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ABSTRACT

This thesis addresses the importance and issues of the robust control design of lin-

ear time-invariant (LTI) systems with real-time parameter uncertainties. It is known

that most of the existing robust control techniques are fairly conservative when deal-

ing with real-time parameter uncertainty. Also, majority of these existing techniques

use control gains that are essentially functions of the perturbation information. The

robust control design algorithm proposed in this thesis differs from these traditional

techniques by focusing on the control design in achieving a specific structure of the

closed loop system matrix that guarantees a maximum stability robustness index as

possible without the using any of the perturbation information. The determination

of this specific desired structure of closed loop system matrix forms the focal point

of this algoithm and is inspired by already existing principles in the field of ecology.

Using this ecological backdrop, the desired closed loop matrix is determined to con-

tain self regulated species with predator-prey interactions among these species. In

matrix nomenclature, such a set of matrices are labelled as Target Pseudo-Symmetric

(TPS) matrices and hence form the the class of the desirable closed-loop system ma-

trices. Based on these TPS matrices, which capture the maximum robustness index

for any LTI system, a robust control design is carried out such that the final closed

loop system possesses a robustness index as close to this maximum as possible. The

robust control design algorithm presented is based on minimizing the norm of an
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implicit error and is supported with several illustrative examples. This eco-inspired

robust control algorithm exemplifies the strong correlation that exists between nat-

ural systems and engineering systems. Hence, the main goal of this thesis is to aid

in the revival of research in the field of robust control using insights from ecological

principles.
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CHAPTER 1

OVERVIEW OF ROBUSTNESS THEORY AND
ECOLOGICAL PRINCIPLES

1.1 Introduction

As education has continued to grow over the past few decades, it has had a tremen-

dous influence on many engineering principles and designs. Education has laid a com-

mon foundation allowing several different fields to learn from each other. The field of

controls, for example, has benefited greatly from education because of the sharing of

different ideas that span across various disciplines and industries. A very interesting

feature of controls is that it is very different from many other engineering specializa-

tions because it can be implemented in almost any sense of the word control. Its uses

can be extended from controlling the mass flow of air in an engine to controlling the

cash flow in a business. It can even be used to identify exactly how natural systems

work. In fact, this entire research hinges on the previous statement and this is all

made possible because of the growth of the value of education.

Control is primarily important because it allows us to achieve a desired result.

Stability is one of the most important features in a control design. If a system is

unstable, it’s behavior is hard to predict and hence it would not output a desired result
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(which is what control is all about). In fact, most control designs that focus on other

performance specifications require to guarantee a system’s stability before achieving

any of these desired specifications. Another important specification in controls is the

feature of robustness.

Most real-life engineering systems today are of a non-linear nature. This non-

linearity introduces several complexities that can only be solved through the use of

different numerical methods and softwares. Hence, many of these systems that are

non-linear in nature are linearized about a nominal state. The resulting linearized

system is much easier to solve using control designs and techniques that do not neces-

sarily require the use of numerical softwares. When a non-linear system is linearized,

it can only withstand a certain magnitude of perturbation from that nominal state

beyond which it becomes unstable. Hence it can be pointed out that the choice of

the nominal state plays a huge role in this system’s tolerance to perturbations [2].

This is where the feature of robustness ties into a control design. A system is deemed

to be more robust if it can tolerate a higher perturbation from its nominal state.

Hence by achieving a higher robustness index, a system is able to withstand a higher

perturbation without losing stability. However, it is extremely important to keep in

mind that robustness is an innate feature of stability. If a system is unstable from

the start, then there can be no concept of robustness associated with it.

Many engineering systems adapt their ideas by examining the workings of natural

systems that occur everyday. Previous research has been carried out by ecological

scientists studying the variations and behaviors of natural systems. The research in

those fields allowed an understanding of how and why some natural systems remain

stable, decay or grow out of bound. These principles can be extended to engineering
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systems in order to gain a similar perspective in the engineering sense. Hence, this

research deals with using these ecological principles and ideas to form a control design

that maximizes the robustness index of linear systems while maintaining stability

which is why it is called an Eco-inspired robust control design.

1.2 Literary survey and motivation

As mentioned previously, it should be clear that the choice of a nominal system

should be such that the bound on a perturbation is maximized [2]. Therefore it is

essential that we choose the best nominal system that allows this maximized perturba-

tion. The above definition of robustness is a conventional one that basically quantifies

the value of the robustness. However, robustness can also be defined by its qualitative

attributes. As a result, there are two perspectives of robustness: Quantitative robust-

ness and Qualitative robustness. The qualitative aspect of robustness comes purely

from the ecological principles derived from previous research while the quantitative

aspect deals with the relationship between the eigenvalues and eigenvectors a system.

Both robustness definitions are explained in detail as follows.

1.2.1 Quantitative robustness:

Once an engineering system has been linearized about its nominal state, it is

called a linear system. This research is primarily concerned with linear time invariant

systems (LTIs); this basically means that the system’s dynamics do not vary with

time. An LTI system primarily consists of two types of variables: state variables

and control variables. The state variables are a set of parameters that can completely

describe a system. The control variables, on the other hand, are parameters that help

control the system. Examples of control variables on an aircraft can consist of the

3



elevators on the tail fins, or the flaps on a wing. Both the state and control variables

along with their respective dynamics can be written in a state-space form given by:

ẋ = Ax+Bu (1.1)

In equation 1.1, x denotes the state variables of the system and u denotes the

control variables; A contains the dynamics of the state variables of the system; B

contains the dynamics of the control variables.

Equation 1.1 refers to an open-loop system and thus can be regarded as a stable or

unstable system. In order to achieve a guaranteed stable system, a full-state feedback

is implemented wherein every state variable can be measured. Hence the gain needed

to convert this open-loop system to a closed-loop stable system is given by:

û = −Gx (1.2)

As a result, the final state-space form of an LTI system with a full-state feedback

can be written as:

ẋ = [A−BG]x or ẋ = Aclx (1.3)

Here, Acl constitutes a Hurwitz stable matrix and is called the closed-loop system

matrix. We are primarily concerned with the amount of perturbation this closed-loop

system matrix can tolerate. There are primarily 4 different types of perturbations

(errors) that can be associated with any engineering system that are broadly classified

as [1]:

i. Error due to real parametric variations/uncertainties.

ii. Error due to neglected non-linearity.
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iii. Error due to external disturbances.

iv. Error due to model-reduction (unmodeled dynamics).

Figure 1.1: Different types of uncertainties [1]

This research is only concerned with errors that are caused due to parametric

variations/uncertainties. Hence such errors can be classified as perturbations, or

parametric variations. Parametric variations can occur in almost any kind of system.

For example, say one of the state variables in a turbine engine is the mass-flow of

air through that engine. Now assume that due to some fatigue/failure, a hole was

to form somewhere in that engine. This would change the mass-flow in that engine

and this change from its original value is referred to as a parametric (state) variation.

Therefore it is important to incorporate this perturbation into equation 1.3. This

can be shown by:
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ẋ = [Acl + E(t)]x (1.4)

where: E denotes the perturbation/error.

As far as this research goes, the perturbation E is classified as one that is time-

varying. The main question now is how large of an E can be tolerated before the

system goes unstable. In addition, this research is only concerned with the unstruc-

tured (norm-bounded) uncertainty of E [3] and so it can be seen that the norm-bound

of E is regarded as a measure of robustness of the system. Therefore, the higher the

bound on E that can be tolerated, the more robust Acl is [2].

It is now an appropriate time to define quantitative robustness. Quantitative ro-

bustness is based on the unstructured, norm-bounded uncertainty of E. It is denoted

by µ and depends on the stability degree of the system. It is because this robust-

ness measure is calculated by quantitative information, it is labeled as quantitative

robustness.

Note: There is another measure of quantitative robustness that is based on the

Lyapunov matrix, however, it was never used in this research and hence shall not be

addressed in much detail.

Again, recalling that robustness is a feature of stability, Acl needs to be a Hurwitz

stable matrix. This was guaranteed via a full-state feedback gain G given in equation

1.2. The quantitative robustness of Acl can now be defined by [2]:

||E|| < µcl = −αcl
κcl

(1.5)
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where: αcl denotes the stability degree (most dominant eigenvalue of Acl); κcl denotes

the condition number of the modal matrix of Acl. Therefore it can be seen that µcl is

basically a function of the closed-loop system’s eigenvalues and eigenvectors.

