which relates the battery SOC to the battery power: 

𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) = −

𝐼𝑏𝑎𝑡(𝑡)

3600 ∙ 𝐴ℎ𝑛𝑜𝑚
  ;   ∀𝑡 ∈ [𝑡0, 𝑡𝑓] (21) 

A negative current value signifies charging.  In order to utilize optimal control theory, it 

is necessary to restructure Equation 21 such that the time rate of change of the battery 

state of charge is explicitly dependent upon the battery state (SOC) and control input 

(𝑃𝑏𝑎𝑡).  This may be performed by analyzing the simplified battery model, featured in 

Figure 33 and referenced in Section 3.1.2.   
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Figure 33: 0th-order Battery Model 

 

𝑉𝑏𝑎𝑡(𝑡) = 𝐸0 − 𝑅𝐼𝑏𝑎𝑡(𝑡) (22) 

𝑃𝑏𝑡(𝑡) = 𝑉𝑏𝑎𝑡(𝑡) ∙ 𝐼𝑏𝑎𝑡(𝑡) (23) 

𝐼𝑏𝑎𝑡(𝑡) =
𝐸0 − 𝑉𝑏𝑎𝑡(𝑡)

𝑅
 

(24) 

By substituting Equation 23 into Equation 22, and recalling that both the open-circuit 

voltage and internal resistance are functions of the battery state of charge, the battery 

voltage can be expressed as an explicit function of the state and control variables.  The 

resulting equation may then be plugged into Equation 24, which allows for the electrical 

system dynamics to be rewritten as follows: 

𝑑

𝑑𝑡
𝑥(𝑡) = −

1

3600 ∙ 𝐴ℎ𝑛𝑜𝑚
∙

𝐸0 − √𝐸0
2 − 4𝑅𝑃𝑏𝑎𝑡(𝑡)

2𝑅
= −

𝜑(𝑥, 𝑢, 𝑡)

3600 ∙ 𝐴ℎ𝑛𝑜𝑚
 (25) 

Where 𝜑(𝑥, 𝑢, 𝑡) = 𝐼𝑏𝑎𝑡(𝑡). 

 

 



57 

 

Subject to the system constraints discussed in Section 3.1.2, as well as: 

𝑥(𝑡0) = 𝑥0 (26) 

𝑥(𝑡𝑓) = 𝑥𝑓 = 𝑥0 (27) 

𝑥𝑚𝑖𝑛 ≤ 𝑥(𝑡) ≤ 𝑥𝑚𝑎𝑥 (28) 

Due to the constrained nature of the optimization problem at hand, Pontryagin’s 

Minimum Principle proves particularly useful and may be utilized in order to account for 

both the upper and lower bounds on the battery state of charge, as well as the required 

charge-sustaining behavior of the battery.  The global optimal control problem can then 

be recast into a local optimization problem.  This is achieved by introducing a time-

varying Lagrange multiplier, or co-state variable, λ, alongside a boundary penalty 

function, or inequality constraint, μ, which arises from the Karush-Kuhn-Tucker 

conditions.  An extended Hamiltonian function, H, may then be developed such that the 

following necessary conditions are satisfied: 

𝐻(𝑥∗, 𝑢∗, 𝜆∗, 𝜇∗, 𝑡) ≤ 𝐻(𝑥, 𝑢, 𝜆, 𝜇, 𝑡)  ;   ∀𝑢 ≠ 𝑢∗ (29) 

𝑥∗(𝑡𝑓) = 𝑥∗(𝑡0) = 𝑥0 (30) 

�̇�∗(𝑡) = ∇𝜆𝐻|∗ (31) 

�̇�∗(𝑡) = ∇𝑥𝐻|∗ (32) 

Where the Hamiltonian function is defined as follows: 

𝐻(𝑥, 𝑢, 𝜆, 𝜇, 𝑡) = �̇�𝑓𝑢𝑒𝑙 − [𝜆(𝑡) + 𝜇(𝑡)] ∙
𝜑(𝑥, 𝑢, 𝑡)

3600 ∙ 𝐴ℎ𝑛𝑜𝑚
 (33) 
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The objective being to minimize the Hamiltonian function at each time step.  In order to 

apply this optimization method to the vehicle electrical system, analytical expressions for 

both the co-state variable λ and the boundary function μ are developed as follows: 

�̇�(𝑡) = −∇𝑥�̅� = −[𝜆(𝑡) + 𝜇(𝑡)] ∙
𝑑

𝑑𝑥
(−

𝜑(𝑥, 𝑢, 𝑡)

3600 ∙ 𝐴ℎ𝑛𝑜𝑚
) (34) 

𝜇(𝑡) = {
𝜇𝑙   𝑆𝑂𝐶 ≥ 𝑆𝑂𝐶𝑚𝑎𝑥

−𝜇𝑙    𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑖𝑛   
0            𝑒𝑙𝑠𝑒              

 ;   (𝜇𝑙 ≥ 0) (35) 

The computationally intensive parameters, 𝜑 and 
𝑑𝜑

𝑑𝑥
,  may be solved off-line and mapped 

vs. the battery SOC (state), power (input), and temperature to allow for rapid calculation 

of the co-state dynamics in real-time.  These maps are shown in Figure 34 for a 

temperature of 40 deg. C. 

 

Figure 34: Co-state Dynamics Lookup Tables at 40 deg. C 
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The minimum (optimal) value of the Hamiltonian may now be located.  For each discrete 

time step that the Pontryagin control strategy is triggered, the duty cycle command which 

results in this minimum Hamiltonian is fed back to the alternator, completing the closed-

loop control circuit.  The optimal control problem, now fully defined, may be 

summarized according to Figure 35.  Take note of the contrast between the inputs of the 

inverted alternator maps in Figure 35, and the alternator maps featured in Figure 16.  The 

inverted maps monitor the battery voltage, engine speed, and the alternator current array, 

and output a corresponding duty-cycle and alternator torque array.  This duty-cycle array 

is passed through an index function which monitors the position of the minimum 

Hamiltonian function, and outputs the corresponding duty-cycle command.  
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Figure 35: Structure of Pontryagin’s Minimum Principle Control Strategy 

 

The values of the electrical system constraints implemented into the control strategy, as 

well as the limitations on the operating conditions of the battery SOC, are defined in 

Table 4. 
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Table 4: Vehicle Electrical System Constraints 

Parameter Value Description 

𝑽𝒎𝒊𝒏 1 1 . 5  V  Minimum battery voltage 

𝑽𝒎𝒂𝒙 15 V Maximum battery voltage 

�̇�𝒎𝒂𝒙 0.5 V/s Maximum rate of change of battery voltage 

𝑰𝒃𝒂𝒕,𝒎𝒊𝒏 -50 A Minimum battery current 

𝑰𝒃𝒂𝒕,𝒎𝒂𝒙 50 A Maximum battery current 

𝑰𝒂𝒍𝒕,𝒎𝒂𝒙 150 A Maximum alternator current 

𝑺𝑶𝑪𝒎𝒊𝒏 82 % Minimum desired battery state of charge 

𝑺𝑶𝑪𝒎𝒂𝒙 88 % Maximum desired battery state of charge 

𝑺𝑶𝑪𝟎 85 % Initial value of battery state of charge 

 

 

Section 3.2: Analysis of Pontryagin’s Optimal Solution 

In order to gather a comprehensive understanding of the general behavior of the vehicle 

electrical system and the resultant vehicle fuel consumption when subjected to optimal 

control conditions, the VES will be evaluated in-depth for a specific drive cycle and 

electrical load profile.  The New European Driving Cycle (NEDC) is assessed in Section 

3.2.2 due to its relatively smooth velocity profile, which aids in concisely illustrating the 

various physical behaviors which are characteristic of Pontryagin’s Minimum Principle.  

The electrical load profile is set to a constant value of 57.5 A, approximating the average 

electrical load value of the Chrysler minivan over numerous NEDC dynamometer runs 

with the A/C set to automatic.  This analysis is then expanded upon in Section 3.2.3 by 

performing numerous sensitivity studies in regards to the control parameters, allowing 

one to partially assess the feasibility of an adaptive, optimal-based implementable control 

strategy.  A more broad analysis of the Pontryagin control strategy is performed in 
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Section 3.2.4, encompassing various combinations of drive cycles and constant electrical 

loads. 

 

3.2.1: Influence of Parameters 

Prior to any vehicle controller and plant behavioral analysis, the optimal control solution 

for a given velocity trace and electrical load must be located.  The primary control 

parameter which dictates charge-sustaining behavior is the initial value of the co-state 

variable, 𝜆0.  Therefore, by determining this value optimality may be ensured.  An 

optimization algorithm consisting of sequential “sweeps” across all potential co-state 

candidates is implemented in order to locate the optimal value, 𝜆0
∗ .  The algorithm first 

searches for the appropriate co-state interval which contains a charge-sustaining solution.  

Once this interval is determined, the search is refined and the procedure is repeated until 

an acceptable degree of error (in regards to the net change of battery state of charge) is 

achieved.  A summary of the underlying structure of this algorithm is laid out in Figure 

36.  For all drive cycles and electrical load values considered, the initial specified range 

of the co-state variable (−225 ≤ 𝜆0 ≤ 0) is sufficient and contains the optimal solution.  

Figure 37 graphically depicts the location of 𝜆0
∗  for the case of the New European Drive 

Cycle with the electrical load demand set to a constant 57.5A.  The optimal initial co-

state value for the particular scenario under consideration is determined in only two 

iterations and is equal to -56.  The optimal boundary penalty function is relatively easy to 

calibrate in comparison; a significantly high value which prevents violation of the state 

constraints is sufficient, thus μ may be held to a value of 400 for all driving scenarios. 
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Figure 36: Initial Co-state Variable Optimization Algorithm Outline 

 

Figure 37: Initial Co-state Variable Optimization for NEDC, 𝑰𝒍𝒐𝒂𝒅𝒔 = 𝟓𝟕. 𝟓𝑨 
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3.2.2: Case Study Results: New European Drive Cycle 

The vehicle fuel economy and electrical system behavior, subjected to optimal control, 

are thoroughly investigated for a constant electrical load profile of 57.5A and the NEDC 

velocity profile.  The vehicle velocity trace, engine speed and torque, and the electrical 

load may be observed in Figure 38. 

