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Abstract 

 

When robots are integrated into the real world, chances are they will not be able to 

completely avoid situations in which they are bumped or pushed unexpectedly.  In these 

situations, the robot could potentially damage itself, damage its surroundings, or fail to 

perform its tasking unless it is able to take active countermeasures to prevent or recover 

from falling.  One such countermeasure, referred to as reactive stepping, involves a robot 

taking a series of steps in order to regain balance and recover from a push.  Research into 

reactive stepping typically focuses on choosing which step to take. 

 

This thesis proposes a machine learning approach to reactive stepping.  This approach 

leverages neural networks to calculate a series of steps that return the robot to a stable 

position.  It was theorized that the robot would become stable if it always chose the step 

resulting in the highest reduction of energy.  Theories were tested using a compass model 

that incorporated parameters and constraints realistic of an actual humanoid robot.  The 

machine learning approach using neural networks performed favorably in both 

computation time and push recovery effectiveness when compared with the linear least 

squares, nearest interpolation, and linear interpolation methods.  Results showed that 

when using neural networks to calculate the best step for an arbitrary push within the 

defined range, the compass model was able to successfully recover from 97% of the 

pushes applied.  The procedure was kept very general and could be used to implement 

reactive stepping on physical robots, or other robot models.  
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CHAPTER 1 

Introduction 

 

1.1  Background 

Robotics has become a very popular field of study among electrical engineers, 

mechanical engineers, and computer scientists.  Aside from their broad nature and 

technical complexity, researchers are often interested in robotics due to the immense 

benefits they could offer humans. 

 

Major robotic research efforts are taking place to develop both commercial and military 

robots.  Some of the earliest commercial robots included industrial robots that were used 

for tasks such as pick and place, painting, and welding.  Often times, industrial robots are 

favored over humans for performing these tasks due to their accuracy, speed, and lack of 

fatigue.  Other robots have been developed to perform tasks that humans either do not 

want to perform or do not have the time to perform on a regular basis.  Examples of these 

robots include the Lawnbott [1] and the iRobot Roomba vacuum cleaning robot [2].  One 

of the more recent developments is the application of robots to the surgical field.  

Surgical robots, as shown in Figure 1, have the potential to allow remote surgeries, which 

will permit any number of specialized surgeons to be chosen rather than limiting patients 
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to those surgeons physically present.  They also allow for smaller and more precise 

incisions during procedures [3]. 

 

 

Figure 1: The da Vinci Surgical System Made by Intuitive Surgical [4] 

 

One of the latest military robots is DARPA’s LS3 pack mule robot.  LS3 is currently 

being developed in order to address the large amount of equipment that soldiers are 

required to carry.  If the pack mule robot is able to reduce the load that soldiers must 

carry, soft tissue injuries and fatigue in soldiers could be reduced [5].  Another place 

where robots prove useful is in situations that are too dangerous for humans, such as 

bomb disposal.  Bomb disposal robots, as shown in Figure 2, are given tasks that range 

from moving the bomb to a safe location for detonation to disarming the device. 
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Figure 2: The TALON Bomb Disposal Robot [6] 

 

Similarly, in response to disasters such as the Fukushima Daiichi nuclear disaster and the 

Deepwater Horizon oil spill, DARPA is currently sponsoring a challenge to develop 

disaster response robots.  The goal of these robots is to perform necessary tasks in 

environments that may be unsafe for humans, such as those experiencing structural 

instability or nuclear contamination [7].  The aforementioned situations are just a few 

examples of the many valuable applications that are pushing researchers to take an active 

interest in the field of robotics. 

 

Modern land-based robots can be classified into two major categories: robotic 

manipulators and mobile robots.  Robotic manipulators, as shown in Figure 3, include a 

non-mobile base, one or more limbs consisting of several links connected by rotational or 

translational joints, and one or more end effectors used to complete tasks.  Most industrial 

robots and surgical robots are classified as robotic manipulators.  
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Figure 3: A Robotic Welder [8] 

 

Mobile robots can physically move their location while in operation and can be classified 

into three major categories: wheeled robots, treaded robots, and legged robots.  Wheeled 

robots, as shown in Figure 4, are comprised of a mobile chassis that moves its location 

through the use of motorized wheels.  Treaded robots are similar but include a continuous 

track that connects the wheels on each side of the robot.  Among mobile robots, wheeled 

and treaded robots are popular choices due to the ease of development and control.  They 

also have the advantage of being able to travel at relatively high speeds.  However, 

wheeled robots are limited in the fact that they usually need a continuous area of even 

terrain over which to drive.  While treaded robots can handle slight gaps or minor levels 

of uneven terrain, most are incapable of climbing stairs or walking on discrete footholds 

such as stepping stones [9]. 
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Figure 4: The Mars Rover [10] 

 

Legged robots, as shown in Figure 5, include a base that moves its location through the 

use of linkages connected by rotational or translational joints. These linkages often 

resemble the legs of either animals or humans.  Legged robots are able to overcome some 

of the limitations of wheeled robots, but they generally travel at low speeds and are 

extremely difficult to develop due to their complex motions and naturally unstable nature. 

 

 

Figure 5: BigDog, A Quadrupedal Robot Created by Boston Dynamics [11] 
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A subset of the legged robot category includes robots with only two legs, or bipedal 

robots, as shown in Figure 6.  In addition to the benefits of legged robots mentioned 

above, bipedal robots also have several other advantages.  One such advantage is that the 

length of a bipedal robot is typically smaller than a robot with three or more legs, which 

allows them to navigate tight turns more easily.  Bipedal robots also have the potential to 

use less energy as they will have fewer actuators than robots with three or more legs [9].  

Another advantage is that the development of bipedal robot motions can greatly benefit 

from their close resemblance to humans.  Since bipedal robots bear a close resemblance 

to humans, much of what has been learned about human locomotion can be leveraged for 

use in the development of bipedal robot locomotion.  Finally, studying human locomotion 

for the purposes of developing bipedal robots can lead to an increased understanding of 

human movement, which can aid in physical therapy and prosthetic development. 

 

 

Figure 6: ASIMO, A Bipedal Robot Created by Honda [12] 
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It is expected that bipedal robots will be able to assimilate into the human world more 

easily than other types of robots.  People are more comfortable interacting with robots if 

they resemble humans.  The world has also been developed for use by humans.  The size 

of doorways and walkways, the shape of tools, the placement of pedals in a car, and the 

height of doorknobs and light switches were all specifically designed to be convenient for 

human use.  If robots are developed to be human-like, then the environment will not have 

to be modified in order for it to be convenient for use by robots [13].   

 

 

1.2  Motivation 

Unfortunately, even with leveraging the benefits of their  resemblance to humans, bipedal 

robots are still extremely challenging to develop, mostly due to issues with stability.  

With only two legs on the ground on which to balance, bipedal robots are naturally very 

unstable.  If the motions are carefully planned out, many bipedal robots are able to stand 

and walk stably in controlled, isolated environments.  However, when operating in the 

real world, robots will meet additional challenges such as being bumped or pushed 

unexpectedly.  While the frequency of these occurrences may be reduced through the use 

of vision strategies to avoid objects, some situations in which a robot may be bumped or 

pushed are unavoidable.  In these situations, the robot is likely to fall if it does not take 

active countermeasures. 
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Falls can be devastating to a robot for several reasons.  First and foremost, most robots 

are very fragile and very expensive, so a fall could result in the need to make very costly 

repairs.  A robot could also break or hurt an object or person that it falls into.  Another 

issue to consider is if a robot falls and cannot stand back up, it will be rendered useless 

and unable to complete its assigned tasks.  Even if the robot is able to stand back up, it 

will have taken longer to complete its assigned tasks due to the extra time associated with 

standing up. 

  

It is widely accepted that these issues must be addressed before robots are able to assume 

a prominent role in society.  A summary of previous research pertaining to this topic is 

included in the next section. 

 

 

1.3  Literature Review 

When a robot is pushed, it must first recognize that it has in fact been pushed and identify 

how hard it has been pushed in order to decide on an appropriate response.  To a human, 

these may seem like trivial tasks, but fall prediction for a robot is actually very complex 

and has been approached many different ways in previous research.  Renner and Behnke 

recorded a sequence of parameters during undisturbed walking, and a push was 

considered to have been detected if the robot’s sensor readings deviated from that 

sequence.  They found that this approach typically recorded less false positives than using 

the distance between the zero-moment point and the edge of the support polygon to detect 

instability [14].  Hohn et al. used pattern recognition along with sensor data, such as the 
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angles and velocities of the legs, to recognize and classify falls.  While the pattern 

recognition was only trained using pushes, it was also able to recognize when the robot 

began stumbling [15]. 

 

Once a robot has predicted a fall, it should attempt to recover from the push and avoid 

falling.  There are three different forms of push recovery, which are commonly referred 

to as ankle strategy, hip strategy, and reactive stepping. 

 

When the push is small, ankle strategy allows the robot to regain balance simply by 

applying a torque at the ankle.  Yi et al. indirectly implemented ankle strategy by 

controlling the zero moment point of the robot in real time.  Indirectly implementing 

ankle strategy was found to be more effective than using direct control of the ankle due to 

the tendency of the feet to tip before ankle control could affect the position of the robot 

[16].  Stephens implemented ankle strategy with the goal of returning the leg to a vertical 

position, thereby causing the leg to act like a stiff inverted pendulum.  Results of the 

study found that this method of control accurately reflected hip strategy as performed by 

human subjects [17]. 

 

If the push is too large to recover using ankle strategy, hip strategy allows the robot to 

regain balance by applying a torque at the hip.  Yi et al. applied a torque to accelerate the 

center of mass, thereby counteracting the movement caused by the push.  While results 

were promising, they did not take arm motions into account for fear of damaging the 

physical robot, so further investigation may be necessary [16].  Lee and Goswami 
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implemented a controller that prioritized the required linear momentum to remain 

balanced while sacrificing the required angular momentum if necessary.  This caused the 

robot to bend at the hip in order to avoid moving forward.  The paper suggests that better 

results may have been achieved if the controller was adjusted to prioritize some aspects 

of both linear and angular moment rather than just linear momentum [18]. 

