

Push Recovery: A Machine Learning Approach to

Reactive Stepping

THESIS

Presented in Partial Fulfillment of the Requirements for the Degree Master

of Science in the Graduate School of The Ohio State University

By

Jennifer Leigh Horton

Graduate Program in Electrical and Computer Engineering

The Ohio State University

2013

Master's Examination Committee:

Professor Yuan Zheng, Advisor

Professor David Orin

Copyright by

Jennifer Leigh Horton

2013

ii

Abstract

When robots are integrated into the real world, chances are they will not be able to

completely avoid situations in which they are bumped or pushed unexpectedly. In these

situations, the robot could potentially damage itself, damage its surroundings, or fail to

perform its tasking unless it is able to take active countermeasures to prevent or recover

from falling. One such countermeasure, referred to as reactive stepping, involves a robot

taking a series of steps in order to regain balance and recover from a push. Research into

reactive stepping typically focuses on choosing which step to take.

This thesis proposes a machine learning approach to reactive stepping. This approach

leverages neural networks to calculate a series of steps that return the robot to a stable

position. It was theorized that the robot would become stable if it always chose the step

resulting in the highest reduction of energy. Theories were tested using a compass model

that incorporated parameters and constraints realistic of an actual humanoid robot. The

machine learning approach using neural networks performed favorably in both

computation time and push recovery effectiveness when compared with the linear least

squares, nearest interpolation, and linear interpolation methods. Results showed that

when using neural networks to calculate the best step for an arbitrary push within the

defined range, the compass model was able to successfully recover from 97% of the

pushes applied. The procedure was kept very general and could be used to implement

reactive stepping on physical robots, or other robot models.

iii

Dedication

This thesis is dedicated to Ryan Kay.

iv

Acknowledgments

I would like to thank my advisor, Dr. Yuan Zheng, for providing me with the opportunity

to work on this project. I would also like to express my gratitude to Dr. Manoj

Srinivasan for providing guidance on MATLAB simulations that was integral to the

success of this project. Additionally, I would like to thank Dr. David Orin for taking the

time to serve on my committee.

I would like to thank my parents, James and Pamela Horton, for their love and support

throughout my education. I would also like to thank Ryan Kay for his help in developing

this thesis and for always being there for me. Finally, I would like to thank my friends

for all of the wonderful experiences over the last six years at The Ohio State University.

v

Vita

June 2007……………………………………..Colonel Zadok Magruder High School

June 2008 to September 2009………………...Intern, Lockheed Martin Corporation

June 2010 to August 2012…………….............Intern, The Johns Hopkins University

Applied Physics Lab

March 2012…………………………………...B.S. Electrical and Computer Engineering,

The Ohio State University

Fields of Study

Major Field: Electrical and Computer Engineering

vi

Table of Contents

Abstract ... ii

Dedication .. iii

Acknowledgments.. iv

Vita .. v

Table of Contents ... vi

List of Tables .. x

List of Figures .. xi

Chapters:

1. Introduction………………………………………………………………………….....1

1.1 Background .. 1

1.2 Motivation ... 7

1.3 Literature Review .. 8

1.4 Thesis Organization ... 13

2. Compass Robot…………………………………………………………………….....14

2.1 Introduction ... 14

2.2 Position Equations ... 16

2.3 Energy Equations ... 17

2.4 Equations of Motion .. 21

2.5 Transition Equations .. 23

vii

3. MATLAB Model……………………………………………………………………..25

3.1 Introduction ... 25

3.2 Determining System Parameters ... 25

3.2.1 Physical Parameters ... 25

3.2.2 Initial Values .. 27

3.2.3 Machine Limits .. 27

3.2.4 Push Parameters ... 31

3.2.5 Walking Parameters ... 33

3.3 Invalid Situations ... 35

3.3.1 Exceeding Machine Limits .. 35

3.3.2 Incorrect Step Size ... 36

3.3.3 Moving Unnaturally ... 37

3.3.4 Falling Over ... 40

3.4 States .. 41

3.4.1 Push State ... 43

3.4.1.1 First Push State ... 44

3.4.1.2 Second Push State ... 46

3.4.2 Swing State .. 47

3.4.3 Step State ... 48

3.4.4 Transition State .. 49

3.4.5 Push-Off State .. 51

3.4.6 Stopped State ... 53

viii

4. Energy Reduction Method…………………………………………………………….54

4.1 Introduction ... 54

4.2 Reduction in Energy .. 55

4.3 Kinetic Energy versus Total Energy .. 55

4.4 Feasibility of the Energy Reduction Method ... 57

5. Implementation of the Energy Reduction Method…………………………………....59

5.1 Introduction ... 59

5.2 Data Generation ... 60

5.3 Linear Interpolation ... 63

5.4 Nearest Interpolation ... 64

5.5 Linear Least Squares ... 66

5.6 Neural Networks .. 69

5.6.1 Introduction .. 69

5.6.2 Training .. 71

5.6.3 Activation Functions .. 72

5.6.4 Overfitting .. 73

5.6.5 Stopping Criteria .. 75

5.6.6 Number of Layers and Nodes .. 76

6. Results………………………………………………………………………………...78

6.1 Introduction ... 78

6.2 Neural Network Training... 78

6.3 Push Recovery Effectiveness ... 81

ix

6.4 Computation Time ... 83

7. Summary and Conclusion………………………………………………………….....85

7.1 Summary and Conclusions .. 85

7.2 Suggestions for Future Work ... 87

Appendix A: Energy Reduction Method Results.. 89

References ... 92

x

List of Tables

Table 1: Energy Reduction Method Results for a

Push with an Equivalent Torque of 130 Nm .. 58

Table 2: Energy Reduction Method Results for a

Push with an Equivalent Torque of 60 Nm .. 89

Table 3: Energy Reduction Method Results for a

Push with an Equivalent Torque of 70 Nm .. 89

Table 4: Energy Reduction Method Results for a

Push with an Equivalent Torque of 80 Nm .. 90

Table 5: Energy Reduction Method Results for a

Push with an Equivalent Torque of 90 Nm .. 90

Table 6: Energy Reduction Method Results for a

Push with an Equivalent Torque of 100 Nm .. 90

Table 7: Energy Reduction Method Results for a

Push with an Equivalent Torque of 110 Nm .. 91

Table 8: Energy Reduction Method Results for a

Push with an Equivalent Torque of 120 Nm .. 91

xi

List of Figures

Figure 1: The da Vinci Surgical System Made by Intuitive Surgical [4] 2

Figure 2: The TALON Bomb Disposal Robot [6] .. 3

Figure 3: A Robotic Welder [8] .. 4

Figure 4: The Mars Rover [10] ... 5

Figure 5: BigDog, A Quadrupedal Robot Created by Boston Dynamics [11] 5

Figure 6: ASIMO, A Bipedal Robot Created by Honda [12] ... 6

Figure 7: DARwIn-OP Executing His Standing Up Strategy [25] 12

Figure 8: Compass Robot.. 14

Figure 9: Compass Robot Dimensions ... 16

Figure 10: Compass Robot Velocities .. 18

Figure 11: HUBO-2, A Humanoid Robot [29] ... 26

Figure 12: Relationship Between Stride Length and Inner Leg Angle 27

Figure 13: Tipping About the Front Toes when its Ankles are Rigid 31

Figure 14: Free Body Diagram when Ankles are Rigid ... 32

Figure 15: Unnaturally High Step ... 37

Figure 16: Unnatural Swinging of the Leg in the Opposite Direction of the Step 38

Figure 17: Unnatural Position with Both Feet in Front of the Hip 38

Figure 18: Support Leg Moving in the Direction of the Step ... 39

Figure 19: Applying an Opposing Ankle Torque to Take a Valid Step 40

Figure 20: Swinging the Non-Support Foot above Ground to Take a Valid Step 41

xii

Figure 21: Overview of Compass Robot Simulation Motions.. 42

Figure 22: Compass Robot Simulation State Diagram ... 43

Figure 23: Equivalent Torque as a Function of Time ... 44

Figure 24: Physical Compass Robot [32] ... 48

Figure 25: Correcting Small Inaccuracies in the Height of the Foot 50

Figure 26: Motion when Starting with a Small ... 56

Figure 27: Motion When Starting with a Large .. 56

Figure 28: Linear Interpolation Example .. 63

Figure 29: Nearest Interpolation Example .. 65

Figure 30: Linear Least Squares Example .. 68

Figure 31: Neural Network Structure ... 70

Figure 32: Typical Neural Network Activation Functions ... 72

Figure 33: Example of Overfitting a Curve to a Dataset [34] ... 74

Figure 34: Early Stopping Method [35] .. 76

Figure 35: Training Results: First Step Swing Constant .. 79

Figure 36: Training Results: Non-First Step Push-Off Constant 80

Figure 37: Training Results: Non-First Step ... 81

Figure 38: Effectiveness of Each Interpolation Technique... 82

Figure 39: Computation Time of Each Interpolation Technique 84

1

CHAPTER 1

Introduction

1.1 Background

Robotics has become a very popular field of study among electrical engineers,

mechanical engineers, and computer scientists. Aside from their broad nature and

technical complexity, researchers are often interested in robotics due to the immense

benefits they could offer humans.

Major robotic research efforts are taking place to develop both commercial and military

robots. Some of the earliest commercial robots included industrial robots that were used

for tasks such as pick and place, painting, and welding. Often times, industrial robots are

favored over humans for performing these tasks due to their accuracy, speed, and lack of

fatigue. Other robots have been developed to perform tasks that humans either do not

want to perform or do not have the time to perform on a regular basis. Examples of these

robots include the Lawnbott [1] and the iRobot Roomba vacuum cleaning robot [2]. One

of the more recent developments is the application of robots to the surgical field.

Surgical robots, as shown in Figure 1, have the potential to allow remote surgeries, which

will permit any number of specialized surgeons to be chosen rather than limiting patients

2

to those surgeons physically present. They also allow for smaller and more precise

incisions during procedures [3].

Figure 1: The da Vinci Surgical System Made by Intuitive Surgical [4]

One of the latest military robots is DARPA’s LS3 pack mule robot. LS3 is currently

being developed in order to address the large amount of equipment that soldiers are

required to carry. If the pack mule robot is able to reduce the load that soldiers must

carry, soft tissue injuries and fatigue in soldiers could be reduced [5]. Another place

where robots prove useful is in situations that are too dangerous for humans, such as

bomb disposal. Bomb disposal robots, as shown in Figure 2, are given tasks that range

from moving the bomb to a safe location for detonation to disarming the device.

3

Figure 2: The TALON Bomb Disposal Robot [6]

Similarly, in response to disasters such as the Fukushima Daiichi nuclear disaster and the

Deepwater Horizon oil spill, DARPA is currently sponsoring a challenge to develop

disaster response robots. The goal of these robots is to perform necessary tasks in

environments that may be unsafe for humans, such as those experiencing structural

instability or nuclear contamination [7]. The aforementioned situations are just a few

examples of the many valuable applications that are pushing researchers to take an active

interest in the field of robotics.

Modern land-based robots can be classified into two major categories: robotic

manipulators and mobile robots. Robotic manipulators, as shown in Figure 3, include a

non-mobile base, one or more limbs consisting of several links connected by rotational or

translational joints, and one or more end effectors used to complete tasks. Most industrial

robots and surgical robots are classified as robotic manipulators.

4

Figure 3: A Robotic Welder [8]

Mobile robots can physically move their location while in operation and can be classified

into three major categories: wheeled robots, treaded robots, and legged robots. Wheeled

robots, as shown in Figure 4, are comprised of a mobile chassis that moves its location

through the use of motorized wheels. Treaded robots are similar but include a continuous

track that connects the wheels on each side of the robot. Among mobile robots, wheeled

and treaded robots are popular choices due to the ease of development and control. They

also have the advantage of being able to travel at relatively high speeds. However,

wheeled robots are limited in the fact that they usually need a continuous area of even

terrain over which to drive. While treaded robots can handle slight gaps or minor levels

of uneven terrain, most are incapable of climbing stairs or walking on discrete footholds

such as stepping stones [9].