 

Figure 38: Optimal Control Case Study: New European Drive Cycle at 57.5A 
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As discussed in Section 3.2.1, and depicted in Figure 37, the optimal initial value of the 

co-state variable is equal to -56, which allows for charge-sustaining behavior over the 

drive cycle.  The behavior of the vehicle electrical system, instantaneous fuel 

consumption, and co-state dynamics may be observed in Figure 39.  

 

 

Figure 39: Results of Optimal Control Case Study 

 

The co-state dynamics of the electrical load and driving schedule under consideration, 

depicted in the upper left corner of Figure 39, are essentially non-existent, varying by less 

than 0.01% over the entire length of the drive cycle.  This trend is not isolated to this 

particular case study, and is rather observed in all scenarios considered (refer to Table 7).  

The variety of driving schedules and load profiles considered is discussed in greater 

detail in Section 3.2.4.  The charge-sustaining behavior of the battery may be verified in 

the upper right corner of Figure 39, as the final state of charge is equal to the initial state 
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of charge; 85%.  This reference SOC was predetermined based on experience, and will be 

discussed in more depth in Section 3.2.3.  The second row of plots in Figure 39 shows 

both the battery and alternator current profiles for the VES subjected to the baseline EVR 

controller and the PMP optimal control strategy.  Of particular interest is the current 

commanded to and from the battery.  While the EVR maintains a nominal charging 

current of approximately 15A in order to sustain the battery at the appropriate reference 

voltage, the PMP control strategy allows for the battery to be used as a dynamic energy 

storage device, with current values ranging from approximately -65A to 50A.  The 

primary driver for these fluctuations between positive and negative current may be 

observed in Figure 40. 
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Figure 40: Optimal Control Case Study: Cause of Battery Current Fluctuations 

 

An increase in the vehicle’s instantaneous fuel mass flow rate results in an increase in the 

battery current, corresponding to a battery discharge event.  Keeping in mind Equation 

33, the underlying reasons for this are evident.  As the instantaneous fuel consumption of 

the vehicle increases, the apparent value of the battery energy imposed by the co-state 

variable diminishes in comparison.  This translates to a de-weighting of the chemical 

energy contained within the automotive battery, ultimately resulting in battery discharge.  

As the fuel mass flow rate begins to drop off, the influence of the co-state variable 

increases, resulting in a battery charging event.  It is interesting to compare both the 

battery current and vehicle velocity profiles; heavy acceleration events are accompanied 

by electrical assistance from the battery (as supplied to the loads), whereas coasting and 
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braking events are associated with battery charging.  This type of behavior is quite 

similar to regenerative braking schemes, where inertial energy otherwise lost to the 

atmosphere via an automobile’s braking system may be recuperated by an electric 

machine.  The lower left plot in Figure 40, which shows the battery voltage of the VES 

subjected to the EVR and PMP, assists in illustrating the dynamic behavior of the 

optimally controlled electrical system, and the importance of the imposed system 

constraints.  The lower right plot in Figure 40 compares the vehicle fuel consumption of 

the EVR and PMP control strategies.  The cumulative difference in fuel consumption 

between both control strategies results in a 2.1% improvement in fuel economy with 

optimal control.  Table 5 provides the details of the overall fuel economy benefits 

realized with optimal control. 

Table 5: Optimal Control Case Study: Fuel Economy Improvement 

Controller Fuel Economy (mpg) 

Chrysler EVR 19.1 

Optimal Control 19.5 

% Improvement 2.1% 

 

3.2.3: Control Parameter Sensitivity Analyses 

In order to determine the most suitable control parameters, evaluate the robustness of the 

control strategy, and develop an implementable VES control strategy adapted from 

optimal control theory, numerous sensitivity analyses are performed.  These analyses are 

performed for the same driving schedule and electrical load profile considered in Section 

3.2.2.  First, an analysis focusing on the resilience of the VES and PMP controller to 

errors in the selection of the optimal initial condition for the co-state variable is 
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performed.  The effects of changing the reference battery state of charge on fuel economy 

and VES model behavior are then studied, followed by an investigation into the effects of 

modifying the electrical system constraints.  Finally, as the PMP controller subjects the 

battery to much more rapid and higher magnitude current swings than does the EVR, the 

cumulative energy flux of the battery for the control scenario is evaluated. 

The ability of the controller to cope with sub-optimal control parameters is imperative in 

developing any sort of implementable control strategy, as the online controller will never 

have knowledge of a given drive cycle and VES load profile beforehand and can 

therefore only estimate an, almost assuredly sub-optimal, co-state value.  In order to 

study the effects of sub-optimal co-state values, the VES model (subjected to PMP 

control) is simulated with co-state values of +/-25% of the optimal solution.  The results 

of this study are featured in Figure 41. 
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Figure 41: Co-State Sensitivity Analysis 

Upon observation of the upper right plot in Figure 41, it is clear that underestimating the 

initial co-state value by 25% results in a discharge of approximately 1% battery SOC; 

only 1/3 of the way towards the lower threshold on the battery state of charge (82%).  In 

contrast, by overestimating the initial co-state value by 25% the battery SOC drifts to the 

upper SOC threshold (88%) in approximately 700 seconds.  If the co-state variable is 

overestimated, the duty-cycle command sent to the alternator is less likely to result in 

battery discharge.  On the other hand, if the co-state variable is underestimated, battery 

charging events are less likely to occur as the value of the battery energy (determined via 

the co-state variable) is small in comparison with the value of the fuel energy.  These 

results demonstrate that in order to develop any sort of implementable, real-time control 

strategy, there is a need for control adaptations which prevent the relatively slow battery 

SOC drift resulting from a sub-optimal initial co-state value. 
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The battery reference state of charge holds particular relevance in terms of control 

optimality as the battery should ideally operate around the reference SOC value for its 

entire lifespan.  An effort should therefore be made to understand the impact of the 

reference state of charge on VES behavior and fuel economy.  In order to do so, the 

reference battery SOC (and the corresponding upper and lower SOC thresholds) is held to 

three values: 85%, 90%, and 92.5%.  The state of charge of the battery should not be 

increased much above 92.5% as the internal resistance of the battery increases 

dramatically at near 100% SOC values, therefore decreasing charge acceptance [23].  

Likewise, the battery SOC should also not be decreased much below 80% due to both the 

concern of sufficient current draw for engine startup, and the risks inherent in lead-acid 

battery deep cycling (as discussed in Section 2.3.2) 

The results of the reference state of charge analysis are depicted in Figure 42 below. 
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Figure 42: Reference Battery State of charge Sensitivity Analysis 

 

It may be observed that only trivial differences exist, both in terms of VES behavior and 

the optimal co-state value, upon varying the reference state of charge and corresponding 

upper and lower SOC bounds.  What is notable, however, is the slight increase in both the 

co-state variable and the magnitude of battery voltage swings as the reference SOC is 

increased.  This may be explained by the fact that the battery model internal resistance 

increases as the battery state of charge increases from 85% to 92.5%.  Despite battery 

operation being slightly less efficient as the reference SOC is increased (via ohmic losses 

in the equivalent circuit model), the corresponding decrease in fuel economy is 

negligible, equating to less than 0.01% of the total vehicle fuel consumption.  The 
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reference battery state of charge is therefore held to 85% in order to ensure that both 

deep-cycling and high SOC operation need not be of concern. 

 

 The system constraints of the PMP controller, as discussed in Section 3.1.2, restrict the 

dynamics of the vehicle electrical system in order to ensure customer comfort and safety, 

and avoid excessive wear and tear on the battery and alternator.  Restricting the VES 

dynamics also translates to removing a number of potential candidates from the current-

split array (γ), resulting in a departure from optimal control behavior.  It is therefore 

necessary to balance both the reduction in VES aging, and the corresponding reduction in 

vehicle fuel economy, due to the imposition of the VES system constraints.  Both the 

battery voltage constraints, 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥, and the battery voltage time rate of change 

constraint, �̇�𝑚𝑎𝑥, are initially non-existent, leaving the VES model behavior 

unconstrained.  The constraints are then imposed in finite increments in order to study the 

corresponding reduction in the range of battery operating conditions and fuel economy.  

The results of the battery voltage constraint study are illustrated in Figures 43 and 44, 

whereas the results of the battery voltage time rate of change constraint study are 

depicted in Figures 45 and 46.  Take note that as a 0th-order battery model is used to 

predict the resultant battery voltage of all current-split candidates and filter out any 

candidates that result in constraint violations, error is introduced into the imposed 

constraints.  Therefore, instead of specifying an exact value for the minimum and 

maximum allowable battery voltage and the maximum allowable battery voltage time 

rate of change, the percent reduction in battery operating range is specified.  The VES 
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behavior is evaluated for the unconstrained, 55%, and 62% constrained battery voltage 

scenarios, and is evaluated for the unconstrained, 38%, and 75% constrained battery 

voltage time rate of change scenarios.  
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Figure 43: Battery Voltage Constraints Sensitivity Analysis 

 

Figure 44: Battery Voltage Constraints Sensitivity Analysis, Fuel Economy 
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Figure 45: 𝒅𝑽𝒎𝒂𝒙 Constraints Sensitivity Analysis 

 

 

Figure 46: 𝒅𝑽𝒎𝒂𝒙 Constraints Sensitivity Analysis, Fuel Economy 
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Upon observation of Figures 43 and 44, it may be noted that the battery voltage 

constraints impact the behavior of the VES significantly, whereas restricting the time rate 

of change of the battery voltage does very little to change overall VES behavior.  This is 

indicative of the PMP controller’s behavior; while extended periods of battery charging 

and discharging (translating to a wide battery voltage operating range) lead to the optimal 

solution, the optimal magnitude of these charging and discharging events does not much 

surpass approximately 50A (translating to a limited 𝑑𝑉𝑚𝑎𝑥 value).  The 𝑑𝑉𝑚𝑎𝑥 constraint, 

however, does provide the advantage of filtering out some of the bang-bang behavior 

which is characteristic of the PMP optimal control strategy.  Limiting the battery voltage 

therefore restricts optimal VES behavior more drastically then does limiting the time rate 

of change of battery voltage.  Despite the drastic changes in battery voltage behavior due 

to constraining 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥, the battery voltage never drops below 11.5V, and never 

raises above 14V, well within the allowable voltage operating range.  It logically follows 

that imparting constraints upon the minimum and maximum allowable battery voltage 

results in a greater reduction in fuel economy than reducing 𝑑𝑉𝑚𝑎𝑥, which may be 

observed in Figures 44 and 46.  Restricting the battery voltage operating range by 62% 

results in an approximately 10% reduction of the PMP fuel economy benefits, whereas 

restricting 𝑑𝑉𝑚𝑎𝑥 by 75% only reduces the PMP fuel economy benefits by about 5%.  

