
 
 

Supervisory Control Validation of a Fuel Cell Hybrid Bus Using Software-in-the-Loop 

and Hardware-in-the-Loop Techniques 

 

 

THESIS 

 

 

Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in 

the Graduate School of The Ohio State University 

 

By 

Steven Abraham Ramirez 

Graduate Program in Mechanical Engineering 

 

The Ohio State University 

2013 

 

 

Master's Examination Committee: 

Dr. Shawn Midlam-Mohler, Advisor 

Dr. Yann Guezennec



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright by 

Steven Abraham Ramirez 

2013 

 

 
 

 

 

 

 

 

 

 



ii 
 

Abstract 

 The work presented within this thesis consists of the validation of a supervisory 

controller and vehicle simulator for the ECO Saver IV demonstration bus being developed 

as part of the National Fuel Cell Bus Program (NFCBP).  The goal of the NFCBP is to develop 

fuel cell transit buses such that a U.S. industry for fuel cell bus technology can be 

established through both technology innovation and increased public awareness of fuel 

cell vehicles.  The use of fuel cells in vehicles is desirable due to their high efficiencies and 

zero emissions, allowing the transportation sector to rely less heavily on petroleum and 

carbon based fuels that emit hazardous greenhouse gases.  The ECO Saver IV, as designed 

by the DesignLine Corporation through a contract with the Center for Transportation and 

the Environment, is a battery dominant fuel cell hybrid bus that takes advantage of the 

benefits of hybridization in conjunction with the benefits of the fuel cell.  The team of 

researchers at The Ohio State University (OSU) Center for Automotive Research (CAR) 

served as a subcontractor to develop a supervisory controller and fuel cell hybrid bus 

simulator, modeled after the chosen powertrain architecture. 

 The validation performed involved the use of software-in-the-loop and hardware-

in-the-loop simulations, where the results were compared to baseline model-in-the-loop 

simulations.  The driving conditions of the intended application of the demonstration bus, 
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i.e., integration into the OSU Campus Area Bus Services (CABS) fleet, were taken into 

consideration through the development of real-world drive cycles that were 

representative of actual CABS bus routes.  A new driver model was developed that solved 

issues related to tracking distance, velocity and road grade to enable the use of real-world 

drive cycles.  The results of the validation are to be used in the final phases of 

development and construction of the ECO Saver IV fuel cell hybrid transit bus to prove 

the effectiveness of using the developed control algorithm within the bus’ control 

hardware.  To aid in the evaluation phase of the demonstration bus project, a CAN based 

data acquisition system was developed and tested on the HIL test bench.  The logged data 

will be used to evaluate the successfulness of the fuel cell hybrid transit bus while 

providing evidence of the viability of such a vehicle.  
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CHAPTER 1: Introduction 

1.1 Motivation 

For years, the transportation industry has depended on carbon based fuels 

ranging from coal, gasoline, and diesel to power a wide array of vehicles, from 

passenger cars to transit buses.  However, this dependency has led to many problems 

that affect the environment.  These problems are usually caused by the toxic exhaust of 

conventionally powered vehicles.  When the constituents of a vehicles exhaust, i.e. 

carbon dioxide, carbon monoxide, and nitrous oxide, among others, is allowed to 

interact with the environment, the result is air pollution, acid rain, soot, and often 

climate change due to the trapping of heat in Earth’s atmosphere.  In addition to these 

harmful effects on the environment, these toxins are a hazard to the health of humans 

and animals alike.   

The destructive properties of carbon based fuel is not only limited to its use in 

vehicles but also from the process employed in obtaining these fuels.  Petroleum drilling 
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has been known to have adverse effects on the immediate and surrounding drilling 

sites, especially when incidents like that of the 2010 BP oil spill occur.  Unfortunately, 

the 2010 oil spill off of the Gulf Coast has not been the only time a drilling site has had a 

spill that endangered the wildlife and environment around it.  Even without the 

consideration of the damage done by oil spills, the process of drilling often releases 

chemicals like methane directly into the atmosphere where it serves as a potent 

greenhouse gas. 

Yet another problem with carbon based fuels is the dependence of foreign 

supplies of oil and gas.  Supporters of a process called hydraulic fracturing or “fracking”, 

in which natural gas is extracted from deep underground pockets of shale gas, claim that 

it will allow the US to decrease its dependence on foreign oil and gas while creating jobs 

that will boost the economy.  Though the economic benefits claimed by supporters of 

this process may be true, they neglect the environmental and health problems prevalent 

in and around fracking sites as well as the eventual depletion of oil and gas, a problem 

that has come to be known as the energy crisis.  While some may argue that petroleum 

is a long way from running out, the consequences of its continual use cannot be denied 

nor ignored any longer.  [1], [2] 

Research has been performed during recent years into several possible clean 

energy solutions to a substitute for gasoline and diesel powered vehicles.  Most of these 

solutions are centered on the adoption of electric drive systems in vehicles, whether 

they be powered by batteries, super and ultra-capacitors, solar cells, or fuel cells.  Much 
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of the focus has been on the development of vehicles that use energy storage devices 

such as battery electric vehicles (BEV).  However, BEVs have been unable to overcome 

the limited range of operation before the need of recharging arises, as well as the long 

charging times needed to get BEVs back on the road.  While some improvements have 

been made to the charging systems, there still exists an inherent use of the electric grid, 

which tends to be powered through the burning of coal. 

To solve these issues, hybrid electric vehicles (HEV) were developed.  HEV’s 

typically use both a gasoline powered engine and batteries to power a vehicle.  This 

overcomes several problems with battery powered vehicles and conventional vehicles, 

such as efficiency, mileage, range, and emissions.  Nevertheless, HEVs still use 

petroleum and, if the vehicle is a plug-in hybrid electric vehicle (PHEV), possibly coal 

burned at electric power plants.   

Out of the list of alternative propulsion devices, none has shown more promise 

than that of a fuel cell powered vehicle (FCV) for the development of a clean energy 

vehicle.  [3]  Fuel cells are electrochemical devices like batteries with the difference that 

they do not require charging but rather a fuel source.  While some vehicles use 

hydrogen derived from hydrocarbons as fuel, others use hydrogen obtained through the 

electrolysis of water.  The former essentially makes the fuel cell an energy production 

device whereas the latter is seen as another form of an energy storage device.  As seen 

from Figure 1, the well-to-wheel analysis of various fuels for fuel cell vehicles, each has 

its advantages and disadvantages.  



4 
  

 

Figure 1: Well-to-Wheel Emissions Analysis of FCV Fuel Sources 

Nevertheless, when hydrogen and oxygen, or air, is used as the fuel source, the 

only tailpipe products are electricity, water, and heat.  However, as with the other 

alternative power sources, fuel cells have their disadvantages when used as the sole 

power source for vehicles.  These disadvantages are mostly linked to the fuel cells 

sensitivity and response to dynamics in the fuel system, air delivery system, and load, to 

name a few.   

Thus, work on the development of fuel cell hybrid electric vehicles (FCHEV) has 

been done.  As with HEVs, FCHEVs take the advantages of both fuel cells and batteries 

to overcome the disadvantages of both.  The result is a clean vehicle with improved 

efficiency, better dynamic system response, and true zero emissions.  Much work and 

research is still being done to bring these vehicles into production, including 
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technological demonstration projects supported by the government, industry, and 

academic research institutes. 

1.2 Technology Demonstration 

Technology demonstration projects involve the development of a product 

focused on bringing an emerging technology towards the public eye with hopes of 

garnering support and excitement about the particular technology.  Several of these 

projects have been completed through the years that demonstrate the viability of 

electric and hybrid electric vehicles.  These projects tend to be initiated by government 

funded programs such as the National Fuel Cell Bus Program (NFCBP), which focuses on 

the development of fuel cell transit buses that will be added to bus fleets of cities or 

institutions and road tested over the course of several years.  As part of the NFCBP, the 

Center for Transportation and the Environment (CTE), in conjunction with the Federal 

Transit Administration (FTA), has been appointed to overlook the building and progress 

of these fuel cell hybrid electric bus demonstration/research projects.   

One such project, the ECO Saver IV Hybrid Electric Fuel Cell Bus Demonstration, 

has been undertaken by DesignLine and the Center for Automotive Research (CAR) at 

the Ohio State University (OSU) through a contract with CTE.  DesignLine was tasked 

with the integration of a Ballard fuel cell system with the building of a commercially 

viable heavy duty transit bus.  The fuel cell hybrid bus architecture includes a 75kW 

Ballard fuel cell system and a 600 kW Lithium Iron Phosphate (LFP) battery pack.  More 
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details concerning the vehicle powertrain architecture will be provided in the following 

chapters. 

Vehicle modeling and simulation was performed at CAR with the intent to 

validate the performance of the DesignLine bus architecture.  In addition, an improved 

control algorithm for use with the bus’ electronic control unit (ECU) was to be 

developed and proposed.  The technology demonstration is to be completed at OSU 

through integration with the Campus Area Bus Services (CABS) fleet and will last a total 

of two years in operation. 

1.3 Thesis Overview 

The work presented in this thesis is centered on the results of the tasked fuel cell 

hybrid bus architecture validation, specifically with the focus of determining how the 

bus will perform given the specific route characteristics of a typical OSU CABS bus route.   

In addition, a CAN based data acquisition system was developed to be used as an on-

board embedded device to log real-time data from the ECU for the duration of the 

technology demonstration project. 

 Furthermore, the work takes that which was tasked to OSU a step further 

through the use of software-in-the-loop (SIL) and hardware-in-the-loop (HIL) simulations 

to conduct real-time validation and verification of the OSU developed vehicle model 

simulator and proposed DesignLine bus architecture as well as the HIL validation of the 

developed CAN based data acquisition system with the HIL simulator. 
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The organization of this thesis is as follows: 

 Chapter 2 – Literature Review 

o Chapter 2 consists of background information on NFCB demonstration 

projects, the use of standardized drive cycles versus real world drive 

cycles in terms of vehicle simulation, the methods employed in the 

modeling and simulation of vehicles, and the types of control strategies 

typically used to control and optimize the performance of hybrid electric 

vehicles. 

 Chapter 3 – Simulator/Experimental Resources and Method 

o Chapter 3 details the specifics of the architecture and characteristics of 

the fuel cell hybrid bus, the design of the fuel cell hybrid bus simulator as 

originally developed by Kyle Simmons, the validation of the proposed 

control algorithm, and the development of the CAN DAQ system. 

 Chapter 4 – Bus Hardware/Software Validation for Campus Use 

o Chapter 4 provides an in-depth validation of the proposed bus 

architecture and software through evaluation of the performance of the 

bus on the desired campus driving conditions with a focus on the 

development of real-world drive cycles and a new driver model, an 

analysis of the comparative results of the both the drive cycles and the 

driver models, and a weight sensitivity study, among others. 

 Chapter 5 – SIL/HIL Preparation 
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o Chapter 5 pertains to the methodology used in the proper 

implementation of SIL and HIL simulations and the process used to create 

the SIL and HIL simulations. 

 Chapter 6 – SIL/HIL Results 

o Chapter 6 goes through the results of the SIL and HIL simulations through 

a comparative analysis between MIL, SIL, and HIL for the standardized 

and developed real-world drive cycles.  Conclusions based on the 

comparison results are then given. 

 Chapter 7 – Conclusions and Future Work 

o Chapter 7 contains concluding remarks about the work presented in this 

thesis before discussing the possible future work that could be done with 

regards to the work presented. 
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CHAPTER 2: Literature Review 

2.1 Introduction 

The following sections provide background information found in relevant 

literature on the NFCBP demonstration projects, the use of drive cycles in vehicle 

simulation, modeling and simulation methods, and hybrid electric vehicle control and 

optimization. 

2.2 NFCBP Demonstration Projects 

The Department of Energy (DOE) and the FTA have been funding the National 

Renewable Energy Laboratory’s (NREL) evaluation of fuel cell hybrid electric buses since 

as early as 2003.  However, a number of these bus demonstration projects throughout 

the nation that are either planned, currently in evaluation, or done with their initial 

evaluation have been started as part of the NFCBP.  NFCBP demonstration projects 

involve a partnership between the FTA and one of three non-profit industry consortia, 

specifically, the Northeast Advanced Vehicle Consortium (NAVC), CALSTART, and CTE.  
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These three consortia are responsible for the development and management of projects 

through collaboration with industry or academic institutions.   

The primary focus of the NFCBP is the eventual commercialization of full-size, 

heavy-duty fuel cell transit buses through the development of commercially viable fuel 

cell bus technology, improved bus efficiency, and reduced petroleum consumption and 

bus emissions, all while establishing a U.S. industry for fuel cell bus technology and 

increasing public awareness and acceptance of fuel cell vehicles.  The typical life cycle of 

a bus demonstration project can be summed up into four categories, concept 

development, prototype construction/build, demonstration and evaluation, and the 

publishing of findings. [4], [5] 

2.3 Driving Cycles in Vehicle Simulation 

2.3.1 Standardized Drive Cycles 

The US Environmental Protection Agency (EPA) has developed a set of federal 

test procedures for measuring tailpipe emissions and fuel economy of passenger and 

heavy duty vehicles.  The tests involve running a vehicle on a chassis dynamometer with 

a standardized driving schedule or drive cycle.  These tests allow vehicle manufacturers 

to obtain standardized values for fuel economy on vehicles they produce. 

For passenger cars, there are two main drive cycles used, one for simulated city 

or urban driving, known as the Urban Dynamometer Driving Schedule (UDDS), and one 

for simulated highway driving, known as the Highway Fuel Economy Driving Schedule 
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(HWFET).  In addition, the US06, SC03, and Cold Cycle Supplemental Federal Test 

Procedures were later introduced as an attempt to simulate real-world driving and fuel 

economy more accurately.  These three supplemental tests combine city and highway 

drive cycle characteristics and take factors like rapid speed fluctuations, aggressive 

driving behavior, air conditioning use, and cold start conditions into consideration. 

In terms of heavy-duty vehicle emissions and fuel economy testing, the EPA has 

only developed one such federal driving schedule, the Heavy Duty Urban Dynamometer 

Driving Schedule (HDUDDS).  However, work has been done on developing specialized 

drive cycles for heavy-duty vehicles ranging from refuse trucks to transit buses.  A well-

known simulated transit bus drive cycle is that of the Manhattan Bus Cycle.  This drive 

cycle is used to test emissions and fuel economy of urban buses on a chassis 

dynamometer. 

While the EPA and vehicle manufactures use these cycles to test vehicles, these 

standardized drive cycles are also used in the modeling and simulation of vehicles.  

Vehicle modeling and simulation allow engineers to test vehicle architectures and 

control algorithms on various simulated driving conditions without having to first build a 

prototype.  Thus, it could possibly provide an initial estimate of the vehicle’s emissions, 

fuel consumption, performance, and efficiency at a much faster computational time 

frame than dynamometer testing would allow.  Since these results are obtained using 

standardized drive cycles, they serve as a good way to determine if the vehicle would 

pass the ever stringent EPA standards. [6] 
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2.3.2 Real-World Drive Cycles 

While standardized drive cycles are useful for establishing compliance with EPA 

standards and obtaining performance estimates on various driving conditions, some 

vehicles are developed with certain specific applications in mind that require more than 

a simulated driving schedule.  Thus, the need for real-world drive cycles is in bridging 

the gap between performance estimates and real time evaluated data of the vehicle in 

operation.  Real-world drive cycles are obtained by gathering data of a typical route that 

the vehicle will be expected to travel.  At a minimum, this data would have to include 

velocity and time travelled.  However, in order to better characterize a real-world drive 

cycle, information on the road grade and distance travelled should also be gathered.  

The benefits of using real-world drive cycles include more accurate simulation results for 

emissions, efficiency, and performance because they take into consideration actual 

driving conditions for actual routes that the vehicle would drive.  These benefits have 

been studied and applied in both industry and academic institutions.  Researchers have 

studied the effects of real-world driving as compared to government standardized drive 

cycles on a prototype hybrid vehicle with the use of a vehicle model. [7]  These benefits 

are not just evident when applied to vehicle modeling and simulations.   

While places like the U.S. and Europe have their own standardized emissions 

tests, other countries have yet to develop their own and instead opt to using 

standardized drive cycles developed for other countries or regions that are not 

indicative of their local driving conditions.  Such was the case in India, where vehicle 
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emissions testing was conducted with the use of European driving cycles.  However, 

these drive cycles do not take into consideration the driving and traffic conditions of 

Indian cities.  Thus, there was a need for real-world based Indian drive cycles for intra-

city buses.  Using a Global Positioning System (GPS), the operating characteristics of 

intra-city buses in Chennai, India were examined in order to develop such a driving 

cycle. [8]  As the literature shows, the development of real-world drive cycles is critical 

in the proper determination of vehicle emissions and fuel consumption.  Further 

examples of the use of real-world drive cycles can be found in  [9], [10], [11], and [12]. 

Though little was found in the literature involving the development of real-world 

road grade profiles in conjunction with the use of real-world drive cycles, this thesis will 

provide an overview of such a task.  In addition, the methods used in creating real-world 

road grade profiles will be highlighted.  In particular, the use of Vincenty’s Inverse 

Formula will be explained in relative detail.  A more in-depth explanation of the 

Vincenty Formulae and its applications can found in [13]. 

2.4 Simulation Methods of Model-Based Control/ Systems Development 

2.4.1 Introduction 

By definition, model-based control and systems development requires the use of 

simulations.  However, through the years, there has been an increase in the methods 

used for the modeling and simulation of differing applications.  With such a vast offering 

of methods, it is useful to categorize them in order to better understand the underlying 

applicability of each method. Thus, with regard to the speed of the computation 
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required, simulation methods can be subdivided into three main categories, simulations 

without hard time limitations, real-time simulations, and simulations that are faster 

than real-time. [14]  In terms of this work, it will be assumed that all simulations contain 

some sort of time limitation and thus will not be considering simulations without hard 

time limitations.   

The remaining categories can be further subdivided into more useful 

subcategories centered on the several phases of a typical V-model approach to model-

based control and systems development.  Simulations that are faster than real-time can 

be equated to the initial development of model-based control systems and 

control/optimization strategies, referred to as model-in-the-loop (MIL) simulations or 

software-in-the-loop (SIL) simulations, respectively.  On the other hand, real-time 

simulations are categorized as hardware-in-the-loop (HIL) simulations.  Though at times, 

SIL simulations can be run in real-time, the difference is that SIL comprises both a 

simulated plant model and a simulated controller in real-time whereas HIL pertains to 

real-time simulations in which a simulated process is operated with real control 

hardware, typically to validate the actual controller. [14]  Thus, for the most part SIL 

simulations are conducted at computational times that are faster than real-time.   

2.4.2 V-Model Approach 

Before getting into the details of the simulation methods used within a V-model 

approach to model-based control and systems development, it is useful to present the 

basic steps of such an approach.  The traditional V-model approach is a graphical 
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representation, as shown by Figure 2, in which the left side contains several steps that 

can be grouped under the general term of problem definition and decomposition which 

includes the conceptualization of the problem, requirement definition, and design.  This 

side of the traditional V-model ends in the eventual implementation of the system and 

leads to the right side of the model.  The right side also contains several steps generally 

grouped under the integration, verification, and validation of the system.   

 

Figure 2: Typical V-Model Diagram 

However, in terms of model-based control and systems development, these two 

sides will at times have a considerate amount of cross-over even before the 

implementation phase has been reached.  That is, during the development of the 
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models and simulators of a system, several iterations of the verification and validation 

process are undertaken so as to derive an appropriate and sufficiently characterized 

model/simulator of the system.  Likewise, during the post-implementation verification 

and validation process, it might become necessary to revisit the requirements definition 

or design of the system models, typically referred to as the assessment phase.   

2.4.3 Verification and Validation 

With such a recurrent use of the verification and validation process throughout 

the whole V-model, it can easily be concluded that it is one of the most crucial steps in 

the development of model-based control and systems.  However, while some 

understand that these two terms have their own separate meaning, others tend to use 

them interchangeably within literature.  Their difference can be traced down to two 

other terms, requirements and specifications, which also seem to be used 

interchangeably but have their own distinction. Requirements are used in identifying 

which tasks a system is meant to perform or satisfy while specifications aid in defining 

how the system is to function in order to perform a desired task.  Therefore, validation 

is performed to ensure that the defined requirements are met by identifying whether or 

not the system carries out the desired tasks.  On the other hand, verification is achieved 

by ensuring that the specifications have been met. [15]  Still, the verification and 

validation process is of no use without the proper simulation methods to apply them to. 
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2.4.4 Model-in-the-Loop 

In [15], a look at the current methods used by various entities within industry 

and academic research facilities for automotive model-based control is undertaken to 

detail the differences in methods employed, at times internally within an entity, which 

has led to a need for a unified approach.  A detailed explanation of the several steps 

involved in model-based control is provided with an industry inspired perspective in 

order to develop a comprehensive approach to model-based control.  In addition, 

proper MIL modeling techniques with SIL and HIL simulation and testing in mind were 

provided. 

