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Abstract

In this dissertation I study three topics in Industrial Organization. In the first chapter

I characterize a set of subgame perfect Nash equilibria in the alternating-offers bargaining

game with one-sided outside option and differentiated depreciation rates. I use this set

of equilibria to solve the hold-up problem. In particular, I argue that specific investment

imposes a cost on the investor’s partner, because specific investment lowers the likelihood

that the investor’s partner extracts an additional payoff above her outside option in the

set of equilibria which we characterize. If for the investor’s partner the expected marginal

cost of specific investment is equal to the expected marginal benefit, then there is no ex

ante under-investment and the hold-up problem is completely resolved.

In the second chapter I study seller behavior using data from eBay auctions of used

tractors. I relax the standard assumption that sellers know the distribution functions of

items’ valuations and find that uninformed and patient sellers use secret reserve prices to

run unsuccessful eBay auctions to learn parameters of these unknown distribution func-

tions. I find that secret reserve prices have strong positive effect on sale prices. I provide a

novel theoretical justification for the use of secret reserve prices and show that eBay serves

not only as a selling platform but also as an affordable value-appraising mechanism for

items whose valuation is not easily available or is costly to obtain.

In the third chapter I study a model of quality sorting between electronic and physical

platforms. In the model a seller can auction an item with both opaque and transparent

quality attributes in either platform. Bidders can observe perfectly the quality of both the

transparent and the opaque attribute in a physical platform. In an electronic platform bid-

ders can observe perfectly only the quality of the transparent attribute but not the opaque
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attribute. I use Spence’s signaling model (1973) to derive seller’s equilibrium listing strat-

egy. I find that conditional on the quality of the transparent attribute, the quality of the

opaque attribute in a physical platform is always no worse than the quality of the opaque

attribute in an lectronic platform. I also find that when items on sale have both transpar-

ent and opaque attributes, it is impossible to compare the item’s overall quality in both

platforms without restricting bidders’ beliefs about the quality of the opaque attribute in

an electronic platform or without introducing an additional structure into the model. The

main conclusion is that it is not always true that the overall quality of items in an electronic

platform is necessarily lower than the overall quality of items in a physical platform.
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Chapter 1

Optimal Specific Investment

Incomplete contract theory admits that contracts either cannot specify all contingencies

or that some observable actions are not verifiable by a third party. Consequently, after a

contract is signed and uncertainty is realized, contracting parties may renegotiate the con-

tract conditions given their ex post bargaining power. An investor signing an incomplete

contract anticipates this ex post renegotiation and makes an individually optimal choice of

investment ex ante. In other words, the investor ignores the benefit of her partner(s) and

under-invests from the socially optimal point of view. This problem is commonly known

as the hold-up problem1. The problem of under-investment or the hold-up problem is

particularly strong in incomplete contracts with relationship-specific (hereafter, specific)

investment. As opposed to relationships with generic investment, in a relationship with

specific investment the value of investment is partially or completely lost if the relation-

ship is terminated. As a result, an investor has particularly strong incentives to ignore the

benefit of her partners, given that she cannot recoup her investment if the relationship is

terminated ex post.

In this chapter we propose a solution to the hold-up problem. We argue that specific in-

vestment increases the likelihood of a lower negotiation payoff obtained by the investor’s

partner. If for the investor’s partner the expected cost associated with the increase in the

1The hold-up problem is similar in nature to the problem of under-provision of a public good. In the
context of the hold-up problem, all parties benefit from a specific investment, but only the investor bears
the associated costs. The investor maximizes his own benefit without regard for his partners and under-
invests from the social point of view. The investor is reluctuant to take into account the benefit of his partners,
because he is afraid that his partners may renegotiate trade terms after the investor makes the individually
supra-optimal investment.
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likelihood of a lower negotiation payoff is equal to the expected benefit from specific in-

vestment, then the investor’s choice of specific investment is first-best optimal, and the

hold-up problem is completely resolved.

The resolution of the hold-up problem in our model depends on two key elements:

the presence of an additional payoff above the outside option of the investor’s partner,

which the investor’s partner can lose as a result of increase in specific investment, and the

effect of specific investment on the distribution of negotiation outcomes. In our model the

investor’s partner can obtain a payoff above her outside option, because her outside option

(which represents an alternative tradable good produced with generic investment) has a

lower depreciation rate than the tradable good with specific investment in the relationship.

Since specific investment raises the value of the tradable good in the relationship but has

no effect on the distribution of the generically produced outside option, with an increase

in specific investment the investor’s partner is less likely to use her outside option as a

credible threat in the negotiation process and is less likely to extract an additional payoff

above her outside option. The size and the presence of this additional payoff depends on

the depreciation rates on the tradable good in the relationship and the outside option.

As opposed to other approaches to the hold-up problem, we do not rely on any con-

tractual or third-party enforcement mechanisms. Moreover, the resolution of the hold-up

problem in our approach is not driven by the investor’s incentive to invest but rather by

the expected cost of specific investment imposed on the investor’s partner. Depending

on parameter values it is possible that the investor’s choice of investment results in over-

investment or under-investment, if the expected marginal cost imposed on the investor’s

partner either exceeds or falls below the expected marginal benefit from specific invest-

ment.