5

Figure 4: The Mars Rover [10]

Legged robots, as shown in Figure 5, include a base that moves its location through the

use of linkages connected by rotational or translational joints. These linkages often

resemble the legs of either animals or humans. Legged robots are able to overcome some

of the limitations of wheeled robots, but they generally travel at low speeds and are

extremely difficult to develop due to their complex motions and naturally unstable nature.

Figure 5: BigDog, A Quadrupedal Robot Created by Boston Dynamics [11]

6

A subset of the legged robot category includes robots with only two legs, or bipedal

robots, as shown in Figure 6. In addition to the benefits of legged robots mentioned

above, bipedal robots also have several other advantages. One such advantage is that the

length of a bipedal robot is typically smaller than a robot with three or more legs, which

allows them to navigate tight turns more easily. Bipedal robots also have the potential to

use less energy as they will have fewer actuators than robots with three or more legs [9].

Another advantage is that the development of bipedal robot motions can greatly benefit

from their close resemblance to humans. Since bipedal robots bear a close resemblance

to humans, much of what has been learned about human locomotion can be leveraged for

use in the development of bipedal robot locomotion. Finally, studying human locomotion

for the purposes of developing bipedal robots can lead to an increased understanding of

human movement, which can aid in physical therapy and prosthetic development.

Figure 6: ASIMO, A Bipedal Robot Created by Honda [12]

7

It is expected that bipedal robots will be able to assimilate into the human world more

easily than other types of robots. People are more comfortable interacting with robots if

they resemble humans. The world has also been developed for use by humans. The size

of doorways and walkways, the shape of tools, the placement of pedals in a car, and the

height of doorknobs and light switches were all specifically designed to be convenient for

human use. If robots are developed to be human-like, then the environment will not have

to be modified in order for it to be convenient for use by robots [13].

1.2 Motivation

Unfortunately, even with leveraging the benefits of their resemblance to humans, bipedal

robots are still extremely challenging to develop, mostly due to issues with stability.

With only two legs on the ground on which to balance, bipedal robots are naturally very

unstable. If the motions are carefully planned out, many bipedal robots are able to stand

and walk stably in controlled, isolated environments. However, when operating in the

real world, robots will meet additional challenges such as being bumped or pushed

unexpectedly. While the frequency of these occurrences may be reduced through the use

of vision strategies to avoid objects, some situations in which a robot may be bumped or

pushed are unavoidable. In these situations, the robot is likely to fall if it does not take

active countermeasures.

8

Falls can be devastating to a robot for several reasons. First and foremost, most robots

are very fragile and very expensive, so a fall could result in the need to make very costly

repairs. A robot could also break or hurt an object or person that it falls into. Another

issue to consider is if a robot falls and cannot stand back up, it will be rendered useless

and unable to complete its assigned tasks. Even if the robot is able to stand back up, it

will have taken longer to complete its assigned tasks due to the extra time associated with

standing up.

It is widely accepted that these issues must be addressed before robots are able to assume

a prominent role in society. A summary of previous research pertaining to this topic is

included in the next section.

1.3 Literature Review

When a robot is pushed, it must first recognize that it has in fact been pushed and identify

how hard it has been pushed in order to decide on an appropriate response. To a human,

these may seem like trivial tasks, but fall prediction for a robot is actually very complex

and has been approached many different ways in previous research. Renner and Behnke

recorded a sequence of parameters during undisturbed walking, and a push was

considered to have been detected if the robot’s sensor readings deviated from that

sequence. They found that this approach typically recorded less false positives than using

the distance between the zero-moment point and the edge of the support polygon to detect

instability [14]. Hohn et al. used pattern recognition along with sensor data, such as the

9

angles and velocities of the legs, to recognize and classify falls. While the pattern

recognition was only trained using pushes, it was also able to recognize when the robot

began stumbling [15].

Once a robot has predicted a fall, it should attempt to recover from the push and avoid

falling. There are three different forms of push recovery, which are commonly referred

to as ankle strategy, hip strategy, and reactive stepping.

When the push is small, ankle strategy allows the robot to regain balance simply by

applying a torque at the ankle. Yi et al. indirectly implemented ankle strategy by

controlling the zero moment point of the robot in real time. Indirectly implementing

ankle strategy was found to be more effective than using direct control of the ankle due to

the tendency of the feet to tip before ankle control could affect the position of the robot

[16]. Stephens implemented ankle strategy with the goal of returning the leg to a vertical

position, thereby causing the leg to act like a stiff inverted pendulum. Results of the

study found that this method of control accurately reflected hip strategy as performed by

human subjects [17].

If the push is too large to recover using ankle strategy, hip strategy allows the robot to

regain balance by applying a torque at the hip. Yi et al. applied a torque to accelerate the

center of mass, thereby counteracting the movement caused by the push. While results

were promising, they did not take arm motions into account for fear of damaging the

physical robot, so further investigation may be necessary [16]. Lee and Goswami

10

implemented a controller that prioritized the required linear momentum to remain

balanced while sacrificing the required angular momentum if necessary. This caused the

robot to bend at the hip in order to avoid moving forward. The paper suggests that better

results may have been achieved if the controller was adjusted to prioritize some aspects

of both linear and angular moment rather than just linear momentum [18].

If the push is too large to recover from using hip strategy, reactive stepping allows the

robot to take steps in order to reach a more stable position. Pratt et al. introduced the

concept of a Capture Point, which is a point on the ground such that if the robot steps on

that point, then the kinetic energy of the robot will be able to both become and remain at

zero. The article only addressed situations where the robot could become stable through

one single step [19]. In contrast, Pratt and Tedrake estimated N-Step Capture Points by

using a brute-force search algorithm [20]. A major drawback to using Capture Points to

determine the step location is that a Capture Point is estimated based on the current state

of the robot, which will change as the robot performs the step. As such, a Capture Point

must be recalculated and the trajectory must be changed several times as the step is being

taken [20, 21].

Yun and Goswami expanded on the work from [18] to include a controller that prioritized

the required angular momentum to remain balanced while sacrificing the required linear

momentum if necessary. In contrast to the controller from [18], this new controller

caused the robot to take a step in order to avoid bending at the hip. Their controller

determined the step location by modeling the robot as a passive rimless wheel and

11

choosing to step at a location which would cause the wheel to stop when the spoke was in

a vertical position. Unlike a Capture Point, the calculation of this step location was

predictive, so the step location only needed to be calculated once during the stepping

process. One drawback to this method is that it did not present a recovery solution when

the computed step location could not be reached by the robot within a single step [21].

If a robot is unable to recover from the push using the ankle strategy, hip strategy, or

reactive stepping, then a fall is unavoidable for the robot. If a fall is unavoidable, the

robot should implement a fall control strategy. Fall control strategies may concentrate on

either minimizing damage to the robot’s surrounding or minimizing damage to the robot

itself. In the work by Yun et al., the robot either began to take a step or generated angular

momentum in order to change the robot’s fall direction away from delicate surrounding

objects. The proposed method approximated the robot’s future states using a simple

inverted pendulum, which due to its simplicity, may have resulted in approximation

errors [22]. Lee and Goswami proposed rotating the swing leg and the trunk in order to

change the fall direction of the robot such that it would fall on its impact absorbing

backpack, thereby reducing damage to the robot. Using this technique, the robot was

able to successfully fall on its backpack when falling backwards or sideways but not

when falling forward [23].

12

If the robot has fallen over, then the robot should have a strategy for standing back up to

prevent it from being rendered useless by the fall. It should be noted however that in

order to successfully implement a standing-up strategy, the robot must remain

undamaged either through a robust design or one of the fall control strategies discussed

previously. Much of the leading research on standing-up routines in robots has been

conducted during the development of soccer playing robots for the RoboCup Humanoid

League [24]. One such RoboCup competitor, DARwIn-OP, is capable of successfully

implementing the standing-up routine shown in Figure 7 [25].

Figure 7: DARwIn-OP Executing His Standing Up Strategy [25]

13

1.4 Thesis Organization

This thesis introduces a new approach to the reactive stepping method in which a robot

uses machine learning to calculate the step that will result in the highest energy reduction.

The thesis is organized as follows.

Chapter 2 gives an overview of the compass robot, which is how the bipedal robot will be

represented within this thesis. This chapter will include the equations of motion and the

changes in leg velocities that occur when taking a step. Chapter 3 details the MATLAB

model that was created to simulate a walking compass robot. This chapter will define the

parameters of the system, specify the conditions that make the model invalid, and explain

the different states of the simulation.

Chapter 4 explains the Energy Reduction Method for choosing the best step a robot can

take to recover from a push. Chapter 5 specifies how the Energy Reduction Method

could be implemented on a robot using various interpolation methods. Chapter 6

discusses the effectiveness of the various interpolation methods. Chapter 7 summarizes

the thesis and outlines how the work could be expanded in the future.

14

CHAPTER 2

Compass Robot

2.1 Introduction

The compass robot and subsequent equations used within this thesis were borrowed from

the Springer Handbook of Robotics [26], but they are also very widely used by many in

the field of robotics. The compass robot, shown in Figure 8, is a simple version of a

bipedal robot that uses two knee-less legs connected by a revolute joint at the hip.

Figure 8: Compass Robot

Support Foot
Non-Support Foot

Ground

Hip

+

15

At all points in time, one foot of the robot is in contact with the ground, and the other foot

is free to swing as part of a walking motion. The leg whose foot is in contact with the

ground is called the support leg, while the leg whose foot is free to swing is called the

non-support leg. When a step occurs during walking, the support leg and non-support leg

switch instantaneously, so there is never a double support phase during which time both

feet would be in contact with the ground.

The position of any point on the robot relative to the position of the support foot can be

uniquely determined by the angle of the support leg, , and the angle of the non-support

leg, . As such, the state of the compass robot is defined in Equation 1 as .

 [

] (1)

The inner leg angle, , is also a useful value for analysis, but it is solely defined by

and . The movement of the robot can be represented by the angular velocity and

angular acceleration of each leg. The angular velocity of the support leg is defined as ̇ ,

and the angular velocity of the non-support leg is defined as ̇ . The angular

acceleration of the support leg is defined as ̈ , and the angular acceleration of the non-

support leg is defined as ̈ .

The following sections derive the necessary equations to represent the compass robot,

which includes position equations, energy equations, equations of motion, and transition

equations.

16

2.2 Position Equations

In order to determine the position of the support foot (), the position of the hip

(), and the position of the non-support foot (), the dimensions of the legs

were defined as shown in Figure 9.

Figure 9: Compass Robot Dimensions

The mass of the robot was chosen to be a point mass, , located in the middle of each leg

with an additional point mass, , located at the hip. As can be seen in the image above,

the legs are identical in both length and mass. The length from the foot to the center of

mass of each leg is a constant, . The length from the hip to the center of mass of each

leg is a constant, . The overall length of the leg consists of both of these quantities as

shown in Equation 2.

 (2)

Ground

()

()

()

17

The horizontal position of the support foot, , begins at zero but changes at the end of

each step when the support leg and non-support leg switch. Since the support foot is

always in contact with the ground, the height of the support foot, , is always zero. As

shown in Equation 3, the position of the hip can be defined relative to the position of the

support foot as a function of .

 () (() ()) (3)

Similarly, as shown in Equation 4, the position of the non-support foot can be defined

relative to the position of the hip as a function of .

 () (() ()) (4)

2.3 Energy Equations

The total energy of the robot consists of kinetic energy and potential energy. The kinetic

energy is a function of the velocities of each mass, ⃑ , ⃑ , and ⃑ , which are shown in

Figure 10.

18

Figure 10: Compass Robot Velocities

According to Engineering Mechanics: Dynamics, the velocities of two points, and ,

on a rigid body in planar motion are related by Equation 5. Within this equation, is

the angular velocity of the rigid body, and ⃑ is a vector defining the location of point

 relative to point [27].