MIL simulations allow engineers to use a virtual environment to study the 

performance of the system with a certain control algorithm design.  As mentioned 

above, these types of simulations are conducted in faster than real-time computational 

times.  This allows for a fast, inexpensive, and easily implementable model/simulation of 

the system in question that can be used to run various test cases developed with an eye 

on the verification and validation process.  These test cases aid in the analysis of the 

system and controller model design under several conditions that match up closely to 

those expected of the actual system. 

While MIL simulations are very useful, their effectiveness is usually limited to the 

early phases of system development.  This is mostly due to the fast computational times 

which precisely make MIL simulations valuable in early stage development.  However, 

there is an inherent lack of information about how the system would function in real-
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time, which is how an actual system would function.  Thus, for higher levels of the 

design process, real-time simulation would have to be considered.  

2.4.5 Software-in-the-Loop 

As mentioned in the introduction of this chapter, SIL simulations involve the use 

of a simulated system with the use of a simulated controller.  SIL simulations are the 

next step in model-based design once MIL simulations have been used.  They form a 

bridge for the gap found between MIL and HIL simulations.  Typically, building a SIL 

model requires the use of automatic code generation tools that compile the control 

model into software code.  The generated control software code is then run in the same 

virtual environment as the plant model, which remains in the same format as that used 

in MIL.  Thus, the code generated from a control model can be tested to verify whether 

or not it performs similar to the MIL simulation model.  This method of simulation is 

mostly useful in the development of control software.  The benefits of SIL simulations 

include an increase in simulation speed due to the use of compiled code instead of a 

model, the ability to run multiple versions of a control strategy in a modular manner, 

and, consequentially, reduced cost. 

The use of SIL to test multiple control algorithms to determine which best 

accomplishes the desired tasks is seen in [16] where, as part of the EcoCAR 2 

competition, students at The Ohio State University worked on the design and 

development of the architecture and control of a hybrid electric vehicle.  With the use of 

Argonne National Lab’s Autonomie software, the architecture was decided to be that of 
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a parallel-series plug-in hybrid electric vehicle.  A detailed model of the vehicle was then 

created.  Afterwards, software-in-the-loop simulations were used to test various control 

algorithms with the vehicle plant model to determine which supervisory controller 

would best improve the vehicle’s fuel economy.  Separate control algorithms based on 

the Equivalent Consumption Minimization Strategy (ECMS) were chosen for the charge 

sustaining and charge depleting modes of the vehicle.  Results showed an increase in 

the vehicles all-electric range and fuel economy as compared to a baseline control 

strategy, an indication of the success of SIL simulations in developing control strategies. 

2.4.6 Hardware-in-the-Loop 

2.4.6.1 Introduction 

Once a specific control strategy has been chosen with the use of SIL, the next 

step would be to evaluate how it functions along with the system in real-time.  Thus, HIL 

simulations require the use of the compiled software code built prior to doing SIL 

simulations and incorporating it into actual control hardware.  In addition, the plant 

model would then be similarly compiled into code and run in a HIL device.  At this stage 

in the model-based control and system development process, the plant model can be 

thought of as being part of a dedicated real-time simulator. [15]  Making changes to the 

model at this point would require rebuilding and recompiling the code.  Apart from 

allowing the use of actual controller hardware, actual sensors and actuator signals can 

be used as part of a HIL simulator as well.  Therefore, HIL simulations are particularly 
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useful for two general purposes, software validation and fault diagnostics. [17], [18], 

[19], [20] 

2.4.6.2 Software Validation 

While MIL and SIL simulations help in the development of the control strategy 

and plant model, HIL simulations are often used to further validate the control strategy 

or software code chosen during the SIL testing of various control strategies.  The 

important distinction is that HIL simulations are conducted in real-time and thus allow a 

more accurate look at the performance of the control algorithm as it would behave in a 

real-world scenario.  By running several simulations with a host of differing conditions 

and scenarios, the software control algorithm is checked for robustness, accuracy, 

fidelity, and repeatability of results.  Results are typically compared to those of MIL or 

SIL simulations and checked against the system requirements through a validation 

process.  Such was the case in [16], where students at The Ohio State University 

employed the use of HIL to test and validate the results they received from their SIL 

control strategy testing. 

Validation of a vehicle control strategy is especially important because it ensures 

that the vehicle and vehicle systems perform as desired.  Thus, as shown in [21],the 

development of a vehicle’s ECU should involve HIL validation tests.  Specifically, 

researchers detailed the use of a HIL system to validate the ECU of a hybrid electric 

vehicle.  The ECU model developed contained models of the primary physical systems 

such as engine, transmission, and battery, sensor and input signal models, actuator 
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models, and models of external systems like driver and environmental interactions.  

Benefits of the use of a HIL system include the validation of the software and vehicle 

component testing as prototypes became available.  Results of the validation were 

included as compared to actual vehicle data and showed a high level of agreement, 

proving the reliability of HIL in the development and validation of vehicle ECUs. 

2.4.6.3 Fault Diagnostics 

On the other hand, HIL simulations can also be used to perform fault diagnostics 

of the model-based control system along with actual sensors and actuators.  Through 

extensive hazardous analysis for multiple conditions and scenarios, including potentially 

hazardous cases, an accurately designed model-based control system can be tested for 

faults and failures without damaging actual systems or system components.  

Additionally, testing of system components can be conducted before actual hardware 

has been built or prototyped, saving crucial development time and cost.  If faults or 

failures are detected in this way, the control algorithm would then have to be 

redesigned to ensure that safety measures are in place to avoid or reduce their 

occurrence.  This enables greater safety and reliability of the system for its eventual 

users and forms a critical part of the post-implementation verification and validation 

process.  This is especially important when it concerns vehicle systems where a fault or 

failure could results in the injury or even death of those who use or come in contact 

with the vehicle or vehicle system. [22], [23], [24] 
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Such an analysis is performed in [14], where the history, methods, and practices 

of HIL simulations is presented and followed by a study focused around automotive 

applications.  Specifically, simulation and testing were conducted for a vehicle model of 

a Mercedes-Benz truck with a turbocharged diesel engine.  Three example HIL 

simulations were presented so as to show the applicability and performance of the 

simulator.  These three examples included the effect of switching off a single injection 

pump valve, the full power acceleration of the truck including two gear shifts, and the 

experimental validation of the truck’s cruise control.  Analysis of all three examples 

shows suitable performance results, as expected.  Overall, it is concluded that HIL 

simulation allows the reduction of development time and cost through the rapid 

prototyping of engine control systems while providing a platform from which to detect 

the presence of faults. 

Similarly, in [25], an Advanced Driver Assistance System (ADAS) is developed 

according to the “V” diagram design process that is meant to warn the driver of a 

possible or impending collision.  A quick look is given to the requirements/specifications, 

verification/validation, model-in-the-loop, software-in-the-loop, hardware-in-the-loop, 

and test drive design phases as they pertain to the development of the ADAS.  In 

addition, it is argued that the test drive phase is not adequate for control system design 

of an ADAS due to the lack of traffic data.  Thus, a new method is proposed that couples 

the advantages of HIL simulations with the representativeness of test drives, titled 

vehicle hardware-in-the-loop simulations (VeHIL).  VeHIL is a multi-agent simulator in 
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which some of the simulated vehicles are replaced by real vehicles in an artificial HIL 

indoor laboratory.  Finally, a case study is presented such that a driver information and 

warning system for safe speed and safe distance is validated and put through a fault 

diagnostic process with the use of VeHIL.  Emphasis is given to the fact that this new 

approach is not meant to replace HIL simulations and test drives but rather create a link 

between them that can save on time and cost of ADAS’s during the development 

process. 

While software validation and fault diagnostics pertain to separate types of 

analysis, as shown in the literature, both are conducted through HIL simulations and are 

often used in conjunction.  In fact, it could be said that each is merely an extension of 

the other and are simply required steps throughout the whole of the post-

implementation verification and validation process of the V-model approach to model-

based control and system development.  Specifically, a complete implementation of 

fault diagnostic techniques would most likely involve the validation of the software 

before any sort of hazard analysis was conducted so as to ensure that the possible faults 

or failures detected are not simply due to the controller not behaving like it should.  

Likewise, one could hardly say that the controller software is truly validated if it has not 

been tested as a possible source of faults or failures.  
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2.5 Hybrid Electric Vehicle Control and Optimization 

2.5.1 Introduction 

The emergence of hybrid vehicles has brought about the need for sophisticated 

power management control strategies to determine the best way to provide power to 

the wheels from the multiple on-board power sources depending on which metrics are 

of concern to a specific vehicle design.  For example, the control strategy could focus on 

the optimization of factors like fuel economy, emissions, or vehicle performance, to 

name a few.  The way in which a hybrid vehicle’s power management is handled can 

range from a simple constant power split to a host of more complicated approaches that 

attempt to reach the best possible solution through the use of complex algorithms.  

However, most of the control strategies used to date can be grouped under two types of 

strategies, rule-based or optimization based control.  Each has its benefits and 

drawbacks, such as whether or not they are truly implementable, the amount of 

dependence on computational resources, and proximity to the optimal solution. 

2.5.2 Rule-Based Control 

The most basic types of control strategies fall under the heading of rule-based 

control.  Rule-based control strategies are heuristic in nature, i.e., they proceed to a 

solution through either a trial and error approach or by using a set of defined rules.  

These rules can be used to determine things like the mode of operation, battery state of 

charge (SOC), and power split method.  While rule-based control is the simpler of the 

grouped methods, they require knowledge of appropriate threshold values for the set of 



25 
  

rules in order for the vehicle to meet its desired performance or fuel economy targets.  

Regardless of this need for extensive calibration, these strategies tend to be more easily 

implementable and take up less computational power and time when compared to their 

optimization based counterparts.  Some of the more popular rule-based control 

strategies used within literature include thermostatic control, proportional or PID 

control, penalty functions, and fuzzy logic.  

In [26], a team of students at The Ohio State University used lessons learned 

from the Buckeye Bullet 1 to design and build the Buckeye Bullet 2, a hydrogen fuel cell 

land speed vehicle.  Land speed vehicles are used to break and set incredibly high speed 

records by pushing the limits of vehicle system components.  The paper details the use 

of a supervisory control system to properly cool the fuel cell system and to determine 

the appropriate power management.  The power management controller was based on 

a rule-based control strategy in which the goal was to maximize the power output to 

achieve the highest speed possible.  Once completed, the control system of the vehicle 

was tested when the Buckeye Bullet 2 was run on the Bonneville Salt Flats of Utah. 

As part of the analysis of a series hybrid vehicle, researchers in [27] developed a 

rule-based control strategy meant to split the power demand between an engine and 

battery pack while maintaining high operating efficiencies.  The focus of the energy 

management strategy was in the improvement of the vehicle’s fuel economy as 

compared to that which was obtained by a thermostatic controller.  The rules used were 

dependent on the power demand, battery SOC, and driver acceleration command.  
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Simulation results of the rule-based control strategy showed a clear improvement in fuel 

economy over the thermostatic controller. 

The literature clearly shows the effectiveness of rule-based control strategies.  

More examples of the use of rule-based control in the energy management of hybrid 

vehicles can be found in [28], [29], [30], and [31].  Nevertheless, results obtained 

through the use of rule-based control strategies are still suboptimal.  To get optimal or 

near optimal solutions the use of optimization based control is needed. 

2.5.3 Optimization-Based Control 

2.5.3.1 Introduction 

While vehicle control systems can be effectively modeled with rule-based control 

strategies, optimization-based control strategies determine what the optimal solution of 

a control problem should be and thus are more accurate.  To this end, a specific payoff 

criterion must be identified, giving way to an associated payoff function that will aid in 

determining the best control for the system. Certain cost criterion could be defined so 

as to develop a cost function that serves as a way to measure which control actions cost 

the least.  Which type of function is used depends on the specific desired objective for 

the optimization and can be generalized as an objective function.  Furthermore, there 

are various methods of applying the optimization scheme, but in general, solutions can 

either be globally optimal or locally optimal.  In terms of the literature, the more 

popular optimization-based control strategies are those of Dynamic Programming, 

Pontryagin’s Minimum Principle (PMP), and Equivalent Consumption Minimization 
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Strategy (ECMS). [32]  For example, work done in [33] was focused on an energetic 

approach to hybrid vehicle powertrain modeling and the validation of a refuse collection 

vehicle in which the use and comparison of multiple optimal control strategies was 

detailed with an emphasis on dynamic programming, PMP, and ECMS.   

2.5.3.2 Dynamic Programming 

Before explaining what Dynamic Programming is and how it works, it would be 

helpful to first understand the basic dynamic control problem.  That is, given a specific 

initial state of a dynamic system, it is desired to determine the best way to control the 

system so as to end up with a set of optimal states.  The aim of a basic dynamic control 

problem, therefore, is to find a control, called the optimal control, which either 

maximizes the payoff or minimizes the cost to reach each successive optimal state.  

Thus, it can be said that solving a dynamic control problem consists of making multiple 

decisions about which steps to take in order to achieve the desired objective through 

the best possible pathway. 

Dynamic Programming is a numerical method used for solving dynamic decision 

problems and is based on Bellman’s principle of optimality, which states that an optimal 

policy has the property that whatever the initial state and initial decision of a dynamic 

decision problem are, the remaining decisions must constitute an optimal policy with 

regard to the state resulting from the first decision. [34]  In other words, the entire 

optimal solution is made up of intermediate steps that form an optimal path starting at 

the initial state.  Dynamic Programming describes this optimal path by determining what 
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the controls should be at any given state.  This can be mathematically defined by 

considering a discrete-time system  

𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘, 𝑢𝑘) (1) 

in which the subscript 𝑘 =  0, 1, … , N –  1, 𝑢𝑘 denotes a control, and 𝑥𝑘 is the system 

state at step 𝑘.  The control policy 

𝜋 = {𝑢0, 𝑢1, . . . , 𝑢𝑁−1, } (2) 

is a sequence of controls such that 𝑢𝑘 ∈ 𝒰𝑘(𝑥𝑘) for all states 𝑥𝑘 used during the 

optimization of the desired objective.  The objective function should then be one that is 

dependent on the control and state variables.  For hybrid electric vehicle system 

applications, cost functions are typically the objective function of choice, such as when 

seeking to minimize the consumption of fuel or greenhouse gas emissions.  Thus, the 

total cost of a control policy starting at the initial state 𝑥0 can be written as 

𝐽𝜋(𝑥0) = 𝐿𝑁(𝑥𝑁) + ∑ 𝐿𝑘(𝑥𝑘, 𝑢𝑘)

𝑁−1

𝑘=0

 (3) 

where 𝐿𝑘 is the instantaneous cost function at step 𝑘 and 𝐿𝑁 is the cost function at the 

final state.  Therefore, the optimal cost function would be one that minimizes the total 

cost 

𝐽∗(𝑥0) = min
𝜋

𝐽𝜋(𝑥0). (4) 

Furthermore, the total cost of the optimal control policy 

𝜋∗ = {𝑢0
∗ , 𝑢1

∗, . . . , 𝑢𝑁−1
∗ , } (5) 
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should be such that it is equivalent to the optimal cost 

𝐽𝜋∗(𝑥0) = 𝐽∗(𝑥0). (6) 

Thus, a Dynamic Programming control algorithm for a hybrid electric vehicle 

simulator would involve the minimization of the cost-to-go from time 𝑖 to time 𝑁  

𝑉𝑖 = 𝐿𝑁(𝑥𝑁) + ∑ 𝐿𝑘(𝑥𝑘, 𝑢𝑘)

𝑁−1

𝑘=𝑖

 (7) 

of a given drive cycle and would move in a backwards fashion starting at the end of the 

driving cycle until the optimal cost 𝐽∗(𝑥0) at the initial step is reached.  Specifically, it 

would provide an optimal control strategy for the power split at each time step 

corresponding to the chosen design objectives. [16], [33] 

One can imagine that the potential solution paths of a system as complex as a 

HEV could be infinite.  To avoid having to consider such a vast number of possible paths, 

the control algorithm should be developed such that it would make the power split 

decisions based on the current vehicle speed, the total driver power demand, and the 

state of the powertrain components, which includes determining the maximum and 

minimum power that each powertrain component can deliver.  Once a discrete number 

of possible solutions have been selected, the optimal cost-to-go is calculated by moving 

backwards from the end of the drive cycle.  The path with the lowest total cost is the 

optimal solution.   
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An example of this method as applied to an HEV’s battery state of energy (SOE) 

is represented graphically in Figure 3.  It can be seen that application of the algorithm 

requires proceeding backwards from the end point or node L to determine the “arc 

costs” at each node before calculating the cost-to-go.  The calculation of each “arc cost” 

can be a computationally intensive task and completion of the backward solution for all 

possible paths is required before the first optimal control action can be determined.  

This is the reason Dynamic Programming is known as a global optimization control 

strategy.   

 

 

Figure 3: Example of Dynamic Programming as Applied to Battery SOE 
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In addition, since Dynamic Programming determines the optimal solution by 

working backwards from the end of the drive cycle, it requires knowledge of the entire 

drive cycle in advance.  Therefore, while it can be applied to solve for optimal solutions 

of problems of varying complexity, it is not implementable in real vehicle control 

systems. [33]  However, since Dynamic Programming provides an optimal solution, it is 

often used in developing rules for rule-based control strategies or simply as a 

benchmark for other suboptimal control algorithms.  As part of an industry-academic 

collaboration, testing, modeling, and control design of a fuel cell hybrid vehicle is 

presented in [35].  System components were modeled from the test results obtained 

from a prototype vehicle.  A complete vehicle simulator was then developed according 

to experimental data.  The power control strategy was modeled after a stochastic 

dynamic programming approach in which the driver power demand at the next step 

depends on that of the current power demand and vehicle speed in order to optimize 

vehicle fuel economy while ensuring drivability.  The forward-looking simulation results 

show a clear improvement in fuel economy from that of the gasoline counterpart of the 

prototype fuel cell hybrid vehicle. 

Likewise, [36] showcases the optimization of a fuel cell hybrid vehicle as 

conducted through the development of a pseudo stochastic dynamic programming 

control strategy.  In addition, a study of the effects on vehicle performance of 

component sizing was conducted. However, contrary to other literature, a strong case is 

made for the joint optimization of component sizing and power management.  Thus, the 
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use of high fidelity subsystem-scaling models is used alongside the near optimal power 

management algorithm to determine the optimal power management and component 

sizing simultaneously.  The overall optimized result from such an approach, as applied to 

fuel cell hybrid vehicles, lies in downsizing the fuel cell compressor, increasing the fuel 

cell stack size which decreases the battery pack size without impeding regenerative 

braking, and using the corresponding power management strategy. 

These are just a couple of examples, as the application of dynamic control 

algorithms based on Dynamic Programming to hybrid electric vehicle studies or as part 

of a control strategy comparison can be found in a vast amount of the literature.  More 

examples can be found in references [37], [38], [39], [40], [41], [42], and [43]. 

2.5.3.3 Pontryagin’s Minimum Principle 

While an optimal solution can be obtained through the use of Dynamic 

Programming, an algorithm based on it requires a large amount of computing power 

and time.  Fortunately, DP is not the only optimization-based control strategy.  

Pontryagin’s Minimum Principle is a very powerful tool in optimal control theory used to 

find the best possible control for taking a dynamical system from one state to another.  

