
NETWORK-CENTRIC MECHANISMS FOR PERFORMANCE
IMPROVEMENT IN DENSE WIRELESS NETWORKS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

in the Graduate School of the Ohio State University

By

Tarun Bansal, M.S.

Graduate Program in Department of Computer Science and Engineering

The Ohio State University

2014

Dissertation Committee:

Prasun Sinha, Advisor

Kannan Srinivasan

Anish Arora

c© Copyright by

Tarun Bansal

2014

ABSTRACT

In recent years, the number of wireless devices and the amount of data generated by these

devices has seen an exponential growth. However, the number of channels available for

data transmission has not increased significantly leading to the problem of “spectrum

crunch”. Our measurements show that the existing wireless deployments employ high

density of wireless devices (access points, smartphones etc.). However, to prevent interfer-

ence, the current wireless algorithms prohibit these neighboring wireless devices to operate

simultaneously. The main focus of this thesis is on improving the network–experience on

the mobile devices by leveraging the high density of wireless devices.

This thesis proposes four different solutions that are suited for different wireless topolo-

gies: Symphony, RobinHood, Mozart and R2D2. Symphony and RobinHood are best suited

for Enterprise wireless networks where multiple access points are connected to each other

and are willing to cooperate. Both Symphony and RobinHood use novel cooperative de-

coding techniques to enable multiple neighboring access points to simultaneously receive

different packets on the same channel. Symphony is suitable for wireless networks that

span large geographical areas while RobinHood is suitable for smaller deployments. Sym-

phony and RobinHood leverage the high density of access points in Wi-Fi networks that

otherwise remain unused in traditional wireless solutions.

Mozart is suitable for Wi-Fi networks where neighboring access points belong to differ-

ent entities that may not be willing to cooperate. Mozart takes an unconventional approach

ii

of letting all transmitters collide at the access point and then lets the access point decode

the collided packets in the fewest number of slots.

Finally, R2D2 is designed for cellular networks and it enables neighboring devices to

efficiently communicate with each other while reducing the dependence on the cellular

base stations. R2D2 leverages the temporal-spatial asymmetry in the traffic patterns to

efficiently allocate resources across cellular base stations as well as to efficiently schedule

links at each of the base stations.

The thesis discusses all the solutions in detail, along with the techniques to address the

challenges involved in their practical implementation.

iii

Dedicated to my family.

iv

ACKNOWLEDGMENTS

I would not have been able to finish this dissertation without the guidance, support, and

encouragement I received from many great people in the past five years. I am especially

grateful to my adviser, Prof. Prasun Sinha, from whom I have learned a lot. He gave me

much freedom and independence in exploring many interesting research topics. I thank

him for encouraging me all the time, teaching me how to overcome obstacles, giving me

of his wisdom and long experience, and building my self-confidence in the times of disap-

pointment and frustration.

I have also greatly benefited from close interactions with Professor Kannan Srinivasan.

His unique perspectives on research problems have influenced and enriched my way of

thinking. His inquisitive nature coupled with his desire to push helped me in making several

improvements to my dissertation. I would also like to thank my thesis committee members

Professor Anish Arora and Professor Luis Rademacher for their helpful comments and

suggestions.

I appreciate the suggestions and the help offered by Dr. Karthik Sundaresan and Dr.

Sampath Rangarajan during my summer internship at NEC Labs America. Their invaluable

guidance and support greatly helped in shaping the last piece of my thesis, R2D2.

I also want to thank my colleagues at Ohio State University: Zizhan Zheng, Ren-Shiou

Liu, Zhixue Lu, Shengbo Chen, Yousi Zheng, Dong Li, Wenjie Zhou, and Bo Chen. I

will always remember some of the memorable experiences shared with this group such as

performing localization experiments on the streets of Columbus.

v

I would not be able to complete this dissertation without the tremendous support, and

countless encouragement from my father, Ravinder Bansal, my mother, Veena Bansal, and

my brother, Rahul Bansal who have always stood besides me, believing in me, and giving

me strength and comfort when I most needed them. I am very thankful and fortunate to

have them on my side through all the ups and downs in my life.

Finally, I would like to thank my wife Yanyan, who has always been encouraging to

me. She has gladly taken over most of our family responsibilities, allowing me more time

for studies. I simply could not have reached this stage without her. I also would like to

thank to my daughter, Aarini, who joined us when I was writing my dissertation, for giving

me unlimited happiness and pleasure.

vi

VITA

2006 . B.S. Department of Computer Science and
Engineering, Indian Institute of Technology
(IIT), Roorkee, India

2009 . M.S. Department of Computer Science and
Engineering, University of Texas at Dallas,
Richardson, TX

2013 . M.S. Department of Computer Science and
Engineering, Ohio State University, Colum-
bus, OH

2009-Present . Ph.D. Department of Computer Science and
Engineering, Ohio State University, Colum-
bus, OH

PUBLICATIONS

Tarun Bansal, Karthikeyan Sundaresan, Sampath Rangarajan and Prasun Sinha, “R2D2:
Embracing Device-to-Device Communication in Next Generation Cellular Networks,” in
Proc. of IEEE International Conference on Computer Communications (INFOCOM), April
2014.

Tarun Bansal, Bo Chen and Prasun Sinha, “FastProbe: Malicious User Detection in Cog-
nitive Radio Networks Through Active Transmissions,” in Proc. of IEEE International
Conference on Computer Communications (INFOCOM), April 2014.

Dong Li, Zhixue Lu, Tarun Bansal, Erik Schilling and Prasun Sinha, “ForeSight: Map-
ping Vehicles in Visual Domain and Electronic Domain,” in Proc. of IEEE International
Conference on Computer Communications (INFOCOM), April 2014.

Tarun Bansal (Co-Primary), Wenjie Zhou (Co-Primary), Kannan Srinivasan and Prasun

vii

Sinha, “RobinHood: Sharing the Happiness in a Wireless Jungle,” in Proc. of ACM Hot-
Mobile, February 2014.

Tarun Bansal (Co-Primary), Bo Chen (Co-Primary), Prasun Sinha and Kannan Srinivasan,
“Symphony: Cooperative Packet Recovery over the Wired Backbone in Enterprise WLANs,”
in Proc. of ACM International Conference on Mobile Computing and Networking (Mobi-
Com), September 2013.

Tarun Bansal, Bo Chen and Prasun Sinha, “DISCERN: Cooperative Whitespace Scanning
in Real Environments,” in Proc. of IEEE International Conference on Computer Commu-
nications (INFOCOM), April 2013.

Dong Li (Co-Primary), Tarun Bansal (Co-Primary), Zhixue Lu (Co-Primary) and Pra-
sun Sinha, “MARVEL: Multiple Antenna based Relative Vehicle Localizer,” in Proc. of
ACM International Conference on Mobile Computing and Networking (MobiCom), August
2012.

Shengbo Chen (Co-Primary), Tarun Bansal (Co-Primary), Yin Sun (Co-Primary), Prasun
Sinha, and Ness Shroff, “Life-Add: Lifetime Adjustable Design for WiFi Networks with
Heterogeneous Energy Supplies,” in Proc. of WiOPT, 2013.

Tarun Bansal, Dong Li and Prasun Sinha, “Fairness by Sharing: Split Channel Allocation
for Cognitive Radio Networks,” to appear in IEEE Transactions on Mobile Computing
(TMC).

Zhixue Lu, Tarun Bansal and Prasun Sinha, “Achieving User-Level Fairness in Open-
Access Femtocell based Architecture,” IEEE Transactions on Mobile Computing (TMC),
Oct 2013.

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Specialization: Networking

viii

TABLE OF CONTENTS

Abstract . ii

Dedication . iii

Acknowledgments . v

Vita . vii

List of Tables . xii

List of Figures . xiii

List of Algorithms . xvii

CHAPTER PAGE

1 Introduction . 1

1.1 Contributions and Structure of this Thesis 10

2 Symphony: Cooperative Packet Recovery over the Wired Backbone in En-
terprise WLANs . 11

2.1 Introduction . 11
2.2 Cooperative Packet Subtraction . 15

2.2.1 Computing the set of suppressed transmissions 17
2.2.2 Practical Challenges . 21

2.3 Symphony: Distributed algorithm . 22
2.3.1 System Structure . 22
2.3.2 Group Management . 23
2.3.3 Cyclic Padding . 25

2.4 Heterogeneous Data Rates and Packet Sizes 27
2.5 Discussion . 28
2.6 Experiments . 32

2.6.1 Results . 33
2.6.2 Measurements . 34

2.7 Simulations and Evaluations . 34

ix

2.7.1 Setup . 34
2.7.2 Results . 36

2.8 Related Work . 39
2.9 Conclusions . 40

3 RobinHood: Throughput Scaling in Dense Enterprise WLANs with Blind
Beamforming and Nulling . 43

3.1 Introduction . 43
3.2 Illustration . 47
3.3 Challenges . 50
3.4 Physical Layer Design . 52

3.4.1 Phase I: Client transmission 52
3.4.2 Phase II: Blind-beamforming 54
3.4.3 Phase III: Decoding Packets 54
3.4.4 Computing the Packet Decoding Order 55

3.5 MAC Design . 56
3.5.1 Multi-Collision Domain . 57
3.5.2 Computing the set of transmitting clients 60
3.5.3 Robustness . 61

3.6 Experiments . 63
3.6.1 Setup . 63
3.6.2 Micro-Benchmarks . 64
3.6.3 Throughput . 66

3.7 Trace-Driven Simulation . 66
3.7.1 Simulation Setup . 66
3.7.2 Results . 68

3.8 Discussion . 69
3.9 Related Work . 70
3.10 Conclusions . 74

4 Mozart: Orchestrating Collisions in Wireless Networks 76

4.1 Introduction . 76
4.2 Mozart: Detailed Description . 78

4.2.1 Successive Packet Subtraction (SPS) 79
4.2.2 Challenges towards practical implementation 83

4.3 Practical Considerations . 84
4.3.1 Identification and RSS estimation of collided packets 84
4.3.2 Heterogeneous data rate and packet sizes 87
4.3.3 Determining set of nodes to suppress 89
4.3.4 Near-Zero Critical Period . 90
4.3.5 Handling Decoding Errors . 90
4.3.6 Offsets Correction and PN Sequence Assignment 92

x

4.4 Experiments . 92
4.4.1 Testbed Results . 94
4.4.2 Experimental Analysis of Micro Benchmarks 95

4.5 Comparison Results . 97
4.5.1 Results for bidirectional TCP Traffic 99

4.6 Discussion . 100
4.7 Related Work . 102
4.8 Conclusions . 104

5 R2D2: Embracing Device-to-Device Communication in Next Generation
Cellular Networks . 105

5.1 Introduction . 105
5.2 Background . 109

5.2.1 Related Work . 110
5.3 Benefits and Challenges . 110

5.3.1 Potential for Reuse from D2D 111
5.3.2 Challenge and Opportunity in D2D Offloading 112

5.4 R2D2: RRM with D2D . 114
5.4.1 Overview of R2D2 . 114
5.4.2 D2D Traffic Classification . 115
5.4.3 Dynamic FFR in R2D2 . 116
5.4.4 Joint Cellular and D2D Scheduling in R2D2 119

5.5 Evaluation . 127
5.5.1 Setup . 127
5.5.2 Results . 129

5.6 Conclusions . 130

6 Conclusions and Future Work . 135

Appendix A: . 138

A.1 Mozart . 138
A.1.1 Critical Period . 138
A.1.2 Critical Period for other protocols 139

A.2 Symphony . 140
A.3 RobinHood . 142

A.3.1 Algorithm Satisfiable . 142
A.4 R2D2 . 144

Bibliography . 150

xi

LIST OF TABLES

TABLE PAGE

2.1 Results from RTT measurements . 42

xii

LIST OF FIGURES

FIGURE PAGE

1.1 Network topology and set of packets received by APs. 3

1.2 Omniscient TDMA takes a minimum of 4 slots. Symphony can receive
four packets in two slots. By leveraging SIC, Symphony can receive all
the four packets in a single slot. Symphony does decoding in the reverse
chronological order by first decoding the packets received in the last slot. . 4

1.3 Illustration of RobinHood over a topology of 3 clients and 4 APs. All
devices belong to the same collision domain and can hear each other. . . . 5

1.4 Collision Recovery Period. Through control messages, the receiver en-
sures that the number of transmitters is reduced by 1 from the previous
slot. Data transmissions in the same slot may arrive at different times
at the receiver due to propagation delays and radio’s TX-RX turn-around
time. At the end of the recovery period, the receiver will reconstruct sam-
ples for P4 and subtract it from samples received in slot 3. The remaining
samples are then decoded to obtain P1. Similarly, P2 and P3 are decoded
from the samples of slot 2 and slot 1, respectively. 7

1.5 D2D usage . 8

1.6 CDF of number of APs observed across different locations. The data was
collected at multiple places including a hospital, a large university library
and an apartment complex. 8

1.7 Received Signal Strength (RSS) in an office environment. The channel
between APs is relatively stationary compared to channel between AP and
mobile client. 9

xiii

2.1 Network topology and set of packets received by APs. (a) Network topol-
ogy. AP1 is assumed to be outside the interference range of Bob and Carol.
(b) Omniscient TDMA takes a minimum of 4 slots. (c) Symphony can re-
ceive four packets in two slots. In Symphony, APs cooperatively decode
packets in the reverse chronological order by first decoding the packets
received in the last slot. 12

2.2 Dependence graph (Gd) and Induced Directed Acyclic Subgraph (IDAS
denoted by Gs) at the end of the first and the second slot for the example
network shown in Figure 2.1a. 19

2.3 Synchronization: The propagation delay is at most 1µs, the length of 127
symbol PN sequence transmitted at 20Mbps is 6.35µs while the radio tx-rx
turn around time is at most 2µs for a total duration of 9.35µs [55]. For a
given AP, the maximum difference between the start of the data transmis-
sion times of its neighboring clients is at most 20.70µs 26

2.4 Dependence graph for network topology shown in Figure 2.1a when using
SIC. The chosen acyclic subgraph is also shown in bold. 29

2.5 Downlink-uplink coexistence. 30

2.6 Experiment testbed and results . 33

2.7 Simulation results. 36

2.8 Simulation results: Overheads. 38

3.1 Illustration of RobinHood over a topology of 3 clients and 4 APs. All
devices belong to the same collision domain and can hear each other. . . . 45

3.2 Received Signal Strength (RSS) in an office environment. The channel
between APs is relatively stationary compared to channel between AP and
mobile client. 47

3.3 CDF of number of APs observed across different locations. The data was
collected at multiple places including a hospital, a large university library
and an apartment complex. 48

3.4 Phase I time-line: ACi and AAj represent the access codes for Ci and APj ,
respectively. 53

3.5 Phase II time-line: vi denotes the precoding vector of APi. 54

xiv

3.6 Timeline of data transmission in a large network. The data sent by clients
during contention phase are transmitted using the Rapid OFDM Polling
(ROP) [81] scheme to decrease overhead. Phase III is executed in the
background over the wired backbone allowing wireless channel to be used
for other purposes. 62

3.7 Experiment results collected over USRP testbed. 65

3.8 Trace-Driven Simulation Results for Multi-Collision Domain 66

4.1 Collision Recovery Period. Through control messages, the receiver en-
sures that the number of transmitters is reduced by 1 from the previous
slot. Data transmissions in the same slot may arrive at different times
at the receiver due to propagation delays and radio’s TX-RX turn-around
time. At the end of the recovery period, the receiver will reconstruct sam-
ples for P4 and subtract it from samples received in slot 3. The remaining
samples are then decoded to obtain P1. Similarly, P2 and P3 are decoded
from the samples of slot 2 and slot 1, respectively. 79

4.2 Iterative algorithm for transmitter identification and RSS estimation. 87

4.3 Experiment Results with single AP. 94

4.4 Experiment topology and results with multiple APs. 95

4.5 Detection and RSS Estimation of colliding packets for Mozart and tradi-
tional approach [55] under equal RSS setting (worst case analysis). 96

4.6 Evaluation of packet subtraction: Higher ∆P implies lower residual noise
and better cancellation accuracy. (a) Variation in ∆P with varying SINR
of the subtracted packet. (b) CDF of ∆P when packet has 4000 samples. . 97

4.7 Comparison of different algorithms for TCP traffic. 101

5.1 (a)-(c): [] indicates the set of Resource Blocks (RBs, i.e. time-frequency
allocation units [3]) available for allocation to cell exterior traffic. Total
number of RBs to be allocated is 30. (d) Graph for the network shown in
Fig. 5.1a. 107

5.2 A D2D Oblivious dynamic FFR algorithm will put all D2D traffic on UL
resources (to avoid interference with the downlink cellular transmissions in
the co-located sectors) and allocate resources proportionally. On the other
hand, a dynamic FFR allocation scheme aware of D2D traffic (R2D2) will
carefully split D2D traffic across UL and DL. When coupled with resource
allocation for interior traffic, the D2D-Aware dynamic FFR allocation be-
comes more challenging (shown in Sec. 5.4.3) and provides even higher
benefits. 132

xv

5.3 Evaluation results illustrating challenges in leveraging D2D. 132

5.4 Constraints when scheduling transmissions on the same RB. 133

5.5 Evaluation results illustrating challenges in leveraging D2D. 133

A.1 Critical Period Computation. If all radios do not initiate a new exchange
within 9.35 µs, then they would hear the poll. 139

xvi

LIST OF ALGORITHMS

1 Computes the set of nodes to be suppressed in a given slot 41

2 Approve: Computes the set of clients that will be approved in this slot 75

3 Computes the set of nodes that should be sent suppress in this slot 91

4 Alg1: Computes the assignment of resources to users that maximizes (5.10)

in a TDD system. 125

5 Alg2: Computes the assignment of resources to users that maximizes (5.10)

in a TDD system. 126

6 Alg3: Computes the assignment of resources to users that maximizes (5.10)

in a FDD system. 134

xvii

CHAPTER 1

INTRODUCTION

The number of mobile devices and the amount of data communicated by the applications

on these devices has been growing at an exponential rate during the past few years. How-

ever, the number of channels available for data transmission has not increased significantly

leading to the problem of “spectrum crunch”. Network administrators have tried to tackle

this problem by employing high density of access points. However, to prevent interference,

the current wireless algorithms prohibit these neighboring access points to operate simul-

taneously. This thesis focuses on improving the network–experience on the mobile devices

by leveraging the high density of wireless devices. This thesis proposes four different al-

gorithms that are suited for different wireless topologies: Symphony, RobinHood, Mozart

and R2D2.

Symphony, RobinHood, and Mozart focus on the Wi-Fi networks. In Wi-Fi networks,

due to discrepancy between the interference at the transmitter and at the receiver, it be-

comes very difficult for the transmitters to precisely estimate the interference at receivers

which leads to hidden and exposed terminal problems. Further, the IEEE 802.11 protocol

and its derivatives (e.g., 802.11 with RTS- CTS, 802.11ec [55], ZigZag [29] etc.) require

the channel to remain idle when the nodes are undergoing backoffs. In dense deployments,

such idle listening leads to up to 30% loss of throughput [40]. The focus of Symphony,

RobinHood, and Mozart is to eliminate these losses and propose novel physical and MAC

layer techniques to enable multiple transmissions in the neighborhood.

1

On the other hand, the focus of R2D2 is on cellular networks where the high density

of devices has forced service providers to densely deploy the base stations. However,

within a single base station, the current algorithms allow at most one device to operate on

a given frequency. In this thesis, we explore a recently proposed communication paradigm

called Device to Device (D2D) communication, that allows neighboring devices to directly

communicate with each other.

In Chapter 2, this thesis proposes Symphony1 [11], a cooperative decoding approach

that minimally uses the wired connection among APs to increase the throughput of wire-

less networks. Symphony encourages collision of packets among transmitters at APs. On

receiving multiple packets, APs suppress a subset of colliding transmitters. This reduces

the number of transmitters in each slot. Eventually, the number of transmitters reduces to

a small enough value such that the APs can cooperatively decode all the received packets.

The working of Symphony is best explained through an example. Figure 1.1a shows

a simple topology with two APs and four clients where the APs are connected to each

other through a wired backbone. Assume that each of the clients wants to upload one

packet to the wired network. For this topology, omniscient TDMA will take at least four

slots to schedule the four transmissions (See Figure 1.2a). In Symphony, on the other

hand, all the four clients transmit (See Figure 1.2b) in the first slot. At the end of the slot,

Symphony suppresses Alice (A) and Bob(B). In the next slot, only Carol(C) and Don(D)

transmit. At the end of the second slot, AP1 decodes the packet D since AP1 received it

interference-free. After decoding, it sends the decoded bits of D to AP2 over the wired

backbone. From the received bits, after correcting for different offsets, AP2 recreates D′s

received samples and subtracts them from the samples received in slot 2. After subtraction,

it is left with only the samples corresponding to C which AP2 decodes. At the same

time, AP1 recreates the samples of D as received in slot 1 and subtracts those samples

1A joint work with Bo Chen

2

Alice

Bob
Switch

Carol
DonAP1 AP2

(a) Network topology. AP1 is assumed to be
outside the interference range of Bob and

Carol.

AP\ Slot Slot 1 Slot 2 Slot 3 Slot 4

AP 1 A D

AP 2 A B C D

AP 1 A D D

AP 2 A B

C D

C D

Omniscient

TDMA

Symphony

(b) Set of packets received by APs on air when
using different algorithms. Circles indicates
that the packet was decoded using samples

received in that slot.

Figure 1.1: Network topology and set of packets received by APs.

from the samples received in slot 1. AP1 then decodes the remaining samples to obtain

A and sends it to AP2. Finally, AP1 recreates the received samples of A,C and D for

slot 1. After subtracting these samples from the samples received in slot 1, AP2 decodes

B. Figure 1.1b shows the set of packets received by the two APs in different slots and

samples from which slot are used to decode which packet. Using cooperation among APs

and by using the backbone for exchanging decoded packets, Symphony enables the two

APs to receive the four packets in two slots. Thus, by utilizing cooperation among APs

to simultaneously decode multiple colliding transmissions, Symphony provides twice the

throughput as compared to omniscient TDMA. Chapter 2 also shows that by encouraging

collisions among transmissions, Symphony creates more opportunities of harnessing the

power of Successive Interference Cancellation (SIC). This allows receivers in Symphony

to decode multiple transmissions in the same slot. For the example network shown in

Figure 1.1, when using SIC, Symphony can decode all the four packets in a single slot (See

Figure 1.2c).

3

C

A AAAAAAAA
BBB

CCC
D

CB D CCCCCCC
D

AAAAAAA
BBB

CCC
D

D D A

B

A

C

D D A

B

A

W
ir

e
le

ss

T
ra

n
sm

is
si

o
n

s

W
ir

e
d

T
ra

n
sm

is
si

o
n

s

Poll Suppress Finish

AP1

AP2

AP1

AP2

Successful Decoding

Backhaul

transmission

(a) Omniscient TDMA (b) Symphony (c) Symphony + SIC

Figure 1.2: Omniscient TDMA takes a minimum of 4 slots. Symphony can receive four

packets in two slots. By leveraging SIC, Symphony can receive all the four packets in a

single slot. Symphony does decoding in the reverse chronological order by first decoding

the packets received in the last slot.

In the next chapter, this thesis describes solution RobinHood2 [13] that scales the uplink

throughput with the number of clients in the network by enabling multiple nearby access

points to concurrently receive uplink packets from multiple mobile clients, all within a

single collision domain. RobinHood does not increase energy consumption on the clients

and executes exactly over two time slots. RobinHood leverages three properties that are

unique to Enterprise Wireless LANs (EWLANS): (i) Dense deployment of APs (See Fig.

1.6 and [57]); (ii) Capability of these APs to exchange packets with each other over the

underutilized wired backbone; and, (iii) Immobility of APs resulting in relatively stationary

channels (See Fig. 1.7).

Consider the example enterprise WLAN shown in Fig. 1.3a where all the APs and the

three clients are in a single collision domain. Assume that the three users want to upload

one packet each to the backbone. An omniscient TDMA scheduling algorithm with global

knowledge would require three time slots to complete this upload. In RobinHood, in the

first slot as shown in Fig. 1.3a, all users will transmit at the same time. All the 4 APs

2A joint work with Wenjie Zhou

4

C
1

C
2

C
3

x1 x2 x3

AP
1

AP
2

AP
3 AP

4

S
w

itc
h

h(1)
12x1 + h(1)

22x2

+ h(1)
32x3

h(1)
11x1 + h(1)

21x2

+ h(1)
31x3

(a) First slot. x1, x2 and x3 are the three packets
transmitted by C1, C2 and C3, respectively. h1

ij

is the channel from client i to APj during time
slot 1.

AP
1

AP
2

AP
3 AP

4

S
w

itc
h

a11x1 + s1h(1)

21x2 +

s1h(1)
31x3

a12x1 + a22x2 +

a32x3

(b) Second slot. A subset of APs transmit in the
second slot while the rest of the APs receive. aij

are the final channel coefficients after the
transmission of the second slot. si is the scaling

coefficient at APi.

Figure 1.3: Illustration of RobinHood over a topology of 3 clients and 4 APs. All devices

belong to the same collision domain and can hear each other.

will receive a combination of three transmitted packets. In the second slot, AP3 and AP4

will retransmit the received signals by first precoding [37] them such that the following

condition is satisfied as shown in Fig. 1.3b: At AP1, samples corresponding to x2 and x3 in

the second slot align with the samples corresponding to x2 and x3 in the first slot. Decoding

happens in multiple steps as follows:

• At the end of the second slot, AP1 scales the samples received by AP1 in the second

slot and subtracts them from the samples received in the first slot. This scaling is

done such that samples corresponding to x2 and x3 are nulled. Afterwards, it is left

with only the samples corresponding to x1. AP1 decodes the samples to obtain the

5

packet transmitted by C1. Next, it transmits the decoded packet over the backbone to

AP2.

• AP2 recreates the samples corresponding to x1 and subtracts them from the samples

received in the first slot and the second slot.

• After subtraction, AP2 is left with two equations (one from each slot), and two vari-

ables (x2 and x3). AP2 solves the two equations to obtain x2 and x3.

• Afterwards, AP1 and AP2 forward x1, x2 and x3 towards their destinations.

Symphony and RobinHood are suitable for networks where the neighboring APs coop-

erate with each other. For general wireless networks where the APs may not be willing to

cooperate, Chapter 4 presents a new cross-layer solution called Mozart3, that encourages

collisions and hidden terminal transmissions in a planned way to enable fast recovery of

colliding packets via a combination of Successive Interference Cancellation (SIC) and a

new approach called successive packet subtraction. In Mozart, a receiver simultaneously

receives multiple packets from different transmitters resulting in a collision. The receiver

then smartly suppresses transmissions in subsequent slots based on its estimation of signal

strengths from various senders so as to best apply a combination of mechanisms involving

signal subtraction and SIC to recover all the colliding packets. Finally, the receiver de-

codes packets by using “successive packet subtraction”. Consider the example shown in

Figure 1.4 where in the first slot, the receiver receives four packets. However, at the end

of every slot, the receiver suppresses one transmitter while other transmitters retransmit

the same packet. Eventually, in the fourth slot, only one packet (P4) is received which the

receiver can simply decode. Next, it subtracts the samples of P4 from slot 3 to decode P1.

This process is continued until the receiver decodes all the packets. Chapter 4 explains

3A joint work with Bo Chen

6

P3

Time Slot 1 Time Slot 2 Time Slot 3

P1 P1P1

P2 P2

Receiver

broadcasts

suppress

for P3

Receiver

broadcasts

suppress

for P2

Receiver

broadcasts

suppress

for P1

Poll

transmitted

by receiver

P4

P4

P4

P4

Receiver

broadcasts

Finish

Time Slot 4

Notify

transmitted

by one of the

transmitters

Figure 1.4: Collision Recovery Period. Through control messages, the receiver ensures

that the number of transmitters is reduced by 1 from the previous slot. Data transmissions

in the same slot may arrive at different times at the receiver due to propagation delays and

radio’s TX-RX turn-around time. At the end of the recovery period, the receiver will

reconstruct samples for P4 and subtract it from samples received in slot 3. The remaining

samples are then decoded to obtain P1. Similarly, P2 and P3 are decoded from the samples

of slot 2 and slot 1, respectively.

how this approach allows Mozart to eliminate hidden terminal problem while harnessing

Exposed terminals. Mozart also significantly reduces the backoff time, thereby improving

the throughput of the nodes.

Device-to-device (D2D) communications is being pursued as an important feature [3]

for the next generation cellular networks (LTE-advanced). The goal of D2D is to lever-

age the high density of communicating devices to improve the network utilization in two

ways: (i) offload: a data session between two devices (D1, D2) in the same sector which

conventionally incurs two hop transmissions in the cellular mode (D1→BS, BS→D2) now

requires only a single hop transmission (Fig. 1.5) in D2D mode (D1→D2), and (ii) reuse:

leveraging the physical proximity, the D2D communication can further operate on re-

sources on which conventional cellular users are already scheduled. In Chapter 5, this

7

D3D1 D2

D4

Sector 1 [1-13]

D5

D6

D7

Cell

Interior
Cell

Exterior

Figure 1.5: D2D usage

 0

 0.25

 0.5

 0.75

 1

 60 100 140 180

C
D

F

Number of APs

Number of APs

Figure 1.6: CDF of number of APs observed across different locations. The data was

collected at multiple places including a hospital, a large university library and an

apartment complex.

thesis proposes solution R2D2 [12] that efficiently integrates D2D communications in the

existing cellular networks.

This thesis shows that in multicell deployments with sectorized cells, the existing reuse

provided by the cellular deployment leaves little room for D2D communication to provide

additional reuse. Hence, most of D2D’s gain is restricted to its ability to offload cellular

8

0 5 10 15 20
−80

−70

−60

−50

−40

−30

Time (s)

R
S
S
 (
d
B
)

(a) Channel between a pair of APs

0 5 10 15 20
−80

−70

−60

−50

−40

−30

Time (s)

R
S
S
 (
d
B
)

(b) Channel between a mobile client and
an AP

Figure 1.7: Received Signal Strength (RSS) in an office environment. The channel

between APs is relatively stationary compared to channel between AP and mobile client.

traffic. R2D2 leverages the temporal variations in the cellular downlink and uplink traffic

and places D2D traffic flexibly on the cellular resources that would have otherwise gone

wasted.

Chapter 5 also proposes a two time scale solution: (i) At the beginning of every epoch

(lasting several tens of frames), R2D2 estimates the average traffic (resource) demand from

cellular and D2D traffic in each sector and assigns cellular resources to each of the sectors;

and, (ii) In every frame, for the set of sectors co-located at the same base station and

instantaneous traffic demands, R2D2 solves the coupled problem of D2D traffic placement

and scheduling of cellular and D2D traffic jointly on both the DL and UL resources as

well as across the sectors. Thus, while the coarse time-scale component in R2D2 allocates

resources and removes interference only between cross sectors (through dynamic FFR) for

an entire epoch, the fine time-scale component is responsible for alleviating the interference

between co-located sectors generated by D2D traffic (through joint sector scheduling) and

maximizing the utilization of allocated resources in every frame in the epoch.

9

1.1 Contributions and Structure of this Thesis

The key contributions of this thesis are as follows:

• In our work on uplink traffic performance in Enterprise WLANs, we propose two

different algorithms Symphony and RobinHood (Chapter 2 and Chapter 3, respec-

tively). Symphony works across APs that belong to different collision domains while

RobinHood enables multiple APs in the same collision domain to simultaneously re-

ceive data. This thesis also discusses the results from the deployment of both Sym-

phony and RobinHood on wireless testbeds.

• Chapter 4 discusses Mozart that improves the wireless throughput in networks where

APs may not be willing to cooperate with each other. Mozart implicitly handles the

hidden terminal problem by requiring all neighboring clients to transmit simultane-

ously and then carefully decoding the collided packets one-by-one.

• Chapter 5 presents a two-time scale algorithm for efficiently integrating Device-to-

Device communications in existing cellular networks. The proposed algorithm does

resource block allocation across different base stations. Further, at a finer time-scale,

it schedules uplink, downlink and D2D communications at each cellular base station.

The rest of the thesis is organized as follows. Chapter 2 presents our work on the Sym-

phony algorithm. Chapter 3, we present our algorithm RobinHood that scales the uplink

throughput in Wireless LANs. Chapter 4 presents Mozart, an algorithm for packet decod-

ing. In Chapter 5, we present R2D2 that efficiently integrates D2D communications in

existing cellular networks. Chapter 6 concludes this thesis.

10

CHAPTER 2

SYMPHONY: COOPERATIVE PACKET RECOVERY OVER THE

WIRED BACKBONE IN ENTERPRISE WLANS

2.1 Introduction

APs in Enterprise Wireless Local Area Network (EWLAN) are typically connected using a

wired backbone. In this chapter, we propose Symphony, a cooperative decoding approach

that minimally uses the wired connection among APs to increase the throughput of wire-

less networks. Symphony encourages collision of packets among transmitters at APs. On

receiving multiple packets, APs suppress a subset of colliding transmitters. This reduces

the number of transmitters in each slot. Eventually, the number of transmitters reduces to

a small enough value such that the APs can cooperatively decode all the received packets.