Therefore, in order to facilitate maximum fuel economy benefits while avoiding any 

undue, choppy battery current behavior, the battery voltage operating range will be 

minimally constrained, whereas the time rate of change of the battery voltage will be 
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constrained by 38% (balancing the “filtering” and fuel economy benefits of the 𝑑𝑉𝑚𝑎𝑥 

constraint).   

 

The battery is subjected to much higher magnitude charging and discharging current 

levels when regulated by the PMP controller.  In order to gather an understanding of the 

significance of this and quantify the extent to which the battery is utilized as an energy 

mover as compared to the EVR controller, the absolute net energy flux (in ampere-hours) 

of the battery is analyzed for both the case of the EVR and PMP control strategies.  This 

analysis is expanded to all combinations of drive and electrical load profiles in Section 

3.2.4.  Table 6 summarizes the results of the energy flux analysis for the VES model 

subjected to the New European Drive Cycle at 57.5A. 

 

 

Table 6: PMP Energy Flux Analysis Results 

Controller Energy Flux (Ah) 

Chrysler EVR 4.07 

Optimal Control 9.93 

% Increase 144% 

 

Approximately 9.93 Ah, or 13.24% of the battery’s capacity, are moved in and out of the 

battery model when subjected to the PMP control strategy, whereas only about 4.07 Ah 

are moved through the EVR-subjected battery model.  The battery is therefore utilized to 

a much greater extent as an energy mover with the PMP control strategy in place.  While 

fuel economy benefits are realized as a result of this, the results also imply that the 
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battery subjected to the PMP controller will be overused (when compared to the baseline 

EVR controller).  Any adverse effects that this overuse may have on the battery should 

therefore be analyzed as well. 

 

3.2.4: Extension of Control Analysis to Numerous Data Sets 

In Sections 3.2.2 and 3.2.3, the effects of the optimal control strategy on the VES model 

were investigated for the case of the New European Drive Cycle with a fixed electrical 

load of 57.5A.  This allowed for an in-depth analysis in regards to the influence of 

numerous control parameters (i.e. system constraints, initial co-state value, etc…) on 

VES behavior and fuel consumption.  In order to fully understand how the optimal 

control strategy functions over a wide variety of operating conditions, this analysis is 

expanded to numerous combinations of driving cycles and constant electrical load 

profiles.  By fixing the electrical load to a constant value and varying the driving 

schedule, the effects which the driving schedule and electrical load demand have on the 

determination of the optimal control and state trajectories may be essentially decoupled 

from one another and studied independently.  This process is critical to the development 

of an adaptive, implementable, Pontryagin-derived control strategy, and is summarized as 

follows. 

 

The optimal initial co-state value is first located for each individual drive-cycle/electrical 

load combination.  Simulations are then run for each optimal scenario considered, and the 

improvement in fuel economy, overall change in battery state of charge(𝑆𝑂𝐶𝑓 − 𝑆𝑂𝐶0), 
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and net energy flux of the battery (in ampere-hours) are all tabulated.  The battery SOC 

trajectory for each control scenario considered is studied in detail to ensure that the upper 

and lower state of charge bounds are not violated at any point during the drive cycle.  The 

co-state trajectory is observed as well in order to ensure that a near-constant value is 

maintained over the length of the drive cycle under consideration.  A representative set of 

co-state dynamics extracted from simulation results may be observed in Figure 47. 

 

Figure 47: Sample Set of Co-state Dynamics 
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The initial co-state value is then increased and decreased by 25%, and the resultant 

improvement in fuel economy and change in battery SOC are tabulated as well.  This 

process is performed for a total of 35 different drive-cycle/electrical load combinations, 

with the results featured in Tables 7-10.  Take note that % F.E. denotes the percentage 

improvement in fuel economy over the baseline EVR control strategy. 

 

Table 7: Listing of Performance Parameters for PMP Controller (𝝀𝟎 = 𝝀𝟎
∗ ) 

Load [A] 30 40 57.5 75 90 

Drive Cycle 𝜆0
∗  %𝐹. 𝐸. 𝜆0

∗  %𝐹. 𝐸. 𝜆0
∗  %𝐹. 𝐸. 𝜆0

∗  %𝐹. 𝐸. 𝜆0
∗  %𝐹. 𝐸. 

FTP -59 1.7 -61 1.7 -61 1.7 -80 1.8 -105 1.7 

FTP (no soak) -56 1.8 -62 1.7 -78 1.6 -90 1.6 -108 1.6 

NEDC -27 1.8 -28 1.7 -56 2.1 -70 2.2 -90 2.2 

Artemis -54 1.2 -57 1.2 -58 1.6 -77 1.7 -97 1.7 

Indian Urban -20 1.2 -57 1.6 -66 1.8 -76 1.9 -91 1.9 

JC08 -49 1.5 -53 1.9 -68 1.8 -78 1.9 -100 1.7 

US06 -60 0.6 -76 1.0 -89 1.1 -105 1.0 -112 1.0 

 

It may be observed from Table 7 that the optimal control strategy consistently provides 

improvements in fuel economy ranging from 0.6% all the way up to 2.2% in simulation.  

Additionally, the boundary penalty function   is set to a fixed value of 400 which is 

sufficient, even in the case of an incorrect calibration of the initial condition of the 

Lagrangian multiplier, as is the case in Tables 9 and 10.  Of particular interest when 

investigating the various optimal control scenarios featured in Table 7 is the relation 

between the optimal initial co-state value, the driving cycle, and the electrical load 

demand.  At lower electrical load demands, there is a slight variance in the optimal initial 

co-state value from drive cycle to drive cycle; particularly in regards to the NEDC and 

Indian Urban drive cycles.  However, as the electrical load demand is increased, the 
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variance in 𝜆0 from drive cycle to drive cycle diminishes, leaving the electrical load 

demand as the primary factor influencing the optimal initial co-state value.  Furthermore, 

as the actual vehicle electrical system will typically not see extended periods of usage 

much below 60-70A of load, the co-state drive cycle variance at 30A and 40A of load is 

of lesser importance than any variance at higher electrical loads.  In an effort to quantify 

the variance in the optimal co-state value at each constant electrical load scenario 

considered, 𝜆0 is plotted versus the electrical load demand for each drive cycle.  All 35 

data points, one for each control scenario considered, are then linearly curve-fit.  This 

process is depicted in Figure 48. 

 

 

Figure 48: Variance in Optimal Initial Co-state Value 

The maximum percent deviation is simply the average percent difference between the 

curve-fit and each data point, and may be observed to be approximately 28.6% at an 

electrical load of 30A.  As the electrical load is increased, this variance decreases; all the 

way down to 7.2% at an electrical load demand of 90A.  These findings prove to be 
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particularly significant and useful when developing an implementable PMP-based control 

strategy, which will be discussed in Chapter 4. 

 

Table 8: Additional Performance Parameters for PMP Controller (𝝀𝟎 = 𝝀𝟎
∗ ) 

Load [A] 30 40 57.5 75 90 

Drive Cycle 
∆𝑆𝑂𝐶 

[%] 
|𝛷𝐸| 
[𝐴ℎ] 

∆𝑆𝑂𝐶 

[%] 
|𝛷𝐸| 
[𝐴ℎ] 

∆𝑆𝑂𝐶 

[%] 
|𝛷𝐸| 
[𝐴ℎ] 

∆𝑆𝑂𝐶 

[%] 
|𝛷𝐸| 
[𝐴ℎ] 

∆𝑆𝑂𝐶 

[%] 
|𝛷𝐸| 
[𝐴ℎ] 

FTP 0.8 25.2 -0.1 31.3 0 32.0 0.3 26.7 -0.2 19.1 

FTP (no soak) -0.2 20.6 0.3 24.4 -0.3 24.4 0.3 22.2 0.1 16.8 

NEDC -0.5 7.6 -0.2 9.2 0.1 9.9 0 8.4 -0.2 5.3 

Artemis 0.4 15.3 0.6 15.3 -0.4 12.2 -0.1 10.7 -0.2 6.9 

Indian Urban -0.2 15.3 -0.8 4.6 0 30.6 0.1 30.6 -0.3 20.6 

JC08 -0.2 11.5 0.7 13.7 0.2 14.5 -0.2 12.2 -0.1 8.4 

US06 0 4.6 -0.2 22.9 -0.2 9.2 0 8.4 -0.1 6.9 

 

Referring to Table 8, two conclusions may be drawn regarding the optimal control 

strategy; the net change in the battery state of charge is always maintained to below 1%, 

and the net energy flux of the battery is typically many times greater than the EVR 

battery energy flux.  The most severe example of the difference in battery energy flux is 

observed for the case of the FTP drive cycle at a fixed electrical load of 57.5A.  At 32 

Ah, the amount of energy flowing in and out of the battery subjected to optimal control is 

over 2.5 times greater than the energy flux of the battery when controlled by the EVR. 
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Table 9: Listing of Performance Parameters for PMP Controller (𝝀𝟎 = 𝟎. 𝟕𝟓𝝀𝟎
∗ ) 

Load [A] 30 40 57.5 75 90 

Drive Cycle 
∆𝑆𝑂𝐶 

[%] 
%𝐹. 𝐸. 

∆𝑆𝑂𝐶 

[%] 
%𝐹. 𝐸. 

∆𝑆𝑂𝐶 

[%] 
%𝐹. 𝐸. 

∆𝑆𝑂𝐶 

[%] 
%𝐹. 𝐸. 

∆𝑆𝑂𝐶 

[%] 
%𝐹. 𝐸. 