Note: Since only robustness based on the ’stability degree’ is used as the definition

of quantitative robustness in this research, it shall be denoted by µs.

Therefore the higher the value of µs, the higher the perturbation it can tolerate.

Quantitative robustness is important because it provides a numerical value, or quan-

tity, that shows how large of a perturbation a system can be tolerated. Although

quantitative robustness provides a measure of the amount of perturbation that can

be tolerated (robustness index), it does not, however, provide any details as to the

structure of the elements in Acl that are needed to maximize this index. In fact it is

very crucial to understand the internal workings of Acl’s elements in order to make

sure that the robustness bounds are maximized. Therefore a qualitative perspective

of robustness was found that was adapted from research carried out in the field of

ecology. This research addressed the signs, interactions and interconnections of the

different elements in Acl that bring about this qualitative information of robustness.
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1.2.2 Qualitative robustness

1.2.2.1 Review of Ecological principles.

Ecosystems consist of many different types of species. These various species play

different roles in an ecosystem. Mathematical models of ecosystems are constructed

by studying the effect a species has on itself and its surrounding species [4], [5].

Moreover, the workings of an ecosystem depend on the sustenance or extinction of

different species in that ecosystem. Every species obviously has an effect on itself

based on how it feeds, how healthy it is etc. However it is also essential to understand

the effect a species has on another species. Therefore the relationship between two

species is characterized as an interaction. The type of interaction is very important

to the understanding of the sustenance or extinction of those species. There are

five primary classifications of interactions between any two different species in an

ecosystem.

i. Mutualism: This interaction takes place when both species have a positive

effect on one another. For example, an ant-plant interaction is a type of mutualism

wherein the plant provides nectar to the ants, while the ants help keep away insects

that would harm the plants.

ii. Competition: This interaction occurs when both species have a negative

effect on one another. An example of this is a predator-predator interaction. Both

predators target the same prey and hence induce a competition with one another.

iii. Commensalism: This sort of interaction takes place when one species has

a positive effect on the other while the other species has a neutral effect on the

former. For example, barnacles adhere to the skin of whales using them as a mode of

transport to gain nutrients in richer water. Hence, the whales have a positive effect
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on the barnacles, but the barnacles do not harm the whales in any way and hence

play a neutral role.

iv. Ammensalism: This interaction is similar to commensalism but in this case

one of the species induces a negative effect on the other. An example of ammensalism

is between humans and another species that is under extinction due to human actions

such as pollution etc. Here, the species under extinction is affected negatively by

humans, however humans, in return, aren’t necessarily affected at all.

v. Predation: This is a very common interaction wherein one species has a

negative effect on the other, while the other species has a positive effect on the

former. A predator-prey interaction is an example of predation.

All five of these interactions can be illustrated with the use of signs. For example,

if a species has a positive effect on another, it is denoted by a + sign; if a species has

a negative effect on another, it is denoted by a - sign; and finally if a species has a

neutral effect on another, it is simply denoted by a 0.

Just like engineering systems, ecosystems are predominantly non-linear in nature

and hence they too are linearized about some nominal point. It makes intuitive sense

that ecosystems only contain information about the type of interactions between

species. Therefore there is an ambiguity in the quantitative information within these

interactions and so when these systems are linearized, the resulting linear system

does not contain numerical values, but instead, only contain the signs (+, -, 0) of the

interactions between the species. Hence only the qualitative information is included

in these systems [2].

Once an ecosystem has been linearized, a matrix can be formed that contains

information about the interactions between he species that constitute the system.
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The manner in which this information is translated into a matrix form is by assigning

every diagonal element in this matrix as a species and hence the off diagonal elements

serve as an interaction between two species in this matrix. Every element in this

matrix can be identified by its row (i) and column (j). For instance (1,2) denotes the

element that is in the first row and second column. As mentioned previously, since

this matrix only contains qualitative information (ie. signs), and hence no numerical

values, an (i,j)th element in this matrix basically denotes species j’s effect on species i.

Hence if the same (1,2) element is identified by a + sign, this only means that species

2 has a positive effect on species 1. The sign on the diagonal elements, on the other

hand, denotes the species’ effect on itself. Figure 1.2 below illustrates this concept

formulation.
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Figure 1.2: Types of interactions [2]

Figure 1.2 illustrates two ways of representing any interaction type through a

digraph and matrix form. A digraph can be shown to consist of two terms: nodes

and paths. Nodes (the numbered circles) indicate the species itself while paths (the

arrows) indicate the interaction between the species. Figure 1.3 below gives us a

better understanding of this concept.
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Figure 1.3: A qualitative matrix and its corresponding digraph [2]

It is essential to define these representations in terms of linear algebra nomencla-

ture. The product of paths (in matrix notation) with ordered indices are classified as

follows [2] [6]:

i. The product of any pair of off-diagonal elements aijaji are known as l-cycles.

This product indicates the interaction of only two distinct nodes in the matrix. Hence,

the product aijaji and ajiaij are the same.

ii. When products of three or more nodes (aijaji...ami) are under consideration,

they are known as k − cycles.

l − cycles are referred to as interactions because they occur only between two

nodes (species). k − cycles are referred to as interconnections because they occur

between three or more nodes. The l− cycles and k − cycles are illustrated in figures

1.4 and 1.5 respectively.
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Figure 1.4: Interactions: l-cycles [2]

Figure 1.5: Interconnections: k-cycles [2]

1.2.2.2 Ecological sign stability

Ecological sign stability is a qualitative property that is of huge importance that

can be extended to engineering systems. As mentioned above, the ecological matrices

formed were of a qualitative nature in that there were no numerical values associated

with the elements in the matrix (only signs). Sign stability is defined as follows:
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A matrix that is ‘sign stable’ conforms to Hurwitz stability solely because of the

nature of its sign pattern regardless of what the magnitudes of the individual elements

in this matrix are [2].

This is a very fascinating feature because most engineering systems contain mag-

nitudes in their matrices. Therefore if such an engineering system matrix conforms

to a sign-stable matrix, it’s elements can take on any values of magnitude (other than

zero) and would still remain a Hurwitz stable matrix. In other words, the stability of

the matrix solely depends on the sign pattern of the matrix!

It is fairly intuitive that there only exists a certain variety of sign patterns that

would provide sign stability. Previous research [7] has shown that there is a set

algorithm that stores all sign stable matrices of order 3 or more. For example the

following matrices are considered to be sign stable matrices:

A =

− − −
0 − 0
+ + −

 B =


− − − −
0 − − 0
0 + − 0
+ 0 + −

 (1.6)

If the above matrices are properly scrutinized, it can be shown that the product

of the ’k-cycles’ in both matrices equal to 0. For example the product a13a32a21 is

0 in matrix A and the product a14a43a32a21 is also 0 in matrix B. Hence a general

rule of thumb for sign stability is that if every k-cycle in a matrix is 0, the matrix is

sign stable. Research in the past [8] [9] [10] produced many different models and

algorithms that were used to determine the sign stability of matrices. It turns out

that from all the different interaction types discussed earlier, only the ’predation’ and

’commensalism/ammensalism’ interactions (along with zeros placed in appropriate
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locations needed for a 0 product ’k-cycle’) resulted in sign-stable matrices. There-

fore ’mutualism’ and ’competition’ interactions, along with non-zero k − cycles are

unfavorable to sign (qualitative) stability.

It is important to impart the feature of sign-stability into robustness theory. Since

robustness is a feature of stability and since sign-stability is independent of magnitude,

it allows these different stable sign patterns to have an important effect on robustness

that can be characterized as a qualitative robustness index.

1.2.2.3 Defining qualitative robustness

Ecosystems are known to be inherently robust to various disturbances and per-

turbations. Therefore it makes intuitive sense to try and adapt these ecological

principles and apply them to engineering systems to increase their robustness. As

mentioned earlier, there are some interactions that enhance the robustness of a sys-

tem while the others are detrimental to robustness and stability. Hence, different

frameworks/metrics that assess the qualitative robustness of a system are presented

as follows. By defining [2]:

β1 =
no. of aii > 0

total no. of aii

β2 =
no. of l − cycles > 0

total no. of l − cycles

β3 =
no. of k − cycles = 0

total no. of k − cycles
Another cumulative metric β = β1 +β2 + β3 can also be formed. This cumulative

metric is a measure of qualitative robustness. If this metric β is higher, then the less

robust the system is qualitatively [2]. Also it should be noted that since each of these

robustness indices that make up the cumulative β are ratios, β can have a minimum

value of 0 and a maximum value of 3. Hence the most qualitatively robust matrix
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would have a β value of 0. If a matrix has a β value of 3, it not only means that it

the least robust qualitatively but it also implies that the matrix is unstable.