Figure 2.1a shows a simple topology with two APs and four clients where the APs are

connected to each other through a wired backbone. Assume that each of the clients needs

to upload one packet to the backbone. For this topology, omniscient TDMA will take at

least four slots to schedule the four transmissions (See Figure 2.1b). In Symphony, on the

other hand, all the four clients transmit (See Figure 2.1c) in the first slot. At the end of

the slot, Symphony suppresses Alice (A) and Bob(B). In the next slot, only Carol(C) and

Don(D) transmit. At the end of the second slot, AP1 decodes the packet D since AP1 re-

ceived it interference-free. After decoding, it sends the decoded bits of D to AP2 over the

11

Alice

Bob
Switch

Carol
DonAP1 AP2

(a) Network Topology

A B C D

W
ir

e
le

s
s

T
ra

n
s
m

is
s
io

n
s

W
ir

e
d

T
ra

n
s
m

is
s
io

n
s

Time

(b) Omniscient TDMA

C

Time Slot 1 Time Slot 2

A

B

suppressPoll

D

C

D

AP1

AP2

Time

D

C

A

B

Finish

Successful

decoding

Backhaul

Transmission

Time

Notify

(c) Symphony

Figure 2.1: Network topology and set of packets received by APs. (a) Network topology.

AP1 is assumed to be outside the interference range of Bob and Carol. (b) Omniscient

TDMA takes a minimum of 4 slots. (c) Symphony can receive four packets in two slots.

In Symphony, APs cooperatively decode packets in the reverse chronological order by

first decoding the packets received in the last slot.

wired backbone. From the received bits, after correcting for different offsets, AP2 recre-

ates samples received fromD and subtracts them from the samples received in slot 2. After

subtraction, it is left with only the samples corresponding to C which AP2 decodes. At the

same time,AP1 recreates the samples ofD as received in slot 1 and subtracts those samples

from the samples received in slot 1. AP1 then decodes the remaining samples to obtain A

and sends it to AP2. Finally, AP2 recreates the received samples of A,C and D for slot

1. After subtracting these samples from the samples received in slot 1, AP2 decodes B.

Using cooperation among APs and by using the backbone for exchanging decoded packets,

Symphony enables the two APs to receive the four packets in two slots. Thus, by utilizing

12

cooperation among APs to simultaneously decode multiple colliding transmissions, Sym-

phony provides twice the throughput as compared to omniscient TDMA.

Cooperation among APs has been used before to increase wireless throughput. Authors

in [57] focus on improving the client-AP association and AP channel assignment. Miu

et al. [56], Woo et al. [79]and Gowda et al. [32] have respectively proposed techniques

for bit-level, symbol-level and coarse symbol-level combining across different APs. In

these solutions, a packet overheard by different APs is decoded cooperatively by multiple

APs. However, in all these algorithms, all the APs cooperate to decode a single packet

while in Symphony, APs cooperate to simultaneously decode multiple packets. Further,

symbol-level combining [56] across different APs is prohibitive due to significantly higher

bandwidth requirements [32,79] on the wired backbone. In Symphony, APs only exchange

decoded packets which are typically much smaller in size compared to raw samples [32,79].

The idea of exchanging packets on the backbone was also studied in [30]. However, unlike

Symphony, [30] provides throughput improvement only when all the devices have at least

two antennas.

Several prior works [49, 65, 72] have focused on increasing network throughput for

downlink traffic in EWLANs while neglecting the uplink traffic. On the other hand, Sym-

phony primarily improves the network throughput on uplink while allowing efficient schemes

such as conflict-free TDMA scheduling [49] to be utilized over the downlink. We believe

that upstream traffic is increasing rapidly due to rise in use of a wide-range of new storage

paradigms, computing paradigms and applications, such as cloud computing, cloud stor-

age, P2P file access, video conferencing, online gaming, VoIP, and traffic generated from

the mobile devices (e.g., location information or sensor readings). Using cooperation to

improve uplink wireless throughput is particularly challenging, since APs are not aware of

which client has data to transmit making it difficult to schedule transmissions. Collecting

this information from different clients is also cost-prohibitive.

13

Although the idea behind Symphony is simple, there are multiple challenges to realize

it in practice.

• Set of nodes to suppress: At the end of each slot, Symphony needs to determine

the set of nodes to be suppressed. This set should be feasible (ensuring that the set

of suppressed transmissions would be decoded in future) and large, so that all the

collided transmissions can be decoded in a small number of slots.

• Synchronization and variable non-zero latency: Cooperation among APs requires

that APs be synchronized with each other and that their mutual-latency be low and

predictable. However, our measurements described in Section 2.6.2 show that these

requirements do not hold true in large networks.

• Absence of central controller: In wireless networks, it may not be possible to set

up a central controller that coordinates all the APs in the entire network due to the

large size of the network. Thus, it is required that cooperative decoding should work

in the absence of central controller.

• Knowledge of topology: To cooperatively suppress a subset of transmitters, the APs

need to know the network topology. This information (particularly the interference

among non-AP nodes) is difficult to acquire for large scale networks [30, 49] and

could lead to significant overhead.

• Difference in packet lengths: It is possible that different transmitters may have

different amount of pending data left. However, if the channel access time is fixed

as shown in Figure 2.1c, then the users with less pending data may not fully use the

access time leading to channel wastage.

The chapter is organized as follows. The next section describes a centralized algorithm

that assumes the presence of a central server. In Section 2.3, we describe our distributed

14

protocol, Symphony that handles all the above challenges. In Section 2.4, we explain how

Symphony harnesses SIC to increase wireless throughput. The following section discusses

some issues that makes our solution more practical. Section 2.6 and Section 2.7 outline

the results from our USRP testbed experiments and ns-3 based simulations, respectively.

Section 2.8 presents the state of the art and finally, Section 2.9 concludes this chapter.

2.2 Cooperative Packet Subtraction

In this section, we present a simplified version of our algorithm, called Centralized Algo-

rithm (CA) that works under a centralized framework. In Subsection 2.2.2, we explain the

practical limitations of CA.

CA assumes the presence of a central server (CS) that coordinates different APs. CA

also assumes that all the APs are synchronized with the CS and their mutual latency is zero.

We relax these assumptions in Section 2.3 where we describe our distributed algorithm. CA

works in multiple phases as described below (See Figure 2.1c):

• Polling: First, using the wired backbone, the CS asks all the APs to simultaneously

transmit poll packets on the air. The poll packets are encoded using PN sequences

[55]. Use of PN sequences, allows the clients to correlate them even if multiple poll

packets collide.

• Data Transmission: Upon receiving the poll, the clients that have uplink data trans-

mit their data packets. The clients also encode their IDs using their PN sequence

and include it in the packet’s header at the front. Due to simultaneous transmissions,

multiple packets may collide at the APs. As explained in Section 4.3.1, each AP uses

the PN sequence to determine the ID of as many colliding transmitters as possible,

and then forwards this information to the CS using the wired backbone.

• Computing the set of suppressed clients: On receiving the best-effort information

15

about which AP received packets from which clients, the CS uses Algorithm 1 (ex-

plained in Section 2.2.1) to compute the subset of transmitters to be suppressed at

the end of this slot. The algorithm described in Section 2.2.1 also determines which

AP should suppress which client. All this information is conveyed by CS to the APs

through the backbone.

• Transmitting the suppress packets: Upon receiving the information about which

nodes to suppress, the APs transmit the suppress packet that includes the PN se-

quence of the client that is suppressed. Similar to poll packets, here also use of

PN sequences allows the clients to correlate them even if multiple suppress packets

collide.

• Data retransmission: Each client upon hearing the suppress determines if it is being

suppressed: If so, it does not transmit (until it receives finish), otherwise, the client

retransmits its data.

• Finish: As the nodes are suppressed, the number of concurrent transmissions re-

ceived by APs decreases with each slot. Eventually, it becomes possible for the APs

to use cooperation and decode all the transmissions received in the last slot. As de-

scribed in Section 2.1, this decoding is done in the reverse chronological order until

all the received packets are decoded. At that point, the CS directs all APs to broadcast

finish. The reception of a finish packet at the clients indicates that the data transmit-

ted by the nodes has been successfully received at APs. This allows the nodes to

transmit the next MAC-layer data frame.

Another way of scheduling transmissions may be that in the first slot, using the poll,

APs gather the PN sequences of all the clients that have uplink data and then schedule

different transmitters in a TDMA fashion. However, this approach does not work well

since APs may not detect PN sequences from transmitters that have low SINR (See 4).

16

Thus, transmitters with low SINR will not be scheduled and get starved. On the other

hand, the PN sequences of such transmitters will be detected in CA in later slots when the

number of colliding packets become small. So, with the reverse chronological decoding

of Symphony, the transmitters with low SINR will also be suppressed and eventually their

packets would also be decoded.

To prevent overwhelming [32, 79] the wired backbone, one of the requirements for co-

operative decoding is that APs should not exchange sample level information on the wired

backbone1. The set of transmissions suppressed during a slot and the samples received at

all the APs during that slot form a set of linear equations. Observe that, just because the set

of equations is solvable, it does not imply that all the suppressed transmissions can be de-

coded without exchanging sample level information. Consider the example network shown

in Figure 2.1a. If at the end of slot 1, the CS suppresses A and D, then even though the

set of linear equations has 2 variables (A and D) and 2 equations (samples received at AP1

and AP2), still it is not possible to decode both A and D without the exchange of samples.

Thus, we need another mechanism to compute the set of suppressed transmissions.

2.2.1 Computing the set of suppressed transmissions

At the end of each slot, the CS computes the set of suppressed transmissions. This set

should satisfy the following four requirements: (i) Feasibility: It should be a feasible set

such that the APs can successfully decode all the suppressed packets without exchanging

sample-level information; (ii) Optimality: It should maximize the number of transmis-

sions suppressed in this slot; (iii) Optimality in future slots: It should maximize the

applicability of cooperative decoding in future slots; and, (iv) Low backbone overhead:

1Although by exchanging coarse samples [32], it is possible to reduce the overhead in the backbone, it is
not enough for our purpose since high fidelity representation of symbols is required to decode a packet in
the presence of interference from other transmissions.

17

It should minimize the number of decoded packets that need to be exchanged among APs,

thereby reducing the overhead on the wired network.

Computing the largest set of feasible suppressed transmissions (while taking into ac-

count only the first two requirements) is a NP-Hard problem (shown in Section A.2). To

that end, we propose a two-phased greedy algorithm that computes the set of suppressed

transmissions by first constructing a dependence graph and then picking its maximum

acyclic induced subgraph (Both phases are explained below). This acyclic graph corre-

sponds to the set of transmissions that can be successfully suppressed in this slot. In this

chapter, we use Pi to denote packet received from client i. We overload this term and also

use Pi to represent the client that transmitted the packet.

Phase 1: Constructing the dependence graph: When using cooperative decoding,

decoding of one transmission may depend on successful decoding of another transmis-

sion. For the example network shown in Figure 2.1a, let’s say that in the first slot, the CS

suppresses A and B. However, since A’s transmission interferes at AP2, therefore, B’s

transmission at AP2 can be decoded only after the former transmission has been decoded

atAP1. In general, for two transmissions {Pi, APj} and {Pk, APl}, if Pk interferes at APj ,

then the transmission from Pi can be decoded at APj only after Pk’s transmission has been

decoded. Thus, we say that the decoding of Pi’s transmission is dependent upon the de-

coding of Pk’s transmission. In this phase, the CS constructs a dependence graph for the

current slot (Lines 3-4 of Algorithm 1)):

• Vertices: Corresponding to each client-AP link in the topology, a vertex is created

in the dependence graph. We use vij to denote the vertex that corresponds to the link

{Pi, APj}. vij is created iff Pi transmitted at least one packet in this slot and APj is

in the receiving range of Pi (i.e., APj can decode Pi in the absence of interference).

• Edges: Edges in the dependence graph capture the decoding dependence among

different transmissions. A directed edge is added from vertex vij to a vertex vkl iff

18

A→AP1

A→AP2D→AP1

D→AP2 B→AP2

C→AP2

(a) Gd at the end of slot 1

A→AP1

A→AP2D→AP1

D→AP2 B→AP2

C→AP2

(b) Two vertices and one induced
edge (shown in bold) form the

Acyclic subgraph (Gs) at the end
of slot 1.

D→AP1

D→AP2

C→AP2

(c) Gd at the end
of slot 2

D→AP1

D→AP2

C→AP2

(d) Gs (shown in
bold) at the end

of slot 2.

Figure 2.2: Dependence graph (Gd) and Induced Directed Acyclic Subgraph (IDAS

denoted by Gs) at the end of the first and the second slot for the example network shown

in Figure 2.1a.

(i) Pi interferes at APl; and, (ii) vij is not same as vkl. The second condition forbids

self-loops in the graph.

By creating vertices on the basis of transmission range and edges on the basis of the in-

terference range, the algorithm is able to handle the differences between the transmission

and interference range of practical radios. Figure 2.2a shows the dependence graph for the

example network shown in Figure 2.1a at the end of slot 1. In the following discussion, we

use Gd to denote the dependence graph.

Phase 2: Computing the maximum vertex-induced directed acyclic subgraph (IDAS):

We prove (See Section A.2) that a set of client-AP transmissions can be decoded if and only

if the vertex induced subgraph of the corresponding set of vertices inGd is a DAG (Directed

Acyclic Graph). For example, since transmissions A → AP1 and B → AP2 (See Figure

2.2a) are part of induced acyclic subgraph of the dependence graph, therefore both these

transmissions can be suppressed at the end of slot 1. Thus, to compute the largest set of

19

suppressed nodes in this slot, the CS computes the maximum Induced Directed Acyclic

Subgraph (IDAS) of Gd. Algorithms for computing the maximum IDAS have been pro-

posed before [24]. Although, those algorithms take into account the first and the second

requirements discussed in Section 2.2.1, but they do not take into account the other two

requirements. To that end, we now explain the greedy algorithm used by CS to compute

the IDAS (denoted by Gs = (Vs, Es)) of Gd.

CS works by greedily adding vertices while ensuring that Gs stays acyclic. At any step,

it may be possible to add any of the multiple vertices (each vertex corresponds to some

client-AP pair in the dependence graph) available to Gs. However, different vertices may

give different performance results. To that end, for each vertex that can be added to Vs, CS

computes its weight and greedily adds that vertex that does not create a cycle in Gs and

has the lowest weight (Lines 8-15 of Algorithm 1). This process is repeated until no more

vertices can be added to Gs (Lines 6-17 of Algorithm 1).

Computing the weight: When adding a vertex (say vij) to Gs, the following equation

is used to compute its weight:

wij = w(Pi, APj)

= |(vij, vkl) : (vij, vkl) ∈ Ed ∧ vkl ∈ Vs|

×|(vkl, vij) : (vkl, vij) ∈ Ed ∧ vkl ∈ Vs| (2.1)

If on adding vij to Vs, it has either fewer incoming edges or fewer outgoing edges, then

this indicates that vij has low probability of being part of some cycle in the future. This

increases the possibility of extending Gs to a larger acyclic induced subgraph in the fol-

lowing iterations. Further, fewer edges indicate that APs need to exchange fewer packets in

the backbone. Thus, (2.1) assigns a lower weight to the vertices with either fewer incom-

ing edges or fewer outgoing edges and thus, a higher priority. Therefore, by using (2.1),

20

Algorithm 1 tries to take all the requirements into account that were discussed in Section

2.2.1.

Figure 2.2b shows the computed IDAS for the dependence graph shown in Figure 2.2a.

The subgraph shows that AP1 suppresses A while AP2 suppresses B. After the APs send

the suppress, only C and D transmit in the second slot. Figure 2.2c shows the dependence

graph created by CA at the end of the second slot. Figure 2.2d shows the computed IDAS

which shows that C and D are suppressed in this slot. Since, no other transmitters are left

for transmitting, so, the CS would ask APs to send finish. Observe that the edges in the Gs

also reveal how the APs should exchange the decoded packets. For example, the directed

edge from “D → AP1” to “C → AP2” indicates that decoding of C at AP2 is dependent

upon decoding of D at AP1. Thus, AP1 should send the decoded bits of D to AP2. The CS

transmits this information to the APs so that they only exchange packets that are required,

thereby reducing the overhead on the backbone.

2.2.2 Practical Challenges

Although the algorithm proposed before is good in theory, it is difficult to implement due

to various challenges:

• Synchronization: CA requires that all APs be time-synchronized to ensure correct

correlation of PN sequences. As described in Section 4.3.1, receivers in CA use

correlation of Gold codes to identify the set of transmitters. Gold codes guarantee

that the circular cross-correlation of two instances of Gold code is bounded. For

127-symbol sequence Gold codes, the bound is 1/7 [28]. So, the correlation works

better when Gold codes collide only with other Gold codes, and not with arbitrary

samples from data packets. This implies that CA needs to ensure that when an AP

receives a set of collided transmissions, then the PN sequences in them only collide

with other PN sequences. One way to satisfy this requirement is to ensure that all

21

APs in the network poll and suppress in a synchronous fashion. Algorithms for

synchronization in wired networks have been proposed before [41, 45], however, as

the size of the network grows, ensuring synchronization across the entire network

becomes difficult. Thus, a new method is needed to ensure that PN sequences collide

only with other PN sequences so that they can be correlated with high accuracy.

• Unpredictable delays over the backbone: In CA, the central server computes the

set of suppressed transmitters and distributes that result to the APs. However, due

to unpredictable delay, it is possible that this result may not arrive in time and thus,

some of the APs may not be able to proceed.

• Non-uniform distribution of clients across APs: The previous algorithm requires

that all APs poll at the same time. In an enterprise network, it is possible that different

APs have unequal number of neighboring clients with outstanding data. This may

result in different APs finishing at different times, leading to lower throughput as all

the finished APs in the network need to wait for the AP with the highest number of

clients.

• Absence of central controller: As discussed in Section 2.1, a central controller may

not be present to control all the APs in the network.

2.3 Symphony: Distributed algorithm

In this section, we explain the working of Symphony that takes into account the aforemen-

tioned challenges in Section 2.2.2.

2.3.1 System Structure

Using cooperative decoding requires multiple APs to collaborate, however, at the same

time, it may not be possible for all the APs in the network to collaborate since the wired

22

backbone delays from APs to the central controller may be unbounded. Further, if the

central controller is overseeing a lot of APs, it may also become a bottleneck. Symphony

handles these contradicting requirements by dynamically placing different APs in different

groups. One AP in each group serves as the Group Head (GH) and executes Symphony

independently from other groups. Putting APs in different groups allows Symphony to

achieve multiple objectives: (i) When dynamically creating groups, it is ensured that the

average round trip delay on the wired backbone from the AP to the GH is no more than a

threshold (ψ µs), thereby bounding the expected communication delay between the AP and

the GH with high probability; (ii) If one AP has high number of clients, then only the APs

in the same group are required to wait for this AP to finish; and, (iii) No central controller

is required.

Implementing this dynamic group based structure leads to various challenges: (i) To

avoid decoding failures due to conflicting suppress schedules, a client that is in the range

of APs from different groups is not allowed to transmit (discussed below). Thus, it is

important to dynamically change the composition of the groups so that all clients get an

opportunity to transmit; and, (ii) The overhead of maintaining the groups should be mini-

mized. The next subsection describes the group management algorithm used in Symphony.

2.3.2 Group Management

Group creation and joining an existing group: When a node (AP or client) turns on or

whenever the node is not part of any group, it enters the wait stage where it waits to hear

a join message on the wireless. This message includes the PN sequence of the GH that

originated this message. In Symphony, the ID of a group is same as the ID of its GH.

Therefore, the PN sequence included in join is also useful in determining which group

a received message came from. If the node (say ni) hears such a message, it joins the

announced group if all of the following requirements are satisfied: (i) ni is not in recovery;

23

(ii) ni has no wireless neighbor nj such that nj is a member of some other group and is

under recovery; and, (iii) If ni is an AP, then the average round trip delay between ni and

the GH on the wired backbone is no more than a threshold (ψµs). If ni determines that it

is eligible to join the group, then it immediately rebroadcasts the join message. Once ni

rebroadcasts the message, we say that ni has joined the group and has entered recovery. On

the other hand, if ni is an AP and it does not hear any join message within a certain time

(θ µs) that satisfies all the requirements, then it exits the wait stage. Next, if ni checks if

it has a wireless neighbor nj such that nj is a member of some other group and is under

recovery. If ni has no such neighbor, then ni creates a new group and declares itself as the

GH. Afterward, it broadcasts a join message.

Data transmission: A client broadcasts its data packet immediately after broadcasting

the join. Once the APs receive the headers of the data packets transmitted by clients,

the APs correlate the PN sequences in the headers to determine the IDs of clients that

transmitted (See Section 4.3.1). This information is then sent by the APs to the GH that

uses algorithm described in Section 2.2.1 to compute which AP will suppress which client.

This result is then sent back by the GH to all the APs who use this result to suppress

the clients at the end of the slot. However, due to unpredictable queuing delays on the

backbone, it is possible that some APs do not receive the result back from the GH before

the end of the slot. To handle such scenarios, the GH iteratively computes the set of nodes

to suppress for the next k slots and sends that to all the APs (We explain in Section 2.6.2

how k is determined). Further, in the unlikely case when some AP does not hear back from

GH for more than k slots, then at the end of the slot that AP does not suppress any client.

Finishing the recovery: As the APs suppress transmitters, eventually the number of

packets transmitted will be small enough such that they can be decoded. This marks the

end of recovery. At the end of recovery, the APs need to take a few steps to ensure: (i)

GH is dynamically changed to ensure that all APs have equal chance of being the GH; (ii)

24

Members belonging to a small group have a non-zero probability of merging with a bigger

group; (iii) Members belonging to a large group have a non-zero probability of splitting

into multiple smaller groups; and, (iv) Next recovery starts as soon as possible. We now

explain the steps taken by APs at the end of the recovery: (i) At the beginning of the last

slot, the GH sends a message to the APs announcing that the recovery will finish at the

end of this slot. This allows the APs to know when to enter the wait stage. (ii) Before

the recovery is over, the GH randomly selects some other AP in the group to be the new

GH. The current GH informs this new potential GH of this decision. This step ensures that

all APs have equal chance of being the GH. (iii) Once the recovery is over, all APs enter

the wait stage for a duration of θ µs as described in the beginning of Section 2.3. For all

the APs, θ is inversely proportional to the number of APs in their group. This ensures that

smaller groups wait for a longer time to receive a join message from other groups, and thus

they have higher probability of merging into another group. Also, the value of θ is set to be

low for the selected GH while it is higher for the other APs. This ensures that the selected

GH has higher chances of becoming a GH. This also reduces the probability of multiple

APs independently declaring themselves as GH. This allows Symphony to set θ to a low

value, thereby reducing the overhead of group management.

2.3.3 Cyclic Padding

As discussed in Section 2.3.2, on receiving the join message, a client first rebroadcasts the

message and then its uplink data. Consider the example network shown in Figure 2.3. Lets

say Alice starts transmitting join message at t = Tµs. join message is a 127-symbol PN

sequence, so, at 20Mbps, it will take 6.35µs [55] to transmit. Further, due to hardware

constraints, it may take Alice up to 2µs more before it can transmit the data packet. Thus,

Alice will start transmitting data packet somewhere between t = T + 6.35µs and t =

T + 8.35µs (See Figure 2.3). AP1 upon hearing the join message would immediately

25

AP 2Alice Don

join transmission start

time

T [T + 6.35,

T + 9.35]

[T + 6.35 + 6.35,

T + 9.35 + 9.35] =

[T + 12.70, T + 18.70]

data transmission

start time

[T + 6.35, T + 8.35] [T + 12.70 + 6.35,

T + 18.70 + 8.35] =

[T + 19.05, T + 27.05]

Figure 2.3: Synchronization: The propagation delay is at most 1µs, the length of 127

symbol PN sequence transmitted at 20Mbps is 6.35µs while the radio tx-rx turn around

time is at most 2µs for a total duration of 9.35µs [55]. For a given AP, the maximum

difference between the start of the data transmission times of its neighboring clients is at

most 20.70µs

rebroadcast it. However, due to propagation delay (at most 1 µs [55]) and radio tx-rx turn

around (at most 2 µs [55]), it may happen as late as t = T + 9.35µs. Continuing this

computation, we can see that all neighboring clients of AP2 will start transmitting before

t = T + 27.05µs. Thus, for a given AP, the maximum difference between the start of the

data transmission times of its neighboring clients is at most 20.70µs (See Figure 2.3 where

Alice can possibly start transmitting data as early as t = T + 6.35µs while Don may start

as late as at t = T + 27.05µs). Thus, to ensure that the PN sequences in their data packet

headers collide only with the PN sequences of other transmitters, the clients pad cyclic bits

after their PN sequences. In Symphony, the length of the cyclic padding is set to 25µs.

By using circular padding and join messages broadcasted on wireless, Symphony en-

sures that it is possible to correlate the PN sequences without requiring global synchro-

nization. By requiring GH to proactively compute the set of suppressed transmissions,

Symphony is able to handle unpredictable and non-zero latency on the backbone.

26

2.4 Heterogeneous Data Rates and Packet Sizes

In Symphony, different transmitters may select different physical layer data rates due to

differences in channel conditions. Since wireless channels are bidirectional in nature [30],

the transmitters in Symphony use the received poll packet to estimate the channel to the

receiver. This is similar to the Mozart’s (See Chapter 4) approach of estimating the physical

layer data rate. However, in Symphony, a client may receive poll from multiple APs. In

that case, it estimates the channel with all the APs from whom it received the poll message

and chooses the maximum possible data rate such that at least one AP can decode the

transmitted packet. Estimating the channel requires the client to estimate the RSS of as

many poll packets as possible. However, estimating the RSS of multiple colliding packets

is not trivial due to high interference. For this, Symphony borrows the channel estimation

technique proposed in Mozart for estimating the RSS of colliding packets (Section 4.3.1).

In Symphony, the channel access time is fixed for all transmitters. A transmitter with

better channel may transmit more bits than a transmitter with worse channel. However,

it is possible that some transmitter may have good channel but not enough pending data

to make complete use of the channel access time. This may lead to wastage of the chan-

nel. To minimize the channel wastage, such a transmitter in Symphony will reduce its data

rate such that its transmission still fits in the slot size. This reduced data rate sometimes

allows the receiver to simultaneously decode two transmissions using Successive Interfer-

ence Cancellation (SIC) [70]. When using SIC, APs in Symphony decode two packets in

the same slot and can suppress up to two transmissions in a single slot.

To implement SIC, the receivers in Symphony need to estimate the RSS of each of

the colliding transmitters. For this, we borrow the idea proposed in Mozart whereby PN

sequences are used to estimate the RSS. Using SIC in Symphony requires making some

changes to the way we construct the dependence graph:

27

• In the dependence graph, instead of a vertex being a duplet, it can now be a triplet

such that vertex vijk = {Pi, Pj, APk} implies thatAPk can decode packets from both

Pi and Pj in a single slot using SIC where Pi is the packet with higher RSS at APk.

Such a vertex is added only if on the basis of estimated RSS and the physical layer

data rates used, APk determines that it can decode Pi and Pj simultaneously using

SIC.

• A directed edge is drawn from vertex vijk to another vertex vlmn = {Pl, Pm, APn}

iff either Pi interferes at APn or Pj interferes at APn. Similarly, a directed edge

is drawn from vijk to vertex vln = {Pl, APn} iff either Pi interferes at APn or Pj

interferes at APn. Finally, a directed edge is drawn from vln to vijk iff Pl interferes

at APk.

Figure 2.4 shows the dependence graph for the network topology shown in Figure 2.1a

when using SIC. As before, to compute the set of suppressed transmissions, the GH picks

an Induced Directed Acyclic Subgraph (IDAS) of the dependence graph. If the subgraph

has vertices with three tuples, then the corresponding AP needs to suppress two transmit-

ters. To maximize the probability of invoking SIC, Algorithm 1 is modified such that when

greedily adding a vertex (Lines 8-15 of Algorithm 1), the GH first only considers the ver-

tices with three tuples. If no such vertex is found, only then the GH adds the vertices with

only two tuples.

2.5 Discussion

In this section, we discuss some issues that need deeper investigation to make our solution

more practical.

• Achieving gains on downstream traffic: In EWLANs, it is generally easier to

avoid collisions in downstream data as the APs are aware of which AP has data to

28

A→AP1

A→AP2

D→AP1

D→AP2

B→AP2

C→AP2

A,D→AP1

A,D→AP2

B,C→AP2

Figure 2.4: Dependence graph for network topology shown in Figure 2.1a when using

SIC. The chosen acyclic subgraph is also shown in bold.

send to which client. Multiple algorithms have been proposed in the literature that

use this information to schedule downlink transmissions [49, 65, 72]. Symphony, on

the other hand, improves performance for upstream data while allowing coexistence

of downstream traffic.

In Symphony, due to differences in the distribution of clients, it is possible that for

some AP, all its clients are suppressed sooner compared to clients of other APs. Sym-

phony allows these free APs to transmit downlink traffic to their clients while other

APs keep receiving uplink traffic. For the example network shown in Figure 2.5, once

AP2, AP3 and AP4 become free, they can start transmitting downlink traffic to their

neighboring clients. The downlink transmission from AP2 to P2 will be successful

while the transmission from AP3 to P3 will not be successful since it is interfered

by P1’s uplink traffic. The transmission from AP4 to P4 will also be successful. Al-

though, this downlink transmission interferes with the uplink transmission at AP1, it

is still possible for AP1 to decode P1. For this, Symphony requires AP4 to send its

29

AP
2

P
1 AP

1

AP
3

AP
4

P
2

P
3

P
4

Figure 2.5: Downlink-uplink coexistence.

downlink packet to AP1 on wired backbone. Using that, AP1 recreates the samples

of AP4’s downlink packet and subtracts them from the received samples. Thus, in

Symphony, the downlink traffic can coexist with the uplink traffic without causing

interference to it.

Once all the APs in a group become free (i.e., they have transmitted finish), then the

GH schedules interference-free downlink transmissions as discussed before in [49].

Apart from [49], it is also possible to use other techniques proposed in the literature

[65, 72] for achieving throughput gains on downlink traffic. Observe that, unlike

other algorithms [49,72], Symphony does not require any knowledge of the network

topology. This reduces the overheads in Symphony compared to other algorithms.

• Packet subtraction: In order to decode collided packets, APs in Symphony perform

packet subtraction by re-creating the samples. To increase the accuracy of subtrac-

tion, the APs need to correct for the phase, frequency and sampling offsets [29]. This

problem of packet subtraction in presence of interference has been well studied [29].

In our implementation, we use the scheme proposed in ZigZag [29] as it gave the

best results.

• Sending ACK: In Symphony, APs exchange the data packets among themselves

on the backbone. However, this exchange may take some time due to the wired

30

latency. In order to avoid wasting the channel during the decoding process, the APs

immediately send finish to the clients without actually decoding the data packets.

This allows clients to transmit new data packets when they receive a poll. While the

next recovery is going on, the APs exchange the data packets on the wired backbone.

Upon successful decoding, the APs send the acks to the different transmitters at the

end of the next recovery period (during the wait period).

• Handling decoding errors: After subtracting a packet, a small amount of residual

noise (See Chapter 4) is left due to inaccuracies in correcting for the different offsets.

If too many packets collide at the same AP, then as the AP cancels packets one-by-

one, the residual noise builds up. This may result in an AP being unable to decode the

packet of interest due to failed checksum. Further, this may also cause decoding error

for the transmissions that are dependent on this transmission. In that case, the AP has

two options: (i) Different APs may combine frames to correctly decode the received

packet [56]. This is particularly useful in dense AP networks where multiple APs

(including those who did not suppress any transmitter) may hear the transmission

from the same client. (ii) If the previous option is not successful, then the APs send

ack to only the transmitters that were decoded successfully.

• Mobility and fading: It is possible that during recovery, a client may move and its

set of neighboring APs may change. Symphony can handle such scenarios as clients

in Symphony do not associate with any specific AP. However, if during the recovery,

the client moves out of the range of all the APs in the group, then this may cause

decoding error. In that case, the APs will use the mechanisms discussed above to

handle the decoding error. It is also possible that during the recovery, due to fast-

fading, some packet (say Pi) is temporarily not received by some of its neighboring

31

APs. This does not cause any decoding error since in Symphony, the set of sup-

pressed transmissions is computed only on the basis of transmissions received in that

slot. So, in future when the APs receive the packet again, then it will be suppressed.

2.6 Experiments

In this section, we describe the results from our experiments performed on the GNU radio

platform and Universal Software Radio Peripheral (USRP) N210 version 4 radios with

WBX daughterboards. In our experiments, we used BPSK with 1/2 convolutional code

and the channel frequency was set to 1078 MHz. The phase offset, frequency offset and

the sampling offset were canceled as described in Section 2.5 while RSS estimation and

transmitter identification were done as described in Section 4.3.1 and Section 2.4.

Besides Symphony, we also implemented a version of the IEEE 802.11 protocol. One

of the challenges in implementing 802.11 was that USRP has different hardware parameters

compared to the commercial 802.11 cards. So, similar to Mozart, we re-measured the

optimum values of all 802.11 parameters (SIFS, DIFS, slot size, ACK timeout) for the

N210 hardware. The transmission data rate was kept low (62.5 Kbps) to ensure that the

delay between the host computer and the radio was small compared to the packet length

so that the relative delay values would approximately match the values from off-the-shelf

wireless cards.