FTP -2.8 0.9 -2.8 0.9 -2.9 0.7 -2.6 0.8 -2.7 0.8 

FTP  

(no soak) 
-2.8 1.0 -2.8 0.9 -2.3 0.8 -2.5 0.8 -2.7 0.8 

NEDC -3.0 1.1 -3.0 1.0 -1.1 1.6 -2.9 2.1 -3.0 2.1 

Artemis -2.5 1.1 -1.8 2.0 -2.8 1.2 -2.6 1.4 -2.9 1.5 

Indian 

Urban 
-3.0 0.8 -3.0 1.0 -2.6 1.0 -2.7 1.2 -2.9 1.2 

JC08 -2.7 1.0 -2.7 0.8 -2.8 0.9 -2.8 1.0 -2.9 1.2 

US06 -1.4 0.5 -3.3 0.7 -1.5 0.8 -2.4 0.9 -2.8 0.9 

 

Table 9 demonstrates the effects of under-estimating the optimal initial co-state value by 

25%.  This under-estimation translates to a devaluing of the battery energy, resulting in 

overall charge-depleting battery behavior.  Despite excessive battery discharge, the fuel 

economy is still largely negatively influenced by this sub-optimal control behavior.  

Take, for instance, the percent improvement in fuel economy for the FTP drive cycle; at 

the optimal initial co-state value the average improvement in fuel economy over all 

electrical load scenarios considered is approximately 1.7%.  In comparison, the average 

improvement in fuel economy for the FTP drive cycle when the initial co-state value is 

under-estimated by 25% is only about 0.7%. 
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Table 10: Listing of Performance Parameters for PMP Controller  (𝝀𝟎 = 𝟏. 𝟐𝟓𝝀𝟎
∗ ) 

Load [A] 30 40 57.5 75 90 

Drive Cycle 
∆𝑆𝑂𝐶 

[%] 
%𝐹. 𝐸. 

∆𝑆𝑂𝐶 

[%] 
%𝐹. 𝐸. 

∆𝑆𝑂𝐶 

[%] 
%𝐹. 𝐸. 

∆𝑆𝑂𝐶 

[%] 
%𝐹. 𝐸. 

∆𝑆𝑂𝐶 

[%] 
%𝐹. 𝐸. 

FTP 3.0 0.5 3.0 0.5 2.6 0.6 2.2 0.6 3.0 0.2 

FTP  

(no soak) 
3.0 0.6 3.0 0.5 3.0 0.3 3.0 0.3 3.0 0.2 

NEDC 3.0 0.4 2.8 0.5 3.0 0.6 3.0 0.5 2.3 0.5 

Artemis 3.0 0.4 1.9 0.2 3.0 0.5 3.0 0.4 3.0 0.2 

Indian 

Urban 
3.0 0.4 1.7 0.7 3.0 0.8 3.0 0.8 3.0 0.7 

JC08 3.0 0.4 2.9 0.3 3.0 0.1 3.0 0.2 3.0 -0.1 

US06 0.1 0.3 3.0 0.2 3.1 0.3 3.0 0.1 3.0 0.0 

 

Referring to Table 10, the fuel economy is observed to decrease drastically when the co-

state variable is over-estimated by 25%.  This may be attributed to two factors; the 

control strategy is operating on a sub-optimal control and state trajectory, and the battery 

is charged over the length of the drive cycle under investigation.  A portion of the overall 

reduction in vehicle fuel economy may therefore be associated with the fuel invested into 

charging the battery. 

 

By evaluating various combinations of control parameters, drive cycles, and constant 

electrical load demands in Sections 3.2.3 and 3.2.4, the underlying structure of the PMP 

control strategy is established.  The critical observations and analyses performed in this 

chapter may be summarized as follows: 

 The state constraints and reference battery SOC are selected in order to balance 

the benefits of improved fuel economy with the consequences of rapid battery 

current swings and battery over-usage.   
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 The governing factors which determine the optimal control and state trajectories 

are determined to be primarily functions of the initial co-state value, which in turn 

depends heavily upon the electrical load demand of the VES.   

 The dependence of the initial condition of the optimal co-state value on the 

driving schedule diminishes as the electrical load demand increases.   

 The co-state dynamics prove to be negligible, varying by as much as 0.01% in the 

control scenarios under consideration.   

These findings are all relied upon in Chapter 4 in order to develop an adaptive, 

Pontryagin-based control strategy which may be implemented in a production vehicle in 

real-time. 
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Chapter 4: Development and Implementation of an Adaptive-PMP Control 

Strategy 

In the previous chapter, an optimal control strategy was derived from Pontryagin’s 

Minimum Principle for the energy-optimal control of the electrical system of a passenger 

vehicle, and was verified in simulation.  While this control strategy allows one to 

evaluate the potential for fuel economy improvement, such benefits may not be realized 

without all knowledge of the driving profile and electrical load profile “a priori”.  Thus, 

there is a need to modify the existing PMP control in order to allow for an online, or 

“forward-looking” implementation, without “a priori” knowledge of the driving and load 

profiles.   

 

The present chapter bridges the gap between the optimal PMP control strategy and an 

adaptive, PMP-based control strategy which is implementable in real time. 

The chapter begins by highlighting the critical findings of Chapter 3 that are relevant to 

the development of a real-time capable control strategy; in particular the dependence of 

the optimal control trajectory on observable vehicle states and outputs (i.e. current, 

voltage, etc…).  These findings are then translated into a physical control structure which 

replaces the co-state dynamics subsystem discussed in Section 3.1.3, thus removing the 

need for “a priori” input knowledge.  The adaptive control strategy (A-PMP) is then 
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tuned in simulation to yield the best possible fuel economy, and benchmarked against the 

PMP control.  Section 4.2 discusses the controller experimental test setup, and includes a 

summary of experimental testing results with respect to vehicle fuel economy.  Finally, 

Section 4.3 addresses potential drivability issues associated with the A-PMP control 

strategy and examines possible solutions to these problems with special consideration 

given to vehicle fuel economy.  

 

Section 4.1: Design of an Adaptive PMP-based Control Strategy 

Proper tuning of the initial condition of the co-state variable, 𝜆0, is essential in 

determining the optimal control trajectory with respect to both charge-sustaining behavior 

and minimal fuel consumption.  This condition is, however, contingent on the appropriate 

selection of the initial condition of the co-state variable, which requires a priori 

knowledge regarding the specific drive cycle and electric load profile of interest.  Such a 

control strategy is non-causal in nature, and would thus be impossible to implement in a 

forward-looking case.  Therefore, in order recognize any potential fuel savings in-vehicle, 

it is first necessary to develop a control strategy that can approximate the co-state value 

with a separately defined control parameter, which will be termed “lambda”, and update 

the value of this parameter as needed to ensure charge-sustaining behavior and improve 

vehicle fuel economy.  The newly defined control parameter (𝜆) is passed into the 

Hamiltonian calculation subsystem just as the co-state variable is in optimal control, and 

may be expressed as follows. 
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𝜆(𝑘) = 𝐾𝑆𝑂𝐶 ∙ (𝑆𝑂𝐶(𝑇𝑠1) − 𝑆𝑂𝐶𝑟𝑒𝑓) + 𝜆0(𝑇𝑠2) (36) 

Where 𝑘 is an integer number indicating the discrete time step, and 𝑇𝑠 denotes 

adaptations made to the function at regular intervals of fixed duration.  Take note that 𝑇𝑠1 

and 𝑇𝑠2 do not necessarily need to be equal to one another. 

As discussed in Section 3.2.4, the co-state dynamics (w/ constant electrical loads 

imposed) appears negligible throughout the entirety of each driving schedule considered 

and could thus be approximated as constant and equal to its initial value.  Table 8 

illustrates the dependence of the initial condition of the co-state variable on both drive 

cycle and electrical load.  While there is a notable, inversely proportional relationship 

between the optimal initial condition of the co-state variable and the electrical load 

demand, the dependence of 𝜆0 on the driving schedule decreases significantly as the 

electrical load demand increases above 57.5A.  As the radiator fan alone requires 30-40A 

and typical operating conditions in the vehicle requires between 60-80A, the contribution 

of the driving profile to the optimal initial condition of the co-state variable may be 

neglected for implementation purposes.  Following this point, the optimal initial 

condition of the co-state variable may be approximated solely as a function of the 

electrical load demand.  Figure 48 quantifies the variance in the optimal initial condition 

of the co-state variable with no consideration given to the driving schedule, only the 

electrical load demand.  As an example, at a load demand of 90A the percent deviation in 

the optimal initial condition of the co-state variable between all 7 drive cycles considered 

is only 7.2%, justifying the approximation of the initial condition of the co-state variable 

as a function of electrical load demand alone.  Therefore, the electrical load demand of 
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the vehicle may be measured in real time and passed through a lookup table in order to 

approximate the optimal initial condition of the co-state variable.  From this point 

onward, 𝜆0 refers to the output of this lookup table and no longer to the initial condition 

of the co-state variable.  The lookup table was generated for electrical load values of 

30A, 40A, 57.5A, 75A, and 90A by averaging the corresponding optimal initial 

conditions of the co-state values across all driving schedules considered in Section 3.2.4, 

with the exception of the NEDC and Indian Urban drive cycle.  The NEDC and Indian 

Urban drive cycles are ignored due to numeric disparities with the rest of the initial 

conditions of the co-state variables (at low electrical loads).  Table 11 features the 𝜆0 

lookup table as a function of electrical load. 

Table 11: 𝝀𝟎 Lookup Table 

𝑰𝒍𝒐𝒂𝒅 (𝑨) 𝝀𝟎(𝑰𝒍𝒐𝒂𝒅) 

30A -55.6 

40A -61.9 

57.5A -70.8 

75A -86 

90A -104.4 

 

The 𝜆0 lookup table does not operate continuously in time, but rather is updated at 

discrete sampling instances (𝑇𝑠2 = 𝑇𝑠(𝐼𝑙𝑜𝑎𝑑)).  This provides for an educated projection 

of the charge-sustaining control solution, however the battery state of charge will depart 

from the reference value without an additional term incorporated into 𝜆. 
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A proportional correction on this “SOC-drifting” behavior, which is based on SOC 

feedback and ensures the robustness of the control strategy [17], is necessary to ensure 

that excessive battery depletion or charging does not occur.  This approach towards 

ensuring charge-sustaining battery behavior has been used in automotive control 

applications with success, and may be investigated in greater detail in [31, 34].  From an 

implementation perspective, the proportional correction on the battery state of charge 

may be expressed as follows. 

