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Abstract 

Grapheme to Phoneme conversion (G2P), also called Letter to Sound mapping (LTS) is 

defined as the task of learning the relationship between the written word and its phonetic 

transcription. It is a necessary part of Text to Speech systems and plays a vital role in 

handling Out of Vocabulary (OOV) words in Automatic Speech Recognition systems. 

G2P is a complex task, because for many languages, the correspondence between the 

orthography (spelling) and its phonetic transcription is not completely consistent. Over 

time, the techniques used to tackle this problem have evolved, from earlier rule based 

systems to the current more sophisticated machine learning approaches. 

All the existing systems for G2P rely on pronunciation dictionaries as their source of 

training data. In this thesis we explore the G2P problem from the perspectives of using 

speech data to aid an existing system and possibly improve its performance. In order to 

do that, we will look at some of the current G2P techniques and reproduce established 

results as a part of the background work. We then utilize a measure of closeness between 

graphemes and phonemes that formulates an acoustic score. We conduct experiments by 

combining our score with existing systems and analyze the results. The current results do 

not surpass the baseline system but point the way towards future innovations. 
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Chapter 1:  Introduction 

Speech and the written word are the two main ways humans communicate. The 

fundamental units that make up written text, be it in any language, are called graphemes, 

while phonemes are descriptors of how a word in a particular language is pronounced. 

The aim of grapheme-to-phoneme conversion (G2P) is to find the most appropriate 

pronunciation, given the written word. This is by no means a trivial task for most 

languages. 

 What we can observe by studying various languages is that the relationship between a 

word and its pronunciation is not completely consistent. The measure of strength of 

grapheme-phoneme correspondence for a language is called its orthographic 

transparency. (Borgwaldt, Hellwig, & Groot, 2005) did a comparative study of seven 

languages with regards to their orthographic transparency. For example, they discovered 

that languages like Italian and Hungarian exhibit shallow orthographies, which means 

they show strong correlation between written words and their pronunciations. Other 

languages like English exhibit deep orthographies, wherein grapheme-phoneme relations 

are more complex.  

This complexity stems from two factors. First, multiple graphemes can correspond to 

multiple phonemes. Second, sometimes the grapheme-phoneme relations are ambiguous. 

As an example to demonstrate the first point, consider the English language, which has 

many instances of what we term as double grapheme and double phonemes. A double 

grapheme would be a case where two contiguous graphemes correspond to a single 
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phoneme (For example,          ). Likewise, a double phoneme would be an 

example of two phonemes corresponding to one grapheme(For example,         ). To 

demonstrate the ambiguity in grapheme-phoneme correspondences consider the 

following two word pronunciation pairs as shown in table . 

 

Word Pronunciation 

ENOUGH iy n ah f 

GHOST g ow s t 

Table 1: Example of word pronunciation ambiguity 

 

 

It is evident that for different examples the grapheme chunk 'GH' can be associated with 

different phonetic units, like 'f' or 'g'. Thus we would need some form of contextual 

information to resolve the ambiguity. Another aspect that makes G2P difficult is the fact 

that orthographies themselves evolve, as languages borrow words from other languages. 

Pronunciation variation for the same written word is common because of existence of 

dialects and accents. All these factors make G2P a non trivial and an interesting problem. 

G2P plays a vital role in many applications. It is an integral part of speech synthesis 

applications. The core step in speech synthesis is to first convert the text into its phonetic 

form. Then we use the phoneme sequence to synthesize appropriate waveforms. G2P is 

used in handling pronunciations for Out of Vocabulary (OOV) words in speech 

recognition systems. (Hahn, Vozila, & Bisani, 2012) compare performance of various 

G2P techniques for handling OOV words. Another interesting application of G2P is in 

designing spell checking systems. Errors in spelling can stem from either typographic or 
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cognitive sources. G2P can be used to correct cognitive errors. (Toutanova & Moore, 

2002) provide a solution for spell checking by modeling pronunciation similarities 

between words. 

Several data driven techniques like Joint Multigram Models (JMM) and Conditional 

Random Fields (CRF) have been formulated for G2P. We note that all the existing 

methods for G2P rely on a dictionary consisting of word pronunciation pairs as the only 

source of data. We hypothesize that in addition to the dictionary, we could use a labeled 

speech corpus as a potential data source to model grapheme-phoneme relationships. The 

central idea here is that the same speech data represents the pronunciation (expressed as a 

sequence of phonemes) and the orthography (underlying sequence of graphemes). We 

believe we can use speech data as a link to connect grapheme and phoneme labels. Thus 

the aim of my thesis is to develop a measure of grapheme-phoneme correspondence using 

a speech corpus and integrate it in current state of art techniques to improve their 

performance on the G2P task. 

 

1.1 Outline 

The structure of the thesis is as follows. First in Chapter 2, I review various approaches to 

G2P in literature. In Chapter 3, I present Joint Multigrams, Conditional Random Fields 

and Phonetisaurus (a WFST based G2P tool) as the state of art techniques for G2P and 

describe the experiments done using these techniques on the English dataset. Then in 

Chapter 4, I present acoustic G2P approach described earlier which is a novel method to 
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use acoustic information to augment existing G2P methods. Finally in Chapter 5, I 

provide the conclusion of this thesis. 
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Chapter 2: Related Work 

In this chapter, we will give an overview of the existing literature for G2P. Then we will 

explore in detail three techniques which are the current standard in terms of their 

effectiveness in giving good results, as well as document the results of the experiments 

done on English dictionary data using existing open source tools. 