Coase (1937) is one of the first to discuss the hold-up problem in the context of firm

boundaries. In particular, the hold-up problem has been considered a key justification

for vertical integration. Grout (1984) offers a formal treatment of the hold-up problem in
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the context of incomplete contracts and finds that the investor necessarily under-invests.

Grossman and Hart (1986) and Hart and Moore (1988) offer another formalization of the

hold-up problem and arrive at a similar conclusion: if specific investment is super-modular

and contracts are incomplete, then the investor under-invests. Grossman and Hart (1986)

also suggest a solution to the hold-up problem, in which a party undertaking specific in-

vestment owns the means of production. In their setup the hold-up problem is resolved

because the investing party gains residual control rights, appropriates the full surplus from

his actions, and necessarily undertakes the first-best level of specific investment. Sloof,

Sonnemans, and Oosterbeek (2004) propose a similar solution, where the investor’s part-

ner is exogenously provided a binding non-random outside option. As a result, the in-

vestor becomes a residual claimant with sufficient incentives to invest optimally.

A number of other solutions to the hold-up problem have been suggested as well, how-

ever all of them employ some form of contractual solutions, third-party enforcement of

contract terms, or breach remedies. For example, Aghion, Dewatripont, and Rey (1994)

propose a solution where trade partners are offered a renegotiable contract specifying a

"financial hostage" for the buyer and a breach remedy for the seller. Nöldeke and Schmidt

(1995) employ an option contract involving a third-party verifiability of the delivery deci-

sion, while Edlin and Reichelstein (1996) introduce a contract specifying breach remedies

or expectation damages contingent on specific performance.

Several recent studies employ dynamic solutions to the hold-up problem. Che and

Sákovics (2004) find that the allocation of bargaining rights loses its importance in a dy-

namic setting. If agents are willing to participate in a relationship and they are sufficiently

patient, the investment dynamics alone are sufficient to induce optimal specific invest-

ment. However, this result holds only in the infinite-time setting. In the finite-time setting,

the investing party under-invests. Guriev and Kvasov (2005) propose a solution to the

hold-up problem in the finite-time setting. The authors employ a modification of the Nash

folk theorem for finitely repeated games and find that a fixed-term contract of a sufficient
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length can induce the investor to undertake the first-best optimal specific investment.

The major drawback of the existing approaches to the hold-up problem is that they rely

on contractual solutions, third parties, or continuous investing. Practically, such solutions

are at odds with the original assumption that the complexity of the economic environment

is what gives rise to incomplete contracts. In this respect our approach is different, because

we do not rely on any complex mechanisms. We employ a simple complete information

bilateral trading model with static one-sided investment and no verifiability. The parties in

our model split the trade surplus according to Rubinstein’s alternating-offers bargaining

game with one-sided outside option. As a result, in our solution there is no internal incon-

sistency between assumptions underlying the problem and the solution to the problem.

In the next section we discuss empirical evidence on the hold-up problem. In section

1.2 we formalize our model and characterize all equilibria in the bargaining game used

in the chapter. In section 1.3 we characterize the first-best level of specific investment. In

section 1.4 we define the equilibrium level of specific investment. In section 1.5 we intro-

duce conditions under which the equilibrium specific investment is equal to the first-best

specific investment and provide a specific example of the investment game with uniformly

distributed outside option. In section 1.6 we discuss results and present testable hypothe-

ses arising from our model. In the last section we conclude.

1.1 Empirical Evidence

The major conclusion from the literature is that the hold-up problem may be one of the

main reasons for vertical integration (see, for example, Williamson (1985)). A number of

empirical works find that the presence of specific investment indeed increases the likeli-

hood of vertical integration (see Lafontaine and Slade (2007) for an overview). However,

there are many examples of contractual relationships with specific assets and no vertical
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integration. The most closely studied example of a relationship involving specific invest-

ment and independent ownership is the Japanese auto industry. As opposed to North

American car manufacturers, Japanese auto-makers rely on supplies produced by inde-

pendently owned manufacturers (see Aoki (1990) for more details). Although there is a

high potential for Japanese inputs suppliers to under-invest out of fear of hold-up, the

duration and stability of relationships between Japanese manufactures and their inputs

suppliers suggests optimality of investment.

Another example of a non-integrated relationship with specific investment is airline

alliances. For example, Star Alliance currently includes 27 major airline companies which

share each other’s networks and provide ticketing and other services to customers from

other members of the alliance. We can expect that because of the hold-up problem mem-

bers of Star Alliance should under-invest in the jointly used facilities and services, which

eventually should lead to the dissolution of the alliance or to mergers under a single own-

ership. Nevertheless, we observe neither the dissolution nor mergers among members of

the alliance. Moreover, the number of participating non-integrated members in the alliance

has been increasing ever since its inception in 1997.

Holmström and Roberts (1998) report that electronics and software industries can serve

as another case of relationships with specific investment where joint ownership is rela-

tively rare. For example, the current relationship between Foxconn International Holdings

Ltd., a Taiwanese manufacturer of iPads and iPhones, and Apple Inc. is illustrative of a

relationship with highly specific investment and independent ownership. In fact, Foxconn

produces parts for almost all major high-tech firms such as Microsoft, Dell, Cisco, Nokia,

Sony-Ericsson etc.