Apart from implementing our algorithm and IEEE 802.11, we also implemented two

other algorithms: (i) Mozart (See Chapter 4); and, (ii) Flex Omniscient TDMA: Here, the

clients do not associate with any particular AP but transmit data to and receive data from

any of the neighboring APs. The schedule is greedily computed by a central omniscient

scheduler. Two links are scheduled at different times iff transmitter of one of the link

interferes at the receiver of the other link. The knowledge of which nodes have data to send

32

AP 1 AP 2

Region

2

Region

1

Region

3

(a) USRP Testbed

0 4 8 12 16 20 24 28
0

0.25

0.5

0.75

1

Client Throughput(kbps)

C
D
F

Symphony (no SIC)

Flexible Omniscient TDMA

Mozart

802.11

(b) CDF plot across different topologies

Figure 2.6: Experiment testbed and results

to which other nodes, as well as the complete network topology is provided out-of-band

(i.e., without any overhead) to the Flex-TDMA central scheduler and is 100% accurate.

2.6.1 Results

In our experiments, we placed two USRP APs in two different rooms (as shown in Figure

2.6a). Four USRP clients were placed at different locations in the three regions so as to cre-

ate ten different topologies (hidden, non-hidden, mix etc.). In all the topologies, for 802.11

and Mozart, the clients associated to the AP with the strongest signal. Figure 2.6b shows

the CDF of the throughput of clients for the four algorithms. Averaging over all topologies,

Symphony (no SIC), Omniscient TDMA, Mozart (no SIC) and IEEE 802.11 provide a per

node throughput (in Kbps) of 20.7, 14.4, 11.9 and 7.2, respectively. Thus, Symphony (no

SIC) has an average throughput of 43%, 74% and 187% higher than Omniscient TDMA,

Mozart (no SIC) and IEEE 802.11, respectively.

33

2.6.2 Measurements

Apart from implementing Symphony on the USRP testbed, we also made extensive mea-

surements on the Ohio State University EWLAN. These measurements help us in better

designing the algorithm and are also fed to the simulator (See Section 2.7). The measure-

ments were conducted on a weekday between 10am-4pm (worst case analysis) with the

routers and switches also serving the traffic from other desktops and APs on the EWLAN.

All the switches and routers on the EWLAN had 1 Gbps interface speed. We measured

the round trip time (RTT) between pairs of APs by transmitting and echoing back packets

between multiple pairs of APs. The size of the packets was varied from 4-100 bytes to

approximate the size of the control packets that would be transmitted from APs to the GH.

Table 2.1 shows the result of the measurements. Using the three-sigma rule, we conclude

that even with 5 hops of distance between a pair of APs, with 99.7% confidence, the RTT

between the two APs will be less than 2914.93 µs (Mean + 3 times standard deviation).

So, the number of slots for which the GH proactively computes the set of suppressed

transmissions (k as discussed in Section 2.3.2) can be set such that k × T ≥ 2914.93µs

where T is the channel access time (maximum duration of a data packet as discussed in

Section 2.5). In our experiments and simulations, we computed T as 1500 bytes
6 Mbps

+ δ where δ

is fixed time required for sending the data packet’s header. Value of k was set to 3.

2.7 Simulations and Evaluations

In this section, we explain the results from our ns-3 based trace driven simulations.

2.7.1 Setup

In our ns-3 based simulations, we randomly placed varying number of APs in a 750m ×

750m field. The number of clients in the network were 5 times the number of APs. Each

34

client associated with the AP from which it received the strongest signal. To generate

traffic in the simulator, TCP connections were established between each client and its AP.

For this, from the previously collected traffic traces during SIGCOMM [67], we computed

the pdf distribution of packet sizes and also the pdf distribution of packet inter-arrival time

over all connections. These two pdf distributions were then used to generate both uplink

and downlink traffic in the simulation. To create network saturation condition, the number

of connections between each client and its associated AP was set to 20.

Further, the results from the experiments were fed into the simulator as follows: (i)

PN-Sequence detection and RSS estimation accuracy: The accuracy of correlating a PN

sequence and estimating the transmitter’s RSS depends on its SINR (See Chapter 4). In the

simulations, we used the values from Mozart to model the PN sequence detection accuracy

and the error in RSS estimation; (ii) Residual noise level: The level of the noise left after

packet subtraction depends on the SINR of the canceled packet. In simulations, we fed

the power of the residual noise using the data shown in Chapter 4; and, (iii) Delays on

backbone: In our simulation, the APs were connected with each other through switched

wired Ethernet. To every switch, we connected three APs that were geographically close

to each other. These switches were then connected to a router. The delay between two

APs separated by k hops, was randomly generated using the collected data as discussed in

Section 2.6.2.

To compare the performance of Symphony with state of the art, we implemented var-

ious other algorithms: (i) Mozart; (ii) IEEE 802.11 without RTS-CTS; and, (iii) Flex

Omniscient TDMA as discussed in Section 2.6. The channel access time in both Mozart

and Symphony was fixed to 1500 bytes
6 Mbps

+ δ where δ is fixed time required for sending the

data packet’s header. In 802.11, the transmitters follow the data rate adaptation algorithm

proposed in [48], while in Mozart and Symphony, the transmitters estimated the channel

using the poll packet as described in Section 2.4.

35

 0

 25

 50

 75

 100

 125

 150

 5 10 15 20 25 30 35

T
o
ta

l
T

h
ro

u
g
h
p
u
t
(M

b
p
s
)

Number of APs

Symphony
Flex-Omniscient TDMA

Mozart
802.11 RTS OFF

(a) Wireless throughput

 25

 50

 75

 100

 5 10 15 20 25 30 35

%
 T

ra
n
s
m

is
s
io

n
s
 a

c
k
e
d

Number of APs

Symphony
Flex-Omniscient TDMA

Mozart
802.11 RTS OFF

(b) Percent transmissions acknowledged

 0

 0.25

 0.5

 0.75

 1

 5 10 15 20 25 30 35

J
a
in

’s
 F

a
ir
n
e
s
s
 I
n
d
e
x

Number of APs

Symphony
Flex-Omniscient TDMA

Mozart
802.11 RTS OFF

(c) Jain’s Fairness Index

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30 35

%
 S

lo
ts

 w
it
h
 t
w

o
 n

o
d
e
s
 a

c
k
e
d

Number of APs

Symphony
Mozart

(d) SIC usage

Figure 2.7: Simulation results.

2.7.2 Results

Throughput: Figure 2.7a compares the throughput of different algorithms. On an aver-

age, throughput of Symphony was observed to be 63% and 58% higher than TDMA and

Mozart, respectively. Further, average throughput of Symphony was 5.6x compared to

802.11. Higher throughput of Symphony can be attributed to two factors: First, coopera-

tive decoding as shown in Figure 2.1c allows APs in Symphony to simultaneously receive

multiple packets. Secondly, when the transmitters have fewer data to send, then it results in

throughput loss for TDMA that uses fixed slot length. Although, Symphony also uses fixed

36

slot length, however, by using SIC to decode multiple packets, a single AP in Symphony is

able to decode multiple packets simultaneously.

To further explore the throughput increase, we also plotted the percentage of data trans-

missions that were acknowledged by the receiver (See Figure 2.7b). This number is high

for Symphony while for IEEE 802.11, the percentage of packets acknowledged is very low

due to hidden terminal problem. Similar to Symphony, the percentage packets acknowl-

edged for TDMA and Mozart were also close to 100%. Symphony had a slightly higher

packet acknowledgment rate compared to Mozart since in the case of decoding failure in

Symphony, multiple APs exchange frames to cooperatively decode a packet (See Section

2.5). In 802.11, the packet acknowledgment rate peaks as the number of APs and clients

increase and then gradually decreases. This is because with increasing density of APs, it

becomes possible for the clients to have stronger channel with the APs, thereby mitigating

the effect of hidden terminal (due to data rate adaption and closeness to the AP). However,

with increasing density, the probability of two clients picking the same backoff value and

the probability of a hidden terminal also increases which decrease the packet acknowledg-

ment rate. Due to these contradicting factors, the packet acknowledgment rate peaks when

number of APs is 7.

Figure 2.7c shows the Jain’s fairness index for different algorithms. Symphony has

higher fairness since it allows all clients to participate. In other algorithms (including Flex

Omniscient TDMA), if a client is in the range of multiple APs, then it may not get a chance

to transmit to its AP since the channel in its neighborhood is very likely to be busy.

Figure 2.7d compares the percentage slots where SIC was used. Symphony uses SIC

in more slots than Mozart since in Symphony, the AP can use SIC to suppress any pair

of transmitters in its neighborhood. This increases the probability of finding a pair of

transmitters that are eligible to be decoded simultaneously. Further, APs in Symphony also

37

 0

 0.25

 0.5

 0.75

 1

 1.25

 0 5 10 15 20 25 30 35

W
ir
e

d
/W

ir
e

le
s
s
 R

a
ti
o

Number of APs

Symphony

(a) Wired overhead for Symphony.

 0

 10

 20

 30

 40

 0 5 10 15 20 25 30

%
 t

im
e

 i
n

 b
a

c
k
o

ff

Number of APs

Symphony
Flex-Omniscient TDMA

802.11 RTS OFF

(b) Time spent in backoff

 0

 40

 80

 120

 5 10 15 20 25 30 35

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(M
b

p
s
)

Number of APs

Symphony
Symphony+

(c) Symphony+ has zero wired
latency

Figure 2.8: Simulation results: Overheads.

cooperate to use SIC to simultaneously transmit two packets to a single client resulting in

higher applicability of SIC [70].

Wired overhead: In Symphony, APs exchange packets over the wired backbone. The-

oretically, the number of unicast packets exchanged on wired backbone can be as many as

N×(N−1)
2

-times the number of packets decoded on wireless (where N is the number of APs

in the network). However, Algorithm 1 minimizes this overhead by reducing the number

of edges in the subgraph. Figure 2.8a shows the overhead as ratio of unicast data sent over

wired over the wireless goodput. This ratio increases with increase in number of APs as

expected but it plateaus as the number of APs go beyond a certain limit. This is because the

broadcast nature of the wireless does not allow every AP in Symphony to suppress a packet.

Thus, even with increase in APs, the number of APs that suppress at least one client do not

increase, thereby also limiting the number of packets exchanged on the backbone. Further,

at any time the ratio is less than 1 implying that for every packet decoded on wireless, at

most 1 unicast transmission occurs on the wired backbone.

Backoff Overhead: APs in Symphony spend some time in backoff (or timeout) be-

tween every recovery. The amount of time spent is given by 100
n

where n is the number of

APs in the group (See Section 2.3). Figure 2.8b shows the percent time spend by APs in

38

backoff. APs in Symphony spend less than 1% time in backoff. In Symphony, the backoff

overhead is amortized over the length of the recovery period. Further, unlike 802.11, the

backoff in Symphony stays constant irrespective of the collision rate.

Effect of wired Ethernet latency: Due to the unpredictable latency on the wired Eth-

ernet, the APs in Symphony proactively compute the schedule for the next 3 slots. To

compute the effect of this latency on the optimality of the suppress schedule, we imple-

mented a version of Symphony (called Symphony+) with latency on backbone set to zero.

Figure 2.8c shows that throughput of Symphony+ is within 5% of Symphony indicating

that the advance schedule computed by Symphony is close to optimal.

2.8 Related Work

Backbone usage: The idea of using the wired backbone to increase wireless throughput is

not new. In IAC [30], every node is assumed to have at least two antennas. The APs direct

the transmitters in the network to align their transmissions such that the APs can coop-

eratively decode multiple packets. However, unlike [30], Symphony does not assume the

presence of multiple antennas. In MegaMIMO [65], multiple APs cooperatively precode

the transmissions such that each client receives only the packets intended for it while the

other transmissions cancel-out. However, MegaMIMO requires that transmitters exchange

decoded packets among themselves and thus, it works only for the downlink transmissions.

On the other hand, Symphony improves the throughput for the uplink traffic.

In Epicenter [32], authors propose that APs should exchange coarse representation of

symbols to decode corrupted bits. Similarly, authors in [56] also propose that APs exchange

bits for decoding corrupted packets while Woo et al. [79] propose that APs should exchange

raw samples. In all these algorithms, the APs cooperate to decode the same packet whereas

in Symphony, APs encourage transmitters to collide and then cooperate to decode multiple

packets simultaneously without exchanging the raw samples.

39

Other MAC algorithms: Algorithms proposed in [15, 57] focus mainly on client-AP

association, channel assignment and power control. Authors in [49] propose implementing

a backpressure based algorithm for downlink traffic. Similarly, CENTAUR [72] uses a

central controller to reduce throughput loss due to hidden terminal and exposed terminal

problems. However, their solution is also applicable only to downlink traffic. MiFi [14]

also uses centralized coordination of APs and focuses on ensuring fairness. Contrary to the

algorithms in [14, 19, 49, 72] that aim to decrease packet collisions, Symphony encourages

transmitters to collide and then suppresses the packets so that all the colliding packets can

be cooperatively decoded in minimum slots.

In contrast to Mozart proposed in Chapter 4, Symphony focuses on leveraging commu-

nication in the wired backbone for cooperative decoding of collided packets. This leads to

a different set of challenges as discussed in Section 2.1.

2.9 Conclusions

In this chapter, we proposed Symphony, a novel backbone-based approach for coopera-

tive packet decoding in Enterprise WLANs. We also designed an algorithm that com-

putes the set of suppressed transmissions. To take into account the practical challenges

of high latency, absence of synchronization and a central controller, we proposed a dy-

namic group based distributed algorithm. To reduce the throughput loss due to variations

in packet lengths, we proposed that transmitters reduce their physical layer data rate while

receivers use SIC to decode multiple packets simultaneously. Experiments conducted on

the USRP testbed show that Symphony provides a throughput of 43% and 187% higher

than Omniscient TDMA and IEEE 802.11, respectively. Trace-driven simulations show

that, throughput of Symphony is up to 1.63x compared to omniscient TDMA and 5.6x

compared to IEEE 802.11.

40

Algorithm 1: Computes the set of nodes to be suppressed in a given slot

1 Input: For every packet Pi received in this slot by each AP APj , the transmitter of

Pi (identified using PN sequence).

2 Output: The acyclic subgraph showing: Set of packets (or corresponding

transmitters) that should be sent suppress in this slot, which AP decodes which

packet and how APs share decoded packets among themselves.

// Phase 1: Computing dependence graph Gd = (Vd, Ed)

3 Vd ← {vij : Pi received in this slot and

APj can decode Pi in absence of external interference}

4 Ed ← {(vij, vkl) : vij ∈ Vd and vkl ∈ Vd and Pi interferes at APl and vij 6= vkl}

// Phase 2: Computing largest IDAS

5 Vs ← φ,Es ← φ, Gs ← (Vs, Es)

6 while true do

7 v∗ ← φ,w∗ ←∞, E∗ ← φ

8 for vij ∈ Vd\Vs do

9 Eij ← {(vij, vkl) : (vij, vkl) ∈ Ed ∧ vkl ∈ Vs}

10 Eij ← Eij ∪ {(vkl, vij) : (vkl, vij) ∈ Ed ∧ vkl ∈ Vs}

11 if wij ≤ w∗ and graph with Vs ∪ {vij} and Es ∪ Eij is acyclic then

12 w∗ ← wij , v∗ ← vij, E
∗ ← Eij

13 if v∗ 6= φ then

14 Vs ← Vs ∪ {v∗}// Add v∗ to Gs

15 Es ← Es ∪ E∗

16 else

17 break

18 return Gs

41

Table 2.1: Results from RTT measurements

One-way dist- Devices in between Mean σ

ance (in hops) (in µs) (in µs)

2 One switch 117 91.90

4 2 switches + 1 router 829 182.96

5 2 switches + 2 routers 2122 264.31

42

CHAPTER 3

ROBINHOOD: THROUGHPUT SCALING IN DENSE

ENTERPRISE WLANS WITH BLIND BEAMFORMING AND

NULLING

3.1 Introduction

The recent explosive growth in the number of mobile devices and the data generated by

these devices has led to a decrease in the channel resources available to each individual

device. Network administrators have tried to tackle this problem by densely deploying

access points so that users can almost always find a close by AP with good signal strength.

However, dense deployment of APs does not scale well with the throughput demands.

In the existing network protocols [57, 71], when one mobile client is transmitting uplink

packets to an access point, the nearby clients have to remain silent to avoid interference to

the ongoing transmission.

Recently, multiple algorithms have been proposed that help in scaling the throughput

with number of wireless devices. Interference Alignment (IA) [16] is one of such tech-

niques that requires clients to participate in a schedule with exponential number of slots.

However, mobile clients are really mobile. They may not stay at the same place for a long

time. Multi-User MIMO (MU-MIMO) [27] enables scaling of throughput with number

of devices, but it requires APs to exchange samples over the backbone. Although, the wired

backbone in Enterprise Wireless LANs (EWLANs) is underutilized [11, 30], exchanging

43

samples requires significantly higher bandwidth compared to exchanging packets which

cannot be supported by current wired networks [30, 32]. Joint beamforming based algo-

rithms such as [47, 65] work only for the downlink traffic. To perform joint beamforming,

these algorithms require all transmitters to share the contents of all packets to be transmit-

ted. However, mobile devices are not connected through a wired backbone, and are unable

to share the packets amongst each others.

This chapter proposes RobinHood, the first implementation of Blind Beamforming and

Nulling scheme that enables multiple nearby access points to concurrently receive uplink

packets from multiple mobile clients, all within a single collision domain without over-

whelming the backbone. RobinHood does not increase energy consumption on the clients

and executes exactly over two time slots. RobinHood leverages three properties that are

unique to EWLANS: (i) Dense deployment of APs (See Fig. 3.3 and [57]); (ii) Capability

of these APs to exchange packets with each other over the underutilized wired backbone;

and, (iii) Immobility of APs resulting in relatively stationary channels (See Fig. 3.2). When

one AP is receiving uplink data, existing algorithms [57] including IEEE 802.11 Wi-Fi,

suppress nearby APs to transmit or receive data. In contrast, RobinHood makes use of the

energy-rich access points to assist their clients (mobile devices) in decoding their packets

at their respective access points. In RobinHood, the clients only participate in the first slot

and the access points participate for the clients in the second slot.

Consider the example enterprise WLAN shown in Fig. 3.1a where all the APs and the

three clients are in a single collision domain. Assume that the three users want to upload

one packet each to the backbone. An omniscient TDMA scheduling algorithm with global

knowledge would require three time slots to complete this upload. In RobinHood, in the

first slot as shown in Fig. 3.1a, all users will transmit at the same time. All the 4 APs

will receive a combination of three transmitted packets. In the second slot, AP3 and AP4

will retransmit the received signals by first precoding [37] them such that the following

44

C
1

C
2

C
3

x1 x2 x3

AP
1

AP
2

AP
3 AP

4

S
w

itc
h

h(1)
12x1 + h(1)

22x2

+ h(1)
32x3

h(1)
11x1 + h(1)

21x2

+ h(1)
31x3

(a) First slot. x1, x2 and x3 are the three packets
transmitted by C1, C2 and C3, respectively. h1

ij

is the channel from client i to APj during time
slot 1.

AP
1

AP
2

AP
3 AP

4

S
w

itc
h

a11x1 + s1h(1)

21x2 +

s1h(1)
31x3

a12x1 + a22x2 +

a32x3

(b) Second slot. A subset of APs transmit in the
second slot while the rest of the APs receive. aij

are the final channel coefficients after the
transmission of the second slot. si is the scaling

coefficient at APi.

Figure 3.1: Illustration of RobinHood over a topology of 3 clients and 4 APs. All devices

belong to the same collision domain and can hear each other.

condition is satisfied as shown in Fig. 3.1b: At AP1, samples corresponding to x2 and x3 in

the second slot align with the samples corresponding to x2 and x3 in the first slot. Decoding

happens in multiple steps as follows:

• At the end of the second slot, AP1 scales the samples received by AP1 in the second

slot and subtracts them from the samples received in the first slot. This scaling is

done such that samples corresponding to x2 and x3 are nulled. Afterwards, it is left

with only the samples corresponding to x1. AP1 decodes the samples to obtain the

packet transmitted by C1. Next, it transmits the decoded packet over the backbone to

AP2.

45

• AP2 recreates the samples corresponding to x1 and subtracts them from the samples

received in the first slot and the second slot.

• After subtraction, AP2 is left with two equations (one from each slot), and two vari-

ables (x2 and x3). AP2 solves the two equations to obtain x2 and x3.

• Afterwards, AP1 and AP2 forward x1, x2 and x3 towards their destinations.

RobinHood enables the three transmitters with single antenna to upload three packets

in two slots, improving the throughput by 50% compared to omniscient TDMA. In Sec-

tion 3.2, we show that in networks with high enough density of APs, RobinHood enables

N mobile clients to transmit N uplink packets in exactly two slots resulting in unbounded

throughput. Also, note that RobinHood requires the APs to exchange only the decoded

packets instead of the raw samples.

The focus of RobinHood is to increase throughput of the uplink traffic for clients with

single antenna. This is in contrast with [47, 65] that focus on downlink traffic. Recently,

uplink traffic [11,32] has been growing at a fast rate due to the emergence of wide-range of

applications, such as cloud computing, video conferencing, online gaming, VoIP, and traffic

generated from mobile devices (e.g., location information or sensor readings). RobinHood

makes extensive use of the wired backbone. Besides transmitting the decoded packets,

the channel state information, which are required to do nulling in the second slot, are also

exchanged over the backbone. Since RobinHood migrates most of the complexity from

the mobile devices to the APs, it allows RobinHood to work even when the channel from

clients to APs is rapidly changing due to client mobility. RobinHood works as long as

the APs are time-synchronized with each other and it places very few requirements on the

clients. This chapter makes the following contributions:

• We propose a blind beamforming and nulling scheme, RobinHood, that scales uplink

46

0 5 10 15 20
−80

−70

−60

−50

−40

−30

Time (s)

R
S
S
 (
d
B
)

(a) Channel between a pair of APs

0 5 10 15 20
−80

−70

−60

−50

−40

−30

Time (s)

R
S
S
 (
d
B
)

(b) Channel between a mobile client and
an AP

Figure 3.2: Received Signal Strength (RSS) in an office environment. The channel

between APs is relatively stationary compared to channel between AP and mobile client.

throughput with the number of access points. RobinHood also works over multiple

collision domain.

• This thesis shows the first implementation of blind beamforming and nulling on

USRP radios. Experiments performed on our testbed show that RobinHood achieves

1.48× throughput compared to omniscient TDMA.

• Trace-driven simulation results show that in a large Enterprise WLAN, RobinHood

can leverage the density of the access points. In EWLANs with high density of

APs, RobinHood provides a throughput of 5.2× compared to omniscient TDMA and

52.4× compared to IEEE 802.11.

3.2 Illustration

Before discussing RobinHood in detail, we define a few notations. All of the clients and

APs in RobinHood are assumed to have only one antenna. The network consists of clients

47

 0

 0.25

 0.5

 0.75

 1

 60 100 140 180

C
D

F

Number of APs

Number of APs

Figure 3.3: CDF of number of APs observed across different locations. The data was

collected at multiple places including a hospital, a large university library and an

apartment complex.

C1,C2 andC3 and four APs fromAP1 toAP4 that are connected through a wired backbone.

Let h(1)ij be the channel state information between Ci and APj in slot 1. In the second slot,

a subset of APs are selected to transmit. For this example, this set consists of AP3 and

AP4. Let h(2)kj be the channel state information between APk and APj in slot 2. In this

section, we assume that all the wireless devices are in single collision domain (i.e., they

can all hear each other). In Section 3.5, we extend RobinHood to networks with multiple

collision domains. Let xi be the packet sent by Ci in slot 1. In the following discussion,

we ignore the presence of noise since it is not possible to null the noise. However, we do

take noise into account in our analysis (See Section 3.4.4) and then later in our simulations

(Section 3.7). Let y(t)ik be the component of xi received by APk in slot t. We have:

y
(1)
ik = h

(1)
ik xi (3.1)

Let vk be the precoding vector for APk in the second slot and M be the total number of

APs (In this example, we have M = 4). Let y(2)ij be the component of xi received by APj

48

in slot 2. We have:

y
(2)
ij =

M∑
k=3

h
(2)
kj vky

(1)
ik =

M∑
k=3

h
(2)
kj vkh

(1)
ik xi (3.2)

We want to ensure that components of x2 and x3 at AP1 are a linear combination of

their components in the first slot. Let si be the scaling coefficient at APi. Thus,

y
(2)
21 =

M∑
k=3

h
(2)
k1 vkh

(1)
2k x2 = s1y

(1)
21 = s1h

(1)
21 x2 (3.3)

y
(2)
31 =

M∑
k=3

h
(2)
k1 vkh

(1)
3k x3 = s1y

(1)
31 = s1h

(1)
31 x3 (3.4)

Simplifying these equations, we get

M∑
k=3

h
(2)
k1 vkh

(1)
2k − s1h

(1)
21 = 0 (3.5)

M∑
k=3

h
(2)
k1 vkh

(1)
3k − s1h

(1)
31 = 0 (3.6)

Since, the right sides of Eqs. 3.5 and 3.6 are all 0, instead of 2, at least 3 variables

are required to obtain non-zero solutions. One of these variables is the scaling coefficient

(s1). Thus, a total of 2 transmitting APs are required to supply these variables. Further,

two receiving APs are also required such that the first AP decodes x1 while the second AP

decodes x2 and x3. Thus, in total M = 2 + 2 = 4 APs are required to support 3 clients as

in Fig. 3.1.

In RobinHood, for the network shown in Fig. 3.1, at the end of slot 1, AP 3 and AP 4

solve Eqs. 3.5 and 3.6 to obtain precoding vectors which are then used during slot 2 (See

Eq. 3.2). This computation may take time (due to communication among APs over the

backbone). In general wireless networks, this creates inaccuracies since the channel be-

tween APs and the mobile clients may change from the time the channel state information

(CSI) was measured to the time when the APs retransmit the data in the second slot. Thus,

the precoding vectors that were computed based on old CSI may not be suitable for the

49

channel’s current state. This may lead to inaccurate beamforming and nulling. However, in

RobinHood, the mobile clients do not participate in the second slot. Only the APs transmit

and receive data in the second slot. Due to the immobile nature of the APs, the channel (or

CSI) between APs changes very slowly (See Fig. 3.2a). Thus, the CSI computed among

APs is valid for longer duration compared to CSI between mobile clients and APs. By

requiring only the APs to transmit in the second slot, RobinHood ensures higher accuracy

of joint beamforming and joint nulling.

Number of APs required: In general, if there are N clients in the network, then

RobinHood needs to alignN−1 packets at the first AP,N−2 packets at the second AP and

so on. Thus, a total of at least (N−1)+(N−2)+ · · ·+2 = N2−N−2
2

variables are required

to satisfy all the constraints. However, to obtain a non-zero solution, we need to include

one extra AP, i.e. a total of N2−N
2

APs. However, N − 2 of the variables are supplied by

the scaling coefficients at the receiving APs. Thus, a total of N2−N
2
− (N − 2) = N2−3N+4

2

transmitting APs are required. Finally, N − 1 receiving APs are also required in slot 2,

where the first N − 2 receiving APs decode one unique packet while the last AP decodes 2

packets. Therefore, with N2−3N+4
2

+N − 1 = N2−N+2
2

APs, RobinHood can leverage this

high density of APs to decode N uplink packets in exactly two slots. Further, in contrast

to [13], RobinHood requires N fewer APs.

3.3 Challenges

Note that when the APs (i.e.,AP3 andAP4) in slot 2 transmit, they have to align the samples

of x2 and x3 at AP1. To achieve this, they precode the signals that they received in the first

slot and transmit. However, in contrast to the existing solutions [65], in RobinHood, the

transmitting APs are not aware of what they are transmitting (since they are unable to

decode the samples received in the first slot). We call this Blind Beamforming and Nulling.

50

Although the idea behind RobinHood is simple, there are multiple challenges that need to

be handled to make it practical.

• Oblivious to the contents of the transmitted signal: The APs transmitting in slot

2 are not aware of the contents of the signals transmitted in slot 2. Despite this, they

need to cancel out (or align) the different contents of the signal at different receiving

APs.

• Synchronization: In order for the APs transmitting in slot 2 to align their signals

at the receiving APs, these transmitting APs are required to be synchronized at the

sample level. This requirement is similar to the requirements of the other existing

algorithms that focus on downlink traffic [47, 64, 65]. Observe that RobinHood does

not impose synchronization requirement on the mobile clients.

• Multi-collision domain: The previous discussion assumes that all clients and all

APs can hear each other directly. However, this may not be true for large scale

EWLANs. Thus, we need a mechanism to extend RobinHood to such networks.

• Inconsistency in the AP density: To decodeN packets, RobinHood requires N2−N+2
2

access points nearby. However, the actual number of APs present may be higher or

lower than this number. If the number of available APs is higher, then RobinHood

can make use of all of them. On the other hand, if the number of available APs is

smaller, than a mechanism is required to select a subset of the clients.

• Robustness: Unlike downlink [65], where each client individually decodes its own

packet, in RobinHood, decoding happens in a cascading fashion. Decoding of a

packet depends on the successful decoding of the previous packets. Clearly, in such

a design, failure in decoding of one packet, makes all future decodings unsuccessful.

We need a new mechanism to increase the robustness of the decoding.

51

The next two sections explain how we handle these challenges.

3.4 Physical Layer Design

In this section, we explain the physical layer working of RobinHood using three different

phases. First, we explain how multiple clients transmit simultaneously to the APs and

how the channel state information between clients and APs is estimated. Then, we show

how the APs conduct blind-beamforming and nulling without knowing the contents of the

transmitted signals. Finally, the decoding process is explained. In RobinHood, the clients

participate in only the first phase while the APs participate in all the three phases.

3.4.1 Phase I: Client transmission

As explained in Section 3.2, the transmissions in RobinHood are divided into two slots. In

the first slot, the clients transmit concurrently to the APs. Besides the received combined

samples from the clients to APs, the channel state information (CSI) between all the clients

and APs is also computed in this phase. To obtain the CSIs, each client sends an access

code (or unique PN sequences [55] assigned to each client) that is free of interference.

The transmission timeline of Phase I is shown in Fig. 3.4. First, the APs broadcast an

approve message. This message contains the IDs of the clients that are allowed to transmit

in this slot (For more details on how the APs select the subset of clients, refer to Section

3.5 that describes the MAC design of RobinHood). The relative order of the IDs deter-

mines the time when a client should transmit its access code. Since the clients are not

synchronized, the transmission of access codes may partially overlap with each other. To

avoid this overlap, a small time gap, called inter-access-code-space (IACS), is inserted be-

tween the transmissions. Finally, after the transmission of access codes, the clients transmit

their packets simultaneously. All the APs compute the CSI from different clients using the

52

AP1 :

C1 : A
C1

 Packet 1

C2 : A
C2

 Packet 2

C3 : A
C3

 Packet 3

IACS IACS IACS
Approve

AP2:

AP3 :

AP4 :

BIFS

A
A1

A
A2

SIFS

A
A3

A
A4

SIFS SIFS SIFS SIFS

Figure 3.4: Phase I time-line: ACi and AAj represent the access codes for Ci and APj ,

respectively.

interference-free access codes and also store the received samples corresponding to the

data packets. In our experiments and simulations, we set the duration of IACS to 2µs.

To conduct blind-beamforming, besides the CSIs between the clients and APs, the CSIs

between the transmitting APs and receiving APs are also required. As shown in Fig. 3.4,

all of the APs broadcast their access codes one after the other. When one AP broadcasts,

all other APs can estimate the CSI from that AP. The estimated CSIs along with the CSIs

between clients and APs are forwarded to a group-head AP through the wired backbone

network. The head AP, uses these CSIs to compute the best sets of transmitting APs, the

set of receiving APs, the decoding order, and the precoding vector to be used by each of

the transmitting AP. This information is then sent back by the group-head AP to every AP

in the group. In Fig. 3.5, AP3 and AP4 are selected as the transmitting APs.

This computation at the group-head AP and the distribution of result back to APs may

take some time due to delays on the wired backbone. To ensure that all APs have received

the computed results back from the group-head AP, RobinHood requires all APs to wait for

Backbone-Inter-Frame-Space (BIFS) duration.

53

AP
1

:

AP
2
:

AP
3

:

AP
4

:

BIFS

v3* Samples3

v4* Samples4

Pre

Figure 3.5: Phase II time-line: vi denotes the precoding vector of APi.

3.4.2 Phase II: Blind-beamforming

After waiting for BIFS time, all APs multiply the samples received in the first slot with

their precoding vector and retransmit them (See Fig. 3.5). The value of BIFS can be se-

lected on the basis of the speed of the Ethernet and the expected delays involved. To avoid

wastage of wireless channel during BIFS, APs in RobinHood participate in another set of

communication (e.g., downlink traffic) while waiting to hear back from the group head

AP. Observe that since the APs are relatively stationary, the precoding vectors computed

by group-head AP are valid for a long duration as described in Section 3.2. Further, due

to the relatively stationary channel among APs, we do not need to frequently measure the

channel among APs which further reduces the overhead incurred during Phase I. The short

packet Pre sent by AP3 is a sequence known to all of the APs. The purpose of sending this

sequence is two fold: 1.) it can be viewed as a preamble for the receiving APs to detect the

correct start point of the retransmission; 2.) it can be used to estimate the sampling offset

between the transmitting APs and receiving APs.

3.4.3 Phase III: Decoding Packets

In RobinHood, the packets are decoded in a sequential order. The first AP decodes one

packet and sends it to the next AP which, upon receiving the packet, recreates the received

54

samples, and then subtracts those samples from the received samples. The remaining sam-

ples are decoded to obtain the second packet. This process is continued until all packets

have been decoded. Performing a successful subtraction requires estimating various off-

sets such as frequency offset, sampling offset, and phase offset. Once the offsets have been

estimated, the AP needs to recreate the received samples. This sequential decoding and

packet subtraction have been well-studied in the literature [11, 29]. We refer the reader to

the existing literature.