Since ecological matrices only contain signs, it can be seen that each of the βi

(i=1,2,3) values can be obtained fairly easily. Hence, based on the definition of β

above, a sufficient condition can be put forward:

A quantitative matrix is always Hurwitz stable if β is 0. [2]

Using the statement above, a reverse condition can also be invoked that is a

quantitative matrix is always unstable if β is 3. Figure 1.6 below illustrates this

sufficient condition.

Figure 1.6: Sufficient condition for stability and instability [2]

While Figure 1.6 exemplifies the effect of the cumulative β on stability, it is also

important to see the individual contributions of each βi to the qualitative stability of

matrices. Figures 1.7, 1.8 and 1.9 show these individual contributions [2].
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Figure 1.7: Effect of β1 on qualitative stability (β2 = β3 = 0) [2]

Figure 1.8: Effect of β2 on qualitative stability (β1 = β3 = 0) [2]
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Figure 1.9: Effect of β3 on qualitative stability (β1 = β2 = 0) [2]

Figure 1.7 shows that when β2 and β3 are kept at zero, and as β1 is increased from

0 to 1, the probability of stability drops from 1 to 0. Further delving into the field of

linear algebra, it can be shown that if every diagonal element in a matrix is positive

then that matrix will contain at least one positive eigenvalue leading to an unstable

matrix. Hence by referring to the definition of β1, it can be shown that if β1 = 1 it

serves as a sufficient condition for instability. Furthermore, if figures 1.7, 1.8 and

1.9 are closely observed, it can seen that β1 has the most critical effect on stability

while β3 has the least effect on the same.

Up to this point, qualitative and quantitative robustness have been described in

detail. It may seem that these two measures are independent of each other because

qualitative robustness is independent of magnitude. However, that is not the case

and in order to provide a better understanding of how these two robustness measures

affect each other, an example is proposed as follows.
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1.3 Quantitative and Qualitative robustness example

The following example was adapted from [2].

Consider the following three matrices:

S =


−3 −1 −0.8 −4.8
0 −1.2 −1.5 0
0 2 −0.4 0

2.6 0 4 −5

 K =


−3 −1 −0.8 4.8
0 −1.2 −1.5 0
0 2 −0.4 0

2.6 0 4 −5



H =


−3 −1 −0.8 4.8
0 −1.2 −1.5 0
0 2 0.4 0

2.6 0 4 −5


Note that all three matrices are Hurwitz stable and each of their elements have

the exact same absolute magnitudes. The only difference in the three matrices are

the signs of some of their individual elements. This can be summarized as follows:

1. S, K and H are all stable.

2. |Sij| = |Kij| = |Hij|.

3. sign(S) 6= sign(K) 6= sign(H).

β1, β2, β3 and β for S, K and H are given in the table below:

S K H
β1 0 0 0.25
β2 0 0.1667 0.1667
β3 0 0 0

β 0 0.1667 0.4167

Table 1.1: Results: βis’ for S, K and H
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Therefore it can be seen that S is the most qualitatively robust matrix (lowest β)

while H is the least qualitatively robust matrix (highest β). However, it is interesting

to see how this qualitative robustness index affects the quantitative robustness values

(µs). The quantitative robustness index values (µs) for each of the three matrices are

shown in the table below. Again, note that αs is the stability degree (the real part of

the most dominant eigenvalue) and κs is the condition number of the modal matrix

of each of the three matrices.

S K H
αs 0.8 0.3285 0.3285
κs 2.7838 4.3525 5.7923

µs 0.2874 0.0755 0.0567

Table 1.2: Results: Stability degree α, condition number κ, and µs for S, K and H

Recalling the definition of quantitative robustness, µs is a measure of the amount

of perturbation that can be tolerated from a system’s nominal state. Hence a higher

µs value indicates a higher tolerance (and therefore more robust) to perturbations.

Looking at the the table above, we can see that S has the highest µs index indicating

that it is yet again the most robust matrix while H is the least robust matrix (again).

The summarized results showing the inverse effect of β on µ are shown in Table 1.3

below:
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S K H
β 0 0.1667 0.4167
µs 0.2874 0.0755 0.0567

Table 1.3: Results: Effect of β on µ for S, K and H

Therefore it seems that the sign pattern of S that made it the most qualitatively

robust matrix allowed it to have the maximum quantitative robustness index among

the three matrices. In other words, the qualitative nature of S maximized the toler-

ance of S to perturbations, hence making it a more robust matrix than the other two.

Hence it is obvious that both the qualitative and quantitative robustness indices are

very closely tied in to each other.
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1.4 Chapter 1 summary

Up to this point, two measures of robustness have been provided: quantitative

robustness (µs) and qualitative robustness (β). The first measure is important be-

cause it provides numerical information on the amount of perturbation that can be

tolerated from the nominal state of any system. The latter measure provides an index

pertaining to the sign structure of a matrix that is needed to maximize the former

measure. Both measures are equally important and together provide the founding

framework for this research.

The following chapter deals with narrowing down to exactly which set of sign and

magnitude patterns in a matrix provide the best closed-loop nominal systems that

can be used to maximize robustness.
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CHAPTER 2

THE TARGET MATRIX FORMULATION

In the previous chapter, the importance of stability was addressed and it was

pointed out how robustness is an innate feature of stability. It was also shown how

qualitative and quantitative robustness are affected by each other and the goal of this

chapter is to define the best qualitatively robust matrix (least β) that would serve as

a reference to maximize a system’s quantitative robustness index (maximize µs).

Recall that the choice of the nominal state which a system is linearized about plays

a huge role on the system’s tolerance to perturbations. For convenience, equation 1.4

is reiterated below.

ẋ = [Acl + E(t)]x

Here Acl serves as the nominal closed-loop system matrix. Hence this chapter

is going to focus on identifying a set of the most qualitatively and quantitatively

robust matrices. Based on the properties of these matrices, the best selection for the

nominal closed-loop system matrix that would maximize the system’s tolerance to

perturbations (hence maximizing the robustness of the system) is proposed [2].
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2.1 Quantitatively most robust matrices

Referring to equation 1.5, it is observed that µs is a function of the stability degree

α and the condition number κ. This equation is reiterated below for convenience:

µs = −α
κ

(2.1)

Now it is well known in linear algebra that the condition number of any matrix

is always greater than or equal to 1. In addition, for any diagonal matrix D, the

condition number is basically a ratio of the maximum and minimum diagonal values

of that matrix. This can be summarized as follows [11]:

i. κ(A) ≥ 1.

ii. For an diagonal matrix, D: κ(D) = max|dii|
min|dii| .

Hence, from Equation 2.1, it can be observed that a maximum value of µs can be

obtained if κ is minimized. Since the minimum value of κ is 1, this serves as the first

condition for obtaining a quantitatively most robust matrix. Therefore:

Condition 1 : κ = 1. (2.2)

Matrices that conform to condition 1 are known as normal matrices [11]. Now by

using condition 1 from above, condition 2 follows as a result of the former:

Condition 2 : µs = −α. (2.3)

Hence it is clear from the two conditions above that matrices that are normal

( 2.2) and stable ( 2.3) form the set of quantitatively most robust matrices.
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Now that the set of most quantitatively robust matrices has been determined, it

is essential to find the corresponding set of qualitatively most robust matrices. This

is addressed in the following section.

2.2 Qualitatively most robust matrices

In Chapter 1, a set of metrics (β1, β2 and β3) were defined that gave rise to

a cumulative qualitative robustness measure, β. For convenience these metrics are

listed below.

β1 =
no. of aii > 0

total no. of aii

β2 =
no. of l − cycles > 0

total no. of l − cycles

β3 =
no. of k − cycles = 0

total no. of k − cycles
Recall that: l− cycles are the interactions and k− cycles are the interconnections

between different species (diagonal elements) in a matrix.

It was also stated that a matrix is most qualitatively robust if β = 0. In other

words, β1 = β2 = β3 = 0 and any matrix satisfying all three of these measures is

identified as the most qualitatively robust matrix.