 

If the push is too large to recover from using hip strategy, reactive stepping allows the 

robot to take steps in order to reach a more stable position.  Pratt et al. introduced the 

concept of a Capture Point, which is a point on the ground such that if the robot steps on 

that point, then the kinetic energy of the robot will be able to both become and remain at 

zero.  The article only addressed situations where the robot could become stable through 

one single step [19].  In contrast, Pratt and Tedrake estimated N-Step Capture Points by 

using a brute-force search algorithm [20].  A major drawback to using Capture Points to 

determine the step location is that a Capture Point is estimated based on the current state 

of the robot, which will change as the robot performs the step.  As such, a Capture Point 

must be recalculated and the trajectory must be changed several times as the step is being 

taken [20, 21]. 

 

Yun and Goswami expanded on the work from [18] to include a controller that prioritized 

the required angular momentum to remain balanced while sacrificing the required linear 

momentum if necessary.  In contrast to the controller from [18], this new controller 

caused the robot to take a step in order to avoid bending at the hip.  Their controller 

determined the step location by modeling the robot as a passive rimless wheel and 
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choosing to step at a location which would cause the wheel to stop when the spoke was in 

a vertical position.  Unlike a Capture Point, the calculation of this step location was 

predictive, so the step location only needed to be calculated once during the stepping 

process.  One drawback to this method is that it did not present a recovery solution when 

the computed step location could not be reached by the robot within a single step [21]. 

 

If a robot is unable to recover from the push using the ankle strategy, hip strategy, or 

reactive stepping, then a fall is unavoidable for the robot.  If a fall is unavoidable, the 

robot should implement a fall control strategy.  Fall control strategies may concentrate on 

either minimizing damage to the robot’s surrounding or minimizing damage to the robot 

itself.  In the work by Yun et al., the robot either began to take a step or generated angular 

momentum in order to change the robot’s fall direction away from delicate surrounding 

objects.  The proposed method approximated the robot’s future states using a simple 

inverted pendulum, which due to its simplicity, may have resulted in approximation 

errors [22].  Lee and Goswami proposed rotating the swing leg and the trunk in order to 

change the fall direction of the robot such that it would fall on its impact absorbing 

backpack, thereby reducing damage to the robot.  Using this technique, the robot was 

able to successfully fall on its backpack when falling backwards or sideways but not 

when falling forward [23]. 
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If the robot has fallen over, then the robot should have a strategy for standing back up to 

prevent it from being rendered useless by the fall.  It should be noted however that in 

order to successfully implement a standing-up strategy, the robot must remain 

undamaged either through a robust design or one of the fall control strategies discussed 

previously.  Much of the leading research on standing-up routines in robots has been 

conducted during the development of soccer playing robots for the RoboCup Humanoid 

League [24].  One such RoboCup competitor, DARwIn-OP, is capable of successfully 

implementing the standing-up routine shown in Figure 7 [25].  

 

 

Figure 7: DARwIn-OP Executing His Standing Up Strategy [25] 
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1.4  Thesis Organization 

This thesis introduces a new approach to the reactive stepping method in which a robot 

uses machine learning to calculate the step that will result in the highest energy reduction.  

The thesis is organized as follows. 

 

Chapter 2 gives an overview of the compass robot, which is how the bipedal robot will be 

represented within this thesis.  This chapter will include the equations of motion and the 

changes in leg velocities that occur when taking a step.  Chapter 3 details the MATLAB 

model that was created to simulate a walking compass robot.  This chapter will define the 

parameters of the system, specify the conditions that make the model invalid, and explain 

the different states of the simulation. 

 

Chapter 4 explains the Energy Reduction Method for choosing the best step a robot can 

take to recover from a push.  Chapter 5 specifies how the Energy Reduction Method 

could be implemented on a robot using various interpolation methods.  Chapter 6 

discusses the effectiveness of the various interpolation methods.  Chapter 7 summarizes 

the thesis and outlines how the work could be expanded in the future.  

 

 

  



14 

 

 

 

CHAPTER 2 

Compass Robot 

 

2.1  Introduction 

The compass robot and subsequent equations used within this thesis were borrowed from 

the Springer Handbook of Robotics [26], but they are also very widely used by many in 

the field of robotics.  The compass robot, shown in Figure 8, is a simple version of a 

bipedal robot that uses two knee-less legs connected by a revolute joint at the hip. 

 

 

Figure 8: Compass Robot 

 

   

    

Support Foot 
Non-Support Foot 

Ground 

Hip 

  

+ 
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At all points in time, one foot of the robot is in contact with the ground, and the other foot 

is free to swing as part of a walking motion.  The leg whose foot is in contact with the 

ground is called the support leg, while the leg whose foot is free to swing is called the 

non-support leg.  When a step occurs during walking, the support leg and non-support leg 

switch instantaneously, so there is never a double support phase during which time both 

feet would be in contact with the ground. 

 

The position of any point on the robot relative to the position of the support foot can be 

uniquely determined by the angle of the support leg,    , and the angle of the non-support 

leg,    .  As such, the state of the compass robot is defined in Equation 1 as  . 

 

    [
   
  
] ( 1 ) 

 

The inner leg angle,  , is also a useful value for analysis, but it is solely defined by    

and    .  The movement of the robot can be represented by the angular velocity and 

angular acceleration of each leg.  The angular velocity of the support leg is defined as  ̇ , 

and the angular velocity of the non-support leg is defined as  ̇  .  The angular 

acceleration of the support leg is defined as  ̈ , and the angular acceleration of the non-

support leg is defined as  ̈  .  

 

The following sections derive the necessary equations to represent the compass robot, 

which includes position equations, energy equations, equations of motion, and transition 

equations. 
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2.2  Position Equations 

In order to determine the position of the support foot (     ), the position of the hip 

(     ), and the position of the non-support foot (       ), the dimensions of the legs 

were defined as shown in Figure 9.  

 

 

Figure 9: Compass Robot Dimensions 

 

The mass of the robot was chosen to be a point mass,  , located in the middle of each leg 

with an additional point mass,   , located at the hip.  As can be seen in the image above, 

the legs are identical in both length and mass.  The length from the foot to the center of 

mass of each leg is a constant,  .  The length from the hip to the center of mass of each 

leg is a constant,  .  The overall length of the leg consists of both of these quantities as 

shown in Equation 2. 

       ( 2 ) 

Ground 

(     ) 

(     ) 

   

(       ) 
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The horizontal position of the support foot,   , begins at zero but changes at the end of 

each step when the support leg and non-support leg switch.  Since the support foot is 

always in contact with the ground, the height of the support foot,    , is always zero.  As 

shown in Equation 3, the position of the hip can be defined relative to the position of the 

support foot as a function of   . 

 

 (     )  (        (  )          (  )) ( 3 ) 

 

Similarly, as shown in Equation 4, the position of the non-support foot can be defined 

relative to the position of the hip as a function of    . 

 

 (       )   (        (   )          (   )) ( 4 ) 

 

 

2.3  Energy Equations 

The total energy of the robot consists of kinetic energy and potential energy.  The kinetic 

energy is a function of the velocities of each mass,  ⃑ ,  ⃑ , and  ⃑  , which are shown in 

Figure 10. 
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Figure 10: Compass Robot Velocities 

 

According to Engineering Mechanics: Dynamics, the velocities of two points,   and  , 

on a rigid body in planar motion are related by Equation 5.  Within this equation,     is 

the angular velocity of the rigid body, and  ⃑    is a vector defining the location of point 

  relative to point   [27]. 

 

  ⃑    ⃑          ⃑    ( 5 ) 

 

Using the equation above and the fact that the support foot is not moving,  ⃑  can be 

calculated as a function of    and  ̇ .  The equation for  ⃑  is included in Equation 6. 

 

  ⃑    ̇  ̂   (     (  ) ̂      (  ) ̂)      ̇     (  )  ̂   ̇     (  )  ̂ ( 6 ) 

 

   
    

Support Foot 
Non-Support Foot 

Ground 

Hip 
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The movement of the mass at the hip is completely determined by the movement of the 

support leg.  Using the same method as above,  ⃑  can be calculated as a function of    

and  ̇ .  The equation for  ⃑  is included in Equation 7. 

 

  ⃑    ̇  ̂   (     (  ) ̂      (  ) ̂)     ̇     (  )  ̂   ̇     (  )  ̂ ( 7 ) 

 

Again using the rigid body velocity equation,  ⃑   can be found relative to  ⃑  as a 

function of     and  ̇  .  The equation for  ⃑   is included in Equation 8.  Unlike the other 

two velocities,  ⃑   uses length  , because this velocity is being defined relative to  ⃑  

rather than  ⃑ . 

 

  ⃑     ⃑   ̇   ̂   (    (   ) ̂      (   ) ̂)  

   ⃑   ̇      (   )  ̂   ̇      (   )  ̂ 

( 8 ) 

 

The equation for  ⃑  found previously can be inserted into the  ⃑   equation to obtain 

Equation 9. 

 

  ⃑    (  ̇     (  )   ̇      (   ))  ̂

  (  ̇     (  )   ̇      (   ))  ̂

( 9 ) 
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The kinetic energy of an object is equal to one-half of its mass times its velocity squared.  

As shown in Equation 10, the total kinetic energy of the system is calculated as the sum 

of the kinetic energies of each mass in the system. 

 

 
  (   ̇)   

 

 
 ‖ ⃑ ‖

   
 

 
  ‖ ⃑ ‖

  
 

 
 ‖ ⃑  ‖

  ( 10 ) 

 

The potential energy of an object is equal to its mass times gravity times its height above 

a reference point.  The reference point is generally defined with the ground at zero height.  

As with the total kinetic energy, the potential energies of each mass are computed and 

summed to find the potential energy of the entire system, shown in Equation 11. 

 

   ( )        (  )          (  )

   (    (  )      (   )) 
( 11 ) 

 

As shown in Equation 12, the total energy of the robot is the sum of these two energy 

components. 

 

   (   ̇)     (   ̇)     ( ) ( 12 ) 
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2.4  Equations of Motion 

The compass robot is a simple planar double pendulum whose equations of motion can be 

derived using the Euler-Lagrange approach.  This approach is well defined and 

commonly used in the study of dynamics.  As such, the following derivation of the 

equations of motion was obtained from [28].  The Euler-Lagrange approach begins with 

defining the Lagrangian as the difference between the kinetic and potential energies of 

the system, see Equation 13. 

 

              (   ̇)    (   ̇)    ( ) ( 13 ) 

 

As shown in Equation 14, the Lagrangian is then differentiated and set equal to the input 

torques of the system.  If no input torques are applied at the joints and the system is 

passive, the right hand side of the equation becomes zero.  If torques are applied at the 

joints making the system active, then the right hand side of the equation is  , with   

being a vector of the input joint torques as defined in Equation 15. 