Another practical issue to note is that there is sampling offset between the transmitting

APs and the receiving APs in the second slot. This offset makes it difficult to align the

components of x2 and x3 received by AP1 in the second slot with the corresponding com-

ponents received in the first slot. To that end, a packet Pre that is known to every receiving

AP is transmitted by AP3 in Phase II. This packet is used to estimate the sampling offset

between the transmitting and the receiving APs using the same techniques as in packet

subtraction [11, 29].

3.4.4 Computing the Packet Decoding Order

In the previous discussion (Sec. 3.2), we assumed that x1 is decoded first, followed by

x2 and x3. We also assumed that joint precoding leaves no residual noise. However, in

practice, joint precoding and packet subtraction are not perfect and leave some residual

noise. Thus, in this section, we compute the optimal order in which packets should be

decoded such that the decoding accuracy is maximized in the presence of the residual

noise. To determine the optimal decoding order, we need to compute the expected received

signal strength (RSS) of each packet (say xi) at each AP (say APj). The exact value of

RSS depends on the precoding vectors which in turn depend on the rest of the matching.

This makes the problem combinatorial in nature.

We compute the expected RSS of client i at APj using a heuristic. In the second

55

slot, let APN to APM be the set of transmitting APs and AP1 to APN−1 be the set of

receiving APs. Observe that in the second slot, APj receives components of xi that have

been retransmitted by all APs in the range APN to APM . Thus, components of xi arrive at

APj through M − N + 1 different paths. Each of these M − N + 1 paths start at client

i, pass through some transmitting AP (say APk) and end at APj . Further, each of these

paths consist of two links: First from Ci to APk and, second from APk to APj . We say that

RSSij is expected to be high only if there is at least one path on which xi has high signal

strength on both the links. If P0 is the transmission power level, then, we can estimate the

RSS of xi at APj as follows:

RSSij ≈ P0 × max
k=N...M

(
min

(
||h(1)ik ||

2, ||h(2)kj ||
2
))

(3.7)

Consider client Ci that transmits packet xi at data-rate Ri. Let APj be the receiving

AP that decodes xi. If τi is the minimum SNR required to decode xi where τi depends on

the physical layer data rate, then the residual noise that can be tolerated at APj during the

decoding is given by [11]: RSSij

τi
. Using this, RobinHood computes the maximum residual

noise that each packet can tolerate. Let us say APj decodes the ith packet in the decoding

sequence.

Observe that in RobinHood the packets are decoded sequentially. So, if a packet is not

decoded correctly, then all other packets that depend on it can’t be decoded either. So, in

order to improve the decoding probability of all the packets, the decoding order is chosen

by arranging the packets in non-increasing order of the maximum residual noise that they

can tolerate.

3.5 MAC Design

In this section, we first explain how RobinHood works in large scale networks. Next, we

explain how RobinHood leverages the variation in the density of access points to improve

56

the throughput of the uplink traffic. Finally, we explain how RobinHood coexists with

ongoing downlink traffic in the network.

3.5.1 Multi-Collision Domain

The previous sections describe how RobinHood works in a single collision domain. To

work in a practical multi-collision domain, RobinHood needs to solve multiple challenges:

• In a multi-collision domain network, an AP may not be able to hear all other APs.

This makes it difficult to synchronize them since existing algorithm with high syn-

chronization accuracy [64] works only within a single collision domain.

• The traffic distribution may be different across different parts of the network. For

example, some parts of network may experience higher downlink traffic compared

to others.

• The MAC algorithm should ensure fairness across different clients.

• Previous discussion of RobinHood requires that all cooperating APs and all clients

are able to hear each other. Satisfying this requirement is challenging since frequent

mobility of clients requires frequent re-computations.

RobinHood as described in Section 3.2 requires that: (i) All cooperating APs should

be able to hear each other; and, (ii) All APs should be able to hear all clients. So, one

naive way of extending RobinHood to multi-collision networks would be to arrange both

the APs and clients in groups such that within each group all APs and all clients can hear

each other. However, this naive approach would require frequent re-computation of groups

due to client mobility.

To ensure that RobinHood works with mobile networks without requiring frequent re-

computations, we divide the EWLAN into cliques of APs while only satisfying the first re-

quirement. Satisfying that requirement implies decomposing the graph into as few cliques

57

of APs as possible. Since, decomposing graphs into fewest cliques is an NP-Hard prob-

lem, RobinHood uses a greedy polynomial-time algorithm to compute such cliques. Our

polynomial-time algorithm repeatedly finds a maximal clique among all APs. Then, it re-

moves the vertices (and the edges incident on them) that are part of the maximal clique.

The algorithm then runs on the remaining graph to find the maximal clique. This process is

repeated until every AP is a part of some clique. All the APs that are in the same maximal

clique, form a single group. This decomposition algorithm can be run by a central server

similar to [47, 71]. Ensuring that all APs in the same group can hear each other allows

RobinHood to leverage the existing synchronization algorithms (such as SourceSync [64])

to synchronize all the APs that are part of the same group.

Observe that since the APs are immobile, once the membership of different groups has

been computed, it can be used for long periods of time. It is possible that an AP may

not be able to hear a client that belongs to the same group. Thus, grouping based on APs

only satisfies the first requirement specified above while the second requirement may be

violated. We handle this in Section 3.5.2.

Computing neighbor relationship among groups: To prevent interference from neigh-

boring groups and to keep groups independent, RobinHood ensures that at any time if the

APs belonging to group G are communicating, then the APs belonging to neighboring

groups should not communicate. Two groups (say Gi and Gj) are said to be neighbors

of each other if (i) There exists a wireless device (an AP or a client) in Gi that is in the

interference range of a wireless device in Gj; or, (ii) There exists a wireless device (an AP

or a client) in Gj that is in the interference range of a wireless device in Gi. To decou-

ple the dependence of neighbor-relation from the location of mobile clients, RobinHood

takes a conservative approach such that Gi and Gj are called neighbors even if there could

potentially exist a client that can be in the transmission range of some AP in Gi while be-

ing in the interference range of some AP in Gj . By decoupling the neighbor relationship

58

from the location of mobile clients, RobinHood significantly reduces the overhead that may

otherwise arise due to frequent re-computations.

Scheduling different groups: To ensure that two neighboring groups are not trans-

mitting simultaneously, RobinHood uses a central server [47, 65, 71] that manages the

interference among neighboring groups. Since the schedule length in RobinHood is al-

ways two slots across all the groups, it makes it convenient for the server to schedule the

active groups. In RobinHood, at any time t, the server computes the set of groups that will

communicate for the next two slots (t and t+ 1). This set is computed using maximum in-

dependent set techniques such that there is no interference among the neighboring groups.

However, due to unexpected delays on the wired backbone, the latency from the central

server to the APs may result in APs unnecessarily waiting for the control messages from

the server while the wireless channel is idle. To avoid this waiting, the server in RobinHood

proactively computes the schedule and transmits it to the APs over the backbone.

Client-AP association: In RobinHood, clients do not permanently associate with any

specific AP or a group. The clients simply wait for the poll packet from any neighboring

AP and transmit uplink data as soon as they receive the corresponding approve packet

as shown in Fig. 3.6. By keeping the clients stateless, RobinHood reduces the control

messages exchanged between APs and clients.

ACK transmission: In RobinHood, the APs decode the packets during Phase 3. After

decoding, the APs send ACK over the wireless to the clients as shown in Fig. 3.6.

Downlink traffic: Uplink transmissions in RobinHood can coexist with downlink traf-

fic. Each group in RobinHood can either do downlink transmissions or uplink transmis-

sions, independently of the other groups. For downlink communication, existing algo-

rithms [47,47,65,71] can be used. The central server used in RobinHood can also be used

for managing downlink interference as in the existing algorithms [47, 71].

59

3.5.2 Computing the set of transmitting clients

In general, in a system with N clients and N2−N+2
2

APs, RobinHood guarantees that each

client can transmit 1 packet every two slots. Within a single group, it is possible that the

number of APs may not be high enough to support all the clients. In that case, the group-

head AP selects a subset of clients that would transmit in the first time slot. To ensure

fairness among clients, RobinHood uses a weighted credit based system [47] such that the

credit of a client is high if it has not been scheduled for a long period of time. Thus, the

clients with the highest credit are given priority to transmit. This is further described later

in this subsection.

Fig. 3.6 explains the complete working of RobinHood. Initially, the APs in a group

(if allowed by the central server) poll the network for uplink traffic. This is followed by

a contention period in which different clients transmit short packets conveying their credit

balance to contend for the uplink transmission. Next, the “group-head AP” computed the

set of clients that are allowed to transmit their data packets. This information is conveyed

in the Approve message. Finally, the approved clients transmit their data packets which are

decoded by the APs in three phases as described in Section 3.4.

On the other hand, it is also possible that the number of clients are low while there

are more APs available (e.g., in highly dense networks such as in Fig. 3.3). In that case,

RobinHood can leverage the extra APs to further improve the robustness of decoding as

discussed in Section 3.5.3.

Approve algorithm In each group, a single AP is elected as the group-head AP that

executes the Approve algorithm to compute the set of clients that are allowed to transmit.

Approve (Algorithm 2) greedily computes the schedule. In each iteration, it adds the client

with the highest credit value to the schedule (Line 8), thereby improving fairness. For such

a client, it picks the best AP (say APj) that has not yet been paired with some other client

(Lines 11-15). Next, Approve tries to add this client-AP pair to the schedule S and checks

60

if S is still satisfiable (Lines 16-18). This check is done by Algorithm Satisfiable. If this

pair makes S unsatisfiable (Lines 19-21), then the pair is removed from S. Also, Ci is

marked as ineligible since it cannot be paired with any AP. This process is repeated until

no more client-AP pairs can be added to S (Lines 9-10).

Algorithm Satisfiable determines if a given schedule is satisfiable or not. When doing

this computation, Satisfiable takes into account the set of clients that each AP can hear.

Without loss of generality, let S be the schedule such that S = {(Ci, APi) : APi is the

receiving AP for packet xi and xi is the ith packet to be decoded}. Satisfiable should

return true if for every client-AP pair, say (Ci, APi), it can find a subset of i − 1 unique

APs in the same group that can align xi at the receiving APs (AP1 to APi−1). In other

words, for every client-AP pair, say (Ci, APi), Satisfiable needs to find i − 1 other APs

that are in the transmission range of Ci. This computation can be done by reducing this

problem to a Max Flow problem as shown in A.3.

3.5.3 Robustness

In RobinHood, the first AP decodes one packet while N − 1 packets are nulled using blind

beamforming. The second AP decodes the second packet (while the other N − 2 packets

are nulled using blind beamforming) and so on. Thus, if an AP cannot decode a packet

due to inaccuracies in blind beamforming or packet subtraction, then all the following

packets that depend on it can also not be decoded. Therefore, to ensure that the first few

packets in the decoding order can be decoded with high probability, RobinHood leverages

the high density of the APs. Specifically, RobinHood increases the decoding robustness of

the packets if the number of APs present in a group are more than the minimum required

(See Sec. 3.2).

Let C1, C2, Ci, · · · , CN be the order in which the clients are decoded (See Section

3.4.4). Let the number of APs in the group be M and E be the number of extra APs

61

Uplink

Poll Approve A,

B and C

Keep Silent – Allow

neighboring groups

to transmit

Downlink Uplink

.......

Time

Contention Period using ROP

Phase I Phase II

Uplink

Send ACKs

Figure 3.6: Timeline of data transmission in a large network. The data sent by clients

during contention phase are transmitted using the Rapid OFDM Polling (ROP) [81]

scheme to decrease overhead. Phase III is executed in the background over the wired

backbone allowing wireless channel to be used for other purposes.

that are present such that E = M − N2−N+1
2

. Recall that exactly N − i packets are nulled

(or aligned) at the AP that decodes the packet from client Ci. If we require one of the extra

APs to independently decode the packet from Ci, then we will need another N − i extra

transmitting APs to ensure that packets from Ci+1, Ci+2, · · · , CN are nulled at this extra

AP. Thus, to decode the packet from Ci at two different APs, we need another N − i + 1

APs (including one extra AP for receiving).

RobinHood increases the decoding robustness as follows: The APs in RobinHood find

the first client Ci in the decoding sequence that satisfies the two requirements: (i) The

packet from Ci is decoded at only one AP; and, (ii) E ≥ N − i + 1. Let Ci be the

first client in the decoding sequence that satisfies the two constraints. Then, RobinHood

ensures that the packet transmitted by Ci can be independently decoded by two different

62

APs. RobinHood decreases E by N − i + 1 since this is the number of APs required to

achieve independent decoding of Ci. Finally, this process is repeated as long as possi-

ble to achieve independent decodings of some packets. Thus, in highly dense networks,

RobinHood leverages the extra APs present in the network to further increase the decoding

probability of each packet. Even if extra APs are not available, RobinHood can restrict

the number of clients that transmit simultaneously. This frees up some APs that can be

used for increasing the robustness of decoding. Currently, we leave the problem of proac-

tively reducing the number of transmitters to increase the decoding robustness as our future

work.

3.6 Experiments

3.6.1 Setup

We evaluate RobinHood in a testbed with 7 USRP N210 nodes. The setup is as follows:

• Hardware and software setup: Each USRP is equipped with a WBX daughter-

board and operates in the 400 MHz band. All nodes are within single collision

domain. At the receiver side, we use the GNURadio for signal processing. The

decoding is done offline in Matlab. All of the AP nodes are synchronized with an

external clock source generated by OctoClock-G [2]. In practice, SourceSync [64]

can be used to synchronize the transmitting APs to a nanosecond level accuracy.

• OFDM and modulation setup: We use a 512 FFT system, with 200 subcarriers

used for data transmitting. The cyclic prefix length is set to 128. Unless otherwise

mentioned, Binary Phase Shift Keying (BPSK) is used as the modulation scheme.

Apart from implementing RobinHood, we also implemented Omniscient TDMA that

utilizes a central server. This server is aware of (i) packet queue at different clients; and,

63

(ii) the channel between all clients and all APs. Omni-TDMA schedules the three different

clients in a round-robin fashion with each client transmitting to the AP to which it has the

best channel.

3.6.2 Micro-Benchmarks

Many works have shown the effectiveness of beamforming [30, 65]. Since our blind-

beamforming and nulling involves transmitting unknown samples, its effectiveness and

accuracy is unclear. In this section, we evaluate the performance of blind-beamforming

and nulling using the signal to interference and noise ratio (SINR). In the following exper-

iments, 3 clients and 4 APs were deployed in our testbed as shown in Fig. 3.1.

Blind-beamforming and Nulling Effects: First of all, we study the blind-beamforming

and nulling effect as described in Section 3.4. Since there are a total of 12 links between

all APs and clients, it is difficult to control the SNR of every link. Instead, we place the

clients and APs randomly in our testbed and record the actual SNRs. We repeat the exper-

iment 20 times for each of the 50 randomly chosen topologies. Over various topologies,

the SNR between clients and APs varied from 6 dB to 35 dB. We compute the final inter-

ference to noise ratio (INR) of packet x1 when it is decoded by AP1. The INR distribution

is shown in Fig. 3.7a. The median of the INR is 0.7 dB, which is just slightly above the

noise floor, and the 90th percentile INR is 3.7 dB. This indicates that residual interference

from blind-beamforming and nulling is relatively small and demonstrates the practicality

of RobinHood.

The INR distribution in Fig. 3.7a shows that it could be as high as 10 dB, which is

a large value compared with typical SNR values, e.g. 20 dB. We look deeper into the

INR results and present it in an another way in Fig. 3.7b. The y-axis is the final INR of

packet x1 at AP1. The x-axis is the range of signal to interference ratio (SIR) in dB that x1

experiences in the first slot across all of the APs. The smaller the value on the x-axis is, the

64

0 5 10 15
0

0.2

1

0.8

0.6

0.4

The final INR of packet x (dB)
1

C
D

F

RobinHood

RobinHood w/o
sampling offset
correction

(0.7, 0.5)
(1.8, 0.5)

(5.9, 0.9) (3.7, 0.9)

(a) Final INR distribution of x1

at the first decoding AP. The
median of the INR is 0.7 dB

and the 90th percentile INR is
3.7 dB.

(−14,−12)(−10,−8) (−6,−4) (−2,0) (2,4)
−2

0

2

4

6

8

10

F
in

a
l
IN

R
 o

f
p
a
c
k
e
t
x 1

 (
d
B

)

SIR of packet x
1
 in the first slot (dB)

(b) Final INR of the packet x1 at
the first decoding AP.

0.2 0.4 0.6 0.8 1
Throughput (Mbps)

1.2 1.4 1.6
0

0.4

0.2

0.6

0.8

1

C
D

F

Client 3 in RobinHood

Client 2 in RobinHood

Client 1 in RobinHood

Total throughput of RobinHood

Total throughput of TDMA

1.48X

(c) Throughput of RobinHood
compared to Omniscient TDMA.

Figure 3.7: Experiment results collected over USRP testbed.

higher is the amount of interference to be canceled in the second slot. This figure shows

that as the SIR increases, the final INR decreases. When the first slot SIR is larger than -12

dB, the median of the that is 0.6 dB and the 90th percentile is 2.7 dB (Fig. 3.7b). Based on

this result, we can enable RobinHood when the SIR value is larger than a threshold and fall

back to the default IEEE 802.11 scheme when the SIR value is small. We leave the study

of computing the exact threshold value as future work.

Sampling Offset: As discussed in Section 3.4.3, there is sampling offset between the

samples received by AP1 from phase I and phase II. To study the effect of the sampling

offset, we turn off the sampling offset correction in RobinHood and compute the residual

interference to noise ratio for x1. The result shown in Fig. 3.7a shows that without sampling

offset correction, the median INR increases by 1.1 dB and the 90th percentile increases by

2.2 dB. This demonstrates that the sampling offset correction done in RobinHood reduces

the residual interference.

65

 0

 2000

 4000

 6000

 8000

 0 2000 4000 6000 8000 10000

T
h

ro
u

g
h

p
u

t
(i
n

 M
b

p
s
)

Number of APs

RobinHood
Omni-TDMA
IEEE 802.11

(a) Total Throughput

 0.5

 0.75

 1

 0 2000 4000 6000 8000

J
a

in
’s

 F
a

ri
n

e
s
s
 I

n
d

e
x

Number of APs

RobinHood

Omni-TDMA

IEEE 802.11

(b) Jain’s Fairness Index

 0

 25

 50

 75

 100

 0 2000 4000 6000 8000 10000

P
e
rc

e
n
ta

g
e
 o

f
p
a
c
k
e
ts

 d
e
c
o
d
e
d

Number of APs

RobinHood (+ Robustness)
RobinHood (No Robustness)

(c) Percentage of packets decoded

Figure 3.8: Trace-Driven Simulation Results for Multi-Collision Domain

3.6.3 Throughput

In this section, we study the throughput performance of RobinHood. The throughput of

each client in RobinHood is recorded and compared with that of omniscient TDMA. A

total of 20000 packets are transmitted by each client across different topologies. Fig. 3.7c

shows that on an average, RobinHood provides a throughput gain of 1.48× compared with

omniscient TDMA. The figure also shows the throughput of client 1 is higher than that of

clients 2 and 3. This is because x2 and x3 are decoded only if x1 is decoded. Further,

even if x1 is decoded, x2 and x3 may not be decoded due to the residual interference from

subtraction.

3.7 Trace-Driven Simulation

This section explains the setup and the results from the trace-driven simulations.

3.7.1 Simulation Setup

Apart from implementing RobinHood, we also implemented two other algorithms: (i) Om-

niscient TDMA algorithm: Described before in Section 3.6. However, this time similar

66

to RobinHood, Omniscient TDMA also uses a credit-based system where a client has high

credit value if it has not transmitted for a long time. In each slot, it schedules an maxi-

mum independent set of “client to AP” links (where weight of link = credit of the client ×

throughput of the client when using that link). The physical layer rate of a link is chosen by

picking the highest data rate that can be decoded by the AP.; and, (ii) IEEE 802.11 (with-

out RTS/CTS). To evaluate the gain provided by RobinHood irrespective of the downlink

algorithm used, only the uplink traffic from clients to APs was generated. Various traces

were incorporated into the simulation: (i) Noise due to Blind Beamforming and Nulling:

The simulator incorporated noise arising due to imperfect nulling. For this, we used the

traces collected from our experiments (See Fig. 3.7a). (ii) Noise due to subtraction: When

an AP subtracts a packet, it has to recreate its samples and correct for various offsets such

as sampling offset and frequency offset. An imperfect correction leads to imperfect sub-

traction resulting in residual noise. The simulator incorporated this residual noise using the

traces collected by us in experiments. (iii) Path Loss between clients and APs: Incorpo-

rated from the traces [74]. (iv) Path Loss between APs: Incorporated from the traces [74].

In this section, we study the behavior of RobinHood in a large EWLAN (Enterprise

Wireless LAN) that spans over multiple collision domains (e.g., the campus of a university).

Our simulator first randomly deploys 500 clients in a field of size 500m × 500m. APs are

also deployed randomly and the count of APs is varied. In this setup, different devices may

belong to different groups as described in Section 3.5. The overhead of different protocols

was taken into account during the simulation. Also, APs in RobinHood used extra APs to

further increase the decoding robustness as described in Section 3.5.3. Finally, clients in

RobinHood and IEEE 802.11 used the Auto Rate Fallback (ARF) algorithm to determine

the physical layer data rate.

67

3.7.2 Results

Next, we describe the results from our trace-driven simulations.

• Total Throughput across all clients: Throughput increases for all algorithms as

they leverage the increase in the physical layer data rate (See Fig. 3.8a). For 802.11,

increase is not substantial since high number of collisions (due to hidden terminals)

reduces the number of successful transmissions. With increase in number of APs,

the throughput in RobinHood increases because of two reasons: (i) Higher AP den-

sity implies more APs are present in each group, resulting in higher throughput since

more clients can be supported at the same time; and, (ii) Higher data rate at clients

due to higher AP density. As the density of the APs increase, throughput in Robin-

Hood increases substantially compared to TDMA. When the number of APs is 2000,

each client is in the range of an average of 180 APs. At that density, RobinHood

throughput is 5.2× compared to TDMA, and 52.4× compared to IEEE 802.11. This

is lower than the expected gain since in RobinHood, clients use ARF to adjust their

physical layer data rate while clients in Omniscient TDMA transmit at the best pos-

sible data rate.

Once the number of APs grow beyond 4000, the total throughput of the network does

not increase much. This is because most of the groups already have enough APs to

support all the clients. However, the decoding robustness provided by redundant APs

still helps in slightly increasing the throughput.

• Fairness: Fig. 3.8b shows the variation in Jain’s fairness index with variation in

number of APs. The fairness index of RobinHood is higher than other algorithms

since RobinHood allows all clients to transmit. RobinHood has higher fairness than

TDMA since RobinHood performs precoding over transmissions from all clients.

Thus, even the clients that are far away from all APs may experience high throughput

68

due to beamforming from multiple helper APs. With increase in the number of APs,

the fairness for all the algorithms increases since the chances that a client would be

close to some AP increases.

• Decoding probability: As the density of the network becomes higher, the length

of the decoding chain increases. Thus, a decoding failure on one packet implies

a decoding failure on all the other packets that depend on it. Fig. 3.8c shows the

percentage of packets decoded successfully decreases with increase in density. How-

ever, still the throughput in RobinHood increases (See Fig. 3.8a) since higher density

enables multiple clients in APs to transmit successfully. Further, with high density

of APs, RobinHood can use robustness techniques discussed in Section 3.5.3 to in-

crease the decoding probability. Fig. 3.8c also shows the decoding probability when

RobinHood does not use robustness techniques described before. With the increase

in number of APs, there is a higher chance that RobinHood can leverage those APs

to improve robustness. Thus, with increasing density, the improvement provided by

robustness further increase.

When the number of APs increases from 300 to approx. 4000, the decoding prob-

ability keeps decreasing since APs try to simultaneously decode multiple packets

and a decoding failure on one packet results in decoding failure on all the dependent

packets. However, as the number of APs grow beyond 4000, the redundant APs help

in increasing the decoding robustness as shown in Fig. 3.8a.

3.8 Discussion

In this section, we discuss some further modifications that make RobinHood more practical.

Reducing overhead of channel estimation: To compute the precoding vectors, the

APs in RobinHood require the knowledge of channel between all clients and APs as well

69

as the channel between all APs. The problem of computing the channel from clients to

APs has been well studied in the context of MIMO networks [30, 80]. To compute the

channel values, we are planning to use PN sequences to estimate the channel from multiple

transmitters simultaneously [52].

Overhead on the backbone: In RobinHood when decoding N uplink packets, the

APs need to exchange (N−1)×(N−2)
2

data packets. This is in contrast with [65] that requires

exchange of (N−1)×(N) data packets when performing joint beamforming for the down-

link traffic. In addition, APs in RobinHood also need to relatively smaller exchange control

packets related to channel state information, scheduling etc. Currently, we are exploring

techniques to adjust the number of participating clients based on how much overhead can

be tolerated on the wired backbone.

APs with multiple antennas: If the APs are equipped with multiple antennas, Robin-

Hood can leverage them to reduce the number of required APs. Specifically, if each AP is

equipped with K antennas, then to receive N uplink packets simultaneously, RobinHood

would require only N ′2−N ′+2
2K

APs where N ′ = N − (K − 1), a reduction by a factor of

more than K.

3.9 Related Work

Although RobinHood builds on several prior work, it differs from them in various ways.

Backbone usage: The idea of using the wired backbone to increase wireless throughput

is not new. In MegaMIMO [65], multiple APs cooperatively precode the transmissions such

that each client receives only the packets intended for it while the other transmissions are

canceled out. However, MegaMIMO requires that transmitters exchange packets among

themselves and thus, it works only for the downlink transmissions. On the other hand,

RobinHood improves the throughput for the uplink traffic. Also, in contrast to MegaMIMO

70

and OpenRF [47], transmitters in RobinHood jointly perform nulling without knowing the

actual contents of the packets.

A recently proposed protocol Symphony [11] also focuses on uplink traffic. However,

in contrast to RobinHood, Symphony improves the network throughput only when the APs

are in different collision domains. In Epicenter [32], authors propose that APs should

exchange coarse representations of symbols to decode corrupted bits. Similarly, authors

in [79] also propose that APs exchange bits or raw samples on the backbone to facilitate

packet decoding. In all these algorithms, the APs cooperate to decode the same packet

whereas in RobinHood, APs encourage transmitters to collide and then cooperate to decode

multiple packets simultaneously without exchanging the raw samples.

Finally, [13] also proposed using the backbone to improve the uplink throughput. How-

ever, in contrast to [13], RobinHood provides the first implementation of blind beamform-

ing and nulling. Further, RobinHood works in multi-collision domains, uses robustness

techniques to increase decoding probability, and, requires N fewer APs compared to [13].

Interference Alignment: Previously, researchers (see [37] and references therein)

have used interference alignment to improve the capacity of wireless networks. How-

ever, unlike RobinHood, they either require APs to exchange samples over the back-

bone [8], work only for the downlink traffic [76], assume presence of significant number of

clients [58], require multiple antennas at transmitters or receivers [30], require the anten-

nas to be physically moved [4] to a certain point, require the channel to change from one

slot to another [16], precode over exponential number of time slots [16], or provide limited

throughput gain [4, 30]. These assumptions are not practical in mobile networks since if

the client is stationary, the channel may not change [78] from one packet to another. In

contrast to the previous works, RobinHood works even if the channel stays stationary.

Wireless Relays: Researchers [46,66] have also looked at the problem of using special

relay nodes to assist in high speed communication between specific pairs of source and

71

destination nodes. In contrast, the focus of RobinHood is to leverage the high density of

APs and the wired backbone to carefully select the set of destination APs, determine which

AP decodes which packet, and to use the wired backbone to migrate all the complexity

away from the clients. Further, with previous works, it is possible that the destination AP

is unable to decode a packet due to low SNR. However, in RobinHood, APs leverage the

high density of APs to increase robustness (See Sec. 3.5.3).

Information Theory Results: Researchers have studied the capacity of the wireless

networks from information theory perspective. We divide the previous work in this area in

three categories:

• Interference-model based without APs: This category of works treat interference

as a black box. Authors in [34] showed that in a single collision wireless network

with N transmitters and N receivers, the maximum total throughput is O(
√
N). Au-

thors in [26] proposed a percolation-theory approach to construct an algorithm that

indeed achievesO(
√
N) throughput. However, these papers did not assume the pres-

ence of a wired backbone that connects the receivers and thus the results in this thesis

are not in conflict with these previous papers.

• Interference-model based with infrastructure support: Researchers have also

explored the capacity of wireless networks that are supplemented by an infrastruc-

ture of APs that are connected through a wired backbone. Liu et al. [53] showed

that for such networks, only if the number of APs are more that O(
√
N), only then

the infrastructure network is useful in improving the wireless capacity. In [5], au-

thors show that it is possible to achieve O(N) throughput for a hybrid wireless net-

work with N transmitters, N receivers and O(N) APs that are connected by wired

infrastructure. However, like the previous category, their analysis is restricted to in-

terference based wireless networks, i.e., signals received from nodes other than the

particular transmitter are regarded as interference degrading the communication link.

72

However, in RobinHood, we explore more sophisticated physical layer processing to

align interference resulting in higher throughput.

• Physical layer processing techniques without infrastructure support: On the

other hand, in [59], authors show that in the absence of APs, by using physical layer

processing techniques such as MU-MIMO, it is possible to achieve O(N) through-

put.

In all these previous works [5,26,53,59], it is assumed that all wireless links in the net-

work follow the same path loss model. In other words, they assume that for any transmitter,

say t1, if receiver r2 is farther away from t1 compared to another receiver r3, then r2 will

have lower RSS from t1 compared to r3. This assumption is used to create clusters of de-

vices where: (i) All nodes in the same cluster have low path loss between each other; and,

(ii) Nodes belonging to different clusters have high path loss between each other. However,

in practical wireless networks (e.g., with mobile devices in indoor environments), it may

not be possible to create such clusters because nodes closer to each other may have high

path loss while nodes far away may actually have lower path loss (resulting from shadow-

ing, multipath etc.). In contrast, our algorithm does not make any such assumptions about

the path loss model.

From the information theory perspective, with a total of O(M) devices, RobinHood

achieves O(
√
M) throughput. This is significantly lower than the currently known [59]

upper bound of O(M logM) in single collision domain wireless networks. For practical

indoor wireless networks, where it is not possible to create such clusters, the currently

known best algorithm is TDMA that provides an uplink throughput of O(1). Thus, Robin-

Hood provides a throughput improvement of O(
√
M) compared to existing algorithms.

RobinHood has taken the first step in the direction of improving throughput for such net-

works where different links follow different path loss models. It remains an open question

if it is possible to further improve throughput for such wireless networks.

73

3.10 Conclusions

In the previous sections, we discussed RobinHood, a blind beamforming and nulling scheme

that leverages the high density of access points to enable multiple mobile devices to trans-

mit simultaneously. Feasibility of RobinHood was verified on a USRP testbed. Measure-

ments show that RobinHood achieves a throughput gain of 1.48× over omniscient TDMA.

Using trace-driven simulations, we showed that in dense wireless LANs, RobinHood pro-

vides a throughput of up to 5.2× compared to omniscient TDMA.

74

Algorithm 2: Approve: Computes the set of clients that will be approved in this slot

1 Input: For every eligible packet Pi, its transmitter Ci. Also, information on which

AP can hear which client.

2 Output: (i) Set of clients that will be approved in this slot. (ii) The matching from

the approved clients to the APs indicating which AP decodes which packet. (iii) The

decoding order.

3 Ei ← true ∀i : 1 ≤ i ≤ N

4 A ← All APs in the current group

5 S ← {}

6 while true do

7 CSet← {Cx : Ex = true and Cx /∈ S}

8 Ci ← Ci ∈ CSet and Ci has the highest credit balance

9 if Ci = null then

10 return S

11 Set← {(Ci, APj) : APj /∈ S}

12 (Ci, APj)← (Ci, APj) ∈ Set and RSSij is maximum

13 if APj = null then

14 Ei ← false

15 continue

16 S ← S ∪ {(Ci, APj)}

17 Compute the decoding order in S based on the residual noise tolerance.

18 isSatisfiable ← Satisfiable(S,A)

19 if isSatisfiable = false then

20 Ei ← false

21 S ← S\{(Ci, APj)}

22 return S

75

CHAPTER 4

MOZART: ORCHESTRATING COLLISIONS IN WIRELESS

NETWORKS

4.1 Introduction

Previous studies have shown that the throughput achieved in real wireless networks is of-

ten significantly lower than their capacity [72]. This difference is frequently attributed to

discrepancy between the interference at the transmitter and the receiver. In wireless net-

works, it is impossible for transmitters to precisely estimate the interference at receivers

which leads to hidden and exposed terminal scenarios. It has been shown [72] that hid-

den and exposed terminals can cause throughput loss in 30% and 61% links, respectively.

Collisions due to hidden terminals are especially common in indoor wireless networks

with obstacles [10]. Secondly, IEEE 802.11 protocol and its derivatives (e.g., 802.11 with

RTS-CTS, 802.11ec [55], ZigZag [29] etc.) require the channel to remain idle when the

nodes are undergoing backoffs. Such idle listening is necessary in these protocols to avoid

collisions and leads to up to 30% loss of throughput [40].