 ⃑ ⃑ ⃑ (5)

Using the equation above and the fact that the support foot is not moving, ⃑ can be

calculated as a function of and ̇ . The equation for ⃑ is included in Equation 6.

 ⃑ ̇ ̂ (() ̂ () ̂) ̇ () ̂ ̇ () ̂ (6)

Support Foot
Non-Support Foot

Ground

Hip

19

The movement of the mass at the hip is completely determined by the movement of the

support leg. Using the same method as above, ⃑ can be calculated as a function of

and ̇ . The equation for ⃑ is included in Equation 7.

 ⃑ ̇ ̂ (() ̂ () ̂) ̇ () ̂ ̇ () ̂ (7)

Again using the rigid body velocity equation, ⃑ can be found relative to ⃑ as a

function of and ̇ . The equation for ⃑ is included in Equation 8. Unlike the other

two velocities, ⃑ uses length , because this velocity is being defined relative to ⃑

rather than ⃑ .

 ⃑ ⃑ ̇ ̂ (() ̂ () ̂)

 ⃑ ̇ () ̂ ̇ () ̂

(8)

The equation for ⃑ found previously can be inserted into the ⃑ equation to obtain

Equation 9.

 ⃑ (̇ () ̇ ()) ̂

 (̇ () ̇ ()) ̂

(9)

20

The kinetic energy of an object is equal to one-half of its mass times its velocity squared.

As shown in Equation 10, the total kinetic energy of the system is calculated as the sum

of the kinetic energies of each mass in the system.

 (̇)

 ‖ ⃑ ‖

 ‖ ⃑ ‖

 ‖ ⃑ ‖

 (10)

The potential energy of an object is equal to its mass times gravity times its height above

a reference point. The reference point is generally defined with the ground at zero height.

As with the total kinetic energy, the potential energies of each mass are computed and

summed to find the potential energy of the entire system, shown in Equation 11.

 () () ()

 (() ())
(11)

As shown in Equation 12, the total energy of the robot is the sum of these two energy

components.

 (̇) (̇) () (12)

21

2.4 Equations of Motion

The compass robot is a simple planar double pendulum whose equations of motion can be

derived using the Euler-Lagrange approach. This approach is well defined and

commonly used in the study of dynamics. As such, the following derivation of the

equations of motion was obtained from [28]. The Euler-Lagrange approach begins with

defining the Lagrangian as the difference between the kinetic and potential energies of

the system, see Equation 13.

 (̇) (̇) () (13)

As shown in Equation 14, the Lagrangian is then differentiated and set equal to the input

torques of the system. If no input torques are applied at the joints and the system is

passive, the right hand side of the equation becomes zero. If torques are applied at the

joints making the system active, then the right hand side of the equation is , with

being a vector of the input joint torques as defined in Equation 15.

(

 ̇
)

 (14)

 [

] (15)

22

The torque on the support leg, , is the torque applied at the ankle. A torque cannot be

applied at the ankle of the non-support leg, because the non-support leg is not in contact

with the ground. Therefore, the torque on the non-support leg, , is equivalent to

applying a torque at the hip. Once Equation 14 has been computed, it can be rearranged

into the form shown in Equation 16, with the matrices , , and defined in Equations

17 through 19 respectively.

 () ̈ (̇) () (16)

 () [

 ()

 ()
 ()

] (17)

 (̇) [

 ̇ ()

 ̇ ()
] (18)

 () [

 ()

 (()) ()
] (19)

Equation 16 can be further rearranged to solve for the angular accelerations of each leg as

shown in Equation 20. It is useful to have the equation in this form, because if the

angular acceleration equations are known, they can be integrated to find the angular

velocities and angular positions of the system at any time.

 ̈ () ((̇) ̇ ()) (20)

23

2.5 Transition Equations

When the non-support foot hits the ground triggering the completion of a step, the robot

experiences a force due to impact with the ground. This impact causes a decrease in the

kinetic energy of the robot, thereby causing a decrease in the total energy as well. The

impact is considered to be instantaneous, and a double support phase during which both

feet would be in contact with the ground is not considered. When the impact occurs, the

support foot and non-support foot switch instantaneously, and the velocities of the legs

change due to the energy lost during impact. The derivations of the equations for the

change in the velocities during impact, called the transition equations, were obtained

from [28].

Because the impact only occurs when both feet are on the ground making and

equal and opposite, the robot’s position can be defined solely by the inner leg angle, .

The equation for is included in Equation 21.

 () (21)

24

The velocities after impact can be calculated as a function of the velocities and angles

before impact using the conservation of angular momentum. The post-impact state and

the pre-impact state can be related by Equation 22, which can be rearranged to solve for

the post-impact state as shown in Equation 23. The matrices and are defined in

Equations 24 and 25 respectively.

 () ̇ () ̇ (22)

 ̇

() () ̇ (23)

 () [

 (
) ()

] (24)

 () [

 (()) (())

 ()
] (25)

25

CHAPTER 3

MATLAB Model

3.1 Introduction

The first step in testing methods of push recovery for the compass robot was to create a

computer model using MATLAB. In order to implement the model, realistic values for a

bipedal robot needed to be selected for each parameter. The process for deciding these

parameters is described in the next section. Following that, a discussion of the different

scenarios that would make the simulation fail is included. The final portion of this

chapter describes the different states of push recovery that were implemented during the

simulation.

3.2 Determining System Parameters

3.2.1 Physical Parameters

In order to ensure that the simulation would be realistic, the compass model was modeled

after HUBO-2, a humanoid robot sometimes referred to as Jaemi HUBO or KHR4. A

picture of HUBO-2 is included in Figure 11.

26

Figure 11: HUBO-2, A Humanoid Robot [29]

According to the HUBO-2 Manual [30], the length of HUBO-2’s leg from the floor to the

hip is equal to 695.38 mm. To approximate this dimension, the leg length in the model

was chosen to be .7 m.

The overall mass of HUBO-2 is 45 kg [29]. In the model, this total mass was distributed

as 10 kg in each of the legs and 25 kg located at the hip. The mass of each leg was

represented as a point mass located in the center of the leg, so the constants and were

both equal to one-half of the leg length as shown in Equation 26.

 (26)

27

3.2.2 Initial Values

The simulation was started with the robot in a stationary position, which means that ̇

and ̇ were both zero. It was assumed that people often stand with one foot slightly in

front of the other while in a stationary position. When being pushed forward, the forward

foot would be the support foot. Based on this assumption, the initial positions,

and , of the robot were assumed to be and respectively.

3.2.3 Machine Limits

Due to physical limitations, humans have a maximum inner leg angle, , that can be

realistically achieved. When both feet are on the ground, is a function of the stride

length, , as shown in Figure 12.

Figure 12: Relationship Between Stride Length and Inner Leg Angle

28

The equation relating the stride length to the inner leg angle is included in Equation 27.

 (

) (

) (27)

Due to the availability of information, the maximum stride length of HUBO was used to

approximate the maximum stride length of HUBO-2. The stride length of HUBO can

vary from 0 to 64 cm [31]. Using this information, of HUBO-2 was approximated

as . This calculation is included in Equation 28.

 (

) (28)

To be conservative, was set as in the model. The next parameter that needed to

be defined was the maximum torque. As shown in Equation 29, torque can be computed

as power divided by angular velocity.

 (29)

It was assumed that when recording HUBO-2’s maximum speed, HUBO-2 would be

taking steps of the maximum stride length, . By equating the time it takes the center

of mass to travel linear distance with the time it takes the non-support leg to travel

angular distance , the maximum angular velocity of the hip can be approximated.

Equation 30 shows this approximation with representing the maximum linear

29

velocity of the robot’s center of mass and representing the maximum angular

velocity of the robot’s hip motor.

 (30)

By combining Equations 27, 29, and 30, the equation for the maximum torque was

approximated as shown in Equation 31.

 (

)

 (31)

Due to the availability of information, the hip motor power of HUBO was used to

approximate the hip motor power of HUBO-2. HUBO’s hip motor has a power of 90

watts in the pitch direction [31]. This power can be equivalently expressed in different

units as shown in Equation 32.

 (32)

HUBO-2’s linear walking speed ranges from zero to 1.4 km/hr [29]. To be conservative,

a slightly slower speed of 1.25 km/hr was used. The maximum linear speed can be

equivalently expressed in different units as shown in Equation 33.

30

 (33)

By substituting in the appropriate values, the maximum torque was approximated as

175.75 Nm. This calculation is included in Equation 34.

 (

)

 (34)

Again, to be conservative, was set as 170 Nm in the model. During walking, people

tend to keep their feet relatively close to the ground rather than performing an unnaturally

high step. It was estimated that a normal human keeps their foot within 6 inches of the

floor at all times while walking. Assuming a 6 foot tall person whose legs make up half

of their height, the ratio of maximum foot lift to leg length was calculated as 16.67%.

Using this ratio and a leg length of 0.7 m, the maximum height the foot could be lifted off

the ground in the model was approximated as 0.12 m.

31

3.2.4 Push Parameters

When subjected to a small push, a robot would theoretically be able to apply a small

opposing torque at its ankles, thereby restricting motion between its legs and feet. As

with the hip motor power, the ankle motor power of HUBO was used to approximate the

ankle motor power of HUBO-2. HUBO’s ankle motor has a power of 90 watts in the

pitch direction [31]. Because this is the same power as HUBO’s hip, it was concluded

that the maximum torque at the ankle would also be 170 Nm. Even if the robot was able

to apply a torque capable of keeping its ankles rigid, it could still fall over by tipping

about the front toes as shown in Figure 13.

Figure 13: Tipping About the Front Toes when its Ankles are Rigid

Although the compass robot does not have feet, this calculation was performed in order

to determine the range of pushes that the actual HUBO-2 robot would be able to recover

from using only a torque at its ankles. HUBO-2’s foot length, , is 220 mm [30], which

was approximated as .25 m. Figure 14 details the free-body diagram of the robot when

the robot is rigid at its ankles and standing with both legs together.

Toes Toes

32

Figure 14: Free Body Diagram when Ankles are Rigid

The robot will tip if the moment from the push about the front toe is greater than the

moment due to the weight about the front toe. Therefore, the point at which the robot

will begin to tip is the point where the moments are exactly equal as expressed in

Equation 35.

 () (35)

Solving this equation for F and plugging in the relevant values, the force that it would

take to tip the robot was calculated as 157.66 N. This calculation is included in Equation

36. By multiplying this force by a leg length of 0.7 m, it was determined that this push

was equivalent to applying a torque of 100.36 Nm at the ankles. Based on this

calculation, HUBO-2 should be able to withstand pushes with equivalent torques of up to

100.36 Nm just by applying a torque at the ankles.

F

()

33

()

 (36)

Assuming the robot requires reactive stepping is a much safer option than assuming the

ankle will be able to apply a sufficiently large torque to prevent falling. Since it is very

important that HUBO-2, or other similar bipedal robots, do not fall over, a safety factor

of approximately 1.5 was applied. This means that it was assumed the robot can only

withstand pushes with equivalent torques of up to 60 Nm just by applying a torque at the

ankles. Using the results of this calculation and arbitrarily picking an upper bound, it was

decided to test the model for pushes with equivalent torques in the range of 60 Nm to 130

Nm. Lastly, it was assumed that a push applied to the robot would be brief, and as such,

the duration of the push was chosen to be 0.2 seconds.

3.2.5 Walking Parameters

In the model, there were three parameters that affected the way a step was taken. The

first parameter was the desired step size, . As discussed previously, was

set equal to , so the range of in the model was defined as to . The

maximum was set at rather than the absolute maximum to allow for a slight

overshoot without exceeding the maximum limit of the system. Negative

represented the situation when the non-support foot was behind the support foot at the

time of the step, and positive represented the opposite orientation.

34

The next parameter was the push-off constant. At the beginning of a step, humans push

off of the ground with their back leg. In reality, this force is a linear force applied on the

bottom of the foot, but it was represented in the model as a torque on the support leg.

This torque should only be applied for a short duration, so it was assumed to be 0.1

seconds.

