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Abstract

Abduction, or inference to the best explanation, is, plausibly, part of commonsense

reasoning, and a means by which a cognitive system may arrive at estimates of its world

from observational and other evidence. We take this “world estimate” to be the cognitive

system’s beliefs. Since such reasoning is fallible, and world estimates will sometimes

contain errors, an abductive reasoning system might improve its performance if it has a

way to engage in belief revision when new evidence, or further reasoning, indicates the

existence of a problem.

In this study, we develop, implement, and experimentally validate a metareasoning

system that monitors and attempts to correct beliefs established by the base-level abductive

reasoning system. We first identify that the presence of an anomaly, which we define as

an observation or other evidence that cannot plausibly and consistently be explained, as a

signal that the cognitive system’s world estimate might be incorrect or, alternatively, that

the unexplainable datum is noise. The metareasoning system responds to the presence

of anomalies by asking exactly that question: which anomalies are due to mistakes in the

world estimate, and warrant specific belief revisions, and which anomalies are due to noise,

and should not instigate belief revisions? Various considerations regarding the nature of the

anomalies and the system’s reasoning history are brought to bear to answer this question.

Fundamentally, we see the metareasoning question (“what explains these anomalies:

mistaken beliefs, or noise?”) as structurally similar to the cognitive system’s original ques-

tion, “what explains these observations?” Thus, the metareasoning system is an abductive

reasoning system, just like the base-level system. The anomalies constitute meta-evidence

which may be explained by meta-hypotheses. These meta-hypotheses describe the various
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kinds of causes of anomalies and specify particular belief revisions in order to resolve the

anomalies. The same abductive reasoning algorithms employed by the base-level reasoner

are activated to find the best explanation for the anomalies. An anomaly is judged to be

the result of noise when no meta-hypothesis is judged to be a good enough explanation.

In this manner, the cognitive system may engage in corrective belief revision and noise

identification via abductive metareasoning.

We experimentally validate both the abductive reasoning and combined abductive rea-

soning and metareasoning systems with a software implementation. The software architec-

ture maintains a formal separation of the reasoning procedures and the problem domain,

i.e., what specific class of problems is being solved with the reasoning system. We explore

three intentionally-simplified problem domains: simulated object tracking, aerial tracking,

and inference to the best explanation with arbitrary Bayesian networks. These domains are

intentionally simplified so that we can clearly identify how performance in these tasks is

affected by various parameterizations of the reasoning and metareasoning systems. Our

experiments show that (1) abductive reasoning is an effective way of reasoning in these

problem domains, and (2) abductive metareasoning brings a significant boost in accuracy

and noise identification. These experimental results, plus the system’s architectural sim-

plicity, together give strong evidence that abductive metareasoning is an appropriate and

effective strategy for a cognitive system to revise its beliefs and arrive at more accurate

estimates of its world.
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Chapter 1: Introduction

Cognition can be conceptualized as four distinct phases, as shown in Figure 1.1:

1. Observing the world via sensors or reports from other agents.

2. Making sense of these observations and other evidence in order to arrive at a world

estimate, i.e., a set of beliefs about the world.

3. Planning to act in the world in order to achieve goals. Clearly, success in this plan-

ning phase requires having accurate beliefs about the current state of the world. Plan-

ning may also involve planning to observe in order to better make sense.

4. Acting out the plan. This leads back into observing the world in order to both ensure

that the plan has produced the desired effects and to discover any changes in the state

of the world.

In this research, we focus on the making sense or world estimation problem. We

investigate cognitive systems that attempt to make sense of observations that putatively

describe properties of the world. In particular, we investigate cognitive systems that do not

manipulate sensors, communicate with other agents, or otherwise act in the world. These

cognitive systems are passive, in the sense that they can only observe the world and not

manipulate it. Even so, they are interesting for the following reasons:

• Passive world estimation may be the whole task. For example, the goal of accident

investigation is to produce an estimate, once all the evidence is gathered, of the events
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Figure 1.1. Four phases of cognition. This work focuses on the making sense phase.

that caused the accident. Passive world estimation for dynamic worlds includes tasks

like tracking people or projectiles with fixed cameras or radar antennae.

• All cognitive systems, even those that plan and act in the world, must solve the world

estimation problem as a subtask. All cognitive systems need to make sense of their

inputs.

The world estimation systems described herein are explicitly abductive. Abduction,

or equivalently, abductive reasoning or abductive inference, is reasoning to the best ex-

planation. Given some surprising or unexplained data D, abductive reasoning seeks an

explanation e of D. For e to be the best explanation, it should itself be plausible but also

more plausible than alternative explanations of the data. We take explanation to be an

undefined relation. What does and does not count as an explanation is beyond the scope

of this report, although an explanation has been said to provide a causal story for how D

occurred or gives understanding for why D is the way it is (Lombrozo, 2006).

When explanations take the form of causal explanations, abductive inference is capa-

ble of reasoning from effects to causes. The passive world estimation task can be construed
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as reasoning from effects to causes. The data D are world properties as observed and re-

ported by sensors or other agents. The potential explainers E describe events or properties

of the world that could be causes of the reported world properties. For example, a person

walking from one place to another could be an explanation for a set of camera reports of

visually similar person-shaped blobs at different locations over time.

In this work, we investigate a family of abductive reasoning systems that perform

world estimation. This investigation has two major components. First, we show that ab-

ductive reasoning is suited for the world estimation task and that it can be performed effi-

ciently and with reasonable accuracy and completeness. Second, we show that this world

estimate can be made more accurate and complete, in many cases, by engaging in abduc-

tive metareasoning when the base-level abductive reasoning process is unable to arrive at a

consistent world estimate that explains all the data.

A metareasoning system is one that monitors and controls the base-level reasoning

system. The purpose of the metareasoning system is to boost the accuracy and complete-

ness of the beliefs formed by the base-level system. The question that one might ask is, why

would the base-level system make mistakes, and what could possibly be done to identify

and fix them? The base-level abductive reasoning system might make mistakes, or produce

an incomplete world estimate that does not explain all the data, for a variety of reasons:

• The reasoning system does not have the right hypotheses or the plausibility estimates

of the available hypotheses fail to differentiate hypotheses or are wildly inaccurate.

• Some of the data are inaccurate, i.e., noisy, and the reasoning system was unable to

identify and isolate this noise.

• The reasoning system did not consider all possible ways to combine the various hy-

potheses in order to find the most plausible, most complete explanation. An ideal but

3



computationally intractable reasoning system would, presumably, be able to exam-

ine all possible explanations, and pick out the most plausible. A practical reasoning

system must utilize heuristics to make the reasoning task tractable. These heuristics

might be the cause of mistakes or incomplete world estimates, but are not the only

possible source as evidenced by the two previous points.

Some scenarios may be detected and repaired some of the time by a metareasoning

system. We build and analyze a metareasoning system that responds to the presence of

reports that cannot be confidently and consistently explained. We call unexplainable reports

anomalies and show that the presence of anomalies is a good indication that something is

wrong with the cognitive system’s world estimate. Furthermore, we treat the metareasoning

task as an abductive one, in which the anomalies are meta-evidence that the world estimate

might be inaccurate. The metareasoning system then constructs meta-hypotheses that can

explain the anomalous reports by positing the reason why the report is anomalous. Normal

abductive reasoning works on these meta-hypotheses to arrive at the most plausible, most

complete consistent explanation of the anomalies. All accepted meta-hypotheses detail

particular belief revisions, which are then applied. We show that these anomaly-driven

revisions significantly increase the accuracy and completeness of the cognitive system’s

world estimates.

1.1 Central claims

Our central claims in this report are as follows:

• The base-level abductive reasoning system that we develop is an effective and effi-

cient way to handle the world estimation task across various problem domains.
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• The presence of anomalies is a good sign that the cognitive system’s world estimate

is incomplete and/or inaccurate.

• The abductive metareasoning facility that we develop significantly increases accu-

racy and completeness by finding explanations for anomalies and applying corre-

sponding belief revisions.

1.2 Methodology

As described in our central claims, we aim to show that the combined abductive reason-

ing and abductive metareasoning system yields high accuracy for reasoning tasks across

various problem domains. The metareasoning system is implemented as a separate mod-

ule that can be selectively enabled. In order to show that metareasoning offers benefits

over the base-level reasoning system, we first measure performance of the base-level sys-

tem on a reasoning task with metareasoning disabled. Then we compare those results to

performance on the exact same task with metareasoning enabled.

Each experiment has the reasoning system obtaining evidence about the world and

reasoning about this evidence to form beliefs. Evidence is obtained piece-wise across dis-

crete time steps. The system is expected to reason about current evidence based on beliefs

arrived at in light of earlier evidence. Beliefs may be corrected later, when more evidence is

available, and indeed this is partly the responsibility of the metareasoning system. We note

that in an ideal world, decisions can always be delayed until all evidence is obtained. Such

delayed decisions should result in maximally accurate beliefs. But agents-in-the-world of-

ten do not have access to complete evidence about a particular aspect of the world and must

make decisions based on partial evidence. Reasoning with partial evidence is more realis-

tic but also more prone to error. As will be shown, our metareasoning system is designed

partly to correct mistaken beliefs based on insufficient, weak, or false evidence. These cor-
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rections are possible only when more complete and accurate evidence is obtained at a later

time step. We wish to investigate realistic reasoning tasks and to explore a variety of ways

that metareasoning can repair bad beliefs. Thus, all of our experiments are designed so that

the reasoning system arrives at beliefs about the world, established at each time step, and

often based on partial evidence.

Some problem domains are simulated domains, meaning we do not use real data from

actual sensors in the world, but instead generate a simulated world that is monitored by

simulated sensors. This approach is not new, as simulation has been used to evaluate soft-

ware systems for as long as software systems have been evaluated. Simulation provides the

following benefits:

• Since we generate the world and sensor reports, and even generate noisy reports, we

(as experimenters) have access to the truth of the case. This truth is not necessarily

equivalent to the ground truth as designated by a human who has manually marked

up a dataset (e.g., labeling words in a speech signal or tracks in a video). Rather,

the truth of the simulation is an objective truth. So, we can objectively measure the

accuracy of the cognitive system’s world estimate.

• A wide range of cases can be explored just by tuning the parameters for world gen-

eration. We can test the cognitive system on easy cases, hard cases, pathological

and rare cases, etc. Real-world datasets usually do not include pathological and rare

cases (by definition) so experiments with real datasets often fail to show how the

system behaves in particularly difficult scenarios. Yet, it is often these scenarios we

explicitly want to test, since if a system is going to fail, it will likely fail in those

kinds of cases.

The simulated worlds and corresponding reasoning tasks are designed specifically to
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highlight interesting properties of abductive reasoning and metareasoning. Since these

simulated worlds are original, we are unable to compare the performance of abductive

reasoning and metareasoning with other approaches from other researchers. Our goal is

to show that abductive metareasoning boosts performance over just abductive reasoning

without metareasoning. But since we have defined both the problem and the solution, we

effectively have a conflict of interest. How can we be sure that we did not create easy or

specially-tuned cases just to show that our system performs well in those cases?

In order for our argument to be convincing, we must validate each component as

we go: the simulated worlds must cover a wide range of easy and hard cases, and not

be designed specifically to work well with abductive reasoning. The base-level abductive

reasoning system must also be shown to be perform well on the task. The base-level system

should not be handicapped just to allow the meta-level system to bring improvements.

Then, should abductive metareasoning actually provide some boost in accuracy, we will

know that this boost is not simply the result of correcting easy and obvious mistakes but

rather that it is due to some essential feature of abductive metareasoning: specifically, that

it is capable of finding the causes of anomalies, and fixing them, in a way that is simply

not possible with the base-level reasoning system (since the base-level system is not self-

reflective).

Each of the three experimental chapters (Chapters 6–8) follows a common argument.

The problem domain is introduced. Then, various validation experiments are conducted

with the base-level abductive reasoning system to demonstrate that easy cases are easy

and hard cases are hard, and for the right reasons. Finally, abductive metareasoning is

added and shown to give a significant boost in accuracy. In Chapter 7, we look at an

experimental domain that uses aerial surveillance imagery for a pedestrian tracking task.

This domain utilizes real-world data rather than simulated data, yet we are still able to

show that abductive metareasoning provides benefits. We note in Chapter 10 that more
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domains and a greater variety of domains would be helpful to provide further evidence that

abductive reasoning with abductive metareasoning is a good way for a cognitive system to

engage in world estimation.

1.3 Overview of prior work

Recently, Don Perlis listed several properties a “commonsense reasoning system” should

possess, including a metareasoning facility (Perlis, 2011). Two of these properties will now

be discussed. Quoting Perlis,

[The metareasoning facility] can be fairly simple, based on a core set of general

kinds of things that can go wrong and general kinds of fixes for them. Such a

[facility] could be general-purpose, not built for any specific system or domain.

This is because humans are not specific in that sense. We manage to muddle

through in a wide variety of unanticipated changes within, and even of, arenas

of action.

The abductive metareasoner, detailed in Chapter 4, is general-purpose, apart from its

assumption that the base-level reasoner is abductive. The metareasoner receives informa-

tion about the reasoner’s history and its difficulties in finding plausible explanations of

reports. The metareasoner does not have access to the content of reports or their possible

explanations. The same metareasoner, and same reasoner, both work well without modifi-

cation in different world estimation problems. This will be demonstrated experimentally.

Again, quoting Perlis,

If such a [facility] were to be built and put to use with a given AI system,

that system would become far less brittle, and vastly better at dealing with

anomalies, than any AI systems at present.
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Perlis, with Schmill, Anderson, and others (Schmill et al., 2011), have worked towards

building a system that meets his criteria. They suggest that there exists a level of abstrac-

tion at which the variety of reasoning failures is finite. They then propose a taxonomy of

such possible failures. Each kind of failure is a deviation from an expectation. In order for

the metareasoner to detect failures, it must be able to detect expectation violations. Fur-

thermore, in order for the metareasoner to attempt repairs, it must know which parameters

of the base-level reasoner may affect its performance and thus require adjustment.

Schmill et al.’s metareasoner detects expectation violations and abduces the most

probable failure and the repairs that are least costly. A Bayesian network provides possible

failures, their causes, and corresponding repairs. The structure of the network is fixed. It

encodes the domain-general taxonomy that the authors hypothesize is sufficient to describe

symptoms, causes, and repairs for failures in any domain. However, the parameters of the

network must be determined ahead of time, either through training or by manual specifi-

cation. One might suspect that these parameters are domain-specific. Schmill et al. hope

to prove the generality of the taxonomy and the parameters of the associated Bayesian net-

work but have not yet done so. The authors also do not provide a domain-general strategy

for deciding when an attempted repair is successful, or when a different repair should be

tried.

Our work is similar to Schmill et al.’s in some ways but does not suffer some of the

limitations of their current work. Specifically,

• We are also proposing a novel metareasoning facility that responds to symptoms of

failure, i.e., anomalies.

• In the systems we investigate, the base-level reasoner is abductive and domain-

general. The metareasoner is designed to work with such an abductive base-level

reasoner. The only parameters of the base-level reasoner that are adjustable by the
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metareasoner are domain-general parameters (e.g., the minimum required plausibil-

ity of a possible explanation).

• The decision to proceed with an attempted repair or to try another is addressed in this

work. Again, the decision is made using only domain-general information.

• Our claims of domain-generality are supported by experiments from different do-

mains, in which the exact same abductive reasoning and metareasoning systems are

used without modification.

A different perspective on metareasoning comes from the philosophical tradition known

as belief revision, of which there is an extensive literature. We refer to this perspective

as strict belief revision in order to differentiate it from probabilistic belief revision as in

Bayesian belief networks. Strict belief revision involves categorically accepting as beliefs

certain statements and categorically rejecting other statements. Often there is also a third

set of statements that are neither believed nor disbelieved. This approach is contrasted with

belief revision in a Bayesian belief network, in which each statement is partially believed

according to some probability and a revision involves updating the probabilities in light of

observations. The reasoning systems we investigate categorically accept, reject, or have no

opinion on statements. Thus, our work is more similar to strict belief revision.

Although the literature in strict belief revision will be addressed more fully in Chap-

ter 5, it deserves a brief mention at this point. Strict belief revision usually refers to the

addition and retraction of beliefs in order to maintain consistency. In some approaches,

consistency need not be maintained at all times, leading to systems involving paraconsis-

tent logics. Often, some kind of preference ordering (such as preferring statements with

fewer assumptions) allows one to determine the unique revision that maximizes preference

and preserves consistency. Pragmatic concerns such as resource constraints or concerns

about plausibility are typically left out of the theoretical investigations.
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In the abductive cognitive systems that we investigate, we take accepted explanations

to be beliefs. Thus, beliefs are not provided by an external source as inputs but rather are

inferred by the system. Most of the belief revision literature is incompatible with this ar-

rangement because the literature usually assumes that beliefs, rather than evidence which

forms the basis of beliefs, are the inputs. However, Pagnucco (1996) has addressed this

difference. In his characterization, inputs (evidence) are added as beliefs when they can

be explained; the explanations are also added as beliefs simultaneously. He provides ex-

pansion, contraction, and revision operations that respect this distinction between evidence

and explanations.

Pagnucco’s work, like most work in strict belief revision, is theoretical and does not

provide an experimental evaluation of the system’s performance characteristics in a variety

of tasks. Much of the belief revision literature deals with belief sets that are infinite and

revision operations that are undecidable or at least intractable (Doyle, 1992). Our goal, in

contrast, is to build reasoning systems that are tractable and demonstrably accurate.

There have been some efforts in tractable belief revision. One such effort is Tennant’s

work in efficient belief contraction (2012). He investigates how a “logical paragon” would

change its beliefs, where a logical paragon is a rational agent that always does the right

thing given the inputs and background knowledge available to it. The agent can make

mistakes if the inputs are misleading (e.g., when there is noise in the form of false reports),

but it would never fail to apply the correct logical operations, given enough time. Thus, it

would always eventually come to the best possible beliefs given the information available.

Tennant’s concern is not with how an agent comes to its beliefs, but rather how it justifies its

beliefs, and how its beliefs change whenever a previously-justified belief must be retracted.

Tennant represents agents’ beliefs as nodes that are related by way of justifications.

Nodes are “featureless and unstructured”; all that matters is whether a node is believed,

disbelieved, or neither, and how nodes relate in terms of justifications. The justificatory
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relations may take various forms but generally match our intuitions. If belief in p justifies

belief in q, and p is believed, then the logical paragon would consider q to be justified and

therefore believes it (assuming q is not already disbelieved or justifiably presumed to be

false). Should the agent discover that q is in fact false, the agent must perform a contraction

on its beliefs with respect to q by retracting at least q and possibly other beliefs. In the

trivial case illustrated, this would require retraction of belief in p as well, in order to take

away the justification for believing q.

Tennant proves that finding a contraction is intractable when it is required to be mini-

mally mutilating, that is, when the contraction must retract the fewest beliefs possible while

conforming to the desiderata of the contraction operation. Tennant develops an efficient

contraction algorithm that very often produces the best possible results. This contraction

algorithm addresses one concern relevant to the present work. An abductive reasoning

process may accept some explanation e that at a later time proves to be problematic. For

example, it may be that e is found to be incompatible with a future essential explanation e′

of some report r′. Because e′ is the only available explainer of r′, but e′ cannot be accepted

due to incompatibility with the accepted explainer e, we find that r′ is unexplainable, i.e.,

anomalous. Metareasoning is triggered and tasked with deciding whether r′ is to be ig-

nored as noise or whether the prior acceptance of e should be retracted in order to free up

e′ as an explainer. Tennant’s algorithm may be able to efficiently find a best or near-best

contraction with respect to e. The metareasoning system may choose to simulate such a

contraction and evaluate the quality of the result, and compare this repair with others in

order to determine the best course of action. Although Tennant’s work may be useful as

part of an abductive metareasoning process, we have not yet explored its effectiveness in

that task.

Another effort in tractable belief revision is Johnson and Shapiro’s work (2005) in

dependency-directed reconsideration (DDR). Their “reconsideration” operation removes
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order-dependency effects resulting from reasoning about a changing world. The reasoning

system cannot be sure when it has received all the information it will ever receive, and

beliefs resulting from reasoning about the information received up to some point may be

contradicted by information received later. Furthermore, beliefs that were revoked may

be candidates for restoration when more information is available that sheds more light on

these beliefs. Their DDR technique efficiently determines which belief revisions should be

reconsidered when new information becomes available. The outcome of the DDR process

is a consistent belief set that produces an “optimal” knowledge state (where “optimal” is

defined with respect to some preference order on beliefs).

Johnson and Shapiro’s work considers beliefs, rather than evidence, to be the inputs to

the system, similar to most work in belief revision. However, their concern with efficient

computation and, in particular, their handling of order dependencies, agrees with the ap-

proach we take with abductive metareasoning. We note in the analysis of reasoning errors

(in Chapter 2) that order dependency is a source of some errors. In these cases, prior ac-

cepted explanations need to be reconsidered. Abductive metareasoning, as we describe it,

is responsible for noticing a possible reasoning error, hypothesizing that the error may be

due to an order dependency (among other possible causes), and invoking a reconsideration

of prior accepted explanations (among other attempted repairs).

In summary, prior work in metareasoning and strict belief revision suffers from one or

more limitations that we address in this work:

• The representation of beliefs makes commitments about the world. For example,

the use of propositional logic makes the representation of probabilistic, modal, and

“default” beliefs very difficult or impossible. However, many researchers choose to

employ propositional logic when studying belief revision in order to simplify con-

cepts such as incompatibility and preference orderings. Pagnucco also uses propo-
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sitional logic even though his proposed reasoning processes are abductive. In that

case, explanations imply what they explain. Again, this simplifies analysis but may

be inapplicable to some problem domains (for example, in medical diagnosis where

presence of a disease does not guarantee each of its symptoms will manifest). Ten-

nant’s work is an important exception, although he relies on a justification relation,

whose compatibility with explanatory relations has not been fully explored.

In this work, “A explains B” and “A is incompatible with B” are undefined relations,

and the components A and B can take any form. Each explanation is associated with

a plausibility estimate, which may be interpreted as binary possibility, probability,

or other interpretations. We believe these three concepts are widely applicable and

make the fewest possible commitments about the representations of beliefs, evidence,

and explanations.

• Much work in strict belief revision does not address computational concerns, al-

though Tennant’s and Johnson and Shapiro’s efforts were noted as exceptions. Other

researchers have also shown experimental results regarding computational tractabil-

ity (Dixon, 1994; Zhuang et al., 2007). The methods reported here are shown to be

tractable.

• Consistency requirements and preference orders do not necessarily yield the most

accurate beliefs, and we are not aware of any attempts to evaluate the impact that

different theoretical approaches have on accuracy. On the other hand, Schmill et al.’s

work in metareasoning (which has no significant overlap with strict belief revision)

does mention plans to experimentally evaluate improvements in accuracy resulting

from metareasoning.

The work reported here is both formal and experimental, and attempts to be domain-

general. We measure accuracy by comparing the cognitive system’s beliefs with the
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truth of the case. With this experimental setup, we show that abductive metareason-

ing significantly increases accuracy and completeness across a variety of domains.

The remainder of this report is organized as follows. Chapter 2 formalizes abductive

reasoning while Chapter 3 explores prior work in abduction. Chapter 4 details abductive

metareasoning, and Chapter 5 examines prior work in metareasoning, including work in

strict belief revision. The following three chapters (Chapters 6–8) document experiments

in three problem domains, respectively: simulated object tracking, aerial tracking, and

abduction with Bayesian networks. Finally, Chapter 9 provides concluding remarks and

Chapter 10 outlines plans for future work.
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Chapter 2: Abductive reasoning

By abduction, abductive reasoning, and the like, we mean reasoning that follows a pattern

approximately as follows:

D is a collection of data (findings, observations, givens).

Hypothesis H can explain D (would, if true, explain D).

No other hypothesis can explain D as well as H does.

—

Therefore, H is probably correct.

The strength of the conclusion H, the force of the probably in the conclusion statement, rea-

sonably depends on the following considerations, borrowed from Josephson and Josephson

(1994):

• how decisively the leading hypothesis surpasses the alternatives,

• how good this hypothesis is by itself, independently of considering the alternatives,

• how thorough was the search for alternative explanations,

• confidence in the accuracy of the data (although noise can be considered an alterna-

tive explanation of the data).

Besides confidence in its correctness, willingness to accept a conclusion of such abductive

reasoning also reasonably depends on practical considerations, including:

• the expected costs of being wrong and benefits of being right,
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• the expected costs of waiting before deciding (urgency), and the expected benefits of

waiting, especially the benefits of obtaining further evidence before deciding,

• the expected costs of not deciding to believe.

Factors that might reasonably contribute to the evaluation of hypotheses, either in

isolation, or in contrast with rivals, include: explanatory power, plausibility (precedent,

consistency with background knowledge, consistency with data), parsimony, internal con-

sistency, specificity, and productive promise.

However abduction is specifically described, or formalized, we hope readers recognize

it as a distinctive and familiar pattern, and as having a kind of intuitively recognizable infer-

ential (evidential) force. It seems an appropriate way to describe the evidence-combining

characteristics of a variety of cognitive and perceptual processes, such as diagnosis, sci-

entific theory formation, language comprehension, and inferring intentions from behavior.

Thus, abductive inferences appear to be ubiquitous in cognition, although many of them

may be implicit. Moreover, such inferences seem to be extremely common at or near the

surface of typical arguments offered in science, diagnosis, forensic investigation, and ordi-

nary life. In fact, one can readily observe that people commonly justify their conclusions

by direct or barely disguised appeal to this pattern, which shows that speaker and hearer

share a common understanding of it, cross-culturally. Thus, abduction seems to be part of

commonsense logic.

It will contribute to clarity to distinguish abduction as a pattern of argumentation or

justification, from abduction as a reasoning process. In a process of trying to explain some

experience, or pattern of experiences, the object is to arrive at an explanation that can

be confidently accepted. An explanation that can be confidently accepted is an explana-

tion that can be justified as being the best explanation in consideration of various factors,

and in contrast with alternative explanations. Thus, an explanation-seeking process—an
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abductive reasoning process—aims to arrive at a conclusion that has strong abductive jus-

tification.

Characteristic subgoals, subfunctions, and subprocesses of abductive reasoning, in-

clude: distinguishing data needing explanation, generating explanatory hypotheses, evalu-

ating hypotheses, comparing hypotheses, and deciding whether to accept a hypothesis as

being sufficiently justified. The term abduction has sometimes been used for the hypothesis-

generation part alone.1 However, our primary interest in this work is the processes of eval-

uating, comparing, and deciding to accept hypotheses. The processes of deciding what data

need explanation and generating hypotheses are not under investigation.

2.1 Abduction in static and dynamic worlds

In this work, we investigate abductive reasoning in both static and dynamic worlds. In

static worlds, the world properties to be estimated or inferred do not change. Even so, the

reasoning system might acquire evidence about the static world over time and might be

required to commit to intermediate estimates of the world. These estimates might require

revision as more evidence is acquired. In dynamic worlds, the world properties to be

estimated might change over time, and the system’s world estimate might need revision

simply because the world changed. Thus, regardless of whether or not the world to be

estimated is static or dynamic, it is useful (and sometimes necessary) to have a reasoning

process that is able to revise prior estimates, i.e., revise beliefs.

We can represent the estimation problem for static and dynamic worlds as shown in

Figures 2.1 and 2.2, respectively. In the static diagram, we have one world state, while in

the dynamic diagram, we have a progression of world states. In either case, the reasoning

system does not have direct access to the world states; rather, it relies on observations of

1C.S. Peirce: “Abduction is the process of forming an explanatory hypothesis. It is the
only logical operation which introduces any new idea” (Peirce, 1958, par. 171).
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Figure 2.1. Reasoning state diagram for static worlds.
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Figure 2.2. Reasoning state diagram for dynamic worlds.
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the states, as provided by sensor reports. For simplicity’s sake, world states change at dis-

crete time steps and sensors report a group of observations at each time step. The system

maintains a sequence of doxastic or belief states (defined in formal terms below), which

are indicated by the bottom nodes in the diagrams. The most recent doxastic state repre-

sents the system’s most recent world estimate. Doxastic states are the result of applying

abductive reasoning based on the sensor reports and prior doxastic state. For the sake of

efficiency, the prior world estimate is kept and expanded to incorporate more recent sensor

reports.

2.2 Notation

In order to keep track of evidence, possible explanations (equivalently, hypotheses), and the

plausibility and status of each hypothesis, we construct a doxastic state as characterized

in Definition 2.2.1.2 Note that, for simplicity’s sake, we treat reports as hypotheses that

explain nothing but are themselves initially considered unexplained if they are accepted.

Such hypotheses are initially accepted, but may be rejected (ignored) during metareasoning

if they are subsequently deemed to be noise.

Definition 2.2.1. A doxastic state is a tuple D = (H,X ,Pl,S,V, I), where H = {h1, . . . ,hn}

is a (finite) set of hypotheses and X is a relation over H ×H, where (h j,hi) ∈ X means

h j could explain hi. The relation X is constrained so that the resulting explanation graph

is acyclic. Next, S : H → {Accepted,Re jected,Undetermined} gives the belief status of

a hypothesis, Pl : H → [0,1] is a plausibility function, and V ⊆ H is a set of evidence

hypotheses that, when accepted, are considered to require an explanation. Note that V may

contain hypotheses that could explain other hypotheses but nevertheless require explanation

themselves. I is an irreflexive, symmetric relationship over H where (h j,hi) ∈ I means h j

2This formalism was first introduced by Eckroth and Josephson (2014).
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is incompatible with hi. The sets I and X are constrained so that X ∩ I = /0. Additionally,

(∀(h j,hi) ∈ I)(S(h j) = Accepted → S(hi) = Re jected). We say that if (h j,hi) ∈ X and

S(h j) = S(hi) = Accepted, then h j explains hi and hi is explained by h j. Note that (h j,hi)∈

X∧S(h j)=Accepted does not imply S(hi)=Accepted because h j may have been accepted

to explain some other accepted hypothesis hk 6= hi. This use of explained and explained by

does not require or imply that either h j or hi is unique in its respective role.

We do not require that a could explain relation (h j,hi)∈ X be interpretable as material

implication or logical entailment, as is sometimes the case in other treatments of abduction

(e.g., Aliseda (2006); Kakas et al. (1992)). Logical entailment does not capture what it

means to explain (Mayer and Pirri, 1996). Instead, we suppose that hypotheses represent

possible causal relations (h j is a possible cause of hi). Furthermore, these causal relations

are not necessarily predictive. It is not presumed that h j is a sufficient condition for hi.

Plausibilities do not necessarily span the full range of [0,1]. They may be restricted to

a subset of cardinality n+1 where the values come from {i/n|i ∈ {0,1, . . . ,n}}.