Significantly, this is accomplished without using large amounts of computing time and 

resources, making PMP a very attractive option as an optimization-based control 

algorithm.  The basics of optimization concerning a dynamic control problem apply here 

as well.  Specifically, the aim is to find an optimal control which, given a specific initial 

state of a dynamic system, minimizes the cost to reach each successive optimal state so 
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as to end up with a set of optimal states.  In fact, this statement is true of all 

optimization-based control strategies.  However, the way in which the minimization is 

carried out is what separates them from one another.  The use of PMP along a trajectory 

like that of a drive cycle yields a set of necessary conditions that ensure the global 

optimality of a constrained control problem. [44]  

A full appreciation and understanding of the mechanics and necessary conditions 

of PMP requires knowledge of the basic concepts behind the Hamiltonian function, 

which will be presented below considering a dynamical system with the state equation 

�̇� = 𝑓(𝑥, 𝑢, 𝑡),          𝑥(𝑡0) = 𝑥0 (8) 

with time 𝑡, states 𝑥, control input 𝑢 ∈ 𝒰(𝑡), and the initial state 𝑥0 at the initial 

time 𝑡0.  Utilizing an objective function similar to that of Equation (3), we end up with 

𝐽(𝑥0, 𝑢, 𝑡0) = ℎ(𝑥(𝑡𝑓), 𝑡𝑓) + ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡)
𝑡𝑓

𝑡0

𝑑𝑡 (9) 

for the fixed time interval 𝑡 ∈ [𝑡0, 𝑡𝑓], where ℎ is the terminal cost and 𝐿 is the 

instantaneous cost.  Again, the optimal control 𝑢∗(𝑡) for 𝑡 ∈ [𝑡0, 𝑡𝑓] is that which 

minimizes Equation (9), resulting in  𝐽∗(𝑥0, 𝑡) with the optimal state trajectory 𝑥∗(𝑡).  A 

visualization of the optimal cost function and its corresponding state trajectory is shown 

in Figure 4.  [44], [45] 
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Figure 4: Optimal State Trajectory Visualization 

Recalling Bellman’s principle of optimality [34], one can see from Figure 4 that 

optimality also applies to a sub-problem of Equation (9) starting at time 𝑡1 on the 

optimal trajectory.  That is, for 𝜏 ∈ [𝑡1, 𝑡𝑓], the truncated optimal control 𝑢∗(𝜏) 

minimizes the cost function 

𝐽(𝑥∗(𝑡1), 𝑢, 𝑡) = ℎ(𝑥(𝑡𝑓), 𝑡𝑓) + ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡)
𝑡𝑓

𝑡1

𝑑𝑡 (10) 

and results in the optimal cost function 𝐽∗(𝑥∗(𝑡1), 𝑡), which denotes the optimal 

trajectory from state 𝑥∗(𝑡1) to the final state 𝑥(𝑡𝑓).  Therefore, from the principle of 

optimality, it is possible to separate Equation (9) into two integration intervals with the 

time intervals 𝑡 ∈ [𝑡0, 𝑡1] ∪ [𝑡𝑖, 𝑡𝑓].  Ignoring the terminal cost for now, the inequality 

∫ 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡)
𝑡1

𝑡0

𝑑𝑡 + 𝐽∗(𝑥∗(𝑡1), 𝑡) ≥ 𝐽∗(𝑥∗(𝑡0), 𝑡) (11) 
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can be formulated in which the first interval starts at the state 𝑥0 with an arbitrary 

control 𝑢, and the second interval starts at the optimal state 𝑥∗(𝑡1) with the optimal 

control 𝑢∗.  Thus, this inequality forms a necessary condition for optimality where the 

best case is that in which the first interval plus the second interval equals the optimal 

objective function 𝐽∗(𝑥∗(𝑡0), 𝑡).  If this optimal objective function is moved to the left 

side of the inequality and all terms are divided by 𝑡1 − 𝑡0, the correlation to the 

Hamiltonian function  

𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡) +
𝜕𝐽∗(𝑥(𝑡), 𝑡)

𝜕𝑡
+ ∑

𝜕𝐽∗(𝑥(𝑡), 𝑡)

𝜕𝑥𝑖

𝑛

𝑖=1

�̇�𝑖 ≥ 0 (12) 

can be derived by allowing the interval 𝑡1 − 𝑡0 to become infinitely small such that 𝑡1 →

𝑡0 and through use of an approximation, the definition of partial derivatives, and the 

chain rule.  At this point, the Hamiltonian function  

𝐻(𝜆, 𝑥, 𝑢, 𝑡) = 𝜆𝑇𝑓(𝑥, 𝑢, 𝑡) + 𝐿(𝑥, 𝑢, 𝑡) (13) 

can be substituted into Equation (12), considering that the co-state 𝜆 is defined as a 

vector of Lagrange multipliers  

𝜆𝑖 = [
𝜕𝐽∗

𝜕𝑥𝑖
]

𝑇

 (14) 

associated with the state equation.  Therefore, Equation (12) can be rewritten as 

𝜕𝐽∗(𝑥, 𝑡)

𝜕𝑡
+ 𝐻(𝜆, 𝑥, 𝑢, 𝑡) ≥ 0. (15) 
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The derivations so far have been done to gain insight into the workings of PMP.  

As with any optimal control problem, the aim is to determine the optimal control 

input 𝑢∗.  In particular, it is known that the optimal control input can be obtained by 

minimizing the Hamiltonian function.  This fact along with the principle of optimality 

allows for Equation (15) to be written as an equality in the form of the Hamilton-Jacobi-

Bellman equation 

𝜕𝐽∗(𝑥, 𝑡)

𝜕𝑡
+ min

𝑢
𝐻(𝜆, 𝑥, 𝑢, 𝑡) = 0 (16) 

whose solution yields the optimal control input.  Furthermore, the Hamiltonian of the 

optimal state trajectory 𝑥∗and optimal co-state 𝜆∗ has a global minimum if 𝑢 = 𝑢∗, for 

all 𝑢 ∈ 𝒰(𝑡) and 𝑡 ∈ [𝑡0, 𝑡𝑓].  Additionally, the full set of necessary conditions for 

optimality on 𝑢 and 𝜆 can be derived from the fact that the optimal control input 

minimizes the Hamiltonian.  Details on how to derive a solution for the co-state and the 

necessary conditions, can be found in [45].   Finally, PMP states that the optimal control 

trajectory 𝑢∗, optimal state trajectory 𝑥∗, and optimal co-state variable 𝜆∗ minimize the 

Hamiltonian, such that 

𝐻(𝜆∗, 𝑥∗, 𝑢∗, 𝑡) ≤ 𝐻(𝜆∗, 𝑥∗, 𝑢, 𝑡) (17) 

while the necessary conditions and constraints 

�̇�∗(𝑡) =
𝜕𝐻

𝜕𝜆
(𝜆∗(𝑡), 𝑥∗(𝑡), 𝑢∗(𝑦), 𝑡) 

(18) 

�̇�∗(𝑡) =
𝜕𝐻

𝜕𝑥
(𝜆∗(𝑡), 𝑥∗(𝑡), 𝑢∗(𝑦), 𝑡) 

(19) 
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0 =
𝜕𝐻

𝜕𝑢
(𝜆∗(𝑡), 𝑥∗(𝑡), 𝑢∗(𝑦), 𝑡) 

(20) 

ℎ(𝑥∗(𝑡𝑓), 𝑡𝑓) = 0 (21) 

𝑥∗(𝑡0) = 𝑥0 (22) 

𝑥∗(𝑡) ∈ 𝒳(𝑡) (23) 

𝑢∗(𝑡) ∈ 𝒰(𝑡) (24) 

must hold.  These necessary conditions state that the optimal solution must satisfy the 

minimum principle.  PMP ensures that if a global optimal solution exists for the control 

problem, it is an extremal solution.  Unfortunately, as with DP, PMP is not 

implementable in real vehicle systems.  Nevertheless, multiple studies have been 

conducted concerning the use of PMP as the control algorithm for hybrid electric 

vehicles.  [44], [45], [46] 

In [44], a fuel cell hybrid passenger bus simulator meant to aid in the design of 

an actual bus is introduced along with the characteristic equations used in the control of 

the model.  A supervisory controller was constructed with the use of optimal control 

theory based on PMP.  Results are presented that detail the effects of battery sizing, 

chemistry, and the severity of the drive cycle used, among other things.  In addition, due 

to the fact that a PMP based controller is not implementable, an auto-regressive 

controller is proposed as a future work.   
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The optimal control problem of energy management for plug in hybrids is 

presented in [47] along with a traditional charge depleting – charge sustaining (CD-CS) 

strategy and blended strategies that are merely suboptimal at best.  As an attempt to 

develop an implementable near optimal solution, a closer look is given to optimal 

control strategies like DP and PMP.  Based on the optimal results, a practical 

implementable controller is proposed and results are compared to optimal PMP and 

traditional CD-CS results.  It is found that the practical implementable controller 

provides a near optimal solution with an improved MPG rating of approximately 50%. 

Furthermore, a study in [48] highlights the use of PMP as a viable real-time 

strategy for the power management of a HEV.  The global optimality of PMP is analyzed 

and compared to a proposed near optimal control strategy that is based on PMP.  

Results of the fuel economy minimization show that this PMP based controller comes 

within 1% of the global optimal solution found through a DP controller.  By development 

of a control algorithm based on PMP, it could be possible to implement a near optimal 

power management controller into an actual hybrid electric vehicle. 

Thus, it can be seen that as an energy management control algorithm, PMP 

allows the desired objectives to be optimized by first deriving the Hamiltonian and then 

applying the necessary conditions to arrive at a globally optimal solution.  These 

examples of vehicle control strategies based on PMP are only a small fraction of the 

literature dedicated to the study of PMP with hybrid electric vehicles.  Yet, as seen from 
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[48], the literature also highlights the use of PMP as a way to formulate a near optimal 

control strategy known as Equivalent Consumption Minimization Strategy. 

2.5.3.4 Equivalent Consumption Minimization Strategy 

In general, ECMS belongs to a third family of control strategies that modify the 

global optimization control problem into a sequence of local instantaneous optimization 

problems.  Originally developed at The Ohio State University as an implementable 

formulation of PMP, it is the most well-known of these local optimization control 

strategies.  ECMS depends on the existence of the charge sustaining mode of operation 

found in hybrid vehicles.  That is, the final battery SOC barely differs from the initial SOC 

such that the difference can be thought of as negligible with respect to the total energy 

used.  Thus, when in charge sustaining mode, a hybrid vehicle’s battery is only used as 

an energy buffer and, since all of the energy used for propulsion ultimately comes from 

the fuel consumed, can be thought of as a reversible fuel tank where the energy 

depleted is replenished with fuel from the engine.  This replenished energy would either 

be in the form of a direct charging of the battery with the engine or from the indirect 

regeneration of energy from the wheels, which is also traced back to the engine.  Then, 

the energy used from the battery, or reversible fuel tank, can be conceptualized as a 

virtual fuel consumption. [16], [33] 

As with global optimization problems, the aim of local optimization is to 

minimize a specific objective or cost.  In the case of ECMS, however, the objective is not 

in the form of a cost function but rather an instantaneous cost that is minimized at each 
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instant, called the equivalent fuel consumption.  This instantaneous cost is obtained by 

adding a term representative of the virtual fuel consumption associated with the use of 

the battery �̇�𝑏𝑎𝑡𝑡(𝑡) to the actual engine fuel consumption �̇�𝑓(𝑡), such that 

�̇�𝑒𝑞𝑣(𝑡) = �̇�𝑓(𝑡) + �̇�𝑏𝑎𝑡𝑡(𝑡). (25) 

If the local minimization of this cost is appropriately defined, the ECMS controller would 

provide a near optimal solution, all while ensuring that the battery state of charge 

remained at the desired level.  In addition, since ECMS is based on an instantaneous 

minimization, it is easily implementable in real-time.  However, this is greatly dependent 

on the proper definition of the equivalent fuel consumption, which requires 

optimization of the tuning parameters along with advanced knowledge of the drive 

cycle.  Nevertheless, by basing the ECMS algorithm on a globally optimal strategy like 

PMP, the equivalent fuel consumption can be derived appropriately and takes the form 

�̇�𝑒𝑞𝑣(𝑡) = �̇�𝑓(𝑡) +
𝑠

𝑄𝑙ℎ𝑣
𝑃𝑏𝑎𝑡𝑡(𝑡) ∙ 𝑝(𝑥) (26) 

where 𝑠 is the equivalence factor used in converting electric power into an equivalent 

fuel consumption, 𝑄𝑙ℎ𝑣 is the lower heating value of the fuel,  𝑃𝑏𝑎𝑡𝑡 is the instantaneous 

power consumed by the battery, and 𝑝(𝑥) is an auxiliary function that accounts for the 

battery SOC deviation from the SOC reference value.  Furthermore, taking the 

instantaneous fuel consumption as the instantaneous cost, the Hamiltonian function 

would become 
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𝐻(𝜆, 𝑥, 𝑢, 𝑡) = 𝜆𝑇𝑓(𝑥, 𝑢, 𝑡) + �̇�𝑓(𝑥, 𝑢, 𝑡). (27) 

Additionally, if we assume that the state of the system is related to the battery SOE, 

whose derivate is a function of the battery power 𝑃𝑏𝑎𝑡𝑡, we can define the system 

equation of the form of Equation (8) and the equivalence factor 𝑠, such that 

𝜆𝑇𝑓(𝑥, 𝑢, 𝑡) =
𝑠

𝑄𝑙ℎ𝑣
𝑃𝑏𝑎𝑡𝑡(𝑡) ∙ 𝑝(𝑥). (28) 

Subsequently, the Hamiltonian takes the form 

𝐻(𝜆, 𝑥, 𝑢, 𝑡) = �̇�𝑓(𝑡) +
𝑠

𝑄𝑙ℎ𝑣
𝑃𝑏𝑎𝑡𝑡(𝑡) ∙ 𝑝(𝑥) (29) 

which, when subject to the optimal control solution determined through the global 

optimization of PMP, not only minimizes the total fuel consumption but also that of the 

instantaneous equivalent fuel consumption. Therefore, as previously mentioned, an 

ECMS control strategy based on PMP can be implemented in real-time but it is only truly 

implementable under proper off-line calibration of the parameters.  A more in depth 

derivation of ECMS can be found in [49], where a study was done to demonstrate the 

use of ECMS as a viable realization of PMP for HEV control.  It was found that, due to the 

equivalence of PMP and ECMS, the global optimal solution can be found by directly 

implementing the ECMS. 

This optimization approach was presented in [50] and compared to previous 

work for a fuel cell battery hybrid vehicle.  The approach uses fuel mass flow rate 

instead of the conventional fuel mass consumption as part of the optimization cost 
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function.  In addition, battery life is taken into consideration by taking note of the 

charge/discharge cycle count.  Furthermore, a HIL test bench was designed so as to 

validate the results of the mathematical model.  Results showed that the instantaneous 

optimization allows for the least amount of fuel consumption as compared to a fuzzy 

logic and PID controller.  However, it did also contain a slightly higher charge/discharge 

cycle count.  The HIL validation confirms these results.  However, no direct correlation of 

charge/discharge cycle count to the battery life was given, except that more cycle 

counts would lead to a faster degradation of the battery, as this was outside the scope 

of the paper.  In general, one would have to select the appropriate tradeoff between 

improved fuel consumption and improved degradation time of the battery depending 

on the application at hand. 

Researchers in [51] have taken the ECMS control strategy a step further through 

the development of an adaptive ECMS.  The proposed control strategy adds to the 

traditional ECMS framework an on-the-fly algorithm for the estimation of the 

equivalence factor according to the driving conditions.  Thus, the resulting real-time 

energy management strategy is one that maintains the battery SOC and minimizes the 

fuel consumption according to the current road load.  Through comparison of results 

with those of a DP controller and a traditional ECMS, it was found that the adaptive 

ECMS yields only slightly suboptimal results.  However, the benefits lie in its validity in 

every driving condition, causality, and ability to be implemented in real-time.   
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A similar analysis can be found in [52], where the benefits of hybridization of fuel 

cell vehicles is addressed through the use of a vehicle simulator and a supervisory 

controller.  The literature details the use of ECMS and a heuristic approach to ECMS as 

part of a comparison of global optimal and suboptimal results.  The results of the 

analysis proved that the heuristic approach provides a very close approximation to the 

non-implementable ECMS control strategy while remaining causal and self-adaptive.  

Additionally, it was shown that fuel cell vehicles would greatly benefit from 

hybridization through the significant increase in fuel economy, among other things. 

Other examples of the use of ECMS as a supervisory controller can be found in 

[53], [54], [55], and [56].  

2.5.3.5 Conclusion 

While most control strategies typically fall under the broad categories of rule-

based control or optimization-based control, the literature shows several examples of 

control strategies that have aspects derived from both categories.  One such example is 

the work done in [32] where the use of a rule-based ECMS energy management strategy 

is applied to a parallel hybrid electric vehicle.   
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CHAPTER 3: Baseline MIL Validation and CAN Data Logger 

Development 

3.1 Introduction 

A fuel cell hybrid bus is being built as part of the National Fuel Cell Bus Program 

as a technology demonstration project.  In an attempt to reduce build time and ensure 

that performance requirements are met prior to the completion of the bus build, a 

simulator of the bus was developed.  The fuel cell hybrid bus will be run as part of the 

OSU CABS bus fleet and should run continuously within an eight hour shift while 

maintaining a charge sustaining behavior of the battery and a low fuel consumption as 

compared to a conventional transit bus.  In order to obtain the data needed for the 

demonstration evaluation, a controller area network (CAN) based data acquisition 

(DAQ) system was developed.  The following sections are an overview of the 

performance metrics used for validation, the model/simulator architecture, and 

proposed control algorithm as developed by a member of the OSU team.  An analysis of 
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the simulator performance on standardized drive cycles is provided to establish a 

baseline for the model and controller validation.  Lastly, the development of the CAN 

DAQ system is discussed, which is a minor part of the work. 

3.2 Performance Validation Metrics 

As with any engineering project or problem, properly defining the problem and 

its requirements and specifications helps in ensuring that the project is completed 

correctly, or, in terms of the fuel cell hybrid bus, it is built to operate as desired.  The 

same goes for the validation process undertaken for this research.  Failure to do so 

could result in wasted time and resources, not to mention a lack of understanding of 

what is being validated and why the validation is being performed.  In [15], the authors 

detail a process of defining the problem and its requirements and specifications.  The 

following is structured after such a process. 

Design Problem: 

The architecture of the fuel cell bus was determined and a MIL simulator 

created, as detailed in [44], to determine if performance requirements of the bus are 

met by the selected architecture.  Further validation must be obtained in the form of SIL 

and HIL testing to understand how the control software would actually perform in a 

real-time controller.  The plant model used is that of a series hybrid powertrain with a 

fuel cell stack and large battery pack.  In addition, a model of the vehicle dynamics is 

included.  Two supervisory controller models have been tested, that of an ARMA and 
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PMP based model.  It is desired to validate the performance of the controllers with the 

plant model and driver model.  Also, the simulator is to be run with real-world drive 

cycles obtained from on campus bus routes.  Thus, a driver model that tracks distance 

has been developed, to be discussed in greater detail in Chapter 4.   

Process Requirements: 

The validation process must determine whether or not the model architecture 

and control algorithm are sufficiently designed to allow the simulated vehicle to meet 

the desired performance requirements.  The performance requirements are determined 

by the driving conditions found in the real-world drive cycles.  Additionally, the energy 

consumption of the fuel cell hybrid bus being simulated must be minimized, and a 

charge sustaining behavior of the battery must be maintained. 

Process Specifications: 

 The vehicle will follow a velocity trace set by standardized drive cycles with 

no more than a 5% velocity RMS error. 

 The vehicle will follow a velocity trace set by real-world drive cycles obtained 

from on campus bus routes with no more than a 5% velocity RMS error. 

 The vehicle will follow a distance trace set by real-world drive cycles 

obtained from on campus bus routes with no more than a 5% distance RMS 

error. 
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 The vehicle will follow the real-world drive cycle obtained from on campus 

bus routes with no more than a deviation of 50 m in total distance traveled 

from that of the drive cycle. 

 The vehicle will maintain a charge sustaining behavior within 50% to 70% 

state of charge (SOC).  

 The average fuel economy of the vehicle will be greater than the 4 mpg 

achieved with a baseline diesel bus as detailed in [4]. 

Requirements Traceability: 

 Figure 5 contains a representation of the performance validation metrics defined 

by the specifications that are used to meet the needs or requirements of the bus. 
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 Needs 

1 
Track velocity to match up with 
regulatory drive cycles ●        

2 
Track velocity to match up with 
real world drive cycles ●         

3 
Track distance to match up with 
real world drive cycles  ● ●      

4 
Maintain battery charge  
sustaining behavior      ●     

5 
Minimize fuel consumption  
of fuel cell         ●   

6 
Validate MIL results with  
SIL and HIL simulations  ●  ● ●  ●  ● ● 

 

Figure 5: Requirements Traceability Diagram 
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3.3 Vehicle Architecture and Design Characteristics  

The fuel cell hybrid transit bus has a battery dominant series hybrid powertrain 

architecture.  This architecture has the benefit of a decrease in fuel consumption as 

compared to a conventional transit bus or even a fuel cell dominant hybrid bus.  The 

ECO Saver IV uses a fuel cell system as an auxiliary power unit (APU) to maintain the 

state of charge (SOC) of the battery at a nominally charge sustaining behavior while also 

providing power to any auxiliary components, such as air conditioning.  In terms of 

tractive power, both the battery and fuel cell are used to power the bus’ two rear-wheel 

electric traction motors.  Also, a DC-DC converter is to be used to regulate the output 

voltage of the fuel cell system.  The complete fuel cell system consists of a 75 kW Ballard 

FCvelocity-HD6 PEM fuel cell module and an integrated Eaton compressor for the 

pressurization of the fuel cell air supply.  The Ballard fuel cell module uses pressurized 

air and gaseous hydrogen and contains an internal cooling and humidification system 

that is managed by a control unit that is designed for integration with bus applications.  

Work done in [44] involved performing simulations to determine the manufacturer, size, 

and chemistry of the battery used.  Results led to the selection of a 600 kW GAIA 

Lithium Iron Phosphate (LFP) battery pack.  The electric motors intended for use are two 

ZF transaxles with motors rated at a maximum power of 240 kW and a maximum speed 

of 1150 rad/s.  The bus is also designed to take advantage of regenerative braking to 

capture some of the energy traditionally lost with friction based brake systems.  A full 
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list of the powertrain components used is given as Table 1 and a diagram provided by 

DesignLine of the proposed powertrain architecture is shown as Figure 6. 

