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ABSTRACT

The increasing popularity of handheld devices, such as smartphones and tablets, has

made the demand for high-data-rate wireless access more urgent than ever. Due

to the scarcity of wireless spectrum and the limitation of physical size of handheld

devices, Small-Cell based solutions are being widely adopted [82].

The concept of small cells encompasses WiFi access points, femtocells and micro-

cells, etc. Small cells can be categorized asManaged and Unmanaged. While managed

small cells allow access to all users, it is cost prohibitive for large-scale blanket de-

ployment. On the other hand, unmanaged small cells are cost-efficient to expand,

but they only provide service to dedicated users. Therefore, the issues of budgeted

deployment and resource allocation for managed small cells and access acquisition of

unmanaged small cells are critical and challenging to study. This dissertation studies

those problems and makes the following contributions:

1. Sparse Deployment of Large Scale Managed Small Cell Networks.

This dissertation first examines the deployment problem in large scale managed small

cell networks. It presents a new metric, called Contact Opportunity, as a character-

ization of roadside WiFi networks. Contact opportunity measures the fraction of

distance or time that a mobile user is in contact with some APs when moving on

a certain trajectory. Our objective is to find a deployment that ensures a required
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level of contact opportunity with the minimum cost. This is the first work that ad-

dresses the challenges in achieving a sparse wireless infrastructure that provides QoS

assurance to mobile users in the face of uncertainty.

2. Resource Management in Managed Dense Small Cell Networks.

Fast expansion of small cells makes the problem of resource management in urban

dense networks challenging. To achieve both high throughput and fairness among

users, the second part of this dissertation studies two dynamic resource allocation

problems: 1) Achieve max − min fairness of throughput to mobile users

in multiple collision domains. We propose bounded centralized and distributed

approximation algorithms for allocating resource in femtocell networks across multiple

collision domains. 2)Achieve QoE max−min fairness to video streaming users

in a single collision domain. We extend the QoS (throughput) fairness metric to

QoE fairness by solving the problem of bandwidth allocation in a single collision

domain.

3. Incentive Mechanism Design for Access Acquisition of Unmanaged

Small Cells. The last part of this dissertation considers the problem of utilizing un-

managed small cells for data offloading service. We propose a reverse auction scheme

to incentivize the owners to make their services available to the service providers.

This dissertation introduces the notions of Perceived Valuation, Partial Truthfulness

and Imprecision Loss, which together characterize the quality of truthful auctions

while considering imprecision in estimation of the true valuations. This is a first such

notion. It then proposes EasyBid, a novel mechanism with heuristic algorithms which

enable conducting truthful auctions in the presence of imprecise valuations.
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Chapter 1

INTRODUCTION

1.1 Background

The increasing popularity of handheld devices, such as smartphones and tablets, has

made the demand for high-data-rate wireless access more urgent than ever. According

to [43], cellular data traffic has been doubling every year. Due to the explosive growth

of cellular data traffic, increasing system capacity has become one of the most critical

challenges for wireless service providers (WSPs).

New communication techniques such as MIMO, which can provide higher data

rates, have been widely adopted in the next generation wireless networks. However,

given the scarcity of wireless spectrum and the limitation of physical size of hand-

held devices, Small Cell based solutions have been considered most promising [82].

Small cells are low-powered radio access nodes that operate in licensed or unlicensed

spectrum that have a range of 10 meters to 1 or 2 kilometers, compared to a mobile

macrocell which might have a range of a few tens of kilometers [10]. Most small cells

are designed to make efficient use of radio spectrum and support data offloading.

Small cells encompass WiFi access points, femtocells and microcells, etc.

The attempt to deploy commercial WiFi hotspots dates back to 1990s [4]. Since

then, tremendous effort has been made by WSPs to the deployment. WiFi hotspots

have been rapidly mushrooming in every city. They either operate independently as
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a competitive way of data access, or act as a complementary service and help offload

the overburdened cellular networks [15]. Although large deployments of WLANs can

be used to provide high data-rate services over large areas, the cost becomes pro-

hibitive due to the sheer number of access-points (APs) required. In addition to the

deployment cost, the maintenance and management complexity has led to abandon-

ment or scaling back of several WLAN projects from San Francisco to Philadelphia

[14].

Microcells, Femtocells and their counterparts (Picocells, Metrocells, etc.) are

representatives of small cells on the licensed spectrum. A microcell is a cell in a mobile

phone network served by a low power cellular base station (tower), covering a limited

area such as a mall, a hotel, or a transportation hub [7]. Femtocell is a recent emerging

concept. Femtocells are low-power, easy-to-install, indoor or outdoor cellular base

stations that interact with the cellular backbone network via the broadband Internet

connection. New characteristics, especially the plug-and-play, self-organizing and self-

managing properties, make them especially easy to install. Microcells are traditionally

deployed and managed by WSPs, while some Femtocells could be owned by the

property owners, making some of them not accessible to other users.

1.2 Problems to Study

From the WSP’s perspective, small cells can be categorized as Managed and Unman-

aged. While managed small cells are more intriguing in that they allow access by all

users (of the WSP’s), it is cost prohibitive for large-scale blanket deployment. On the

other hand, unmanaged small cells (individual or third-party owned WiFi hotspots

and femtocells) are cost-efficient to expand, without requiring power supply, backhaul

and real estate of WSPs. However, they only provide service to dedicated users while

increasing the complexity of managing the wireless spectrum. Therefore, the issues
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of budgeted deployment and resource allocation for managed small cells and access

acquisition of unmanaged small cells are critical and challenging to study. Toward

this, this dissertation studies the following problems:

• Sparse Deployment of Large Scale Managed Small Cell Networks.

This dissertation first examines the deployment problem in large scale managed

small cell networks. The objective is to provide throughput assurance to mobile

users with minimum cost.

• Resource Management in Managed Dense Small Cell Networks. This

dissertation then studies the resource allocation problem in dense small cell

based networks in urban area. It considers two problems: 1) Achievemax−min

fairness of throughput to mobile users in multiple collision domains. 2) Achieve

QoE max−min fairness to video streaming users in a single collision domain.

• Incentive Mechanism Design for Access Acquisition of Unmanaged

Small Cells. This dissertation finally proposes a truthful auction mechanism

to incentivize small parties: the private and business owners of WiFi hotspots

or femtocells to provide cellular data offloading service.

1.3 Contributions of Dissertation

Sparse Deployment of Large Scale Managed Small Cell Networks. To pro-

vide guaranteed performance to mobile users, we present a new metric, called Contact

Opportunity, as a characterization of a roadside WiFi network. Informally, the con-

tact opportunity for a given deployment measures the fraction of distance or time

that a mobile user is in contact with some APs when moving through a certain tra-

jectory. Such a metric is closely related to the quality of data service that a mobile

user might experience while driving through the system. Our objective is to find a
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deployment that ensures a required level of contact opportunity with the minimum

cost. This is the first work that addresses the challenges in achieving a sparse wireless

infrastructure that provides QoS assurance to mobile users in the face of uncertainty.

Our contributions are three-fold:

• We present a metric, called Contact Opportunity, as a characterization of road-

side WiFi deployment, which is closely related to the quality of data service

that a mobile user might experience when driving through the network.

• We design an efficient deployment method that ensures a required level of con-

tact opportunity at a minimum cost by utilizing submodular optimization tech-

niques.

• We extend the concept of contact opportunity and the deployment techniques

to average throughput by taking various dynamic elements into account, and

propose algorithms for minimizing the worst-case cost and the expected cost,

respectively.

Resource Management in Managed Dense Small Cell Networks. Fast

expansion of small cells, especially the femtocells, makes the problem of resource

management in urban dense networks challenging. To achieve both high throughput

and fairness among users, dynamic resource allocation algorithms are studied. Specif-

ically, we consider two objectives: 1) Achieve max −min fairness of throughput to

mobile users in multiple collision domains. 2) Achieve QoE max − min fairness to

video streaming users in a single collision domain.

1) Fairness of Throughput to Mobile Users in Multiple Contention

Domains. Our study considers two models in the solution. The non-interfering

model (NINT model) assigns power levels to each femtocell in such a way that the

femtocells do not interfere with each other, allowing for independent scheduling of
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users within each femtocell. This model requires low coordination as the femtocells

can operate independently for scheduling transmissions to their users. The more

general interfering model (INT model) allows the femtocells to interfere but the sub-

channel assignment disallows interfering links to simultaneously transmit in the same

time slot and the same sub-channel. Although the level of coordination needed is

higher in this model, better performance can be expected as it is a generalization of

the NINT model. As the femtocells and the macrocell can use the wired backbone

for exchanging control messages, both models are feasible to implement in practice.

The contributions are:

• Under the NINT model, we propose a max{β, 1/N} bounded centralized ap-

proximation algorithm and a distributed solution for the maxmin throughput

problem, where β is the fraction of users that are outside the coverage range of

any femtocell, and N is the number of users.

• We show that throughput can be further improved by introducing the INT

model, and reduce the problem to the partition coloring problem [70], for which

approximation algorithms with provable bounds were not known thus far. We

then develop both centralized algorithm and localized implementation, bounded

by O(∆ logN) where ∆ is the maximum inter-partition degree and N is the

number of users.

• We evaluate the performance of these solutions with extensive simulations and

compare with two baseline approaches. While the solutions under the NINT

model achieve 2x of the minimum throughput, the solutions under the INT

model achieve up to 3x of the minimum and average throughput, compared

with DRA+ algorithm [107].

5



2) Fairness of QoE to Video Streaming Users in Single Contention

Domain. Due to the increasing popularity of video streaming services, we extend

the QoS (throughput) fairness metric to QoE fairness by solving the problem of band-

width allocation in a single collision domain. We show that accurate estimation of

required bitrate to sustain the current video being played is critical to the bandwidth

allocation algorithm at the APs. While an existing solution relies on Deep Packet

Inspection (DPI) [33], which is both expensive and infeasible for encrypted traffic, we

propose a novel solution which infers such information based on observed traffic pat-

terns at the APs and feedback provided by a software running at the clients, without

requiring to modify the players on clients. Our contributions include:

• We propose novel solutions for APs to infer the current bitrate of each video

streaming client, without parsing the content of the packets or making changes

to video players, which are expensive to implement and deploy.

• Based on the bitrate-inferring solution, we design and implement algorithms

that efficiently probe the set of candidate bitrate of each video.

• We propose a bandwidth allocation algorithm that achieves QoE domain fair-

ness by allocating the available bandwidth to clients based on the candidate

bitrates of each video client.

Incentive Mechanism Design for Access Acquisition of Unmanaged Small

Cells. In order to incentivize the businesses and individual owners of small cells to

make their services available to the WSPs to help offload data, we propose a reverse

auction scheme, wherein the WSP provides monetary incentives to small players while

small players bid to provide services to a WSP. We first introduce the imprecise valua-

tion problem, in which, small players are unable to estimate their true valuations due

to the ambiguity of the value of data offloading service. To solve this problem, this
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dissertation introduces the notions of Perceived Valuation, Partial Truthfulness, and

Imprecision Loss, which together characterize the quality of a truthful auction while

considering imprecision in estimation of the true valuation. For any given values of

the above parameters, with the goal of maximizing the WSP’s utility, this work de-

velops EasyBid, a novel mechanism with heuristic algorithms which allow conducting

truthful auctions, considering that the sellers only know their perceived valuations

which may differ from their true valuations. We make the following contributions on

this problem:

• This work introduces the notions of Perceived Valuation, Partial Truthfulness,

and Imprecision Loss, which together characterize the quality of a truthful auc-

tion while considering imprecision in estimation of the true valuations. This is

a first such notion.

• For any given values of the above parameters, with the goal of maximizing

the WSP’s utility, this work develops EasyBid, a novel mechanism with heuris-

tic algorithms which enable conducting truthful auctions, considering that the

sellers only know their perceived valuations which may differ from their true

valuations.

• Through simulations, we show that the utility achieved by EasyBid with impre-

cise valuations is close to the optimal solution that assumes precise valuations,

under reasonable partial truthfulness and imprecision loss constraints.

1.4 Organization of Dissertation

This dissertation is organized as follows: Chapter 2 studies the deployment problem in

large scale managed small cell networks. Chapters 3 and 4 propose resource allocation

algorithms for managed dense small cell networks, which achieve throughput fairness
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in multiple collision domains, and QoE fairness in single collision domain, respectively.

Chapter 5 proposes a novel auction scheme EasyBid, to incentivize unmanaged cell

owners to provide data offloading service to WSPs. Chapter 6 summarizes the results

of the dissertation, and discusses possible future work.
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Chapter 2

ENSURING PREDICTABLE CONTACT OPPORTUNITY

FOR SCALABLE MOBILE INTERNET ACCESS

WiFi hotspots have been rapidly mushrooming in every city to meet the ever-increasing

demand of data. They either operate independently as a competitive way of data

access, or act as a complementary service and help offload the overburdened 3G net-

works [15]. But, their primary target is static users. These networks fail to provide

any assured level of service to a mobile user. Although large deployments of WLANs

can be used to provide high data-rate services over large areas, the cost becomes

prohibitive due to the sheer number of access-points (APs) required. For instance, to

cover a 2km x 2km area in Mountain View, Google needed to deploy 400 access points

[123] to barely provide coverage at the base data rate. In addition to the deployment

cost, the maintenance and management complexity has led to abandonment or scaling

back of several WLAN projects from San Francisco to Philadelphia [14].

New Wireless Wide-Area Networking (WWAN) technologies such as 3GPP LTE

(Long Term Evolution) and mobile WiMAX are expected to provide either long range

coverage or high data rates, but practical numbers are far from the promised levels.

For example WiMAX is intended to support data rates as high as 75 Mbps per 20

MHz channel, or a range of 30 miles [45]. However, one of the first deployments of

WiMAX in US is reported to provide a downlink bandwidth of 3 Mbps [14], which

is only within a factor of 2 better than the current 3G networks. Note that these
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resources will potentially be shared by a large number of active users within the

respective sector of the antenna. Given the resistance from majority of users to pay

high monthly fees for mobile data access, which is essential for supporting expensive

new deployments, ubiquitous service from such new deployments could take several

years, and possibly decades.

The two objectives – an economically scalable infrastructure and quality of service

assurance – can be achieved by a carefully planned sparse deployment of WiFi APs at

roadside. In this work, we study deployment techniques for providing roadside WiFi

services. We envision a wireless service provider that implements a deployment using

two types of APs, new APs that are deployed for serving mobile users exclusively,

and existing APs that are incentivized for sharing their capacity between static and

mobile users. It is likely that these existing APs are initially deployed for serving

static users or users with limited mobility and are possibly owned by other service

providers or end users, and therefore will give higher priority to their original, mostly

static, users.

To provide guaranteed performance to mobile users, we present a new metric,

called Contact Opportunity, as a characterization of a roadside WiFi network.

Informally, the contact opportunity for a given deployment measures the fraction

of distance or time that a mobile user is in contact with some APs when moving

through a certain trajectory. Such a metric is closely related to the quality of data

service that a mobile user might experience while driving through the system. Our

objective is to find a deployment that ensures a required level of contact opportunity

with the minimum cost. Since the problem is NP-hard, we have designed an efficient

approximation solution by exploiting a diminishing return property in the objective

function. We further show how to extend this concept and the deployment techniques

to a more intuitive metric – the average throughput – by taking various dynamic
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elements into account. In particular, we take an interval based approach to model

the uncertainties associated with road traffic conditions and the time varying data

traffic load of static users. The deployment algorithm is then extended to achieve a

required level of average throughput under uncertainties, where we consider both a

robust optimization approach that minimizes the cost in the worst-case scenario, and

a two-stage stochastic optimization approach that minimizes the expected cost.

While focusing on WiFi deployment, our study also provides useful insights to the

large deployment of other types of wireless networks, such as femotcells, for serving

mobile users. Femotocells are small cellular base-stations initially designed to improve

the indoor cellular coverage. But they are currently being extended to provide high

data-rate coverage over short ranges to the outdoor environment as well [8, 9], and

can potentially be utilized to support data-incentive services for mobile users. Our

techniques can be applied to deploying new femotocell base-stations (FBSs) as well

as acquiring service from existing FBSs that originally target at static users. One

challenge to achieve a scalable infrastructure for serving mobile users using FBSs is

to properly model t he dynamics of data traffic load associated with both femtocells

and macrocells.

This is the first work that addresses the challenges in achieving a sparse wireless

infrastructure that provides QoS assurance to mobile users in the face of uncertainty.

2.1 Related Work

The idea of Drive-thru Internet by connecting to existing roadside WiFi Access Points

is introduced in [90]. Subsequently, evaluations in various controlled environments [90,

48, 86, 24] and in situ WiFi networks [29, 86, 24, 44] have been conducted, further

confirming the feasibility of WiFi-based Vehicular Internet Access for non-interactive

applications. In addition to WiFi, small cell architectures such as femtocells, which
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were initially designed to improve the indoor cellular experience, are being extended

to provide high data rate coverage over short ranges to the outdoor environment [8, 9].

In spite of these efforts, scalable solutions for the deployment and management

of WiFi APs or femtocell base-stations to enable efficient vehicular Internet Access

have not been fully understood so far. Instead, simple heuristics without performance

guarantees are commonly adopted in most previous works. For instance, a simple

non-uniform strategy that places more stationary nodes in the network core was

considered in a recent work [25]. Previous work on Alpha Coverage [135, 136] initiated

research on scalable deployment of road-side APs for providing guaranteed service to

mobile vehicles. In Alpha Coverage, the objective is to bound the gap between two

consecutive contacts while ignoring the quality of each contact. In contrast, the

notion of Contact Opportunity introduced in this work provides a more accurate and

practical measurement of service quality for mobile entities.

2.2 Contact Opportunity Optimization

Ideally, we would like to have a scalable deployment of APs that is able to serve mobile

users on the go with guaranteed performance in terms of some intuitive metric such as

average throughput. Such an objective is complicated by various uncertainties in the

system, such as unpredictable traffic conditions, unknown moving patterns of mobile

users, and the dynamics involved in the performance of APs. To this end, we use an

incremental approach; we introduce a performance metric for roadside AP deployment

that is closely related to average throughput while avoiding the uncertainties such

that an efficient solution can be obtained. In Section 2.3, several extensions that

consider more intuitive performance metrics and more practical system models are

introduced.
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Figure 2.1: A road network with four roads (lines) and three candidate locations with

coverage regions shown as disks. There are four road intersections, i.e., a, b, c, and d. The

coverage disks partition the roads into subsegments such as ae, be, bf, cg, dl, etc.

2.2.1 System Model

We model a road network as a connected geometric graph, where vertices represent

points where road centerline segments and road intersections meet, and edges rep-

resent road centerline segments connecting road intersections. For a curved road

segment, we introduce artificial road intersections, so that each edge represents a

straight line segment. Without loss of generality, the road network graph is assumed

to be undirected. Let de denote the length of road segment e, and let E denote the

set of road segments.

In this section, we focus on the deployment of new APs that serve mobile users

exclusively. Extensions to acquiring service from existing APs and the coexistence

of static and mobile users will be considered in Section 2.3. Let A denote a set of

known candidate locations in the 2D region covering the road network where new APs

can be deployed. Note that any points in the 2D area can be a candidate location,

although for simplicity, we take the set of road intersections as candidate locations in

our simulations. Associated with each candidate location a ∈ A, there is a fixed cost

wa ∈ R+ for installing an AP at a, and a coverage region Ca, which is a connected
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region in the 2D space consisting of the set of points where the received SNR from

an AP deployed at a is higher than a fixed threshold. The coverage regions together

with road intersections partition the road network graph into smaller segments called

subsegments. Figure 2.1 shows a road network with four roads (lines) and three

candidate locations with coverage regions shown as disks, which partition the roads

into subsegments such as ae, be, bf, cg, dl, etc. A subsegment may be covered by

multiple coverage regions, such as hk, or not covered at all, such as al. Although

the coverage regions are plotted as disks in Figure 2.1, our problem definitions and

solutions are independent of the shape of a coverage region.

Let L denote the set of all the subsegments in the road network graph with

respect to A. For each l ∈ L, let dl ∈ R+ denote the length of the corresponding

road centerline segment. Let Le ⊆ L denote the set of subsegments on edge e ∈ E.

Let LS ⊆ L denote the set of subsegments covered by a deployment S ⊆ A, that is,

LS = {l ∈ L : l ⊆ ∪a∈SCa}.

A movement on a road network is modeled as a simple path on the corresponding

graph. We assume that there is a set of movements, denoted as P , given as part

of the input to the deployment decision maker. For instance, P could be a set

of shortest (or fastest) paths or a set of most frequently traveled paths between

a set of sources and destinations. Such information can be learned from a road

network database [1] and historical traffic data [50]. The concrete definition of P

is independent of our problem definitions and solutions, while the size of the set P

impacts the computational complexity and performance guarantee of our solutions

as discussed below. For each p ∈ P , let Ep ⊆ E denote the set of edges on p, and

Lp ⊆ L the set of subsegments on p.
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2.2.2 Problem Statement

We now define a performance metric for roadside deployment that does not require

any information about the dynamics of the system. Given a deployment S ⊆ A, the

Contact Opportunity in Distance of a path p ∈ P , denoted as ηdp , is defined as

the fraction of distance on p that is covered by some AP in S. Formally,

ηdp(S) =

∑
l∈Lp∩LS

dl∑
l∈Lp

dl
. (2.1)

When a mobile user travels at a constant speed where each AP has the same data

rate, and there is only one user in the system, contact opportunity in distance can be

directly translated into average throughput that the user will experience. We show

in Section 2.3 how to extend this concept by taking various dynamic elements into

account. Our objective is to provide a required level of contact opportunity over

all the movements in P at a minimum cost. Formally, let λp denote the required

contact opportunity for path p, and w(S) the cost of a deployment S ⊆ A, that is,

w(S) =
∑

a∈S wa, the first optimization problem that we consider is:

min
S⊆A

w(S), subject to ηdp(S) ≥ λp,∀p ∈ P. (2.2)

For a given set of parameters λp, let λ = minp∈P λp and η̃dp(S) = ηdp(S) × λ/λp.

Then the constraint in (2) is equivalent to requiring that the minimum η̃dp(S) among

all the paths in P is at least λ. To simplify the notation, we will use ηdp to denote η̃dp

in the rest of the chapter. Thus, the optimization problem to be solved is:

P1: min
S⊆A

w(S)

s.t. min
p∈P

ηdp(S) ≥ λ (2.3)
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We will also study a dual problem that maximizes the minimum contact oppor-

tunity among all the paths for a given budget B:

P2: max
S⊆A

min
p∈P

ηdp(S)

s.t. w(S) ≤ B (2.4)

Hardness of the problem: We note that both problems are NP-hard in general.

To see this, consider a road network graph where each vertex is a candidate location

for APs. Assume that the coverage region of an AP at vertex a can fully cover all

the edges incident to a and only those edges, and the set of movements in P are

paths consisting of single edges. Then a reduction from Vertex Cover to the decision

version of our problems can be easily constructed. Since Vertex Cover is NP-complete

even when restricted to 3-connected, cubic planar graphs [95], both P1 and P2 are

NP-hard. Hence, it is not likely that optimal solutions to these problems can be

obtained for most practical settings. Our approach is to design efficient approximation

algorithms that can be implemented even in a large scale system, while ensuring a

guaranteed performance.

2.2.3 Minimum Cost Contact Opportunity

In this section, we first present a simple greedy algorithm to P1 and show that the

algorithm achieves a guaranteed performance, by a reduction to the submodular set

covering problem [124]. We then discuss strategies to accelerate the computation in

our context.

A Greedy Algorithm: We first note that if we define

ηd(S, λ) =
∑
p∈P

min{ηdp(S), λ}, (2.5)
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then a subset S ⊆ A is a feasible solution to P1 iff ηd(S, λ) = ηd(A, λ) = λ|P |. To

see this, first note that S is feasible iff ηdp(S) ≥ λ for all p by the problem definition,

which is true iff ηd(S, λ) = λ|P | by (2.5). Moreover, P1 has a feasible solution iff

A is feasible. Hence the statement holds. Based on this observation, the greedy

algorithm for P1 is sketched in Algorithm 1. The algorithm starts with an empty set

and in each iteration picks a new candidate location that is most cost-effective, i.e.,

the location that maximizes the incremental difference (normalized by the weight).

The procedure repeats until the required contact opportunity is achieved.

Algorithm 1: Minimum Cost Contact Opportunity

Input: A,P, λ

Output: A subset S ⊆ A

1 S ← ∅

2 while ηd(S, λ) < ηd(A, λ) do

3 Find a ∈ A\S that maximizes ηd(S∪{a},λ)−ηd(S,λ)
wa

4 S ← S ∪ {a}

Approximation Analysis: To prove an approximation factor to Algorithm 1,

we first observe some structural properties of ηdp(S) and ηd(S, λ). In particular,

we note that the set function ηdp : 2A → [0, 1] satisfies the following properties:

(1) nondecreasing, i.e., ηdp(S) ≤ ηdp(T ) whenever S ⊆ T ⊆ A; (2) normalized,

i.e., ηdp(∅) = 0; and (3) submodular, i.e., for all S ⊆ T ⊆ A and a ∈ A\T ,

ηdp(S ∪ {a}) − ηdp(S) ≥ ηdp(T ∪ {a}) − ηdp(T ). The last property is formally proved

below, which essentially says that adding a new AP to a small set helps more than

adding it to a large set. It captures our intuition that the total coverage that two
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APs can provide to a mobile user is reduced if their communication regions overlap

with each other.