The earliest solutions used to address the problem of G2P were knowledge based. For 

example, we can simply store a dictionary of word pronunciation pairs in memory. Given 

a word, we can search in this dictionary for its pronunciation. However this is too 

simplistic as manually storing an ever increasing list of words is costly, and this method 

does not include any mechanism to find the pronunciation for unseen words. 

 

2.1 Rule Based Methods 

Rule based systems were developed as a more efficient way to capture the grapheme-

phoneme relation than having an exhaustive dictionary (Kaplan & Kay, 1994). Although 

most systems had a list of outlier examples to accommodate known exceptions to the 

rules, they still had drawbacks. They needed experts in the specific language being dealt 

with, in order to come up with a rule set which will give good results. This is not possible 

for every case. (Kominek & Black, 2006) showed that for  languages like English, where 

the association between graphemes and phonemes is sometimes ambiguous, the number 

of rules approaches the lexicon size, which is undesirable. 
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2.2 Data driven methods 

In contrast, there is another group of methods for G2P which focus on the idea of "let the 

system discover the rules by learning from data examples". This idea of learning by 

analogy is more generalized than the idea of rule based methods and frees us from the 

language specific expertise. There are two major steps in data driven methods, namely 

the alignment step and the phoneme generation step. As a first step, we need to be able to 

compute an alignment between letters and phonemes which make up the training 

examples. This is required because although we want to predict phonemes given 

graphemes, the training data that we start with is in the form of word-pronunciation pairs. 

Alignments are crucial for our task because they allow us to go from having information 

about the relationship between our components of training data at string level to the 

substring level. We could have a 1-1 alignment or a 1 to many (or 1-n) alignment 

between the word and its pronunciation. We use a special symbol (epsilon) in the 

alignment to express silent letters in the orthography as well as to account for the 

difference in string length of word and its pronunciation for the 1-1 case. An example of 

a 1-1 alignment for the word 'ABACK' is shown below. 

  

graphemes A B A C K 

phonemes ah b a k null 

Table 2: Example of 1-1 grapheme-phoneme alignment 
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1-1 alignments do not work well for languages like English where it is common to 

encounter double graphemes and double phonemes as discussed in chapter 1. There are 

two broad categories with this respect; namely classification based and sequence 

modeling based. 

 

2.2.1 Classification based methods 

These methods treat the task of G2P as a multiclass classification problem, with each 

phoneme being a output label class. Each output label is predicted independently using 

the current grapheme and a context around it. These include neural networks and decision 

trees. Grapheme context is shown to be very crucial to most techniques discussed here. 

(Sejnowski & Rosenberg, 1987) proposed a three layer neural network including one 

hidden layer with back propagation training for English G2P. A grapheme context of 

length three was taken into account and they were able to predict phonemes as well as 

articulator and stress labels. (Chen, 2003) models the conditional distribution of the 

phonemes given the word by using maximum entropy criterion. 

 

2.2.2 Generative Sequence tagging based methods 

G2P can be thought of as predicting a label or tag sequence          for the input 

graphemes           . Popular methods used for this are Hidden Markov Models 

(HMM) and Joint Multigram Models (JMM). (Taylor, 2005) proposes a HMM based 

solution with phonemes being the hidden variables and graphemes occupy emission 

states. The HMM uses Baum-Welch training and accomplishes both alignment and 
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phoneme prediction. Consider the HMM formulation for a set of hidden states S an 

observation states O. 

                           

In this setup, graphemes are observations and we can see that grapheme context 

information is not encoded as consecutive states             are independent of each 

other. The current phoneme depends only on current grapheme and some of the previous 

phonemes as dictated by the Markov assumption. For this reason HMM systems do not 

perform as well as the techniques discussed earlier. (Deligne, Yvon, & Bimbot, 1995) 

(Bisani, Ney, 2002)(Maximilian Bisani & Ney, 2008) posited the idea of using joint 

grapheme phoneme pairs as fundamental units, called 'graphones'. We can visualize a 

word-pronunciation pair as a sequence of segments, each containing a graphone. An 

optimum alignment in the form of a co-segmentation is found out using EM style 

algorithm and a n-gram model is applied over it to predict pronunciation given the 

orthography. 

 

2.2.3 Structured Output Prediction based methods 

Conditional Random Fields (CRF) is another discriminative framework, proposed by 

(Lafferty, McCallum, & Pereira, 2001) which is proven to be effective for sequence 

tagging problems.(D. Wang & King, 2011) demonstrated good results on the AMI RT05s 

(Hain et al., 2006) using linear chain CRF with progressively increasing context lengths. 

One drawback of CRF is that you need an alignment pre-computed using some other 

method.(Bartlett, Kondrak, & Cherry, 2008) used Support Vector Machines for 
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performing syllabification on the CELEX  and NETtalk dictionaries. They show that 

orthographic syllabification leads to improvement in G2P results.  

