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ABSTRACT

Conversational speech is characterized by large amounts of variability; variation in ac-

cents, pronunciation and disfluencies continue to present challenges for speech recognition

systems. Speech recognition systems must account for this variability if they are to be suc-

cessfully deployed in real-world environments. Traditional speech recognition approaches,

based on the so-called ‘beads on a string’ approach have a number of drawbacks when it

comes to modeling the variability in conversational speech.

In recent work, articulatory feature-based pronunciation models have been proposed as

alternatives to phone-based representations, and have been shown to improve performance

in various studies. These models are grounded in linguistic theories and attempt to explain

the variation observed in conversational speech by hypothesizing it to be produced in part

as a result of the relative asynchrony between the speech articulators.

The main contributions of this thesis are the development of discriminative articula-

tory feature-based pronunciation models, and the application of these models to the task

of detecting words or phrases in conversational speech. We first develop factored condi-

tional random field models of the articulatory feature streams, which explicitly account for

the ability of the speech articulators to desynchronize in conversational speech. Addition-

ally, we describe how exact inference can be performed efficiently in the proposed models

by exploiting deterministic task-specific constraints. In experimental evaluations, we find
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that the proposed discriminative conditional random field models outperform previously

proposed generative dynamic Bayesian network models for the task.

We then apply the proposed articulatory feature-based pronunciation models to the

problem of spoken term detection: detecting whether and where specific words or phrases

are uttered in conversational speech. We conduct detailed evaluations to determine the

effectiveness of the proposed techniques in low-resource settings where transcribed train-

ing data are limited and find that the proposed articulatory feature-based models improve

performance over phone-based models in a number of settings. Additionally, in many in-

stances, the information contained in the articulatory feature-based pronunciation models

appears to be complementary to the phone-based pronunciation models allowing us to im-

prove performance through model combination. Finally, we end the thesis by describing

how the proposed spoken term detection approach can be adapted to leverage existing spo-

ken term detection systems based on large vocabulary continuous speech recognizers, if

available, in order to improve system running time and performance.
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CHAPTER 1: INTRODUCTION

Over the past few decades, the state-of-the-art in speech recognition – the technology

that allows spoken utterances to be automatically converted into written sentences using

computational systems – has continued to improve. Spurred, in part, by improvements

in the field of machine learning, our ability to build increasingly sophisticated systems

that tackle challenging problems in automatic speech recognition (ASR) has enabled large-

scale deployment of speech recognition engines in commercial devices and the market for

such products is likely to grow dramatically over the coming years. The rapid progress

that ASR technology has made in the past few decades can be readily observed in the

data released by the National Institute of Standards and Technology (NIST), which has

been conducting evaluations of ASR systems for a number of years. As can be seen in

Figure 1.1, ASR systems are comparable to human performance on relatively simple tasks,

such as the recognition of read speech; performance on more challenging tasks, recognizing

conversational speech for example, remains significantly worse than human performance

to the present day.

Given the statistics presented in Figure 1.1, a natural question presents itself: Why

does this gap exist? What are the underlying causes that make machine recognition of

speech such a hard problem? The task of speech recognition is challenging because of the

large amount of variability that exists in human speech. Brief reflection on our everyday

conversations reveals just how marvelous this ability really is. We routinely communicate

in noisy environments, we have the ability to recognize many accents and dialects that

1



Figure 1.1: Results of NIST evaluations over the years reproduced from (http://www.
itl.nist.gov/iad/mig/publications/ASRhistory/). Each point on the
graph represents the performance of the best system in an ASR evaluation (Y-axis) con-
ducted by NIST in that particular year (X-axis). Note that the scale on the Y-axis is loga-
rithmic. The error rates of state-of-the-art systems in less challenging domains, e.g., read
speech, is close to the level of human performance. However, performance in more chal-
lenging domains, such as the recognition of conversational speech, is significantly worse
than human performance.
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are not our own; when confronted with utterances that are potentially confusable both

acoustically as well as semantically, we seem to have little or no trouble deriving the correct

interpretation in most circumstances.1 Bridging the gap between human performance and

computational ASR technologies [Lippmann, 1997] is essential if these systems are to be

widely deployed in everyday environments replete with background noise, variations in

accent, pronunciation, speaking rate and other confounding factors.

The present thesis represents a step in the direction of making ASR systems more ro-

bust to variation by addressing the pronunciation variability encountered in conversational

speech. Speech produced in conversational settings exhibits large amounts of variability

in the pronunciation of words, making it particularly challenging for speech recognition

systems [Farnetani and Recasens, 2012]. In conventional ASR systems, this variability is

modeled only indirectly and thus these systems are limited in their ability to fully account

for this variation. The thesis builds upon previous work in the area ([Browman and Gold-

stein, 1992; Deng et al., 1997; Livescu, 2005] inter alia) by developing models that directly

account for the cause of pronunciation variation in conversational speech: the result of

the interactions produced by the relative motion of the speech articulators. The models of

pronunciation developed in the thesis are firmly grounded in linguistic theories of speech

production and have shown promise over traditional approaches in prior work.

In this introductory chapter, we begin with a broad overview of the problem that forms

the focus of the rest of the thesis: the pronunciation variability in conversational speech,

and techniques for addressing this variability in ASR systems. Towards this end, in Sec-

tion 1.1 we briefly discuss some of the challenges of recognizing conversational speech,

1My favorite example in this regard comes in the form of the following two phrases: “recognize speech”
(/r eh k ah g n ay z s p iy ch/) and “wreck a nice beach” (/r eh k ah n ay s b iy ch/). The reader may rest
assured that no beaches were damaged in the production of this thesis.
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while briefly reviewing some of the techniques for addressing this variability that have

been previously proposed in Section 1.2. In Section 1.3, we motivate pronunciation mod-

eling at the sub-phonetic level; a detailed discussion is deferred until Chapter 2. We end

this chapter with an overview of the organization of the rest of this thesis in Section 1.4.

1.1 Variability in Speech: Implications for ASR

Benzeghiba et al. [2007] broadly identify four sources of variability in speech. The

identified sources are not necessarily disjoint, with some causes attributable to multiple

classes, but nevertheless this taxonomy is a useful starting point for our discussions. The

first source of variability identified by Benzeghiba et al. may be attributed to physiological

or behavioral differences between speakers: the acoustic realization of the speech signal

may vary based on the characteristics of the speakers vocal tract and other articulators, the

speaker’s environment or the speaker’s mood. These factors directly influence the realized

acoustic signal resulting in inter-speaker variation. Roughly speaking, this is what makes

your speech yours, and differentiates it from everyone else’s. The second source of vari-

ability can be attributed to an attempt by the speaker to convey high-level information such

as emphasizing or questioning or to convey emotion. Such variability shows itself, for ex-

ample, in intonational differences in speech. Another source of variability may be due to

the consequence of sociological factors that may result in differences in the grammatical

structure of the spoken language, for example based on the speakers level of knowledge

of the language, non-nativeness etc. The fourth source of variability, the one that we shall

be chiefly concerned with, is the variability caused by pronunciation variation: instances
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where the pronunciation of the words (as observed in the surface acoustic realization in

terms of phonemes2) is altered.

1.1.1 Challenges of Recognizing Conversational Speech

Words uttered in conversational speech are not produced in isolation; the effect of sur-

rounding words impacts pronunciation [Farnetani and Recasens, 2012]. Take for instance

the phrase “green pear”. In conversational speech, the final nasal sound (/n/)3 is followed

by a bilabial stop (/p/; forming a complete closure of the vocal tract at the lips, followed

by a burst of energy when the closure is released.) which might result in the phrase being

acoustically realized as “greem pear”. Conversational speech contains more disfluencies

than those observed in carefully articulated speech (e.g., speech produced during the read-

ing of a document). Such disfluencies manifest themselves as false starts, repetitions and

filled pauses. Another characteristic of conversational speech, which distinguishes it from

carefully articulated speech, is that pronunciation of words is often ‘sloppy’ resulting in

reduced articulation of phonemes. As a result, the observed pronunciations of words in

conversational speech tend to differ markedly from the canonical pronunciation as may be

expected according to a dictionary.

There is evidence that speaking style has an impact on the performance of speech

recognition system; in particular, that spontaneous conversational speech is ‘harder’ for

2We differentiate the canonical or target pronunciation of a word, such as might be present in a dictionary,
from the surface or realized pronunciation of the word, corresponding to the sequence of phoneme sounds a
trained linguist might assign to a given segment of speech.

3In this thesis, we follow the convention that canonical pronunciations corresponding to expected
phoneme sequences will be indicated within two forward slashes (‘/ · · · /’). To indicate the actual realization
(surface pronunciation) of the word as might be transcribed by a linguist, we shall use square braces ([ · · ·
]). We shall generally indicate phonemes in the canonical pronunciation using Arpabet symbols; we shall
also use Arpabet symbols to indicate phones in the surface pronunciation, possibly modified with diacritics
to indicate nasalization, etc. In cases where we transcribe sounds using IPA symbols, we clarify this in the
text. A list of Arpabet phonemic symbols along with examples of words containing them in their canonical
pronunciation is provided in Appendix C
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automatic speech recognizers to recognize. In the 1998 NIST evaluations on broadcast

news speech [Pallett et al., 1999] error rates for the various systems were almost twice as

high in the case of spontaneous speech relative to the baseline speech corresponding to

studio recordings. Further evidence for this fact comes from a more carefully controlled

study by Weintraub et al. [1996]. Weintraub et al. collected a corpus of spontaneous two-

party conversations using a methodology similar to the one used to collect the Switchboard

corpus [Godfrey et al., 1992]: Participants were assigned a topic (e.g., air pollution, buy-

ing a car, etc.) and instructed to speak on the topic. After these conversations had been

transcribed, participants were instructed to read transcripts of their own speech in a con-

versational style. Weintraub et al. performed word recognition experiments using these two

styles of speech and found that the spontaneous conversational speech was recognized with

significantly higher error rates (52%) when compared to read transcripts of identical speech

(38%). Since the recognizers and speech were identical (including acoustic, pronunciation

modeling and language components), the differences between the two error rates can only

be attributed to differences in speaking styles.4

1.2 Modeling Pronunciation Variation in ASR Systems

It is generally recognized that pronunciation variation is one of the main causes for the

comparatively poor performance of automatic speech recognition systems in recognizing

spontaneous conversational speech. Evidence for this fact comes from previous work by

McAllaster et al. [1998] in which the authors simulate data from acoustic models (by sam-

pling from the corresponding triphone Gaussian distributions according to a distribution

4A detailed description of the conventional generative speech recognition model appears in Section 2.1.
Informally speaking, the acoustic model estimates probability distributions of acoustic features given sub-
word states (eg. phones), the pronunciation model estimates probability distributions over sub-word state
sequences given words and the language model estimates probability distributions over word sequences.
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model) to evaluate performance in the case where: (a.) the data is simulated according to

the dictionary pronunciation available with the recognizer (canonical pronunciation) (b.)

the data is simulated according to phonetic transcriptions of the data (surface pronuncia-

tion). Note that in either case, the recognizer has access to the same dictionary pronuncia-

tions. McAllaster et al. found that the error rates are significantly lower when the simulated

data corresponds to the dictionary pronunciation (5-10%) compared to the case where data

is simulated according to the phone transcripts (40%). Similar reductions in word error

rates were also reported in a later ‘cheating experiment’ by Saraçlar et al. [2000], where

it was found that replacing the pronunciation of the word with the observed surface pro-

nunciation (before decoding each utterance) reduced error rates from 47% to 27%. These

studies lend support to the view that improved pronunciation modeling can improve ASR

performance.

Techniques for dealing with the increased variability in pronunciation observed in con-

versational speech can be applied at all levels in conventional speech recognition systems -

the acoustic model, the pronunciation model as well as the language model [Strik and Cuc-

chiarini, 1999].5 In fact, Strik and Cucchiarini note that it is likely that a successful ASR

system would need to address it at all levels. The dominant approach employed in conven-

tional ASR systems is to use the phonemes as the fundamental unit in the pronunciation of

the word. The model assumes that phonemes are strung together to produce the pronuncia-

tion of the word leading to the so-called ‘beads on a string’ approach which has a number of

well-known drawbacks [Ostendorf, 1999]. At the acoustic modeling level, co-articulation

effects are modeled in such phone-based systems using context dependent models (eg. tri-

phones). Even if the complexities involved in robustly estimating these distributions from

5See Section 2.1 for an explanation of these terms.
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limited training data are ignored, concerns with this approach remain. Jurafsky et al. [2001]

show that triphone-based models capture phone substitution but they do not model phone

deletions and insertions well. As Ostendorf [1999] points out, if a phone is deleted in the

pronunciation, the triphones chosen in an alternate pronunciation will be different from

the observed pronunciation and co-articulation will not be modeled correctly in this case.

At the level of pronunciation modeling, the traditional solution is to add pronunciation

variants to the lexicon. These pronunciation variants may be either generated using prior

linguistic knowledge based on phonological rules [Giachin et al., 1990; Tajchman et al.,

1995] or learned from the data [Fosler et al., 1996; Riley et al., 1999] (A comparison of

the two approaches is presented in [Wester, 2003]). However, such attempts at accounting

for the variability in speech do not address the cause for the variation in speech directly,

modeling it instead as the resultant change in the observed surface phonemic representa-

tion. Speech is produced as the result of complex and concerted motion of the articulators

and it may therefore be desirable to directly model the cause for the variability observed in

speech. This observation motivates the use of finer-grained representations for modeling

pronunciation.

1.3 Modeling Pronunciation Variation at Sub-Phonetic Level: Moti-
vation for Articulatory Feature-based Approaches

The studies briefly described in the previous section bolstered the view that improved

pronunciation modeling could benefit ASR. One might ask, however, what is the right level

of detail at which we should model the variation [Livescu et al., 2012]: the level of phones

(as was done in many of the reviewed studies) or at a sub-phonetic level (as is proposed in
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this thesis and many other works)? In a detailed analyis conducted on the phonetically tran-

scribed portion of Switchboard [Greenberg et al., 1996], Saraçlar and Khudanpur [2004]

examined the acoustics of phonemes which had been identified as non-canonical by trained

linguists and found that in many cases the acoustics of the phoneme were somewhere ‘in

between’ the representations of the acoustics of the canonical and non-canonical phones,6

suggesting that the change in pronunciations of phonemes is partial: it is not the entire

phone which is inserted or deleted, but it is modified partially.

The present thesis follows a number of previous studies ([Deng et al., 1997; Richardson

et al., 2003; Livescu, 2005; King et al., 2007] inter alia) in modeling pronunciation variation

at the sub-phonetic level. Specifically, the pronunciation models used in the thesis are

based on models of speech production, wherein the fundamental units of the pronunciation

of the word shall be represented in terms of articulatory features.7 Although we defer a

full discussion of the use of articulatory feature-based models until Section 2.3, we end

this section with a brief discussion of some of the claims regarding the advantages of such

representations that have been made previously in the literature [King et al., 2007]. These

arguments can be summarized as follows:

• Improved modeling of speech variability: Since variation observed in conversa-

tional speech is produced as a result of the complex concerted motion of the speech

articulators [Hardcastle, 1985; Browman and Goldstein, 1992; Farnetani and Re-

casens, 2012], a model that explicitly accounts for this interaction might better ex-

plain the resulting variation.

6As measured in terms of distance of the acoustic feature vector from the means for the corresponding
phones in the acoustic model.

7For the purposes of the thesis, we shall use the term articulatory features to refer to what are also known
as “phonological features” (e.g., IPA features such as manner and place) that can be used to describe phones,
as well as abstract representations of the states of the articulators during the production of speech.
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• Natural factorization of the sub-word state: Sub-phonetic modeling using articu-

latory features allows monolithic phone-based units to be naturally described in terms

of a set of simpler categories. In principle, this might allow for simpler classification

tasks and thus improved performance.

• Improved recognition in noisy environments: Since different aspects of the speech

signal may be corrupted differently in the presence of noise [Miller and Nicely,

1955], an articulatory feature-based representation may offer increased robustness

to noise [Kirchhoff et al., 2002].

• Invariance across speakers and languages: Although the realization of phonemes

varies across languages, sub-phonetic representations may be more invariant and thus

might offer better cross-language generalization [Stüker et al., 2003a].

1.4 Organization of the Rest of the Thesis

In Chapter 2, we provide some background information. The chapter begins with a brief

introduction to aspects of ASR technology, including the main components of an ASR sys-

tem: the acoustic model, pronunciation model and the language model. In the rest of the

chapter, we summarize previous work in ASR that has utilized articulatory feature-based

models, and discuss some of their findings. The remainder of the chapter is dedicated

to a detailed discussion of the theory of articulatory phonology [Browman and Goldstein,

1992] along with a description of our implementation of an articulatory feature-based pro-

nunciation model, based on previous work [Livescu, 2005], that incorporates aspects of this

theory.

In Chapter 3, we implement our articulatory feature-based pronunciation models us-

ing conditional random fields (CRFs) [Lafferty et al., 2001] and apply these to the task
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of automatically generating articulatory feature transcriptions of speech utterances given

their corresponding word transcriptions. We compare our models to previous generative

dynamic Bayesian network (DBN) [Livescu, 2005] models, finding that our models signif-

icantly improve performance in terms of articulatory feature prediction on the Switchboard

Transcription Project (STP) dataset [Greenberg et al., 1996].

Chapter 4 describes our models for spoken term detection, which extend previous

work [Keshet et al., 2009] in not requiring sub-word state alignments for training exam-

ples. We then extend these models to incorporate an articulatory feature-based pronuncia-

tion model in Chapter 5 and evaluate these models in the setting of limited data, simulated

by selecting subsets of varying size from the Switchboard [Godfrey et al., 1992]. In exper-

imental evaluations, we find that our proposed models outperform baseline hidden Markov

Model-based (HMM-based) systems across a range of dataset sizes. We also conduct an

analysis of our systems to determine the impact of the articulatory feature-based pronunci-

ation models on capturing pronunciation variation.

In Chapter 6, we adapt the spoken term detection approaches presented in Chapters 4

and 5 to leverage the availability of LVCSR-based spoken term detection systems. In this

chapter, we present results of spoken term detection on the IARPA BABEL Cantonese

dataset [IAR, 2011]. In experimental results, we find that the acoustic keyword spotting ap-

proaches presented in this thesis are competitive against the strong LVCSR-based baseline;

combining system outputs with the baseline results in large performance improvements.

We conclude in Chapter 7 with a summary of the results presented in this thesis, and

briefly describe possible extensions and future work.
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1.5 Contributions of the Thesis

The main contributions of this thesis are the development of discriminative articulatory

feature-based pronunciation models, and the application of these models to the task of de-

tecting particular words or phrases in conversational speech. In particular, the contributions

of this thesis are:

• Discriminative Articulatory Feature-based Pronunciation Modeling: We develop

discriminative articulatory feature-based pronunciation models using conditional ran-

dom fields that explicitly account for the ability of the speech articulators to desyn-

chronize in conversational speech. Additionally, we describe how deterministic task-

specific constraints can be exploited to perform exact inference efficiently in these

models. The models are applied to the task of generating articulatory feature tran-

scripts of speech utterances given their corresponding word transcripts. In exper-

imental evaluations, we find that the proposed models outperform previously pro-

posed generative dynamic Bayesian network models for the task.

• Discriminative Spoken Term Detection in Low-Resource Settings: We apply the

proposed articulatory feature-based pronunciation models to the task of spoken term

detection – detecting whether and where a given word or phrase is spoken in a speech

utterance – by extending previous work by Keshet et al. [Keshet et al., 2009]. We

evaluate the proposed models in the setting of low-resource conditions, simulated by

sampling utterances from the Switchboard dataset [Godfrey et al., 1992], to deter-

mine the effectiveness of the proposed approach. In experimental evaluations, we

find that the propose approach outperforms baseline hidden Markov model-based

(HMM-based) models in a number of settings.
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• Discriminative Spoken Term Detection Leveraging Existing LVCSR-based Sys-

tems: We describe how the proposed discriminative spoken term detection approach

can be adapted to leverage existing LVCSR-based spoken term detection systems,

if available, in order to improve system performance and running time. In exper-

imental evaluations on the IARPA Babel Cantonese dataset [IAR, 2011], we find

that combining the proposed discriminative systems with the baseline results in large

improvements.
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CHAPTER 2: BACKGROUND

This chapter serves to introduce and review topics that are relevant to the material de-

scribed in the thesis. This includes both material that serves to explain core ideas as well

as a survey of the literature and prior work.

In Section 2.1, we begin by discussing the fundamentals of automatic speech recog-

nition (ASR). The section can be skipped by readers well versed in the basics of ASR

technology. We then provide a detailed review of articulatory phonology [Browman and

Goldstein, 1992] in Section 2.2. In Section 2.3, we provide a detailed review of previous

work that has incorporated articulatory feature-based representations in ASR tasks. Fi-

nally, we end this chapter with a brief intuitive description of our implementation of an

articulatory feature-based pronunciation model in Section 2.4.

2.1 Automatic Speech Recognition

The current dominant paradigm for ASR is based on probabilistic modeling [Rabiner

and Juang, 1993]. Although the field of ASR encompasses a varied set of research prob-

lems, we only consider in this section the problem that (arguably) lies at the heart of most

ASR research: the task of determining the most likely word sequence corresponding to a

given speech utterance.

In what follows, we assume that the speech waveform has been parameterized into suit-

able acoustic feature vectors corresponding to each frame of speech (i.e., discreted units
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of time, typically about 10ms): x = (x1,x2, · · · ,xT ) where x ∈ X ⊆ Rd.8 Examples

of the acoustic parameterization used ubiquitously in ASR include mel-frequency cepstral

coefficients (MFCCs) [Davis and Mermelstein, 1980] and perceptual linear prediction co-

efficients (PLPs) [Hermansky, 1990]. Although a full review of feature extraction is outside

the scope of this thesis, it suffices to say that the acoustic features capture information about

the energy present in various frequencies of the speech signal.

With this background, the word recognition problem in ASR can be re-phrased mathe-

matically as follows: Given the input acoustic representation, (x), of the speech utterance

we seek the most likely word sequence (v∗) over all possible word sequences (v ∈ V∗),

where V represents the lexicon,9

v∗ = argmax
v

P (v|x) (2.1)

In the standard generative paradigm, that has dominated ASR for a number of years, Equa-

tion 2.1 can be re-written using Bayes theorem as,

v∗ = argmax
v

P (v|x) (2.2)

= argmax
v

p(x|v)P (v)

p(x)
(2.3)

= argmax
v

p(x|v)P (v) (2.4)

where, Equation 2.4 follows since the maximization is independent of the prior on the

acoustics, p(x). Observe that the second term in Equation 2.4 is independent of the acous-

tics; instead, it computes the probability of any word sequence being uttered by the speaker.

8In this thesis, we follow the convention that scalar quantities are written in normal font (e.g., x ∈ R),
vectors are written in bold font (e.g., x ∈ Rd), and sequences of vectors are represented using the ‘overbar’
notation (e.g., x = (x1,x2, · · · ,xT )).

9In this thesis, we use the notation V∗ to denote all sequences of zero or more elements chosen
from the set V . When used with lowercase symbols we denote optimal values of that symbol (e.g.,
v∗ = argmaxv P (v|x)).
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The first term, on the other hand, corresponds to the likelihood of observing the speech

frames given a particular word sequence, v.

For all but the simplest of tasks (e.g., small number of words in the lexicon, with many

examples per word), estimating acoustic likelihoods, p(x|v), directly is intractable. In-

stead, most systems decompose the word into smaller sub-word units (typically, context-

independent phonemes (i.e., monophones) or context-dependent phonemes (e.g., triphones)).

For example, the word “cat”, can be decomposed into three phonetic sounds, /k ae t/, repre-

senting the three phonemes in the word. If we generically denote the sequence of sub-word

states by q, we can re-write Equation 2.4 as,

v∗ = argmax
v

∑
q

p(x, q|v)P (v) (2.5)

= argmax
v

∑
q

p(x|q)P (q|v)P (v) (2.6)

≈ argmax
v

max
q
p(x|q)P (q|v)P (v) (2.7)

where, for tractability we have assumed that the acoustics x are conditionally independent

of the word sequence v given the sequence of sub-word units q, and replaced the summation

over phone sequences by a ‘max’ operation (Viterbi approximation).

Thus, the task of word recognition in ASR can be reduced to the task of estimating the

three quantities p(x|q), P (q|v) and P (v) in Equation 2.7; techniques for estimating these

quantities form important sub-fields in ASR. The quantity represented by the first term,

p(x|q), is known as the acoustic model and it represents the likelihood of a set of acoustic

vectors being produced as a result of uttering a given sequence of sub-word states. The sec-

ond term, P (q|v), is known as the pronunciation model. In many ASR systems, estimating

this quantity is essentially a dictionary lookup (e.g., P (/k, ae, t/|“cat”) = 1.0). Finally,

the last term in Equation 2.7, P (v), is known as the language model, and it represents the
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Figure 2.1: The generative ASR process in Equation 2.7, represented as a dynamic
Bayesian Network [Zweig, 1998]. The shaded observation nodes indicate that these vari-
ables are observed at test time. In this view, a word sequence is first sampled from the
language model (v ∼ P (v)). Given a word sequence, the sequence of sub-word state
alignments, representing the pronunciation of the word sequence is sampled from the pro-
nunciation model (q ∼ P (q|v)). Finally, the acoustics are sampled from the acoustic model
given the pronunciation in terms of sub-word state alignments (x ∼ p(x|q)).

probability that a sequence of words is uttered by the speaker. For those familiar with the

notation of graphical models, the generative process of speech recognition expressed in

Equation 2.7 can be represented as a dynamic Bayesian network (DBN) [Zweig, 1998] as

illustrated in Figure 2.1.
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In summary, by decomposing the original problem in Equation 2.1 into the form given

by Equation 2.7 we can invest modeling effort into improving each of the acoustic, pronun-

ciation and language models with the hope that this will result in improved word recogni-

tion.

In the next section we discuss Browman and Goldstein’s [1992] theory of articulatory

phonology, which is an attempt to account for the pronunciation variation in speech. In

the context of Equation 2.7, when incorporated within an ASR system, this work can be

thought of as being at the level of the pronunciation model P (q|v).10 We discuss our

specific implementation of this model in Section 2.4.

2.2 Articulatory Phonology

In the theory of articulatory phonology proposed by Browman and Goldstein [1986;

1990; 1992], gestures are considered to be the fundamental units of contrast among the

words of a language. Gestures are discrete events that occur during the production of a

word, corresponding to specific configurations of the vocal tract that are produced as a

result of the speech production process. For example, the bilabial closure gesture, corre-

sponds to the formation of a complete closure of the vocal tract at the lips and it is present

in the production of words that contain bilabial stop consonants (e.g., /b/ and /p/). Thus,

the two words ‘bad’ (pronounced /b ae d/) and ‘add’ (pronounced /ae d/) are contrasted in

the language by the presence or absence, respectively, of the bilabial closure gesture.

Gestures in articulatory phonology are described by a set of related tract variables

which are illustrated in Figure 2.2. These tract variables specify the degree of constriction

10Or perhaps jointly at the level of the acoustic and pronunciation models P (x, q|v), depending on the
actual implementation.
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(e.g., a complete closure during the production of stop consonants; a critical closure pro-

ducing turbulent airflow during the production of fricatives) and the constriction location

(at the lips, tongue tip, tongue body (dorsum), velum (controlling nasalization) and the

glottis (controlling voicing)). The states of the tract variables do not correspond directly to

individual speech articulators, but instead they correspond to the concerted movements of

a set of speech articulators. For example, a bilabial closure gesture (as in the production of

/b/ or /p/) is related to the tract variable LA (Lip Aperture) corresponding to the constric-

tion degree at the lips, which in turn is controlled by the motion of the jaw, and the upper

and lower lip. The set of tract variables in [Browman and Goldstein, 1992] correspond to

the lip (LIPS), the tongue tip (TT), the tongue body (TB) the velum (VEL) and the glottis

(GLO).

Since the same articulator might be involved in multiple gestures (and tract variables)

that are simultaneously active during the production of a word, the coordination amongst

the gestures is specified in terms of task dynamics [Saltzman and Munhall, 1989]. In this

formalism, the motion of the tract variables in time is described in terms of a second-

order dynamical system. In essence, the use of task dynamics allows a set of static ges-

tures involved in the production of a word to be represented dynamically as a gestural

score [Browman and Goldstein, 1992], that is a representation of the relative timings and

overlaps among the tract variables involved in the various gestures. Figure 2.3 illustrates an

example of the gestural score for the word ‘span’ (pronounced /s p ae n/). As can be seen

in the figure, the set of gestures in the production of the word – the ‘gestural constellations’

– overlap in time. These overlaps are produced because of the fact that multiple speech

articulators are involved in the production of each of the gestures, and in some cases the

same underlying articulator is involved in two simultaneous (in time) gestures.
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Figure 2.2: The tract variables of articulatory phonology along with the articulators they
are associated with, reproduced from [Browman and Goldstein, 1990]. Notice that multiple
tract variables share the same underlying articulators. As a result, although gestures are
specified independently for each articulator, multiple tract variables can be impacted by the
motion of a single articulator.
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Figure 2.3: An illustration of the gestural score for the word ‘span’ (pronounced /s p ae
n/) adapted from [Browman and Goldstein, 1992]. The horizontal axis indicates a dis-
cretized representation of time; the gestures are associated with specific tract variables (see
Figure 2.2). The gestural score indicates, for example, that the glottis is wide during the
production of the /s/ and /p/ sounds since these are unvoiced, as well as the bilabial closure
produced during the stop consonant /p/.