The above two factors significantly impact the throughput. Most practical distributed

scheduling algorithms in today’s wireless networks such as the IEEE 802.11 family and

IEEE 802.15.4 protocols are based on CSMA (Carrier Sense Multiple Access). Various im-

provements to these schemes have been proposed in recent years. RTS-CTS (IEEE 802.11)

76

based approaches have been proposed for addressing the hidden terminal problems. Ap-

proaches to reduce the overhead of RTS-CTS packets [55], channel wastage due to collided

packets [69], and overhead of backoff [68] have been proposed. Several mechanisms that

attempt to salvage bits or entire packets out of collided transmissions have also been pro-

posed [29,33,38,43,52]. However, these algorithms are insufficient (details in Sec. 4.7) as

they either do not work in multi-collision domains [29, 33], abandon the bits under colli-

sion [38,69], require multiple antennas per node [68] or have long critical periods resulting

in lower packet delivery ratio [55].

This chapter presents a new cross-layer algorithm called Mozart, that encourages col-

lisions and hidden terminal transmissions in a planned way to enable fast recovery of col-

liding packets via a new approach called Successive Packet Subtraction (SPS). In Mozart,

receivers encourage neighboring nodes to transmit simultaneously resulting in collision.

The receiver then smartly suppresses transmissions in subsequent slots based on its esti-

mation of signal strengths from various senders so as to best apply SPS to recover all the

colliding packets (See Figure 4.1). SPS allows wireless receivers in a multi-collision do-

main network to receive and decode multiple packets without knowing which node has data

to send to which other node.

Mozart eliminates backoffs before transmission of data packets. Mozart also embraces

hidden terminal transmissions and therefore implicitly addresses it. Thus, Mozart provides

throughput improvement for both downlink and uplink traffic. Through theoretical anal-

ysis, we show that the critical period of Mozart is 2µs. This is much shorter than the

critical period of the state-of-the-art schemes that have critical period of 39.4 µs [55]. The

shorter critical period ensures higher packet delivery ratio in Mozart. This thesis, makes

the following additional contributions:

• We propose Successive Packet Subtraction (SPS), a new approach for wireless nodes

to simultaneously receive multiple packets and then decode them one-by-one while

77

controlling the retransmission pattern. Unlike SIC (Successive Interference Cancel-

lation [70]), SPS works even when all packets have low SINR.

• On receiving collided packets, receivers in Mozart need to identify the set of trans-

mitters and estimate their received signal strengths with high precision. Doing both

in the presence of multiple collisions is extremely hard. Existing techniques to mea-

sure signal strength do not work in the presence of collisions [33]. We present a novel

iterative algorithm for estimating the RSS of multiple colliding packets. Our results

show that even in the presence of interference from 14 other packets, Mozart is able

to estimate the RSS within 1 dB with 96% accuracy compared to 21% accuracy of

state of the art schemes.

• This chapter proposes an algorithm to compute the set of nodes to be suppressed at

the end of each slot such that the probability of correctly decoding the packets is

maximized across all slots.

• We implement Mozart on a USRP testbed [1]. Our evaluation results show that

Mozart’s throughput is up to 3.70x compared to IEEE 802.11. Our trace-driven

evaluations show that on an average, Mozart provides a throughput of 2.55x and

4.10x compared to 802.11ec and 802.11, respectively.

The rest of the chapter discusses our algorithms, implementation and comparison re-

sults in detail.

4.2 Mozart: Detailed Description

Mozart works by encouraging collisions among transmissions. However, upon collision,

the receiving node controls the future retransmissions such that it is able to decode the

78

P3

Time Slot 1 Time Slot 2 Time Slot 3

P1 P1P1

P2 P2

Receiver

broadcasts

suppress

for P3

Receiver

broadcasts

suppress

for P2

Receiver

broadcasts

suppress

for P1

Poll

transmitted

by receiver

P4

P4

P4

P4

Receiver

broadcasts

Finish

Time Slot 4

Notify

transmitted

by one of the

transmitters

Figure 4.1: Collision Recovery Period. Through control messages, the receiver ensures

that the number of transmitters is reduced by 1 from the previous slot. Data transmissions

in the same slot may arrive at different times at the receiver due to propagation delays and

radio’s TX-RX turn-around time. At the end of the recovery period, the receiver will

reconstruct samples for P4 and subtract it from samples received in slot 3. The remaining

samples are then decoded to obtain P1. Similarly, P2 and P3 are decoded from the samples

of slot 2 and slot 1, respectively.

collided transmissions in a short time. The next subsection explains the working of Mozart

in detail. Section 4.3 explains how Mozart handles various practical challenges.

4.2.1 Successive Packet Subtraction (SPS)

In Mozart, packet transmissions and the subsequent decoding takes place in multiple phases

(Fig. 4.1):

• Notification: If a node B has data for A, then B sends a notification message to A,

indicating that B has outstanding data for A.

• Polling: Upon receiving the notification message, A backs off for a random duration

(between 1 and 5 µs as described in Subsection 4.3.4) and sends a poll message to

solicit transmissions in its neighborhood. After sending the poll, A is said to be

79

undergoing recovery. However, in Mozart, a node (say A) can poll only if all the

following conditions are true: (i) It observes (through virtual sensing) that no other

polling node in its neighborhood is recovering; (ii) No other node in its neighborhood

is transmitting data to its receiver; and, (iii) A’s backoff is over. If any of these

condition is not true, A undergoes a backoff and then attempts to poll again.

• Data Transmission: Upon receiving a poll from a neighboring node (say A), a node

(say B) sends a data packet to A if both these conditions are true: (i) There is no

other node (except A) in its neighborhood undergoing recovery; and, (ii) B has data

to send to the polling node.

• Suppress: The polling node may simultaneously receive data packets from multiple

nodes resulting in a collision. From the received packets, the polling node selects

one transmitting node and transmits suppress to it. Upon receiving suppress, the

node stays silent for the remaining duration of the recovery period. Other nodes

upon overhearing the suppress, re-transmit the same data packets until they either

receive the suppress or the finish packet from A. Section 4.3.3 explains how the

polling node selects the node to whom the suppress is sent. The receiver also stores

the received samples in a buffer for decoding in the future. Mozart does not have any

synchronization overhead since synchronization happens implicitly through the poll

and suppress messages transmitted by the receiver.

• Finish: In each slot one of the transmitting nodes becomes silent after receiving

the suppress from A. So, the number of colliding packets decreases by one in each

slot. Eventually, in some slot, only one node transmits. At the end of that slot,

the polling node decodes all the packets. Upon successful decoding, A broadcasts

a finish packet. The finish packet serves two purposes: (i) It indicates successful

decoding, thereby acknowledging the transmitted data, allowing nodes to transmit

80

new data; and, (ii) Indicates the end of the recovery period, thus allowing nearby

nodes to transmit poll packets or data packets.

By reserving the channel in the neighborhood of the receiver (using the poll message)

as well as by encouraging collisions among transmitters, Mozart is able to implicitly han-

dle hidden transmissions. Similarly, before transmitting a poll packet or a data packet, a

node ensures that no other node in its neighborhood is recovering. This check prevents its

transmissions from interfering with any data packets that the recovering node in the neigh-

borhood might receive. To determine if any other node is recovering, nodes use virtual

sensing by monitoring poll/suppress packets and the matching finish packets. If a node re-

ceives a poll packet but not the corresponding finish packet, it indicates that the other node

is recovering. In case when the node does not receive the matching finish packet, timeout

after the last received poll/suppress packet can be used to indicate the end of recovery. The

timeout duration is set to twice the channel access time as discussed in Section 4.3.2. If

a node receives no packet transmissions after polling, then it sends a finish and enters a

backoff period before polling again.

Packet Structure: To transmit the suppress at the end of each slot, the receiver needs

to determine the id of at least one transmitter. However, with colliding transmissions, the

receiver cannot decode the transmitter’s ID from the packet’s MAC header. To that end,

Mozart requires that transmitters identify themselves by sending a Correlatable Symbol

Sequence (CSS) before the preamble. It has been shown [55] that CSSs1 can be correlated

without correcting for frequency or sampling offsets. Another property of CSSs is that

they can be correlated even under collision. This allows a node to receive a control mes-

sage even if its neighboring node is transmitting. Thus, Mozart allows neighboring nodes

to simultaneously transmit, thereby eliminating the Exposed Terminal Problem. Further,

1Also referred to as Pseudo Random Sequences (PN sequences)

81

usage of PN sequences reduces the transmission duration of the packet considerably as

demonstrated before [55].

Mozart uses 5 different packet types: (i) Notify: It consists of the PN sequence of the

receiver; (ii) Poll: It consists of the PN sequence of the polling node; (iii) Suppress: It

contains the PN sequence of the receiver followed by the PN sequence of the node being

suppressed; (iv) Data packet: This packet has the PN sequence of the transmitter, PN

sequence of the receiver, preamble, MAC header and the data body; and, (v) Finish: It

contains the PN sequence of the receiver, followed by PN sequences of the nodes whose

transmissions were successfully decoded. By using PN sequences that are correlated [55]

by the receiver, Mozart significantly reduces the rate of loss of the control packets due to

collisions.

Packet Decoding: In Mozart, the receiver decodes all received packets in the reverse

chronological order. Decoding starts with the last slot in which only one node transmitted.

Figure 4.1 shows a recovery period in which four nodes send data in response to A’s poll.

Three suppress packets were sent at the end of the first three slots, and, so in the fourth slot,

only one node transmits. In that slot, P4 is available in the clear and can simply be decoded.

To decode P1, after correcting for different offsets (details in Section 4.3.6), A recreates

samples for P4 as received in slot 3 and subtracts them from samples received in slot 3.

After subtraction, it is left with only the samples corresponding to P1 which A decodes.

Similarly, to decode P2, A re-creates samples for both P1 and P4 and subtracts them from

the samples received in slot 2. After subtracting, it decodes the remaining samples to get

P2. This process is repeated for each slot until A has decoded all the collided packets.

Thus, by carefully selecting the retransmitters, A is able to decode 4 packets in 4 slots.

SPS allows the receiver to control the retransmission pattern without precisely knowing

the complete set of transmitters in each slot. This is in contrast with a naive approach where

all transmitters transmit their PN sequences in the first slot and then the receiver schedules

82

different transmitters in a TDMA fashion. In this naive approach, the receiver may not

detect PN sequences with low SINR (See Section 4.4) resulting in their starvation. On

the other hand, when using SPS, such transmitters will be detected in later slots when the

number of colliding packets become small. Thus, the flexible approach of SPS increases

fairness. This approach is also different from 802.11 polling mode where the APs poll

all the potential transmitters. This results in wasted polls and throughput loss when a

transmitter has no data to send in response to a poll. In contrast to that, receivers in Mozart

receive packets from all the transmitters and decode them by controlling the retransmission

pattern.

4.2.2 Challenges towards practical implementation

Although the idea behind Mozart is simple, however, multiple challenges need to be solved

to make Mozart practical:

• Identifying set of transmitters and estimating their RSS: To maximize the decod-

ing accuracy, at the end of each slot, receivers in Mozart need to carefully determine

the transmitter to be suppressed. As explained in Section 4.3.3, this requires receivers

in Mozart to determine the following additional information: (i) ID of transmitters;

and, (ii) SINR of transmitters. However, determining this information for all packets

in the presence of interference is challenging. Existing techniques [33] to measure

signal strength do not work in the presence of collisions and require transmitters to

transmit one-by-one, thus constituting a significant overhead.

• Determining transmitter to suppress: Once the set of transmitters is determined,

the receiver in Mozart needs to determine which transmitter should be suppressed

among all transmitters such that the decoding accuracy is maximized. Different

transmitters may have different SINR and may transmit at different physical layer

83

data rates. This makes it difficult to determine which transmitter should be sup-

pressed.

• Handling heterogeneous data rate and packet sizes: The channel access time is

fixed for all transmitters in Mozart. However, if some transmitters only have small

amount of data to send, this may lead to channel wastage.

4.3 Practical Considerations

This section explains how we handle the aforementioned challenges. In Subsection 4.3.1,

we explain how receivers in Mozart identify the set of transmitters and estimate their RSS.

Subsection 4.3.2 explains how transmitters in Mozart determine the physical layer data

rate to be used. Once the receiver knows the id of transmitters, their RSS and the mod-

ulation scheme used, the receiver then uses the algorithm described in Subsection 4.3.3

to determine the set of nodes to be suppressed at the end of each slot. Subsection 4.3.4

explains how compared to existing algorithms, Mozart significantly increases the probabil-

ity of successful packet decoding. The next subsection explains how receivers in Mozart

handle decoding errors. Finally, Subsection 4.3.6 explains how offset correction and PN

sequence assignment is done in Mozart.

4.3.1 Identification and RSS estimation of collided packets

It is beneficial for Mozart to identify the transmitters of all the collided packets, since

with more IDs, it is more likely that the receiver will find the right set of transmitters to

suppress. Observe that the receiver does not need to determine the source ID of all the

packets. However, more IDs it can determine, higher are the chances that the receiver will

suppress the right set of transmitters (explained later in Section 4.3.3).

For -8dB SINR, state of the art correlation schemes have been shown [55] to suffer from

84

as much as 70% false negatives when 127-symbol Gold code sequence (a type of CSS) is

used. Clearly, this false-negative rate is too high for Mozart where multiple transmissions

may collide resulting in low SINR. Our identification algorithm is also based on the general

approach of computing the cross correlation, however, there are significant differences

when compared to existing schemes [29, 55, 69]:

• Bounding cross correlation by circular padding: To improve the accuracy of cor-

relation, we harness a property of Gold codes that guarantees that the circular cross

correlation of two instances of Gold code is bounded [28]. For 127-symbol sequence

Gold codes, the bound is 1/7. Thus, the correlation works better when Gold codes

collide only with other Gold codes, and not with samples from arbitrary data packets.

Since in Mozart, the nodes do not undergo backoffs before transmitting data, the PN

sequences for the collided packets are expected to be approximately-synchronized.

However, due to propagation delays and hardware artifacts, it is possible that the PN

sequences do not collide with other PN sequences at the receiver. Based on the IEEE

802.11 standard [36], the arriving time for different PN sequences can differ by at

most 4µs (2µs for radio’s turn-around time [55] and 1 µs for propagation delay in

each direction [55]). So the transmitters in Mozart cyclically pad 2µs symbols of

the Gold code before and after the actual Gold code. The symbols padded before a

certain Gold code instance are the last few symbols of Gold code while the symbols

padded after the end are the first few symbols. This ensures that the Gold code sam-

ples interfere with only the combination of samples of other Gold codes resulting in

low cross-correlation. Figure 4.2(b) illustrates the padding process.

• Improving correlation for low RSS packets through cancellation: Instead of try-

ing to detect all the collided Gold codes at the same time, Mozart decodes one Gold

code at a time. Then, it subtracts the samples of the detected Gold code from the

received samples. Figures 4.2(c) and 4.2(d) show two packets with Gold codes and

85

data before subtraction and after Gold code of P1 was subtracted from the collided

samples. This process is similar to the one that we used during the packet cancella-

tion step (See Section 4.2). This allows Mozart to detect those packets that have low

RSS even if they are interfered by high RSS packets since after subtracting the high

RSS packet, the correlation value for the lower RSS packet increases. Subtracting

packet 1 reduces the noise for P2 and thus, helps in improving the SINR of the Gold

code in P2 as shown in Figures 4.2(c) and 4.2(d).

• Iteratively improving the RSS estimation: In the above two steps, it is possible that

due to high interference from other packets, the computed correlation is not correct

resulting in inaccurate estimation of RSS. In such a case, even after subtraction,

a part of the packet (residual samples after subtraction) would still be left in the

original samples (albeit with much lower RSS). To correct the RSS estimate, Mozart

performs correlation and cancellation repeatedly to detect these copies of the packet.

For this, Mozart records the correlation value and the location (i.e., starting time)

for each detected packet. When Mozart detects some packet again that was already

detected in previous steps, then the power level of the packet is updated to be the

sum of the current and old correlation values. As Mozart detects the same packet

multiple times, its estimate of the RSS of the packet improves while the residual

signal strength of the packet decreases. For examples, Mozart detects Gold codes of

Packet 1 first in Figure 4.2(c) and later in Figure 4.2 (e) among the residual samples.

Upon, detection for the second time, the receiver estimates the RSS of the residual

Gold code of Packet 1 and adds that estimate to the previous estimate of RSS of

Packet 1. This step is repeated as long as the correlation value is at least twice the

strength of the residual samples.

Thus, the first technique is used by the transmitter while second and third techniques

are iteratively used by the receiver for improving the accuracy of identifying the set

86

DataPN sequence DataPN sequence

circular extension

DataPN sequence

Packet 1

Packet 2

(c)

(a)

PN sequence

(d)

(b)

Data

PN sequence
Data

(e)

Data

(f)

Figure 4.2: Iterative algorithm for transmitter identification and RSS estimation.

of transmitters and estimating their RSS. Apart from this, the receivers in Mozart

need to determine the their modulation and coding scheme used by each of the trans-

mitters. In our algorithm, multiple CSSs are assigned to represent different physical

layer data rates. The transmitter of the data packets include the CSS that corresponds

to the data rate used for that particular data packet.

4.3.2 Heterogeneous data rate and packet sizes

Due to varying SNR, different transmitters may select different physical layer data rates

when transmitting to the same receiver. Since, wireless channels are bidirectional in nature

(shown in [30]), so the transmitters in Mozart use the received poll packet to estimate the

channel to the receiver. To that end, the transmitters correlate the received poll packet

with the known PN sequence. The peak value of the correlation indicates the channel

quality between the transmitter and the receiver with higher correlation value indicating

better channel quality. This is similar to estimating the channel quality through preamble

and has been well studied [29] in the context of improving the accuracy of recreating the

87

samples. However, the key difference is that here, the transmitter estimates the channel

to the receiver using the received poll packet and then, transmits the data packet at a rate

that is suitable for the channel’s current condition. Thus, the poll packet transmitted by

receivers in Mozart also allows transmitters to pick the appropriate physical layer data

rate without extra overhead.

During each recovery, Mozart fixes the channel access time for each slot. Thus, a node

with higher data rate may be able to send more bits compared to a node with lower data

rate. However, if a node does not have enough pending data, then it will reduce its data

rate such that its transmission still fits in the slot size. This reduced data rate sometimes

allows the receiver to simultaneously decode two transmissions using Successive Interfer-

ence Cancellation (SIC) [70]. SIC is a well known physical layer technique that is used

by the wireless receivers to simultaneously decode two packets where the packet with the

higher noise tolerance is decoded first, followed by the packet with the lower noise tol-

erance. Since in Mozart, multiple transmitters transmit simultaneously, this increases the

probability that the receiver will find a pair of packets among the received transmissions

that satisfy the requirements for simultaneous decoding.

For the example scenario of Figure 4.1, let’s say that the transmitter of P1 has small

amount of pending data. Thus, on receiving the poll, it would transmit P2 at the lowest

possible data as explained above. At the end of first slot, the receiver observes that P1 has

been transmitted at low physical layer data rate and high power, and thus can be decoded

even in the presence of P3 as noise. So, it will send suppress to both P1 and P3. When

decoding, the receiver decodes P1 and P3 using SIC and sends a finish packet indicating

successful decoding. Mozart is able to harness SIC benefits since here, the transmitters

proactively reduce their data rate. Thus, the results described in this chapter are not in

conflict with [70] where the authors had argued that SIC has limited applicability when not

applied proactively.

88

4.3.3 Determining set of nodes to suppress

Observe that during reverse chronological decoding, the residual noise is higher in the

earlier slots since more packets need to be subtracted before actual decoding (e.g. when

decoding P3 in Fig.4.1, the residual noise would come from P1, P2 and P4). Therefore,

to improve the decoding accuracy, receivers in Mozart suppress transmissions with high

noise tolerance in earlier slots. This approach maximizes the probability of successful

decoding across all the slots of the recovery, thereby improving the resilience. Further, to

minimize the number of slots, Mozart first checks if it is possible to suppress two nodes

simultaneously as explained in Sec. 4.3.2.

Next, we explain Algorithm 3, that determines the set of nodes to be suppressed at

the end of the current slot. Here, Tij denotes the noise tolerance (in mW) of the pair of

packets Pi and Pj , which denotes the maximum residual noise level that can be present

during successful decoding of these two packets. If a pair of packets has high value of Tij ,

it implies that it is possible to decode both the packets using SIC even if residual noise

left after canceling other packets is high. The algorithm also computes (Line 4) the noise

threshold (in mW), τ that indicates the expected residual noise that will be left after the

receiver has subtracted all packets that were received in this slot. τ is approximated by

dividing sum of RSS (in mW) of all packets received in this slot by 100 (i.e., 20 dB)2.

Then, in Lines 5-10, all those pairs of packets are added to the set G that have sufficient

noise tolerance. If noise tolerance of Pj is higher than that of Pi (Line 6-7), then Pj

would be decoded in presence of interference from Pi. Thus, its noise tolerance would be
RSSj

rj
−RSSi where rj is the minimum SINR at which Pj can be successfully decoded with

high probability [33]. On the other hand, noise tolerance of Pi would simply be RSSi

ri
since

220 dB denotes the cancellation that can be achieved by subtracting the packet in most cases (See Section
4.4 for detailed experiment results).

89

Pj would already be subtracted. For successful simultaneous decoding, we need to ensure

that the residual noise is less than the minimum of these two values (Lines 7-9).

Finally, the algorithm returns the pair that has the highest noise tolerance (Line 10).

However, for some slots, it may not be possible to do SIC and thus no pair of packets may

have the required tolerance. Then (Lines 12-15), Mozart finds a single packet that has the

highest noise tolerance. It is also possible that during the recovery period, the receiver does

not find any node with noise tolerance above the expected residual noise. In that case, the

receiver handles the errors as explained in Subsection 4.3.5.

4.3.4 Near-Zero Critical Period

We define Critical period of a MAC algorithm as the duration of the interval, before and

after the beginning of a transmission, during which an interfering transmission may corrupt

both the transmissions. MAC protocols with longer critical periods are expected to have a

higher collision rate and thus, lower throughput. The longer critical period also requires

the nodes to spend excessive time in backoff. In Mozart, if a single receiver receives multi-

ple colliding packets, it can still decode all those packets by suppressing one transmitter in

each slot. So, intuitively, Mozart should have shorter critical period compared to existing

algorithms. In A.1, we formally show that the critical period of Mozart is 18.7 µs3. By

comparison, the critical period of some standard protocols are A.1: 152 µs for 802.11 with

RTS-CTS and 39.4 µs for 802.11ec.

4.3.5 Handling Decoding Errors

While decoding, it is possible that the channel noise or residual noise may cause a failed

checksum resulting in decoding error. In that case, the receiving node follows one of the

3To reduce the probability of two neighboring transmissions from colliding, we require nodes to backoff
for a short duration (5 µs) before sending a poll.

90

Algorithm 3: Computes the set of nodes that should be sent suppress in this slot

1 Input: For each packet Pi received in this slot: its power level expressed in mW

(RSSi) and the minimum SINR level (ri, expressed as a dimensionless ratio) at

which it can be decoded. ri is contingent upon the physical layer data rate used to

transmit Pi.

2 Output: Set of packets (or corresponding transmitters) that should be sent suppress

in this slot.

3 P← {Set of packets received in this slot}, G← {}

4 τ ← Sum of RSS of all packets in P
100

5 for (Pi, Pj) : Pi, Pj ∈ P do

6 if RSSj

rj
≥ RSSi

ri
then

7 Tij ← min{RSSj

rj
−RSSi,

RSSi

ri
}

8 else Tij ← min{RSSi

ri
−RSSj,

RSSj

rj
}

9 if Tij > τ then G← G ∪ {(Pi, Pj)}

10 if G 6= {} then return argmax(Pi,Pj)∈G Tij

11 else

12 Ti ← RSSi

ri
∀ Pi ∈ P

13 S← {Pi : Pi ∈ P ∧ Ti > τ}

14 if S 6= {} then return argmaxPi∈S Ti

15 else Send finish

91

three options: (i) It first requests re-transmission of data for that slot. For example, in Figure

4.1, if receiver A is unable to decode P2 during slot 2, then it will ask P2’s transmitter to

re-transmit. The receiver performs this notification by sending a special nack message to

the transmitter of P2. Upon receiving the retransmitted data, A can decode P2 and continue

to decode P1 using the slot 1 samples. (ii) However, if P2’s transmitter is not able to

transmit P2 because one of its other neighbors is undergoing recovery, then A decodes the

remaining packets by simply subtracting the samples of P2 from the earlier slots (without

actually decoding P2). The receiver would decode as many packets as possible using this

scheme. (iii) Finally, if the receiver decoded only a subset of packets, then it would send

finish with the PN-sequence of only the transmitters whose packets it was able to decode.

4.3.6 Offsets Correction and PN Sequence Assignment

The efficiency of successive packet subtraction in Mozart depends on the accuracy of re-

creating the samples. To increase the accuracy, the phase, frequency and sampling offsets

need to be compensated [29]. This problem of computing the offsets in presence of inter-

ference has been well studied [29,30,43]. In our implementation, after evaluating multiple

schemes, we decided to use the one proposed in ZigZag [29] as it gave the best results.

Mozart also requires that every node in the network be assigned a PN sequence. Further,

no two neighboring nodes should be assigned the same PN sequence. Magistretti et al. [55]

argue that such an assignment can be either done by APs or can be done using hash func-

tions. In the experiments and evaluations of Mozart, the PN sequences were assigned using

the former approach.

4.4 Experiments

In this section, we describe the results from our experiments performed on the GNU radio

platform and a testbed of Universal Software Radio Peripheral (USRP) N210 version 4 [1]

92

radios. We used WBX daughterboards [1] as the RF front end. Mozart performs decod-

ing at the sample level, and thus, is independent of the modulation and coding choice for

transmission. In our experiments, we used BPSK with 1/2 convolutional code. Our re-

creation process compensates for the phase offset, frequency offset and the sampling offset

as described in Section 4.3.6. In this section, we also measure the accuracy of transmitter

identification and RSS estimation for the proposed algorithm (Sec. 4.3.1) as well as the

existing state of the art technique. The frequency used was 1078 MHz and the physical

layer data rate was set to 62.5 Kbps. The rate was kept low to ensure that the delay be-

tween the host computer and the radio was small compared to the packet duration. Thus,

the relative delay values would approximately match the delay values from off-the-shelf

wireless cards.

In Mozart’s implementation, the receiver stores all the received samples offline which

are later used to compute the number of successful transmissions and the throughput. Be-

sides Mozart, we also implemented a version of the IEEE 802.11 protocol. One of the

challenges in implementing 802.11 was that USRP has different hardware parameters com-

pared to the commercial 802.11 cards. For example, due to higher latency from the radio to

the host computer, the packet decoding time was observed to be around 150 µs which pre-

vents the receiver from sending an ACK within the SIFS duration. So, using experiments,

we re-measured the optimum values of all 802.11 parameters (SIFS, DIFS, slot size, ACK

timeout) for the N210 hardware as per their definitions. For example, we ensured that slot

size was such that if two neighboring nodes choose consecutive values of backoff, then one

of the nodes will sense the other’s transmission and will not send its own packet. Due to

the aforementioned reasons, the packet size was kept constant, and thus the receivers had

no opportunity to use SIC to do simultaneous decoding.

93

 25

 50

 75

1 2 3 4

T
o
ta

l
T

h
ro

u
g
h
p
u
t
(i
n
 k

b
p
s
)

Number of Clients

802.11 Hidden Terminal
Mozart Hidden Terminal

802.11 Single Collision Domain
Mozart Single Collision Domain

Figure 4.3: Experiment Results with single AP.

4.4.1 Testbed Results

Single AP: In this experiment, we use a single N210 node as the AP and vary the number

of clients. We place the client in various positions around the AP to create two types of

topologies: (i) Single collision domain: Where all clients can hear each other; and, (ii)

Hidden Terminal: Where no two clients can hear each other. The throughput results are

shown in Figure 4.3 with varying number of clients. Mozart increases throughput due to

fewer collisions and close to zero backoff as compared to the IEEE 802.11 protocol. When

the nodes are hidden to each other, the throughput gain provided by Mozart is much higher

due to increased collisions in 802.11. With 4 hidden nodes, Mozart provides 2.70x more

throughput than IEEE 802.11 protocol.

Multiple APs: In the next experiment, we set up two N210 nodes as APs and four

others as clients. For this experiment, we placed the two APs in two different rooms (as

shown in Figure 4.4a). Each of the four clients were placed at different locations in the

three regions so as to create ten different topologies (hidden, non-hidden, mix etc.). In

all the topologies, the clients associated to the AP with the strongest signal. Figure 4.4b

shows the CDF of the throughput of clients for both Mozart and 802.11. Averaging over

94

AP 1 AP 2

Region

2

Region

1

Region

3

(a) Experiment Topology

0 8 16
0

0.5

1

Throughput(kbps)

C
D
F

Mozart

802.11

(b) CDF of throughput

Figure 4.4: Experiment topology and results with multiple APs.

all topologies, 802.11 provides throughput of 6.9 Kbps per node while Mozart (no SIC)

provides 12.3 Kbps, an increase of 78%.

4.4.2 Experimental Analysis of Micro Benchmarks

In this section, we present micro benchmark results from our experiments. The computed

micro benchmarks are also used as input to our evaluations (Sec. 4.5).

Sender Identification and RSS Estimation: We measure the accuracy of sender iden-

tification through multiple experiments. For this (See Figure 4.5a), we ensured that all the

packets have equal RSS (Equal RSS is the worst case for evaluations since all transmitters

have low SINR in this case). As Figure 4.5a shows that when 20 packets collide, Mozart

identifies 12 more senders compared to the existing approach [55]. The false positives were

observed to be less than 1% for all the schemes.

Next, we studied the accuracy of RSS estimation of Mozart compared to existing tech-

niques [55]. Figure 4.5b shows the probability that the estimated RSS of a packet is within

1dB difference of the actual RSS under different SNR values (computed without consid-

ering other packets as noise). When 15 packets (each having 20 dB SNR) collide, the

95

5 10 15 20 25 30
0

0.5

1

Number of Collided Packets

F
a
l
s
e

N
e
g
t
i
v
e

P
r
o
b
a
b
i
l
i
t
y

Mozart

Traditional

(a)

5 10 15 20 25 30
0

0.5

1

Number of Collided Packets

1
d
b

A
c
c
u
r
a
c
y

P
r
o
b
a
b
i
l
i
t
y

Mozart, SNR=20dB

Mozart, SNR=10dB

Mozart, SNR=5dB

Traditional, SNR=20dB

(b)

Figure 4.5: Detection and RSS Estimation of colliding packets for Mozart and traditional

approach [55] under equal RSS setting (worst case analysis).

probability that Mozart estimates RSS of the collided packets within 1dB of the actual RSS

is 0.96 compared to 0.21 for existing techniques [55], an improvement by a factor of 3.57x.

Subtraction Accuracy: In this experiment, we measure the cancellation accuracy. To

quantify the subtraction accuracy independent of modulation and coding, we define metric,

∆P that represents the power reduction achieved through cancellation. ∆P quantifies the

achieved reduction in power after subtracting P from a set of collided packets. We define

∆P (in dB) = RSS of P (in dBm) − Residual Power of P left after subtracting P (in dBm).

A high value of ∆P implies that the residual noise is lower and it increases the decoding

probability of the remaining packets.

Results: Figure 4.6 shows the variation in cancellation accuracy (∆P metric) with

variation in number of samples in the packet and the SINR of the packet being subtracted.

The figure shows that for any packet consisting of more than 1600 samples, the cancellation

is quite efficient. Figures 4.6b presents the Cumulative Distribution Function (CDF) of the

distribution of ∆P for 4000 samples per packet. From Figure 4.6b, we see that as expected,

the SINR for the subtracted packet decreases, the variation in cancellation accuracy (∆P

96

−15 −5 5 15
0

15

30

SINR(dB)

∆
P
(
d
B
)

12000 samples(bpsk 1500bytes)

4000 samples(bpsk 500bytes)

1600 samples(bpsk 200bytes)

400 samples(bpsk 50bytes)

(a)

0 10 20 30
0

50

100

∆P (dB)

C
D
F

o
f

∆
P

SINR 15dB

SINR 0 dB

SINR −9 dB

SINR −15 dB

(b)

Figure 4.6: Evaluation of packet subtraction: Higher ∆P implies lower residual noise and

better cancellation accuracy. (a) Variation in ∆P with varying SINR of the subtracted

packet. (b) CDF of ∆P when packet has 4000 samples.

metric) increases. The results from our experiments are also fed in the ns-3 simulator as

explained in the next section.

4.5 Comparison Results

To evaluate the performance of Mozart, we conducted extensive trace-driven ns-3 evalua-

tions. In this section, we explain our evaluation setup and the results.

To make evaluations more realistic, we first setup a testbed of 40 nodes (comprised of

laptops) and collected the RSS values between all pairs of nodes. The nodes were dis-

tributed over two floors of our building and spanned multiple rooms. This RSS data was

then fed into the ns-3 simulator. We randomly designated varying number of the nodes

as APs while the remaining nodes were designated as clients. Each client associated with

the AP from which it received the strongest signal. In the evaluations, TCP connections

were established between each client and its AP. For this, we downloaded the previously

collected traffic traces during SIGCOMM [67] and computed the pdf distribution of packet

sizes and also the pdf distribution of packet inter-arrival time over all connections. These

97

two pdf distributions were used to generate both uplink and downlink traffic. To create

network saturation condition, the number of connections between each client and its asso-

ciated AP was set to 20.