Lemma 2.2.1. ηdp(·) is submodular.

Proof. For any S ⊆ T ⊆ A, a ∈ A\T , ηdp(S ∪ {a}) − ηdp(S) =

∑
l∈Lp∩(L{a}\LS) dl∑

l∈Lp
dl

, and

ηdp(T ∪{a})−ηdp(T ) =

∑
l∈Lp∩(L{a}\LT ) dl∑

l∈Lp
dl

. Since S ⊆ T , L{a}\LS ⊇ L{a}\LT . Therefore,

ηdp(S ∪ {a})− ηdp(S) ≥ ηdp(T ∪ {a})− ηdp(T ).

We then note that ηd(·, λ) for a given λ is also a monotone submodular function

since (a) min{ηdp(S), λ} as a set function over subsets of A is submodular when ηdp is

submodular [87] and (b) the sum of submodular functions is submodular.

It follows that P1 is an instance of the submodular set covering problem [124, 68].

In the general form of the problem, we are given a submodular function f(·) defined

on a set A, and a cost w(a) for any a ∈ A, and a constant λ. The objective is to

find a subset S to minimize w(S) such that f(S) ≥ λ. We then have the following

performance guarantee:

Proposition 2.2.1. Algorithm 1 finds a feasible solution, the cost of which never

exceeds the optimal cost by more than a factor O(1) + log(maxa∈A Da), where Da =∑
p∈P

∑
l∈Lp∩L{a}

dl denotes the total distance covered by a single AP a ∈ A over all

the paths

Proof. A classical result in [124] is that when f is monotone submodular and has

integer values, the greedy algorithm achieves an approximation factor of O(1) +

log(maxa∈A f({a})) to the submodular set covering problem. To apply this result

in our context, we rewrite the constraint (3) in P1 as
∑

l∈Lp∩LS
dl ≤ λ

∑
l∈Lp

dl for

each p. By taking a proper unit, we can assume all the distance values are integral.

For a given λ, if we define f(S) =
∑

pmin{
∑

l∈Lp∩LS
dl, λ

∑
l∈Lp

dl}, our problem
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becomes a submodular set covering problem with respect to f . Hence, we get an

approximation factor of

O(1) + log(max
a

∑
p

min{
∑

l∈Lp∩L{a}

dl, λ
∑
l∈Lp

dl})

≤ O(1) + log(max
a

∑
p

∑
l∈Lp∩L{a}

dl)

= O(1) + log(max
a

Da)

The above procedure can be naturally extended to improving an existing deploy-

ment by adding new APs, by substituting all the evaluations of ηdp(S) with ηdp(S∪A0),

where A0 indicates the set of APs previously deployed.

Techniques to Accelerate the Computation: Algorithm 1 requires O(|A|) itera-

tions (line 2 to line 4) where each iteration involves |A| evaluations of ηd(·, λ). Hence,

in all it requires O(|A|2) evaluations of ηd(·, λ), where each evaluation involves com-

puting ηdp(·, λ) for each p ∈ P , which takes O(|P ||V ||A|) time. Hence, the total

complexity is O(|P ||V ||A|3), which is very time consuming for a large road network,

and with large |A| and |P |. Below we propose several techniques to accelerate the

computation in our context.

• First, we apply the accelerated greedy algorithm [83] to our problem, which

significantly reduces the total number of evaluations of ηd(·, λ) needed through

lazy evaluations. The submodularity of ηd(·, λ) implies that the incremental

difference ηd(S∪{a}, λ)−ηd(S, λ) for any candidate location a is non-increasing

in S. In the algorithm, a priority queue is used to maintain a set of incremental

differences for all candidate locations. In each iteration, instead of checking

all candidate locations as in the simple greedy algorithm, locations with higher
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incremental differences up to this stage are first considered, which avoids a large

number of evaluations. More details can be found in [83, 111].

• Second, we note that for any path p ∈ P , if p can be divided at certain road

intersection into two sub-paths p1, p2 ∈ P such that ηdp1(S) ≥ λ, ηdp2(S) ≥ λ,

then ηdp(S) ≥ λ as well. In this case, constraint (2.3) is automatically satisfied

for p if they are satisfied for p1 and p2. Therefore, we can safely exclude p from

P without loss of optimality. Now suppose P is composed of all the shortest

paths of length at least α in the road network graph, and the maximum edge

length in the graph is significantly less than α. Then it is likely that a shortest

path of length greater than 2α can be divided into sub-paths of length between

α and 2α. These longer paths can then be dropped to reduce the size of P .

• Third, we note that each candidate location only contributes to a small subset of

P̂ , and therefore an incremental calculation is more efficient, where ηd(S∪{a}, λ)

is obtained from ηd(S, λ) by updating only ηdp for those p covered by Ca.

We observe that these techniques improve the performance of our algorithm sig-

nificantly in practice. For the 6× 6 km2 road network and a set of 10000 movements

considered in our simulations (Section 2.4), the running time of Algorithm 1 to find

a solution to P1 is reduced from hours to a few seconds under the same machine

configuration.

2.2.4 Contact Opportunity Maximization

After providing an approximation algorithm to Problem P1, we now propose a solu-

tion to P2 by utilizing Algorithm 1 as a subroutine. The idea is to apply a binary

search over λ ∈ [0, 1]. A similar approach has been applied in [68] to solve a submod-

ular covering problem with a budget. The procedure is sketched in Algorithm 2.
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Algorithm 2: Maximum Contact Opportunity

Input: A,P,B

Output: A subset S ⊆ A

1 λ1 ← minp∈P ηdp(A); λ2 = 0

2 while λ1 − λ2 ≥ δ do

3 λ = (λ1 + λ2)/2

4 S ← call Algorithm 1 with parameters A,P , λ

5 if w(S) > B then

6 λ1 ← λ

7 else

8 λ2 ← λ

The algorithm maintains an upper bound and a lower bound for achievable λ,

denoted as λ1 and λ2, respectively. Initially, λ1 = minp∈P ηdp(A), the minimum contact

opportunity that can be achieved when all the candidate locations are utilized to

deploy APs, and λ2 = 0. Algorithm 1 is then invoked with λ = (λ1 + λ2)/2 as the

input. If the solution found surpasses the budget, the upper bound is decreased;

otherwise, the lower bound is increased. The procedure continues until the difference

between the upper and lower bounds is less than δ, where δ can be adjusted to trade

accuracy with computational time. Note that to accelerate the computation, an extra

condition can be added to the while loop of Algorithm 1 (line 2) so that whenever

the current S maintained already violates the budget constraint, the above procedure

can move on to a new λ.

For a given a budget B, the above binary search procedure always finds a feasible

deployment. Moreover, the algorithm achieves a bi-criteria approximation as stated

below.
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Proposition 2.2.2. Given a budget B, let λ(B) and λ∗(B) denote the contact op-

portunity achieved by Algorithm 2 and the optimal solution, respectively. Then we

have λ(B) ≥ λ∗(B/ϵ)− δ, where ϵ = O(1) + ln(maxa∈A Da).

Proof. In the binary search, if the value of λ is set to λ∗(B/ϵ), then Algorithm 1

with this λ as input will find a deployment S of cost at most B according to Propo-

sition 2.2.1. Since S is feasible, the binary search won’t miss this λ beyond the small

gap defined by δ.

2.3 From Contact Opportunity to Average Throughput

The concept of contact opportunity in distance discussed in Section 2.2 ignores sev-

eral complexities involved in a real system and does not directly correspond to the

quality of service for mobile users driving through the system. Therefore, we seek to

design performance metrics that are more intuitive to mobile application designers

and end users. In this section, we first extend the notion of contact opportunity to

average throughput by modeling various uncertainties involved in the system (Sec-

tion 2.3.1). We then study the deployment problem of achieving a required level of

average throughput while minimizing the worst-case cost or the expected cost. To

this end, we will consider a robust optimization approach in Section 2.3.2, and a

two-stage stochastic optimization approach in Section 2.3.3, respectively.

2.3.1 Modeling Average Throughput Under Uncertainty

To obtain a meaningful definition of average throughput in our context, we start with

modeling two key dynamic aspects in our system: road traffic conditions and the data

traffic from static users.
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First, it is clear that the average throughput that a mobile user can obtain de-

pends on both its travel speed and the contact duration when it is associated with

some APs. However, both the contact time and the travel time are not fixed due to

the uncertainties of traffic conditions such as traffic jams, accidents and stop signs.

Moreover, the traffic condition also affects the number of mobile users that are in

the range of the same AP at the same time competing for the bandwidth of the

AP. To model these uncertainties, we follow the interval based modeling approach

from [67] and consider two key parameters in characterizing a traffic flow: speed and

density [12].

Assumption 2.3.1. The driving speed of a road segment e ∈ E, denoted as ve, is

within an interval [v1e , v
2
e ] for some constants v1e > 0, v2e > 0 and v1e ≤ v2e . Similarly,

the traffic density on road segment e, i.e., the number of road-side WiFi service users

on e per unit distance, denoted as he, is within an interval [h1
e, h

2
e] where 0 < h1

e ≤ h2
e.

Second, as stated before, we envision a deployment model where both new APs

can be installed and existing APs targeting at static users can be acquired to share

their service with mobile users at certain cost. With a slight abuse of notation, we

again let A denote the (disjoint) union of both candidate locations for new APs and

the locations of existing APs that can be utilized. Our objective is to guarantee the

service quality to mobile users at the minimum cost without affecting static users.

Since the data traffic of static users may vary over time, we again use the interval

based approach.

Assumption 2.3.2. The available date rate of an AP located at a for serving mobile

users, denoted by ra, is within an interval [r1a, r
2
a], where 0 < r1a ≤ r2a.

The above intervals for modeling uncertainties are assumed to be given or can

be learned from historical data. We define a scenario k to be an assignment of
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values to the random variables defined above from the corresponding intervals. Let

ve(k), he(k) and ra(k) denote the corresponding values of these variables in a scenario

k. We define vl(k) and hl(k) as the speed and density for a subsegment l, derived

from the corresponding values of the road segment that l belongs to. Let K denote

the set of all possible scenarios. Note that K is an infinite set. We then state the first

natural extension to the notion of contact opportunity in distance, where we replace

distance with time. Formally, given a deployment S ⊆ A and a scenario k ∈ K, we

define the Contact Opportunity in Time of a path p ∈ P as:

ηtp(S, k) =

∑
l∈Lp∩LS

dl/vl(k)∑
l∈Lp

dl/vl(k)
, (2.6)

which captures the fraction of time that a mobile user is in contact with some AP

when moving through p.

To move one step further and model average throughput, we need to make further

assumptions regarding association control and scheduling in serving mobile traffic

load. Consider a scenario k and a deployment S. Let ul(k) denote the expected

number of mobile users on a subsegment l, which can be estimated as ul(k) = hl(k)dl.

We will focus on the steady state where the mobile users in the system are distributed

according to above estimates. In theory, an optimal scheduling policy that maximizes

the time average throughput over a movement can be derived by solving a maximum

flow problem. However, due to its high complexity and the centralized nature, such a

policy is not likely to be used for serving real time traffic. Instead, we focus on simple

stateless and distributed strategies that are easily implementable. Our approach is to

estimate the expected data rate that a mobile user on a subsegment l can obtain in

the steady state, denoted as rl(k). Given the estimates, the Average Throughput

for a mobile user moving through a path p, denoted as γp(S, k), can be stated as:

γp(S, k) =

∑
l∈Lp∩LS

[dl/vl(k)]rl(k)∑
l∈Lp

dl/vl(k)
. (2.7)
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Below we outline one approach to estimate rl(k). We drop the index k to simplify

the notation. We will consider the following simple association protocol as a case

study.

Assumption 2.3.3. Each mobile user picks an AP in its range at random to asso-

ciate, and an AP serves all the users associated with it in an equal rate. A mobile

user can associate with at most one AP at any time. The set of APs operate on

orthogonal channels and do not interfere with each other.

This protocol does not rely on any real-time information and can be easily im-

plemented in practice. Consider a subsegment l that is within the coverage regions

of multiple APs. By the random association assumption, a user in l has an equal

chance to be served by any of these APs. Let nl denote the number of APs that

cover l, then ul/nl users are assigned to each of these APs. Now for any AP a, let

La denote the set of subsegments in its range, and let ua =
∑

l∈La
ul/nl denote the

total number of users associated with a. All these users are served in an equal rate

of ra/ua. For any user on segment l, its expected data rate can then be estimated as

rl =
∑

a∈Sl
ra/ua

|Sl|
. We observe that under this approach, average throughput reduces

to contact opportunity in time when ra = 1 and ua = 1 for all a ∈ A.

Remark: The focus of this work is on optimal deployment of APs under a given asso-

ciation protocol. We have considered the above simple protocol as a case study, while

our algorithms can be applied to more sophisticated association protocols. We note

that, however, it is very challenging to implement optimal association and scheduling

in practice, which requires real-time traffic data and the service history of each mobile

user so that a higher priority can be given to users that have been underserved. What

is more challenging is the joint optimization of deployment and association control.

On the other hand, we envision that a service provider may actually prefer a simpler
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protocol such as the one we considered to avoid the high cost of maintaining real-time

data and service history.

As in Problem P1, our objective is to ensure the required average throughput

at the minimum cost. Since the cost varies for different scenarios, we would like to

minimize either the cost in the worst-case scenario, or the expected cost. We outline

two approaches below.

2.3.2 Robust Optimization

We first study a robust optimization approach. Although there are infinitely many

scenarios, we seek to find a deployment that performs well even in the worst case.

To this end, we first present two problems to be studied, which extend P1 and P2,

respectively, with the objective of ensuring average throughput under a worst-case

scenario. We then propose an efficient algorithm to identify a worst-case scenario for

any given deployment, which is then utilized to derive our solutions to the robust

optimization problems.

Problem Statement: Let wa denote either the cost for installing a new AP at

location a or the (one-time) cost to obtain service from an existing AP located at a,

and again define w(S) =
∑

a∈S wa. Our objective is to solve the following problem:

P3: min
S⊆A

w(S)

s.t. min
p∈P,k∈K

γp(S, k) ≥ λ (2.8)

where (2.8) ensures that for a mobile user moving through any path in P , an average

throughput of λ is obtained under any scenario. We will also consider the dual

problem:

P4: max
S⊆A

min
p∈P,k∈K

γp(S, k)
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s.t. w(S) ≤ B (2.9)

For a given deployment S, we define a scenario kS ∈ K to be a worst-case sce-

nario if minp∈P γp(S, k) is minimized at kS among all the scenarios in K. Then the

constraint (2.8) is equivalent to minp∈P γp(S, kS) ≥ λ. Note that there may exist mul-

tiple worst-case scenarios in general, since only the values associated with the road

segments on and coverage regions touching the path with the minimum throughput

matter.

Identifying a Worst-case Scenario: We now present an efficient algorithm to find

a worst-case scenario, followed by our solutions to P3 and P4. We first note that

since rl only appears in the numerator of (2.7), γp(S, k) is minimized by taking the

minimum possible value of rl, that is, by setting ra = r1a and hl = h2
l for all a ∈ A and

l ∈ L. We again usee rl to denote this worst-case value when there is no confusion.

We define rl = 0 if l ̸∈ LS. It remains to determine the values of vl. Our intuition

is that a worst-case scenario is most likely to happen when the traffic condition is

such that the travel speed is slow on road segments with poor data access while the

speed is high on road segments with good data access. Since a constant travel speed

is assumed for each road segment, we can rewrite (2.7) as follows, where we drop the

index k to simplify the notation:

γp(S, ·) =
∑

e∈Ep
re(S)de/ve∑

e∈Ep
de/ve

. (2.10)

where re(S) = (
∑

l∈Le∩LS
dlrl)/de indicates the average data rate over e under deploy-

ment S. The following proposition formalizes the above intuition (see the Appendix

for a proof):

Proposition 2.3.1. For any path p, there is an assignment of ve for e ∈ Ep that

minimizes γp such that the following two conditions are satisfied: (1) ve = v1e or
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ve = v2e , for all e ∈ Ep; (2) there is an element e∗ ∈ Ep, such that ve = v1e if re ≤ re∗,

and ve = v2e if re > re∗.

The proposition states that there is a worst-case scenario for a path p, where the

driving speed of every edge in p takes one of its boundary values, and moreover, the

assignment satisfies a dichotomy condition according to their average data rate re.

Based on this observation, an assignment of ve that achieves a worst-case scenario

can be easily found by a search over all the edges in path p to find the pivot e∗ that

minimizes γp (see our technical report [134] for a formal description). A worst-case

scenario over all the paths can be then found by a search over P .

We remark that in the special case of contact opportunity in time, i.e., rl = 1 for all

l ∈ L, if we further allow the subsegments on the same edge to have different driving

speeds, the worst-case scenario allows a simpler characterization as follows. Let vl ∈

[v1l , v
2
l ] denote the possible speed on subsegment l. Then for a given deployment S, a

worst-case scenario is obtained by setting vl = v1l if l is not covered by S, and vl = v2l

otherwise. To see this, note that the contact opportunity in time can be written as

ηtp(S, ·) = t1
t2+t1

where t1 denotes the travel time over the set of subsegments in p

that are covered by S and t2 denotes the travel time over the other subsegments in

p. Hence ηtp is minimized when t1 is minimized and t2 is maximized, which happens

under the above scenario.

Solutions to Robust Optimization: We then propose solutions to P3 and P4.

First note that, if we consider a fixed worst-case scenario for each deployment S,

denoted as kS, γp(S, kS) can be viewed as a set function over A. Hence a natu-

ral first attempt to P3 is to apply Algorithm 1 by replacing ηdp(S) with γp(S, kS).

However, this approach does not provide a performance guarantee. The difficulty is

that although for a given scenario k, γp(S, k) is submodular by a similar argument
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as in Lemma 2.2.1, γp(S, kS) is not submodular in general as stated in the following

proposition. A detailed proof is provided in our online technical report [134].

Proposition 2.3.2. γp(S, kS) as a set function over A is nondecreasing and normal-

ized, but not submodular.

In fact, it has been observed that the robust versions of many optimization prob-

lems are significantly more difficult than the original problems [67]. Although an

efficient solution with guaranteed performance to the general problem remains open,

we propose the following two approaches as first steps that work well in many practical

cases.

Our first approach applies when for every p ∈ P , the set of candidate locations

that cover p, denoted as Ap, has small cardinality. The key idea is to view the

constraint (2.8) as requiring that an average throughput is guaranteed over all the

paths and under all the scenarios. For any path p, to identify a worst-case scenario

with respect to p, it suffices to only consider the worst-case scenarios with respect

to subsets of Ap, namely, {kS ∈ K : S ⊆ Ap}, since other APs do not affect the

performance over p. Therefore, to identify a worst-case scenario overall all the paths,

it suffices to consider K ′ = {kS ∈ K : S ⊆ Ap for some p ∈ P}. Note that the size

of K ′ is
∑

p∈P 2|Ap|, which is polynomial in |A| and |P | when |Ap| = O(logA) for any

p. We then define γ(S, λ) =
∑

p∈P,k∈K′ min{γp(S, k), λ}, which is again submodular.

Algorithm 1 can then be applied to P3 by replacing ηd(S, λ) with γ(S, λ). This

approach has polynomial time complexity when |Ap| = O(logA) for any p. Moreover,

by a similar argument as in Proposition 2.2.1, it achieves an approximation factor

O(1) + log(maxa∈ARa), where Ra =
∑

p∈P,k∈K′
∑

e∈Ep
re({a})de/ve(k) indicates the

total throughput contributed by a single AP a ∈ A across all the paths and all the

scenarios in K ′.

Our second approach is to approximate the deployment dependent worst-case
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scenario by a single fixed scenario that is independent of the deployment chosen. Let

k0 denote the “mean speed” scenario with ve(k0) = (v1e + v2e)/2, he(k0) = h2
e, ∀e ∈ E,

and ra(k0) = r1a, ∀a ∈ A. It turns out that, if v2e/v
1
e is small for all e ∈ E, k0 can be

used as a good approximation of the worst-case scenario. More concretely, we have

the following proposition for any deployment S:

Proposition 2.3.3. If v2e/v
1
e ≤ β for all e ∈ E, then γp(S, kS) ≤ γp(S, k0) ≤

βγp(S, kS) for any p ∈ P .

A formal proof is given in the Appendix. The proposition implies that if v2e/v
1
e

is bounded above by a constant β ≥ 1, then for any path p, the loss of average

throughput by replacing the worst-case scenario with the “mean speed” scenario is

bounded by β. In fact, the second inequality holds between k0 and any other scenario,

not necessarily the worst-case scenario. Based on this observation, we then design an

algorithm to P3 as sketched in Algorithm 3.

Algorithm 3: Robust Minimum Cost Contact Opportunity

Input: A,P, λ

Output: A subset S ⊆ A

1 ve ← (v1e + v2e)/2, he ← h1
e, ∀e ∈ E; ra ← r1a,∀a ∈ A

2 m← (β − 1)/τ

3 for i = 0 to m do

4 λ0 ← (1 + iτ)λ

5 S ← call Algorithm 1 with parameters A,P and λ0, where ηdp(S) is

replaced by ηdp(S, k0)

6 if minp∈P γp(S, kS) ≥ λ then

7 break
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The algorithm searches over λ0 = λ, (1+ τ)λ, ..., βλ, and for each λ0, Algorithm 1

is invoked with ηdp(S) replaced by γp(S, k0). The search repeats until a deployment

that achieves an average throughput of at least λ in the worst-case scenario is found.

Note that such a deployment always exists, since by setting λ0 = βλ, the deployment

found by Algorithm 1 achieves an average throughput βλ under scenario k0, which

ensures an average throughput of λ in the worst-case scenario by Proposition 2.3.3.

Furthermore, the algorithm achieves a bi-criteria approximation in the following

sense: the cost of the solution found is no larger than c∗(βλ)(O(1)+log(maxa∈A Ra)),

where c∗(βλ) is the optimal cost for achieving an average throughput of βλ, and

Ra =
∑

p∈P
∑

e∈Ep
re({a}, k0)de/ve(k0) indicates the total throughput contributed by

a single AP a ∈ A across all the paths under the scenario k0.

Proposition 2.3.3 also leads to a simple solution to P4. The idea is to simply

invoke Algorithm 2 for the “mean speed” scenario, that is, replacing ηdp(S) with

γp(S, k0). This approach always gives a feasible solution, while the minimum average

throughput across all the path achieved is at least 1
β

(
λ∗(B/ϵ′) − δ

)
, where ϵ′ =

O(1)+log(maxa∈ARa), and λ∗(B/ϵ′) is the optimal achievable value under the budget

B/ϵ′. Note that, compared with the non-robust version (Proposition 2.2.2), an extra

factor of 1/β is incurred.

2.3.3 Two-stage Stochastic Optimization

In contrast to robust optimization, our second approach to achieving an economical

deployment under uncertainty focuses on minimizing the expected cost for ensuring a

required level of average throughput, based on knowledge of the scenario distribution.

In this section, we adopt the 2-stage stochastic approximation framework widely used

in decision making under uncertainty [109], which has a natural interpretation in our

context as discussed below. We propose an efficient approximation solution based on
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the sample average approximation (SAA) method [110], combined with an extension

of Algorithm 1.

We envision a setting where a deployment is created in two stages, which can be

readily generalized to the multi-stage case. In the first stage, the service provider

implements an initial deployment by installing new APs or contracting with existing

AP owners at selected locations. This decision is based on the prediction of system

dynamics, such as road traffic condition and data traffic load from static users, for

a relatively long period of time, say one month or one year. In the second stage,

after the more accurate or actual traffic condition is realized, the initial deployment

is augmented by acquiring service from additional APs, if needed, which happens at

a relatively short time scale, say one day or one hour. Due to the short lead time

in the second stage, it is expected that APs obtained in the second stage are more

costly than that acquired in the first stage. Let w1
a denote the (amortized) cost per

unit of time for an AP a ∈ A installed/leased in the first stage, and w2
a > w1

a the

corresponding cost if it is acquired in the second stage. Let w1(S) =
∑

a∈S w
1
a and

w2(S) =
∑

a∈S w
2
a. Let K denote a random scenario with all the possible realizations

in K. The two-stage optimization problem can be formulated as follows.

P5: min
S⊆A

w1(S) + EK(fk(S))

where fk(S) = min
Sk∈A\S

w2(Sk)

s.t. min
p∈P

γp(S ∪ Sk, k) ≥ λ (2.11)

where the objective is to minimize the summation of the first stage cost and the

expected second stage cost, with the expectation taken over all possible scenarios.

For any scenario k that is realized in the second stage, additional APs are deployed,

if needed, with the objective of minimizing the second stage cost while ensuring a
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required average throughput under k. In general, both w2
a and λ can depend on k.

But we focus on the above problem for the sake of simplicity. A dual problem that

maximizes the expected throughout subject to a budget on the total (two stage) cost

can be similarly defined.

We emphasize that minimizing the expected cost is different from minimizing the

cost of the expected scenario. The latter problem reduces to the single scenario case

once the expected scenario is identified, and Algorithm 1 can be readily applied. On

the other hand, minimizing the expected cost is significantly more difficult. It is

known that some significantly simplified stochastic problems for minimizing the ex-

pected cost are #P-hard even though their deterministic counterparts are polynomial

time solvable [103].