To put our discussion in a well-known context, let’s consider the famous GM-Fisher

Body example of the hold-up problem. Klein, Crawford and Alchian (1978) and Klein

(2000) report that in 1919 GM signed a 10-year contract with Fisher Body, then the largest
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producer of wood-based closed car bodies2. Since Fisher Body had to make extensive in-

vestment in car body dies and presses specifically for GM’s cars and these dies and presses

were nearly worthless outside the relationship, the GM-Fisher Body relationship involved

specific investment. The pricing of car bodies was based on the cost-plus formula with GM

completely covering Fisher’s production costs in addition to paying a 17.6% upcharge pay-

ment. The GM-Fisher relationship worked well from 1919 to 1924; however, because the

demand for cars with closed bodies unexpectedly rose in the early 1920’s, GM demanded

to revise the contract and increase the production of closed car bodies by Fisher Body.

The Fisher brothers, the owners of Fisher Body, raised production but were able to retain

the old pricing scheme and obtain "greater than competitive costs and prices...to earn a

greater than competitive return on capital."3 Thus, the Fisher brothers were able to get a

higher share of the total surplus by keeping the 17.6% upcharge payment in addition to

lowering the production costs through economies of scale. Klein (2000) claims that Fisher

Body refused to construct a new body plant close to GM’s production facility. As a result,

in 1925 GM acquired the remaining 40% of Fisher Body’s shares and vertically integrated

the producer of car bodies.

The opinions of researchers diverge on the reason why GM acquired Fisher Body.

While Klein (2000) claims that the refusal to locate Fisher’s plant close to GM’s manufactur-

ing facility was an instance of a hold-up, and GM acquired the Fisher Body to remove such

issues in the future, Coase (2000), Freeland (2000), and Casadesus-Masanell and Spulber

(2000) agree that the acquisition of the Fisher Body by GM took place to retain the Fisher

brothers in GM and prevent their departure to GM’s competitors such as Ford.

Although the actual reason for integration between GM and Fisher Body is not so im-

portant, other details of the account of the GM-Fisher Body relationship can highlight

2According to Casadesus-Masanell and Spulber (2000) and Freeland (2000), Fisher Body was the major
producer of wood-based composite closed car bodies and supplied closed car bodies to all major car producers
including GM and Ford. Other closed car body producers relied on a different technology which involved all-
metal car body production.

3Klein (2000), pg. 115.
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the mechanism proposed in this chapter. The example of the GM-Fisher Body relation-

ship shows that by undertaking investment in GM-specific production facilities, the Fisher

brothers lowered the anticipated ability of GM to credibly use the termination threat in

the negotiation process, as it would be harder for GM to find an alternative trade partner

with a similar production technology in case of a departure from Fisher Body. In addition,

after undertaking specific investment, the Fisher brothers were able to negotiate a larger

share of the trade surplus with GM: the Fisher brothers managed to retain the cost-plus

pricing formula intact after the original contract was renegotiated. Hence, the GM-Fisher

Body case shows that GM in fact experienced a loss as a result of Fisher Body’s specific

investment.

Moreover, it is unlikely that Fisher Body under-invested in GM-specific production fa-

cilities given that exactly this sort of investment weakened GM’s bargaining power and al-

lowed the Fisher brothers to negotiate better trade terms with GM. According to Casadesus-

Masanell and Spulber (2000), over the years when Fisher Body cooperated with GM as an

independent contractor, Fisher Body’s annual output rose more than 3 fold from 134,767

closed car bodies in 1919 to 574,979 in 1924. Thus, factually there is no evidence of under-

investment in the GM-Fisher case, and the account of the GM-Fisher Body relationship

tells that Fisher Body probably over-invested in GM-specific facilities. For example, White

reports that GM was the last US car manufacturer to switch from the wood-based compos-

ite body production (the specialization of Fisher Body) to a more technologically advanced

all-metal car body production, and that GM continued to rely on the wood-based technol-

ogy until 19374.

The account of the GM-Fisher Body relationship shows little evidence of the hold-up

problem, and GM’s decision to acquire Fisher Body could have been induced by reasons

other than the need to eliminate under-investment. In the rest of the chapter we attempt

4In Casadesus-Masanell and Spulber (2000), p. 85.
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to explain the salient features of the GM-Fisher Body story such as the ability of the Fisher

brothers to negotiate better trade terms and show how this ability could have resolved the

hold-up problem.

1.2 Model

In this section we study a static bilateral trading model of specific investment. Two risk-

neutral contracting parties (a buyer and a seller) engage in trade over a good whose pro-

duction involves specific investment. At date t = 0 the seller makes specific investment σ,

σ 2 [0, Σ], at cost c(σ), where c0(σ) > 0. The seller’s specific investment σ lowers the cost

of production of the tradable good s(σ), s0(σ) < 0, and raises the buyer’s valuation of the

tradable good b(σ), b0(σ) > 0.