In order to conform to β1 = 0, every diagonal element in this matrix must be of

a negative value. Hence,

Condition 3 : aii < 0. (2.4)

β2 = 0 can only be obtained if every pair of off-diagonal elements (aij and aji)

form negative products. Hence,
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Condition 4 : aijaji < 0. (2.5)

Now for β3 = 0, every ’k-cycle’ in the matrix would have to equal zero. For example

in a 3x3 matrix, the product a12a23a31 would have to equal to 0. However, this can

only be possible if at least one or more of these elements equals zero. Therefore,

Condition 5 can be stated as follows:

Condition 5 : aijajk...ali = 0. (2.6)

Therefore, using the 5 conditions listed in these previous two sections, a set of

Target Sign-Stable matrices (TSS) can be formulated that serve as the best choice

for a nominal closed-loop system matrix. This is further explained in the following

section.
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2.3 Choice of the best nominal closed-loop system: The Tar-
get Matrix

2.3.1 Target sign-stable matrices

A set of quantitatively most robust matrices has been narrowed down to through

conditions 1 and 2. Furthermore, a set of qualitatively most robust matrices can also

be identified through conditions 3, 4 and 5. By denoting the set of quantitatively

most robust matrices as Aµ and the set of qualitatively most robust matrices as Aβ,

the set of matrices that are a subset of both Aµ and Aβ need to be obtained. This

set of target matrices can be illustrated thru the following figure.

Figure 2.1: Set of Target matrices [2]
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These set of Target Matrices have to satisfy each of the conditions listed in the

previous section. Conditions 1 and 2 bring about an interesting feature that can be

explained as follows.

In order to satisfy, or rather guarantee, condition 2, every diagonal element in the

matrix to be negative. However, the main issue arises in trying to satisfy condition 1.

In order to guarantee this condition it is essential that in addition to every diagonal

element in this matrix being negative, they are also to be of the same magnitude. Fur-

thermore, every off-diagonal pair should be symmetric in that each of these elements

only differ by their sign but not their magnitude.

Such a matrix that satisfies conditions 1-5 is known as a Target sign-stable (TSS)

matrix and it is this set of matrices that act as the best nominal choice for the

closed-loop system. A TSS matrix, S, can be summarized as follows:

i. sii = -d, where ’d’ is a positive real constant.

ii. sign(S) is qualitatively stable.

iii. sij = -sji. (However, if sij is zero, then the corresponding sji must also be

zero.)

Example of a TSS matrix is shown below:

S =


−d −s1,2 0 0
s1,2 −d s2,3 0
0 −s23 −d s3,4
0 0 −s3,4 −d


Consider the following theorem [12],

Theorem 1: For an n x n ecological sign-stable matrix,

aiimin
≤ Re(λi)min ≤ Re(λi)max ≤ aiimax (2.7)
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Since all the diagonal elements in a target sign-stable matrix are equal, then

according to the theorem above, the real part of every eigenvalue will possess the

same stability degree that can simply be denoted by d, which is simply the magnitude

of each diagonal element itself. It has already been proven [11] that target sign-

stable matrices are normal matrices through condition 1 and therefore the quantitative

robustness index, µs, of a target sign-stable matrix is:

µs = − −d
κ(= 1)

= d (2.8)

Therefore, it is clear that the set of TSS matrices provide the best robustness

measures both qualitatively and quantitatively. However, the following sub-section

narrows down to an even better subset of matrices that exist within this set of TSS

matrices that can be used as an even better choice for the nominal closed-loop system.
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2.3.2 Improved set of TSS matrices: The Target Pseudo-
Symmetric matrix

Condition 5 listed above required that every k-cycle in a Target sign-stable matrix

was to be zero. Therefore, it can be seen that zeros need to exist in appropriate

locations in this TSS matrix in order to fulfill Condition 5. However most engineering

systems in nature do not really possess many zero elements in their matrix dynamics.

This can be attributed to coupling that occurs between the different state-variables

in an engineering system. Hence it is very rare to find a real engineering system that

contains the zeros required to satisfy condition 5. Therefore it is essential to relax

the constraint set by this condition in a manner that is justifiable.

In chapter 1, the effect of each βi on stability was shown in figures 1.7, 1.8 and

1.9. It was determined that β1 affected stability the most and β3 affected stability the

least. Therefore it is sufficient to say that β3 is the least critical of all the βi’s in terms

of affecting stability and hence robustness. Therefore the β3 constraint (condition 5)

can be relaxed to reduce the restrictive nature of TSS matrices [2].

Condition 4, however, still requires that every interaction forms a negative product

and so an improved TSS matrix known as the Target Pseudo symmetric (TPS) matrix

is formed that adheres to all the conditions 1-4, but not 5. Note that condition

4 exemplifies an interaction that is purely predator-prey in nature and it can be

seen how the ecological principles discussed in chapter 1 tie into the discussion of

robustness. A TPS matrix, P, conforms to the following properties:

i. pii = -d, where ’d’ is a positive real constant.

ii. sign(P) is qualitatively stable.

iii. pij = -pji. (pij,pji 6= 0)
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iv. P T = -P.

An example of a TPS matrix is shown below.

P =


−d −s1,2 s1,3 s1,4
s1,2 −d s2,3 −s2,4
−s3,1 −s23 −d s3,4
−s4,1 s2,4 −s3,4 −d


It was shown in the previous chapter that the effect of increasing β decreased the

µ of a system. However, because β3 is not very critical to stability and robustness,

it is proved in [13] that Theorem 1 holds for TPS matrices as well and so the

quantitative robustness index, µs, is still the magnitude of the diagonal elements of

the TPS matrix. Hence it can be concluded that the final Target matrix, AT , that

serves as the best choice for the nominal closed-loop system matrix, Acl, is the Target

Pseudo-Symmetric matrix.

The figure below shows the different sets of matrices that have been detailed so

far.

Figure 2.2: Classification of target matrices [1]
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2.4 Chapter 2 summary

This chapter dealt with narrowing down to a set of TSS matrices that formed

appropriate choices for the nominal closed-loop system, Acl. However, due to the

restrictive nature of these matrices (the zero elements) along with the fact that most

engineering matrices do not conform to TSS matrices, a new improved set of matrices

was formed known as Target Pseudo-symmetric (TPS) sign-stable matrices. These

matrices form the final Target matrix used in this research. The importance of having

such a matrix as the nominal closed-loop system allows the system to maximize its

tolerance (maximize µs) to perturbations without losing stability.

The following chapter involves the problem formulation and algorithm performed

using the TPS matrix in order to maximize the overall robustness of the final closed-

loop system for various types of open-loop systems.
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CHAPTER 3

ECO-INSPIRED ROBUST CONTROL DESIGN
ALGORITHM

In order to detail the robust control algorithm which is the focal point of this

research, it is essential to recap a few of the equations and concepts that were put

forward in the previous chapters. Recall that this research only dealt with the ro-

bustness measure of linear time-invariant (LTI) systems:

ẋ = Ax+Bu

The above equation is the open-loop representation of an LTI system and hence it

was pointed out in chapter 1 that this open-loop system could be stable or unstable.

In other words, A could be a stable or an unstable matrix depending on the dynamics

of the open-loop system under consideration. Hence, it was essential to convert this

open-loop system into a stable closed-loop system which was guaranteed via a full-

state feedback gain, G, that resulted in equation 1.3. For convenience, this equation

is given below:

ẋ = [A−BG]x or ẋ = Aclx
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The Acl matrix is the nominal closed-loop system matrix whose robustness is to

be maximized.

Now the open-loop system contains an ’A’ and a ’B’ matrix. If it is assumed

that there are ’n’ state-variables in any system, A would then be an n x n matrix.

Further, assuming there are m control variables needed to control any system, B

would then be an n x m matrix. If m were to equal n, B would be a square, n x n,

matrix. However, most real engineering systems have (m < n) because it is relatively

expensive to come up with just as many control variables as there are state-variables.

The robust control algorithm for an (m=n) and (m < n) system differs because

of concepts that will be clear later. Hence, the (m=n) case shall be addressed first

before moving onto the (m < n) case.
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3.1 1. (m=n) open-loop systems

For any controllable pair A and B, a nominal closed-loop system matrix needs to

be created, Acl, whose robustness index, µs, is maximized. Hence it is hoped that

this Acl exactly mimics a Target Pseudo-symmetric (TPS) matrix, At, for reasons

discussed in chapter 2. It is known that,

Acl = A−BG (3.1)

Since this section assumes a (m=n) system, B is a square n x n matrix. Further-

more, if B is invertible,

G = B−1(A− Acl) (3.2)

However, in order to maximize the robustness, the desired closed-loop matrix

needs to take the form of At. Therefore if there is a desired At in mind, a gain G

can be obtained that is able to achieve this only because B is square and invertible.