 

  

  
(
  

  ̇
)  
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The torque on the support leg,   , is the torque applied at the ankle. A torque cannot be 

applied at the ankle of the non-support leg, because the non-support leg is not in contact 

with the ground.  Therefore, the torque on the non-support leg,    , is equivalent to 

applying a torque at the hip.  Once Equation 14 has been computed, it can be rearranged 

into the form shown in Equation 16, with the matrices  ,  , and   defined in Equations 

17 through 19 respectively. 

 

  ( ) ̈   (   ̇)   ( )    ( 16 ) 

 

 
 ( )  [

          (      )

       (      )    
   (     )

] ( 17 ) 

 

 
 (   ̇)   [

     ̇    (      )

     ̇     (      )  
] ( 18 ) 

 

 
 ( )   [

      (   )

 (     (   ))    (  )
] ( 19 ) 

 

Equation 16 can be further rearranged to solve for the angular accelerations of each leg as 

shown in Equation 20.  It is useful to have the equation in this form, because if the 

angular acceleration equations are known, they can be integrated to find the angular 

velocities and angular positions of the system at any time. 

 

  ̈       ( )  ( (   ̇) ̇   ( )   ) ( 20 ) 
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2.5  Transition Equations 

When the non-support foot hits the ground triggering the completion of a step, the robot 

experiences a force due to impact with the ground.  This impact causes a decrease in the 

kinetic energy of the robot, thereby causing a decrease in the total energy as well.  The 

impact is considered to be instantaneous, and a double support phase during which both 

feet would be in contact with the ground is not considered.  When the impact occurs, the 

support foot and non-support foot switch instantaneously, and the velocities of the legs 

change due to the energy lost during impact.  The derivations of the equations for the 

change in the velocities during impact, called the transition equations, were obtained 

from [28]. 

 

Because the impact only occurs when both feet are on the ground making    and     

equal and opposite, the robot’s position can be defined solely by the inner leg angle,  .  

The equation for   is included in Equation 21. 

 

    (      ) ( 21 ) 
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The velocities after impact can be calculated as a function of the velocities and angles 

before impact using the conservation of angular momentum.  The post-impact state and 

the pre-impact state can be related by Equation 22, which can be rearranged to solve for 

the post-impact state as shown in Equation 23.  The matrices    and    are defined in 

Equations 24 and 25 respectively. 

 

   ( ) ̇     ( ) ̇  ( 22 ) 
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CHAPTER 3 

MATLAB Model 

 

3.1  Introduction 

The first step in testing methods of push recovery for the compass robot was to create a 

computer model using MATLAB.  In order to implement the model, realistic values for a 

bipedal robot needed to be selected for each parameter.  The process for deciding these 

parameters is described in the next section.  Following that, a discussion of the different 

scenarios that would make the simulation fail is included.  The final portion of this 

chapter describes the different states of push recovery that were implemented during the 

simulation. 

 

 

3.2  Determining System Parameters 

3.2.1  Physical Parameters 

In order to ensure that the simulation would be realistic, the compass model was modeled 

after HUBO-2, a humanoid robot sometimes referred to as Jaemi HUBO or KHR4.  A 

picture of HUBO-2 is included in Figure 11. 
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Figure 11: HUBO-2, A Humanoid Robot [29] 

 

According to the HUBO-2 Manual [30], the length of HUBO-2’s leg from the floor to the 

hip is equal to 695.38 mm.  To approximate this dimension, the leg length in the model 

was chosen to be .7 m. 

 

The overall mass of HUBO-2 is 45 kg [29].  In the model, this total mass was distributed 

as 10 kg in each of the legs and 25 kg located at the hip.  The mass of each leg was 

represented as a point mass located in the center of the leg, so the constants   and   were 

both equal to one-half of the leg length as shown in Equation 26. 

 

 
     

 

 
 ( 26 ) 
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3.2.2  Initial Values 

The simulation was started with the robot in a stationary position, which means that  ̇  

and  ̇   were both zero.  It was assumed that people often stand with one foot slightly in 

front of the other while in a stationary position.  When being pushed forward, the forward 

foot would be the support foot.  Based on this assumption, the initial positions,     

and   , of the robot were assumed to be     and    respectively. 

 

 

3.2.3  Machine Limits 

Due to physical limitations, humans have a maximum inner leg angle,     , that can be 

realistically achieved.  When both feet are on the ground,   is a function of the stride 

length,  , as shown in Figure 12. 

 

 

Figure 12: Relationship Between Stride Length and Inner Leg Angle 
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The equation relating the stride length to the inner leg angle is included in Equation 27. 

 

 
       (

 

 
)             (

 

  
) ( 27 ) 

 

Due to the availability of information, the maximum stride length of HUBO was used to 

approximate the maximum stride length of HUBO-2.  The stride length of HUBO can 

vary from 0 to 64 cm [31].  Using this information,      of HUBO-2 was approximated 

as       .  This calculation is included in Equation 28. 

 

 
         

  (
   

    
)         ( 28 ) 

 

To be conservative,      was set as     in the model.  The next parameter that needed to 

be defined was the maximum torque.  As shown in Equation 29, torque can be computed 

as power divided by angular velocity. 

 

    
 

 
 ( 29 ) 

 

It was assumed that when recording HUBO-2’s maximum speed, HUBO-2 would be 

taking steps of the maximum stride length,     .  By equating the time it takes the center 

of mass to travel linear distance      with the time it takes the non-support leg to travel 

angular distance     , the maximum angular velocity of the hip can be approximated.  

Equation 30 shows this approximation with      representing the maximum linear 
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velocity of the robot’s center of mass and      representing the maximum angular 

velocity of the robot’s hip motor. 

 

          
    
    

 ( 30 ) 

 

By combining Equations 27, 29, and 30, the equation for the maximum torque was 

approximated as shown in Equation 31. 

 

 

      
       (

    
 )

      
 ( 31 ) 

 

Due to the availability of information, the hip motor power of HUBO was used to 

approximate the hip motor power of HUBO-2.  HUBO’s hip motor has a power of 90 

watts in the pitch direction [31].  This power can be equivalently expressed in different 

units as shown in Equation 32. 

 

 
              

     

  
 
   

 
 ( 32 ) 

 

HUBO-2’s linear walking speed ranges from zero to 1.4 km/hr [29].  To be conservative, 

a slightly slower speed of 1.25 km/hr was used.  The maximum linear speed can be 

equivalently expressed in different units as shown in Equation 33. 
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 ( 33 ) 

 

By substituting in the appropriate values, the maximum torque was approximated as 

175.75 Nm.  This calculation is included in Equation 34. 

 

 

      
   

     

  
 
   
         (

      
 ) 

 
    

       
   
        

 
 

             ( 34 ) 

 

Again, to be conservative,      was set as 170 Nm in the model.  During walking, people 

tend to keep their feet relatively close to the ground rather than performing an unnaturally 

high step.  It was estimated that a normal human keeps their foot within 6 inches of the 

floor at all times while walking.  Assuming a 6 foot tall person whose legs make up half 

of their height, the ratio of maximum foot lift to leg length was calculated as 16.67%.  

Using this ratio and a leg length of 0.7 m, the maximum height the foot could be lifted off 

the ground in the model was approximated as 0.12 m. 
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3.2.4  Push Parameters 

When subjected to a small push, a robot would theoretically be able to apply a small 

opposing torque at its ankles, thereby restricting motion between its legs and feet.  As 

with the hip motor power, the ankle motor power of HUBO was used to approximate the 

ankle motor power of HUBO-2.  HUBO’s ankle motor has a power of 90 watts in the 

pitch direction [31].  Because this is the same power as HUBO’s hip, it was concluded 

that the maximum torque at the ankle would also be 170 Nm.  Even if the robot was able 

to apply a torque capable of keeping its ankles rigid, it could still fall over by tipping 

about the front toes as shown in Figure 13. 

 

 

Figure 13: Tipping About the Front Toes when its Ankles are Rigid 

 

Although the compass robot does not have feet, this calculation was performed in order 

to determine the range of pushes that the actual HUBO-2 robot would be able to recover 

from using only a torque at its ankles.  HUBO-2’s foot length,  , is 220 mm [30], which 

was approximated as .25 m.  Figure 14 details the free-body diagram of the robot when 

the robot is rigid at its ankles and standing with both legs together. 

 

Toes Toes 
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Figure 14: Free Body Diagram when Ankles are Rigid 

 

The robot will tip if the moment from the push about the front toe is greater than the 

moment due to the weight about the front toe.  Therefore, the point at which the robot 

will begin to tip is the point where the moments are exactly equal as expressed in 

Equation 35. 

 

    (     )   ( 35 ) 

 

Solving this equation for F and plugging in the relevant values, the force that it would 

take to tip the robot was calculated as 157.66 N.  This calculation is included in Equation 

36.  By multiplying this force by a leg length of 0.7 m, it was determined that this push 

was equivalent to applying a torque of 100.36 Nm at the ankles.  Based on this 

calculation, HUBO-2 should be able to withstand pushes with equivalent torques of up to 

100.36 Nm just by applying a torque at the ankles. 

 

  

F 

(     )  
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(     )  

 
 
           

  
          ( 36 ) 

 

Assuming the robot requires reactive stepping is a much safer option than assuming the 

ankle will be able to apply a sufficiently large torque to prevent falling.  Since it is very 

important that HUBO-2, or other similar bipedal robots, do not fall over, a safety factor 

of approximately 1.5 was applied.  This means that it was assumed the robot can only 

withstand pushes with equivalent torques of up to 60 Nm just by applying a torque at the 

ankles.  Using the results of this calculation and arbitrarily picking an upper bound, it was 

decided to test the model for pushes with equivalent torques in the range of 60 Nm to 130 

Nm.  Lastly, it was assumed that a push applied to the robot would be brief, and as such, 

the duration of the push was chosen to be 0.2 seconds.   

 

 

3.2.5  Walking Parameters 

In the model, there were three parameters that affected the way a step was taken.  The 

first parameter was the desired step size,         .  As discussed previously,      was 

set equal to    , so the range of          in the model was defined as      to    .  The 

maximum was set at     rather than the absolute maximum to allow for a slight 

overshoot without exceeding the maximum limit of the system.  Negative          

represented the situation when the non-support foot was behind the support foot at the 

time of the step, and positive          represented the opposite orientation.   
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The next parameter was the push-off constant.  At the beginning of a step, humans push 

off of the ground with their back leg.  In reality, this force is a linear force applied on the 

bottom of the foot, but it was represented in the model as a torque on the support leg.  