Definition 2.2.2. The plausibility precision is the value n that redefines the plausibility

function to be Pl : H→{i/n|i ∈ {0,1, . . . ,n}}.

It will be shown experimentally that small values of n typically produce just as good

abductions as a very large plausibility precision.

We can represent explanatory relations and hypothesis belief status of a doxastic state

with an explanation graph. An explanation graph is a structure in which vertices are taken

to be hypotheses. Edges with arrowheads are could explain relationships (the tail of the

arrow could explain the head of the arrow). Edges that appear as dashed lines are incom-

patibility relationships. No two vertices can have both an explanatory and an incompati-

bility relationship. Every vertex has one of three states at any time: Accepted, Rejected,

or Undetermined. The plausibility of a hypothesis is sometimes shown as a number in
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Figure 2.3. Illustration of explanation graph diagrams. “Undeter.” means “Undetermined.”

the hypothesis vertex. An explanation graph is not necessarily connected. Different sets of

observations may have different explainers without any explanatory or incompatibility rela-

tions between them. Figure 2.3 shows an illustration to guide interpretation of explanation

graph diagrams.

Note that top-level vertices, that is, vertices with no incoming edges, do not need to

be explained if they are accepted. An explanation graph is constructed so that vertices with

no incoming edges have no relevant explainers. In every abductive task, there is a limit to

what is considered a relevant explainer. A medical doctor, for example, wants to diagnose

the patient’s symptoms in terms of a catalogue of diseases. Perhaps she even seeks an

explanation of how the patient acquired the disease. E.g., “excessive exposure to the sun

caused skin cancer which caused the growth on the patient’s arm.” But the cause of the

patient’s excessive sun exposure may not be relevant.

The following definitions of explaining set, consistent explaining set, and complete

explaining set guide further analysis into the computational properties of abduction.

22



Definition 2.2.3. An explaining set A ⊆ H of a doxastic state is the set of hypotheses

that are Accepted. A consistent explaining set does not include both hypotheses in any

incompatible pair. Note that A = /0 is a consistent explaining set.

Definition 2.2.4. A complete explaining set is a consistent explaining set that has the

following property: (∀hi ∈ A)((∃h j)((h j,hi) ∈ X)→ (∃hk)((hk,hi) ∈ X ∧hk ∈ A)). Infor-

mally, every accepted hypothesis that has any possible explainers has at least one accepted

explainer.

A complete explaining set may not exist. The explanation graph in Figure 2.4 is a

minimal example. The proof of its minimality is trivial. Recall that no hypothesis can

be incompatible with itself, and that no two hypotheses can have both an explanatory and

incompatibility relationship.

Figure 2.4. An explanation graph in which no complete explaining set exists.

Definition 2.2.5. A parsimonious explaining set is a complete explaining set that has the

property that no proper subset of the explaining set is also complete.

Definition 2.2.6. A minimal-cardinality explaining set is a complete explaining set that

has the property that no other complete explaining set (for the same explanation graph) has

fewer vertices.

23



Definition 2.2.7. A best complete explaining set A is a complete explaining set that has

the property that ∑v∈A Pl(v) is maximal among all complete parsimonious explaining sets.

Both parsimonious and best complete explaining sets for some graph are not necessar-

ily unique. Furthermore, not every parsimonious explaining set is minimal-cardinality. The

explanation graph in Figure 2.5 is a minimal example. Likewise, not every parsimonious

explaining set is best complete. The explanation graph in Figure 2.6 is a minimal example.

This last example also shows that parsimonious explaining sets are not necessarily unique.

Figure 2.5. Counterexample to the claim that every parsimonious explaining set is
minimum-cardinality.

2.3 Equivalence with satisfiability

The kinds of abduction problems that can be expressed with explanation graphs include

all statements that can be expressed with propositional logic. That is, given some propo-

sitional statement, we can build an explanation graph so that the explanation graph has a

complete explaining set if and only if the propositional statement is satisfiable. Of course,
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Figure 2.6. Counterexample to the claim that every parsimonious explaining set is best
complete.

propositional logic does not allow the expression of plausibility or any other kind of graded

confidence. So explanation graphs are capable of expressing more than propositional logic.

The details of how to translate a propositional statement into an equivalent explanation

graph are provided by Bylander et al. (1991). They show how to translate a 3SAT problem

into an equivalent abduction problem. Their abduction problems are specified slightly

differently than our explanation graphs (i.e., non-graphically) but the formalisms are easily

seen to be equivalent.

Figure 2.7 shows the basic building blocks of propositional statements as partial expla-

nation graphs. These partial explanation graphs should be linked so that outgoing arrows

connect to incoming arrows. Some vertices must have incompatibility relationships with

others and some must be “accepted” by default. An example of a complex propositional

statement expressed as an explanation graph is shown in Figure 2.8. Should this explana-

tion graph have a complete explaining set, then the propositional statement is satisfiable.

Furthermore, the acceptance status of the literal vertices (e.g., p, and ∼ p “not p”) gives

the truth-status of the literals so that the propositional statement is satisfied.
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p ~p

literals “or” “and” “not”

Figure 2.7. Basic building blocks for constructing explanation graphs equivalent to
propositional statements. Outgoing arrows must connect to incoming arrows. For each
distinct literal, such as p, both p and ∼ p (“not p”) must be included in the explanation
graph in the manner shown in the first diagram.

2.4 Complexity of abduction

Bylander et al. (1991) classify certain set-covering abduction problems as independent

incompatibility problems; these abduction problems include an incompatibility relation

among pairs of hypotheses just like our use of I. The preceding formalization of abduction

satisfies the independent incompatibility problem classification. Bylander et al. showed

that it is NP-complete to determine whether a complete explaining set exists for an inde-

pendent incompatibility problem. Additionally, they show that it is NP-hard to find a best

complete explaining set.

Our formalization of abduction is also classified as (a subset of) cost-based abduction

(CBA) problems (Charniak and Shimony, 1990, 1994). The goal is to find least-cost proofs

(LCP), or equivalently, best complete explaining sets. Not surprisingly, finding least-cost

proofs is NP-hard (Charniak and Shimony, 1994). Our formalization is equivalent to CBA
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Figure 2.8. Explanation graph equivalent to the proposition ¬p∨ (p∧¬q∧ r).
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methods that are restricted so that every rule has only one antecedent. Abdelbar (2004) has

shown that approximating LCPs within a fixed ratio c of the cost of an optimal solution is

NP-hard for any c > 0. This result applies to general CBAs and the restricted CBAs where

each rule has one antecedent. Finally, Eiter and Gottlob have shown (1995), for general

propositional abduction, that determining whether a complete explaining set exists is in the

complexity class ΣP
2 .

Thus, the state of affairs is clear. In the words of Eiter and Gottlob, “abduction is

harder than deduction” (op. cit.). Furthermore, their results “clearly show that the major

variants of logic-based abduction are very hard—in most cases even harder than classical

propositional reasoning. Hence, there is no hope for complete and efficient algorithms that

solve these problems” (op. cit.).

Josephson & Josephson have come to a similar conclusion. They propose to change

the task definition. They write,

[A]bductive inference appears to be ubiquitous in cognition. Moreover, hu-

mans can often interpret images, understand sentences, form causal theories

of everyday events, and so on, apparently making complex abductive infer-

ences in fractions of a second. [...] Clearly there is a basic tension among the

intractability of the abduction task, the ubiquity of abductive processes, and

the rapidity with which humans seem to make abductive inferences. [...] The

new characterization of the abductive-assembly task is “explaining as much

as possible,” or, somewhat more precisely, “maximizing explanatory coverage

consistent with maintaining a high standard of confidence.” [...] The tractabil-

ity of the task under the new description is demonstrated by giving an efficient

strategy for accomplishing it (Josephson and Josephson, 1994, Ch. 9).

Josephson & Josephson developed the PEIRCE-IGTT abductive reasoning system in
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Figure 2.9. System architecture.

order to realize an efficient strategy for abductive reasoning. (Section 3.10 examines the

PEIRCE-IGTT system in more detail.) The present work distills the PEIRCE-IGTT sys-

tem into a collection of algorithms, defined below. Before we look at these algorithms in

Sections 2.7 and 2.8, we first examine the architecture of our abductive reasoning system.

2.5 System architecture

Figure 2.9 shows the system architecture. Domain-specific components are separate from

domain-general reasoning and metareasoning components. Reports, which might be noisy,

are obtained from the world. The plausibility of each report is calculated according to

domain knowledge and current beliefs. Each report requires explanation, as do any unex-

plained beliefs. Possible explanations are generated by a domain-specific function and then

reviewed (accepted or rejected) by the abductive reasoning procedure. Newly-acquired be-

liefs may themselves require explanation, and the process starts again. If any reports or be-

liefs remain unexplained, which we call anomalies, abductive metareasoning is activated

in order to determine the causes of the anomalies (see Chapter 4). Abductive metarea-

soning might ask the domain-specific components to generate new hypotheses, revise the

doxastic state, and/or leave the anomalies unexplained. Reports that remain unexplained
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are considered by the cognitive system to be noise.

The next section addresses the domain-specific components. When implementing a

new domain, only those components must be modified; the abductive reasoning and metar-

easoning systems can be reused. Section 2.2 previously defined doxastic states. Section 2.7

examines the abductive reasoning algorithms, and Chapter 4 provides complete detail about

the metareasoning system.

2.6 Problem domains

In order to experimentally evaluate abductive reasoning and metareasoning across different

problem domains, we separate the problem domain from the reasoning system. A problem

domain is defined as follows.

Definition 2.6.1. A problem domain M is an opaque structure that provides the functions

OBSERVE and GENERATEHYPOTHESES, defined as follows.

OBSERVE(M) = (Hreports,Pl, I).

The OBSERVE function generates reports Hreports of putatively observed properties of the

world. These reports come with plausibilities defined by Pl and incompatibility relations

defined by I.

GENERATEHYPOTHESES(M,Hunexplained,Haccepted) = (Hhypotheses,X ,Pl, I).

The GENERATEHYPOTHESES function produces new hypotheses that purport to explain

reports in Hunexplained such that these explanations are consistent with accepted hypotheses

Haccepted. The new explanatory relations, plausibilities of the generated hypotheses, and

incompatibility relations are given by X , Pl, and I, respectively.

Abstractly, we can think of M as containing the knowledge about a problem domain.

As far as the abductive reasoning algorithms are concerned, M and its corresponding func-
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tions are black boxes. This separation enables us to experiment with different domains

without modifying the reasoning engine.

The next two sections detail the abductive reasoning algorithms.
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2.7 General abduction algorithms

We define the following functions to query and manipulate a doxastic state D=(H,X ,Pl,S,V, I).

EXPLAINS((·,X , ·, ·, ·, ·),h1) = {h2|(h1,h2) ∈ X}.

HYPOTHESES((·,X , ·, ·, ·, ·),h1) = {h2|(h2,h1) ∈ X}.

INCOMPATIBLE((·, ·, ·, ·, ·, I),h1) = {h2|(h1,h2) ∈ I}.

EVIDENCE((·, ·, ·,S,V, ·)) = {h|h ∈V ∧S(h) = Accepted}.

ACCEPTED((·, ·, ·,S, ·, ·)) = {h|S(h) = Accepted}.

REJECTED((·, ·, ·,S, ·, ·)) = {h|S(h) = Re jected}.

UNDETERMINED((·, ·, ·,S, ·, ·)) = {h|S(h) =Undetermined}.

CANDIDATEEXP(D,h) = HYPOTHESES(D,h)∩UNDETERMINED(D).

UNEXPLAINED(D) = {h|h ∈ EVIDENCE(D)∧

HYPOTHESES(D,h)∩ACCEPTED(D) = /0}.

CONTRASTSETS(D) = {Γ|h ∈ UNEXPLAINED(D)∧Γ = CANDIDATEEXP(D,h)∧Γ 6= /0}.

ACCEPT((H, ·, ·,S, ·, ·),A) = (H, ·, ·,S′, ·, ·), where

S′ = {(h,s)|h ∈ H ∧ s = Accepted if h ∈ A,

s = S(h) otherwise}.

REJECT((H, ·, ·,S, ·, ·),R) = (H, ·, ·,S′, ·, ·), where

S′ = {(h,s)|h ∈ H ∧ s = Re jected if h ∈ R,

s = S(h) otherwise}.

RELATEDHYPS(D,h) = {h}∪
⋃

h′∈R

RELATEDHYPS(D,h′)∪R, where

R = INCOMPATIBLE(D,h)∪HYPOTHESES(D,h).

UNDECIDE((H, ·, ·,S,V, ·),h) = (H, ·, ·,S′,V, ·), where

R = RELATEDHYPS((H, ·, ·,S,V, ·),h),

S′ = {(h′,S(h′))|h′ /∈ R}∪{(h′,Undetermined)|h′ ∈ R}.
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Abductive reasoning, as used in our system, is characterized by the following defini-

tions.

Definition 2.7.1. A partial abduction is an operation that transforms one doxastic state into

another. The statement PARTIALABDUCE(D1) = D2 means that D2 was produced from D1

either by changing nothing (D1 = D2) or accepting one hypothesis and rejecting incompat-

ible hypotheses, should any exist. A partial abduction meets the following constraints.

1. If no unexplained pieces of evidence have hypotheses, or no evidence is unexplained,

then the doxastic state is unchanged.

2. If there exists a hypothesis that is undecided (not accepted or rejected) for some

unexplained evidence and is sufficiently plausible to be accepted, then some such

hypothesis is accepted.

3. One or no hypothesis is accepted.

4. When a hypothesis is accepted, all incompatible hypotheses are rejected.

Algorithm 2.1 The generic partial abduction function.
function PARTIALABDUCE(D0)

Φ← CONTRASTSETS(D0)
if Φ = /0 then . No contrast sets, nothing to accept

return D0
else

Let Γ ∈Φ. . Pick out a contrast set
Let h ∈ Γ. . Pick out some hypothesis
D1← ACCEPT(D0,{h}) . Accept h
D2← REJECT(D1, INCOMPATIBLE(D0,h)) . Reject incompatible hypotheses
return D2

end if
end function
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Theorem 2.7.1. The function PARTIALABDUCE is a partial abduction according to Defi-

nition 2.7.1.

Proof. Each constraint in the definition of a partial abduction will be addressed in turn. Let

D0 be the doxastic state under consideration.

1. If no unexplained evidence have hypotheses, or no evidence is unexplained, then the

doxastic state is unchanged. Should no hypotheses be available, or nothing is unex-

plained, then CONTRASTSETS(D0) will return the empty set, and PARTIALABDUCE

will leave D0 unchanged.

2. If there exists a hypothesis that is undecided (not accepted or rejected) for some un-

explained evidence and is sufficiently plausible to be accepted, then some hypothesis

is accepted. If there do exist possible explainers, then let Φ be the set of contrast

sets for D0. The PARTIALABDUCE function picks out one hypothesis from one such

contrast set; let h be that hypothesis. Then, h is accepted, and no other hypothesis is

accepted.

3. One or no hypothesis is accepted. As shown previously, only one hypothesis is

accepted, if any hypotheses are acceptable. Otherwise, no hypothesis is accepted.

4. When a hypothesis is accepted, all incompatible hypotheses are rejected. The PAR-

TIALABDUCE function rejects all hypotheses incompatible with h whenever some

hypothesis h is accepted.

Lemma 2.7.1. If PARTIALABDUCE(D1) = D2, then either D1 = D2 or, instead, D1 6= D2

and ‖CONTRASTSETS(D2)‖ < ‖CONTRASTSETS(D1)‖. In other words, the PARTIAL-
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ABDUCE function, applied to a doxastic state, either leaves the doxastic state unchanged

or reduces the number of contrast sets.

Proof. Assume D1 6=D2. It suffices to show that UNEXPLAINED(D2)⊂UNEXPLAINED(D1).

Since D1 6= D2, some hypothesis h was accepted to explain some evidence e. Then e ∈

UNEXPLAINED(D1) but e /∈ UNEXPLAINED(D2). Now suppose e′ ∈ UNEXPLAINED(D2).

It must be the case (by definition) that HYPOTHESES(D2,e′)∩ACCEPTED(D2) = /0. The

PARTIALABDUCE function does not add or remove hypotheses from the doxastic state,

so HYPOTHESES(D1,e′) = HYPOTHESES(D2,e′). We also know that ACCEPTED(D1) ⊂

ACCEPTED(D2); actually, D2 has exactly one more accepted hypothesis than D1, namely,

h. Therefore, HYPOTHESES(D1,e′)∩ACCEPTED(D1) = /0, so e′ ∈ UNEXPLAINED(D1).

Definition 2.7.2. A doxastic state D is finalized if PARTIALABDUCE(D) = D.

The abductive reasoning procedure, defined by the ABDUCE function (Algorithm 2.2),

is responsible for obtaining evidence and hypotheses, and by way of the FINALIZE func-

tion, iteratively calling the PARTIALABDUCE function until the doxastic state is finalized.

The algorithm is parameterized in part by η , the minimum plausibility threshold for a pos-

sible explanation to be initially considered. This parameter η is taken into account by the

ADDHYPOTHESESTODOXASTICSTATE function, which rejects hypotheses (after adding

them to the doxastic state) whose plausibilities are less than η .

Theorem 2.7.2. The FINALIZE function is guaranteed to terminate.

Proof. From Lemma 2.7.1, we have that either the partial abduction leaves a doxastic state

unchanged, causing termination of the loop, or the partial abduction reduces the number

of contrast sets. Since by Definition 2.2.1, the set of hypotheses, and hence the number of

contrast sets, are finite, the algorithm is guaranteed to terminate.
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Algorithm 2.2 Various general abduction functions.
function ADDREPORTSTODOXASTICSTATE((H0,X0,Pl0,S0,V0, I0),H,Pl, I)

H1← H0∪H
Pl1← Pl0∪Pl
V1←V0∪H
I1← I0∪ I
S1← S0∪{(h,Accepted)|h ∈ H} . Accept all reports
return (H1,X0,Pl1,S1,V1, I1)

end function
function ADDHYPOTHESESTODOXASTICSTATE((H0,X0,Pl0,S0,V0, I0),H,X ,Pl, I,η)

H1← H0∪H
X1← X0∪X
Pl1← Pl0∪Pl
I1← I0∪ I
S1← S0∪{(h,Re jected)|h ∈ H ∧Pl1(h)< η} . Reject implausible hypotheses
return (H1,X1,Pl1,S1,V1, I1)

end function
function FINALIZE(D)

D′← PARTIALABDUCE(D)
while D′ 6= D do

D← D′

D′← PARTIALABDUCE(D)
end while
return D′

end function
function ABDUCE(M,D0,η ,DoMetareasoning?)

(Hreports,Pl, I)← OBSERVE(M, /0)
D1← ADDREPORTSTODOXASTICSTATE(D0,Hreports,Pl, I)
Hunexplained← UNEXPLAINED(D1)
Haccepted← ACCEPTED(D1)
(Hhypotheses,X ′,Pl′, I′)← GENERATEHYPOTHESES(M,Hunexplained,Haccepted)
D2← ADDHYPOTHESESTODOXASTICSTATE(D1,Hhypotheses,X ′,Pl′, I′,η)
D3← FINALIZE(D2)
if DoMetareasoning? then

D4←METAREASON(D3) . Refer to Chapter 4
return D4

else
return D3

end if
end function
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2.8 The EFLI algorithm

One might imagine that a practical goal of an abductive reasoner is to find the most plau-

sible, consistent, and complete composite explanation of the evidence. However, as we

saw earlier (Section 2.4), Bylander et al. (1991) show that abduction problems that involve

an incompatibility relation among pairs of hypotheses (the set I in our definition of the

doxastic state) cannot efficiently be solved. Specifically, they prove that it is NP-complete

to determine whether a consistent, complete set of explanations exists for such an abduc-

tion problem. They also prove that it is NP-hard to find a most-plausible consistent and

complete set of explanations.

We take an efficient greedy, hill-climbing approach to the abduction problem, simi-

lar to that implemented in Josephson & Josephson’s PEIRCE-IGTT system (1994). Their

system realizes an algorithm called EFLI: Essentials First, Leveraging Incompatibility,

which iteratively accepts one hypothesis and rejects incompatible hypotheses, until either

all evidence is explained or no other hypotheses for the unexplained evidence are available.

Hypotheses are grouped into contrast sets, where each contrast set contains all the plausible

hypotheses for some report. Essential hypotheses are accepted first. An essential hypoth-

esis is the sole member of a contrast set, so it is the only plausible hypothesis for some

report. Unless it is accepted, some evidence would remain unexplained. Then, hypothe-

ses are ordered for acceptance by the degree to which the best hypothesis in a contrast set

surpasses the second best hypothesis, in terms of plausibility. We call this its decisiveness.

Depending on the specifics of a task domain, one may wish to establish a minimum

plausibility η (seen previously in Algorithm 2.2) and/or a minimum decisiveness threshold

δ . The EFLI algorithm adds support for δ , which was missing in the generic ABDUCE

function. Note that a large η or δ threshold might cause some reports or other beliefs to

remain unexplained because either their possible explainers are too implausible or no al-
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Figure 2.10. Completeness–confidence trade-off. This trade-off is dictated by the
parameters η and δ . Greater values for these thresholds yield more confidence but may
sacrifice completeness. For some abductive reasoning task, there may exist an ideal
trade-off, represented by the dotted line.

ternative is sufficiently decisive. However, one would expect greater accuracy, thus greater

confidence in the belief state. Figure 2.10 illustrates this trade-off.

The EFLI algorithm (Algorithm 2.3 extends the PARTIALABDUCE function (Algo-

rithm 2.1) by involving the following additional parameters:

• δ , the minimum decisiveness parameter that establishes how decisive the best hy-

pothesis in a contrast set must be in order to be accepted.

• ≥hyp, a preference relation on vertices in a contrast set.

• ≥contrast, a preference relation on contrast sets.

These relations are defined as,

{h1, . . . ,hm} ≥contrast {h′1, . . . ,h′n} iff Pl(hα)−Pl(hβ )≥ Pl(h′α)−Pl(h′
β
),

h≥hyp h′ iff Pl(h)≥ Pl(h′),

where hα and hβ are the first- and second-most plausible hypotheses, respectively, in the

contrast set {h1, . . . ,hm}, and h′α ,h
′
β

likewise for the contrast set {h′1, . . . ,h′n}.
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We define arbitrary abduction as the algorithm where ≥contrast and ≥hyp are random

binary relations (i.e., ≥contrast and ≥hyp have a 50% probability of being true for any two

contrast sets or hypotheses) and setting δ = 0.

Algorithm 2.3 The EFLI partial abduction function.
function PARTIALABDUCEEFLI(D0)

Φ← CONTRASTSETS(D0)
if Φ = /0 then . No contrast sets, nothing to accept

return D0
else

Γ←max≥contrast Φ . Find most decisive contrast set
h←max≥hyp Γ . Find best hypothesis
if ‖Γ‖= 1 then . If h is an essential explainer. . .

D1← ACCEPT(D0,{h}) . Accept h
else

h′←max≥hyp Γ\{h} . Get second best hypothesis
if Pl(h)−Pl(h′)≥ δ then . If h is sufficiently decisive. . .

D1← ACCEPT(D0,{h}) . Accept h
end if

end if
D2← REJECT(D1, INCOMPATIBLE(D0,h)) . Reject incompatible hypotheses
return D2

end if
end function

Theorem 2.8.1. The function PARTIALABDUCEEFLI is a partial abduction.

Proof. The proof is trivial, since PARTIALABDUCEEFLI is a variant of PARTIALABDUCE

that just specializes how hypotheses are preferred.

2.9 Complexity of abduction with EFLI

Suppose we have r reports, and that each of the r contrast sets contains n hypotheses. The

max≥contrast operation must sort each contrast set, requiring time O(rn logn). Since each

contrast set is already sorted, max≥hyp requires O(1) time. Therefore, a single iteration

of PARTIALABDUCEEFLI requires O(rn logn) time. To find explainers for all the reports,
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the partial abduce function is repeated O(r) times. Thus, the computational complexity of

abduction with EFLI comes to O(nr2 logn).

2.10 Errors

Now that we have defined abductive reasoning, we might want to ask, “how can it fail to

arrive at true beliefs?” We define an error as the acceptance of a false hypothesis or the

failure to accept a true hypothesis. Of course, the cognitive system does not have indepen-

dent access to truth, but we as experimenters may examine a doxastic state and identify its

true and false beliefs according to the ground truth established for an experiment. We can

classify errors according to the following definitions.

Plausibility

A false hypothesis was accepted but one of its lower-plausibility rivals (from the

same contrast set) was true. Or, a true hypothesis was not accepted but it was a

lower-plausibility rival when a false hypothesis was accepted. It is worth nothing that

the EFLI algorithm is not at fault in this case. Rather, the domain gave inaccurate

plausibility estimates.

MinPlausibility

A true hypothesis was rejected because its plausibility did not meet the minimum

plausibility η . No errors of this sort are possible when η = 0.

MinDecisiveness

A true hypothesis was not accepted because it was not sufficiently decisive according

to the minimum decisiveness δ threshold. No errors of this sort are possible when

δ = 0.
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NoExplOffered

A false hypothesis was accepted because no true hypothesis for a true sensor report

was ever offered.

Noise

A false report was accepted, or a false hypothesis was accepted in order to explain a

false report. No errors of this sort are possible when noise is absent.

There exists one more case in which either a true hypothesis is not accepted or a false

hypothesis is accepted. There are two possible scenarios that realize this case:

1. A true hypothesis hT is rejected owing to incompatibility with a false but accepted

hypothesis hF . Or,

2. A false hypothesis h′F is accepted to explain some d but the true explainer of d,

which we call hT , was rejected owing to incompatibility with some false but accepted

hypothesis hF .

Suppose, for example, that some false hypothesis hF is an essential hypothesis for some

true evidence d. By essential, we mean at the time hF was accepted to explain d, no other

hypothesis was available to explain d. Further suppose that the true hypothesis hT for that

report was previously rejected but not because of to not meeting the η threshold. If we

look further back in the chain of acceptances and rejections, we inevitably find that the

true hypothesis hT was rejected for a particular reason. It may be that a false incompatible

hypothesis was accepted, causing hT to be rejected. Then, owing to the cascade of errors,

hF was accepted as a downstream result of a Plausibility error that initially affected hT .

Thus, in some cases, we must look at prior acceptances and rejections in order to determine

the original cause for an error.

41



2.11 Detectable and undetectable errors

The kinds of errors defined above can be measured from the experimenter’s viewpoint, but

not from the system’s viewpoint since each kind is defined in terms of the truth of certain

hypotheses. The system does not have access to truth, rather it is trying to estimate it.

Nevertheless, a reasonable question to ask is, under what circumstances can the system

detect and correct its errors?

Though errors themselves cannot be directly detected, perhaps errors can be discov-

ered via some kind of proxy indicator. Pomeranz and Reddy (2010) describe how un-

detectable faults in logic circuits can influence the behavior of detectable faults. They

demonstrate that more detectable faults can be identified if the range of possible unde-

tectable faults are considered in tandem with the detectable faults. In this work, we take

an analogous approach. While errors cannot be directly detected, we might be able to find

symptoms of errors. In this work, we take unexplainable reports and beliefs to be anoma-

lous, and show that the presence of such anomalies indicates that the system might have

committed an error (accepted a false belief or failed to accept a true belief). The presence

of anomalies is considered evidence for errors, but does not imply errors. The question of

whether the anomalies point to errors is handled in Chapter 4, where we outline abductive

metareasoning.

2.12 Conclusions

Abductive reasoning is, arguably, a kind of commonsense reasoning that is capable of in-

ferences from evidence to causes. The “making sense” phase of cognition is rich with

abductions since the goal of sense-making is to reason from evidence, in the form of obser-

vations, claims made by other agents, etc., to beliefs about the world. In our formalization,

abductive reasoning is a process that involves these steps:
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1. Gathering evidence with the OBSERVE function.

2. Gathering possible explainers of the evidence with the GENERATEHYPOTHESES

function.

3. Iteratively accepting and rejecting hypotheses to arrive at a plausible, complete or

as-complete-as-possible composite explanation.

Our formalization is domain-general. The abductive reasoning process has no access

to the contents of the evidence and hypotheses; that is to say, the algorithms only operate

on the two relationships explanatory and incompatible between and among hypotheses and

evidence. Because the problems of finding a complete explaining set and the best complete

explaining set (in terms of plausibility) are intractable, we built a greedy, hill-climbing

(non-backtracking) abductive reasoning algorithm.

The result of abductive reasoning is some explaining set. This explaining set con-

tains the hypotheses that the cognitive system believes. We have identified the reasons

these beliefs might be in error, including inaccurate plausibility estimates and noisy reports.

Many errors are not detectable, but in some cases the existence of unexplainable reports

or other beliefs indicates the possibility that some beliefs are false. Unexplainable reports,

or anomalies, are easily detected, and their presence activates an abductive metareasoning

system that attempts to correct false beliefs, and identify noise, by finding explanations and

hence repairs for the anomalies. Abductive metareasoning will be discussed in Chapter 4

after a brief look at prior work in abductive reasoning.
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Chapter 3: Prior work in abductive reasoning

A wide variety of abductive reasoning procedures have been designed for artificial intel-

ligence applications. Abduction has been used to support diagnosis, planning, and proba-

bilistic inference. In this chapter, we summarize several approaches related to diagnosis,

since diagnosis is essentially the kind of “making sense” that we focus on in this work. In

diagnostic abduction, the input to the reasoning process is a set of evidence and hypothe-

ses, or a knowledge base from which hypotheses may be generated, and the output is a set

of categorical beliefs (accepted hypotheses). The varieties of diagnostic abduction differ

in how they represent evidence, hypotheses, and beliefs, how composite explanations are

assembled, and what makes one explanation better than another. The last approach that we

examine, the PEIRCE-IGTT framework, is most similar to our abductive reasoning system

detailed previously (Chapter 2).

3.1 A framework for comparing approaches

This review analyzes various computational abductive reasoning systems across four di-

mensions:

Explanation: What consitutes an explanation? In some accounts, an explanation must

logically entail what it explains. In other accounts, an explanation must increase

probability of the explananda. Sometimes, the relationship is more nuanced, and

sometimes less.

Trigger: When should abductive reasoning be invoked? One might expect, for example,

that if the “making sense” phase of cognition can be achieved in a particular situa-

44



tion with deductive reasoning, then there is no reason to pursue abductive reasoning.

What I call a trigger has previously been called a “cognitive irritant” (Garcez et al.,

2007).

Hypothesis generation: How are the possible explainers generated?

Criteria for the “best” explanation: How is one explanation preferred over another? There

are many possible criteria for what makes one explanation better than another: it is

simpler, it posits fewer new causal mechanisms, it has higher plausibility or prob-

ability, etc. In the work we review, the criteria for the best explanation are always

decidable but not necessarily efficiently computable.