The variation observed in conversational speech can be accounted for through one of

two mechanisms within the theory of articulatory phonology: (a.) overlap between ges-

tures corresponding to different tract variables, and (b.) reductions in the magnitude of a

particular gesture because of the contextual environment in which the gesture is present.

In fact, based on linguistic analyses, Browman and Goldstein make the stronger claim that

“ ... all examples of fluent speech alternations are due to (these two mechanisms) ...” [see

Browman and Goldstein, 1990, Section 3.1].

In order to motivate our specific implementation of the pronunciation model based on

the theory of articulatory phonology, which is presented in Section 2.4, we describe three

examples from the literature that illustrate how these two mechanisms can address some

of the variability seen in conversational speech. The discussion of the subject must nec-

essarily be brief; an interested reader is referred to excellent references in the following
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papers [Browman and Goldstein, 1986, 1990, 1992] for additional examples and discus-

sions.

The first example that we review discusses how gestural overlaps can help to explain the

apparent deletion of a phoneme due to the surrounding context. When spoken in isolation,

the final /t/ sound is audible in the word “perfect” (/p er f eh k t/). The same /t/ sounds is in-

audible, however, in the phrase “perfect memory” (/p er f eh k t m eh m er iy/) when spoken

in a conversational setting. Browman and Goldstein [1990] examined data of subjects pro-

ducing these words in isolation and in a conversational setting and recorded the movements

of the various speech articulators; their data [Browman and Goldstein, 1990] is reproduced

in Figure 2.4. The figure shows the vertical displacements of the various speech articulators

produced (a.) during the utterance of the words “perfect” and “memory” in isolation, and

(b.) during the utterance of the phrase “perfect memory” in a conversational setting. In

either case, the tongue tip alveolar closure gesture (marked τ ) appears to be present, and its

onset is obscured by the presence of the velar closure gesture (marked κ). In the isolated

case represented by (a.) the release of the alveolar closure is not completely obscured,

and is thus acoustically audible. In the conversational setting represented by (b.), however,

even the release of the alveolar closure gesture completely overlaps with the bilabial closure

gesture (marked β), and is thus acoustically hidden. Gestural overlaps can thus account for

apparent (acoustic) deletions of phonemes although there is evidence that the underlying

gesture is present. Similar analysis of gestural overlaps can be used to explain, for example,

epenthetic stop insertions (see Figure 2.7), and anticipatory/preservatory rounding.

The second example that we discuss corresponds to Browman and Goldstein’s [1992]

analysis of the variation seen in consonantal and vocalic gestures: consonantal gestures are

generally characterized by shorter duration and higher degrees of constriction relative to

22



Figure 2.4: Vertical displacements of the various speech articulators produced (a.) during
the utterance of the words “perfect” and “memory” in isolation (b.) during the utterance
of the phrase “perfect memory” in a conversational setting, reproduced from [Browman
and Goldstein, 1990]. The surface phonetic transcription of the audio waveform in the two
cases is indicated using IPA symbols: (a.) [p@~fEkt "mEm...], and (b.) [p@~fEk"mEm...]
.
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vowel gestures, and there is significant temporal overlap in these gestures. In cases where

the same consonant gesture is produced in the context of different vowel gestures (e.g., (in

IPA) /ada/ vs /idi/) the resulting consonantal gesture is affected by the surrounding vowel

gestures [Saltzman and Munhall, 1989]. This effect is magnified in cases where the same

articulators and tract variables are involved in the respective gestures. Thus, in cases such

as /ada/ and /idi/, distinct articulators are involved (TT for [d] and TB gestures for the

vowels) and the resulting consonantal gesture is relatively invariant. On the other hand, in

examples such as (e.g. (in IPA) /aga/ vs. /igi/), both the consonant and the vowel involve

gestures corresponding to the same tract variable (TB). In such instances, the actual vocal

tract structures produced (but not the degree of constrictions, i.e. not gestural magnitudes)

show more variation since the same speech articulators are involved in the consonantal and

vocalic gestures.

Our final example concerns some instances of variation in conversational speech such

as lenitions of stop consonants to the corresponding fricatives [Browman and Goldstein,

1990]. For example, instances where phrases such as “must be” (IPA canonical: /"m2st bi/)

are produced instead as (IPA: ["m2sBi]). Such instances can be explained to be produced as

a result of reductions in gestural magnitude (i.e. a complete closure being instead replaced

by a critical closure). Such reductions are likely to be more common in fast conversational

speech rather than carefully articulated speech.

The primary motivation of the work presented in this thesis is to address the pronun-

ciation variation in observed in conversational speech, with the goal of improving ASR

technologies. Towards this end, in Section 2.4 we describe our implementation of a pro-

nunciation model for ASR that is based on the theory of Articulatory Phonology, which is
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based on previous work by Livescu and colleagues [Livescu and Glass, 2004a,b; Livescu,

2005; Livescu et al., 2007a].

2.3 Articulatory Feature-based Models in ASR

Following the brief introduction to articulatory phonology presented in the previous

chapter, this section serves as a review of the literature wherein we highlight previous

studies that have applied articulatory feature-based models11 in ASR. This section also

serves to motivate the articulatory feature-based pronunciation models that we study as

part of the thesis.12

As was briefly mentioned in Chapter 1, numerous arguments have been made in the lit-

erature advocating the use of articulatory feature-based approaches in ASR in order to over-

come some of the limitations of phone-based pronunciation modeling [Ostendorf, 1999].

These arguments can essentially be summarized as follows [Rose et al., 1996; King et al.,

2007; Livescu et al., 2012]: (a.) the ability to (automatically) obtain information about

articulation from the speech signal would aid further scientific research in fields such as

speech science, linguistics and ASR (b.) ASR models that encode apriori knowledge of

speech production might better capture the variability in the speech signal (c.) articulatory

feature-based representations represent a natural factorization of the phonetic state space,

11For the purposes of this thesis, we use the term “articulatory feature-based models” to refer to models that
have been variously referred to as “speech production models”, “phonological feature models”, and “gestural
models” in the literature.

12In the interest of brevity, we do not describe systems that only seek to estimate articulatory features from
the data (i.e. articulatory feature classification/recognition or articulatory inversion), but instead focus on
studies where articulatory features are used as part of a larger task such as word recognition. Systems that
focus on extracting articulatory features from the speech signal are discussed in Section 3.2.
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and might lead to simpler classification problems (d.) articulatory feature-based represen-

tations might generalize better across languages (e.) articulatory feature-based representa-

tions might offer increased robustness in the presence of noise. The various studies that we

describe below support these hypotheses to various degrees.

In a number of previous approaches, articulatory feature classifiers of phonological

features such as manner of articulation, place of articulation, voicing etc. have been em-

ployed for phone and word recognition tasks. In such systems, the articulatory feature

classifiers serve as an additional source of information, which in some of the systems is

complementary to a standard phone-based system. These systems, however, do not in-

corporate an explicit model of articulatory feature asynchrony or gestural overlaps as de-

scribed in Section 2.2. Kirchoff et al. [Kirchhoff, 1999; Kirchhoff et al., 2002] use mul-

tilayer perceptron-based (MLP-based) articulatory feature classifiers in a hybrid speech

recognition system [Morgan and Bourlard, 1995] leading to improved word recognition

accuracy in the case of speech recognition in noise. Metze and Waibel [2002] train Gaus-

sian mixture models for each of a set of articulatory features, which are then combined

with standard context-dependent phone-based acoustic models to get a (weighted) com-

bined acoustic-likelihood. The resulting system was found to improve word recognition

performance when evaluated on a broadcast news task. Stüker et al. [2003a; 2003b] train

Gaussian Mixture Model-based articulatory feature classifiers on multiple languages and

find that incorporating information from articulatory feature classifiers trained on data from

other languages helps improve word recognition accuracy for the target language. Multi-

layer perceptron-based detectors of phones and phonological features have also been used

within the framework of a conditional random field-based ASR for phone and word recog-

nition tasks [Morris and Fosler-Lussier, 2008; Morris, 2010].
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In contrast with the systems described in the previous paragraph, a number of previ-

ous works have also incorporated an explicit model of articulatory feature asynchrony or

“feature spreading” in order to directly account for pronunciation variability. Some of the

earliest work incorporating articulatory feature-based pronunciation models within proba-

bilistic ASR systems includes work by Deng and colleagues [Deng and Sun, 1994; Deng

et al., 1995, 1997]. In these hidden Markov model (HMM)-based systems, the HMM states

are modeled as vectors of articulatory feature variables representing configurations of the

various articulators such as the lip, tongue, velum and glottis. The expected transcrip-

tion in terms of the features is allowed to “expand” as a result of feature spreading, with

the amount of spreading controlled through various rules and constraints, thus modeling

gestural overlaps. Deng et al. observed improved performance on the TIMIT phone clas-

sification task using the articulatory feature-based approach. Erler and Freeman [1996]

describe a similar system where HMM states are represented by configurations of artic-

ulatory variables based on articulatory phonology [Browman and Goldstein, 1992], with

the variables being treated as ordered categorical variables. This representation in terms

of ordered categorical variables allows for the enforcing of smoothness amongst the ar-

ticulators. This approach was more recently extended by Richardson et al. [2003] to use

diphone-based units, which in combination with the baseline was shown to be effective in

improving performance in both clean and noisy speech.

Mitra et al. [2009; 2011a; 2011b] train multilayer perceptrons to estimate (continuous-

valued) tract variables of articulatory phonology on synthetically generated training data.

Once trained, the MLPs can be used to generate tract variable trajectories for real speech

utterances. These estimated tract variable trajectories are used as acoustic feature vec-

tors – either as standalone features or in combination with MFCCs – in a hidden Markov
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model [Mitra et al., 2009] or a dynamic Bayesian network [Mitra et al., 2011a]. In exper-

imental evaluations, Mitra et al. find that their proposed approach improves word recog-

nition performance in noisy conditions, although word recognition performance did not

improve in clean speech. It should be noted that similar observations have been made pre-

viously by other authors as well. For example, Wrench and Richmond [2000] conduct

experiments using ground truth articulatory trajectories computed using electormagnetic

articulography [Wrench, 2001] used either directly or in combination with MFCCs in a

standard GMM-HMM system. In their experiments (in clean acoustic conditions) they find

that although the MFCC baseline outperforms the articulatory feature baseline, combining

the two features results in improved performance over the MFCC baseline. However, no

such improvements were found when the articulatory trajectories were estimated directly

from the speech signal [Wrench and Richmond, 2000; Frankel et al., 2000; Frankel and

King, 2001].

The models of pronunciation used in this thesis are based on models previously pro-

posed by Livescu and colleagues [2004a; 2004b; 2005; 2007a] in a generative framework

based on dynamic Bayesian networks. In these models, articulatory feature streams (based

on the tract variables of articulatory phonology) are modeled as separate streams that are

loosely synchronized.13 Pronunciation variation in these systems is modeled in terms of

asynchrony between adjacent feature streams (modeling gestural overlaps) and substitution

of one articulatory feature value for another (modeling reductions of gestural magnitudes).

In lexical access experiments – the task of predicting word identity given surface phonetic

sequences – the proposed approach was shown to outperform a phone-based pronuncia-

tion model with phonological rules modeling pronunciation variation [Livescu and Glass,

13The models are described in greater detail in Section 2.4
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2004a,b]. The addition of context dependent articulatory feature substitution resulted in

further improvements [Jyothi et al., 2011]. There have also been recent discriminative ex-

tensions of this work using a large-margin algorithm employing a large number of features

including some based on articulatory feature streams [Tang et al., 2012] as well as a tech-

nique for discriminatively re-weighting arcs of a finite state tranducer (FST) representing

the original DBN [Jyothi et al., 2012]. The DBN-based articulatory feature pronunciation

models were subsequently incorporated as part of an end-to-end speech recognizer [Livescu

et al., 2007a]. However, the results of that study on the SVitchboard dataset [King et al.,

2005] indicated that the feature-based models did not outperform baseline monophone-

based systems.

Finally, we note that there has been some recent work at building computational models

of articulatory phonology that has attempted to more directly and faithfully capture some

aspects of the theory,14 such as task dynamics [Zhuang et al., 2008, 2009; Hu et al., 2010].

In these works, the trajectories of the various tract variables are simulated, and attempts are

made at extracting the gestural activation scores from these trajectories. However, since

these models have only been evaluated on synthetic data, it is hard to compare them to the

other approaches discussed in this section.

2.4 A Pronunciation Model Inspired by the Theory of Articulatory
Phonology

The models proposed in this thesis, utilize a pronunciation model based on the theory of

Articulatory Phonology [Browman and Goldstein, 1992]; these models are based on those

developed previously by Livescu and Glass [Livescu and Glass, 2004a,b; Livescu, 2005]

with some modifications, which we outline in subsequent sections.

14As was the case in work by Mitra et al. [2009; 2011a; 2011b] as well.
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We use the word “sense” as a running example throughout this thesis in order to il-

lustrate the features of our model. Since our end goal is the application of the proposed

pronunciation model within ASR technology, we begin with the assumption that we have

a standard phone-based pronunciation dictionary that lists the canonical pronunciation of

words in terms of phones. The canonical pronunciation of “sense”, found in a machine-

readable dictionary such as CMUdict [Weide, 2007], appears as /s eh n s/. In a con-

ventional speech recognizer [Young et al., 2002], the pronunciation of the word would

be represented in terms of models corresponding to these constituent phonemes (context-

independent modeling) or using context-dependent phoneme models (e.g., triphones).

Pronunciations represented as sequences of articulatory feature targets

In our model, we shall instead represent the pronunciations of words in terms of a

sequence of articulatory feature targets for a set of articulatory feature variables that cor-

respond to the tract variables of articulatory phonology. Specifically, these represent the

constriction degrees and positions of the lips, the tongue tip, the tongue body and the state

of the velum and glottis. In our work, we assume that each phoneme can be determinis-

tically mapped to a set of articulatory feature targets one for each articulatory feature.15

Thus, the pronunciation of a word can be represented as a matrix of feature values ob-

tained by deterministically mapping each of the phonemes in its canonical pronunciation

to their corresponding articulatory features values. This is illustrated for the word, “sense”

in Figure 2.5. Notice in particular that the sequence of phone targets is not part of the

representation of the word, but is provided to indicate the canonical pronunciation of the

word.

15In our work, we use the mapping outlined in [Livescu, 2005] to map (American) English phonemes to
articulatory features. In later work, this mapping is modified slightly when applied to our experiments on
spoken term detection.
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Figure 2.5: Representation of the canonical pronunciation of “sense” in terms of sequences
of articulatory feature targets for each of the articulatory feature streams. The notation
(x:y), which is used in describing the TT, TB, and LIPS streams is used to differentiate the
position (x) and the constriction degree (y) corresponding to the articulator. Note that the
‘Phone’ stream indicated in the figure is only provided to indicate the surface pronunciation
in terms of phones corresponding to the articulatory feature values and is not included in
the representation of the pronunciation.

As can be seen in Figure 2.5, the word “sense” has four articulatory feature targets

for each stream (since it has four phonemes in its canonical pronunciation). For example,

the sequence of articulatory targets for the velum stream (VEL) are [non-nasal, non-nasal,

nasal, non-nasal] since only the third phoneme (/n/) corresponds to nasal sound. In terms

of articulatory phonology, this corresponds to positing a wide velum gesture during the pro-

duction of the third unit in the pronunciation of the word. It should be noted however, that

the pronunciation representation in Figure 2.5 is distinct from a gestural score (Figure 2.3)

in two ways: (a.) Firstly, in our model, the pronunciation representation is fully specified,

with an articulatory feature value indicated for each unit of the pronunciation, unlike the

extremely underspecified representation in the gestural score. Secondly, and more criti-

cally, the pronunciation representation in Figure 2.5 does not indicate relative timing of
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the articulatory targets, but only represents that sequences of targets that must be realized

during the production of the word.

Asynchronous evolution of articulatory streams

We assume that during the production of the word, each stream passes through the

series of targets specified in the pronunciation of the word. Thus, given a speech utterance

corresponding to the word, each element in the matrix representation of the pronunciation

in Figure 2.5, is associated with a start and end time in the utterance. In other words, each

stream can transition independently and asynchronously from one articulatory target to the

next at each speech frame. Thus, the model endows an extent in time to these articulatory

feature targets, which allows us to model the notion of gestural overlaps in the theory

of articulatory phonology. Further, in order to prevent completely implausible gestural

overlaps from being hypothesized by the system, we impose constraints on the maximum

amount of asynchrony (in terms of state overlaps) permitted in the system.

Continuing with our running example, consider an instance of the word ‘sense’ where

each of the feature streams is completely synchronized with respect to the others. In this

case, the resulting surface pronunciation corresponds, by design, to the canonical pronun-

ciation as illustrated in Figure 2.6. However, if the streams are desynchronized with respect

to each other, then the resulting surface pronunciation may differ from the canonical pro-

nunciation. Such a mechanism can account for the variation that is produced as a result of

gestural overlaps. For example, in the phonetically transcribed portion of the Switchboard

dataset [Godfrey et al., 1992] – the Switchboard Transcription Project (STP) data [Green-

berg et al., 1996] – a variant pronunciation of ‘sense’ is observed as /s ehn n t s/ which

contains a nasalized vowel and an inserted epenthetic stop between the nasal /n/ and the

fricative /s/. This particular variant can be explained by the model if we hypothesize it to
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Figure 2.6: Example showing how the canonical pronunciation of ‘sense’ is hypothesized
when all of the articulatory feature streams are synchronized with respect to each other. The
horizontal axis represents the evolution of time. The ‘Phone’ stream represents the surface
pronunciation in terms of phonemes corresponding to the combination of articulatory fea-
tures values at a given frame and is not part of the articulatory feature-based pronunciation
model.

be the result of a desynchronization of the velum and glottis streams from the other streams

as illustrated in Figure 2.7.

2.5 Concluding Remarks

The description in Section 2.4 describes the main aspects of the pronunciation model

utilized in this thesis. In particular, we note that by modeling speech in terms of loosely-

coupled articulatory feature streams, we can account for pronunciation variation produced

as a result of gestural overlaps, which are ubiquitous in conversational speech [Farnetani

and Recasens, 2012]. However, as we noted in Section 2.2, the theory of articulatory

phonology accounts for pronunciation variation through two mechanisms: gestural overlap

and diminished gestural magnitudes. Unlike the pronunciation model of Livescu [2005],
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Figure 2.7: Example showing how variant pronunciation for sense (epenthetic stop in-
sertion and nasalization of vowel) can be produced when the velum and glottis streams
desynchronize from the other streams. The horizontal axis represents the evolution of time.
Note that the sequence of articulatory feature values in this example is identical to those ap-
pearing in Figure 2.6; the example differs only in terms of the relative transitions between
the feature streams. The ‘Phone’ stream represents the surface pronunciation in terms of
phonemes corresponding to the combination of articulatory features values at a given frame
and is not part of the articulatory feature-based pronunciation model.

wherein reductions in gestural magnitudes are modeled through articulatory feature substi-

tution, the models used in this thesis do not explicitly model such reduction effects. We

briefly justify this design choice in this section.

The primary reason that articulatory feature substitution is not incorporated into our

pronunciation models is because of computational considerations: models with articula-

tory feature substitution, such as the ones presented in [Livescu, 2005], require significantly

larger amounts of time in order to perform inference, which is prohibitive when working

with large datasets. Secondly, the distinction between the target feature values (modeled

in our experiments), and the surface feature values (modeled in Livescu [2005], but not in

our work), is arguably more relevant only in our first set of experiments where we attempt

to predict the actual articulatory feature values corresponding to a speech utterance. In
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later experiments presented in Chapter 5, we treat the articulatory features as latent vari-

ables; in this case, articulatory feature reduction effects are modeled implicitly through the

use of feature functions constructed from multilayer perceptron classifiers of phones and

articulatory features.

2.6 Summary

In this section, we described the fundamentals of automatic speech recognition and the

theory of articulatory phonology [Browman and Goldstein, 1992]. We then described pre-

vious systems that have used articulatory feature-based models for ASR. Finally, we briefly

described our implementation of a pronunciation model based on previous work [Livescu,

2005].
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CHAPTER 3: ARTICULATORY FEATURE FORCED
TRANSCRIPTION USING CONDITIONAL RANDOM FIELDS

In this chapter, we describe a set of experiments that are aimed at automatically ex-

tracting articulatory feature (AF) targets from speech utterances, given their corresponding

word transcriptions.16 We use the term “articulatory feature forced transcription” to de-

scribe such a task, drawing analogy to the task of (phonetic) forced transcription – deriving

phonetic labels for speech utterances given their corresponding word transcriptions – a task

that finds numerous applications in ASR technology (e.g., in order to derive labels for train-

ing multilayer perceptrons for neural network acoustic modeling [Morgan and Bourlard,

1995]).

In this chapter:

• We propose a Conditional Random Field-based (CRF-based) model for articulatory

feature forced alignment in Section 3.5 that incorporates the articulatory feature-

based pronunciation model that we discussed in Section 2.4. As shall be demon-

strated in Section 3.5.2, the models that we propose admit extremely efficient and

exact algorithms for inference when the deterministic task-specific constraints are

exploited.

• In pilot experiments presented in Section 3.6, we demonstrate the effectiveness of

the proposed approach over baseline dynamic Bayesian network (DBN) models.

16A version of the work described in this chapter has previously appeared in [Prabhavalkar et al., 2011].
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We begin in Section 3.1 by motivating the problem and discuss previous work on

extracting aspects of articulation from speech utterances in Section 3.2. We then pro-

ceed to formally define the problem that we shall solve, and introduce relevant notation

in Section 3.3. In Section 3.4, we describe a dynamic Bayesian network-based (DBN)

model [Murphy, 2002] for the solution of the problem, based on previous work [Livescu

and Glass, 2004a,b; Livescu, 2005]. In Section 3.5 we describe our proposed conditional

random field-based (CRF-based) [Lafferty et al., 2001] model for the task. The proposed

CRF-based model retains the factorization of the DBN model, and is essentially a discrim-

inative version of the generative DBN model. In Section 3.5.2, we describe how inference

can be performed efficiently in the model by exploiting task-specific constraints relevant to

the AF forced-transcription problem. We report the results of experimental evaluations con-

ducted on a subset of the Switchboard Transcription Project (STP) data [Greenberg et al.,

1996] in Section 3.6 where we observe that the proposed discriminative CRF-based models

offer superior classification performance over the generatively trained DBN baseline.

3.1 Motivation

The CRF-based models for forced transcription that we study in this chapter have two

primary motivations. The first seeks to address a major difficulty associated with the de-

velopment of articulatory feature-based models: the lack of speech data transcribed at

the articulatory level. To the best of my knowledge, only three such datasets have been

widely used in the community: the MOCHA-TIMIT database of electromagnetic artic-

ulography data (EMA) [Wrench, 2001], the University of Wisconsin X-Ray Microbeam

Data [Westbury, 1994], and the MRI-TIMIT database of magnetic resonance imaging

(MRI) data [Narayanan et al., 2011]. Although the availability of such datasets is extremely
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useful, they have characteristics that may make them unsuitable for certain kinds of re-

search. For example, they may contain a significant amount of noise, which is an artifact of

the collection process. Additionally, in some cases, certain articulatory measurements may

not be available due to the modalities of the collection process. Finally, such continuous

measurements are extremely subject-dependent; obtaining a speaker-independent represen-

tation is a non-trivial task, although this has been done in some previous studies [Sun et al.,

2000; Stephenson et al., 2000; Frankel, 2003].

An alternative approach to obtaining articulatory feature labels has been manual tran-

scription from the speech signal [Livescu et al., 2007b] or mapping from phonetic la-

bels [Kirchhoff, 1999; King and Taylor, 2000; Stüker et al., 2003a; Livescu et al., 2007a].

However, the process of manual transcription of articulatory feature or (detailed) phonetic

labels is an extremely time-consuming and difficult process [Greenberg et al., 1996]. Al-

though mapping from phonetic labels is also far from ideal, since these labels may not

correspond exactly to the ground truth articulatory features, this has been done in a number

of previous studies (including the experiments in this chapter).

The work presented in this chapter has two primary motivations. First and foremost, the

ability to automatically derive articulatory feature labels by utilizing available word tran-

scriptions, would help support further research on articulatory features in both linguistics

and ASR. Secondly, the task serves as a convenient setting in which to evaluate the ef-

fectiveness of the proposed discriminative articulatory feature-based pronunciation models

and is thus a stepping stone towards the relatively more complex models of spoken term

detection models that we explore in the Chapter 5.
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3.2 Background

The task of learning aspects of articulation (e.g., vocal tract configurations, continuous

articulator trajectories, articulatory feature categories) has been extensively studied in the

past. In early pioneering work on articulatory-to-acoustic inversion, where the goal is to

determine the vocal tract area function,17 Atal et al. [1978] demonstrated that the mapping

from acoustics to vocal tract configurations is many-to-one; multiple vocal tract configura-

tions can result in the same acoustic signal. However, this ambiguity can be substantially

reduced by enforcing smoothness constraints on the articulator movements [Schroeter and

Sondhi, 1994].

Subsequently, a number of studies have attempted to directly recover continuous-valued

articulator positions from human speech data directly and have achieved positive results.

These attempts have included the use of neural networks [Papcun et al., 1992; Frankel et al.,

2000; Richmond, 2001; Mitra et al., 2011b], hidden Markov models (HMMs) [Hiroya and

Honda, 2004], analysis-by-synthesis [McGowan, 1994], approaches based on acoustic-to-

articulatory codebooks [Hodgen et al., 1996; Suzuki et al., 1998], and using a generalized

smoothness criterion during decoding [Ghosh and Narayanan, 2010, 2011]. The average

RMS error in reconstructing articulatory trajectories are as low as 0.01mm – 2mm in some

of the studies.18

Atempts have also been made at recovering discretized articulatory feature categories

from the speech signal. These include neural networks [Kirchhoff, 1999; King and Tay-

lor, 2000; Metze and Waibel, 2002; Frankel et al., 2007a; Mitra et al., 2011c], nearest

17The area function is typically computed at a few points along the vocal tract, say 20 for example.
18A word of caution is prudent here. The RMS error figures indicated here relate to reconstruction errors

on different datasets and cannot be directly compared to determine the best performing method. The fact that
the reconstruction errors are so low, does however indicate that it is possible to recover articulatory positions
accurately from the acoustics.
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neighbor-based approaches [Næss et al., 2011], dynamic Bayesian networks [Frankel and

King, 2005; Frankel et al., 2007b] and Gaussian mixture models [Stüker et al., 2003b; Jou

et al., 2006].

3.3 Notation and Preliminaries

Before formulating the problem formally, we begin by introducing our notation. We

assume that we are provided with a speech waveform corresponding to the pronunciation

of a single word excised from an entire utterance of conversational speech along with the

identity of the corresponding word.19 We assume that the waveform is parameterized into

acoustic feature vectors (e.g., PLPs), x = (x1,x2, · · · ,xT ), where T is the number of

frames in the speech utterance and xt ∈ X ⊆ Rd is a feature vector for frame t. Given

an utterance x corresponding to the word v, we denote by |v| the number of phones in the

canonical pronunciation of v.

As we described briefly in Section 2.4, we model the pronunciation of the word, v, as

a matrix of articulatory feature targets corresponding to K articulatory feature streams.20

We assume that we have a mapping from phones in the canonical pronunciation to the cor-

responding articulatory feature targets for each of the streams. We denote the sequence of

articulatory feature targets for stream i as (σi1, σ
i
2, · · · , σi|v|). Note that the number of artic-

ulatory feature targets for each stream is equal to the number of units in the pronunciation

of the word.

Formally, the problem of articulatory feature forced-transcription is stated as follows:

Given a sequence of parameterized acoustic feature vectors, x, and the corresponding word

19Our methods can be straightforwardly extended to multi-word sequences, thus allowing us to model
cross-word gestural overlaps. In the present work, however, we only consider intra-word gestural overlaps.