A fundamental challenge in P5 is due to the large number of possible scenarios,

even if we discretize the scenarios and ignore the correlation in traffic distribution

on nearby roads or APs. As a first step to address the challenge, we apply the

sample average approximation method to reduce the infinite scenario problem to a

polynomial-scenario problem. That is, a polynomial number of scenarios, denoted

as N , are first sampled by treating the distribution of scenarios as a black box. We

then solved the sampled problem by replacing the objective function of P5 with

w1(S) +
1
N

∑
k∈N fk(S), where N = |N |. It has been proved that for a large class of

2-stage stochastic linear programs, a polynomial number of samples is sufficient to

ensure that an ρ-approximation solution to the sample-average problem is an (ρ+κ)-

approximation solution to the original problem [110, 109] for some constant kappa >

0, where the polynomial bound on N depends on the input size, the maximum ratio

between the second stage cost and the first stage cost, and 1/κ. Although this

bound cannot be directly applied to our problem, we expect that the SAA method
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provides a good performance for a reasonable number of samples, which is confirmed

in simulations.

We then proceed to solve the polynomial-scenario problem, where we need to

determine the initial deployment and the augmentation for each scenario in N . As

inspired by the stochastic set cover problem considered in [94], we extend our defini-

tion of γp(S, k) for the single-scenario case as follows. First, N +1 copies are created

for each AP. Let ak denote the k-th copy of a ∈ A, with index k ≥ 1 corresponds to

the k-th scenario in N , and index 0 corresponds to the initial deployment. The cost of

ak, denoted as w̃ak , is defined as w1
a if k = 0 and 1

N
w2

a if k ≥ 1. Let A denote the set of

all the copies of APs. Any subset S ⊆ A then indicates a solution to the polynomial-

scenario problem, with the initial deployment defined as S0 = {a : a0 ∈ S} and the

augmentation in k-th scenario defined as Sk = {a : ak ∈ S}. The cost of a solution

S is then defined as w̃(S) =
∑

ak∈S w̃ak = w1(S0) +
1
N

∑N
k=1w2(Sk), which is the

summation of the first-stage cost and the expected second stage cost respecting S.

For any scenario k ∈ N , we define γ̃p(S, k) = γp(S0∪Sk, k). The polynomial-scenario

problem can then be refined as

P6: min
S⊆A

w̃(S)

s.t. min
p∈P,k∈N

γ̃p(S, k) ≥ λ (2.12)

Observe that P6 has a similar form to P3. Based on this, we then define γ̃(S, λ) =∑
p∈P,k∈N min(γ̃p(S, k), λ), and observe that γ̃(S, λ) is again monotone submodular.

Hence, Algorithm 1 can be applied to P6 and achieves an approximation factor of

O(1) + log(maxa∈AR′
a), where R′

a =
∑

p∈P,k∈N
∑

e∈Ep
re({a}, k)de/ve(k) indicates

the total throughput contributed by a single AP a ∈ A across all the paths and

all the scenarios in N . Compared with the single scenario case, the approximation

factor is worsen by an O(logN) factor. Therefore, although a larger N improves

34



sampling accuracy, it also incurs a worse approximation factor when solving the

sampled problem. An interesting open problem is then to identify an optimal N that

balances the two effects and optimizes the overall performance.

The above solution has a complexity depending on N . We then consider a simple

heuristic with a lower complexity. The idea is to find the initial deployment by simply

applying Algorithm 1 to the “mean” scenario k0, where ve(k
0) = (v1e+v2e)/2, he(k

0) =

(h1
e + h2

e)/2,∀e ∈ E, and ra(k
0) = (r1a + r2a)/2,∀a ∈ A. Note the difference between

k0 and k0 considered before. Also note that k0 is the expected scenario when ve, he,

and ra are independently and uniformly distributed in the corresponding intervals.

We will compare this heuristic and the SAA based approach in the simulations.

2.4 Simulations

In this section, we evaluate our roadside AP deployment algorithms via numerical

results and ns3-based simulations [114], using real road networks retrieved from 2008

Tiger/Line shapefiles [1]. We compare our robust optimization algorithms with two

baseline algorithms to study the worst-case cost for achieving a required level of

average throughput under uncertainty, as well as the level of QoS guarantee that

can be provided under a budget constraint. We further compare the SAA based

algorithm with two heuristics to study the expected deployment cost under the two-

stage setting. Simulation results for contact opportunity in distance can be found in

our online technical report [134].

2.4.1 Numerical Results

To understand the performance of our algorithms in a relatively large scale and under

various parameter settings, we first resort to numerical study.

Figure 2.2(left) shows the road network used in our study. The network has 1802
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road intersections and 2377 road segments. We assume each road segment has two

lanes in the opposite directions and ignore the width of lanes. The travel speed of

each segment is in the interval [10 m/s, 20 m/s]. Each road intersection is a candidate

location for deploying APs with a data rate in the interval [5 Mbps,10 Mbps]. The

coverage region at each candidate location is modeled using a sector based approach

from [99], where each region is composed of 4 sectors of 90◦ with radius randomly

selected from [150 m, 250 m], as shown in Figure 2.2 (right). Except in the two-stage

setting discussed in Section 2.4.1, each AP has a unit cost. The set of movements

P consists of 10000 paths randomly sampled from all the shortest paths of length at

least 2km connecting two road intersections. For Algorithm 2, the parameter δ used

in the binary search is set to 0.0005, and for Algorithm 3, the parameter τ is set to

0.01.

To simulate the traffic density on each road segment, we generate a movement

file with 1000 mobile users moving in the network for 24 hours. A restricted random

waypoint mobility model is considered. A user starts at a randomly selected road

intersection a, and randomly picks another road intersection b of distance at least

2km away from a, and moves to b by following the shortest path connecting the two

intersections. After reaching b, the user immediately picks a new destination c of

2km away, and moves towards c, and so on. The travel speed on each road segment is

sampled from the corresponding interval. We then estimate the user density on each

segment from the movement file.

Robust Average Throughput Optimization

We compare our algorithms with the following two baseline algorithms, where Â ⊆ A

denotes the set of coverage regions that touch at least one path in P :
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Figure 2.2: Left: A road network spanning an 6 × 6 km2 region. Right: An instance of

AP’s coverage region with its boundary highlighted.

1. Uniform random sampling (Rand for short), which at each step randomly

picks a new element from Â until the required average throughput is obtained

(for the minimum cost problem P3), or until the budget is reached (for the

maximum coverage problem P4).

2. Max-min distance sampling [112] (Dist for short), which starts at a ran-

domly selected location in Â, and at each step finds a new element from Â that

maximizes the minimum graph distance (in terms of shortest paths) from the

elements already selected, until the required average throughput is obtained

(for P3), or until the budget is reached (for P4).

Note that both algorithms involve randomness. In the simulation, each of them

is repeated 100 times.
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Figure 2.3: (a) Cost for achieving a required average throughput (across all the movements

and all the scenarios). (b) Minimum λ0 for getting a feasible solution in Algorithm 3.

We first study the performance of Algorithm 3 for P3 for achieving robust average

throughput under uncertainty (MinCost for short) . The performance of the “mean

speed” scenario based algorithm for P4 will be studied in ns-3 based simulations.

Figure 2.3(a) shows the expected cost for achieving a required average throughput

for a mobile user moving through any path in P and under any scenario, where

the error bars again denote the standard deviations. We observe that our algorithm

reduces the cost to less than 25% of the baseline cost, and random sampling again

performs worst among the three algorithms. Figure 2.3(b) shows the minimum value

of λ0 in Algorithm 3 when the solution first becomes feasible (line 7 in the algorithm).

As we shown in Section 2.3.2, such a λ0 is upper bounded by βλ. Figure 2.3(b) verifies

this result with β = 20/10 = 2. Moreover, it shows that λ0 is actually bounded by

1.25λ in the simulation setting; hence, Algorithm 3 has a better performance than

the theoretical bound.

38



 0

 200

 400

 600

 800

 0.5  1  1.5  2  2.5

E
x
p

e
c
te

d
 c

o
s
t

Average throughput (Mbps)

SAA
Exp
Sec

(a) Total Cost

 50

 100

 150

 200

 250

 300

0.5 1 1.5 2 2.5

E
x
p

e
c
te

d
 c

o
s
t

Average throughput (Mbps)

SAA
Exp

(b) SAA vs Exp

 0

 5

 10

 15

 20

 0.5  1  1.5  2  2.5

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 o

f 
c
o

s
t

Average throughput (Mbps)

SAA
Exp

(c) Standard Deviation

 50

 100

 150

 200

1 3 5 7 9
E

x
p

e
c
te

d
 c

o
s
t

Inflation factor

SAA
Exp

(d) Total Cost vs Inflation Factor

Figure 2.4: (a) Total cost for a required average throughput in two-stage deployment. (b)

Total cost for SAA vs. Exp. (c) Standard deviation of total cost for SAA vs. Exp. (d)

Total cost for a required average throughput of 1Mbps under various inflation factors.

Two-stage Stochastic Optimization

Finally, we study the performance of the SAA based algorithm (SAA for short) for

minimizing the total cost for achieving a required average throughput in the two-

stage setting. The scenario distribution is generated by assuming ve, he, and ra are

independently and uniformly distributed in the corresponding intervals for all the

road segments and all the APs. Each AP has a unit first stage cost, and a second

cost determined by an inflation factor. We first generate 2000 samples of scenarios,

and use 1000 of them as learning samples for the SAA based method, that is, the

initial deployment is found for these samples using the polynomial-scenario extension
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of Algorithm 1 presented in Section 2.3.3. Note that the sample size is relatively small

compared with the network size and the number of movements considered. The rest

1000 samples are then used for testing, where in each scenario, the initial deployment

is supplemented to meet the throughput requirement. This algorithm is compared

with the following two heuristics:

1. Expected scenario (Exp for short), which is discussed in Section 2.3.3, where

the initial deployment is found by directly applying Algorithm 1 to the “mean”

scenario, which is then augmented for each of the 1000 testing samples using

Algorithm 1.

2. Second stage only (Sec for short), which does not consider the first stage,

and a new deployment is found for each testing sample using Algorithm 1.

We first consider a fixed inflation factor of 5 (hence each AP has a fixed second

stage cost of 5). Figure 2.4(a) shows the total cost for achieving a required average

throughput. The second stage only approach is clearly the worst among the three al-

gorithms due to the high cost of the second stage. To see the performance of SAA and

Exp clearly, their total cost and standard deviations are replotted in Figures 2.4(b)

and (c), respectively. We observe that Exp performs 15% - 25% worse than SAA and

suffers from a high standard deviation. Figure 2.4(d) further illustrates the perfor-

mance of SAA and Exp for different inflation factors. We observe that SAA performs

worse only when the inflation factor is close to 1. Actually, when the inflation factor

is 1, that is, the two stages have the same cost, there is no benefit to have an initial

deployment, and hence the second stage only approach is the best (not shown in the

figure). For large inflation factors, SAA always performs better than Exp and the

reduction in cost increases as the inflation factor becomes larger, which highlights the

deficiency of using the “mean” scenario cost to estimate the expected cost. Moreover,
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SAA has a stable performance under different inflation factors and a small standard

deviation.

2.4.2 Ns-3 Simulations

We then conduct ns-3 based packet level simulations to further validate the perfor-

mance of our algorithms. Our focus is on throughput maximization for a given budget

under a randomly generated traffic scenario.

Simulation Setting

Due to the high overhead for simulating large scale mobility and data transmission in

ns-3, we use a smaller road network (a 2km × 2km subregion in the same area as the

large network with the same travel speed distribution). We fix the number of APs at

20 and vary the number of mobile users, denoted as K, between 20 and 100. For each

K, we first generate a 24 hour movement file with K users as before. The movement

file is then used to estimate the user density. We then run our “mean speed” scenario

based algorithm for problem P4 (MaxOpp for short) to generate a deployment, and

the random sampling algorithm and the distance sampling algorithm to generate 20

deployments each.

In each simulation, 20 static nodes are set up as APs with their locations deter-

mined by a deployment file, and K mobile nodes are generated with their mobility

determined by the movement file. The set of nodes are configured as follows. In

the physical layer, we use the constant speed propagation delay model with the de-

fault speed (the speed of light), and the Friis propagation loss model [52]. We have

extended the loss model to allow four different energy thresholds that match the

communication ranges in the four directions as illustrated in Figure 2.2 (right). All

the ranges are randomly sampled from the interval of [150m, 250m] as before. In
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the MAC layer, 802.11g protocol is used with a constant data rate of 6 Mbps. Each

AP has a different SSID, and APs that are close to each other are assigned different

channels to avoid interference (ns-3 WiFi does not model cross-channel interference).

Each mobile node is configured with multiple channels so that it can download data

from any APs in range, but the association protocol ensures that a node is associated

with at most one AP at any time. In the application layer, CBR traffics are gener-

ated from each AP to mobile users served by it. To reduce communication overhead,

mobile nodes do not actively probe channels. They only wait for beacons from APs.

Whenever a node encounters a new AP or is disassociated from an old AP, it chooses

from the set of APs in range the one with the least number of users associated, where

the tie is broken by giving higher priority to the newly encountered AP. An AP serves

all the nodes associated with it in an equal data rate with the total rate bounded by

1 Mbps.

Simulation Result

In Figure 2.5(a), the average throughput for the bottom 5% of paths is plotted, where

the average is taken over all these paths and over all the deployments. Figure 2.5(b)

shows the similar results for the bottom 10% of paths. These figures illustrate the

performance of the algorithms for less served paths. In both cases, our algorithms

achieves more than 150% of higher performance. In addition to improving the worst-

case performance, our algorithm also achieves significant higher throughput in the

average sense as shown in Figure 2.5(c), where the average throughput over all the

paths is plotted. Figure 2.5(d) plots the complementary cumulative distribution of

throughput across all the paths for the 20 mobile user case. The figure shows that

our algorithm not only achieves a better worst-case and average performance, but

also dominates the baselines in the stochastic sense (roughly). From these figures,
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Figure 2.5: (a) Average throughput of the worst 5% paths vs. budget. (b) Average

throughput of the worst 10% paths vs. budget. (c) Average throughput of all the paths vs.

budget. (d) CCDF of average throughput across all the paths and deployments (20 mobile

users).

we also observe that distance sampling performs worse than random sampling for

throughput maximization, which is contrast to the case of cost minimization as we

observed before. One explanation is that distance sampling distributes APs in a more

uniform way and when the budget is low, it does not provide enough coverage to short

movements.
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2.5 Experimental Evaluation

We set up a small scale controlled experiment to better understand the performance

of our approach. The experiment was carried out in a 180m × 120m parking lot

located at the west campus of OSU and is free of potential interference from other

WiFi networks. The experiment was usually carried out at night when the parking

lot was empty. We artificially divided the parking lot area into a 6 by 4 grid and use

it as a small road network. All the 24 intersections are treated as candidate locations

for deploying APs.

A single mobile node carried by a car and 4 APs are used in the experiment. Each

AP is a laptop equipped with an Orinoco 802.11b/g PC card and an external antenna

mounted on a 1.7m high tripod so that the signal will not be blocked by the car in

the test. The single mobile node is a laptop equipped with a Ubiquiti Networks SRC

802.11a/b/g PC card and two external antennas fixed at the two sides of the car. The

transmission power of each AP is set to 6 dBm, which is tested to give an effective

transmission distance of no more than 50 meters. Each node runs Ubuntu Linux with

Linux 2.6.24 kernel and madwifi device driver for the 802.11 interface. The physical

layer data rate of each node is fixed at 54Mbps.

A total of 5 random deployments are evaluated and compared with a deployment

computed by Algorithm 2 for maximizing the contact opportunity in distance across

the set of shortest paths between intersections of length at least 200m (there are 30

such paths in total), with a budget 4. The algorithm assumes that each AP has a

unit cost and the coverage region of each AP is a disk of a radius 50m.

Because of the large volume of driving work and limited availability of that place,

we picked 6 representative shortest paths that go through different parts and direc-

tions of the parking lot, and drove through each of them 3 times for each deployment.

The moving speed is kept at about 10mph. When moving through a path, the mobile
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Figure 2.6: The average throughput of the 6 paths under evaluation, where Rand represents

the average of 5 random deployments.

node attempts to associate with an AP with the strongest signal. Once associated,

it downloads UDP packets from the AP until it is disconnected from that AP. The

mobile node then finds another AP with the strongest signal to associate. Figure 2.6

shows the average throughput of each of the 6 paths. For random sampling, the

average results across the five deployments are plotted. We observe that our solution

achieves up to 66.7% higher throughput, and across all the 6 paths the average im-

provement in throughput is 26.4%. These results are promising and serve as a first

step towards larger scale prototype deployment. Compared with simulations, the

improvement is less significant mainly due to the following reasons. First, channel

condition is not very stable in the outdoor environment as we observed, especially

when we have to control the transmission radius to within a small range to make the

small scale experiment meaningful. Second, both association and disassociation incur

overhead in terms of packet loss and delay. Third, because the driving area is small
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and there is only a single mobile user, even a random deployment has a high chance

to cover the entire area with a reasonable data rate.
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Chapter 3

ACHIEVING USER-LEVEL FAIRNESS IN

OPEN-ACCESS FEMTOCELL BASED ARCHITECTURE

Cellular service providers usually set aside a fixed and arbitrarily chosen number of

channels for use by its femtocell owners, and do not provide any guidelines for config-

uring the transmission power of arbitrarily deployed Femtocells. Such static solutions

are neither scalable nor optimum for controlling the interference between multiple

Femtocells, and between Femtocells and macro base-station (MBS). To achieve both

high throughput and fairness among users, dynamic resource allocations have to be

studied.

Our study considers two models in the solution. The non-interfering model (NINT

model) assigns power levels to each Femtocell in such a way that the femtocells do not

interfere with each other, allowing for independent scheduling of users within each

femtocell. The more general interfering model (INT model) allows the femtocells to

interfere but the sub-channel assignment disallows interfering links to simultaneously

transmit in the same time slot and the same sub-channel.

Our study differs from the previous works on fairness in WLANs [26, 71, 74],

which either address fairness by solely performing association control [26, 71], or by

controlling the contention behavior of nodes in the IEEE 802.11 MAC layer [74].
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3.1 Related Work

Due to its significance, resource allocation algorithms in OFDMA networks have been

studied in many prior works. [39, 63] try to maximize the aggregate throughput,

while [133, 132] aim to minimize power consumption. However, none of them address

the fairness issue. Proportional fairness is considered in [102, 66, 88]. Resource allo-

cations in those works are formulated as convex optimization problems, the objectives

of which are to maximize sum of user rate. Proportional fairness is assured by impos-

ing a set of constraints, and power assignment is either considered as a constraint, or

is evenly allocated among all channels. Unlike those works, this work formulates the

resource allocation problem using graph based approach.

Graph-based approaches such as [32] apply graph coloring technique to solve the

fractional frequency assignment problem in OFDMA networks with homogeneous cell

size, without considering heterogeneous cell size or fairness. [75] solves the subcarrier

selection, transmission mode selection and relay selection problem for relay-assisted

bidirectional OFDMA network, which is not suited for femtocell network. [130]

develops optimal algorithms for resource allocation problem with user constraints.

However, the objective of [130] is to maximize system throughput, which is essentially

different from this work.

In the femtocell literature, femtocell solutions in the market are primarily UMTS

and CDMA based, driven from a business perspective [47], that aim to improve

indoor coverage using available backhaul (cable, DSL). However, as an emerging

technology, the challenge of mitigating intra- and cross-tier interference is still critical

in the current solutions [16, 31, 46]. Interference is usually addressed through power

control [30, 37, 55]. [30] develops an uplink capacity analysis of a CDMA two-

tier network. The authors show that interference avoidance can help achieve higher

user capacity and avoid the design of protocols that require the mobile to sense
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the spectrum during handoff. [37] discusses some key requirements for co-channel

operation of femtocells such as auto-configuration and public access, and proposes a

power control method that ensures a constant femtocell radius in the downlink and

a low pre-definable uplink performance impact to the macrocells. A simulation of

femtocells deployed in a residential scenario is studied in [55], which shows that the

deployment of these femtocells would not pose a significant impact on the dropped call

rate of mobile users. The uplink interference problem in co-channel deployed femtocell

networks is studied in [129], which presents a trifecta of distributed algorithms, mainly

focusing on protection of macrocell users.

OFDMA-based femtocells have been gaining increased attention recently. In

OFDMA based femtocell solutions, intelligent sub-channel allocation is an alternative

to power adjustment to mitigate interference while improving the system capacity.

A coverage and interference analysis based on a realistic OFDMA macro/femtocell

scenario is provided in [77], and some guidelines on how the spectrum allocation and

interference mitigation problems can be approached are further discussed. [21] carries

out experimental studies to characterize interference in OFDMA femtocell network.

[119, 125] study the open and close access problem for OFDMA femtocells, and sug-

gest to use limited access mode [119] or to adapt access mechanism based on average

cellular user density. Energy efficiency problem was recently studied in [126, 73],

which aims to achieve energy efficiency at femtocells [126], and maximize the lifetime

of handsets [73]. Self-organizing frameworks are studied in [76, 17]. [76] proposes a

two-phase self-organizing framework to minimize interference and maximize network

capacity, while [76] assumes femtocells and macrocell work on the same channel, and

applies a non-cooperative game approach to maximize weighted sum rate. Neither of

them addressed the fairness issue.
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Resource allocation was recently studied in [108, 20, 100, 54, 107, 22]. [108] pro-

poses an adaptive resource scheduling algorithm for wireless relay OFDMA networks.

[20] designs and implemens an uplink scheduler for OFDMA femtocells, without con-

sidering downlinks. [100] introduces an interference avoidance framework by letting

femtocells utilize resource blocks occupied by far away mobile stations, without con-

sidering the fairness issue. [54] proposes a cluster-based resource allocation scheme,

which first builds clusters, and then preforms optimal resource allocation for each

cluster. However, power adjustment is not considered in [54]. In [107], the authors

propose a dynamic resource allocation mechanism between macro and femtocells to

achieve proportional fairness among users. [22] proposes a femtocell resource man-

agement system that divides one OFDMA frame into two zones – the reuse zone

and the isolation zone, which also categorizes users into two groups, correspondingly.

Users in reuse zone will be simultaneously active, and deal with interference through

link adaptation, while users in the isolation zone are isolated via resource allocation

(based on weighted max-min fairness). However, [107] and [22] only consider fixed

power level and coarse resource allocation strategies (on per-femtocell basis) regard-

less of the possible variations of user density in different femtocells, all of which, in

contrast, are considered in this work. Alternatively, this work could serve as a com-

plementary work for the resource isolation part of [22], when power adjustment or

user density is available in the system.

3.2 Problem Statement

3.2.1 Notations

Consider a single macrocell base station (MBS) deployed in a 2D region that contains

M Femtocells F = {f1, · · · fM}. U = {u1...uN} is the set of N users in the system.
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The location of user ui is given by L(ui) = (x(ui), y(ui)). The location of Femtocell

fj is given by L(fj) = (x(fj), y(fj)). Each Femtocell can operate at a power level

chosen from the set P indexed by {1 · · · l}, where the selected power for index k

is given by p(k), and p(k) < p(k′) for k < k′. For any Femtocell fi associated

with power level p(k), we define the transmission range of fi at power level p(k)

as the range within which the received signal strength from fi is higher than some

threshold RSStx. Formally, let rtxk denote this range, and rss(fi, k, d) denote the

received signal strength at distance d from fi sending beacons at power level p(k),

then rtxk = max{d : rss(fi, k, d) ≥ RSStx}. Similarly, we define the interference range

of fi at power level p(k) as the range within which a receiver associated with another

Femtocell will receive an interference level from fi that is higher than some other

threshold RSSint (RSSint ≤ RSStx), i.e., r
int
k = max{d : rss(fi, k, d) ≥ RSSint}.

We assume that the MBS when transmitting interferes with all other nodes in the

system. Let µ(j, l) be the number of users within the transmission range of Femtocell

j when operating at power level l. To simplify the presentation, we assume that the

interference range of all Femtocells at their highest power levels are fully contained

within the macrocell’s boundary.

Let ρj be the power level selected by femtocell j. ρj ∈ P∪{0}, where ρj = 0 implies

that Femtocell j is not active due to interference. The N ×M matrix B represents

the association of N users to the M femtocells. Bij = 1 if user i is associated with

femtocell j, otherwise it is 0. Each user associates with at most one femtocell. Users

not associated with any femtocell associate with the macrocell.

Consider an OFDMA frame as in Figure 3.1. Tiles are to be allocated in the

system. Spatial reuse of the tiles is possible among Femtocells. A fraction of time is

allocated for uplink and another fraction for downlink communication. For simplicity,

the discussion focuses only on the downlink, but the same framework can be applied
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to extend the solutions for uplink transmissions. Each downlink frame has t time-

slots and c sub-channels. The tiles are further divided between the macrocell and the

femtocells. A feasible allocation A is an assignment of a subset of links (Femtocell to

user or MBS to user) to each tile, such that the links assigned to any given tile does

not interfere with each other.
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Figure 3.1: OFDMA Frame Structure [107]: Gray tiles are for Femtocells and the

white for MBS. The header contains information on the allocation of the tiles.