Further, the results from the experiments (See Section 4.4) were fed into the ns-3 sim-

ulator as follows: (i) PN-Sequence detection accuracy: In the evaluations, we used the

values from Figure 4.5 for determining if a PN-sequence can be detected or not; (ii) Resid-

ual noise level: The power of the residual noise was fed from the data collected from ex-

periments (See Figure 4.6); and, (iii) Imprecise Signal Strength Estimates: For Mozart,

imprecision in signal strength estimations could lead to unsuccessful decoding. We fed the

imprecision from our experiments (See Figure 4.5b), into our evaluations.

Apart from Mozart, we also implemented and evaluated the following algorithms: (i)

Optimal omniscient zero-overhead slotted TDMA: Here, we assume a central scheduler

knows the interference between all links at all possible data rates. This scheduler computes

the set of links that should be active in a given slot. For this, at the beginning of the

slot, the APs first collect information about which node has data to send to which other

node. The nodes convey this information using short PN sequences. The APs forward

this information to a central scheduler that computes the set of active links and sends this

information to APs. This information is then broadcasted back by the APs (again using

short PN sequences). To put the optimal TDMA in the best light and to eliminate the effect

of the backbone capacity, the APs and the central scheduler were connected through wired

Ethernet with unlimited bandwidth and zero latency. (ii) 802.11ec [55]: 802.11ec reduces

the overhead of RTS-CTS packets by encoding them as CSSs. (iii) IEEE 802.11 without

RTS-CTS. In Mozart, transmitters picked the best data rate based on channel conditions as

explained in Section 4.3.2. Channel quality information was also provided to transmitters

in Optimal TDMA out-of-band (i.e. without any overheads.). In all other algorithms, the

transmitters varied their data rate using ARF algorithm [42].

98

4.5.1 Results for bidirectional TCP Traffic

Next, we evaluated the performance of different algorithms for TCP traffic. When Mozart

is used for downlink traffic (AP to client), then the length of the recovery period was always

1 since the client would receive packet from at most one AP.

Throughput: We vary the number of APs in the network and compute the total

throughput over all nodes (Fig. 4.7a). On average, Mozart provides 4%, 155% and 310%

more throughput than TDMA, 802.11ec and 802.11 algorithms, respectively. These differ-

ences are primarily because of three factors:

• Collisions: From Fig. 4.7c, we see that in other algorithms the percentage of trans-

missions that are acknowledged is significantly lower resulting in retransmissions

and lower throughput. In Mozart, some of the transmissions may not be decoded

by the receiver due to error in correlation of the PN-sequence or because of higher

residual noise. However, when the number of colliding transmissions is low, Mozart

decodes all of the transmissions resulting in ≥ 95% acknowledgment rate. The high

acknowledgment rate also implies that the decoding accuracy of Mozart exceeds

95%. This can be attributed to high accuracy of transmitter identification, RSS es-

timation and careful selection of the transmitters to be suppressed (Sec. 4.3.3). Al-

though, 802.11ec reduces the overhead of control packets, still its critical period

(See Section 4.3.4) is sufficiently large leading to high collision rate. For 802.11 and

802.11ec, with increase in number of APs, the higher SINR of different links results

in higher acknowledgment rate.

• Backoff: Figure 4.7d shows the total time spend by nodes in backoffs between every

successful transmission (averaged over all successful transmissions). Observe that

transmitters in other algorithms spend a significant amount of time in backoffs. In

IEEE 802.11 and its derived protocols, nodes decrement their backoff counter only

99

if the channel is idle, implying that the channel resource is wasted in these protocols

due to high backoff. On the other hand, nodes do not experience backoffs during the

recovery phase in Mozart as discussed in Section 4.3.4.

• SIC Applicability: In our evaluations, we observed that on average, Mozart was able

to apply SIC in 10.25% of the slots. This allows Mozart to have a higher throughput

than Optimal Omniscient TDMA since the TDMA scheduler uses fixed slot lengths,

irrespective of the amount of the data to be transmitted by the user. Although, re-

ceivers in Mozart are also unaware of the amount of pending data, still the SPS-based

decoding enables them to leverage SIC. This allows the Mozart receivers to decode

multiple packets simultaneously (Sec. 4.3.2), resulting in higher throughput.

Fairness: We use Jain’s Fairness Index to compare the fairness for different protocols.

Fig. 4.7b shows that with fewer APs, Mozart provides higher fairness compared to 802.11

and 802.11ec. This long term starvation in IEEE 802.11 and its derived protocols is consis-

tent with the previous literature [35]. With an increase in the number of APs, the fairness

index for all algorithms is almost equal due to higher SNR of the links.

4.6 Discussion

Here, we discuss how Mozart can be extended to make it more suitable for real networks.

Co-existence with legacy 802.11 devices: Mozart uses the NAV feature of IEEE

802.11 to ensure coexistence with legacy 802.11 devices. Upon overhearing a MAC packet,

the node reads the “Duration” field of the MAC header and does not initiate any trans-

missions for that duration. To ensure coexistence with 802.11, packets in Mozart can be

modified as follows: (i) Before transmitting poll or suppress PN sequences, the receivers

transmit a zero-payload packet with duration field equal to the duration of one slot; and,

(ii) Similarly, transmitters also transmit a zero-payload packet before transmitting the data

100

 0

 20

 40

 60

 80

 5 10 15 20

T
o
ta

l
T

h
ro

u
g
h
p
u
t
(M

b
p
s
)

Number of APs

Mozart
802.11 RTS OFF

802.11ec
Optimal Omniscient TDMA

(a) Throughput

 0

 0.2

 0.4

 0.6

 5 10 15 20

J
a
in

 F
a
ir
n
e
s
s
 I
n
d
e
x

Number of APs

(b) Jain’s Fairness Index

 50

 75

 100

 5 10 15 20

%
 T

ra
n
s
m

is
s
io

n
s
 a

c
k
e
d

Number of APs

(c) Percent transmissions acked

 0

 400

 800

 1200

 5 10 15 20

A
v
g
 B

a
c
k
o
ff
 (

M
ic

ro
s
e
c
)

Number of APs

(d) Backoff

Figure 4.7: Comparison of different algorithms for TCP traffic.

packet. These packets will prevent 802.11 from interfering with Mozart. To give a fair

chance to 802.11, receivers in Mozart also need to undergo certain amount of backoff be-

fore transmitting. We leave the detailed methodologies of coexistence that ensure fairness

for our future work.

Handling interference from partially overlapped channels: Partially overlapping

channels in Wi-Fi can lead to loss of throughput as the data packets may not be decod-

able due to interference from devices operating on partially overlapped channel. To handle

such interference, the receivers in Mozart can transmit the poll packet at reduced power

level. This will force the transmitters to use data rates lower than optimal, thereby enabling

101

successful decoding of packet even in the presence of interference from partially overlap-

ping channels. The amount by which the receiver reduces its power level depends on the

interference it experiences from partial overlapping channels. We leave the detailed dis-

cussion and analysis of Mozart’s performance in presence of such interference for future

work. Further, the receivers can also employ the approaches mentioned before (Sec. 4.3.5)

to handle decoding errors.

Compatibility with MIMO nodes: Mozart is compatible with wireless nodes with

multiple antennas. If a node has N antenna, then Mozart allows such nodes to receive and

decode N packets per recovery slot. To enable this, the receivers in Mozart would suppress

N packets in each slot, thus reducing the length of the recovery period by a factor of N .

4.7 Related Work

Collisions are known problems for wireless networks. Currently, carrier sensing (CSMA)

is used in WLANs (Wireless LAN Networks) to avoid collisions. To further reduce the col-

lision probability, various other schemes have been introduced such as RTS-CTS. However,

transmitting RTS-CTS control packets at low physical layer data rate leads to significant

overheads that become worse at higher data rates such as those observed in 802.11g or

802.11n networks. Further, RTS-CTS packets do not prevent collisions when interference

range is higher than the transmission range even though they cause unnecessary blocking

of transmissions [63].

Recently, Magistretti et. al. have proposed 802.11ec [55] that employs Correlatable

Symbol Sequences (CSSs) to replace the RTS-CTS packets, thereby significantly reducing

the overhead of control packets. However, the transmissions of nodes may still end up

colliding due to the longer critical window of duration 39.4µs (discussed in Section 4.3.4)

resulting in backoffs and unnecessary retransmissions. When the density of the clients

increases, more collisions will happen because of increase in simultaneous transmissions,

102

resulting in further loss of throughput. On the other hand, with a shorter critical period of

2µs, Mozart has fewer collisions.

Apart from preventing collisions, other protocols have been proposed that either try

to abort the collided transmissions or salvage the bits that did not undergo a collision.

CSMA-CN [69] proposes to use two antennas at the transmitter for receiving the collision

notifications from the receiver. Partial Packet Recovery [38] tries to recover bits that did not

undergo collision. However, both CSMA-CN and PPR will abandon the collided samples,

resulting in loss of throughput.

ZigZag [29] tries to utilize the collided information by employing ZigZag decoding.

This reduces the number of useless retransmissions but the nodes still waste time in back-

offs. Further, in ZigZag collided packets will be wasted if they are intended for different

destinations since one of the transmitter may receive ack from its intended receiver and

may not retransmit its data packet. In CRMA [52], nodes transmit the same information on

different sub-channels. The receiver decodes the collided transmissions by solving a set of

linear equations. However, for optimal channel utilization, nodes in CRMA require good

estimation about the network load at other transmitters as well.

Mozart is a receiver-driven cross-layer algorithm that takes a different approach where

it encourages multiple transmitting nodes to collide. Receiver-driven protocols have been

proposed before in context of wireless sensor networks [77]. However, there the main

objective was to reduce the energy consumption instead of maximizing the throughput.

Recently proposed, AutoMAC [33] also encourages collisions among transmissions. How-

ever, AutoMAC implicitly assumes that all nodes are in a single collision domain. All its

analysis, experiments and traces are also for single collision domain. In multi-collision

domain networks, the receivers may face interference from transmitters that are transmit-

ting to some other receiver and thus, can’t be suppressed using Speculative Ack [33]. It

is possible that if two AutoMAC receivers are in the range of two transmitters such that

103

one receiver can suppress only one transmitter, then the decoding may take a very large

number of slots. This also makes extending AutoMAC to multi-collision domain networks

non-trivial. Secondly, receivers in AutoMAC estimate the channel state by requiring trans-

mitters to send non-overlapping training symbols one-by-one. On the other hand, Mozart’s

receivers can estimate the channel state of multiple colliding transmitters resulting in lower

overhead.

Successive Interference Cancellation (SIC) [70] has been used before to decode inter-

fering packets in WLANs [29]. Mozart uses SIC only when at least one transmitter has

reduced its physical layer data rate to fit the slot width. Thus, Mozart is able to derive

benefit from SIC and is not in conflict with existing literature [70].

4.8 Conclusions

In this chapter, we presented Mozart, a cross-layer algorithm that takes a new approach

of encouraging collisions among nodes. By doing so, Mozart handles the hidden terminal

collisions as well as reduces the critical period of transmissions. To implement Mozart

in practice, we presented novel algorithms for identifying multiple transmitters as well as

estimating their RSS in presence of interference. USRP-testbed based evaluations show

that, Mozart throughput is up to 3.70x compared to IEEE 802.11. Evaluations performed

using real-world traces show that Mozart’s throughput is 2.55x and 4.10x when compared

to 802.11ec and 802.11, respectively.

104

CHAPTER 5

R2D2: EMBRACING DEVICE-TO-DEVICE COMMUNICATION

IN NEXT GENERATION CELLULAR NETWORKS

5.1 Introduction

Device-to-device (D2D) communications is being pursued as an important feature [3] for

the next generation cellular networks (LTE-advanced). Being an underlay to cellular net-

works, the goal is to leverage the physical proximity of communicating devices to improve

cellular coverage in sparse deployments, provide connectivity for public safety services

and improve resource utilization in conventional deployments [20,51]. We focus on D2D’s

ability to improve resource utilization in this work.

D2D can improve resource utilization in two ways: (i) offload: a data session between

two devices (D1, D2) in the same sector which conventionally incurs two hop transmissions

in the cellular mode (D1→BS, BS→D2) now requires only a single hop transmission (Fig.

5.1b) in D2D mode (D1→D2), and (ii) reuse: leveraging the physical proximity, the D2D

communication can further operate on resources on which conventional cellular users are

already scheduled. While existing works [20, 21, 39] have highlighted the benefits of both

these components, the study was not conducted under practical multi-cell deployments with

an inherent pattern of resource reuse (called fractional frequency reuse, FFR) for the cells.

Indeed, we show that in multi-cell deployments with even a static FFR pattern, the existing

reuse provided by the cellular deployment leaves little room for D2D communication to

105

provide additional reuse. Hence, most of D2D’s gain is restricted to its ability to offload

cellular traffic.

Given the large spatial and temporal variations in traffic load in practice [61], it is im-

portant to consider offloading with D2D in the presence of dynamic FFR schemes. Here,

D2D brings both an opportunity as well as a challenge. (i) While the uplink (UL) and

downlink (DL) radio resources are fixed across different base stations, their traffic load can

vary significantly within a cell. With D2D traffic capable of being scheduled in both UL

and DL resources, it presents an opportunity in that it serves as a flexible load that can be

intelligently placed (in DL/UL resources) to efficiently utilize the cell’s net radio resources

(see example in Fig. 5.2). This can help both during dynamic FFR pattern determination

as well as during scheduling, albeit at the expense of coupling the DL and UL resource

allocation problems that have conventionally been addressed separately. (ii) In a sectored

deployment with dynamic FFR, while cross-sectors (e.g., 1, 6, 8 in Fig. 5.1a) need to split

resources to alleviate interference; co-located sectors (e.g., 1, 2, 3 in Fig. 5.1a) can poten-

tially schedule their cellular users (e.g., D3 and D4 in Fig. 5.1b) on overlapping resources

(say RB 11) without interference (due to directional BS transmission/reception). However,

with the introduction of D2D traffic that is omni-directional, this creates interference con-

flicts between co-located sectors on shared resources (e.g. between D1 ↔ D2 and D4 on

RB 11) that diminishes the resource utilization and reuse capability of dynamic FFR (Fig.

5.1a), potentially offsetting the offloading benefits from D2D. Hence, the challenge is to

alleviate such interference conflicts either as part of the FFR solution and/or through joint

scheduling of D2D and cellular traffic across the co-located sectors. Thus, we find that

intelligent D2D traffic placement (during FFR) coupled with scheduling of D2D and cellu-

lar traffic jointly on DL and UL resources as well as across co-located sectors is critical to

achieve effective traffic offloading and resource utilization.

Toward addressing these challenges, we propose R2D2- a framework for holistic Radio

106

5 6

4

3

1

2

[21-30]

[11-25]

[1-13]

[21-27]

[11-23]

[1-11]

8 9

7

[21-27][14-20]

[1-11]

[21[[-23]]3] [21[[-20]]0]

(a) Dynamic FFR

D3D1 D2

D4

Sector 1 [1-13]

D5

D6

D7

Cell

Interior
Cell

Exterior

(b) D2D usage

5 6

4

3

1

2

[21-30]

[11-20]

[1-10]

[21-30]

[11-20]

[1-10]

8 9

7

[21-30][11-20]

[1-10]

[21[[-20]]0][21[[1-20]]0]

(c) Static FFR

2 3

1

9

7

86

4

5

Co-

located

Cluster

Cross

Sector

Cluster

(d)

Figure 5.1: (a)-(c): [] indicates the set of Resource Blocks (RBs, i.e. time-frequency

allocation units [3]) available for allocation to cell exterior traffic. Total number of RBs to

be allocated is 30. (d) Graph for the network shown in Fig. 5.1a.

Resource Management (RRM) with D2D communication in cellular networks. R2D2 op-

erates at two time scales. At the beginning of every epoch (lasting several tens of frames),

R2D2 estimates the average traffic (resource) demand from cellular and D2D traffic in each

sector in either direction (DL and UL) based on history (from previous epochs). It parti-

tions the network into disjoint (small) clusters of interfering sectors (called cross sectors)

and leverages the flexible nature of D2D traffic to jointly determine the dynamic FFR pat-

terns for DL and UL for each of these clusters in a completely distributed and localized

manner. Based on the dynamic FFR pattern determined, the resources of operation are

determined for each sector in the cluster in DL and UL directions. Then, in every frame,

for the set of sectors co-located at the same base station and instantaneous traffic demands,

R2D2 solves the coupled problem of D2D traffic placement and scheduling of cellular and

D2D traffic jointly on both the DL and UL resources as well as across the sectors. Thus,

while the coarse time-scale component in R2D2 allocates resources and removes interfer-

ence only between cross sectors (through dynamic FFR) for an entire epoch, the fine time-

scale component is responsible for alleviating the interference between co-located sectors

107

generated by D2D traffic (through joint sector scheduling) and maximizing the utilization

of allocated resources in every frame in the epoch.

While the first step in R2D2 is solved efficiently through a light-weight and scalable

dynamic FFR scheme, solving the scheduling problem in the second step is an NP-hard

problem. Toward solving this per-frame scheduling problem, R2D2 designs efficient algo-

rithms with performance guarantees that are also amenable to implementation at the time

scale of a frame (1 ms in LTE). Our evaluations with realistic LTE settings reveal that

intelligent scheduling of D2D and cellular traffic when combined with appropriate D2D

traffic placement can provide gains of 2.79x in resource utilization (throughput) compared

to existing schemes [39]. Our contributions in this work are multi-fold:

• Contrary to existing belief, we show that while D2D communications offer offload-

ing benefits, their ability to reuse cellular resources is limited in multi-cell environ-

ments, where FFR patterns are already deployed in practice.

• We propose R2D2 - A framework for holistic approach to efficient offloading with

D2D traffic. R2D2 incorporates a two time-scale solution: localized computation

of dynamic FFR patterns jointly for DL and UL (leveraging flexible nature of D2D

traffic) in each cluster of cross sectors at epoch granularity; and intelligent scheduling

of cellular and D2D traffic jointly on both the allocated DL and UL resources as well

as across co-located sectors in every frame.

• Toward solving the scheduling problem in each frame, we provide a 1
2

approxima-

tion algorithm with a complexity of O(N2K3), where N and K are the number of

OFDMA resource blocks and users in each sector respectively. We also provide

an alternate 1
4

approximation algorithm that has a lower complexity of O(N2K).

Through extensive evaluations, we show that in practice, the performance of both

algorithms are significantly better than their worst-case guarantees and are within

108

5% of the optimal. While these algorithms apply to TDD systems, for FDD systems,

where a D2D traffic session is constrained to not be allocated resources from both

DL and UL simultaneously, we provide an 1
3

approximation algorithm.

5.2 Background

We consider an OFDMA based next generation cellular network (LTE is used as a refer-

ence). The network could be time (TDD) or frequency (FDD) divisioned, where downlink

(DL) and uplink (UL) resources for all the cells in the network are determined a priori

(same across all base stations). Coverage area of all Base Stations (BSs) is typically di-

vided into three sectors1 with the help of 120o directional (sectored) antennas and each

sector is considered to be a separate cell in itself for operational purposes (See Fig. 5.1a).

Each frame in LTE is 1 ms long and consists of time-frequency allocation units called

resource blocks (RBs) on which users’ data are scheduled.

LTE advanced users will potentially [3] support D2D communication with their peers

that will avoid data having to go through the BS and the mobile core network when it is

destined for users in the same sector. We focus on network-assisted D2D communication

within the same sector as it is more realistic without requiring neighboring base stations

to interact/coordinate with each other. Here, although, data is transferred between the

peers directly in D2D communication, the control signaling still goes through the BS and

scheduling of D2D traffic is also managed by the BS.

Inter-sector interference in cellular networks is handled with the help of FFR patterns.

In the popular 1-3 FFR scheme, the DL (UL) spectrum is divided into four fixed-size fre-

quency bands. One band is used by all the cell-interior clients (in each BS), who do not

see interference due to the close proximity to their BS, while the other three bands are split

1Discussions and solutions are also applicable to other sectorization models.

109

across the three sectors (Fig. 5.1c) of a BS to mitigate interference with sectors of adjacent

base stations.

5.2.1 Related Work

D2D in single cell: D2D communication has been considered before [20, 22, 25, 39, 44,

50, 62] in the context of single base stations and with no sectorization. However, cellular

deployments are multi-cell and sectored (120o) in nature and employ FFR patterns. Further,

[22,25,39,44,50] restrict their focus to reusing the D2D transmissions with only the uplink

transmissions resulting in under-utilization of resources.

D2D with complete information about path loss: Doppler et al. [21] consider the

D2D mode-selection problem in multi-cell scenarios. However, to decide which RB should

be allocated to a given D2D transmission, their algorithm requires knowledge of path loss

between all pairs of D2D transmitters/receivers and non-D2D transmitters/receivers. This

constitutes a significant signaling overhead.

Dynamic FFR: Algorithms have been proposed for dynamic FFR algorithm. However,

existing algorithms are centralized [6, 18] and/or D2D-oblivious [75]. The centralized ap-

proach to computing the FFR allocation and configuring all the base stations (BSs) in every

frame is not feasible for cellular networks. Further, the D2D oblivious FFR algorithms are

expected to have low throughput when there is an asymmetry in UL and DL traffic load.

5.3 Benefits and Challenges

As discussed in Section 5.1, D2D can provide gains by offloading and by reusing resources

already allocated to cellular users in the same sector. This section highlights the true po-

tential for D2D in practical multi-cell networks and the associated challenges in realizing

their benefits. We use simulations from an LTE system with a D2D underlay (details in

Section 5.5) to emphasize our inferences.

110

5.3.1 Potential for Reuse from D2D

Existing works [20, 39] have attempted to leverage reuse by D2D links in the absence of

multiple cells. However, in multicell deployments with FFR schemes, as discussed in Sec-

tion 5.2, spectral resources are already reused in cells in adjacent BSs. Hence, for a D2D

link to reuse resources without impacting existing cellular transmissions in the same sector,

the separation between the D2D devices should be much smaller compared to that between

the D2D transmitter and cellular user operating on the same resource (on say DL) in either

the same or an adjacent sector. Such opportunities are however, not common, especially

given the omni directional nature of D2D communications (see Fig. 5.1b) and small sector

sizes. Even if such opportunities arise, to be able to detect and leverage such opportuni-

ties, the channel gains between all cellular/D2D and D2D users need to be measured and

reported to the BS, which must then use this information to perform per-frame scheduling.

Clearly, accomplishing this entire process within a single frame is not feasible due to the

prohibitive overhead.

Finally, to understand the potential for reuse from D2D in a hypothetical scenario, we

compare three schedulers in the presence of 1-3 static FFR (Fig. 5.1c): (i) Requires all

traffic to go through the BS by classifying all traffic (even D2D) as cellular; (ii) Does not

allow D2D traffic to reuse RBs allocated to cellular users in the same sector; and, (iii) A

genie scheduler that has the channel gain information between all users as well as between

users and BS along with power control (details of schedulers, LTE simulation settings,

D2D traffic classification etc. are covered in Section 5.5) and uses that to schedule D2D

transmissions. In the first two schedulers, each sector independently assigns resources to

different transmitters by solving a single cell resource allocation problem [7]. The result

in Fig. 5.3a indicates that only a marginal gain comes from the reuse of resources by D2D

traffic even with a hypothetical genie scheduler, while a large portion of the gain from D2D

comes from its offloading capability.

111

5.3.2 Challenge and Opportunity in D2D Offloading

Traffic Variations across Sectors: It is important to align cellular resources to cater ef-

fectively to traffic load variations across cells that are common in practice [61]. This is

realized with the help of dynamic FFR schemes that allocate spectral resources to interfer-

ing cells, taking into account their traffic load. Interestingly, a simple distributed solution

can be applied to realize dynamic FFR in a sectored deployment. Each sector belongs to

a cluster of cross sectors (located at different cell-sites) and a cluster of co-located sectors

(Fig. 5.1d). Dynamic FFR can be applied independently to each disjoint cluster of three

(cross) sectors, whose cell-exterior traffic interfere with each other. Since each sector be-

longs to exactly two clusters (Fig. 5.1d), once the operational resources are determined for

each sector by dynamic FFR, it is possible that its allocated resources may overlap with

those of neighboring co-located sectors in the other cluster. Note that, this is not a problem

if all traffic is cellular since the co-located sectors employ directional (sector) antennas to

begin with (e.g., sectors 1 and 2 in Fig. 5.1b can simultaneously transmit to D3 and D4,

respectively). This allows for applying the above light-weight dynamic FFR scheme for

cellular traffic that operates locally on individual clusters of cross sectors alone. However,

with the introduction of D2D traffic that is omni-directional, such an approach would not

work and would create interference between co-located sectors on overlapping resources

(e.g. between D1 ↔ D2 and D4 on RB 11 in Fig. 5.1b) that could bring down the benefits

from dynamic FFR as well as D2D offloading.

We compare the performance of two systems - one that classifies all traffic as cellular,

and another that classifies traffic as cellular and D2D. Both systems first apply dynamic

FFR to the clusters with cross sectors and then perform scheduling in each of the sectors

independently and then assign resources to different transmitters by solving a single cell

resource allocation problem [7]. The result in Fig. 5.3b clearly indicates the magnitude of

112

the interference created by D2D that did not exist in a pure cellular environment, resulting

in the D2D system performing worse than one that classifies all traffic as cellular.

The interference generated by D2D traffic can be addressed as part of the dynamic

FFR process, where co-located sectors are incorporated in the FFR process. However,

this would couple all the cross and co-located sectors across the network, preventing the

dynamic FFR scheme from no longer being local and light-weight. An alternate approach

is to retain the light-weight nature of dynamic FFR (only applied for cross sectors) but to

alleviate the interference generated by D2D through intelligent scheduling of cellular and

D2D traffic in each cluster of co-located sectors jointly. We will adopt the latter approach

in this work.

Traffic Variations within a Sector: In addition to traffic variations across sectors,

there is also a lot of asymmetry [61] in traffic load between uplink (UL) and downlink

(DL) that changes both spatially and temporally. However, the spectral allocations to the

UL and DL cannot be varied dynamically across sectors as this would lead to asymmetric

interference between UL and DL traffic across cells, which is a much harder problem to

address. For this reason, in practical systems, a resource block can either be used for UL

traffic or DL (but not both), and this classification is same across all cells. This makes

it difficult to leverage the traffic load variations between UL and DL within each cell. In

this regard, we note that placing the D2D traffic on DL or UL resources does not have any

relative advantages - placing it on the DL resources may create interference to cellular users

from D2D transmitter, while placing it on the UL resources may create interference from

the cellular user to D2D receiver. Hence, D2D can be used as a flexible load to balance and

match the UL and DL traffic load to their available resources, resulting in better resource

utilization.

We compare the benefits of a system that employs D2D as a flexible load against one

that classifies all traffic as cellular. Both the systems use dynamic FFR but the former

113

computes the FFR resource allocation using D2D as a flexible load (See Sec.5.5 for details).

Fig. 5.3c clearly indicates that the performance of the former system is resilient to variation

in traffic disparity while the latter loses 85% throughput when traffic disparity is high.

However, to realize these benefits, one would need to solve the D2D traffic placement

problem, both as part of dynamic FFR as well as during scheduling. A unique aspect of

this problem is that compared to conventional cellular systems that solve the DL and UL

resource allocation problems separately, addressing the D2D traffic placement problem

would entail solving the DL and UL resource allocation problems jointly.

In summary, most of the benefits from D2D arise from its offloading capability and

not from reuse. To maximize the offloading gains from D2D, it is important to solve the

problem of intelligent D2D traffic placement (during FFR) coupled with schedule of D2D

and cellular traffic jointly on DL and UL resources as well as across co-located sectors.

5.4 R2D2: RRM with D2D

5.4.1 Overview of R2D2

To retain the localized nature of dynamic FFR schemes for scalability without sacrificing

performance, we propose R2D2- a holistic approach to Radio Resource Management with

D2D communication in cellular networks. R2D2 operates at two time scales.

• At the beginning of each epoch (lasting several tens of frames), R2D2 leverages the

flexible nature of D2D traffic to determine the dynamic FFR patterns for DL and UL

jointly for each of cross-sector clusters (Fig. 5.1d) in a completely localized manner.

Based on the dynamic FFR patterns determined, the radio resources of operation

are determined for each sector in the cluster in DL and UL directions for the entire

epoch.

• The burden of alleviating interference generated by D2D traffic between co-located

114

sectors is moved to the frame level time granularity. Here, in every frame, for every

cluster of co-located sectors, R2D2 solves the coupled problem of D2D traffic place-

ment and intelligent scheduling of cellular and D2D traffic on both the DL and UL

resources jointly across the sectors.

Note that, R2D2 carefully assigns the coarse time-scale dynamic FFR process to the cross

sectors and the per-frame joint scheduling to the co-located sectors, as coordinating the lat-

ter practically comes for free (due to co-location at the BS). This step ensures that R2D2 is

able to effectively leverage spatial reuse of the resources while requiring finer cooperation

among only the sectors that are co-located at the same base station. We now explain each

of these components of R2D2 in detail.

5.4.2 D2D Traffic Classification

Flows that originate and end in the same sector can possibly be offloaded to D2D. Let

r̂d2d, r̂uplink and r̂downlink be the average physical layer data rates achievable from a given

transmitter to a given receiver using D2D, from transmitter to the BS and from the BS to

the receiver, respectively. These rates are estimated based on channel quality information

from reference signal received power (RSRP) measurements that span over all RBs [3, 9].

At the beginning of every epoch, a BS in R2D2 offloads a flow to D2D if both of the

following conditions are satisfied: (i) Flow originates and ends in the same sector; and, (ii)

1
r̂d2d

< 1
r̂uplink

+ 1
r̂downlink

. The second condition ensures that the time taken by the flow

over D2D is less than the time taken by the flow when routed through the BS. These data

rates can be estimated by the BS from the corresponding SINR values. Note that since

control messages and signaling overhead are involved in setting up a D2D session, this

process cannot be invoked at the same granularity of per-frame scheduling. This justifies

the rationale behind employing average data rates for D2D traffic classification at an epoch

granularity.

115

5.4.3 Dynamic FFR in R2D2

At the epoch level time granularity (several tens of frames), R2D2 is executed locally by

all the three sectors that form a cross-sector cluster (See Fig.5.1d).

Step 1 (Traffic Classification): In a dynamic FFR solution, the size of the four bands

in the FFR pattern are adapted and chosen to meet the requirements from both cell-interior

and exterior traffic. Further, the FFR patterns can be re-configured at coarse time scales

(several tens of frames) to track the traffic load variations. In the case of a cellular user,

simple SINR thresholds are used to classify the user as a cell-interior or exterior user (e.g.,

D5 in Fig. 5.1b is an interior user due to its high SINR with the BS). For a D2D link, its

classification is done taking into account both the devices in the link. We consider a D2D

link as interior traffic only if both ends of the link are cell-interior users; otherwise the pair

is classified as exterior traffic (e.g., D5 ↔ D6 in Fig. 5.1b is interior traffic whileD5 ↔ D7

is exterior.) .

Step 2 (Resource Demand Estimation): For each cross-sector cluster, R2D2 estimates

the average traffic (resource) demand from cellular and D2D traffic in each sector for the

current epoch based on information from previous epochs. It keeps track of the aggregate

resource allocation (R, in RBs) to the interior and exterior traffic of both cellular and D2D

users in each epoch (for every sector j) and computes the estimate for average resource

demand (R̄) for the current epoch in sector j as a weighted (α) moving average: R̄j,xyz(t) =

αRj,xyz(t − 1) + (1 − α)R̄j,xyz(t − 1). Here x = {C,D} indicates cellular (C) or D2D

(D) traffic; y = {i, e} indicates interior (i) or exterior (e) traffic; and z = {d, u} indicates

DL (d) or uplink (u) traffic in sector j. The above equation estimates the average resource

demand for a given traffic type in a particular direction.