Table 1: Powertrain Component Sizing and Manufacturers 

Component Component Specifications/ Details 

Fuel Cell Ballard FC velocity HD6, 75 kW max power 

Fuel Cell Compressor Eaton 

Battery GAIA Lithium Iron Phosphate, 600 kW max power 

Electric Motors 2 motors, 240 kW max power, 11 

50 rad/s max speed 

Gearbox Single 22.63 gear ration 

 

 

Figure 6: Powertrain Architecture as Proposed by DesignLine 
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In addition to establishing the proposed vehicle powertrain architecture for the 

fuel cell hybrid bus, DesignLine provided the various vehicle characteristics which affect 

the performance and dynamics of the bus such as vehicle weight and drag coefficient of 

the bus body design.  Table 2 includes basic information about some of the vehicle 

characteristics as dictated by the design of the bus.  Some of these characteristics are 

used as part of the vehicle simulator to ensure that proper calculations are made of the 

vehicle dynamics.  Incorrect identification of these characteristics could result in the use 

of improperly configured powertrain components and incorrect estimations of the 

forces acting on the bus.  For example, using a wrong value for drag coefficient would 

mean either an under or over estimation of the aerodynamic forces acting on the bus 

and would have effects on the estimated fuel consumption calculations.  A full analysis 

of the vehicle characteristics affecting the vehicle longitudinal dynamics will be 

discussed in a later section dedicated to the vehicle longitudinal dynamics model.  

However, those listed below can be used as part of a vehicle design analysis where the 

effects of fluctuations in the vehicle weight due to changes in the number of passengers 

can be studied.  This analysis will be performed and presented at the end of the 

following chapter. 

Table 2: Vehicle Design Characteristics and Requirements 

Vehicle Characteristics Value 

Weight 35000 lbs. 

Seats 41 
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3.4 OSU Vehicle Model/Simulator 

3.4.1 Simulator Architecture 

In order to properly design vehicle models, the vehicle architecture and 

characteristics must be taken into consideration and an attempt must be made to create 

models that match the actual vehicle components as closely as possible.  However, the 

degree of detail and accuracy used in a vehicle model is greatly dependent on the 

purpose of the simulator.  The fuel cell hybrid bus simulator employs a forward-looking 

energetic approach with the purpose of determining the ideal power management 

strategy to achieve acceptable fuel economy, battery charge sustainability, and vehicle 

performance metrics and was designed in a modular manner with separate models for 

the various powertrain components.  As shown in Figure 7, the forward-looking energy 

based vehicle simulator contains model function blocks of a driver, supervisory 

controller, hybrid powertrain, and vehicle dynamics.   

Simulations are performed using a specific velocity profile or drive cycle.  The 

chosen standardized drive cycles for use with the fuel cell hybrid bus simulator include 

the Heavy Duty Urban Dynamometer Driving Schedule (HDUDDS) and the Manhattan 

Bus Cycle (Manhattan), displayed as Figure 8 and Figure 9, respectively.  Drive cycles are 

typically used by the EPA as part of their fuel economy and emissions regulations testing 

but are also used to obtain estimates with vehicle models and simulators.  Specifically, 

the Manhattan and HDUDDS drive cycles are meant to be indicative of a typical velocity 

trace a heavy duty vehicle like a bus would be expected to accomplish despite their 
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great differences like average and maximum velocity.  These drive cycles serve as 

baseline estimates of fuel economy and performance of a vehicle simulator. 

 

Figure 7: Fuel Cell Hybrid Bus Simulator 

 

Figure 8: Heavy Duty Urban Dynamometer Driving Schedule (HDUDDS) 
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Figure 9: Manhattan Bus Driving Cycle 

 

Figure 10: Driver Model - Fuel Cell Hybrid Bus Simulator 
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3.4.1.1 Driver Model 

The driver model, Figure 10, is used in the determination of the accelerator and 

brake pedal positions at each time step.  This is accomplished by way of a tuned PID 

controller that attempts to minimize the velocity error between the current simulated 

vehicle velocity and the desired velocity specified by the drive cycle used.  The PID 

controller gains must be tuned properly to allow for acceptable velocity error values.  

The tuned controller gains used with the simulator are given in Table 3. 

Table 3: Driver Model PID Parameter Gains – Simulator 

Parameter Value 

𝑲𝑷 2.3 

𝑲𝑰 0.6 

𝑲𝑫 0 

 

The output of the PID controller can either be negative or positive.  A positive 

PID controller output indicates that the current calculated velocity was slower than that 

of the desired velocity.  Thus, the driver model outputs a zero brake command and the 

nonzero acceleration command, 

𝛼 = 𝐾𝑃(𝑣𝑐𝑦𝑐 − 𝑣𝑣𝑒ℎ) + 𝐾𝐼 ∫(𝑣𝑐𝑦𝑐 − 𝑣𝑣𝑒ℎ)𝑑𝑡 + 𝐾𝐷

𝑑

𝑑𝑡
(𝑣𝑐𝑦𝑐 − 𝑣𝑣𝑒ℎ) (30) 

where 𝐾𝑃, 𝐾𝐼, and 𝐾𝐷 are the respective proportional, integral, and derivative gain 

constants, 𝑣𝑐𝑦𝑐 is the desired cycle velocity, and 𝑣𝑣𝑒ℎ is the actual calculated velocity.  

Likewise, a negative PID controller output is given when the calculated velocity is higher 
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than that of the drive cycle, resulting in a zero acceleration command and the nonzero 

brake command,  

𝛽 = − (𝐾𝑃(𝑣𝑐𝑦𝑐 − 𝑣𝑣𝑒ℎ) + 𝐾𝐼 ∫(𝑣𝑐𝑦𝑐 − 𝑣𝑣𝑒ℎ)𝑑𝑡 + 𝐾𝐷

𝑑

𝑑𝑡
(𝑣𝑐𝑦𝑐 − 𝑣𝑣𝑒ℎ)). (31) 

Respective values of alpha and beta lie between zero and plus or minus one, where a 

zero value means that the respective pedal is not being used, and a value of one means 

that the respective pedal is being fully compressed.  [44]  

3.4.1.2 Supervisory Controller Model 

The supervisory controller model is meant to determine how best to meet the 

calculated power demand related to the driver command received.  How this is 

accomplished depends greatly on the control algorithm used.  In a general sense, the 

controller model takes the driver command and calculates either the maximum 

acceleration or maximum braking power, and based on the power calculated, the 

battery SOC, and any other parameters used by the algorithm, outputs a battery and 

fuel cell power demand that the powertrain model must meet.  Information on the 

specific control strategies used will be discussed in a later section.  
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Figure 11: Powertrain Model - Fuel Cell Hybrid Bus Simulator 

3.4.1.3 Powertrain Model 

The powertrain model consists of several sub-models of the fuel cell stack, 

battery pack, DC-DC converter, compressor and auxiliary loads, duel electric motors, 

gearbox, fuel tank, front and rear brakes, and front and rear wheels, as shown by Figure 

11.  Having separate models for each component of the powertrain allows for a modular 

design that can be changed by simply bringing in new models of the respective 

component being changed without affecting the rest of the powertrain model.  

Additionally, this allows one to adequately analyze the energy flow and consumption of 

the fuel cell hybrid bus. [44]  Most of the component sub-models were represented as a 

static model and thus neglect any dynamic behavior.  The dynamic behavior was not 

needed for the purpose of an energy analysis and fuel consumption estimation.  For 

example, while temperature, air pressure, and humidification are critical for the 

accurate modelling of a fuel cell, the effects of these were neglected as it was assumed 
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that the manufacturer’s controller would adequately maintain them at their appropriate 

levels for proper optimal operation of the fuel cell.   

The fuel cell model was based on a table interpolation of the power-current 

relationship as shown in experimental data provided by the manufacturer as well as a 

curve fit for improved model resolution.  While the electric motors are also based on a 

static model, they use experimentally obtained efficiency and speed-power maps 

instead of a curve fit of the power-current relationship.  Due to the need of an accurate 

dynamic model for the proper estimation of battery SOC, it was not possible to model 

the battery as a static model.  The dynamic behavior of batteries is attributed to factors 

like electrochemistry and ion diffusion and as such are highly complex and difficult to 

predict.  Fortunately, these dynamic behaviors can be predicted through approximation 

by an equivalent electrical circuit of reduced order.  Thus, the battery was modeled as 

an equivalent electrical circuit model.   

Since the work presented in this thesis did not include the development of the 

vehicle simulator and its component models, a detailed study of the components used 

in the powertrain model is beyond the scope of this thesis.  For a more detailed 

explanation of the models and experimental data used as a part of the powertrain 

model, including those of components not discussed, see [44].  Where appropriate, 

some model equations related to the power management and fuel consumption 

estimation will be presented but should not be taken as a full representation of the 
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component models that make up the complete powertrain model.  The powertrain 

model output is in the form of a total force supplied to the wheels. 

3.4.1.4 Vehicle Dynamics Model 

Since the simulator was designed to perform an energetic analysis the effects of 

lateral dynamics can be ignored.  On the other hand, longitudinal dynamics are still very 

much important to the proper modeling of the vehicle dynamics and are implemented 

by simple dynamic equations of aerodynamic drag, rolling resistance, and grade 

resistance forces.  The total tractive force at the wheels 𝐹𝑡𝑜𝑡 is then combined with 

these environmental forces that act against the bus, and applying Newton’s second law 

gives 

𝑚�̇�𝑣𝑒ℎ = 𝐹𝑡𝑜𝑡 − 𝐹𝑎 − 𝐹𝑟 − 𝐹𝑔 (32) 

where 𝑚 is the mass of the bus, �̇�𝑣𝑒ℎ is the longitudinal acceleration of the bus, 𝐹𝑎 is the 

aerodynamic force, 𝐹𝑟 is the rolling resistance force, and 𝐹𝑔 is the force due to road 

grade.  The environmental forces acting against the bus are respectively calculated by  

𝐹𝑎 =
1

2
𝜌𝑎𝑖𝑟𝑐𝑑𝐴𝑓𝑣𝑣𝑒ℎ

2  (33) 

𝐹𝑟 = 𝑚𝑔 cos 𝜃 𝑐𝑟𝑣𝑣𝑒ℎ (34) 

𝐹𝑔 = 𝑚𝑔 sin 𝜃 (35) 

where 𝜌𝑎𝑖𝑟 is the density of air, 𝑐𝑑 is the aerodynamic drag coefficient, 𝐴𝑓 is the frontal 

area of the bus, 𝑣𝑣𝑒ℎ is the longitudinal velocity of the bus, 𝑔 is gravity, 𝜃 is the road 

grade angle, and 𝑐𝑟 is the rolling resistance coefficient.  Equation (32) is then used to 
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determine the velocity of the bus by integration of the longitudinal acceleration with 

respect to time.  This calculated velocity is then fed back to the driver so that it may 

compare with the desired drive cycle.  Values for the parameters used within the vehicle 

dynamics model can be found in Table 4. 

Table 4: Vehicle Dynamics Parameters 

Parameter Value 

Vehicle Weight 35000 lbs. 

Gravitational Acceleration 9.81 m/s2 

Rolling Resistance Coefficient 0.006 

Density of Air 1.29 kg/m 

Aerodynamic Drag Coefficient 0.54 

Frontal Surface Area of Bus 7.5 m2 

 

3.4.2 Supervisory Control Strategies Used 

The supervisory controller is what communicates with the plant model in order 

to operate the simulated vehicle as desired.  Specifically, the supervisory controller 

takes in pedal positions as inputs and then outputs the power demands to the battery 

and fuel cell system.  For the work discussed in this thesis, two different supervisory 

controllers were used.  The first was based on Pontryagin’s Minimum Principle and is 

one of many optimization-based control strategies used to find the global optimal 

control solution.  Detailed information concerning the PMP control strategy algorithm 

can be found in Chapter 2.  A simplified diagram of the PMP supervisory controller is 

given as Figure 12.  
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Figure 12: PMP Supervisory Controller Diagram 

 

It should be noted that the PMP controller utilizes a constant optimal co-state 

variable 𝜆0
∗  for each drive cycle as determined by initial simulation work.  Table 5 shows 

the respective values of the co-state variable used for the HDUDDS and Manhattan 

driving cycles. 

 

Table 5: Co-state Variable Value for HDUDDS and Manhattan 

 λₒ Values 

HDUDDS 2038860 

Manhattan 1945260 
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The full development of the PMP controller model for the simulator is explained 

in greater length in [44]. For this thesis, the inclusion of the cost function, Hamiltonian 

function, and the necessary conditions for optimality will suffice.  Therefore, the 

performance criterion of PMP 

𝐽 = ∫ �̇�𝐻(𝑃𝑏𝑎𝑡𝑡(𝑡), 𝑡)𝑑𝑡
𝑡𝑓

0
, (36) 

where �̇�𝐻 is the mass flow rate of hydrogen and 𝑃𝑏𝑎𝑡𝑡 is the battery power demand, 

leads directly to the formulation of the Hamiltonian function 

𝐻 = 𝜆(𝑡)𝑆𝑂𝐶̇ (𝑆𝑂𝐶(𝑡), 𝑃𝑏𝑎𝑡𝑡(𝑡), 𝑡) + �̇�𝐻(𝑃𝑏𝑎𝑡𝑡(𝑡), 𝑡) (37) 

in which 𝑆𝑂𝐶̇  is known as the battery SOE.  The necessary conditions are then, 

�̇�∗(𝑡) =
𝜕𝐻

𝜕𝜆
= 𝑆𝑂𝐶̇  

(38) 

�̇�∗(𝑡) = −
𝜕𝐻

𝜕𝑥
= −

𝜆

𝑄𝑐𝑒𝑙𝑙

𝐼𝑐𝑒𝑙𝑙

√(𝑉𝑂𝐶 − ∑ 𝑉𝐶𝑖
2
𝑖=1 − 𝑉ℎ) − 4𝑃𝑐𝑒𝑙𝑙𝑅0

𝜕𝑉𝑂𝐶

𝜕𝑆𝑂𝐶
 

(39) 

𝑆𝑂𝐶∗(0) = 𝑆𝑂𝐶0 (40) 

𝑆𝑂𝐶∗(𝑡𝑓) = 𝑆𝑂𝐶0 (41) 

𝑆𝑂𝐶∗(𝑡) ∈ 𝒳(𝑡) (42) 

𝑃𝑏𝑎𝑡𝑡
∗(𝑡) ∈ 𝒰(𝑡) (43) 

where 𝑄𝑐𝑒𝑙𝑙 is the total charge capacity of a battery cell, 𝐼𝑐𝑒𝑙𝑙 is the current through the 

cell, 𝑉𝑂𝐶 is the open circuit voltage, 𝑉𝐶𝑖 is the voltage across the 𝑖𝑡ℎ capacitor, 𝑉ℎ is the 

voltage due to hysteresis, 𝑃𝑐𝑒𝑙𝑙 is the battery cell power, and 𝑅0 is the internal resistance 
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of the battery.  Recall, however, that PMP is not implementable in many real-time 

control systems because it requires full knowledge of the drive cycle being used before 

determining the optimal solution.  Still, it can be used as a standard to which other 

control algorithms can be compared.  In addition, optimal results obtained from PMP 

can be used to develop suboptimal, but implementable control algorithms.   

As part of the demonstration project, OSU developed a control algorithm that 

would possibly perform better than a more traditional approach yet not require precise 

knowledge of the drive cycle.  The proposed control algorithm was developed through 

analysis of the results given by the PMP controller and is based on an autoregressive 

moving average (ARMA) model.  The ARMA model is a statistical analysis tool that is 

used in the prediction of future values in a time series of a data variable and consists of 

two parts, an autoregressive part and a moving average part.  Thus, the controller was 

modeled such that the fuel cell stack power demand is determined by 

𝑃𝐹𝐶,𝑘+1 = ∑ 𝛼𝑖𝑃𝐹𝐶,𝑘+1−𝑖

𝑁

𝑖=1

+ ∑ 𝛽𝑗(𝑆𝑂𝐶𝑘+1−𝑗 − 𝑆𝑂𝐶𝑟𝑒𝑓)

𝑀

𝑗=1

 (44) 

where the first term is the autoregressive average of 𝑁 past values of the fuel cell stack 

power 𝑃𝐹𝐶  with weighted variable 𝛼𝑖, and the second term is the moving average of 𝑀 

past values of the SOC deviation from the target SOC with weighted variable 𝛽𝑗.  The 

ARMA control algorithm therefore works by determining the best fuel cell stack power 

for the current time step based on the weighted average of the past values of fuel cell 
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stack power and SOC deviation.  Figure 13 contains a diagram of the ARMA supervisory 

controller. 

 

Figure 13: ARMA Supervisory Controller Diagram 

By setting the sum of the weighted variable 𝛼𝑖 equal to one and interpreting 𝛽𝑗 

as the gains of an extended PI controller, the control algorithm has been shown to 

exhibit stability.  However, for a specific desired performance of the controller, the 

period of adaption would have to be tuned, where 𝑘 is an index of adaptation time.   

A definite benefit of the proposed ARMA control strategy is that it contains 

inherent low pass filtering which limits the fuel cell transients and prolongs the life of 

the fuel cell stack.  In fact, the fuel cell is seen to operate in a drastically smoothed out 

manner to that of the PMP controller.  Though initial inspection of the ARMA control 
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strategy in [44] indicates good performance under various driving conditions, a full 

analysis and validation of its performance was left as future work.  This validation and 

analysis will be presented in the bulk of this thesis. 

3.5 Proposed Controller Validation - Performance on Standardized Drive 

Cycles 

As part of OSU’s role in the ECO Saver IV fuel cell hybrid electric bus project, the 

proposed algorithm, detailed in the previous section, would have to be tested and 

validated to show that it could achieve the desired goals of reduced fuel consumption, 

charge sustaining behavior, and appropriate transient behavior of the battery and fuel 

cell stack.  In order to obtain a set of baseline results for the validation and comparison 

of the proposed control strategy, the simulator was run on the chosen standardized 

drive cycles using both supervisory controllers.  The calcualted relative RMS error for the 

HDUDDS drive cycle under the ARMA and PMP controller are given in Table 6.  The 

values indicate that the ARMA and PMP controllers allow for a velocity error that is less 

than the valiadtion perfromance metric of 5%.  Thus, both control strategies provide 

adequate performance in terms of being able to match up the calculated velocity to the 

desired velocity trace.   

Table 6: Comparison of ARMA and PMP - HDUDDS Velocity RMS Error 

 Velocity RMS Error (%) 

HDUDDS – ARMA MIL 1.05 

HDUDDS – PMP MIL 1.20 
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However, a proper analysis of the results requires more than checking if the 

driving conditions were met.  It is necessary to see what the main powertrain 

components do throughout the duration of the drive cycles as well as determine 

whether the driving characteristics were appropriate in terms of the behavior of the 

accelerator and brake pedal positions.  Figure 14 contains a plot of the battery SOC on 

the HDUDDS drive cycle for the ARMA and PMP controllers.  It can be seen that the 

ARMA controller is very closely related to the optimal SOC trajectory.  More 

importantly, the ARMA controller is able to maintain the bus’ charge sustaining behavior 

within the desired 50% - 70% SOC.  However, as the algorithms differ, there is naturally 

a difference in the way the power demands are determined. 

 

Figure 14: Comparison of ARMA and PMP – HDUDDS Battery SOC 
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While the PMP controller works by minimizing the mass flow rate of hydrogen 

with regards to the control of battery power demand and with necessary conditions 

focused on maintaining the battery charge sustaining behavior, the ARMA controller, on 

the other hand, works by determining the proper fuel cell power demand with respect 

to the average of the past fuel cell power values and the SOC variation.  The PMP 

controller uses the battery power as part of its control parameter.   

Due to the fuel cell being used as an APU, any energy from hydrogen used would 

either be used to charge the batteries, power auxiliaries, provide power to the traction 

motors, or regenerated from the wheels.  This creates a difference in how the fuel cell 

power demand is treated in respect to its dynamics.  PMP’s focus on the minimization of 

fuel flow rate with respect to the control of battery power leads to a trajectory of fuel 

cell power that contains several transients.  In contrast, the ARMA controller focuses on 

determining a smooth fuel cell power trajectory.  This analysis of the structure of the 

algorithms and differences in how power demands are determined is confirmed by 

Figure 15 where the PMP results clearly show a significant amount of fuel cell transients 

that could negatively impact the life of the fuel cell stack.  Thus, it can be said that the 

proposed algorithm not only meets the battery SOC and driving conditions of standard 

drive cycles, but also ensures the fuel cell is transient free.  
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Figure 15: Comparison of ARMA and PMP – HDUDDS Fuel Cell Power Demand 

Finally, as the concern of the automotive industry has rightly been on the 

improvement of fuel economy, it is of special interest to determine how the proposed 

controllers fair in terms of fuel consumption and its diesel equivalent mileage.  Table 7 

displays the hydrogen fuel consumption and diesel equivalent fuel economy of the fuel 

cell hybrid bus on the HDUDDS drive cycle for both the ARMA and PMP controllers.  