20In experiments, we assume that lip features form a fully synchronized “bundle”, as do all tongue features
and the pair (glottis, velum), so K = 3.
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Figure 3.1: Example illustrating the notation used in our experiments on articulatory fea-
ture forced-transcription presented in this chapter. In this example, the word v = ‘sense’,
with canonical pronunciation /s eh n s/. The corresponding representation of the pronunci-
ation in terms of articulatory feature targets and the corresponding most likely articulatory
feature segmentation is illustrated in the figure. The ‘Phone’ stream indicates the resultant
surface pronunciation corresponding to the joint configuration of articulatory features at
each frame.

transcription, v, we seek to estimate the value of the articulatory features for each of the

streams, 1 ≤ i ≤ K, which we denote by (AF
1
,AF

2
, · · · ,AF

K
). Mathematically, we seek

to estimate,

AF
1∗
,AF

2∗
, · · · ,AF

K∗
= argmax

AF1
,AF2

,··· ,AFK

P (AF
1
,AF

2
, · · · ,AF

K |v,x) (3.1)

Our notation is illustrated in Figure 3.1.
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3.4 Dynamic Bayesian Network-based Model for Articulatory Fea-
ture Forced-Transcription

In this section, we describe in great detail a implementation of a dynamic Bayesian

network (DBN) [Murphy, 2002] model that formalizes the intuitions of the pronunciation

model that we described in Section 2.4. A DBN for the task of AF forced-transcription,

based on the models previously proposed by Livescu and Glass [2004a; 2004b] and in

Livescu’s PhD Thesis [2005], is presented in Figure 3.2. In contrast with the models pro-

posed in those works, we consider a model that captures feature asynchrony, but does not

take into account substitution of articulatory features. In other words, we assume that each

articulatory feature reaches the value that is expected in the pronunciation of the word at

some point during its trajectory. As we mentioned in Section 2.4, the primary justifica-

tion for this choice lies in computational considerations; in pilot experiments we found

inference in the model with substitution to be prohibitively slow.

Asynchronously Evolving Feature Streams

The DBN model in Figure 3.2 can be understood by first examining the role of the sub-

word state variables (Sub-word Stateit) corresponding to each of the articulatory feature

streams. As the various articulatory feature streams evolve asynchronously, the sub-word

state variables represent indices into the pronunciation of the word corresponding to the

particular feature stream at the given frame of speech. Thus, each of the sub-word state

variables, (Sub-word Stateit), can take a value corresponding to one of the |v| articulatory

targets for that stream: 1 ≤ Sub-word Stateit ≤ |v|.

Using the example of sense illustrated in figure 2.6, the sub-word state 1 for the glottis

stream corresponds to the phone /s/ and would thus have as its corresponding value the
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Figure 3.2: Baseline DBN model for articulatory feature alignment based on the work of
Livescu and Glass [Livescu and Glass, 2004a,b; Livescu, 2005]. Variables whose values
are observed are represented as filled circles (representing the acoustics and word identity);
hidden variables are represented as empty circles. Variables whose values are determined
deterministically, given the values of their parents, appear as dashed circles.
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Figure 3.3: Example showing how canonical pronunciation for sense is produced when
transitions for all feature streams are completely synchronized. In this figure, we have
additionally indicated the values that the sub-word state index variables (Sub-word Statei)
would take corresponding to each unit in the pronunciation of the word in parentheses.

Figure 3.4: Example showing how variant pronunciation for sense (t-insertion) can be pro-
duced when feature streams desynchronize. In this figure, we have additionally indicated
the values that the sub-word state index variables (Sub-word Statei) would take correspond-
ing to each unit in the pronunciation of the word in parentheses.
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label wide indicating that the sound is unvoiced. Sub-word state 2 for the glottis stream, on

the other hand, corresponds to the phone /eh/ which is voiced, and hence the corresponding

label for the glottis stream in this state would correspond to critical. This is illustrated in

Figures 3.3 and 3.4.

Since the model does not allow articulatory feature substitution and the identity of the

word is available at test time (see Equation 3.1), we can deterministically determine the

value of the of the expected or target articulatory feature for that stream by examining the

canonical pronunciation of the word and the corresponding sub-word state variable. Even

without a model of articulatory feature substitution, the model is capable of accounting for

pronunciation variation that might arise due to feature asynchrony including preservatory

and anticipatory rounding, nasalization and epenthetic stop insertions.

Asynchrony constraints

The model of asynchrony is refined further by applying additional constraints: For each

pair (i, j) of articulatory features, we define the degree of asynchrony between the two

streams (di,jt ) at time-frame t as the difference of the sub-word state indices corresponding

to the two streams at that time-frame:

di,jt = Sub-word Stateit − Sub-word Statejt (3.2)

Thus, if two streams are synchronized with respect to each other, the degree of asynchrony

between them must be zero. Similarly, streams which are desynchronized with respect to

each other must have a non-zero value for this quantity. Note that the value of the degree

of asynchrony, di,jt , may be negative although the Sub-word Stateit variables are always

non-negative. In order to prevent the model from hypothesizing implausible articulatory

alignments, we constrain the maximum allowable asynchrony between feature streams by
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imposing an upper-bound, M , on the absolute value of degree of asynchrony between any

pair of articulatory feature streams:

−M ≤ di,jt ≤M for all 1 ≤ i, j ≤ K and for all 1 ≤ t ≤ T (3.3)

where, T is the length of the utterance. In the DBN-based model presented in Figure 3.2,

these constraints are imposed using the FtrAsyncConfig, AsyncConfig and CheckAsync-

Config variables.

The variable FtrAsyncConfigt is intended to represent the current configuration of asyn-

chrony amongst all the variables in the system. For concreteness, this shall be computed by

specifying the degree of asynchrony of all the streams with respect to one reference streams,

say stream 1. Thus, if we compute the degree of asynchrony with respect to the first fea-

ture stream, FtrAsyncConfigt represents the unique configuration (d2,1t , d3,1t , · · · , dK,1t ). For

example, FtrAsyncConfigt = (1, 0, · · · , 0), would indicate that the second articulatory

stream is one state ahead of the first stream, while the remaining streams are synchro-

nized with the first. From Equation 3.3, each of the degrees of asynchrony have cardinality

2M + 1, and thus FtrAsyncConfig has cardinality of at most (2M + 1)K−1. However,

not all of these configurations will be valid according to Equation 3.3. For example, a

configuration where d2,1t = M and d3,1t = −M is invalid, since in this case stream 2 is

2M states ahead of stream 3, (i.e., d2,3t = 2M ), and thus is inadmissible under the con-

straint in Equation 3.3. AsyncConfigt is a vector-valued variable with no parents that can

take on any value corresponding to an allowable asynchrony configuration. Finally, the

variable CheckAsyncConfigt is a ‘dummy’ variable, that has probability 1 if and only if

FtrAsyncConfigt and AsyncConfigt have the same value.21 Thus, the set of asynchrony

21Dummy variables are a standard mechanism for representing what are essentially symmetric constraints
in a directed model. The dummy variables can be represented in the DBN as variables with cardinality 2, and
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variables are designed to ensure that each frame of the model contributes a value corre-

sponding to the prior on the asynchrony configuration towards the overall probability of the

assignments for the full sequence, while simultaneously ensuring that inadmissible combi-

nations are assigned zero-probability in the model. Thus, the distribution of AsyncConfig,

which is learned during DBN training, represents the probability of each asynchrony con-

figuration.22

3.5 CRF-based Model for Articulatory Feature Alignment

A proposed model for CRF-based articulatory feature alignment that incorporates a

number of features drawn from the DBN-model is shown in Figure 3.5 in the form of a

factor graph [Kschischang et al., 2001].23 For reference, we also draw the corresponding

undirected graphical model in Figure 3.6. The factor graph, or equivalently the structure

of cliques in the undirected graphical model, make explicit the conditional independence

assumptions in the corresponding CRF. The factor nodes in the graph (represented as red

and blue squares) in Figure 3.5 represent (non-negative) functions over the set of variable

nodes (represented by circles) that are connected to it in the graph. As before, we denote

the sequence of observations by x, with the particular observation at time t denoted by xt

can take on either value 0 or 1. The conditional probability table of the dummy variable conditioned on its
parents is then expressed in such a manner that only admissible configuration of values of its parents would
result in it taking on the value 1 (say) with non-zero probability. Since the dummy variables are all observed
variables with value 1, these variables have the effect of only allowing admissible configurations of variables
to receive non-zero probability in the full ‘unrolled’ sequence (over time) of variables. As we shall see in
section 3.5 such variables are unnecessary in the undirected CRF model.

22Incorporating both the deterministic FtrAsyncConfig as well as the non-deterministic AsyncConfig
variables in the model allows the asynchrony distribution to be learned during the DBN training via the
Expectation-Maximization algorithm [Dempster et al., 1977]. See [Livescu and Glass, 2004b] for details.

23In the interest of brevity, we do not provide a review of conditional random fields. Interested readers
are referred to the many references on this topic [Lafferty et al., 2001; Sutton and McCallum, 2012; Fosler-
Lussier et al., 2013]
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Figure 3.5: Factor graph representing the proposed CRF model for articulatory feature
alignment. Corresponding undirected graphical model appears in figure 3.6. The shaded
nodes represent variables that we condition on. The red and blue square nodes represent
factors: non-negative functions defined over the configurations of the set of variables con-
nected to it.

48



Figure 3.6: Undirected graphical model representing the proposed CRF model for articu-
latory feature alignment. Corresponding factor graph appears in figure 3.5.
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and the word that the utterance corresponds to by v. The sequence of all other variables in

the graph is represented by y, with yt being the set of all of these variables at time t.

Each factor node can be associated with a particular time t. We assume that a factor can

be indexed by the set of variable nodes, c ∈ C, that it is connected to in the graph. Let yct

represent the set of variables associated with this set of variables at a particular time t. Note

that the set of variables c form a clique in the undirected graphical model in figure 3.6 and

they can, thus, be thought of as ‘clique templates’ in the dynamic conditional random field

model of Sutton et al. [Sutton et al., 2004]. The probability distribution over the sequence

of variables y, conditioned on the observations x and the word v in the factor graph can

then be expressed as a normalized product of potentials corresponding to the factors in the

graph, with the only constraint that the potentials φc(yct ,x, v, t) be non-negative,

P (y|x, v) =
1

Z(x, v)

∏
t

∏
c∈C

φc(y
c
t ,x, v, t) (3.4)

where, Z(x, v) is a normalization term that ensures that we have a valid probability distri-

bution.

Deterministic vs. Trainable factors

In our model, we distinguish between factors that are associated with learnable pa-

rameters of the model, denoted in red in Figure 3.5, from those that enforce deterministic

constraints, denoted in blue in Figure 3.5. We shall elaborate on the differences between

the two types of factors shortly, but for now it suffices to say that factors with trainable

parameters are associated with a vector of pre-defined ‘feature functions’, f c(yct ,x, v, t) =

[· · · , f ci (yct , v,x, t), · · · ]T where 1 ≤ i ≤ Nc, for some integer Nc. We then model the

potential associated with this factor as,

φc(y
c
t ,x, v, t) = ewc·fc(yc

t ,x,v,t) (3.5)
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where, wc is a vector of weights to be learned during training. In Equation 3.5, we have

implicitly assumed that weights are tied across repeating clique-templates across various

frames at different times t as in the dynamic CRF model [Sutton et al., 2004].

In our model the trainable factors are associated with configurations of feature asyn-

chrony, individual articulatory features (the “acoustic model”), and articulatory feature

transitions (the “transition model”). The feature functions associated with each articula-

tory feature variable AFit are constructed by first computing a set of statistics gl,m(xt) from

the acoustics (e.g. gl,m(xt) could be the lth output of a particular multilayer perceptron

(MLP) indexed by m, as in Section 3.6). These statistics are then used to construct individ-

ual components in the vector of feature functions associated with the articulatory feature

variable (AFi),

fi,j,l,m(AFit,x, t) = gl,m(xt)δ(AFit = aij) (3.6)

where aij is one value that AFi can be assigned and δ(z = z′) = 1 if z = z′ and 0

otherwise. The feature functions associated with the feature asynchrony configuration

(FtrAsyncConfig) and articulatory feature transitions (AFi,Transi) are

fr(FtrAsyncConfigt, t) = δ(FtrAsyncConfigt = r) (3.7)

fi,j,v(AFit−1,AFit,Transit, t) = δ(AFit−1 = aij)δ(AFit = aij′) (3.8)

where r is an asynchrony configuration vector as defined in Section 3.4 and aij, a
i
j′ are

possible values that can be assigned to AFi.

The deterministic factors in our work shall be binary (zero-one) functions, the only

purpose of which shall be to ensure that certain ‘invalid’ sequences of assignments to the

variables y are assigned zero probability by the model. Specifically, for the model in Fig-

ure 3.5, since the sub-word state indices in the model are meant to represent the index in
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the pronunciation of the word, any valid assignment to the sub-word indices must ensure

that:

• sub-word state indices increment by at most 1 between adjacent frames,

0 ≤ Sub-word Stateit+1 − Sub-word Stateit ≤ 1 (3.9)

• at the first time-frame, the articulators be in the first unit of the pronunciation,

Sub-word Statei1 = 1 (3.10)

• the last frame corresponds to the last unit in the pronunciation of the word where

pron(w) is the pronunciation of the word in terms of articulatory features,

Sub-word StateiT = |v| (3.11)

• and finally that the articulatory feature value AFi is given by the value specified

in the words pronunciation for that articulatory feature for a particular value of the

corresponding sub-word state,

AFit = σik if Sub-word Stateit = k (3.12)

For example, the condition expressed in equation 3.10 would be expressed using a deter-

ministic factor as,24

φ(Sub-word Statei1,x, w, 1) =

{
1 Sub-word Statei1 = 1
0 otherwise (3.13)

24In this and following equations, we abuse notation slightly by not explicitly specifying the clique c that
the potentials are associated with, as we did in previous equations since it is clear from context what the
associated cliques are.
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3.5.1 Simplifying the Model

In pilot experiments, we implemented the CRF shown in Figure 3.5 using the GRMM

toolkit [Sutton, 2006]. However, we found that performing exact inference in this model

using the toolkit was prohibitively slow, and the use of approximate inference algorithms

resulted in poor performance. A likely hypothesis which might explain the slowness of

exact inference in the toolkit is that it is due to the fact that the toolkit does not automatically

exploit the sparsity that results from deterministic constraints in our model. In this section,

we describe how we take advantage of this sparsity to allow us to do fast exact inference in

our CRF.

Although the original CRF model shown in Figure 3.5 appears complicated, the deter-

ministic constraints in the model allow for efficient exact inference. The first observation

that we make is that we can eliminate a number of ‘deterministic’ variables (variables that

are deterministically determined by configurations of other variables in the model) if we

allow for the creation of more general feature functions.

As a specific example, consider the feature function in Equation 3.6. Since the word

that the utterance corresponds to is known and fixed, we we can re-write the above feature

function to depend directly on the sub-word state corresponding to the articulatory feature

stream. Exploiting the fact that AFit is deterministically determined given Sub-word Stateit

and v, we can restate the feature functions in Equation 3.6-3.8 as,

fi, j, l,m(Subword Stateit,x, v, t) = gl.m(xt)δ(σ
i
Sub-wordStateit

= aij) (3.14)

fr(SubwordState1t ,SubwordState2t , · · · ,SubwordStateKt , t) = δ((d2,1t , d2,1t , · · · , dK,1t ) = r)
(3.15)

fi,j,j′(SubwordStateit−1 = s′,SubwordState1t = s, v, t) = δ(σis′ = aij′)δ(σ
i
s = aij) (3.16)
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Figure 3.7: Factor graph representation of simplified model with ‘deterministic variables’
removed.

where, di,jt is as defined in Equation 3.2, aij, a
i
j′ represent particular values corresponding

to the i-th articulatory feature stream. and r represents a relative asynchrony configu-

ration. By eliminating such ‘deterministic’ variables, observe that an equivalent model

to the CRF in Figure 3.5 can be obtained by representing only the sub-word state vari-

ables, corresponding to the K feature streams as shown in Figure 3.7. In essence, the

model has been simplified by reducing the number of variables, with additional complex-

ity in the feature functions. Note however, that some of the deterministic constraints in

the original model, in particular, Equations 3.9–3.11 must still be retained in the simpli-

fied model. Finally, we note that we can obtain an equivalent model by collapsing the

K sub-word state variables into a single variable, SubwordConfigurationt whose domain

is the cross-product of the individual SubwordStatet variables: SubwordConfigurationt =

(SubwordState1t , · · · ,SubwordStateKt ). The resulting model is depicted in Figure 3.8. We

stress here that this process of collapsing the articulatory variables into a single variable is

purely for convenience; the transformed model is exactly equivalent to the original factored
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Figure 3.8: Factor graph representation of final simplified model after sub-word state vari-
ables have been collapsed to obtain a linear chain.

CRF model in Figure 3.5, since we ensure that the feature functions (both deterministic

and trainable) constructed on the Sub-wordConfiguration variable in the resulting model

are exactly the same as those in the original model. In the model that appears in Figure 3.8,

the factor corresponding to the state transition includes all potentials involving only these

variables (Equations 3.16 and 3.9), the second factor includes the local acoustic features

(Equation 3.14), the asynchrony features (Equation 3.15) and the deterministic potentials

(Equations 3.10-3.12) encoding the dictionary.

3.5.2 Efficient Exact Inference

In previous sections, we described a process by which the original CRF model of Fig-

ure 3.5 can be converted into an equivalent linear chain model by choosing a particular

sequence of variable and factor clustering operations [Kschischang et al., 2001] or equiva-

lently a particular triangulation of the original undirected graphical model. In this section,

we describe how the deterministic factors in the model allow for efficient and exact infer-

ence in the resulting equivalent model.

We begin with some additional notation: denote by |v|max the maximum length of the

pronunciation of any word,

|v|max = argmax
v
|v| (3.17)
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Input: word, v; acoustics, x; number of articulatory streams, K; number of units in
pronunciation, |v|

Initialize: Candidates(1) = {(1, 1, · · · , 1)}

Determine possible configurations:

For t = 2 to T

Candidates(t) = next(Candidates(t− 1), v)

Initialize boundary conditions:

For t = 1 to T

For s ∈ Candidates(T )

αt(s) = 0;

βt(s) = 0;

Compute alpha recursively:

α1((1, 1, · · · , 1)) = expw·f((1,1,··· ,1),x,v,t)

For t = 2 to T

For s ∈ Candidates(t)

αt(s) =
∑

s′∈prev(s,v) αt−1(s
′)ew·f(s

′,s,x,v,t)

Compute beta recursively:

βT ((|v| , |v| , · · · , |v|)) = 1

For t = T − 1 down to 1

For s ∈ Candidates(t)

βt(s) =
∑

s′∈next(s,v) βt+1(s
′)ew·f(s,s

′,x,v,t)

Return required marginals:

P (st−1 = s, st = s′|x, v) =
1

αT ((|v| , |v| , · · · , |v|))
αt−1(s)e

w·f(s,s′,x,v,t)βt(s
′)

Figure 3.9: Sum-product algorithm for computing marginal distributions for the model that
appears in Figure 3.8.
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We use the notation Nk = {1, 2, · · · , k}, to denote the set of natural numbers less than

or equal to k. With this notation, the domain for the variable Sub-wordConfigurationt is

the set N|v|max
× N|v|max

× · · · × N|v|max
= NK

|v|max
. We define the function next(s, v) for the

s ∈ Sub-wordConfigurationt, that encodes the set of values that the variable can take in the

next time-step. Given s ∈ NK
|v|max

and a word v, we define,

next(s, v) =

{
x ∈ NK|v|max

| Sub-wordConfigurationt = s and Sub-wordConfigurationt+1 = x

satisfy the deterministic constraints in Equations 3.9–3.11
}

(3.18)

For example, if we have three articulatory feature streams (K = 3), the maximum allowed

asynchrony between adjacent feature streams is one state (M = 1), and if the word v has

three units in its pronunciation (|v| = 3), we have,

next((1, 1, 1), v) = {(1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2), (2, 2, 1), (2, 1, 2), (1, 2, 2), (2, 2, 2)}
(3.19)

next((1, 2, 1), v) = {(1, 2, 1), (1, 2, 2), (2, 2, 1), (2, 2, 2)} (3.20)

next((2, 3, 3), v) = {(2, 3, 3), (3, 3, 3)} (3.21)

next((3, 3, 3), v) = {(3, 3, 3)} (3.22)

next((4, 3, 3), v) = {} (3.23)

In Equation 3.19 any of the sub-word states may be incremented without violating any

constraint, unlike in the remaining examples. Additionally, since we assumed that v has

exactly three units in its pronunciation, the configuration (4, 3, 3) would be invalid for this

word. This also explains why next((3, 3, 3), v) in example 3.22 contains only the element

(3, 3, 3). The function prev(s, v) is defined analogously to encode the set of sub-word

configurations that can precede any particular configuration s given a word v. Finally, we

extend the notation by allowing the next(s, v) and prev(s, v) functions to be defined on
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sets of configurations as well,

next({s1, s2, · · · , sk}, v) =
k⋃
i=1

next(si, v) (3.24)

prev({s1, s2, · · · , sk}, v) =
k⋃
i=1

prev(si, v) (3.25)

With these definitions, we can perform inference on the factor graph to obtain the marginal

distributions over Sub-wordConfigurationt at time t using the standard sum-product algo-

rithm [Kschischang et al., 2001], which in this case is equivalent to the standard alpha-beta

recursions for linear-chain CRFs [Lafferty et al., 2001]. For completeness, we state the

alpha-beta recursions for the problem in Figure 3.9. Note that the deterministic constraints

have been explicitly captured in the algorithm since we explicitly ensure that the quantities

are only computed over pairs of configurations s, s′ where s′ ∈ next(s, v) or s′ ∈ prev(s, v)

as the case may be. In other words, the deterministic constraints have been implicitly en-

coded in the next(·, ·) and prev(·, ·) functions. Apart from this restriction and the explicit

construction of the candidate sets, the algorithm is essentially the same as the standard

recursion employed in linear-chain CRFs.

3.5.3 Analysis of Complexity of Computing Marginal Distributions
using the Algorithm in Figure 3.9

The equivalent linear-chain CRF in Figure 3.8, in which all of the sub-word state vari-

ables have been collapsed together, has a large state space corresponding to the Cartesian

product of the domains of the sub-word state variables. Since, |v|max is the largest al-

lowable value of the sub-word state, a naive analysis shows that there are |v|Kmax states

in the label space. Since inference in linear chain CRFs is known to be quadratic in

the labels, we have an overall complexity of O(|v|2Kmax T ) which would seem to be pro-

hibitive. The complexity of the algorithm in Figure 3.9 is however much less as result
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of the deterministic constraints in the model. Since we assume that the maximum allow-

able asynchrony between any pair of feature streams is M , the possible valid assignments

to the configuration of sub-word states must be less than or equal to |v|max (2M + 1)K−1

for the K streams. To see this, notice that the sub-word state corresponding to the first

articulatory feature stream can take on any of the |v|max values in N|v|max
. However, the

next stream can be desynchronized from it by at most M units or else be completely syn-

chronized. Similar observations hold for the remaining streams. Thus, in the algorithm,

|Candidates(t)| ≤ |Candidates(T )| ≤ |v|max (2M+1)K−1. Since, in our experiments we

set M = 1 and K = 3, the total number of states that needs to be considered is only linear

in the number of units in the pronunciation of the word.

Finally, note that the during the computation of the alpha-beta recursions in the algo-

rithm, we are only required to sum over the states s′ ∈ next(s, w) or s′ ∈ prev(s, w). How-

ever, since each sub-word state variable can either increment or else remain the same be-

tween adjacent time-steps, | next(s, w)| ≤ 2K . A similar analysis shows that | prev(s, w)| ≤

2K . Thus, the overall complexity of the algorithm in Figure 3.9 is O(T2K |v|max (2M +

1)K−1). Note that collapsing all of the variables at each frame in Figure 3.5 directly and

applying standard inference algorithms for the corresponding linear chain model would in-

cur quadratic complexity in the size of the cross-product of the cardinalities of the variables

at each frame O(T |v|2K22K(2M + 1)2(K−1)
∣∣AF1

∣∣2 ∣∣AF2
∣∣2 · · · ∣∣AFK

∣∣2). Exploiting task-

specific constraints allows us to reduce training time by many orders of magnitude: In our

experiments, each pass through the training data takes less than a minute, whereas using an

off-the-shelf inference engine [Sutton, 2006] took approximately a day.
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Set Number of words Number of frames
Train 2941 89748

Development 165 5365
Test 236 7037

Table 3.1: Statistics for train, development and test data for the subset of STP [Greenberg
et al., 1996] used in our experiments.

3.6 Experiments

In order to determine the effectiveness of the proposed CRF-based AF-alignment model,

we conducted experiments on a subset of the Switchboard Transcription Project (STP)

data [Greenberg et al., 1996]. The STP data contains a subset of conversational telephone

speech recorded as part of the Switchboard corpus [Godfrey et al., 1992], that was tran-

scribed manually at the phonetic level using a phone-set derived from TIMIT [Garofolo

et al., 1993]. The transcriptions also contain additional diacritical information that indi-

cate, for example, nasalization, frication (of a normally unfricated segment), etc.

Dataset Selection

The data used for this experiment was identical to the data used in lexical access exper-

iments by Livescu [Livescu, 2005]: we extract data for all words from the “train-ws96-i”

subset if they belong to the set of the 3500 most likely words in the Switchboard corpus,

after excluding partial-words and filled-pauses etc. This data was then divided into a train-

ing set (data from sets 24–49), a held-out development set (set 20) used to tune parameters

and a test set (sets 21–22) that we report results on.

For each of the train, development and test sets, we excise the speech utterances cor-

responding to individual words based on the information in the corresponding word tran-

scripts. The words so excised from the training set form our set of training examples; words
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from the development and test sets are used to evaluate the performance of the baseline and

proposed systems. Statistics of the data used in the experiment appear in Table 3.1.

Obtaining Ground Truth Articulatory Features

For each word in the train, development and test sets, we extract phone transcriptions for

the word by aligning the word and phone transcripts. Since these do not align exactly, we

consider a phone to be part of a word’s transcription if the phone boundary is at least 10ms

within the boundary of the corresponding word. We split stops, affricates and diphthongs

into two segments, representing the initial and final portion of the phone. The first two-

third portion of the original phones duration is assigned to the first segment, while the

remaining one-third is assigned to the second. After time-aligned phone labels have been

obtained for each word in this manner, we strip away all diacritic information other than

nasalization and map the phone to obtain the corresponding articulatory feature labels using

the deterministic mapping outlined in [see Livescu, 2005, Appendix B], which serve as the

ground truth.25

Details of the Feature-based Pronunciation Model

In all our experiments, we assume that the tongue tip and tongue body features (T),

the lip features (L) and the combination of glottis and velum (G) are each completely

synchronized, thus resulting in a model with three effective feature streams (K = 3). The

maximum allowable asynchrony between any pair of streams is set to one state (M = 1).

Considering these constraints the number of distinct L, T and G labels was 8, 25 and 4

respectively. Additional details of the features and the phone-to-feature mappings can be

found in [see Livescu, 2005, Appendix B].

25This is, of course, not ideal since the phone labels are not necessarily an accurate representation of the
articulatory configurations [Saraçlar and Khudanpur, 2004].
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Acoustic Parameterization: Training Multilayer Perceptrons

We parameterize the acoustics by computing 12th-order speaker-normalized PLPs with

energy, deltas and double-deltas to obtain a 39-dimensional input representation (X ⊆

R39). We train three multilayer perceptrons (MLPs) to predict each of the L, T, G features

using the phone-derived AF labels as well as an MLP to predict the underlying phone

(corresponding to the STP [Greenberg et al., 1996] phoneset). The feature vectors for

a given frame are concatenated with the four preceding and succeeding frames to obtain

a 351-dimensional input representation to the MLPs. The MLPs are single hidden layer

feed-forward networks with a sigmoid activation function for hidden layer nodes and a

softmax activation function for the output layer. The MLPs are trained using the Quicknet

toolkit [Johnson et al., 2004] to optimize a cross-entropy-based criterion with the number

of hidden layer nodes determined by tuning MLP frame-level accuracy on the development

set.

When constructing CRF feature functions according to Equations 3.14-3.16, we con-

sider three statistics derived from the MLPs: (a.) posteriors (CRF-Post), the softmax out-

puts from the MLPs, (b.) log posteriors (CRF-LogPost), obtained by computing the loga-

rithm of the softmax outputs from the MLPs, and (c.) linear outputs (CRF-Lin), obtained

by removing the final softmax output layer from the MLPs.26

We compare the performance of the CRF-based systems against three baseline DBN

systems. The first axis along which the DBN systems vary is in the representation of the

26If ui represents the weighted sum of hidden layer activations of the MLP corresponding to class y = i,
then the softmax output for class i – the posterior output, zi – is computed as zi = eui∑

j euj , which represents

the posterior probability, P (y = i|x) , of the ith class conditioned on the acoustics x at that frame. The log
posterior and linear outputs corresponding to the ith class are respectively ui−log

∑
j e

uj and ui respectively.
Thus, the linear outputs and the log posteriors differ from each other by an additive factor that is dependent
on the acoustics x at that frame.
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variable x in Figure 3.2: (a.) a system that represents the variable x in the model as PLP

coefficients, and (b.) a system that represents the variable x as the linear outputs of the

MLPs projected onto the top 39 principal components after Principal Components Analysis

to obtain a “tandem” representation [Hermansky et al., 2000] (DBN-Tandem). We further

consider two variants of the PLP-based DBN systems: (a.) a system that does not allow for

any asynchrony amongst articulatory feature streams (DBN-PLP-noasync) and is similar

to a phone-based model, and (b.) a system that allows for up to one state of asynchrony

among pairs of feature streams (M = 1) (DBN-PLP-async). The DBN-tandem and CRF

systems always allow for up to one frame of asynchrony (M = 1).