Step 3 (Determining resources allocated in the cross-sector cluster): Let Nd and Nu

be the total available resources in DL and UL spectrum, respectively. This spectrum needs

to be shared across the three cross sectors. Further, we also need to determine how much

116

spectral resources would be allocated to interior traffic. Let F0,d and F0,u be the number

of RBs allocated to interior DL and UL traffic, respectively that is common to all the cross

sectors. Fj,d and Fj,u denote the number of RBs allocated to exterior DL and UL traffic,

respectively for sectors j = 1, 2, 3. The allocation of resources (i.e. dynamic FFR pattern)

can be formalized as a linear optimization problem shown in (5.1). This formulation ex-

hibits the following properties: (i) Leverages the flexible nature of D2D traffic to carefully

split it across UL and DL resources; (ii) Maximizes the total traffic demand satisfied; (iii)

Allows interior traffic to be scheduled on exterior traffic resources but not vice-versa as

the latter would receive interference from interior traffic in the neighboring cross sectors;

and, (iv) Ensures proportional fairness across the three sectors. Using Aj,xyz to indicate the

resources (number of RBs) allocated to traffic type xy (cellular/D2D, interior/exterior) in

direction z (DL/UL) in sector j, we have:

117

max
Aj,xyz ,F0,z ,Fj,z∀j,x,y,z

∑
x∈{C,D}

∑
y∈{i,e}

∑
z∈{d,u}

∑
j∈{1,2,3}

Aj,xyz (5.1)

subject to F0,z +
∑

j∈{1,2,3}

Fj,z ≤ Nz ∀z ∈ {u, d} (5.2)

Aj,Ciz ≤ R̄j,Ciz ∀j ∈ {1, 2, 3} ∀z ∈ {u, d} (5.3)

Aj,Ciz + Aj,Cez ≤ R̄j,Ciz + R̄j,Cez

∀j ∈ {1, 2, 3} ∀z ∈ {u, d} (5.4)

Aj,Diu + Aj,Did ≤ R̄j,Di ∀j ∈ {1, 2, 3} (5.5)

Aj,Did + Aj,Diu + Aj,Ded + Aj,Deu ≤ R̄j,Di + R̄j,De ∀j ∈ {1, 2, 3} (5.6)

Aj,Ciz + Aj,Diz ≤ F0,z∀j ∈ {1, 2, 3} ∀z ∈ {u, d} (5.7)

Aj,Cez + Aj,Dez ≤ Fj,z∀j ∈ {1, 2, 3} ∀z ∈ {u, d} (5.8)

R̄i,Ceu + R̄i,Ced + R̄i,De

Fi,u + Fi,d

=
R̄j,Ceu + R̄j,Ced + R̄j,De

Fj,u + Fj,d

∀i, j ∈ {1, 2, 3} (5.9)

Here, (5.1) requires us to maximize the total resource allocation (traffic demand satisfac-

tion) over all the three cross sectors. (5.2) requires that the total DL (UL) resources allo-

cated to interior and exterior traffic in all the three sectors cannot be more than total DL

(UL) resources available in the system. (5.3) and (5.4) require that the allocation to interior

traffic and net traffic be no more than the interior and net traffic demands respectively in

each sector in either direction for cellular traffic. These two constraints together allow for

allocation of exterior traffic resources to interior traffic, while at the same time prevent-

ing exterior traffic from operating on interior traffic resources. A similar set of constraints

apply to D2D traffic in (5.5) and (5.6), with the additional flexibility that the D2D traffic

demand can be met by DL and UL resources jointly, thereby allowing for better resource

utilization. (5.7) and (5.8) require the net allocation to interior and exterior traffic in each

118

sector in either direction be limited by the interior and exterior traffic resources respectively

that would be made available from dynamic FFR. Finally, (5.9) ensures a proportional al-

location across the cross sectors.

Observe that the resource allocation variables F0,z, F1,z, F2,z and F3,z are required to be

integers. However, we solve the above optimization problem after relaxing that constraint

and later round off the values to the nearest integer such that all resources are allocated to

at least one sector. This makes the above optimization a linear optimization problem that

can be solved efficiently. Further, it needs to be executed only once every epoch resulting

in low overhead. Note that generally the number of resources to be allocated is a large

number, and thus, rounding off does not cause significant loss of optimality.

5.4.4 Joint Cellular and D2D Scheduling in R2D2

At frame level granularity, R2D2 resolves the conflicts generated by D2D traffic due to

localized dynamic FFR. In the process, it also performs efficient scheduling of cellular

(interior and exterior) and D2D traffic (interior and exterior) jointly across DL and UL

resources as well as across co-located sectors to maximize resource utilization.

Scheduling Model: Scheduling problems are typically formulated as utility maxi-

mization problems, where the objective is to maximize the end-to-end system through-

put subject to a desired fairness model (captured by the utility function, Uk). We assume

proportional fairness (PR, Uk = log(r̄k)) that is the de-facto fairness model in cellular

networks [54]. The problem now reduces to maxk βk log r̄k, where βk captures the pri-

ority weight of user k’s QoS class and r̄k its average throughput. The system solution

can be shown to converge to the optimum PF allocation at longer (epoch) time scales if

the scheduler’s decisions at each frame are made to maximize the aggregate marginal util-

ity, Smax = argmaxS{
∑

k∈S ∆Uk} [73]. ∆Uk denotes the marginal utility received by

119

user k in a valid schedule S and is given by βkrk
r̄k

for PF, where rk is the aggregate in-

stantaneous rate received by the user in the frame. Thus, in each frame t, user weight

vk(t) = βk

r̄k(t)
varies with r̄k(t) and accounts for both fairness and QoS. The schedul-

ing problem at each cell-site of co-located sectors then reduces to determining the frame

schedule for the co-located sectors that maximizes the following aggregate weighted rate:

Smax(t) = argmaxS
∑

k∈S vk(t) · rk(t)

Problem Formulation: Next, we formulate our joint DL-UL scheduling problem. We

use xkj ,n to denote if user kj in sector j is scheduled on RB n. Fj,z denotes the number of

exterior resources available to sector j in direction z (UL/DL). F j
0,z denotes the number of

interior resources available to j in direction z. R2D2 computes both these values for all the

sectors in both the directions as explained in Section 5.4.3. Observe that different sectors

in a co-located cluster can differ in the number of interior resources available (F j
0,z).

120

max
xkj,n

∀kj ,n,j

∑
j∈{1,2,3}

∑
kj∈Kj

vkj
∑
n∈Fj

xkj ,nrkj ,n (5.10)

where, Kj ← Cj,d ∪ Cj,u ∪ Dj

Fj ← F j
0,d ∪ Fj,d ∪ F j

0,u ∪ Fj,u

subject to
∑
kj∈Kj

xkj ,n ≤ 1, ∀n ∈ Fj, ∀j (5.11)

xkj ,n = 0;∀n ∈ F j
0,d ∪ Fj,d

∀kj ∈ Cj,u,∀j (5.12)

= 0;∀n ∈ F j
0,u ∪ Fj,u

∀kj ∈ Cj,d, ∀j (5.13)

= 0;∀n ∈ F j
0,u ∪ F

j
0,d

∀kj : kj is exterior, ∀j (5.14)∑
n∈Fj

xkj ,nrkj ,n ≤ Bkj ;∀kj ∈ Kj,∀j (5.15)

xkj ,n = {0, 1}; rkj ,n = h(n, kj, k`, km) (5.16)

where C and D represent the cellular and D2D traffic; and Kj denotes the set of users in

sector j. (5.11) indicates that in a given sector, at most one transmission can be scheduled

on each resource block (RB). (5.12) and (5.13) indicate that every RB in the UL and DL

can be allocated only to their respective cellular users. (5.14) prevents an exterior user

from using an RB allocated to interior traffic. (5.15) limits the allocation to each user to be

bounded by the finite amount of data in its buffer.

TDD vs. FDD: We note that a D2D user may be allocated RBs both from DL and UL

simultaneously in the above formulation. While this can be realized in TDD systems, this

would pose a problem for half-duplex clients in FDD systems. Hence, FDD systems would

have an additional constraint to ensure that a D2D user be allocated RBs either from DL or

UL but not from both.

121

Reuse across co-located sectors: The rate of a user (kj) in a sector (j) on a RB (n)

(denoted by: rkj ,n) depends not only on its individual rate in its sector in the absence of

interference (r′kj ,n) but also on the other potentially interfering traffic that is co-scheduled

on the same RB (due to overlapping dynamic FFR bands) in the other co-located sectors (`

and m). While there would be no interference if all traffic were cellular (due to sectoriza-

tion), the presence of omni-directional D2D traffic could create interference. To estimate

the true impact of interference on rate, one would need the channel gain information be-

tween all users in all the co-located sectors, which is not feasible to obtain for per-frame

scheduling (not to mention the associated overhead). Hence, R2D2 adopts a conservative

approach in identifying users from co-located sectors that can be co-scheduled on the same

RB without any interference using information that is already readily available. Note that

every user keeps track of the reference signal receiver power (RSRP) from its neighboring

cells/sectors. Using RSRP, a user can determine which of its co-located sectors it is closer

to, thereby localizing [60] it to a particular half of its sector (Fig. 5.4). Now to determine

if a user can be co-scheduled on an RB with another user, the receiver of the first link and

the transmitter (interferer) of the second link are considered. If both of them are located

in opposite halves (e.g. region A and D in Fig. 5.4) and are both not interior traffic, then

they can be co-scheduled, i.e. rkj ,n = r′kj ,n and 0 otherwise. Note that if either of the two

users under consideration is a cellular BS, then there is no interference due to sectorization.

When a user is co-scheduled with two other users, the same check can be employed with

each of the interfering users independently. Hence, we have rkj ,n = {r′kj ,n, 0} depending

on if co-scheduled users, i.e. k` and km conflict with kj .

Thus, we see that the above formulation not only captures the scheduling of cellular

and D2D traffic jointly across DL and UL resources but also across co-located sectors

(leveraging reuse) in a scalable manner without incurring additional overhead.

122

Hardness of the Problem: Based on the reduction of 3-bounded 3-dimensional

matching problem to a simpler version of (5.10), we show in appendix:

Theorem 5.4.1. Maximizing (5.10) is a NP-Hard problem and admits no (1−δ)-approximation

algorithm unless P=NP.

Proposed Algorithms: We propose three polynomial-time algorithms with perfor-

mance guarantees. The first algorithm, Alg1 has a complexity of O(N2K3) and an approx-

imation ratio of 1/2; while the second algorithm Alg2 has a lower complexity of O(N2K)

to aid in low-latency implementations at the BS (to meet 1ms LTE frame timing) and an

approximation ratio of 1/4. Both these algorithms yield close-to-optimal performance in

practical evaluations (Section 5.5) and apply to TDD systems. For FDD systems with the

additional constraint that a D2D user can be allocated resources in either DL or UL but

not both, we provide an alternate algorithm Alg3 with a different approach that incurs a

complexity of O(N4K3) and provides an approximation ratio of 1/3.

The proofs for the complexity and approximation ratios for all the three algorithms are

included in the appendix.

Alg1 Alg1 is a greedy algorithm that requires two inputs: (i) Set of users K for which the

schedule needs to be computed; and, (ii) The set of RBs that can be allocated to each of the

user (Fkj for user kj). To compute the schedule, the BS invokes Alg1 at the beginning of for

every frame by settingK to the set of users across the co-located sectors: K = Kj∪K`∪Km.

For user kj , Fkj is computed as follows:

123

Fkj = F j
0,z ∪ Fj,z ; if kj ∈ Cj,z ∧ kj is interior, z ∈ {u, d}

= F j
0,d ∪ Fj,d ∪ F j

0,u ∪ Fj,u ; if kj ∈ Dj ∧ kj is interior

= Fj,z ; if kj ∈ Cj,z ∧ kj is exterior, z ∈ {u, d}

= Fj,d ∪ Fj,u ; if kj ∈ Dj ∧ kj is exterior

This allows D2D to be scheduled on both DL and UL resources and allows interior

traffic to use exterior resources. Alg1 works greedily (Line 2-9 of Algorithm 4) and in each

iteration, adds that tuple of (n, kj, k`, km) to the schedule S that maximizes the incremental

utility (Line 6-8, f(n, kj, k`, km)). Recall (from Section 5.3) that there is negligible benefit

to reusing cellular resources by D2D traffic within a sector. Hence, Alg1 considers only

those tuples, where at most three users kj, k`, km, one from each of the co-located sectors,

are scheduled on the same RB (Line 3). This would include tuples with less than three users

as well, as these may provide higher utility on a RB depending on the interference conflicts

between the co-located sectors on that RB. For feasibility purposes, among all tuples, only

those tuples are considered where it is possible to schedule all the users present in the

tuple on the associated RB (See Line 4). Further, to ensure that the computed schedule

is feasible, before finally adding a tuple to the schedule S, Alg1 verifies (Line 5) that the

updated schedule does not violate any of the constraints specified in (5.10). Among all the

valid tuples (set T3), the tuple that maximizes the incremental utility is added to S (Line

6-8). Alg1 returns (Line 9) when it can no longer find a valid tuple that can be added to the

schedule.

Alg2 Alg2 is a lower complexity algorithm that decouples the co-located sectors during

RB allocation. Similar to Alg1, Alg2 is invoked by the base station by providing two inputs

(set of all users across three sectors and the set of RBs for each user). Alg2 works by

greedily (Line 2-7 of Algorithm 5) adding valid (Line 3) tuples of (n, ki) to the schedule

124

Algorithm 4: Alg1: Computes the assignment of resources to users that maximizes

(5.10) in a TDD system.
Input : Set of users K, Fki∀ki ∈ K

1 S ← {}

2 while true do

3 T1 ← (n, kj, k`, km) : ki ∈ (Ki ∩ K) ∪ {φ} ∀ki ∈ {kj, k`, km}

4 T2 ← (n, kj, k`, km) : (n, kj, k`, km) ∈ T1 ∧ (kj = φ || n ∈ Fkj) ∧ (k` =

φ || n ∈ Fk`) ∧ (km = φ || n ∈ Fkm)

5 T3 ← (n, kj, k`, km) : (n, kj, k`, km) ∈

T2 ∧ Adding (n, kj, k`, km) to S does not violate any constraints

6 (n∗, k∗j , k
∗
` , k

∗
m)← argmax(n,kj ,k`,km)∈T3

f(n, kj, k`, km)

7 if n∗ 6= φ then

8 S ← S ∪ (n∗, k∗j , k
∗
` , k

∗
m)

9 else return S

that maximize the incremental utility, i.e. it allocates an RB to only one user in one of the

co-located sectors at a time, although all users from the co-located sectors are considered

during the decision process. Further, a new user can also be scheduled on an RB that is

already allocated to user(s) from other sectors, subject to interference conflicts and the

resulting additional utility the new user would bring to the given RB. This in turn would

allow for reuse of RBs across co-located sectors.

Theorem 5.4.2. Alg2 has a complexity ofO(N2K) and guarantees an approximation ratio

1/4.

Alg3 Alg3 is tailored for FDD systems but can also be applied to TDD systems. In a

FDD system, a D2D transmission can either use the UL RBs or the DL RBs (but not both).

125

Algorithm 5: Alg2: Computes the assignment of resources to users that maximizes

(5.10) in a TDD system.
Input : Set of users K, Fki∀ki ∈ K

1 S ← {}

2 while true do

3 T1 ← (n, ki) : n ∈ Fki ∧ ki ∈

K ∧ Adding (n, ki) to S does not violate any constraints

4 (n∗, k∗i , k
∗
` , k

∗
m)← argmax(n,ki,k`,km):(n,ki)∈T1∧(n,k`)∈S∧(n,km)∈S ←

f(n, ki, k`, km)− f(n, φ, k`, km)

5 if n∗ 6= φ ∧ (f(n, k∗i , k
∗
` , k

∗
m)− f(n, φ, k∗` , k∗m)) > 0 then

6 S ← S ∪ (n∗, k∗i)

7 else return S

This additional constraint coupled with finite user buffers makes the problem even more

challenging and warrants a new approach to ensure performance guarantees. Unlike Alg1

and Alg2 that allocate at the granularity of RBs, Alg3 instead makes allocations at the

granularity of users, i.e. allocation of RBs to a user is executed in a single step before

moving to another user. Alg3 first determines the set of RBs that can be allocated to user

ki. Here, K′ denotes the set of users for which the set of RBs that can be allocated to them

has not been determined yet (Line 1 of Algorithm 6). While cellular DL (UL) users are

restricted to the set of DL (UL) RBs (Line 6-11), D2D users have the flexibility of being

allocated either from the set of DL or UL RBs (but not both, Line 3-5). In every iteration

of the while loop (Line 12-14), Alg3 determines the set of RBs that can be allocated for

exactly one user. This is done by greedily selecting (Line 13) the tuple (ki, Fki) that when

added to the possible schedule maximizes the value of the incremental utility. Computing

the incremental utility of adding a user (along with its set of potential RBs for allocation)

126

to the current schedule, in turn corresponds to the scheduling problem (5.10) considered

in TDD systems. Hence, Alg1 is invoked (Line 13) to compute the incremental utility of

adding a tuple to the schedule. Alg3 then determines the user and its set of RBs (whether

DL or UL RBs for D2D users) that provides the maximum incremental utility and adds it

to the current schedule (Line 14). Note that at each iteration only a user and its operational

set (DL or UL RBs if D2D user) are determined and remain fixed as the schedule evolves.

The specific RBs themselves that are allocated to existing users in the schedule may change

as new users are added to the schedule, due to the re-computation of a TDD schedule in

each iteration.

5.5 Evaluation

5.5.1 Setup

A frame-level simulator written in C++ is considered for evaluation of the proposed algo-

rithms. In our evaluation, we set up 19 base stations each with 3 sectors. Further, each

sector has number of users varying between 50-150 and they are placed at random location

within the sector. Each user generates a request to a randomly selected file server for a file

of size 500 KB using an exponential distribution. The default percentage of UL transmis-

sions in each sector was 30%. Further, 30% of the generated requests are D2D, implying

that the destination file server is another user in the same sector. For all algorithms, number

of RBs available for UL and DL communication were 9 and 21, respectively. Every data

session (user) has a finite amount (125 KB) of data (buffer). The Okumara-Hata urban path

loss model is employed along with log-normal shadowing and fast (Rayleigh) fading. The

doppler fading for each user’s Rayleigh channel is equivalent to a velocity of 3-10 Km/hour.

The SNR from the model is mapped to a specific data rate [9]. The cells are deployed in

127

the hexagonal fashion with a pre-determined sector radius (1000m, by default). Each data

point presented here is an average over results from 10 randomly generated topologies.

We restrict our evaluations to TDD systems here (since inferences for FDD are simi-

lar). Apart from the two flavors of R2D2 (D2D-aware dynamic FFR with Alg1 or Alg2),

we implemented multiple other algorithms for comparison. In all these algorithms (ex-

cept StaticPowerReduce), at epoch level time granularity, dynamic FFR scheme is exe-

cuted for determining the FFR bands (as explained in Section 5.4.3). However, the algo-

rithms behave differently at the frame level time granularity as follows. a) Alg1NoD2D:

Every BS computes the schedule using Alg1. Since, this algorithm classifies all traf-

fic as cellular, there is no conflict among transmissions scheduled by co-located sectors.

b) D2DDynamicGenie: Each BS computes the joint schedule for all the three co-located

sectors. Further, D2DDynamicGenie is aware of all the path loss values (including, path

loss between users), and can potentially leverage that information to schedule multiple

transmissions in the same sector on the same RB. It also dynamically controls the transmis-

sion power level of D2D transmissions to maximize the reuse of RBs. c) StaticPowerRe-

duce proposed in [39] works by reducing the transmission power level of all D2D links. It

is expected that this reduction will prevent D2D from interfering with UL transmissions,

allowing them to be co-scheduled on the same RBs in the same sector. This algorithm does

not allow outdoor D2D traffic to coexist with cellular DL traffic (to avoid interference to

the cellular users operating on the same RB in the same sector). We extend [39] to mul-

ticell deployments through a static FFR scheme that allocates equal number of RBs to all

sectors. We evaluate the scheduling algorithms at per-frame granularity based on their ob-

jective function (weighted sum rate), which in turn corresponds to throughput with equal

user weights.

128

5.5.2 Results

Variation in D2D traffic load: With increase in D2D traffic, the throughput for both Alg1

and Alg2 increases (See Fig. 5.5a). This is primarily because of offloading benefit from

D2D. Further, D2D is also able to leverage the disparity in UL-DL traffic distribution and

thus, can be scheduled on the RBs that would have otherwise gone wasted. Fig. 5.5a shows

that Alg2 gives a throughput of 3.79x and 3.00x compared to StaticPowerReduce [39] and

Alg1NoD2D, respectively. Although, Alg2 has lower complexity than Alg1, we observe

that on an average, throughput of Alg2 is within 3.18% of the throughput of Alg1, making

it an ideal candidate for implementation. This is because when Alg2 adds a single user

to the schedule, it also considers the interference that may arise between this user and the

other users that are already scheduled on the same RB.

From the result, we can also see that Alg2 has throughput within 4.8% of D2DDynamicGenie.

This implies that even with all the information about path loss values between users,

D2DDynamicGenie is unable to schedule more transmissions than Alg2. Dynamic con-

trol of transmission power level is also not helpful since D2D transmitters need to transmit

at low power to avoid interference to other transmissions in the same sector. This coupled

with the interference faced by the D2D receiver, reduces the rate that can be supported on

the D2D link. This confirms that D2D provides low reuse benefit in multicell scenarios

with FFR. Although, StaticPowerReduce allows D2D transmissions, reducing the trans-

mission power level of D2D transmissions also reduces D2D offload benefit. Further, even

after reducing the power levels, D2D transmissions may still interfere with the UL traffic

and vice versa. From our evaluations, we observe that at 30% D2D traffic load, 25% of the

transmissions scheduled by StaticPowerReduce were unsuccessful due to interference.

Variation in sector radius: For larger sectors, all algorithms have lower throughput

since the increase in distance results in lower physical layer data rates. When sector radius

is less than 1000m, throughput of Alg2 is within 4.3% of D2DDynamicGenie. However, at

129

sector radius of 2000m, the gap between them is higher at 12.3%, but still within reasonable

limits. This is because in larger cells, D2DDynamicGenie is able to leverage the path loss

information to schedule multiple transmissions within the same sector.

Variation in DL-UL traffic ratio: Fig. 5.5c shows the variation in throughput with

variation in the percentage of UL traffic across different sectors. Here, an x-axis value of

30-60% implies that the UL traffic percentage of all sectors was uniformly distributed be-

tween 30% and 60%. For StaticPowerReduce and Alg1NoD2D, the total throughput peaks

when the average offered UL traffic (30%) is close to the percentage RBs allocated for UL

traffic (30%). The maximum throughput of Alg2 stays almost constant with variation in

UL traffic. On the other hand, for Alg1NoD2D and StaticPowerReduce, their maximum

throughput is 85% and 142% more than their minimum throughput. This clearly implies

that D2D-aware dynamic FFR algorithm of R2D2 is able to leverage the flexible nature of

D2D traffic and is able to achieve high throughput even when disparity is high.

Variation in hotspot D2D traffic: We model the D2D traffic distribution as “hotspot

traffic” such that for h% of sectors, 80% of their traffic is D2D, while the remaining sec-

tors have only 20% of their traffic as D2D (to emulate scenarios of stadiums, event centers,

etc.). Fig. 5.5d shows that Alg2 provides 2.33x and 3.45x throughput compared to Stat-

icPowerReduce [39] and Alg1NoD2D, respectively. The gains here are higher compared

to when D2D traffic is uniformly distributed since here the dynamic FFR scheme of R2D2

is able to better leverage the variation in D2D traffic across sectors.

5.6 Conclusions

In this chapter, we showed that D2D traffic does not provide significant reuse benefit in

multicell networks that employ FFR schemes. To best leverage the D2D in such networks,

we proposed that D2D should be used as a flexible traffic so that it can be used on resources

which would have otherwise been wasted due the disparity between uplink and downlink

130

traffic across sectors. To that end, we proposed a novel D2D aware dynamic FFR algo-

rithm that is executed at epoch level granularity and is scalable. We also proposed provable

approximate scheduling algorithms that maximize the benefit from D2D. Through simu-

lations, we showed that R2D2 improves performance by 2.79x compared to existing D2D

algorithms.

131

Cell\Demand DL UL D2D

Cell j 1 2 4

Cell l 3 3 9

Cell m 5 1 8

D2D Oblivious FFR Allocation D2D Aware FFR Allocation (R2D2)

Cell Total

Demand

Resources

Allocated

Traffic

Supported

Total Demand Resources

Allocated

Traffic

Supported

DL UL DL UL DL UL DL UL

j 1 2 + 4

= 6

3 3 1 + 3 = 4 1 + 1 =

2

2 + 3 =

5

2 5 2 + 5 = 7

l 3 3 + 9

= 12

8 5 3 + 5 = 8 3 + 6 =

9

3 + 3 =

6

9 6 9 + 6 = 15

m 5 1 + 8

= 9

13 4 5 + 4 = 9 5 + 8 =

13

1 + 0 =

1

13 1 13 + 1 = 14

Total 24 12 21 24 12 36

(a) Cross-Sector Clique. (b) Traffic demand at each sector (or cell).

(c) The number of resources that can be allocated to UL and DL are 12 and 24, respectively.

R2D2 will carefully split D2D traffic across UL and DL, serving 71% higher traffic.

m mj
l

Figure 5.2: A D2D Oblivious dynamic FFR algorithm will put all D2D traffic on UL

resources (to avoid interference with the downlink cellular transmissions in the co-located

sectors) and allocate resources proportionally. On the other hand, a dynamic FFR

allocation scheme aware of D2D traffic (R2D2) will carefully split D2D traffic across UL

and DL. When coupled with resource allocation for interior traffic, the D2D-Aware

dynamic FFR allocation becomes more challenging (shown in Sec. 5.4.3) and provides

even higher benefits.

 20

 30

 40

 50

 0 10 20 30 40

T
h
ro

u
g

h
p
u

t
(i
n

 M
b
p

s
)

D2D Traffic (in %)

Offload

Benefit

Reuse

Benefit

NoD2DStaticBaseline
D2DStaticBaseline

D2DStaticGenie

(a) Using D2D with static FFR.

 50

 55

 60

 65

 70

 75

 80

 85

 0 10 20 30 40

T
h
ro

u
g

h
p
u

t
(i
n

 M
b
p

s
)

D2D Traffic (in %)

D2DDynamicBaseline
NoD2DDynamicBaseline

(b) Using D2D with dynamic FFR.

 0

 50

 100

 150

 200

 250

30% 30-40% 30-60% 30-80%

T
h
ro

u
g

h
p
u

t
(i
n

 M
b
p

s
)

UL Traffic (in %)

Loses Throughput by 85%

Loses Throughput by only 7%

Alg1
Alg1NoD2D

(c) Asymmetric UL-DL traffic.

Figure 5.3: Evaluation results illustrating challenges in leveraging D2D.

132

A

B

CD

E

F

Figure 5.4: Constraints when scheduling transmissions on the same RB.

 0

 100

 200

 300

 0 10 20 30 40

T
h
ro

u
g
h
p
u
t
(i
n
 M

b
p
s
)

D2D Traffic (in %)

Alg1
Alg2

D2DDynamicGenie
Alg1NoD2D

StaticPowerReduce

(a) Varying D2D traffic.

 0

 50

 100

 150

 500 1000 1500 2000

T
h
ro

u
g
h
p
u
t
(i
n
 M

b
p
s
)

Sector size (in meters)

(b) Varying sector radius.

 0

 50

 100

 150

30% 30-40% 30-60% 30-80%

T
h
ro

u
g
h
p
u
t
(i
n
 M

b
p
s
)

UL Traffic (in %)

Loses Throughput by 85%

Loses Throughput by 142%

(c) Varying UL traffic ratio.

 0

 50

 100

 150

 200

 0 10 20 30 40

T
h
ro

u
g
h
p
u
t
(i
n
 M

b
p
s
)

% Cells Hot (h)

(d) Varying number of hot sectors (h).

Figure 5.5: Evaluation results illustrating challenges in leveraging D2D.

133

Algorithm 6: Alg3: Computes the assignment of resources to users that maximizes

(5.10) in a FDD system.
Input : Set of users K

1 K′ ← φ, S ← φ

2 forall the ki ∈ K do

3 if ki ∈ Dj ∪ D` ∪ Dm then

4 if ki is exterior then Fki [0]← Fi,d, Fki [1]← Fi,u

5 else Fki [0]← F i
0,d ∪ Fi,d, Fki [1]← F i

0,u ∪ Fi,u

6 else if ki ∈ Cj,d ∪ C`,d ∪ Cm,d then

7 if ki is exterior then Fki [0]← Fi,d, Fki [1]← φ

8 else Fki [0]← F i
0,d ∪ Fi,d, Fki [1]← φ

9 else if ki ∈ Cj,u ∪ C`,u ∪ Cm,u then

10 if ki is exterior then Fki [0]← Fi,u, Fki [1]← φ

11 else Fki [0]← F i
0,u ∪ Fi,u, Fki [1]← φ

12 while K 6= K′ do

13 (k∗, F ∗
k∗)← argmax(ki,Fki

):ki∈K\K′∧Fki
∈{Fki

[0],Fki
[1]} f(Alg1(K′ ∪ {ki}, Fkj∀kj ∈

K′ ∪ {ki}))− f(Alg1(K′, Fkj∀kj ∈ K′))

14 K′ ← K′ ∪ {k∗}, Fk∗ ← F ∗
k∗

15 Call Alg1 (K′, Fkj∀kj ∈ K′)

16 return schedule computed by Alg1

134

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The recent increase in the number of mobile devices and the popularity of mobile apps

has led to a huge increase in the mobile wireless traffic. Channel frequencies being a

natural resource are limited in number. Although many MAC layer algorithms have been

proposed that maximize the usage of a channel frequency, all these algorithms prohibit

nearby devices to transmit or receive data simultaneously.

The focus of this thesis is to propose solutions that make best use of given wireless re-

sources by leveraging the high density of wireless devices. We proposed different solutions

to improve the wireless throughput in Wi-Fi and cellular networks, where each solution is

suitable for certain category of deployments. We also demonstrated the efficacy of the

proposed protocols by implementing them on our testbed.

Traditionally, the network administrators have deployed high density of APs to ensure

complete wireless coverage. This thesis demonstrates that it is possible to leverage this

high density of wireless devices to achieve high throughput, whereas in such networks

the traditional 802.11 algorithm may fail due to high collision rates. For non-cooperating

wireless networks, we proposed Mozart that uses a novel successive packet decoding mech-

anism to solve both the hidden terminal and exposed terminal problems. Further, we also

showed that by leveraging cooperation among APs and the underutilized wired backbone,

it is possible to significantly improve the performance of the mobile wireless networks.

135

The solutions presented in this dissertation needs further investigation and analysis.

Next, we present some directions for future research on these problems:

• In the future, the number of mobile devices is expected to increase significantly. This

thesis takes the first few steps in discussing how the more powerful wireless devices

such as APs can cooperate to handle the interference generated by mobile devices.

It remains to be seen how the interference generated in highly dense deployments of

mobile devices can be handled using techniques discussed in this thesis.

• This thesis proposed Symphony and RobinHood, two solutions for Wi-Fi networks

where the access points cooperate. It needs to be explored if the techniques proposed

in these solutions will also be applicable to cellular networks. In cellular networks,

the distance from the wireless devices to the base stations is much higher compared

to distance in the Wi-Fi networks. Further, in cellular networks, the latency between

base stations is higher compared to the latency between access points in Wi-Fi net-

works. The longer distance and the higher latency presents new challenges. It is

possible that modifications may be required to Symphony and RobinHood in order

to make them suitable for cellular networks.

• Wireless devices have limited battery capacity. It is important to design wireless so-

lutions that minimize the energy consumption of these devices. RobinHood requires

wireless devices to transmit only once while the APs transmit in the second slot.

Thus, RobinHood minimizes the energy consumption of wireless devices. On the

other hand, Mozart and Symphony require clients to transmit multiple times. This

may increase the energy consumption of the devices. It needs to be investigated how

the energy consumption of these solutions can be further reduced while minimally

affecting the throughput.

• In Chapter 5, we studied device to device communication from one client to another.

136

Another application of D2D communication is multicasting data from a single source

to multiple clients over multiple hops. This class of applications are expected to

be deployed in shopping malls (for advertising) and large stadiums (broadcasting

replays) etc. It needs to be investigated how D2D multihop traffic can be integrated

in the existing cellular networks.

137

APPENDIX A:

A.1 Mozart

A.1.1 Critical Period

In this section, we compute the critical period of Mozart. Using a simpler proof, we first

show that critical period of Mozart is shorter than 18.7 µs. This duration of 18.7 µs is still

significantly shorter than existing techniques: 39.4µs (802.11ec [55]), 152 µs (802.11 with

rts,cts).

Lets say a receiver ra starts transmitting a poll at t=0 (See Figure A.1). Then, this poll

would be received by all its neighboring nodes within 6.35+1+2= 9.35 µs where 6.35µs

is the duration of poll, 1 µs for propagation delay and 2 µs for the turn-around time. So,

if all neighboring nodes do not participate in any new exchange (i.e., keep their radio in

the receive mode) for these 9.35 µs, then they would hear ra’s poll and would not transmit

unless they have packets that are intended for ra. Thus, all such nodes would transmit

simultaneously to ra and ra would be able to decode them by carefully using suppress.

Thus, ra would be able to decode all the received data packets since it won’t hear any

spurious (unintended) transmissions. Therefore, the upper bound on the critical period can

be computed by taking twice of 9.35 µs (duration before and after the transmit of poll).

This shows that the critical period of Mozart is upper bounded by 18.7 µs.

138

Tx

Notify

Tx Poll
Rx

Notify

Rx

Poll
ta

ra

Rx

Poll
nb

Figure A.1: Critical Period Computation. If all radios do not initiate a new exchange

within 9.35 µs, then they would hear the poll.

A.1.2 Critical Period for other protocols

802.11ec [55] In 802.11ec, lets consider the network with one receiver (say r) and 2 hidden

transmitters (say ta and tb). If ta sends Ic at t = 0, then the receiver will start transmittingRc

at t=10.35µs (See Figure 2 in [55]). This Rc would be heard by all nodes by t=17.70. Thus,

if tb starts changing its radio from rx to tx state just before t=17.70µs, then it would not

hear Rc and would start transmitting Ic at t=19.70. This, Ic would corrupt the transmission

of ta at the receiver. In other words, if tb starts its exchange within 19.70 µs of ta, then

both the exchanges would be corrupted. Thus, the critical period for 802.11ec is 39.40µs

(twice of 19.70 µs). Similarly, it can be shown that the critical period of 802.11 is 152 µs

(See [55] for details).

139

A.2 Symphony

Theorem A.2.1. Non Flex TDMA is NP Hard: Given an infrastructure network N , then

computing a schedule of length k slots that allows all clients to transmit exactly 1 packet

to their associated APs is NP-Hard.