While the mpg values shown do not seem all that impressive in view of the typical 

values of passenger hybrid vehicles, one must keep in mind that the bus weighs nearly 

40 tons.   
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Table 7: Fuel Consumption and Diesel Equivalent Fuel Economy - HDUDDS 

 Fuel Consumption (kg) Diesel Equivalent Mileage (mpg) 

HDUDDS – ARMA MIL 0.566 8.28 

HDUDDS – PMP MIL 0.672 8.41 

 

Thus, considering that a conventional diesel transit bus, as determined in [4], 

achieves an estimated mileage of 4 mpg, the value of the diesel equivalent fuel 

economy obtained with the ARMA controller indicates an approximate improvement in 

mileage by a factor of two.  Furthermore, comparison to the optimal fuel consumption 

and diesel equivalent fuel economy of the PMP controller, respectively, shows that the 

ARMA controller provides a solution that is very close to the optimal solution.  Thus, it is 

said that the proposed ARMA control strategy is a near-optimal solution.  Furthermore, 

it is concluded that the ARMA controller provides an implementable control algorithm 

that displays a limited amount of fuel cell transients and a battery charge sustaining 

behavior.   

However, in order to verify that the conclusions reached concerning the 

performance of the ARMA controller are indeed valid for varying driving conditions, 

simulation results using the Manhattan bus driving cycle were also obtained and 

compared to their respective PMP optimal counterparts.  Table 8 verifies that the 

velocity RMS values for the Manhattan are well within the desired range. 
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Table 8: Comparison of ARMA and PMP - Manhattan Velocity RMS Error 

 Velocity RMS Error (%) 

Manhattan – ARMA MIL 2.29 

Manhattan – PMP MIL 2.09 

 

Comparison of the battery SOC and fuel cell power demand show a clear 

difference between the ARMA and PMP.  While the battery SOC of both controllers is 

relatively charge sustaining, Figure 16 shows that they differ in that the ARMA battery 

SOC has an upward trend, and the PMP battery SOC has a downward trend.  In addition, 

it is seen that the PMP SOC trajectory for the Manhattan drive cycle did not meet the 

necessary condition that requires the final SOC to be equal to the reference SOC.  In 

order to ensure that the final SOC equals the reference SOC, the co-state variable would 

need to be changed.  However, the co-state value used was chosen as it allowed the 

SOC trajectory to be the closest it could get to a true charge sustaining behavior while 

still providing a reasonable overall performance of the bus.  Even more surprising than 

the differences in SOC trend for the Manhattan drive cycle are the differences seen in 

the fuel cell power trajectory, shown in Figure 17.  The ARMA fuel cell power demand 

has a smooth trajectory as expected from the ARMA algorithm.  However, while the 

PMP controller stays rather steady with respect to an average fuel cell power demand, 

the ARMA controller has a downward trend.   
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Figure 16: Comparison of ARMA (left) and PMP (right) Battery SOC– Manhattan Battery SOC 

 

  

Figure 17: Comparison of ARMA (left) and PMP (right) Fuel Cell Power Demand – Manhattan 
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the diesel equivalent fuel economy of both controllers for the Manhattan drive cycle in 

Table 9 shows that this difference in initial fuel cell power has a drastic effect.  Though 

the optimal diesel equivalent fuel economy is approximately twice that of a 

conventional diesel bus, the average fuel economy of the ARMA controller is practically 

that of a diesel bus.  As shown by the table below, decreasing the initial fuel cell power 

used in the ARMA controller allows for almost twice the fuel economy to be achieved. 

Table 9: Fuel Economy to Initial Fuel Cell Power Relation 

Initial Fuel Cell Power Diesel Equivalent Fuel Economy 

40 kW 4.21 mpg 

20 kW 7.73 mpg 

 

By taking a closer look at the fuel cell power demand of the ARMA controller, it is 

clear that, as the drive cycle progressed, the ARMA controller continually decreased the 

fuel cell power demand as the fuel cell hybrid bus clearly did not need it to achieve the 

lower velocities and greater start-stop events of the Manhattan drive cycle, hence the 

downward trend.  Thus, the initial fuel cell power demand set within the ARMA 

controller was changed to 20, as dictated by the optimal PMP results, and the simulator 

was run.  Results showed that for the ARMA controller, starting at an initial fuel cell 

power of 20 kW still allowed the simulator to achieve the desired driving conditions.  

The battery SOC in Figure 18 is charge sustaining and follows a trend similar as the 

optimal battery SOC.   
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Figure 18: PMP and ARMA Battery SOC for 20 kW Initial Fuel Cell Power - Manhattan 

 

Figure 19: PMP and ARMA Fuel Cell Power Demand with 20 kW Initial Fuel Cell Power – Manhattan 
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Table 10: Manhattan - Fuel Consumption and Diesel Equivalent Fuel Economy 

 Fuel Consumption (kg) Diesel Equivalent Mileage (mpg) 

Manhattan – ARMA MIL 0.336 7.69 

Manhattan – PMP MIL 0.276 8.51 

 

Also, the ARMA fuel cell power demand, Figure 19, now starts at 20 kW and 

increases towards about the same power level seen at the end of the 40 kW initial fuel 

cell power trajectory.  A look at the new fuel consumption and diesel equivalent fuel 

economy given in Table 10 shows that this change in initial fuel cell power makes a 

significant difference.  In fact, the new fuel economy is now closer to the optimal PMP 

mileage than one that resembles a diesel bus.  The ARMA diesel equivalent fuel 

economy for an initial fuel cell power similar to that given by the PMP controller is 

approximately twice that of a conventional diesel bus.  This leads to an important lesson 

in that the initial power of the fuel cell plays a crucial role in the fuel economy of the 

bus.  For the remainder of the results, initial fuel cell power will be set to that which is 

given by the optimal solution. 

3.6 CAN DAQ System Development 

Per the initial task given as part of the ECO Saver IV bus project, a data logger 

was to be designed and developed to capture data while the bus would be in operation.  

The data recorded would later be used to analyze the performance and success of the 

fuel cell demonstration bus.  In addition, DesignLine had plans to use the data as 
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research for possible future buses.  The data would also be of use in the educational and 

industry advancement goals of OSU CAR. 

3.6.1 CAN DAQ Hardware Development 

As with any product design and development, design requirements must be first 

outlined so as to ensure the end product effectively performs the task desired.  Upon 

initial conception of the DAQ system, a desire was identified to use hardware that would 

readily be able to communicate with the various electronic control modules contained 

within a vehicle.  At one point in time, the only electronic device found on a vehicle was 

the radio.  However, with the onset of advanced system control, on-board diagnostics 

and on-board electronic devices, there has been a multitude of electronic subsystems 

and components, such as the ECU, transmission control unit (TCU), anti-lock braking 

system (ABS), and the many control units used to control hybrid powertrain 

components, falling under the term of powertrain control module (PCM), that have 

been added as vital parts of a vehicle.  Many of these devices have allowed for vehicles 

to achieve many of the emissions standards set out by the EPA while also contributed 

greatly to improvements in vehicle performance, driver and passenger comfort, ease of 

manufacture, and cost effectiveness.  These electronic control modules receive sensor 

inputs like vehicle speed, temperature, and pressure that are used to control various 

actuators that carry out tasks determined by the control module.  For example, the ECU 

must rely on information from sensors to know what velocity the vehicle is travelling, 
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which in turn would have to be communicated to the TCU so that it could determine 

when to shift gears.   

Thus, there was a need to be able to control and connect all of these devices 

with one form of communication and without having to directly wire every component 

to each other.  To meet this need, development of a vehicle network for the exchange 

of data was started and led to the creation of the CAN bus protocol in 1983.  CAN bus, 

or CAN, is a protocol of a vehicle bus, that is, a specialized internal communications 

network that interconnects components inside a vehicle.  Thus, using CAN as a way to 

communicate with the vehicle during the data logging process seemed like a natural 

choice.  While vehicles have been known to use other vehicle bus protocols like local 

interconnect networks (LIN), CAN allows microcontrollers and devices to communicate 

with each other and with sensors and actuators without the need of a host computer.  

Instead, data is passed through CAN controllers and processors which are relatively 

inexpensive.  Furthermore, each control module makes up a node within the CAN bus 

network and is able to send and receive messages that are pertinent to its functions 

through an arbitration system that depends on the priority of the message as 

determined by its message identifier or ID.   

With this in mind, it was decided that the DAQ system should be able to 

communicate via CAN and be able to identify CAN message frames being sent and 

received through the network.  In addition, it was decided that the hardware would 

need to have the ability to store data within an internal or external hard drive until it 
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was extracted and also allow for real-time data streaming allowing for analysis of data 

while the vehicle was in operation.  This meant that the hardware selected for the DAQ 

system would also need to communicate with a host computer.  Furthermore, the 

hardware used would have to be modular and rugged enough to withstand typical 

conditions within the confines of the vehicle’s hood.   

While all these constraints on the hardware design played an integral role in the 

selection of the hardware device, the intended use and functionality with the host 

computer during data extraction and analysis was perhaps the greater of the 

contributing factors in terms of shortening the list of possible devices.  That is, since 

DesignLine would be given the data logger to use with the bus after the demonstration 

project was completed, the DAQ system had to be designed with a user friendly 

interface.  Therefore, as is often the case, the design of the DAQ hardware was 

influenced by the design of the DAQ software.  Specifically, the necessity for a user 

interface meant that the programming language used would need to allow for the 

creation of one.  This led to the decision of developing the CAN DAQ software through 

the National Instruments (NI) visual programming language LabVIEW, which is a system 

design platform and development environment.  Thus, with this decision made, the 

hardware device used would have to be able to readily interface with LabVIEW as well 

as meet all of the aforementioned constraints and requirements.  Fortunately, NI is also 

a developer of LabVIEW compatible instruments for all sorts of applications, including 

the acquisition of data.  However, while this greatly aided the selection process, there 
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was still a question of whether any devices that NI produced could meet the system 

design constraints.   

With the aid of NI application engineers, the decision was made to use a NI 

compact reconfigurable input/output (cRIO) embedded real-time control and 

acquisition system which consists of an embedded controller for communication and 

processing that is attached to a reconfigurable chassis that houses the user-

programmable FPGA and into which several I/O modules can be plugged in.  

Additionally, the system is programmed with LabVIEW and, depending on what type of 

I/O modules are used, can be used for a variety of embedded control and 

monitoring/acquisition applications.  Particularly, the selected CAN DAQ system consists 

of a NI cRIO-9024 real-time controller, NI cRIO-9111 chassis, and a NI-9853 high speed 

CAN module.  The system is powered by a NI PS-15 power supply.   

The NI cRIO-9024 features an 800 MHz real-time processor that runs LabVIEW 

Real-Time for deterministic, reliable real-time control, data logging, and analysis.  It 

contains 512 MB of DDR2 memory and 4 GB of storage for storing programs and logged 

data.  An available high speed USB port allows the use of external USB-based flash and 

memory devices which could be used to expand the data storage capabilities of the DAQ 

system.  The need for system to host computer connectivity is met by its dual Ethernet 

ports for programmatic communication over a network and built-in HTTP web and FTP 

file servers that allow for remote user interfacing.  Also, the cRIO-9024 meets the 
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demands for ruggedness and reliability due to its operating temperature range of -20 to 

55 °C and fault-tolerant file system for data-logging applications.   

The NI cRIO-9111 is a reconfigurable embedded chassis with four slots that 

accept any cRIO I/O module, allowing for a modular design of the DAQ system which 

could later be expanded to include other I/O modules, such as one that would interface 

with certain vehicle components that use LIN instead of CAN.  It employs a Xilinx Virtex-

5 reconfigurable I/O FPGA core for high processing power and programmability of an 

integrated circuit containing programmable logic components called logic blocks that 

are programmed through the use of LabVIEW to create custom hardware for various 

embedded applications.  The design of the FPGA is dependent on the I/O modules used 

with the chassis.  The NI 9853 high speed CAN module selected for the CAN DAQ system 

enables the communication with CAN processors and controllers and contains 11-bit 

and 29-bit CAN message arbitration ID support.  Thus, the FPGA program would reflect 

the use of the NI 9853.  Finally, further ruggedness is ensured with an operating 

temperature range of -40 to 70 °C for the NI cRIO-9111. 

While the system architecture selected ensured that all of the design constraints 

were met, the CAN DAQ system still lacked the ability to transfer data wirelessly, which 

was later decided on as an additional desired design requirement.  Without wireless 

access capabilities, one would have to periodically connect a host computer to the on-

board embedded CAN DAQ system to extract the data logged and stored within its hard 

drive.  Thus, by adding wireless connectivity, one could simply ensure that a host 
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computer and the system were on the same wireless network and take advantage of the 

already present built-in HTTP server capability of the NI cRIO-9024 real-time controller.  

Originally, it was hoped that the NI 9795 C Series Wireless Sensor Network (WSN) 

Gateway could meet this need as it is a cRIO compatible I/O module that could easy be 

inserted into one of the available slots on the chassis.  However, it was learned that the 

NI 9795 was meant as a way to wirelessly connect to measurement nodes that act as 

sensors for various applications and not a means to transfer data wirelessly. 

Eventually, it was determined that the best solution would be to purchase a 

Moxa AWK-3121 industrial wireless access point and network bridge in order to 

incorporate wireless data streaming during actual vehicle operation.  Even though this 

device was not developed by NI, extensive testing had been done that proved it could 

provide reliable wireless connectivity and long distance data streaming performance 

when used with NI cRIO hardware.   As such, it was sold as an accessory for the NI cRIO-

9024 by NI and could be readily powered by the NI PS-15 power supply already 

obtained.  More importantly, the AWK-3121 can also be used as an IEEE 802.11 client to 

add wireless connectivity to any device with Ethernet capabilities and contains network 

security protocols to ensure that the wireless network used for the CAN DAQ system is 

secure and free from undesired traffic.  To further ensure the network used with the 

system was secure and free from undesired traffic, a Verizon Jetpack 4G LTE Mobile 

Hotspot MiFi 4620LE was added to establish a dedicated wireless network for the CAN 

DAQ system.   
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In summary, the CAN DAQ system hardware was made up of an embedded NI 

cRIO-9024 real-time controller, NI 9111 reconfigurable FPGA chassis, NI 9853 high speed 

CAN module, Moxa AWK-3121 wireless access point, Verizon MiFi 4620LE mobile 

hotspot, and NI PS-15 power supply.  The ruggedly designed hardware selected allows 

for the reliable acquisition of data from the fuel cell hybrid bus via CAN, storage of 

logged data within its internal hard drive, wireless extraction of data from the HTTP web 

server through a host computer, and development of the user interface software 

program with the use of NI LabVIEW.  Figure 20 shows a picture of the CAN DAQ system 

architecture during the software development phase.  Detailed specifications can be 

found in [57]. 

 

 

Figure 20: CAN Based Data Acquisition System – Software Development Phase 
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3.6.2 CAN DAQ Software Development 

As mentioned in the section above, the software for the CAN DAQ system was 

developed using the NI LabVIEW visual programming language.  The development of the 

software was completed as a two part program where the first part consisted of the 

FPGA program and the second is that of the real-time controller program.  The FPGA 

program, displayed as Figure 21, serves as a means to read in any CAN frames that are 

being sent to the NI 9853 CAN module.  Without this FPGA program, the real-time 

controller program would not have any way to bring in the CAN input signals to achieve 

the programmed control tasks.  Thus, it is important to create an FPGA program that 

works as desired.  While this can be a bit more complicated for other applications, the 

CAN DAQ system only requires a way to read in the CAN signals.  The rest of the 

program simply ensures that a valid CAN frame is received and that there is not an over 

flow of frames that could cause the data logger to timeout or slow down, thus losing 

frames.   

 

Figure 21: CAN DAQ FPGA Program 
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While development of the FPGA program was rather straight forward, the 

controller program required some work and several iterations of the block diagram to 

get right.  The general idea behind the real-time controller software was that it would 

read in CAN frames from the bus’ CAN vehicle network and record them to a file for 

future analysis of the operating performance of the fuel cell hybrid bus.  Initial attempts 

at creating the data logger software were made with the use of the NI-CAN Driver 

Software which contains a CAN Frame application programming interface (API) that 

enables the reading of CAN frames and, according to the NI website, would simplify the 

creation of a data acquisition application.  However, simply logging a CAN signal in the 

frame format read in from a vehicle network would not be of much use unless it was 

converted from its hexadecimal representation to engineering units.  Furthermore, in 

order to know how exactly to convert a specific frame to engineering units, a set of rules 

must be associated to each message.  This set of rules is defined within a CAN database 

file that contains scaling information for each channel within a frame.   A CAN channel 

contains the individual data in engineering units of each signal within a frame that is 

associated to a specific message ID.  While the NI-CAN Driver Software includes a CAN 

Channel API, it is not compatible with the NI 9853 CAN module.  While conversion by 

hand is possible, it would make more sense to have the CAN DAQ system automatically 

convert the CAN frame before it logged the data.  Thus, the CAN DAQ software had to 

be able to convert CAN frames to CAN channels.  Fortunately, NI has developed a 
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collection of virtual instruments (VIs), called the Frame Channel Conversion Library, 

which allow for fast conversion from frames to channels. 

 Therefore, the development of the CAN DAQ software program was furthered by 

the use of this library of useful VIs, with which the CAN frames read in could be 

converted to their respective channels and logged to a file.  The file format chosen was 

that of a Technical Data Management Streaming (TDMS) file because it offers high-

speed streaming, a small disk footprint, LabVIEW support, and exchangeability.  In 

addition, TDMS files are saved in a structured hierarchy where a file can contain several 

channel groups that in turn hold an unlimited number of channels with their very own 

headers.  This file structure seemed ideal for logging CAN channels into separate TDMS 

channel arrays within a file.  However, while the general idea behind the data logger 

was correct, in practice, simply feeding the whole CAN frame signal into the Frame to 

Channel VI was causing the data to not be logged properly in the TDMS file.  Specifically, 

the CAN channels were all being saved under one TDMS channel, making the log file one 

long array of data that did not make any sense.  Solving this problem required taking a 

closer look at the structure of a CAN frame, how the Frame to Channel VI converts the 

data, and how TDMS files are written.  Through further investigation and with the use of 

a PEAK PCAN-USB adapter, which allowed for “dummy” CAN signals to be used during 

the development process, it was learned that the TDMS file required each channel to be 

logged separately.  Considering that each CAN message can contain several channels, 
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each frame would have to be fed through the converter as many times as the number of 

channels it has so that each channel could be logged in a successive manner.  

While this did allow for channels to be logged in their own separate array, at 

times the data would be inconsistent to that of the “dummy” signal being used.  This 

could be remedied by ensuring that the data logging process only occurred when an 

actual frame was being sent in the correct order.  By using the fact that a CAN frame 

consists of an arbitration ID, time stamp, and a data field, among other things, the 

Frame to Channel VI could be fed the data field without the rest of the CAN frame so 

that there was a reduced chance of logging random converted hexadecimal values.  

Moreover, through use of a Case Structure, a block within LabVIEW that allows for the 

creation of multiple cases with unique case identifiers, a case could be created for each 

CAN message where the message ID was used as the case identifier.  Then, using a For 

Loop, the data field could be fed in as many times as needed to log each channel of a 

respective message case.   

Though this block diagram design was able to achieve separate CAN channel 

logging, the program was receiving frames faster than it could log them, leading to 

frames being lost and the program getting stopped up due to an overflow of CAN 

frames.  This meant that the program would have to be analyzed for any inefficiencies of 

operation.  In addition, considering that signals within vehicle networks do not have 

transients as fast as the rate in which CAN frames were being read from the FPGA, it was 

decided to incorporate a sample and hold feature where data would only be logged 
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every tenth iteration of the While Loop encasing the controller program.  This would 

additionally guarantee that an equal amount of data was logged for each CAN channel.  

The indicators that were being used for the sample and hold feature were then cleared 

out after each use of the CAN DAQ program so as to prevent the logging of old data that 

could cause an overflow problem.   

With all of these changes and improvements, and after ensuring that all wiring 

inefficiencies had been removed per the help found on the NI forums, the development 

of the CAN DAQ software program was finally complete.  The final architecture of the 

CAN DAQ software is shown in Figure 22.  The resulting real-time controller program 

incorporates the program enhancements by first initializing an array of channel names 

and message IDs based on those found in any database file of choice, creates a TDMS 

file with a file name corresponding to the day of creation, and creates a queue that will 

be used as a means to apply the sample and hold feature.  Then, the CAN frames are 

brought in from the FPGA and sent to a While Loop that reads in the frames and places 

them into the queue.  Next, in a separate While Loop, the queued CAN frames are 

brought in and separated into arrays of message ID, time stamp, and data field.  The 

data field array is sent to the Frame to Channel VI while the message ID is used to search 

through the initialized array of channel names.  Finally, on every tenth iteration of the 

conversion loop, an array containing data for all of the channels of every message and 

their respective time stamps is logged to the created TDMS file.   
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Figure 22: CAN DAQ Real-Time Controller Program 

The final step in the development of the CAN DAQ system involved creating a 

software application of the program that would run upon start-up of the CAN DAQ 

hardware.  When embedded onto the bus, the CAN DAQ system would be able to log 

data and temporarily store it in the internal storage in TDMS files with a structured 

format that would be easy to view and analyze.  Furthermore, the system created can 

be used on various projects by simply changing the database file used and specifying 

how many channels the TDMS file should expect.   