3.2.2 Problem Statement

Our solution for resource allocation will determine multiple parameters: 1) the power

level selected for each femtocell (ρ⃗); 2) the association of users to femtocells or the

macro cell (B); and, 3) assignment of tiles to the macrocell or multiple femtocells (A).

We focus on fair rate allocation among the users, and seek to compute the optimum

maxmin rate assignment problem.
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3.3 Resource Allocation with NonInterfering Femto-Cells

3.3.1 The NonInterfering Model

A B C
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Figure 3.2: Resource Allocation: The dotted lines show the various possible commu-

nication ranges. The τm that determines the optimum maxmin rate for the users

is shown for each power combination. The (Hi,Lo) combination with a fractional

allocation of 1/3 tiles for the MBS optimizes the objective.

Under this model, the solution will ensure that the femtocells are not interfering

when operating on the same channel by adjusting their power levels, i.e., there are

no overlapping femtocells in the final solution. Thus under this model, all femtocells

will be simultaneously active in all the tiles allocated to femtocells, and inactive in all

the tiles allocated to the macrocell. So, all users in the same femtocell will have equal

rate allocation (by round robin of the tiles allocated for femtocells), and similarly,

users that are served by the macrocell will have equal rate allocation. Let τf be the

fraction of tiles allocated to the Femtocells, and τm = 1− τf be the fraction allocated
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to the macrocell. Under the constraint of non-interfering femtocells in the solution,

without loss of generality, we consider the following objective function 1:

P1 : max
B,ρ⃗,τf

min
1≤i≤N

ri (3.1)

where ri is the fraction of tiles allocated to user i from the downlink frame, which

represents the effective data rate of user i.

Consider a user that is in range of an Femtocell in the final power allocation. If it

associates with the MBS, then that slot will become busy for all Femtocells. However,

if it associates with that Femtocell, then other Femtocells can also be active and reuse

that slot (since all femtocells are non-overlapping in the solution). Thus associating

with that Femtocell is the optimum decision. This implies that the association matrix

B has been implicitly solved: for users that are within the range of some Femtocell,

they will associate with the corresponding Femtocell, otherwise, associate with the

MBS. So, P1 could be simplified to the following without loss of generality:

max
ρ⃗,τf

min
1≤i≤N

ri (3.2)

From this solution, the optimum association (B∗) can be derived as follows. A

user in range of an Femtocell operating at its computed power level will be associated

with that Femtocell. All other users will be allocated to the MBS.

In the optimum solution, as the Femtocells will equally divide the τf among its

users, the Femtocell associated with the maximum number of users (bottleneck Fem-

tocell) will serve the lowest data rate. As the users served by the bottleneck Femtocell

and the users served by the MBS occupy different time slots, the optimum allocation

must provide equal rate to all such users. Recall that µ(j, ρ(j)) is the number of users

in the coverage range of Femtocell j operating at power level ρ(j). Thus, the total

1Alternatively, our solutions can be applied to the weighted version of maxmin fairness problem
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number of users served by the MBS (N −
∑M

j=1 µ(j, ρ(j))) and the maximum number

of users among the Femtocells (maxj∈[1,M ]{µ(j, ρ(j))}) will together determine the

allocation. Note that all these users will be served in different tiles and so, their

minimum fractional rate will be ri = 1/(N −
∑M

j=1 µ(j, ρ(j)) +maxj∈[1,M ] µ(j, ρ(j))).

So the optimization objective can be rewritten as:

max
ρ⃗
{ 1

N −
∑M

j=1 µ(j, ρ(j)) + maxj∈[1,M ] µ(j, ρ(j))
} (3.3)

= max
ρ⃗
{
∑M

j=1
µ(j, ρ(j))−maxj∈[1,M ] µ(j, ρ(j))} (3.4)

and τ ∗m and τ ∗f can be uniquely determined by

τ ∗m =
N −

∑M
j=1 µ(j, ρ(j))

N −
∑M

j=1 µ(j, ρ(j)) + maxj∈[1,M ] µ(j, ρ∗(j))
(3.5)

τ ∗f = 1− τ ∗m (3.6)

After the simplifications, the resulting objective (Equation 3.4) has only one vari-

able (ρ⃗) in the outer max operator, which makes it easier to design solutions.

An Example (Figure 3.2): Please be noticed that the transmission and interference

ranges are shown as circular and identical in some examples of this work for simplicity

of discussion. However, these assumptions are not required in our solutions. In Figure

3.2, each of the two femtocells has two power levels. The zero power level is not shown

for simplicity as it leads to lower maxmin rate than the other combinations shown in

the figure. For each power combination the optimum τm and the corresponding rates

for all users are shown. The (Hi, Lo) combination of power levels for the two femtocells

leads to the optimum maxmin rate vector ⟨1
3
, 1
3
, 1
3
, 1
3
, 1
3
⟩. Here,

∑M
j=1 µ(j, ρ(j)) = 4

and maxj∈[1,M ] µ(j, ρ(j)) = 2. The argument of (3.4) is 4 − 2 = 2. By using the

expression for τ ∗m, we get τ ∗m = 1/3. The macrocell is serving 1 user (E) which gets

a rate of 1/3. As τ ∗f = 2/3, and both femtocells are serving two users each, all users

are assigned a rate of 1/3.
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Theorem 3.3.1. The maxmin rate allocation problem P1 is NP-hard.

Proof. We reduce the Maximum Independent Set problem for unit disks in a plane

(MIS-DISKS), which is known to be NP-hard [35], to P1. In MIS-DISKS, the objec-

tive is to select a maximum subset of non-overlapping disks.

Given an instance of the MIS-DISKS problem with M disks, we construct an

instance of P1. Each disk corresponds to a femtocell with its femto-BS situated at

the center of that disk. Each femtocell has two power levels, zero and unit power

level, where the latter corresponds to a unit transmission range and unit interference

range. An additional femtocell f is added that does not overlap with any other

femtocell (See Figure 3.3). A macro-BS is added with a large enough coverage range

that includes the covered regions of all the femtocells.

Now consider a 2D lattice of points in the plane with a sufficiently high density

(to be determined later). The lattice density will be chosen in such a way that the

number of points within a unit disk is within a fixed range, say, [K,K + γ], where

γ < K
M
. Each lattice point overlapping with any of the M femtocells will correspond

to a user. In addition, K + γ+1 users are placed at any location within the range of

femtocell f , thus making femtocell f the femtocell with the highest number of users.

If f is not in the optimum solution of the instance of P1, it can be added to

increase the first term of expression Equation 4 with a lesser increase to the second

term, leading to a resultant increase of the objective. So in the optimum solution

to P1, f must be operating at unit power and the second term will have a value of

K + γ + 1.

Let S ′ be the set of disks corresponding to the femtocells other than f , that has

a non-zero power allocation in the solution to P1. We claim that S ′ is a solution

to the MIS problem. For the sake of contradition, let us assume that the optimum

solution to the MIS problem, S, is such that |S| > |S ′|. As the total number of users
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PROBLEM P1 (MAX-MIN) 

MIS-DISKS 

femtocell f 

(29 + 1 users) 

Figure 3.3: Reduction for NP hardness. Here the radius of the circle is 3 times d,

and η(3) is known to be 29 [53]. So the additional femtocell f has 29+1 = 30 users.

The dark dots represent the users. The gray dots are the lattice points outside the

disks that were not selected to represent users.

in range of the femtocells corresponding to S ′ is maximized, K|S| ≤ (K + γ)|S ′|.

Therefore, γ ≥ |S|−|S′|
|S′| K ≥ |S|−|S′|

M
K ≥ K

M
. But in our construction γ < K

M
, which is

a contradiction. Thus, |S|≤|S ′|, implying that S ′ is a solution to the MIS problem.

Now we choose the appropriate value of lattice distance d (d < 1) such that the

number of points within a unit disk is within the range [K,K+γ]. We say that a disk

is a lattice-disk if its center coincides with a lattice point. If r is the ratio of the radius

of the disk to the lattice distance, then using the Gauss’ circle formula, the number

of lattice points contained in it is represented as η(r) = πr2+O(r) [53]. If the center

of a unit disk is not aligned to a lattice point (Figure 3.4), then the number of lattice

points will be within a range, [K,K + γ]. The nearest lattice point to any point on

the plane is atmost at a distance of d√
2
. So, centerd at that nearest lattice point, a
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d

Unit radius disk

Aligned disk

(radius 1+d)

Aligned disk

(radius 1-d)

Center of

The disk

Figure 3.4: Gauss’s Circle Problem for Non-Lattice-disks: Alligned disks are lattice-

disks. The square represents the region closest to the point at the center of the

square.

lattice-disk of radius 1− d is fully contained within the unit disk, and a lattice-disk

of radius 1 + d will fully contain the unit disk. So the minimum number of lattice

points for a unit disk, K will be atleast η(1−d
d
), i.e., K ≥ η(1−d

d
) = π(1

d
− 1)2 +O(1

d
).

Similarly, K + γ will be atmost η(1+d
d
), i.e., K + γ ≤ η(1+d

d
) = π(1

d
+ 1)2 + O(1

d
).

Therefore, γ ≤ π(1
d
+1)2−π(1

d
−1)2+O(1

d
) = 4π(1

d
)+O(1

d
). As 1

d
increases, K grows

quadratically but γ grows linearly. So for a sufficiently high value of 1
d
(depends on

M and the constants in O(.)), K will exceed γM , or, γ < K
M
.

K and γ will both be polynomials in M . So, the total number of users created in

this reduction is polynomial and the reduction is polynomial time, thus completing

the proof.

3.3.2 Centralized Resource Allocation (NINT)

A central server periodically collects topology information from all the users, com-

putes the optimal solution and informs the Femtocells and the users. A discussion

of constructing conflict graphs is presented in section 3.6, and overhead messages
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are described and counted in the simulation section. Observe that if the maximum

weight Femtocell is known in an optimal solution, i.e., the maxj∈[1,M ] µ(j, ρ(j)) term

is known in formulation (3.4), we can then solve the problem by solving an instance

of the MWIS (maximum weight independent set) problem. We will explore all pos-

sible values of that term to arrive at the optimum solution. Our approach is to first

model the constraints using a conflict graph and then solve multiple instances of the

resulting MWIS problems (Algorithm 4).

First we create the conflict graph for the Femtocells considering the various power

levels. A node is created for each combination of power level and Femtocell ID. The

weight of this node is counted by the number of users within the transmission range

of the Femtocell at the chosen power level. Of course, some extra information needs

to be stored for this node, such as Femtocell ID, location, power level, and the weight.

If the transmission range of one node, i.e., the transmission range of this Femtocell

at corresponding power level, overlaps with the interference range of another node,

an edge is added between two such nodes. Observe that nodes corresponding to the

same femtocell, but for different power levels, will form a clique. As the topology of

the conflict graph depends only on power levels and locations of Femtocells, we only

need to update the weight of each node at runtime, thus the overhead is relatively

low. Figure 3.5 shows the conflict graph for Figure 3.2.

<FBS1, Lo>

(w(v1)= 1)

<FBS1, Hi>

(w(v2)= 2)

<FBS2, Hi>

(w(v3) = 4)

<FBS2, Lo>

(w(v4)= 2)
v1

v2

v4

v3

Figure 3.5: Conflict Graph for scenario in Figure 3.2
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Note that by substituting the nubmer of users with the summation of normalized

weight of users, this model can be easily modified to work for the weighted maxmin

fairness problem.

The centralized resource allocation algorithm (Algorithm 4) uses the conflict graph

to compute the power allocation (ρ⃗) for all Femtocells based on (3.4). The variables Q

and nmax are used to keep track of the independent set and the maximum weight of

femtocells in that independent set, respectively (Lines 3-4). Set S is an enumeration

of weights of all nodes (Line 5). Next, the independent set of nodes that maximize

expression (3.4) is computed by trying all possible values of the second term in (4)

(Lines 6-15). In each iteration, the variable s takes on values from the set S. Only

the nodes with weight at most s is considered for constructing the induced subgraph

G′. With a slight overuse of the term w, we use w(I) to indicate the total weight

of all nodes in the set I. For this induced subgraph the max weight independent set

is computed, and stored if it is the best thus far. The optimum independent set is

then used to compute the power allocation (Lines 16-22). Note that as shown in the

previous section, using ρ∗, τ ∗f and B∗ can be computed.

This algorithm gives the optimum solution to the maxmin problem if the MWIS

can be exactly computed. However, MWIS is a NP-hard problem [115]. We can use

a polynomial time approximation approach for the MWIS problem in line 10 . For

example, a greedy algorithm that finds a maximal independent set can be used, which

has a complexity of O(M2). Then from line 8, 9, 10, the complexity of algorithm 4

can be denoted by M ∗ (M +M2 +O(M2)), which is O(M3).

Regardless which algorithm we use for the MWIS problem in line 10, we can

always achieve a bound of max{β, 1/N}, where β is the fraction of users (among all

users) that are not covered by any femtocell, and N is the total number of users.

Theorem 3.3.2. If βN users are outside the range of any femtocells, where 0 ≤ β ≤

60



Algorithm 4: Centralized Resource Allocation (NINT)

1 input: conflict graph G

2 output: ρ⃗: power allocation vector for Femtocells

3 Q← Φ // maximum independent set

4 nmax← 0 // maximum weight of Femtocells from Q

5 S ← set of possible values for the #users in a femtocell

6 foreach s in S do

7 create an empty graph G′

8 V (G′)← {v|v ∈ V (G) s.t. w(v) ≤ s}

9 E(G′)← edges induced by V (G′) in G

10 I ← max weight independent set of G′

11 if w(I)− s > w(Q)− nmax then

12 Q← I

13 nmax← s

14 for j ∈ (1..M) do

15 if ∃q ∈ Q s.t. id(q) = j then

16 ρ(j)← level(q) //set this Femtocell the stored power level of node q.

17 else

18 ρ(j)← 0

1, and an approximation algorithm is used for the MWIS subproblem in Algorithm

4, then the lowest rate allocated by this algorithm will be at least max{β, 1/N} times

the lowest rate in the optimum rate allocation.

Proof. Let the value of
∑M

j=1 µ(j, ρ(j)) be A
opt, and the value of maxj∈[1,M ] µ(j, ρ(j))

be Bopt in the optimum solution. Then the minimum rate allocated by the optimum

solution to any user will be ropt = 1
N−Aopt+Bopt . Since algorithm 4 tries all possible
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values of maxj∈[1,M ] µ(j, ρ(j)). When it uses the value of Bopt as largest(s in Line 6

of Algorithm 4), let the computed value of
∑

j∈[1,M ] µ(j, ρ(j)) (w(I) in Lines 10-11)

be A. So, the minimum throughput computed by our algorithm is r ≥ 1
N−A+Bopt . So,

r

ropt
≥ N − Aopt +Bopt

N − A+Bopt
>

N − Aopt

N − A
>

N − Aopt

N
(3.7)

As Aopt ≤ (1− β)N , we have,

r

ropt
>

N − (1− β)N

N
= β (3.8)

On the other hand,

r

ropt
≥ N − Aopt +Bopt

N − A+Bopt
≥ Bopt

N − A+Bopt
≥ Bopt

N
≥ 1

N
(3.9)

Therefore, the algorithm is bounded by max{β, 1/N}.

3.3.3 Distributed Approach (NINT)

In the distributed algorithm (Algorithm 5) each Femtocell attempts to increase or

decrease its power level and evaluate its impact within the local neighborhood to

determine the best action to take. We assume the cost of exchanging messages among

neighboring femtocells is negligible by using the broadband backbone. The impact is

evaluated by the change to the argument of Formula (3.4). If some users have left the

Femtocell, then the Femtocell attempts to increase its power level (Lines 3-11). It

needs to obtain updated information on the number of users that can be supported if

a higher power level is used by Femtocell j (Lines 5-7). Then the best power level is

selected based on the argument to (3.4). If the number of users currently being served

is the highest in the neighborhood then reducing it could possibly lead to increase in

the argument to (3.4). For such a scenario, all power levels lower than the current one

is explored in consultation with the interfering neighbors and the best power level is

then selected (Lines 12-19).
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Algorithm 5: Distributed Resource Allocation (NINT) at Femtocell fj

1 input: power level ρ(j); number of users µ(j, ρ(j)); current ρ(m) and µ(m, ρ(m)) for

each interfering neighbor m.

2 output: power level ρ(j)

3 if some user(s) have left the femtocell then

4 foreach power level k higher than the current do

5 foreach interfering Femtocell fm do

6 obtain µ(m, ρ(m)) from fm for highest feasible ρ if fj switches to level k

7 compute adjustment to arg of (3.4)

8 select power level with max increase to arg (3.4)

9 if µ(j, ρ(j)) is the highest in the neighborhood then

10 foreach power level k smaller than the current do

11 foreach interfering Femtocell fm do

12 obtain µ(m, ρ(m)) from fm for highest feasible ρ if fj switches to level k

13 compute adjustment to arg of (3.4)

14 select power level with max increase to arg (3.4)

3.4 Resource Allocation with Interfering Femto-Cells

Allowing for interfering femtocells in the solution can lead to higher throughput.

Consider the scenario of Figure 3.6(a), if we apply the NINT model, then in one of

the optimum solutions, Femtocell1 will be selected and the power level for Femtocell2

will be set to 0. As a result the optimum value of τf is 2/3, and the corresponding rate

vector is ⟨1/3, 1/3, 1/3⟩. However, if we allow for interference, then τf can be set to

1 (i.e, macrocell is not active), and Femtocell1 can transmit to A and Femtocell2 can

transmit to C simultaneously for half of the tiles. In the remaining half, Femtocell1

can transmit to B, thus resulting in a rate vector ⟨1/2, 1/2, 1/2⟩.
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A
B C

FBS1 FBS2

MBS

FBS1 FBS2

(a) Topology

A, FBS1 B, FBS1 B, FBS2
C, FBS2

C, MBSB, MBSA, MBS

Partition A Partition B Partition C

(b) LCG and Partition Coloring Problem

Figure 3.6: Operating Femtocells under interference (a) Two interfering femtocells

(b) The link-conflict graph colored with two colors (triangle and square).

This kind of scheduling problem can be solved by constructing a conflict graph

of links (we call it link-conflict graph or LCG to avoid confusion) and by performing

a node coloring of this graph. However, our problem is quite different from prior

work on scheduling flows in ad-hoc networks [79, 85] as it involves power assignment,

and a macro base-station. Each node in the LCG represents a communication link.

If an Femtocell can communicate with a user at more than one power level, the

miminum power level allowing the communication is selected. So, for a given user,

there will be multiple nodes corresponding to links of various Femtocells and the

MBS. Such nodes corresponding to a single user will form one group, such that each

group corresponds to exactly one user. The nodes in the LCG are thus partitioned

into groups. All communication links that cannot be active simultaneously (due to

interference or conflicting user occupancy), will be connected with edges in LCG. For

example, nodes in the same group form a clique.

Constructing such kind of link conflict graph is outside the scope of this work.

We recommend to use techniques from [18] which can do the job within milliseconds.

This procedure can be even faster considering that some users will stay in the same

64



place within a short interval, thus only part of the graph needs to be updated on the

fly.

Unlike the NINT model, the LCG based INT model allows a single Femtocell

to transmit at different power levels to different users. Also, the allocation is more

fine-grained as each tile is allocated to a specific user. Whereas in the NINT model,

only the portions of tiles to macrocell and Femtocells(τm,τf ) are determined. Suppose

we color the graph with the least number of colors such that at least one node in each

group is colored. We name this problem as partition coloring problem. The colors

represent tiles when the corresponding subset of links will be activated. Minimizing

the colors is equivalent to minimizing the number of tiles needed to transmit one unit

of data to each user node. If we focus on the optimal solutions that have repeated

schedules and serve one user with exactly one tile within a schedule cycle, then we

have maximized the minimum throughput by solving the partition coloring problem.

Definition 3.4.1. Partition Coloring Problem: Consider a graph G = (V,E)

with nodes partitioned into x groups g1 · · · gx. Compute a color assignment that as-

signs a color to exactly one node in each group, such that nodes with the same color

do not share an edge, and the number of colors is minimized.

The partition coloring problem for the scenario in Figure 3.6(a) is shown in Figure

3.6(b). The triangles and the square represent two colors which correspond to two

tiles in the optimum solution. By repeating this tile assignment for each pair of

tiles, we can achieve the rate vector ⟨1/2, 1/2, 1/2⟩, for the three users. This also

corresponds to the result discussed earlier in this section.

3.4.1 Centralized Algorithm (INT)

Algorithm 6 colors the partition graph by repeatedly picking up a maximal indepen-

dent set and assigning the lowest color (or tile) to this set. After that, the partitions
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of all the nodes in the sets are removed from the partition graph (Lines 5−11). After

the coloring, it tries to reuse some colors on some nodes following the maxmin metric

(Line 12-19).

Observe that by controlling the elements of each independent set and the portion

of colors assigned to each set, the weighted maxmin fairness can also be addressed

by the INT model.

Algorithm 6: Centralized Partition Coloring (INT)

1 Input: Graph G(V,E) with N partitions denoted as V1...VN ,
∪N

i=1 Vi = V

2 Output: Colored V C ⊆ V s.t. V C ∩ Vi = 1 ∀i ∈ [1, N ]

3 t← 0

4 V C ← Φ

5 while V is not an empty set do

6 t← t+ 1

7 Pick a maximal independent set V M ⊆ V

8 Assign color t to all vertices v ∈ V M .

9 Remove Vi from V , ∀Vi ∩ V M ̸= Φ, and remove all edges that have at least one

end point in Vi

10 V C ← V C ∪ V M

11 for color i← 1 to t do

12 Sort v ∈ V C in increasing order by # colors of v

13 foreach v ∈ V C do

14 if None of v and its neighbors has been colored by i then

15 Color v with i

Algorithm 6 takes at most 1 + ∆ colors to color G where ∆ is the maximum
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degree of nodes in V without considering intra-partition edges. The proof for this

assertion is similar to the proof for the bound on any greedy algorithm for proper

vertex coloring [69]. Further, as partition coloring is a generalization of proper vertex

coloring, therefore, it is not possible to design a polynomial time algorithm that

guarantees coloring V in less than 1 + ∆ colors [69].

3.4.2 Localized Implementation (INT)

In this subsection, we propose an incremental, localized implementation for the col-

oring assignment problem, which can lower down the system overhead and insertion

time of a new user. We follow our previous assumption in the NINT model that the

cost of exchanging messages among neighboring femtocells is negligible by using the

broadband backbone.

Let us call the nodes in link-conflict graph G that represent the links between

Femtocell fj and its users as the nodes of fj. We define the local link-conflict graph

Gj
L of fj as a subgraph of G, which only involves the nodes of fj and other nodes

(edges) that conflict with (incident on) these nodes. When a new user comes to fj,

it will show up as a new partition in Gj
L.

Initially, the centralized algorithm will be called. Let t be the returned number

of colors. The localized implementation (Algorithm 7) works as follows. Whenever a

user moves away from the transmission range of its Femtocell, it randomly selects a

proxy Femtocell at its new location, which will help the user in securing a new time

slot. Let fj be the proxy Femtocell. If some color i ∈ [1, t] is available, i.e., assigning

this color will not cause conflict in Gj
L, it will assign the color and return (Line 3−4).

If not, the local adjustment among neighborhood will be triggered by fj. To that

end, fj and its neighbors will first free all their assigned colors (Line 6), this results

in some partitions (users) previously served by these Femtocells becoming uncolored.
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Then the same technique as in the centralized algorithm will be explored (Line 8), i.e.,

for each color i ∈ [1, t], find a maximum independent set in the local conflict graph

that can be colored by i. Color i is assigned to this set and the local link-conflict

graph is updated. Finally, if this algorithm is not able to color all partitions in the

neighborhood, then the centralized algorithm is called (Line 12).

Algorithm 7: Localized Coloring (INT) at Proxy fj

1 Input: Local Partition Graph of fj , new user u

2 Output: A new schedule with all local partitions colored

3 if Some color i ∈ [1, t] can be assigned to the node corresponding to (fj,u) in Gj
L

then

4 Color it with i

5 else

6 fj and its neighbors free all assigned colors, flag corresponding partitions in their

partition graphs as uncolored

7 for color i from 1 to t do

8 Exploit the same techniques as in centralized algorithm to color all uncolored

local partitions

9 if not all local partitions are colored then

10 Call the centralized algorithm

3.5 Simulations

We compare our solutions with two baseline algorithms and evaluate the minimum

throughput, average throughput, and the impact to throughput due to factors such

as femtocell density, the arrival rate and speed of users.
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3.5.1 Simulation Settings

Our simulations are conducted using the open source LTE-EPC Network Simulator

(LENA) [118] derived from the ns-3 project. LENA implements a spectrum frame-

work based on the LTE spectrum model as described in 3GPP TS36.101 [116], which

allows the use of different spectrum models for different types of cells. Specifically, it

uses an outdoor propagation model for macrocells and an indoor propagation model

for femtocells. A trace-based Jakes fading model based on 3GPP TS36.104 [117] was

also included. The typical parameters for the fading model were varied depending

on the user’s speed for both the pedestrian and vehicular scenarios as specified in

Annex B.2 of 3GPP TS36.104. A square region of 800m× 800m is considered in the

simulation. A macrocell of height 20m is placed at the center of this region with a

transmission range of 600m that allows full coverage of the area. Femtocells are de-

ployed indoor at randomly chosen locations. The size of each building is 10m× 10m,

and femtocells are placed at the center of those buildings on the ground. For each

femtocell, 3 power levels were available (p0, p1 and p2). p0 is set to 0, while p1 and

p2 result in transmission radii of 50m and 100m, and interference radii of 80m and

150m, respectively.