This torque should only be applied for a short duration, so it was assumed to be 0.1 

seconds. 

 

The last parameter was the swing constant.  During walking, a torque must be applied at 

the hip in order to swing the leg to the desired position.  As shown in Equation 37, this 

torque was applied using proportional control on the inner leg angle.  It was determined 

experimentally that all pushes within the set range could be successfully recovered from 

with a swing constant in the range of 0 to 180 on the first step and a swing constant equal 

to 60 on all other steps. 

 

                   (          ) ( 37 ) 

 

During times when   was to be held constant, the non-support leg needed to change its 

angle at the same rate as the support leg.  To accomplish this, a torque proportional to the 

difference between the angular velocities of the two legs was applied at the hip.  The 

equation for this torque is included in Equation 38.  The constant,  , was determined 

using trial and error by noting if the chosen value resulted in   remaining constant for a 

certain period of time.  Using this method, it was determined that   should be set as 500. 

 

       ( ̇   ̇  ) ( 38 ) 



35 

 

3.3  Invalid Situations 

During the simulation, invalid situations could occur very easily by exceeding a machine 

limit of the robot, taking a step of the incorrect size, moving unnaturally, or falling over.  

It should be noted that most situations could only occur when the model was in a certain 

state.  The following sections describe each of the invalid situations in detail. 

 

 

3.3.1  Exceeding Machine Limits 

In modeling a physical robot, there were machine limits that had to be accounted for in 

the simulation.  For example, each motor on the robot had a maximum torque that it was 

capable of applying.     was an input to the system that was always defined such that it 

was less than     .  As a result,    did not need to be checked for validity.      was 

determined by proportional control, so the robot could have tried to apply     such that it 

exceeded     .  The maximum torque was exceeded and the simulation became invalid 

if the condition in Equation 39 became true. 

 

           ( 39 ) 

 

Due to flexibility limitations, humans can only take steps of a limited size.  To ensure that 

the model only performed motions similar to a human being pushed, the simulation 

became invalid if the condition in Equation 40 became true. 

 

         ( 40 ) 
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3.3.2  Incorrect Step Size 

If the robot attempted to take a step of a specific size but took a step of another size 

instead, the simulation became invalid, because it did not follow the desired motion.  This 

would occur if the robot was incapable of reaching          given its current state or if 

the robot reached          but was incapable of holding   constant until the foot reached 

the ground for the step.  For example, take the situation where the robot attempted to take 

a step of size A but instead took a step of size B.  This scenario would be stored the same 

as the scenario where the robot attempted to take a step of size B and achieved the 

desired step size. 

 

To eliminate this ambiguity, a step was only valid if it was the intended step size.  As 

such, the simulation became invalid if the condition in Equation 41 became true.  The 

first part of the condition is the requirement for taking a step while the second part of the 

condition enforces that   at the time of the step must be within a certain tolerance of 

        . 

 

          |          |              ( 41 ) 
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3.3.3  Moving Unnaturally 

When walking naturally, a person tends to keep their non-support foot close to the ground 

rather than raise it up unnaturally high as shown in Figure 15. 

 

 

Figure 15: Unnaturally High Step 

 

To enforce this, if     ever went above a certain threshold as shown in Equation 42, the 

simulation became invalid. 

 

            ( 42 ) 

 

While walking, a human attempts to be efficient and therefore would swing their leg 

directly to the position they want.  For example, the motion in Figure 16 would be 

unnatural as a human would not initially swing their leg backwards if taking a forward 

step. 

 

Ground 



38 

 

 

Figure 16: Unnatural Swinging of the Leg in the Opposite Direction of the Step 

 

Similarly, a human would not initially swing their leg forward if taking a backward step.  

To enforce this, the simulation became invalid if  ̇   changed direction while the leg was 

swinging.  It was determined that  ̇   was changing directions if the condition in 

Equation 43 was true.  

 

  ̇     ( 43 ) 

 

Another type of step that would be unnatural for a human is a step where both the support 

foot and the non-support foot are in front of the hip as shown in Figure 17. 

 

 

Figure 17: Unnatural Position with Both Feet in Front of the Hip 

Ground 
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To enforce that the robot would not choose to walk in this unnatural manner, the 

simulation became invalid if the condition in Equation 44 became true. 

 

                 ( 44 ) 

 

When taking a step, the support leg of the human moves in the direction of the step as 

shown in Figure 18. 

 

 

Figure 18: Support Leg Moving in the Direction of the Step 

 

In the model, there were situations in which this was not the case, so the simulation 

became invalid whenever the condition in Equation 45 became true.  The first part of the 

condition determined if the robot was taking a step.  The second part of the condition 

determined if the support leg was moving in the direction of the step.  Within the 

condition, the angular velocity was compared to 0.01 rather than 0, because it was 

assumed that a leg with such a small velocity would have been moving slowly enough to 

still be considered valid. 

 



40 

 

          ((         ̇      )  ||  (         ̇      )) ( 45 ) 

 

 

3.3.4  Falling Over 

Since the goal was for the robot to remain standing, the simulation became invalid if the 

robot fell over.  It was determined that the robot would fall over if |  | became larger 

than half of     .  If |  | was greater than half of     , then the non-support foot of the 

robot was already below ground, and there were only two ways in which the foot could 

have been brought above ground to take a valid step.  The first way was for the robot to 

apply an opposing torque to the ankle of the support leg as shown in Figure 19. 

 

 

Figure 19: Applying an Opposing Ankle Torque to Take a Valid Step 

 

Applying this ankle torque would have been unnatural in reference to normal human 

motion.  The second way was for the robot to swing the non-support foot above ground to 

take a proper step as shown in Figure 20. 
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Figure 20: Swinging the Non-Support Foot above Ground to Take a Valid Step 

 

However, if |  | was greater than half of     , this would have resulted in a violation of 

the       criterion defined previously.  Therefore, if the condition in Equation 46 became 

true, the robot was considered to have fallen over, and the simulation was considered 

invalid. 

 

 |  |  
    
 

 ( 46 ) 

 

 

3.4  States 

The compass robot simulation, whose motions are summarized in Figure 21, began with a 

robot at rest being subjected to an external push.  The robot then took a step of a certain 

size and speed.  Next, it pushed off the ground with its back foot in order to take another 

step of a new size and speed.  The robot continued to take steps in this manner until it 

came to rest. 
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Figure 21: Overview of Compass Robot Simulation Motions 

 

It should be noted that while only forward steps are shown in the sequence above, the 

robot could have chosen to take a step in which the non-support foot remains behind the 

support foot.  This primarily happened when the robot was close to being stopped and 

began teetering back and forth while quickly changing support legs. 

 

The overall process was split up into several different states.  The state diagram for the 

system is included as Figure 22.  With the exception of the stopped state, invalid state, 

and transition state, each state used MATLAB’s ode45 function to solve the compass 

robot equations of motion.  Event detection was used to accurately stop the simulation of 

the current state when any of the events shown on the state diagram occurred.  Each of 

these states and events are explained in further detail in the following sections. 
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Figure 22: Compass Robot Simulation State Diagram 

 

 

3.4.1  Push State 

The simulation began in the push state when the robot at rest was subjected to an external 

force.  In the model, a push applied at the hip was represented as an equivalent torque 

applied to the support leg.  The push was assumed to begin with a small magnitude force 

which increased as full contact was made and then decreased again as the object moved 

away from the person and contact weakened.  To represent this, the equivalent torque 

increased from zero to some chosen value linearly in time, and it then decreased back to 

zero linearly in the same amount of time as shown in Figure 23. 
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Figure 23: Equivalent Torque as a Function of Time 

 

Because of this assumption, the push state could easily be split into two sub-states.  The 

first push state encompassed the system while the torque was increasing, and the second 

push state encompassed the system while the torque was decreasing.  These sub-states are 

further explained in the following sections. 

 

 

3.4.1.1  First Push State 

The first push state corresponds to the first half of the push when the applied torque was 

increasing.  During the first push state, the torque on the support leg was applied 

according to Equation 47. 
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          ⁄
      ( 47 ) 

 

It was assumed that when pushed, a person would naturally apply a torque at their hip 

that keeps   constant for a brief period of time.  The angle remained constant as long as 

the angular velocities of the two legs were kept equal.  The velocities of the two legs 

were kept equal by applying a torque at the hip using the proportional control shown in 

Equation 48. 

 

       ( ̇   ̇  ) ( 48 ) 

 

The first push state lasted for half of the total push time unless the simulation became 

invalid first.  When in the first push state, the simulation could have become invalid 

through conditions H, I, and L as defined in Figure 22.  During the first push state, the 

     limit was not enforced, because the height of the non-support foot was caused by 

the push rather than the robot consciously lifting the foot too high.  There was also no 

     limit enforced during this state, because the current angle was just being 

maintained.  In an actual mechanical system, it is often difficult to back drive a motor, so 

the motor should be able to maintain the current angle without exceeding its torque 

limitations.  While using proportional control to maintain  ,  ̇   was allowed to change 

directions as needed without triggering the invalid condition discussed previously.  Once 

the simulation completed the first push state with no invalid conditions, the simulation 

entered the second push state. 
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3.4.1.2  Second Push State 

The second push state was entered if the first push state reached its time limit without the 

simulation becoming invalid.  The second push state was used to implement the second 

half of the push when the applied torque was decreasing.  During the second push state, 

the torque on the support leg was applied according to Equation 49. 

 

 
   

                 

          ⁄
                          ( 49 ) 

 

It was assumed that when humans are pushed,   is only held constant for a small period 

of time compared to the total push time.  Therefore,   was only kept constant during the 

first push state.  This means that during the second push state,     was zero. 

 

Similar to the first push state, the second push state ended when it reached half of the 

total push time or an invalid condition.  The push time was the same as in the first push 

state, and the invalid states were the same as well.  Once the simulation completed the 

second push state with no invalid conditions, it entered the swing state. 
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3.4.2  Swing State 

The simulation entered the swing state after reaching the time limit during the second 

push state or the push-off state, which will be discussed shortly.  It was assumed that 

during the swing state, the support leg should only move as a result of momentum, so    

was set equal to zero.  Simultaneously, the non-support leg was moved to the desired 

position by applying a torque at the hip.  This torque was implemented such that it started 

with a large magnitude, which was reduced as the leg approached the desired position.  