 

 

2.2.4 Acoustic G2P based methods 

There have been some recent attempts to incorporate speech corpus into the G2P 

conversion process. One of the reasons this trend is the interest in grapheme based speech 

recognition. (Killer, M., Stüker, S., & Schultz, 2003) did extensive study of grapheme 

based speech recognition across languages like English, German and Spanish. (Magimai, 

Rasipuram, Aradilla, & Bourlard, 2011) presented a system for speech recognition where 

they jointly model grapheme and phoneme information into a HMM framework using 

Kullback-Liebler distance. The HMM states are parameterized using multinomial 

distributions. (Rasipuram & Doss, 2012) extend the previous idea by using these 

multinomial distributions along with an ergodic  HMM for decoding phonemes. 

To conclude, in this chapter, we did a survey of techniques being used for G2P. In the 

next chapter, we will study in detail some of the techniques relevant to our thesis. 
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Chapter 3: State of the Art Methods for G2P 

In the previous chapter we looked at some of the important literature on G2P. As 

mentioned in chapter 1, we want to leverage speech data to improve existing techniques. 

As a step in that direction, we will first study the existing techniques which currently 

claim to give the best results. In this section we will focus on three existing state of the 

art techniques, namely Conditional Random Fields, Joint Multigram Models and 

Phonetisaurus, a tool based on the WFST framework. We will discuss the experiments 

done using these methods and the results obtained. Throughout the scope of the thesis we 

use CMU Pronunciation dictionary (Weide, 2005). This dictionary has about 130K words 

in English and their pronunciation using the 39 phoneme set given by ARPAbet. It 

provides lexical stress markers for vowels, although for our purpose we ignore them. 

 

3.1 Conditional Random Fields (CRF) for G2P 

Conditional Random Fields (CRFs) are a popular probabilistic framework for 

discriminative modeling. CRFs are shown to be well suited for segmenting and labeling 

sequential data. As presented by (Lafferty et al., 2001), a CRF is an undirected graphical 

model of a target sequence of labels, which are conditioned on the observation sequence. 

There are two main reasons why using CRFs for G2P is an idea worth pursuing. First, 

CRFs , by virtue of being discriminative in nature, can directly model the posterior 

probability. Thus we do not need to model the joint probability distribution of 

observations. The other advantage is that they perform global inference over the complete 
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label sequence. In addition the loss function for a CRF is convex, hence global 

convergence is a certainty. 

 

3.1.1 Linear Chain CRF 

For the purpose of our experiments, we are going to use a specific form of CRF, namely 

linear chain CRF. An example of a linear chain CRF is shown below.  

 

 

Figure 1: Linear chain CRF 

 

As shown in the figure above, each node represents a random variable. Assuming we 

make the 1st order Markov assumption, all the nodes in the graph form a linear chain. 

Using the definition from (Lafferty et al., 2001), a linear chain CRF applied to G2P is 

specified by the following conditional probability. 

       
 

    
              

 

   
  

where X is the grapheme sequence of a word, Y is a candidate pronunciation,    is the 

    aggregated feature and    is a weight of the feature.      is a normalization quantity 

given by 
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Thus the  graph is separated into cliques, each of which constitutes two consecutive 

phonemes and the entire grapheme sequence. Thus         can be expressed in terms of 

features of cliques, given by 

                          

   

   

 

We will use features that are binary functions that look for presence of  graphemes and 

phonemes at various positions in the clique. 

 

3.1.2 Experiments and Results 

To set up the experiment we need two things. First, we need a tool for aligning the 

training examples. Second, we need a tool to perform training on the aligned training 

data. We use the Giza++ toolkit (Casacuberta & Vidal, 2007) to get 1-1 alignments. 

Giza++ treats the set of words as a source language and the set of pronunciations as a 

target language. Then learning the mapping between these two languages is modeled as a 

statistical translation problem. 

To do the actual CRF training and testing, we use the CRF++ toolkit. This tool is 

developed by the NTT Communication Science Laboratories in Japan (Kudo, 2005). This 

open source tool, written in C++, uses the limited memory BFGS algorithm for training  

CRFs. This speeds up execution while making sure the memory requirements do not 

escalate to unmanageable proportions. In addition , this allows us to specify fairly large 

number of feature functions. It also gives us an option to use L1 or L2 regularization. 
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This toolkit allows the user to specify feature templates in advance. A macro %x[row, 

column] is used to specify the location of a token  in the input file corresponding to the 

current token. It expands these macros using the training data to generate the appropriate 

binary indicator functions. There are two type of feature functions, unigram and bigram. 

The unigram feature involves only the current output token, while bigram features, if 

specified, contain a combination of previous and current output token.  Consider the 

following example. 

A:ah B:b A:ae C:k K:null 

With this as reference the template 'T' is %x[0,0] would expand to generate functions of 

the following form. 

func1 = if (output = k and feature="T:C") return 1 else return 0 

func2 = if (output = b and feature="T:B") return 1 else return 0 ... 

Thus there would be a feature function for each combination of grapheme token and label 

phone. We incorporate information about the grapheme context by using a n-gram of 

input tokens. So a macro of the form %x[-1,0]/%x[0,0] would consider both the current 

and previous grapheme token along with the current label phone. 