Proof. Proof is similar to [23]. We reduce the k-coloring problem to k-non-flex scheduling.

Given a graph G = (V,E), we construct an infrastructure-based wireless network (say N).

For each vertex vi in V , a client node ni is placed in the network N . Further, for every

client node ni in N, an AP (say a(ni)) is also placed with in the transmission range of ni.

Further, if two vertices vi and vj are connected by an edge in G, then N is modified

such that: (i) a(ni) is in interference range of nj but outside it’s transmission range; and,

(ii) a(nj) is in interference range of ni but outside it’s transmission range.

We now show that if G is k−colorable, then it is possible to schedule all the client

nodes in N in k slots. First observe that a transmission from ni can interfere at a(nj) iff

vi and vj share an edge in G. Therefore, we can say: (i) If two nodes can be assigned the

same color in G, then the corresponding nodes can transmit simultaneously to their AP in

N ; and, (ii) If two nodes can transmit simultaneously to their associated APs in N , then

the corresponding vertices can be assigned the same color in G.

Hence, if G has a k-coloring, then all the client nodes can transmit in k slots in N .

Similarly, if all the client nodes can transmit in k slots in N , then G has a k-coloring.

Theorem A.2.2. Flex TDMA is NP Hard: Given an infrastructure network N , then com-

puting a schedule of length k slots that allows all clients to transmit at least one packet to

any of the neighboring APs is NP-Hard.

Proof. With Flex TDMA, each client can send its uplink data to any AP that is in its trans-

mission range. We use the same construction as used before in Theorem A.2.1. Observe

that in that construction of N , every client had only one AP in its transmission range.

140

So, any k length schedule for Flex-TDMA MAC protocol would also be a valid k length

schedule for Non-Flex TDMA protocol. Thus, if Non-Flex TDMA scheduling problem is

NP-Hard, then Flex-TDMA scheduling problem must also be NP-Hard.

Theorem A.2.3. Symphony scheduling is NP-Hard: Given an infrastructure network N ,

then computing a schedule of length k slots that allows all clients to transmit at least one

packet to any of the neighboring APs such that APs are also allowed to exchange packets

on the backbone is NP-Hard.

Proof. We use the sameG toN construction as used in the proof of Theorem A.2.1. Recall

that in that construction of N , every client had only one AP in its transmission range.

Further, for any two client nodes ni and nj , if a(ni) is in the interference range of nj ,

then a(nj) is also in the interference range of ni. Thus, if links ni → a(ni) and link

nj → a(nj) are included in the dependence graph, then they will form a directed cycle.

Thus, for such a network Symphony would not be able to harness the backbone since if

two neighboring clients are picked in the subgraph, then a cycle is created. So, any k

length schedule for Flex-TDMA MAC protocol would also be a valid k length schedule

for Symphony protocol. Thus, if Non-Flex TDMA scheduling problem is NP-Hard, then

Symphony scheduling problem must also be NP-Hard.

Theorem A.2.4. A set of client-AP transmissions can be decoded if and only if the vertex

induced subgraph (say Gs) of the corresponding set of vertices in Gd is a DAG (Directed

Acyclic Graph).

Proof. We first prove that if Gs is acyclic, then the corresponding client-AP transmissions

can be decoded. This proof is by construction. Since, Gs is ayclic, then there must exist a

topological sorting of Gs. To decode all client-AP transmissions, the APs can decode them

in the order of topological sort which has the property that any transmission be decoded is

141

only dependent on transmissions preceding it (in the order of the topological sort). Thus,

all the transmissions would be successfully decoded.

Next, we prove that ifGs is cyclic, then the corresponding client-AP transmissions can’t

be decoded. By contradiction, assume that there exists some order (sayO) of decoding that

allows theCS to decode all the client-AP transmissions. Assume ni → APj and nk → APl

are two transmissions in this order such that ni → APj precedes nk → APl. Then in Gd

there can not exists an edge from nk → APl to ni → APj since presence of such an

edge would make decoding of ni → APj impossible without having decoded nk → APl.

Thus, the vertices in O must form a topological sort with no edges from later vertices to

preceding vertices. This implies that Gs must be acyclic since only acyclic graphs have

a valid topological sort. This contradicts the fact that Gs is cyclic. Thus, our assumption

must be wrong and it must be impossible to decode all client-AP transmissions.

We proved that if Gs is acyclic, then the corresponding client-AP transmissions can be

decoded. We also proved that if Gs is cyclic, then the corresponding client-AP transmis-

sions can’t be decoded. Combining the two results proves the given theorem.

A.3 RobinHood

A.3.1 Algorithm Satisfiable

As discussed before in Section 3.5.2, Algorithm Satisfiable determines if a given sched-

ule is satisfiable or not. Without loss of generality, let S be the schedule such that S =

{(Ci, APi) : APi is the receiving AP for packet xi, and xi is the ith packet to be decoded

and 1 ≤ i ≤ N}. Then, we draw an undirected graph G where we have two sets of vertices:

(i) V1: Each vertex in V1 corresponds to a pair (Ci, APi) such that (Ci, APi) ∈ S; and, (ii)

V2: Let A be the set of all APs in the group. Each vertex in V2 corresponds to an AP (say

APj) in A such that APj is not in S.

142

Next, we draw an edge from vertex Vi ∈ V1 to a vertex Vj ∈ V2 if and only if APj can

hear from Ci. We set the capacity of all these edges to 1.

Next, we construct a source vertex (say Vs) and draw edges from Vs to every vertex, say

Vi ∈ V1. Further, we set the capacity of edge from Vs to Vi as i− 1 where 1 ≤ i ≤ N − 1.

We also set the capacity of edge from Vs to VN as N − 2. Finally, we also construct a

termination (or sink) vertex (say Vt). Then, we add edges from each vertex Vj ∈ V2 to Vt

and set the capacity of these edges to 1.

We solve the Maximum Flow problem on G from vertex Vs to Vt. We say that the given

schedule S is satisfiable only if the flow value is at least N2−N−2
2

where N is the length of

the schedule. Next, we prove the correctness of this reduction.

Theorem A.3.1. If G has the desired max flow, then S is satisfiable.

Proof. G can have a flow of at least N2−N−2
2

only if the following two conditions are satis-

fied: (i) From every vertex (Ci, APi), there is an outgoing flow of i−1 when 1 ≤ i ≤ N−1;

and, (ii) Vertex (CN , APN), there is an outgoing flow of N − 2. This implies that for every

client Ci, there are at least i−1 APs that can hear it when 1 ≤ i ≤ N−1. This also implies

that for client CN , there are at leastN−2 APs that can hear it. These two conditions ensure

that S must be satisfiable.

Theorem A.3.2. If S is satisfiable, then G has the desired max flow.

Proof. If S is satisfiable, then for every client Ci in S, there must be at least i − 1 unique

APs that can hear it when 1 ≤ i ≤ N − 1. This also implies that for client CN , there are at

least N − 2 unique APs that can hear it. These two conditions ensure that the max flow in

the graph G should be at least 1+ 2+ . . .+ (N − 2) from the clients from C1 to CN−1 and

a flow of N − 2 for the CN . Thus, the total flow should be at N2−N−2
2

.

143

A.4 R2D2

Proof of Theorem 5.4.1 To show that maximizing (5.10) is NP-Hard, we show that a

special variant of (5.10) is NP Hard. In the special variant of (5.10), for a given base

station, all its users are present in only one of the three sectors. Further, the D2D traffic

demand is 0 and the objective is to maximize the throughput of the cellular users given

finite buffer traffic for each user. It has been shown [7] that this simplified problem is

NP-Hard and it can’t be approximated within (1− δ) of the optimal (for some δ).

Theorem A.4.1. Alg1 has a complexity of O(N2K3) and guarantees an approximation

ratio of 1
2

compared to exponential time optimal algorithm.

Proof. Since for a given base station, at most one tuple can be assigned to a RB, therefore,

the for loop in Line 4 of Alg1 will be invoked at most N times. Further, within the for loop,

there are at most O(NK3) tuples that need to be evaluated (Line 5-9) . Evaluating a tuple

requires validating the buffer constraints of at most three users takes O(1) time since the

number of users in the tuple is at most 3. Thus, the complexity of Alg1 is O(N2K3).

We compare the schedule (S1) computed by Alg1 with the schedule computed by op-

timal (S∗) where both S1 and S∗ are set of tuples ((n, kj, k`, km)). The tuples in S1 are

arranged in the order of their throughputs (value of function f). During this comparison,

we maintain the following four invariants:

• Throughput of tuples removed from S1 is at least half the throughput of tuples re-

moved from S∗.

• B1
ki
≥ B∗

ki
∀ki : ki ∈ S∗.

• Alg1 is free to choose any tuples that appear in S∗ without violating any constraints

in (5.10).

• If S1 has no tuple that is using RB n, then S∗ has no tuple such tuple either.

144

Initialization: Initially, no tuples have been removed from S1 or S∗, so the throughput

of tuples removed from both S1 and S∗ are 0. Hence, the first invariant holds. Secondly, all

the users have the same buffer sizes before any of the scheduling algorithm has executed.

Thus,B1
ki
= B∗

ki
∀k. This satisfies the second invariant. Thirdly, since S∗ is a valid schedule

and all users have the same buffer size in both the schedules (invariant 2), therefore, Alg1

is free to choose any tuples from S∗ without violating constraints. Fourthly, both S1 and

S∗ will schedule at least one user on each RB. Thus, the fourth invariant is true.

To show that S1 has at least half the throughput compared to S∗, we start removing

one tuple each from S1 and S∗ without violating the invariants. Let (n, kj, k`, km) be the

tuple with maximum value in S1 and (n, k′j, k
′
`, k

′
m) be the tuple chosen by S∗ for RB n.

Clearly, f(n, kj, k`, km) ≥ f(n, k′j, k
′
`, k

′
m) because otherwise the greedy algorithm would

have chosen (n, k′j, k
′
`, k

′
m) (follows from invariant 3). We remove f(n, kj, k`, km) from S1

and f(n, k′j, k
′
`, k

′
m) from S∗. Apart from this, for every user ki ∈ {kj, k`, km}, let bki be

the number of bits that ki was able to transmit/receive when scheduled on RB n by S1.

From the remaining tuples in S∗, we reduce the bits transmitted/received by ki by bki .

Therefore, the tuple removed from S1 (i.e. (n, kj, k`, km)) provides at least as much

throughput as each of the two removals. Thus, throughput of tuple removed from S1 in

this step is at least half the throughput of tuples removed from S∗. This proves that the first

invariant is maintained.

For user ki, let B∗
ki,e

be the size of the remaining buffer of ki after the tuples has been

removed from S∗. Similarly, letB1
ki,e

be the buffer size for ki after the single tuple has been

removed from S1. Then, we claim that the invariant B1
ki,e
≥ B∗

ki,e
∀ki : ki ∈ S∗ remains

true after this step. During this step, for every user ki that was in the tuple (n, kj, k`, km),

the buffer size for ki dropped by bki . However, for all such users that were also in S∗, we

removed bki bits from the buffer of ki in S∗ as well. Thus, the buffer of ki will also drop by

bki in the optimal algorithm implying B1
ki
≥ B∗

ki
. Only case where we would not be able

145

to remove bki from the buffer of ki in S∗ is when ki was not present in S∗. However, in this

case as well, the second invariant is satisfied since the invariant is defined only for users

that are in S∗.

Third invariant can simply be derived from the second variant. Since every user ki

scheduled in S∗ has at least as much buffer left in S1, therefore, if S∗ can schedule ki, then

S1 can also schedule it.

Observe that only the tuples corresponding to RB n were removed from S1. At the

same time, we also removed the tuple from S∗ that corresponds to RB n. Thus, the fourth

invariant also holds true after this step.

This proves that the four invariants hold true during this step of removing tuples from

S1 and S∗. Now, once all the tuples have been removed from S1, then S1 would be empty.

Similarly, S∗ would be empty (4th invariant). From the first invariant, we know that the

throughput of tuples removed from S1 is at least half the throughput of tuples removed

from S∗. Thus, S1 has at least half the throughput compared to S∗.

Theorem A.4.2. Alg2 has a complexity of O(N2K) and guarantees an approximation

ratio 1
4

compared to exponential-time optimal algorithm.

Proof. Since for a given base station, at most three tuple can be assigned to a RB, therefore,

the for loop in Line 4 of Alg2 will be invoked at most 3N times. Further, within the for

loop, there are at most O(NK) tuples that need to be evaluated (Line 5-9) . Evaluating a

tuple requires validating the buffer constraints of at most three users takes O(1) time since

the number of users in the tuple is at most 3. Thus, the complexity of Alg2 is O(N2K).

The proof for approximation ratio for Alg2 is similar to proof used in Theorem A.4.1.

We compare the schedule (S2) computed by Alg2 with the schedule computed by optimal

(S∗) where both S2 and S∗ are set of tuples ((n, ki)). Further, the tuples in S2 are arranged

in the order of their throughputs (value of function f). During this comparison, we maintain

the following four invariants:

146

• Throughput of tuples removed from S2 is at least 1/4 the throughput of tuples re-

moved from S∗.

• B1
ki
≥ B∗

ki
∀ki : ki ∈ S∗

• Alg1 is free to choose any tuples that appear in S∗ without violating any constraints

in (5.10).

• If S2 has no tuple on RB n, then S∗ has no tuple on RB n either.

Initialization: Initially, no tuples have been removed from S2 or S∗, so the throughput

of tuples removed from both S2 and S∗ are 0. Hence, the first invariant holds. Secondly, all

the users have the same buffer sizes before any of the scheduling algorithm has executed.

Thus, B1
ki
= B∗

ki
∀ki. This satisfies the second invariant. Thirdly, since S∗ is a valid sched-

ule and all users have the same buffer size in both the schedules (invariant 2), therefore,

Alg1 is free to choose any tuples from S∗ without violating constraints. Fourthly, both S2

and S∗ will schedule at least one transmitter for each RB. Thus, the fourth invariant is true.

To show that S2 has at least 1/4 the throughput compared to S∗, we start removing

multiples tuples from S2 and S∗ without violating the invariants. Let (n, ki) be the tuple

with maximum throughput value in S2 and (n, k′i) be the tuple with max. throughput

among all tuples in S∗ for RB n. Clearly, f(n, ki) ≥ f(n, k′i) because otherwise the greedy

algorithm would have chosen (n, k′i) (follows from invariant 3). We remove (n, ki) from

S2 and remove all tuples from S∗ that are using RB n. Note that there can be at most 3 such

tuples and (n, ki) will have throughput at least as much as each of the three tuples (because

invariant 3 implies that otherwise S2 would have chosen one of those tuples instead of

(n, ki)).

Apart from this, for user ki, let bki be the number of bits that ki was able to transmit/re-

ceive as a part of tuple of (n, ki) in S2. From the remaining tuples in S∗, we reduce the rate

achieved by user ki by bki . This forms the fourth removal. Therefore, tuple (n, ki) ∈ S2

147

provides at least as much throughput as each of the four removals. Thus, throughput of

tuple removed from S2 in this step is at least 1/4 the throughput of tuples removed from

S∗. This proves that the first invariant is maintained.

For user ki, let B∗
ki,e

be the buffer size of ki after the tuples have been removed from

S∗. Similarly, let B1
ki,e

be the buffer size for ki after the single tuple has been removed

from S2. Then, we claim that B1
ki,e
≥ B∗

i,e∀ki : ki ∈ S∗. This is because before this

step, this statement was true. Now during this step, for every user ki that was in the tuple

(n, kj, k`, km) and S∗, we removed equal number of bits from S∗ as well. Thus, the buffer

of ki will also drop by bki in the optimal algorithm implying B1
ki
≥ B∗

ki
. Only exception

is that ki may not be present in S∗. In that case, we wont be able to remove bits of ki.

However, the second invariant is still satisfied since it is defined only for users that are in

S∗.

Third invariant can simply be derived from the second variant. If a user ki has more

buffer left in S2, then if S∗ can schedule ki, then S2 can also schedule it.

Observe that only the tuples corresponding to RB n were removed from S2. At the

same time, we also removed the tuple from S∗ that corresponds to RB n.Thus, the fourth

invariant also holds true.

This proves that the four invariants hold true during the process of removing tuples

from S2 and S∗. Now, once all the tuples have been removed from S2, then S2 would be

empty. Similarly, S∗ would be empty (4th invariant). From the first invariant, we know that

the throughput of tuples removed from S2 is at least 1/4 the throughput of tuples removed

from S∗. Thus, S2 has at least 1/4 the throughput compared to S∗.

Theorem A.4.3. Alg3 has a complexity of O(N4K3) and guarantees an approximation

ratio of 1
3
.

Proof. We first show that complexity of Alg3 is O(N3K3). Observe that the for loop in

line 12 of Alg3 will be executed at most 2N2 times. For each execution of for loop, Alg3

148

executes one instance of Alg1 in Line 14. Since, Alg1 has complexity of O(N2K3) (See

Theorem A.4.1), therefore, complexity of Alg3 is O(N4K3).

To prove the approximation ratio, we will invoke nested sub-modularity, and leverage

the following result from [17, 31]: If the incremental oracle is only α-approximable, then

the approximation guarantee of greedy sub-modular maximization changes to α
p+α

, where

the maximization is subject to a p-independence system.

Submodularity: We show that at the highest level, we have the following submodular

problem: ψ = {ki, Fki}∀ki ∈ S∀Fki : Fki ∈ {Fki [0], Fki [1]}} φki = {ki, Fki}∀Fki : Fki ∈

{Fki [0], Fki [1]}

Now the set of all feasible schedules would correspond to a partition matroid [7] of ψ,

whereby there can be at most one element from each φki , for anyA ∈ S. For two setsA and

B such that A ⊆ B, we can see that, f(A∪{ki, Fki})− f(A) ≤ f(B ∪{ki, Fki})− f(B).

This is because the benefit provided by {ki, Fki}when it is added to a bigger setB, can also

be realized when it is added to a smaller set A. Therefore, the marginal gain will always

be less than the marginal gain when adding to smaller set. Also, clearly f(φ) = 0. Also,

f(A) is a non-decreasing function on A since adding one more user to A cannot decrease

the objective function provided computation done by Alg1 in Lines 15-16 is optimal. Thus,

the scheduling problem at the highest level is submodular on a partition matroid and the

approximation ratio of the greedy algorithm Alg3 would be 1/2 [7] if Alg1 in Lines 15-16

is optimal.

However, since Alg1 is not optimal and has an approximation ratio of 1
2

(See Theorem

A.4.1), therefore, we invoke the result discussed above to obtain approximation ratio for

Alg3. Setting p = 1 (because we can pick at most one element from each φki , for any A ∈

S, implying independence is 1), and α as 1
2
, we get: Approximation ratio =

1
2

1+ 1
2

= 1
3

149

BIBLIOGRAPHY

[1] Ettus Research. http://www.ettus.com/.

[2] OctoClock-G, accessed Jan. 2014. https://www.ettus.com/product/
details/OctoClock-G.

[3] 3rd Generation Partnership Project (3GPP). LTE Release 12, 2013-2014. http://
www.3gpp.org/Release-12.

[4] F. Adib, S. Kumar, O. Aryan, S. Gollakota, and D. Katabi. Interference Alignment
by Motion. In Proc. of ACM MobiCom 2013.

[5] A. Agarwal and P. Kumar. Capacity bounds for ad hoc and hybrid wireless networks.
ACM SIGCOMM Computer Communication Review, 34(3):71–81, 2004.

[6] S. H. Ali and V. C. Leung. Dynamic Frequency Allocation in FFR OFDMA Net-
works. IEEE TWC, 8(8):4286–4295, 2009.

[7] M. Andrews and L. Zhang. Scheduling algorithms for multi-carrier wireless data
systems. In ACM MOBICOM, Sept 2007.

[8] V. S. Annapureddy, A. El Gamal, and V. V. Veeravalli. Degrees of Freedom of
Interference Channels with CoMP Transmission and Reception. IEEE Transactions
on Information Theory, 58(9):5740–5760, 2012.

[9] M. Arslan, J. Yoon, K. Sundaresan, S. Krishnamurthy, and S. Banerjee. FERMI:
A Femtocell Resource Management System for Interference Mitigation in OFDMA
Networks. In Proc. ACM MOBICOM, 2011.

[10] A. Bachir and et al. Hidden Nodes Avoidance in Wireless Sensor Networks. In Proc.
of IEEE WirelessCom, 2005.

[11] T. Bansal, B. Chen, P. Sinha, and K. Srinivasan. Symphony: Cooperative Packet Re-
covery over the Wired Backbone in Enterprise WLANs. In Proc. of ACM MobiCom
2013.

[12] T. Bansal, K. Sundaresan, S. Rangarajan, and P. Sinha. R2D2: Embracing Device-
to-Device Communication in Next Generation Cellular Networks . In Proceedings of
IEEE INFOCOM, 2014.

150

[13] T. Bansal, W. Zhou, K. Srinivasan, and P. Sinha. RobinHood: Sharing the Happiness
in a Wireless Jungle. In Proc. of ACM HotMobile 2014.

[14] Y. Bejerano and R. S. Bhatia. MiFi: A Framework for Fairness and QoS Assur-
ance for Current IEEE 802.11 Networks with Multiple Access Points. IEEE/ACM
Transactions on Networking (TON), 14(4):849–862, 2006.

[15] Y. Bejerano, S.-J. Han, and L. E. Li. Fairness and Load Balancing in Wireless LANs
Using Association Control. In Proc. ACM MOBICOM 2004.

[16] V. R. Cadambe and S. A. Jafar. Interference Alignment and the Degrees of Freedom
for the K User Interference Channel. IEEE Transactions on Information Theory,
2007.

[17] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a Monotone Sub-
modular Function Subject to a Matroid Constraint. SIAM Journal on Computing,
40(6):1740–1766, 2011.

[18] R. Y. Chang and et al. A Graph Approach to Dynamic FFR in Multi-Cell OFDMA
Networks. In Proc. of IEEE ICC, 2009.

[19] A. Cidon, K. Nagaraj, S. Katti, and P. Viswanath. Flashback: Decoupled Lightweight
Wireless Control. In Proc. ACM SIGCOMM 2012.

[20] K. Doppler, M. Rinne, C. Wijting, C. Ribeiro, and K. Hugl. D2D Communica-
tion as an Underlay to LTE-Advanced Networks. IEEE Communications Magazine,
47(12):42–49, 2009.

[21] K. Doppler, C.-H. Yu, C. B. Ribeiro, and P. Janis. Mode Selection for D2D Commu-
nication Underlaying an LTE-Advanced Network. In Proc. of IEEE WCNC, 2010.

[22] Q. Duong, Y. Shin, and O.-S. Shin. Resource Allocation Scheme for D2D Com-
munications Underlaying Cellular Networks. In IEEE Intl. Conf. on Computing,
Management and Telecommunications (ComManTel), 2013.

[23] S. C. Ergen and P. Varaiya. TDMA Scheduling Algorithms for Wireless Sensor
Networks. Wireless Networks, 16(4):985–997, 2010.

[24] P. Festa and et al. Feedback Set Problems. Handbook of combinatorial optimization,
4:209–258, 1999.

[25] G. Fodor and N. Reider. A Distributed Power Control Scheme for Cellular Network
Assisted D2D Communications. In Proc. of IEEE GLOBECOM, 2011.

[26] M. Franceschetti, O. Dousse, D. N. Tse, and P. Thiran. Closing the gap in the capac-
ity of wireless networks via percolation theory. IEEE Transactions on Information
Theory, 53(3):1009–1018, 2007.

151

[27] D. Gesbert, M. Kountouris, R. Heath, C.-B. Chae, and T. Salzer. Shifting the MIMO
Paradigm. IEEE Signal Processing Magazine, 24(5):36–46, Sept 2007.

[28] R. Gold. Optimal binary sequences for spread spectrum multiplexing (Corresp.).
Information Theory, IEEE Transactions on, 13(4):619 –621, 1967.

[29] S. Gollakota and D. Katabi. Zigzag Decoding: Combating Hidden Terminals in
Wireless Networks. In Proc. ACM SIGCOMM 2012.

[30] S. Gollakota, S. D. Perli, and D. Katabi. Interference Alignment and Cancellation.
In Proc. ACM SIGCOMM 2009.

[31] P. R. Goundan and A. S. Schulz. Revisiting the Greedy Approach to Submodular Set
Function Maximization. Optimization online, pages 1–25, 2007.

[32] M. Gowda, S. Sen, R. Roy Choudhury, and L. S. Cooperative Packet Recovery in
Enterprise WLANs. In Proc. IEEE INFOCOM 2013.

[33] A. Gudipati, S. Perreira, and S. Katti. AutoMAC: Rateless Wireless Concurrent
Medium Access. In Proc. of ACM MOBICOM, 2012.

[34] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Transactions on
Information Theory, 46(2):388–404, 2000.

[35] C. Hua and R. Zheng. Starvation Modeling and Identification in Dense 802.11 Wire-
less Community Networks. In In Proc. IEEE INFOCOM, 2008.

[36] IEEE. IEEE Std 802.11-2007 - Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications. , 2007. http://standards.ieee.org/about/get/802/802.11.html.

[37] S. A. Jafar. Interference Alignment: A New Look at Signal Dimensions in a Commu-
nication Network. Now Publishers, 2011.

[38] K. Jamieson and H. Balakrishnan. PPR: Partial Packet Recovery for Wireless Net-
works. In Proc. of ACM SIGCOMM, 2007.

[39] P. Jänis and et al. D2D Communication Underlaying Cellular Communications Sys-
tems. IJCNS, 2(3):169–178, 2009.

[40] A. P. Jardosh, K. N. Ramachandran, K. C. Almeroth, and E. M. Belding-Royer. Un-
derstanding Congestion in IEEE 802.11b Wireless Networks. In Proc. of Internet
Measurment Conference, 2005.

[41] S. Johannessen. Time Synchronization in a Local Area Network. Control Systems,
IEEE, 24(2), 2004.

[42] A. Kamerman and L. Monteban. WaveLAN-II: A High-Performance Wireless LAN
for the Unlicensed Band. Bell Lab Technical Journal, pages 118–133, Summer 1997.

152

[43] S. Katti, S. Gollakota, and D. Katabi. Embracing Wireless Interference: Analog
Network Coding. In Proc. of ACM SIGCOMM, 2007.

[44] B. Kaufman and B. Aazhang. Cellular Networks with an Overlaid Device to Device
Network. In Proc. of IEEE Asilomar Conference on Signals, Systems and Computers,
2008.

[45] D. Koutsonikolas and et al. TDM MAC Protocol Design and Implementation for
Wireless Mesh Networks. In Proc. ACM CoNEXT 2008.

[46] M. Kuhn, S. Berger, I. Hammerstrom, and A. Wittneben. Power Line Enhanced
Cooperative Wireless Communications. IEEE JSAC, 24(7):1401–1410, 2006.

[47] S. Kumar, D. Cifuentes, S. Gollakota, and D. Katabi. Bringing Cross-Layer MIMO
to Today’s Wireless LANs. In Proc. of ACM SIGCOMM 2013.

[48] M. Lacage, M. H. Manshaei, and T. Turletti. IEEE 802.11 Rate Adaptation: A
Practical Approach. In Proc. ACM MSWIM 2004.

[49] R. Laufer, T. Salonidis, H. Lundgren, and P. Le Guyadec. XPRESS: A Cross-Layer
Backpressure Architecture for Wireless Multi-Hop Networks. In Proc. ACM MOBI-
COM 2011.

[50] N. Lee, X. Lin, J. G. Andrews, and R. W. Heath Jr. Power Control for D2D Un-
derlaid Cellular Networks: Modeling, Algorithms and Analysis. arXiv preprint
arXiv:1305.6161, 2013.

[51] L. Lei, Z. Zhong, C. Lin, and X. Shen. Operator Controlled D2D Communications
in LTE-Advanced Networks. IEEE Wireless Communications, 19(3):96–104, 2012.

[52] T. Li and et al. CRMA: Collision-Resistant Multiple Access. In Proc. of ACM
Mobicom, 2011.

[53] B. Liu, P. Thiran, and D. Towsley. Capacity of a wireless ad hoc network with
infrastructure. In Proceedings of the 8th ACM international symposium on Mobile ad
hoc networking and computing, pages 239–246, 2007.

[54] E. Liu, Q. Zhang, and K. K. Leung. Relay-Assisted Transmission with Fairness
Constraint for Cellular Networks. IEEE TMC, 11(2):230–239, 2012.

[55] E. Magistretti, O. Gurewitz, and E. Knightly. 802.11 ec: Collision Avoidance Without
Control Messages. In Proc. of ACM MOBICOM, 2012.

[56] A. Miu, H. Balakrishnan, and C. E. Koksal. Improving Loss Resilience with Multi-
Radio Diversity in Wireless Networks. In Proc. ACM MOBICOM 2005.

[57] R. Murty, J. Padhye, R. Chandra, A. Wolman, and B. Zill. Designing High Perfor-
mance Enterprise Wi-Fi Networks. In Proc. USENIX NSDI 2008.

153

[58] B. Nazer and et al. Ergodic Interference Alignment. In Proc. of IEEE ISIT 2009.

[59] A. Ozgur, O. Lévêque, and D. N. Tse. Hierarchical cooperation achieves optimal
capacity scaling in ad hoc networks. IEEE Transactions on Information Theory,
53(10):3549–3572, 2007.

[60] J. Paek and et al. Energy-Efficient Positioning for Smartphones using Cell-id Se-
quence Matching. In Proc. of ACM MOBISYS, 2011.

[61] U. Paul and et al. Understanding Traffic Dynamics in Cellular Data Networks. In
Proc. of IEEE INFOCOM, 2011.

[62] T. Peng and et al. Interference Avoidance Mechanisms in the Hybrid Cellular and
D2D Systems. In Proc. of IEEE PIMRC, 2009.

[63] A. Rahman and P. Gburzynski. Hidden Problems With the Hidden Node Problem. In
In Proc. IEEE Biennial Symposium on Communications, 2006.

[64] H. Rahul, H. Hassanieh, and D. Katabi. SourceSync: A Distributed Wireless Archi-
tecture for Exploiting Sender Diversity. In Proc. of ACM SIGCOMM 2010.

[65] H. Rahul, S. Kumar, and D. Katabi. MegaMIMO: Scaling Wireless Capacity with
User Demand. In Proc. ACM SIGCOMM 2012.

[66] B. Rankov and A. Wittneben. Spectral Efficient Protocols for Half-Duplex Fading
Relay Channels. IEEE Journal on Selected Areas in Communications, 25(2):379–
389, 2007.

[67] A. Schulman, D. Levin, and N. Spring. CRAWDAD data set umd/sigcomm2008.
Downloaded from http://crawdad.cs.dartmouth.edu/umd/sigcomm2008.

[68] S. Sen, R. R. Choudhury, and S. Nelakuditi. No Time to Countdown: Migrating
Backoff to the Frequency Domain. In MOBICOM, 2011.

[69] S. Sen, R. Roy Choudhury, and S. Nelakuditi. CSMA/CN: Carrier Sense Multiple
Access with Collision Notification. In Proc. of ACM Mobicom 2010.

[70] S. Sen, N. Santhapuri, R. R. Choudhury, and S. Nelakuditi. Successive Interference
Cancellation: Carving Out MAC Layer Opportunities. IEEE Trans. Mob. Comput.,
12(2):346–357, 2013.

[71] V. Shrivastava and et al. CENTAUR: Realizing the Full Potential of Centralized
WLANs Through a Hybrid Data Path. In Proc. of ACM MobiCom 2009.

[72] V. Shrivastava and et al. CENTAUR: Realizing the Full Potential of Centralized
WLANs Through a Hybrid Data Path. In Proc. of ACM Mobicom, 2009.

[73] G. Song and Y. Li. Cross-Layer Optimization for OFDM Wireless Networks - Part I:
Theoretical Framework. IEEE TWC, 4(2), 2005.

154

[74] Stanford Information Networking Group (SING). SING Datasets. http://sing.
stanford.edu/srikank/datasets.html.

[75] A. L. Stolyar and H. Viswanathan. Self-Organizing Dynamic FFR for Best-Effort
Traffic Through Distributed Inter-Cell Coordination. In Proc. of IEEE INFOCOM,
2009.

[76] C. Suh, M. Ho, and D. N. Tse. Downlink Interference Alignment. IEEE Transactions
on Communications, 59(9):2616–2626, 2011.

[77] Y. Sun, O. Gurewitz, and D. B. Johnson. RI-MAC: A Receiver-Initiated Asyn-
chronous Duty Cycle MAC Protocol for Dynamic Traffic Loads in WSNs. In Proc.
of ACM SenSys, 2008.

[78] M. Vutukuru, H. Balakrishnan, and K. Jamieson. Cross-layer wireless bit rate adap-
tation. In Proc. of ACM SIGCOMM, 2009.

[79] G. R. Woo, P. Kheradpour, D. Shen, and D. Katabi. Beyond the Bits: Cooperative
Packet Recovery Using Physical Layer Information. In Proc. ACM MOBICOM 2007.

[80] X. Xie, X. Zhang, and K. Sundaresan. Adaptive Feedback Compression for MIMO
Networks. In Proc. of ACM MobiCom 2013.

[81] W. Zhou, D. Li, K. Srinivasan, and P. Sinha. DOMINO: Relative Scheduling in
Enterprise Wireless LANs. In Proc. of ACM CoNEXT 2013.

155