In the model, the uncertainty is realized in the form of the arrival of the outside op-

tion. Since investment σ is relationship-specific and the seller’s tradable good has no value

outside the relationship, the seller’s outside option is always equal to zero. The buyer’s

outside option is a random variable V with cdf FV(.), support [0, V], and a realized value

v. The buyer’s outside option represents the buyer’s valuation of an alternative tradable

good produced with a generic investment.

The buyer’s outside option arrives only once after the seller makes specific investment

and stays available to the buyer during the course of the whole relationship. Since invest-

ment σ is relationship-specific, investment σ does not impact the distribution function of

the buyer’s outside option FV(.).

After the uncertainty is resolved and the outside option has arrived, the seller and the

buyer negotiate over the division of the trade surplus w(σ) = b(σ)� s(σ). The negotiation

process is costly to the buyer and to the seller. With each round of negotiation the trade

surplus in the relationship w(σ) depreciates at rate δ1 and the buyer’s realized outside

option v depreciates at rate δ2. If the seller and the buyer agree on the division of the trade

8



surplus in the negotiation stage, the seller produces the tradable good of quantity q = 1

at cost s(σ) in addition to facing the cost of specific investment c(σ), sells the good to the

buyer, and splits the trade surplus with the buyer according to the negotiated division. If

the negotiation process breaks down, then the seller faces the cost of specific investment

c(σ) and does not produce the tradable good (q = 0), the buyer takes the realized outside

option v without any penalty, while the seller does not receive any compensation or breach

remedy from the buyer or from any outside party. Hence, whether the trade occurs or

not, the seller always covers the cost of specific investment c(σ). The hold-up problem

occurs, because the seller under-invests ex ante anticipating the loss in her share of the

trade surplus due to arrival of a competitive outside option to the buyer. The timing of the

model is presented in Figure 1.1.

Figure 1.1. Timing of the Model

Since specific investment σ directly raises the buyer’s valuation of the tradable good

b(σ) in addition to lowering the seller’s cost of production of the tradable good s(σ), in the

terminology of Che and Hausch (1999) specific investment σ is a "cooperative investment."

Since our model does not rely on any contractual elements or the verifiability of any

parameters of interest, we assume that the realized outside option v, the quantity of the
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tradable good q, the seller’s cost of the tradeable good s(σ), the buyer’s valuation of the

tradeable good b(σ), the level of specific investment σ, and the cost of specific investment

c(σ) are all observable but not verifiable.

1.2.1 Payoffs

The seller’s and the buyer’s payoffs should satisfy the parties’ participation constraints.

In particular, to engage in the production of the tradable good, the payment to the seller’s

should at least cover the seller’s cost of production of the tradable good. Similarly, for the

buyer to participate in the relationship, the payment from the buyer should not exceed the

buyer’s valuation of the tradable good.

Let a be the seller’s share of the trade surplus w(σ). Then the total payment to the seller

is s(σ) + a, and this payment should satisfy the seller’s participation constraint of s(σ) +

a � s(σ) or a � 0. Given the payment to the seller of s(σ) + a, the buyer’s participation

constraint requires that s(σ) + a � b(σ) or a � w(σ). With these constraints in place, we

conclude that the seller’s share of the trade surplus is a 2 [0, w(σ)].

If a = w(σ), the seller appropriates the whole trade surplus and the buyer obtains none

of it. Consequently, the seller’s payoff in the relationship is US = �c(σ) + [(s(σ) + a)�

s(σ)]q = �c(σ) + w(σ), while the buyer’s payoff is UB = [b(σ)� (s(σ) + a)]q = 0.

If a = 0, then the buyer appropriates the whole trade surplus while the seller gets none

of it. As a result, the seller’s payoff from the relationship is US = �c(σ) + [(s(σ) + a)�

s(σ)]q =�c(σ) and the buyer’s payoff from the relationship is UB = [b(σ)� (s(σ)+ a)]q =

w(σ).

If a 2 (0, w(σ)), then the seller’s payoff is US = �c(σ)+ [(s(σ)+ a)� s(σ)]q =�c(σ)+

a and the buyer’s payoff is UB = [b(σ)� (s(σ) + a)]q = w(σ)� a.

The joint payoff of both the seller and the buyer is Uw = US+UB and it is always equal

to Uw = �c(σ) + w(σ).
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1.2.2 Negotiation

After the seller makes specific investment σ at time t = 0, the seller and the buyer negoti-

ate over the division (a, w(σ)� a), a 2 [0, w(σ)], where a is the outcome of the negotiation

process. To be specific about the negotiation process and to capture the asymmetry in

parties’ outside options due to investment specificity, we employ Rubinstein’s alternat-

ing offers bargaining game with a one-sided outside option (see Osborne and Rubinstein

(1990) and Binmore et. al. (1989)).