We consider experiments with grapheme context windows of size 2 and 3 on CMUDict 

and report phone error rates (PER) using 1 best scoring and L2 regularization. We found 

out that L2 regularization works better than L1 to prevent over fitting.  
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The results are shown in the table below. 

 

CRF window PER (%) 

CRF(+2,-2) 14.0 

CRF(+3,-3) 12.0 

Table 3: CRF result for CMUDict 

 

We observe that as we capture longer context , we get an improvement in the 

performance. This is in line with our intuition as longer context allows learning the 

mapping between grapheme clusters and phonemes, which are common for a language 

like English. However longer context also means more feature functions. We encountered 

memory limitations for contexts greater than three, when we used CRF++ on CMUDict. 

 

3.2 Joint Multigram Models for G2P 

This section describes our efforts to develop G2P systems for English using Joint 

Multigram Models (JMM). We will follow the JMM formulation proposed by authors  

Bisani and H. Ney (Maximilian Bisani & Ney, 2008) and use Sequitur G2P, a joint 

Multigram based tool from RWTH Aachen university developed by the same authors. 

First we will introduce JMM as a joint sequence model for G2P. Then we will present our 

work using Sequitur for English. 

 

3.2.1 Joint Sequence Modeling 

The key idea in joint sequence approach is instead of considering the words and 

pronunciations being derived separately using different units, we treat the data as being 
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generated by a common set of joint units. We stick with the term coined by Bisani and 

Ney, namely graphones or grapheme–phoneme joint multigrams to denote these units. 

We represent a letter sequence by the symbol   and a phoneme sequence by  . A 

graphone would then be the pair        .  Thus word-pronunciation pairs are now 

expressed as a sequence of graphones. However as the individual units making up a 

graphone segment can be  of varying lengths, we can have many possible co-

segmentations for the same pair. Consider the example                     . A couple 

of possible segmentations are shown in the table below. 

 

 Example Co-Segmentation  Example Co-Segmentation 

GUILTY G UI L T Y  G UI L T Y 

g ih l t iy g ih l t iy  g_ih - l t_iy - 

Table 4: Example co-segmentations for the word GUILTY 

 

We can immediately see that some segmentations better than others. The joint probability 

of a word pronunciation pair is expressed by summing over all matching co-

segmentations of the pair, as shown below. 

 

            

         

 

 

where S denotes the set of all possible co-segmentations. S is represented formally as  
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where j is the length of the sequence and   is the concatenation operation. 

Thus the joint probability can be expressed in terms of a n-gram model over the graphone 

history as shown in the equation below. 

    
                     

   

   

 

 

3.2.2 Training 

Training is done in two phases. First, a unigram model is inferred from the training 

corpus. This model is used to segment the training corpus into uni-graphone chunks. 

Then a n-graphone model is trained over this segmented corpus. 

The set of unigraphones can be inferred by Expectation Maximization (EM) algorithm. 

The parameter of the model is the probability of the unigraphone q            

The equations for Expectation step are shown below. 

           

   

   

 

                           

           

 

   

 

       is called the evidence of unigraphone  . It is the expected number of occurrences 

of q in the training sample and can be efficiently computed using the forward backward 

procedure. Then we update the parameter value as a part of the Maximization step as 

shown below. 
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3.2.3 Testing 

The phoneme prediction step uses maximum approximation approach, which means 

given the test word it looks for most likely graphone sequence using the standard A* 

algorithm and project them onto phonemes. 

 

3.2.4 Experiments and Results 

The results we report in table below are for training and test set generated by us by 

selecting random examples from CMUDict. Our train/test split was 90/10 percent and our 

test data size was 13K. 

 

 Unigram Bigram Trigram 4-gram 5gram 

PER(%) 45.6 23.8 14.6 11.1 10.4 

WER(%) 99.5 77.8 54.7 44.4 42.5 

Table 5: JMM results on CMUDict 

 

As we can see, the system accuracy shows steady improvement as we incorporate longer 

histories. Also we can state that JMM performs better than CRF. JMM has an advantage 

of the alignment process being inherent to its working, while CRF requires alignment to 

be computed beforehand. Also JMM beats CRF in time taken to train the system as well 

as provides superior results. 
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3.3 Phonetisaurus based G2P. 

In this section, we describe our experience with using Phonetisaurus(Novak, Minematsu, 

& Hirose, 2012) , a WFST based tool for G2P. Given the CMUDict training and test data 

consisting of word-pronunciation pairs, a typical Phonetisaurus pipeline would consist of 

the following stages. 

1. Sequence Alignment: This module produces EM based multiple to multiple 

alignments. As described in (Novak, Dixon, et al., 2012), the authors improve on the 

approach proposed by Jiampojamarn (Jiampojamarn, Kondrak, & Sherif, 2007) . 

2. Building Joint sequence model: The aligned corpus is the input to this module. This 

module builds an N gram model over sequences of  aligned grapheme-phoneme symbols. 

This ARPA style LM is then converted into a Weighted Finite State Transducer (WFST) 

using OpenFst for decoding .  