3.2 Abductive logic programming

Abductive logic programming (ALP), introduced by Kakas et al. (1992) and influenced

by earlier work on THEORIST (Poole et al., 1986) and inductive generalization (Plotkin,

1970), treats abduction as reverse deduction. ALP has been implemented as an extension

to Prolog (Fung and Kowalski, 1997) and subsequently integrated with constraint program-

ming (Endriss et al., 2004; Kakas et al., 2000). The ALP extension is activated when the

underlying Prolog system fails to find a proof for some query. The ALP process then de-

termines whether asserting one or more of a reserved set of abducibles (atomic sentences)

would allow the proof to succeed. An explanation is the smallest set of abducibles sufficient

to prove the query. Integrity constraints may be specified to limit possible explanations.

• Explanation: A conjunction of abducibles A explains φ if φ is not already provable,

φ would be provable if each of α ∈ A were true, ¬α is not provable for each α ∈ A,

and integrity constraints are satisfied. In symbols, A is an explanation if,

(Θ 2 φ)∧ (Θ∪A |= φ)∧ (∀α ∈ A : Θ 2 ¬α)∧ (Θ∪A |= I),
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where Θ is the background theory and I are integrity constraints.

• Trigger: Explanations are sought when a query cannot be proved.

• Hypothesis generation: Abducibles are specified upfront, as are integrity constraints.

• Criteria for “best”: Fewest number of abducibles (i.e., a minimal explanation).

We will see later that abduction-as-reverse-deduction does not capture all the proper-

ties of commonsense abductive reasoning. Nevertheless, ALP gives a clean, programmatic

means of representing and solving abduction problems.

3.3 Semantic tableaux

Semantic tableaux are another computational model for abduction-as-reverse-deduction.

Though semantic tableaux have been around for several decades (Beth, 1961; Hintikka,

1955), Aliseda has recently utilized them as a semantically and computationally convenient

way for generating abductive explanations (Aliseda, 2006, Ch. 4). Semantic tableaux allow

testing whether a formula follows from a set of other formulae. A tableau T for a set of

formulae Θ, written T (Θ), is constructed by listing the formulas “vertically” in a single-

branch “tree,” then building branches at leaf nodes such that for every occurrence in higher

parts of the tree of a two-part disjunction a∨ b (where µ → ψ is written ¬µ ∨ψ), two

branches are added at each leaf node, representing the case when a is true and the case

when b is true. For each conjunct a∧b, both a and b are added “vertically” to the leaves of

the tree but without introducing new branches. If a branch (traced back to the root) contains

both a and ¬a (for any formula a), then that branch closes. A closed branch indicates a

contradiction may be reached from its formulae. If all branches in T (Θ) are closed, then

there is no assignment of truth-values to the atoms of the language that satisfies Θ. If

any branch remains open, then the initial formulae in Θ are jointly satisfiable. Thus, in
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order to test if a formula µ follows logically from premises Θ, a tableau is constructed

as T (Θ∪{¬µ}). If that tableau is closed (all branches are closed), then µ follows from

Θ (because Θ∪{¬µ} is not satisfiable); otherwise, µ is not a valid consequence from Θ,

because Θ∪{¬µ} is satisfiable.

Aliseda shows that when a tableau indicates that µ does not follow from Θ, that is,

when Θ∪ {¬µ} has one or more open branches, we can read off the tableau the exact

truth-assignments of atomic formulae that show µ not to be a consequence of Θ. Then we

only need to find which formulae to take out of Θ, to get Θ′, say, so that T (Θ′ ∪{¬µ})

is completely closed; that is, we just need to close the open branches (while keeping ¬µ

around). If we can do so, then we have effectively come up with formulae Ψ such that

Θ∪Ψ entails µ . This makes Ψ an abduction. Further, if it’s not the case that Ψ itself

entails µ , but only entails µ when combined with Θ, then Ψ is an explanation in Aliseda’s

terminology.

Semantic tableaux do not, in general, yield polynomial-time abductions. In fact, the

computational complexity of semantic tableaux is sometimes even worse than truth tables

(D’Agostino, 1992). However, as Aliseda has argued, semantic tableaux yield convenient

algorithms for producing explanations.

• Explanation: Unlike ALP, an explanation α found with a semantic tableaux need not

be an atomic sentence. However, like ALP, an explanation must entail the explanan-

dum.

(Θ,α � φ)∧ (α 2 φ)∧ (Θ 2 ¬α)∧ (Θ 2 φ)

• Trigger: Explanations are sought when a query cannot be proved.

• Hypothesis generation: Aliseda states: “First compute abductions according to the

plain version [see below] and then eliminate all those that do not comply with the

various additional requirements [i.e., consistent and explanatory].”
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Plain version: T (Θ∪{¬φ ,α}) is closed, i.e., (Θ,α |= φ).

Consistent: Plain abduction in addition to T (Θ∪{α}) is open, i.e., (Θ 2 ¬α).

Explanatory: Plain abduction in addition to:

1. T (Θ∪{¬φ}) is open, i.e., (Θ 2 φ).

2. T ({¬φ ,α}) is open, i.e., (α 2 φ).

• Criteria for “best”: Aliseda does not specify criteria for the best explanation. In-

stead, she considers any formulae that meet the criteria above (“Hypothesis genera-

tion”) to be warranted explanations.

3.4 A knowledge-level account

Abductive logic programming and semantic tableaux take a logical approach to abduction.

They treat abduction essentially as reverse deduction, and exploit features of the symbol-

level representations of knowledge to do their work. Levesque (1989) attempts to abstract

away from symbol-level details such as how evidence and explanations are represented.

He establishes a formalism based on beliefs that are expressed in a standard propositional

language L . Sentences of the language of beliefs, L ∗, have the form Bα where α ∈L .

This language L ∗ allows us to describe what is and is not believed. Beliefs may differ by

type, so we write Bλ α to indicate a belief of type λ . An epistemic state e determines which

atomic sentences from L ∗ are believed; we write e � Bλ α to indicate that Bλ α is true in

the epistemic state e. Levesque does not commit to how propositions are defined. Rather,

he uses the notation ‖α‖ to denote the proposition that α expresses.

Levesque argues that if abduction is simply “reverse deduction,” there is a problem

of uniqueness and relevance.1 Consider a medical domain where sentences in L stand

1This point is also made by Mayer and Pirri (1996).

48



for properties of the patient. Suppose that we know that male and hepatitis→ jaundice.

If we observe jaundice in the patient, we want to reason abductively to hepatitis. Were

abduction simply reverse deduction, abduction would not necessarily generate a unique

explanation or even finitely-many explanations. For example, (¬¬hepatitis∧migraines)∨

(hepatitis∧¬migraines) also accounts for jaundice in that it is consistent with what is

known and, were it to be true, then jaundice would also be true. One can imagine other

arbitrary propositions that also seem to account for jaundice but do not seem to be ex-

planatory.

The preferred explanation is, naturally, hepatitis. Levesque shows that this preference

cannot be realized from only logical considerations. Rather, some non-logical criteria such

as simplicity are required to select the best explainers. Formally, explanation is defined by

Levesque as follows, where e is an epistemic state and λ is a type of belief:

Definition 3.4.1. α explλ β wrt e iff e |= [Bλ (α ⊃ β )∧¬Bλ¬α].

An explanation α is simpler than an explanation α ′ whenever α effectively “contains

fewer propositional letters” than does α ′. Because Levesque states that abduction should

produce the simplest explanations, he defines the abduction operation Explain as follows,

where α min-explλ β is true whenever α is a minimal (simplest) explanation of β .

Definition 3.4.2. Explainλ Je,β K = ‖{α|α min-explλ β wrt e}‖.

Thus, Levesque has given a knowledge level account of abduction by abstracting away

from symbol level details such as how propositions are written, what specific types of belief

are involved, how an explanation can be said to account for what it explains, and so on. He

also has shown that abduction is not merely reverse deduction. Paul (1993) has shown how

this knowledge-level account of abductive reasoning can be modeled with an assumption-

based truth-maintenance system (de Kleer, 1986).
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However, his definition of simpler and requirement that the best explanation(s) be

the simplest is too limiting. What makes an explanation best might depend on various

factors, some normative and some pragmatic, such as those listed earlier and borrowed

from Josephson and Josephson (1994). Moreover, Levesque’s account does not include

quantified beliefs.

3.5 Binary-choice Bayesian abduction (MEDAS)

An entirely different kind of abduction is Bayesian abduction. An early example of a proba-

bilistic abductive reasoning system is the Medical Emergency Decision Assistance System

(MEDAS) developed by Ben-Bassat et al. (1980). It was designed to “provide the clinician

with decision aids from the time the patient is first seen in the emergency department until

the immediate risk of life has been minimalized.” Their model includes binary features and

disorders, where a feature is any patient data such as age, sex, complaints and symptoms,

results of medical tests, etc. Features that are not originally binary are transformed into a

finite number of discrete features by specifying different ranges (e.g., heart rate < 50/min,

between 50−100/min, and > 100/min). A cost is assigned to each feature that specifies

the financial cost or risk required to test for the feature.

Disorders are related to features by “characterizing patterns.” A characterizing pattern

is composed of a set of features which are relevant for diagnosing the disorder, as well as

conditional probabilities of the form Pi j = P(X j|Di) and P̄i j = P(X j|¬Di), where X j is a

feature among the set relevant to the disorder and Di is the disorder. Additionally, each

disorder has a prior probability of occurrence, P(Di).

The authors assume conditional independence among the features, so the probability

of a disorder Di given features x1, . . . ,xk is as follows:

P(Di|x1, . . . ,xk) =
P(Di) fi(x1) · · · fi(xk)

P(Di) fi(x1) · · · fi(xk)+(1−P(Di)) f̄i(x1) · · · f̄i(xk)
,
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where,

fi(x j) =


Pi j if x j = 1,

1−Pi j if x j = 0.

f̄i(x j) =


P̄i j if x j = 1,

1− P̄i j if x j = 0.

The authors provide an approximate method to efficiently handle cases where condi-

tional independence does not hold among the features for a given disorder. Its details are

not important for our purposes.

The MEDAS systems has two processes: a bottom-up process that determines which

disorders are present, and a top-down process that determines which unobserved features

should be tested. The bottom-up process compares P(Di) and P(¬Di); if the former is

greater than the latter, the disorder is abduced to be present. The top-down process evalu-

ates the cost of each test and how well the test results may disambiguate which disorders

are present.

The results of the abductive, bottom-up process are presented to the physician, who

makes the decision about accepting that the abduced disorders are present or performing

suggested tests, updating the feature set, and executing the bottom-up process again.

• Explanation: Disorders explain a set of features whenever the set of features is part

of the disorder’s characterizing pattern. Thus, this relationship is established up front

by domain experts.

• Trigger: Physicians initiate the bottom-up abductive process.

• Hypothesis generation: Hypotheses take the form of disorders which are established

up front.
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• Criteria for “best”: No “best” disorder is automatically chosen. Rather, the results

of abduction are presented to the physician for further consideration. Each possible

explanation is scored according to the posterior probability of the disorder, given the

features.

Other varieties of Bayesian abduction are addressed in Section 8.8.

3.6 Explanatory coherence

Yet another novel approach to abduction is a coherence-based approach, developed by

Thagard (1989). Here, explanation and explain are taken as primitives. The goal is to

arrive at a coherent explanation of some evidence.

We should accept propositions that are coherent with our other beliefs, reject

propositions that are incoherent with our other beliefs, and be neutral toward

propositions that are neither coherent nor incoherent. Acceptability has finer

gradations that just acceptance, rejection, and neutrality, however: The greater

the coherence of a proposition with other propositions, the greater its accept-

ability (Thagard, 1989).

He defines coherence as follows. “Propositions P and Q cohere if there is some ex-

planatory relation between them.” More specifically, at least one of the following must be

true:

1. P is part of the explanation of Q.

2. Q is part of the explanation of P.

3. P and Q are together part of the explanation of some R.
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4. P and Q are analogous in the explanations they respectively give of some R and S.

Propositions may also have an incoherence relation, such as, but not limited to, propo-

sitions that contradict each other. The goal is to find greatest global coherence of a system

of propositions, defined as “a function of the pairwise local coherence of those proposi-

tions.”

Global coherence is found by encoding coherence and incoherence relations in a neu-

ral network structure with excitatory and inhibitory links, respectively. The initial weights

of these links are parameters that must be established a priori. Each node represents a

proposition. The evidence is activated, which propagates positive or negative influences to

connected nodes. When the network is sufficiently “settled,” we can read off the accept-

ability of each proposition by examining its final activation strength. Positive activations

indicate acceptable propositions, negative activations indicate the opposite. In this way,

global coherence is achieved.

Earlier work by Reggia (1985) takes a similar approach as Thagard’s, but is concerned

more with modeling associative memory with value-passing systems (such as neural net-

works). However, the following quote illustrates the conceptual similarity.

In memory models implemented as value-passing systems, each processing

node typically represents a “concept” or “hypothesis,” and the level of acti-

vation associated with a node represents the relevance of or confidence in the

concept/hypothesis represented by that node (Reggia, 1985).

We can summarize Thagard’s system using our framework for comparing different

approaches to abductive reasoning.

• Explanation: In Thagard’s system, explanation is an undefined binary relation. Per-

haps more important is coherence. Propositions P and Q cohere if at least one of the

53



four criteria above are met.

• Trigger: Abduction is activated by the user.

• Hypothesis generation: Hypotheses (propositions) are established ahead of time.

• Criteria for “best”: The best explanation is those propositions with high activations

as found in a settled globally-coherent neural network.

Other researchers have also studied abduction with neural networks (Abdelbar et al.,

2003; Garcez et al., 2007; Goel and Ramanujam, 1996).

3.7 INTERNIST

We have now examined logic-based, Bayesian, and coherence-driven abduction. More sim-

plistic accounts may be found in the very early attempts at doing abduction in machines.

The INTERNIST-I expert system (Miller et al., 1985; Pople et al., 1975), previously called

DIALOG (DIAgnostic LOGic), was one of the earliest abductive reasoning systems. Its

purpose was to assist internal medicine clinicians by inferring diseases from symptoms.

The knowledge base includes “disease entities” and an associated list of “manifestations”

known to be associated with each disease entity. A hierarchy of disease categories orga-

nizes the disease entities. In some cases, if a specific disease entity cannot be determined,

a more general node in the disease hierarchy (e.g., liver disease) might be inferable. Note

that no two disease entities may be incompatible.

• Explanation: Disease entities are said to explain manifestations. These relationships

are stored in the knowledge base.

• Trigger: As each manifestation is entered into the system, nodes in the disease hier-

archy are “evoked” (entered into consideration).
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• Hypothesis generation: All possible manifestations and disease entities they evoke

are stored in the knowledge base. A hypothesis might be ruled out if further tests do

not produce outcomes predicted by the hypothesis.

• Criteria for “best”: Each evoked disease hypothesis is scored in terms of various

criteria including an “evoking strength,” how many observations it can explain, how

many expected symptoms for this disease were observed to be present, etc.

Further development on the INTERNIST-I system led to INTERNIST-II (Pople, 1977).

While INTERNIST-I sequentially built an explanation, it was not able to find and separate

subproblems. Real-world experience showed that physicians are able to identify “obvi-

ous” subproblems involving a subset of the evidence that had uncomplicated solutions.

INTERNIST-II uses heuristics to find subproblems and generate and score hypotheses for

those subproblems independently. Thus, a disease entity does not necessarily have to be

highly plausible for all the manifestations, but rather only a relevant subset. Multiple dis-

ease entities may make up the final composite explanation.

3.8 Set covering

The INTERNIST model can be described as a set covering model. This model was distilled

and extensively developed by Reggia et al. (1985a,b) as Generalized Set Covering (GSC).

This approach defines the abductive task as one of finding a minimal set of disorders that

explain or “cover” the reported manifestations. An abductive problem, or diagnostic prob-

lem, is defined by the set of disorders, manifestations, their relations (which disorders ex-

plain which manifestations), and a set of reported manifestations. Note that there is no way

to represent incompatibility among disorders. An explanation is a set of disorders such that

all manifestations are explained and no subset of the explanation is also an explanation (the
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explanation is therefore “parsimonious,” i.e., has minimum cardinality, or “irredundant,”

that is, no proper subset of the explanation also covers all the manifestations).

• Explanation: Disorders are said to explain or “cover” manifestations. These binary

relationships are stored in the knowledge base.

• Trigger: As each manifestation is entered into the system, nodes in the disease hier-

archy are “generated” (entered into consideration).

• Hypothesis generation: All possible manifestations and disorders are stored in the

knowledge base. A hypothesis (disorder) might be ruled out if further tests do not

produce outcomes predicted by the hypothesis.

• Criteria for “best”: The best explanation is parsimonious or irredundant.

Finin and Morris (1989) also explore set-covering abduction in comparison with IN-

TERNIST, MIDAS, and other approaches. They note that computing the best explanation

in the GSC framework is exponential in the worst case, since finding the best might require

evaluating all covering sets of disorders. The criteria for “best” might also be problematic.

They note that the GSC suffers from the “rare disease problem,” wherein the minimal cov-

ering explanation often posits a rare disease that explains all the symptoms. But, due to its

rarity, it is often not the true explanation. They write, “all of these approaches go as far as

their underlying theory will take them, and then use heuristics to carry on with differen-

tial diagnosis.” The GSC is capable of specifying what constitutes a covering explanation

but relies on heuristics to narrow down to the best (parsimonious) explanation. Heuristics

might also be needed to control the search for a covering explanation. Finin and Morris

state that it is important to have a solid underlying theory (such as set covering) but the

tricky part is finding the right heuristics to complete the abductive task.
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3.9 PEIRCE

Another variety of the set covering model of abduction, though significantly extended be-

yond GSC, is the PEIRCE system, named after C. S. Peirce who coined the term abduction.

The PEIRCE system (Josephson and Josephson, 1994, Ch. 4) decompiles various tasks of

abductive reasoning into a goal/subgoal architecture and allows definition of various meth-

ods that achieve particular subgoals. The top-level goal of finding the best explanation is

decompiled into three subgoals (quoted from Josephson and Josephson):

1. generation of a set of plausible hypotheses

2. construction of a compound explanation for all the findings

3. criticism and improvement of the compound explanation

Each of these goals may be solved by some method. A method for solving the goal

of “generation of a set of plausible hypotheses” might further break down the task into

subgoals of,

1. query knowledge base for hypotheses that can explain one or more findings

2. determine relationships, such as incompatibility, among the hypotheses

3. estimate the plausibility of each hypothesis

4. filter out very implausible hypotheses

Each of these subgoals presumably has a method to solve it, which might “bottom

out” into a particular action such as querying a database. Since several methods may be

applicable for solving a particular subgoal, PEIRCE uses a “sponsor-selector” mechanism
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for controlling method activation. Methods are grouped under “sponsors,” which exam-

ine the active subgoals and provide the set of applicable methods. Then “selectors” go

through this set and choose the most appropriate method(s) according to ratings provided

by the sponsors. This design allows knowledge engineers to focus on adding, removing,

and modifying sponsors, selectors, and methods independently without worrying about the

details of the larger system.

Our normal breakdown of abductive reasoning into explanation, trigger, hypothesis

generation, and criteria for “best,” do not apply to the PEIRCE system because PEIRCE

allows each of these factors to be multiply specified by various methods. Which method

is chosen at a particular time to solve a particular subgoal depends on the sponsors and

selectors. Thus, the PEIRCE system is much more general than the earlier systems we

have examined.

It is worth nothing that PEIRCE also includes a built-in control mechanism known as

“delay hard decisions.” When some sponsors give different methods equal or near-equal

ratings, i.e., different hypotheses seem equally plausible, then the system has encountered

a “hard decision.” Intuitively, arbitrarily choosing among equally good alternatives is not

a winning strategy in the long run. Rather, if the decision can be delayed and “serendipi-

tously” worked out by some other means (using Josephson and Josephson’s terminology),

then the hard decision can be avoided altogether. Such serendipity might come by finding

that some other, very plausible hypothesis is accepted to explain some other evidence but

happens to be incompatible with all but one of the hypotheses in the hard decision. The al-

ternatives in the hard decision are thereby rejected, rendering the decision trivial since only

one hypothesis remains. The hope is that by delaying hard decisions, more complete ex-

planatory coverage and a more plausible final composite explanation may be found without

resorting to a backtracking, try-all-combinations algorithm.
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3.10 PEIRCE-IGTT

We pointed out in Section 2.4 that finding the best complete explaining set for abduction

problems that involve pair-wise incompatibility relations is NP-hard. Yet, as Josephson

and Josephson (1994, Ch. 9) point out, abductive reasoning, as described early in Chap-

ter 2, is an intuitive and recognizable cognitive process of explaining evidence. By ab-

ductive reasoning, cognitive agents are able to reason from evidence to causes and acquire

evidence-based knowledge about the world. If this process is truly NP-hard, then it seems

impossible that cognitive agents are able to do it. Perhaps the goal is too strict. Joseph-

son and Josephson reformulate the problem as one of “maximizing explanatory coverage

consistent with maintaining a high standard of confidence” (op. cit.). They then extend the

PEIRCE system as a next-generation system known as PEIRCE-IGTT (Integrated Generic

Task Toolset) that realizes a computationally efficient process for solving this reformulated

problem.

The PEIRCE-IGTT system incorporates the EFLI strategy described earlier (Sec-

tion 2.8). It retains much of the generality of PEIRCE by supporting independent spec-

ification of various methods for achieving various subgoals. For each kind of subgoal, a

default method is defined, though the default may be overridden in certain circumstances.

The default is usually the most efficient way of solving the subgoal. For example, the EFLI

algorithm is the default method for assembling a composite explanation.

• Explanation: An explanation is a consistent composite of hypotheses that plausibly

explain the evidence.

• Trigger: After evidence is entered into the system, hypotheses are generated that

are able to explain some of the evidence. In a “layered” problem, in which some

hypotheses also require explanation should they be accepted, more hypotheses are
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generated when necessary. The presence of unexplained evidence triggers the ab-

duction machinery to find a best explanation.

• Hypothesis generation: The PEIRCE-IGTT system does not specify exactly how hy-

potheses are generated; rather, like the PEIRCE system, hypothesis generation is a

subgoal that is achieved by specialized methods appropriate for the particular prob-

lem domain. The IGTT component might provide assistance by supporting database

queries and hierarchical search among a knowledge base of cause–effect interactions.

• Criteria for “best”: The best composite explanation is defined as the one that is both

maximally covering but also highly plausible. These criteria are operational; they

guide the search process rather than evaluate the result. That is, the “best” composite

explanation is built rather than picked out from a set of all consistent composites.

Finding the set of all consistent composites is NP-hard (Section 2.4), so such a set is

never found in practice.

In PEIRCE-IGTT, the criteria for “best” is defined operationally rather than struc-

turally as in ALP, semantic tableaux, and similar approaches. It is difficult if not impossible

to examine a set of consistent composite explanations and pick out the one that PEIRCE-

IGTT would build. However, unlike the other systems we have examined, PEIRCE-IGTT

can claim a cognitive plausibility, primarily due to its tractability, but also its “argumenta-

tive force” as described in the beginning of Chapter 2.

3.11 Discussion

This review of prior work in abductive reasoning has addressed logic-based, Bayesian,

coherence-based, and set covering abduction. A more thorough account of the various ap-

proaches to abduction is given by Schurz (2008), and Section 8.8 of this work looks at
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Bayesian abduction in more detail. We saw that logic-based abduction over-emphasizes

the “reverse deduction” understanding of abductive reasoning and, critically, treats expla-

nation as entailment. We feel that on both accounts, logic-based abduction misses the

commonsense, everyday aspect of abduction. Coherence-based abduction is interesting in

its novelty but due to the very limited work in that area, we have chosen not to focus our

attention there. Rather, we have focused on set covering abduction and, in particular, the

PEIRCE-IGTT system. That system takes a distinctly pragmatic and computationally effi-

cient approach by changing the goal from “find a most-plausible complete and consistent

explanation” to “find a highly-plausible and complete or nearly-complete consistent expla-

nation,” and by utilizing the EFLI algorithm to accomplish this goal. Surely a different

abduction methodology, such as ALP or GCS, could be adapted to solve most if not all of

the problem domains that make up our experiments. The metareasoning strategy, which we

detail in the next chapter, would also have to change in order to reason about whatever par-

ticular base-level reasoning system is used. We do not know for certain how performance

would be impacted by such a change. However, we have good reason for adapting the

PEIRCE-IGTT approach, and this approach is utilized again in the self-similar abductive

metareasoning system.
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Chapter 4: Abductive metareasoning

The unanswered question from Chapter 2, in which we defined an abductive reasoning pro-

cess, was how can we detect and correct errors? The abductive reasoning process is not

perfect, partly because it is an efficient non-backtracking algorithm that does not neces-

sarily find the most complete, most plausible explaining set. But the abductive reasoning

process might also introduce errors because the problem domain might not provide suffi-

cient or accurately scored hypotheses. Nevertheless, are there ways to improve accuracy?

We propose abductive metareasoning as one such way.

Ground
Level

Object
Level

Action
Selection

Perception

Doing Reasoning

Figure 4.1. Action-perception cycle, after Cox and Raja (2011a).

Cox and Raja (2011a) depict action, perception, and reasoning as shown in Figure 4.1,

and extend it to include metareasoning as shown in Figure 4.2. The latter diagram illustrates

that metareasoning is another reasoning process that controls and monitors the base-level

reasoning process. This metareasoning process might monitor for inconsistencies, failures

to complete a reasoning task, or other signals of trouble. It might control the base-level

reasoner by updating a knowledge base, restarting the reasoning process with different
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parameters, etc.

Ground
Level

Object
Level

Meta-
Level

Action
Selection

Perception

Control

Monitoring

Doing Reasoning Metareasoning

Figure 4.2. Action-perception cycle with metareasoning, after Cox and Raja (2011a).

In this work, the base-level reasoning system is an abductive reasoning system. Fur-

thermore, the metareasoning system that we have designed is essentially a heuristic process

tasked with identifying signals of trouble specific to abductive reasoning. We have isolated

one such signal as the focus of this work. We take the presence of anomalies, i.e., reports

or beliefs that require explanation but cannot be explained, as a signal of a problem. Our

working hypothesis is that when anomalies are present, there is a good chance that the sys-

tem has introduced an error. However, anomalies do not imply errors. Noisy reports might

introduce anomalies, but noisy reports should not be explained and should remain anoma-

lous. Thus, part of the challenge of a metareasoning process is to determine if an anomaly

indicates errors, and where those errors exist in the doxastic state, or if the anomaly is due

to noise and not an indication of errors.

The metareasoning system monitors the doxastic state for the presence of anomalies,

and if they are found, reasons about the doxastic state and its anomalies. In some cases, the

metareasoning system will modify the doxastic state and return to the base-level reasoning

process. We modify the reasoning state diagram (Figure 2.2) to include the metareasoning

component, as seen in Figure 4.3.
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Anomaly detected;
metareasoning
finds a revision,

replaces anomalous
doxastic state;

reasoning continues
with new doxastic state

Figure 4.3. Metareasoning state diagram.

4.1 An abductive approach to metareasoning

We call anomalies those reports and other evidence that remain unexplained in a finalized

doxastic state. The system checks for their presence in the METAREASON function (Al-

gorithm 4.6), that is activated from the ABDUCE function (Algorithm 2.2). In some cases,

domain knowledge or background knowledge is insufficient, causing explanations not to be

generated for some true reports. However, in this work we assume that domain knowledge

is sufficient to generate true hypotheses for all true reports, assuming the current world

estimate is accurate. Under this assumption, in domains where all reports are guaranteed

to be true (noise-free conditions), anomalies are necessarily the result of errors. However,

in more realistic environments, not all unexplainable reports are true reports; some reports

might be unexplainable because they are noise and do not warrant any explanation. Part of
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the challenge of metareasoning is to identify which reports are unexplainable due to errors

in the doxastic state and which are due to false reports (and hence, not due to errors). The

metareasoning task can be construed as an abductive one by treating the anomalies as a

kind of meta-evidence that require explanation by meta-hypotheses, as produced by a vir-

tual problem domain Mmeta. Such a metareasoning system is able to use the same abductive

reasoning machinery employed by the base-level reasoner.

More specifically, an anomaly a may arise because,

1. no hypothesis was offered for a, or

2. all offered hypotheses were rejected due to,

a) incompatibility with previously-accepted hypotheses, or

b) not meeting the minimum plausibility requirement.

Note that if there do exist hypotheses that can explain a (but were necessarily rejected,

rendering a anomalous), each of these hypotheses was rejected for only one reason, but not

necessarily the same reason. Furthermore, if some rejected hypothesis is undecided (un-

rejected) and prevented from being rejected again for the same reason, then it might still

be rejected for another reason. For example, a low plausibility hypothesis might originally

be rejected for not meeting the minimum plausibility requirement, but if that condition

is reversed (the minimum plausibility requirement is ignored for this specific hypothesis;

see Section 4.2), it might next be rejected due to incompatibility. This suggests the need

for recursive metareasoning in which multiple diagnoses and repairs are attempted, when

necessary.

Note that an anomaly might have multiple possible causes. The abductive metareason-

ing system handles the following tasks. For each possible cause, a meta-hypothesis is gen-

erated, which specifies the cause, the revision, the subset of anomalies it is said to explain,
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and an estimated plausibility score. The meta-hypotheses are added to a meta-doxastic

state, and abductive reasoning commences, yielding a set of accepted meta-hypotheses.

The belief revisions that are specified by the accepted meta-hypotheses are applied to the

original doxastic state, which is then finalized (Definition 2.7.2; see also the FINALIZE

function Algorithm 2.2). If any anomalies remain (or new anomalies appear), metarea-

soning is activated again on the new doxastic state. Care is taken not to generate meta-

hypotheses that have already been evaluated. This ensures that the procedure halts, al-

though we do not provide a proof here.

The following sections detail the possible causes of anomalies and their corresponding

belief revisions. Let D be a doxastic state, A= ANOMALIES(D), i.e., the set of anomalies in

D, and HA =
⋃

h∈A HYPOTHESES(D,h), i.e., the set of possible explanations of anomalies

(if any exist). That is, HA are possible explanations of the anomalies, but not possible

explanations of their anomalous status (which is the role of meta-hypotheses). Note that

each h ∈ HA is necessarily rejected in D.

4.2 Implausible hypotheses

Some reports may be anomalous due to the rejection of one or more implausible hypothe-

ses. Figure 4.4 shows an example scenario as an explanation graph. These rejected hy-

potheses are characterized by,

HP = {h|h ∈ HA∧Pl(h)< η},

where Pl is the plausibility function of D and η is the minimum plausibility threshold.