The game proceeds as follows. After the seller makes investment σ, the buyer and

the seller learn the realization of the buyer’s outside option v. After learning v, in period

t = 1 the seller proposes a division (a1, w(σ) � a1) to the buyer, where a1 is the seller’s

share of the trade surplus and w(σ) � a1 is the buyer’s share of the trade surplus5. The

buyer can either take the outside option v, accept the seller’s offer, or reject the offer and

continue negotiating. If the buyer takes v, the seller gets nothing, and the game ends. If

the buyer accepts the division (a1, w(σ)� a1), the seller produces the tradable good, sells

it to the buyer, splits the trade surplus according to the negotiated division and the game

ends. If the buyer rejects the division (a1, w(σ)� a1), the game moves to period t = 2, the

value of trade surplus w(σ) depreciates by a factor of δ1, the value of the outside option v

depreciates by a factor of δ2, and the buyer proposes the division (a2, δ1w(σ)� a2) to the

seller where a2 is the seller’s share of the trade surplus and δ1w(σ)� a2 is the buyer’s share

of the trade surplus.

In period t = 2 the seller can either accept the buyer’s offer of (a2, δ1w(σ)� a2) or reject

it. If the seller accepts the division (a2, δ1w(σ)� a2), the seller produces the tradable good

and sells it to the buyer, the parties receive payoffs according to the negotiated division,

and the game ends. If the seller rejects the division (a2, δ1w(σ)� a2), the game moves to

period t = 3, which is strategically identical to period t = 1, where the seller acts as a

5For the simplicity of the resulting equations and the ease of exposition we assume that the seller is the first
to propose a division. All results hold for the case where the buyer is the first to propose.
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proposer. The game continues until either any player accepts an offered division or the

buyer takes the outside option. Figure 1.2 depicts the negotiation process.

It is important to emphasize three crucial elements of this negotiation process. First,

only the buyer can unilaterally terminate the negotiation process by taking an outside

option. The seller never unilaterally terminates the negotiation process, because, due to

investment specificity, the seller’s outside option always equals zero. Second, the negotia-

tion process is costly, and the cost of the negotiation is equal to the depreciation rate δ1 on

the trade surplus and the depreciation rate δ2 on the outside option per each negotiation

period. Third, we assume a differentiated cost of negotiation in the model: the depreci-

ation rate on the trade surplus δ1 in general is not equal to the depreciation rate on the

outside option δ2. The distinction between the depreciation rates is necessary to capture

the idea that the tradable good with specific investment (or technology) depreciates more

than the same good produced with a generic investment (or technology), because a good

with specific investment becomes obsolete at a faster rate than its alternative produced

with generic investment. Alternatively, the lower depreciation rate on the buyer’s outside

option may reflect the existence of a market for used or outdated alternative goods pro-

duced with generic technology and the absence of such a market for the good produced

with specific investment.
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Figure 1.2. Negotiation Process

In the next proposition, we present equilibrium outcomes of the alternating offers bar-

gaining game with the buyer’s realized outside option v. Following Rubinstein (1982), we

use the concept of Subgame Perfect Nash Equilibrium (SPNE) to derive the equilibrium

outcomes.

Proposition 1.1. Let the negotiation process be defined as above, where v 2 [0, V] is the

realization of the outside option, δ1 2 (0, 1) is the depreciation rate on the trade surplus, δ2 2 (0, 1)

is the depreciation rate on the outside option, δ1 =
1
2 �

q
1
4 �

(1�δ2)v
w(σ)�v and δ1 =

1
2 +

q
1
4 �

(1�δ2)v
w(σ)�v

are cutoff values on δ1, and δ2 = [1� δ1(1� δ1)(
w(σ)

v � 1)] is the cutoff value on δ2. Let x =

(x1, x2) be the division proposed by the seller, where x1 is the seller’s share of the trade surplus in

the seller’s proposal, and let y = (y1, y2) be the division proposed by the buyer, where y1 is the

seller’s share of the trade surplus in the buyer’s proposal.

1. If v 2 (0, δ1w(σ)
1+δ1

), δ1 2 (0, 1) and δ2 2 (0, 1), then the seller’s unique SPNE strategy is
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to offer a division x = (w(σ)
1+δ1

, δ1w(σ)
1+δ1

) and to accept any division y with y1 � δ1w(σ)
1+δ1

. The buyer’s

unique SPNE strategy is to offer a division y = ( δ1w(σ)
1+δ1

, w(σ)
1+δ1

), to accept any division x with

x2 � δ1w(σ)
1+δ1

, and never take outside option v. The unique SPNE outcome is that q = 1 and the

seller’s offer x = (w(σ)
1+δ1

, δ1w(σ)
1+δ1

) is accepted in the first period.

2a. If v 2 ( δ1w(σ)
1+δ1

, w(σ)), δ1 2 (0, 1), and δ2 2 (0, δ2), and if v 2 ( (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
, w(σ)),

δ1 2 (0, 1), and δ2 2 (δ2, 1) then the seller’s unique SPNE startegy is to offer a division x =

(w(σ)� v, v) and to accept any division y with y1 � δ1(w(σ)� v). The buyer’s unique SPNE

strategy is to offer a division y = (δ1(w(σ)� v), w(σ)� δ1(w(σ)� v)), to accept any division x

with x2 � v, and take outside option v if x2 < v. The unique SPNE outcome is that q = 1 and the

seller’s offer x = (w(σ)� v, v) is accepted in the first period.