The last parameter was the swing constant. During walking, a torque must be applied at

the hip in order to swing the leg to the desired position. As shown in Equation 37, this

torque was applied using proportional control on the inner leg angle. It was determined

experimentally that all pushes within the set range could be successfully recovered from

with a swing constant in the range of 0 to 180 on the first step and a swing constant equal

to 60 on all other steps.

 () (37)

During times when was to be held constant, the non-support leg needed to change its

angle at the same rate as the support leg. To accomplish this, a torque proportional to the

difference between the angular velocities of the two legs was applied at the hip. The

equation for this torque is included in Equation 38. The constant, , was determined

using trial and error by noting if the chosen value resulted in remaining constant for a

certain period of time. Using this method, it was determined that should be set as 500.

 (̇ ̇) (38)

35

3.3 Invalid Situations

During the simulation, invalid situations could occur very easily by exceeding a machine

limit of the robot, taking a step of the incorrect size, moving unnaturally, or falling over.

It should be noted that most situations could only occur when the model was in a certain

state. The following sections describe each of the invalid situations in detail.

3.3.1 Exceeding Machine Limits

In modeling a physical robot, there were machine limits that had to be accounted for in

the simulation. For example, each motor on the robot had a maximum torque that it was

capable of applying. was an input to the system that was always defined such that it

was less than . As a result, did not need to be checked for validity. was

determined by proportional control, so the robot could have tried to apply such that it

exceeded . The maximum torque was exceeded and the simulation became invalid

if the condition in Equation 39 became true.

 (39)

Due to flexibility limitations, humans can only take steps of a limited size. To ensure that

the model only performed motions similar to a human being pushed, the simulation

became invalid if the condition in Equation 40 became true.

 (40)

36

3.3.2 Incorrect Step Size

If the robot attempted to take a step of a specific size but took a step of another size

instead, the simulation became invalid, because it did not follow the desired motion. This

would occur if the robot was incapable of reaching given its current state or if

the robot reached but was incapable of holding constant until the foot reached

the ground for the step. For example, take the situation where the robot attempted to take

a step of size A but instead took a step of size B. This scenario would be stored the same

as the scenario where the robot attempted to take a step of size B and achieved the

desired step size.

To eliminate this ambiguity, a step was only valid if it was the intended step size. As

such, the simulation became invalid if the condition in Equation 41 became true. The

first part of the condition is the requirement for taking a step while the second part of the

condition enforces that at the time of the step must be within a certain tolerance of

 .

 | | (41)

37

3.3.3 Moving Unnaturally

When walking naturally, a person tends to keep their non-support foot close to the ground

rather than raise it up unnaturally high as shown in Figure 15.

Figure 15: Unnaturally High Step

To enforce this, if ever went above a certain threshold as shown in Equation 42, the

simulation became invalid.

 (42)

While walking, a human attempts to be efficient and therefore would swing their leg

directly to the position they want. For example, the motion in Figure 16 would be

unnatural as a human would not initially swing their leg backwards if taking a forward

step.

Ground

38

Figure 16: Unnatural Swinging of the Leg in the Opposite Direction of the Step

Similarly, a human would not initially swing their leg forward if taking a backward step.

To enforce this, the simulation became invalid if ̇ changed direction while the leg was

swinging. It was determined that ̇ was changing directions if the condition in

Equation 43 was true.

 ̇ (43)

Another type of step that would be unnatural for a human is a step where both the support

foot and the non-support foot are in front of the hip as shown in Figure 17.

Figure 17: Unnatural Position with Both Feet in Front of the Hip

Ground

39

To enforce that the robot would not choose to walk in this unnatural manner, the

simulation became invalid if the condition in Equation 44 became true.

 (44)

When taking a step, the support leg of the human moves in the direction of the step as

shown in Figure 18.

Figure 18: Support Leg Moving in the Direction of the Step

In the model, there were situations in which this was not the case, so the simulation

became invalid whenever the condition in Equation 45 became true. The first part of the

condition determined if the robot was taking a step. The second part of the condition

determined if the support leg was moving in the direction of the step. Within the

condition, the angular velocity was compared to 0.01 rather than 0, because it was

assumed that a leg with such a small velocity would have been moving slowly enough to

still be considered valid.

40

 ((̇) || (̇)) (45)

3.3.4 Falling Over

Since the goal was for the robot to remain standing, the simulation became invalid if the

robot fell over. It was determined that the robot would fall over if | | became larger

than half of . If | | was greater than half of , then the non-support foot of the

robot was already below ground, and there were only two ways in which the foot could

have been brought above ground to take a valid step. The first way was for the robot to

apply an opposing torque to the ankle of the support leg as shown in Figure 19.

Figure 19: Applying an Opposing Ankle Torque to Take a Valid Step

Applying this ankle torque would have been unnatural in reference to normal human

motion. The second way was for the robot to swing the non-support foot above ground to

take a proper step as shown in Figure 20.

41

Figure 20: Swinging the Non-Support Foot above Ground to Take a Valid Step

However, if | | was greater than half of , this would have resulted in a violation of

the criterion defined previously. Therefore, if the condition in Equation 46 became

true, the robot was considered to have fallen over, and the simulation was considered

invalid.

 | |

 (46)

3.4 States

The compass robot simulation, whose motions are summarized in Figure 21, began with a

robot at rest being subjected to an external push. The robot then took a step of a certain

size and speed. Next, it pushed off the ground with its back foot in order to take another

step of a new size and speed. The robot continued to take steps in this manner until it

came to rest.

42

Figure 21: Overview of Compass Robot Simulation Motions

It should be noted that while only forward steps are shown in the sequence above, the

robot could have chosen to take a step in which the non-support foot remains behind the

support foot. This primarily happened when the robot was close to being stopped and

began teetering back and forth while quickly changing support legs.

The overall process was split up into several different states. The state diagram for the

system is included as Figure 22. With the exception of the stopped state, invalid state,

and transition state, each state used MATLAB’s ode45 function to solve the compass

robot equations of motion. Event detection was used to accurately stop the simulation of

the current state when any of the events shown on the state diagram occurred. Each of

these states and events are explained in further detail in the following sections.

43

Figure 22: Compass Robot Simulation State Diagram

3.4.1 Push State

The simulation began in the push state when the robot at rest was subjected to an external

force. In the model, a push applied at the hip was represented as an equivalent torque

applied to the support leg. The push was assumed to begin with a small magnitude force

which increased as full contact was made and then decreased again as the object moved

away from the person and contact weakened. To represent this, the equivalent torque

increased from zero to some chosen value linearly in time, and it then decreased back to

zero linearly in the same amount of time as shown in Figure 23.

Firs

 ̇
 | |

 | |

 | |

 (̇) ‖ (
 ̇
)

Legend

 | ̇ | | ̇ |
B

Push-Off

C

B

 ̅ ̅

A

Second Push

First Push

Transition

Stop

Swing

Step

D F, H, I, L, EK, EM

F, G, H, I, J, L

H, I, L

H, I, L

Invalid

 ̅

 ̅ ̅

F, H, I, L, EK, EM

Push

44

Figure 23: Equivalent Torque as a Function of Time

Because of this assumption, the push state could easily be split into two sub-states. The

first push state encompassed the system while the torque was increasing, and the second

push state encompassed the system while the torque was decreasing. These sub-states are

further explained in the following sections.

3.4.1.1 First Push State

The first push state corresponds to the first half of the push when the applied torque was

increasing. During the first push state, the torque on the support leg was applied

according to Equation 47.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

N
o

rm
a

liz
e

d
 E

q
u

iv
a

le
n

t
T

o
rq

u
e

Equivalent Torque as a Function of Time

45

 ⁄
 (47)

It was assumed that when pushed, a person would naturally apply a torque at their hip

that keeps constant for a brief period of time. The angle remained constant as long as

the angular velocities of the two legs were kept equal. The velocities of the two legs

were kept equal by applying a torque at the hip using the proportional control shown in

Equation 48.

 (̇ ̇) (48)

The first push state lasted for half of the total push time unless the simulation became

invalid first. When in the first push state, the simulation could have become invalid

through conditions H, I, and L as defined in Figure 22. During the first push state, the

 limit was not enforced, because the height of the non-support foot was caused by

the push rather than the robot consciously lifting the foot too high. There was also no

 limit enforced during this state, because the current angle was just being

maintained. In an actual mechanical system, it is often difficult to back drive a motor, so

the motor should be able to maintain the current angle without exceeding its torque

limitations. While using proportional control to maintain , ̇ was allowed to change

directions as needed without triggering the invalid condition discussed previously. Once

the simulation completed the first push state with no invalid conditions, the simulation

entered the second push state.

46

3.4.1.2 Second Push State

The second push state was entered if the first push state reached its time limit without the

simulation becoming invalid. The second push state was used to implement the second

half of the push when the applied torque was decreasing. During the second push state,

the torque on the support leg was applied according to Equation 49.

 ⁄
 (49)

It was assumed that when humans are pushed, is only held constant for a small period

of time compared to the total push time. Therefore, was only kept constant during the

first push state. This means that during the second push state, was zero.

Similar to the first push state, the second push state ended when it reached half of the

total push time or an invalid condition. The push time was the same as in the first push

state, and the invalid states were the same as well. Once the simulation completed the

second push state with no invalid conditions, it entered the swing state.

47

3.4.2 Swing State

The simulation entered the swing state after reaching the time limit during the second

push state or the push-off state, which will be discussed shortly. It was assumed that

during the swing state, the support leg should only move as a result of momentum, so

was set equal to zero. Simultaneously, the non-support leg was moved to the desired

position by applying a torque at the hip. This torque was implemented such that it started

with a large magnitude, which was reduced as the leg approached the desired position.

The hip torque, shown in Equation 50, used proportional control and varied in magnitude

according to the swing constant, which was chosen and idealized for each step.

 () (50)

The desired step size, , was another parameter of the system that was chosen and

idealized for each step. Since the robot was knee-less and the legs were the same lengths,

the non-support foot needed to pass beneath the ground in order to take a forward step.

Therefore, the swing state did not end when the non-support foot contacted the ground.

This phenomenon is generally considered acceptable, because in physical compass robots

like the one shown in Figure 24, the leg is often shortened or folded sideways during the

swing state so that the robot can walk properly without the foot passing below the ground

[32].

48

Figure 24: Physical Compass Robot [32]

Additionally, if the robot took a step before was reached, the simulation became

invalid due to the invalid step size condition. Therefore, the swing state only ended if

became equal to or the simulation became invalid. While in the swing state, the

simulation could have become invalid through conditions F, G, H, I, J, and L as defined

in Figure 22. If reached and no invalid conditions were true, then the robot

proceeded to the step state in order to complete its current step.

3.4.3 Step State

The step state was entered after reaching during the swing state. It was assumed

that during the step state, the support leg should only move as a result of momentum, so

 was set equal to zero. Also during the step state, was held constant at until

49

the non-support foot made contact with the ground. The angle was held constant by

applying a hip torque using proportional control on the angular velocities of the legs as

shown in Equation 51.

 (̇ ̇) (51)

The step state ended when the height of the non-support foot became zero from a position

above ground. This was considered the end of the robot’s current step. The step state

also could have ended with the simulation becoming invalid through conditions F, H, I,

L, EK, and EM as defined in Figure 22. If the robot’s current step ended and no invalid

conditions were true, then the robot proceeded to the transition state.

3.4.4 Transition State

Once the robot completed a valid step during either the step state or push-off state, the

system entered the transition state. The first step of the transition state was to correct the

small error usually associated with ode45 event detection. Before entering the transition

state, the ode45 solver detected that was zero. However, due to precision limitations

while solving, was generally not zero exactly. While the inaccuracies were very

small, chosen to be on the order of 10
-9

, they did have an effect on the system. Because a

double support phase was not being considered, the robot experienced several almost

instantaneous steps teetering back and forth between the two feet when it was almost

stopped. In this situation, if one of the feet started below zero due to the small error, then

50

the robot would fall rather than taking the next immediate step. As a result, the model

had to ensure after every step that was exactly zero. While correcting the small

error, was kept constant, and the robot was rotated slightly about the support foot as

shown in Figure 25.