The IMPLHYPCANDIDATES function finds this set HP (Algorithm 4.1). Unrejecting one

or more of these implausible hypotheses, thus possibly allowing their acceptance, might

eliminate some anomalies. This revision is given by REVISEIMPLHYP (Algorithm 4.2).
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Figure 4.4. Example of an anomaly caused by implausible hypotheses.

For each h ∈ HP, the metareasoning system hypothesizes that the rejection of h is respon-

sible for some reports having no explanation.

Algorithm 4.1 Function that finds candidates for MetaImplHyp meta-hypothesis.
function IMPLHYPCANDIDATES(D)

A← ANOMALIES(D)
HA←

⋃
h∈A EXPLAINS(D,h) . Known explainers of the anomalies

HP←{h|h ∈ HA∧Pl(h)< η}
return HP

end function

Algorithm 4.2 Revision function for the MetaImplHyp meta-hypothesis.
function REVISEIMPLHYP(D0, h)

D1← UNDECIDE(D0,{h})
return D1

end function

4.3 Incompatible hypotheses

Some reports may be anomalous due to some of the hypotheses being rejected upon the

acceptance of other hypotheses. Figure 4.5 shows an example scenario as an explanation
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Figure 4.5. Example of an anomaly caused by incompatible hypotheses.

graph. Let,

HI = {h|h ∈ ACCEPTED(D)∧ INCOMPATIBLE(D,h)∩HA 6= /0}.

The set HA contains all possible explanations of the anomalies. The set HI contains ac-

cepted hypotheses that are incompatible with members of HA. An accepted hypothesis

h∈HI may have been responsible for rejecting some possible explanations of some anoma-

lies; thus, if the status of h is changed to undecided and then rejected (to prevent it from

being accepted again), some anomalies might be eliminated. The INCOMPATHYPCANDI-

DATES function (Algorithm 4.3) finds this set HI . For each h ∈ HI , we hypothesize that

the acceptance of h is responsible for some reports having no explanation. This revision is

given by REVISEINCOMPATHYP (Algorithm 4.4).

4.4 Order dependency

The final possible cause of an anomaly is that no hypotheses were ever offered. We suppose

that the GENERATEHYPOTHESES function is defined to generate only those hypotheses

that are consistent with the current doxastic state. Thus, if some of the accepted hypotheses
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Algorithm 4.3 Function that finds candidates for MetaIncompatHyp meta-hypothesis.
function INCOMPATHYPCANDIDATES(D)

A← ANOMALIES(D)
HA←

⋃
h∈A EXPLAINS(D,h) . Known explainers of the anomalies

HI ←{h|INCOMPATIBLE(D,h)∩HA 6= /0} . Hypotheses incompatible with HA
HC← HI ∩ACCEPTED(D) . Incompatible hypotheses that were accepted
return HC

end function

Algorithm 4.4 Revision function for the MetaIncompatHyp meta-hypothesis.
function REVISEINCOMPATHYP(D0, h)

D1← UNDECIDE(D0,{h})
D2← REJECT(D1,{h})
return D2

end function

in the doxastic state (which were accepted to explain earlier reports) are false and incom-

patible with true explainers of the anomaly, then the GENERATEHYPOTHESES function

will not generate hypotheses for these reports. Figure 4.6 shows an example scenario as an

explanation graph with a “decision boundary” (i.e., the period beliefs were formed by way

of abductive reasoning between calls to GENERATEHYPOTHESES). The ORDERDEPCAN-

DIDATES function (Algorithm 4.5) finds the subset AO of anomalies that have no known

explainers.

The order dependency meta-hypothesis suggests that one or more anomalies have no

possible explanations because prior accepted hypotheses were in error, and that they should

be reconsidered in light of recently-obtained reports. In other words, the anomalies are the

result of the particular order in which the reports were obtained. The revision involves

identifying a previous doxastic state to revert to (and thereby erasing recently generated

and accepted hypotheses), then injecting recent reports, generating new hypotheses (given

the less committed doxastic state and more reports), and finalizing the doxastic state. It is

not clear, at the time of this writing, how far back the doxastic state must be reverted. In the

experiments detailed later, the system reverts to the doxastic state immediately preceding
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Figure 4.6. Example of an anomaly caused by an order dependency.

the introduction of the reports that ultimately proved to be anomalous.

Algorithm 4.5 Function that finds candidates for MetaOrderDep meta-hypothesis.
function ORDERDEPCANDIDATES(D)

A← ANOMALIES(D)
AO←{a|a ∈ A∧EXPLAINS(D,a) = /0} . Anomalies with no known explainers
return AO

end function

4.5 Plausibility estimate for meta-hypotheses

In each case, the plausibility of a meta-hypothesis h is estimated to be the average plausi-

bility of the anomalies it explains, which we refer to as the set Ah ⊆ A. Hence,

Pl(h) = ∑
a∈Ah

Pl(a)/‖Ah‖.

The intuitive support for this plausibility estimate is as follows.

• As detailed above, each of the three kinds of meta-hypotheses are only offered as pos-

sible explanations of anomalies when they are deemed applicable according to cri-

teria that are specific to each kind of meta-hypothesis. For example, an Implausible
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Hypotheses meta-hypothesis is only offered when an anomaly has possible explana-

tions but they were rejected due to implausibility. Thus, it is not unreasonable to de-

fine a singular plausibility estimate function for all of the kinds of meta-hypotheses.

• It is more likely that an anomaly is true, and warrants an explanation, if it is plausible.

This is because the plausibility estimate (which is specific to a domain) for reports

and hypotheses generally scores true reports and hypotheses higher than false ones.

If this is not true, then (1) the EFLI algorithm would likely produce poor results,

and (2) a different plausibility estimate would be needed for meta-hypotheses. It is

unclear, however, how such a plausibility estimate could be devised.

Experiments specific to each domain will show that abductive metareasoning still works

reasonably well even if all anomalous reports have plausibility equal to 1.0. In this case,

all meta-hypotheses that explain anomalous reports (as opposed to anomalous beliefs) also

have a plausibility equal to 1.0, and thus cannot compete according to their plausibility, but

only according to whether they can explain.

We have also experimented with a variety of more sophisticated plausibility functions

for meta-hypotheses. Our experience is that these more sophisticated plausibility functions

do not offer a significant advantage or disadvantage over the common plausibility estimate

we described above.

4.6 Noise detection

Not all anomalies should trigger belief revisions. Some reports might be unexplainable

because they are false, i.e., noisy reports. Though some of these noisy reports might be

explainable by accepting implausible but false hypotheses, for example, the correct action

is to reject the anomalous reports so that they are no longer considered unexplained ev-

idence. This is achieved by treating the noise hypothesis as a fallback meta-explanation
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when no other meta-hypothesis is sufficiently plausible. We find that a minimum plausibil-

ity threshold for abductive metareasoning, ηmeta, is effective for filtering out implausible

meta-hypotheses. Anomalies that remain unexplained at the end of an experiment (regard-

less of whether metareasoning was activated or not) are judged to be noise. Our domain-

specific experiments (Chapters 6, 7, and 8) measure the precision and recall of such noise

judgments.

4.7 Metareasoning algorithm

Algorithm 4.6 details the recursive abductive metareasoning procedure. This function is

called at the end of the ABDUCE function (Algorithm 2.2); the METAREASON function

likewise calls the ABDUCE function (but sets a flag to prevent this second call to AB-

DUCE from calling METAREASON yet again; the possibility of meta-metareasoning is ad-

dressed in Section 10.6). Note that most of the work of this algorithm is constructing a

meta-doxastic state and calling the abductive reasoning procedure. The simplicity of the

algorithm illustrates the power of a self-similar reasoning/metareasoning system.

4.8 Completeness of the meta-hypotheses

The three kinds of meta-hypotheses detailed above, MetaImplHyp, MetaIncompatHyp, and

MetaOrderDep, describe the only possible causes of anomalies in the abductive reasoning

system. Recall that an anomaly is an unexplainable report or belief. Let a be some anomaly.

Then according to the general abductive reasoning algorithms (Algorithm 2.2), a remains

unexplained in the finalized doxastic state due to one of the following reasons:

1. There is no hypothesis in the doxastic state that could explain a. (MetaOrderDep

looks for these cases.)
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Algorithm 4.6 Abductive metareasoning algorithm.
function METAREASON((H,X ,Pl,S,V, I))

D0← (H,X ,Pl,S,V, I)
A← ANOMALIES(D0) . Find any anomalies
if A = /0 then . If there are no anomalies, we can stop here

return D0
else

Smeta←{(h,Accepted)|h ∈ A} . Accept (as “reports”) all anomalies
Plmeta←{(h,Pl(h))|h ∈ A} . Keep the anomalies’ original plausibilities
Dmeta← (A, /0,Plmeta,Smeta,A, /0) . Create a dox. state with just the anomalies
D′meta← ABDUCE(Mmeta,Dmeta,ηmeta, false) . Perform abduction (Alg. 2.2)
Haccepted← ACCEPTED(D′meta)
if Haccepted = /0 then . No meta-hypotheses were accepted

return D0 . Return the original doxastic state
else

D1← APPLYREVISIONS(D0,Haccepted) . Refer to the three functions below
D2← FINALIZE(D1)
if ANOMALIES(D2) = /0 then . Are all anomalies resolved?

return D2
else

D3←METAREASON(D2) . Find new hyps. for remaining anomalies
return D3

end if
end if

end if
end function

2. There is a hypothesis in the doxastic state that could explain a, but it was rejected.

(MetaImplHyp and MetaIncompatHyp look for these cases.)

There is no other possible reason why a remains unexplained in a finalized doxastic

state. Furthermore, the only reason a hypothesis may be rejected is that either it is too im-

plausible (which MetaImplHyp handles) or it is incompatible with an accepted hypothesis

(which MetaIncompatHyp handles). Note that these contingencies are unrelated to EFLI.

The EFLI algorithm might leave a report or belief unexplained because no hypothesis is

sufficiently decisive, but such unexplained reports and beliefs are not considered anoma-
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Figure 4.7. The report Ev 1 is an anomaly with multiple causes. Assume η > 0.1, so
Hyp 1 was rejected originally due to low plausibility. No single meta-hypothesis is able to
repair the anomaly.

lous. Thus, abductive metareasoning as defined is not specific to EFLI, but it is specific to

the general abductive reasoning algorithms outlined earlier.

Therefore, MetaImplHyp, MetaIncompatHyp, and MetaOrderDep are the only meta-

hypotheses needed in order to perform abductive metareasoning. However, an anomaly

might have multiple causes in such a way that no single meta-hypothesis is able to repair

it. An example is shown in Figure 4.7, where the report Ev 1 is anomalous due to both Hyp

1 being rejected for minimum plausibility and Hyp 1 being rejected due to incompatibility

with Hyp 2. Of course, a hypothesis is never rejected twice during abductive reasoning,

but neither MetaImplHyp nor MetaIncompatHyp can, on their own, repair this anomaly.

Rather, both repairs must be applied (Hyp 2 must be rejected and Hyp 1 prevented from

being rejected due to implausibility).

The abductive metareasoning procedure detailed in Algorithm 4.6 will work as follows

on the case shown in Figure 4.7:

1. Two meta-hypotheses will be generated to explain the anomaly Ev 1: (1) a MetaIm-
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plHyp meta-hypothesis that posits that Hyp 1 was rejected due to low plausibility,

and (2) a MetaIncompatHyp meta-hypothesis that posits that Hyp 1 was rejected

due to the acceptance of Hyp 2. Both of these meta-hypotheses will have the same

plausibility (since they both explain the same anomaly).

2. If δmeta > 0, then neither of these two meta-hypotheses will be accepted to explain

Ev 1 because neither stands out as decisive (they have the same plausibility). This

seems reasonable since there is no single best way to repair the anomaly. However,

if δmeta = 0, then the system will arbitrarily choose to accept one of these meta-

hypotheses.

3. Suppose the MetaImplHyp meta-hypothesis is accepted. Then Hyp 1 will be un-

decided and abductive reasoning will be activated again. However, Hyp 1 will be

immediately rejected again because it conflicts with the accepted hypothesis Hyp 2.

So Ev 1 remains anomalous, and metareasoning will be activated again. Due to a

special check in the code, the MetaImplHyp hypothesis will not be generated again,

leaving only the MetaIncompatHyp. This brings us to the next case below.

4. Suppose the MetaIncompatHyp meta-hypothesis is accepted. Then Hyp 2 will be

undecided and then rejected. But Hyp 1 will remain rejected because of low plausi-

bility. Thus Ev 1 remains anomalous, and metareasoning will be activated again.

The anomaly ultimately may be explained if Hyp 2 is rejected first, freeing Hyp 1 to

explain. Hyp 1 will still be rejected due to implausibility. Then on the second execution of

metareasoning, Hyp 1 may be unrejected, and finally accepted. So abductive metareasoning

may be able to resolve cases where anomalies have multiple causes. But what is missing

is a distinct control strategy to ensure these kinds of cases are handled properly. We have

noted this missing functionality and hope to address it in future work.
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4.9 Performance expectations

The metareasoning system we have detailed has access to all the same information (reports,

hypotheses) as the base-level reasoner. The metareasoning system is not able to request

more information from the outside world or from other agents. However, the metareason-

ing system does differ from the base-level system in one important way: it has access to

the complete history of the base-level reasoning system’s decisions and alternative choices.

The base-level reasoner was explicitly designed to be a greedy, non-backtracking process

that efficiently arrived at a plausible, complete or nearly-complete explanation of the ev-

idence. However, as we have seen, it might fail to explain all the evidence, i.e., it might

leave some evidence anomalous. The metareasoning system responds to the anomalies

and attempts to explain and thereby resolve them. It does so only by examining the ex-

isting reports and hypotheses, as well as the history of the base-level reasoning system’s

decisions.

It is important to note that, because the metareasoning system does not have access

to external sources of information, we should not hold an expectation that the metareason-

ing system is able to correct all errors, correctly repair all anomalies, and/or identify all

noise. The metareasoning system relies on the availability of the true hypotheses and the

correctness of plausibility estimates. If the true hypotheses are not available or plausibil-

ity estimates have little relation to truth, then there is not much metareasoning can do to

find explainers for the anomalies. Rather, the metareasoning system operates best when

the problem domain provides mostly “reasonable” hypotheses and plausibility estimates.

Abductive reasoning and abductive metareasoning both rely on a certain (but impossible to

define) reasonableness of the problem domain since they codify intuitive “sense-making”

arguments of the form illustrated at the beginning of Chapter 2. If, for example, false

hypotheses, provided by the GENERATEHYPOTHESES function, are consistently scored
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more “plausible” than true hypotheses, then the abductive argument which says that more

“plausible” hypotheses are more likely to be true fails in this case.

For each of the three kinds of meta-hypotheses, we can identify the conditions when

metareasoning will make the correct revision to the doxastic state. We are assuming for

the moment that only a single kind of meta-hypothesis is considered; interactions among

meta-hypotheses make the analysis significantly more difficult. In the following analysis,

we assume δ = δmeta = 0.

MetaImplHyp meta-hypotheses

In order for a MetaImplHyp meta-hypothesis to correctly revise a doxastic state, several

conditions must be met.

• There is some true report or unexplained belief a.

• Some true hypothesis h, which can explain a, has low plausibility: Pl(h)< η . Thus,

h is rejected. For simplicity, we will assume h is capable of explaining only a.

• Every other hypothesis that can explain a is rejected. Thus, a is an anomaly.

• Let hmeta be the MetaImplHyp meta-hypothesis that posits that h is true and should

be accepted to explain a. Then for hmeta to be accepted, it must be the case that

Pl(hmeta) = Pl(a) ≥ ηmeta. For simplicity, assume no other meta-hypothesis com-

petes to explain the anomaly a.

If all of these conditions are met, then abductive metareasoning will correctly revise

the doxastic state by accepting h even though the base-level reasoning system considered h

to be too implausible. If any one of the conditions is not met, then abductive metareasoning

will either not make the right revision, no meta-hypothesis will be accepted to explain a, or

there will be no anomaly caused by a rejection due to the minimum plausibility threshold.
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MetaIncompatHyp meta-hypotheses

In order for a MetaIncompatHyp meta-hypothesis to correctly revise a doxastic state, the

following conditions must be met.

• There is some true report or unexplained belief a.

• hT is the true explainer of a and was generated by GENERATEHYPOTHESES.

• Some false hypothesis hF is incompatible with hT but was accepted, and hence re-

jected hT . Furthermore, hF does not explain a.

• Let hmeta be the MetaIncompatHyp meta-hypothesis that posits that hT is true, hF is

false, and hF should be rejected (thus possibly allowing hT to be accepted in order

to explain a). It must also be the case that Pl(hmeta) = Pl(a)> ηmeta. For simplicity,

assume no other meta-hypothesis competes to explain the anomaly a.

Note that hF must have been accepted in the same time step as hT was hypothesized.

While it is possible that hF was known from a previous call to GENERATEHYPOTHESES

before hT was hypothesized, it could not have been accepted before hT was hypothesized

because GENERATEHYPOTHESES is required only to generate those hypotheses (including

hT ) that are compatible with the current doxastic state (which therefore cannot include hF

as a belief).

MetaOrderDep meta-hypotheses

In order for a MetaOrderDep meta-hypothesis to correctly revise a doxastic state, it must

be the case that some report or unexplained belief a has no known explainer. In other

words, GENERATEHYPOTHESES yielded no hypotheses that can explain a. This may occur

for one of two reasons: (1) there really is no possible explanation for a, regardless of
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the current doxastic state, or (2) existing beliefs in the current doxastic state preclude all

possible explanations of a. If the first case is true, then taking back recent decisions and

generating new hypotheses will not make any difference (at least for explaining a). On the

other hand, if the second case is true, then there is no other possible fix except by calling

GENERATEHYPOTHESES with a less committed doxastic state.

MetaOrderDep meta-hypotheses are generated only to explain anomalies that have no

known explainers. If a MetaOrderDep meta-hypothesis is accepted (which requires that

Pl(a) ≥ ηmeta, as usual), then some prior (less committed) doxastic state will replace the

current doxastic state, recent reports will be added to the older doxastic state, and new

hypotheses will be generated. Note that all beliefs acquired and all revisions applied since

the prior doxastic state will be lost. In this way, a MetaOrderDep meta-hypothesis might

“undo” recent revisions from recent applications of metareasoning. After the prior doxastic

state is brought up to date, if any anomalies remain, metareasoning will be activated again.

It is possible that some of the same revisions that were undone will be applied again.

4.10 Self-similar metareasoning

The base-level abductive reasoning system and meta-level abductive metareasoning system

both utilize the same reasoning process and, indeed, the same code in our experimental

software. We feel that this is a good software architecture because common functionality

is shared rather than duplicated in different system modules. This is shown in Figure 4.8.

We also believe this architecture to be cognitively plausible. Since everyday commonsense

reasoning seems to involve both abductive reasoning and abductive metareasoning, we find

it plausible that a common abductive reasoning process is employed for both kinds of

reasoning behavior.

It seems clear that metacognition, i.e., the act of reflecting on the entire cognitive cycle
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Figure 4.8. Action-perception cycle with abductive metareasoning, after Cox and Raja
(2011a). Both the object level and meta-level components use abductive reasoning.

(Figure 1.1), involves at least making sense of one’s beliefs and how they were acquired,

the successes and failures of one’s plans and actions, and so on. Metareasoning, as part

of metacognition, therefore involves at least a kind of abductive reasoning, regardless of

the nature of the base-level reasoning system (i.e., regardless of whether it is abductive or

not). In this work, we have focused solely on making sense of the “making sense” phase

of cognition rather than making sense of the entire cognition cycle. Our metareasoning

system likewise responds to failures to make sense.

4.11 Conclusions

In this chapter, we introduced a domain-separable abductive metareasoning system that

monitors and controls the base-level abductive reasoning system, and thereby is capable

of belief revision and noise detection. Both the base-level and meta-level reasoning sys-

tems utilize the same abductive reasoning machinery (algorithms and code); in this way,

the two levels are self-similar, which we have argued is a cognitively plausible architecture
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for artificial cognitive systems. The metareasoning system monitors for the presence of

anomalies, i.e., unexplainable reports and beliefs, in the base-level reasoner. Being abduc-

tive, the metareasoner treats these anomalies as meta-evidence. Possible explanations of

the evidence are generated; these are called meta-hypotheses. Meta-hypotheses come in

three types: MetaImplHyp, MetaIncompatHyp, and MetaOrderDep. Each type attempts to

explain a specific kind of anomaly, and specifies a particular belief revision (in the cases of

MetaImplHyp and MetaIncompatHyp) or specifies that a whole slew of recently acquired

beliefs need to be retracted, at least temporarily, and new hypotheses need to be gener-

ated (in the case of MetaOrderDep). Normal abductive reasoning is applied to find the

best meta-hypotheses to explain the meta-evidence, and if any such meta-hypotheses are

accepted, their corresponding belief revisions or retractions are applied. Metareasoning is

iterative, so should any anomalies remain, the process repeats, until no anomalies remain

or there are no good meta-hypotheses. Any anomalies that remain at the end of this process

are labeled “noise.” Thus, noise detection is kind of a “fall back” explanation.

Abductive metareasoning brings added value to the base-level abductive reasoning

system for a few reasons:

• Reasoning from existing beliefs, rather than starting with a blank doxastic state at ev-

ery time step, is obviously more efficient. However, this strategy might be a source of

mistakes. For example, a moving object might be mistracked through a low-visibility

region, but the cognitive system might not be able to realize this error until much

later. If the object is eventually reported at a different location than expected, this

report might not be explainable, since existing beliefs indicate such a report is im-

possible (or noise). In other words, sometimes ambiguous reports may disambiguate

at a later time when more evidence is available. The MetaOrderDep meta-hypothesis

is able to handle these cases.
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• Efficient abductive reasoning requires avoiding the generation of all possible consis-

tent explaining sets. We have developed a greedy, hill-climbing abductive reasoning

algorithm to ensure efficient reasoning. Experiments detailed later indicate that this

is a good approach; however, it might fail to find a complete explaining set, render-

ing some evidence anomalous. Metareasoning might be able to repair the deficient

explaining set by taking back incompatible hypothesis as suggested by the MetaIn-

compatHyp meta-hypothesis.

• As will be shown experimentally, noise detection is enhanced with metareasoning.

Without abductive metareasoning, all anomalous reports are considered to be noisy

reports. With abductive metareasoning, the correct explanation might be found for

true reports so that anomalies that still remain after metareasoning are more likely to

be actual noise.

Even though metareasoning adds value, the combined abductive reasoning and ab-

ductive metareasoning system is still just one cognitive system. Labeling one aspect of its

reasoning process as a “meta” process is almost just a matter of semantics. However, the

same could be said of all software architecture: though a software system may be designed

and implemented in terms of complex class/type hierarchies and interfaces, the end product

is still just one compiled sequence of instructions. But, as every software engineer knows,

architecture matters both for efficiently implementing a system that meets specifications

and, more importantly for our purposes, understanding the system’s behavior. We have

explicitly designed a two-level abductive reasoning architecture in order to identify exactly

what capabilities metareasoning provides beyond the base-level reasoner.
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Chapter 5: Prior work in metareasoning

The ideas of metareasoning, meta-level knowledge, meta-rules, and so on have been ex-

plored for much of the history of the field of Artificial Intelligence. After all, as soon as one

designs and implements a system that encodes and reasons with expert knowledge (i.e., an

expert system), one naturally thinks about better, more flexible ways to represent and uti-

lize this knowledge. Davis and Buchanan (1984) illustrate meta-level knowledge with four

examples from the TEIRESIAS expert system (Davis, 1976). They show how schemata

and templates for knowledge representation and meta-rules for control of how knowledge

is used give the system greater flexibility and self-reflection capabilities. These features

are useful for, e.g., the system to perform self-diagnosis by finding out that it is missing

necessary facts or rules to answer a query. They argue that meta-knowledge may also be

used to support knowledge transfer between the expert system and the expert who is trying

to use and improve the system. If the system is able to explain how it arrives at a conclu-

sion, or that it is missing key information to complete a task, then it can communicate this

information to the expert user. The user can add new rules or facts, and the system can then

explain back to the user how it interprets this new information, e.g., how this new infor-

mation would impact existing rules and how it might place this information in particular

schemata or templates, etc.

Genesereth (1983) identifies the meta-level of system design as the level that controls

base-level actions. For example, the base-level actions for a robot arm include grabbing,

dropping, moving, etc. Meta-level control is essentially the program that decides what the

robot arm is supposed to do. He gives examples of meta-level architecture from a variety of
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high-level tasks. For example, he describes how one can write meta-level rules to control

search (e.g., changing from depth-first to breadth-first search under certain circumstances).

He also illustrates how planning systems operate at the meta-level since they arrange a

sequence of base-level actions. Genesereth’s distinction between base-level and meta-level

is interesting because it shows how pervasive meta-level can be if one is “looking for it.”

Even commands to a robot arm, such as grab(ball), may be considered at the meta-level

if the base-level is equated with the actual sequence of primitive motor actions necessary

to grab the ball. Explicitly identifying base- and meta-level features of a larger system

architecture is a matter of pragmatics, not essentialness. There is nothing explicitly meta

about a search algorithm, for example, but it might be used in a meta context, such as

searching for the next applicable operator in a planning task. It is important to keep in

mind that metareasoning, meta-knowledge, and so on, are distinctions made in context;

there must be some kind of base-reasoning, base-knowledge, and so on to differentiate it

from meta versions of the same, and to be the subject of meta-level concerns.

Metareasoning has enjoyed renewed interest since the work of the 1970’s and 1980’s.

Some of this work may be found in a recent volume edited by Cox and Raja (2011b). Good

summaries of metareasoning, or metacognition in general, include reviews by Cox (2005)

and Anderson and Oates (2007). These reviews show that metacognition may be found in

mathematics, psychology, artificial intelligence, and philosophy. Its varieties are too broad

and numerous to cover here, but we note that metacognition and metareasoning are not

only of interest to artificial intelligence researchers.

The remainder of this review of prior work in metareasoning is divided into two parts.

The first addresses anomaly-driven metareasoning found in various cognitive systems and

cognitive architectures. The second part gives an overview of belief revision, or what we

have called previously strict belief revision (to differentiate it from Bayesian belief revi-

sion). Belief revision has primarily been studied in logical terms rather than computational
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terms. Nevertheless, our abductive metareasoning system realizes a kind of belief revision,

and the purpose of our review of belief revision is to compare and contrast our approach

with those from the traditional logical approaches.

5.1 Anomaly-driven metareasoning

An early example of anomaly-driven metareasoning was developed by Karp (1989). That

system responds to unexplained experimental outcomes, i.e., prediction failures, by design-

ing modifications to the theory that, when applied, produce a theory that is able to predict

the observed outcome. Much more recently, Bridewell (2004) has described a system with

a similar goal. Bridewell’s work maintains the assumption that reports from the world are

noise-free. Karp’s method, on the other hand, might simply fail to produce an acceptable

theory revision. In this sense, it is similar to how abductive metareasoning decides whether

or not a report is noisy.

Abductive metareasoning was investigated experimentally by Bharathan (2010). How-

ever, the metareasoning facility in that work does not utilize the same machinery as its

base-level reasoner, and is somewhat ad hoc in its design. Additionally, the system only

considers order dependency meta-hypotheses and does not attempt to detect noise. They

experimented with a single simulated object tracking domain example, which leaves unan-

swered the question of whether their approach is domain-general.

The Meta-Cognitive Loop (MCL) from Schmill et al. (2011) shares similarities with

the present work. The MCL is a component that attaches to a host reasoning system and is

informed by the host system about possible actions and expectations regarding the results

of those actions. Then, in situ, the MCL component monitors the host system’s actions

and detects expectation violations, which are called anomalies. Causes of the anomalies,

and appropriate responses, are determined by consulting domain-general ontologies, rep-
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resented as Bayesian networks. The present work differs from the MCL component in

that, in abductive metareasoning, the variety of possible causes of anomalies is signifi-

cantly smaller than those represented in MCL’s ontologies. The likelihood of each kind

of anomaly must be learned in MCL, while in the present work, the plausibility of meta-

hypotheses are estimated according to domain-general features. Additionally, abductive

metareasoning detects noise by way of a generic fallback meta-explanation rather than

domain-specific noise detectors.

Another metareasoning system that responds to anomalies, or expectation failures,

is Meta-AQUA (Cox and Ram, 1999). AQUA (Ram, 1991), which stands for “Asking

Questions and Understanding Answers,” is a question-driven story understanding program.

This means that it formulates questions about the story and then reads the story to find

answers. In this way, it builds a causal and motivational model of events and actors in

the story. Interestingly, AQUA would reread a story differently than it read it the first

time since, on the second reading, it has some existing model of the story and therefore

different questions. Meta-AQUA extends AQUA by monitoring for expectation failures.

For example, if AQUA reads a story and predicts that X caused Y , but then later reads that

in fact X never occurred, then Meta-AQUA notices the expectation failure and attempts

to explain it. The metareasoning system obtains a trace of AQUA reasoning that led to

the failure. The metareasoner of Meta-AQUA is a case-based reasoning system. As such,

it attempts to find a similar case of expectation failure found in the reasoning trace. The

result is a set of learning goals that are processed by a nonlinear planner to find a learning

plan that ultimately updates the base-level reasoner’s model of the story and resolves the

anomaly.

Cox et al. (2011) have begun work integrating the MCL and Meta-AQUA architec-

tures into a Metacognitive Integrated Dual-Cycle Architecture (MIDCA). The purpose of

MIDCA is to address the shortcomings in MCL and Meta-AQUA. In the case of MCL, it
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“has a weak model of perception and no model of high-level understanding and interpre-

tation” (Cox et al., 2011). On the other hand, Meta-AQUA “is essentially a disembodied

agent, lacking a model of action and personal agency.” Furthermore,

[. . . ] neither MCL nor Meta-AQUA has an explicit model of self. The systems

do not have a model of the contents of their background knowledge for ex-

ample, and thus they cannot answer questions such as what kinds of tasks are

they expert at. They have no feelings of confidence as they perform a cognitive

task, and thus they cannot decide whether or not they are getting close to an

answer (Cox et al., 2011).

Their solution is a new architecture “that addresses metacognition from the start.” Though

preliminary at the time of writing, the MIDCA architecture is designed to support two kinds

of meta-level influence: (1) the meta-level can act as an “executive” that decides when to

switch between cognitive processes (planning, acting, etc.), when to change goal priorities,

and how to distribute resources between cognitive processes; and (2) the meta-level can

change the representations used for reasoning as well as object-level goals, strategies, and

knowledge (i.e., instigate learning).