Baseline DBN and CRF systems

The baseline DBN systems, described in Section 3.4, are implemented using the Graph-

ical Models Toolkit (GMTK) [Bilmes and Zweig, 2002]. The output distributions of the

acoustics – p(x|L, T,G) – are modeled as mixtures of Gaussians, with the number of

Gaussians for each L, T,G configuration determined using the splitting-vanishing proce-

dure [Bilmes and Zweig, 2002]. The optimal number of Gaussians for each (L, T,G) con-

figuration was determined based on frame-level articulatory feature classification accuracy

on the development set.

Since training the CRF-based systems is a supervised learning problem, we require

time-aligned AF labels27 in order to train the CRF-based systems. For this purpose, we use

the fully trained DBN-PLP-async system to obtain AF transcriptions for the training set

27Since we require AF segmentations that satisfy the assumptions in the pronunciation model, e.g., that
there is no articulatory feature substitution and that the maximum amount of allowed asynchrony is one state
(M = 1), the AF labels obtained by deterministically mapping the phone labels to AF targets cannot be used
directly for CRF training, although they can be used for training the MLPs.
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Set System L Err. T Err. G Err. Joint Err.
Type Rate (%) Rate (%) Rate (%) Rate (%)

Train DBN-PLP-async 11.2 34.7 15.9 20.6

Dev

DBN-PLP-async 10.8 31.0 16.6 41.6
DBN-PLP-noasync 11.2 31.8 15.8 38.2

DBN-Tandem 11.4 30.6 18.0 41.1
CRF-Post 10.6 27.0∗†‡ 12.4∗†‡ 35.2∗†‡

CRF-LogPost 9.4∗†‡ 26.6∗†‡ 13.1∗†‡ 34.4∗†‡

CRF-Lin 9.8∗†‡ 27.1∗†‡ 13.4∗†‡ 35.0∗†‡

Test

DBN-PLP-async 9.6 35.2 16.8 44.0
DBN-PLP-noasync 9.3 35.2 16.0 40.6

DBN-Tandem 9.9 35.4 17.7 43.7
CRF-Post 10.6 33.3∗†‡ 14.9∗†‡ 40.5∗‡

CRF-LogPost 9.6 33.4∗†‡ 14.8∗†‡ 39.7∗‡

CRF-Lin 9.2 32.8∗†‡ 14.4∗†‡ 40.0∗‡

Table 3.2: Frame-level error rates for forced-transcription experiments obtained on the
various sets using the DBN and CRF systems. (∗,†, ‡) indicate statistically significant im-
provements (p ≤ 0.05) over the DBN-PLP-async, DBN-PLP-noasync, and DBN-Tandem
systems respectively using a one-tailed Z-test.

given the identity of the word.28 These are then used as training labels for the CRF-based

system.

3.7 Results

We present frame-level error rates measured against the phone-derived articulatory fea-

ture labels in Table 3.2 for each of the articulatory feature streams as well as for the joint

configuration of all the articulators. Since the CRFs are trained on labels obtained by force-

aligning the training set using DBN-PLP-async system, we also present error rates on the

training data. As can be seen from the table, the error rates on the training data, and hence

our training labels, are fairly noisy.

28These decoded AF target labels satisfy the constraints of the model.
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On the development set, both CRF systems employing log-posterior as well as the lin-

ear features outperform all DBN systems with relative error rate reductions from between

7.8%–31.0% across the various systems and feature categories. On the test set, however,

there are no significant differences in terms of classification of the lip (L) feature but we

do see gains in classification of the T and G features, and a small improvement in joint

classification accuracy. In these cases, the CRF-based systems result in relative error rate

reductions of between 5.0% and 18.6%.

3.8 Discussion

The results presented in Table 3.2 are encouraging for two reasons. Firstly, in these

pilot experiments we explored a very limited set of feature functions in the CRF. In previ-

ous work [Morris, 2010] CRFs have been shown to be effective combiners of MLP-based

feature detectors. We can therefore hope that similar improvements may be possible in this

domain by incorporating additional feature classifiers as well. Additionally, it might be

beneficial to incorporate additional feature functions in order to obtain a better model of

articulatory asynchrony. For example, a more detailed model of articulatory asynchrony

might include information about position of the unit within the word, unigram language

model probability of the word, measures of speaking rate, and other factors that are known

to be correlated with pronunciation variation. Secondly, recall that the training labels for

the CRF are derived using the baseline DBN system. The error rate of the DBN on the

training data is quite high, and it is encouraging to see that the CRF can still outperform the

DBN system on the development and test set. In fact, gains are observed in the CRF-based

systems in spite of the fact that the asynchronous DBN system (DBN-PLP-async) does not

outperform the DBN system that does not allow any asynchrony (DBN-PLP-noasync).
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Two possible reasons for the high error rates in the DBN are: (a.) lack of sufficient

training data or (b.) the model that we have considered does not allow for feature sub-

stitution and is hence limited in its ability to model pronunciation variation. In principle,

a model that incorporates feature substitution (which would model reduction in gestural

magnitudes, cf. 2.2), might result in improved performance. However, adding in a model

for AF-substitution would require significantly more complexity in decoding.

3.9 Summary

In this chapter, we presented a conditional random field-based model for articulatory

feature forced-transcription. In experimental results conducted on the Switchboard Tran-

scription Project data [Greenberg et al., 1996], the proposed CRF models were found

to improve performance significantly over dynamic Bayesian networks presented previ-

ously [Livescu, 2005] for this task. In experimental evaluations, the proposed techniques

resulted in improvements of between 5.0%–18.6% over the baselines in predicting tongue

and glottis/velum features.

In Chapters 5 and 6, we apply the models of pronunciation developed in this chapter

for the task of discriminative spoken term detection (STD) in conversational speech set-

tings. Before we incorporate the AF-based pronunciation model within the STD system,

we first study the effectiveness of the proposed STD systems in the context of phone-based

pronunciation modeling. Thus, the experiments in the following chapter serve as a means

of validating the proposed techniques in the ‘simpler’ setting of phone-based pronuncia-

tion modeling before we tackle AF-based pronunciation modeling for STD in subsequent

chapters.
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CHAPTER 4: DISCRIMINATIVE SPOKEN TERM DETECTION IN
LOW-RESOURCE SETTINGS

In this chapter, we study the problem of spoken term detection (STD)29 – the problem of

detecting whether or not a set of pre-defined terms (keywords) are present in a set of speech

utterances (along with their locations) – in the context of low-resource settings where la-

beled training data are limited.30 As was mentioned in the previous chapter, our final goal

is to incorporate the articulatory feature-based (AF-based) pronunciation model within an

STD system. The experiments presented in this chapter are a a step in this direction and

are aimed at examining some aspects of the proposed discriminative STD approach. How-

ever, instead of directly applying them to AF-based pronunciation models, we begin by

examining phone-based pronunciation models. This allows us to examine aspects of the

proposed model in the ‘simpler’ setting of phone-based pronunciation models. We return

to the problem of STD using AF-based pronunciation models in Chapters 5 and 6.

In this chapter, we present one of the main contribution of the thesis: a discrimninative

approach to STD that extends previous work by Keshet et al. [2009]. Specifically, we de-

velop an algorithm for discriminative STD that relaxes the constraint that sub-word state

alignments be available for training query terms. The models are trained using a large-

margin algorithm to optimize the expected area under the receiver operating characteristic

(ROC) [Cortes and Mohri, 2004]. In order to determine the effectiveness of the proposed

29A version of the work described in this chapter has appeared previously in [Prabhavalkar et al., 2012,
2013].

30We use the terms spoken term detection and keyword spotting interchangeably in this thesis. Similarly
we shall use the term keyword and term (in the context of term to be detected in speech) interchangeably.
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approach in limited data settings, we conduct a systematic empirical evaluation in a sim-

ulated low-resource setting where training data are obtained by sampling limited subsets

of utterances from the Switchboard dataset [Godfrey et al., 1992]. In experimental results,

we find that the proposed discriminative STD systems outperform baseline hidden Markov

model-based (HMM-based) acoustic STD systems [Szöke et al., 2005] across a range of

training set sizes.

We begin in Section 4.1 by briefly describing previous work in STD and outline our

motivation. In Section 4.2.1, we provide some intuition behind the proposed approach, that

is then formalized in Section 4.3 where we formally introduce the proposed model for STD.

We describe the algorithm for training the model in order to optimize expected area under

the ROC curve in Section 4.4. We evaluate the proposed models against hidden Markov

model-based (HMM-based) systems in Section 4.5. We conclude with a summary of the

results in Section 4.6.

4.1 Background

The discussion of STD technology in the remainder of this section will be extremely

brief; the goal of the subsequent discussion is to acquaint the reader with current STD

technology and to motivate alternative paradigms.

The problem of detecting specific keywords in speech utterances is a well researched

problem in the field of ASR. The earliest work in this area [Christiansen and Rushforth,

1977; Higgins and Wohlford, 1985] was based on extracting whole-word keyword tem-

plates from the training data and detecting the presence of the keywords using a dynamic

time warping-based search. Subsequently, as hidden Markov models (HMMs) began to
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dominate speech recognition technology, these models were also applied to the task of key-

word spotting with good results: first in the form of whole-word HMMs [Wilpon et al.,

1990] followed by sub-word HMMs [Rohlicek et al., 1989; Rose and Paul, 1990; Manos

and Zue, 1997; Silaghi and Bourlard, 1999]. HMMs, in one form or another, have contin-

ued to remain the dominant paradigm in keyword spotting technology for the past couple

of decades.

The current dominant paradigm for STD involves the use of trained large vocabulary

continuous speech recognition (LVCSR) systems [Miller et al., 2007; Vergyri et al., 2007;

Akbacak et al., 2008]. In such approaches, which we describe in detail in Chapter 6, the

LVCSR system is used to decode speech utterances, to obtain a representation of the likely

word sequences corresponding to the input speech (e.g., a word lattice or a confusion net-

work [Mangu et al., 2000]). Each hypothesized word in the speech utterances can thus be

associated with a score (e.g., the posterior probability of the word v given its hypothesized

start and end time (s, e) in the utterance x: P (v|s, e,x)) which can then be used to decide

whether or not a particular word hypothesis should be declared as an occurrence of the

search term by the system.

Although LVCSR-based approaches have been successful when applied at the task of

STD, a significant limitation of such systems is that they typically involve a very large

number of free parameters (e.g. in a recent Mandarin LVCSR system, Plahl et al. [2009]

report that the system has on the order of ∼ 640M free parameters); robustly estimating

these parameters requires the availability of a large amount of labeled training data, which

may not always be available. For example, it would be desirable to be able to rapidly

develop STD systems for low-resource languages or for porting existing STD systems to

novel acoustic conditions.
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The discriminative STD approach developed in this chapter, is one of a number of recent

approaches for STD that have attempted to address the challenges of low-resource [Jansen

and Niyogi, 2009; Karanasou et al., 2012] and zero-resource [Hazen et al., 2009; Zhang

and Glass, 2009; Muscariello et al., 2011; Jansen and Durme, 2012; Norouzian et al., 2013]

settings.

4.2 Notation and Preliminaries

The notation used in this chapter is consistent with the notation that we used in the

previous chapter and it is briefly reviewed here; the reader may wish to consult Section 3.3

before proceeding.

We shall denote the parameterized acoustic speech signal (e.g., parameterized as a set

of PLP coefficients) as x ∈ X ∗;x = (x1,x2, · · · ,xT ), where xt ∈ X ⊆ Rd, 1 ≤ t ≤ T ,

is a d-dimensional vector extracted from the t-th frame. We use the notation v ∈ V∗ to

denote candidate terms: sequences of one or more words from the lexicon V . We assume

that we have access to a pronunciation dictionary, denoted by the function π : V → P∗,

where P is the set of phone symbols and P∗ represents the set of all finite-length phone

sequences. Thus, the pronunciation dictionary allows us to represent each word in terms

of its corresponding phonetic representation.31 We denote the number of phones in the

canonical pronunciation of the term v as |v|. Thus, π(v) = (σ1, σ2, · · · , σ|v|) ∈ P∗. For

example, for v = “sense”, its canonical pronunciation is π(v) = (s, eh, n, s), with |v| = 4.

31By modeling the pronunciation dictionary as the function π(v), we have implicitly assumed that ev-
ery word sequence has a unique pronunciation, which is often not the case with most ASR systems. The
CMU pronunciation dictionary [Weide, 2007], for example, lists two pronunciation of ‘either’ representing
dialectical variation: /iy dh er/ and /ay dh er/. In our system, we assume that each word is assigned a single
pronunciation, corresponding to the more likely pronunciation. In principle, it is straightforward to allow
multiple pronunciations for the keywords although this is not done in our experiments and we leave this for
future work.
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Figure 4.1: Intuition behind proposed model for Spoken Term Detection. (s, e) and (s′, e′)
represent two of the O(T 2) candidate search locations in the uttearance x. The model will
be trained to produce higher scores for regions that are likely to correspond to the search
term, and lower scores for regions that are unlikely to correspond to the search term.

As a final note, we make the additional assumption that a given search term v occurs at

most once in a given speech utterance x; this allows us us to focus on the single highest-

scoring region within the speech utterance as we describe in subsequent sections.32

4.2.1 Discriminative Spoken Term Detection: Intution

Before we formally describe the discriminative STD model, we begin by providing

some intuition behind the proposed approach. As we have mentioned before, the goal of

an STD system is to detect the location of a search term v within a speech utterance x, if

present. To this end, we begin by considering every possible ‘chunk’ within the speech

utterance, corresponding to contiguous sequences of speech frames, and evaluate these

chunks with respect to whether or not they are likely to contain the term of interest. This

is illustrated in Figure 4.1. In order to determine whether or not a given hypothesized start

and end-time (s, e) , where 1 ≤ s < e ≤ T , contains a given search term v, we consider ev-

ery possible segmentation of the phones corresponding to its phonetic pronunciation π(v);

32This assumption is not particularly restrictive. If search terms can occur multiple times in the utterance x,
we can extract multiple overlapping windows of speech frames within the utterance (the extent of the overlap
would be based on the average durations of the phones in π(v)) and conduct a search in each such window of
speech frames.
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Figure 4.2: Schematic of the notation used in our discriminative STD model. For this
example, v = “sense”, π(v) = (s, eh, n, s), with |v| = 4. The figure illustrates one possible
phonetic segmentation s for a given start and end time (s,e).

intuitively, the segmentation of phones corresponding to the true segmentation should score

highly while incorrect segmentations or segmentations in an incorrect hypothesized loca-

tion (s, e) should not score highly.

Since the pronunciation is composed of |v| units, we represent a valid phone segmen-

tation, as the vector s, which represents the sequence of start and end times for each of

the phones in its pronunciation: s = (s1, s2, · · · , s|v|), where the j-th unit in the pronun-

ciation σj extends from frames sj to sj+1 − 1, inclusive with s1 = s and s|v|+1 = e + 1.

We use the notation s(v) ∼ (s, e) to denote a phonetic segmentation s(v) that begins at

frame s and ends at frame e. In order to simplify notation, we shall denote the phonetic

segmentation as s, when the intended search term v is clear from context. Finally, we shall

denote the phoneme hypothesized at time t under segmentation s as pt(s), i.e., pt(s) = σj

for sj ≤ t < sj+1. Our notation appears in Figure 4.2.
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4.3 Model for Discriminative Spoken Term Detection

In this section, we formalize our intuitions from Section 4.2.1 by describing how we

construct a function for discriminative spoken term detection extending previous work by

Keshet et al. [2009]. Our goal is to learn a function f : X ∗ × V∗ → R, which takes

as its input a speech utterance x ∈ X ∗ and a query term v ∈ V∗, and returns a score

f(x, v) ∈ R representing the confidence that the query term occurs in the utterance. In

a practical system, the utterance x would be declared a putative hit for a query term v

if f(x, v) > b(v) for some (user-modifiable) threshold b(v) ∈ R. We model the STD

function, parameterized by a set of linear weights w ∈ Rn, as

fw(x, v) = max
s∈S

w · φ(x, v, s) (4.1)

where S is the set of all valid articulatory segmentations over all possible start and end times

in the utterance: S = {s(v) : s(v) ∼ (s, e) where 1 ≤ s ≤ e ≤ T}, and φ(x, v, s) ∈ Rn is

a feature vector. The score in Equation 4.1 corresponds to the score of the highest scoring

segmentation, s, over all possible start and end times within the utterance x for the term v.

In our work, the feature vectors, φ(x, v, s), are composed of a set of pre-defined feature

maps {φj}mj=1, where φj : X ∗ × V∗ × S → Rr. Each feature map takes as input the acous-

tics x, the term v, and the articulatory segmentation s and returns an r-dimensional vector.

The specific form of the feature maps used in our experiments is described in Section 4.3.1.

Naively computing the maximization in Equation 4.1 by explicitly considering every

possible segmentation would necessitate a search overO(T |v|) segmentations, which would

be prohibitively slow for terms with large |v|. However, in the case where the feature

maps can be decomposed into a form that exhibits optimal substructure, the maximizing
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segmentation can be computed using dynamic programming as described in [Prabhavalkar

et al., 2011].33

4.3.1 Feature Maps

In this section, we describe two types of feature maps used that we use in our system.

Our feature maps are constructed using a set of feature functions, ξ : X → Rr, that are

constructed from the acoustic feature vectors which allows the system to incorporate infor-

mation from diverse sources. We denote the feature functions as a vector-valued function

ξ : X → Rr, which takes as input an acoustic feature vector corresponding to a frame of

speech x ∈ X and outputs a vector in Rr. In our experiments, these are constructed from

multilayer perceptron detectors of phones and articulatory features.

The first set of feature maps computes the confidence that the acoustic frames corre-

spond to the phoneme hypothesized at each frame in a given segmentation corresponding

to the target term:

φ1,q =
1

e− s+ 1

e∑
t=s

ξ(xt)δ[pt(s) = q] (4.2)

where q ∈ P represents a particular phone. Thus, we have a set of |P| feature maps, each

of which is a vector-valued function of the same length as ξ.

The second set of feature maps model the acoustics at phone transitions for each pair

of phones q, q′ ∈ P:

φ2,q,q′ =
1

e− s+ 1

e∑
t=s+1

ξ(xt)δ[pt−1(s) = q ∧ pt(s) = q′] (4.3)

Thus, we have a total of |P|2 feature maps of the second type, for each pair of phones,

each of which is a vector-valued function of the same length as ξ. We note that in both

33This corresponds to running the ‘max-product’ version of the ‘sum-product’ algorithm presented in Fig-
ure 3.9, wherein the summation operation in the alpha-beta recurrences is replaced by the ‘max’ operation.
This would compute the highest scoring SubwordConfiguration for the term v corresponding to a given start
and end time.
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Equations 4.2 and 4.3, we normalize the feature maps by the length in frames, (e−s+1), of

the hypothesized segmentations s. This is done in order to ensure that the scores computed

across segmentations of different length are comparable to each other.

4.4 Training the Model to Optimize Area Under the Receiver Operat-
ing Characteristic

Our goal is for the detector to be able to detect any term v in the test set, including

those terms that may not have been seen in training, as long as pronunciation, π(v), for

the term is available. In what follows, we also assume that the input x is an utterance

short enough for any term of interest to occur at most once. As we mentioned before, this

is not a restrictive assumption, since for longer signals, the detector may be applied in a

sliding window of appropriate length on overlapping portions of the utterance. We now

describe a discriminative algorithm for learning the parameters w of the model presented

in Equation 4.1 using a set of paired training examples that optimizes the area under the

receiver operating characteristic (ROC).

4.4.1 Area Under the Receiver Operating Characteristic

The performance of a STD system, is often measured in terms of the receiver operat-

ing characteristic (ROC). The ROC is obtained by sweeping the decision threshold from

(−∞,∞) and plotting the true-positive rate (detection rate; fraction of positive examples

that are correctly classified, i.e. score above the threshold) versus the false-positive rate

(fraction of negative examples that are incorrectly classified, i.e. score above the threshold)

over the entire range. This is illustrated in Figure 4.3. Each point on the curve represents a

particular operating point of the system. A single metric that describes system performance,

the average performance over all operating points, can be computed as the area under the
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Figure 4.3: An example of an ROC curve for a system.

ROC curve (AUC). Independent of the proportion of positive and negative examples, the

AUC of a system ranges from 0.5 (chance performance) to 1.0 (perfect detection).

In the next section, we propose an algorithm for optimizing expected AUC on unseen

terms by extending the algorithm in [Keshet et al., 2009]. The method presented here can be

adapted to other evaluation functions, such as the occurrence-weighted value or the actual

term-weighted value (ATWV) used in the 2006 NIST STD evaluation [Fiscus et al., 2007]

or the Figure of Merit (FoM) [Wallace et al., 2011].

4.4.2 Training to Optimize Expected AUC

Our goal is to find the weight vector, w∗, that maximizes the expected AUC for unseen

query terms. More formally, assume that we draw a triplet, (v,x+,x−), from a fixed but

unknown distribution ρ, where x+ and x− represent utterances in which the term v is either

present or absent respectively. The optimal weight vector can be represented in terms of
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the Wilcoxon-Mann-Whitney statistic [Cortes and Mohri, 2004] as,

w∗ = argmax
w

P
[
fw(x+, v) > fw(x−, v)

]
(4.4)

= argmax
w

E
[
δ[fw(x+, v) > fw(x−, v)]

]
(4.5)

where the probability and expectation are computed with respect to (v,x+,x−) ∼ ρ. Since

this distribution is unknown, we approximate it using the empirical distribution correspond-

ing to the training set, T , of N examples drawn from the same probability distribution,

T = {vi,x+
i ,x

−
i , s

+
i , e

+
i }Ni=1 (4.6)

where, each training example consists of the query term vi ∈ V∗, an utterance x+
i ∈ X+

vi
in

which the term vi is uttered (a positive utterance), an utterance x−i ∈ X−vi in which the term

vi is not uttered (a negative utterance), and the start and end frames (s+i , e
+
i ) corresponding

to the location of the query term in the positive utterance.

Since the sets of positive and negative utterances are not required to be disjoint for

different query terms, the same utterance may represent a positive example for some term,

vi, while simultaneously serving as a negative example for another term, vj (i 6= j). The

ability to create multiple training examples, corresponding to different query terms from

the same utterance, allows for efficient use of limited training data.

Maximizing the AUC is equivalent to minimizing the expectation over δ[fw(x+, v) <

fw(x−, v)]. This, in turn, is equivalent to minimizing the expectation over δ[fw(x−, v) −

fw(x+, v) > 0]. The structural hinge-loss is an upper bound to this term, and is defined as

`(v,x+,x−,w) =
[
1− fw(x+, v) + fw(x−, v)

]
+

(4.7)
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where [z]+ = max{0, z}. Thus, the weight vector w∗ can be found by minimizing the

following regularized average structural hinge-loss over the training set:

w∗ = argmin
w

f org(w) = argmin
w

λ

2
‖w‖2 +

1

N

N∑
i=1

[
1− fw(x+

i , vi) + fw(x−i , vi)
]
+

(4.8)

Note that in Equation 4.8, in computing fw(x+
i , vi), we restrict the search to only those

segmentations s, that begin and end at the appropriate times corresponding to the location

of the search term in the positive utterance: fw(x+
i , vi) = maxs∼(s+i ,e

+
i ) w · φ(x+

i , vi, s).

In computing fw(x−i , vi), however, we search over all possible start and end times within

the utterance. We note that the the formulation of the optimization problem in Equation 4.8

differs from the approach in [Keshet et al., 2009] in that we do not assume that the true seg-

mentation (s+i ) of the terms in the positive utterances is known; instead we seek to implicitly

determine this information as part of the training procedure. This is particularly useful for

the experiments that appear in the next chapter, where we replace the phone-based pronun-

ciation model with an articulatory feature-based pronunciation model; obtaining the true

articulatory segmentations is significantly harder than obtaining phonetic segmentations.

The impact of this choice is investigated in experiments presented in Section 4.5.2.

4.4.3 Solving the Non-Convex Optimization Problem in Equation 4.8
using the Majorization-Minimization Algorithm

The optimization problem that appears in Equation 4.8, is a non-convex optimization

problem (because of the presence of the term −maxs∼(s+i ,e
+
i ) w · φ(x+

i , vi, s) that ap-

pears in Equation 4.8). Instead of solving the optimization problem directly, we use the

Majorization-Minimization (MM) algorithm [Hunter and Lange, 2004].34

34The algorithm that we use to optimize Equation 4.8 was described as an instance of the convex-concave
procedure (CCCP) [Yuille and Rangarajan, 2002] in our previous work [Prabhavalkar et al., 2012, 2013].
Although it is possible to view our algorithm (which appears in Figure 4.5) as an instance of CCCP (with
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The Majorization-Minimization Algorithm

The MM algorithm [Hunter and Lange, 2004] is a conceptually simple iterative pro-

cedure for minimizing a function f(θ), given an estimate of the minimizer θm at the mth

iteration. In fact, a number of algorithms, such as the E-M algorithm [Dempster et al.,

1977] and the convex-concave procedure (CCCP) [Yuille and Rangarajan, 2002] can be

shown to be special cases of this algorithm. The main idea behind the algorithm is that

instead of minimizing the function f(θ) directly, the algorithm proceeds by first construct-

ing a function g(θ;θm), known as the majorizer (at θm). A function g(θ;θm) is said to

majorize the function f(θ) at θm if it satisfies the following two conditions:

g(θ;θm) ≥ f(θ) for all θ (4.9)

g(θm;θm) = f(θm) (4.10)

Intuitively, the surface of the majorizer g(θ;θm), lies above the surface of the original

function f(θ) at all points in the parameter space. This observation equips us with a simple

iterative procedure to solve the original minimization problem: We simply minimize the

majorizer g(θ;θm) instead to obtain a new estimate θm+1. This minimizer of g(θ;θm)

represents an improved estimate of the minimizer of f(θ) since,

g(θm+1;θm) ≤ g(θm;θm) (since θm+1 minimizes g(θ;θm)) (4.11)

f(θm+1) ≤ g(θm+1;θm) (from Eq. 4.11) (4.12)

f(θm+1) ≤ f(θm) (from Eq. 4.10, 4.11, 4.12) (4.13)

The steps involved in a single iteration of the MM algorithm are illustrated graphically

in Figure 4.4.

a certain approximation), it is more readily and intuitively seen to be an instance of the MM algorithm (of
which CCCP is a special case). We shall therefore refer to the algorithm as an instance of the MM algorithm
in this section. We refer the interested reader to Appendix A where the connection to CCCP is made explicit.
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Figure 4.4: An illustration of the MM algorithm [Hunter and Lange, 2004]. Given an initial
estimate, θm, of the minimizer of f(θ), the algorithm begins by constructing the majorizer
g(θ;θm) of f(θ) at the point θm. The surface of the majorizer, g(θ;θm), touches f(θ) at
θm and lies above the original function at all other points. If θm+1 represents a point that
corresponds to a lower value of the majorizer than θm, then f(θm+1) ≤ f(θm). Thus, the
MM algorithm iteratively converges to a local minimum of the original function f(θ).
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4.4.4 Using the MM Algorithm for Minimizing Equation 4.8

In order to optimize Equation 4.8, given an estimate wt, we describe the creation of

a majorization function, which can be optimized using the MM algorithm. The first ob-

servation to be made is that the structural hinge loss, `(v,x+,x−,w), that appears in the

optimization function can be upper-bounded as follows:

`(v,x+,x−,w) =
[
1− fw(x+, v) + fw(x−, v)

]
+

(4.14)

=

[
1− max

s∼(s+,e+)
w · φ(x+, v, s) + fw(x−, v)

]
+

(4.15)

≤
[
1−w · φ(x+, v, s0) + fw(x−, v)

]
+

(4.16)

where the inequality in Equation 4.16 holds for any fixed s0 ∼ (s+, e+).

In order to define the majorizer at wt, for f org(w), we compute for each training exam-

ple, s+i (wt) as,

s+i (wt) = argmax
s∼(s+i ,e

+
i )

wt · φ(x+
i , vi, s) (4.17)

Thus, s+i (wt) represents the segmentation that results in the highest score at the current

estimate wt of the weights. Now define, gmaj(w;wt) by replacing the original segmen-

tations for positive examples that appear in the optimization problem with the computed

segmentation from Equation 4.17,

gmaj(w;wt) =
λ

2
‖w‖2 +

1

N

N∑
i=1

[
1−w · φ(x+

i , vi, s
+
i (wt)) + fw(x−i , vi)

]
+

(4.18)

The function gmaj(w;wt) in Equation 4.18 is a majorizer of f org(w) at wt and can

be minimized using the MM algorithm. This follows since gmaj(w;wt) ≥ f org(w) by

Equation 4.16 and gmaj(wt;wt) = f org(wt) by definition.