The default value of downlink bandwidth in our simulation is 26, i.e., resource

block (RB) size is 26. In the LENA simulator, resource block group (RBG) is the

minimum unit of resource to allocate. Based on the specifications in 3GPP TS36.213

table 7.1.6.1-1, a downlink bandwidth of 26 results in 26/2 = 13 RGBs in each

subframe. The resource allocation algorithms are implemented in the MAC layer,

and downlink RBGs are allocated to femtocells based on those algorithms. Mobile

users arrive at this network at various arrival rates (with i.i.d. inter-arrival time)

and speeds, and do a random walk for 60s. Saturated UDP traffic over downlink is

generated for every user in the simulation. During their connection time, users report
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their topology information to base stations using an uplink channel. The duration of

the simulation for every scenario was chosen to be 180 seconds.

To evaluate the performance of our solutions in different environments, we vary

the values of femtocells, arrival rates and speeds of users to generate multiple sce-

narios. Number of femtocells is selected from {10, 20, 30, 40, 50, and 60}, arrival

rates of users from {10, 20, 30, 40, 50, 60 users/min}. Speeds of users are also varied

within {3.6 km/h (pedestrian), 10, 20, 30, 40, 50, 60 km/h (vehicular)}. Unless other-

wise specified, the default settings are, 30 Femtocells, 30 users/min arrival rate and

3.6 km/h of moving speed.

We use the DRA+ algorithm proposed in [107] as our baseline algorithm, which

schedules interfering neighboring femtocells via distributed hashing. As DRA+ does

not consider power adjustment, we implement one instance of DRA+ for each power

level:

DRA-P1 implements DRA+ algorithm on femtocells, assuming all femtocells

work at power level p1.

DRA-P2 implements DRA+ algorithm on femtocells, assuming all femtocells

work at power level p2.

3.5.2 Simulation Results

Lexicographic Throughput: Figure 3.7 shows the performance of the six algo-

rithms evaluated for a single scenario with default settings. Users are sorted by the

amount of data received during 60s of random walk. It shows that DRA-P1 per-

forms better than DRA-P2. This is expected since the interfering neighbors are fewer

when femtocells work at power level p1 than at p2. Our distributed solutions perform

close to the centralized algorithms under both non-interfering and interfering models.

Compared to the baseline algorithms, while the non-interfering model achieves more
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Figure 3.7: Users are sorted by their throughputs. One point is plotted on the line

for every 3 users.

than 2x of the minimum throughput, the interfering model achieves more than 3x

of the minimum throughput. Those improvements are expected because the DRA+

algorithm allocates resources on a per-femtocell basis (not per-user basis), without

considering the power assignments of femtocells and densities of users, which are well

exploited in our algorithms.

Algorithm Comparison: Figure 3.8 shows the comparison of pairs of algorithms

using scatter plots of users, which leads to similar conclusions as above.

Impact on Throughput due to Various Factors: Next, we evaluate the impact

on throughput by varying the number of femtocells, arrival rates and speeds of users.

For this, we keep two factors as constant, and evaluate the impact of the third factor.

Each data point shown is an average of 5 scenarios, where every scenario has a random

placement of femtocells.

Figure 3.9 (a) shows when the number of femtocells increases, the minimum

71



 0

 500

 1000

 1500

 2000

 2500

 0  500  1000  1500  2000  2500

N
IN

T
-C

e
n

t 
(K

b
p

s
)

DRA-P1 (Kbps)

(a) NINT-Cent vs DRA-P1

 0

 500

 1000

 1500

 2000

 2500

 0  500  1000  1500  2000  2500

N
IN

T
-D

is
t 
(K

b
p
s
)

DRA-P1 (Kbps)

(b) NINT-Dist vs DRA-P1

 0

 500

 1000

 1500

 2000

 2500

 0  500  1000  1500  2000  2500

IN
T

-C
e
n
t 
(K

b
p
s
)

NINT-Cent (Kbps)

(c) INT-Cent vs NINT-Cent

 0

 500

 1000

 1500

 2000

 2500

 0  500  1000  1500  2000  2500
IN

T
-C

e
n

t 
(K

b
p

s
)

INT-Dist (Kbps)

(d) INT-Cent vs INT-Dist

Figure 3.8: Scatter plots of throughputs of 90 users, one point denotes one user.

throughput among all users and scenarios tends to increase in our algorithms. Note

that when the number of femtocells is more than 50, the minimum throughput in the

INT model starts to decrease, due to the fact that although pair-wise interference

between active links has been addressed in this model, the accumulated interference

becomes high enough at this point to affect the throughput. DRA algorithms, on the

other hand, do not benefit as much when increasing the density of femtocells. DRA-P2

is better than DRA-P1 only when the number of femtocells is small (10 femtocells).

This can be explained by the fact that DRA algorithms do not perform power adjust-

ment, and spectrum resource is divided equally among the neighboring femtocells.

When the number of interfering neighbors is small in sparse deployments, DRA-P2
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performs better due to its larger coverage area. However, when the number of inter-

fering neighbors becomes large in dense deployments, the resource allocated to each

femtocell starts to drop significantly, resulting in lower throughput to users in both

algorithms. Overall, the NINT and INT models can achieve up to 2x and 3x of the

minimum throughput. Average throughput in the same set of scenarios is shown in

Figure 3.9 (d), which shows similar trends. Similarly, Figures 3.9 (b) and (e) show

that minimum and average throughputs drop when the arrival rate increases (more

users in the system), and Figures 3.9 (c) and (f) show that the minimum through-

put increases slightly, and the average throughput decreases slightly when the speed of

users is increased from 10 km/h to 60 km/h. This is because when the speeds of

users is increased, the chance that a user sees a femtocell in its lifetime increases.

Thus the user that receives the lowest throughput has higher chances to increase

its throughput. However, due to the Doppler effect, system-wide throughput gain is

offset by the increased speed.

Approximation Ratio of INT Model: To understand the gap between our INT

algorithm and its optimal solution, we then formulate the Partition Coloring problems

as an Integer Linear Programming problem, and use lp solve [78] to obtain the optimal

solution. The partition graphs are re-constructed from the log files of our previous

simulations, which guarantees that this evaluation is based on realistic settings. We

show the resulting average number of colors by partitions for each algorithm. Note

that the number of partitions (users) shown in Figure 3.10 are counted only for

femtocell users, since any of the macrocell partitions (users) would have conflicting

links with all other partitions (users) and will take one color in any algorithm.

From Figure 3.10, it is clear that performance of our INT-Cent algorithm is very

close to the optimal, even though the approximation ratio tends to decrease in larger

graphs (i.e., more femtocell users).
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Figure 3.9: Variation of minimum/average throughput of all users due to various fac-

tors. (a,d) Minimum/Average throughput increases as #femtocells increases (arrival

rate = 30/min, speed = 3.6 km/h). (b,e) Minimum/Average throughput decreases

as the arrival rate of users increases (#femtocells = 30, speed = 3.6 km/h). (c,f)

Minimum/Average throughput increases/decreases as the speed of users increases

(#femtocells = 30, arrival rate = 30/min).

74



 0

 1

 2

 3

 4

 5

 0  5  10  15  20  25  30  35

A
v
e

ra
g

e
 N

u
m

b
e

r 
o

f 
C

o
lo

rs

Number of Partitions

INT-Cent Solution
Optimal Solution

Figure 3.10: Average number of colors needed by INT-Cent algorithm and the optimal
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System Overhead: In simulations, in order to create the conflict graph, whenever a

change in the topology occurs, users send their topology information to base stations

through an uplink channel. Next, we evaluate the overhead of acquiring and sending

this information. For the NINT model, we assume femtocells periodically send be-

caons at different power levels, and a node needs to send a message of 2 bytes for each

beacon it receives, indicating which femtocell/powerlevel the beacon is from. For the

INT model, we assume that a message of 2 bytes needs to be sent by a node for each

pair of conflicting links it finds (assume there is some throughput test mechanism to

identify conflicting links).

Figure 3.11 (a) shows the overhead imposed by those control packets as a per-

centage of all data packets with different numbers of femtocells in the network. Note

that we did not count the coordination packets sent between neighboring Femtocells
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in the distributed solutions, since their cost is relatively low. It shows that in all

algorithms when users walk at 3.6 km/h, the percentage of overhead increases with

increase in the number of femtocells, due to increase in the number of interference

sources. While the INT-Cent algorithm has the highest overhead, the distributed so-

lutions can save upto 1/3rd of system overhead from their centralized counterparts.

Recall from Figure 3.9 (d) that the total throughput of the network is also increasing

when more femtocells are deployed, implying that the total number of overhead pack-

ets is increasing at a higher rate. Figure 3.11 (b) shows that given the same set of

femtocells and users, when the speed of users is increased from 10 km/h to 60 km/h,

the percentage of overhead increases at an even higher rate. This is caused by both

the increasing chance of seeing interfering femtocells, and the result of fast fading

channels. However, the savings of overhead in the distributed solutions compared

with the centralized solutions are still substantial.

3.6 Discussion and Future Work

• Construct Conflict Graphs. This work takes conflict graphs as the inputs of

our algorithms. However, constructing such kind of conflict graphs sometimes

could be nontrivial. Although conflict graphs are constructed based on the

knowledge of users’ locations in our simulations, this approach might be neither

accurate nor feasible due to the lack of knowledge of users’ locations. However,

we can construct the conflict graphs without knowing users’ locations.

Constructing conflict graph for the NINT model is relatively simple. Recall

that the conflict graph in NINT model is stable, i.e., it does not need to be

reconstructed from time to time. For any Femtocell, it only needs to figure out

which neighbor (at what power level) it interferes with, for once. This kind of

requisite is very similar to the one in [107], in which every Femtocell needs
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Figure 3.11: Percentage of overhead with different number of femtocells and mobile

speeds (a) Percentage of overhead slowly increases as the network becomes denser

(arrival rate = 30/min, speed = 3.6 km/h). (b) Percentage of overhead increases

faster when increasing the speed of users (#femtocells = 30, arrival rate = 30/min).

to find out its set of interfering neighbors. To obtain such conflict graph, one

way is to let each Femtocell send out beacons at different power levels, and

look at the received signal strength of pilots from others. The second way is to

construct the conflict graph based on users’ reports. Whenever a user associated

with some Femtocell encounters interference, it reports to the Femtocell. Then

by testing the throughputs (also called bandwidth test) with and without the

presence of another neighbor, this Femtocell can figure out if it interferes with

the Femtocell (at the current power level) or not.

In NINT model, other than the conflict graph of femtocells, we also need to

know the weight (# of users) of Femtocells at each power level. This weight

info need to be updated from time to time. Similar to the above mentioned
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method, by letting Femtocells send beacons at different power levels, users can

report their received signal strengths from each Femtocell in vicinity. In this

way, Femtocells know how many users are available to serve at each power level.

Unlike the NINT model, the link conflict graph in INT model is more com-

plicated and needs to be updated on runtime. Most prior research on conflict

graph construction uses bandwidth tests that tests a pair of links based on the

observations of throughputs with presence and absence of simultaneous trans-

missions [89, 91]. This approach is also adopted in a latest femtocell resource

allocation work [22]. In this work, we also assume that a bandwidth test

framework is sufficient to construct the link conflict graph, and we evaluated

the overhead of such approach in our simulation part.

Other than bandwidth test, another online approach is proposed in [18] which

can do the job within milliseconds as claimed in the work. However, this ap-

proach requires to modify the air interface, which is usually prohibitive in cel-

lular network. If this approach could be applied to femtocell network, the

procedure of constructing link conflict graph might be even faster considering

that some users will stay in the same place within a short interval, thus only

part of the graph needs to be updated on the fly.

• SINR based Interference Model. We have so far only considered binary

interference model. Alternatively, the SINR model can be considered. In the

SINR model, let SINR(i, l) be the SINR at user i in tile l, then it must be

larger than a threshold γ for successful reception in tile l. In some sense, our

binary approach is only an approximation of the underlying SINR based model.
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Observe that SINR(i, l) is dependent on the allocation of tile l on other fem-

tocells, achieving maxmin resource allocation and maximal throughput under

SINR model will be more interesting and challenging.

In order to solve this problem, we will explore a simplifying technique that limits

the summation of noise only to neighboring femtocells by relaxing γ to γ + η,

where η is appropriately chosen so that it bounds the maximum interference

from all other non-neighboring femtocells. This construction will allow to focus

on a limited number of neighboring femtocells for the purpose of scheduling and

power assignment.

3.7 Conclusion

To address the maxmin and weighted maxmin problems in the context of resource

allocation in femtocells, two models are considered in this work. The non-interfering

model selects an independent set of femtocells, and determines the resource allocation

factors based on this set. For the interfering model, the problem is transformed into

the partition coloring problem. Algorithms with provable bounds are designed for

both models. Improvements of up to 3x is observed for the minimum throughput for

the interfering model over previous work.
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Chapter 4

ACHIEVING QOE DOMAIN FAIRNESS THROUGH

BITRATE INFERENCE AND BANDWIDTH

ALLOCATION IN LOCAL AREA NETWORKS

Video traffic exceeds more than 50% of todays Internet traffic [98, 120], with Netflix

and YouTube leading the list of most popular applications in desktop and mobile

platforms [98]. The growth of video traffic, partially driven by the rapid proliferation

of smartphones and tablets, makes the problem of content delivery more challeng-

ing. To improve user experience, new techniques such as DASH (Dynamic Adaptive

streaming over HTTP), has been widely adopted in today’s players.

In DASH, the server maintains multiple profiles of the same video, encoded in

different bitrates and quality levels. The video object is partitioned in fragments,

typically a few seconds long. A player can request different fragments at different

bitrates, depending on the underlying network conditions [19]. One advantage of

DASH over traditional customized video transport protocols is that it works with

middleboxes such as NATs and firewalls. DASH has been implemented in most

popular video players on different platforms, including Microsoft’s Smooth Streaming,

Adobe’s OSMF player, Netflix player, and YouTube player, etc.

To provide the best quality of service to the end-users, most content providers

implement proprietary bandwidth estimation and bitrate adaptation algorithms in
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their players. However, when multiple clients share the same bottleneck link, the

uncoordinated behaviors of players and the diversity of available bitrates of video

files bring up many issues including unfairness and inefficiency[19, 65].

Two classes of solutions have been proposed for addressing these issues: client-side

adaptation and access point scheduling. An example of the former class is [65], which

develops a suite of techniques, including randomized download scheduler and stateful

bitrate selection, etc., to guide the tradeoffs between fairness, efficiency and stability.

Those client-side solutions require changes to the video players, which make them

difficult to deploy in practice. In addition, such schemes are suboptimum due to lack

of a global view. [33] proposes a scheduling framework at the access points(APs) for

adaptive video delivery over cellular networks based on the set of candidate bitrates

of each video file. Such information is critical to the scheduling algorithm of the AP.

This will be discussed in detail in Section 4.2.1.

Existing access point scheduling frameworks assume that the bitrate information

can be derived using techniques such as Deep Packet Inspection (DPI) [33]. DPI based

techniques are in general difficult to implement, as the bitrate information of different

video files (possibly from different providers) might be encoded in different formats,

or transmitted in different fields of network packets. Moreover, some video files may

be delivered over https (widely supported by YouTube, Facebook, Dropbox, etc.),

and some video files may not even have such information (a private video uploaded

to Dropbox).

In this work, we develop a set of novel techniques for achieving fair, and efficient

video delivery to all clients without requiring any changes to the individual video

players at the client-side. To acquire the candidate bitrates of the currently playing

video files, we propose a novel solution which infers such information based on ob-

served traffic patterns at the APs and feedback provided by a software running at
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the clients. Note that the proposed software module at the clients accommodates all

video players, and does not require modifications to any specific player.

4.1 Related Work

The problem of optimizing video delivery has been studied by a large number of prior

works. [81] proposes an admission control and scheduling framework, which provides

a uniform QoE to users based on a long-term dissatisfaction metric. [72, 28] pro-

pose adaptive video streaming solutions based on flexible coding schemes (H.264), in

which, the transmitted bitrate is constantly adapted to the available network band-

width, such that audio and video artifacts caused by packet loss are avoided. [101]

presents the design of a mobile video-centric proxy cache located in the local cellular

infrastructure. It uses a linear encoder to adapt the video bitrate based on the avail-

able bandwidth. [131] presents a cross-layer design of video transmission scheme,

which jointly considers the application layer information and the wireless channel

conditions. These aforementioned schemes are designed for non-DASH single-bitrate

video flows, and they do not consider the bitrate adaptation at the client side.

DASH-based video delivery techniques have been widely adopted in today’s play-

ers. [128] confirmed that DASH improves end-users’ subjective perception greatly

compared with fixed-rate streaming in terms of QoE. Authors of [19, 65] reported

the issues of unfairness, inefficiency and instability in DASH video streaming, when

multiple DASH clients share the same bottleneck link. A number of related works

have been proposed to address those issues.

On the client side, [23] studies the bitrate selection problem in DASH players. It

presents a quality-aware rate adaption scheme to maximize the client’s QoE in terms

of both continuity and fidelity (picture quality). [65] develops a suite of techniques,

including randomized download scheduler and stateful bitrate selection, etc., to guide
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the tradeoffs between fairness, efficiency and stability. Those client-side solutions

require changes to the video players, which make them difficult to deploy in practice.

In the network infrastructure part, [93] proposes a wireless DASH proxy to en-

hance the QoE of wireless DASH. The authors propose to implement the rate adap-

tation logics at the edge between Internet and wireless cellular core networks, which

is different from the conventional DASH that implement such logics either locally in

the user equipments or remotely in the DASH server. [49] leverages the OpenFlow

technology and proposes an OpenFlow-assisted QoE fairness framework to provide a

control plane that orchestrates the bandwidth estimation of different DASH players.

The proposed solution could be suboptimum due to the lack of a global view at local

clients, and it requires modifications to all DASH players. [33] is the most relevant

work to ours. The authors propose a scheduling framework at cellular basestations

for adaptive video delivery over cellular networks based on the candidate bitrates of

each video. The proposed solution relies on the DPI to acquire the bitrate informa-

tion of the videos being played. However, acquiring bitrate information from DPI

is unreliable or infeasible in the face of diverse packet structures and encryption. In

contrast, this work proposes a solution that allows the AP to effectively infer the

bitrate information.

4.2 System Model

4.2.1 Problem Description

Consider a 802.11 wireless access point that is associated with N clients which are

streaming videos. We focus on the cases when the access link between the AP and

clients is the bottleneck on the network traffic path, which are common in places where
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the density of APs is high, such as airports, hotels, restaurants and apartments. This

assumption is supported by prior works [105].

Given a certain amount of network resource to be shared by N video streaming

clients, this work aims to design coarse-level resource allocation algorithms to achieve

fairness in the QoE domain. Note that clients that are not streaming videos are not

under the consideration of this work, and will not be allocated any resource by this

framework. While a naive solution which equally divides the network resource across

N clients may lead to quality of service (QoS) domain fairness, it is not necessarily

the case for QoE domain fairness. Figure 4.1 shows one example that smart resource

allocation based on the knowledge of bitrates can further improve the QoE domain

fairness and the efficiency of the system.

4.2.2 Acquiring Bitrate Information

From the example shown in Figure 4.1, the bitrate information is critical to the

scheduler for QoE domain fair resource allocation. Prior works rely on DPI to analyze

the content of the packets, which is not feasible due to many reasons such as cost and

encryption. Another possible solution is to let players report such information to the

AP. However, due to the large diversity of players and platforms, it is not practical

to require all players to provide such API.

To address this problem, we design a solution that allows the AP to effectively

infer the bitrate information of clients. Our solution is incentivized by the periodical

chunk-by-chunk download strategy of DASH players.

The periodical download strategy is fundamental to the adaptive bitrate selection

mechanism, and has been widely adopted by DASH players. To verify this, we carried

out experiments to test the download strategies of the official video players of some of

the most popular content providers, including YouTube, Netflix, iTune, etc. We use a
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Bitrates:

7Mbps

6Mbps

4Mbps

Bitrates:

14Mbps

8Mbps

Total Bandwidth 14Mbps

QoS Fair A: 7Mbps, B: 7Mbps

QoE Fair A: 6Mbps,  B: 8Mbps

A B

Figure 4.1: One AP serves two clients. Client A has three bitrates: {4 Mbps, 6 Mbps, 7

Mbps}. Client B has two bitrates: {8 Mbps, 14 Mbps}. The bottleneck air interface is 14

Mbps. In the QoS fair allocation, each client receives 7 Mbps. As a result, Client B’s video

is not watchable (frequent stalls). In the QoE domain fair allocation, client A receives 6

Mbps and B recieves 8 Mbps, and both clients can play the videos smoothly. Note that the

bitrate information of each video is critical for the QoE solution.

laptop which connects to the Internet through an Ethernet cable to set up a wireless

AP. The downlink traffic of the client devices was logged by the AP using Wireshark.

Our result confirmed that the periodical download strategy has been adopted by

almost all the tested video players, except for the YouTube HTML5 player. Figure

4.2 shows the observed download traffic patterns of the YouTube Flash Player, the

YouTube IOS App and the Netflix Android App.

Our solution takes advantage of this phenomenon, and lets the AP infer the bitrate

information based on it. The idea is that if the AP can detect the life cycle of an

average period based on the client’s downlink traffic pattern, then it can deduce

its bitrate based on the total amount of data in the cycle and the length of the

cycle. To get information about the candidate bitrates of the same client, the AP

85



 0

 6

 12

 18

 24

 0  20  40  60  80  100

M
b
/s

Youtube Flash

 0

 6

 12

 18

 24

 0  20  40  60  80  100

M
b
/s

Youtube IOS App

 0

 6

 12

 18

 0  20  40  60  80  100

M
b
/s

Time(s)

Netflix Android App

Figure 4.2: The observed periodical download traffic patterns of some video players:

the YouTube Flash Player, the YouTube IOS App and the Netflix Android App. The

players initially fill the buffer with a bulky download (about 20 − 40 seconds in the

figure), and then maintain the fullness of the buffer with periodical downloads.

can intentionally change the available bandwidth assigned to that client, which will

force the client to adjust its bitrate. This novel solution does not require any change

to the client. To extend our solution to the cases of legacy players, which do not

exhibit periodical downloads, we also developed a client module. The client module is

deployed as a system service on clients, and it can report the status of the video (play

vs. stall) to the AP. More details about our bitrate inference solution is presented in

Section 4.3. Note that, in this chapter, we assume that one video streaming client only

has one video thread, thus the term “client” and “player” are used interchangeably

throughout this work.
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4.2.3 Objective and Challenges

Let P denote the total number of network resource units that is designated to all

N video clients for each unit of time, and pi denote the number of number resource

units allocated to i. We use αi to denote the physical transmission rate of i: αi×pi is

the maximum available throughput of i, and αi depends on the signal-to-noise ratio

(SNR) of i. For simplicity, we assume that αi is not changing at the bitrate inference

stage. However, the proposed solution can be easily extended to cases where αi

changes. Define ri as the bitrate selected by player i using its internal rate selection

algorithm based on the available throughput αi × pi. We use a function γi(∗) to

represent this selection: ri = γi(αi × pi). In general, ri ≤ αi × pi.

This chapter aims to achieve the max−min fairness of QoE among N clients by

determining the values of pi,∀i ∈ {1..N}.

QoE is conventionally measured in terms of Mean Opinion Scores (MOS). To

evaluate QoE online, existing works show that MOS can be mapped from a couple of

objective metrics [40], including:

• Stall Ratio: The fraction of the session time (playing + freezing time) spent in

buffering.

• Rate of Stall Events: The number of stall events over the session time.

• Bitrate: the bitrate level at which the video is being played.

According to [58, 40], stall ratio and rate of stall events are two dominant influen-

tial factors. Based on this, the QoE metric in this work is defined by a tuple ⟨s, b⟩, in

which s denotes the primary sort key mapped from stall ratio and rate of stall events,

and b denotes the secondary sort key mapped from bitrates.

Let client i’s primary QoE metric si = Si(ri, αi × pi), in which Si(∗) is the QoE

function that maps stall profiles to MOS for player i. Note that the stall profile of i
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depend on its video bitrate (ri), the throughput (αi×pi), and the streaming strategy

of i. We assume si = 0 if ri ≤ αi×pi, i.e., no stall occurs if the throughput is sufficient

for the selected bitrate. Similarly, let bi = Bi(ri), in which Bi(∗) is the video quality

function depending on the type of the video that i is currently playing and the bitrate

of the video (ri).

Studying the functions of S(∗) and B(∗) is outside the scope of this chapter. Many

related works exist. We use the results of [84] and [49] in our experiments. For the

ease of presentation, we assume that S(∗) and B(∗) are identical for all players, and

it can be shown that the presented resource allocation algorithm also works in cases

when S(∗) and B(∗) are different for different users.