It is clear that Meta-AQUA and MIDCA are larger, more inclusive metacognitive ar-

chitectures than the architecture we have proposed (Figure 2.9). We are not attempting to

address as broad a range of meta-level issues as the authors of those systems. Rather, we

are focused narrowly on the design and utility of an abductive metareasoning system that

is designed to work exclusively on a self-similar base-level abductive reasoning system.

To our knowledge, no other prior work has investigated self-similar metareasoning, and

only Bharathan (2010) has looked at abductive metareasoning. Furthermore, the present

work appears to be unique in its experimental methodology. We experimentally evaluate

our system in a variety of domains, without modifying any code of the reasoning or metar-
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easoning components. Furthermore, our experimental analysis allows us to isolate exactly

which features of the overall system are contributing to observed performance.

5.2 Belief revision as metareasoning

The term belief revision is often used to refer to what we describe as logical or strict belief

revision. In this case, an agent holds a consistent and possibly infinite set of propositional

beliefs. Suppose p, p→ q, and q are some of these beliefs. Now, if the agent learns ¬q is

the case, then the question is which beliefs should be taken back (contracted), and which

beliefs should remain? Philosophers have come up with a variety of desiderata for belief

revision. For example, the agent should hold on to as many beliefs as possible and only

contract those necessary to accommodate the new belief. In our example, to accommodate

¬q, either p or p→ q must be contracted. But unrelated beliefs should remain. We see this

question, “which beliefs to contract?” as a meta-level question, and as such consider it to

involve a kind of metareasoning. Chapter 1 explained how the present work differs from

strict belief revision. The remainder of this section provides some details about strict belief

revision and further points of comparison. Note that henceforth we will drop the modifier

“strict” when referring to strict belief revision.

Several frameworks for belief revision (Alchourrón et al., 1985; Darwiche and Pearl,

1997; Jin and Thielscher, 2007; Williams, 1995, 1997) satisfy certain desiderata concern-

ing ideal belief revisions, known as “the AGM postulates” from Alchourrón, Gärdenfors,

and Makinson (1985). These frameworks represent an agent’s doxastic state as a belief

set (a closed theory) plus an entrenchment ordering on those beliefs (a belief µ is more

entrenched than a belief ψ if the agent is more willing to give up ψ than µ , all else being

equal). The AGM postulates cover the three types of belief change: expansion (adding a

belief without taking any beliefs away), contraction (taking away beliefs without adding
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any), and revision (adding and taking away beliefs). An expansion, contraction, or revi-

sion operation always occurs with respect to some input µ; thus, we say that a belief set is

revised (or expanded or contracted) by µ . The belief set that results is unique, so the opera-

tions (expansion/contraction/revision) can be thought of as functions, with domain equal to

the Cartesian product of the universes of doxastic states and propositions and range equal

to the universe of doxastic states. If a belief revision framework satisfies the AGM postu-

lates, then the Levi identity (Gärdenfors, 1981; Levi, 1977) holds that any revision can be

modeled as a contraction followed by an expansion; thus, any of the three operations can be

constructed from the other two. Revision is the most interesting case, since it may involve

both adding and taking away beliefs, so we will only review the postulates for revision.

We will only present summaries of the postulates most relevant for this discussion.

The presentation that follows should not be considered formal.

AGM-1. Revising a doxastic state with an input yields another doxastic state.

AGM-2. The doxastic state resulting from revision with µ has it that µ is believed. Note,

this can get complicated if the prior doxastic state disbelieves µ (believes ¬µ). In

order to believe µ , the causes for belief in µ (e.g., believing both φ and φ → µ) must

be taken away.

AGM-3. The resulting doxastic state must be consistent, unless the input µ that the dox-

astic state was revised with is itself inconsistent.

Because a revision with µ might require taking away some beliefs (if those belies im-

ply ¬µ), the entrenchment ordering among beliefs may be consulted to determine which

beliefs to remove. If the agent simply forgets everything it believed previously, and only

believes µ when it learns µ (and whatever is logically implied by µ), the revision would

technically satisfy the AGM postulates. But of course, this is belief revision of the most
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useless sort; clearly some kind of minimal revision is desired, wherein the agent keeps any

beliefs that are not related to or at least not incompatible with µ . Various researchers have

devised entrenchment relations and revision functions with the goal of producing mini-

mal revisions (it turns out that an entrenchment relation uniquely determines the revision

function).

However, Tennant (2006) proved that the AGM postulates are fatally deficient as ra-

tionality postulates for belief revision. Tennant demonstrates that a revision function can

be constructed such that the revision produces any “bizarre” belief set one wishes. Thus,

the AGM postulates are not a gold standard for belief revision frameworks.

Darwiche and Pearl (1997) have provided additional postulates that attempt to ensure

more rational revision for sequences of inputs, one presented after the other, with revisions

possibly occurring after each input. Their additional postulates are intended to ensure that

the entrenchment relations among beliefs are not severely altered. In particular,

DP-1. If µ is received (and one’s doxastic state is revised to accept µ), and then α is

received (and revision takes place), and it turns out that α logically implies µ , then

the resulting doxastic state must be equivalent to revising just with α .

DP-2. If α logically implies ¬µ , then revising first by µ and then by α must be the same as

revising only by α . In other words, when an agent learns contradictory information,

the second bit of information learned is what the agent ultimately believes.

DP-3. If learning α would imply that µ must also be true, then if the agent learned µ first,

and subsequently learned α , then the agent continues to believe that µ must also be

true.

DP-4. If learning α does not give the agent reason to believe that µ is false, then learning

µ first, followed by α , still does not give the agent reason to believe that µ is false.
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In Darwiche and Pearl’s words, “no [input] can contribute to its own demise.”

Darwiche and Pearl provide two additional postulates in order to further minimize

changes during a belief revision operation, but the above descriptions of their first four

postulates give the flavor of their work. Stalnaker (2009) gives examples that show some

counter-intuitive restrictions in the DP postulates. In particular, in some cases µ may be

contradicted by α but learning µ first followed by α should not always be equivalent to

only learning α (DP-2). After all, µ may have contained much information not contradicted

by α or even related to α , and therefore the most rational result would be to believe those

parts of µ that are still valid, as well as believing α .

The AGM and DP postulates do not directly apply to the kind of belief revision en-

acted by our abductive metareasoning system. However, it is useful to compare the spirit

of AGM+DP strict belief revision and our approach. First, abductive metareasoning does

not necessarily accept the validity of the report, whereas the belief revision literature typi-

cally assumes that the incoming report (belief) must be accepted. We look at an alternative,

non-prioritized belief revision, below. But for the remainder of this quick discussion, we

will assume the incoming report is to be believed, and some explanation must be found.

Finding an explanation might not be possible, triggering abductive metareasoning. The

metareasoning procedure might take back some accepted hypotheses and execute the ab-

ductive reasoning process again, thus resulting in different beliefs than before (which might

include explanations for the report that triggered the revisions). Thus, our approach agrees

with the spirit of AGM-1: the result of a revision should be another doxastic state. AGM-2

states that the revised doxastic state should include a belief in the report that caused the

revision. As stated previously, this point is not necessarily true in our framework, but we

will address that again later. AGM-3 states that the resulting doxastic state should be con-

sistent. We agree here and our the abductive reasoning algorithm will never produce an
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inconsistent doxastic state.

DP-1 through DP-4 try to put limitations on how revisions interact. Abductive metar-

easoning agrees with the spirit of these postulates. We will not address each one in detail.

Rather, we will just look at DP-2 as a case-in-point. Suppose µ is accepted to explain some

report, and later α , which is incompatible with µ , is needed to explain a new report. But

then α cannot be accepted, leaving the new report anomalous. Metareasoning is activated,

which finds that by rejecting µ , α is freed up to explain. The result is that µ is disbe-

lieved and α is believed. DP-2 states that the result should be the same as never observing

the report that was explained by µ . In our system, the result is equivalent because upon

accepting α , µ would be rejected.

We mentioned above that abductive metareasoning does not necessarily accept a re-

port that cannot be explained, i.e., a report that might cause a belief revision. Strategies for

strict belief revision that satisfy the AGM+DP postulates, on the other hand, assume that the

incoming belief will be accepted (it is postulate 2 for AGM, after all). But there has been

work on so-called non-prioritized belief revision which relaxes this requirement. In non-

prioritized strategies, the incoming statement may be believed as is, modified before being

integrated into the doxastic state, or rejected outright. There are a variety of approaches to

non-prioritized belief revision, surveyed by Hansson (1999). Eloranta et al. (2008) explore

the space of non-prioritized belief revision functions, specifically those functions that are

able to rewrite the input given existing beliefs. Clearly, our work in abductive metarea-

soning is more similar to non-prioritized belief revision than traditional AGM+DP belief

revision.

Logical varieties of abductive reasoning, where explanations logically entail what they

explain, and belief revision have been shown to be closely related. Abduction is a way to

do belief revision (Aliseda, 2000; Boutilier and Becher, 1995; Paglieri, 2003; Pagnucco,

1996). Furthermore, truth maintenance systems (Doyle, 1979) essentially combine abduc-

92



tion and belief revision. Dixon and Foo (1993) has shown how to simulate an assumption-

based truth maintenance system with AGM-compatible belief revision functions.

Unlike strict belief revision, and more in-line with metareasoning in cognitive sys-

tems, reviewed previously, we believe that metacognition involves more than just finding a

“minimal” revision to one’s beliefs in order to accommodate new evidence. The fact that

new evidence is inconsistent with existing beliefs is cognitively significant. If the trigger

for abduction may be called a “cognitive irritant” (Garcez et al., 2007), then finding no

plausible consistent explanation must be especially irritating. The fact that no explana-

tion can be found itself seems to require explanation. This is the approach we have taken

with abductive metareasoning. It turns out that there is evidence that humans do the same.

Suppose each of these two sentences are believed:

• If it is raining, then the grass is wet.

• It is raining.

Deductive inference tells us that the grass is wet. Now, suppose the agent observes that

the grass is not wet. Strict belief revision in the AGM style might find two possible minimal

revisions: take back “it is raining” or take back the conditional. Note that an AGM strategy

would define “it is raining” to be less entrenched and thus the conditional statement (i.e.,

the law or generalization) is retained rather than the case, producing a unique revision.

In any event, a different perspective on the issue comes from Khemlani and Johnson-

Laird (2011), who state,

In our view, however, the presupposition [that minimal revisions are ideal] has

no warrant. In daily life, when an inconsistency arises because a fact collides

with the consequences of your beliefs, your primary goal is to understand how
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the inconsistency could have occurred in the first place [by explaining the in-

consistency], because its origins are likely to have consequences for how you

should act. [...] [T]he process of reasoning to the best explanation is a hall-

mark of rationality, because it is a prerequisite for sensible action. A mere

revision to beliefs, whether minimal or not, is not so useful a guide (Khemlani

and Johnson-Laird, 2011).

They further state that an alternative to traditional belief revision, which brings with it the

minimality criteria, is explaining away the inconsistency. They call this the explanatory

hypothesis, which postulates that “the first goal in coping with an inconsistency is to explain

its origin.” Furthermore, “a plausible explanation is likely to imply changes to beliefs,” but

these changes may, in fact, not be minimal. The explanatory hypothesis and the minimality

criteria produce different revisions.

The authors cite a series of studies by Elio and Pelletier (1997) that show humans are

more likely to give up the conditional (“if it is raining, then the grass is wet”) rather than

the case (“it is raining”), and even more likely when the subjects are faced with an incon-

sistent natural language story as compared to a symbolic representation. Khemlani and

Johnson-Laird’s own studies “sought to establish whether reasoners spontaneously create

explanations that resolve inconsistencies or instead revise the assertions giving rise to them,

perhaps in a minimal way” (2011). Their results include:

• “Most individuals propose explanations that indirectly refute generalizations and that

are far from minimal changes. Such explanations are often what psychologists refer

to as ‘disabling conditions,’ which provide cases in which the generalization fails.”

• “Because of their propensity to envisage disabling conditions, their explanations are

indeed more likely to invoke such conditions than to imply that a proposition about
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a specific individual or entity is wrong.”

• “Participants tended to select such explanations as the most probable.”

• “Participants tended to evaluate them as having the highest rank of probability.”

• “Participants tended to assign them the highest probability.”

They note that,

Of course, our results leave open the possibility that minimalism is a normative

theory, in which case, they show that untrained individuals depart from a canon

of rationality (Khemlani and Johnson-Laird, 2011).

We do not attempt to answer the question of whether minimalism is a normative theory,

nor whether abductive metareasoning as specified in Chapter 4 is normative. Instead, we

opt to experimentally verify that abductive metareasoning actually boosts accuracy and

noise identification in both randomly generated and real abductive reasoning tasks. The

following three chapters do exactly that.
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Chapter 6: Simulated tracking domain

The first experimental domain is a simulated object tracking domain. In this domain, the

reasoning system is tasked with making sense of a virtual world of moving objects in a

10x10 discrete grid-space. This grid constitutes the world, and is fully observable, with

one caveat described below. Each object occupies one full grid cell (so all objects have

the same size and shape). Each object has a unique color, and no other properties. The

object color stands in for more realistic object properties that might be present in actual

surveillance systems, e.g., object size, color distributions or covariances, etc. The objects

movements are random walks. At each time step, each object makes a constant number

of mostly random 1-step movements (diagonals not allowed). No two objects are allowed

to occupy the same grid cell at the completion of their walk, so their otherwise random

movements are restricted. If at the end of an object’s random walk, two objects occupy the

same cell, a new random walk is generated. There is no need to handle merges and splits.

Simulated sensors report the final location of each object’s walk at the end of the time

step. The reasoning system is tasked with explaining reports by describing which object’s

movements connect two reports from time step t to t +1.

The simulated object tracking domain is intentionally simple. The system has very lit-

tle knowledge that can be brought to bear during the generation and scoring of hypotheses.

Objects only have a single color and no other properties. Objects move mostly randomly,

so Kalman filters (Welch and Bishop, 1995) and other common tracking techniques are not

helpful. My intention with such a simple task domain is to be sure that we can identify fea-

tures of the reasoning process that is responsible for the system’s observed performance.
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We want to be sure that performance is not primarily due to substantial domain knowledge

or special-purpose preprocessing that reduces the computational task before abductive rea-

soning and abductive metareasoning occur. In other words, knowledge is not power (c.f.,

Ed Feigenbaum) when we want to study general-purpose reasoning systems rather than

special-purpose deployed systems.

In Chapter 7, we look at an aerial tracking domain with real video data. The purpose

of the aerial domain is to ensure that the reasoning system works in both simplistic and

realistic domains. Object tracking domains (both simulated and aerial) are useful domains

for studying abductive reasoning and metareasoning for the following reasons.

• The task is easily framed in explicitly abductive terms, in which object detections

make up reports and object movements serve as the explanatory hypotheses.

• As will be shown, it is helpful to establish a minimum plausibility η for movement

hypotheses, though anomalies due to implausible hypotheses might result. In the

simulated domain, it is also useful to establish a minimum decisiveness δ .

• In the simulated domain, movement hypotheses are incompatible if they describe the

same object in two different locations at the same time. Thus, anomalies resulting

from incompatible hypotheses are possible.

• In the simulated domain, the plausibility of future movement hypotheses depend on

the system’s current estimate of the situation, i.e. its beliefs. Long-distance move-

ments are generally less plausible, and very low-plausibility hypotheses might be

rejected. Consequently, false beliefs might cause order dependency anomalies.

Abductive reasoning and metareasoning are not only applicable to object tracking

tasks. Chapter 8 looks at a generic Bayesian network inference task. Other interesting
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domains that have not been implemented or evaluated at this time are considered in Chap-

ter 10.

6.1 Gray area

As stated, each object bears a color unique to that object. Objects can be identified by their

color, and tracking is trivial (assuming all reports are factual). However, the center 60% of

the grid is watched only by sensors that do not detect color. All objects in that area are seen

as gray, and are therefore indistinguishable. The outer 40% is watched by sensors that do

report color. When objects move into this outer area, they can be uniquely identified. The

presence of the gray area is an essential feature of the simulated tracking domain. Because

of this gray area, objects might be mistracked when they move in close range in the gray

area. Yet, when the objects emerge from the gray area, these mistracks might render the

new reports unexplainable. Hence, the gray area may produce anomalies. This possibility

is shown in the top diagram of Figure 6.1. In Section 6.5 we experimentally measure how

the gray area influences the presence of anomalies.

6.2 Noise

Noisy reports are simulated by introducing false reports which describe non-existent ob-

jects, and by distorting (randomly modifying) and deleting reports about actual objects.

Each report has a small chance of manipulation in one of four kinds, which in our experi-

ments ranged from 0% to 20%. Specifically, the four kinds of noise are as follows.

Distortion noise: A true report is randomly modified to report the object as at a different

location and/or with a different color.

Duplication noise: A true report is duplicated and modified to report a random location.
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Only the color of the object is retained in the duplicate report (though that color

might be reported as “gray”).

Insertion noise: A non-existent object is reported at some random location and with a

random color.

Deletion noise: A true report is simply not reported.

Note that in each case excepting deletion noise, the reasoning system obtains a false

report. If the system ultimately refuses to find or accept an explanation for such a false

report, we say that it has identified the noisy report. However, deletion noise cannot be

identified in this manner (there is no report to leave unexplained), so deletion noise is not

represented in noise identification metrics.

Noise may produce anomalies. The bottom diagram of Figure 6.1 shows an example

of duplication noise and the resulting anomaly. In Section 6.5 we experimentally measure

how noise influences the presence of anomalies.

6.3 Definition as an abductive reasoning problem

Reports generated by the OBSERVE function take the form, “an object was detected at

location x,y at time t with color c.” Reports are assigned random plausibility scores such

that noisy reports typically score low and true reports score high. Specifically, given a

report r, its plausibility is Pl(r) = REPORTPLAUSIBILITY(r), defined by Algorithm 6.1.

Hypotheses generated by the GENERATEHYPOTHESES function take the form, “the

object with color c moved from x,y at time t to x′,y′ at time t ′.” Two movement hypotheses

are incompatible if they posit that two different objects moved into the same location or out

of the same location at corresponding times (the domain does not handle merges and splits),

or that the same object (identified by a color that is not “gray”) is in two different locations
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Algorithm 6.1 Algorithm for computing report plausibilities.
function REPORTPLAUSIBIILTY(r)

p← random number in [0,1]
if (r is a true report and p < 0.9) or (r is a false report and p≥ 0.9) then

return GAUSSIAN(µ = 0.8,σ = 0.1)
else

return GAUSSIAN(µ = 0.4,σ = 0.1)
end if

end function

at the same time. Figure 6.2 shows a simple example of reports and their hypotheses for

the simulated object tracking domain.

Blue obj
5,2 @ t=3

Blue obj
7,3 @ t=4

Red obj
3,4 @ t=3

Gray obj
1,5 @ t=4

Mov obj#45
5,2 to 7,3
@ t=3/4

Mov obj#45
5,2 to 1,5
@ t=3/4

Mov obj#22
3,4 to 1,5
@ t=3/4

Figure 6.2. Example of an explanation graph for the simulated tracking domain.

Movement hypotheses are scored on the basis of the distance of the movement. The

system is trained on 1,000 examples of object movements and builds a model of the prob-

ability of single time-step movements of various distances. Specifically, the plausibility of

a movement hypothesis h is,

Pl(h) = G∗ 1+F(d)
2+‖T ‖

, (6.1)
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where h posits an object movement of distance d, and F(d) is the frequency (count) of

object movements of size d in the training examples, and ‖T ‖ is the count of training

examples (1,000). The extra 1 in the numerator and 2 in the denominator are added as

Laplacian smoothing. G is a modifier equal to 1.0 if neither of the two reports that make

up the movement describe a gray object, 0.75 if one report describes a gray object, or 0.50

if both reports describe a gray object. This modifier lowers the plausibility of movement

hypotheses that explain gray reports, since such reports are not as certain as reports that

explain reports of objects with colors. Experiments (not reported in this work) show that

there is a small advantage to including the G modifier in overall tracking accuracy.

6.4 Experimental methodology

Each simulation involves 10 time steps and either two, four, six, eight, or ten different

objects moving about. All experimental results are averaged across experiments with these

different object counts. At each time step in a single experiment, each object takes a random

walk of six grid steps (diagonals not allowed). Reports which remain unexplained after 10

time steps are called noise claims. The final doxastic state is evaluated according to the
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following metrics, where ‖X‖ denotes the cardinality of set X .

Precision =
‖Actual movements∩Accepted movement hypotheses‖

‖Accepted movement hypotheses‖

Recall =
‖Actual movements∩Accepted movement hypotheses‖

‖Actual movements‖

F1 =
2∗Precision∗Recall

Precision+Recall

Noise Precision =
‖Actual noisy reports∩Noise claims‖

‖Noise claims‖

Noise Recall =
‖Actual noisy reports∩Noise claims‖

‖Actual noisy reports‖

Noise F1 =
2∗Noise Precision∗Noise Recall

Noise Precision+Noise Recall

The remainder of this chapter evaluates abductive reasoning and metareasoning in two

stages. First, in Section 6.5, we look at experiments that validate the simulated object track-

ing domain in terms of its appropriateness as an abductive reasoning task. This validation

is achieved by confirming, through a wide variety of experiments, that abductive reasoning,

as applied to simulated object tracking, yields the kinds of results one would expect. These

expectations are enumerated as hypotheses and each is confirmed in turn.

The second set of experiments in Section 6.6 evaluates the effectiveness of abductive

metareasoning. We consider abductive metareasoning second to ensure that the base-level

abductive reasoning task is not artificially handicapped just so that abductive metareasoning

can be shown to increase accuracy. Rather, the first set of experiments show that abductive

reasoning is appropriate and effective for the simulated object tracking task, and the second

set of experiments show that abductive metareasoning brings an extra boost that could not

have been achieved with just abductive reasoning.
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6.5 Domain validation experiments

The following experimental hypotheses are labeled with the format “S-V-#” to indicate that

these hypotheses are regarding simulated object tracking validation experiments.

Hypothesis S-V-1: EFLI abduction (Algorithm 2.3) yields significantly greater accuracy

than arbitrary abduction. We expect this to be the case because EFLI prefers more

plausible, more decisive hypotheses.

Hypothesis S-V-2: As the gray area increases (see Section 6.1), accuracy suffers. This is

because objects are more often confusable. We also expect more anomalies when the

gray area is neither absent (0%) nor total (100%). We expect this outcome because

if the gray area is absent, all objects are uniquely identifiable, and if the gray area is

total, then while mistracks are possible, anomalies are not.

Hypothesis S-V-3: As the noise level increases, anomalies also increase. This is to be

expected because false reports should, in the usual case, have no plausible and con-

sistent explanation. Accuracy should decrease, because noisy reports for which ex-

planations are found usually have false explanations.

Hypothesis S-V-4: According to the discussion of the completeness–confidence trade-off

(Section 2.8), we expect the following outcomes. (1) A minimum plausibility thresh-

old η > 0 is expected to produce greater accuracy than η = 0, thus demonstrating

the usefulness of this parameter. (2) A decisiveness threshold δ > 0 is expected

to produce greater accuracy than δ = 0, thus demonstrating the usefulness of this

parameter. However, we also expect that (3) when η > 0, more anomalies occur

because hypotheses are more often rejected due to not meeting the minimum plausi-

bility threshold.
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Hypothesis S-V-5: When hypothesis plausibility estimates are hidden (or, equivalently,

Pl(h) = 1.0 for all hypotheses h), abductive reasoning suffers. This outcome would

show that plausibilities are used and useful. However, we also expect that only a

small value for the plausibility precision (Definition 2.2.2), say, precision ≤ 7, is re-

quired to produce accuracy on par with very precise plausibilities. This is expected

because in cases where two or more competing hypotheses have very small plausi-

bility deltas, not enough information is available to make a confident decision. The

same reasoning explains why we expect the decisiveness threshold δ > 0 to yield

better accuracy than δ = 0.

In the remainder of this section, each domain validation hypothesis is addressed in turn.

Hypothesis S-V-1

Table 6.1 shows a comparison between EFLI and the arbitrary abduction algorithm, under

noise-free conditions and η = δ = 0. As expected, EFLI yields significantly better accu-

racy. We also see that EFLI and arbitrary abduction perform just as well when there was

no gray area (gray = 0%). In such a configuration, all objects are uniquely identifiable, so

both abduction algorithms (arbitrary and EFLI) should arrive at the same conclusions.

Hypothesis S-V-2

The gray area allows for object misidentification. Outside the gray area, objects are uniquely

identifiable. Thus, we would expect that, if the gray area is entirely absent, every object

is identifiable and perfect accuracy is achieved (assuming noise-free conditions). Addi-

tionally, we would expect no anomalies in this case; all reports should be explainable. On

the other hand, if the entire grid is gray, then no objects can be uniquely identified, ever;

all objects appear exactly the same. Accuracy should suffer and anomalies are impossible
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Gray (%) Precision Recall F1
0 0.000 0.000 0.000
20 +0.326 *** +0.427 *** +0.383 ***
40 +0.457 *** +0.517 *** +0.490 ***
60 +0.472 *** +0.502 *** +0.488 ***
80 +0.516 *** +0.529 *** +0.523 ***
100 +0.485 *** +0.497 *** +0.491 ***

Table 6.1. EFLI vs. arbitrary abduction for different sizes of the gray area, under no noise
conditions and η = δ = 0, supporting Hypothesis S-V-1. A value of 0.000 means that
EFLI and arbitrary abduction produced equivalent accuracy. A value +0.326 for some
metric means that EFLI produced, on average, 0.326 higher on that metric. Statistical
significance is indicated by asterisks: *** indicates p < 0.001.

(assuming no noise and η = 0). An example of an anomaly resulting from partial gray area

and no noise is shown in the top diagram of Figure 6.1.

We see in Figure 6.3 that when the gray area is absent (0%), accuracy is maximal,

and accuracy generally decreases as the gray area increases. However, an interesting phe-

nomenon occurs when the gray area is 100%. In this case, no objects bear any distinguish-

ing characteristics, so objects are tracking based solely on distance. Accuracy is better in

this case than when the gray area is 60% or 80%. This is because at 60% and 80% gray

area, more anomalies are present (which we will see in Figure 6.5) and thus more mistracks

result simply because tracks are lost.

Figure 6.4 illustrates that Plausibility errors become more numerous as the gray area

increases. This is because plausibilities are more often calculated based entirely on dis-

tance and less often on object identifiability when the gray area is larger. NoExplOffered

(no explanation offered) errors are most numerous when the gray area is 60%. Recall from

Section 2.10 that a NoExplOffered error is defined as the acceptance of a false hypothe-

sis because the true hypothesis was never offered. This can only occur, in the simulated
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Figure 6.3. Impact of the gray area on accuracy, supporting Hypothesis S-V-2. η = δ = 0
and there was no noise.

tracking domain, when an object is mistracked in the gray area but then cannot be linked

to a report outside the gray area (i.e., a report indicating the object’s color) because the

colored report is simply too far from the object’s prior believed (but incorrect) location.

This scenario is demonstrated in the top diagram of Figure 6.1. Only when the gray area is

neither absent nor total can this occur.

Finally, Figure 6.5 shows the impact of the gray area on the occurrence of anomalies.

As expected, when the gray area is absent (0%) or total (100%), no anomalies occur. At

60% gray area, anomalies are maximized, though still relatively uncommon: only about

0.3% of reports are anomalous. Note that in these experiments, the gray area is a contiguous

block in the middle of the tracking area. We have not experimented randomly-distributed

gray cells rather than a single contiguous block.
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Figure 6.4. Impact of the gray area on errors (see Section 2.10), supporting Hypothesis
S-V-2. Only Plausibility and NoExplOffered errors are shown because the occurrences of
other kinds of errors were not affected by the size of the gray area. η = δ = 0 and there
was no noise.

Because we wish to investigate metareasoning, which responds to the presence of

anomalies, further experiments will be conducted with a gray area of 60%. Accuracy for

these cases is also quite low, as shown in Figure 6.3. This leaves wide room for improve-

ment, which might be realized by metareasoning.

Hypothesis S-V-3

We see in Figure 6.6 that the presence of anomalies increases when the noise level in-

creases. Recall from Section 6.2 that a noise level of n% indicates that each report has an

n% chance of being modified or deleted and that for each report, there is an n% chance of a

new false report being introduced. Thus, even a noise level of 20% introduces a significant
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Figure 6.5. Impact of the gray area on the occurrence of anomalies, supporting
Hypothesis S-V-2. η = δ = 0 and there was no noise.

number of false and missing reports. As expected, when more false reports are introduced

and more true reports are deleted, a larger percentage of reports are unexplainable. Further-

more, as Figure 6.7 shows, accuracy also suffers. Future experiments will typically involve

noise levels at 0%, 10%, and 20%.

Hypothesis S-V-4

We expect that a minimum plausibility threshold η > 0 and a minimum decisiveness thresh-

old δ > 0 yield better accuracy in both noise-free and noisy conditions. Figure 6.8 shows

the impact of δ on accuracy and noise detection for different values of η . We see that for

each value of η , best performance is obtained with δ equal to about 0.20. Furthermore,

η = 0.10 gives better performance than η = 0 or η = 0.20. Noise identification is also
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Figure 6.6. Impact of noise level on the occurrence of anomalies, supporting Hypothesis
S-V-3. η = δ = 0.

maximized at these same parameters.

In order to more carefully investigate the impact of η , we experimented with δ = 0.20

and various η values. Figure 6.9 shows the impact of η on frequencies of errors and

anomalies. We see in the top graph that increasing η produces more MinPlausibility errors

but fewer of each other kind of error. This is to be expected, since more hypotheses are

incorrectly rejected as η increases, but noisy reports and errors due to inaccurate plausi-

bilities are reduced since fewer hypotheses are accepted. The bottom figure shows that

MinPlausibility anomalies increase as η increases. This trend is also not surprising.

Unless stated otherwise, for the remainder of the simulated object tracking experi-

ments, we set η = 0.10 and δ = 0.20.
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Figure 6.7. Impact of noise level on accuracy, relating to Hypothesis S-V-3. η = δ = 0.

Hypothesis S-V-5

The first claim of Hypothesis S-V-5 states that hypothesis plausibility estimates are used

and useful. We can simulate abductive reasoning with no information about plausibilities

by setting Pl(h) = 1.0 for all hypotheses h. In this case, EFLI is unable to prefer hypotheses

based on their plausibilities. When a contrast set contains two or more hypotheses, they

also cannot be differentiated according to decisiveness. However, essential explainers are

still preferred over non-essential explainers. Table 6.2 shows the increase in accuracy when

scores are present. As expected, this increase is large and significant.