Finally, notice that the optimization problem of minimizing gmaj(w;wt) – the ‘inner

loop’ in the MM algorithm – is exactly the same as the optimization problem solved by
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Input: training set T = {vi,x+
i ,x

−
i , s

+
i , e

+
i }mi=1; parameter λ

Initialize: w0 = 0

For t = 0, . . . , T − 1

For i = 1, . . . ,m

Predict: s+i = argmaxs∼(s+i ,e
+
i ) wt · φ(x+

i , vi, s)

Set: u0 = wt

For j = 0, . . . , J − 1

Pick example (vi,x
+
i ,x

−
i , s

+
i ), 1 ≤ i ≤ m

Predict: s−i = argmaxs uj · φ(x−i , vi, s)

Set: ∆φi = φ(x+
i , vi, s

+
i )− φ(x−i , vi, s

−
i )

Set: αi = min

{
1

λ
,

[1− uj ·∆φi]+
‖∆φi‖2

}
Update: uj+1 = uj + αi∆φi

Update: wt+1 = 1
J

∑J
j=1 uj

Output: The last weight wT .

Figure 4.5: Majorization-Minimization (MM) algorithm to optimize Equation 4.8. The
algorithm uses the passive-aggressive algorithm [Crammer et al., 2006] as the inner loop
to minimize the majorizer [Keshet et al., 2009]. Details of the derivation of the passive-
aggressive update for our problem can be found in Appendix B.

Keshet et al. [2009] and can be solved in an online fashion using the passive-aggressive

algorithm [Crammer et al., 2006]. Pseudocode of the training algorithm is given in Fig-

ure 4.5. Details of the derivation of the passive-aggressive update for our problem appear

in Appendix B.
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4.5 Experiments on the Switchboard Corpus

In order to determine the effectiveness of the proposed models, we conduct experiments

on a subset of the Godfrey et al. [1992], using varying training set sizes, to determine how

performance of the proposed algorithm varies as a function of the amount of training data.

We begin by selecting as our candidate set of utterances all sentences in Switchboard sets

23–49 containing at least four words other than non-speech sounds;35 candidate sentences

can contain non-speech sounds as long as they contain at least four words in addtion to the

non-word tokens. From this candidate set, we build four training corpora of increasing size

containing 500, 1000, 2500, and 5000 sentences, such that each corpus is included in the

next larger set. In other words, all data contained in a set of smaller size is also contained

in the sets of larger size. We construct a 40-keyword set for parameter tuning and a 60-

keyword set for final testing by selecting words from sets 20–22 that occur at least five

times in Switchboard and contain at least five phonemes in their canonical pronunciations.

For each keyword, we select 20 sentences containing the keyword (positive sentences)

and 20 sentences not containing the keyword (negative sentences) to obtain corresponding

development and test sets. We remove initial and final silences from all utterances in the

train, development and test sets.36

Generation of Training Examples

For each sentence in a training corpus, we select each word vi that contains at least 5

phonemes in its canonical pronunciation as a candidate term, and we select the correspond-

ing utterance as an instance of a positive example x+
i for that term. We randomly select a

35By non-speech sounds we refer to noise, silence, fragments, and laughter.
36Details of the utterances corresponding to the train, development and test sets and the corresponding de-

velopment and test keywords are available at http://ttic.uchicago.edu/˜jkeshet/Keyword_
Spotting.html
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Metric 500 1000 2500 5000
Training Data (hrs) 0.8 1.5 3.7 7.4

Generated Positive Examples 1538 2876 7245 14570

Table 4.1: Statistics for the four training datasets chosen by sub-selecting utterances from
Switchboard [Godfrey et al., 1992] used in our experiments.

sentence from the training corpus that does not contain the keyword as a negative example

x−i . The set so selected serves as a training set for the discriminative spoken term detection

systems. In order to be comparable to the baseline systems described shortly, we model

each phone in pronunciation of the term using 3-state models. The statistics of the data sets

used in our experiments appear in Table 4.1.

Computation of Feature Functions: Tandem Feature Generation

We compute the functions ξ = [ξ1, . . . , ξr] following the basic methodology outlined

in [Prabhavalkar et al., 2011]. We train four multilayer perceptrons (MLPs), three of which

are frame classifiers of articulatory features: lip configuration (L, 8 labels), tongue config-

uration (T, 25 labels), and glottis-velum (G, 5 labels). The final MLP is a frame-level clas-

sifier of phones. Unlike the work in [Prabhavalkar et al., 2011], these MLPs are trained on

all phonetically transcribed data from sets 23–49 of the Switchboard Transcription Project

(STP) data [Greenberg et al., 1996] using the Quicknet toolkit [Johnson et al., 2004].

We parameterize the acoustics using 12th-order PLP coefficients with energy, deltas

and double-deltas to obtain a 39-dimensional input representation. The feature vectors for

a given frame are concatenated with the four preceding and succeeding frames to obtain

a 351-dimensional input representation to the MLPs. The MLPs are single hidden layer

feed-forward nets, with a sigmoid activation function on hidden layer nodes and a softmax
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output function on the output layer nodes, and are trained to optimize a cross-entropy crite-

rion. The number of hidden nodes is tuned on a held-out development set. Once the MLPs

are trained, we compute log-posteriors for the data in the training, development and test

sets for all four MLPs and project all of these log-posteriors down to their top 39 princi-

pal components using Principal Components Analysis (PCA) to obtain a tandem feature

representation Hermansky et al. [2000]. These features serve as the observations modeled

using a mixture of Gaussians in our baseline GMM-HMM systems and are also used in the

feature functions ξ of the discriminative systems (after the incorporation of a constant 1 to

the vector to model a bias term, so that r = 40). We model the pronunciations of words

using 3 states per phone label.

Baseline GMM-HMM systems

The proposed systems are evaluated against HMM-based acoustic keyword spotting

systems [Szöke et al., 2005] that are trained using HTK [Young et al., 2002]. The baselines

are constructed by defining a recognition network consisting of a keword network – created

by concatenating together 3-state HMM phone models corresponding to the pronunciation

of the term π(v) – in parallel with a garbage network consisting of all phone models in

parallel. We consider two baseline systems which differ in how the keyword network is

modeled: either using (a.) context-independent monophones (HMM-mono) or (b.) context-

dependent word-internal triphones (HMM-tri). In both baselines, the garbage network is

modeled using context-independent monophones for computational efficiency.

Given a test utterance, we compute the one-best Viterbi path through the network, which

either passes through the keyword model (a detection) or passes solely through the garbage

model (a non-detection). The trade-off between the true positive and false positive rates is

set by varying the keyword insertion probability. By varying the term insertion probability,
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System 500 1000 2500 5000
HMM-PLP-mono 0.773 0.811 0.849 0.857

HMM-mono 0.810 0.827 0.846 0.857
HMM-tri 0.828 0.855 0.899 0.920

Disc-Phone 0.874∗ 0.901∗ 0.917 0.933∗

Table 4.2: Test set average AUC for the baseline HMM-based system and the proposed
discriminative system. (∗) indicates a significant (p ≤ 0.05) improvement over the triphone
HMM baseline using a one-tailed wilcoxon signed ranks test. The discriminative phone-
based system significantly (p ≤ 0.001) outperforms both monophone HMM baselines for
all training set sizes.

we can generate the ROC, and therefore the AUC, for each term. We also report results on a

monophone HMM-baseline (HMM-PLP-mono) that models the acoustics directly in terms

of PLP coefficients (12th order with energy, deltas and double-deltas) to evaluate the effect

of using ‘tandem features’ instead of PLP in the HMM-mono and HMM-tri baselines. The

recognition network used in the baselines is illustrated in Figure 4.6. The number of Gaus-

sian components per mixture was tuned separately for each set based on performance on

the development set. The monophone baseline HMM system trained on the 500 sentences

employed 32 Gaussian components per mixture; the system trained on 1000 examples em-

ployed 64 Gaussian components per mixture while the systems trained on 2500 and 5000

utterances used 128 Gaussian components per mixture since in pilot experiments, adding

additional Gaussian components did not result in significant performance improvements.

The triphone-based HMM systems employ either 8 (1000, 2500 sets) or 16 Gaussians (500,

5000 sets).
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Figure 4.6: Baseline HMM spoken term detection system [Szöke et al., 2005].
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4.5.1 Results I: Comparison of Performance of Proposed Discrimina-
tive System Against Baselines

Table 4.2 shows results in terms of AUC performance averaged across all terms in the

test set. A number of interesting observations can be made from the results in the table.

The first observation is that the use of the ‘tandem features’ in HMM-mono, improves per-

formance over the PLP monophone baseline HMM-PLP-mono, in the lowest data cases of

500 and 1000 utterances; as the amount of data increases, the two systems perform iden-

tically. This observation might be explained by the fact that the discriminative ‘tandem’

features are trained on approximately one hour of additional data; however, as the amount

of training data increases, these relative gain obtained from this additional data is dimin-

ished.

The second observation, is that the discrimnative system outperforms the monophone-

based HMM-systems at all training set sizes by large margins; the performance of the

discriminative system is significantly better than the monophone HMM baselines (p ≤

0.001) using a one-tailed Wilcoxon signed-rank test37 across all training set sizes. Perhaps

more surprisingly, although the performance of both the HMM-based and discriminative

systems improves with increasing training set size, the discriminative systems even at very

low training set sizes performs comparably to the monophone HMM baselines trained on

much larger data sets. This is indicative of the fact that the discriminative systems, with

significantly fewer parameters than the baseline HMMs are able to more effectively utilize

the available training data.

37The Wilcoxon signed-rank test is a non-parametric test that compares the differences between paired
samples (in our case, the individual AUCs for each term computed using the two methods under test). Thus,
small differences between the paired samples can result in highly significant differences overall, even if the
mean AUCs from the two systems do not differ by a large amount.
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Finally, when we compare performance of the discriminative phone-based system against

the stronger triphone-baseline, we find that the discriminative system significantly (p ≤

0.05) outperforms the tri-phone baseline at all training set sizes except for the set with

2500 utterances (p = 0.062). This is particularly encouraging, because our discriminative

systems are context-independent. It is fairly straightforward to add context dependence to

our discriminative models; we leave this as future work.

4.5.2 Results II: Comparison of Proposed Algorithm Against Model
Proposed in [Keshet et al., 2009]

In our second set of experiments on the Switchboard dataset, we conduct experiments

to quantify the effect of treating the segmentations s+i of the positive terms in the training

examples as unknown as opposed to the algorithm of Keshet et al. [2009] where the seg-

mentations are assumed to be known and fixed. In order to determine the phoneme segmen-

tations for the keywords vi in the positive utterances x+
i , we use the baseline monophone

tandem HMM system to generate phoneme forced-alignments for each of the positive key-

word examples that appear in the training set. Once the phoneme segmentations have been

generated, we train a system using the discriminative algorithm described in Figure 4.5

except that we treat the segmentations s+i as fixed, and do not re-compute them on each

pass through the dataset thus implementing the algorithm in [Keshet et al., 2009], which

we refer to as Disc-FixedSeg.

We also conduct an experiment, where we fully train the system assuming fixed and

known segmentations (i.e., the fully trained Disc-FixedSeg system), and then use the weights

learned in this system as an initialization of the weights in a new system. We then employ

the algorithm described in Figure 4.5 to update the weights in the new system. In other

words, we begin by assuming fixed segmentations; once the system is fully trained we
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System 500 1000 2500 5000
Disc-Phone 0.874 0.901 0.917 0.933

Disc-FixedSeg 0.900∗ 0.904 0.928∗ 0.937
Disc-FixedSegInit 0.900 0.904 0.928 0.942∗†

Table 4.3: Test set average AUC for proposed discriminative system compared against the
algorithm of [Keshet et al., 2009]. Results marked (∗) represent significant differences
(p ≤ 0.05) using a one-tailed Wilcoxon signed-ranks test over Disc-Phone. Results marked
(†) represent a significant difference (p ≤ 0.05) over Disc-FixedSeg using a one-tailed
Wilcoxon signed-ranks test.

allow the segmentations to be modified if this allows for improvements in system perfor-

mance. We refer to this system as Disc-FixedSegInit. Our results are presented in Table 4.3.

As can be seen in Table 4.3, using fixed segmentations for training the system (Disc-

FixedSeg) produces significant improvements over the system that treats the segmentations

as unknown (Disc-Phone) for two of the training set sizes (500, 2500) while there is no

significant difference between the systems in the other two cases (1000, 5000) utterances.

However, using the trained Disc-FixedSeg system to initialize our systems leads to im-

provements on the development set but not test sets for three of the training set sizes (500,

1000, 2500) and a significant improvement for the largest dataset size (5000).

Although the results are inconclusive, it appears that at least in the largest data setting,

the algorithm proposed in this work is not significantly different in terms of performance

from the algorithm proposed in [Keshet et al., 2009]. The data also indicate that pefor-

mance of the algorithm in this work might be sensitive to initialization (this is not extremely

surprising, since the problem is a non-convex optimization problem). It is nevertheless en-

couraging that a system that does not have access to the true phone segmentations performs

about as well as the system that utilizes these segmentations, since in the next chapter
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(Chapter 5) we incorporate an articulatory feature-based pronunciation model, where it is

more difficult to get access to the ground truth articulatory segmentations.

4.6 Summary

In this chapter, we presented a discriminative algorithm for STD that extends previous

work [Keshet et al., 2009] and evaluated the algorithm in a setting of limited training data,

simulated by selecting utterances from the Switchboard [Godfrey et al., 1992] dataset. In

experimental results, we found that the proposed approach results in significant gains over

baseline GMM-HMM systems across a range of training set sizes. In comparisons against

the algorithm proposed in [Keshet et al., 2009], we found that the proposed algorithm

performed slightly worse in some training set sizes, but that algorithm performance could

be improved by suitable initialization.
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CHAPTER 5: DISCRIMINATIVE SPOKEN TERM DETECTION
WITH ARTICULATORY FEATURE-BASED PRONUNCIATION

MODELS

The experiments presented in Chapter 4 demonstrated the effectiveness of the proposed

discriminative spoken term detection (STD) systems in the setting of limited training data.

In experiments on subsets of the Switchboard [Godfrey et al., 1992] dataset, the proposed

approach outperformed the baselines across a range of training set sizes. In this chapter,

we investigate discriminative models for STD that incorporate an articulatory feature-based

(AF-based) pronunciation model. These models are aimed at better accounting for the pro-

nunciation variation observed in conversational speech. The AF-based pronunciation mod-

els are similar to those described in Chapter 3 with one major difference: instead of treating

the articulatory feature labels as known at training time, in this chapter we treat the articu-

latory feature streams as latent variables and allow the training data to guide the model in

iteratively determining the optimal articulatory feature alignments. Removing the restric-

tion that articulatory feature targets be known beforehand allows for rapid development of

STD systems and is particularly well suited to the low-resource settings that we motivated

in Chapter 4.38 Note that the approch presented in this chapter differs significantly from

other recent approaches on discriminatively trained AF-based models [Tang et al., 2012;

Jyothi et al., 2012] since our models are applied to a prediction task which also involves

acoustics as opposed to the lexical access task studied in those works.

38A version of the work described in this chapter has appeared previously in [Prabhavalkar et al., 2013].
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In this chapter:

• We conduct experiments to determine the feasibility of incorporating an articulatory

feature-based pronunciation model for STD and evaluate the models in the setting

of limited data by simulating sets of increasing size by sampling utterances from

the Switchboard [Godfrey et al., 1992] dataset. In experimental results, we find that

that systems with AF-based pronunciation models improve performance over phone-

based models in some settings.

• We determine the impact of allowing for asynchronous feature transitions in our mod-

els. We find evidence that the models hypothesize greater asynchrony for those ex-

amples that likely contain larger amounts of pronunciation variation.

We begin in Section 5.2 by describing how the models developed in Chapter 4 can

be adapted to incorporate an AF-based pronunciation model. As we mentioned briefly in

Chapter 4, in the current work it is particularly advantageous that our models do not require

knowledge of ground-truth AF alignments, since as we have seen in Chapter 3 these are

hard to estimate directly from the acoustics. Instead, in the current work these are treated as

latent variables in the model. We present the results of experiments conducted on the same

sets as in Chapter 4, where we simulate the setting of limited training data, in Section 5.3.

Additional evaluation and analysis of the models in presented in Section 5.3.2 to determine

the impact of allowing articulatory asynchrony in the models. We evaluate the impact of

allowing the model to hypothesize additional asynchrony in Section 5.4 and end with a

brief summary of the chapter in Section 5.5.
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5.1 Articulatory Feature-based Model: Notation and Preliminaries

We use the same notation as in Section 4, modified to represent articulatory feature

streams as opposed to the phone-based representation used in that chapter. The articulatory

feature-based pronunciation model used in this work is based on the model presented in

Chapter 3. Pronunciations are modeled in terms of a set of articulatory feature streams

based on the tract variables of articulatory phonology [Browman and Goldstein, 1992]

which represent the configurations of the speech articulators: the constriction degrees and

positions of the lips, the tongue tip, the tongue body, and the state of the velum and the

glottis.39

We model pronunciation variation using gestural overlaps by allowing the articulatory

streams to transition asynchronously from one target state to the next. When all AF streams

are synchronized, the resulting surface pronunciation corresponds (by construction) to the

canonical pronunciation; asynchronous transitions can model non-canonical pronuncia-

tions. In particular, such a model can account for non-canonical variant pronunciations with

vowel nasalization, anticipatory/preservatory rounding, and epenthetic stop insertion. This

is illustrated in Figure 5.1 which shows a non-canonical variant pronunciation of “sense”.40

Formally, we model pronunciation via a set of K articulatory feature streams. We

assume that the waveform is parameterized into acoustic feature vectors (e.g., PLPs) x =

(x1,x2, · · · ,xT ), where T is the number of frames in the utterance and where xt ∈ X ⊆ Rd

is a feature vector for the tth frame. Given an utterance x and a query term v, we denote

39As was the case with our experiments in Chapter 3, we assume that all features corresponding to the lips
are completely synchronized as are the features corresponding to the tongue and the combination of glottis
and velum. Thus, K = 3 in our experiments.

40As we have previously noted, our model does not explicitly model reduction in gestural magnitudes
through AF substitution; this has been explored in other works [Livescu and Glass, 2004a,b; Jyothi et al.,
2011]) but is not modeled explicitly here. However, this is implicitly modeled through the use of features
derived from AF classifiers used as feature functions in our feature maps; see subsequent sections.
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by |v| the number of phones in the canonical pronunciation of v. In order to represent

pronunciations in terms of articulatory feature streams, we assume that we have access to

a phone-based pronunciation dictionary that maps each word v in the lexicon (V) to its

corresponding sequence of phone targets π(v) ∈ P∗, where P represents the phone set.

We then map the corresponding phone targets to corresponding articulatory feature targets,

expanding from the mapping defined in [see Livescu, 2005, Appendix B] to ensure a unique

AF configuration for each phone. We denote the corresponding sequence of articulatory

targets for stream i as (σi1, σ
i
2, · · · , σi|v|). For a given hypothesized start and end time,

(1 ≤ s < e ≤ T ), we denote a valid articulatory segmentation s of v as the matrix of

values that represent the start and end times for each of the AF states: si,j = sij where

sij is the start time of the j th unit in stream i (i.e. σij). Thus, s = si1 < si2 < · · · <

si|v| < e, so that the state j in stream i extends from t = sij to t = sij+1 − 1, where

si|v|+1 = e + 1. We use the notation s ∼ (s, e) to denote an articulatory segmentation s

that begins at frame s and ends at frame e. In order to reduce computational complexity

and eliminate implausible segmentations [Prabhavalkar et al., 2011], we restrict the amount

of asynchrony to some number of states M : For all pairs of streams i, j and for each unit

1 ≤ k ≤ |v| in the pronunciation, the extent of σik must lie between the extents of the

succeeding and preceding M units in all other streams,

sjk−M ≤ sik and sik+1 ≤ sjk+M (5.1)

In particular, setting M = 0 would enforce complete synchrony. Finally, we denote the AF

value for stream i hypothesized at time frame t under segmentation s as pit(s), i.e. pit(s) =

σij for sij ≤ t < sij+1. Our notation is presented in Fig. 5.1.
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Figure 5.1: Non-canonical pronunciation of the word ‘sense’. The glottis and velum desyn-
chronize from the other features, producing an epenthetic [t] and nasalized [eh].
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5.2 Discriminative Model for STD

Our STD function is identical to the one presented in Section 4.3, except that the under-

lying pronunciation model is replaced with an articulatory feature based model; the only

difference between the two models lies in the interpretation of the articulatory segmenta-

tion s (now a matrix instead of the vector represented in Section 4.3) and in the form of the

feature maps. Following [Keshet et al., 2009], our STD function is parameterized by a set

of linear weights w ∈ Rn, as

fw(x, v) = max
s∈S

w · φ(x, v, s) (5.2)

where S is the set of all valid articulatory segmentations and φ(x, v, s) ∈ Rn is a feature

vector. The score in Eq. 4.1 corresponds to the score of the highest scoring segmenta-

tion, s, over all possible start and end times within the utterance x for the term v. The

feature vectors, φ(x, v, s), are composed of a set of pre-defined feature maps {φj}mj=1,

where φj : X ∗ × V∗ × S → Rr. Each feature map takes as input the acoustics x, the term

v, and the articulatory segmentation s and returns an r-dimensional vector. As we noted

previously, although the maximization in Eq. 4.1 is over O(T |v|K) possible segmentations,

the maximizing segmentation can be computed using dynamic programming as described

in [Prabhavalkar et al., 2011].

5.2.1 Feature Maps

We use two types of feature maps analogous to those used in our previous work on

phone-based STD Prabhavalkar et al. [2012] presented in Chapter 4. Our feature maps

are constructed from a set of feature functions ξ : X → Rr computed from the acoustic

frames, x. The use of arbitrary feature functions allows us to leverage diverse sources of
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information; as was the case in the previous chapter, in this work, we use PCA-transformed

log posteriors of MLP classifiers of AFs and phones. We generically denote the extraction

of the feature functions from acoustic vectors as ξ : X → Rr, which takes as its input an

acoustic vector and returns a vector of feature values.

Given a suitable feature function ξ(·), our first set of feature maps compute the confi-

dence that the acoustic frames correspond to the hypothesized configurations of AFs:

φ1,q1,··· ,qK =
1

e−s+1

e∑
t=s

ξ(xt)δ[p
1
t (s) = q1 ∧ · · · ∧ pKt (s) = qK ] (5.3)

where each qi ∈ Qi is a possible value that can be assigned to the ith AF stream and δ[a] = 1

if the condition a is true and 0 otherwise. Thus, we have |Q1| × · · · × |QK | features maps

of the first type, each of which is a vector of length equal to the length of ξ.

The second set of feature maps correspond to AF state transitions, capturing the specific

characteristics of the acoustics at AF transitions,

φ2,i,qi1,q
i
2

=
1

e−s+1

e∑
t=s+1

ξ(xt)δ[p
i
t−1 = qi1 ∧ pit = qi2] (5.4)

where qi1, q
i
2 ∈ Qi are possible states for stream i. As in Equation 5.3, each feature map is

a vector of length equal to the length of ξ with a total of
∑K

i=1 |Qi|
2 feature maps of this

type. As before, the feature maps in Equations 5.3 and 5.4 are normalized by the length

of region in which the term has been hypothesized, in order to make scores comparable

across different segment lengths. Also, note that if the model contains only a single stream

(K = 1), whose values correspond to the phoneme sequence in the term’s pronunciation,

then the resulting feature maps are identical to those used in our previous STD approach

using a phone-based model presented in the previous chapter (Section 4.3.1).
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5.3 Experiments

Our experimental setup is identical to the setup in the experiments presented in Sec-

tion 4.5 on subsets of Switchboard [Godfrey et al., 1992]: we evaluate performance ob-

tained by training on four sets containing 500–5000 utterances drawn from Switchboard

sets 23–49, parameters are tuned on the 40 term development set and results are reported on

the test set containing 60 terms. For each term in the development and test sets, we consider

20 utterances containing the term (positive utterances) and 20 utterances that do not contain

the term (negative utterances), drawn from Switchboard sets 20–22. Feature functions ξ(x)

are modeled as ‘tandem’ feature projections onto the top 39 prinicipal components using

PCA of the log-posteriors from four MLPs trained to predict L, T, G configurations, and

phones, which serve as feature functions in our discriminative STD systems (after append-

ing a constant bias term, so that ξ(x) = 40) and as acoustic features in our GMM-HMM

baselines (monophone and triphone keyword-filler models, as described in Section 4.5). In

order for our results to be comparable with the baselines, we model each AF label using

3-state models. The discriminative models are trained to optimize AUC using the algorithm

described in Figure 4.5, suitably adapted to include articulatory segmentations, instead of

the phone segmentations used in Chapter 4. More details can be found in Section 4.5.

Expanding the Phone to Articulatory Feature Mapping

As mentioned in Sec. 5.1, we determine the pronunciation of the word in terms of its

articulatory feature representations by mapping phone-based pronunciations to their cor-

responding articulatory configurations using a deterministic mapping [see Livescu, 2005,

Appendix B]. However, under this mapping, some phone configurations are mapped to the
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same articulatory feature configurations (e.g., /r/ v.s. /er/). In pilot experiments, we ob-

served that this had a detrimental effect on system performance in our articulatory feature-

based systems. We therefore modified the mapping in [Livescu, 2005] by expanding the set

of labels for the configurations of glottis-velum (G labels; adding 5 new labels) that ensured

that every pair of phones that would have been mapped to the same L, T, G configuration

under the mapping in [Livescu, 2005] now differed in the value of the G label. Thus, no

two phones in our system are mapped to the same L, T, G configuration.

5.3.1 Results I: Incorporation of AF-based Pronunciation Model

We present results for each of the four training sets, which compare performance ob-

tained using the monophone and triphone baselines (with acoustic models as tandem fea-

tures), and the discriminative phone-based STD model (Chapter 4) against the AF-based

discriminative systems allowing either one state of asynchrony (Disc-AF-1; M = 1) or no

asynchrony (Disc-AF-0; M = 0), and assigning 3 states per AF label. Note that the sys-

tem with no asynchrony is not identical to a discriminative phone-based system, because

of the difference in the form of the feature maps modeling transitions. The results are

summarized in Table 5.1. As can be seen in the table, all of the discriminative systems sig-

nificantly outperform the monophone HMM baseline. For all training set sizes except 2500,

the discriminative systems also outperform the context-dependent HMM baseline. This is

particularly encouraging, because our discriminative systems are context-independent. In-

corporating context-dependence is straightforward in our work, and we leave this for future

work. The AF-based systems significantly outperform the phone-based discriminative sys-

tem in the lowest-data case (p < 0.01). In the highest data case, the difference between

Disc-AF-1 and Disc-Phone is at a significance level of p = 0.033. The AF-based system
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System 500 1000 2500 5000
HMM-mono 0.810 0.827 0.846 0.857

HMM-tri 0.828 0.855 0.899 0.920
Disc-Phone 0.874∗ 0.901∗ 0.917 0.933∗

Disc-AF-0 0.885∗,† 0.897∗ 0.914 0.937∗

Disc-AF-1 0.888∗,† 0.898∗ 0.915 0.939∗,†

Disc-Phone-AF-1 0.891∗,† 0.905∗ 0.920∗ 0.940∗,†

Table 5.1: AUC averaged over 60 query terms in the test set for systems trained on 500–
5000 utterances. (∗, †) represent significant (p ≤ 0.05) improvements over HMM-tri and
Disc-Phone, respectively, using a one-tailed Wilcoxon signed-ranks test. Performance
of the discriminative systems relative to the monophone HMM system (HMM-mono) is
strongly significant (p ≤ 0.001) across all training set sizes.

with asynchrony (Disc-AF-1) slightly outperforms the synchronous system (Disc-AF-0)

across data set sizes, but the differences are insignificant (the most significant difference

between Disc-AF-0 and Disc-AF-1 is at a significance level of p = 0.052 in the lowest-data

setting).

Since both phone- (Disc-Phone) and feature-based (Disc-AF-1) systems are themselves

linear models, it is straightforward to combine them into a single linear model (Disc-Phone-

AF-1):

fw(x, v) = max
sP,sAF

wP · φP(x, v, sP) + wAF · φAF(x, v, sAF) (5.5)

where, we constrain sP and sAF to have the same start and end times. The weights wP and

wAF are initialized using the fully trained Disc-Phone and Disc-AF-1 models respectively.