Formally, the objective of this chapter is defined as follows:

P1 : max
pi

min
1≤i≤N

⟨si, bi⟩

s.t.
N∑
i=1

pi ≤ P (4.1)

where ⟨si, bi⟩ is the QoE metric of client i, and tuples of different clients are ordered

lexicographically.

To this end, we summarize the major challenges faced in this work:

• Acquire Bitrate Information without Modifying Players. Bitrate infor-

mation is critical to resource allocation problems. The vast diversity of players

makes it impractical to acquire bitrate information directly from the players by

modifying them. Acquiring bitrate information without modifying the players

is a challenge.

• Accurate Event Identification. This chapter proposes novel bitrate infer-

ence solutions based on events raised by players (download start, idle start, etc.).

To guarantee the performance of the bitrate inference algorithm, we must be

able to accurately identify such events, which is challenging.
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• Efficient Bitrate Probe. Due to the delay in the client side bitrate adaptation

as well as the AP’s bitrate inference, discovering more candidate bitrates of the

clients requires us to design efficient bitrate probe schedule, which is a challenge.

4.3 Inferring Bitrate Information

4.3.1 The Rationale of Bitrate Inference

DASH video players maintain a set of states (e.g., play, stall, download, idle, etc.).

State transition is triggered when some criteria is met. For instance, when the buffer

size is over some threshold (say τd), the player starts the periodical download to fill

the buffer, and when the buffer size is larger than another threshold τi, the player

stops the download and enters the idle stage.

This work proposes a bitrate inference solution by taking advantage of this com-

mon practice. The proposed solution detects the download start or idle start events of

a player, and then calculates the player’s current bitrate based on the traffic volume

between those events. The idea is that, for a client i that periodically downloads

the video, if the AP finds two consecutive download start events at time t1 and t2,

with some idle time in between. The AP assumes that the video is playing smoothly

during time [t1, t2], since there is idle time. Another assumption is that the periodical

download events started at t1 and t2 are due to the fact that the player’s buffer size

reduces to τd. Let V(t1,t2) denote the amount of data downloaded between [t1, t2]. We

conclude that V(t1,t2) has been fully consumed during [t1, t2]. So the current bitrate of

i can be estimated by
V(t1,t2)

t2−t1
. Note that our bitrate inference solution is independent

of the values of τd and τi, i.e., it is a general solution for all DASH players. By

adjusting the allocated bandwidth to i, which in turn triggers i’s bitrate adaptation

mechanism, other candidate bitrates of i can be incrementally discovered.
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4.3.2 Accommodate Continuous-Download Players

However, not all players exhibit periodical download behaviors. According to [56],

there are non-DASH players that continuously download videos at the maximum

possible speed, such as the YouTube HTML5 player. Through our experiments, we

found that the YouTube HTML5 player, the Facebook flash player, and the Dropbox

flash player are all continuous-download players. Figure 4.3 shows the downlink traffic

observed by the AP with the YouTube HTML5 player.
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Figure 4.3: The YouTube HTML5 player continuously download the video content. A

total bandwidth of 20 Mbps is allocated to the client. The client takes all the bandwidth

until the whole video is downloaded at time 127s, even though the video bitrate is only

4.9Mbps.
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Our solution relies on the play and stall events to accommodate the continuous-

download players. Let τp be the threshold, above which the player starts to play the

video, and τs be the threshold, below which the player stops playing the video (stall

occurs). Suppose one stall occurs at time t1, and then the player starts to play at

t2, and then another stall occurs at time t3, assuming t1 < t2 < t3. By applying the

same idea as presented for periodical-download players, we can estimate the bitrate

by
V(t1,t3)

(t3−t2)
, in which t3 − t2 is the video play time.

Since the AP has no knowledge of play and stall events. We address this problem

by deploying a software module on client devices. This module can detect stall and

play events of the player and send it to the AP. We integrate this module as a system

service, which means no modification to the players is needed. Note that the stall-

based solution can also be applied to the periodical-download players. This will help

the AP infer the bitrate of the clients faster or with higher accuracy.

4.3.3 System Architecture

Our solution consists of two modules: the client module and the AP module. The

client module is installed on user devices. It reports the QoE related events and

metrics, including the stall events, the current quality of the video, to the AP module.

Since the performance of the bitrate inference algorithm at the AP could be affected

by human interactions during its inference stage, the client module could also report

such events to the AP. In this work, we assume no human interference during the

bitrate inference stage, and leave this part for future implementation. The AP module

records the downlink traffic volume and pattern of each client, and infers the current

bitrate of each client based on the feedback of client modules. It also adjusts the

bandwidth of each client to discover more bitrates information of the clients in the

shortest time.
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4.4 The Client Module

We implement the stall detection function on the client module by monitoring the

output (video and audio) of client devices. For instance, the client module can sample

the pixel values within the player window and report a stall event if all the pixel

samples do not change for a certain time. One challenge of the proposed solution is

that the player window might only occupy part of the screen, and we need to detect

the part of the screen that is occupied by the player (called Effective Video Area in

this chapter), and make sure pixel samples are taken within the effective video area.

Another challenge is that the content of some videos could have very slow motions,

which could affect the accuracy of the pixel-change based stall detection approach.

Such issues need to be properly handled in the solution.

The client module is integrated in the system as a service, which can support all

video players installed in the system. In doing this, no change is needed for any video

player, which makes the solution easily applicable in real systems. The client module

is activated by certain system events or under certain conditions. Such system event

or condition could be, opening a video player application, creating a video-player

related thread, visiting the domains of some known content providers, or when the

network usage of some application is above certain threshold. The client module then

starts to detect the effective video area and video play or stall events. Whenever a

video play or stall event is detected, it reports such event to the AP, which then

uses such information to infer the bitrate of the corresponding client and its quality

of experience. We have implemented the client-server communication using socket

programming. For simplicity, we ignore the delay in detecting such events, Instead,

we use a small time offset at the AP to count in such delays.
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4.4.1 Detecting Effective Video Area

To sample pixels of the video being played, the client module first finds the effective

video area on the screen. For this, the client module maintains a matrix of integers,

each of which represents the rate of changes of the corresponding pixel on the screen.

The client module then seeks to find two horizontal lines and two vertical lines whose

changing frequencies have the highest difference compared to their neighboring lines.

This algorithm is elaborated in Algorithm 8. The idea is that the effective video area

in general has higher rate of changing pixels compared to the non-video area. We

found through experiments that the effective video area can be accurately detected

within 2− 3 frames for most videos.

In Algorithm 8, change is used to save the change rate information for each pixel

(Line 1), and preP ix and curP ix are used to save the screen of previous frame and

current frame. By comparing the current frame against the previous frame, it finds

if each pixel has changed and updates change accordingly (Lines 8-10). This was

repeated for at least 1 second (Line 3) since we found our algorithm can accurately

detect the effective video area within 2 − 3 video frames. Lines 14-17 computes

the relative changing rate of each horizontal and vertical line (saved to hLines and

vLines, by taking the difference of changing rates between the current line and its

neighbor. Since we expect that the effective video area has larger changing rate than

the non-video area, the borders of the video area should have the steepest difference

of changing rates. So the largest two values of those two arrays are used to form a

rectangular area, which is then returned by the algorithm (Lines 18-19).

Algorithm 8 is most accurate when the video is being played for whole or at

least part of the time when the algorithm runs. In our implementation, we run this

algorithm multiple times to guarantee the accuracy of the detection. The presented

algorithm keeps track of all pixels (W ×D). The efficiency could be improved if we
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Algorithm 8: Detect Effective Video Area

Input: Pixel values of the screen over time

Output: Effective Video Area

1 change[W ][H]: track screen pixel changes // W:width, H:height

2 initT ime← curTime()

3 while (curTime()−initT ime > 1) do

4 curP ix[W ][H]← capture current screen

5 if (preP ix = null) then

6 preP ix← curP ix;

7 continue // first screen capture, go to next step

8 for (i← 0 to W ) do

9 for (j ← 0 to H) do

10 change[i][j]← change[i][j] + (preP ix[i][j] = curP ix[i][j])?0 : 1

11 preP ix← curP ix

12 hLines[H] : count pixel changes of each horizontal line

13 vLines[W ] : count pixel changes of each vertical line

14 for (i← 1 to W ) do

15 for (j ← 1 to H) do

16 vLines[i]← vLines[i] + |change[i][j]− change[i− 1][j]|

17 hLines[j]← hLines[j] + |change[i][j]− change[i][j − 1]|

18 Find (i1, i2, j1, j2), s.t. vLines[i1], vLines[i2] are largest in vLines[0..W ]

hLines[j1], hLines[j2] are largest in hLines[0..H]

19 return the rectangle formed by (i1, i2, j1, j2).
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only track a lower density of horizontal and vertical lines, e.g., 1 line of pixels for

every 10 lines.

(a) Medium-motion Video (b) Low-motion Video

Figure 4.4: Detecting the effective video area of medium-motion videos and low-motion

videos. Algorithm 8 can correctly detect the video area of both types of videos within 2−3

frames with the presence of background noise. (a) A medium-motion video that is available

at [3]. (b) A low-motion video that is available at [6].

In our experiment, Algorithm 8 was tested for different videos especially those

with medium-motion or low-motion contents. Examples of medium-motion and low-

motion videos are listed in [3] and [6]. The video player in the experiments occupies

only part of the screen, and we use “cat /dev/random”, to generate random output on

the background screen to simulate the scenario that the user is doing some keyboard

interactions and meanwhile watching videos. Figure 4.4 shows two sample results of

the algorithm. The effective video areas are marked by red borders.

Through our experiments, we do find the performance of the algorithm is degraded

on one type of video which only consists of a few static pictures. An example of such

video can be found at [2]. As the fraction of such videos is insignificant, and the bitrate
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of those videos are usually very low, they are not handled by the client module. The

QoE of viewers of such videos can be guaranteed by reserving a minimum bandwidth

for all players.

4.4.2 Detecting Stall Event

Stall information is needed for accounting the QoE levels of users and inferring the

bitrate information of videos. Stall events can be detected by monitoring pixel changes

in the effective video area. When all pixel samples are not changing for a certain

duration of time, the client module decides that a stall is present. However, part or

all of the effective video area might not be changing at certain time in some low-

motion videos. In this section, we study the relationship between the number of pixel

samples, sampling locations and the accuracy of stall detection.

Due to the fact that stall events of online videos caused by network congestion is

not predictable, i.e., the ground truth of stall events are unknown, the experiments

presented in this section were all offline. We use the default movie player of the

Ubuntu system to play a selected video, and meanwhile use a script to generate

the “space-pressed” event. Since the player responds to “space-pressed” events by

switching between the “playing” and “paused” modes, stall events can be arbitrarily

generated. The script also logs the timestamp of each occurrence of “space-pressed”

event, which is then used to deduct the ground truth of stall events.

The length of each stall and play in the experiments are randomly selected from

the range of [2, 5], to simulate a scenario in which the available bandwidth is ap-

proximately half of the bitrate. The program samples the effective video area twice

for every second. The number of sample pixels is varied within {1, 4, 9, 16, 25, 36}.

Sample pixels are evenly distributed within the area so that their coordinates cut the

video area into grids of the same size. For example, let W and H represent the width
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and height of the effective video area. If only one pixel is to be sampled at every

second, then it takes the pixel coordinated at [W
2
, H

2
]. Similarly, if 4 pixels are to be

sampled, it takes the pixels coordinated at [W
3
, H

3
], [2W

3
, H

3
], [W

3
, 2H

3
], [2W

3
, 2H

3
].

The experiment consists of a total of 12 videos from YouTube, with 9 of them

labeled as “normal videos” with medium to low motions (examples are [3] and [6]),

and 3 of them labeled as “partially static videos” which play static picture part of the

time or in part of the video area. Those videos, are chosen to test the performance

of our approach in worst cases (As mentioned earlier, videos that contain pure static

pictures are not handled by the client module). Each video also has multiple levels

of resolutions (typically 144p, 240p, 360p, 720p, 1080p). The result shows that while

the accuracy of stall detection is relatively independent of the resolution, it depends

on the number of sample pixels.

Since the sampling frequency (twice per second) in the experiment is relative high

compared to the stall duration (2−5 seconds), the stall detection module did not miss

any stall event, e.g., the false negative is 0. However, false positives maybe present

when the video is actually playing while all the sampled pixels are not changing.

Figure 4.5 plots the number of reported stall events over the actual number of stall

events. The result shows that while sampling 4 pixels suffices most videos, more

pixels (16) are needed to handle partial static videos.

4.5 The AP Module

The AP module consists of the following functions: 1) Traffic Accounting. For

each client IP, it builds the traffic volume profile which will be used for inferring

video bitrates at the clients. 2) Communication with Clients. The AP module

also communicates with different clients to record the play or stall events at each

client, which will help infer the video bitrates. 3) Download Event Detection.
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Figure 4.5: The ratio of the detected stall events over the actual stall events.

Most clients download videos periodically, and the server needs to identify the start

or end of periodical downloads for each client, to infer the video bitrates of clients.

4) Bitrate Probe Algorithm. Note that the AP needs to adjust the bandwidth

allocated to each client to trigger the bitrate adaptation mechanism at the clients

in order to discover multiple bitrates of each client. This procedure is called bitrate

probe. Efficient algorithms need to be designed to probe the available bitrates of all

clients in a short time. 5) Bandwidth Allocation Algorithm. After the bitrate

probe is finished, the AP has gathered the bitrate information for all clients. At this

point, the AP performs effective resource allocation algorithm to achieve max−min

QoE fairness across all clients.
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4.5.1 Traffic Accounting and Communication

For the ease of discussion, let us assume the ⟨IP, Port⟩ used by the video player

of each client is known to the AP. Such information can be reported by the client

modules. To achieve space efficiency, instead of saving all packets, the AP only saves

a coarse statistics for each player. For this, the AP aggregates the amount of data

transmitted to each player i by intervals of 10 ms, and saves the result (Interval Start

Time, Amount of Data) in a TreeMap Mi. This allows the AP to quickly sum up the

total amount of data transmitted to a given player during a given time interval.

The communication function on the AP listens on certain port to receive messages

from the clients. The most common messages include the “Player IP and Port”

message, the “Play Started” message, and the “Stall or Play Event Occured” message,

etc. Specifically, there is no timestamp encoded in the message due to the lack of

synchronization of clocks between the AP and clients. To find the time of occurance

of the event, the AP estimates it with the local reception time minus a small offset,

which is used to account for the event detection delay of the client module and the

transmission delay.

4.5.2 Periodical Download Identification

This submodule aims to find the start time of each periodical download, which will

be used to infer the bitrate of the client (Using the download finish events to infer

bitrates is also possible, although this work uses the download start events.). Note

that the traffic volume is not necessarily zero during the gap of two consecutive

downloads (Figure 4.2). There might be some control packets between the player and

the remote host. Based on our experiment, we found that the amount of traffic related

to control messages is very small compared to the amount of periodical download

traffic. Based on this, we present a Period Identification Algorithm (PIA), which
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uses a threshold based method to differentiate the periodical download traffic from

the occasional control traffic.

Let hd and hm be the thresholds to identify the existence of download activity,

and distinguish control packets from video data download, respectively. We set hd =

1Kbps and hm = 100Kb in our experiment. For a given client i, let Mi be the traffic

map of i. To check if a timestamp t is the start of a periodical download, the PIA

algorithm (Algorithm 9) works as follows: PIA returns false if t is not recorded in the

dataset (Line 1), or if the throughput in the current slot t is less than hd (no download)

or the throughput in the previous slot t − 10ms is larger than hd (download starts

at previous slots, Line 3). PIA then sums up the total amount of data consecutively

downloaded in this period (Lines 6-8), and decides if it is a video data download (Line

9).

Algorithm 9: Identify Periodical Download Start

Input: hd, hm, t, P

Output: If t is the start of a periodical download

1 if t not in Mi.keys() then

2 return false // no record for the input

3 if Mi[t] < hd or Mi[t− 10] >= hd then

4 return false // the input is not the start time of a download

5 total← 0

6 while Mi[t] > hd do

7 total← total +Mi[t] // aggregate traffic starting from t

8 t+ = 10

9 return (total > hm)
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4.5.3 Probe More Bitrates

Based on the received stall events or detected download start events, the current

bitrate of each client can be deducted based on the solution presented in Section

4.3.1. To find other candidate bitrates of the clients, the AP adjusts the bandwidth

allocated to each player, to trigger the bitrate adaptation mechanism of the player.

For this, the AP maintains an available bitrate set for each player. A bitrate is added

to the set for a player if the AP finds a new bitrate of it.

However, two types of delays can affect the efficiency of the bitrate probe process.

The first type of delay is the delay between the time when the AP adjusts the band-

width and the time when the player adapts its bitrate. This delay depends on the

proprietary adaptation algorithm of the player and its buffer size when the bandwidth

adjustment occurs. To test the lengths of such delays in different players under differ-

ent conditions, we assign a certain bandwidth to the player, and wait until it enters a

stable stage (periodical download), and then decrease or increase the bandwidth by

a certain percentage (50% and 200% in our test). Our test involves the flash player,

IOS and Android Apps of both YouTube and Netflix. The result shows that such

delay could vary from 30s to 90s. Another type of delay is the bitrate inference delay

between the time when the player adapts to its current bitrate and the time when the

AP successfully infers the bitrate based on two (or more) consecutive events. This

delay depends on the threshold values of the player, the bitrate of the video and the

allocated bandwidth.

Due to the existence of large delays in bitrate detection, designing efficient probe

algorithm is critical to ensure that the bitrate probe period is as short as possible

for users. Recall that pi denotes the fraction of bandwidth allocated to player i, and

the maximum throughput i is given by αi × pi. And ri is the selected bitrate of i

based on pi, denoted by ri = γi(αi × pi). To acquire adequate bitrate information in
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a limited time, the probe sequence to player i (denoted by p1i , p
2
i , ...p

m
i ) has to be well

designed, i.e., γi(αi× p1i ), γi(αi× p2i ),...,γi(αi× pmi ) should result in different bitrates.

Without the prior knowledge of bitrates of a given player i, finding such a probe

sequence is challenging. Three possible solutions exist: random probe, which assigns

the next probe pk+1
i a random value after the kth probe is finished; decreasing probe,

which probes bitrates following a decreased order; and increasing probe, which probes

bitrates following an increasing order.

This work uses the decreasing probe approach, since both random probe and

increasing probe could be inefficient. For instance, assume the set of bitrates of

i are {500Kbps, 1Mbps, 2Mbps, 5Mbps}, and player i uses the largest value of ri

without going over the allocated data rate αi × pi. Randomly assigning values of

pi could result in identical bitrates when those values are close (e.g., the AP would

observe the same bitrate of 500Kbps if 600Kbps and 900Kbps are used in its probe).

Similarly, increasing probe could also skip or produce identical bitrates as the AP has

no knowledge of the next higher bitrate. On the other hand, the decreasing probe

can use the current bitrate as a hint to the next lower bitrate. For example, assume

the AP first probes at p1i = 10Mbps and finds r1i = 5Mbps, it can use 5Mbps ∗ β

as the next probe value, and be assured that it did not skip any bitrate. The idea

is that two neighboring bitrates in general are not very close (We found β = 0.8 a

reasonable value after doing a statistics from 100 videos from YouTube).

Ideally, each client receives an equal bitrate: α1 × p1 = α2 × p2 = ... = αN × pN ,

and
∑N

i=1 pi = P . We use this condition to find the initial probe value:

piniti =
P

( αi

α1
+ αi

α2
+ ...+ αi

αN
)

(4.2)

In this case, the players whose lowest bitrates are higher than the fair share will

encounter stalls (which allow us to infer their lowest bitrates), while the other players

will adapt appropriate bitrates based on the allocated bandwidth.
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When multiple probes (for different players) are simultaneously executed, the AP

might have to schedule those probes over time due to the limit of bandwidth. This

requires the design of efficient probe scheduling algorithms, the objective of which is

to acquire ri,∀i ∈ {1..N} in the shortest time.

For a given set of players {1..N} that are currently being probed, let li denote

the delay from the time when pi is allocated to i to the time when the AP finds ri.

Note that li includes both bitrate adaptation delay and bitrate detection delay. This

work assumes that the average or distribution of li for a given player type is known

to the AP. Such knowledge could be gained over time, and we leave this for future

work. Instead, this work focuses on modeling and designing efficient probe scheduling

algorithms,

We model this problem as a strip packing problem [60]: Given N items, each

with width wi and length li, and one container with fixed width and variable length,

the problem is to pack all items with minimum length of the container (see Figure

4.6). This problem is known to be NP-hard. Only heuristics are known so far. And

according to [60], the best solution is given by [27]. We implement this algorithm to

schedule the bitrate detection module. The algorithm works by recursively picking

up the item that best fits the current gap in unused bandwidth. Please refer to [27]

for more details.

4.5.4 Resource Allocation

Recall that the objective of this work is to achieve the max −min fairness of QoE,

whose metric is defined by a tuple ⟨s, b⟩. s is the primary sort key based on stall ratio

and rate of stall events, and b is the secondary sort key based on video quality, which

is related to its bitrate.

Assume that the AP has gathered a set of bitrates Ri = r1i , r
2
i , .. in the bitrate
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Figure 4.6: The Strip Packing Problem. Clients 1−5 have different bandwidth requirements

and delays. The bandwidths are shown as widths and delays are shown as lengths. The

problem is to pack all the items with minimum length of the strip.

inference stage for each player i ∈ {1..N}. Let rmin
i denote the minimum bitrate of

player i in Ri. The resource allocation algorithm considers two cases: 1) The total

resource P is not sufficient to support all players even at their lowest bitrates, i.e.,

P <
∑N

i=1
rmin
i

αi
. In this case, the algorithm assigns physical network resource pro-

portionally to their lowest bitrates (Line 3). 2) When P ≥
∑N

i=1
rmin
i

αi
, the algorithm

first assigns resource to guarantee the lowest bitrate for each player (Line 5), and

then repeatedly increase the lowest bitrate among all N players (Lines 8-12), until no

further increment is possible. This algorithm gives the optimal solution if the bitrate

information of players are accurate and complete.

4.6 Experiments

To evaluate the performance of the proposed approach, we set up an AP hotspot

using a Thinkpad laptop running Ubuntu 13.10. The laptop has dual network cards.

The first (wired) network card acts as a bridge between the Internet and the second
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Algorithm 10: Network Resource Allocation

Input: P,Ri,∀i ∈ {1..N}

Output: pi: i’s share of P , ∀i ∈ {1..N}

1 if P <
∑N

i=1
rmin
i

αi
// rmin

i := min {Ri}

2 then

3 pi ← P × rmin
i

αi×
∑N

j=1

rmin
j
αj

, ∀i // allocate resource proportionally

4 else

5 ri ← rmin
i ,∀i // assign each player the lowest bitrate

6 Premain ← P −
∑N

i=1
ri
αi

7 while Premain > 0 do

8 find j such that rj = min {r1..rN} and rj! = max {Rj}

9 r+1
j ← min {r ∈ Rj|r > rj} // next higher bitrate

10 if Premain ≥
r+1
j −rj

αj
then

11 Premain ← Premain −
r+1
j −rj

αj

12 rj ← r+1
j // increase the bitrate of j

13 else

14 break

15 pi ← ri
αi
,∀i

105



 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0  10  20  30  40  50  60

E
s
ti
m

a
te

d
 B

it
ra

te
s
(K

b
/s

)

Number of Consecutive Events

Inferred Bitrate
Actual Average Bitrate

(a) Bitrate vs. Number of Download Events

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0  200  400  600  800  1000

B
it
ra

te
s
(K

b
/s

)

Inference Duration (sec)

Inferred Bitrate
Actual Average Bitrate

(b) Bitrate vs. Time

Figure 4.7: The accuracy of bitrate inference with different number of periodical download

start events and different inference time. Each point denotes an inferred bitrate correspond-

ing to the number of events or inference time. (a) The inferred bitrates vs. the number of

periodical download events. (b) The inferred bitrates vs. the length of the inference.

(wireless) network card, which serves as an AP hotspot. We use Dummynet to control

the bandwidth allocated to each client, and use Wireshark to log the traffic volume.

The client module was implemented on an HP desktop running Ubuntu 13.10 and a

Samsung Galaxy S-IV smartphone running Android 4.3. The client and AP modules

communicate through sockets.

The Accuracy of Bitrate Inference based on Periodical Download. To

test the relationship between the accuracy of bitrate inference and number of consec-

utive events, we play a video on the client for a sufficiently long time, and then plot

the inferred bitrates with variable number of consecutive events. Figure 4.7 shows

the result based on the YouTube flash player. We found that the inferred bitrates are

closer to the actual average bitrate with more consecutive events and longer inference

time. Even with only two consecutive download events (i.e., one period, roughly 18

seconds), most of the inferred bitrate is still within 10% of the actual bitrate. We
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Figure 4.8: The accuracy of bitrate inference with different number of stall events and

different inference time. Each point denotes an inferred bitrate corresponding to the number

of events or inference time. (a) The inferred bitrates vs. the number of stall events. (b)

The inferred bitrates vs. the length of the inference.

consider this error is tolerable for the purpose of network resource allocation at a

local AP. Note that to compare the inferred bitrate with the actual average bitrate in

Figure 4.7, the packet header (overhead) was deducted from the accumulated traffic.

In reality, we recommend to keep the overhead within the calculation. In this way,

the result will be closer to the required throughput (with overhead considered), even

though it is slightly higher compared to the original video bitrate.