3.7 Conclusion 

In the chapter, the development of a CAN based DAQ system for the real-time 

logging of data from the fuel cell hybrid bus CAN network was detailed and shown to be 

adaptable to various other projects, which was an interest of both DesignLine and OSU.  

The fuel cell hybrid bus simulator was then presented along with information pertaining 

to the proposed controller.  The proposed controller was then extensively tested along 
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with the simulator and validated through comparison with an optimal PMP controller.  

Results for the HDUDDS and Manhattan drive cycles show that the proposed ARMA 

control algorithm is a near-optimal solution for varying driving conditions as compared 

to the optimal PMP control solution.  In addition, the proposed ARMA controller 

displays a limited amount of fuel cell transients and a battery charge sustaining behavior 

that is desirable for the operation of the proposed fuel cell hybrid bus powertrain 

architecture.  Therefore, the proposed ARMA controller provides an implementable 

control algorithm that has proven to perform well on the selected standardized drive 

cycles. 

 

 

 

 

 

 

 

 

 

 



89 
  

 

 

 

 

 

 

 

 

CHAPTER 4: Bus Hardware/Software Validation for Campus Use 

4.1 Introduction 

In the previous chapter, it was shown that the chosen fuel cell hybrid bus 

powertrain architecture and proposed ARMA control algorithm were designed to allow 

for desirable performance on varying driving conditions as established by the 

standardized HDUDDS and Manhattan drive cycles.  While these results offer a valid 

look into the simulated performance of the fuel cell hybrid bus, they lack any real 

indication of how the ECO Saver IV bus would actually perform at OSU.  This chapter is 

focused on answering this question through a detailed look into the process used to 

develop real-world drive cycles based on typical on-campus bus routes at OSU, an 

analysis of simulation results using the developed real-world drive cycles, the 

development and analysis of a new driver model that addresses potential problems of 

the current driver model, and an in depth analysis of the simulators sensitivity to 

changes in the vehicle architecture and design. 
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4.2 Development of Drive Cycles Using Real World Routes 

4.2.1 Motivation for the Use of Real World Drive Cycles 

Standardized drive cycles are used in industry during vehicle development to 

ensure that they meet emissions standards and fuel economy specifications.  While it is 

a good practice to have a standardized set of drive cycles to keep every vehicle 

manufacturer accountable under the same regulations, at times they are not sufficient 

for vehicles designed to run under very specific driving conditions.  Such is the case for 

the ECO Saver IV, which is meant to operate on a set of specific bus routes.  Thus, it was 

determined that a set of real world velocity profiles would have to be developed to 

properly simulate and validate the performance of the bus.  The advantage of using real 

world drive cycles is having prior knowledge of the actual expected driving conditions, 

such as maximum velocity, acceleration, and frequency of start-stop events, enabling 

one to better develop the vehicle architecture and control algorithm.  Moreover, unlike 

standardized drive cycles, real world drive cycles contain the inherent presence of a 

road grade profile, which significantly affects vehicle performance results.  

4.2.2 Acquisition of GPS Data for Real World Routes 

A proper study of the fuel cell hybrid bus would undoubtedly require knowledge 

of its application, i.e. information on a typical route the bus would be expected to take.  

Thus, data had to be collected concerning the current on-campus bus routes.  An 

attempt was made to collect such data from OSU CABS but the information provided 

required more detail.  Therefore, it was determined that route data would have to be 
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gathered, which required boarding several CABS buses with different routes and using a 

GPS device to record the data.  Initial attempts were undertaken with the use of a 

GARMIN USB GPS device plugged into a laptop but the data was not usable due to 

numerous and lengthy moments in which GPS signal was lost.  A second attempt was 

done using a smartphone with the Google MyTracks app.  The data file recorded and 

extracted from the MyTracks app included the latitude, longitude, altitude, bearing, 

accuracy, speed, and time, of which only latitude, longitude, speed, and time were used 

to analyze the route.  Once the GPS data had been collected and visually verified to be a 

good representation of the respective bus routes recorded, a usable drive cycle, 

consisting of velocity and grade profiles, could be developed. 

4.2.3 Velocity and Grade Profile Development - GPS Data Post-Processing 

However, as with most data collected, the initial MyTracks data required some 

filtering and post-processing due to noise and outliers.  In addition, as most anyone 

would attest to, GPS signal strength can at times be extremely variable, leading to 

intervals of missing data.  To remedy this, the data was first interpolated to extract the 

missing gaps in the route with as much fidelity as possible.  The resulting interpolated 

latitude and longitude data was then compared to a map of the route via Google Maps 

and found to be a satisfactory match.  Then, the interpolated GPS data pertaining to the 

bus’ speed and time on the route was used for the development of a real-world velocity 

trace.  The resulting velocity trace contained several instances of speeds that were 

clearly outliers, such as data points signifying that the bus had been travelling about 60 
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mph in an urban area for a single data point.  Thus, the time and velocity data was 

filtered through the use of the MATLAB functions butter and filtfilt to eliminate any 

outliers and smoothen the noise from the trajectory.  The filtered interpolated velocity 

was then plotted against time, providing a final usable velocity trace.   

While the recorded GPS data pertaining to the bus’ speed and time on the route 

was successfully used for the creation of a real-world velocity trace, proper 

characterization of real-world drive cycles and a thorough study of the simulators 

performance for the intended driving conditions should include a road grade profile and 

information on the distance travelled.  Typically, GPS data does not include road grade 

data and the distance provided is usually only that of the final total distance travelled 

rather than an instantaneous distance travelled.  Thus, development of a road grade 

profile for a real-world drive cycle required calculating the grade from the elevation and 

instantaneous distance travelled, such that 

𝑔𝑟𝑎𝑑𝑒 =
𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
. (45) 

In order to check the validity of the less accurate GPS altitude data, it was 

compared to data found in The National Map, a resource of U.S. topographical 

information complied by the U.S. Geological Survey (USGS), in which data on elevation, 

known as the National Elevation Dataset (NED), is among eight primary data types.  

Through [58], a look-up of the elevation data within NED, with respect to the latitude 

and longitude data collected, was performed.  As expected, the comparison showed 
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that the values did not coincide perfectly.  Thus, the more accurate NED elevation data 

was taken as the data of choice to use with the road grade equation.   

The road grade was then calculated using distance obtained through [56] and 

was found to be within an approximate ±6% grade for the on-campus bus routes.  

However, to ensure that this road grade data was in fact correct, the distance was again 

calculated using the available data by taking the integral of the vehicle speed. 

𝑥𝑑𝑖𝑠𝑡 = ∫ 𝑣𝑣𝑒ℎ𝑑𝑡
𝑡𝑓

0

 (46) 

However, results from the application of Equation (46) to the road grade equation 

contained road grade percentages that were clearly incorrect.  Seeing as how both road 

grade calculations used the same elevation data, the difference in maximum road grade 

percentages had to be due to differences in the distance data.  Furthermore, since the 

recorded velocity data used in the calculation of distance was assumed to be correct, 

the problem had to lie in the initial assumption that distance should be obtained 

through the integration of velocity.   

A closer look at the problem led to the understanding that the road grade 

equation requires the use of the curved distance between two points in order to be 

truly accurate, whereas the integration of velocity yields the linear distance between 

two points.  While it is common knowledge that the shortest linear path between two 

points is a straight line, this rule does not apply when considering a curved space or 

path, in which case the shortest path between two points is defined as a geodesic.  
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Originally, being derived from geodesy, or the science of measuring the size and shape 

of the Earth, the term geodesic was used in describing the shortest route between two 

points on the Earth’s surface.  While Pythagoras first postulated that the Earth was a 

spherical body, we now know that the Earth is more closely approximated by an 

ellipsoid of revolution, also known as an oblate spheroid.  Thus, the study of geodesics 

on an ellipsoid provides a more accurate path between two points on Earth’s surface.  

However, this more accurate and complex approximation of the shape of the Earth led 

to various problems.  Fortunately, through the work of many of the great 

mathematicians of the past, the problems in geodesy can be reduced to two main cases, 

the direct and inverse problem.  The direct problem involves finding the position along a 

geodesic after travelling a certain distance, given a starting point and an initial heading.  

On the other hand, the inverse problem involves finding the geodesic of two given 

points on an ellipsoid.   

While many have developed algorithms that would solve the two geodesic 

problems, most approaches require large amounts of computing resources and time.  

However, work done by Thaddeus Vincenty in 1957 led to the formulation of what are 

now known as the Direct and Inverse Vincenty Formulae.  Thus, the curved distance 

needed for the correct calculation of the road grade can be determined through solving 

the inverse geodesic problem with the use of the Vincenty Inverse Formulas: 
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sin2 𝜎 = (cos 𝑈2 sin 𝜆)2 + (cos 𝑈1 sin 𝑈2 − sin 𝑈1 cos 𝑈2 cos 𝜆)2 (47) 

cos 𝜎 = sin 𝑈1 sin 𝑈2 + cos 𝑈1 cos 𝑈2 cos 𝜆 (48) 

tan 𝜎 =
sin 𝜎

cos 𝜎
 

(49) 

sin 𝛼 = cos 𝑈1 cos 𝑈2

sin 𝜆

sin 𝜎
 

(50) 

cos 2𝜎𝑚 = cos 𝜎 − 2 sin 𝑈1

sin 𝑈2

cos2 𝛼
 

(51) 

𝐶 =
𝑓

16
cos2 𝛼 [4 + 𝑓(4 − 3 cos2 𝛼)] 

(52) 

𝜆 = 𝐿 + (1 − 𝐶)𝑓 sin 𝛼 {𝜎 + 𝐶 sin 𝜎 [cos 2𝜎𝑚 + 𝐶 cos 𝜎 (−1 + 2 cos2 2𝜎𝑚)]} (53) 

where 𝜎 is the angular distance between two chosen points on an auxiliary sphere, 𝑈1 

and 𝑈2 are reduced latitudes on the sphere, 𝜆 is the difference in longitude on an 

auxiliary sphere, 𝛼 is the azimuth of the geodesic at the equator, 𝜎𝑚 is the angular 

distance on an auxiliary sphere from the equator to the midpoint of the line formed 

between the two chosen points, 𝐶 is the geodesic curve between the two chosen points, 

𝐿 is the difference in longitude between the two chosen points, and 𝑓 is the flattening of 

an ellipsoid, determined from  

𝑓 =
(𝑎 − 𝑏)

𝑎
 

(54) 

where 𝑎 and 𝑏 are the major and minor semi-axes of the ellipsoid, respectively.  

Furthermore, the reduced latitudes are obtained from the geodetic latitudes, 𝜙1 

and 𝜙2, of the two chosen points, such that 
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𝑈1 = tan−1[(1 − 𝑓) tan 𝜙1] (55) 

𝑈2 = tan−1[(1 − 𝑓) tan 𝜙2]. (56) 

Having set 𝜆 to an initial value of 𝐿, the goal is to evaluate Equations (47) to (53) through 

an iterative process until the change in 𝜆 is negligible, at which point an evaluation of 

the change in angular distance between the chosen points is carried out, such that  

𝑢2 = cos2 𝛼
(𝑎2 − 𝑏2)

𝑏2
 

(57) 

𝐴 = 1 +
𝑢2

16384
{256 + 𝑢2[−768 + 𝑢2(320 − 175𝑢2)]} 

(58) 

𝐵 =
𝑢2

1024
{256 + 𝑢2[−128 + 𝑢2(74 − 47𝑢2)]} 

(59) 

Δ𝜎 = 𝐵 sin 𝜎 {cos 2𝜎𝑚

+
1

4
𝐵 [cos 𝜎 (−1 + 2 cos2 2𝜎𝑚)

−
1

6
𝐵 cos 2𝜎𝑚 (−3 + 4 sin2 𝜎)(−3 + 4 cos2 2𝜎𝑚)]} 

 

(60) 

where 𝐴 and 𝐵 are the two chosen points of the ellipsoid, as shown in Figure 23 . 
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Figure 23: Geodesic Curve on an Ellipsoid 

Finally, the length of the geodesic between the chosen points is determined from 

𝑠 = 𝑏𝐴(𝜎 − Δ𝜎). (61) 

Though not needed for the application at hand, the azimuths of the geodesic, 𝛼1 and 𝛼2, 

can be determined from 

tan 𝛼1 =
cos 𝑈2 sin 𝜆

cos 𝑈1 sin 𝑈2 − sin 𝑈1 cos 𝑈2 cos 𝜆
 

(62) 

tan 𝛼2 =
cos 𝑈1 sin 𝜆

− sin 𝑈1 cos 𝑈2 + cos 𝑈1 sin 𝑈2 cos 𝜆
 

(63) 

Thus, through use of Vincenty’s Inverse Formulas, the ellipsoidal distance 

between every two GPS points was determined and then plugged into the grade 

equation along with the elevation data previously obtained.  While the calculated total 

distance data was now in agreement with the website distance, the road grade 
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calculated now contained values upwards of 20%.  Fortunately, it was found that this 

could be remedied with data filtering, so the use of statistical analysis was incorporated 

to eliminate any outliers in the grade data.  Specifically, the standard score, or z-score, 

𝑧 =
𝓍𝑔 − 𝜇

𝜎
 (64) 

of each raw road grade value 𝓍𝑔 was calculated, where 𝜇 is the mean and 𝜎 is the 

standard deviation of the entire road grade data set.  The z-score denotes the number 

of standard deviations that a specific data point is away from the mean, where a 

positive z-score means the data point is above the average and a negative z-score 

means it is below the average.  The criterion used to remove outliers was based on the 

statistical three-sigma rule that states that three standard deviations will theoretical 

cover 99.73% of a given distribution.  Thus, any data points with z-scores higher than +3 

and lower than -3 were removed.  What remained was a road grade profile that had a 

maximum and minimum grade percentage with a relatively realistic magnitude as 

expected.  The developed velocity and road grade profiles for a specific OSU CABS bus 

route would then make up a complete real-world drive cycle. 

4.2.4 Real-World Drive Cycles 

While GPS data had been recorded for several CABS bus routes, the real-world 

drive cycles developed were those of the OSU on-campus bus routes, Campus Loop – 

North (CLN) and Campus Central (CC).  The methodology detailed in the previous section 

was used in making the velocity and grade profiles of these real-world drive cycles.  
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Figure 24 and Figure 25 contain plots of the final form of the real world CLN drive cycle 

developed for use with the fuel cell hybrid bus simulator including its respective road 

grade profile.  While at first glance the road grade profile may seem unrealistic as it 

contains many seemingly quick transitions, Figure 26, which displays a close up look at 

the CLN grade profile with respect to distance, proves that these profiles are in fact 

reasonable considering the distance that is covered.   

 

 

 

Figure 24: Velocity Profile Developed from CABS CLN Bus Route 

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

35

40

Time [s]

V
e
lo

c
it
y
 (

m
p
h
)

Velocity Profile - CLN Drive Cycle



100 
  

 

Figure 25: Road Grade Profile Developed from CABS CLN Bus Route 

 

Figure 26: Close-up View of Road Grade vs. Distance - CLN Drive Cycle 
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The velocity and road grade profiles of the developed real-world CC drive cycle 

are shown as Figure 27 and Figure 28.  Again, a close up look at the corresponding road 

grade profile, as given by Figure 29, reveals that it is in fact a realistic representation of 

the grade with respect to distance traveled.  These drive cycles were used to determine 

the performance of the simulator with real-world route characteristics prior to 

integration into the CABS bus fleet for the demonstration. 

 

 

 

Figure 27: Velocity Profile Developed from CABS CC Bus Route 
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Figure 28: Road Grade Profile Developed from CABS CC Bus Route 

 

Figure 29: Close-up View of Road Grade vs. Distance - CC Drive Cycle 
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In order to properly determine if the vehicle architecture and the proposed 

ARMA control algorithm had been well defined, an analysis of the fuel cell hybrid bus’ 

performance during operation on these real-world drive cycles was conducted; similar 

to what was done with the validation of the control algorithm with standardized drive 

cycles.  Thus, the following section details the simulation results with the use of the OSU 

CABS CLN and CC real-world drive cycles as well as a comparison of the performance of 

the simulator and controllers when operated with the real-world drive cycles versus the 

HDUDDS and Manhattan standardized drive cycles.  In addition, potential problems with 

the use of the real-world drive cycles are discussed. 

4.2.4.1 Potential Mismatch between Velocity and Grade Profiles 

While the use of real-world drive cycles is encouraged to properly simulate the 

expected driving conditions of the bus, their use brought up questions of the validity of 

the driver model.  The driver model, as explained in Chapter 3, tracks the velocity error 

between the desired and actual calculated velocity before computing the accelerator 

and brake pedal positions through use of a PID controller.  While this method has been 

proven to work successfully for the standardized drive cycles, it was concluded that 

there could be a potential problem caused by the fact that the real-world drive cycles 

were based on actual on-campus bus routes.  Specifically, it was thought that the bus 

might get “behind” in terms of the schedule the bus would be expected to keep when 

travelling from stop to stop due to a mismatch between the velocity profile and road 

grade profile that would become more and more apparent as time went by.  If this were 
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to happen, the controller would essentially be providing the incorrect power demands 

for the given time and location on the drive cycle.  The following section offers a 

solution that would ensure the potential problem is avoided. 

4.3 Development of Distance Based Driver Model 

4.3.1 Motivation for the Need of a Distance Based Driver Model 

Traditionally, a driver model for an energy management model simply applies a 

PID controller to attempt to match the simulated vehicle velocity with that of a chosen 

drive cycle.  The simulator had just such a driver model.  This driver model could 

sufficiently match up the simulated vehicle velocity for several drive cycles.  However, it 

was agreed upon that simply tracking velocity was not appropriate for the real world 

drive cycles.  As previously mentioned, this conclusion was centered on the fact that 

these drive cycles were based on an actual bus route in which the bus would have to be 

a certain distance into the route at any given time such that the bus could keep up with 

the routes bus schedule.  The problem was the eventual mismatch between the velocity 

and road grade profiles.  Thus, the distance traveled by the bus would have to be taken 

into consideration, which led to the need of a distance based driver model.  Such a 

model would have to match the linear distance traveled according to the real world 

drive cycles developed.  The respective linear distance profiles for the CLN and CC drive 

cycles are given as Figure 30 and Figure 31. 
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Figure 30: OSU CLN Distance Profile 

 

Figure 31: OSU CC Distance Profile 
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4.3.2 Heuristic Design Method for Distance Based Driver Model 

Though not as efficient, a heuristic design method was used to develop the 

distance based driver model.  This was mostly due to the lack of previous work in 

undertaking such a task and thus could not have any information or initial idea of how 

to properly track distance in a way that would ensure that the vehicle met its power 

requirements as well as kept up with the distance profile.  As an initial attempt, the 

vehicle velocity was simply integrated and the resulting linear distance was passed 

through the PID controller, after which the PID gains were retuned.  A single set of PID 

gains for all the drive cycles was desired so as to eliminate the need to change gains 

every time the drive cycle was changed.  While this method worked for some drive 

cycles, others required retuning the PID gains with varying success in terms of reducing 

the distance error to a satisfactory level.  As the tracking of distance worked at times, it 

was thought that the solution would be to try to track both distance and velocity.   

The next attempt involved incorporating a sort of feedback controller in which 

velocity was tracked with a PID controller as before.  The resulting signal was then 

integrated so as to obtain distance and then sent through another PID controller.  The 

final resulting signal was used to determine pedal positions, alpha and beta.  This 

method was definitely more complex since it required tuning two PID controllers.  An 

algorithm was developed in MATLAB to determine the optimal gain values for the PID 

controllers but the results proved to be unsatisfactory.  At times, the distance profile 
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would be matched up very well but the velocity profile would hardly match, and vice 

versa.   

Another problem identified was the presence of extreme transients in the 

accelerator and brake pedal position signals.  This caused transients to be present in the 

power demands calculated and ultimately caused the velocity and distance traces to be 

off by large margins at times.  Although more complex, this feedback like controller 

resulted in even less desirable performance than the previous attempt. 