2b. If v 2 ( δ1w(σ)
1+δ1

, (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
), δ1 2 (δ1, δ1), and δ2 2 (δ2, 1), then the seller’s unique

SPNE startegy is to offer a division x = (w(σ)�v
1+δ1

+ v(1�δ2)

1�δ2
1

, δ1(w(σ)�v)
1+δ1

+ v(δ2�δ2
1)

1�δ2
1
) and to accept

any division y with y1 � δ1(w(σ)�v)
1+δ1

+ δ1v(1�δ2)

1�δ2
1

. The buyer’s unique SPNE strategy is to offer

a division y = ( δ1(w(σ)�v)
1+δ1

+ δ1v(1�δ2)

1�δ2
1

, w(σ)�v
1+δ1

+ v(1�δ1�δ2
1+δ1δ2)

1�δ2
1

), to accept any division x with

x2 � δ1(w(σ)�v)
1+δ1

+ v(δ2�δ2
1)

1�δ2
1

, and never take outside option v. The unique SPNE outcome is that

q = 1 and the seller’s offer x = (w(σ)�v
1+δ1

+ v(1�δ2)

1�δ2
1

, δ1(w(σ)�v)
1+δ1

+ v(δ2�δ2
1)

1�δ2
1
) is accepted in the first

period.

3. If w(σ) < v < V, δ1 2 (0, 1), and δ2 2 (0, 1), the seller’s SPNE strategy is to offer

any division x, and the buyer’s SPNE strategy is to take the outside option v. The unique SPNE

outcome is that q = 0 and there is no trade.

Proof: see appendix.

Proposition 1.1 defines all possible negotiation outcomes as a function of different re-

alizations of the random outside option V. When the realized outside option is less than

the buyer’s payoff in a bargaining game without the buyer’s outside option, the buyer’s

threat of taking the realized outside option v loses its credibility, and the buyer has to ac-

cept the SPNE offer arising in a game without the buyer’s outside option. In particular,

when v < δ1w(σ)
1+δ1

, where δ1w(σ)
1+δ1

is the buyer’s payoff in the game without the buyer’s out-
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side offer, the buyer immediately agrees on the offer (w(σ)
1+δ1

, δ1w(σ)
1+δ1

), which yields the seller a

payoff of w(σ)
1+δ1

� c(σ) and the buyer a payoff of δ1w(σ)
1+δ1

. In this case the equilibrium outcome

is unique and the trade always happens.

When the buyer’s realized outside option v is larger than the buyer’s payoff in a game

without outside option but less than the total trade surplus, i.e. when v 2 ( δ1w(σ)
1+δ1

, w(σ)),

the buyer is able to negotiate a payoff of at least her outside option by credibly threatening

to take the realized outside option v and terminating the relationship.

The size of the buyer’s additional payoff above v depends on depreciation rates δ1

and δ2. When δ2 is below the cutoff value δ2 and/or δ1 is outside the interval (δ1, δ1), the

buyer obtains no payoff above v, because the buyer’s threat of rejecting the seller’s offer

x = (w(σ)� v, v) is not credible for any v 2 ( δ1
1+δ1

w(σ), w(σ)). As a result, the seller offers

x = (w(σ)� v, v) and the buyer immediately accept this offer. The seller follows the same

strategy independently of the values of depreciation rates δ1 and δ2 when the buyer’s out-

side option is large enough, v 2 ( (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
, w(σ)). In both cases the seller’s equilibrium

payoff is w(σ)� v� c(σ) and the buyer’s equilibrium payoff is the buyer’s outside option

v. The equilibrium strategies in these two cases coincide with the equilibrium strategies

proposed by Binmore at. al. (1989), who study an alternating-offers bargaining game with

an outside option and identical discount factors on the trade surplus and the outside op-

tion (the case of δ = δ1 = δ2 in our formulation).

When δ1 2 (δ1, δ1), δ2 > δ2 and v 2 ( δ1w(σ)
1+δ1

, (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
) as it is in the case 2b of Proposi-

tion 1.1, the buyer can obtain a payoff above her outside option v. In this case, the seller’s

strategy is to offer a division x = (w(σ)�v
1+δ1

+ v(1�δ2)

1�δ2
1

, δ1(w(σ)�v)
1+δ1

+ v(δ2�δ2
1)

1�δ2
1
) and the buyer’s

strategy is to immediately accept it. As a result, the buyer obtains an additional payoff of
δ1(w(σ)�v)

1+δ1
� v(1�δ2)

1�δ2
1

above v. The seller’s payoff from the relationship is w(σ)�v
1+δ1

+ v(1�δ2)

1�δ2
1
�

c(σ) and the buyer’s payoff from the relationship is equal to δ1(w(σ)�v)
1+δ1

+ v(δ2�δ2
1)

1�δ2
1

.

The size of the additional payoff δ1(w(σ)�v)
1+δ1

� v(1�δ2)

1�δ2
1

depends on the sizes of v, δ1 and δ2.

When the outside option does not depreciate too much and δ2 > δ2 while the tradable good
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with specific investment depreciates at the sufficiently high rate δ1 2 (δ1, δ1), the buyer

can use her credible threat to reject the seller’s offer and continue negotiating to extract an

additional payoff above v. When the outside option depreciates too much (δ2 < δ2) or the

tradable good does not depreciate at a high enough rate (δ1 > δ1), the buyer’s threat of

rejecting the seller’s offer loses credibility and the buyer settles on accepting a lower offer

with her share equal to her outside option.