Thus,

G = B−1(A− AT ) (3.3)

Therefore the G obtained in Equation 3.2 is plugged into 3.1 to achieve a final Acl

whose robustness index, µs, is maximized. Therefore,

Acl = At (3.4)

Hence, for any (m=n) open-loop system, it is possible to achieve any desirable

closed-loop TPS system only because B is a square and invertible matrix. This final
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closed-loop system, Acl, is the most robust system whose tolerance to parametric

variations is maximized.

However, in the case that B is not square (and hence not invertible), another

algorithm needs to be performed. This is discussed in the following section.
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3.2 2. (m < n) open-loop systems

In the previous section it was stated that for any (m=n) open-loop system, there

exists a gain, G, that allows the final closed-loop system, Acl, to exactly mimic any

desired TPS matrix (At). This is only possible because in an (m=n) system, the B

matrix is square (and invertible). However, in the case of an (m < n) system, B is

not square (and hence not invertible) and so the goal is to come up with a matrix

that is invertible and is directly related to B. Therefore the Pseudo-inverse matrix

of B is introduced that is symbolized by B†.

The inclusion of B†, however, introduces an error known as a pseudo-inverse error,

Epseudo. In addition to this, there is another error that exists that is referred to as

ETPS. Therefore,

E = Epseudo + ETPS

It is the constrained feature of a TPS matrix that gives rise to ETPS. Therefore,

these two errors together can be simply referred to as E. It is this overall error that

restricts Acl in exactly following a desired At (TPS) structure. The goal of the robust

control design algorithm is to minimize the norm of this error such that Acl is able

to mimic At as closely as possible.

The algorithm presented below is divided into two phases namely: The optimiza-

tion phase and The Robustifying phase. The optimization phase is concerned with

minimizing the norm of the error addressed above, while the robustifying phase con-

centrates on finding a final gain, Gfinal, that allows Acl to be as close to AT as

possible.
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Note: Unlike the (m=n) case, AT is not any desirable TPS matrix, but is an

optimized matrix constrained by the final minimized error. Therefore, the TPS matrix

is considered to be a design variable that is denoted by a lower-case t symbol At. The

final optimized TPS matrix corresponding to the minimum norm of E is denoted by

an upper-case T symbol AT .

The algorithm presented below differs for stable and unstable open-loop systems.

Therefore the stable open-loop case shall be addressed first before proceeding to the

unstable case.

3.2.1 Stable open-loop systems

Before proceeding to the optimization phase, it is essential to make sure that the

A and B matrices under consideration form a controllable pair.

3.2.1.1 Optimization phase

Norm-minimization of E

The pseudo-inverse matrix of B discussed above is defined as follows:

B† = (BTB)−1BT (3.5)

It is important to note that the primary reason for the inclusion of B† is because

it serves as a fictitious B matrix that is directly related to B itself. It is because

it does not equal to the actual B of the system, the pseudo-inverse error, Epseudo

is introduced. Therefore the corresponding gain that uses B† to form a closed-loop

system does not compensate for this error, rather, the error is an internal feature
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possessed within this gain. Hence this gain is not considered to be the final closed-

loop gain that maximizes robustness, but instead, it serves as an intermediate gain

denoted by G. Thus, the equation for G is:

G = B†(A− At) (3.6)

Again, recalling that At is a design variable, G can be used with the original A

and B systems to minimize the norm of E and form the final optimized target matrix,

AT . This can be shown in the equation below:

At + E = A−BG (3.7)

Equation (3.7) forms the focal point of the optimization phase.

The goal is to minimize the norm of the error that can be denoted as Emin, and

find the corresponding At matrix that shall serve as the optimized Target matrix, AT

. Hence it can be observed that the elements in At can be treated as design variables.

Equation (3.6) further shows that G is a function of At as well and so every time

the elements in At are changed (known as an iteration), G is also changed, and the

corresponding norm of E is stored. After going through all the possible iterations,

the minimum value of the norms of E that were stored is recorded and the At matrix

that corresponds to this minimum norm of E is taken as the optimized AT matrix.

This process is better aided via a matrix-design representation. The design target

matrix representation of a 2 x 2 system is provided below:

At =

[
−δ1 ± δ2
± δ2 −δ1

]
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Notice that since the target matrix is a Pseudo-Symmetric matrix, it contains

two design variables: δ1 and δ2. The first design variable, δ1, serves as the diagonal

elements and the second design variable, δ2, serves as the off-diagonal elements. The

± sign only reiterates the point that the pair of off-diagonal elements have to be of

opposite signs.
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Range determination for design variables

It is known by now that both these design variables are changed through a specified

range and it is important to note what this range is. If G is expanded in equation (3.7)

above, then it can be written as:

At + E = A−BB†(A− At) (3.8)

Now if BB† is denoted as Baug, then:

E = (I −Baug)(A− At) (3.9)

where: I is the identity matrix.

Hence, if (I−Baug) is given the symbol B+, then equation (3.9) can be re-written

as:

E = B+A−B+At (3.10)

Note that both A and B+ are properties of the open-loop system and hence do not

change with every iteration. Now the ideal case of equation (3.10) exists if E = 0.

Therefore if this ideal case is implemented, At can be written as:

At = (B+)−1B+A (3.11)

Since equation (3.11) characterizes the ideal case, it can be seen that the maximum

value any element, or design variable, in At can obtain is:

Atij max
= [min(B+)]−1max(B+A)ij (3.12)

41



This maximum value provides a conservative maximum for the range.

Equation (3.12) specifies the range through which every design variable in At will

span. Hence, every off-diagonal design variable will span from 0 to ± Atij max
, while

every diagonal variable will span from 0 to -Atij max
(since we can only have negative

off-diagonal elements for a TPS matrix). This discussion, however, only covers the

magnitude aspect of every element in At. Another consideration is the sign pattern

of At that is explained below.

Sign Pattern consideration

Since At has to take up a certain sign pattern in order to conform to a TPS

matrix, there are only so many different ways it can be represented. This can be

better visualized with the aid of a sign pattern representation of At. The sign pattern

representations for a 2 x 2 target matrix are shown below:

[
−δ1 −δ2
+δ2 −δ1

] [
−δ1 +δ2
−δ2 −δ1

]
It can be seen that there are two ways to represent any 2 x 2 target matrix.

Therefore it is clear that there is more than one way that a target matrix can be

represented in terms of its sign patterns and so if the order of the system under

consideration is increased, many more sign patterns for the same system can be

visualized. Hence, it is important to pre-determine the number of different sign

patterns associated with any n x n matrix. Let ψ represent the number of off-diagonal

pairs in an n x n matrix. ψ can be calculated through the following equation:

ψ =
n(n− 1)

2
(3.13)
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Since each element in an off-diagonal pair can take one of two signs (+ or -), the

number of sign-patterns, S, that are associated with any n x n matrix is given by:

S = 2ψ (3.14)

Therefore it can be observed that a 2 x 2 target matrix can have S = 2 sign-pattern

considerations while a 4 x 4 target matrix can have as many as S = 64 sign-pattern

considerations!

Thus every sign-pattern associated with any n x n target matrix is considered in

the algorithm before an optimized AT is formed. This is important because every

different sign pattern associated with At might have a different corresponding E and

G (through equation (3.7)) that could eventually lead to a different final robustness

index, µs, in the robustifying phase. Therefore it is vital to make sure that every

sign-pattern is considered in order to guarantee the most robust final closed-loop

system.

It should also be noted that when higher order matrices are under consideration,

the number of off-diagonal predator-prey pairs increase and so the number of design

variables also increase. As a result, the number of permutations and iterations also

increase and this plays a role as a numerical implication which is elaborated on in the

final chapter.

Optimization phase summary

Once equation (3.7) is formulated, the elements of At are used as design variables

that span through a specified range and the corresponding norm of E of every iteration

is stored. Once every iteration has run its course, the minimum of all the stored norms
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of E is found and the corresponding optimized target matrix, AT , along with G are

recorded to be used in the next phase (the Robustifying phase) of the algorithm.