4.3.3 Chosen Model Architecture 

Finally, after several attempts at fine tuning the previously mentioned driver 

models, a simple yet elegant solution was used.  The solution came in the form of a 

weighted function as shown by the red circle in Figure 32.  First, the vehicle velocity was 

integrated to obtain linear distance traveled by the bus.  Then, the velocity error and 

distance error were calculated and passed through the weighted function such that 

(𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑣𝑎𝑐𝑡𝑢𝑎𝑙)𝑤𝑣𝑒𝑙 + (∫ 𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑑𝑡 − ∫ 𝑣𝑎𝑐𝑡𝑢𝑎𝑙𝑑𝑡) 𝑤𝑑𝑖𝑠𝑡 = 𝐸𝑡𝑜𝑡 
(65) 

where 𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑 and 𝑣𝑎𝑐𝑡𝑢𝑎𝑙  are the respective desired and actual velocity whose 

difference and integrated difference are the respective velocity error the distance error, 

𝑤𝑣𝑒𝑙 and 𝑤𝑑𝑖𝑠𝑡 are the respective velocity and distance weights, and 𝐸𝑡𝑜𝑡 is the total 

error signal sent to the PID controller to determine the pedal positions. 
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Figure 32: Velocity and Distance Weighted Function Driver Model 

 

The PID gains were tuned along with determining the best weights to apply to 

velocity and distance.  It was determined that best results could be obtained by giving 

velocity a slightly higher weight than distance.  This weighted function approach for 

tracking distance and velocity will simply be referred to as the distance based driver 

model whereas the driver model initially obtained will be referred to as the original 

driver model.  Table 11 contains the values of the newly tuned PID gains and the 

weighted values used in the distance based driver model.   
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Table 11: Parameter Values Used in the Distance Based Driver Model 

Parameter Value 

𝑲𝑷 6.5 

𝑲𝑰 2 

𝑲𝑫 0 

𝒘𝒗𝒆𝒍 0.6 

𝒘𝒅𝒊𝒔𝒕 0.4 

 

4.4 Performance on Real-World Drive Cycles 

4.4.1 Real-World Drive Cycle Results 

In order to truly gain an understanding of how the bus would work at OSU, the 

use of actual driving conditions at OSU had to be taken into consideration.  To this end, 

the simulator was run on the developed real-world drive cycles.  Specifically, it was of 

interest to know if the bus’ chosen powertrain architecture would be able to meet the 

specific driving conditions of the bus routes considering that a non-zero grade profile 

was now being used.  Table 12 shows that the simulated vehicle completes the OSU CLN 

and CC drive cycles with velocity errors that met the 5% performance metric threshold.  

For both the CLN and CC drive cycles the baseline results indicate that the distance error 

was very small.  In fact, the total distance traveled at the end of the cycle matched up 

with the desired total distances of the CLN and CC drive cycles to the order of three 

significant digits. 
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Table 12: Velocity RMS Error - OSU Drive Cycles 

 Velocity 

RMS Error (%) 

Distance 

RMS Error (%) 
Distance Traveled 

CLN – ARMA MIL 1.27 2.00E-3 9.80E+3 

CLN – PMP MIL 1.59 2.60E-3 9.80E+3 

CC – ARMA MIL 1.05 1.70E-3 9.63E+3 

CC – PMP MIL 1.01 1.60E-3 9.63E+3 

 

It should be noted that, as with the standardized drive cycles, the co-state 

variable values for the OSU CLN and CC drive cycles were recalculated for use within the 

optimal PMP controller.  Their values, along with the associated approximate initial fuel 

cell power, are found in Table 13.   

Table 13: Co-State Variable and Initial Fuel Cell Power Values for the OSU CLN and CC Drive Cycles 

 
λₒ Values 

Approximate Initial  

Fuel Cell Power 

CLN 1991440 29 kW 

CC 2019560 34 kW 

 

A look at the battery SOC trajectories for both the CLN and CC drive cycles, 

Figure 33, shows that, under both the ARMA and PMP controllers, the bus simulator is 

able to maintain the charge sustaining behavior desired for the battery. 
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Figure 33: Comparison of ARMA and PMP Battery SOC - OSU CLN and CC Drive Cycles 

 

As for the performance of the fuel cell, Figure 34 shows that the fuel cell power 

outputs of the ARMA and PMP controller for the OSU CLN drive cycle are comparable to 

what was seen for the standardized cycles.   

 

  

Figure 34: Comparison of ARMA and PMP Fuel Cell Power - OSU CLN Drive Cycle 
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Figure 35: Comparison of ARMA and PMP Fuel Cell Power - OSU CC Drive Cycle 

The same is seen for the fuel cell power of the OSU CC drive cycle, shown as 

Figure 35.  Based on these fuel cell and SOC results, it could be concluded that the 

power outputs are sufficient to meet the power requirements of the on-campus driving 

conditions.  It should be noted that, as before, the initial fuel cell power has been 

modified to match what is given by the PMP controller for both the CLN and CC drive 
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Having taken the necessary precautions, Table 14, shows that for the real-world 
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PMP results provide a higher fuel economy than that of the ARMA controller.  However, 

the difference is very slight as the ARMA controller gives a near optimal solution.  Again, 
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Table 14: OSU Drive Cycles - Fuel Consumption and Diesel Equivalent Fuel Economy 

 Fuel Consumption (kg) Diesel Equivalent Mileage (mpg) 

CLN – ARMA MIL 0.910 7.81 

CLN – PMP MIL 0.920 7.85 

CC – ARMA MIL 1.05 7.92 

CC – PMP MIL 1.03 8.58 

 

 The results above confirm that the chosen bus powertrain architecture is more 

than suitable to meet the power demands indicative of the real-world driving conditions 

as provided by the use of the OSU CLN and CC real-world drive cycles.   

A sensitivity analysis of the co-state variable of the optimal PMP solution and an 

analysis of the sensitivity of the near-optimal solution provided by the developed ARMA 

controller to the initial fuel cell power selected will be presented in the following section 

along with other relevant performance analyses.  The complete validation process 

involved the correct selection of the co-state variable and initial fuel cell power at each 

successive step.  Changes were only made where necessary. 

4.4.2 Performance Analysis 

4.4.2.1 Weight Sensitivity Analysis 

Fuel economy and vehicle performance is greatly dependent on the weight of a 

vehicle.  In the case of a transit bus, the total weight during operation varies due to the 

number of passengers riding the bus.  A weight sensitivity analysis was performed to 
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understand how the fuel cell hybrid bus would perform in terms of the fuel economy, 

consumption, and SOC deviation.  An analysis was performed for both the ARMA and 

PMP controllers for the OSU CC drive cycle.  In the case of the optimal PMP controller, 

the co-state variable was tuned during each simulation as the weight of the bus was 

increased due to an increase of passengers on-board.  Similarly, the initial fuel cell 

power was changed as needed for each weight case to better approximate the optimal 

solution.  An average passenger weight of 185 lbs. was used in the analysis.  The results 

for the optimal PMP controller, shown in Table 15, indicates a decrease in fuel economy 

as the number of passengers increased.   

Table 15: Weight Sensitivity Analysis on OSU CC Drive Cycle - PMP 

Number of  
Passengers 

Fuel Cell 
Bus 

Weight 
(lbs.) 

Co-State 
Variable 

SOC  
Deviation 

Hydrogen 
Fuel  

Consumption 
(kg) 

Diesel 
Equivalent 

Fuel 
Economy 
(mpge) 

Passenger 
Diesel 

Equivalent 
Fuel Economy 

(mpge)  

0 35000 2019560 -0.923 1.03 8.58 8.58 

7 36295 2025560 -0.731 1.07 8.28 58.0 

14 37590 2031560 -0.674 1.10 8.01 112 

21 38885 2037560 -0.815 1.14 7.76 163 

28 40180 2043560 -0.950 1.18 7.53 211 

35 41475 2050560 -0.829 1.22 7.27 254 

41 42770 2056560 -0.795 1.26 7.06 290 

49 44065 2063560 -0.873 1.30 6.83 335 

 

Due to the change in co-state variable for each case, the SOC deviation was kept 

to a minimum.  It should be noted that the passenger fuel economy, which takes into 

account the total fuel economy associated with transporting a certain number of 
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people, increased as the number of passengers increased.  The same trend was seen 

with the ARMA controller with results shown in Table 16.  However, a decrease in diesel 

equivalent fuel economy of nearly 1 mpg from that of the optimal solution was 

obtained.  The SOC deviation was also seen to be higher than with the optimal PMP 

controller but was still within the performance metric range.  Overall, the results show 

that the difference between running the bus with no passengers and running it with 

more passengers than available seats causes a decrease in fuel economy of nearly 2 

mpg.  However, the more passengers are on-board, the higher the total passenger fuel 

economy gets.  At full capacity, the bus approaches 300 passenger mpg, making the 

increase in weight a benefit rather than a hindrance for the fuel cell hybrid transit bus. 

 

Table 16: Weight Sensitivity Analysis on OSU CC Drive Cycle - ARMA 

Number of  
Passengers 

Fuel Cell 
Bus 

Weight 
(lbs.) 

Approx. 
Initial 

Fuel Cell 
Power 

SOC  
Deviation 

Hydrogen 
Fuel  

Consumption 
(kg) 

Diesel 
Equivalent 

Fuel 
Economy 
(mpge) 

Passenger 
Diesel 

Equivalent 
Fuel Economy 

(mpge)  

0 35000 34 5.751 1.14 7.68 7.68 

7 36295 35 5.944 1.17 7.45 52.1 

14 37590 37 6.036 1.21 7.16 100 

21 38885 38 6.414 1.29 6.86 144 

28 40180 39 6.743 1.34 6.64 186 

35 41475 40 7.093 1.39 6.37 223 

41 42770 41 7.463 1.43 6.19 254 

49 44065 42 7.947 1.49 5.99 293 
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4.4.2.2 Co-State Variable and Initial Fuel Cell Power Sensitivity Analysis 

As has been seen throughout the MIL simulations, the co-state variable used 

within the PMP algorithm for ensuring proper charge sustainability must be tuned for 

each drive cycle.  Changes to the powertrain architecture and the use of a grade profile 

have required the re-tuning of the co-state variable.  To determine how sensitive the 

PMP controller is to changes in the co-state variable, a sensitivity analysis was 

performed in which the co-state variable used with the PMP controller for the OSU CC 

drive cycle was varied.  Figure 36 shows that the SOC deviates by nearly 5% for every 

change of 20,000 of the co-state variable with zero deviation occurring at a value of 

about 2020000 for the OSU CC drive cycle. 

 

Figure 36: Co-State Variable Sensitivity Analysis - OSU CC Drive Cycle 
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The initial fuel cell power values corresponding to the co-state variable values 

used for the above analysis were used to determine how sensitive the resulting fuel 

economy was to changes in the initial fuel cell power used with the ARMA controller.  

The analysis was performed on the OSU CC drive cycle.  As indicated by Figure 37, the 

diesel equivalent fuel economy decreased as the initial fuel cell power increased.    

 

Figure 37: Initial Fuel Cell Power Sensitivity Analysis - ARMA 

4.5 Conclusion 

A set of real-world drive cycles were developed from GPS data of two OSU CABS bus 

routes.  These drive cycles contained a velocity and road grade profile that were 

representative of the on-campus driving conditions.  A distance based driver model was 

then developed to ensure proper synchronization between the velocity and road grade 

10 15 20 25 30 35 40 45 50
6

7

8

9

10

11

12

13

14

Initial Fuel Cell Power [kW]

D
ie

s
e
l 
E

q
u
iv

a
le

n
t 

F
u
e
l 
E

c
o
n
o
m

y
 [

m
p
g
]

Fuel Economy Sensitivity to Initial Fuel Cell Power - CC Drive Cycle



118 
  

profiles through the tracking of distance.  However, the fuel cell hybrid bus was shown 

to be lacking in torque output by the current design of the powertrain architecture, 

which led to incorrect tracking of the velocity trace set by the real-world OSU drive 

cycles.  A gain was used on the torque output to ensure that the driving conditions could 

be met and thus allow for validation of the control algorithm for on-campus use. 
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CHAPTER 5: SIL/HIL Preparation 

5.1 Introduction 

The work presented thus far has been that of simulation results obtained from a 

MIL simulator.  While MIL simulations might suffice for certain applications, it was 

desired to further validate the Fuel Cell Hybrid Bus Simulator through the use of SIL and 

HIL simulations in order to achieve two overall objectives.  (1) Develop the ARMA 

control algorithm into potentially usable control software through the automatic 

generation of compiled software code.  (2)  Determine how well the simulator and 

control algorithm would perform on real-time hardware.   Completion of these 

objectives would then provide a better understanding of the way in which the proposed 

control algorithm would perform on the actual demonstration bus if it were used as part 

of the on-board vehicle control.  The following is a detailed account of the steps taken 

to achieve the aforementioned objectives during the conversion of the MIL simulator to 

SIL and HIL, where special attention is given to the proper model implementation 
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techniques for SIL and HIL simulations as learned throughout the process and from the 

literature. 

5.2 Proper Model Implementation Techniques for SIL and HIL Simulations 

In terms of model function, a vehicle model is composed of two main 

components, the controller model and the plant model.  The plant model consists of the 

dynamics associated with the fuel cell hybrid bus as a system, i.e., the driver model, 

powertrain model, and vehicle dynamics model.  The controller model consists of the 

software used to implement the control strategy.  MIL simulations are performed with 

both the controller and plant model in the same virtual environment and operate using 

the same software language.  SIL and HIL, on the other hand, involve completely 

separating the controller and plant model, albeit in different manners, while still 

allowing them to communicate with each other.  While SIL and HIL simulation can be 

run without ensuring that the controller and plant model are their own separate 

entities, usually, the results obtained are not guaranteed to be correct.   

The fuel cell hybrid bus simulator model was not properly configured for SIL and 

HIL simulations and thus required restructuring certain aspects of the model 

architecture.  The first step in restructuring the model required separating the simulator 

into the controller and plant models to ensure proper implementation in the SIL and HIL 

simulators.  Since the simulator was initially constructed in a modular manner, this 

process was thought to be as simple as just moving the driver model, powertrain model, 

and vehicle dynamics model into a plant model block and rewiring as necessary to 
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communicate with the controller.  The controller model was then coded into a C-

language code using MATLAB’s automatic code generator.  For the SIL model, the 

control software was used in the same SIMULINK virtual environment as the plant 

model, whereas, for the HIL model, the compiled controller software was transferred to 

a microcontroller.  Preliminary results from the SIL simulator indicated the existence of 

lag in the signals involved in the calculation of the power demands.  As described in 

Chapter 3, both controllers use the calculated pedal positions and SOC of the battery as 

feedback from the plant to generate the battery and fuel cell power demands.   

However, it was found that there were more signals passing back and forth 

between the plant and the controller.  Specifically, for the ARMA controller the signals 

for the force at the wheels, force from the electric motor, and auxiliary power were 

being sent from the plant model to the controller.  These were needed by the controller 

to accomplish its calculation of the power demands.  These signals were not measurable 

quantities but they could be estimated in the controller based on the measureable 

vehicle speed parameter.  The same is seen with the PMP controller only with the 

addition of other signals that are used in the determination of the battery equivalent 

fuel consumption.  These signals include the open circuit voltage, resistance, and 

derivative of SOC. 

Similarly, the signals for total brake torque, total brake power, rear brake power, 

and maximum electric motor braking power were being computed by the controller and 

sent to the plant.  Although these signals were not translated into a control effort, 
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because they were not controlling any actuators, they had a direct effect on the 

dynamics of the plant.  These vehicle dynamics parameters were originally being 

estimated in the controller because they were dependent on the brake pedal position as 

well as the force at the wheels and force from the electric motor signals.  Figure 38 

provides a schematic view of the problem.  

 

Figure 38: Schematic of Problem with Simulator Structure 

As mentioned in [15], HIL testing requires the architecture of the model being 

used to be properly configured into independent plant and controller models.  In view of 

this, the problem with the structure of the model for the controller and the plant was 

that the interconnected signals identified above were being calculated on different 

physical components of the HIL system and communicated with one another through a 

CAN Network.  Due to the inherent delay and asynchronous behavior of the CAN, the 

dynamics of the plant was seen to be erratic at times.  For example, the battery SOC was 
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not behaving in the desired charge sustaining manner.  Furthermore, it would not be 

realistic to have feedback signals which do not have sensors to be measured physically 

and to have control signals which cannot affect the dynamics because of lack of 

actuators.  Therefore, proper MIL to SIL/HIL conversion required estimating the above 

signals independently in the plant model and controller model, eliminating the need for 

communicating the mentioned signals and the behavior that was due to the delay in 

CAN communication.  A schematic of the proper implementation is given in Figure 39. 

 

Figure 39: Schematic of Proper Model Structure for SIL/HIL Implementation 

5.3 Software-in-the-Loop Simulator Development 

The motivation behind the building of a SIL model is to validate how the control 

algorithm would work when used as software code for the bus’ control unit.  This 

requires converting the controller model into C-code.  As with the MIL simulator, the SIL 

model was developed on MATLAB/ SIMULINK.  Specifically, SIMULINK contains a block, 

titled S- function block, which allowed the control algorithm to be converted into C-

code.  By specifying the properly defined supervisory controller, the S- function block 

automatically generates the necessary code per the defined conversion rules set by 
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SIMULINK.  One downside to this method is not readily knowing the exact code being 

generated for the controller model.   

As explained in the above section, the main components of a vehicle model are 

the controller and plant models.  Once the ARMA and PMP controllers were structured 

according to the proper implementation techniques, the controller model for the fuel 

cell hybrid SIL simulator was completed through use of the S-function block automatic 

code generator.  The resulting control software code was then run alongside the 

correctly structured plant model in the SIMULINK virtual environment.  The completed 

SIL simulator allowed for the quick interchanging of controllers for use with the fuel cell 

hybrid bus plant model.   The use of software code instead of a model caused the 

simulator to complete simulations at a much faster rate.  However, since the controller 

was no longer in the form of a model, the control algorithm could no longer be modified 

without having to generate the C-code for the controller each time.  To remedy this, 

code was generated for each initial fuel cell value used. 

5.3.1 Use of Discretization to Approximate the Behavior of a Real Controller 

As is common with control hardware, signals are processed as discrete data and 

thus contain visible effects of quantization.  However, initial SIL simulations revealed the 

lack of these discretization and quantization effects that are indicative of real 

controllers.  This is due to the SIL control software being run on a virtual environment 

thus producing a digital approximation of an analog signal in continuous time.  While an 

analog signal is continuously varying, a discrete signal can only contain one of a set of 
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finite values in time.  In view of the SIL/HIL comparison in the next chapter, these 

quantization effects were artificially added to the SIL model.  This allowed the SIL 

controller to better approximate a real controller.  In doing so, a better comparison with 

the HIL simulator which uses real controller hardware, was possible.    

The quantization effects were added through use of the SIMULINK Quantizer block 

which required defining a quantization interval.  The input signal is essentially passed 

through a stair-step function, forcing neighboring points on the input axis to be mapped 

to one point on the output axis.  Thus, a smooth signal is quantized into a stair-step 

output, computed using the round-to-nearest method such that 

𝑦 = 𝑞 ∗ 𝑟𝑜𝑢𝑛𝑑(𝑢/𝑞) (66) 

where 𝑦 is the output, 𝑢 is the input, and 𝑞 is the quantization interval.  The value used 

for the quantization interval at which the input control signals were discretized was 

determined by first deciding on a rough estimate of how many bits the signal would 

contain when sent over a CAN network.  The total number of possible quantization 

levels 𝑙 associated with the respective number of bits was then calculated as 

𝑙 = 2(# 𝑜𝑓 𝐷𝑎𝑡𝑎 𝐵𝑖𝑡𝑠). (67) 

The interval was then calculated using an estimated range of values 𝑟 for the signal and 

the number of quantization levels such that 

𝑞 =
𝑟

𝑙
. (68) 
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This calculated interval value was then passed through the ceiling function to obtain the 

quantization interval value used within the Quantizer block.  The values used for the 

determination of the quantitation interval for the four control inputs are found in Table 

17.  In addition to the above, a memory block was used to introduce a time delay that 

would be representative of the behavior seen in the HIL simulator.   

Table 17: Quantization Effects for SIL/HIL Comparison 

Control Input Signal 

Signal 

Bits 

Quant. 

Levels 

Est. Data 

Range 

Calculated 

Quant. Int. 

Used Quant. 

Interval 

Vehicle Velocity (mph) 13 8192 35 0.004272 0.01 

Battery SOC (%) 10 1024 1 0.000977 0.001 

Brake Pedal Position (%) 10 1024 1 0.000977 0.001 

Accel. Pedal Position (%) 10 1024 1 0.000977 0.001 

 

5.4 Hardware in the Loop Simulator Development 

As indicated by the second objective for the SIL/HIL validation of the fuel cell 

hybrid passenger bus, it was desired to determine how well the simulator and control 

algorithm would perform on real-time hardware.  This was accomplished through the 

development of the HIL simulator and test bench system.  The HIL simulator, as with the 

SIL simulator, was made up of separate plant and controller models.  In contrast to the 

SIL simulator, the controller model was to be used on real control hardware and the 

plant model was implemented as part of a dedicated HIL system module.  The HIL test 
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bench system used consisted of a dSPACE HIL system, which acted as the real-time 

hardware for the plant model, and a MicroAutobox (MABX) microcontroller, which was 

used as the controller hardware for the controller software code.  In addition, a PC and 

laptop with the dSPACE ControlDesk software installed were used to run the plant and 

controller models on their respective hardware devices as shown in Figure 40, where 

the two systems are seen to communicate over a CAN network. 