SOC Correction Factor =  𝐾𝑆𝑂𝐶 ∙ (𝑆𝑂𝐶(𝑘) − 𝑆𝑂𝐶𝑟𝑒𝑓) (37) 

Where 𝐾𝑆𝑂𝐶 is the proportional gain on the differential of the battery state of charge, 

𝑆𝑂𝐶(𝑘) is the actual battery state of charge, and 𝑆𝑂𝐶𝑟𝑒𝑓 is the reference battery state of 

charge.  The corrective term on the battery state of charge is updated at discrete sampling 

times (𝑇𝑠1 = 𝑇𝑠(∆𝑆𝑂𝐶)), in order to allow the vehicle to make use of the available energy 

buffer.  The SOC-correction is added to the output of the 𝜆0 lookup table, and the 

resulting sum (alongside the average of the previous two lambda values) is taken as an 

input into the Hamiltonian calculation subsystem. 

 

Figure 49 assists in visualizing the underlying control logic of the newly defined 

“Lambda-Calculation Subsystem”, which replaces the co-state dynamics subsystem of 

the previously discussed PMP control.  Take note that the electrical load demand is 

passed through a moving average subsystem which filters the signal prior to the 𝜆0 LUT.  

The purpose of the filter is to mitigate the high-frequency noise inherent in the battery 
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and alternator current measurements and allow for an approximation of the appropriate 

lambda value based on the mean electrical load demand.  

 

Figure 49: Lambda Estimation Control Structure 

 

The gain on the battery state of charge, 𝐾𝑆𝑂𝐶, needs to be calibrated to ensure proper 

weighting of the battery energy at both the upper and lower state of charge thresholds.  In 

particular, the net lambda value (i.e. the sum of the LUT and the SOC-correction) must 

𝜆0 
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assist in maintaining the battery SOC around the reference value while still allowing 

freedom for the battery to operate as an energy mover.  If, for example, 𝐾𝑆𝑂𝐶 is set to too 

large a value, the battery SOC dynamics will be restricted and fuel economy benefits may 

be significantly reduced.  On the hand, if 𝐾𝑆𝑂𝐶 is set to a very small value, the battery 

SOC will eventually drift to either the upper or lower threshold value, chattering for the 

remainder of the drive cycle and reducing potential fuel savings.  Proper calibration of 

the proportional gain on the battery state of charge is therefore critical to the successful 

implementation of an adaptive-PMP control strategy.  In order to quantify the effects of 

changing the SOC-gain and ensure that the best possible value is selected, the influence 

of 𝐾𝑆𝑂𝐶 on the trajectory of the battery state of charge and overall vehicle fuel economy 

must be studied.  The magnitude and frequency of the low frequency state of charge 

trajectory are useful metrics in understanding how changes in the SOC-gain effect battery 

behavior.  Figure 50 illustrates how the SOC magnitude and frequency are determined, 

and features simulation data derived from an on-road drive cycle.  Take note that prior to 

any calculation of the SOC magnitude and frequency, the state of charge signal is filtered 

to remove dynamics with a frequency greater than 0.1Hz.  This filter is implemented, 

strictly in post-processing, to allow for accurate calculation of the “peak-to-valley” SOC 

values (i.e. the SOC magnitude) and the “peak-to-valley” time intervals (i.e. the inverse 

of the SOC frequency). 
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Figure 50: Metrics Used to Quantify State of charge Dynamics 

 

Each SOC peak (maximum) and valley (minimum) is determined and marked, as 

observed in Figure 50.  The mean SOC “swing magnitude”, ∆𝑆𝑂𝐶̅̅ ̅̅ ̅̅ ̅, and the SOC “swing 

frequency”, 𝑓(∆𝑆𝑂𝐶̅̅ ̅̅ ̅̅ ̅), are then calculated by averaging the sum of the individual 

parameter values.  Table 12 catalogues the effects, in simulation, of changing 𝐾𝑆𝑂𝐶 on the 

aforementioned SOC metrics, as well as fuel economy, over an on-road experimental 

drive cycle with experimental electrical loads.  This drive cycle, analyzed in simulation, 

will be the basis for all control parameter tuning for the remainder of Section 4.1.  Take 

note that the rightmost column of Table 12 quantifies the ratio of the improvement in fuel 

economy w/ the adaptive control in place over the improvement in fuel economy w/ 

optimal control in place (i.e. *..% EF ). 
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Table 12: Effects of Modifying SOC Gain 

𝑲𝑺𝑶𝑪 ∆𝑺𝑶𝑪̅̅ ̅̅ ̅̅ ̅̅  [%] 𝟏

𝒇(∆𝑺𝑶𝑪̅̅ ̅̅ ̅̅ ̅̅ )
 [𝒔𝒆𝒄] 

%𝑭. 𝑬.

%𝑭. 𝑬.∗
 

100 6 1143 0.93 

250 5.6 1180 0.94 

500 5.2 1173 0.93 

1500 4.2 1144 0.92 

3000 2.6 2473 0.89 

 

As 𝐾𝑆𝑂𝐶 is increased from 100 to 3000, ∆𝑆𝑂𝐶̅̅ ̅̅ ̅̅ ̅ decreases by approximately 57%.  At a 

value of 100, the battery is making use of the entirety of its SOC operating range (+/- 3% 

SOC), and even saturates at the threshold values.  In comparison, when  𝐾𝑆𝑂𝐶 = 3000, 

the battery is using less than half of its allowable capacity.  This behavior is to be 

expected, as increasing the SOC-gain results in more charging at low SOC values and 

more discharging at high SOC values, therefore discouraging SOC fluctuations.  The 

period of the SOC swings increases significantly when the gain is elevated from 1500 to 

3000 due to the restriction imposed on the battery dynamics.  As the battery is forced to 

operate within a very limited range of SOC values, “peaks” and “valleys” in the state of 

charge are less likely to occur.  Increasing the gain on the SOC differential has adverse 

effects on the fuel economy due to more stringent limitations on the state of charge 

dynamics.  The battery is therefore not used to its fullest potential as an energy buffer.  At 

an SOC-gain value of 250, the fuel economy benefit provided by the adaptive control 

strategy is only 6% less than what optimal control provides.  In contrast, when 

𝐾𝑆𝑂𝐶 = 3000 , the adaptive controller provides 11% less fuel economy benefit than the 

optimal control.  A tradeoff is therefore associated with selecting a value for 𝐾𝑆𝑂𝐶; too 
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high of a value results in diminished fuel economy benefits due to restrictions on battery 

usage, whereas too low of a value potentially results in the battery reaching the SOC 

thresholds, thus also reducing vehicle fuel economy (as shown in Table 12 for 𝐾𝑆𝑂𝐶 =

100).  A SOC-gain of 250 provides maximum fuel economy while also preventing the 

state of charge from reaching either the upper or lower allowable value, and is therefore 

selected for implementation in the vehicle. 

 

Referencing Figure 49, both the 𝜆0 lookup table and the proportional gain on the state of 

charge differential include update times; 𝑇𝑠(𝐼𝑙𝑜𝑎𝑑) and 𝑇𝑠(∆𝑆𝑂𝐶), respectively.  The 

update time on the 𝜆0 LUT, 𝑇𝑠(𝐼𝑙𝑜𝑎𝑑), physically operates by sampling the moving 

average of the electrical load signal at specified time intervals (𝑇𝑠) and holding the 

sampled value in between sampling instances.  This provides the functionality of 

smoothing out the dynamics of 𝜆, and must be tuned in order to capture the true electrical 

load behavior.  If the sampling time is too large, major changes in the electrical load 

(such as what may be introduced by switching on the cabin blowers or radiator fan) could 

potentially be neglected due to the presence of the moving average filter, resulting in 

non-representative values of 𝜆0.  Thus, it is necessary to select a suitable value for 

𝑇𝑠(𝐼𝑙𝑜𝑎𝑑) which can take into account any significant changes in electrical load behavior 

while also mitigating erratic co-state behavior.  Table 13 catalogues the effects which 

𝑇𝑠(𝐼𝑙𝑜𝑎𝑑) has on the battery SOC and vehicle fuel economy.  In addition, the RMS error, 

𝑒𝑅𝑀𝑆(𝐼𝑙𝑜𝑎𝑑), of the filtered electrical load signal as compared to the actual electrical load 

is tabulated for reference. 
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Table 13: Effects of Modifying 𝑻𝒔(𝑰𝒍𝒐𝒂𝒅) 

𝑻𝒔(𝑰𝒍𝒐𝒂𝒅) [sec] 𝒆𝑹𝑴𝑺(𝑰𝒍𝒐𝒂𝒅) [sec] ∆𝑺𝑶𝑪̅̅ ̅̅ ̅̅ ̅̅  [%] %𝑭. 𝑬.