3 Decoding: The WFST generated in the previous step has grapheme chunks and 

phoneme chunks as its input and output alphabet respectively. The decoding unit creates 

a Finite State Acceptor (FSA) out of the test word (w) and composes it with the FST (C) 

obtained from step 2. Then the shortest path (P) computation is done on the composition 

to find the one best pronunciation.  

                          

We can see that Phonetisaurus uses the Viterbi approximation to predict phonemes, as 

opposed to Sequitur, which uses the summation approach. We could also generate n-best 

lists if required. 
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3.3.1 Experiments and Results 

We decided to generate a baseline system using Phonetisaurus and  CMUDict as the 

dictionary. We set the maximum allowed subsequence length during alignment for 

graphemes and phonemes to be two. We built a 7 gram model from our aligned data 

which provides enough history to perform well. A Weighted Finite State Transducer 

(WFST) is built from the LM with the log of the conditional probability being the 

weights. 

Baseline results for our test data are shown in the table below. 

 

Test set  

size 

Word Error 

(%)  

Phoneme Error 

(%) 

Substitutions 

(%) 

Insertions 

(%) 

Deletions 

(%) 

12890 36.7 7.4 5.4 1.0 1.0 

Table 6: Phonetisaurus baseline results on CMUDict 

 

As we can see, we are getting very good results for the system with subsequence length 

of two and a 7gram LM. Also the Viterbi approach is proving effective in increasing 

accuracy as compared to JMM. A table summarizing the results of all the methods on 

CMUDict is shown below. 

 

Technique Phoneme Error Rate (%) 

CRF(+2,-2) 14.0 

CRF(+3,-3) 12.0 

JMM-unigram 45.6 

JMM-5gram 10.4 

Phonetisaurus-7gram 7.4 

Table 7: Summary table of results on CMUDict for all techniques 



20 

 

 

The aim of this chapter was to study the existing G2P systems before attempting to bring 

in speech data. We looked at three techniques for G2P and applied them to CMUDict to 

evaluate their performance. We find that Phonetisaurus is the best of the three in terms of 

results obtained. Also its modular approach makes is ideal candidate for us to introduce 

our own module based on a speech corpus. We will now move to the crux of this thesis, 

namely building acoustic G2P systems. 
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Chapter 4:  Acoustic data driven G2P 

 

4.1 Introduction 

This chapter presents our attempts to build G2P models for English by using audio data 

to augment the Phonetisaurus tool. We will introduce HMM as models for representing 

graphemes and phonemes. Then we will detail our approach which uses a acoustic score 

computed using distances between HMM models of phonemes and graphemes to modify 

the Phonetisaurus pipeline. As mentioned before, we will work on CMUDict, an 

American English pronunciation dictionary provided by CMU. Our training and test set 

contain ~116K and ~13K randomly chosen examples from CMUDict. 

Recall that Phonetisaurus pipeline consists of the following stages: Dictionary alignment, 

constructing a N-gram LM over the aligned G-P pairs and finally shortest path decoding 

to predict phonemes. These stages are shown in the figure below. 

 

 

Figure 2: Block diagram of the Phonetisaurus pipeline. 
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We will denote the combined set of 26 graphemes and graphemes clusters obtained from 

the alignment as grapheme chunks. Similarly the phoneme set along with clusters are 

henceforth called phoneme chunks. The conditional probability of a phoneme chunk 

given a grapheme chunk obtained from our LM can be thought of as a linguistic score of 

how closely the two are related. Recently, there has been growing interest in the idea of 

combining information from audio sources along with the linguistic information which 

we have already seen how to use.(Rasipuram & Doss, 2012)(Lu, 2013) show that this 

combination can be particularly useful for languages with limited data. We hypothesize 

that we could enhance the G2P performance of existing systems if we can somehow use 

the audio data as a connection between graphemes and phonemes. That means we need to 

come up with a useful acoustic score between each grapheme-phoneme chunk pair for 

which we have a LM score. Figure 3 shows how this addition will fit in Phonetisaurus. 

 

 

Figure 3: Block diagram of the proposed acoustic G2P system 
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In the following section we  will discuss our method of training grapheme and phoneme 

acoustic models to augment phonetisaurus in order to improve its performance. 

 

4.2 Modeling Speech Data 

The speech recognition task can be described as: Given an acoustic signal X we would 

like to predict a corresponding word sequence W which is most likely to be generated by 

that signal. This is more formally expressed as follows:  

                  

Applying Bayes' rule 

          

          

    
 

As all the acoustic data is observed P(X) is a constant. 

                      

P(X|W) or the probability of the acoustic signal given the word  is generally computed by 

the acoustic model and P(W) or the language model is thought of as a prior over the 

words. Usually we do not directly go from acoustics to words. We use sub word units to 

better handle factors like pronunciation variance and speaker adaptation. The formal 

expansion of        is as shown 

                            

where Q is the intermediate representation, usually in the form of phonemes.  