 

Figure 40: Interaction between Plant/Controller Model and HIL System Components 

Having properly defined the controller for the SIL simulator and followed proper 

model structure to maintain separate independent plant and controller models, the HIL 

simulator development process was much easier.  Specifically, the development of the 

HIL simulator involved taking the properly structured main vehicle model components 

and running the Real-Time Interface (RTI) MATLAB/SIMULINK add-on provided as part of 

the dSPACE ControlDesk software on each separate plant and controller model.  RTI 

forms a link between the dSPACE hardware and a SIMULINK model and works by 

implementing the respective SIMULINK model into a graphical I/O configuration that is 
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then automatically generated into code that can be readily used in ControlDesk.  

Therefore, the controller and plant models are turned into software code that is then 

flashed onto the MABX microcontroller and dSPACE HIL system, respectively.   

5.4.1 Validation of CAN DAQ System Using HIL Test Bench 

As seen from  

Figure 41, the developed CAN DAQ system was then added to the HIL test bench 

to incorporate the validation of the data logger hardware and software with that of the 

controller and simulator vehicle architecture validation.  Integration of the CAN DAQ 

system was facilitated due to the HIL system already having an established CAN network 

over which signals were sent.  Per the design of the CAN DAQ system software, any 

signal that is sent to the high speed CAN module that is also defined within a database 

file should be logged to its respective array of data.  Thus, by creating a database file 

that contained several messages that pertained to signals being used within the HIL 

simulator the CAN DAQ system could be tested on actual real-time signals.  This process 

was done several times during the running of HIL simulations.  Each time the resulting 

TDMS file was inspected and compared to the signals that were sent over the CAN 

network.  After several runs, it was concluded that the CAN DAQ system was capable of 

consistent successful logging of data over a CAN network. 
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Figure 41: Diagram of HIL Test Bench with Integrated CAN DAQ System 

5.5 Conclusion 

The described processes in this chapter were used in building the SIL and HIL 

simulators for various cases involving the ARMA and PMP controllers, the original and 

distance based driver model, and the standardized and OSU real-world drive cycles.  The 

following chapter contains a comprehensive comparison between the MIL, SIL, and HIL 

simulators including a sensitivity analysis of the co-state variable and initial fuel cell 

power for the SIL and HIL simulators. 
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CHAPTER 6: SIL/HIL Validation Results 

6.1 Introduction 

The SIL and HIL simulator were developed as described in the previous chapter.  

In addition, artificial quantization effects were added to approximate the behavior of a 

real controller while also creating a better comparison between the SIL and HIL 

validation results.  The following sections pertain to said validation results for the 

standardized and real-world drive cycle in which three simulators were used with both 

the ARMA and PMP controllers, as shown in Table 18. 

Table 18: Validation Test Cases 

Test Case Description 

SIL Software-in-the-Loop Analog Signal Simulator 

SILQ Software-in-the-Loop with Quantization Simulator 

HIL Hardware-in-the-Loop Simulator 
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6.2 SIL/HIL Validation on Standardized Drive Cycles 

The validation process so far has proven to be successful for the MIL fuel cell 
hybrid bus simulator when run on the chosen standardized drive cycles.  The HDUDDS 
and Manhattan drive cycles were run on the SIL and HIL simulators for both the ARMA 
and PMP controller.  The results showed that the SIL model was able to function almost 
exactly like the MIL with no need of re-tuning of the co-state variable.  However, for 
both the HDUDDS and Manhattan cycles, the co-state value had to be changed for the 
SIL with quantization simulator.  This change in co-state value had an associated change 
in the initial fuel cell power, leading to a decrease in the diesel equivalent fuel 
consumption as seen by the baseline SIL simulator.  The co-state variable and initial fuel 
cell power values used with the SIL and HIL simulators for the HDUDDS and Manhattan 
drive cycles are given in Table 19.  Use of these supervisory controller parameters led to 
the results found in Table 20 and  

Table 21 for the standardized drive cycles. 

Table 19: Co-State and Initial Fuel Cell Power Values - Standardized Drive Cycles 

 Co-State Variable Initial Fuel Cell Power 

HDUDDS – SIL 2038860 38 kW 

HDUDDS – SILQ 2070610 44 kW 

HDUDDS – HIL 2070610 44 kW 

Manhattan – SIL 1945260 20 kW 

Manhattan – SILQ 1995260 30 kW 

Manhattan – HIL 1995260 30 kW 
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Table 20: SIL and HIL Validation Results - HDUDDS Drive Cycle 

 Velocity 

RMS Error (%) 

Fuel  

Consumption (kg) 

Diesel Equivalent 

Mileage (mpg) 

HDUDDS – ARMA SIL 1.11 0.550 8.67 

HDUDDS – PMP SIL 1.06 0.542 8.45 

HDUDDS – ARMA SILQ 1.27 0.615 7.55 

HDUDDS – PMP SILQ 1.59 0.617 7.36 

HDUDDS – ARMA HIL 1.18 0.568 6.79 

HDUDDS – PMP HIL 1.36 0.627 6.22 

 

Table 21: SIL and HIL Validation Results - Manhattan Drive Cycle 

 Velocity 

RMS Error (%) 

Fuel  

Consumption (kg) 

Diesel Equivalent 

Mileage (mpg) 

Manhattan – ARMA SIL 2.38 0.338 7.72 

Manhattan – PMP SIL 2.30 0.275 8.52 

Manhattan – ARMA SILQ 2.88 0.431 5.39 

Manhattan – PMP SILQ 3.89 0.412 5.58 

Manhattan – ARMA HIL 2.41 0.314 5.93 

Manhattan – PMP HIL 2.86 0.254 6.17 

 

A representative plot of the comparison of HDUDDS battery SOC trajectories 

achieved by the MIL baseline and SIL simulators running the ARMA control strategy in 

Figure 42 shows that the SIL simulator was a near exact match to the baseline results.  

The SIL with quantization simulator, on the other hand, causes a slight deviation from 

the baseline results, as expected.  In general, the battery SOC trajectories for the 

HDUDDS and Manhattan drive cycles were seen to fall within the performance metric 

boundaries of 50% and 70% for the SIL, SIL with quantization, and HIL simulators, with 
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the SIL software code of the controller providing a trajectory that is almost the exact 

match of the baseline SOC trajectory.  Thus, it was verified that the code generated from 

the MIL controller model functions in a relatively identical fashion to the model. 

 

Figure 42: Representative MIL/SIL Battery SOC Comparison Using the ARMA Controller - HDUDDS Drive Cycle 

Additionally, since the results of the SIL simulator with quantization effects 

approximates those of the HIL simulator more than do the baseline SIL results, it can be 

concluded that the addition of quantization achieved the desired effect.  Figure 43 

contains a graphical representation of the SIL and HIL validation results for the 

standardized HDUDDS and Manhattan drive cycles where emphasis was given to the 

performance metrics of the velocity traceability and fuel economy as compared to the 

baseline MIL performance results 
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Figure 43: SIL/HIL Validation Bar Graph - Standardized Drive Cycles 

 The bar graph above helps highlight the differences in velocity error and fuel 

economy as obtained from the MIL, SIL, and HIL simulators for the HDUDDS and 

Manhattan cycles.  A color coded line has been added to the graph that indicates the 

performance metric.  In the case of the velocity error, the blue line is the threshold that 

must not be passed in order for the performance metric to be met.  On the other hand, 

the orange line depicts the 4 mpg diesel transit bus baseline used as the fuel economy 

performance metric that should be passed to indicate a good performance.  Thus, the 

velocity error and fuel economy metrics have been met for the standardized drive cycles 

throughout the validation process by the ARMA and PMP controllers. 
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6.3 SIL/HIL Validation on Real-World OSU Drive Cycles 

The MIL results for the real-world drive cycles of the CLN and CC bus route 

revealed that the bus powertrain was adequate enough to meet the road loads of such 

a drive cycle per the performance metrics chosen.  A similar analysis was then carried 

out in the SIL and HIL simulators in order to validate the control algorithm using the real-

world OSU drive cycles.  While the SIL simulator with quantization effects required the 

retuning of the co-state variable for the standardized drive cycles, the same was not the 

case with the OSU drive cycles, i.e., the same MIL co-state value also allowed for a 

proper SOC charge sustaining behavior with the SIL and HIL simulators for the PMP 

controller.  This meant that the same initial fuel cell power was also used throughout 

the SIL and HIL validation for the ARMA controller.  The values of the OSU drive cycle co-

state and initial fuel cell used through the SIL and HIL validation for the ARMA and PMP 

controllers are given in Table 22. 

 

Table 22: Co-State, Initial Fuel Cell Power, and Torque Output Gain Values – OSU CC Drive Cycles 

 Co-State Variable Initial Fuel Cell Power 

OSU CLN – SIL 1991440 29 kW 

OSU CLN – SILQ 1991440 29 kW 

OSU CLN – HIL 1991440 29 kW 

OSU CC – SIL 2019560 34 kW 

OSU CC – SILQ 2019560 34 kW 

OSU CC – HIL 2019560 34 kW 
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The SIL and HIL simulators were then run using these controller parameters for 

the respective supervisory controllers with the OSU drive cycles in order to validate the 

results received with the MIL baseline for on-campus use.  As seen from Table 23, the 

velocity error for the SIL with quantization simulator for the CLN drive cycle is seen to be 

slightly larger than the SIL and MIL baseline results when using both the developed 

ARMA and optimal PMP controllers.  This is due to the effects of discretization that are 

applied to the velocity control input signal as described in the previous chapter.  

Regardless of this increase in RMS velocity error for the SIL with quantization simulator, 

the validation results indicate that the velocity performance metric was met for all of 

the SIL and HIL simulators.  In addition, the RMS distance error achieved with the MIL, 

SIL, and HIL simulators are seen to be within the distance performance metrics as shown 

in Table 24.  However, while the total distance for the MIL and SIL results are a near 

match, the total distance obtained with the HIL simulator is off by nearly 400 and 100 

meters for the ARMA and PMP controller, respectively.  This is explained by the inherent 

accumulation of error in the HIL simulator and to the competing tracking of distance and 

velocity with the real-world drive cycles. 

 

 



137 
  

Table 23: SIL and HIL Validation Results - CLN Drive Cycle 

 Velocity 

RMS Error (%) 

Fuel  

Consumption (kg) 

Diesel Equivalent 

Mileage (mpg) 

CLN – ARMA SIL 1.32 0.993 7.39 

CLN – PMP SIL 1.59 0.920 7.85 

CLN – ARMA SILQ 3.16 1.03 7.26 

CLN – PMP SILQ 3.76 0.931 7.74 

CLN – ARMA HIL 4.42 1.01 6.04 

CLN – PMP HIL 4.58 0.922 6.57 

 

Table 24: Distance Error Validation – CLN Drive Cycle 

 Distance RMS Error (%) Distance Travelled  (m) 

CLN – ARMA SIL 2.00E-3 9.80E+3 

CLN – PMP SIL 2.60E-3 9.80E+3 

CLN – ARMA SILQ 5.70E-3 9.80E+3 

CLN – PMP SILQ 7.00E-3 9.80E+3 

CLN – ARMA HIL 2.32E-3 9.40E+3 

CLN – PMP HIL 2.24E-3 9.69E+3 

 

The results for the CC drive cycle, given as Table 25, also show the effect of the 

quantization on the velocity RMS error, i.e., there is a clear increase in the velocity error 

from that of the SIL simulator without quantization.  Again, this is due to the effects of 

discretization that were added to the velocity control input signal.  As seen from  
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Table 26, the RMS distance error of the CC drive cycle is small and the total distance 

travelled is an exact match for all of the simulators except for the HIL simulator, which 

produces a total distance that is off by 300 meters for the ARMA controller but only by 

30 meters for the PMP controller.  As with the CLN drive cycles, the PMP controller 

allows for better matching of the desired total distance traveled.   

Table 25: SIL and HIL Validation Results - CC Drive Cycle 

 Velocity 

RMS Error (%) 

Fuel  

Consumption (kg) 

Diesel Equivalent 

Mileage (mpg) 

CC – ARMA SIL 1.45 1.15 7.76 

CC – PMP SIL 1.01 1.03 8.48 

CC – ARMA SILQ 3.67 1.19 7.65 

CC – PMP SILQ 4.09 1.04 8.49 

CC – ARMA HIL 1.86 1.21 6.05 

CC – PMP HIL 4.55 1.04 6.80 

 

Table 26: Distance Error Validation - CC Drive Cycle 

 Distance RMS Error (%) Distance Travelled (m) 

CC – ARMA SIL 2.00E-3 9.63E+3 

CC – PMP SIL 1.60E-3 9.63E+3 

CC – ARMA SILQ 5.90E-3 9.63E+3 

CC – PMP SILQ 6.80E-3 9.63E+3 

CC – ARMA HIL 3.60E-3 9.34E+3 

CC – PMP HIL 1.44E-3 9.60E+3 
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The resulting battery SOC trajectories showed a good match between the SIL 

with quantization simulator and the HIL simulator as proven by the representative SOC 

plot of the OSU CC drive cycle given in Figure 44, where it is seen that the battery SOC 

performance metric is met. 

 

Figure 44: Representative SIL/HIL Battery SOC Comparison Using the PMP Controller - CC Drive Cycle 

The SIL and HIL validation results for the OSU CLN and CC drive cycles are 

displayed in a graphical representation in Figure 45 where emphasis was given to the 

performance metrics of the velocity traceability and fuel economy as compared to the 

baseline MIL performance results.  Similar to the validation bar graph of the 

standardized drive cycle results, a color coded line has been added to the graph that 

indicates the performance metric.   
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Figure 45: SIL/HIL Validation Bar Graph - OSU Drive Cycles 

 

The blue line in this case is the threshold defined by the 4 mpg diesel transit bus 

baseline used as the fuel economy performance metric that should be passed to 

indicate a good performance.  The green line is defined as the velocity error percentage 

that must not be passed in order for the performance metric to be met.  Overall, the bar 

graph shows that the velocity error and fuel economy metrics were met for the 

developed real-world OSU drive cycles throughout the validation process by the 

developed ARMA and optimal PMP supervisory controllers. 
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6.4 Conclusion 

The results above were obtained through the SIL and HIL validation of the 

developed ARMA supervisory controller and proposed powertrain architecture of the 

fuel cell hybrid bus MIL simulator.  A set of results were obtained using the standardized 

HDUDDS and Manhattan drive cycles, which showed that the ARMA controller could 

approximate the optimal solution and meet the performance requirements when run in 

real-time.  In addition, the set of results for the developed OSU drive cycles, CLN and CC, 

showed good performance of the ARMA controller on real-time hardware.  Inspection of 

Figure 43 and Figure 45 reveals a trend in the results, i.e., the level of velocity error 

increases while the fuel economy generally decreases as the use of real-time simulations 

are approached in the validation process.   These differences in the real-time simulation 

results of the HIL simulator are due to an inevitable execution time delay associated 

with HIL simulations. [59]  Other delays could be present due to the HIL system interface 

with the CAN DAQ system or to improper synchronization between the controller and 

plant model.  These delays could explain the large variation between the desired total 

distance traveled and that which was obtained with the HIL simulator.   

In order to reduce some of the delays present due to improper model 

synchronization, switches were added to the HIL simulator via the ControlDesk 

interface.  However, these are dependent on human interaction and could contain 

delays as well.  The effects of delays could be removed from the HIL system through 

application of countermeasures similar to those in [60].  Yet, as seen in the results 
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presented in this chapter, the presence of quantization also causes a decrease in the 

fuel economy obtained.  Thus, through the validation process it was learned that the HIL 

simulator did not only contain effects of time delays but also of discretization that 

caused its values of fuel economy to be lower than those of the baseline results.   

The results indicate that re-tuning for the standardized drive cycles was only 

needed once the effects of quantization were introduced.  Yet, the presence of 

quantization is only seen to require re-tuning of the co-state variable for the 

standardized drive cycles but not for the real-world drive cycles.  Regardless, the 

optimal co-state value used for the MIL and SIL simulators differs from that used for the 

SIL with quantization and HIL simulators by only an approximate 2% for the standardized 

drive cycles.  Therefore, it can be concluded that the co-state variable, and 

coincidentally the initial fuel cell power for a specific drive cycle, is not very sensitive to 

the differences in the MIL, SIL, and HIL simulators.  This fact is favorable in that, in 

theory, one could create a controller for a MIL simulator and, assuming that it does not 

require prior knowledge that would make it non-implementable in real control 

hardware, use it on the desired application immediately after a MIL validation.   

Furthermore, while an optimal PMP controller is typically not implementable, 

measures could be taken to prove otherwise, i.e., a set of acceptable co-state variable 

values could be determined for various driving conditions and used within the controller 

along with a pattern detection algorithm to pair up certain driving conditions with an 
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acceptable co-state variable.  This would effectively make the PMP implementable 

though, arguably it would not be optimal at all times.  

As for the results of the ARMA controller, it was seen that they closely approach 

the optimal solution.  As was seen during the validation process, the initial fuel cell 

power used plays a large part in the ARMA controller’s proximity to the optimal 

solution.  Specifically, it was seen that the initial fuel cell power had to be set 

beforehand for each drive cycle.  This slight requirement for near optimality with the 

ARMA controller could be thought of as grounds for a classification of a non-

implementable controller, as setting the initial fuel cell power on the actual bus would 

seem to require prior knowledge of the driving conditions.  However, as the application 

at hand involves running the fuel cell hybrid transit bus on specific bus routes, the bus’ 

ECU could overcome this by sending information to the controller concerning the 

planned bus route for the bus.  This information is readily available in several buses 

which currently contain a system that alerts its passengers of the current and following 

bus stop.  The controller would then use this information to determine how much fuel 

cell power it should expect to use. 

These additions to the ARMA and PMP controllers, though not necessary, would 

enable both to truly be implementable while allowing for near-optimal operation of the 

fuel cell hybrid transit bus.  Overall, the results have proven that the SIL and HIL 

validation of the developed ARMA control strategy for use with the fuel cell hybrid 

transit bus simulator was successful.  
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CHAPTER 7: Conclusions and Future Work 

7.1 Conclusions 

As a sub-contractor of CTE for the NFCBP’s ECO Saver IV demonstration bus, OSU 

has developed a fuel cell hybrid bus simulator and control algorithm.  The work 

presented in this thesis was focused on the process applied to the validation of the 

simulator and control algorithm as well as the development of a CAN based DAQ system 

that is meant to be deployed on the prototype bus.  The Validation process was initiated 

through obtaining a set of baseline results with the MIL fuel cell hybrid bus simulator 

using an optimal PMP controller and the developed ARMA controller.  Modifications of 

the MIL simulator for appropriate SIL/HIL implementation were carried out before 

developing a SIL simulator.  Artificial quantization effects that were added to the SIL 

simulator highlighted the expected behavior of the HIL simulator.  The results indicated 

that the developed ARMA controller can approximate the optimal PMP solution while 

also allowing the simulated fuel cell hybrid bus to meet certain performance metrics.   
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Real-world drive cycles were developed that were representative of the driving 

condition found at the OSU campus.  A driver model was developed for tracking both 

distance and velocity for use with the real-world drive cycles that ensured that the 

velocity and road grade profiles were synchronized.  Initial on-campus validation 

suggested that the currently designed powertrain architecture was adequate enough to 

meet the demands of the OSU CLN and CC drive cycles.  SIL results using the OSU drive 

cycles were then obtained for the on-campus driving conditions.   

A HIL Test Bench was developed that allowed for the proposed ARMA control 

algorithm to be validated in real-time.  Overall, it was shown that the ARMA supervisory 

controller was able to perform well on real-time hardware, an important step towards 

the eventual use on the bus’ control hardware.  In addition, the developed CAN DAQ 

system was proven to successfully log data from a real signal when tested alongside the 

HIL Test Bench. 

7.2 Future Work 

The developed distance based driver model for use with the bus route based 

OSU drive cycles tracked the linear velocity and distance.  It is suggested that the driver 

model be modified to track the curved distance between each data point in the drive 

cycle as this would provide a more accurate portrayal of the distance travelled when 

considering a non-zero road grade profile.  The Vincenty Inverse Formula used for 

determining the road grade profile would be able to achieve this. 
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As the HIL simulator was seen to contain time delays, future work could be done 

to apply countermeasures that compensate for the time delays.  Doing so would allow 

for more accurate results and a better comparison between the various simulator 

results and the actual data that is collected. 

Also, as mentioned in the final remarks concerning the validation results, the 

ARMA and PMP controllers could be made to be implementable on the actual fuel cell 

hybrid bus through the use of a pattern recognition algorithm that would respectively 

modify the fuel cell power or co-state variable in real-time.  While not necessary for the 

implementation of the ARMA controller, this work could be done in the future as a way 

to demonstrate the application of an optimal control strategy in real control hardware. 

Finally, as the ECO Saver IV demonstration bus was not completed at this time, 

the deployment of the developed CAN DAQ system is left as a future work, pending the 

completion of the prototype fuel cell hybrid transit bus. 
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