Figure 25: Correcting Small Inaccuracies in the Height of the Foot

To perform this correction, and were adjusted to be equal and opposite with

magnitudes of

, and the location of the support foot was not changed. Based on these

values, the new locations of the hip and non-support foot were calculated according to

Equations 52 and 53 respectively. Adjustments were only made to the geometry of the

robot, so the angular velocities of the legs were not changed. Once the correction was

performed, the system proceeded with the rest of the transition state.

 () ((

) (

)) (52)

51

 () ((

) (

)

 (

) (

))

(53)

During the transition state, the energy of the system was reduced due to the impact of the

non-support foot with the ground. Using the transition equations derived previously, the

new angular velocities were calculated based on the positions and angular velocities

immediately before impact. The transition was considered instantaneous, so the new

angular velocities were used as the initial conditions of the next state. During the

transition state, the definition of the support leg and non-support leg were also switched.

If the new angular velocities were both below a set threshold, then the robot was

considered to have stopped. A threshold value was necessary, because the velocities of

the robot would never permanently become and remain zero without a double support

phase. If the angular velocity of either leg was above the designated threshold, the

system entered the push-off state to begin taking the next step.

3.4.5 Push-Off State

The push-off state followed the transition state in situations where the robot did not stop.

Therefore, this state occurred at the beginning of each step except for the initial step after

the robot was pushed. At the beginning of a step, a human pushes off the ground with

their non-support foot in order to gain the necessary momentum for the step. The push-

52

off action was represented in the model by applying a torque at the ankle of the support

foot while holding constant. This torque could vary in magnitude and was a parameter

of the system that was chosen and idealized for each step. A torque at the hip, as detailed

in Equation 54, was applied using proportional control on the angular velocities to hold

constant.

 (̇ ̇) (54)

The push-off state ended when the push-off time limit was reached, the step was

completed, or the simulation was determined to be invalid. A step was considered

complete if the height of the non-support foot became zero from above ground. Unlike

the swing state, steps could be completed during the push-off state, because there was no

need for the non-support leg to swing underground. Completing steps during the push-

off state was actually very common, because when the robot neared stopping, it often

teetered back and forth taking nearly immediate steps that occurred within the push-off

time limit. The invalid states that could have been reached from the push-off state were

F, H, I, L, EK, and EM as defined in Figure 22.

If the push-off time limit was reached, then the robot proceeded to the swing state. If the

step was completed and no invalid conditions were true, then the robot proceeded to the

transition state.

53

3.4.6 Stopped State

The stopped state followed the transition state in situations where the robot stopped.

Once the robot reached the stopped state, it had successfully recovered from the push,

and the simulation was ended.

54

CHAPTER 4

Energy Reduction Method

4.1 Introduction

When humans are pushed, they will naturally take strategically placed steps in order to

return to a stable position. While this is easy for humans, a robot does not intuitively

know what step to take. Due to the complex dynamics of the system and the fact that it

may take more than one step to fully recover, it is difficult to calculate the ideal step that

a robot should take in order to recover from a push.

When a robot is stationary, the kinetic energy of the system will be zero. Due to this fact,

it was decided that the goal of push recovery should be for the robot to reduce its kinetic

energy to zero. While walking, the robot’s kinetic energy is reduced each time the foot

impacts the ground. It was originally hypothesized that the robot should choose to take

the step that results in the highest reduction of kinetic energy. If performed on every

step, this would eventually result in the robot reducing its kinetic energy to zero, thereby

successfully recovering from the push. The next sections detail how energy reduction

should be defined and investigate whether total energy or kinetic energy should be used

when implementing the reduction.

55

4.2 Reduction in Energy

Applying the transition equations caused immediate changes to the kinetic energy of the

robot. While taking a step, energy was added to the system during the push-off and

swing states. In order to ensure the maximum reduction in energy, the step with the

largest net change in energy across the entire step was the correct choice, not necessarily

the step with the largest net change across the transition equations. For example, take the

scenario where step A adds 5 units of energy to the system with a reduction of 2 through

the impact, and step B adds 10 units of energy to the system with a reduction of 5 through

the impact. Step A results in a system with 3 units of energy, and step B results in a

system with 5 units of energy. This example shows that step A should be chosen even

though the net change in energy across the transition equations is greater in step B.

4.3 Kinetic Energy versus Total Energy

Once this theory was implemented, it was investigated whether the method should use

kinetic energy or total energy to choose the best step. When the robot began a step with a

small as shown in Figure 26, only a small amount of kinetic energy was converted to

potential energy as the height of each mass relative to the ground was only slightly

increased.

56

Figure 26: Motion when Starting with a Small

This means that when the support leg became vertical, it most likely had kinetic energy

remaining and continued moving in the forward direction. When this was the case, the

robot had to take a forward step in order to avoid falling over. In order to take a forward

step, a torque was applied to the non-support leg, thereby adding energy to the system. In

comparison, if the robot had a slightly larger kinetic energy but was in the starting

configuration shown in Figure 27, it would have a smaller potential energy and could

have a smaller total energy. If the total energy was smaller, the robot moved forward,

reached the point where all the kinetic energy had been converted to potential energy, and

then fell slowly backward due to gravity.

Figure 27: Motion When Starting with a Large

57

When falling backward, very little if any torque needed to be applied to the non-support

leg, so very little if any energy was added to the system. When compared to the first

configuration, the second configuration began with a larger kinetic energy and a smaller

total energy. Since the step required very little energy to be added, the second

configuration ended with a smaller kinetic energy and a smaller total energy than the first

configuration. Based on these observations, it was decided that a robot should choose the

step that results in the lowest total energy rather than the lowest kinetic energy.

Note that the lowest possible total energy for a robot is when the kinetic energy is zero

and the potential energy is at a minimum. The lowest potential energy of the compass

robot occurs when each of the masses is as close to the ground as possible, which

requires to be as large as possible. However, within the model, was limited to a

maximum of , so the lowest possible potential energy would be as presented in

Equation 55.

 () ()

 (() ())
(55)

4.4 Feasibility of the Energy Reduction Method

To test the Energy Reduction Method, a push with an equivalent torque of 130 Nm was

applied, and the robot responded by taking a step with a specified push-off constant,

swing constant, and . The same push was applied for each of the possible

58

parameter combinations, and the total energy after the transition was recorded. Once all

the combinations had been run, the combination that resulted in the lowest total energy

was chosen as the best first step. Then, using the ending angular velocities and positions

from the best first step as the initial values of the second step, the same process was

followed to find the best second step. Once the best second step was determined, the best

third step was determined and so on until the robot came to a stop or became invalid.

The results in Table 1 show for a push with an equivalent torque of 130 Nm, the robot

was able to come to a stop using the Energy Reduction Method.

Step # ̇ (

) ̇ (

) Push-

Off

Constant

(Nm)

Swing

Constant
 Total

Energy

(N)

1 -13.1 -5.1 -167 -101.9 0 180 45 240.2

2 -23.2 23.2 31.9 -75.9 0 60 -25 235.1

3 12.2 -12.2 0.2 0.5 STOPPED

Table 1: Energy Reduction Method Results for a Push with an Equivalent Torque of 130

Nm

Once the best step was found for a push with an equivalent torque of 130 Nm, the process

was repeated to find the best step for pushes with equivalent torques ranging from 60 Nm

to 130 Nm counting by 10 Nm. Each of these pushes successfully came to a stop, and the

results are included in Appendix A as Tables 2 through 8 respectively. Since the robot

was able to come to a stop after each of the pushes within the defined range, the Energy

Reduction Method was shown to be a feasible method for push recovery.

59

CHAPTER 5

Implementation of the Energy Reduction Method

5.1 Introduction

While the Energy Reduction Method was shown to be feasible in the previous section, a

falling robot cannot try all types of steps in order to determine the best step. A falling

robot only gets one shot at push recovery, so it needs to be able to compute the one best

step to take. Simply storing the ideal step sequence for each push was not a practical

option for several reasons. If the robot was subjected to a push between one of the stored

values, then it would not have a sequence stored to know how to proceed. Another

reason is if there were any errors in the first step due to natural mechanical variations,

then the pre-computed second step would not be very accurate. Any slight inaccuracies

on the first step or two could have a major impact on later steps as the errors would

increase with each step.

Rather than storing the ideal step sequence for each push, a table was generated in

MATLAB that contained the best step for any starting configuration. This table will be

referred to as the Best Step Lookup Table. A starting configuration consisted of

 ̇ and ̇ . Since the robot would have no prior knowledge of the magnitude or

duration of the push, starting configurations for the first step were defined immediately

60

after the push ended. Starting configurations for all subsequent steps were defined

immediately after the transition state. This table eliminated the difficulties associated

with an unknown push magnitude and reduced the effect of slight inaccuracies due to

natural mechanical variations. The following sections describe how the data for this table

was generated and how the robot could interpolate within this table.

5.2 Data Generation

For each starting configuration, the MATLAB simulation was run for one step using all

possible parameter combinations, and the results of those steps were recorded for

selection of the best step. To decide on the range of starting configurations to run

through the simulation, the results from the Feasibility of the Energy Reduction Method

section were studied. The feasibility data was separated into three groups: first steps,

non-first steps with greater than zero, and non-first steps with less than zero. The

data was separated into these three categories, because data ranges were very different for

each of these three categories.

The biggest difference between the sets was that non-first steps began with both feet on

the ground, so was always equal and opposite . In contrast, during first steps, the

robot decided how to step after the end of the push, so one of the feet was already off of

the ground. Also during first steps, the robot did not push off of the ground, so the push-

off constant was always zero. Another difference was that if was greater than zero,

then the robot had to take a full step backward in order to reach a negative .

61

Since the robot would never need to take a full step backward in order to recover from a

forward push, these situations were not considered. Lastly, because the robot was always

being pushed forward, first steps always began with negative values for and

The minimum and maximum of each variable was calculated for every category. For the

first steps, and were incremented by , and ̇ and ̇ were incremented by

approximately

. The swing constant was incremented by 10, and the push-off

constant was always 0. Within the Energy Reduction Method results, was

always chosen to be on the first step, so no increment was necessary for .

For the non-first steps, and were incremented by , and ̇ and ̇ were

incremented by approximately

. The push-off constant was incremented by

Nm, and was incremented by . For the non-first steps, it was discovered

during testing that a swing constant of 60 was sufficient for all pushes within the defined

range. Defining the swing constant as 60 eliminated one parameter, thereby making it

easier to gather the training data.

The simulation was run with every combination of the seven different variables ranging

from their respective minimums to their respective maximums and counting by their

respective increments. After removing any data from simulations that resulted in invalid

steps, the first set had 1,520,034 data points. Similarly, the second set had 1,974,423 data

points, and the third set had 27,234,664 data points.

62

Once all the data had been generated, the best step was chosen for each unique

combination of , , ̇ , and ̇ using the Energy Reduction Method. If multiple

steps resulted in the same total energy, the step with the lowest push-off constant was

favored as this would require the robot’s motors to do less work. If there was a tie

between multiple steps with the same push-off constant, the step with the lowest swing

constant was favored. If both the swing constant and the push-off constant were the

same, then the step with the smallest was favored as this would result in a more

natural standing position. After applying the Energy Reduction Method, the first set had

262,665 data points. Similarly, the second set had 21,538 data points, and third set had

148,341 data points.

Once the best step had been chosen for each starting configuration, the data was stored in

the Best Step Lookup Table. Since , , ̇ , and ̇ are continuous rather than

discrete variables, it was impossible to store every possible starting configuration in the

table. If the robot found itself in one of the starting configurations that was not in the

table, it would have to interpolate between values in the table to find the best step. For

this project, four different interpolation methods were implemented and compared against

each other. The four methods, further described in the following sections, were linear

interpolation, nearest interpolation, linear least squares, and neural networks.