The hip torque, shown in Equation 50, used proportional control and varied in magnitude 

according to the swing constant, which was chosen and idealized for each step. 

 

                    (          ) ( 50 ) 

 

The desired step size,         , was another parameter of the system that was chosen and 

idealized for each step.  Since the robot was knee-less and the legs were the same lengths, 

the non-support foot needed to pass beneath the ground in order to take a forward step.  

Therefore, the swing state did not end when the non-support foot contacted the ground.  

This phenomenon is generally considered acceptable, because in physical compass robots 

like the one shown in Figure 24, the leg is often shortened or folded sideways during the 

swing state so that the robot can walk properly without the foot passing below the ground 

[32]. 
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Figure 24: Physical Compass Robot [32] 

 

Additionally, if the robot took a step before          was reached, the simulation became 

invalid due to the invalid step size condition.  Therefore, the swing state only ended if    

became equal to          or the simulation became invalid.  While in the swing state, the 

simulation could have become invalid through conditions F, G, H, I, J, and L as defined 

in Figure 22.  If   reached          and no invalid conditions were true, then the robot 

proceeded to the step state in order to complete its current step. 

 

 

3.4.3  Step State 

The step state was entered after reaching          during the swing state.  It was assumed 

that during the step state, the support leg should only move as a result of momentum, so 

   was set equal to zero.  Also during the step state,   was held constant at          until 
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the non-support foot made contact with the ground.  The angle was held constant by 

applying a hip torque using proportional control on the angular velocities of the legs as 

shown in Equation 51. 

 

       ( ̇   ̇  ) ( 51 ) 

 

The step state ended when the height of the non-support foot became zero from a position 

above ground.  This was considered the end of the robot’s current step.  The step state 

also could have ended with the simulation becoming invalid through conditions F, H, I, 

L, EK, and EM as defined in Figure 22.  If the robot’s current step ended and no invalid 

conditions were true, then the robot proceeded to the transition state. 

 

 

3.4.4  Transition State 

Once the robot completed a valid step during either the step state or push-off state, the 

system entered the transition state.  The first step of the transition state was to correct the 

small error usually associated with ode45 event detection.  Before entering the transition 

state, the ode45 solver detected that     was zero.  However, due to precision limitations 

while solving,     was generally not zero exactly.  While the inaccuracies were very 

small, chosen to be on the order of 10
-9

, they did have an effect on the system.  Because a 

double support phase was not being considered, the robot experienced several almost 

instantaneous steps teetering back and forth between the two feet when it was almost 

stopped.  In this situation, if one of the feet started below zero due to the small error, then 
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the robot would fall rather than taking the next immediate step.  As a result, the model 

had to ensure after every step that     was exactly zero.  While correcting the small     

error,   was kept constant, and the robot was rotated slightly about the support foot as 

shown in Figure 25. 

 

 

Figure 25: Correcting Small Inaccuracies in the Height of the Foot 

 

To perform this correction,    and     were adjusted to be equal and opposite with 

magnitudes of  
 

 
, and the location of the support foot was not changed.  Based on these 

values, the new locations of the hip and non-support foot were calculated according to 

Equations 52 and 53 respectively.  Adjustments were only made to the geometry of the 

robot, so the angular velocities of the legs were not changed.  Once the correction was 

performed, the system proceeded with the rest of the transition state. 
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During the transition state, the energy of the system was reduced due to the impact of the 

non-support foot with the ground.  Using the transition equations derived previously, the 

new angular velocities were calculated based on the positions and angular velocities 

immediately before impact.  The transition was considered instantaneous, so the new 

angular velocities were used as the initial conditions of the next state.  During the 

transition state, the definition of the support leg and non-support leg were also switched. 

 

If the new angular velocities were both below a set threshold, then the robot was 

considered to have stopped.  A threshold value was necessary, because the velocities of 

the robot would never permanently become and remain zero without a double support 

phase.  If the angular velocity of either leg was above the designated threshold, the 

system entered the push-off state to begin taking the next step. 

 

 

3.4.5  Push-Off State 

The push-off state followed the transition state in situations where the robot did not stop.  

Therefore, this state occurred at the beginning of each step except for the initial step after 

the robot was pushed.  At the beginning of a step, a human pushes off the ground with 

their non-support foot in order to gain the necessary momentum for the step.  The push-
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off action was represented in the model by applying a torque at the ankle of the support 

foot while holding   constant.  This torque could vary in magnitude and was a parameter 

of the system that was chosen and idealized for each step.  A torque at the hip, as detailed 

in Equation 54, was applied using proportional control on the angular velocities to hold   

constant. 

 

       ( ̇   ̇  ) ( 54 ) 

 

The push-off state ended when the push-off time limit was reached, the step was 

completed, or the simulation was determined to be invalid.  A step was considered 

complete if the height of the non-support foot became zero from above ground.  Unlike 

the swing state, steps could be completed during the push-off state, because there was no 

need for the non-support leg to swing underground.  Completing steps during the push-

off state was actually very common, because when the robot neared stopping, it often 

teetered back and forth taking nearly immediate steps that occurred within the push-off 

time limit.  The invalid states that could have been reached from the push-off state were 

F, H, I, L, EK, and EM as defined in Figure 22. 

 

If the push-off time limit was reached, then the robot proceeded to the swing state.  If the 

step was completed and no invalid conditions were true, then the robot proceeded to the 

transition state. 
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3.4.6  Stopped State 

The stopped state followed the transition state in situations where the robot stopped.  

Once the robot reached the stopped state, it had successfully recovered from the push, 

and the simulation was ended. 
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CHAPTER 4 

Energy Reduction Method 

 

4.1  Introduction 

When humans are pushed, they will naturally take strategically placed steps in order to 

return to a stable position.  While this is easy for humans, a robot does not intuitively 

know what step to take.  Due to the complex dynamics of the system and the fact that it 

may take more than one step to fully recover, it is difficult to calculate the ideal step that 

a robot should take in order to recover from a push. 

 

When a robot is stationary, the kinetic energy of the system will be zero.  Due to this fact, 

it was decided that the goal of push recovery should be for the robot to reduce its kinetic 

energy to zero.  While walking, the robot’s kinetic energy is reduced each time the foot 

impacts the ground.  It was originally hypothesized that the robot should choose to take 

the step that results in the highest reduction of kinetic energy.  If performed on every 

step, this would eventually result in the robot reducing its kinetic energy to zero, thereby 

successfully recovering from the push.  The next sections detail how energy reduction 

should be defined and investigate whether total energy or kinetic energy should be used 

when implementing the reduction. 
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4.2  Reduction in Energy 

Applying the transition equations caused immediate changes to the kinetic energy of the 

robot.  While taking a step, energy was added to the system during the push-off and 

swing states.  In order to ensure the maximum reduction in energy, the step with the 

largest net change in energy across the entire step was the correct choice, not necessarily 

the step with the largest net change across the transition equations.  For example, take the 

scenario where step A adds 5 units of energy to the system with a reduction of 2 through 

the impact, and step B adds 10 units of energy to the system with a reduction of 5 through 

the impact.  Step A results in a system with 3 units of energy, and step B results in a 

system with 5 units of energy.  This example shows that step A should be chosen even 

though the net change in energy across the transition equations is greater in step B. 

 

 

4.3  Kinetic Energy versus Total Energy 

Once this theory was implemented, it was investigated whether the method should use 

kinetic energy or total energy to choose the best step.  When the robot began a step with a 

small   as shown in Figure 26, only a small amount of kinetic energy was converted to 

potential energy as the height of each mass relative to the ground was only slightly 

increased.   
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Figure 26: Motion when Starting with a Small   

 

This means that when the support leg became vertical, it most likely had kinetic energy 

remaining and continued moving in the forward direction.  When this was the case, the 

robot had to take a forward step in order to avoid falling over.  In order to take a forward 

step, a torque was applied to the non-support leg, thereby adding energy to the system.  In 

comparison, if the robot had a slightly larger kinetic energy but was in the starting 

configuration shown in Figure 27, it would have a smaller potential energy and could 

have a smaller total energy.  If the total energy was smaller, the robot moved forward, 

reached the point where all the kinetic energy had been converted to potential energy, and 

then fell slowly backward due to gravity. 

 

 

Figure 27: Motion When Starting with a Large   
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When falling backward, very little if any torque needed to be applied to the non-support 

leg, so very little if any energy was added to the system.  When compared to the first 

configuration, the second configuration began with a larger kinetic energy and a smaller 

total energy.  Since the step required very little energy to be added, the second 

configuration ended with a smaller kinetic energy and a smaller total energy than the first 

configuration.  Based on these observations, it was decided that a robot should choose the 

step that results in the lowest total energy rather than the lowest kinetic energy. 

 

Note that the lowest possible total energy for a robot is when the kinetic energy is zero 

and the potential energy is at a minimum.  The lowest potential energy of the compass 

robot occurs when each of the masses is as close to the ground as possible, which 

requires   to be as large as possible.  However, within the model,   was limited to a 

maximum of     , so the lowest possible potential energy would be as presented in 

Equation 55. 

 

          (    )          (    )

   (    (    )      (   )) 
( 55 ) 

 

 

4.4  Feasibility of the Energy Reduction Method 

To test the Energy Reduction Method, a push with an equivalent torque of 130 Nm was 

applied, and the robot responded by taking a step with a specified push-off constant, 

swing constant, and         .  The same push was applied for each of the possible 
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parameter combinations, and the total energy after the transition was recorded.  Once all 

the combinations had been run, the combination that resulted in the lowest total energy 

was chosen as the best first step.  Then, using the ending angular velocities and positions 

from the best first step as the initial values of the second step, the same process was 

followed to find the best second step.  Once the best second step was determined, the best 

third step was determined and so on until the robot came to a stop or became invalid.  

The results in Table 1 show for a push with an equivalent torque of 130 Nm, the robot 

was able to come to a stop using the Energy Reduction Method. 