Most speech recognition systems use phones as sub word units. Alternatively there has 

been interest in using the orthography itself as a basis instead of phones. (Killer, M., 
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Stüker, S., & Schultz, 2003) demonstrates that graphemes too, can be good candidates as 

sub word units. Grapheme based ASR has been experimented with in the past, with 

phone systems in general outperforming grapheme systems for recognition task for 

English. This is understandable as orthography is designed for writing and does not 

necessarily conform with the information in the speech signal. However grapheme based 

systems make developing dictionaries simple, as the constituent graphemes of the 

pronunciation are already available. Being able to develop dictionaries relatively quickly 

is particularly handy as we venture into new languages and want quick development 

times.  

 

4.3 Acoustic G2P 

 

4.3.1. Building Acoustic Models 

To build any acoustic model we need 4 things, a speech corpus, a base sub word unit set, 

a pronunciation dictionary and transcription for training and test data from the corpus. 

The pronunciations and transcription have to expressed in terms of the sub word units. 

For our experiments, we use the Wall Street Journal (WSJ) dataset(Paul & Baker, 1994), 

a corpus of read speech built by DARPA. Wall street journal news text were used as 

source material. WSJ was developed in two stages, namely WSJ0 and WSJ1. We use the 

training  and test material from WSJ0 which contains 7139 utterances. We use CMUDict 

as the dictionary. 
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We need a method to learn the statistical properties of speech corpus we have given its 

labels. The most widely used technique is the Hidden Markov Model (HMM). (Rabiner, 

1989) gives a very good tutorial on fundamentals of HMM is a directed graphical model 

ideal for modeling speech data. For our experiments, we use HTK, which a powerful 

open source toolkit developed at Cambridge university for building speech recognizers 

using HMMs. 

 

4.3.2. Preparing Data for HMM training 

In case of phoneme models, we can directly use the WSJ0 transcriptions and CMUDict as 

it is. We remove the stress markers in CMUDict as for G2P as we only need the possible 

phonetic expressions of a words. We use the set of 39 phonemes as described by 

ARPAbet as the sub word units. In case of phoneme chunks we decided to concatenate 

the trained HMMs of individual phonemes that make up the chunk. 

In case of graphemes however, we need to decide on the list of sub word units (grapheme 

chunks) and process CMUDict and word level transcriptions provided in WSJ0 to get a 

grapheme dictionary and grapheme transcription. 

 For grapheme based systems, the most obvious way of generating a dictionary is to have 

its orthographic expansion as the pronunciation for each word, For example,        

         . Thus we would have 26 models as the basis set. However our ultimate aim is 

to come up with an acoustic score for each pair of symbols in the LM derived from 

phonetisaurus. Since that involves clusters of size up to two, thanks to the many to many 
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aligner, we need to add those clusters to the list of sub word units and reformat the 

grapheme dictionary to reflect these clusters. Example aligner output: 

                                             

We end up with base set 422 grapheme units which is significantly higher than the 

number of units typically used for acoustic modeling. This raises the question of whether 

we have sufficient speech data to characterize these units. To address this problem we 

prepare the grapheme transcription for WSJ0 by expanding the available word level 

transcription in terms of the 422 symbols. Then we only keep chunks which appear more 

than 100 times in the transcription. We split the remaining low frequency chunks seen in 

both transcription and the dictionary into individual letters. The final grapheme chunk set 

contains 107 symbols. Now we are ready to train HMMs. 

 

4.3.3. HMM Training 

For the phone based systems, we trained a standard monophone HMM system with 16 

mixtures without considering the phone clusters discovered in Phonetisaurus. For 

graphemes we use the refined set of 107 graphemes, each represented by a 3 state HMM 

with 16 Gaussians for each state. The following discussion is applicable for both the 

phone and grapheme systems. For the purpose of this section, we will use the word 

'symbol' as a general term instead of using grapheme/phone. The basic steps followed are 

1. Create single Gaussian  models for all the monosymbols and silence , trained using the 

transcriptions. 
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2. Add a single state short pause model which is tied to the centre state of the silence 

model 

3. Use a mixture splitting procedure provided by HTK to re-train the monosymbol 

models by a step by step increase in the number of mixtures. In our experiments, we use a 

maximum of 16 mixtures. 

 

4.3.4. HMM Distance Calculation 

As mentioned in the end of section 4.2, in order to use speech data, we need to add some 

kind of acoustic score component which complements the LM probabilities. (Jyothi & 

Fosler-lussier, 2009) use the distance between phoneme HMMs to predict speech 

recognition errors. We use it as a guideline to compute the distance between the HMMs 

representing the graphemes and phonemes as the acoustic score. To represent the 

phoneme chunks we simply concatenate the 3 state representations of individual phones. 

Thus the clusters will be represented by a 6 state HMM. Similarly for the grapheme 

chunks in LM but not in acoustic modeling, we resort to using a 6 state HMM. 

 

4.3.5. HMM state alignment 

Notice that a grapheme-phoneme HMM pair does not have a unique state alignment, as 

both graphemes and phonemes could have 3 or 6 state HMMs. Even if both HMMs have 

same number of states, we could have more than one way to align states. Hence before 

calculating a distance we need to first align the HMM states.  
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Some of the possible alignments are shown below. In out experiments we consider only 

these three alignment options. 

 

 

Figure 4: HMM state alignments for distance calculation 

 

Given these configurations the distance between two HMMs is the sum of the distance 

between the Gaussian mixtures of aligned states, averaged by the length of the alignment. 