63

5.3 Linear Interpolation

The first method used to calculate the best step given the Best Step Lookup Table was

linear interpolation. Linear interpolation can be explained very simply in the 2D case. In

the 2D case, the lookup table has a set of y output values and each output’s corresponding

x input value. When computing the output y2 for a given input x2 that is not actually in

the lookup table, the closest points, x1 and x3, on either side of x2 are found in the table

instead. A line is drawn between (x1, y1) and (x3, y3), and the output value y2 is the value

of the line at position x2. A pictorial representation of this process is shown in Figure 28.

In this example, six data points were created using the equation y=x, which is represented

by the blue dotted line. A small amount of random noise was added to each of the data

points, which were plotted as black dots. The values between these data points were

generated using linear interpolation and are shown using the solid black line.

Figure 28: Linear Interpolation Example

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

Linear Interpolation Example

Input x

O
u

tp
u

t
y

Actual Function

Data Points with Noise

Linear Interpolation

64

This concept can be extended to multidimensional tables such as the Best Step Lookup

Table, which has 4 inputs making it a 5D interpolation problem. Since the simulation

was implemented in MATLAB, the griddatan function was used to perform the linear

interpolation.

Linear interpolation, while simple, has many drawbacks. This method is typically slow

as the entire data table must be searched to find the points closest to the point of interest.

It also uses a large amount of memory as the entire data table must be stored.

Interpolations of this type usually produce reasonably accurate results as long as the data

table is very large and has very small increments between input values. Unfortunately,

increasing the size of the data table to improve accuracy will also increase the

computation time and memory requirement.

5.4 Nearest Interpolation

The next method used to calculate the best step given the Best Step Lookup Table was

nearest interpolation. In the 2D case, the lookup table has a set of y output values and

each output’s corresponding x input value. When computing the output y1 for a given

input x1 that is not actually in the lookup table, the closest point, x2, is found in the table

instead. The output value y1 is set equal to the output value y2. Using the same data

points from the linear interpolation example, nearest interpolation was performed, and the

results are shown pictorially in Figure 29.

65

Figure 29: Nearest Interpolation Example

As with linear interpolation, the 2D example can be extended to a multidimensional table.

Once again, MATLAB’s griddatan function was used to perform the interpolation.

Nearest interpolation experiences many of the same drawbacks as linear interpolation.

These include having a slow computation time and using a large amount of memory.

While accuracy is increased with more data points, nearest interpolation is generally less

accurate than linear interpolation as the set of possible outputs is discrete rather than

continuous.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

Nearest Interpolation Example

Input x

O
u

tp
u

t
y

Actual Function

Data Points with Noise

Nearest Interpolation

66

5.5 Linear Least Squares

When in possession of a set of data, a relationship between the input and output variables

can be found using linear least squares. This relationship is expressed in the form of

Equation 56. Within this equation, the ’s are the inputs, the ’s are the slopes, is the

y-intercept, is the output, and is the number of input variables.

 (56)

Given points in the dataset, a system of equations can be expressed as shown in

Equation 57. An exact solution to the system of equations is one in which the correct

value is calculated with no error for every point in the dataset. If there are fewer

equations than unknowns, then the system is underdetermined, and an exact solution

cannot be found. If there is the same number of equations as unknowns, then an exact

solution can be found if and only if the dataset has a linear relationship with no noise. If

there are more equations than unknowns, then the system is overdetermined, and an exact

solution cannot be found.

(57)

67

In most practical implementations, the dataset will be relatively large, so the system will

be overdetermined. The dataset will also most likely contain noise. Since an exact

solution cannot be found in these cases, the solution will be the equation that best

approximates the dataset. This means that the goal of linear least squares will be to find

an equation that minimizes the sum of the squares of the error for each data point. The

first step in the linear least squares method is to represent the system of equations in

matrix form as shown in Equation 58.

[

] [

] [

] (58)

As shown in Equation 59, the matrices above can be represented algebraically as , ,

and respectively. is not a square matrix, so the inverse of cannot be determined.

To solve this equation for , both sides of the equation are first multiplied by to

obtain a square matrix and then multiplied by () . The value () is called

the pseudo-inverse of . These two steps are included in Equations 60 and 61

respectively, with the solution for presented as Equation 62.

 (59)

 (60)

 () () () (61)

68

 () (62)

Using the same data points from the linear interpolation and nearest interpolation

examples, linear least squares was performed, and the results are shown pictorially in

Figure 30.

Figure 30: Linear Least Squares Example

In the 2D case, the linear least squares solution is referred to as the line of best fit, and the

error for each data point is the vertical distance between the data point and the line when

graphed. In the 3D case, the linear least squares solution will be a plane of best fit, and in

the n-dimensional case, the linear least squares solution will be a hyperplane of best fit.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

Linear Least Squares Example

Input x

O
u

tp
u

t
y

Actual Function

Data Points with Noise

Linear Least Squares

69

Once the linear least squares solution has been found, the equation can be used to

compute the output for any input, regardless of whether it was in the original dataset.

One caveat is that the linear least squares solution should only be used for interpolation

rather than extrapolation. The equation should not be used for extrapolation, because

there is no observed data to suggest that the pattern continues for values outside of the

original range. Most real datasets do not continue to increase infinitely; they generally

either level off or begin to decrease after a certain point.

There are several advantages to using linear least squares but also one major

disadvantage. To begin with, the equation is very fast to implement as it only uses a

relatively small number of simple mathematical operations. Also, storing the simple

equation uses almost no memory. Linear least squares can often produce better results

than linear interpolation, because it considers the overall pattern of the data. Therefore,

linear least squares is less susceptible to noise than linear interpolation. However, if the

input to output relationship is not linear, linear least squares will produce a very poor

approximation.

5.6 Neural Networks

5.6.1 Introduction

The last method used to calculate the best step given the Best Step Lookup Table was

neural networks. Neural networks are a machine learning technique used to fit a non-

linear equation to a set of data. Although the method of computing the equation is very

70

different, the neural network itself is very similar to a line of best fit. Both predict an

output from a given input, but neural networks differ in their ability to capture non-linear

relationships. A neural network is generally represented by the structure shown in Figure

31.

Figure 31: Neural Network Structure

A neural network is arranged in a series of nodes which are the circles seen above. Each

node computes its own output by creating a linear combination of its inputs and applying

some activation function. The activation function will be described in further detail later.

The neural network’s inputs are also the inputs to the first hidden layer. Neural networks

can optionally include a second hidden layer whose inputs are the outputs of the first

hidden layer. The outputs from the last hidden layer are fed into the output layer to

compute the final output. Generally speaking, a neural network is nothing more than a

large set of nested equations.

x1

x2

x3

f

f

f

f

f

f

y

Legend

Inputs

1
st
 Hidden Layer

2
nd

 Hidden Layer

Output Layer

 Output

71

5.6.2 Training

The equation for the neural network is found using feedforward backpropagation training.

To start the training process, the weights at each node are randomly declared. Each point

from the dataset is fed forward through the neural network in order to determine the

predicted value for that point given the current equation. The error of each point is

determined as the difference between the predicted output and the actual output. By

using partial derivatives to assign the blame of the errors to certain nodes, the weights are

systematically adjusted. This process is then repeated for many iterations until the

stopping criterion is met. Options for the stopping criterion are described in further detail

later.

There are two different types of errors that are typically used during training: root mean

squared error and mean absolute error. The word error generally means the difference

between the actual and predicted values. Root mean squared error is the square root of

the mean of the error for each data point squared. By squaring the error, it makes large

errors even larger relatively, so outliers will have a much greater effect when fitting an

equation. Squaring the errors also makes it so that negative and positive errors do not

cancel each other out making an imperfect curve seem like a perfect fit. By taking the

square root, it returns the error to the same units as the original data before the error was

squared. Mean absolute error is the mean of the absolute value of the error for each data

point. The mean absolute error also prevents negative and positive errors from cancelling

each other out, but it does not put extra weight on the results of outliers.

72

5.6.3 Activation Functions

Typical activation functions used in neural networks include sigmoid, Gaussian, linear,

and threshold functions as shown in Figure 32. A sigmoid function is a function that

starts low and ends high with a smooth S shape. Two common sigmoid functions are the

hyperbolic tangent function and logistic function. The Gaussian function is a smooth

bell-shaped curve that is low on the two ends and high in the middle. The linear function

is a straight line with a constant slope. The threshold function is equal to zero when less

than a cutoff value and one when greater than the same cutoff value.

Figure 32: Typical Neural Network Activation Functions

A linear combination of other linear combinations will just create a different linear

combination, so using a linear function in the hidden layers would make the neural

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Activation Functions

Linear

Threshold

Gaussian

Sigmoid

73

network linear as well. Generally, neural networks are used when non-linear functions

are desired, so the linear function is very rarely used in hidden layers. In contrast, the

linear function is the most common function used in the output layer, because it will not

restrict the range of output values [33].

The threshold function can be used to introduce non-linearity to the equation, but it is

difficult to use due to the discontinuity in the function. The discontinuity makes the

function non-differentiable, so backpropagation of the error cannot be done as accurately.

This leaves the Gaussian and sigmoid functions, which are the two most common

activation functions used in neural networks. These two functions produce favorable

results as they are non-linear, differentiable, and bounded [33]. Either function may

produce faster training time or more accurate results depending on the underlying pattern

in the data. Separate neural networks can be trained with each activation function, and

the neural network with the lowest validation error, described in more detail later, will be

chosen.

5.6.4 Overfitting

The main concern while training a neural network is overfitting. When fitting a curve to

a set of data, the error can generally get lower if a higher order polynomial is used. This

is shown by the red function in Figure 33. The data, represented by black dots, was

generated by adding a little bit of noise to the straight line shown in the figure.

74

Figure 33: Example of Overfitting a Curve to a Dataset [34]

The error between the training data and the red function is zero, because the red function

goes through each point exactly. However, when interpolating between points in the

training data, the red function will be very inaccurate. This situation is called overfitting,

because the red function has been fit overly well to the training data at the expense of

generalizing well. Overfitting can be prevented by having a large training dataset,

choosing the ideal number of nodes, and using an appropriate stopping criterion. The

different options for stopping criteria and the ideal number of nodes are discussed in the

following sections.

75

5.6.5 Stopping Criteria

The stopping criterion is what determines when to stop iterating through the feedforward

backpropagation training process. The three most common stopping criteria are number

of iterations, convergence, and early stopping.

The most straight-forward of the stopping criteria options is number of iterations. When

using this criterion, the weights are adjusted a certain number of times before stopping

the training. This method is simple but very ineffective, because the neural network may

not be fully trained when the process is stopped. The number of iterations it will take to

fully train the neural network will vary widely based on the number of nodes and layers,

the amount of data points in the training set, the complexity of the underlying function,

how fast the weights are adjusted, and the random initial values of each weight. With all

of these variables affecting the number of iterations to fully train the neural network, it is

difficult to choose just one number to use as an effective number of iterations.

Another common stopping criterion is convergence. When using this criterion, the

weights are adjusted until the values of the weights have converged, meaning that the

values have stopped changing between iterations. While this method does not risk

undertraining, it risks overtraining, because as the number of iterations is increased, the

error on the training set will try to decrease until it levels off.

The third common stopping criterion is called early stopping. In order to prevent

overtraining, some of the data is not included in the training set and becomes the

76

validation set. As seen in Figure 34, the error on the validation data will initially

decrease as the neural network is trained and then increase as the neural network is

overtrained. The error on the validation data begins to increase, because if a neural

network is overtrained, it will perform poorly when predicting points not used during

training, such as the validation data. When using the early stopping criterion, the neural

network stops training once the error on the validation data begins to increase.

Figure 34: Early Stopping Method [35]

5.6.6 Number of Layers and Nodes

Most neural networks consist of only one or two hidden layers. Training three or more

hidden layers is rarely ever necessary and is much more complex to train. For most

applications, neural networks with only a single hidden layer are sufficient [36]. One

77

way to choose the number of hidden layers is to train single layer neural networks and

then proceed to two layer neural networks if and only if the performance is unacceptable.