3.2.1.2 Robustifying phase

This phase deals with finding a final gain that results in the most robust closed-

loop system. Recall that the G found in the optimization phase did not compensate

for the pseudo-inverse error, but rather, contained the Epseudo implicitly. Therefore

the task now is to find an additional gain that can be added to G to compensate for

Epsuedo.

The method used is to basically form a pole-placement gain using the eigenvalues

of the optimized target matrix, AT , found in the optimization phase. This gain

shall be referred to as Gpp. Once Gpp is formed, the absolute value of the maximum

magnitude element in this matrix is recorded and shall be referred to as |Gppmax|. The

same process is performed on G and the absolute value of its maximum magnitude

element is recorded and shall be referred to as |Gmax|. |Gppmax| and |Gmax| are finally

added together to form a maximum elemental gain value that shall simply be referred

to as |Gmax|. Hence,

|Gmax| = |Gppmax|+ |Gmax| (3.15)

It is known that the final aim of this control design is to form a closed loop matrix

of the form:

Acl = A−BGf (3.16)
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where Acl is the final most achievable robust closed-loop matrix that can exist for

any (m < n) system. Therefore, in order to find Gf that makes the former statement

possible, it is important to form a finite range of gain matrices within which Gf

actually lies. |Gmax| represents the maximum element that can exist in this gain

space. This is true because it is obvious that AT found in the previous phase is the

most robust closed-loop matrix that can hope to be achieved with any given open-loop

A and B matrix. Therefore by performing a pole-placement gain using the eigenvalues

of AT to form |Gppmax|, adding that to |Gmax| to form |Gmax|, and using |Gmax| to

create a limit for the maximum absolute value of any element that can exist in these

range of gain matrices, the overall gain space within which the final gain exists is

narrowed down to a finite vicinity. In other words, every element in Gf is used as a

design variable spanning from -|Gmax| to +|Gmax| and the corresponding robustness

index, µs, of every Acl formed is stored. Once every element in Gf has spanned over

the specified range, the maximum stored robustness index value is recorded and the

corresponding Gf is used to form the final closed-loop system that serves as the most

achievable robust closed-loop system for any (m < n) open-loop system. Therefore,

the final closed-loop system is given by:

Acl = A−BGf (3.17)

Robustifying phase summary

Equation (3.17) guarantees to contain the maximum achievable robustness index,

µcl, for any (m < n) open-loop system. The robustifying phase is needed to com-

pensate for the pseudo-inverse error, Epseudo. However, it should be noted that the

final closed-loop system, Acl, is not equal to AT because of the existence of ETPS that
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was described at the start. ETPS, unlike Epseudo, just cannot be compensated for due

to the constrained structure of AT and hence the algorithm spits out a closed-loop

system that is as close enough to, but not equal to, AT .

Figure 3.1 below provides an illustrative summary of this algorithm.

Figure 3.1: Flowchart summary of the Robust Control design algorithm
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3.2.2 Eco-inspired robust control algorithm summary

The above algorithm only works for stable open-loop systems and the reason

behind this is described in further detail in a later section. Since a stable system

is being considered, there exists an initial robustness associated with this open-loop.

This initial robustness is referred to as µol and serves as the lower-bound for the

final closed-loop robustness, µcl. Therefore the algorithm guarantees that the final

closed-loop system will have a robustness greater than µol.

At the end of the optimization phase, G is formulated. Letting A - BG denote

an intermediate closed-loop system in the algorithm, Acl, the robustness measure of

this intermediate system is referred to as µ, such that:

µol < µ

The optimization phase also formulates the optimized target matrix, AT , whose

robustness, µT , is basically the magnitude of its diagonal elements. It should be

noted that µT is the desired robustness of the system. However, due to the existence

of ETPS, µcl cannot achieve this desired robustness, and hence µT serves as an upper-

bound to µcl. Therefore,

µol < µ < µcl < µT

Keep in mind that the algorithm discussed above only works for stable open-loop

systems. In fact, for any stable open-loop system, this algorithm guarantees a stable

closed-loop system. A heuristic proof of this statement is detailed as follows.
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3.2.3 Heuristic proof of closed-loop system stability

Since the algorithm described above is used for stable open-loop systems, it is

assumed that A is a stable matrix. Equation (3.7) needs to be revisited again and is

repeated below for the sake of convenience.

At + E = A−BG

Looking at this equation, three distinct cases can be known to exist.

Case i: When E → 0

It is known by now that almost every (m < n) system will always contain an

error. The word almost is emphasized because case iii forms an exception to the

former statement. Therefore it is intuitive that if E were to→ 0, the final closed-loop

system would tend towards the desired optimized target matrix, AT . This can be

summarized as follows:

as E → 0, Acl → AT (3.18)

This forms the ideal case and therefore serves as one extreme limit for this proof.

Case ii: When E 6= 0

This comprises of the normal case that requires the use of the robust control

algorithm. It is because E 6= 0, the closed-loop system cannot exactly mimic the

optimized AT . Therefore,

A 6= AT (3.19)

Case iii: When E doesn’t exist
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This is not a very intuitive case because it was stated throughout this chapter

that every (m < n) system will always contain an error, E . However, what if the A

matrix, for some coincidental reason (that could be attributed to the natural open-

loop dynamics of the system), is of a TPS structure itself. In this case, the open-loop

system matrix, A, is already the most robust it can be. Therefore the optimized

target matrix is the open-loop system itself and so adding any gain to this system

would only serve to decrease its robustness. In fact, if an open-loop TPS matrix

were to be fed to the robust control design algorithm, it would output Acl as A itself.

ETPS, in this case is zero because the open-loop matrix is already of a TPS structure.

Therefore the overall error, E, is equal to only Epseudo. However, because the open-

loop system is the most robust it can be, Epseudo (and hence E), does not even need

to be considered and so it can be be assumed not to exist.

Case iii serves to state the importance and beauty of this research by reiterating

that a TPS matrix is the most robust matrix that can be achieved. It also forms the

other extreme limit for this proof and can be summarized by,

A = Acl = AT (3.20)

Note: This section is only concerned with (m < n) systems, however, a (m=n)

system can also be regarded as an example of case iii. because of the absence of E.

The three cases are summarized in the table below:
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i. E → 0 Acl → AT
ii. E 6= 0 Acl 6= AT

iii. E doesn’t exist Acl = A = AT

Table 3.1: Three cases for stable (m < n) open-loop systems

There is a subtle difference between Cases i. and iii.. Case i. is an ideal case

wherein E exists but somehow is made to be 0. Case iii., on the other hand, does not

require E to even take form because the most robust system that can be achieved is

the open-loop system itself. Therefore case i. can be thought of as the closed-loop

system moving from A to AT while case iii. can be thought of as the closed-loop

system remaining at A itself.

Therefore the three cases prove to show that if an (m < n) open-loop system is

stable, the resulting closed-loop system will also be stable and this can be illustrated

through Figure 3.2 below:
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Figure 3.2: Proof of guaranteed closed-loop system stability

Since case iii. best proves the essence of this research, a mathematical example is

provided below.
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3.2.3.1 Numerical example of Case iii.

In order to prove Case iii., an LQR control design shall be used for comparison.

Consider the following A and B matrices below:

A =

−2 −4 3
4 −2 6
−3 −6 −2

 B =

0.5 −1.6
0.5 5
2.1 4


Notice that the A matrix satisfies a Target Pseudo-Symmetric matrix. Therefore

it has a robustness index equal to that of the magnitude of its diagonal elements.

This open-loop robustness index shall be referred to as µol = 2.

The goal of this example is to show that µol is the maximum robustness index that

this system can achieve. Therefore an LQR controller shall be used for comparison

where the Q and R matrices are chosen as follows:

Q =

1 0 0
0 1 0
0 0 1

 R = ρ ∗
[
1 0
0 1

]
Here, ρ is used as a design variable taking up three values of ascending order:

ρ = [1, 1000, 2000]

Hence the three ρ values chosen result in 3 different LQR gains (G1, G2, G3) that

in turn lead to 3 different closed-loop systems (Acl1, Acl2, Acl3) used for comparison.

When ρ = 1

G1 =

[
0.158 0.027 0.2923
−0.198 0.784 0.3609

]
Acl1 =

−2.396 −2.758 3.431
4.914 −5.937 4.049
−2.537 −9.195 −4.0577
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The robustness measure for this closed-loop system, µ1 = 1.6544.