We then train the entire model discriminatively. This system combination (Disc-Phone-

AF-1) improves performance further, significantly outperforming HMM-tri in every case

and the discriminative phone-based system in the lowest- and highest-data cases.
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Figure 5.2: Fraction of hypothesized asynchronous states vs. “canonicalness” of the pro-
nunciation, for the 100 query terms in the development and test sets in the 5000-utterance
condition. Each point represents one of the 100 query terms in the development and test
sets.
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5.3.2 Analysis of Asynchronous AF-based System

Since we did not find a significant difference in performance betwen the synchronous

(M = 0) and asynchronous (M = 1) AF-based STD systems, we further analyze the be-

havior of the Disc-AF-1 system to determine what impact, if any, asynchrony had on the

system in terms of the situations in which the system hypothesizes asynchrony. We com-

puted unconstrained phonetic decodings using the monophone HMM-based system trained

on 5000 utterances (128 Gaussian components per mixture) on the portion of the positive

utterances corresponding to the query term. The phonetic accuracies of these decodings

against the canonical pronunciations give a rough measure of pronunciation variation in

utterances of that term.41 We then examined the segmentations hypothesized by the AF-

based system to determine the percentage of states that are asynchronous. In Figure 5.2 we

plot this percentage of asynchronous states versus the “canonicalness” measure for each

keyword in the development and test sets. As we would expect, the plot seems to indicate

that the AF-based system hypothesizes a greater amount of asynchrony for utterances with

higher pronunciation variation. Note that the systems were not trained using any infor-

mation of ground truth or estimated articulatory segmentation information. This provides

some evidence for the fact that our systems are indeed modeling some of the pronunciation

variation that arises from gestural overlaps.

5.4 Results II: Effect of Allowing Addtional Asynchrony in the Models

All of the AF-based pronunciation models presented thus far have allowed for up to

one state of asynchrony (M = 0 or 1) in the model. The final experiment presented in

41Although factors besides pronunciation variation, for example background noise, might also be respon-
sible for low phone recognition rates, phone recognition accuracies are likely to be highly correlated with
pronunciation variation.
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System 1000 2500 5000
Disc-AF-0 0.897 0.914 0.937
Disc-AF-1 0.898 0.915 0.939
Disc-AF-2 0.896 0.917 0.939

Table 5.2: AUC averaged over 60 query terms in the test set for systems trained on 1000–
5000 utterances.The differences between the various systems are not significant (p > 0.05)
using a one-tailed Wilcoxon signed-ranks test.

this chapter examines the effectiveness of allowing the model to hypothesize additional

asynchrony by allowing up to two states of relative asynchrony between adjacent feature

streams M = 2. Unfortunately, these models are significantly slower to train and evaluate

than the models with M = 0 or 1 (cf., Section 3.5.3). The results of these experiments are

reported in Table 5.2 when trained on sets of size 1000–5000 utterances. As can be seen

in the table, there were no significant differences in the performance of the model as the

amount of allowed asynchrony was increased.

There are two possible explanations of the results in Table 5.2. One possibility is that

some of the variation is already being captured in the MLP feature detectors at the level of

the ‘acoustic model’, thus effectively hiding it from the pronunciation model. The second

possibility is that the lack of significant differences between the various systems is an arti-

fact of our evaluation paradigm; our STD setup is designed to detect whether a small set of

words can be accurately detected from a limited set of speech utterances. It is possible that

the models that allow for additional relative asynchrony do indeed model the underlying

pronunciation variability, but that this occurs rarely enough in our set that it does not impact

overall performance.
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System Async. Frames in Async. Frames in Async. Frames in
All Examples Positive Examples Negative Examples

Disc-AF-1 9.5% 4.8% 13.5%
Disc-AF-2 6.9% 3.0% 10.2%

Table 5.3: Analysis of asynchrony in the Disc-AF-1 and Disc-AF-2 systems. The table lists
the fraction of frames corresponding to the maximizing articulatory segmentation that are
asynchronous for (a.) all examples, (b.) positive examples, and (c.) negative examples, in
the development and test set.

In order to investigate the second possibility further, for each utterance (x) and query

term (v) in the development and test sets, we examine the maximizing articulatory seg-

mentation: s∗ = argmaxs∈S w · φ(x, v, s). For each frame of this segmentation (s∗) we

determine the percentage of frames which are asynchronous (at least one articulatory fea-

ture stream is de-synchronized from one of the other feature streams). In Table 5.3, we list

percentage of asynchronous frames in (a.) all utterances in the development and test sets,

(b.) positive utterances in the development and test sets, and (c.) negative examples in the

development and test sets, for the AF-based systems trained on 5000 utterances.

Some interesting observations can be made based on the results in Table 5.3. First ob-

serve that the amount of asynchrony hypothesized in the negative examples is greater than

in the positive examples. Intuitively, for negative utterances, the models are trying to find

the best ‘fit’ for the query term in an utterance where the term does not exist; hypothesizing

additional asynchrony provides the model with additional opportunities to find a good fit.42

In other words, although all segmentations score poorly, more asynchronous segmentations

might score higher on average. This might also explain why the percentage of asynchrony

hypothesized in the Disc-AF-2 system is less than that in the Disc-AF-1 system: a model

with additional flexibility (M = 2 vs. M = 1) provides more opportunities to find high

42Informally speaking, the model tries to make the best of a bad situation.
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System Async. Frames in Async. Frames in Async. Frames in
Disc-AF-2 All Examples Positive Examples Negative Examples

Relative asynchrony = 1 4.6% 2.2% 6.6%
Relative asynchrony = 2 2.3% 0.8% 3.6%

Table 5.4: Analysis of asynchrony in the Disc-AF-2 system trained on 5000 utterances
in terms of how much relative asynchrony is hypothesized in the frames of the maximiz-
ing segmentation for terms in the development and test sets. The entries in the table cor-
responding to “Relative asynchrony = 1” indicates the fraction of frames for which the
relative asynchrony between any pair of feature streams is only one state. Entries corre-
sponding to “Relative asynchrony = 2”, on the other hand, indicate the fraction of frames
for which the the maximum allowed asynchrony of two states is hypothesized in the maxi-
mizing segmentations.

scoring segmentations than a more constrained model; during training, the system might

therefore learn parameter settings that constrain the amount of hypothesized asynchrony,

in general. In the case of the positive examples on the other hand, a well-trained model

would score correct segmentations of the words more highly than incorrect segmentations;

we may speculate, under this interpretation, that the values in the table for the positive

examples might be representative of the amount of asynchrony in conversational speech.

Finally, in Table 5.4 we further analyze the Disc-AF-2 system trained on 5000 training

utterances to determine what fraction of the asynchronous frames actually hypothesize the

maximum allowed relative asynchrony of two states. The table lists the fraction of states in

the maximizing segmentations that correspond to at most one state of relative asynchrony

between any pair of states (“Relative asynchrony = 1”) and the fraction of states where

the maximum allowed asynchrony is hypothesized (“Relative asynchrony =2”). As can be

seen, a very small fraction of positive examples actually hypothesize two states of asyn-

chrony.
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Although the analyses presented in this section offer interesting insights into the be-

havior of the asynchronous AF-based systems, they do not completely explain why the

asynchronous AF-based systems did not outperform the synchronous AF-based systems

unlike in previous work on lexical access tasks [Livescu, 2005]. Performance might be

improved further by the addition of a more detailed model of articulatory asynchrony; such

a model can be incorporated into our discriminative framework through the use of more

elaborate feature maps, thus allowing for a more constrained model of asynchrony. For

example, this would allow us to model the dependence of asynchrony on factors such as

position within the word, speaking rate, unigram language model probability of the word,

or other factors which are known to correlate with pronunciation variation.

5.5 Summary

In this chapter we presented results on spoken term detection in the setting of limited

training data using a discriminative articulatory feature-based pronunciation model. In

experimental results, we found that the proposed system outperformed baseline HMM-

based systems across a range of training set sizes and the discriminative phone-based STD

systems in some settings. By analyzing the asynchronous AF-based pronunciation model,

we observed that that the system appears to hypothesize a greater amount of asynchrony

for examples which seem to contain more pronunciation variation, although we do not see

significant differences in performance when the model is allowed to hypothesize additional

asynchrony between AF streams.
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CHAPTER 6: LEVERAGING EXISTING LVCSR-BASED SPOKEN
TERM DETECTION SYSTEMS FOR DISCRIMINATIVE SPOKEN

TERM DETECTION

The experiments on spoken term detection (STD) presented in the last two chapters

demonstrated the effectiveness of the proposed discriminative STD system in low-resource

conditions in experiments on a subset of the Switchboard database of conversational tele-

phone speech [Greenberg et al., 1996]. One of the significant drawbacks of the approach

presented in Chapters 4 and 5 is that the model must be re-evaluated for each term of

interest. This is a direct consequence of the fact that the spoken term detection function,

fw(x, v), is computed explicitly with respect to a given term of interest. Thus, the complex-

ity of evaluating a new query term scales linearly with the size of the test corpus, which

might be prohibitively slow for large datasets. We end the thesis by describing how our

techniques for STD can be adapted in situations where existing large vocabulary continu-

ous speech recognizers (LVCSR) are available.43

43The research described in this chapter was supported by the Intelligence Advanced Research Projects
Activity (IARPA) via Department of Defense US Army Research Laboratory contract number W911NF-12-
C-0014. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. Disclaimer: The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of IARPA, DoD/ARL, or the U.S. Government.

The experiments in this chapter are performed on data from the IARPA Babel Program Cantonese lan-
guage collection release babel101b-v0.4c [IAR, 2011]. The baseline system and the STD index used in our
experiments were built by the Swordfish team – a joint collaboration between the International Computer
Science Institute (ICSI), Columbia University, Northwestern University, The Ohio State University, and the
University of Washington – for the BABEL evaluation. In particular, we acknowledge the contribution of
Steven Wegmann, Arlo Faria and Adam Janin at ICSI for help in setting up the baseline STD system. We
also thank Van Hai Do (Nanyang Technological University, Singapore) and Joo-Kyung Kim (The Ohio State
University) for the toneme posterior features and the bottleneck features used in our experiments. Finally,
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Another aspect of the discriminative STD approach that we investigate in this chapter

is whether the process of training pair selection (i.e., selecting pairs of positive and nega-

tive utterances, that do and do not contain specific terms of interest) has an impact on the

effectiveness of the learned STD system. In particular, we investigate whether performance

can be improved by specifically selecting utterances that are incorrectly hypothesized by

an LVCSR system to contain particular terms as negative examples for that term.

Further, we examine whether the performance of the discriminative (acoustic-only)

STD techniques presented in previous chapters can be improved further by leveraging ex-

isting LVCSR-based STD systems. We end the chapter, by reporting the results of pilot

STD experiments using articulatory feature-based (AF-based) pronunciation models for

Cantonese.

In Section 6.1, we begin with a description of the dominant STD paradigm based on the

use of trained LVCSR systems. We provide details of the baseline system used in this chap-

ter, which is applied to the task of STD on conversational Cantonese telephone speech, in

Section 6.3. We describe the experimental setup used in our experiment in Section 6.4 and

describe our experimental results with phone-based discriminative models in Section 6.5

and AF-based discriminative models in Section 6.7. In Section 6.8 we compare the re-

sults of our discriminative spoken term detection experiments in English and Cantonese.

In Sections 6.9 and 6.10 we describe how the proposed techniques for AUC optimization

can be adapted in order to optimize averaged term weighted value (ATWV) [Fiscus et al.,

2007], which is the evaluation metric used in the IARPA Babel evaluation [IAR, 2011]. We

conclude with a summary of the work presented in this chapter in Section 6.11.

some of the work presented in this chapter developed out of a collaboration with Yanzhang (Ryan) He; his
assistance, particularly in developing the scoring scripts, is gratefully acknowledged.
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Figure 6.1: A schematic representation of the dominant paradigm in spoken term detec-
tion (STD) ([Miller et al., 2007; Vergyri et al., 2007; Akbacak et al., 2008] inter alia.). A
baseline LVCSR system is first trained using a corpus of training data. The trained LVCSR
system is then used to generated word lattices for the evaluation data. These lattices are
then converted into a data structure known as the index that is used for subsequent pro-
cessing. Detecting query terms is accomplished by searching the index to find instances of
the respective terms. The advantage of this approach is that the evaluation speech database
does not need to be re-processed in order to detect evaluation query terms.

6.1 LVCSR-based STD systems

The dominant paradigm for STD ([Vergyri et al., 2007; Miller et al., 2007; Akbacak

et al., 2008] inter alia) relies on the availability of trained LVCSR systems to generate

speech indices: a compact representation of the set of words hypothesized to be present in

the speech utterances, along with a score that can be used to rank these hypotheses. Thus,

the problem of STD can be reduced to the problem of searching and retrieval from the

speech index. In the following sections, we discuss how the availability of such speech

indices can be leveraged in our discriminative STD systems. A schematic representation of

the LVCSR-based STD process appears in Figure 6.1. A detailed description of each of the

steps in Figure 6.1 is deferred until Section 6.3.
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Formally, we define a speech index, I, as a set of five-tuples, I ⊆ X ∗×V×N×N×[0, 1],

where X ∗ is the set of valid speech utterances and V is the lexicon of words,

I = {〈xi, vi, si, ei, P (vi|xi)〉}Ni=1 (6.1)

The elements of the five-tuples, 〈xi, vi, si, ei, P (vi|xi)〉, represent respectively, the speech

utterance xi ∈ X ∗, the word vi ∈ V hypothesized to be present in the utterance by the

LVCSR system, the start and end times (si, ei) within the utterance where the word is

hypothesized to be present, and the posterior probability, P (vi|xi), of the word in the ut-

terance which represents the system’s ‘confidence’ that the word was uttered in the given

position in the utterance.44

6.2 Leveraging Speech Index for Discriminative STD

As we have discussed previously, the main limitation of the proposed discriminative

STD approach, presented in Chapters 4 and 5 is that evaluating a dataset for the presence

or absence of a particular speech term, v ∈ V∗, requires us to re-evaluate every speech

utterance in the dataset for that particular term, fw(x, v). Although this process can be

trivially parallelized since scores assigned to specific utterances are independent of each

other, the process may still be prohibitively slow for evaluating large speech datasets. The

approach we take in this chapter is to use the available speech index to speed-up the process

by effectively re-scoring the entries in the speech index. It should be stressed that this re-

scoring process is carried out once for the entire index. Once this has been completed, the

system can be evaluated to detect arbitrary query terms across the entire speech database.

44Each entry in the index corresponds to a particular arc in a decoded LVCSR lattice for that utterance.
The posterior probability, P (v|x), for that arc is computed by accumulating the posterior probability of all
paths in the lattice that pass through that arc.
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6.2.1 Re-scoring the Speech Index

Assume that we have access to a trained discriminative STD system, fw(x, v), parametrized

by the weights w in the model as described in the previous chapters, and a speech index I.

We construct a new speech index Idisc from the original index I as follows,

Idisc = {〈xi, vi, si, ei, fw(xi, si, ei, vi)〉}Ni=1 (6.2)

Note that the term fw(xi, si, ei, vi) appearing in Equation 6.2 corresponds to the score from

our discriminative STD systems presented in Chapters 4 and 5,

fw(xi, si, ei, vi) = max
s∼(si,ei)

w · φ(xi, vi, s) (6.3)

Computing the re-scored speech index, Idisc, is extremely fast and efficient: in Equa-

tion 6.3, we only consider (articulatory or phone) segmentations that begin and at at the

position where the particular word vi was hypothesized in the utterance.

Evaluating the index to detect a particular query term v = (v1, v2, · · · , vM), where each

vj ∈ V , proceeds as follows:

1. Identify for each of the constituent words, vj (1 ≤ j ≤ M ), in the query term, all

candidate entries in the index that correspond to that particular term,

Cand(vj) =
{〈

xji , vj, s
j
i , e

j
i , fw(xji , s

j
i , e

j
i , vj)

〉}N(vj)

i=1
(6.4)

2. Given the set of constructed candidate sets, Cand(vj), identify entries across the

candidate sets, which occur within a time-tolerance, ∆, of each other.45 In other

words, we construct the joint candidate set, Cand(v):

Cand(v) =
{〈

xi, v, s
1
i , e

M
i , fw

joint(xi, v)
〉}N(v)

i=1
(6.5)

45In accordance with the BABEL IARPA specifications, we set ∆ to correspond to 0.5 seconds in these
experiments.

112



where,
〈
xi, v, s

1
i , e

M
i , fw

joint(xi, v)
〉
∈ Cand(v), if and only if,

〈
xi, vj, s

j
i , e

j
i , fw(xi, s

j
i , e

j
i , vj)

〉
∈ Cand(vj) (6.6)∣∣∣∣∣(sji + eji )

2
− (sj+1

i + ej+1
i )

2

∣∣∣∣∣ ≤ ∆ for all, (1 ≤ j ≤M − 1) (6.7)

fw
joint(xi, v) =

1∑M
j=1(e

j
i − s

j
i + 1)

M∑
j=1

(eji − s
j
i + 1)fw(xi, s

j
i , e

j
i , vj) (6.8)

In other words, the conditions expressed in Equations 6.6–6.8 can be re-stated as

requiring that each of the individual words in the the query term, v, be present in

the same utterance (Equation 6.6) and that the individual terms must be located in

close proximity (Equation 6.7) and that the joint score for the query term is the sum

of individual candidate scores weighted by the number of frames, in order to be

consistent with the fact that the discriminative system scores fw(xi, s
j
i , e

j
i , vj) are

individually normalized by their respective lengths (Equation 6.8).

3. The entries in the candidate set, Cand(v) , are then returned by the system as putative

hits of v detected in the speech database if they score higher than a user-defined

threshold. As per the Babel program specifications, the particular entries are judged

to be correct detections if the mid-point of the detected term, (s1i+e
M
i )

2
, is within a

tolerance of (+/−)∆ frames from the mid-point of a true occurence of the term, and

are otherwise declared to be a false alarms.

6.3 Description of the Baseline System

Our experiments are conducted using data from the IARPA Babel Program Cantonese

language collection release babel101b-v0.4c. The LVCSR system used in our experiments

is a discriminatively trained (Minimum Phone Error [Povey and Woodland, 2002]) cross-

word triphone system with speaker-adaptation, which represents a strong baseline that we
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compare performance against.46 We describe the baseline system in detail in the follow-

ing sections, by elaborating on each of the steps that were indicated in Figure 6.1. The

training of the baseline system proceeds in two stages, which are described separately in

Section 6.3.1 and 6.3.2, respectively.

6.3.1 LVCSR Training: First Stage

In the first stage, “base” features are extracted from the training utterances which consist

of 12th order MFCC coefficients with energy. The base features are warped with speaker-

dependent Vocal Tract Length Normalization (VTLN) [Lee and Rose, 1998] warp factors

and then mean and variance normalized. The base features are used to train a context-

independent monophone HMM system using the standard HTK recipe [Young et al., 2002].

Phones are modeled as 3-state left-to-right HMMs, and output distributions are modeled as

mixtures of Gaussians with diagonal covariance. This system, after training, is used to

force-align the training data, to obtain monophone target labels for each frame of speech in

the training set.

Pitch Feature Extraction

Pitch features are extracted from the training utterances using the Subband AutoCor-

relation Classification (SAcC) pitch tracker [Lee and Ellis, 2012] and processed through a

multilayer perceptron (MLP) to predict quantized pitches in the range 60 to 400Hz (plus a

“no voice” class). After smoothing the MLP outputs, two pitch features are generated: (a.)

the log of the pitch and (b.) the log probability of voicing for each of the speech utterances.

46As we mentioned in the introduction to this chapter, the baseline system was developed by the Swordfish
team for the IARPA Babel evaluation [IAR, 2011]; their help and support is gratefully acknowledged.
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Bottleneck Feature Training

Bottleneck features [Grézl et al., 2007] are computed using a hierarchical network con-

sisting of two MLPs as follows. The “base” MFCCs and the two pitch features from the

current frame are concatenated together with the features from the preceding and succeed-

ing 7 frames (15-frames context), followed by the application of a discrete cosine transform

(DCT) to obtain 16 coefficients at each frame. These 240 coefficients form the inputs to the

first, seven-layer MLP which is used to generate 60-dimensional bottleneck features. This

MLP is pre-trained layer-by-layer using restricted Boltzmann Machines (RBMs) [Hinton

et al., 2006].

The 60-dimensional bottleneck features from the first MLP are used as inputs to the

second, five-layer MLP, after concatenating them with frames that are at positions -10, -5,

+5, +10 from the current frame to obtain a 300-dimensional input layer representation. The

weights of the second MLP are randomly initialized following which the MLP is trained

to predict the monophone targets generated as part of the first-stage HMM training. This

second MLP is used to produce 30-dimensional bottleneck features corresponding to each

frame.

The “base” 13-dimensional MFCCs and pitch features, together with their deltas, and

double-deltas are appended together with the 30-dimensional bottleneck features (from

the second MLP) to produce a 75 dimensional feature vector that is used for subsequent

second-stage HMM training (“final” features).

Speech/ Non-speech Detector

An MLP is trained to predict whether a given frame in the speech waveforms corre-

sponds to speech or not. The MLP targets are obtained as part of the first-stage HMM
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training. This detector is used to perform a segmentation of the speech utterances into

speech and non-speech regions (with corresponding word and phone transcriptions). These

re-segmented speech waveforms are used for the second-stage HMM training.

6.3.2 LVCSR Training: Second Stage

The second stage HMM system is trained on the “final features” after re-segmenting

the training data into speech and non-speech regions. This system is a conventional cross-

word triphone system built using HTK [Young et al., 2002]. The system uses the standard

HTK recipe: a monophone system is initially trained and cloned to form initial triphone

models; triphone states are then clustered using phonetic decision trees to yield tied-state

triphones. Observations are modeled as mixtures of Gaussians (diagonal covariance), with

16 components per mixture. The system is then discriminatively trained using the MPE

criterion [Povey and Woodland, 2002]. In order to improve the modeling of covariance, a

global semi-tied covariance (STC) transform [Gales, 1998] is applied to these models. The

second-stage HMM system is used for subsequent processing steps of lattice and index

generation.

6.3.3 Lattice Generation

A first-pass decoding from the second-stage HMM system is performed, using a trigram

Kneser-Ney smoothed language model trained on the data provided as part of the BABEL

language pack, to generate one-best hypotheses from the system. Next, speaker adapta-

tion is performed using the one-best hypotheses by estimating maximum likelihood linear

regression (MLLR) transforms [Leggetter and Woodland, 1995] on the data. Second-pass

lattices are then generated for all of the data after speaker-adaptation. These lattices are

used to generate the index.
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6.3.4 Index Generation

The speech index, I, is computed from the second-pass lattices. For a given utterance,

x, every lattice arc is included as an entry (〈x, v, s, e, P (v|x)〉) in the index: the start and

end times (s, e), and the hypothesized word, v, correspond to the lattice arc. The posterior

probability, P (v|x), is computed by summing together the posterior probability of all paths

in the lattice that pass through that arc. Multiple entries, with the same start-time, end-time

and hypothesized word are consolidated together and represented as a single entry in the

index whose posterior score is obtained by adding together the individual posterior scores.

6.3.5 Query Term Detection in Baseline System using the Index

Given a query term, v = (v1, v2, · · · , vM), the process of retrieval of the term is similar

to the process described in Section 6.2.1 and is summarized briefly below:

1. Identify for each of the constituent words, vj (1 ≤ j ≤ M ), in the query term, all

candidate entries in the index, I, that correspond to that particular term,

Cand(vj) =
{〈

xji , vj, s
j
i , e

j
i , P (vj|xji )

〉}N(vj)

i=1
(6.9)

2. Given the set of constructed candidate sets, Cand(vj), identify entries across the

candidate sets, which occur within a time-tolerance, ∆, of each other. In other words,

construct the joint candidate set, Cand(v):

Cand(v) =
{〈

xi, v, s
1
i , e

M
i , P (v|xi)

〉}N(v)

i=1
(6.10)
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Set Size Notes
Training 6.5 hr Gender balanced (Generated by Adam Janin at ICSI)

Development 1.65 hr Demographically balanced (IBM conversational heldout set)
Evaluation 1.85 hr Gender balanced (Generated by Adam Janin at ICSI)

Table 6.1: Details of the training, development and evaluation sets used in the experiments
described in this section. All sets are extracted from the babel101b-v0.4c data [IAR, 2011].

where,
〈
xi, v, s

1
i , e

M
i , P (v|xi)

〉
∈ Cand(v), if and only if,

〈
xi, vj, s

j
i , e

j
i , P (vj|xi)

〉
∈ Cand(vj) for all, (1 ≤ j ≤M) (6.11)∣∣∣∣∣(sji + eji )

2
− (sj+1

i + ej+1
i )

2

∣∣∣∣∣ ≤ ∆ for all, (1 ≤ j ≤M − 1) (6.12)

P (v|xi) = min
j
P (vj|xi) (6.13)

It should be noted that the computation of the posterior for the entire query term, P (v|xi),

is approximated as the minimum of the individual posteriors for each of the constituent

terms, P (vj|xi). This is an approximation [Miller et al., 2007] necessitated by the fact that

the lattices are discarded after index generation.

6.4 Experimental Setup

In order to determine the effectiveness of the proposed discriminative systems we con-

duct experiments on the IARPA Babel Program Cantonese language collection release

babel101b-v0.4c. Since the baseline GMM-HMM system is trained on the ‘training’ por-

tion of this data (approximately 50hrs of speech data), we create a separate (disjoint) train-

ing, development and evaluation sets using the babel101b-v0.4c dev data (the ‘full’ BA-

BEL development set). We refer to these three sets as train, development and evaluation

respectively in subsequent sections (not to be confused with the ‘original’ BABEL training,

development and evaluation sets). Details of these three sets appear in Table 6.1.
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We use a set of ∼300 terms (development terms; chosen by the Babelon team at

Raytheon BBN technologies) and 1000 terms (evaluation terms) which are used for eval-

uating STD performance on the development and evaluation sets respectively. Since the

evaluation is restricted to a subset of the original BABEL development data, not all of the

development and evaluation query terms occur in our sets. Only 115 of the 300 develop-

ment terms and 125 of the 1000 evaluation terms occur in our chosen development and

evaluation sets. Since both the baseline and the discriminative systems only score exam-

ples that appear in the baseline speech index, we ignore true occurences of the terms that

do not appear in the index since these cannot be detected by either the baseline or by our

discriminative systems.

6.4.1 Training Discriminative Systems: Leveraging the Index

All discriminative systems are trained on the data in the 6.5 hour training set. Since

the discrimnative systems require the creation of pairs of positive and negative training

instances, we consider two possible ways of generating these sets. In both cases, posi-

tive examples are extracted using the time-aligned word transcripts provided with the data.

We extract each word that appears in the training data as a positive example for that word

(60473 training examples). Negative examples corresponding to each positive examples

are extracted using two different methodologies to examine their impact on system per-

formance: in particular, whether performance can be improved by selecting challenging

negative examples present in the index, I:

• Methodology I: As in the experiments presented in Chapters 4 and 5, we randomly

select an utterance that does not contain the word in the positive example as a corre-

sponding negative examples.
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• Methodology II (impNegSel): Instead of randomly selecting negative examples

from the set of all utterances that do not contain a given word, we restrict the can-

didate set of negative examples to those utterances in the index where the word is

incorrectly hypothesized to exist (i.e., false alarms in the index). Intuitively, these

examples represent challenging utterances that are likely to be acoustically confus-

able with the words in the query term. We refer to the systems trained using this

methodology with the descriptor impNegSel (improved negative selection) in the re-

sults.

Feature Maps and Feature Functions in Discriminative Systems

The feature maps used in the discriminative phone- and feature-based systems are ex-

actly the same as those described in Sections 4.3.1 and 5.2.1 which aim to capture local-

frame level dependencies between the hypothesized sub-word labels and dependencies

across adjacent frames. We compare performance obtained using two kinds of feature

functions ξ(x) : (a.) log posteriors of toneme classes (TonemeLogPost)47 estimated using

a deep neural network to which we append a bias term (i.e. |ξ(x)| = 131), and (b.) bottle-

neck features computed during the baseline system training (Bottleneck), appended with a

bias term (|ξ(x)| = 31).

6.5 Results: AUC Performance from Discriminative Phone-based Sys-
tem

We report results in terms of AUC averaged across all instances of query terms on the

development and evaluation sets from the baseline and discriminative systems in Table 6.2.

47The vowels in Cantonese are annotated with one of six tones. There are a total of 130 toneme classes in
the dataset.
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System Average AUC Average AUC
Development Set Evaluation Set

HMM-avgACscore 0.616 0.626
HMM-post 0.821 0.844

Disc-TonemeLogPost 0.773∗ 0.810∗

Disc-Bottleneck 0.790 0.792∗

Disc-TonemeLogPost-impNegSel 0.794 0.814∗

Disc-Bottleneck-impNegSel 0.798 0.807∗

Table 6.2: Results of cantonese STD experiments obtained on the development and eval-
uation sets, reported in terms of averaged AUC across all terms in the respective sets.
(∗) indicates a statistically significant difference (p ≤ 0.05) using a one-tailed Wilcoxon
signed-ranks test relative to the HMM-post system. There is no significant difference be-
tween the performance of the system with or without improved negative example selection
(impNegSel).

Since the discriminative systems are effectively ‘acoustic-only’ systems which do not uti-

lize word-level context information such as language model scores, we also report results

obtained using an ‘acoustic-only’ baseline HMM system. Thus, our two baselines are:

(a.) an acoustic-only baseline (HMM-avgACscore) that uses the averaged (over frames)

acoustic-model score for each entry in the index corresponding to the best segmentation

of the pronunciation of the term: 1
e−s+1

maxs p(x|s, π(v)) (b.) the baseline posterior score

(HMM-post): P (v|x) .