The limiting case when the outside option does not depreciate at all and δ2 approaches

1 is particularly interesting, because the negative term � v(1�δ2)

1�δ2
1

in the additional pay-

off goes to zero and the restriction on the depreciation rate δ1 disappears. In this case

the equilibrium startegies converge to lim
δ2!1

(x) = (w(σ)�v
1+δ1

, v + δ1(w(σ)�v)
1+δ1

) and lim
δ2!1

(y) =

( δ1(w(σ)�v)
1+δ1

, v + w(σ)�v
1+δ1

) and take a particularly simple form: the buyer obtains a guaran-

teed payoff of v, and the parties bargain over the division of the trade surplus net of the

buyer’s outside option, w(σ) � v. The outcome of the bargaining is that independently

of the size of δ1 the seller and the buyer split the trade surplus in excess of the buyer’s

outside, w(σ)� v, according to the alternating-offers bargaining game without an outside

option.

When the realized outside option v exceeds w(σ), the seller cannot prevent the buyer

from taking the outside option and terminating the relationship, since in this range of v the

buyer strictly prefers to take the outside option to any seller’s offer satisfying the seller’s

participation constraint. Hence, in this case the seller’s payoff is �c(σ) and the buyer’s

payoff is v.

The figure below illustrates the seller’s and the buyer’s payoffs as a function of differ-

ent realizations of v when δ1 2 (0, 1) and δ2 < δ2, and when δ1 2 (δ1, δ1) and δ2 < δ2.
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Figure 1.3. Equilibrium Payoffs of the Seller and the Buyer

The top two graphs in Figure 1.3 plot the buyer’s and the seller’s payoffs when the

depreciation rate on the buyer’s outside option is below the cutoff value δ2 and the parties

follow their equilibrium strategies. The parties’ payoffs in this case are defined by parts 1,

2a, and 3 of Proposition 1.1. In particular, the buyer’s payoff is equal to her outside offer v

for any v � δ1
1+δ1

w(σ) and to δ1
1+δ1

w(σ) when v < δ1
1+δ1

w(σ).

The bottom two graphs plot the buyer’s and the seller’s payoffs when the depreciation

rate on the buyer’s outside option is above the cutoff value δ2 and δ1 2 (δ1, δ1). In this case,

the buyer is able to extract an additional payoff of size δ1(w(σ)�v)
1+δ1

� v(1�δ2)

1�δ2
1

above v when
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δ1
1+δ1

w(σ) < v < δ1�δ2
1

1�δ2+δ1�δ2
1
w(σ). For all other values of v, the buyer’s payoff is equal to

the buyer’s payoff when δ2 < δ2.

1.2.3 Probabilities of Negotiation Outcomes

We assume that the buyer and the seller are risk neutral, and the parties care only about

their expected payoffs. To obtain expected negotiation outcomes, we introduce a cu-

mulative distribution function on the outside option FV(.) with support [0, V]. Given

the negotiation payoffs from Proposition 1.1, we obtain the following expected negoti-

ation payoffs: 1) when V 2 (0, δ1w(σ)
1+δ1

), δ1 2 (0, 1) and δ2 2 (0, 1), the parties expect

to obtain (w(σ)
1+δ1

, δ1w(σ)
1+δ1

), 2a) when V 2 ( δ1w(σ)
1+δ1

, w(σ)), δ1 2 (0, 1) and δ2 2 (0, δEV
2 ), the

parties expect to obtain (w(σ) � E[VjV 2 ( δ1w(σ)
1+δ1

, w(σ))], E[VjV 2 ( δ1w(σ)
1+δ1

, w(σ))]), and

when V 2 ( (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
, w(σ)), δ1 2 (0, 1) and δ2 2 (δEV

2 , 1), the parties expect to ob-

tain (w(σ) � E[VjV 2 ( (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
, w(σ))], E[VjV 2 ( (δ1�δ2

1)w(σ)
1�δ2+δ1�δ2

1
, w(σ))]), 2b) when V 2

( δ1w(σ)
1+δ1

, (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
), δ1 2 (δEV

1 , δ
EV
1 ) and δ2 2 (δEV

2 , 1), the parties expect to obtain (w(σ)
1+δ1

�
δ2�δ1
1�δ2

1
E[VjV 2 ( δ1w(σ)

1+δ1
, (δ1�δ2

1)w(σ)
1�δ2+δ1�δ2

1
)]), δ1w(σ)

1+δ1
+ δ2�δ1

1�δ2
1

E[VjV 2 ( δ1w(σ)
1+δ1

, (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
)]), and 3)

when w(σ) < V < V, δ1 2 (0, 1) and δ2 2 (0, 1), the parties expect to obtain (0, E[VjV 2

(w(σ), V)]).