%𝑭. 𝑬.∗
 

15 6.87 5.4 0.93 

60 9.17 5.8 0.93 

120 11.09 5.9 0.89 

180 12.75 6.0 0.89 

 

The RMS error of the filtered electrical load signal increases as the sampling period 

increases, translating to a less representative value for 𝜆0, and resulting in excessive 

drifting of the battery state of charge from the reference value.  At a sampling period of 

180 seconds, the magnitude of SOC swings is equal to the allowable operating range of 

the battery.  In addition, as 𝑇𝑠(𝐼𝑙𝑜𝑎𝑑) is increased from 60 seconds to 120 seconds, the 

fuel economy benefit decreases from 93% to 89%, largely due to the battery SOC 

reaching the operating limits of the battery state of charge.  While allowing the battery to 

make full use of its SOC operating range proves beneficial to vehicle fuel economy, any 

time the battery spends operating at the upper and lower threshold values has adverse 

effects on fuel economy.  Therefore, as a preventative measure, 𝑇𝑠(𝐼𝑙𝑜𝑎𝑑) is selected such 

that battery operation around the upper and lower allowable SOC values is kept to a 

minimum, while still allowing for an accurate calculation of the 𝜆0.  A sampling period of 

15 seconds satisfies both criteria, and is therefore deemed suitable for vehicle 

implementation. 
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The update time for the gain on the SOC differential, 𝑇𝑠(∆𝑆𝑂𝐶), is necessary to allow the 

controller to function more freely within the batteries allowable operating range (and thus 

closer to the optimal control command).  For example, with 𝑇𝑠(∆𝑆𝑂𝐶) set to a very low 

value, as would be the case if 𝑇𝑠(∆𝑆𝑂𝐶) = 𝑇𝑠(𝐼𝑙𝑜𝑎𝑑), a significant departure from the 

optimal control command will occur in proximity of the SOC thresholds due to the 

heavily weighted additional term introduced by 𝐾𝑆𝑂𝐶.  A portion of the batteries 

operating range may therefore be under-utilized, resulting in diminished fuel economy 

benefits.  In comparison, a very large value for 𝑇𝑠(∆𝑆𝑂𝐶) tends to neglect SOC-drifting 

and potentially allow the battery state of charge to reach the upper or lower allowable 

SOC values, resulting in undesirable SOC chattering and again reducing the potential fuel 

economy benefits that may be realized with such a control strategy.  From a physical 

standpoint, 𝑇𝑠(∆𝑆𝑂𝐶) is implemented by sampling the actual battery state of charge at 

predefined time intervals, and holding this SOC value between sampling instances.  A 

study into the behavior of the A-PMP control strategy subject to various values of  

𝑇𝑠(∆𝑆𝑂𝐶) is featured in Table 14.   

Table 14: Effects of Modifying 𝑻𝒔(∆𝑺𝑶𝑪) 

𝑻𝒔(∆𝑺𝑶𝑪) [sec] ∆𝑺𝑶𝑪̅̅ ̅̅ ̅̅ ̅̅  [%] %𝑭. 𝑬.

%𝑭. 𝑬.∗
 

30 5.2 0.91 

60 5.3 0.91 

120 5.5 0.93 

180 5.7 0.93 

 

As the sampling time for the SOC-gain is increased from 30 to 180 seconds, ∆𝑆𝑂𝐶̅̅ ̅̅ ̅̅ ̅ 

increases from approximately 86% to 95% of the operating range of the battery.  The 
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resulting fuel economy ratio reflects this, increasing from 91% to 93%.  Similar to the 

selection process laid out for 𝑇𝑠(𝐼𝑙𝑜𝑎𝑑), the sampling time for the state of charge gain is 

chosen in order to balance fuel economy benefits with the potential ramifications of 

allowing the state of charge to drift into either the upper or lower threshold.  A sampling 

time of 120 seconds proves to satisfy the desired performance criteria, and is therefore 

selected for implementation in the vehicle.  Table 15 summarizes the control parameters 

selected for in-vehicle implementation 

Table 15: A-PMP Control Parameter Selection Summary 

Control Parameter Value 

𝑲𝑺𝑶𝑪 250 

𝑻𝒔(𝑰𝒍𝒐𝒂𝒅) 15 

𝑻𝒔(∆𝑺𝑶𝑪) 120 

 

It may be observed from Tables 12-15 that the adaptive control strategy yields fuel 

savings ranging from approximately 89-94% of the results provided by the optimal 

control for the experimental drive cycle under consideration, with the primary drivers of 

these disparities relating to the introduction of an approximation of co-state dynamics and 

in the model describing the variation of the control parameter 𝜆0.  The effects of these 

approximations are not strictly limited to fuel economy, but alter the control trajectory, 

and thus VES behavior, as well.  In particular, any departure from optimal control will 

result in a change in the duty-cycle command and the battery state of charge trajectory.  

With minimal fuel economy differences observed between optimal control and the A-

PMP control strategy, it is reasonable to expect that the A-PMP control and SOC 

trajectories will resemble those resulting from optimal control.  Figure 51 depicts the 
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control command trajectories for both optimal control and the A-PMP control strategy.  

Figure 52 illustrates the similarities between the optimal control and A-PMP state of 

charge dynamics over the first 815 seconds of the aforementioned experimental drive 

cycle. 

 

 

Figure 51: Comparison of PMP and A-PMP Control Command Trajectories 

 

Referencing Figure 51, the A-PMP control command is observed to closely follow the 

optimal control command.  
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Figure 52: Comparison of PMP and A-PMP Battery SOC Dynamics 

 

Figure 52 depicts the similarities between the optimal control and adaptive control state 

of charge dynamics.  The final battery state of charge of both the PMP and A-PMP 

control strategies lie within half of a percentage of the initial SOC, indicating that the 

adaptive control strategy provides suitable estimations of the co-state variable throughout 

the entirety of the drive cycle under consideration.  The battery subjected to the adaptive 

control strategy is, however, observed to function within a smaller SOC operating range, 

primarily due to the imposition of the state of charge corrective factor, 𝐾𝑆𝑂𝐶.  As the 

battery SOC diverges from the reference trajectory, the effects of the SOC correction 

become more apparent (as may be noted in the “valleys” of the battery SOC).  
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Nonetheless, the adaptive control strategy provides near-optimal fuel economy 

improvements, and results in control command and SOC trajectories which are very 

similar to that resulting from optimal control.  To ensure acceptable adaptive-control 

performance across a wide variety of driving styles, the A-PMP controller is 

benchmarked in simulation against the PMP control strategy with 3 additional 

experimental data sets.  The results of this analysis are featured in Table 16.  Take note 

that the data set analyzed throughout this section is titled “On-Road (08/30) x5”.  Take 

note that “(08/30)” refers to the date of experimental testing, and is used to differentiate 

the two different experimental drive cycles considered in this section. 

Table 16: Benchmarking of A-PMP against Optimal Control in Simulation 

Drive Cycle % 𝑭. 𝑬. % 𝑭. 𝑬.∗ 

On-Road (08/30) x5 1.2 1.3 

On-Road (09/06) x5 1.1 1.1 

FTP x5 1.6 1.7 

NEDC x5 1.5 2.0 

 

The adaptive PMP control strategy consistently provides near-optimal fuel economy 

improvements, despite the lack of “a-priori” velocity and electrical load profile 

information.  Furthermore, the battery SOC is maintained within the desired operating 

range, avoiding any concern of excessive battery charging or discharging.  This control 

strategy is therefore suitable for real-time control, and may be directly implemented in-

vehicle.   
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Section 4.2: Implementation and Experimental Testing of the A-PMP 

Control Strategy 

In order to facilitate timely controller implementation and tuning, an ETAS ES1000.3 

rapid prototyping platform is utilized for experimental testing.  Detailed information 

regarding the underlying hardware and software of the ETAS system is described and 

illustrated in Section 2.1.2.  Intecrio Experiment Environment software, operating on an 

in-vehicle laptop computer, enables real-time controller tuning and vehicle behavioral 

analysis, and allows for data acquisition as well.  Experiment Environment also has the 

added benefit of allowing the user to ensure that individual control subsystems and all 

sensors coupled to the ETAS platform are functioning appropriately.  Figure 53 illustrates 

the Experiment Environment user interface during experimental controller testing. 
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Figure 53: Intecrio Experiment Environment User Interface 

 

As discussed in Section 2.1.2, both a battery and alternator shunt, as well as an ETAS 

ETK-ECU bypass driver allow for control system feedback.  In order to allow for entirely 

closed-loop functionality, the battery state of charge needs to be monitored in real-time as 

well.  This is not only critical to the calculation of the Hamiltonian, as discussed in 

Section 3.1.3, but is also required for implementation of the SOC correction factor, 𝐾𝑆𝑂𝐶.  

While estimating the battery state of charge through integration of the experimental 

battery current signal ideally allows for precise SOC monitoring, battery inefficiencies, 

signal noise, and measurement errors accumulate over time and contribute to the actual 

battery SOC diverging from the calculate battery SOC.  For these reasons, a Bosch 
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Intelligent Battery Sensor (IBS) was installed on the automotive battery.  The IBS 

software consists of a Kalman filter with a 3rd-order equivalent circuit lead-acid battery 

model, and allows for estimation of the battery state of charge with a resolution of 1%.  

Figure 54 illustrates the structure of the IBS. 

 

Figure 54: Bosch IBS Kalman Filter Lead-Acid Battery I/O 

 

The battery terminal voltage, current and temperature (𝑉𝑏𝑎𝑡, 𝐼𝑏𝑎𝑡, 𝑇𝑏𝑎𝑡) are the measured 

inputs of the Kalman filter, whereas 𝑆𝑂�̂�(𝑡) is the estimated state variable.  The IBS is 

directly fastened to the ground terminal of the automotive battery, with a lead wire 

coupled to the positive terminal of the battery.   

 

The IBS utilizes a serial network protocol termed LIN (Local Interconnect Network) 

which allows for communication between the battery sensor (slave node) and the LIN 

controller (master node).  LIN is analogous to a single-wire CAN communication 
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network, and sends and receives data frames in hexadecimal format.  Thus, there is a 

need to translate the LIN hexadecimal data which corresponds to the battery state of 

charge into a usable analog voltage signal which may be incorporated into the ETAS 

system.  Labview 2013, a laptop computer, a National Instruments USB-8476s LIN 

interface, and a National Instruments USB-6009 multifunction DAQ are used for this 

purpose.  Figure 55 illustrates the experimental setup used to incorporate the IBS LIN 

signal into the pre-existing ETAS system. 

 

Figure 55: IBS Experimental Test Setup 

 

In order to ensure the IBS’ functionality, a validation of the battery sensor is performed.  

This task is carried out by comparison of the IBS’ own measured battery current signal 

with the battery current signal recorded from the battery shunt.  Figure 56 overlays the 

battery current, as measured by the battery shunt, with the battery current signal provided 

by the Bosch IBS.  This data was collected with the vehicle parked and the engine 
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running under idle conditions. The duty-cycle of the alternator was randomly fluctuated 

and various electrical loads were powered on and off, such as the cabin blowers and 

heated seats, in order to provide an electrical load profile representative of real-world 

conditions.  

 

Figure 56: Comparison of Battery Shunt and IBS Battery Current Signal 

 

The IBS battery current signal corresponds with the battery shunt current signal over the 

entirety of the electrical load profile considered, which provides an indirect method of 

verifying the IBS’ ability to estimate the battery state of charge. 