The ideal number of nodes varies for each situation and cannot be easily determined. If

there are not enough nodes, then the neural network will not be complex enough to model

the true function. If there are too many nodes, then the function is more likely to overfit

the training data [36]. Since the validation data is not used during training, the error on

the validation set can be used to aid in neural network selection. As the number of nodes

is increased, the validation error will decrease initially and then increase due to

overfitting. The ideal number of nodes occurs when the validation error is at a minimum.

Multiple neural networks, each with a different number of nodes, must be trained in order

to find the ideal number of nodes.

There are several rules of thumb for determining the ideal number of nodes, although

their effectiveness is somewhat debated. One rule of thumb is that the number of nodes

is between the number of inputs and the number of outputs. A second rule of thumb is

that the number of nodes should be less than twice the number of inputs [36, 37]. When

using the early stopping method, it is generally believed that the risk of overtraining is

small, so contrary to these rules of thumb, a large number of nodes should be used [37].

78

CHAPTER 6

Results

6.1 Introduction

The effectiveness of each interpolation method was evaluated for pushes within the

defined range. The following section discusses the neural network training results, which

include selection of the activation function and number of nodes for each neural network.

The remaining two sections explore the push recovery effectiveness and computation

time of each interpolation technique.

6.2 Neural Network Training

The first step in the evaluation process was to train neural networks using the statistical

software program JMP. During training, 75% of the data was included in the training set

while the other 25% of the data was reserved for the validation set. The error was

measured using root mean squared error for reasons previously discussed. The early

stopping method was used to determine the number of iterations during training. To

avoid finding a local minimum, each neural network was trained five separate times

starting with different initial weights each time, and the neural network with the lowest

validation error was returned. Neural networks were trained in 5 node increments until

79

the error on the validation set began increasing. This process was performed once using

Gaussian activation functions and then again using sigmoid activation functions. Of

these trained neural networks, the one with the lowest validation error was chosen for

further evaluation within the simulation. By plotting the training results in Figure 35, it

can be seen that a neural network with a tanh activation function and 45 nodes was

chosen to calculate the swing constant when taking the first step.

Figure 35: Training Results: First Step Swing Constant

5 10 15 20 25 30 35 40 45 50 55
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Number of Nodes

V
a

lid
a

ti
o

n
 R

M
S

E

Training Results: First Step Swing Constant

Tanh

Gaussian

Chosen Neural Network

80

As shown in Figure 36, the appropriate choice for calculating the push-off constant when

taking non-first steps was a neural network with 30 nodes and a Gaussian activation

function.

Figure 36: Training Results: Non-First Step Push-Off Constant

Similarly, Figure 37 shows that the appropriate choice for calculating when

taking non-first steps was a neural network with 20 nodes and a tanh activation function.

5 10 15 20 25 30 35 40
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

Number of Nodes

V
a

lid
a

ti
o

n
 R

M
S

E

Training Results: Non-First Step Push-Off Constant

Tanh

Gaussian

Chosen Neural Network

81

Figure 37: Training Results: Non-First Step

6.3 Push Recovery Effectiveness

After the neural networks were trained, linear least squares equations were calculated for

the first step swing constant, non-first step push-off constant, and non-first step .

There was no need to calculate equations for linear or nearest interpolation as these

methods use the lookup table during implementation. It should be noted that for the

linear and nearest interpolations, the dataset had to be reduced by a factor of ten in order

to perform each simulation within a reasonable amount of time.

5 10 15 20 25 30
0.009

0.0095

0.01

0.0105

0.011

0.0115

Number of Nodes

V
a

lid
a

ti
o

n
 R

M
S

E

Training Results: Non-First Step
desired

Tanh

Gaussian

19.4 19.6 19.8 20 20.2 20.4 20.6

9.32

9.34

9.36

9.38

9.4

9.42

9.44

x 10
-3

Number of Nodes

V
a

lid
a

ti
o

n
 M

S
E

Training Results: Non-First Step
desired

Tanh

Gaussian

Chosen
Neural

Network

82

Each interpolation method was tested within the MATLAB simulation on pushes ranging

from 60 Nm to 130 Nm with an increment of 1 Nm. For each interpolation method, the

number of pushes that the robot recovered from was recorded, and a summary of these

results is shown in Figure 38.

Figure 38: Effectiveness of Each Interpolation Technique

These results show that the least effective interpolation technique was nearest

interpolation, which only recovered from approximately 1.4% of the pushes. Linear least

squares also performed poorly by recovering from less than 3% of the pushes. This poor

performance was anticipated due to the non-linear dynamics of the compass robot.

Neural networks recovered from approximately 97% of the pushes, thereby making them

the most effective interpolation technique. While its performance fell short of neural

0

20

40

60

80

100

120

Effectiveness of Each Interpolation Technique

S
u

c
c
e

s
s
fu

l
P

u
s
h

 R
e

c
o

v
e

ri
e

s
 (

%
)

97.183000

 2.816900 1.408500

28.169000

Linear
Least

Squares

Neural
Networks

Nearest
Interpolation

Linear
Interpolation

83

networks, linear interpolation was able to successfully recover from roughly 28% of the

pushes. This technique experienced limited success, because given enough data points,

nonlinear functions can be reasonably approximated by a series of piecewise linear

equations. Although 28% is relatively low, this would still be better than not having a

push recovery strategy, and when compared to neural networks, linear interpolation was

much simpler to implement.

6.4 Computation Time

While performing the simulations, the computation time for each step was also recorded,

and a summary of these results is shown in Figure 39. The nearest interpolation and

linear interpolation methods took approximately 117 and 73 seconds respectively to

calculate the proper step based on the lookup table. By the time the step could be

calculated using either of these methods, the robot would almost certainly have fallen

over. Additionally, if more data was added to the table in an attempt to increase the

accuracy of the results, these computation times would increase even more. In contrast,

neural networks and linear least squares computed the step almost instantaneously, and

their computation times would not increase as a result of adding more data. This would

theoretically allow them to decide on an appropriate response in time to successfully

recover from a push.

84

Figure 39: Computation Time of Each Interpolation Technique

0

20

40

60

80

100

120

140

Computation Time of Each Interpolation Technique

A
v
e

ra
g

e
 C

o
m

p
u

ta
ti
o

n
 T

im
e

 (
s
e

c
)

 0.000134 0.000089

116.940000

 72.788000

Linear
Least

Squares

Neural
Networks

Nearest
Interpolation

Linear
Interpolation

85

CHAPTER 7

Summary and Conclusion

7.1 Summary and Conclusions

This thesis introduced a new approach to implementing the reactive stepping method. In

order to test the new approach, a MATLAB model of a compass robot was created. The

model included appropriate constraints and parameters that were realistic of an actual

humanoid robot. It was then proposed that a robot should take the step which would

result in the highest reduction in total energy. For each starting configuration, the

simulation was run for every possible step, and the step that resulted in the lowest total

energy was stored in the Best Step Lookup Table. In order to implement the Energy

Reduction Method on a robot, interpolation within the Best Step Lookup Table was

necessary. Neural networks, linear least squares, nearest interpolation, and linear

interpolation were all tested as potential interpolation techniques. The performances of

each technique were compared against each other on the basis of push recovery

effectiveness and computation time.

Results showed that the computation times for nearest interpolation and linear

interpolation were too slow for a robot to make a decision before falling over. In

contrast, neural networks and linear least squares computed the step almost

86

instantaneously. The linear least squares and nearest interpolation techniques achieved

very poor recovery rates. Linear interpolation experienced a mediocre recovery rate but

had the advantage of being very simple to implement. In contrast, neural networks had a

very high success rate but were much more difficult to implement due to the time and

effort required to train each network.

When compared to previous reactive stepping approaches, the machine learning approach

has many advantages. One advantage is that the calculated stepping location is predictive

and therefore only has to be calculated once for each step. This approach also accounts

for the situation in which a robot requires more than one step to recover from the push.

Unlike an analytical solution that would be model specific, this approach is easily

generalized. The same process as described in this thesis could be followed to implement

reactive stepping on physical robots, or other robot models.

The main drawback to the machine learning approach is that a large amount of training

data must be generated in order to train the neural networks. While the research as

presented serves as a proof of concept, further testing should be performed on other, more

complex robot models. In addition, the method should be tested on a physical robot in

order to determine its true push recovery effectiveness.

87

7.2 Suggestions for Future Work

This thesis used a compass model to present a proof of concept for a machine learning

approach to reactive stepping. The same process could be followed to implement

reactive stepping on any robot model that can describe its steps using a relatively small

number of parameters. This work could also be continued by implementing reactive

stepping on a physical robot. Towards this goal, the researcher could either gather the

training data by using a model or by using a physical robot.

If the training data is gathered using a computer model, the model should be made to

accurately reflect the physical robot. It would need to include feet, knees, an upper body,

appropriate masses, and appropriate dimensions. If the model is accurate enough, neural

network equations trained using data from the model could theoretically be implemented

directly on the physical robot. Unfortunately, developing a model accurate enough for

these purposes could be extremely difficult.

Instead of using a model, the training data could be gathered by using the physical robot

itself. Gathering training data using a physical robot would be much more difficult than

using a computer simulation for several reasons. The first reason is that the researcher

must prevent the robot from becoming damaged during steps that result in falls. This

issue can be solved by appropriately tethering the robot or positioning the robot above a

soft surface on which to fall. Another issue that would need to be addressed is that neural

network performance generally improves with more training data. Increasing the amount

of training data would be difficult when using a physical robot, because it usually cannot

88

be left to run autonomously for long periods of time. Kalyanakrishnan and Goswami ran

into similar issues when proposing data collection on a physical robot for their supervised

learning of fall prediction. They suggested building a test fixture to automate the process,

thereby allowing a large amount of data to be collected without any human intervention

[38]. Lastly, data collected on a physical robot will contain noise not present in a model.

Therefore, it will most likely require more training data to accurately learn push recovery

when using data from a physical robot.

Either of these avenues would present an interesting extension of the work performed

within this thesis. When implemented on a physical robot, the machine learning

approach to reactive stepping could provide a quick and effective way of deciding how

and where to step in response to large pushes.

89

Appendix A: Energy Reduction Method Results

Step # ̇ (

) ̇ (

) Push-

Off

Constant

(Nm)

Swing

Constant
 Total

Energy

(N)

1 -6.4 -0.9 -66.5 -42.1 0 30 45 237.2

2 -22.5 22.5 20.1 -60.6 2.5 60 -32.5 231.2

3 16.1 -16.1 -6.5 -1.1 25 60 30 231

4 -16.1 16.1 0.5 -0.4 STOPPED

Table 2: Energy Reduction Method Results for a Push with an Equivalent Torque of 60

Nm

Step # ̇ (

) ̇ (

) Push-

Off

Constant

(Nm)

Swing

Constant
 Total

Energy

(N)

1 -7.3 -1.5 -80.8 -50.7 0 40 45 237.6

2 -22.6 22.6 21.5 -62.5 2.5 60 -31.9 231.6

3 15.7 -15.7 0.2 0.9 0 60 28.8 231.4

4 -15.7 15.7 0.2 0.2 STOPPED

Table 3: Energy Reduction Method Results for a Push with an Equivalent Torque of 70

Nm

90

Step # ̇ (

) ̇ (

) Push-

Off

Constant

(Nm)

Swing

Constant
 Total

Energy

(N)

1 -8.3 -2.1 -95.1 -59.2 0 50 45 238

2 -22.7 22.7 22.9 -64.6 5 60 -30.6 233.1

3 15.2 -15.2 -8.9 -5.1 25 60 27.5 232.8

4 -15.2 15.2 -1.2 -3.7 0 60 -33.1 232.4

5 15.2 -15.2 0.6 1.6 0 60 27.5 232

6 -15.1 15.1 0.1 -0.1 STOPPED

Table 4: Energy Reduction Method Results for a Push with an Equivalent Torque of 80

Nm

Step # ̇ (

) ̇ (

) Push-

Off

Constant

(Nm)