When ρ = 1000

G2 =

[
0.00012 0.000125 0.00052
−0.0003988 0.00124 0.000997

]
Acl2 =

−2.0007 −3.998 3.001
4.0019 −2.0063 5.9947
−2.9986 −6.0052 −2.0051


The robustness measure for this closed-loop system, µ2 = 1.99967.

When ρ = 2000

G3 = 10−3.

[
0.0625 0.0624 0.2623
−0.1997 0.624 0.4994

]
Acl3 =

−2.0003 −3.999 3.0006
4.0009 −2.0031 5.9973
−2.9993 −6.0026 −2.0025


The robustness measure for this closed-loop system, µ2 = 1.99983.

The table below summarizes and compares the three LQR results to the open-loop:

µol 2
µ1 1.6544
µ2 1.99967
µ3 1.99983

Table 3.2: µ results

In this example, it is observed that µ increases as a function of ρ. There is a

significant increase from µ1 to µ2. However when ρ is increased further, µ seems to

plateau out to a value that is close to but never equal to µol. In addition, notice

that as ρ increases, the corresponding gain tends to zero proving that the open-loop

system itself is the most robust the system can get.
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Therefore it can be inferred that if a system’s open-loop is of a TPS form, it is the

most robust it can be and hence there is no existing gain that could give the system

a µ greater than µol.
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3.2.4 Unstable open-loop systems

Up to this point, only the stable open-loop case has been discussed in regard to

(m < n) systems. The robust control algorithm described in the previous sections

can only be used for the stable open-loop case and the reason behind this shall be

elaborated on in this section.

In chapter 1, it was emphasized that robustness is an innate feature of stability.

Robustness is basically a measure of the tolerance to a perturbation about a stable

state. However, if this stable state did not exist in the first place, then there can be

no notion of robustness associated with it. Therefore an explanation is provided that

uses this relationship between stability and robustness to pinpoint the reason as to

why the robust control algorithm does not work for unstable open-loop systems.

Consider the equation summarizing the optimization phase of the robust control

design which is reiterated below for the sake of convenience.

At + E = A−BG

Recall that during this phase, the individual elements of the At matrix are used

as design variables that span a predetermined range that was originally derived from

Equation (3.10) (repeated below).

E = B+A−B+At

Now the goal of the algorithm was to vary the elements in At through the prede-

termined ranges in order to find a set of elements that corresponded to the minimum

norm of E. The maximum absolute value in this range is given by Equation (3.12).
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Hence every diagonal element in At spanned from 0 to the negative of this maximum

absolute value, Atij max
. In other words, every diagonal element in At could only take

a zero or negative real value.

Now consider the diagonal elements of A. When A was a stable open-loop matrix,

it had to have had at least some negative diagonal elements that made the net value

of all the diagonal elements negative. Therefore during every iteration, the negative

diagonal elements in At were subtracted from the negative elements in A in the

equation above. Therefore it can be seen that this led to a convergence of the error

E. However, if A was an unstable open-loop matrix, the negative diagonal elements

in At would then be subtracted form a net positive value of A’s diagonal elements

and this leads to a divergence of the error.

Recall that it was stated that every (m < n) stable open-loop system contains

an optimized TPS matrix, AT , that is determined by the A and B matrices which is

why the error converges to a minimum value that corresponds to this optimized AT

matrix. However, in the unstable open-loop case, the error does not converge because

there is no optimized AT matrix associated with an unstable open-loop system. This

in turns tracks back to the fact that unstable systems do not contain the concept of

robustness in the first place.

Utilizing the Robust control algorithm for the unstable open-loop case

However, the algorithm can be used in a slightly different way for the unstable

open-loop case. By realizing that the unstable open-loop system does not contain any

concept of robustness, it first needs be pushed into a region of stability. This requires

a certain degree of control effort, Ju. Once it is pushed into a stable region, it can then

be used with the robust control design to create a robust closed-loop system. This
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closed-loop system, however, cannot be claimed to be the most robust system because

it is inherently a function of the stable region it was initially pushed into before the

algorithm was used. For instance if the unstable open-loop was pushed into a highly

stable region, the final robustness associated with it through the algorithm would be

greater, however, the control effort needed to push it into this stable region would

also be greater. Therefore it is obvious that the least control effort required for this

algorithm to work would be to push the unstable open-loop to a marginally stable

region. In this way, the algorithm would produce the maximum robustness to control

effort index, τ = µcl
Ju

.

This concept works, however, the determination of what exact marginal stable

region the unstable open-loop needs to be pushed into in the first place needs to be

researched and hence can be attributed to as future work.
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3.3 Chapter 3 summary

This chapter was mainly concerned with two types of systems: (m=n) and (m < n)

open-loop systems.

It was made clear that a (m=n) open-loop system is able to mimic any desired

TPS target structure as long as its B matrix is invertible. In other words, this type

of system can achieve any desired robustness index, µcl.

The (m < n) open-loop case consisted of two sub-categories: stable and unstable

open-loop systems. The algorithm provides the maximum robustness index, µcl, for

stable open-loop systems. On the other hand, the algorithm provides the maximum

robustness to control effort index, τ , for unstable open-loop systems.

It is important to note that the key feature of the algorithm allowing it to produce

a maximum µcl and τ is the Target Pseudo-Symmetric matrix. It is because the

algorithm pushes the closed-loop system as close as possible to an optimized TPS

structure is why µcl and τ are maximized. Also, the importance of the ecological

principles discussed in chapters 1 and 2 that led to the determination of a TPS

structure can now be realized, reiterating the beauty of this research.

Illustrative examples of the (m < n) cases for stable open-loop systems using the

algorithm are provided in Chapter 4. The results from these examples are compared

to another existing robust control technique, (The LQR controller), in order to prove

that the eco-inspired robust control algorithm produces the maximized robustness

results.
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CHAPTER 4

ECO-INSPIRED ROBUST CONTROL DESIGN
EXAMPLES

The examples given below illustrate the use of the eco-inspired algorithm and

therefore only (m < n) systems are considered. It is known that the (m=n) case

can achieve any desirable TPS matrix and therefore does not require the use of the

algorithm.

4.1 Aircraft flight control:

The 2 x 2 open-loop system below contains the short period mode dynamics of an

aircraft [14]. The pair A, B is controllable and the systems state and input dynamics

are given in the A and B matrices below:

A =

[
−0.334 1
−2.52 −0.387

]
B =

[
−0.027
−2.6

]
Since a 2 x 2 system is under consideration, the number of off-diagonal pairs are:

ψ =
n(n− 1)

2
= 1

and so,

59



S = 2ψ = 2.

Hence, 2 sign patterns exist for a 2 x 2 system and the algorithm chooses the sign

pattern that corresponds to the minimum error, E. The two sign patterns are given

below.

At1 =

[
−δ1 δ2
−δ2 −δ1

]
At2 =

[
−δ1 −δ2
δ2 −δ1

]
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Open-loop eigenvalues: -0.3605 ± 1.5872j

µop: 0.227

Optimized elemental values: δ1 = 1.25, δ2 = 1

Optimized sign pattern: At1

Optimized Target Matrix, AT :

[
−1.25 1
−1 −1.25

]
AT eigenvalues: -1.25 ± 1.00j

µT : 1.25

G: [0.5809 -0.3319]

Acl:

[
−0.3183 0.991
−1.0097 −1.2499

]
Acl eigenvalues: -0.7841 ± 0.8852j

α: 0.7841

κ: 1.6563

µ: 0.4734

Table 4.1: Optimization phase results
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Gf : [-0.967 -1.0477]

Acl:

[
−0.3601 0.9718
−5.0317 −3.1067

]
Closed-loop eigenvalues: -1.7355 ± 1.73261j

αcl: 1.7355

κcl: 3.15

µcl: 0.55095

Table 4.2: Robustifying phase results

From the two tables above, it can be seen that:

µol < µ < µcl < µT

If Acl and AT are compared, the two matrices are very different from one another.

However, in order to show that the Acl derived with this eco-inspired algorithm pro-

vides the best achievable robustness index, it is compared to another existing con-

troller - LQR.
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LQR controller comparison:

In order to compare two different controllers, a common basis must be stated. One

common basis that can be used for this comparison is the stability degree (1.7355) of

the closed-loop system.

Since this is a single input system, the Q and R matrices are given by,

Q =

[
1 0
0 1

]
R = ρ ∗

[
1
]

where: ρ is a design variable that is used to give the overall system the same

stability degree as Acl above.