The second claim of Hypothesis S-V-5 states that only a small value for the plausibility

precision (say, precision ≤ 7) is required to obtain accuracy on par with full plausibility

precision (i.e., double-precision floating-point numbers). Figure 6.10 shows the impact of
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Noise Prec. Recall F1 N. Prec. N. Recall N. F1
0 +0.420 *** +0.429 *** +0.425 ***

10 +0.326 *** +0.311 *** +0.318 *** +0.161 *** +0.014 *** +0.025 ***
20 +0.246 *** +0.231 *** +0.238 *** +0.085 *** +0.010 *** +0.017 ***

Table 6.2. Impact of having no plausibility information, supporting Hypothesis S-V-5.
η = δ = 0. This experiment compares abductive reasoning with no plausibility
information and abductive reasoning with normal plausibility information. In both cases
with and without plausibility information, results are averaged across noise levels of 0%,
10%, and 20%. In the table, a Noise value of 10 indicates 10% noise level. “N. Prec.” etc.
refer to the Noise Precision metric, etc. A value +0.432 for some metric means that EFLI
produced, averaged across individual cases, 0.432 higher on that metric. Statistical
significance is indicated by asterisks: *** indicates p < 0.001.

plausibility precision on accuracy. We see that at plausibility precision n = 5, accuracy is

virtually equivalent to full plausibility precision. Even so, in the remaining experiments,

we use full plausibility precision.

At this point, all domain validation hypotheses for the simulated object tracking do-

main have been confirmed. Thus, we have demonstrated the usefulness and appropriate-

ness for reasoning about the simulated object tracking domain with abductive reasoning.

Furthermore, we have identified optimal parameters (η = 0.10,δ = 0.20) for EFLI-based

abductive reasoning, and have chosen to focus further experiments on a gray area size of

60% in order to maximize the likelihood of anomalies due to mistracking objects in the

gray area. Next, we will examine how metareasoning can boost accuracy when applied to

this domain.

6.6 Metareasoning experiments

The following experimental hypotheses are labeled with the format “S-M-#” to indicate

that these hypotheses are regarding simulated object tracking metareasoning experiments.
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Figure 6.10. Impact of plausibility precision on accuracy for different η and δ values,
supporting Hypothesis S-V-5. Results are averaged across noise levels of 0%, 10%, and
20%. The horizontal line marks F1 at maximum plausibility precision (double-precision
floating-point numbers).

Hypothesis S-M-1: Analogous to Hypothesis S-V-4, we expect that ηmeta > 0 and δmeta >

0 yield greatest accuracy when abductive metareasoning is activated. We expect this

because if ηmeta = 0, then even very implausible meta-hypotheses may be accepted

and the system may thereby acquire false beliefs or inappropriately alter existing

true beliefs. If δmeta = 0, then some arbitrary meta-hypothesis will be accepted when

two or more are applicable as possible explanations for some anomaly. Generally,

an anomaly has one cause (though this is not always the case), and assuming the

anomaly is not a noisy report, only one meta-hypothesis of the competing meta-

hypotheses is correct. But if the meta-hypotheses have the same plausibilities, then

the system will not be able to ensure the correct one is accepted.
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Hypothesis S-M-2: Abductive metareasoning gives better performance than no metarea-

soning, at the values of ηmeta and δmeta determined to be best by experiments related

to Hypothesis S-M-1. Furthermore, even when we vary η and δ , overall maximum

accuracy is achieved for some η ,ηmeta,δ , and δmeta when the system supports ab-

ductive metareasoning.

Hypothesis S-M-3: Abductive metareasoning gives better performance than no metarea-

soning even when report plausibilities are unknown (using ηmeta and δmeta estab-

lished earlier).

Hypothesis S-M-4: Performance is maximized when each of the MetaImplHyp, MetaIn-

compatHyp, MetaOrderDep meta-hypotheses is available as a possible explainer of

anomalies. This can be tested by ablation experiments in which the various subsets

of meta-hypotheses are disabled.

In the remainder of this section, each metareasoning experimental hypothesis is ad-

dressed in turn.

Hypothesis S-M-1

Given η = 0.10 and δ = 0.20, found earlier to be optimal for base-level abductive reason-

ing, Figure 6.11 shows that ηmeta > 0 and δmeta > 0 yield best accuracy when abductive

metareasoning is supported. In particular, ηmeta = 0.60 and δmeta = 0.10 appear to be best.

Hypothesis S-M-2

Table 6.3 shows the impact of abductive metareasoning for η = 0.10, δ = 0.20, ηmeta =

0.60, and δmeta = 0.10. We see that in cases of no noise, abductive metareasoning sig-
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nificantly but only slightly improves accuracy. In cases when noise is present, abductive

metareasoning significantly improves only Noise Precision.

Noise Prec. Recall F1 N. Prec. N. Recall Noise F1
0 +0.024 *** +0.058 *** +0.042 ***

10 +0.008 +0.004 +0.003 +0.030 *** +0.001 +0.002
20 +0.012 +0.010 +0.008 +0.029 *** 0.000 +0.002

Table 6.3. Results from comparative experiments, supporting Hypothesis S-M-2, with
abductive metareasoning and no metareasoning, for different noise levels. In the table, a
Noise value of 10 indicates 10% noise level. “N. Prec.” etc. refer to the Noise Precision
metric, etc. A metric value +0.021 indicates that abductive metareasoning increased that
metric on average by 0.021 compared to no metareasoning. Statistical significance is
indicated by asterisks: *** indicates p < 0.001.

These results indicate that abductive metareasoning improves accuracy slightly but

does not dramatically change the overall reasoning accuracy of the system. This outcome

might seem surprising; perhaps we should expect abductive metareasoning to yield greater

improvements. However, it is important to keep in mind that these experiments have fo-

cused on especially difficult object tracking tasks with a large gray area (60%), random

object movements and, in some cases, significant noise (with noise level set to 10% or

20%). Given such a dearth of information that might help distinguish objects and identify

noise, it should not be surprising that abductive metareasoning offers little improvement.

There is very little information available to the abductive metareasoning system that can

be used to explain anomalies. The base-level abductive reasoning system was not artifi-

cially handicapped (the EFLI algorithm and η and δ were defined to maximize accuracy

before metareasoning was activated), so whatever knowledge could have been brought to

bear on the task would have already been used in the base-level reasoning system. The

base-level reasoning system fails, in some cases, to correctly track the objects and identify

noise due to either an inappropriate η value for one or more true hypotheses (handled by
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MetaImplHyp meta-hypotheses), failure to prevent an anomaly due to conflicting hypothe-

ses and EFLI’s greedy algorithm (handled by MetaIncompatHyp), or failure to explain a

report due to mistracking an object at an earlier time step (handled by MetaOrderDep).

Abductive metareasoning is designed to handle these contingencies, even though they are

rare.

It is important to verify that abductive metareasoning is optimal for the simulated

object tracking task. Table 6.3 only shows that abductive metareasoning improves accuracy

given η = 0.10, δ = 0.20, ηmeta = 0.60 and δmeta = 0.10. However, one might wonder if

perhaps for some other values of η and δ , accuracy can be maximized without abductive

metareasoning. Figures 6.12 and 6.13 show results for various values of η ,δ , and ηmeta

(experiments not reported here indicate that δmeta = 0.10 is best in all cases). We see that

maximum accuracy is achieved by including abductive metareasoning.

Further experiments show that metareasoning improves accuracy across various sizes

of the gray area. Figures 6.14 and 6.15 show tracking accuracy and noise identification

accuracy, respectively, for abductive reasoning with and without metareasoning for differ-

ent noise levels. The parameters η , ηmeta, δ , and δmeta are held constant at optimal values

found earlier. We see that abductive metareasoning almost always increases accuracy over

the base-level system. Only in cases where noise is present and the gray area is very small

or non-existent do Recall and Noise Precision suffer. These metrics are correlated. When

more true movements are left unexplained, and thus claimed to be noise, both Recall and

Noise Precision decline. When the gray area is very small, most noise will take the form

of a false report describing a colored object. This is because the false report will likely

occur outside of the gray area. Movement hypotheses that connect this false report to other

reports will more often connect two colored reports, so their plausibility estimates will

on average be higher (recall from Section 6.3 and Equation 6.1 that movement hypothesis

plausibilities are penalized if one or both of the reports are gray reports). The effect is that
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Figure 6.14. Impact of gray area on metareasoning accuracy, for various noise levels.
Supports Hypothesis S-M-2. In all cases, η = 0.10, ηmeta = 0.60, δ = 0.20, δmeta = 0.10.

false movement hypotheses will generally score higher in cases with small or non-existent

gray areas than in cases with large gray areas. We suspect, therefore, that abductive metar-

easoning will continue to boost accuracy over the base-level system if the parameters η ,

ηmeta, δ , and δmeta are appropriately adjusted with respect to the size of the gray area.
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Figure 6.15. Impact of gray area on metareasoning for noise identification, for two noise
levels. Supports Hypothesis S-M-2. In all cases, η = 0.10, ηmeta = 0.60, δ = 0.20,
δmeta = 0.10.

Hypothesis S-M-3

Recall that the plausibility function for meta-hypotheses (Section 4.5) is simply the average

of the plausibilities of the anomalies that a meta-hypothesis is capable of explaining. In the

case of the simulated object tracking domain, only sensor reports require explanation, so

only sensor reports may be anomalous. Thus, in the simulated tracking domain, the plausi-
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bility of meta-hypotheses depends directly on the plausibility of sensor reports. Therefore,

we feel that it is important to understand how much abductive metareasoning depends on

the plausibilities of anomalous sensor reports, and how much abductive metareasoning de-

pends on other factors such as the determination of which meta-hypotheses are applicable

in a given situation (detailed in Section 4.1).

In order to investigate this issue, we tested abductive metareasoning in situations

where all sensor reports have plausibilities equal to 1.0. Thus, all meta-hypotheses like-

wise have plausibilities equal to 1.0 and therefore cannot be compared according to their

plausibilities. Rather, in these experiments, meta-hypotheses are accepted, and their cor-

responding belief revisions applied, simply on the basis of whether they can explain the

anomalies. We retained δmeta = 0.10, so meta-hypotheses were accepted only if they were

the only possible explanation for an anomaly.

Noise Prec. Recall F1 N. Prec. N. Recall Noise F1
0 +0.035 *** +0.078 *** +0.058 ***

10 +0.019 * -0.087 *** -0.067 *** -0.055 *** -0.001 -0.011 ***
20 +0.008 -0.132 *** -0.114 *** -0.093 *** +0.005 -0.015 ***

Table 6.4. Results from comparative experiments, supporting Hypothesis S-M-3, in which
report plausibilities are unknown (i.e., constantly 1.0). Abductive metareasoning is
compared to no metareasoning for different noise levels. In the table, a Noise value of 20
indicates 20% noise level. “N. Prec.” etc. refer to the Noise Precision metric, etc. A
metric value +0.021 indicates that abductive metareasoning increased that metric on
average by 0.021 compared to no metareasoning. Statistical significance is indicated by
asterisks: * indicates p < 0.05, *** indicates p < 0.001.

Results are shown in Table 6.4. We see that Recall and Noise Precision suffer when

noise is present. These two metrics are related: if abductive metareasoning is more reluc-

tant to accept meta-hypotheses, then more anomalies will remain unexplained, and ulti-

mately be labeled as “noise.” Thus, some true reports will have no explanation (reducing

Recall) and subsequently will be labeled as noise (reducing Noise Precision). As described
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above, it is indeed the case that if all meta-hypotheses have equal plausibilities (1.0) and

δmeta > 0, then fewer meta-hypotheses are accepted. In conclusion, we find that abduc-

tive metareasoning does depend crucially on the presence of (reasonably accurate) sensor

report plausibility estimates.

Hypothesis S-M-4

Finally, Hypothesis S-M-4 states that each kind of meta-hypothesis (MetaImplHyp, MetaIn-

compatHyp, MetaOrderDep; refer to Section 4.1) plays an important role in abductive

metareasoning. We can test this claim by conducting ablation experiments, in which only a

subset of the three meta-hypotheses is available for abductive metareasoning. Each subset

is tested in turn (excluding the case in which no meta-hypotheses are available, since we

essentially tested that case earlier in regards to Hypothesis S-M-2).

Table 6.5 summarizes the results. We see that in noise levels 10% and 20%, abductive

metareasoning with all three kinds of meta-hypotheses gives best results. However, when

no noise is present, leaving out MetaIncompatHyp gives best results. The difference is

minute, but nevertheless this outcome is interesting. It suggests that, in some (rare) cases,

a false MetaIncompatHyp is accepted and an inappropriate belief revision is committed. It

is unclear at this time how to identify and avoid these cases.

6.7 Conclusions

The simulated object tracking domain supported our first experimental look into abduc-

tive reasoning and abductive metareasoning. Each of the experimental hypotheses was

confirmed. Thus, we now have strong evidence that abductive reasoning, and the EFLI

algorithm in particular, is an appropriate reasoning strategy for making sense of reports

about simulated object movements, and that abductive metareasoning is effective at find-
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ing appropriate belief revisions that increase tracking accuracy and at identifying noise.

However, results with just the simulated object tracking domain are not enough to

prove that abductive reasoning and metareasoning are generally appropriate strategies for

making sense of the world. More evidence is needed from other task domains. To this end,

we next will consider an aerial tracking domain which, while in the same style as simulated

tracking, brings another perspective by employing sensor reports from real-world aerial

video surveillance. Then, we will look at a completely different set of domains that are

abstract in nature and defined by arbitrary Bayesian networks. When results from all three

domains are combined, we will possess strong evidence that abductive reasoning combined

with abductive metareasoning is a very effective manner of reasoning.
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Chapter 7: Aerial tracking domain

In addition to the simulated object tracking domain, we experimented with object tracking

from aerial imagery using the KIT AIS Data Set (Schmidt and Hinz, 2011). See Figure 7.1

for examples of this dataset. In each frame, hundreds of very small (4x4 pixel) person-like

objects are detected by a Gentle AdaBoost classifier (Friedman et al., 2000); we take these

detections to be reports that need to be explained. Each detection is assigned a confidence

score which we take to be the report’s plausibility. Details may be found in Schmidt and

Hinz (2011). Once reports are obtained, object tracking is performed in the same manner

as the simulated tracking domain.

AA Easy 01 AA Easy 02 AA Walking 01

Figure 7.1. Examples of aerial tracking datasets. Only the human-labeled ground-truth
tracks are shown, though each scenario includes abundant false detections.

Our goal with the aerial tracking domain is to show that abductive reasoning and
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metareasoning work well on realistic data. However, there are also drawbacks to using

realistic data: we cannot generate alternative cases that exhibit interesting behavior, and

we cannot objectively measure the system’s performance; rather, we can only compare the

system’s performance with human performance as defined by the human-labeled ground-

truth. However, we feel that the inclusion of the aerial tracking domain can only increase

insights about abductive reasoning and metareasoning.

7.1 Definition as an abductive reasoning problem

The aerial tracking domain is implemented nearly equivalently to the simulated object

tracking domain. Refer to Chapter 6 for details. There are two important differences

between the two domains. (1) In the aerial domain, detections never report a unique iden-

tifying property. The simulated object tracking domain, on the other hand, sometimes

reports object colors, which are uniquely identifying. (2) The second difference is that the

aerial domain already includes noisy detections, so noise is not simulated (i.e., reports are

not randomly modified or generated in order to create confusion).

Movement hypotheses connecting two reports are scored on the basis of the distance

of the movement, just as in the simulated tracking domain. The system is trained in five

frames of video and provided the true object movements for those frames. A model of

movement distances (in terms of pixels) is established on the basis of these examples. The

video footage is already orthorectified with a fixed ground sampling distance so pixels are

a reasonable stand-in for actual travel distance. The GENERATEHYPOTHESES function

only generates movement hypotheses for reports within 2 ∗ davg distance, where davg is

the average movement distance in the training examples. Thus, in some cases, reports are

anomalous because no other report is near enough to generate a movement hypothesis. This

hard limit for maximum movement distance is used so that the system does not generate all
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Dataset True reports False reports Avg. true plaus. Avg. false plaus.
AA Easy 01 75 204 0.660 0.407
AA Easy 02 137 2005 0.623 0.402
AA Walking 01 296 1060 0.575 0.443

Table 7.1. Noise per dataset. “Avg. true plaus.” means “Average plausibility of true
reports.”

O(n2) possible movement hypotheses, where n is the number of reports for a single video

frame.

7.2 Experimental methodology

The original datasets contain hundreds of “detections” for each frame. As mentioned, the

AdaBoost classifier assigns each detection a confidence score (between 0.0 and 1.0). We

take this confidence score to be the plausibility of the detection (a.k.a., report). However,

we have found that in nearly all cases, very-low confidence detections are false detections.

Thus, we apply a confidence threshold to the detections: any detection with confidence

< 0.35 is eliminated and not converted into a sensor report. This threshold is applied to

each of the datasets. We do so only to reduce the number of useless reports and thereby

speed up our experiments. Even so, Table 7.1 shows that many false detections are still

reported and true and false reports are not well-separated according to plausibility.

As in the simulated object tracking domain, we measure the accuracy of beliefs in the

final doxastic state according to the following metrics, where ‖X‖ denotes the cardinality

of set X .
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Precision =
‖Actual movements∩Accepted movement hypotheses‖

‖Accepted movement hypotheses‖

Recall =
‖Actual movements∩Accepted movement hypotheses‖

‖Actual movements‖

F1 =
2∗Precision∗Recall

Precision+Recall

Noise Precision =
‖Actual noisy reports∩Noise claims‖

‖Noise claims‖

Noise Recall =
‖Actual noisy reports∩Noise claims‖

‖Actual noisy reports‖

Noise F1 =
2∗Noise Precision∗Noise Recall

Noise Precision+Noise Recall

It is worth noting that each dataset (see Figure 7.1) is tested once for each parameter

specification, rather than multiple times with different random object movements as in

the simulated tracking domain. All the detections in the dataset are processed in each

experiment. Thus, there is no need to consider standard error or statistical significance of

experimental results.

The remainder of this chapter evaluates abductive reasoning and metareasoning in two

stages. First, in Section 7.3, we look at experiments that validate the aerial tracking domain

in terms of its appropriateness as an abductive reasoning task. This validation is achieved

by confirming, through a wide variety of experiments, that abductive reasoning, as applied

to aerial tracking, yields the kinds of results one would expect. These expectations are

enumerated as hypotheses and each is confirmed in turn.

The second set of experiments in Section 7.4 evaluates the effectiveness of abductive

metareasoning. We consider abductive metareasoning second to ensure that the base-level

abductive reasoning task is not artificially handicapped just so that abductive metareasoning

can be shown to increase accuracy. Rather, the first set of experiments show that abductive
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reasoning is appropriate and effective for the aerial tracking task, and the second set of

experiments show that abductive metareasoning brings an extra boost that could not have

been achieved with just abductive reasoning. We note in passing that the computational

cost of abductive metareasoning is not being considered here. This issue is address more

in Section 9.1.

7.3 Domain validation experiments

The following experimental hypotheses are labeled with the format “A-V-#” to indicate that

these hypotheses are regarding aerial tracking validation experiments. The experimental

hypotheses should be taken implicitly to refer to each of the three datasets equally.

Hypothesis A-V-1: EFLI abduction (Algorithm 2.3) yields substantially greater accuracy

than arbitrary abduction. We expect this to be the case because EFLI prefers more

plausible, more decisive hypotheses.

Hypothesis A-V-2: According to the discussion of the completeness–confidence trade-off

(Figure 2.10), we expect the following outcomes. (1) A minimum plausibility thresh-

old η > 0 is expected to produce greater accuracy than η = 0, thus demonstrating

the usefulness of this parameter. (2) A decisiveness threshold δ > 0 is expected

to produce greater accuracy than δ = 0, thus demonstrating the usefulness of this

parameter. However, we also expect that (3) when η > 0, more anomalies occur

because hypotheses are more often rejected due to not meeting the minimum plausi-

bility threshold.

Hypothesis A-V-3: When hypothesis plausibility estimates are hidden (or, equivalently,

Pl(h) = 1.0 for all hypotheses h), abductive reasoning suffers. This outcome would

show that plausibilities are used and useful. However, we also expect that only a
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small value for the plausibility precision (Definition 2.2.2), say, precision ≤ 7, is re-

quired to produce accuracy on par with very precise plausibilities. This is expected

because in cases where two or more competing hypotheses have very small plausi-

bility deltas, not enough information is available to make a confident decision. The

same reasoning explains why we expect the decisiveness threshold δ > 0 to yield

better accuracy than δ = 0.

In the remainder of this section, each domain validation hypothesis is addressed in turn.

Hypothesis A-V-1

Table 7.2 shows a comparison between EFLI and the arbitrary abduction algorithm, with

η = δ = 0. EFLI increases Recall but slightly lowers Noise Recall. To see why, notice

that EFLI also makes fewer Noise Claims (i.e., leaves fewer reports unexplained). Thus,

EFLI is able to explain more, and most of these explanations are true (otherwise Precision

would suffer). However, in some rare cases, those explanations were false and explained

false reports, thus lowering Noise Recall. In summary, Hypothesis A-V-1 is mostly true,

but the case is not as clear as it was in the simulated tracking domain.

Dataset Prec. Recall F1 N. Prec. N. Recall N. F1 N. Claims
AA Easy 01 +0.058 +0.150 +0.084 +0.016 -0.014 -0.013 -6
AA Easy 02 +0.009 +0.101 +0.017 +0.005 -0.028 -0.031 -64
AA Walking 01 +0.010 +0.038 +0.016 +0.013 -0.027 -0.036 -46

Table 7.2. EFLI vs. arbitrary abduction for different datasets and η = δ = 0, supporting
Hypothesis A-V-1. A value of 0.000 means that EFLI and arbitrary abduction produced
equivalent accuracy. “N. Prec.” etc. refer to the Noise Precision metric, etc. A value
+0.058 for some metric means that EFLI produced 0.058 higher on that metric.
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Hypothesis A-V-2

Figure 7.2 shows the impact of η on accuracy for δ = 0. For tracking accuracy (F1, Prec,

Recall), we see that η = 0.80 consistently gives the best results. Noise identification is

also nearly best at η = 0.80, but Noise Recall is greater with even larger η . However, at

higher η , Noise Precision suffers. These results match expectations about the impact of η

on precision and recall in general.

Accuracy in these datasets, particularly AA Easy 02 and AA Walking 01, is very low,

in an absolute sense. This might indicate that either (1) abductive reasoning, as imple-

mented, is a poor choice for tracking people in aerial surveillance, or that (2) our hypoth-

esis plausibility function, which is based on movement distance, is a poor choice for these

datasets, or (3) both choices are inappropriate. In any event, our goal in this work is not to

produce a great aerial tracking system, but to investigate abductive reasoning and abductive

metareasoning. Surely, we can build a better tracker for the aerial domain by using Kalman

filters (Welch and Bishop, 1995), since the movements of people in these datasets mostly

follow smooth trajectories. However, we emphasize again that the goal with this work is

not to maximize performance on particular tasks but rather to understand the behavior and

trade-offs of abductive reasoning and abductive metareasoning.

Figure 7.3 shows the impact of η on frequencies of errors and anomalies for δ = 0.

We see in the top graph that increasing η only slightly increases MinPlausibility errors but

decreases Noise errors. Note that Noise errors are the vast majority of errors in the aerial

domain. This is because so many reported detections are noise.

The bottom figure shows that MinPlausibility anomalies increase as η increases. This

is to be expected. Anomalies due to conflicts among hypotheses are reduced when η in-

creases. This is likely due to the fact that fewer hypotheses are accepted as η increases,

thus fewer hypotheses are rejected due to incompatibility with accepted hypotheses. Also
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note that the number of NoExplOffered (no explanation offered) anomalies remains con-

stant across the η values. These anomalies are reports that are not near enough to other

reports to be considered part of a movement. Refer to Section 7.1 for details.

Figure 7.4 shows the impact of δ on accuracy and noise detection for η = 0.80. There

is a very slight boost in noise identification accuracy for δ = 0.10, and a slight loss in

tracking accuracy at the same setting. This is because Recall decreases at δ = 0.10 (and

thus Noise Recall increases) since some hypotheses are not accepted that otherwise would

have been under δ = 0. These differences are so minor because, in this domain, between

0.98 and 1.02 hypotheses on average (across the various datasets) compete to explain the

same report. Because these differences are so minor, however, further experiments will

have δ = 0.

Hypothesis A-V-3

The first claim of Hypothesis A-V-3 states that hypothesis plausibility estimates are used

and useful. We can simulate abductive reasoning with no information about plausibilities

by setting Pl(h) = 1.0 for all hypotheses h. In this case, EFLI is unable to prefer hypotheses

based on their plausibilities. When a contrast set contains two or more hypotheses, they

also cannot be differentiated according to decisiveness. However, essential explainers are

still preferred over non-essential explainers. Table 7.3 shows the increase in accuracy when

scores are present. As expected, there is an increase, but it is not large because η = 0 and

most reports are noisy.

The second claim of Hypothesis A-V-3 states that only a small value for the plau-

sibility precision (say, precision ≤ 7) is required in order to obtain accuracy on par with

full plausibility precision (i.e., double-precision floating-point numbers). Figure 7.5 shows

the impact of plausibility precision on accuracy. The impact is not at all consistent and
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Dataset Prec. Recall F1 N. Prec. N. Recall N. F1
AA Easy 01 +0.056 +0.125 +0.078 +0.010 +0.004 +0.005
AA Easy 02 +0.005 +0.051 +0.009 -0.001 +0.006 0.000
AA Walking 01 +0.018 +0.055 +0.027 +0.047 +0.007 +0.012

Table 7.3. Impact of having no plausibility information, supporting Hypothesis A-V-3.
η = δ = 0. This experiment compares abductive reasoning with no plausibility
information and abductive reasoning with normal plausibility information. “N. Prec.” etc.
refer to the Noise Precision metric, etc. A value +0.056 for some metric means that EFLI
produced, averaged across individual cases, 0.056 higher on that metric.

we see no obvious trend. These results do not match previous findings in the simulated

tracking domain (Figure 6.10). The reason seems to be that, in the aerial domain, hypoth-

esis plausibility estimates generally cover a very small range. Thus, even with plausibility

precision is limited, plausibility estimates still cover a similar range. Table 7.4 shows the

average plausibility estimates for true and false movement hypotheses under different plau-

sibility precisions. We see that the differences in true and false plausibilities does not vary

much across different plausibility precisions. Thus, accuracy does not differ much either,

as reflected in the graphs.

The first, but not second, claim of Hypothesis A-V-3 has been confirmed. We have

also identified optimal parameters (η = 0.80,δ = 0) for EFLI-based abductive reasoning.

Next, we will examine how metareasoning can boost accuracy when applied to this domain.

7.4 Metareasoning experiments

The following experimental hypotheses are labeled with the format “A-M-#” to indicate

that these hypotheses are regarding aerial tracking metareasoning experiments.

Hypothesis A-M-1: Metareasoning gives better tracking accuracy and noise identification

than no metareasoning, for certain values of η ,δ ,ηmeta,δmeta.
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Dataset Plaus. prec. Avg. true plaus. Avg. false plaus.
AA Easy 01 2 0.94 0.89
AA Easy 01 3 0.90 0.60
AA Easy 01 4 0.87 0.66
AA Easy 01 5 0.87 0.71
AA Easy 01 6 0.87 0.68
AA Easy 01 7 0.86 0.67
AA Easy 01 (full) 0.86 0.68
AA Easy 02 2 0.98 0.79
AA Easy 02 3 0.97 0.61
AA Easy 02 4 0.92 0.64
AA Easy 02 5 0.92 0.67
AA Easy 02 6 0.90 0.65
AA Easy 02 7 0.89 0.65
AA Easy 02 (full) 0.89 0.65
AA Walking 01 2 0.95 0.81
AA Walking 01 3 0.90 0.64
AA Walking 01 4 0.85 0.65
AA Walking 01 5 0.86 0.68
AA Walking 01 6 0.84 0.67
AA Walking 01 7 0.85 0.66
AA Walking 01 (full) 0.84 0.67

Table 7.4. Average true and false movement hypothesis plausibilities for different datasets
and plausibility precision. “(full)” plausibility precision means that the plausibilities are
not limited, and plausibilities are represented as full double-precision floating point
values.
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Folder Prec. Recall F1 N. Prec. N. Recall Noise F1
AA Easy 01 +0.024 +0.125 +0.066 +0.061 0.000 +0.020
AA Easy 02 +0.004 +0.025 +0.007 +0.002 0.000 +0.001
AA Walking 01 +0.016 +0.044 +0.025 +0.030 +0.002 +0.005

Table 7.5. Results from comparative experiments, supporting Hypothesis A-M-1, with
abductive metareasoning and no metareasoning, for different datasets. η = 0.80,
ηmeta = 0.60, and δ = δmeta = 0. A metric value +0.024 indicates that abductive
metareasoning increased that metric by 0.024 compared to no metareasoning.

Hypothesis A-M-2: Performance is maximized when each of the MetaImplHyp, MetaIn-

compatHyp, MetaOrderDep meta-hypotheses are available as a possible explainer of

anomalies. This can be tested by ablation experiments in which the various subsets

of meta-hypotheses are disabled.

In the remainder of this section, each metareasoning experimental hypothesis is addressed

in turn.

Hypothesis A-M-1

Figures 7.6 and 7.7 show tracking accuracy and noise identification, respectively, under

both no metareasoning and abductive metareasoning and various values of η and ηmeta.

Experiments not reported here indicate that δmeta = 0 is the optimal value for that param-

eter, and we established earlier that δ = 0 also yielded best performance. We see from

the figures that abductive metareasoning increases tracking accuracy and at η = 0.80 and

ηmeta = 0.60, F1 is maximized (for each dataset). Not surprisingly, Noise F1 is maximized

with η = 0.90 rather than η = 0.80, because Noise Recall increases since more reports are

left unexplained. However, Noise F1 at η = 0.80 is nearly as good. Additionally, in most

cases, abductive metareasoning yields equal or better Noise F1 than no metareasoning.
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Table 7.5 highlights the improvement of abductive metareasoning over no metarea-

soning at η = 0.80,ηmeta = 0.60, which we have identified from Figures 7.6 and 7.7 as the

best performance overall. Thus, Hypothesis A-M-1 is confirmed.

Hypothesis A-M-2

Hypothesis A-M-2 states that each kind of meta-hypothesis (MetaImplHyp, MetaIncom-

patHyp, MetaOrderDep; refer to Section 4.1) plays an important role in abductive metar-

easoning. Table 7.6 summarizes the results. We see that the AA Easy 01 dataset benefits

from MetaImplHyp but not any other meta-hypothesis. All rows for AA Easy 01 where

MetaImplHyp was ablated are not shown in the table because no meta-hypotheses were

accepted (thus tracking accuracy and noise identification were equal to performance with

no metareasoning), and the inclusion of MetaIncompatHyp and MetaOrderDep did not

change the results as long as MetaImplHyp was available. In fact, MetaIncompatHyp

and MetaOrderDep meta-hypotheses were never accepted to explain any anomalies for

AA Easy 01. Thus, we highlighted the row for AA Easy 01 where only MetaImplHyp

was available since the other two types of meta-hypotheses offered no additional benefits.