This is expressed in the equation below. 

     
 

 
            

   

 

Here       are the GMMs corresponding to the grapheme state and phoneme state 

respectively, while   is the length of the alignment. As the number of states for phoneme 

and grapheme need not be the same for 3-6 or 6-3 case, we consider the value of L to be 

six.      is calculated as the 0.5 weighted sum of the inter dispersions, normalized by 

the dispersion of the GMM with itself. The dispersion between two different GMMs A 

and B is a weighted double sum over all the distances between the monomodal Gaussian 

distributions (calculated using Bhattacharya distance) in both the GMMs. For more 

details on the calculation, we encourage the reader to refer (X. Wang & Box, 2004) and 

(Jyothi & Fosler-lussier, 2009).  
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The smaller this distance value, the more similar the HMM pair and by extension the G-P 

pair is. We wrote a script to calculate the distance between all pairs of grapheme-

phoneme symbols observed in the LM obtained from Phonetisaurus.  

 

4.3.6. Modifying the baseline LM 

 Now that we have acoustic distances, the questions remains as to exactly how we are 

going to integrate them in the existing LM with it. We would still need an ARPA style 

model file, but instead of just conditional n-gram probabilities, we want to have a mix of 

acoustic distance and LM log probability. This results in a new type of weight we call 

         . For the purpose of our set of experiments we tried linear mixing of weights. 

                                

We use the SRILM toolkit to generate the new LM. We create an new 'acoustic' language 

model file in ARPA format with same n-gram sequences as the LM but with the negation 

of the acoustic distance. We need to negate the distance as the SRILM expects that field 

to be log of a probability, which cannot be positive. Also negating the distances does not 

affect our analysis in any way. The closer the G-P pair is, the distance will still approach 

zero (from the negative side). Once we generate the new LM with new score (lexical + 

acoustic), we can redo step 3 of Phonetisaurus to get new results.  

 

4.4 Experiments and Results 

To perform experiments, we curate CMUDict to remove examples which are part of the 

5K dictionary used for HTK training. We want to make sure that the test data does not 
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contain words which are a part of acoustic training. This ensures that the results reported 

are fair. The final training set consists of 116016 training examples an 12890 test pairs. 

 

4.4.1 Unigram Acoustic LM Vs Unigram Pure LM 

To get an idea of how the acoustic distance performs as a standalone score, we compare 

two systems, one built on only the unigrams of the LM used in Phonetisaurus baseline 

and other with a unigram LM with only acoustic scores. We did not use the full 7 gram 

pure LM so as to have a fair comparison between the two systems.  

To get a better idea about the distribution of the scores, we plot the histogram of the 

acoustic scores, as shown in the figure below. 

 

 

Figure 5: Histogram of acoustic scores 
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We also plot the histogram of LM probabilities, as shown in the figure below. 

 

 

Figure 6: Histogram of LM scores 

 

We can see that both scores have similar range of values. We can also see that both the 

histograms are skewed (although in different directions) to a degree and have peaks at 

different values. In order to better understand the relationship between the acoustic and 

LM scores we need to find how correlated they are. 

We generated a scatter plot with the co-ordinates of a point in a plot representing the two 

scores for a particular G-P pair. The plot is shown in the figure below. 
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Figure 7: Scatter plot of Acoustic and LM scores 

 

We can observe from the scatter plot that the two scores are not highly correlated. The 

interesting region of the scatter plot are points where we have poor LM score but strong 

acoustic scores. These points are indicators that the acoustic information can complement 

the LM scores.  

The comparative results of unigram models are shown below. 

 

 Test set 

size 

Word 

Error(%)  

Phoneme 

Error(%) 

Substitutions 

(%) 

Insertions 

(%) 

Deletions 

(%) 

LM unigram 12890 98.6 43.2 11.8 0.2 31.3 

Acoustic 

unigram 

12890 98.3 45.4 18.8 0.7 25.9 

Table 8: Unigram acoustic system Vs Unigram LM system 

 



33 

 

We can see that acoustic distances based systems perform almost as well as pure LM. In 

fact we get a slight improvement in the WER for our system. There is significant 

reduction in deletions, which indicates acoustic distances are doing a better job of 

capturing relations between grapheme clusters and phonemes. Although deletion 

accuracy is better, it is offset by increase in substitutions. This probably means we need 

more speech data for discriminating between competing G-P pairs (For example, 

             ) which are leading to substitutions.  

 

4.4.2 Acoustic unigram and Pure 7gram LM combined 

In this system we get a hybrid LM by linear mix of acoustic unigram and 7gram pure LM 

using tools from SRILM. The procedure to accomplish this is already described in the 

previous section. The results of this system are compared with the baseline system, as 

shown in the table below. 