 

The vehicle, equipped with all necessary testing apparatus, was installed on a light-duty 

chassis dynamometer in order to perform numerous regulatory and random “errand” 

drive cycles with the A-PMP control strategy activated.  More information regarding the 

chassis dynamometer experimental setup may be found in Section 2.1.1.  Although the 

chassis dynamometer does present advantages with respect to determining a given 

vehicles fuel economy, certain issues do arise associated with driver inaccuracies and 

variations in ambient conditions.  In a recent study performed at OSU-CAR, the net fuel 
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consumption of the vehicle over 8 separate NEDC drive cycles, as calculated by both the 

fuel flow-rate signal logged by the ECU and the Big-Grid fuel consumption map, was 

analyzed.  The cycle-to-cycle variation in net fuel consumption was found to exceed 5% 

in certain instances.  Tables 17 and 18 show the results from this study in cycle-to-cycle 

percent variation. 

Table 17: Cycle-to-Cycle Percent Fuel Consumption Variation as Calculated by 

ECU 

NEDC 

Cycle No. 

1 2 3 4 5 6 7 8 

1 - -0.10 3.02 -1.12 -1.83 -0.32 1.51 1.89 

2 0.10 - 3.12 -1.02 -1.74 -0.22 1.61 1.99 

3 -3.02 -3.12 - -4.11 -4.80 -3.33 -1.53 -1.15 

4 1.12 1.02 4.11 - -0.72 0.80 2.62 2.99 

5 1.83 1.74 4.80 0.72 - 1.52 3.32 3.69 

6 0.32 0.22 3.33 -0.80 -1.52 - 1.83 2.21 

7 -1.51 -1.61 1.53 -2.62 -3.32 -1.83 - 0.39 

8 -1.89 -1.99 1.15 -2.99 -3.69 -2.21 -0.39 - 

 

Table 18: Cycle-to-Cycle Percent Fuel Consumption Variation as Calculated by Big-

Grid Fuel Map 

NEDC 

Cycle No. 

1 2 3 4 5 6 7 8 

1 - -0.26 2.30 -2.57 -3.04 -2.97 -2.16 -2.30 

2 0.26 - 2.56 -2.31 -2.78 -2.72 -1.90 -2.04 

3 -2.30 -2.56 - -4.81 -5.27 -5.21 -4.41 -4.54 

4 2.57 2.31 4.81 - -0.48 -0.41 0.42 0.28 

5 3.04 2.78 5.27 0.48 - 0.06 0.90 0.76 

6 2.97 2.72 5.21 0.41 -0.06 - 0.83 0.69 

7 2.16 1.90 4.41 -0.42 -0.90 -0.83 - -0.14 

8 2.30 2.04 4.54 -0.28 -0.76 -0.69 0.14 - 

 

Due to the expected improvements in fuel economy of approximately 1-2%, a different 

approach is clearly required in order to estimate the fuel economy benefits which the A-
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PMP control strategy presents over the baseline EVR controller.  In order to provide a 

baseline for comparing the performance of the A-PMP controller (in-vehicle), 

simulations were conducted using the VES model together with the model of the Chrysler 

control strategy.  Such models have been described in Chapter 2.  Therefore, the issues 

associated with drive cycle repeatability may be mitigated by using engine and electrical 

load experimental data collected with the A-PMP activated in conjunction with the VES-

EVR model.  This approach not only ensures that the same velocity profile is followed 

for both control strategies, but also eliminates disparities in vehicle and ambient 

operating conditions.  In order to estimate the fuel consumption of the vehicle with the A-

PMP controller in place, the A-PMP experimental data sets are used to calculate the 

alternator torque.  The alternator torque is then summed with the measured engine torque, 

and passed through the Big-Grid fuel consumption map alongside the measured engine 

speed.   

Four different experimental data sets in total are used to analyze the fuel economy 

benefits of the A-PMP controller with the aforementioned technique; 2 random “errand” 

drive cycles and 2 standardized cycles, one consisting of two consecutive FTPs 

performed back-to-back and a second comprised of an EPA driving schedule.  The 

random errand drive cycles were performed on the chassis dynamometer with no 

particular velocity trace observed.  The objective of these tests is to emulate a variety of 

real-world driving conditions by varying both vehicle velocity and electrical load 

demand.  A “double-FTP”, as well as the EPA cycle, were performed in order to examine 

the effects which the electrical load demand has on the realized fuel savings.  The EPA 
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drive cycle was performed with all electrical accessory loads turned off, and the double-

FTP test was performed with varying electrical loads (i.e. cabin blowers, radio, heated 

seats powered on and off).  In this section, the variable load FTP drive cycle as well as 

one of the two random errand drive cycles are considered.  The EPA cycle, as well as the 

second errand drive cycle, are analyzed in Section 4.3 for reasons discussed therein.  

Table 29 summarizes the experimental improvement in fuel economy (over the baseline 

EVR controller) for the two drive cycles currently of interest.   

Table 19: Experimental Improvement in Fuel Economy due to A-PMP 

Drive Cycle % F.E. 

Random Cycle #1 1.4 

FTP x2 (Variable Loads) 1.3 

 

The experimental fuel economy observed due to the incorporation of the A-PMP control 

strategy into the vehicle electrical system provides for an improvement ranging from 1.3-

1.4%, depending primarily on the velocity and electrical load profile imposed on the 

vehicle.  In particular, driving schedules which include more frequent acceleration and 

deceleration events and require more power from the battery and alternator exhibit 

significantly greater fuel savings as opposed to driving schedules with excessive idling 

and little electrical load demand.  Figures 57-60 illustrate the critical vehicle, engine, and 

electrical system behavior for Random Cycle #1. 
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Figure 57: A-PMP Experimental Vehicle Behavior, Random Drive Cycle 1 

 

Figure 58: A-PMP Experimental Control Behavior, Random Drive Cycle 1 
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Figure 59: A-PMP Experimental Battery Behavior, Random Drive Cycle 1 

 

Figure 60: A-PMP Experimental Fuel Consumption, Random Drive Cycle 1 
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Of particular interest is the battery charging/discharging behavior with respect to the 

vehicle velocity trace.  As discussed in Section 3.2.2, behavior reminiscent of 

regenerative braking is observed with the A-PMP controller in place, as may be observed 

in Figures 57-60.  Hard acceleration events are accompanied by battery discharge, and 

coasting/braking leads to battery charging.  This behavior agrees very well with both 

optimal control and the adaptive control (in simulation), yielding confidence in the 

implementation of the controller.  Referring to Figure 59, the battery voltage exceeds 

15V (the maximum allowable battery voltage) due to inaccuracies associated with the 0th-

order battery model and the update time of the A-PMP control strategy (1 second).  The 

battery SOC, on the other hand, remains confined between 82% and 88%, with high-

frequency battery current oscillations occurring at the upper and lower thresholds due to 

the activation of the boundary penalty function, μ.  Lambda is observed to reach a 

maximum value of approximately -40 as the battery state of charge approaches 88%, 

illustrating the impact of the state of charge gain on lambda.  Figure 60 compares the 

EVR and A-PMP alternator torque profiles along with each control strategies cumulative 

fuel consumption.  The alternator torque profiles clearly demonstrate the rapid-switching 

behavior characteristic of PMP control.  The A-PMP alternator torque exceeds that of the 

EVR torque under certain circumstances (i.e. vehicle deceleration/coasting), however the 

fuel losses incurred at this time are more than replenished (as compared to the EVR) as 

the vehicle accelerates and the battery supplies all necessary power to the electrical loads.  

The EVR leads to a net fuel consumption of 2028g, whereas the vehicle consumes 2000g 

of fuel with the A-PMP activated.  Figures 61-64 show similar plots for the variable-load 
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dual-FTP drive cycle.   An in-depth discussion regarding the trends observed in the 

following figures will be left to the reader, as observations similar to those just noted may 

be made. 
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Figure 61: A-PMP Experimental Vehicle Behavior, Dual-FTP w/ Variable Loads 

 

Figure 62: A-PMP Experimental Control Behavior, Dual-FTP w/ Variable Loads 
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Figure 63: A-PMP Experimental Battery Behavior, Dual-FTP w/ Variable Loads 

 

Figure 64: A-PMP Experimental Fuel Consumption, Dual-FTP w/ Variable Loads 
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While consistently beneficial to overall vehicle fuel economy, the A-PMP control 

strategy does present issues.  The rapid switching behavior observed raises concern 

regarding accelerated wear-and-tear of the alternator and driver comfort/safety, and 

therefore measures should be taken to mitigate any unnecessary duty-cycle fluctuations.  

The battery voltage exceeds the maximum allowable value of 15 V on several occasions.  

Finally, although the SOC boundaries are successfully enforced in all experimental drive 

cycles, precautions should be taken as to ensure that the battery is never excessively 

charged or discharged.  For example, if sensors fail and signals become erroneous, 

activation of the boundary penalty function may become insufficient to restrict the battery 

SOC operating range.  Section 4.3 discusses potential solutions to these drivability issues, 

and experimentally demonstrates the effects which these solutions have on vehicle 

behavior. 

 

Section 4.3: A-PMP Drivability Issues and Solutions 

In order to ensure driver safety and comfort and guarantee acceptable VES performance, 

three critical issues associated with the A-PMP controller must be addressed: 

1. A controller override, which functions as a safeguard against excessive battery 

charging/discharging, must be developed and integrated into the A-PMP control 

strategy. 

2. Modifications to the controller must be made such that troublesome rapid 

switching behavior, characteristic of PMP control strategies, is mitigated. 
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3. The controller must be able to eliminate battery voltage spikes exceeding 15V. 

Solutions to all 3 issues are developed, integrated into the A-PMP control strategy 

discussed in Section 4.1, and tested in-vehicle on the chassis dynamometer. Two separate 

experiments are performed on the chassis dynamometer in order to demonstrate the 

efficacy of the control modifications; a random “errand” drive cycle following no 

particular velocity trace, and an EPA drive cycle with only baseline electrical loads 

imposed on the system.  It is important to note that for the two experiments performed in 

Section 4.3, the allowable battery state of charge range has been expanded from 82-88% 

to 80-90%. 