The results using the LQR technique are given in the table below:

ρ∗: 0.7789

GLQR: [-0.2219 -1.0554]

Acl:

[
−0.3400 0.9715
−3.0968 −3.1309

]
Closed-loop eigenvalues: -1.7355 ± 1.0302j

αLQR: 1.7355

κLQR: 3.6773

µLQR: 0.4720

Table 4.3: LQR results
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Referring to the robustness index of the closed-loop via the eco-design controller

as µeco,

µLQR < µeco.

Another example of a marginally stable open-loop system is considered next and

shall be compared to the LQR controller again in order to prove that the Eco-design

robust design is the most robust controller to parametric variations.
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4.2 Satellite Attitude Control:

The example below is adapted from [13]. It portrays the linear range dynamics

of an axisymmetric satellite. The A and B matrices are given as:

A =

 0 −0.7199 0
1.1479 0 0

0 0 0

 B =

1
2
3


Since a 3 x 3 system is under consideration, the number of off-diagonal pairs are:

ψ =
n(n− 1)

2
= 3

and so,

S = 2ψ = 8.

Therefore 8 sign patterns exist for a 3 x 3 system and the algorithm chooses the

sign pattern that corresponds to the minimum error, E. The eight sign patterns are

given below.

At1 =

−δ1 δ2 δ3
−δ2 −δ1 δ4
−δ3 −δ4 −δ1

 At2 =

−δ1 −δ2 δ3
δ2 −δ1 δ4
−δ3 −δ4 −δ1

 At3 =

−δ1 δ2 −δ3
−δ2 −δ1 δ4
δ3 −δ4 −δ1



At4 =

−δ1 δ2 δ3
−δ2 −δ1 −δ4
−δ3 δ4 −δ1

 At5 =

−δ1 −δ2 −δ3δ2 −δ1 −δ4
δ3 δ4 −δ1

 At6 =

−δ1 δ2 −δ3
−δ2 −δ1 −δ4
δ3 δ4 −δ1



At7 =

−δ1 −δ2 δ3
δ2 −δ1 −δ4
−δ3 δ4 −δ1

 At8 =

−δ1 −δ2 −δ3δ2 −δ1 δ4
δ3 −δ4 −δ1
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Open-loop eigenvalues: 0, 0 ± 0.9091j

µop: 0

Optimized elemental values: δ1 = 0.39, δ2 = 0.9, δ3 = 0.1, δ4 = 0.1

Optimized sign pattern: At2

Optimized Target Matrix, AT :

−0.39 −0.9 0.1
0.9 −0.39 0.1
−0.1 −0.1 −0.39


AT eigenvalues: -0.39, -0.39 ± 0.911j

µT : 0.39

G: [0.0847 0.09 0.0621]

Acl:

−0.0847 −0.8099 −0.0621
0.9785 −0.18 −0.1243
−0.2541 −0.27 −0.1864


Acl eigenvalues: -0.2033, -0.1239 ± 0.8614j

α: 0.1239

κ: 1.801

µ: 0.0688

Table 4.4: Optimization phase results
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Gf : [-0.1568 0.3332 0.1632]

Acl:

0.1568 −1.0531 −0.1632
1.4614 −0.6665 −0.3265
0.4703 −0.9997 −0.4897


Closed-loop eigenvalues: -0.3337, -0.3328 ± 1.0496j

αcl: 0.3328

κcl: 3.4145

µcl: 0.0975

Table 4.5: Robustifying phase results

From the two tables above, it can be seen that:

µol < µ < µcl < µT

Again, in order to emphasize the importance of this eco-inspired algorithm, an

LQR comparison shall be made.

LQR controller comparison:

Once again the stability degree (0.3328) of the closed-loop system serves as the

common basis for the comparison.

Since this is a single input system, the Q and R matrices are given by,

Q =

1 0 0
0 1 0
0 0 1

 R = ρ ∗
[
1
]
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where: ρ is a design variable that is used to give the overall system the same

stability degree as Acl above.

The results using the LQR technique are given in the table below:

ρ∗: 8.9

GLQR: [-0.1312 0.4148 0.3352]

Acl:

0.1312 −1.1347 −0.3352
1.4104 −0.8295 −0.6704
0.3937 −1.2443 −1.0056


Closed-loop eigenvalues: -1.0383, -0.3328 ± 0.8304j

αLQR: 0.3328

κLQR: 5.1041

µLQR: 0.0652

Table 4.6: LQR results

Once again, referring to the robustness index of the closed-loop through the eco-

design controller as µeco,

µLQR < µeco.

It can be observed again that the LQR technique produces a lower robustness

index value than that of the eco-inspired algorithm. This exemplifies the importance

of the ecological and structural properties of the eco-design controller that make it a

very robust controller to parametric variations.
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CHAPTER 5

NUMERICAL IMPLICATIONS, CONCLUSIONS AND
FUTURE WORK

5.1 Numerical Implications

The algorithm discussed in the previous chapter dealt with the iterations of design

variables that spanned specific ranges. The optimization phase dealt with the ranges

through which the design variables of the At matrix spanned while the robustifying

phase dealt with the ranges across which the final gain matrix Gf elements spanned.

This was made clear in the previous chapter. However, it was not discussed as to

what elemental step-sizing each range consisted of. It makes intuitive sense that the

smaller the step-sizing, the better the results. The tradeoff that exists is that if the

step-sizing is made smaller, the results also take longer to converge. This issue is

called Parametric gridding and it plays a vital role in achieving the correct results.

In order to better understand the concept of Parametric gridding, the aircraft control

example from the previous is repeated below.
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5.1.1 Numerical implication on Aircraft control example

The A and B matrices are repeated below for convenience.

A =

[
−0.334 1
−2.52 −0.387

]
B =

[
−0.027
−2.6

]
Again, the design target matrix can take one of the following two forms:

At1 =

[
−δ1 δ2
−δ2 −δ1

]
At2 =

[
−δ1 −δ2
δ2 −δ1

]
Recall from Equation 3.12, that every off-diagonal design variable spans the fol-

lowing range,

δ2 = [− [min(B+)]−1max(B+A)ij : + [min(B+)]−1max(B+A)ij]

Every diagonal design variable only spans one-half of this range since the diagonal

elements in a TPS matrix can only be negative. Thus,

δ1 = [0 : + [min(B+)]−1max(B+A)ij]

However, what was not discussed in the previous chapter was each design param-

eter’s step-sizing. In order to better illustrate this concept, it shall be talked on a

macro-level.

In the previous chapter, a 0.01 step-sizing was used for both ranges in the opti-

mization and robustifying phases. Therefore an AT matrix was obtained that was

accurate to 2 decimal places. However, if a 0.1 step-size was used, the resulting AT

matrix would only be accurate to one decimal place. By denoting the step-size by
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∆δ, the results of the corresponding AT and final µcl values from the two step-sizings

are compared in the table below:

∆δ = 0.1 ∆δ = 0.01

AT =

[
−1.2 1
−1 −1.2

]
AT =

[
−1.25 1
−1 −1.25

]
µcl = 0.5507 µcl = 0.551

Table 5.1: Effect of parametric gridding on resolution of results

It seems that the final closed-loop robustness index results does not vary by much

with the change in step-sizing. However, keep in mind that this example only considers

a 2 x 2 system and so the results get even more skewed as higher order systems are

considered. This example only serves to show the difference that can occur on a

macro-level. One might ask as to why not have a very small step-sizing fixed from

the start itself. This is because the computation time is increased because the number

of iterations are greatly increased and therefore the final result takes a lot longer to

converge.

5.2 Conclusions and Future work

The eco-inspired robust control design adapts certain ideas and principles from

ecology and applies them to matrix theory that can in turn be applied to engineering

systems. The fascinating feature of this research is the manner in which it exemplifies
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the manner in which different ideas from different disciplines can work together to

produce a unique design.

The eco-inspired control design guarantees any desirable robust matrix for (m=n)

systems. In addition, it guarantees the maximum robustness index of stable open-

loop (m < n) systems. On the other hand, for unstable open-loop (m < n) systems,

it guarantees the maximum robustness index to control effort index. However further

research needs to be performed in order to determine what marginally stable region

the unstable open-loop needs to be pushed into in a manner that is justifiable so that

the eco-inspired control design can be implemented.

Lastly, the main goal of this research is to revive the enthusiasm in the field of

controls toward eco-inspired design techniques. It was stated earlier that robustness,

like stability, is a very important feature in any control design and it is important

that significant progress be made toward this design specification in the future.
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