The Accuracy of Bitrate Inference based on Stall Events. Figure 4.8

shows the inferred bitrates based on different number of consecutive stall events for

the same video. The result shows that the stall-based bitrate inference has slightly

higher error compared to the periodical download based inference approach, due to

the delay in stall detection and the client-AP communication. Meanwhile, the time

it takes to acquire more accurate bitrate information could be smaller, due to the
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Figure 4.9: The proposed solution improves the QoE of clients. Two video clients

share a bottleneck link of 6Mbps. The HTML5 player is streaming a video at bi-

trate 4.3Mbps, and the flash player is streaming a video with candidate bitrates

{4.3Mbps, 2.4Mbps, 1.5Mbps}.

reason that stall events are more frequent than periodical download events in our

experiment.

Improving QoE. This experiment tests how can the proposed solution im-

prove the QoE of users. Two players are involved in the test: the first player is

a DASH player (the YouTube Flash player) streaming a video with candidate bi-

trates of {4.3Mbps, 2.4Mbps, 1.5Mbps}. The second player is a non-DASH player

(the YouTube HTML5 player) streaming the same video at 4.3Mbps. The clients

share a bottleneck link of 6Mbps (Figure 4.9), assuming that they have the same

physical transmission rate. We use the function proposed in [84] as S(∗) to map the

stall profile to a MOS of 0 − 5, and use the function proposed in [49] to map the

video bitrate to a MOS of 0 − 5. To get a combined value, only the first MOS is
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used when stalls exist, while the summation of two MOSs are used when no stall

exists. Initially, two clients are allocated the equal share of bandwidth (0 − 120s).

The HTML5 player has low score since stall occurs at the player. At time 120s,

we start the program, which gets the current bitrates of HTML5 player (4.3Mbps)

and flash player (2.4Mbps) at time 137s and 144s, respectively. Then the program

decreases the bandwidth of the flash player to (2.4× 0.8 = 1.92Mbps), and gets the

next bitrate (1.5Mbps) of the flash player at time 173s. Finally, the program ad-

justs the bandwidth allocation to 4.3Mbps and 1.7Mbps for the HTML5 and flash

player, respectively. As a result, the QoE of the user of HTML5 player is significantly

improved at the cost of a slight decrease to the QoE of the user of the flash player.
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Chapter 5

EASYBID: ENABLING CELLULAR OFFLOADING VIA

SMALL PLAYERS

Deploying small cells to provide blanket coverage by WSPs alone is neither eco-

nomically efficient nor practically feasible. Therefore, offloading through third-party

owned small cells is an increasingly popular mechanism. In order to enable the small

players, such as businesses and individual owners to make their services available

to the bigger WSPs to help offload , a simple, practical and easy-to-use payment

machinery needs to be devised.

Existing auction mechanisms usually assume that bidders can precisely estimate

their true valuations, and they ignore the significant overhead to sellers incurred for

obtaining a precise estimation. Such assumption is unrealistic in femtocell networks.

To allow imprecise valuations, we introduce the novel concept of perceived valuation,

which is a value that can be acquired by the seller at little or no cost.

We further propose two novel metrics: partial truthfulness, and imprecision loss,

to measure the quality of a truthful auction that accepts perceived valuations. Based

on this, we propose EasyBid, a new auction model that provides guarantees for truth-

fulness even when considering a system with imprecise valuations.

Finally, we design a dynamic programming based algorithm which aims to max-

imize the WSP’s utility while satisfies any given constraints on partial truthfulness

and imprecision loss. Through simulations, we show that the utility achieved by
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EasyBid with imprecise valuations can be close to the optimal solution that assumes

precise valuations.

5.1 Related Work

Efficient Auctions and Optimal Auctions are the main two types of auctions that

aim to maximize the social welfare and the buyer’s utility (in reverse auctions) ,

respectively. VCG auctions [121, 36, 51, 80] are among the most well-studied truthful

efficient auctions. Unlike VCG auctions, [97] focuses on designing optimal auctions

by a set of tools including posing a reserve price or charging an entry fee. One

well-known result is that the optimal auction is simply the VCG auction with an

optimal reserve price in simple environments (regular and i.i.d. distribution). Those

works assume precise valuations. The topic of imprecise valuation has been covered

in some economic works, including [113, 38, 57, 96]. In [113], the author brings out

an intriguing phenomenon called Winner’s Course, which says the winner will tend

to overpay (i.e., receive negative utility) in common value forward auctions when

bidders cannot precisely estimate the item. [38, 57, 96] focus on the procedure of

valuation discovery, and strategy analysis of bidders. In contrast, this work focuses

on handling imprecise valuations through mechanism design.

Existing auction works in the literature of wireless network can be roughly cate-

gorized as follows: wireless spectrum trade [138, 122, 137, 41, 64], cooperative com-

munication [127, 139], and data offloading [34, 59, 42, 61, 92]. Wireless spectrum

trade between primary and secondary owners has been studied with double auctions

[138, 122], efficient VCG-based single auction [137, 41] and optimal single auction

[64]. The problems studied in those works are different with this work. [127, 139]

study the topic of auction design in cooperative communication. The objective is to

maximize bandwidth by maximizing the efficiency of auction, which is different from
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ours. Finally, efficient [34, 59, 92, 61] and optimal [42] auction based data offloading

has recently gained a lot of interests. [34] focuses on the access control problem in

femtocell networks. The authors propose a VCG-based reverse auction framework for

fair and efficient access control. [92] proposes to use WiFi for cellular data offloading,

and aims to maximize the system efficiency. [61] considers data offloading between

multiple network operators and multiple femtocells by proposing a double auction

framework aiming to maximize the social welfare. [59] proposes a VCG-based auc-

tion framework that aims to maximize efficiency. [42] is the closest work to ours. It

proposes an auction framework that allows the WSP to leverage resources from third-

party resource owners on demand. The problem of resource allocation between the

WSP and third parties is formulated as a linear program, which aims to minimize the

cost of the WSP. However, all those existing works simply assume precise valuations

and ignore the problem of imprecise valuations, which, in contrast, is considered in

this work.

5.2 Problem Formulation

5.2.1 Basic Settings

Consider a cellular network which consists of Macrocell Base Stations, third-party

owned Femtocells (or WiFi hotspots), and Mobile Users. This network is geograph-

ically and chronologically divided into sub-networks to conduct separate auctions.

This work focuses on one such sub-network that consists of M femtocells. The WSP

and femtocell owners are the buyer and sellers of femtocell services, respectively, and

the auction is transparent to mobile users.

Let Vf denote the true valuation of seller f (1 ≤ f ≤ M) for each time unit of

service on a single channel, which is a hidden value to seller f . We assume the true
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valuations are non-negative, and there is a value Vmax, such that, Vf ∈ [0, Vmax], ∀f .

V ′
f denotes the perceived valuation of f , which is an approximate valuation that is

possible for f to acquire at little or no cost. Assume |Vf−V ′
f | ≤ ϵ,∀f for some constant

ϵ, which denotes the estimation error of sellers. Similarly, we assume the perceived

valuations are also non-negative, and bounded by Vmax. Therefore, V
′
f ∈ [max{0, Vf−

ϵ},min{Vmax, Vf + ϵ}]. We introduce V ′
f to address the following problems:

• f cannot precisely estimate Vf .

• Vf is a variable that varies within some range over the validity period of the

auction, which can be defined by V ′
f ∈ [max{0, Vf − ϵ},min{Vmax, Vf + ϵ}].

To participate in the auction, f submits a bid denoted by Bf . A truthful auction is

redefined as one in which all sellers submit their perceived valuations as their bids,

i.e., Bf = V ′
f ,∀f .

Let G denote the average savings of the WSP for each unit of femtocell service,

generated from the benefit of freed up cellular resources, reduced power consumption,

etc. Since the WSP can arbitrarily divide the cellular network, e.g., by location,

by time (weekday vs weekend, daytime vs nighttime, etc.), and conduct auctions

separately, we assume G is stable and known to the WSP for a given sub-network.

We consider an online auction model in which a service request could be sent to

any femtocell at any time, depending on the locations of mobile users, and the request

needs to be immediately responded on arrival. Therefore, it assumes there is only

one item (service) on transaction in one auction.
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5.2.2 Motivation

Let us define the seller’s (buyer’s) utility as the difference of its received payment

(saving) reduced by its true valuation (its payment). We illustrate the motivation

and objective of EasyBid through the following examples.

One Femtocell, Precise Valuation: Consider a network with one femtocell f .

Let Ff (∗) denote the cumulative distribution function (CDF) of Vf over [0, Vmax],

and UWSP denote the utility of the WSP. Assume ϵ = 0 and a reserve price based

optimal auction works in the following way:

• The WSP sets a reserve price x.

• f submits its bid Bf .

• x plays as a cutoff: f wins the auction and receives a payment of x if Bf ≤ x.

It is obvious that the auction is truthful and individually rational, i.e., submitting

Vf is a dominant strategy [104] for f , and f is guaranteed to not receive a negative

utility. To find an optimal reserve price, note that UWSP = Ff (x)×(G−x), in which,

Ff (x) is the probability that the auction is successful, and G− x is the utility of the

WSP if it is successful. UWSP can be maximized based on Ff (x). Take the uniform

distribution for example, the optimal reserve price is x = min{G
2
, Vmax}. Let G = 14

and Vmax = 10, then x = $7 and UWSP = 7
10
× (14− 7) = 4.9.

One Femtocell, Imprecise Valuation: Now, assume ϵ > 0, and V ′
f may or may

not be equal to Vf (a hidden value). The previous mechanism is now revised as

follows:

• The WSP sets a reserve price x.

• f submits its bid Bf .

• x− ϵ is the cutoff: f wins the auction and receives x if Bf ≤ x− ϵ.
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The cutoff is x−ϵ in this auction (compare to x in the precise valuation auction), such

that when f submits V ′
f , its valuation Vf , upper bounded by V ′

f + ϵ, never exceeds

the payment x to guarantee worst-case individual rationality (IR). Since UWSP =

Pr(V ′
f ≤ x−ϵ)×(G−x), for ease of discussion, assume V ′

f is also uniformly distributed

over [0, Vmax]. In this case, the optimal reserve price is x = min{G+ϵ
2
, Vmax}. When

G = 14,Vmax = 10 and ϵ = 2, x = $8, and UWSP = 8−2
10
× (14 − 8) = 3.6. Observe

that:

1. UWSP is less in this auction, because the auction fails when V ′
f > x − ϵ = 6,

even though it might be the case that Vf ≤ 8, i.e., to achieve worst-case IR,

some potential transactions are rejected.

2. Submitting V ′
f truthfully is a dominant strategy (DS) for f only if Vf ∈ [0, 4]

or Vf ∈ [8, 12]. Otherwise, if Vf is within 6± ϵ, submitting V ′
f is not necessarily

the best choice: if V ′
f > 6, f loses some potential utility.

3. If the loss happens, f loses 100% of its maximum possible utility. For example,

assume Vf = 5 and V ′
f = 7, then its maximum possible utility is $8 − 5 =

3 assuming f precisely knows Vf . However, due to the imprecision issue, f

actually receives 0 utility: a 100% loss. We call this percentage loss of utility

the Imprecision Loss (IL, formally defined later). In an imprecise valuation

auction system, sellers’ IL needs to be accounted for, in order to incentivize

sellers to participate.

One Femtocell, Imprecise Valuation, Multiple Reserve Prices: EasyBid can

increase the utility of the WSP and reduce the IL of sellers by placing multiple reserve

prices. One possible solution with two reserve prices proposed by EasyBid works as

follows:

• The WSP sets two reserve prices: $8, $10.
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• f submits its bid Bf .

• Sets a cutoff 4: if Bf ∈ [0, 4), approve the transaction and pay f $8; if Bf ∈

[4, 10], approve the transaction with probability 2
3
and pay f $10 only if it is

approved.

This approach guarantees worst-case individual rationality ($8 ≥ 4 + ϵ) and has the

following properties:

1. Precision Compatible: if f precisely knows Vf , bidding Vf truthfully is a dom-

inant strategy for f . This will be clear after we present EasyBid in Section

5.3.

2. Smaller IL: Similarly, when Vf is within ±ϵ of the cutoff value 4, f could lose

part of its potential utility. For example, assume Vf = 2 and V ′
f = 4, then

the maximum possible utility f can get when knowing Vf is ($8 − Vf ) = 6

(simply let Bf = Vf ). Without knowing Vf , f submits V ′
f , and its utility is

($10−Vf )× 2
3
= 16

3
. The IL in this case is about 11%. Actually, the worst-case

IL is 25% for any pair of Vf and V ′
f (details omitted).

3. Higher WSP Utility: The rationale behind decreasing IL is that if the overhead

to f for acquiring a precise valuation (or strategizing on imprecise valuation)

is larger than its IL in the auction, f is likely to accept the loss and submit

V ′
f truthfully. Assume this is the case, then the utility of WSP is given by

the summation of its expected utility from two possible outcomes: Pr(V ′
f <

4)× 1× (G− 8) + Pr(4 ≤ V ′
f ≤ 10)× 2

3
× (G− 10) = 4.0.

Table 5.1 shows a comparison of the single reserve price solution and this solution.

Multiple Competing Sellers: Unlike the traditional auctions (e.g., VCG) that

collect bids from all sellers and determine winners based on bids, EasyBid breaks
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Table 5.1: Single vs Multiple Reserve Prices

Solutions Single Reserve Double Reserves

Worst-case IR? Yes Yes

WSP Utility 3.6 4.0

DS Range [0, 4],[8, 10] [0, 2),[6, 10]

Non-DS Range (4, 8) [2, 6)

Seller’s IL 100% 25%

Seller’s Preference Low High

the multi-seller auction into prioritized sequential one-seller auctions and pays the

winner the corresponding reserve price. The priority of sellers can be determined

in many ways, e.g., based on their historical service qualities, or the mobile user’s

received SINRs. For example, suppose sellers a and b can both serve a user who

needs femtocell service, and a provides higher SINR than b. A one-seller auction is

first conducted between the WSP and a. If a wins the auction, the WSP pays a a

reserve price based on its bid; otherwise, the second auction is conducted between the

WSP and b, and so on. Such a prioritized sequential auction model naturally suits

the wireless resource auction in that: It reduces communication overhead between

different parties: the WSP and the user only need to communicate with one seller at

a time rather than with all sellers; and, the winner determination procedure, which

depends on the priority of sellers, is more flexible compared to an alternate approach

in which the winners are determined as an outcome of the bidding process.
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5.2.3 Objective

EasyBid considers a network of M femtocells with imprecise valuations distributed

over [0, Vmax], the CDF of which is denoted by F (∗). We define the Partial Truth-

fulness Factor (PT Factor) of an auction system as the least probability (worst-case)

that submitting one’s perceived valuation is a dominant strategy. In the previous ex-

ample, the PT can be calculated based on the DS range: (2−0)+(10−6)
10

= 0.6. Let

Uf (Vf ) and Uf (V
′
f ) denote the utility of seller f when it bids Vf (assume it knows)

and V ′
f , respectively. The Imprecision Loss (IL) of seller f , given by

Uf (Vf )−Uf (V
′
f )

Uf (Vf )
, is

the worst-case fractional loss of utility when f submits V ′
f . This work assumes that

certain requirements over PT and IL have to be met, for the WSP to compete with

its opponents and incentivize femtocell owners. Given this, EasyBid seeks to find a

multi-reserve-price based solution for the WSP to maximize its utility.

For a solution with N reserve prices, EasyBid computes three vectors: S⃗, R⃗, P⃗ .

Vector S⃗ = {Si, i = 1..N} divides [0, Vmax] into N segments with lengths S1..SN ,

and
∑N

i=1 Si = Vmax. This work uses
∑N

1 S⃗ =
∑N

i=1 Si for short. If the valuation

Vf of some seller f satisfies
∑i−1

1 S⃗ ≤ Vf <
∑i

1 S⃗, we say seller f is in segment

i(i ∈ {1, ..N}), denoted by f ∈ Si. (With a slight abuse of notation, we also use

Si to denote segment i where it is unambiguous). Finally, let f ∈ SN if Vf = Vmax.

Each Si is also associated with an approval ratio Ri(0 ≤ Ri ≤ 1) and a payment

Pi(Pi ≥ 0). For sellers in Si, Ri denotes the probability of serving an incoming mobile

user, while Pi is the amount of payment made to the sellers if the auction succeeds.

R⃗ = {Ri, i = 1..N}, P⃗ = {Pi, i = 1..N} are the vectors of Ri and Pi with length N ,

respectively. Note that S⃗ is used to describe the “cutoff” in the auction. The solution

in the previous example can be denoted by: S⃗ = {4, 6}, R⃗ = {1, 2
3
}, P⃗ = {8, 10}.

Formally, for any given ϵ, α, β, let Rf ≜ [max{0, Vf − ϵ},min{Vmax, Vf + ϵ}], then the
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problem can be defined as follows,

max
N,S⃗,R⃗,P⃗

∑N
i=1 di ×Ri × (G− Pi) s.t. (5.1)

IR : Uf (V
′
f ) ≥ 0, ∀f ∈ {1, ..M}, ∀V ′

f ∈ Rf

PT :
|{f |Uf (V

′
f )≥Uf (b),∀V ′

f∈Rf ,∀b∈[0,Vmax]}|
M

≥ α

IL :
Uf (Vf )−Uf (V

′
f )

Uf (Vf )
≤ β, ∀f ∈ {1, ..M},∀V ′

f ∈ Rf

in which, di is the fraction of sellers that are within Si, given by F (
∑i

0 S⃗) −

F (
∑i−1

0 S⃗). For any single demand, assume that it could take place at any femtocell

with equal opportunity, then di is the probability that it takes place at some femtocell

in segment i. The objective function can be interpreted as the expected utility of WSP

from a single demand. The first constraint guarantees worst-case IR for any f that

submits its perceived valuation. The second constraint guarantees that submitting

perceived valuations is truthful (has no IL) for at least α fraction of sellers. For the

remainders, the third constraint guarantees that the maximum IL is no more than β.

5.3 The Framework of EasyBid

For ease of understanding, in this section we present the EasyBid framework while

assuming sellers can precisely estimate their true valuations, i.e., ϵ = 0 and Vf =

V ′
f , ∀f . Given any N , we are to derive constraints over S⃗, R⃗, P⃗ to achieve truthfulness

and individual rationality. We will show how this framework is applied to address

Problem (5.1) in Section 5.4.

5.3.1 Constraints over S⃗, R⃗, P⃗

For any femtocell f ∈ Si with true valuation Vf , its expected utility from an average

demand is given by,

Uf (Vf ) = Ri × (Pi − Vf ) (5.2)
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in which, Ri is the probability that f serves incoming demands, and Pi is the payment

it receives if it provides service. To achieve individual rationality, Pi has to be at least

as large as the maximum value in segment Si. So,

Pi ≥
∑i

1
S⃗, ∀i ∈ {1, ..N} (5.3)

Note that, by manipulating its bid Bf , f could change the segment number to which

it belongs, i.e., it could claim f ∈ Sj(j ̸= i) instead of f ∈ Si, and get a different set

of approval ratio and payment. To guarantee truthfulness, appropriate constraints

need to be satisfied, outlined as follows:

Lemma 5.3.1. R⃗ is a non-increasing sequence in truthful auctions.

Proof. It holds trivially when N = 1. For N ≥ 2, assume there is some increasing

subsequence in R⃗, and suppose it occurs at i: let Ri < Ri+1 denote the occurence

of increasing approval ratios, where 1 ≤ i ≤ N − 1. Let f1 ∈ Si denote a femtocell

whose true valuation Vf1 =
∑i−1

1 S⃗ happens to be the minimum in segment i, and

f2 ∈ Si+1 denote a femtocell whose true valuation Vf2 =
∑i

1 S⃗ is the minimum in

segment i + 1. In truthful auction, there should be no incentive for f1 to claim

f1 ∈ Si+1. Based on the utility function in Equation (5.2), the utility f1 receives

when truthfully claiming f1 ∈ Si should be at least as large as when claiming f1 ∈

Si+1: Ri × (Pi − Vf1) ≥ Ri+1 × (Pi+1 − Vf1). Given that Vf1 =
∑i−1

1 S⃗, we get

Ri × (Pi −
∑i−1

1 S⃗) ≥ Ri+1 × (Pi+1 −
∑i−1

1 S⃗). Similarly, there is no incentive for f2

to claim f2 ∈ Si, Ri+1 × (Pi+1 − Vf2) ≥ Ri × (Pi − Vf2). Given Vf2 =
∑i

1 S⃗, we get

Ri+1 × (Pi+1 −
∑i

1 S⃗) ≥ Ri × (Pi −
∑i

1 S⃗). By adding the previous two inequalities

and simplifying, we get Ri×Si ≥ Ri+1×Si, which means Ri ≥ Ri+1. This contradicts

with our assumption that Ri < Ri+1.

Lemma 5.3.2. The payment vector P⃗ is a non-decreasing sequence in truthful auc-

tions.

120



Proof. Consider two segments Si and Sj, for which i < j. Since Ri ≥ Rj, then if

Pi > Pj, all sellers in segment j would get higher utility if they lie and claim they are

in segment i. Therefore, P⃗ is a non-decreasing sequence.

Now we use lemma 5.3.1 and 5.3.2 to derive the following constraints to achieve

truthfulness. Consider the first segment, and suppose seller f ∈ S1. It is clear that

f will not get higher utility by submitting a bid that is within the same segment as

its true valuation, as doing that will not change its approval ratio or payment. To

prevent it from submitting a higher bid that belongs to the second segment, ∀Vf ∈ S1,

the following constraint has to be satisfied:

R1 × (P1 − Vf ) ≥ R2 × (P2 − Vf ),∀Vf ∈ S1 (5.4)

⇔ R2

R1

≤ P1 − Vf

P2 − Vf

, ∀Vf ∈ S1 (5.5)

⇔ R2

R1

≤ P1 − S1

P2 − S1

(5.6)

The left hand side of (5.4) is the utility of bidding its true valuation, while the right

hand side is the utility of submitting a higher bid that is within the second segment.

Note that since P1/P2 ≤ 1 and 0 ≤ Vf < S1, the right hand side of (5.5) achieves the

minimum value when Vf tends to S1, and that is how we get (5.6).

Similarly, to prevent f submitting a bid that is in the third or other following

segments, it requires:

R1 × (P1 − Vf ) ≥ R3 × (P3 − Vf ),∀Vf ∈ S1

· · · · · ·

R1 × (P1 − Vf ) ≥ RN × (PN − Vf ), ∀Vf ∈ S1

To sum up, we have:

R2

R1

≤ P1 − S1

P2 − S1

,
R3

R1

≤ P1 − S1

P3 − S1

, . . . ,
RN

R1

≤ P1 − S1

PN − S1

(5.7)
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Now consider sellers in other segments. Suppose f ∈ S2, i.e.,
∑1

1 S⃗ ≤ Vf <
∑2

1 S⃗.

To prevent f placing a higher bid,

R3

R2

≤ P2−
∑2

1 S⃗

P3−
∑2

1 S⃗

R4

R2

≤ P2−
∑2

1 S⃗

P4−
∑2

1 S⃗
(5.8)

... ...

RN

R2

≤ P2−
∑2

1 S⃗

PN−
∑2

1 S⃗

Then by listing similar constraints for all other segments, eventually for segment

SN−1, we obtain:

RN

RN−1

≤ PN−1−
∑N−1

1 S⃗

PN−
∑N−1

1 S⃗
(5.9)

Note that, if both of the first constraint of (5.7) and (5.8) are satisfied, then by

doing a multiplication, we have:

R3

R1
≤ (P1 − S1)(P2 − S1 − S2)

(P2 − S1)(P3 − S1 − S2)
≤ (P1 − S1)

(P3 − S1 − S2)
≤ P1 − S1

P3 − S1

which means the second constraint of (5.7) is redundant. Similarly, it is trivial that

the ith constraint of (5.7) is redundant if both the first constraint of (5.7) and the

(i− 1)th constraint of (5.8) are satisfied. In the same fashion, we can find that only

those first constraints in each constraint group of (5.7),(5.8), and up to the segment

SN−1 shown in (5.9) are tight (details are omitted). Finally, we get the following

constraints from those groups after omitting the redundants:

Ri+1

Ri

≤ Pi−
∑i

1 S⃗

Pi+1−
∑i

1 S⃗
, 1 ≤ i ≤ N − 1 (5.10)

Note that (5.10) lists all the constraints to prevent sellers placing higher bids than

their true valuations. To prevent sellers from receiving higher utilities by placing lower

122



bids that fall into lower segments, we list constraints for each segment in a similar

way. With the same set of techniques, we get the following results:

Ri+1

Ri

≥ Pi−
∑i

1 S⃗

Pi+1−
∑i

1 S⃗
, 1 ≤ i ≤ N − 1 (5.11)

By putting (5.10) and (5.11) together, we conclude that:

Ri+1

Ri

=
Pi−

∑i
1 S⃗

Pi+1−
∑i

1 S⃗
, 1 ≤ i ≤ N − 1 (5.12)

Note that Equation (5.12) and Lemma 5.3.1 imply the two well-known properties

of Dominant Strategy Equilibrium: payment identity and monotonicity [62].