 

4.3.1: Battery State of Charge Controller Override 

Battery discharging and charging beyond the imposed state of charge limitations may 

result in a variety of undesirable vehicle behaviors, ranging from engine stalling to 

battery failure and even no-start conditions.  There is thus a need to integrate a battery 

state of charge “fail-safe” control strategy into the existing A-PMP control strategy.  This 

control strategy does not depend on the Hamiltonian to enact the appropriate control 

command (as is the case with the boundary penalty function), and is therefore a more 

reliable method of ensuring that the battery SOC remains within the allowable operating 

range.  Assuming that the IBS does not fail, a simple method to implement this control 

strategy is placing a logic-based controller on the output of the A-PMP.  The “SOC-

Override” controller monitors the battery state of charge, and when an out-of-range SOC 
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value is detected, an override on the duty-cycle command is enacted.  This control 

override is developed in Mathworks Stateflow, and may be observed in Figure 65. 

 

Figure 65: SOC Override Control Logic Implemented in Stateflow 

 

4.3.2: Bang-Bang Behavior Mitigation and Elimination of Voltage Spikes 

The rapid on-off switching behavior, or “Bang-Bang” behavior, which is observed in the  

duty-cycle plots featured in Section 4.2.2, will lead to accelerated aging of the alternator, 

the auxiliary belt, and possibly other ancillary loads if left untreated.  Furthermore, the 

oscillations of the alternator duty-cycle lead to excessive charging current during 

deceleration events; the root cause of the undesirable battery voltage spikes.  This bang-

bang behavior is particularly troublesome at low electrical loads (i.e. baseline loads) 

during deceleration, and the frequency of oscillations can approach values of 

approximately 0.5 Hz.  Figure 66 illustrates the severity of this issue over the first 500 

seconds of Random Errand Cycle #1.  Take note of the consistency with which bang-

bang behavior accompanies deceleration events at low load demand. 
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Figure 66: Bang-Bang Behavior, Random Drive Cycle #1 

 

The source of the bang-bang behavior may be traced back to the Hamiltonian subsystem, 

where the fuel mass flow rate is weighted against the dynamics of the battery state of 

charge.  As the vehicle accelerator pedal is released at low electrical loads, both the fuel 

mass flow rate and battery state of charge dynamics approach minimal values, resulting 

in an operating region of instability.  The index corresponding to the minimum 

Hamiltonian value rapidly oscillates from one extreme (100% duty-cycle) to the other 

(0% duty-cycle), thus instigating the undesirable on-off behavior.  One possible solution 

to this issue may be realized by implementing a filter on the outgoing duty-cycle 

command.  This mitigates high-frequency duty-cycle dynamics, however numerous 

unsuccessful in-vehicle tests at OSU-CAR have demonstrated that this strategy can lead 
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to unacceptably high battery voltages during acceleration due to the lag associated with 

the duty-cycle switching from 100% to 0%.  Based on the specificity of the problematic 

vehicle operating points, a “patch” may be imposed on lambda during deceleration events 

at low electrical load demand which forces a predetermined duty-cycle command.  As 

battery charging is consistently observed during vehicle deceleration, decreasing the co-

state variable to a sufficiently negative value provides the desired behavior.  The “lambda 

patch” monitors both a filtered engine torque signal and the filtered electrical load signal, 

activating only when both signals drop below a predetermined value (i.e. the “activation 

value”).  Table 20 contains the critical lambda patch parameters and values.  

Table 20: Lambda Patch Parameter Values 

Lambda Override Value -140 

Activation Torque (Nm) 35 

Activation Electrical Load (A) 55 

 

The lambda patch parameter values were selected and tuned in-vehicle to ensure that 

lambda is only overridden when absolutely necessary in order to mitigate voltage spikes 

and bang-bang behavior.  Section 4.3.3 features results of two experimental datasets with 

the modified A-PMP activated in the minivan. 

 

4.3.3: Modified Controller Experimental Results 

The A-PMP controller, complete with the modifications discussed in Sections 4.3.1 and 

4.3.2, is implemented in the vehicle and two tests are conducted on the chassis 

dynamometer.  The first test is an EPA (city plus highway) drive cycle, demonstrating the 
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co-state override’s ability to mitigate undesirable bang-bang behavior.  A random 

“errand” drive cycle is completed as well, ensuring the modified A-PMP controller’s 

performance over a variety of vehicle operating conditions.  Table 21 summarizes the 

experimental improvement in fuel economy (over the baseline EVR controller) for the 

two drive cycles of interest.   

Table 21: Experimental Improvement in Fuel Economy due to Modified A-PMP 

Drive Cycle % F.E. 

EPA 1.0 

Random Cycle #2 1.4 

 

The modifications to the A-PMP controller do not result in any significant decrease in 

vehicle fuel economy.  Figures 67-70 illustrate the critical vehicle, engine, and electrical 

system behavior for the low loads EPA drive cycle.  Take special note of the reduction in 

duty-cycle bang-bang behavior (illustrated in greater detail in Figure 71) as well as the 

elimination of unacceptable battery voltage spikes.  Figure 71 compares a roughly 300 

second chunk of the modified A-PMP duty-cycle command to that of the original A-PMP 

duty-cycle for clarity. 
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Figure 67: Modified A-PMP Experimental Vehicle Behavior, EPA 

 

Figure 68: Modified A-PMP Experimental Control Behavior, EPA 
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Figure 69: Modified A-PMP Experimental Battery Behavior, EPA 

 

Figure 70: Modified A-PMP Experimental Fuel Consumption, EPA 
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Figure 71: Mitigation of Bang-Bang Behavior 

 

The bang-bang behavior of the A-PMP controller is reduced significantly, as may be 

directly observed in Figure 71.  Figures 72-75 illustrate the critical vehicle, engine, and 

electrical system behavior for Random Drive Cycle #2. 
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Figure 72: Modified A-PMP Experimental Vehicle Behavior, Random Drive Cycle 2 

 

Figure 73: Modified A-PMP Experimental Control Behavior, Random Drive Cycle 
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Figure 74: Modified A-PMP Experimental Battery Behavior, Random Drive Cycle 2 

 

Figure 75: Modified A-PMP Experimental Fuel Consumption, Random Drive Cycle 
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Adaptations made to the optimal VES control strategy, as described in Chapter 3, have 

allowed for the development and implementation of a real-time capable control strategy 

which provides significant and consistent experimental improvements in vehicle fuel 

economy.  Drivability issues relating to both component wear and driver comfort are 

addressed, with several possible solutions discussed, implemented and tested online.  The 

necessary modifications employed have minimal influence on overall vehicle fuel 

economy. 
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Chapter 5: Conclusions and Future Work 

Section 5.1: Conclusions 

The vehicle production alternator control strategy, termed EVR, takes little advantage of 

the energy storage capabilities of the onboard automotive battery, simply holding the 

battery voltage to some temperature-dependent reference value.  While this control 

strategy does ensure acceptable cold-cranking performance, significant fuel savings may 

be realized by implementing a less conservative VES control which takes advantage of 

the battery’s ability to strategically harvest and release energy from the crankshaft.  To 

this extent, an adaptive controller based on Pontryagin’s Minimum Principle (PMP) is 

developed, implemented and tested in-vehicle.  This controller is based on critical 

observations of VES behavior, in simulation, subjected to optimal control, which requires 

all drive cycle information (such as velocity, torque, engine speed, and electrical load 

profiles) “a-priori” and is thus impossible to successfully implement in real-time.  In 

order to facilitate rapid controller development and tuning, virtual prototypes of the 

vehicle electrical system, the baseline EVR control strategy, the optimal PMP control 

strategy, and the adaptive PMP control strategy are all developed and validated utilizing 

computerized behavioral modeling tools.  Previous work conducted at OSU-CAR has 

demonstrated that the experimental drive cycle to drive cycle variation of the vehicle of 

interest’s fuel consumption, as measured by both the ECU and Big-Grid fuel 
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consumption maps, may exceed 5% in certain instances.  Concerns regarding this issue 

are mitigated by conducting dynamometer testing with the A-PMP activated, and 

comparing the experimental A-PMP fuel economy to the validated EVR model’s fuel 

economy.  Utilizing these analysis techniques, the A-PMP demonstrates consistent 

experimental improvements in vehicle fuel economy ranging from 1.1-1.4%.  Drivability 

issues such as accelerated alternator wear-and-tear and unacceptable battery behavior (i.e. 

excessive charging/discharging) are addressed.  Solutions to these issues are implemented 

and tested in-vehicle, demonstrating negligible effects on overall vehicle fuel economy.   

 

Section 5.2: Future Work 

While the present work experimentally demonstrates the potential of an adaptive, PMP-

based control strategy to improve vehicle fuel economy while maintaining driver comfort 

and component reliability, numerous opportunities for extending the scope of this 

research exist.  Completion of the following tasks may allow for further increases in 

vehicle fuel economy and more precise estimations of the fuel economy benefit which the 

A-PMP control strategy brings about. 

1. Improved VES Model.  The fully integrated Vehicle Electrical System model, 

composed of a battery, alternator, and EVR model, has been validated and agrees 

well with experimental data sets collected across a wide variety of operating 

conditions.  Nonetheless, due to the nature of the analysis techniques used to 

estimate the A-PMP fuel economy benefit, a more precise VES model would 

provide useful insight into the experimental vehicle fuel consumption of the EVR-
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equipped vehicle.  The development of an alternator model which is not strictly 

based on empirically-derived steady-state data and takes into account the 

dynamics of the alternator may prove useful to this extent [22]. 

2. Expansion of Optimal Control to Load Shedding.  Just as strategic utilization 

of the alternator and battery reduces overall vehicle fuel consumption, selective 

reduction of the electrical load demand may allow for more fuel-efficient VES 

behavior.  Studies similar to those performed in Section 3.2, and the resulting 

experiments described in Section 4.2, may therefore be expanded to allow for a 

temporary reduction in electrical load demand.  This would require the 

incorporation of a separate term into the Hamiltonian function with an adaptive 

co-state variable.  Furthermore, experimental calibration of the allowable time for 

which a load may be shed would need to be carried out to ensure driver comfort. 
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