For AA Easy 02, best performance was obtained when only MetaIncompatHyp was

available. This outcome is quite different than the state of affairs for AA Easy 01. The

difference is small compared to the case where all meta-hypotheses were available. Ad-

ditionally, no MetaOrderDep was accepted in any case for AA Easy 02. On all cases,

except for the last two rows for AA Easy 02, including MetaOrderDep did not affect per-

formance. The last two rows compare MetaOrderDep+MetaIncompatHyp and MetaIncom-

patHyp cases. The accuracy differed even though no MetaOrderDep meta-hypotheses were

accepted. This difference is due to the fact that some MetaIncompatHyp meta-hypotheses

were accepted in a different order across the two experiments and as a result produced
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different answers. The order of acceptance differed because, when MetaOrderDep meta-

hypotheses were competing to explain, the decisiveness of at least one MetaIncompatHyp

meta-hypotheses was reduced, causing a different MetaIncompatHyp to be accepted first

(note that there was no minimum decisiveness threshold, i.e., δmeta = 0 in these experi-

ments). This outcome demonstrates that the order that meta-hypotheses are accepted (i.e.,

the order that belief revisions are applied) might affect overall accuracy.

In summary, Table 7.6 shows that the aerial tracking domain does not benefit from all

meta-hypotheses in the same way that the simulated tracking domain (mostly) does. For the

most part, including all meta-hypotheses was harmless, but the case of AA Easy 02 shows

that including more types of meta-hypotheses might impact decisiveness and thus impact

the order that meta-hypotheses are accepted. We have no reason to believe at this time

that the impact of this alternative acceptance ordering is always a negative impact; in fact,

we only have one such example. MetaOrderDep and MetaIncompatHyp meta-hypotheses

were present in some cases of AA Easy 01 yet accuracy was not affected. In any event,

we do not yet have a good understanding of which meta-hypotheses should and should not

be included for a particular problem domain, nor do we know exactly how the presence

of more or fewer meta-hypotheses affects overall accuracy. We would not be surprised to

learn, however, that there are no domain-general answers to these questions.

7.5 Prior work

The producers of the KIT AIS Data Set (Schmidt and Hinz, 2011) evaluated an iterative

Bayesian tracking approach that uses information about object position, velocity, and color.

They also include information about optical flow throughout the entire scene. Recall that

our approach uses a simple distance-based tracker that only considers object position. We

chose to do so for the sake of simplicity, to ensure the “power” was in the abductive rea-
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Figure 7.8. Results reproduced from Schmidt and Hinz (2011) showing precision/recall
for different datasets and confidence thresholds. Compare our completeness–confidence
diagram in Figure 2.10.

soning and metareasoning systems rather than in, say, a Bayesian tracker. They used per-

formance metrics equivalent to our uses of Precision and Recall. They did not attempt

to explicitly identify noise. Each possible track found by their algorithm bears a confi-

dence score. By varying a threshold of confidence, they obtained precision/recall graphs

(which they also call correctness/completeness graphs) very similar to our completeness–

confidence diagram (Figure 2.10). One such graph is reproduced here as Figure 7.8. How-

ever, their results and our results are not comparable in any meaningful way since they

utilize substantially more information about object movements to track the objects. A crit-

ical discussion of our methodology, specifically regarding our decision to model only very

simple aspects of each domain, may be found in Section 9.1.
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7.6 Conclusions

The aerial tracking domain is the only realistic problem domain that we investigate in this

work. We state in Section 10.7 that our planned future work includes experiments with

additional realistic problem domains, such as plan recognition, speech recognition, and

robotics applications. We learned from the aerial domain that abductive reasoning is suit-

able for the task, though it might benefit from being able to utilize more information about

object velocity, color, and so on, in order to produce more accurate plausibility estimates

for the movement hypotheses. We also saw that the η parameter impacts abductive reason-

ing performance in the ways we would expect. However, we saw that δ = 0 is better than

δ > 0. This result is likely due to the dearth of competing explainers found when we set

a high η threshold. We demonstrated that abductive metareasoning maximizes accuracy

and nearly maximizes noise identification across all tested configurations (both with and

without metareasoning) when we choose η = 0.80 and ηmeta = 0.60. These results confirm

that abductive reasoning and abductive metareasoning are a powerful combination.
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Chapter 8: Bayesian network domains

Each world estimation task has unique properties. For example, medical diagnosis and

accident investigation differ in some ways. Medical diagnosis often involves elaborate tests

and diagnosis by attempting to ‘repair’ the problem with medicines. Accident investigation,

on the other hand, typically must make do with whatever evidence was gathered at the

scene. Many properties are shared, for example, finding explanations for the evidence,

updating a world estimate or doxastic state as evidence is gathered and processed in a

particular order, and evaluating whether evidence is factual or not. We have built algorithms

that generate random task domains that are represented as Bayesian networks (Pearl, 1988).

These algorithms attempt to model the shared properties of medical diagnosis, accident

investigation, and other domains while abstracting away from the specifics that differentiate

domains.

8.1 Notation

Bayesian networks are used here to represent causal and incompatibility relations and prob-

abilistic knowledge for abductive reasoning. In the Bayesian networks we consider, each

variable has two discrete states. We denote variables with uppercase letters, e.g., X , and

states with lowercase letters, e.g., x. Bold uppercase letters such as X indicate sets of vari-

ables and bold lowercase letters such as x indicate their corresponding states. The function

S (X) gives all possible state assignments to every variable in X. The set x denotes the

complement of states x. In the network, an edge from X ′ to X means that X is causally

dependent on X ′. We may also say that X ′ is a parent of X . The set of parents of a vari-
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able X is denoted Π(X). Each variable has a conditional probability table which defines

the probability of the variable holding each of its states given the states of its parents. For

convenience, we denote the beliefs of a doxastic state as the set of variable states b.

Certain states of certain variables may be incompatible with certain states of other

variables. A set of states x is incompatible with another set y, for our purposes, if and only

if some x ∈ x is incompatible with some y ∈ y. When b does not include both states of an

incompatible pair, we say b is consistent (we are only considering pairwise inconsistency).

Incompatibility can be represented in the Bayesian network with constraint variables (Pearl,

1988, pp. 225–226). Each pair of variables that have incompatible states, say variables X

and Y with incompatible states x and y, are parents of a unique constraint variable Cxy,

which is fixated to observed state cxy. Constraint variables have conditional probability

tables that ensure if either of the incompatible states x and y is observed or assumed, then

the other state has zero probability. The conditional probability table is shown in Table 8.1.

x,y x,y x,y x,y
cxy 1.0 1.0 1.0 0.0
cxy 0.0 0.0 0.0 1.0

Table 8.1. Conditional probability table for a constraint variable cxy with parents x and y.
Note that cxy is always “observed.”

It should be noted that the constraint variables produce side effects, in the sense that

their presence alters the distributions of variables that are ancestors to those in the incom-

patible pair. Crowley et al. (2007) argue that ancestor variables should not be affected be-

cause Cxy is not evidence for the ancestors of x and y. They provide an algorithm for build-

ing antifactors and antinetworks, essentially more variables in the network, that counteract

such effects of the constraint variables. However, we do not agree with their reservations.

It seems reasonable that since only one of x or y is true, or neither is true, each of their
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causes (ancestors) is less likely than if x and y were not incompatible states.

A Bayesian network is randomly generated in order to produce a generic causal do-

main with which to perform abductive reasoning and metareasoning. The algorithms guid-

ing this generation are detailed in Section 8.3. The variables and their states, and indeed

the incompatibility relationships, have no “meaning” as they do not represent any particular

knowledge base. However, our experiments with randomly-generated Bayesian networks

are intended to shed light on how abductive reasoning and metareasoning perform in a

variety of task domains.

8.2 Definition as an abductive reasoning problem

Unlike the tracking domains, in the Bayesian network domains we must first define what

constitutes the ground truth for a particular network. This ground truth is to be inferred

by the reasoning system. It is generated by taking a direct sample of the whole network,

respecting conditional probabilities and incompatibilities. This process involves fixating

variable states, starting from the top variables and proceeding down the graph in the di-

rection of parent variables to child variables and randomly selecting a variable state based

on the conditional probability table for each variable, while respecting incompatibilities.

Some variable states in the ground truth set become reports. The reasoning system’s goal

is to explain the reports. Note that the same Bayesian network may yield different ground

truth configurations. Figure 8.2 shows an example Bayesian network and an example of its

ground truth.

Furthermore, we say that a belief X = x requires explanation if it has parents in the net-

work. Possible explanations range across the various combinations of states of its parents.

More formally,

Definition 8.2.1. Suppose X is believed (or observed) to have state x. Then a possible
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explanation of x is a partial instantiation y ⊆ Y,y 6= /0 of parents Y of X such that b∪y is

consistent.

As an example, referring to Figure 8.2, if V9243=S2 were believed, then its possible

explanations are:

V8091=S1 V8091=S2

V6321=S1 V6321=S2

V8091=S1, V6321=S1 V8091=S1, V6321=S2

V8091=S2, V6321=S2 V8091=S2, V6321=S2

Supposing V8091=S2, V6321=S2 were accepted, then both V8091=S2 and V6321=S2

would require explanation. The plausibility of a possible explanation y is simply the pos-

terior (where \ denotes set difference):

Pl(y) = P(y|b\y).

8.3 Network generation algorithms

The four algorithms below define how random networks are generated. The entry-point is

Algorithm 8.1. The function PICKRANDOM(S,n) is referred to in several instances, but

never defined. This function simply picks n random elements from set S.

Algorithm 8.1 Algorithm for generating a random network.
function RANDOMNETWORK

Reset random seed to a random integer in [0,1000]
E← GENERATEEXPLAINSLINKS . See Algorithm 8.2
I← ADDINCOMPATIBILITIES(E) . See Algorithm 8.4
P← ASSIGNRANDOMPROBABILITIES(E) . See Algorithm 8.5
return (E, I,P)

end function

154



Algorithm 8.2 Algorithm for generating edges.
function GENERATEEXPLAINSLINKS

U← Generate 10 random variables . U contains variables with no parents
P←{} . P contains generated parent variables
E←{} . E contains parent-child edges
while ‖E‖< 40 do

E ′←
⋃

V∈U GENERATEPARENTEDGES(V,P) . See Algorithm 8.3
E← E ∪E ′

Vexp←{V |(V ′,V ) ∈ E ′} . Find the newly explained
Vunexp←{V ′|(V ′,V ) ∈ E ′} . Find the newly unexplained
U← (U\Vexp)∪Vunexp
P← P∪Vunexp

end while
return E

end function

Algorithm 8.3 Algorithm for generating parents for some variable.
function GENERATEPARENTEDGES(V,P)

V̂ ← Generate a single random variable
P′← PICKRANDOM(P,10)∪{V̂}
return {(V ′,V )|V ′ ∈ PICKRANDOM(P′,3)}

end function

Algorithm 8.4 Algorithm for generating incompatible pairs.
function ADDINCOMPATIBILITIES(E)

V←{V |(V ′,V ) ∈ E}∪{V ′|(V ′,V ) ∈ E} . Get all variables
v←{(V,s)|V ∈ V}∪{(V,s)|V ∈ V} . Get all variable–state pairs (states are s,s)
C←{(V ′,v′,V,v)|(V ′,v′) ∈ v,(V,v) ∈ V} . Get all combinations of variable–state

pairs
I←{(V ′,v′,V,v)|(V ′,v′,V,v) ∈C∧ v 6= v′∧ (V,V ′) /∈ E ∧ (V ′,V ) /∈ E} . Keep valid

pairs
return PICKRANDOM(I,10) . Only keep at most 10 incompatible pairs

end function
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Algorithm 8.5 Algorithm for assigning probabilities.
function ASSIGNRANDOMPROBABILITIES(E)

Establish structure P to record probabilities
V←{V |(V ′,V ) ∈ E}∪{V ′|(V ′,V ) ∈ E} . Get all variables
for all V ∈ V do

P←{P|(P,V ) ∈ E} . Get parents of V
P ← All combinations of parents
for all P′ ∈P do . Generate probabilities for each parent combination

p← uniform-random(0,1)
Record probability P(V = v|P′) = p into structure P

end for
end for
return P

end function

8.4 Noise

Over the course of an experiment, the OBSERVE function randomly picks 10 true variable

states from anywhere in the network and generates reports for these variable states. When

the noise level is set to N%, each report has an N% chance of being subject to perturbation

or deletion, in order to simulate noise. We include four types of noise.

Distortion noise: A true variable state x is reported as x.

Duplication noise: Along with a true report x, the state x is also reported.

Insertion noise: A random unobserved variable Y , with true state y, is reported to have

state y.

Deletion noise: A true report is simply deleted from the set of variable states that would

have otherwise been reported.

Note that in each case excepting deletion noise, the reasoning system obtains a false

report. If the system ultimately refuses to find or accept an explanation for such a false

report, we say that it has identified the noisy report. However, deletion noise cannot be
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identified in this manner (there is no report to leave unexplained), so deletion noise is not

represented in noise identification metrics.

Noise may produce anomalies. In Section 8.6 we experimentally measure how noise

influences the presence of anomalies.

8.5 Experimental methodology

A Bayesian network representing probabilistic knowledge is generated randomly for each

experiment. Random generation includes random network configurations and variable

states, and random conditional probability tables. Averaged across 1000 randomly gener-

ated networks, the networks have 22.7 variables (excluding constraint variables), 1.5 parent

variables, a depth of 4.5, and contains 9.8 incompatible variable state pairs.

At each time step, a small number (≤ 3) of variable states are reported (these reports

might contain noise) from the OBSERVE function (see Section 2.6). The GENERATEHY-

POTHESES function is called to generate new hypotheses for the reports or other believed

variable states that themselves need explanation. After each hypothesis is accepted, GEN-

ERATEHYPOTHESES is called again to ensure the hypothesis plausibility estimates, which

are posteriors given the current beliefs, are continually up-to-date.

We measure performance according to the following metrics. Let r be reported vari-

able states (including noisy reports), B be believed variables (not including reports), b be

the believed variable states, E ⊆ (B∪ r) be reports and believed variables that require ex-

planation, U ⊆ E be those that are unexplained, and t be the ground truth variable states.

‖X‖ represents the cardinality of the set X , and P(·) is the normal probability function.
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Accuracy =
‖t∩b‖
‖b‖

Coverage = 1.0− ‖U‖
‖E‖

AccCov =
2∗Accuracy∗Coverage

Accuracy+Coverage

MPE = max
v∈S (B)

P(v|r)

MPEAccuracy =
‖t∩MPE‖
‖MPE‖

Note that MPE means “most probable explanation,” and here we define it as the most

probable assignment of states v ∈S (B) to believed variables B, given the reported states

(which might include noise). It is possible that MPE 6= b, i.e., the most probable variable

states for believed variables might not equal the actual believed variable states (arrived

at via abductive reasoning/metareasoning). Additionally, as in the simulated and aerial

tracking domains, we measure noise identification accuracy according to the following

metrics.

Noise Precision =
‖Actual noisy reports∩Noise claims‖

‖Noise claims‖

Noise Recall =
‖Actual noisy reports∩Noise claims‖

‖Actual noisy reports‖

Noise F1 =
2∗Noise Precision∗Noise Recall

Noise Precision+Noise Recall

8.6 Domain validation experiments

The following experimental hypotheses are labeled with the format “B-V-#” to indicate that

these hypotheses are regarding the Bayesian network domains’ validation experiments.
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Hypothesis B-V-1: EFLI abduction (Algorithm 2.3) yields significantly greater accuracy

than arbitrary abduction. We would expect this to be the case because EFLI prefers

more plausible, more decisive hypotheses.

Hypothesis B-V-2: As the noise level increases, anomalies also increase. This is to be

expected because false reports should, in the usual case, have no plausible and con-

sistent explanation. Accuracy should decrease, because noisy reports for which ex-

planations are found usually have false explanations.

Hypothesis B-V-3: According to the discussion of the completeness–confidence trade-off

(Section 2.8), we expect the following outcomes. (1) A minimum plausibility thresh-

old η > 0 is expected to produce greater accuracy than η = 0, thus demonstrating

the usefulness of this parameter. (2) A decisiveness threshold δ > 0 is expected

to produce greater accuracy than δ = 0, thus demonstrating the usefulness of this

parameter. However, we also expect that (3) when η > 0, more anomalies occur be-

cause hypotheses are more often rejected for not meeting the minimum plausibility

threshold.

Hypothesis B-V-4: In noise-free scenarios, we expect that the MPE is no less accurate

than beliefs acquired via abductive reasoning. This is expected because the MPE is

provably the most probable configuration of variable states given the reports (which

are true reports, by assumption). However, in noisy scenarios, in which some reports

might be false, abductive reasoning should yield more accurate beliefs than the MPE.

This is expected because the MPE calculates the most probable explanation “all at

once,” taking the noisy reports to be true; while the abductive reasoning system that

we have described is iterative, explaining one report or belief at a time and regen-

erating hypotheses and re-estimating their plausibilities after each acceptance. The
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impact of noise is more transient with abduction, and the noise is effectively “washed

out” as explainers at higher levels in the network are considered.

Hypothesis B-V-5: When plausibility estimates are missing or, equivalently, Pl(y) = 1.0

for every possible explanation y, performance is significantly and strongly degraded.

This outcome would show that performance depends on information about probabil-

ities and not just network structure. Furthermore, we expect that only a small value

for the plausibility precision (Definition 2.2.2), say, precision≤ 7, is required to pro-

duce accuracy on par with very precise plausibilities. This is expected because in

cases where two or more competing hypotheses have very small plausibility deltas,

not enough information is available to make a confident decision. The same reason-

ing explains why we expect the decisiveness threshold δ > 0 to yield better accuracy

than δ = 0.

Hypothesis B-V-1

At η = δ = 0 and no noise, the Accuracy metric increases by 0.095 on average (p < 0.001)

when EFLI abductive reasoning is employed compared to arbitrary abductive reasoning.

Coverage is not affected because η = δ = 0, so no hypotheses are rejected due to not meet-

ing minimum plausibility or not accepted due to inadequate decisiveness. So Hypothesis

B-V-1 is confirmed.

Hypothesis B-V-2

Figure 8.2 shows how the noise level affects the occurrence of anomalies in the Bayesian

network domains. Interestingly, the impact of noise on anomalies is minimal and not as

expected. The reason seems to be that false reports typically still have plausible explainers:

even for false reports, there still exists some plausible combination of parent variable states.
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But these explainers for the false reports are often false. We see this in Figure 8.3, although

again the impact is minor. The reason might be that a false observation in a Bayesian

network does not strongly impact the rest of the network. It is possible that the network

structure influences this result. Perhaps networks with greater connectedness are better

able to “absorb” random false reports.

0.00

0.01

0.02

0.03

0.04

0 20 40 60
Noise level (%)

A
no

m
al

ie
s 

(%
)

Figure 8.2. Impact of noise level on anomalies, supporting Hypothesis B-V-2. η = δ = 0.

Hypothesis B-V-3

Figure 8.4 shows the impact of δ on accuracy and noise detection for different values

of η . Counter to our expectations, δ = 0 yields the best Accuracy/Coverage trade-off

represented by the AccCov metric. Though these results do show that Accuracy improves

with δ = 0.20, there is a strong loss of Coverage. In the Bayesian networks, plausibilities
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Figure 8.3. Impact of noise level on accuracy, relating to Hypothesis B-V-2.
η = 0 = δ = 0.

of competing hypotheses are often close, so even a small minimum decisiveness threshold

causes many reports and other beliefs to remain unexplained, which reduces Coverage.

Noise identification improves with greater δ , apparently because noisy reports gen-

erally do not have decisive explanations. Noise identification also increases with greater

minimum plausibility η threshold, since noisy reports also generally have less-plausible

possible explanations. However, Accuracy and Coverage are reduced with a large η thresh-

old.

The right choices of δ and η depend on whether one wishes to increase Accuracy and

Coverage or increase Noise F1, since there appears to be a trade-off between these metrics.

We will often vary η to see how abductive metareasoning performs under different choices

in this trade-off. Recall that η > 0 might produce anomalies. Since δ > 0 does not produce
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anomalies, there are no insights to gain about metareasoning by varying δ . We will leave

δ = 0 unless stated otherwise.

Figure 8.5 shows the impact of η on frequencies of errors and anomalies. Note that

δ = 0. We see in the top graph that increasing η produces more MinPlausibility errors

but fewer of each other kind of error, especially Plausibility errors. NoExplOffered errors

are virtually non-existent because the network structure almost always provides possible

explanations; only about 20 cases among the 3000 summarized in these graphs had just

one or two occurrences of NoExplOffered errors. These errors only manifest when believed

variable states in the network are incompatible with all possible explanations of some report

or belief. Finally, MinDecisiveness errors are not possible since δ = 0.

The bottom figure shows that MinPlausibility anomalies increase as η increases. They

account for virtually all cases of anomalies in the Bayesian network domains. However,

there do exist a handful of cases in which anomalies are caused by Conflict or NoExplOf-

fered.

Hypothesis B-V-4

Hypothesis B-V-4 states that, in noise-free scenarios, we expect that the MPE is no less ac-

curate than beliefs acquired via abductive reasoning (that is to say, EFLI-based abductive

reasoning). On the other hand, in noisy scenarios, we expect the MPE to be less accu-

rate than beliefs acquired by abductive reasoning since the MPE does not iteratively build

its beliefs. EFLI-based abductive reasoning accepts one hypothesis (vertex–value pair) at

a time, then generates new hypotheses and re-estimates the plausibilities of existing hy-

potheses. Noise is better handled in this way because hypotheses further separated from

the noisy reports are less affected by the noise in terms of their plausibility estimates. The

MPE, on the other hand, considers the probabilities of all the relevant vertices at once, so
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the noisy reports are never “washed out” as they are by the iterative abduction process.

The MPE is measured here only for those vertices that our abduction system has be-

liefs about (those vertices that have states that were accepted in order to explain). In this

usage, the MPE is synonymous with the MAP (maximum a posteriori) for the subset of

vertices that have believed states from our abductive reasoning process. Thus, there is no

difference in Coverage or number of vertex–value pairs that make up the beliefs found by

our abduction process and vertex–value pairs found by the MPE.

Figures 8.6, 8.7, and 8.8 compare Accuracy and MPEAccuracy for different kinds of

noise at various noise levels. Arbitrary and EFLI abduction are separated to indicate that

EFLI is generally responsible for the dominance of Accuracy over MPEAccuracy at higher

noise levels.

In the case of Figure 8.6, we see two interesting phenomena. First, arbitrary abduc-

tion is not greatly affected by distortion noise. Recall that distortion noise means randomly

modifying a reported vertex value to the vertex’s other value. The same vertex is reported,

so the same parent nodes are examined as possible explainers. Only the plausibility es-

timates of the possible explainers are impacted by distortion noise. Arbitrary abduction

ignores the plausibility estimates of hypotheses, so distortion noise has no impact on accu-

racy with arbitrary abduction. The MPE is directly affected by distortion noise because the

vertex values affect the posteriors of all other vertices in the network, and thus impact the

MPE.

Duplication noise is shown in Figure 8.7. Duplication noise means reporting both

vertex values. In this case, the MPE only accepts a random choice for the duplicate reports,

since it cannot accept both; thus, the MPE behaves in a similar manner as in distortion

noise, just there is a 50% chance it accepts the correct value of the pair under duplication

noise.

More interestingly, EFLI-based abduction performs better than MPE for higher dis-
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tortion and duplication noise levels. The reason is as described above: that the iterative

abductive reasoning algorithm effectively “washes out” the impact of the noisy reports be-

cause new hypotheses are generated or plausibility estimates are recalculated after each

hypothesis is accepted. The MPE, on the other hand, considers the probability of an entire

composite explanation all at once, so the noise is never “washed out.” Insertion noise, as

shown in Figure 8.8, does not strongly affect the accuracy of either abduction or the MPE.

Arbitrary EFLI
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Figure 8.6. Comparison of Accuracy and MPEAccuracy for different levels of distortion
noise, supporting Hypothesis B-V-4. η = δ = 0 and reports were obtained all at once
rather than sequentially. Arbitrary contrast set preference and EFLI contrast set preference
are distinguished.

Hypothesis B-V-5

The first claim of Hypothesis B-V-5 states that hypothesis plausibility estimates are used

and useful. We can simulate abductive reasoning with no information about plausibilities

by setting Pl(y) = 1.0 for all possible explanations y. In this case, EFLI is unable to prefer
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Arbitrary EFLI
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Figure 8.7. Comparison of Accuracy and MPEAccuracy for different levels of duplication
noise, supporting Hypothesis B-V-4. η = δ = 0 and reports were obtained all at once
rather than sequentially. Arbitrary contrast set preference and EFLI contrast set preference
are distinguished.

hypotheses based on their plausibilities. When a contrast set contains two or more hy-

potheses, they also cannot be differentiated according to decisiveness. However, essential

explainers are still preferred over non-essential explainers. Table 8.2 shows the increase in

accuracy when scores are present. Accuracy and noise identification are significantly and

strongly increased. Coverage is not affected since η = δ = 0 and Coverage= 1.0 in all

cases.

The second claim of Hypothesis B-V-5 states that only a small value for the plausibil-

ity precision (say, precision≤ 7) is required to obtain accuracy on par with full plausibility

precision (i.e., double-precision floating-point numbers). Figure 8.9 shows the impact of

plausibility precision on Accuracy. We see that when η = 0, plausibility precision at about
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Figure 8.8. Comparison of Accuracy and MPEAccuracy for different levels of insertion
noise, supporting Hypothesis B-V-4. η = δ = 0 and reports were obtained all at once
rather than sequentially. Arbitrary contrast set preference and EFLI contrast set preference
are distinguished.

7 or 10 is nearly as good as full plausibility precision. This result agrees with previous

findings regarding a Bayesian network’s sensitivity to plausibility precision (Pradhan et al.,

1996). When η = 0.6, low plausibility precision has even less of an impact.

There is curious behavior at plausibility precision 3. In this case, the plausibility scores

are all one of [0,0.50,1.0]. The original plausibility score for each report or hypothesis is

replaced with the closest of these three scores. For example, 0.35 is replaced with 0.50.

As it happens, in the Bayesian network domains, 0.50 is almost always the closest such

plausibility score, so virtually all reports and hypotheses are assigned the same plausibil-

ity. This results in a scenario much like having no plausibility estimates at all (addressed

earlier). Yet in cases where there are two possible plausibilities (0 or 1.0), the true reports
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Noise Accuracy Coverage N. Prec. N. Recall N. F1
0 +0.152 *** 0.000

10 +0.141 *** 0.000 +0.056 * +0.007 +0.012 *
20 +0.134 *** 0.000 +0.123 *** +0.013 ** +0.025 **

Table 8.2. Impact of having no plausibility information, supporting Hypothesis B-V-5.
η = δ = 0. This experiment compares abductive reasoning with no plausibility
information and abductive reasoning with normal plausibility information. In both cases
with and without plausibility information, results are averaged across noise levels of 0%,
10%, and 20%. In the table, a Noise value of 10 indicates 10% noise level. “N. Prec.” etc.
refer to the Noise Precision metric, etc. A value +0.152 for some metric means that EFLI
produced, averaged across individual cases, 0.152 higher on that metric. Statistical
significance is indicated by asterisks: * indicates p < 0.05, ** indicates p < 0.01, ***
indicates p < 0.001.

and hypotheses are more often assigned the plausibility 1.0 and the false 0.0. In cases of

plausibility precision of four (0, 0.33, 0.66, 1.0), again true reports and hypotheses gener-

ally score higher than false ones. Thus, a plausibility precision of 3 performs worse than 2

or 4.

8.7 Metareasoning experiments

The following experimental hypotheses are labeled with the format “B-M-#” to indicate

that these hypotheses are regarding the Bayesian network domains’ metareasoning experi-

ments.

Hypothesis B-M-1: Metareasoning gives better Accuracy, Coverage, and Noise identifi-

cation than no metareasoning, for certain values of η ,δ ,ηmeta,δmeta.

Hypothesis B-M-2: Metareasoning gives better performance than no metareasoning even

when report plausibilities are unknown.
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Figure 8.9. Impact of plausibility precision on accuracy for different both η = 0 and
η = 0.60, and δ = 0, supporting Hypothesis B-V-5. Results are averaged across noise
levels of 0%, 10%, and 20%. The horizontal line marks Accuracy at maximum
plausibility precision (double-precision floating-point numbers).

Hypothesis B-M-3: Performance is maximized when each of MetaImplHyp, MetaIncom-

patHyp, MetaOrderDep meta-hypotheses is available as a possible explainer of anoma-

lies. This can be tested with ablation experiments in which various combinations of

meta-hypotheses are supported.

Hypothesis B-M-1

We see from Figures 8.10 and 8.11 that abductive metareasoning almost always increases

Accuracy, Coverage, and AccCov for all values of η . We found that δ = δmeta = 0 gave

best performance in all cases. Noise identification, shown in the bottom of Figure 8.11,

suffers under abductive metareasoning for certain values of η and ηmeta. This outcome
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seems to be due to a decrease in Noise Recall, although Noise Precision increases. We see

this in Table 8.3. The reason is that abductive metareasoning often finds ways to explain

more reports, both noisy and true reports, by lowering the minimum plausibility threshold

η in certain cases. Although Accuracy and Noise Precision show an increase, Noise Recall

decreases because in some rare cases, abductive metareasoning finds explanations for false

reports.

A higher η value is the primary cause of anomalies in the Bayesian network domains.

We saw this earlier in Figure 8.5. Table 8.3 reinforces this result. The table includes a

“Cases” column which shows how many cases, among 15,000 random scenarios, contained

anomalies and thus activated abductive metareasoning. When η < 0.6 or so, anomalies are

virtually non-existent. Even so, abductive metareasoning almost always brings an increase

in Accuracy, Coverage, and Noise Precision.