 

Step #            ̇  (
   

   
)   ̇ (

   

   
)  Push-

Off 

Constant 

(Nm) 

Swing 

Constant 
         Total 

Energy 

(N) 

1 -13.1 -5.1 -167 -101.9 0 180 45 240.2 

2 -23.2 23.2 31.9 -75.9 0 60 -25 235.1 

3 12.2 -12.2 0.2 0.5 STOPPED 

Table 1: Energy Reduction Method Results for a Push with an Equivalent Torque of 130 

Nm 

 

Once the best step was found for a push with an equivalent torque of 130 Nm, the process 

was repeated to find the best step for pushes with equivalent torques ranging from 60 Nm 

to 130 Nm counting by 10 Nm.  Each of these pushes successfully came to a stop, and the 

results are included in Appendix A as Tables 2 through 8 respectively.  Since the robot 

was able to come to a stop after each of the pushes within the defined range, the Energy 

Reduction Method was shown to be a feasible method for push recovery.  
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CHAPTER 5 

Implementation of the Energy Reduction Method 

 

5.1  Introduction 

While the Energy Reduction Method was shown to be feasible in the previous section, a 

falling robot cannot try all types of steps in order to determine the best step.  A falling 

robot only gets one shot at push recovery, so it needs to be able to compute the one best 

step to take.  Simply storing the ideal step sequence for each push was not a practical 

option for several reasons.  If the robot was subjected to a push between one of the stored 

values, then it would not have a sequence stored to know how to proceed.  Another 

reason is if there were any errors in the first step due to natural mechanical variations, 

then the pre-computed second step would not be very accurate.  Any slight inaccuracies 

on the first step or two could have a major impact on later steps as the errors would 

increase with each step. 

 

Rather than storing the ideal step sequence for each push, a table was generated in 

MATLAB that contained the best step for any starting configuration.  This table will be 

referred to as the Best Step Lookup Table.  A starting configuration consisted of 

        ̇    and  ̇ .  Since the robot would have no prior knowledge of the magnitude or 

duration of the push, starting configurations for the first step were defined immediately 
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after the push ended.  Starting configurations for all subsequent steps were defined 

immediately after the transition state.  This table eliminated the difficulties associated 

with an unknown push magnitude and reduced the effect of slight inaccuracies due to 

natural mechanical variations.  The following sections describe how the data for this table 

was generated and how the robot could interpolate within this table. 

 

 

5.2  Data Generation 

For each starting configuration, the MATLAB simulation was run for one step using all 

possible parameter combinations, and the results of those steps were recorded for 

selection of the best step.  To decide on the range of starting configurations to run 

through the simulation, the results from the Feasibility of the Energy Reduction Method 

section were studied.  The feasibility data was separated into three groups: first steps, 

non-first steps with     greater than zero, and non-first steps with     less than zero.  The 

data was separated into these three categories, because data ranges were very different for 

each of these three categories. 

 

The biggest difference between the sets was that non-first steps began with both feet on 

the ground, so     was always equal and opposite   .  In contrast, during first steps, the 

robot decided how to step after the end of the push, so one of the feet was already off of 

the ground.  Also during first steps, the robot did not push off of the ground, so the push-

off constant was always zero.  Another difference was that if     was greater than zero, 

then the robot had to take a full step backward in order to reach a negative         .  
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Since the robot would never need to take a full step backward in order to recover from a 

forward push, these situations were not considered.  Lastly, because the robot was always 

being pushed forward, first steps always began with negative values for     and     

 

The minimum and maximum of each variable was calculated for every category.  For the 

first steps,     and    were incremented by      , and  ̇   and  ̇  were incremented by 

approximately   
   

   
.  The swing constant was incremented by 10, and the push-off 

constant was always 0.  Within the Energy Reduction Method results,          was 

always chosen to be     on the first step, so no increment was necessary for         .  

For the non-first steps,     and    were incremented by       , and  ̇   and  ̇  were 

incremented by approximately     
   

   
.  The push-off constant was incremented by     

Nm, and          was incremented by       .  For the non-first steps, it was discovered 

during testing that a swing constant of 60 was sufficient for all pushes within the defined 

range.  Defining the swing constant as 60 eliminated one parameter, thereby making it 

easier to gather the training data. 

 

The simulation was run with every combination of the seven different variables ranging 

from their respective minimums to their respective maximums and counting by their 

respective increments.  After removing any data from simulations that resulted in invalid 

steps, the first set had 1,520,034 data points.  Similarly, the second set had 1,974,423 data 

points, and the third set had 27,234,664 data points. 
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Once all the data had been generated, the best step was chosen for each unique 

combination of    ,   ,  ̇  , and  ̇  using the Energy Reduction Method.  If multiple 

steps resulted in the same total energy, the step with the lowest push-off constant was 

favored as this would require the robot’s motors to do less work.  If there was a tie 

between multiple steps with the same push-off constant, the step with the lowest swing 

constant was favored.  If both the swing constant and the push-off constant were the 

same, then the step with the smallest          was favored as this would result in a more 

natural standing position.  After applying the Energy Reduction Method, the first set had 

262,665 data points.  Similarly, the second set had 21,538 data points, and third set had 

148,341 data points. 

 

Once the best step had been chosen for each starting configuration, the data was stored in 

the Best Step Lookup Table.  Since     ,   ,  ̇  , and  ̇  are continuous rather than 

discrete variables, it was impossible to store every possible starting configuration in the 

table.  If the robot found itself in one of the starting configurations that was not in the 

table, it would have to interpolate between values in the table to find the best step.  For 

this project, four different interpolation methods were implemented and compared against 

each other.  The four methods, further described in the following sections, were linear 

interpolation, nearest interpolation, linear least squares, and neural networks. 
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5.3  Linear Interpolation 

The first method used to calculate the best step given the Best Step Lookup Table was 

linear interpolation.  Linear interpolation can be explained very simply in the 2D case.  In 

the 2D case, the lookup table has a set of y output values and each output’s corresponding 

x input value.  When computing the output y2 for a given input x2 that is not actually in 

the lookup table, the closest points, x1 and x3, on either side of x2 are found in the table 

instead.  A line is drawn between (x1, y1) and (x3, y3), and the output value y2 is the value 

of the line at position x2.  A pictorial representation of this process is shown in Figure 28.  

In this example, six data points were created using the equation y=x, which is represented 

by the blue dotted line.  A small amount of random noise was added to each of the data 

points, which were plotted as black dots.  The values between these data points were 

generated using linear interpolation and are shown using the solid black line. 

 

 

Figure 28: Linear Interpolation Example 
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This concept can be extended to multidimensional tables such as the Best Step Lookup 

Table, which has 4 inputs making it a 5D interpolation problem.  Since the simulation 

was implemented in MATLAB, the griddatan function was used to perform the linear 

interpolation.  

 

Linear interpolation, while simple, has many drawbacks.  This method is typically slow 

as the entire data table must be searched to find the points closest to the point of interest.  

It also uses a large amount of memory as the entire data table must be stored.  

Interpolations of this type usually produce reasonably accurate results as long as the data 

table is very large and has very small increments between input values.  Unfortunately, 

increasing the size of the data table to improve accuracy will also increase the 

computation time and memory requirement. 

 

 

5.4  Nearest Interpolation 

The next method used to calculate the best step given the Best Step Lookup Table was 

nearest interpolation.  In the 2D case, the lookup table has a set of y output values and 

each output’s corresponding x input value.  When computing the output y1 for a given 

input x1 that is not actually in the lookup table, the closest point, x2, is found in the table 

instead.  The output value y1 is set equal to the output value y2.  Using the same data 

points from the linear interpolation example, nearest interpolation was performed, and the 

results are shown pictorially in Figure 29. 
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Figure 29: Nearest Interpolation Example 

 

As with linear interpolation, the 2D example can be extended to a multidimensional table.  

Once again, MATLAB’s griddatan function was used to perform the interpolation.  

Nearest interpolation experiences many of the same drawbacks as linear interpolation.  

These include having a slow computation time and using a large amount of memory.  

While accuracy is increased with more data points, nearest interpolation is generally less 

accurate than linear interpolation as the set of possible outputs is discrete rather than 

continuous. 

 

 

  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

Nearest Interpolation Example

Input x

O
u

tp
u

t 
y

 

 
Actual Function

Data Points with Noise

Nearest Interpolation



66 

 

5.5  Linear Least Squares 

When in possession of a set of data, a relationship between the input and output variables 

can be found using linear least squares.  This relationship is expressed in the form of 

Equation 56.  Within this equation, the  ’s are the inputs, the  ’s are the slopes,   is the 

y-intercept,   is the output, and   is the number of input variables.   

 

                      ( 56 ) 

 

Given   points in the dataset, a system of equations can be expressed as shown in 

Equation 57.  An exact solution to the system of equations is one in which the correct   

value is calculated with no error for every point in the dataset.  If there are fewer 

equations than unknowns, then the system is underdetermined, and an exact solution 

cannot be found.  If there is the same number of equations as unknowns, then an exact 

solution can be found if and only if the dataset has a linear relationship with no noise.  If 

there are more equations than unknowns, then the system is overdetermined, and an exact 

solution cannot be found. 

 

                          

                         

  

                         

( 57 ) 
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In most practical implementations, the dataset will be relatively large, so the system will 

be overdetermined.  The dataset will also most likely contain noise.  Since an exact 

solution cannot be found in these cases, the solution will be the equation that best 

approximates the dataset.  This means that the goal of linear least squares will be to find 

an equation that minimizes the sum of the squares of the error for each data point.  The 

first step in the linear least squares method is to represent the system of equations in 

matrix form as shown in Equation 58. 

 

 

[
        

        
        

] [

  
 
  
 

]   [

  
 
  
] ( 58 ) 

 

As shown in Equation 59, the matrices above can be represented algebraically as  ,  , 

and   respectively.    is not a square matrix, so the inverse of   cannot be determined.  

To solve this equation for  , both sides of the equation are first multiplied by    to 

obtain a square matrix and then multiplied by (   )  .  The value (   )    is called 

the pseudo-inverse of  .  These two steps are included in Equations 60 and 61 

respectively, with the solution for   presented as Equation 62. 

 

       ( 59 ) 

 

           ( 60 ) 

 

 (   )  (   )     (   )      ( 61 ) 
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    (   )      ( 62 ) 

 

Using the same data points from the linear interpolation and nearest interpolation 

examples, linear least squares was performed, and the results are shown pictorially in 

Figure 30. 

 

 

Figure 30: Linear Least Squares Example 

 

In the 2D case, the linear least squares solution is referred to as the line of best fit, and the 

error for each data point is the vertical distance between the data point and the line when 

graphed.  In the 3D case, the linear least squares solution will be a plane of best fit, and in 

the n-dimensional case, the linear least squares solution will be a hyperplane of best fit. 
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Once the linear least squares solution has been found, the equation can be used to 

compute the output for any input, regardless of whether it was in the original dataset.  