 

 Test set 

size 

Word 

Error 

(%)  

Phoneme 

Error 

(%) 

Substitutions 

(%) 

Insertions 

(%) 

Deletions 

(%) 

Acoustic + 7 

gram LM 

12890 48.1 11.5 6.8 0.8 3.9 

Baseline 12890 36.7 7.4 5.4 1.0 1.0 

Table 9: Acoustic+LM results 

 

Error Analysis 

As we can see , this result is not as good as the baseline. Thus we need to investigate why 

this is happening. Let us look at the top three examples in each error category, as shown 

in the table below. 
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Substitutions Deletions Insertions 

r/er ah ah 

ah/ih aa t 

Ih/ah eh s 

Table 10: Example error stats 

 

We observed that a r/er was the most common substitution. What was interesting was that 

this substitution was invariably proceeded by a deletion of  'aa' or 'eh'. Consider the 

following test words and their pronunciations as predicted by the Acoustic unigram and 

Pure 7gram LM combined system. 

 

ADORED    ARAB 

      ah d ao r  d        eh r  ah b 

               |                     |   | 

                        ah - -  er d      -  er ae b 

 

 

In the first example, we see that the mapping should have been        . However it 

outputs 'er'. To see why this is happening we need to go into the decoding process. 

For decoding we perform 1 best path search on the composition of input word and the 

FST obtained from LM. Also keep in mind that lower the weight value, more favorable 

the path. Now in case of OR there are two possible branches while decoding. Now the 

problem is every time we have a choice between the cluster as well as the individual 

graphemes making the cluster, we always choose the cluster as sum of weights of the 

branches is always worse.  
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The decoding graph for 'OR' is shown below. 

 

 

Figure 8: Decoding graph structure for 'OR' 

 

Thus this system had a bias and it was hurting performance as substitutions and deletions 

were getting coupled together. We proposed a solution for this problem, which resulted in 

improved results. We will discuss this solution next. 

 

4.4.3 Heuristically modified acoustic distance based system 

To cancel out the bias, we need to boost the distance value for the clusters so that they 

will be comparable to the other branch. We created a new 'Modified' acoustic LM by 

applying this selective scaling heuristic. Whenever we observe a grapheme cluster during 

HMM distance calculation we simply multiply the distance by two. 

Results for the same test set with this new heuristic is shown in the table below. We 

include the baseline and the Acoustic+7gram LM results again for comparison purpose. 
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 Test set 

size 

Word 

Error 
(%)  

Phoneme 

Error 
(%) 

Substitutions 

(%) 

Insertions 

(%) 

Deletions 

(%) 

Baseline 12890 36.7 7.4 5.4 1.0 1.0 

Acoustic + 7 

gram LM 

12890 48.1 11.5 6.8 0.8 3.9 

Modified 
Acoustic +  

7gram LM 

12890 

 

46.0 

 

10.4 

 

6.7 

 

1.2 

 

3.5 

 

Table 11: 'Modified Acoustic' system results 

 

We can see improvements in overall accuracy over the previous system. The substitution 

and deletion error rate has dropped. Consider the following example of relative frequency 

of couple of substitution errors across all systems, as shown in the figure below. 

 

 Phonetisaurus baseline Acoustic + 7 gram LM Modified Acoustic +  
7gram LM 

r/er substitution 219 415 266 

ah/ow substitution 81 48 56 

Table 12: Example error stats 

 

The first example shows that even though the number of times r/er substitution in this 

system is still more than the baseline, there is a significant reduction from the previous 

system. This would indicate that doubling the distance is working in our favor. The 

second example serves to demonstrate that our system is better than baseline for some 

error examples. This gives us encouragement to think that with some more modifications, 

we could eventually beat the baseline. 
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Chapter 5: Conclusion 

 

In this thesis, we investigated the feasibility of using information from speech data to 

possibly boost the performance of existing G2P systems. We looked at some of the 

existing state of art techniques for G2P like CRFs, Joint Sequence Models and 

Phonetisaurus. We modified Phonetisaurus to include acoustic scores and discussed the 

set of experiments we performed and their results in the previous section.  

While our current set of results did not improve over the baseline, they came pretty close 

to matching the baseline performance. Also as evident from the examples in error 

analysis, the acoustic models show improvements over baseline in specific examples of 

errors. We saw further improvement when we built a new model where we tweaked the 

distances based on our observations of errors in test examples applied to the original 

model. This gives us hope that while we haven't beaten the baseline yet, this still remains 

an idea worth pursuing.  

As we have seen across all major G2P methods, context plays an important role in getting 

good results. However at this point, we do not consider neighboring phoneme or 

grapheme chunks while calculating acoustic distances. One of the things we would like to 

do in future is to incorporate tri phoneme models in our system so as to have the  distance 

between G-P pair depend on the context surrounding the phone as well. The HTK toolkit 

allows us to train HMM models for context dependent tri phonemes. For example, 

consider the grapheme-phoneme pairs (A, aa+r) and (R, aa-r), where the symbols '+' and 
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'-' indicate context to the right and left respectively. We believe that these distances will 

provide a better representation of the closeness that (A,aa) and (R, r). Consequently, we 

hypothesize that this could play an important role in getting better results in the future. 

Another potential area for improvement is in the process of calculation of the acoustic 

score. For example, given the HMM states between the grapheme-phoneme pair, we 

consider only one alignment between the states to calculate our score. We would like to 

extend this to a case where we calculate scores over all possible state alignments and 

either take their sum and average over the number of alignments, or simply take the 

minimum value as the final score. 

It would be interesting to apply our technique to different languages and compare its 

performance in relation to orthographic depth of those languages. 
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