As can be seen in the Table, comparing the discriminative phone-based system to the

acoustic-only baseline, the discriminative systems outperform the baseline by large mar-

gins. The stronger HMM baseline, HMM-post, which also has access to word-level context

information in the lattices scores about 2% absolute higher than the discriminative systems

on the development sets and about 4-5% better on the evaluation set. This strongly suggests

that word-level context information is important for good STD performance. Furthermore,

the baseline HMM systems are trained on ∼50 hours of speech data, which is an order of
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magnitude more data than was used to train the discriminative sysetms. In Section 6.6,

we examine the effect of incorporating this additional context into the discriminative mod-

els where we find that interpolating baseline scores with the score from the discriminative

systems results in large gains.

Another observation that can be made when examining the impact of the improved se-

lection of negative examples (impNegSel) is that performance improves slightly, but the

magnitude of the improvement is not consistently high on both the development and eval-

uation sets. The absolute improvement in the Disc-TonemeLogPost system ranges from

2.1% on the development set to 0.4% on the evaluation set, whereas the improvement for

the Disc-Bottleneck system ranges from 0.8% on the development set to 1.5% on the eval-

uation set.

6.6 Results: Interpolating Discriminative System Scores with Baseline
Posterior Scores

In order to determine whether the scores obtained using the discriminative baseline

systems are complementary with respect to the baseline posterior system (HMMpost) we

conduct experiments to determine whether performance can be improved further by linear

interpolation of the scores from the two systems.

Given the scores fwjoint(x, v) (Equation 6.8) and P (v|x) from the discriminative system

and the baseline HMM system for a particular occurrence of a search term, v, we define the

combined interpolated score for that instance as:

fw
comb(x, v) = fw

joint(x, v) + µP (v|x) (6.14)

where, µ ∈ [0,∞) represents the interpolation weight.
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We only report results of the interpolation process (in terms of averaged AUC) for

the discriminative system trained on the bottleneck features, since the systems employing

both toneme log-posteriors and bottleneck features performed similarly (cf., Table 6.2). In

Figure 6.2, we plot performance obtained on the development set as a function of the in-

terpolation weight. As can be seen in the figure, the performance improves significantly

after linear interpolation of scores, increasingly steadily as the interpolation weight in-

creases. Perhaps what is more suprising is the magnitude of the improvement on the de-

velopment set: 7.0% for the Disc-Bottleneck system and 8.4% for the Disc-Bottleneck-

impNegSel system. One explanation of the fact that the system with improved negative

selection improves performance more after interpolation with the baseline might be due

to the fact that the examples that the system learns to ‘separate’ are precisely those ex-

amples where the baseline system incorrectly hypothesizes a given word to be present.

The results on the development and evaluation sets are summarized in Table 6.3. Com-

paring the performance of the two interpolated systems (Interp-HMMpost/Bottleneck and

Interp-HMMpost/Bottleneck-impNegSel), although there was a very significant difference

(p = 0.009) between the two interpolated systems on the development set, there was no sig-

nificant difference between them on the evaluation set (p = 0.139). Individually, however,

each system significantly improved performance over both the baseline system and the in-

dividual discriminative systems trained on Bottleneck features. Overall, the interpolated

systems improve performance over the baseline by between 3.4–4.4%.

6.7 Pilot Experiment: Incorporating AF-based Pronunciation Models

In order to determine whether incorporating an articulatory feature-based pronunciation

model can improve performance on the Cantonese data as well, we conduct experiments on
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Figure 6.2: Performance in terms of averaged AUC obtained by interpolating the baseline
system (HMMpost) with the discriminative systems trained on bottleneck features (Disc-
Bottlenecnect-impNegSel) and (Disc-Bottleneck).
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System Avg. AUC Avg. AUC
Dev. Set Eval. Set

HMM-avgACscore 0.616 0.626
HMM-post 0.821 0.844†

Disc-Bottleneck 0.790 0.792
Disc-Bottleneck-impNegSel 0.798 0.807

Interp-HMMpost/Bottleneck (µ = 15.5) 0.860∗,† 0.878∗,†

Interp-HMMpost/Bottleneck-impNegSel (µ = 29.1) 0.882∗,† 0.888∗,†

Table 6.3: Results of Cantonese STD experiments obtained on the development and eval-
uation sets, reported in terms of averaged AUC. (∗) indicates a statistically significant im-
provement (p ≤ 0.05) using a one-tailed Wilcoxon signed-ranks test over the HMM-post
system. (†) represents a statistically significant improvement (p ≤ 0.05) over either of the
Disc-Bottleneck systems.

the system that uses the bottleneck features as our feature functions. We constructed a map-

ping from Cantonese phoneme categories to corresponding L (6 values), T (16 values) and

G (30 values) labels representing the configurations of the lips, tongue and the combination

of glottis and velum.48 The mapping is presented in Appendix D.49 The AF-based systems

employed feature maps as described in Chapter 5 and were trained to optimize AUC us-

ing the algorithm described in Figure 4.5. The system employs three effective articulatory

feature streams, each of which is modeled using 3-state labels.

We consider a system that allows up to one state of relative asynchrony (M = 1)

(Disc-Bottleneck-AF-1) as well as a system that enforces complete synchrony amongst

the articulatory feature streams (M = 0) (Disc-Bottleneck-AF-0). Our results appear in

Table 6.4.

48The six Cantonese tones were incorporate as a separate stream that was completely synchronized with
the glottis-velum label (G). We gratefully acknowledge the contributions of Eric Fosler-Lussier, Joo-Kyung
Kim and Yanzhang He in devising the initial mapping from Cantonese phoneme categories to corresponding
IPA phonological features and Karen Livescu for helping develop the corresponding mapping from phonemes
to articulatory features.

49Note that tones are not explicitly indicated in the mapping presented in Appendix D
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System Average AUC Average AUC
Development Set Evaluation Set

HMM-avgACscore 0.616 0.626
HMM-post 0.821 0.844

Disc-Bottleneck-Phone 0.790 0.792
Disc-Bottleneck-AF-0 0.782 0.792∗

Disc-Bottleneck-AF-1 0.788 0.787∗

Interp-Disc-Phone/Disc-AF-0 (µ = 6.4) 0.792† 0.794∗

Interp-Disc-Phone/Disc-AF-1 (µ = 19.4) 0.792 0.789∗

Table 6.4: Results of Cantonese STD experiments obtained on the development and eval-
uation sets, reported in terms of averaged AUC. (∗) indicates a statistically significant dif-
ference (p ≤ 0.05) as compared to the HMM-post system using a one-tailed Wilcoxon test
of signed-ranks. (†) indicates a statistically significant difference (p ≤ 0.05) as compared
to the Disc-Bottleneck-Phone system using a one-tailed Wilcoxon test of signed-ranks.

As can be see in the table, the articulatory feature-based discriminative systems perform

comparably with the phone-based discriminative system on the development set, although

performance on the evaluation set is slightly worse. There does not however seem to be

any significant difference in performance between the articulatory feature-based systems in

terms of whether or not they allow for asynchrony between the articulatory feature streams.

This observation is in line with the experiments presented in Chapter 5, where we did not

observe significant differences between the AF-based systems in terms of whether or not

they allow for articulatory asynchrony.

We also consider interpolation of the scores from the discriminative phone and feature

based system,

fw
AF+Ph(x, v) = fw

AF(x, v) + µfw
Ph(x, v) (6.15)

where µ is the interpolation weight. As can be seen, interpolation between the phone and

feature based systems result in a small gain relative to the phone and feature-based systems.
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On the development set, the difference between Disc-Bottlneck-Phone and Interp-Disc-

Phone/Disc-AF-0 is significant (p = 0.01) but not the difference between Disc-Bottlenck-

Phone and Interp-Disc-Phone/Disc-AF-1 (p = 0.064). There is no difference between the

discriminative systems in terms of performance on the evaluation set, either with or without

interpolation, with all systems performing worse than the baseline HMM-Post system.

6.8 STD Experiments on Switchboard vs. Cantonese

It is interesting to compare the results presented in Chapters 4 and 5 on Switchboard

with those presented in this Chapter on Cantonese. There were two main differences in the

experimental setups between the English and Cantonese experiments. The first is related

to the nature of the the query terms. In our Switchboard experiments, we selected as query

terms words that contained at least 5 phonemes in their canonical pronunciation. The words

in Cantonese (in general), however, are much shorter (often mono-syllabic) than English

words. It is therefore possible that STD for Cantonese is more challenging because there

is less phonetic context in the terms. The second difference lies in the cardinality of the

phoneme sets (∼50 for English; 130 for Cantonese) and hence the increase in the number

of parameters to be estimated. This was particularly an issue with the AF-based systems

because of the large number of G configurations owing to our treatment of Cantonese tones.

In comparing the results in the two sets of experiments, we observe that in both cases the

discriminative systems performed significantly better than ‘acoustic-only’ HMM baselines.

In the Cantonese dataset, where we use a much stronger baseline, trained on an order of

magnitude more data than the discriminative systems, we found that combining the baseline

and discriminative systems resulted in large improvements over the baseline. Arguably, the
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results presented in these experiments validate the proposed discriminative STD approach

presented in this thesis.

The main difference between the results of the experiments in the two setups, however,

was related to the performance of the STD systems employing articulatory feature-based

pronunciation models. In our Switchboard experiments, we observed gains over the dis-

criminative phone-based system in some settings, particularly when the two systems were

interpolated. In the Cantonese experiments, however, we did not see significant improve-

ments over the discriminative phone-based system (except for the interpolated Disc-Phone

and Disc-AF-0 system on the development set, where we saw a small statistically signifi-

cant improvement.) As we have mentioned previously, it is possible that the difference in

performance of the two systems may be related to the length of the query terms (with re-

spect to the number of phonemes in their canonical pronunciations). It is relatively straight-

forward to directly score multi-word query terms within our discriminative STD models,

thus providing additional phonetic context to the model. Additionally, such an approach

would allow the system to model cross-word asynchrony effects, which might lead to im-

proved performance.

6.9 Relationship of Proposed STD Techniques to ATWV Optimization

Before concluding this chapter, we note that the techniques developed in this thesis were

concerned with optimizing the expected area under the receiver operating characteristic. In

this section, we provide a brief sketch describing how the techniques proposed in this thesis

might apply to directly optimizing the average term weighted value (ATWV) [IAR, 2011;

Fiscus et al., 2007] which is the evaluation metric for the BABEL IARPA program.
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6.9.1 Average Term Weighted Value: ATWV

Unlike the AUC used in our experiments, the term weighted value (TWV) and average

term weighted value (ATWV) are defined in terms of a user-defined threshold, θ0. For a

given term v and the threshold, θ, the TWV is defined as [Fiscus et al., 2007],

TWV(v, θ) = 1− average
v
{PMiss(v, θ) + βPFA(v, θ)} (6.16)

= average
v

{
Ncorrect(v, θ)

Ntrue(v)
− β

Nspurious(v, θ)

NNT(v)

}
(6.17)

where PMiss and PFA are the miss and false-alarm rates, β is a term-dependent scalar that

is a measure of the trade-off between the miss rate and the false-alarm rate, Ncorrect(v, θ) is

the number of correct detections of v with a score greater than or equal to θ, Nspurious(v, θ)

is the number of incorrect detections with a score greater than or equal to θ, Ntrue(v) is the

number of occurrences of the term in the corpus, and NNT(v) = Tspeech − Ntrue(v), with

Tspeech being the size of the corpus in seconds.

The ATWV is then defined as the average TWV over all of the query terms,

ATWV = average
v

TWV(v, θ0(v)) (6.18)

where θ0(v) is the (term-dependent) threshold chosen by the user.

6.9.2 Training for the Cantonese Babel Data

We may utilize information in the index, I, generated from the baseline system to

produce a set of candidate word locations, X = {xi, vi, P (vi|xi)}Ni=1, where xi is the set of

frames corresponding to the hypothesized word location, vi is the hypothesized word, and

P (vi|xi) is the posterior probability computed by the baseline system. Every entry in X

will correspond to either a hit or a false alarm. In order to indicate whether a hypothesized
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word is a hit or false alarm, we define the function δ+(x, v) = 1 if and only if x is a hit for

the term v and 0 otherwise and analogously define the function δ−(x, v) = 1 if and only if

x is a false alarm for the term v and 0 otherwise. Finally, let X+(v) denote the number of

positive examples of a term v in the training data. Using our linear STD model, the average

term weighted value, ATWV(θ), for the training data is given by,50

ATWV(θ) =
1

|V |

N∑
i=1

{
1

X+(vi)
δ[fw(xi, vi) > θ]δ+(xi, vi)−

β

Tspeech −X+(vi)
δ[fw(xi, vi) > θ]δ−(xi, vi)

}
(6.19)

Setting β′(v) = β
Tspeech−X+(v)

, the optimal weight vector that maximizes ATWV(θ) in Equa-

tion 6.19 is given by,

w∗(θ) = argmax
w

N∑
i=1

{
1

X+(vi)
δ[fw(xi, vi) > θ]δ+(xi, vi)− β′(vi)δ[fw(xi, vi) > θ]δ−(xi, vi)

}
(6.20)

= argmin
w

N∑
i=1

{
1

X+(vi)
(1− δ[fw(xi, vi) > θ])δ+(xi, vi) + β′(vi)(δ[fw(xi, vi) > θ])δ−(xi, vi)

}
(6.21)

Instead of optimizing Equation 6.21 directly, which is a non-smooth problem, we consider

the following function which is a smooth upper bound to the function in Equation 6.21,

w∗(θ) = argmin
w

N∑
i=1

{
1

X+(vi)
[1 + θ − fw(xi, vi)]+δ

+(xi, vi) + β′(vi)[1− θ + fw(xi, vi)]+δ
−(xi, vi)

}
(6.22)

Equation 6.22, can now be optimized using the MM algorithm [Hunter and Lange, 2004],

analogously to the algorithm presented in Figure 4.5. We are currently in the process of

evaluating whether the techniques briefly sketched in this section are effective for optimiz-

ing expected ATWV.

6.10 Relationship Between AUC and TWV

Apart from training a system directly to optimize ATWV as described in Section 6.9.2,

it may also be possible to exploit the following relationship that exists between the AUC

50Where we assume a fixed threshold θ for all of the query terms.
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and the TWV for a particular term v. Let us denote by AUC(v) the AUC of the classifier

for a particular term. We denote by TPR(v, θ) and FPR(v, θ) the true positive rate and the

false positive rate of the classifier at a threshold θ ∈ R for the terms v, respectively, and by

FPR−1(v, x), the lowest threshold which results in a false positive rate of x ∈ [0, 1] for the

classifier when detecting term v,

FPR−1(v, x) = inf{θ ∈ R : FPR(v, θ) ≤ x} (6.23)

With these definitions we can write,

AUC(v) =

∫ 1

0

TPR(v,FPR−1(v, x)) dx (6.24)

Finally, we denote the term weighted value for a particular term v at a threshold θ as

TWV(v, θ). With these definitions, consider the term weighted value of the classifier for

a particular term v averaged over all possible false positive rates, which we denote by

FP-TWV(v),

FP-TWV(v) =

∫ 1

0

TWV(v,FPR−1(v, x)) dx (6.25)

=

∫ 1

0

{
Ncorrect(v,FPR−1(v, x))

Ntrue(v)
− β

Nspurious(v,FPR−1(v, x))

Tspeech − Ntrue(v)

}
dx

(6.26)

where Equation 6.26 follows from Equation 6.17.

But Ncorrect(v,FPR−1(v,x))
Ntrue(v)

= TPR(v,FPR−1(v, x)); Nspurious(v,FPR−1(v, x)) = |X−(v)|x,

where |X−(v)| is the number of candidate entries in the speech index for the term v which

are not hits for the term. Thus,

FP-TWV(v) =

∫ 1

0

{
TPR(v,FPR−1(v, x))− β |X−(v)|

Tspeech − Ntrue(v)
x

}
dx (6.27)

=

∫ 1

0

TPR(v,FPR−1(v, x)) dx−
∫ 1

0

{
β |X−(v)|

Tspeech − Ntrue(v)
x

}
dx (6.28)

= AUC(v)− β |X−(v)|
2(Tspeech − Ntrue(v))

(6.29)
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Figure 6.3: The figure on the left illustrates the AUC for a particular term. The figure on
the right illustrates the TWV(FP−1(v, x)) as a function of the false positive rate (x). The
model parameters that maximize AUC also maximize the area under the curve on the right.

Finally, note that the second term in Equation 6.29,
β|X−(v)|

2(Tspeech−Ntrue(v))
, is independent of the

parameters of the classifier. Therefore, the set of parameters, w∗, that optimize AUC for

a particular term are the same as the parameters that optimize TWV(v,FPR−1(v, x)) aver-

aged over the range of false positive rates. In other words, across the range of thresholds,

each of which corresponds to a particular false positive rate, a system trained to optimize

AUC will, on average (across thresholds), yield high TWV performance for a particular

term. Similarly, across the range of possible thresholds for each of the terms, a system that

is trained to optimize average AUC across the terms will yield a system that yields high

ATWV performance averaged across the terms. The relationship between AUC and TWV

for a particular term is illustrated in Figure 6.3.
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6.10.1 Pilot Experiments: Evaluating System Trained to Optimize AUC
in Terms of ATWV

The relationship between ATWV and AUC described in Section 6.10 provides us with

a framework for developing systems that yield high performance in terms of ATWV. Es-

sentially, we first train a system to optimize AUC, and then tackle the problem of finding a

term-dependent threshold, θ0(v), that is likely to yield high ATWV performance.

In this section, we describe a set of pilot experiments which use a simple technique

for estimating the threshold θ0(v) using the baseline system. We construct a baseline Can-

tonese STD system following [Miller et al., 2007], which declares a candidate entry in the

speech index
〈
xi, v, s

1
i , e

M
i , P (v|xi)

〉
∈ Cand(v) as a putative detection of the term v if,

P (v|xi) ≥
Ntrue

Tspeech

β
+ β−1

β
Ntrue

(6.30)

Let X+(v) be the set of candidate terms that are declared to be hits according to Equa-

tion 6.30. Given a discriminative system trained to optimize AUC, we evaluate the system

in terms of its ATWV performance by choosing as the threshold θ0(v) so that the dis-

criminative system returns the same number of candidates |X+(v)| as the baseline. In

the following set of experiments, we only evaluate the two discriminative systems Interp-

HMMpost/Bottleneck (µ = 15.5) and Interp-HMMpost/Bottleneck-impNegSel (µ = 19.4)

which appeared in Section 6.6 and which were the best performing systems in terms of

AUC. Our results appear in Table 6.5.

As can be seen in Table 6.5, both interpolated discriminative systems perform compara-

bly with the baseline system in terms of ATWV on the development set. On the evaluation

set, however, the baseline system performs significantly better than the interpolated system
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System ATWV ATWV
Dev. Set Eval. Set

Baseline (HMM-post) [Miller et al., 2007] 0.414 0.488
Interp-HMMpost/Bottleneck (µ = 15.5) 0.399 0.453∗

Interp-HMMpost/Bottleneck-impNegSel (µ = 29.1) 0.426 0.474
Table 6.5: Results of baseline system (HMM-post, described in Section 6.3 with term
dependent thresholding [Miller et al., 2007]) and the interpolated discriminative systems
trained to optimize AUC, evaluated in terms of their ATWV performance. The interpolated
discriminative systems’ thresholds are set so that the systems return as putative hits the
same number of entries (per query term) as the baseline. (∗) denotes a significant difference
(p ≤ 0.05) relative to the Baseline system with term dependent thresholding [Miller et al.,
2007] computed using a one-tailed Wilcoxon test of signed-ranks.

Interp-HMMpost/Bottleneck (i.e. the system without improved selection of negative exam-

ples) (p = 0.02); the difference between the baseline and the Interp-HMMpost/Bottleneck-

impNegSel system (i.e. the system with improved selection of negative examples) is not

significant (p = 0.12) using a one-tailed Wilcoxon signed-ranks test. Another interesting

observation that can be made based on the results in Table 6.5 is that the system with higher

AUC performance (Interp-HMMpost/Bottleneck-impNegSel) also has higher ATWV per-

formance; this observation is consistent with the relationship between AUC and ATWV

that we outlined in Section 6.10.

In summary, the results in Table 6.5 suggest that although the interpolated discrimi-

native systems perform 3.4–4.8% better than the baseline in terms of AUC performance,

they do not significantly outperform the baseline in terms of ATWV performance when

we use the simple threshold determination scheme described in this section. One possible

explanation of this fact is due to the nature of the difference between ATWV and AUC: the

AUC treats all regions of the ROC curve equally; improvements in the true positive rate

at all levels of the false positive rate contribute equally to the AUC. The ATWV, on the

other hand is strongly biased towards the part of the ROC curve corresponding to low false
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positive rates (i.e., the region to the left of the ROC curve appearing in Figure 6.3).51 Thus,

if the improvements in the AUC are a result of improving true positive rates in the part of

the ROC curve corresponding to high false positive rates (i.e., the region to the right of the

ROC curve appearing in Figure 6.3) the AUC improvement will not result in an ATWV

improvement if we use the simple thresholding scheme described in this section. Note,

however, that although in Section 6.10 we showed that the parameters of the classifier that

maximize AUC are the same as the parameters that maximize ATWV averaged across the

range of false positive rates (integrated from 0 to 1), the same relationship holds over any

range of false positive rates. Thus, it may be beneficial to adapt our training algorithms for

the discriminative systems in order to optimize partial AUC in the range of low false posi-

tive rates ([0, f ], where, f � 1) [Rudin, 2009; Agarwal, 2011; Rakotomamonjy, 2012], in

order to try and ensure improvements in ATWV by focusing on the part of the ROC curve

corresponding to the operating point chosen according to the simple thresholding scheme

described in this section. We analyze some of these issues further in Section 6.10.2.

6.10.2 Further Analysis of Systems Trained to Optimize AUC Evalu-
ated in Terms of their ATWV Performance

In order to further examine some of the issues that were raised in the previous section,

we consider an alternative thresholding scheme for determining the threshold θ0(v) using

the baseline system [Miller et al., 2007]: If X+(v) represents the set of candidate terms

that are declared to be putative hits according to Equation 6.30, we return the top-scoring

|X+(v)| + τ entries, where τ ∈ Z is an integer, for the query term v.52 Note that this new

51In fact, generally speaking, the thresholding scheme in Equation 6.30 [Miller et al., 2007] is highly
conservative in declaring an entry in the speech index to be a putative hit for the query term. This is especially
true for those terms which have a large number of candidates in the speech index.

52If |X+(v)|+τ < 0, we return 0 entries. Similarly, if there are fewer candidates than the number required
to be returned (i.e., |X+(v)|+ τ > |Cand(v)|) then we return all of the candidates (|Cand(v)|).
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thresholding scheme can be applied to the baseline system as well as to the interpolated dis-

criminative systems. In Figure 6.4 we plot the performance obstained by returning the top-

scoring |X+(v)|+τ entries for the baseline (HMM-post), and the two interpolated discrimi-

native systems Interp-HMMpost/Bottleneck and Interp-HMMpost/Bottleneck-impNegSel,

as a function of τ .

As can be seen in Figure 6.4, the performance of both interpolated systems is com-

parable to the baseline for τ ≤ 1. However, for larger values of τ ≥ 2, the interpolated

discriminative systems outperform the baseline in terms of ATWV. Recall that under the

ATWV metric, each false alarm for a term v results in a penalty given by β
Tspeech−Ntrue(v)

.

Since the size of the corpus in seconds is much larger than the number of occurrences of

the query term in the corpus (i.e., Tspeech � Ntrue(v)), the penalty for each false alarm is es-

sentially term-independent and is given by β
Tspeech

. Since for any fixed τ , we return the same

number of total entries for either the baseline system or for the interpolated discriminative

systems under the thresholding scheme described in this section, the fact that the interpo-

lated discriminative systems score higher than the baseline system in terms of ATWV is

indicative of the fact that on average (across query terms) these systems tend to score pos-

itive examples higher than negative examples in the set of candidates for any query term.

Furthermore, since the difference between the systems is larger for higher values of τ , we

conclude that the difference in AUCs between the interpolated discriminative systems and

the baseline is greater in the range of higher false positive rates than in the range of lower

false positive rates. Thus, these results are consistent with our hypothesis in the previ-

ous section: further ATWV improvements might be obtained by focusing on improving

partial AUC in the range of low false positive rates [Rudin, 2009; Agarwal, 2011; Rako-

tomamonjy, 2012]. For completeness, in Table 6.6 we list system performance obtained
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Figure 6.4: Performance of the baseline as well as the interpolated discriminative systems
in terms of ATWV obtained by returning the top-scoring |X+(v)|+ τ candidates for query
term v, where X+(v) represents the set of candidate terms that are declared to be putative
hits according to Equation 6.30, as a function of τ in the range [−10, 20].
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System ATWV ATWV
Dev. Set Eval. Set

Baseline (HMM-post) [Miller et al., 2007] 0.414 0.488
Baseline (HMM-post) (τ = 1) 0.512 0.535

Interp-HMMpost/Bottleneck (µ = 15.5) (τ = 2) 0.519 0.428∗,†

Interp-HMMpost/Bottleneck-impNegSel (µ = 29.1) (τ = 1) 0.529∗,† 0.546
Table 6.6: Results of baseline system (HMM-post, described in Section 6.3 with term
dependent thresholding [Miller et al., 2007]; this corresponds to setting τ = 0) and systems
obtained by returning the top-scoring |X+(v)|+τ entries, where X+(v) is the set of entries
returned by the baseline according to Equation 6.30 [Miller et al., 2007] for the best value
of τ tuned on the development set. (∗) and (†) denote significant differences (p ≤ 0.05)
relative to the baseline system with term dependent thresholding [Miller et al., 2007] (row
1 in Table 6.6) and the baseline system that returns |X+(v)|+ 1 entries for each term (row
2 in Table 6.6), respectively, computed using a one-tailed Wilcoxon test of signed-ranks.

on the development and evaluation sets for the best value of τ (obtained by tuning on the

development set) for the baseline as well as the discriminative interpolated systems.

6.11 Summary

In this chapter, we presented experiments for STD that explicitly leverage existing

LVCSR-based STD systems for discriminative STD. In experimental results, we found that

our proposed acoustic-only STD systems did not perform as well as the baseline HMM sys-

tems which use word-level context. However, interpolating discriminative system scores

with the baseline posterior score resulted in large gains (in terms of averaged AUC) over

the baseline. We also experimented with the use of discriminative AF-based pronuncia-

tion models, where we found that the AF-based system performance was similar to the

phone-based discriminative systems.
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CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we have presented a series of experiments that were aimed at determin-

ing the effectiveness of using articulatory feature-based pronunciation models in order to

address the increased variability in conversational speech. In the first part of the thesis, we

developed discriminative conditional random field (CRF) models for the task of articulatory

feature forced transcription. One of the contributions of this thesis was to demonstrate how

deterministic task-specific constraints allowed for efficient exact inference in the model. In

experimental evaluations, we found that the proposed models outperformed previously pro-

posed dynamic Bayesian network (DBN) models for the task [Livescu and Glass, 2004a,b].

In the second part of the thesis, we extended previous work on discriminative spoken term

detection [Keshet et al., 2009], which allowed us to incorporate the proposed articulatory

feature-based pronunciation models within a spoken term detection system. In experi-

mental evaluations in low-resource settings, we observed that the proposed articulatory

feature-based STD systems outperformed baseline hidden Markov model-based (HMM-

based) STD systems as well as discriminative phone-based systems in various settings.

Finally, in the last part of the thesis, we demonstrated how large vocabulary continuous

speech recognizer-based (LVCSR-based) STD systems could be leveraged in order to im-

prove performance as well as running time of our proposed STD systems.

Our experiments and analyses revealed a number of interesting observations. For ex-

ample, in our experiments on articulatory feature forced transcription, we found that the

performance of the generative DBNs did not improve if we allowed the articulatory feature
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streams to transition asynchronously. This finding was contrary to the findings of previous

lexical access experiments [Livescu and Glass, 2004a,b], where allowing for articulatory

asynchrony resulted in large gains. Similarly, when the articulatory feature-based pronun-

ciation models were incorporated within an STD system, we did not see a significant dif-

ference in system performance between an articulatory feature-based system that allowed

for up to one state of relative asynchrony and an articulatory feature-based system that en-

forced complete synchrony amongst the articulatory feature streams. However, although

the two systems performed comparably, our analysis of the asynchronous AF-based system

indicated that the system appeared to be hypothesizing additional asynchrony for those ex-

amples that appeared to contain additional pronunciation variation. This results seems to

suggest that the AF-based systems do indeed model some of the pronunciation variability

in the speech.

In our experiments on Cantonese STD, presented in Chapter 6, we compared per-

formance obtained from our acoustic-only STD systems to a very strong discriminative

LVCSR-based system trained on an order of magnitude more data. In these experiments,

we found that combining our discriminative system with the baseline posterior score re-

sulted in large improvements for the STD systems. The results of our experiments on

discriminative STD, conducted on both Switchboard as well as the Cantonese data serve

to validate the proposed approach. However, in our pilot experiments when we applied

AF-based pronunciation models for Cantonese STD, we did not seem significant improve-

ments (or degradation) in performance relative to the discriminative phone-based systems.