Hypothesis B-M-2

As described in Section 6.6, with regards to Hypothesis S-M-3 of the simulated tracking

domain, the plausibility function for meta-hypotheses (Section 4.5) is simply the average

of the plausibilities of the anomalies that a meta-hypothesis is capable of explaining. It is

important to investigate how abductive metareasoning performs when report plausibilities

are unknown (equivalently 1.0). Table 8.4 shows these results. Comparing with Table 8.3,

which shows results for experimental cases that do include report plausibilities, we see that

only Noise Recall is significantly lowered when report plausibilities are obscured. This

outcome is due to the fact that noise identification depends crucially on having accuracy

report plausibilities because noise is detected only when it remains unexplained. Usually,

very implausible reports are left unexplained by abductive metareasoning due to the ηmeta

threshold. However, when all reports have plausibility 1.0, they seem to be highly plausible
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η Noise Accuracy Coverage N. Prec. N. Recall N. F1 Cases
0.00 0 +0.016 0.000 3
0.00 10 -0.082 0.000 +0.167 +0.050 +0.077 2
0.20 0 +0.054 +0.065 * 8
0.20 10 +0.018 +0.063 +0.278 * +0.017 +0.034 6
0.20 20 -0.015 +0.051 +0.067 0.000 +0.003 5
0.40 0 +0.026 +0.056 ** 21
0.40 10 +0.018 +0.071 *** +0.116 ** -0.004 +0.003 21
0.40 20 -0.010 +0.048 ** +0.088 -0.011 -0.009 22
0.60 0 +0.014 *** +0.117 *** 701
0.60 10 +0.007 * +0.122 *** +0.048 *** -0.009 *** -0.002 662
0.60 20 +0.007 +0.128 *** +0.052 *** -0.017 *** -0.008 ** 604
0.80 0 +0.025 *** +0.067 *** 942
0.80 10 +0.016 *** +0.074 *** +0.038 *** -0.015 *** -0.001 908
0.80 20 +0.011 *** +0.078 *** +0.037 *** -0.023 *** -0.006 * 873

Table 8.3. Results from comparative experiments, supporting Hypothesis B-M-1, with
abductive metareasoning and no metareasoning, for different minimum plausibility η

thresholds and noise levels. ηmeta = 0.60,δ = δmeta = 0. In the table, a Noise value of 10
indicates 10% noise level. A metric value +0.016 indicates that abductive metareasoning
increased that metric on average by 0.016 compared to no metareasoning. The “Cases”
column indicates the number of cases, among 15,000 random scenarios, when anomalies
were present and abductive metareasoning as activated. Statistical significance is indicated
by asterisks: * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001.

reports, and explanations are more often found, thus reducing Noise Recall. Note that,

unlike the tracking domains, non-reported variable states in the Bayesian network may

become anomalies just as reports may. The plausibility of those anomalies is calculated in

the usual way (using posteriors, given prior beliefs and reports) in these experiments.

Hypothesis B-M-3

Finally, Hypothesis B-M-3 states that each kind of meta-hypothesis (MetaImplHyp, MetaIn-

compatHyp, MetaOrderDep; refer to Section 4.1) plays an important role in abductive
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η Noise Accuracy Coverage N. Prec. N. Recall N. F1 Cases
0.00 0 +0.009 0.000 4
0.00 10 +0.035 0.000 +0.139 +0.033 +0.055 3
0.00 20 -0.047 0.000 +0.083 +0.007 +0.017 4
0.20 0 +0.036 +0.040 * 17
0.20 10 +0.033 +0.022 +0.025 -0.015 -0.020 17
0.20 20 +0.001 +0.015 +0.117 -0.024 -0.027 17
0.40 0 +0.008 +0.022 * 47
0.40 10 +0.001 +0.027 *** -0.021 -0.027 *** -0.036 *** 63
0.40 20 -0.003 +0.015 ** -0.013 -0.040 *** -0.052 *** 77
0.60 0 +0.023 *** +0.096 *** 901
0.60 10 +0.015 *** +0.097 *** +0.041 *** -0.034 *** -0.032 *** 884
0.60 20 +0.015 *** +0.094 *** +0.055 *** -0.056 *** -0.052 *** 864
0.80 0 +0.051 *** +0.136 *** 999
0.80 10 +0.040 *** +0.132 *** +0.039 *** -0.072 *** -0.054 *** 999
0.80 20 +0.031 *** +0.131 *** +0.039 *** -0.120 *** -0.094 *** 999

Table 8.4. Results from comparative experiments, supporting Hypothesis B-M-2, in which
report plausibilities are unknown (i.e., constantly 1.0). Abductive metareasoning is
compared to no metareasoning for different minimum plausibility η thresholds and
different noise levels. ηmeta = 0.60,δ = δmeta = 0. In the table, a Noise value of 10
indicates 10% noise level. A metric value +0.009 indicates that abductive metareasoning
increased that metric on average by 0.009 compared to no metareasoning. The “Cases”
column indicates the number of cases, among 15,000 random scenarios, when anomalies
were present and abductive metareasoning as activated. Statistical significance is indicated
by asterisks: * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001.

metareasoning. We can test this claim by conducting ablation experiments, in which only a

subset of the three meta-hypotheses is available for abductive metareasoning. Each subset

is tested in turn (excluding the case in which no meta-hypotheses are available, since we

essentially tested that case earlier in regards to Hypothesis B-M-1).

Table 8.5 summarizes the results. We see that in all cases, leaving out MetaIncom-

patHyp gives best results. A similar result was found in the simulated tracking domain.

As in that domain, the difference here between including MetaIncompatHyp and not in-
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cluding it is minute. We saw earlier (Figure 8.5 and Table 8.3) that most anomalies in

the Bayesian network domains are due to a high η value. Thus, it is no surprise that Ta-

ble 8.5 shows that MetaImplHyp meta-hypotheses are very important; leaving them out

severely negatively impacts Accuracy and Coverage. However, not surprisingly, leaving

out MetaImplHyp improves Noise Recall because more reports remain anomalous (since

they are not explained by a MetaImplHyp meta-hypothesis) and thus are considered noise

claims. Finally, MetaOrderDep on its own does not offer much benefit, but when included

with MetaImplHyp, abductive metareasoning offers its maximum benefits.

8.8 Prior work

There exists a large body of work about inferencing with Bayesian networks. Randomly-

generated Bayesian networks were used to evaluate abductive reasoning and metareasoning

because their structure and probabilistic properties are familiar to many readers. However,

our approach has some interesting differences with prior work. These differences can be

categorized under two headings: the definition of a relevant explanation and the definition

of the best explanation.

Relevant explanation

Our use of the term explanation differs from other uses in the context of Bayesian networks.

For example, the term sometimes refers to the most probable explanation (MPE), which is

a complete assignment of variable states, or the maximum a posteriori (MAP) assignment

of variable states for a subset of all variables. However, equating explanation with MPE

or MAP introduces issues of relevance. MPE suffers from the “overspecification problem”

(Shimony, 1993), as does MAP if too many variables are chosen to be members of the

explanation set. The overspecification problem arises when variables that are irrelevant,
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e.g., downstream effects of the observations, are included in the explanation.

Chajewska and Halpern (1997) introduce a new definition of explanation, attributed

to Gärdenfors (1988), which requires that P(e|x)> P(e), where x is a possible explanation

of e, and that P(x)< 1. Chajewska and Halpern show that this definition is not sufficiently

limiting, as for any f where P( f ) < 1, e∧ f will be considered an explanation of e. They

go on to offer a “synthesis” of Gärdenfors’ approach and MAP-based explanation. Their

synthesis requires the specification of a “causal structure” that gives the relevant causal re-

lations for e. Again, it seems that the relevant variables in the network must be determined

a priori.

Yuan and Lu (2007) develop an approach they call the Most Relevant Explanation

(MRE) and refine it in subsequent work (Yuan et al., 2011). The MRE “aims to automat-

ically identify the most relevant target variables by searching for a partial assignment of

the target variables that maximizes a chosen relevance measure.” One such relevance mea-

sure is probabilistic likelihood, though the authors show that the generalized Bayes factor

(Fitelson, 2007) provides more discriminative power. Our approach is similar in that we

also evaluate partial assignments of parent (target) variables and evaluate each assignment

according to a kind of relevance criteria. These relevance criteria are encoded in the EFLI

algorithm (Algorithm 2.3), which prefers hypotheses that are both plausible and decisive,

and capable of explaining unexplained reports or beliefs. Yuan and Lu’s MRE differs from

EFLI-based abduction, however, in that the target variables for the MRE must be estab-

lished ahead of time, while our approach automatically seeks explanations for unexplained

reports and beliefs.

Flores et al. (2005) describe a unique approach to finding relevant explanations. They

build an explanation tree in which a node is a variable in the explanation and every branch

is a particular state for that variable. Leaf nodes store the probability of the variable state

assignments that are found along the path from the leaf to the root. The tree is not neces-
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sarily balanced or symmetric; thus, different leaf nodes might have different depths (i.e.,

different number of variables in the corresponding explanation). The tree is built according

to criteria involving probabilities and information entropy that aim to ensure all possible

explanations represented in the tree are relevant. Once the tree is built, the best relevant

explanation may be found by picking out the most probable leaf node.

This variety of definitions for what constitutes an explanation in a Bayesian network

illustrates the difficulty in using nothing more than the probability calculus to infer relevant

explanations. In the work presented here, all combinations (of all sizes) of parents of each

unexplained variable are generated and scored according to their posteriors. The abduc-

tive reasoning process determines which hypotheses are best according to plausibility and

decisiveness, and then rejects incompatible hypotheses (such as those that posit different

states for variables that it has in common with the accepted hypothesis). “Relevant” ex-

planations need not be determined a priori; instead, abductive reasoning decides what’s

relevant according to whether or not it is plausible, decisive, and explanatory. While we do

not offer any way of measuring which approach (EFLI, MAP, MPE, MRE, etc.) actually

produces more or less relevant explanations, it is worth noting the differences among these

approaches.

Best explanation

What constitutes the best explanation is also contentious. For the most probable explana-

tion (MPE), “best” is equal to “most probable.” However, Glass (2007) has shown that this

equivocation is problematic:

A problem with this approach is that a hypothesis could turn out to be the

best explanation even if the evidence is extremely unlikely given the hypothe-

sis. For example, in many cases a hypothesis which lowers the probability of
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the evidence relative to the unconditional case, i.e., P(e|ci) < P(e), will turn

out to be the best explanation according to the MPE approach because it has

a high prior probability. While it may not be desirable to rule out the possi-

bility that the evidence could be negatively dependent on the best explanation,

it still seems reasonable to say that such dependence should count against the

hypothesis more than it does in the MPE approach. (Glass, 2007)

Glass (2009) explores seven definitions for best explanation and experimentally eval-

uates the accuracy of the various approaches. There is also a significant body of work com-

paring and contrasting “inference to the best explanation” (IBE) and Bayesian abduction

(Bartelborth, 2006; Douven, 1999; Iranzo, 2008; Lipton, 2004; Psillos, 2004; Weisberg,

2009).

8.9 Conclusions

Each of our experimental hypotheses is confirmed by this work. They tell us that abductive

reasoning and metareasoning is a very effective strategy for using Bayesian networks to

infer the true explanations of reports. Due to the general usefulness of Bayesian networks,

we expect that our system will prove beneficial in a variety of tasks. Further work aims to

demonstrate its benefits in real-world applications.
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Chapter 9: Conclusions

The goals of this research were two-fold: (1) design, implement, and analyze an effective,

domain-general abductive reasoning procedure; and (2) design, implement, and analyze

an effective, domain-general metareasoning procedure that boosts accuracy over the base-

level abductive reasoning system. These goals were met, and the second goal was even

exceeded because we were able to design a metareasoning procedure that is self-similar

with the base-level reasoning system. This self-similarity, in which both the base-level

reasoning system and the metareasoning system utilize identical abductive reasoning algo-

rithms, is attractive from a system design standpoint and is cognitively plausible, as argued

in Section 4.10.

The remainder of this chapter addresses some concerns and issues about the present

work, and hints at plans for future work. More extensive discussion of future work may be

found in Chapter 10.

9.1 Methodology

There are a few important limitations to discuss about our methodology. First, we will

address a variety of idealizations. In our definition of a doxastic state (Definition 2.2.1), we

idealize explanation as a binary relation. Explanations cannot be partial. Hypotheses are

also either accepted, rejected, or undetermined; they cannot be partially believed as you

find, for example, in Bayesian networks. Of course, this latter idealization is important

for our development of metareasoning, since beliefs need not be taken back or revised if

they are not categorical but rather partial or probabilistic beliefs. We also assume that
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plausibility estimates are non-malevolent, i.e., mostly veridical. We assume there is no

evil deceiver whose aim it is to ensure the reasoning system acquires the wrong beliefs.

However, we do plan in future work to address the issue of deception (see Section 10.5).

Another concern is that our experiments only cover a small number of limited problem

domains. We have two object tracking domains and Bayesian network domains represented

by a collection of randomly-generated Bayesian networks. None of these domains covers

the range of properties one might find in real-world problem domains, such as: (1) thou-

sands or hundreds of thousands of reports and/or hypotheses, (2) very long-term reasoning

tasks that span thousands of “time steps” (our experiments ran for 20 or fewer time steps),

(3) strict time or memory resource limits such as might be required in robotics applications.

Some of these issues are planned in future work (see Section 10.7). We also recognize that

our results would be more convincing if we experimented with a well-known domain for

which there are clearly-defined success criteria. For example, some datasets for speech

recognition have been subjected to a wide variety of approaches. It would be clear that

abductive reasoning and abductive metareasoning are a powerful combination if it could be

demonstrated that our system beats the state-of-the-art for one or more of these datasets.

However, we consider the present work simply an initial effort that exposes the fundamental

features of our system. Future work will partly aim to demonstrate its wider applicability

and better understand its performance trade-offs.

Finally, we chose not to analyze performance of our system in terms of computation

time and memory use. This is a glaring omission because we hope for the system to be,

above all, a pragmatic choice for cognitive agents. In fact, engaging in metareasoning is

more expensive than not doing so, at least according to preliminary experiments. Opti-

mizing the entire process is planned in future work (see Section 10.1). Nevertheless, our

analysis of the computational complexity of abductive reasoning (Section 2.9) shows that

it is polynomial-time and therefore not obviously impracticable.
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9.2 Abductive reasoning

Our approach to abductive reasoning uses a greedy, hill-climbing (non-backtracking) algo-

rithm that may not find a complete composite explanation that explains all the reports and

unexplained beliefs. We chose to use a greedy algorithm because the problem of finding

a complete and consistent explanation is NP-complete. Additionally, the greedy algorithm

may not find the most plausible consistent and complete explanation, but that problem is

NP-hard. See Section 2.4 for details. However, our algorithm does a reasonable job at

efficiently finding complete or nearly-complete and highly plausible consistent composite

explanations. Furthermore, the EFLI algorithm, which prefers hypotheses that are plau-

sible and decisive, has been shown experimentally to boost performance over arbitrary

hypothesis preferences.

9.3 Abductive metareasoning

The abductive metareasoning system that we have developed only responds to anomalies,

i.e., unexplainable evidence. We have shown that this works considerably well for cor-

recting errors in the doxastic state. However, anomalies as defined might not be the only

candidates for abductive metareasoning. In other words, there might be other signals of

trouble:

• the absence of a decisive explanation for some evidence; i.e., an explainer where its

decisiveness is less than δ ;

• a gradual decline of confidence in the doxastic state, where confidence is measured

by average plausibility of accepted hypotheses, or average decisiveness, or some

combination of these measures;
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We saw in Section 4.8 that abductive metareasoning does not always properly handle

anomalies with multiple causes. This limitation suggests that the meta-hypotheses should

perhaps be more sophisticated to allow combinations that specify causes to the effect, “this

anomaly is due to both implausible hypotheses and, should that be resolved, incompatible

hypotheses.” This may be achieved by creating more kinds of meta-hypotheses, or ex-

tending the core abductive reasoning algorithm to automatically merge hypotheses in some

manner.

As mentioned earlier, metareasoning is a potentially costly operation. Abductive

metareasoning involves at least one more execution of the abductive reasoning algorithm,

and if any belief revisions are involved or a MetaOrderDep meta-hypothesis is accepted,

then after the revisions are made, abductive reasoning is executed again on the revised

doxastic state in order to finalize the state. Metareasoning might be activated yet again if

more anomalies remain. This all adds up to more time spent on the abductive reasoning

algorithm than just avoiding metareasoning altogether. We have measured cost-benefit ra-

tio of metareasoning, in which cost is measured in milliseconds and benefit is measured

in change in F1 or Accuracy, and discovered that, essentially, metareasoning is not worth

it. However, in future work we wish to extend our experiments in a variety of ways. First,

perhaps metareasoning is too costly when it is performed at every time step, but its cost is

amortized effectively when it is performed only after a certain number of anomalies have

accumulated or a certain amount of time has passed. We also want to identify if there are

cases where metareasoning makes corrections early on, and these corrections reduce con-

fusion later and result in more efficient abductive reasoning and fewer anomalies. Finally,

our experiments that measured the cost-benefit ratio included problem domain computa-

tions in the cost measure. It might be more insightful to isolate the reasoning computations

from the observing and hypothesis generation functions in order to find the true cost of

metareasoning.

185



Finally, we saw in the overview of prior work in metareasoning, which includes belief

revision (Chapter 5), that some metareasoning strategies make commitments to a language

and logic for beliefs. For example, in traditional strict belief revision, beliefs are repre-

sented as propositions, in classical symbolic logic. These metareasoning systems are able

to generate alternative explainers or perform very specific belief revisions in order to re-

solve anomalies. Our metareasoning system, on the other hand, does not have access to

the content of the reports and hypotheses, so it is unable directly to generate alternative

doxastic states. Instead, revisions are made to the acceptance status of existing hypothe-

ses and abductive reasoning is activated again. This second run of abductive reasoning

may result in new hypotheses or even new evidence, but the metareasoning system can-

not know what those new hypotheses or evidence will be. This limitation means that the

metareasoning system might not be as effective as a system that does have direct access to

domain-specific information. However, we have chosen to design both the base-level and

meta-level reasoning systems in this way in order to maximize generality.

9.4 Wider relevance

This is a study about high-level artificial cognitive systems, so it is reasonable to ask if there

are any take-away lessons for all cognitive agents. In other words, are there any insights

we can teach our children? We believe this work has illustrated a few insights about how

to be a smart thinker. After each insight, we summarize the evidence that supports it.

“If one has alternative ways to explain some evidence, it is more likely that the

most plausible, most decisive explanation is true.”

The EFLI algorithm was shown in each domain to yield greater accuracy than arbitrary

abduction.
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“It is wise to avoid believing something implausible.”

We saw in each domain that η > 0 yielded best accuracy.

“It is wise to avoid believing that X explains Y if some X ′ 6= X seems nearly as

plausible an explainer of Y , assuming X and X ′ are different (possibly incom-

patible) stories of how Y came to be. In particular, it is wise to avoid believing

X if ¬X is almost as likely. Rather than believing X in these cases (or X ′), it is

better to remain uncommitted about X until further information is available.”

We saw in the simulated tracking domain, δ > 0 yielded best accuracy. However, the

aerial tracking domain and Bayesian network domains did not exhibit the same property.

Nevertheless, it seems intuitive that, under normal circumstances, δ > 0 is a good idea. We

do not expect that there is one single value for η or δ that is best in all scenarios, however.

The completeness–confidence trade-off (Figure 2.10) illustrates that pragmatic concerns,

such as the cost of being wrong and the cost of not explaining all the evidence, play an

important role in determining η and δ .

“If there is some fact or claim Y that cannot plausibly be explained in a way

that is consistent with existing beliefs, then one has reason to be doubtful both

of (a relevant subset) of existing beliefs and the veracity of Y .”

Normally, one expects to find a plausible and consistent explanation for all reports, all

observations, all statements made by other agents, etc. When this is not possible, both

the evidence and one’s existing beliefs that are somehow related to the evidence should

be called into question. Note that calling beliefs and the evidence into question does not

imply that one must be able to decide, at that moment, which beliefs are false or that

the evidence is noise. Perhaps by waiting, more evidence will be acquired to resolve the
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anomaly. The metareasoning system significantly boosted accuracy and noise identification

when it behaved in exactly this way. Abductive metareasoning first considered whether

some kind of belief revision was possible in order to find consistent and plausible explainers

for the anomalies. If there was no such plausible meta-hypotheses, then the anomalies were

left alone, and at the end of the experiment, any anomalies that were not later explained

were considered to be labeled as noise.

We hope to find deeper insights into the nature of cognition and intelligence by ex-

tending this work in a variety of ways. These ways are addressed in the next chapter.
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Chapter 10: Future work

The combined abductive reasoning and abductive metareasoning system has been demon-

strated to be a very effective strategy for “making sense” in a variety of problem domains.

The foundations have been built, and now a variety of deeper questions about cognition in

general, and metareasoning in particular, can be explored.

10.1 Efficient metareasoning

It would be useful to characterize the cost–benefit trade-off of metareasoning. The sys-

tem we have investigated performs metareasoning for every time step in which there are

anomalies. Perhaps it is more computationally efficient to perform metareasoning every n

time steps, or only after some number of anomalies have accumulated.

Consider the folk wisdom, “perfect is the enemy of good” (often attributed to Voltaire).

Is it better to make commitments early and possibly detect and correct mistakes later, than

to spend more time gathering more evidence and evaluating more hypotheses now? And

will much of the confusion now simply work itself out later, due to the availability of new

evidence and the hindsight that comes with time? Can a cognitive system reason about

when it is best to perform metareasoning, in terms of the expected cost–benefit trade-off?

10.2 Bounded memory

How does forgetting affect abductive metareasoning? It is apparent that humans quickly

forget low-level inputs (e.g., the sounds of a speaker’s voice) but remember higher-level

concepts (e.g., the words themselves, or the gist of what the person was saying) for longer
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periods. Forgetting the original observations (what was picked up by the senses) might

limit abductive metareasoning’s ability to find alternative explanations for old data. Is it

possible for an agent to reason that some data might be needed again at later time in order

to eliminate future confusion? Are there “forgetting heuristics” that optimize the use of

memory but simultaneously prepare for future demands for self-correction? Can an agent

plan and prepare to perform abductive metareasoning in the future?

10.3 Dunning–Kruger effect

The so-called Dunning–Kruger effect (Kruger and Dunning, 1999) is the tendency for in-

competent persons to strongly over-estimate their competence in a wide range of tasks,

such as logic and math problems, identifying humor, and so on (Figure 10.1). Kruger

and Dunning claim that incompetent subjects lack the “metacognitive ability” to identify

their own errors and others’. In other words, their incompetence in the task results in their

inability to be aware of their incompetence.

Suppose we gave a cognitive system some way to estimate its own competence in its

task. An abductive reasoning system might measure its competence by taking the average

of the decisiveness of accepted hypotheses. The intuition is that competence means the

best explanation is usually better than the alternatives (very decisive). In any event, is it

the case that incompetent systems (that is, those that perform poorly on the task because,

for example, its plausibility estimates are poor, or it routinely fails to consider alternative

explainers) also over-estimate their competence, i.e., the wrong explainers are often the

most decisive? Furthermore, is it the case that precisely those incompetent systems fail to

self-correct, because they lack the kind of knowledge required by abductive metareasoning

to detect and correct false beliefs and noise? And is there some kind of fix that applies

to artificial cognitive systems and can be shown experimentally to bring the incompetent
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Figure 10.1. Dunning–Kruger effect. Recreated from Fig. 1 in Kruger and Dunning
(1999).

agent out of this mess and allow it to perform some self-correction? Finally, will this trick

work on humans as well?

10.4 Dogmatism and delusions

Are artificial cognitive systems susceptible to dogmatic or delusional beliefs just as humans

are? We might say that a cognitive system is acting dogmatically if it has a preponderance

of evidence that its beliefs are mistaken but fails to revise those beliefs appropriately. A

delusional cognitive system might be described as one that holds highly implausible beliefs

even in the face of significant counter-evidence (Bell et al., 2006). We also often think of a

delusional person as one who has a mostly-consistent but completely wrong model of the

world. Can reasoning systems be designed so that they can detect and repair dogmatic or

delusional patterns of reasoning? Are there cues, like consistently implausible hypotheses

or consistently few alternative explainers? And can anything be done to shed bad beliefs in
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one fell swoop? Humans sometimes arrive at delusional beliefs after experiencing “abnor-

mal data” (Coltheart et al., 2010). How do implausible or noisy inputs affect the likelihood

of a cognitive system behaving dogmatically or delusively?

10.5 Identifying deception

When should putative observations not be trusted as plausibly noisy or deceptive? In other

words, when should a cognitive system disbelieve the data? The approach we have taken

is to disbelieve data that introduce significant confusion, and cannot be resolved by abduc-

tive metareasoning. This strategy seems to work well for noisy data. How can deception

specifically be detected? Deception seems more difficult to detect because, if it is good

deception, it is designed to go undetected as deceptive, but nevertheless lead the system to

the wrong beliefs. Being wrong beliefs, there might eventually be some evidence that the

beliefs are wrong. No deception is perfect (presumably). What are the signs that deception

has been successful? Are beliefs that are arrived at in order to explain deceptive inputs

often implausible without having obtained the report (i.e., are their priors implausible but

their posteriors, conditioned on the report, not)? Or do false beliefs more often conflict

with other beliefs? That is, are false beliefs less compatible in general? These and other

cues might give a cognitive system some hope in identifying deceptive inputs.

10.6 Meta-metareasoning

It seems obvious that the abductive metareasoning system should support meta-metareasoning.

A meta-metareasoning system would monitor and control the metareasoning system. Be-

cause our abductive reasoning and abductive metareasoning systems are self-similar, and

utilize the same machinery to do their jobs, an abductive meta-metareasoning system

should be easily devised that monitors for anomalies in the abductive metareasoning sys-
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tem. The question is, what would the meta-metareasoning system hypothesize? What are

its meta-meta-hypotheses? Why would the metareasoning system have anomalies, i.e.,

no plausible meta-hypotheses that explain base-level anomalies? If we use the same ap-

proach as the abductive metareasoner, then perhaps the meta-meta-hypotheses posit that

the metareasoner discounted possible explainers because they were deemed too implau-

sible, or that some anomaly had no explanation (at the meta-level) because some other

meta-hypothesis conflicted with a possible explainer. A meta-meta-hypothesis that mirrors

the MetaOrderDep meta-hypothesis may also be useful, as abductive metareasoning is it-

erative and new anomalies (meta-level reports) might appear as metareasoning proceeds.

Meta-metareasoning is nearly as easy as flipping a switch, given the existing system archi-

tecture. We are not certain the exploration will yield interesting results, but it seems worth

trying.

10.7 New problem domains

We have experimentally validated our system in two object tracking domains (one simu-

lated, one using aerial surveillance data), and a collection of Bayesian network domains.

But there are many more kinds of problem domains that we think would benefit from ab-

ductive reasoning and abductive metareasoning. More experiments in different domains

will also provide further evidence that our approach is practical and correct.

Plan recognition

Plan recognition is a paradigmatic case of abductive reasoning. The task is to observe

actions committed by one or more agents and infer the plan that the agents are following

(and hence infer their goals). Under normal circumstances, most of the intermediate actions

required to execute a plan are hidden from the observer; the observer cannot be sure the
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Figure 10.2. Ambiguity in a plan recognition task, from Heinze et al. (1999).

agents performed all the steps of the plan. There are usually more than one plausible plans

that the agents are following at any particular time. The observed agents may carry out

actions over time, so the most plausible plan given the observed actions may change over

time. Plan recognition is rife with ambiguity. Consider the case shown in Figure 10.2. In

the left diagram, there are two possibilities, indicated by the question posed in the diagram.

In the right diagram, after some time has passed, it becomes more clear that Bandit-1 is

chasing Interceptor-1. But rather than wait until sufficient evidence is available, strategists

may wish to recognize Bandit-1’s plan early and then respond (in this case, respond by

luring Bandit-1 toward Interceptor-1).

It is clear that plan recognition has many of the properties that might make abductive

reasoning an effective strategy. Previous work has explored various kinds of abductive rea-

soning procedures for plan recognition (Goldman et al., 1999; Paul, 1993). We expect that
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we will be able to build a plan recognition problem domain and fit it into our existing sys-

tem architecture. Furthermore, we will be able to test both realistic and vetted datasets as

well as generate random cases. Once the plan recognition problem domain is implemented,

we can activate metareasoning and see if it boosts accuracy. We expect that it will because,

as described, there seem to be many scenarios where the most plausible plan turns out to

be clearly wrong and anomalies appear, i.e., the next predicted actions are not observed,

but other actions are observed that cannot be explained given the currently believed plan.

Speech recognition

Our work with the Bayesian network domains showed that both abductive reasoning and

abductive metareasoning were very effective for inferring the true vertex states from re-

ports. Furthermore, when certain kinds of noise were present, abductive reasoning yielded

more accurate beliefs than the most probable explanation, which is the gold-standard in

noise-free environments. For future work, we would like to extend these efforts into real-

istic and high-value problems. One such problem is speech recognition, in which domain

knowledge is typically represented by Hidden Markov Models (Gales and Young, 2008;

Juang and Rabiner, 1991) and Bayesian inference yields phonemes, words, and sentences

from spectral vectors. We expect to find similar gains in accuracy in noisy conditions by

using our abductive reasoning strategy on these problems. Furthermore, because inference

at the word and sentence level crucially depends on having accurate “beliefs” about prior

sentences and context of the sentence, we expect that abductive metareasoning, which is

capable of belief revision given anomalous evidence, will improve accuracy beyond the

base-level abductive reasoning system.

Speech recognition as a problem domain has the added benefit that there exist plentiful

evaluation data and success is well-defined. However, it has the drawback that it is virtually
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impossible to generate random cases (though one could simulate noise). Nevertheless,

speech recognition is a good domain to explore in future work since the community of

interested researchers and application developers is very large.

Robots

Finally, we believe it is always a good idea to try building a physical, bounded autonomous

version of a cognitive system. Robots often have far fewer computational resources than

system designers plan for in their initial developments. In our case, our cognitive system is

very abstract and modularized to support swapping out the problem domain and to support

careful evaluation of the base-level and meta-level reasoning systems. However, the entire

system would require a redesign and reimplementation if it is to fit inside a small embedded

system. Though not all robots are computationally-deficient, it is interesting to ask what

are the essential features of the combined abductive reasoning and metareasoning system?

And what can be left out?

We also must ask, what is the robot reasoning about and how might metareasoning

help? We believe the way to answer this question is to ask what data structures, i.e., beliefs,

the robot is constructing and updating over time, and how might this process be improved?

Suppose that the robot is mapping a room, so it is building an internal map. Are there cases

where this map is incorrect, and future observations seem not to make sense? These cases

might be candidates for a metareasoning procedure to analyze the internal structures and

the history of reasoning and find appropriate revisions.

The case of robots exposes an important point. We believe that abductive reasoning

and abductive metareasoning are appropriate features of virtually any cognitive system.

What makes a system cognitive is that it keeps internal representations of the world and

reasons about them (cf. Brooks (1991)). These internal representations are likely estab-
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lished and/or updated on the basis of evidence from the world (from sensors, reports from

other agents, etc.). If these representations are inaccurate in some way, then evidence from

the world might not make sense, leading the cognitive system to confusion. This confusion

may be resolved with metareasoning. And we expect that, ceteris paribus, a less confused

cognitive system is a more accurate one.
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