One caveat is that the linear least squares solution should only be used for interpolation 

rather than extrapolation.  The equation should not be used for extrapolation, because 

there is no observed data to suggest that the pattern continues for values outside of the 

original range.  Most real datasets do not continue to increase infinitely; they generally 

either level off or begin to decrease after a certain point. 

 

There are several advantages to using linear least squares but also one major 

disadvantage.  To begin with, the equation is very fast to implement as it only uses a 

relatively small number of simple mathematical operations.  Also, storing the simple 

equation uses almost no memory.  Linear least squares can often produce better results 

than linear interpolation, because it considers the overall pattern of the data.  Therefore, 

linear least squares is less susceptible to noise than linear interpolation.  However, if the 

input to output relationship is not linear, linear least squares will produce a very poor 

approximation. 

 

 

5.6  Neural Networks 

5.6.1  Introduction 

The last method used to calculate the best step given the Best Step Lookup Table was 

neural networks.  Neural networks are a machine learning technique used to fit a non-

linear equation to a set of data.  Although the method of computing the equation is very 
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different, the neural network itself is very similar to a line of best fit.  Both predict an 

output from a given input, but neural networks differ in their ability to capture non-linear 

relationships.  A neural network is generally represented by the structure shown in Figure 

31.  

 

 

Figure 31: Neural Network Structure 

 

A neural network is arranged in a series of nodes which are the circles seen above.  Each 

node computes its own output by creating a linear combination of its inputs and applying 

some activation function.  The activation function will be described in further detail later.  

The neural network’s inputs are also the inputs to the first hidden layer.  Neural networks 

can optionally include a second hidden layer whose inputs are the outputs of the first 

hidden layer.  The outputs from the last hidden layer are fed into the output layer to 

compute the final output.  Generally speaking, a neural network is nothing more than a 

large set of nested equations.  
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5.6.2  Training 

The equation for the neural network is found using feedforward backpropagation training.  

To start the training process, the weights at each node are randomly declared.  Each point 

from the dataset is fed forward through the neural network in order to determine the 

predicted value for that point given the current equation.  The error of each point is 

determined as the difference between the predicted output and the actual output.  By 

using partial derivatives to assign the blame of the errors to certain nodes, the weights are 

systematically adjusted.  This process is then repeated for many iterations until the 

stopping criterion is met.  Options for the stopping criterion are described in further detail 

later. 

 

There are two different types of errors that are typically used during training: root mean 

squared error and mean absolute error.  The word error generally means the difference 

between the actual and predicted values.  Root mean squared error is the square root of 

the mean of the error for each data point squared.  By squaring the error, it makes large 

errors even larger relatively, so outliers will have a much greater effect when fitting an 

equation.  Squaring the errors also makes it so that negative and positive errors do not 

cancel each other out making an imperfect curve seem like a perfect fit.  By taking the 

square root, it returns the error to the same units as the original data before the error was 

squared.  Mean absolute error is the mean of the absolute value of the error for each data 

point.  The mean absolute error also prevents negative and positive errors from cancelling 

each other out, but it does not put extra weight on the results of outliers. 
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5.6.3  Activation Functions 

Typical activation functions used in neural networks include sigmoid, Gaussian, linear, 

and threshold functions as shown in Figure 32.  A sigmoid function is a function that 

starts low and ends high with a smooth S shape.  Two common sigmoid functions are the 

hyperbolic tangent function and logistic function.  The Gaussian function is a smooth 

bell-shaped curve that is low on the two ends and high in the middle.  The linear function 

is a straight line with a constant slope.  The threshold function is equal to zero when less 

than a cutoff value and one when greater than the same cutoff value. 

 

 

Figure 32: Typical Neural Network Activation Functions 
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network linear as well.  Generally, neural networks are used when non-linear functions 

are desired, so the linear function is very rarely used in hidden layers.  In contrast, the 

linear function is the most common function used in the output layer, because it will not 

restrict the range of output values [33]. 

 

The threshold function can be used to introduce non-linearity to the equation, but it is 

difficult to use due to the discontinuity in the function.  The discontinuity makes the 

function non-differentiable, so backpropagation of the error cannot be done as accurately. 

 

This leaves the Gaussian and sigmoid functions, which are the two most common 

activation functions used in neural networks.  These two functions produce favorable 

results as they are non-linear, differentiable, and bounded [33].  Either function may 

produce faster training time or more accurate results depending on the underlying pattern 

in the data.  Separate neural networks can be trained with each activation function, and 

the neural network with the lowest validation error, described in more detail later, will be 

chosen.  

 

 

5.6.4  Overfitting 

The main concern while training a neural network is overfitting.  When fitting a curve to 

a set of data, the error can generally get lower if a higher order polynomial is used.  This 

is shown by the red function in Figure 33.  The data, represented by black dots, was 

generated by adding a little bit of noise to the straight line shown in the figure. 
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Figure 33: Example of Overfitting a Curve to a Dataset [34] 

 

The error between the training data and the red function is zero, because the red function 

goes through each point exactly.  However, when interpolating between points in the 

training data, the red function will be very inaccurate.  This situation is called overfitting, 

because the red function has been fit overly well to the training data at the expense of 

generalizing well.  Overfitting can be prevented by having a large training dataset, 

choosing the ideal number of nodes, and using an appropriate stopping criterion.  The 

different options for stopping criteria and the ideal number of nodes are discussed in the 

following sections. 
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5.6.5  Stopping Criteria 

The stopping criterion is what determines when to stop iterating through the feedforward 

backpropagation training process.  The three most common stopping criteria are number 

of iterations, convergence, and early stopping. 

 

The most straight-forward of the stopping criteria options is number of iterations.  When 

using this criterion, the weights are adjusted a certain number of times before stopping 

the training.  This method is simple but very ineffective, because the neural network may 

not be fully trained when the process is stopped.  The number of iterations it will take to 

fully train the neural network will vary widely based on the number of nodes and layers, 

the amount of data points in the training set, the complexity of the underlying function, 

how fast the weights are adjusted, and the random initial values of each weight.  With all 

of these variables affecting the number of iterations to fully train the neural network, it is 

difficult to choose just one number to use as an effective number of iterations. 

 

Another common stopping criterion is convergence.  When using this criterion, the 

weights are adjusted until the values of the weights have converged, meaning that the 

values have stopped changing between iterations.  While this method does not risk 

undertraining, it risks overtraining, because as the number of iterations is increased, the 

error on the training set will try to decrease until it levels off. 

 

The third common stopping criterion is called early stopping.  In order to prevent 

overtraining, some of the data is not included in the training set and becomes the 
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validation set.  As seen in Figure 34, the error on the validation data will initially 

decrease as the neural network is trained and then increase as the neural network is 

overtrained.  The error on the validation data begins to increase, because if a neural 

network is overtrained, it will perform poorly when predicting points not used during 

training, such as the validation data.  When using the early stopping criterion, the neural 

network stops training once the error on the validation data begins to increase.   

 

 

Figure 34: Early Stopping Method [35] 

 

 

5.6.6  Number of Layers and Nodes 

Most neural networks consist of only one or two hidden layers.  Training three or more 

hidden layers is rarely ever necessary and is much more complex to train.  For most 

applications, neural networks with only a single hidden layer are sufficient [36].  One 
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way to choose the number of hidden layers is to train single layer neural networks and 

then proceed to two layer neural networks if and only if the performance is unacceptable. 

 

The ideal number of nodes varies for each situation and cannot be easily determined.  If 

there are not enough nodes, then the neural network will not be complex enough to model 

the true function.  If there are too many nodes, then the function is more likely to overfit 

the training data [36].  Since the validation data is not used during training, the error on 

the validation set can be used to aid in neural network selection.  As the number of nodes 

is increased, the validation error will decrease initially and then increase due to 

overfitting.  The ideal number of nodes occurs when the validation error is at a minimum.  

Multiple neural networks, each with a different number of nodes, must be trained in order 

to find the ideal number of nodes.   

 

There are several rules of thumb for determining the ideal number of nodes, although 

their effectiveness is somewhat debated.  One rule of thumb is that the number of nodes 

is between the number of inputs and the number of outputs.  A second rule of thumb is 

that the number of nodes should be less than twice the number of inputs [36, 37].  When 

using the early stopping method, it is generally believed that the risk of overtraining is 

small, so contrary to these rules of thumb, a large number of nodes should be used [37]. 
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CHAPTER 6 

Results 

 

6.1  Introduction 

The effectiveness of each interpolation method was evaluated for pushes within the 

defined range.  The following section discusses the neural network training results, which 

include selection of the activation function and number of nodes for each neural network.  

The remaining two sections explore the push recovery effectiveness and computation 

time of each interpolation technique. 

 

 

6.2  Neural Network Training 

The first step in the evaluation process was to train neural networks using the statistical 

software program JMP.  During training, 75% of the data was included in the training set 

while the other 25% of the data was reserved for the validation set.  The error was 

measured using root mean squared error for reasons previously discussed.  The early 

stopping method was used to determine the number of iterations during training.  To 

avoid finding a local minimum, each neural network was trained five separate times 

starting with different initial weights each time, and the neural network with the lowest 

validation error was returned.  Neural networks were trained in 5 node increments until 
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the error on the validation set began increasing.  This process was performed once using 

Gaussian activation functions and then again using sigmoid activation functions.  Of 

these trained neural networks, the one with the lowest validation error was chosen for 

further evaluation within the simulation.  By plotting the training results in Figure 35, it 

can be seen that a neural network with a tanh activation function and 45 nodes was 

chosen to calculate the swing constant when taking the first step. 

 

 

Figure 35: Training Results: First Step Swing Constant 

 

  

5 10 15 20 25 30 35 40 45 50 55
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Number of Nodes

V
a

lid
a

ti
o

n
 R

M
S

E

Training Results: First Step Swing Constant

 

 
Tanh

Gaussian

Chosen Neural Network 



80 

 

As shown in Figure 36, the appropriate choice for calculating the push-off constant when 

taking non-first steps was a neural network with 30 nodes and a Gaussian activation 

function. 

 

 

Figure 36: Training Results: Non-First Step Push-Off Constant 

 

Similarly, Figure 37 shows that the appropriate choice for calculating          when 

taking non-first steps was a neural network with 20 nodes and a tanh activation function.  
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Figure 37: Training Results: Non-First Step          

 

 

6.3  Push Recovery Effectiveness 

After the neural networks were trained, linear least squares equations were calculated for 

the first step swing constant, non-first step push-off constant, and non-first step         .  