Finally, we discussed techniques by which the proposed techniques for optimizing AUC

can be adapted for optimizing ATWV [Fiscus et al., 2007] and we also discussed how

140



the relationship between AUC and ATWV can be exploited to evaluate systems trained to

optimize AUC in terms of their ATWV performance.

7.1 Future Work

We end this thesis with a description of some of the future research themes suggested

by the work presented in this thesis:

• Incorporation of AF-based models with AF substitution: The theory of articu-

latory phonology [Browman and Goldstein, 1992] suggests that the pronunciation

variation observed in conversational speech can be accounted for by two processes:

(a.) gestural overlaps and (b.) reductions in gestural magnitudes. The models de-

scribed in this thesis incorporate a mechanism for modeling gestural overlaps, but

do not account for reduction in gestural magnitudes through articulatory feature sub-

stitution [Livescu, 2005]. Our main motivation for this was to avoid the additional

complexity of the AF substitution model. Enriching our models by incorporating a

model of AF substitution, without tremendously increasing model complexity, is an

interesting research direction.

• Richer model of articulatory feature asynchrony: In Section 5.4, we analyzed the

percentage of asynchronous frames hypothesized by AF-based systems that allowed

for up to either one (M = 1) or two (M = 2) states of asynchrony, and found that

the system which allows for additional asynchrony hypothesizes lower amounts of

asynchrony in both positive as well as negative examples of the query term. We hy-

pothesized that the system which allows for up to two frames of asynchrony allows

for greater flexibility in finding high scoring segmentations for the negative examples,

which might cause the model to learn to hypothesize lower amounts of asynchrony
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in order to minimize confusability. This would suggest that the proposed AF-based

pronunciation models might benefit from a richer model of articulatory asynchrony,

which might help constrain the set of articulatory segmentations and allow the model

to learn to only hypothesize articulatory asynchrony in linguistically plausible con-

texts.

• Discriminative STD optimizing other measures of task performance: The models

presented in this thesis extended work by [Keshet et al., 2009] by training a discrim-

inative STD system to optimize area under the ROC curve (i.e. AUC). There are a

number of other metrics commonly used for evaluation of STD performance such

as figure-of-merit (FoM) [Wallace et al., 2011] and average term weighted value

(ATWV) [Fiscus et al., 2007]. The models presented in this thesis could be adapted

to directly optimize these alternative metrics (we provided a brief sketch of this idea

in Sections 6.9 and 6.10) and we leave this as a promising future research direction.

• Incorporation of discriminative AF-based pronunciation model within an end-

to-end speech recognizer: The articulatory feature-based models of pronunciation

described in this thesis are discriminative as opposed to the generative models inves-

tigated in prior research [Livescu, 2005; Livescu et al., 2007a]. When these gener-

ative models were incorporated within an end-to-end speech recognizer by Livescu

et al., they did not result in large improvements over a baseline monophone system

on a medium vocabulary SVitchboard task [King et al., 2005]. Given the dominance

of discriminatively trained HMM systems in modern ASR, as well as the successes

of the discriminative STD systems presented in this thesis, it would be interesting

to apply these models as part of a discriminative end-to-end speech recognizer. Of
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course, moving from the current ‘verification-based’ STD approach presented in this

thesis to a general word recognition approach is challenging and would likely require

significant research effort. One possibility to deal with the increased complexity is

to implement the AF-based models within the segmental conditional random field

(SCARF) paradigm of Zweig and Nguyen [2010].

7.2 Contributions of the Thesis

We end this thesis by re-stating the main contributions of this thesis: the development of

discriminative articulatory feature-based pronunciation models, and the application of these

models to the task of spoken term detection for conversational speech. The contributions

of this thesis are:

• Discriminative Articulatory Feature-based Pronunciation Modeling: We devel-

oped discriminative articulatory feature-based pronunciation models using condi-

tional random fields and applied these models to the task of extracting articulatory

features from speech utterances given their word transcriptions. In particular, we

demonstrated how the deterministic task-specific constraints that exist in our problem

can be exploited to perform exact inference efficiently in our models. In experimen-

tal evaluations, we found that the proposed models outperform previously proposed

generative dynamic Bayesian network models for the task.

• Discriminative Spoken Term Detection in Low-Resource Settings: We applied

our discriminative articulatory feature-based pronunciation models within a discrim-

inative spoken term detection system extending previous work [Keshet et al., 2009]

and evaluated these models in the setting of limited training data. In experimental
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evaluations, we found that our proposed discriminative systems outperformed base-

line GMM-HMM systems by large margins across a range of training set sizes.

• Discriminative Spoken Term Detection Leveraging Existing LVCSR-based Sys-

tems: We described how our proposed approach for training discriminative systems

can be adapted in order to both speed up the training process of our discrimina-

tive STD systems as well as to improve system performance by leveraging existing

LVCSR-based STD systems. In experimental evaluations on a subset of the IARPA

Babel Cantonese data [IAR, 2011], we found that combining discriminative systems

with the baseline system resulted in large performance improvements over the base-

line in terms of AUC.

The work presented in this thesis has raised a number of interesting research questions

and suggested many promising research directions for both articulatory feature-based pro-

nunciation modeling and spoken term detection. We hope that future work in these areas

will help improve system performance further, thus bringing computational systems closer

to human performance in challenging problem domains such as the recognition of conver-

sational speech.
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APPENDIX A: TRAINING ALGORITHM FOR DISCRIMINATIVE
SPOKEN TERM DETECTION VIEWED AS AN INSTANCE OF

THE CONVEX-CONCAVE PROCEDURE

In this chapter, we show how the algorithm for optimizing Equation 4.8, which appears

in Figure 4.5, can be viewed as an instance of the Convex-Concave Procedure [Yuille and

Rangarajan, 2002].

A.1 A Brief Overview of the Convex-Concave Procedure

The Convex-Concave Procedure (CCCP) [Yuille and Rangarajan, 2002] is a technique

for optimizing a function f(θ) iteratively, given a current estimate θm ∈ Rd. CCCP can be

applied to minimize functions which can be written as a sum of two functions gvex(θ) and

gcave(θ) which are respectively convex and concave with respect to the parameters θ over

the domain Rd.53 In other words, CCCP is an optimization technique to solve problems of

the form,

min
θ
f(θ) = min

θ
gvex(θ) + gcave(θ) (A.1)

where gvex(θ) is convex and gcave(θ) is concave.

CCCP exploits the following property of a concave function which holds for any fixed

θ0 ∈ Rd: the plane that is tangent to the concave function at θ0 lies above the surface of

the function for all θ ∈ Rd,

gcave(θ) ≤ gcave(θ0) + (θ − θ0)
T∇gcave(θ0) (A.2)

53In fact, any function f(x) with bounded Hessian can be written as a sum of a convex and a concave
function [Yuille and Rangarajan, 2002].
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Exploiting Equation A.2, we can replace the concave function in Equation A.1 with the

tangent plane at the current estimate of the minimum θm (i.e. substituting θ0 = θm in

Equation A.2) to obtain a new function that is a convex upper bound of the original function

for all θ ∈ Rd. Denoting this function by f ub(θ;θm), we have,

f ub(θ;θm) = gvex(θ) + (θ − θm)T∇gcave(θm) ≥ f(θ) (A.3)

The convex-concave procedure proceeds by minimizing the convex upper bound, f ub(θ;θm),

instead of the original function f(θ). Denoting the the minimizer of f ub(θ;θm) as θm+1,

we note that the gradient of the upper bound function at the minimum value must be equal

to zero. Setting∇f ub(θm+1;θm) = 0, we derive the following update equation which must

be satisfied by θm+1:

∇gvex(θm+1) = −∇gcave(θm) (A.4)

Thus, Equation A.4 provides us with an iterative procedure for estimating a new parameter

estimate θm+1 given the current estimate θm. Finally, we show that this new estimate θm+1

in Equation A.4 has a lower value of the original objective function f(θ). Since θm+1

minimizes f ub(θ;θm) we can write,

f ub(θm;θm) ≥ f ub(θm+1;θm) (A.5)

∴ gvex(θm) ≥ gvex(θm+1) + (θm+1 − θm)T∇gcave(θm) (from Equation A.3) (A.6)

Setting θ0 = θm and θ = θm+1 in Equation A.2, we have from Equation A.6,

gvex(θm) ≥ gvex(θm+1) + gcave(θm+1)− gcave(θm) (A.7)

∴ gvex(θm) + gcave(θm) ≥ gvex(θm+1) + gcave(θm+1) (A.8)

⇐⇒ f(θm) ≥ f(θm+1) (A.9)
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Thus, θm+1 has a lower value of the objective function f(θ) than the current estimate

θm. In summary, CCCP proceeds by iteratively solving Equation A.4 until the procedure

converges to a local minimum of the objective function [Yuille and Rangarajan, 2002].

A.2 Viewing Algorithm in Figure 4.5 as an Instance of CCCP

Finally, we end this chapter by demonstrating how our algorithm in Figure 4.5 can be

viewed as an instance of CCCP. Recall that the original non-convex problem that we would

like to solve appeared in Equation 4.8:

w∗ = argmin
w

λ

2
‖w‖2 +

1

N

N∑
i=1

[
1− fw(x+

i , vi) + fw(x−i , vi)
]
+

(A.10)

= argmin
w

λ

2
‖w‖2 +

1

N

N∑
i=1

[
1− max

s∼(s+i ,e
+
i )
w · φ(x+

i , vi, s) + max
s

w · φ(x−i , vi, s)

]
+

(A.11)

where [0, x]+ = max{0, x}. We can re-write Equation A.11 as follows,

w∗ = argmin
w

λ

2
‖w‖2 +

1

N

N∑
i=1

max

{
0, 1− max

s∼(s+i ,e
+
i )
w · φ(x+

i , vi, s) + max
s

w · φ(x−i , vi, s)

}
(A.12)

= argmin
w

(
λ

2
‖w‖2 +

1

N

N∑
i=1

max

{
max

s∼(s+i ,e
+
i )
w · φ(x+

i , vi, s), 1 + max
s

w · φ(x−i , vi, s)

})

−

(
1

N

N∑
i=1

max
s∼(s+i ,e

+
i )
w · φ(x+

i , vi, s)

)
(A.13)

Notice that in Equation A.13, the first term is convex, while the second term is concave. We

denote by wt the estimate of the optimal weight vector at the end of the t-th epoch and by

s+i (wt) the segmentation of the i-th positive example that scores highest when the weight

vector corresponds to wt,

s+i (wt) = argmax
s∼(s+i ,e

+
i )

wt · φ(x+
i , vi, s) (A.14)
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In order to optimize the problem in Equation A.13, we linearize the concave part of the

optimization problem at the current estimate of the weight vector using the sub-gradient as

in Equation A.3 to obtain an improved estimate, wt+1 , of the optimal weight vector:

wt+1 = argmin
w

(
λ

2
‖w‖2 +

1

N

N∑
i=1

max

{
max

s∼(s+i ,e+i )
w · φ(x+

i , vi, s), 1 + max
s

w · φ(x−
i , vi, s)

})

−

(
1

N

N∑
i=1

w · φ(x+
i , vi, s

+
i (wt))

)
(A.15)

= argmin
w

λ

2
‖w‖2 +

1

N

N∑
i=1

max

{
max

s∼(s+i ,e+i )
w · φ(x+

i , vi, s)−w · φ(x+
i , vi, s

+
i (wt)),

1−w · φ(x+
i , vi, s

+
i (wt)) + max

s
w · φ(x−

i , vi, s)

}
(A.16)

Finally, we make the approximation that the difference maxs∼(s+i ,e
+
i ) w ·φ(x+

i , vi, s)−w ·

φ(x+
i , vi, s

+
i (wt)) is approximately 0,54 so that we can once again re-write the optimization

problem in terms of a hinge loss as follows:

wt+1 = argmin
w

λ

2
‖w‖2 +

1

N

N∑
i=1

max
{

0, 1−w · φ(x+
i , vi, s

+
i (wt)) + max

s
w · φ(x−i , vi, s)

}
(A.17)

= argmin
w

λ

2
‖w‖2 +

1

N

N∑
i=1

[1−w · φ(x+
i , vi, s

+
i (wt)) + max

s
w · φ(x−i , vi, s)]+ (A.18)

Thus, we notice that the final optimization problem that we have derived in Equation A.18

corresponds exactly to the majorizer that we derived in Equation 4.18. Thus, the algo-

rithm that appears in Figure 4.5 can be viewed as an instance of the convex-concave proce-

dure [Yuille and Rangarajan, 2002].

54In our algorithm, the parameters w are updated by sub-gradient descent using the passive-aggressive
update [Crammer et al., 2006]. The approximation made here is more plausible if the weight vectors do not
change much, which can be achieved by setting a small learning rate.

148



APPENDIX B: DERIVATION OF PASSIVE-AGGRESSIVE UPDATE
USED FOR OPTIMIZING EXPECTED AREA UNDER THE

RECEIVER OPERATING CHARACTERISTIC

In this chapter, we describe the derivation of the passive-aggressive update [Crammer

et al., 2006] used in the algorithm that appears in Figure 4.5. We use the same notation

that appears in Figure 4.5. In particular, we assume that the weights wt from the previous

epoch have already been computed. Similarly, we compute the most likely segmentations

s+i = argmaxs∼(s+i ,e
+
i ) wt·φ(x+

i , vi, s). We now derive the online passive aggressive update

that is used to compute uj+1 given a new training pair (vi,x
+
i ,x

−
i , s

+
i ).

B.1 Online Passive-Aggressive Update

The online passive-aggressive update is computed as the solution to the following opti-

mization problem:

uj+1 = argmin
u

1

2
‖u− uj‖2 + Cξ (B.1)

where,

ξ ≥ 0 and ξ ≥
[
1− u · φ(x+

i , vi, s
+
i ) + max

s
u · φ(x−i , vi, s)

]
+

(B.2)

Intuitively, Equations B.1 and B.2 can be interpreted as simultaneously requiring the up-

dated weight vector uj+1 to have a low loss on the i-th training example while not allowing

the weight vector to deviate too much from the current estimate uj . The term ξ is a slack

variable, and the parameter C > 0 controls the relative importance of ensuring that the

149



new weight vector has a low loss on the i-th example. The optimization problem in Equa-

tion B.1 is a convex optimization problem and can be solved analytically using techniques

from convex analysis [Boyd and Vandenberghe, 2004].

The first observation we make is that if the hinge loss of the current example with re-

spect to the current vector is zero (i.e.,
[
1− uj · φ(x+

i , vi, s
+
i ) + maxs uj · φ(x−i , vi, s)

]
+

=

0), then clearly the solution of the optimization problem is given by uj+1 = uj . Consider

the other case where,
[
1− uj · φ(x+

i , vi, s
+
i ) + maxs uj · φ(x−i , vi, s)

]
+
> 0. In this case,

we define the Lagrangian of the optimization problem by introducing Lagrange multipliers

τ, λ ≥ 0,

L(u, ξ, τ, λ) =
1

2
‖u− uj‖2 + Cξ + τ

(
1− ξ − u · φ(x+

i , vi, s
+
i ) + max

s
u · φ(x−i , vi, s)

)
− λξ

(B.3)

=
1

2
‖u− uj‖2 + ξ(C − τ − λ) + τ

(
1− u · φ(x+

i , vi, s
+
i ) + max

s
u · φ(x−i , vi, s)

)
(B.4)

We now minimize the Lagrangian with respect to the primal variables (u and ξ) amd max-

imize with respect to the dual variables (τ and λ), which is equivalent to satisfying the

Karush-Kuhn-Tucker conditions [Boyd and Vandenberghe, 2004]. Setting the (sub) gradi-

ent of the Lagrangian in Equation B.4 with respect to u to be equal to zero, we can write:

u = uj + τ
(
φ(x+

i , vi, s
+
i )− φ(x−i , vi, s

−
i (uj+1)

)
(B.5)

≈ uj + τ
(
φ(x+

i , vi, s
+
i )− φ(x−i , vi, s

−
i (uj)

)
(B.6)

= uj + τ∆φi (B.7)

where s−i (u) = argmaxs u · φ(x−i , vi, s) and we have used the notation s−i = s−i (uj)

and ∆φi = φ(x+
i , vi, s

+
i ) − φ(x−i , vi, s

−
i ).55 Thus, our remaining task is to determine the

learning rate τ to be used in Equation B.7.

55The approximation in Equation B.6 is necessitated by the fact that it is not possible to compute s−i (uj+1)
directly.
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Now, notice that if C − τ − λ 6= 0, then the Lagrangian can be made to approach

−∞. Since we need to maximize with respect to the dual variables, we reject this case and

impose the following constraint on the dual variables:

C − τ − λ = 0 (B.8)

Further, since λ ≥ 0, we conclude τ ≤ C. Finally, we substitute Equation B.7 back into

the original Lagrangian in Equation B.4:

L(u, ξ, τ, λ) =
1

2
τ 2‖∆φi‖2 + τ

{
1− uj · φ(x+

i , vi, s
+
i )− τ∆φi · φ(x+

i , vi, s
+
i )

+ max
s

{
uj · φ(x−i , vi, s) + τ∆φi · φ(x−i , vi, s)

}}
(B.9)

≈ 1

2
τ 2‖∆φi‖2 + τ

{
1− uj · φ(x+

i , vi, s
+
i )− τ∆φi · φ(x+

i , vi, s
+
i )

+ uj · φ(x−i , vi, s
−
i ) + max

s

{
τ∆φi · φ(x−i , vi, s)

}}
(B.10)

≈ 1

2
τ 2‖∆φi‖2 + τ

{
1− uj · φ(x+

i , vi, s
+
i )− τ∆φi · φ(x+

i , vi, s
+
i )

+ uj · φ(x−i , vi, s
−
i ) + τ∆φi · φ(x−i , vi, s

−
i )
}

(B.11)

= −1

2
τ 2‖∆φi‖2 + τ(1− uj ·∆φi) (B.12)

where in Equation B.10 we approximate maxs

{
uj · φ(x−i , vi, s) + τ∆φi · φ(x−i , vi, s)

}
≈

maxs uj · φ(x−i , vi, s) + maxs τ∆φi · φ(x−i , vi, s) and in Equation B.11, we make the ap-

proximation that maxs

{
∆φi · φ(x−i , vi, s)

}
≈ ∆φi · φ(x−i , vi, s

−
i ).56 Notice that Equa-

tion B.12 is a quadratic equation in τ since it is of the form (Aτ 2 + Bτ), which we are

trying to maximize with respect to τ . Also, the leading coefficient A = −1
2
‖∆φi‖2 < 0,

which implies that the maximum value ofAτ 2+Bτ occurs when τ = − B
2A

. Thus the value

56In principle, it is possible to compute the best segmentation without making this approximation by setting
the weight vector to ∆φi, and then computing the highest scoring segmentation. However, this would require
an additional decode, which can be avoided by making the approximation.
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of τ which maximizes the Lagrangian is given by,

τ =
(1− uj ·∆φi)

‖∆φi‖2
(B.13)

Substituting Equation B.13 into Equation B.7 and from Equation B.8 we can write,57

uj+1 = uj + αi∆φi (B.14)

where,

αi = min

{
C,

[1− uj ·∆φi]+
‖∆φi‖2

}
(B.15)

The update derived in Equation B.15 corresponds to the update that we used in the algo-

rithm that appears in Figure 4.5 with C = λ−1.

57We write a single expression for both cases when
[
1− uj · φ(x+

i , vi, s
+
i ) + maxs uj · φ(x−

i , vi, s)
]
+

=
0 as well as when the hinge loss is greater than 0.
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APPENDIX C: ARPABET PHONEMIC SYMBOLS

In Table C.1, we present a list of Arpabet phonemic symbols used in the Switchboard

pronunciation dictionary, along with example transcriptions of the canonical pronuncia-

tions of words containing those symbols.58

Phoneme Symbol IPA Symbol Example Word Phonemic Transcription
aa A lock /l aa k/
ae æ bat /b ae t/
ah 2 but /b ah t/
ao O bought /b ao t/
aw aU cow /k aw/
ax @ about /ax b aw t/
ay aI buy /b ay/
b b bet /b eh t/
ch tS church /ch er ch/
d d debt /d eh t/

dh D that /dh ae t/
eh E bet /b eh t/
el @l battle /b ae t el/
en n

"
button /b ah t en/

er @~ bird /b er d/
ey eI bait /b ey t/
f f fat /f ae t/
g g get /g eh t/

hh h hello /hh ax l ow/
ih I bits /b ih t s/
iy i beat /b iy t/
jh dZ judge /jh ah jh/
k k kit /k ih t/

continued on next page . . .

58The table is adapted from http://www.isip.piconepress.com/projects/
switchboard/doc/education/phone_comparisons/ .
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Table C.1 – continued from previous page
Phoneme Symbol IPA Symbol Example Word Phonemic Transcription

l l let /l eh t/
m m met /m eh t/
n n net /n eh t/

ng N sing /s ih ng/
ow oU boat /b ow t/
oy OI boy /b oy/
p p pet /p eh t/
r ô rent /r eh n t/
s s sat /s ae t/

sh S shut /sh ah t/
t t ten /t eh n/

th T three /th r iy/
uh U book /b uh k/
uw u too /t uw/
v V vat /v ae t/
w w wit /w ih t/
y j you /y uw/
z z zoo /z uw/

zh Z pleasure /p l eh zh er/
Table C.1: List of Arpabet phonemic symbols along with examples of words whose canon-
ical pronunciations contain those symbols. For reference, the corresponding IPA symbols
are also provided.
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APPENDIX D: CANTONESE PHONE TO FEATURE MAPPING

In this chapter, we present a list of Cantonese phonemes along with their corresponding

IPA symbols and articulatory mappings. For completeness, we also include a list of each

of the articulatory feature streams with the set of possible articulatory feature values that

these streams can take.59 These articulatory feature streams represent the position and

degree of constriction of the lips (LIP-LOC and LIP-OPEN), the tongue tip (TT-LOC and

TT-OPEN), the tongue body (TB-OPEN and TB-LOC), and the state of the velum (VEL)

and the glottis (GLOT). In order to represent the Cantonese phonemes in terms of their

correspoding articulatory feature mappings, we use articulatory feature values as defined

by Livescu [see Livescu, 2005, Appendix B] introducing a new symbol (ASP) for indicating

the state of aspiration of the glottis. For completeness, we list the set of articulatory feature

values (reproduced with modifications where appropriate, from [Livescu, 2005]) for the

Cantonese phonemes used in our experiments in Table D.1.

In Table D.2, we list the mapping from each of the Cantonese phones to the correspond-

ing AF values. Also indicated for reference is the mapping from SAMPA to corresponding

IPA symbols. Note that following [Livescu, 2005], dipthongs, stops and affricates are sep-

arated into two symbols (e.g., the dipthong iw (IPA: iw is represented as two symbols

iw p1 and iw p2 representing the first and second part of the dipthong respectively).) The

59The six Cantonese tone categories are not included in this list. In our experiments, we treat these as an
additional aspect of the Glottis label.
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Articulatory Description Number of Feature Value = Meaning
Feature Feature Values

LIP-LOC position (roughly,
horizontal displacement

3 PRO = protruded
(rounded)

of the lips) LAB = labial (de-
fault/neutral position)
DEN = dental (labio-
dental position)

LIP-OPEN degree of opening 4 CL = closed
of the lips CR = critical (labial/

labio-dental fricative)
NA = narrow
WI = wide (all other
sounds)

TT-LOC location of the 3 DEN = interdental
tongue tip ALV = alveolar

P-A = palato-alveolar
TT-OPEN degree of opening 5 CL = closed

of the tongue tip CR = critical
M-N = medium-narrow
MID = medium
WI = wide

TB-LOC location of the 4 PAL = palatal
tongue body VEL = velar

UVU = uvular (de-
fault/neutral position)
PHA = pharyngeal

TB-OPEN degree of opening of the
tongue body

6 CL = closed (stop conso-
nant)
CR = critical
NA = narrow
M-N = medium-narrow
MID = medium
WI = wide

VEL state of the velum 2 CL = closed (non-nasal)
OP = open (nasal)

GLOT state of the glottis 4 CL = closed (glottal stop)
CR = critical (voiced)
ASP = aspirated
OP = open (voiceless)

Table D.1: Values for articulatory feature streams used in Cantonese STD experiments.
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mapping was obtained by first mapping phonemic symbols to the corresponding phono-

logical feature classes (e.g., place of articulation, manner of articulation etc.) (devised by

Eric Fosler-Lussier, Yanzhang He, and Joo-Kyung Kim based on [Zee, 1999; Stokes et al.,

2002; Wikipedia, 2013]). This mapping was converted into a phoneme to articulatory fea-

ture mapping as shown in Table D.2 by Karen Livescu.

Phoneme IPA LIP-LOC LIP-OPEN TT-LOC TT-OPEN TB-LOC TB-OPEN VEL GLOT
6 5 LAB WI ALV MID UVU MID CL CR

6j p1 5j LAB WI ALV MID UVU MID CL CR
6j p2 5j LAB WI ALV M-N PAL M-N CL CR
6w p1 5w LAB WI ALV MID UVU MID CL CR
6w p2 5w PRO NA P-A WI UVU M-N CL CR

9: ÷: PRO WI ALV MID PAL MID CL CR
9y p1 ÷j PRO WI ALV MID PAL MID CL CR
9y p2 ÷j PRO NA ALV M-N PAL NA CL CR

a: a: LAB WI ALV WI PHA M-N CL CR
a:j p1 a:j LAB WI ALV WI PHA M-N CL CR
a:j p2 a:j LAB WI ALV M-N PAL M-N CL CR
a:w p1 a:w LAB WI ALV WI VEL WI CL CR
a:w p2 a:w PRO NA P-A WI UVU M-N CL CR
b p1 b LAB CL ALV MID UVU WI CL OP
b p2 b LAB CR ALV MID UVU WI CL OP
d p1 d LAB WI ALV CL VEL MID CL OP
d p2 d LAB WI ALV CR VEL MID CL OP
dz p1 dz LAB WI ALV CL VEL MID CL OP
dz p2 dz LAB WI ALV CR UVU MID CL OP

E: E: LAB WI ALV MID PAL MID CL CR
ej p1 ej LAB WI ALV MID PAL MID CL CR
ej p2 ej LAB WI ALV M-N PAL M-N CL CR

f f DEN CR ALV MID VEL MID CL OP
g p1 g LAB WI P-A WI VEL CL CL OP
g p2 g LAB WI P-A WI VEL CR CL OP

gw p1 gw PRO NA P-A WI VEL CL CL OP
gw p2 gw PRO NA P-A WI VEL CR CL OP

h h LAB WI ALV MID UVU MID CL OP
i: i: LAB WI ALV M-N PAL NA CL CR

iw p1 iw LAB WI ALV M-N PAL NA CL CR
iw p2 iw PRO NA P-A WI UVU NA CL CR

j j LAB WI ALV M-N PAL NA CL CR
k p1 k LAB WI P-A WI VEL CL CL ASP
k p2 k LAB WI P-A WI VEL CR CL ASP

kw p1 kw PRO NA P-A WI VEL CL CL ASP
kw p2 kw PRO NA P-A WI VEL CR CL ASP

l l LAB WI ALV CL UVU NA CL CR
m m LAB CL ALV MID UVU MID OP CR
n n LAB WI ALV CL UVU MID OP CR
N N LAB WI P-A WI VEL CL OP CR
O: O: PRO WI ALV WI PHA M-N CL CR

O:j p1 O:j PRO WI ALV WI PHA M-N CL CR
O:j p2 O:j LAB WI ALV M-N PAL M-N CL CR
ow p1 ow PRO WI P-A WI UVU M-N CL CR
ow p2 ow PRO NA P-A WI VEL NA CL CR
p p1 p LAB CL ALV MID UVU WI CL ASP

continued on next page . . .
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Table D.2 – continued from previous page
Phoneme IPA LIP-LOC LIP-OPEN TT-LOC TT-OPEN TB-LOC TB-OPEN VEL GLOT

p p2 p LAB CR ALV MID UVU WI CL ASP
s s LAB WI ALV CR UVU MID CL OP

t p1 t LAB WI ALV CL VEL MID CL ASP
t p2 t LAB WI ALV CR VEL MID CL ASP
ts p1 ts LAB WI ALV CL VEL MID CL OP
ts p2 ts LAB WI ALV CR UVU MID CL ASP

u: u: PRO NA P-A WI VEL NA CL CR
u:j p1 u:j PRO NA P-A WI VEL NA CL CR
u:j p2 u:j LAB WI ALV M-N PAL M-N CL CR

w w PRO NA P-A WI UVU NA CL CR
y: y: PRO NA ALV M-N PAL NA CL CR
sil - DEN CL DEN CL PAL CL CL CL

Table D.2: Mapping from Cantonese phones to corresponding articulatory feature values. The mapping from SAMPA symbols to the
corresponding IPA symbols is adapted from http://www.phon.ucl.ac.uk/home/sampa/cantonese.htm.
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