5.3.2 Long Term Truthfulness

A solution ({S⃗, R⃗, P⃗}) based on the previous discussion guarantees truthfulness of

sellers for a single arriving demand. The solution does not need to be repeatedly

calculated for every femtocell at every transaction. Instead, it can be applied to

all femtocells and for a long term. To guarantee their long-term truthfulness, the

following requirements need to be satisfied: 1) The arrivals of demands at any seller

cannot be controlled by the seller itself. This can be easily satisfied if the WSP

controls the arrivals , or if let users select femtocells (while on the go) based on their

own preferences(e.g., signal strength). 2) The approval ratios are respected. Note

that the approval ratio at a femtocell might not be fulfilled if a demand arrives while

the resources are depleted. For this, one possible solution is to amortize the seller with

a future demand. We leave this for future study, and instead assume that there are

sufficient channels available at all femtocells. With increasing number of femtocells,

we believe that the number of channels will typically not be limited due to increased

channel reuse. We also study in the simulation section how the truthfulness gets

affected when this assumption does not hold.
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Figure 5.1: A user travels across a 4-seller femtocell network. Suppose Va = 1, Vb =

3, Vc = 5, Vd = 5.5 and Vmax = 6. For N = 3, one simple solution is {S1 = S2 = S3 =

2},{R1 = 1, R2 =
1
2
, R3 =

1
4
},{P1 = 4, P2 = 6, P3 = 8}. Since a ∈ S1, b ∈ S2, c, d ∈ S3,

seller a uses R1 as its approval ratio, seller b uses R2, and sellers c and d use R3.

Theorem 5.3.1. Assume the arrivals of demands are independent of Bf for any

given f , and sellers know their precise valuations. Given sufficient resources at local

femtocells, a solution that follows lemma 5.3.1, lemma 5.3.2 and constraints (5.3)

and (5.12) is truthful and individually rational.

Proof. Section 5.3.1 shows that no seller can achieve higher utility by lying for a single

demand. The independence of arrivals and sufficient resources assure that the seller

cannot achieve higher long-term utility by manipulating its bid. Therefore, EasyBid

is truthful.
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5.3.3 Implement EasyBid For Data Offloading

The EasyBid based online auction model can be implemented in real systems as

follows: A central server computes a solution consisting of S⃗, R⃗, P⃗ . Local femtocells

then submit their bids to the central server. For any femtocell f , the server returns

one corresponding approval ratio and payment to f , based on Bf and vector S⃗. When

a mobile user sends a demand of service to f , f serves this user with probability Ri,

and receives a payment Pi if f actually provides the service. After being admitted,

the mobile user continues to receive service from f until it moves out of its range.

Consider the scenario shown in Figure 5.1 in which a user moves across a network

of 4 femtocells. Upon reaching point A, the user sends a demand to a. a serves this

user with probability R1. If the user is approved, then it continues to receive service

from a, while a receives a payment of P1. Otherwise, it reaches B without receiving

femtocell service. At point B, this user sends a new demand to seller c (c’s signal

strength is higher than b). Seller c approves with a probability of R3. If the user is

denied, then it can send a new demand to seller b. Otherwise, the user gets served

until point D, at which point, a new demand is sent to Seller d. Note that the expected

utility of a for a given demand is 1 × (4 − 1) = 3, while it is 1/2 × (6 − 1) = 5/2 if

a lies to S2, and 1/4× (8− 1) = 7/4 if a lies to S3. Therefore, a has no incentive to

lie. Similar arguments also hold for other sellers.

5.4 EasyBid: Deal with Imprecise Valuations

5.4.1 Understand the Constraints

When ϵ > 0, to understand how the constraints in Problem (5.1) affect the solution

{S⃗, R⃗, P⃗} ,consider a naive solution that pays Vmax to all sellers with approval ratio

1, regardless of the bids. This solution satisfies all three constraints: worst-case IR,
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Figure 5.2: Divide the range into 2 segments. If Vf ∈ Vmax

2
± ϵ, Vf and V ′

f may or

may not be in the same segment.

α−PT (it achieves full truthfulness) and β − IL (0 loss if imprecise). However, it is

non-optimal to the WSP due to the unique and high payment. By dividing the range

into N = 2 segments, say [0, Vmax/2) and [Vmax/2, Vmax], two different payments and

approval ratios can be assigned based on Equation (5.12). The WSP could save

on payment because P1 (the payment to sellers in S1) could be smaller than the

naive solution. The consequence of this solution is that sellers in [Vmax

2
− ϵ, Vmax

2
+ ϵ]

are not guaranteed of truthfulness (see Figure 5.2). If either {Vf ∈ S1, V
′
f ∈ S2},

or {Vf ∈ S2, V
′
f ∈ S1} happens, an IL occurs. The IL of those two conditions

are
R1×(P1−Vf )−R2×(P2−Vf )

R1×(P1−Vf )
and

R2×(P2−Vf )−R1×(P1−Vf )

R2×(P2−Vf )
. Based on the constraints, this

solution should satisfy: 1)P1 ≥ S1+ϵ, P2 ≥ Vmax. 2)F (Vmax

2
+ϵ)−F (Vmax

2
−ϵ) ≤ 1−α.

3)The IL, given above, is less than or equal to β for all sellers. To conclude, if seller

f ’s true valuation Vf is at least ϵ far from the boundary of any segment (except 0 and

Vmax), then f is guaranteed of PT. Otherwise, it is not. Intuitively, for the WSP, a

smaller N results in higher average payment and higher α value, while a larger N

can decrease the average payment as well as the α value.
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5.4.2 Algorithms

Without loss of generality, let [0, 1] denote the normalized range of [0, Vmax], and

assume other values are normalized accordingly. Our solution considers a discrete

version of problem (5.1), in which, the boundaries of segments can only be placed on

a finite number of candidate locations. Selecting a subset of boundaries from n given

candidate boundaries with constraints of α for PT and β for IL is a a combinatorial

problem: each boundary introduces different percent of non-PT sellers and gives

different increases in the utility, depending on the locations of other chosen boundaries

(which affect the maximal IR of the new segment) and the payments to the new

introduced segment. While holding the belief that this problem is NP-hard, we leave

it for future work.

We design a dynamic programming based heuristic algorithm (Algorithm 11). The

algorithm discretizes the original problem from two perspectives: the range [0, 1] with

an integer n and the non-PT budget (1−α) with an integer m, wherein n and m are

two integers that represent the number of discrete values considered. For example,

if n = 10, then only multiples of 1/10 = 0.1 are considered as candidate locations

of boundaries. If 1 − α = 0.2 and m = 2, then only multiples of 0.2/2 = 0.1 are

considered as legal budgets. The algorithm takes n steps to finish (step size 1
n
). At

each step, it finds and saves a set of m solutions for range [x, 1], with x started from 1

and decreased to 0 finally. Those m solutions denote the best solutions for [x, 1] with

m possible non-PT budget values. At the ith step (so, x = 1− i
n
), the algorithm finds

the best solution for [x, 1] with non-PT budget w (w = {1..m} × 1
m
) by exhausting

all possible lengths of its first segment. Since the length of the first segment (S1)

could be 1
n
, 2
n
· · · .. i

n
, so there are a total of i solutions exhausted. To construct the

solution, take S1 =
2
n
for example, now that the first segment is [x, x+ 2

n
], the fraction

of non-PT users in the first segment can be found based on F (x). Let NPT [x, y)
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Algorithm 11: Solve Utility Maximization Problem

1 input: α, β, ϵ, range [0, 1], F (∗)

2 output: {S⃗, R⃗, P⃗ , U}// U:utility

3 for (x← 1;x ≥ 0;x← x− 1/n) do

4 for (w ← 0;w ≤ 1− α;w ← w + 1/m) do

5 for (y ← x+ 1/n; y ≤ 1; y ← y + 1/n) do

6 if (NPT ([x, y)) ≤ w)//use alg. 12 then

7 if (y = 1) then

8 e′ ← {1− x, 1, 1, (1− F (x))× (G− 1)}

9 if (max[x][w] = ϕ||e′ > max[x][w]) then

10 max[x][w]← e′

11 continue

12 e← max[y][⌊w −NPT ([x, y))⌋]

13 if (e = ϕ) then continue

14 Sy ← e.S⃗[0] // 1st seg in e

15 Py ← e.P⃗ [0] // 1st pmt in e

16 Sx ← y − x // length of seg [x, y)

17 for (Px ← y + ϵ;Px ≤ Py;Px ← Px + 1/n) do

18 e′ ← {[Sx, e.S⃗], [1,
Px−y
Py−y ∗ e.R⃗], [Px, e.P⃗ ]}

19 if !checkβIL([x, 1], e′, ϵ)//alg.13 then

20 continue

21 e′.U ← (F (y)− F (x))× (G− Px) +
Px−y
Py−y × e.U

22 if (max[x][w] = ϕ || e′ > max[x][w]) then

23 max[x][w]← e′

24 return (max[0][1− α].U > 0)?max[0][1− α] : {Vmax, 0, 0, 0}
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denote this value. Since we are computing a solution with no more than w budget,

the budget left for [x+ 2
n
, 1] is w−NPT [x, y). Then it constructs the solution under

consideration by expanding the previously saved solution of range [x + 2
n
, 1], budget

w −NPT [x, y).

In Algorithm 11, max[y][w] is used to save the optimal solution of range [y, 1]

with non-PT budget w (0 ≤ w ≤ 1− α). Lines 3-4 iterate for x and w, respectively.

Line 5 tries to locate the first segment in [x, 1] by locating its upper boundary y.

Once the first segment [x, y) is given, the portion of non-PT sellers in this segment

is calculated (Line 6) using algorithm 12. and it has to be less than the current

budget w. If y = 1 (Line 7), which means there is only one segment within [x, 1], we

construct the solution e′ (Line 8), and save it if it is a better solution (Lines 9-10).

Otherwise, it finds the saved solution for segment [y, 1] with the remaining budget

⌊w − PTS(x, y)⌋ in Line 12. (The ⌊ ⌋ operation rounds the value down to multiples

of 1/m.) Line 15 skips current solution if it is not feasible. Line 17 iterates the

payment Px for the segment [x, y), and Line 18 builds the new solution of [x, 1] using

the solution of [y, 1]. Lines 19-20 check if this solution satisfies β − IL constraint

using Algorithm 13. Lines 21-23 calculate the utility of current solution based on the

utility of [y, 1], and substitute the best solution if it is better than the saved solution

in max[x][w]. Finally, the best solution for [0, 1] is returned (Line 24). Note that the

three constraints in Problem (5.1) are addressed in Lines 17, 4, 19, respectively.

Specifically, In Lines 18 and 21, a factor of Px−y
Py−y

is multiplied to e.R⃗ and e.U . This

is because the utility of [y, 1] was previously calculated based on the assumption that

the the approval ratio of its first segment is 1. When another segment [x, y) is added

ahead of it, its new approval ratio is now given by Px−y
Py−y

(see Equation 5.12), in which

y equals to the summed length of all segments between [0, y). This factor needs to

be multiplied to all other approval ratios in e.R⃗, which depend on the first one. Due
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to this, a better solution (>) in Lines 9 and 22 is defined in the way that takes this

factor into account: given two solutions of range [x, 1], e1 and e2, let e1.P⃗ [0] and

e2.P⃗ [0] denote the first payment element in their payment vectors, e1 is better than

e2 when,


e1.U

e1.P⃗ [0]−x
> e2.U

e2.P⃗ [0]−x
if x > 0

e1.U > e2.U if x = 0

Algorithm 12: Calculate Non-PT In [x,y)

1 input: [x, y), ϵ, F (∗)

2 output: Fraction of Non-PT Sellers

3 α′ ← 0// the PT fraction

4 dsStart← (x = 0)?x : x+ ϵ

5 dsEnd← (y = 1)?y : y − ϵ

6 if (dsEnd ≥ dsStart) then

7 α′ ← F (dsEnd)− F (dsStart)

8 Return F (y)− F (x)− α′

Algorithm 12 calculates the portion of non-PT sellers for a given segment [x, y).

The idea is that if Vf is at least ϵ far from the boundary (when the boundary is

not 0 or 1), then f is counted as PT, otherwise, it is non-PT. Lines 4-5 require the

minimum true valuation of a PT seller has to be at least ϵ larger than its lower

boundary (except 0), and at least ϵ smaller than its upper boundary (except 1). The

fraction of sellers that satisfy this constraint is calculated in Line 7. Line 8 returns

the portion of non-PT as the complement of PT.
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Algorithm 13 checks if a given solution for range [x, 1] meets β− IL requirement.

For seller f , it can be shown that the maximum loss happens when the imprecision

is maximized, i.e., |Vf − V ′
f | = ϵ. In Algorithm 13, for each segment Si, it finds the

minimum Vf that could have a corresponding V ′
f in Si (Line 7), and the maximum

Vf that could have its V ′
f in Si (Line 13). The losses of those two cases are calculated

(Line 10 and 16), and both of them have to be less than β (Lines 11-12, Lines 17-18).

Based on Lines 5 and 7, the complexity of Algorithm 13 is O(nlogn) (binary search

on Line 7). For this, the complexity of Algorithm 11 is O(mn4logn).

5.5 Simulation

5.5.1 Simulation Settings

Our simulation considers a region of 1000m × 1000m, consisting of M femtocells

(40 by default, varied from 10 − 100). Each femtocell is placed at the center of a

20m × 20m building, the position of which is randomly selected. Femtocells are by

default assigned sufficient subchannels, while the case of limited subchannels will

also be evaluated. We use the LTE module in ns-3 [114] to simulate the wireless

communication. The transmission and interference radii are 100m and 250m. For

simplicity and ease of understanding, the simulation assumes the true valuations

(in $/second/subchannel) of femtocells are uniformly distributed within [0, 1] (other

distributions are also evaluated), and the perceived valuations are randomly generated

within ±ϵ of the true valuations (also ∈ [0, 1]).

Mobile users arrive at this network with certain arrival rate, and perform a random

walk after that. Their speeds are randomly generated within 0− 2m/s. The arrival

rate is by default 5usrs/min, and varied from 1 − 10usrs/min (based on the speed

profile, the average number of users within the region at any time is about 20− 200,
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Algorithm 13: Check For β − IL Requirment

1 input: [x, 1], {S⃗, R⃗, P⃗}, ϵ

2 output: True or False

3 L⃗← find the sequence of lower boundaries based on x and S⃗

4 U⃗ ← find the sequence of upper boundaries based on x and S⃗

5 for i← 1 to S⃗.length do

6 //Assume the index of L⃗, U⃗ starts at 1.

7 Vf ← L⃗[i]− ϵ , j ← the segment number of Vf

8 j ← (j < 1)?1 : j

9 if (j < i) then

10 loss =
R⃗[j]∗(P⃗ [j]−Vf )−R⃗[i]∗(P⃗ [i]−Vf )

R⃗[j]∗(P⃗ [j]−Vf )

11 if (loss > β) then

12 return False

13 Vf ← U⃗ [i] + ϵ, k ← the segment number of Vf

14 k ← (k > S⃗.length)?S⃗.length : k

15 if (k > i) then

16 loss =
R⃗[k]∗(P⃗ [k]−Vf )−R⃗[i]∗(P⃗ [i]−Vf )

R⃗[k]∗(P⃗ [k]−Vf )

17 if (loss > β) then

18 return False

19 return True
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correspondingly). Users send requests to femtocells if they come across new femtocells

and are not receiving services from other femtocells. The requested data rate of each

user is randomly chosen from 3 categories: {5mbps, 500kbps, 50kbps}, which represent

heavy, intermediate and light network usages, respectively.

The default value of G is 1 by default (varied in some setups). The discrete pa-

rameter n and m in Algorithm 11 are 500 and 100, respectively. The auction was

conducted for one week in each setup. To evaluate the performance of EasyBid, we

first compare EasyBid with VCG and the optimal auction assuming precise valua-

tions, and then assume imprecise valuations and evaluate EasyBid alone by varying

different factors (α, β, ϵ). (V CG is not evaluated for imprecise valuations since it

loses truthfulness and worst-case individual rationality: Consider two sellers: a and

b. Va = $5 and V ′
a = $3, while Vb = $2 and V ′

b = $4. If they both submit their per-

ceived valuations truthfully, a wins since 3 < 4. The payment to a is the secondary

bid $4. As a result, a actually receives 4 − 5 = −1 utility, and a could increase its

utility to 0 by lying: submitting any value larger than 4.)

5.5.2 Simulation Results

Precise Valuations: Utilities of the WSP with Variable Femtocell Density,

User Density, and Average Saving: We first assume the valuations are precise,

and compare EasyBid with two auction schemes: 1) VCG1: the VCG auction with

a reserve price 1. 2) Optimal: the VCG auction with reserve price 0.5, which is the

optimal auction in our setup [97].

Figure 5.3 (a),(b) show that the WSP benefits from the increased density of femto-

cells and users in all three models. This is because higher density of femtocells results

in larger coverage area and higher competition among femtocells, which can reduce
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Figure 5.3: The utility of the WSP under different femtocell density, user density and

average cost, assuming precise valuations. EasyBid performs closely to the optimal

solution when assuming precise valuations. (a) Vary the number of femtocells, the

arrival rate is 5, G = 1. (b) Vary the arrival rate, M = 40 femtocells and G = 1. (c)

Vary the average saving G, M = 40 and arrival rate is 5.

the average payment. (Note that EasyBid can also take advantage of the competi-

tion by polishing the approval ratios and payments.) Meanwhile, higher user density

increases the chances of data offloading, thus it also benefits the WSP. The value of

G unsurprisingly affects WSP as shown in Figure 5.3 (c). Overall, EasyBid performs

closely to the optimal when assuming precise valuations, in spite of the smallgap

between them, which might be caused by the sub-optimality of the algorithm.

Imprecise Valuations: Utilities of the WSP with Variable α, β, ϵ: When

ϵ > 0, we study how the values of α, β and ϵ affect the utility of the WSP, with the

default setting of M = 40, arrival rate = 5 and G = 1.

Figure 5.4 (a) shows that increasing the value of α can decrease the utility of

the WSP. However, given the same value of α, increasing the value of β can increase

the utility of the WSP. This can be explained by Equation (5.1): a larger α means

a tighter constraint, while a larger β corresponds to a looser constraint. Note that
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Figure 5.4: The utility of the WSP under variables α, β, ϵ usingM = 40 femtocells,

5 arrival rate and G = 1: assume imprecise valuations. (a) Vary α, with β =

{0.1, 0.2, 0.4} and ϵ = 0.04. (b) Vary β, with α = {0.6, 0.7, 0.8} and ϵ = 0.04. (c)

Vary ϵ with different α, β.

the utilities in all three conditions are substantially decreased at α = 0.95. This

is because the simulation uses ϵ = 0.04, and the algorithm can hardly find a multi-

segment solution that guarantees more than 95% of sellers being PT. Note that under

the same setup (M = 40, arrival rate = 5, G = 1), the utility was 48.5 in the optimal

solution assuming precise valuations. Therefore, we conclude that EasyBid can handle

imprecise valuations (given reasonable α, β, ϵ) without significantly compromising the

utility of the WSP. The result of Figure 5.4 (b) is consistent with above discussion.

Figure 5.4 (c) shows that the performance of EasyBid is relatively sensitive to the

value of ϵ, but its affect could be mitigated by relaxing α and β.

Imprecise Valuations: Limited Subchannels: This simulation evaluates how

limiting subchannels affects the truthfulness of the system. It uses 50 femtocells and

5usrs/min arrival rate. Assuming α = 0.8, β = 0.1, ϵ = 0.04, we assign different

number of subchannels to the femtocells. The {25, ..125} subchannels in Figure 5.5
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correspond to 5Mhz− 25Mhz in LTE network. For each setup of subchannels, same

simulations are repeated such that, for each run, one out of 50 sellers lies to one of

the N segment while others being truthful, i.e., 50 ∗ N simulations are repeated for

one channel profile. The percent of sellers that received their maximum utility when

being truthful is calculated and shown in Figure 5.5.

Note that the PT constraint α = 0.8 is a worst case bound. That is why the

percentage of sellers being PT in the figure is actually larger than 0.8 when assuming

sufficient subchannels. If the number of subchannels is limited, the percent of truth-

fulness is not affected until a very small number (50, 25 subchannels), for which the

overall truthfulness is still above 0.8. The result shows that the α constraint is not

violated even with a limited number of subchannels.

Imprecise Valuations: Non-uniform Distribution: This simulation uses the

exponential distribution function within the interval [0, 1] to generate the true val-

uations of 40 sellers, such that the distribution of true valuations are biased (to 0)

instead of being uniform. Figure 5.6 shows that the utility of the WSP in general is
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much higher in this biased distribution, as there are more low-valuation sellers that

can accept lower payments.

5.6 Conclusion and Discussion

This chapter proposes EasyBid, a multiple reserve price based auction mechanism

that considers imprecise valuations. Heuristic algorithms that aim to maximize the

utility of the WSP under given constraints were presented. For that, we assume the

knowledge of F (x) is a prior. However, if the WSP has no such prior knowledge, pos-

sible solutions include: 1) If the WSP knows the distribution of perceived valuations,

F ′(x), the same set of algorithms can also be applied on this function. 2). If F ′(x) is

also unknown, the WSP could approximate F ′(x) based on the statistics of the bids

it collected. The issue is that since WSP has claimed α − PT before the auction,

the statistic result might not accurately represent F ′(x), i.e., the factor α has to be

considered in its accuracy.

We outline the following directions that we are currently working on to make

EasyBid more applicable in a variety of scenarios. 1) We are investigating the amor-

tized arrival method to relax the sufficient-resource assumption. address the problem

that the approval ratio cannot be fulfilled if there is no resource available at the time

when a demand arrives. 2) We are looking to solve the optimal constraint parame-

ters α and β by integrating them into the objective function. , such that the optimal

parameters can be directly solved.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

This dissertation studies the problems of budgeted deployment and resource allo-

cation in managed small cell networks and access acquisition of unmanaged small

cell networks. To provide guaranteed throughput to users in large scale sparse net-

works, we present a new metric, called Contact Opportunity, as a characterization

of a roadside WiFi network. We then propose an efficient deployment method that

ensures a required level of contact opportunity at a minimum cost by utilizing sub-

modular optimization techniques. This is the first work that addresses the challenges

in achieving a sparse wireless infrastructure that provides QoS assurance to mobile

users in the face of uncertainty. Aiming to solve the resource management problem

in high-density networks, we propose solutions that achieve max − min fairness of

throughput across multiple collision domains. Two models are considered: the NINT

model and the INT model. Algorithms with provable bounds are designed for both

models. We further extend the QoS (throughput) fairness metric to QoE fairness by

solving the problem of bandwidth allocation in a single collision domain. Finally, this

dissertation designs an auction type incentive mechanism for the WSP to utilize the

unmanaged small cells. To solve the imprecise valuation problem, it develops Easy-

Bid, a novel mechanism with heuristic algorithms which allow conducting truthful
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auctions, considering that the sellers only know their perceived valuations which may

differ from their true valuations.

6.2 Future Work

6.2.1 Part-time Small Cells

Small-cell based data offloading has been regarded as a mobile network necessity. But

there are many hurdles for large scale deployment, including power supply, backhaul,

and site acquisition. Overcoming such deployment hurdles remains an open problem.

One possible solution is to utilize solar power and cognitive radios as power supply

and wireless backhaul. In this way, the deployment cost of small-cell networks can

be significantly reduced.

According to [5], most small cells are running at low power (2W or less), which

makes the use of renewable and harvested energy sources strong contenders for pow-

ering small cells outdoors. However, due to the limited energy harvesting rate of

the solar panel, the host small cells might encounter power outage for certain dura-

tions, and network service might only be available at limited times in the day. The

problem of optimally utilizing part-time available small cells is critical to study. To

eliminate the cost of designated backhauls, some WSPs are using wireless backhaul

(e.g.,cognitive radios, satellite) for femtocell deployments [13, 11]. However, given the

uncertainties in the availability of both the power and backhaul, maximizing the uti-

lization of this type of small cells under uncertainties is an interesting and challenging

problem.
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6.2.2 Sharing Small-cell Networks Across Multiple WSPs

Different WSPs usually have mutual agreements to authorize and provide cellular

service to the clients of others. Certain deployment cost can be avoided if small cell

infrastructures are also involved in such agreements. On the other hand, the idea of

sharing radio access networks has been proposed[140], to reduce the cost of cell deploy-

ment and maximize the usage and efficiency of cellular networks. In a shared radio

access network, one physical base station is shared among multiple WSPs, and the

bandwidth is dynamically sliced based on the requests of WSPs. Those infrastructure-

sharing solutions provide opportunities to WSPs to expand their small-cell networks

at lower costs. However, cell maintenance and management, priority assignment (in

terms of conflicts exist among WSPs), and pricing remain open problems in the lit-

erature.

6.2.3 New Incentive or Business Models for Unmanaged Small Cells

Incentive mechanisms are critical to enabling access to unmanaged small cells. Truth-

ful auctions have been considered in this dissertation. However, one issue of the auc-

tion model is that it does not take the Internet service provider into account. Note

that the successful operation of an unmanaged small cell actually involves three par-

ties: the owner, who is usually the owner of the site; the Internet service provider,

who provides backhaul to the cell; and the WSP, who owns the spectrum and wants

to access the small cell. This problem might be modeled by a multiplayer game model

[106]. We are looking to design realistic and efficient business models to solve this

problem.
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