There was no need to calculate equations for linear or nearest interpolation as these 

methods use the lookup table during implementation.  It should be noted that for the 

linear and nearest interpolations, the dataset had to be reduced by a factor of ten in order 

to perform each simulation within a reasonable amount of time. 
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Each interpolation method was tested within the MATLAB simulation on pushes ranging 

from 60 Nm to 130 Nm with an increment of 1 Nm.  For each interpolation method, the 

number of pushes that the robot recovered from was recorded, and a summary of these 

results is shown in Figure 38. 

 

 

Figure 38: Effectiveness of Each Interpolation Technique 
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networks, linear interpolation was able to successfully recover from roughly 28% of the 

pushes.  This technique experienced limited success, because given enough data points, 

nonlinear functions can be reasonably approximated by a series of piecewise linear 

equations.  Although 28% is relatively low, this would still be better than not having a 

push recovery strategy, and when compared to neural networks, linear interpolation was 

much simpler to implement. 

 

 

6.4  Computation Time 

While performing the simulations, the computation time for each step was also recorded, 

and a summary of these results is shown in Figure 39.  The nearest interpolation and 

linear interpolation methods took approximately 117 and 73 seconds respectively to 

calculate the proper step based on the lookup table.  By the time the step could be 

calculated using either of these methods, the robot would almost certainly have fallen 

over.  Additionally, if more data was added to the table in an attempt to increase the 

accuracy of the results, these computation times would increase even more.  In contrast, 

neural networks and linear least squares computed the step almost instantaneously, and 

their computation times would not increase as a result of adding more data.  This would 

theoretically allow them to decide on an appropriate response in time to successfully 

recover from a push. 
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Figure 39: Computation Time of Each Interpolation Technique 
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CHAPTER 7 

Summary and Conclusion 

 

7.1  Summary and Conclusions 

This thesis introduced a new approach to implementing the reactive stepping method.  In 

order to test the new approach, a MATLAB model of a compass robot was created.  The 

model included appropriate constraints and parameters that were realistic of an actual 

humanoid robot.  It was then proposed that a robot should take the step which would 

result in the highest reduction in total energy.  For each starting configuration, the 

simulation was run for every possible step, and the step that resulted in the lowest total 

energy was stored in the Best Step Lookup Table.  In order to implement the Energy 

Reduction Method on a robot, interpolation within the Best Step Lookup Table was 

necessary.  Neural networks, linear least squares, nearest interpolation, and linear 

interpolation were all tested as potential interpolation techniques.  The performances of 

each technique were compared against each other on the basis of push recovery 

effectiveness and computation time. 

 

Results showed that the computation times for nearest interpolation and linear 

interpolation were too slow for a robot to make a decision before falling over.  In 

contrast, neural networks and linear least squares computed the step almost 
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instantaneously.  The linear least squares and nearest interpolation techniques achieved 

very poor recovery rates.  Linear interpolation experienced a mediocre recovery rate but 

had the advantage of being very simple to implement.  In contrast, neural networks had a 

very high success rate but were much more difficult to implement due to the time and 

effort required to train each network.   

 

When compared to previous reactive stepping approaches, the machine learning approach 

has many advantages.  One advantage is that the calculated stepping location is predictive 

and therefore only has to be calculated once for each step.  This approach also accounts 

for the situation in which a robot requires more than one step to recover from the push.  

Unlike an analytical solution that would be model specific, this approach is easily 

generalized.  The same process as described in this thesis could be followed to implement 

reactive stepping on physical robots, or other robot models. 

 

The main drawback to the machine learning approach is that a large amount of training 

data must be generated in order to train the neural networks.  While the research as 

presented serves as a proof of concept, further testing should be performed on other, more 

complex robot models.  In addition, the method should be tested on a physical robot in 

order to determine its true push recovery effectiveness. 
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7.2  Suggestions for Future Work 

This thesis used a compass model to present a proof of concept for a machine learning 

approach to reactive stepping.  The same process could be followed to implement 

reactive stepping on any robot model that can describe its steps using a relatively small 

number of parameters.  This work could also be continued by implementing reactive 

stepping on a physical robot.  Towards this goal, the researcher could either gather the 

training data by using a model or by using a physical robot. 

 

If the training data is gathered using a computer model, the model should be made to 

accurately reflect the physical robot.  It would need to include feet, knees, an upper body, 

appropriate masses, and appropriate dimensions.  If the model is accurate enough, neural 

network equations trained using data from the model could theoretically be implemented 

directly on the physical robot.  Unfortunately, developing a model accurate enough for 

these purposes could be extremely difficult. 

 

Instead of using a model, the training data could be gathered by using the physical robot 

itself.  Gathering training data using a physical robot would be much more difficult than 

using a computer simulation for several reasons.   The first reason is that the researcher 

must prevent the robot from becoming damaged during steps that result in falls.  This 

issue can be solved by appropriately tethering the robot or positioning the robot above a 

soft surface on which to fall.  Another issue that would need to be addressed is that neural 

network performance generally improves with more training data.  Increasing the amount 

of training data would be difficult when using a physical robot, because it usually cannot 
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be left to run autonomously for long periods of time.  Kalyanakrishnan and Goswami ran 

into similar issues when proposing data collection on a physical robot for their supervised 

learning of fall prediction.  They suggested building a test fixture to automate the process, 

thereby allowing a large amount of data to be collected without any human intervention 

[38].  Lastly, data collected on a physical robot will contain noise not present in a model.  

Therefore, it will most likely require more training data to accurately learn push recovery 

when using data from a physical robot. 

 

Either of these avenues would present an interesting extension of the work performed 

within this thesis.  When implemented on a physical robot, the machine learning 

approach to reactive stepping could provide a quick and effective way of deciding how 

and where to step in response to large pushes. 
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Appendix A: Energy Reduction Method Results 

 

Step #           ̇  (
   

   
)   ̇ (

   

   
)  Push-

Off 

Constant 

(Nm) 

Swing 

Constant 
         Total 

Energy 

(N) 

1 -6.4 -0.9 -66.5 -42.1 0 30 45 237.2 

2 -22.5 22.5 20.1 -60.6 2.5 60 -32.5 231.2 

3 16.1 -16.1 -6.5 -1.1 25 60 30 231 

4 -16.1 16.1 0.5 -0.4 STOPPED 

Table 2: Energy Reduction Method Results for a Push with an Equivalent Torque of 60 

Nm 

 

Step #           ̇  (
   

   
)   ̇ (

   

   
)  Push-

Off 

Constant 

(Nm) 

Swing 

Constant 
         Total 

Energy 

(N) 

1 -7.3 -1.5 -80.8 -50.7 0 40 45 237.6 

2 -22.6 22.6 21.5 -62.5 2.5 60 -31.9 231.6 

3 15.7 -15.7 0.2 0.9 0 60 28.8 231.4 

4 -15.7 15.7 0.2 0.2 STOPPED 

Table 3: Energy Reduction Method Results for a Push with an Equivalent Torque of 70 

Nm 
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Step #           ̇  (
   

   
)   ̇ (

   

   
)  Push-

Off 

Constant 

(Nm) 

Swing 

Constant 
         Total 

Energy 

(N) 

1 -8.3 -2.1 -95.1 -59.2 0 50 45 238 

2 -22.7 22.7 22.9 -64.6 5 60 -30.6 233.1 

3 15.2 -15.2 -8.9 -5.1 25 60 27.5 232.8 

4 -15.2 15.2 -1.2 -3.7 0 60 -33.1 232.4 

5 15.2 -15.2 0.6 1.6 0 60 27.5 232 

6 -15.1 15.1 0.1 -0.1 STOPPED 

Table 4: Energy Reduction Method Results for a Push with an Equivalent Torque of 80 

Nm 

 

Step #           ̇  (
   

   
)   ̇ (

   

   
)  Push-

Off 

Constant 

(Nm) 

Swing 

Constant 
         Total 

Energy 

(N) 

1 -9.2 -2.7 -109.4 -67.8 0 70 45 238.4 

2 -22.8 22.8 24.5 -66.5 2.5 60 -30 233.5 

3 14.9 -14.9 -16.3 -5.2 20 60 27.5 233 

4 -14.9 14.9 -0.3 -3.1 0 60 -32.5 232.5 

5 14.9 -14.9 0.4 1.2 30 60 27.5 232.3 

6 -14.9 14.9 0.2 0.1 STOPPED 

Table 5: Energy Reduction Method Results for a Push with an Equivalent Torque of 90 

Nm 

 

Step #           ̇  (
   

   
)   ̇ (

   

   
)  Push-

Off 

Constant 

(Nm) 

Swing 

Constant 
         Total 

Energy 

(N) 

1 -10.2 -3.3 -123.8 -76.3 0 90 45 238.8 

2 -22.9 22.9 26.1 -68.7 7.5 60 -28.1 233.6 

3 13.8 -13.8 0.2 0.6 STOPPED 

Table 6: Energy Reduction Method Results for a Push with an Equivalent Torque of 100 

Nm 



91 

 

Step #           ̇  (
   

   
)   ̇ (

   

   
)  Push-

Off 

Constant 

(Nm) 

Swing 

Constant 
         Total 

Energy 

(N) 

1 -11.1 -3.9 -138.2 -84.9 0 110 45 239.3 

2 -23 23 27.8 -71.1 0 60 -28.1 234.6 

3 13.8 -13.8 2.5 4.9 0 60 25 234.1 

4 -13.7 13.7 -1.4 -2.8 0 60 -30 233.7 

5 13.7 -13.7 0.4 1.1 30 60 25 233.5 

6 -13.7 13.7 0.2 0.1 STOPPED 

Table 7: Energy Reduction Method Results for a Push with an Equivalent Torque of 110 

Nm 

 

Step #           ̇  (
   

   
)   ̇ (

   

   
)  Push-

Off 

Constant 

(Nm) 

Swing 

Constant 
         Total 

Energy 

(N) 

1 -12.1 -4.5 -152.5 -93.4 0 140 45 239.7 

2 -23.1 23.1 29.7 -73.5 2.5 60 -26.3 235.5 

3 12.8 -12.8 2.8 4.8 0 60 23.1 235 

4 -12.8 12.8 -1.6 -2.9 0 60 -28.1 234.7 

5 12.8 -12.8 0.6 1.2 5 60 23.1 234.4 

6 -12.8 12.8 0.1 0 STOPPED 

Table 8: Energy Reduction Method Results for a Push with an Equivalent Torque of 120 

Nm 
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