Swing

Constant
 Total

Energy

(N)

1 -9.2 -2.7 -109.4 -67.8 0 70 45 238.4

2 -22.8 22.8 24.5 -66.5 2.5 60 -30 233.5

3 14.9 -14.9 -16.3 -5.2 20 60 27.5 233

4 -14.9 14.9 -0.3 -3.1 0 60 -32.5 232.5

5 14.9 -14.9 0.4 1.2 30 60 27.5 232.3

6 -14.9 14.9 0.2 0.1 STOPPED

Table 5: Energy Reduction Method Results for a Push with an Equivalent Torque of 90

Nm

Step # ̇ (

) ̇ (

) Push-

Off

Constant

(Nm)

Swing

Constant
 Total

Energy

(N)

1 -10.2 -3.3 -123.8 -76.3 0 90 45 238.8

2 -22.9 22.9 26.1 -68.7 7.5 60 -28.1 233.6

3 13.8 -13.8 0.2 0.6 STOPPED

Table 6: Energy Reduction Method Results for a Push with an Equivalent Torque of 100

Nm

91

Step # ̇ (

) ̇ (

) Push-

Off

Constant

(Nm)

Swing

Constant
 Total

Energy

(N)

1 -11.1 -3.9 -138.2 -84.9 0 110 45 239.3

2 -23 23 27.8 -71.1 0 60 -28.1 234.6

3 13.8 -13.8 2.5 4.9 0 60 25 234.1

4 -13.7 13.7 -1.4 -2.8 0 60 -30 233.7

5 13.7 -13.7 0.4 1.1 30 60 25 233.5

6 -13.7 13.7 0.2 0.1 STOPPED

Table 7: Energy Reduction Method Results for a Push with an Equivalent Torque of 110

Nm

Step # ̇ (

) ̇ (

) Push-

Off

Constant

(Nm)

Swing

Constant
 Total

Energy

(N)

1 -12.1 -4.5 -152.5 -93.4 0 140 45 239.7

2 -23.1 23.1 29.7 -73.5 2.5 60 -26.3 235.5

3 12.8 -12.8 2.8 4.8 0 60 23.1 235

4 -12.8 12.8 -1.6 -2.9 0 60 -28.1 234.7

5 12.8 -12.8 0.6 1.2 5 60 23.1 234.4

6 -12.8 12.8 0.1 0 STOPPED

Table 8: Energy Reduction Method Results for a Push with an Equivalent Torque of 120

Nm

92

References

[1] LawnBott Robotic Mowers. Kyodo America, 2013. Web. 9 April 2013.

<http://www.lawnbott.com/>.

[2] IRobot Roomba Vacuum Cleaning Robot. IRobot Corporation, 2013. Web. 9 April

2013. <http://www.irobot.com/us/learn/home/roomba.aspx>.

[3] "Robotic Surgery." Wikipedia: The Free Encyclopedia. Wikimedia Foundation,

Inc., 27 May 2013. Web. 2 April 2013.

<http://en.wikipedia.org/wiki/Robotic_surgery>.

[4] K. Jensen. "Wisdom from the Workroom: David Robinson Shares Lessons in

Product Development." Brigham Young University: Ira A. Fulton College of

Engineering and Technology, 8 Apr. 2013. Web. 09 April 2013.

<http://www.et.byu.edu/news/wisdom-workroom-david-robinson-shares-lessons-

product-development>.

[5] T. Cronk. "Robot to Serve as Future Military’s ‘Pack Mule’." U.S. Department of

Defense, 19 Dec. 2012. Web. 02 April 2013.

<http://www.defense.gov/News/NewsArticle.aspx?ID=118838>

[6] "The Talon Bomb Disposal Robot Picks." Fine Art America, n.d. Web. 08 April

2013. <http://fineartamerica.com/featured/the-talon-bomb-disposal-robot-picks-

stocktrek-images.html>.

93

[7] DARPA Robotics Challenge. Defense Advanced Research Projects Agency

(DARPA), n.d. Web. 18 March 2013.

<http://www.theroboticschallenge.org/aboutprogram.aspx>.

[8] "Industrial Robotics." Linkoping Center for Sensor Informatics and Control (LINK-

SIC), n.d. Web. 08 April 2013.

<http://www.linksic.isy.liu.se/?page=industrialrobotics-2>.

[9] S. Kajita. "Frequently Asked Questions about Biped Robots." National Institute of

Advanced Industrial Science and Technology (AIST), 21 June 2011. Web. 28

March 2013. <http://staff.aist.go.jp/s.kajita/faq-e.html>.

[10] "Mars Rover." DuPont, n.d. Web. 14 April 2013.

<http://www2.dupont.com/Media_Center/en_US/assets/images/vocus/NASA/pe_D

CS_Mars_Rover_01.jpg>.

[11] "BigDog - The Most Advanced Rough-Terrain Robot on Earth." Boston Dynamics,

2013. Web. 7 April 2013. <http://bostondynamics.com/robot_bigdog.html>.

[12] "ASIMO Specifications." Honda, n.d. Web. 7 April 2013.

<http://asimo.honda.com/asimo-specs/>.

[13] L. Raffensperger. "How Will Humans and Robots Coexist?" IEEE Spectrum, 25

Jan. 2013. Web. 02 April 2013. <http://spectrum.ieee.org/podcast/at-

work/innovation/how-will-humans-and-robots-coexist>.

[14] R. Renner and S. Behnke. "Instability Detection and Fall Avoidance for a

Humanoid using Attitude Sensors and Reflexes," Intelligent Robots and Systems,

2006 IEEE/RSJ International Conference on , vol., no., pp.2967,2973, 9-15 Oct.

2006

94

[15] O. Hohn, J. Gacnik, and W. Gerth. “Detection and Classification of Posture

Instabilities of Bipedal Robots,” in Proc. of the 8th Int. Conf. on Climbing and

Walking Robots and the Support Technologies for Mobile Machines – CLAWAR,

2005.

[16] S-J. Yi, B-T. Zhang, D. Hong, and D. Lee. "Learning Full Body Push Recovery

Control for Small Humanoid Robots," Robotics and Automation (ICRA), 2011 IEEE

International Conference on , vol., no., pp.2047,2052, 9-13 May 2011

[17] B. Stephens. "Integral Control of Humanoid Balance," Intelligent Robots and

Systems, 2007. IROS 2007. IEEE/RSJ International Conference on , vol., no.,

pp.4020,4027, Oct. 29 2007-Nov. 2 2007

[18] S-H. Lee and A. Goswami. "Ground Reaction Force Control at Each Foot: A

Momentum-Based Humanoid Balance Controller for Non-Level and Non-

Stationary Ground," Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ

International Conference on , vol., no., pp.3157,3162, 18-22 Oct. 2010

[19] J. Pratt, J. Carff, S. Drakunov, and A. Goswami. "Capture Point: A Step toward

Humanoid Push Recovery," Humanoid Robots, 2006 6th IEEE-RAS International

Conference on , vol., no., pp.200,207, 4-6 Dec. 2006

[20] J. Pratt and R. Tedrake. “Velocity Based Stability Margins for Fast Bipedal

Walking,” in First Ruperto Carola Symposium in the International Science Forum

of the University of Heidelberg entitled “Fast Motions in Biomechanics and

Robots”, Heidelberg Germany, September 7-9 2005

[21] S-K. Yun and A. Goswami. "Momentum-Based Reactive Stepping Controller on

Level and Non-Level Ground for Humanoid Robot Push Recovery," Intelligent

95

Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on , vol., no.,

pp.3943,3950, 25-30 Sept. 2011

[22] S-K. Yun, A. Goswami, and Y. Sakagami. "Safe Fall: Humanoid Robot Fall

Direction Change through Intelligent Stepping and Inertia Shaping," Robotics and

Automation, 2009. ICRA '09. IEEE International Conference on , vol., no.,

pp.781,787, 12-17 May 2009

[23] S-H. Lee and A. Goswami. “Fall on Backpack: Damage Minimizing Humanoid Fall

on Targeted Body Segment using Momentum Control,” in ASME Int. Design

Engineering Tech. Conf., pp. 47153:1–10, 2011.

[24] J. Stuckler and S. Behnke. “Soccer Behaviors for Humanoid Robots,” in Proc. of

the Workshop on Humanoid Soccer Robots of the IEEE-RAS Int. Conf. on

Humanoid Robots, Genoa, Italy, 2006, pp. 62–70.

[25] P. Miller. "Walking as Jazz: Virginia Tech Takes on the Biggest Challenge in

Robotics." The Verge. Vox Media, Inc., 8 Nov. 2011. Web. 23 April 2013.

<http://www.theverge.com/2011/11/8/2518608/walking-as-jazz-virginia-tech-

robotics>.

[26] S. Kajita and B. Espiau. "Legged Robots." Springer Handbook of Robotics. Ed.

Bruno Siciliano and Oussama Khatib. Berlin: Springer, 2008. 363-64. Print.

[27] A. Bedford and W. Fowler. "Planar Kinematics of Rigid Bodies." Engineering

Mechanics: Dynamics. 5th ed. Upper Saddle River: Prentice Hall, 2008. 290-96.

Print.

96

[28] A. Goswami, B. Thuilot, and B. Espiau. “Compass-Like Biped Robot Part I:

Stability and Bifucation of Passive Gaits.” Technical report, INRIA, No. 2996, Oct.

1996.

[29] D. George. "Thirteen Advanced Humanoid Robots Available for Sale." Smashing

Robotics. N.p., 27 July 2012. Web. 06 Oct. 2012.

<http://www.smashingrobotics.com/thirteen-advanced-for-sale>.

[30] D. Lofaro. "Jaemi Hubo (KHR4) Users Manual." Drexel University, 22 Dec. 2009.

Web. 06 Oct. 2012.

<http://www.pages.drexel.edu/~dml46/DASL/HUBO/JaemiHubo_Manual_KHR4_

R1_2009-12-22_0236.pdf>.

[31] I-W. Park, J-Y. Kim, J. Lee, M-S. Kim, B-K. Cho, and J-H. Oh. "Development of

Biped Humanoid Robots at the Humanoid Robot Research Center, Korea Advanced

Institute of Science and Technology (KAIST)." Humanoid Robots: Human-like

Machines. Ed. Matthias Hackel. Vienna: I-Tech Education and, 2007. 44-48. Print.

[32] T. McGeer, 1990a. "Passive Dynamic Walking," International Journal of Robotics

Research, 9:62-82.

[33] W. Sarle. "Neural Network FAQ, Part 2 of 7: Learning." Periodic posting to the

Usenet newsgroup comp.ai.neural-nets. N.p., 2002. Web. 9 July 2012.

<ftp://ftp.sas.com/pub/neural/FAQ2.html#questions>.

[34] V. Zoonekynd. "Regression Problems -- and Their Solutions." N.p., 6 Jan. 2007.

Web. 28 Feb. 2013. <http://zoonek2.free.fr/UNIX/48_R/11.html>.

[35] "Pricing and Hedging Derivative Securities with Neural Networks: Bayesian

Regularization, Early Stopping, and Bagging." National Taiwan University of

97

Science and Technology: Department of Computer Science and Information

Engineering, n.d. Web. 12 Dec. 2012.

<http://neuron.csie.ntust.edu.tw/homework/94/neuron/Homework3/M9409204/disc

uss.htm>.

[36] J. Heaton. "Feedforward Neural Networks." Introduction to Neural Networks for

Java. 2nd ed. St. Louis: Heaton Research, 2008. 157-59. Print.

[37] W. Sarle. "Neural Network FAQ, Part 3 of 7: Generalization." Periodic posting to

the Usenet newsgroup comp.ai.neural-nets. N.p., 2002. Web. 9 July 2012. <

ftp://ftp.sas.com/pub/neural/FAQ3.html#A_hl >.

[38] S. Kalyanakrishnan and A. Goswami. “Learning to Predict Humanoid Fall,” The

International Journal of Humanoid Robotics, vol. 8, no. 2, pp. 245–273, 2011.