Following the introduction of expected negotiation payoffs, the cutoff values δ1, δ1, and

δ2 have to be accordingly modified. We introduce ex ante cutoff values on δ1, δEV
1 , δ

EV
1 =

1
2 �

vuuut 1
4 �

(1�δ2)E[VjV2(
δ1w(σ)
1+δ1

,
(δ1�δ2

1)w(σ)

1�δ2+δ1�δ2
1
)]

w(σ)�E[VjV2( δ1w(σ)
1+δ1

,
(δ1�δ2

1)w(σ)

1�δ2+δ1�δ2
1
)]

an ex ante cutoff value on δ1, δEV
2 = [1 � δ1(1 �

δ1)(
w(σ)

E[VjV2( δ1w(σ)
1+δ1

,
(δ1�δ2

1)w(σ)

1�δ2+δ1�δ2
1
)]
� 1)].

With cdf FV(.) we can define probabilities of four negotiation outcomes in the case

when δ1 2 (δEV
1 , δ

EV
1 ) and δ2 2 (δEV

2 , 1). Let λ1(σ) = FV(0 < V < δ1w(σ)
1+δ1

), λ2(σ) =

FV(
δ1w(σ)
1+δ1

< V < (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
), λ3(σ) = FV(

(δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
< V < w(σ)) and λ4(σ) = FV(w(σ) <

V < V). In the case when δ1 2 (0, 1) and δ2 2 (0, δEV
2 ), there are only three probabilities,
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λ1(σ) = FV(0 < V < δ1w(σ)
1+δ1

), 1� λ1(σ)� λ4(σ) = FV(
δ1w(σ)
1+δ1

< V < w(σ)), and λ4(σ) =

FV(w(σ) < V < V).

The set of probabilities hλ1(σ), λ2(σ), λ3(σ), λ4(σ)i determines an ex ante negotiation

position of the seller vis-a-vis the buyer. A set of probabilities, where λ1(σ) is small in

comparison to 1� λ1(σ) corresponds to a weaker ex ante negotiation position of the seller

relative to the buyer. When λ1(σ) is small, the seller is more likely to concede a higher

share of the trade surplus to prevent the buyer from taking the outside option or is more

likely to face the termination of the relationship. Respectively, a set of probabilities, where

1� λ1(σ) are small in comparison to λ1(σ), corresponds to a stronger ex ante negotiation

position of the seller relative to the buyer, because with a high λ1(σ) the seller is more

likely to face the most favorable negotiation outcome.

The set of probabilities hλ1(σ), λ2(σ), λ3(σ), λ4(σ)i depends on the cdf of the outside

option FV(.) and the value of the trade surplus w(σ). Since FV(.) is independent of σ, we

can determine how λ1(σ), λ2(σ), λ3(σ), and λ4(σ) depend on σ. In the next proposition we

establish a relationship between specific investment σ and the set hλ1(σ), λ2(σ), λ3(σ), λ4(σ)i.

Proposition 1.2.

For any distribution function FV(.), an increase in specific investment σ raises the probability

of trade λ1(σ),
∂λ1(σ)

∂σ > 0, and lowers the probability of termination of the relationship λ4(σ),
∂λ4(σ)

∂σ < 0. The effect of specific investment on λ2(σ) depends on the relative effects of specific

investment on λ1(σ), λ3(σ) and λ4(σ). In particular, if � ∂λ3(σ)
∂σ � ∂λ4(σ)

∂σ > ∂λ1(σ)
∂σ , then ∂λ2(σ)

∂σ >

0, otherwise ∂λ2(σ)
∂σ < 0. The effect of specific investment on λ3(σ) depends on the relative effects

of specific investment on λ1(σ), λ2(σ), and λ3(σ). In particular, � ∂λ2(σ)
∂σ � ∂λ4(σ)

∂σ > ∂λ1(σ)
∂σ , then

∂λ3(σ)
∂σ > 0, otherwise ∂λ3(σ)

∂σ < 0.

Proof: By definition, λ1(σ) = FV(0 < V < δ1w(σ)
1+δ1

). Consider an increase in specific

investment from σ to σ0. By assumption, an increase in specific investment from σ to

σ0 raises the buyer’s valuation of the tradable good from b(σ) to b(σ0) and lowers the

seller’s cost of the tradable good from s(σ) to s(σ0). This means that w(σ) = b(σ)� s(σ) <
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b(σ0)� s(σ0) = w(σ0).

Since the distribution function of the outside option FV(.) is independent of specific

investment and the trade surplus w(σ) increases with investment, the probability of trade

λ1(σ) unconditionally increases in specific investment,

λ1(σ) = FV(0 < V <
δ1w(σ)
1+ δ1

) < FV(0 < V <
δ1w(σ0)
1+ δ1

) = λ1(σ
0).

Thus, we conclude that the probability of trade λ1(σ) increases in specific investment.

By the same argument we can show that an increase in specific investment lowers the

probability of termination λ4(σ). At the same time we cannot determine how the proba-

bilities of trade λ2(σ) and λ3(σ) respond to an increase in investment σ, since investment

effects on λ2(σ) and λ3(σ) depend on the shape of a particular distribution function FV(.)

and the value of w(σ). However, since λ1(σ), λ2(σ), λ3(σ), and λ4(σ) form a partition,
4

∑
i=1

λi(σ) = 1 and λ2(σ) = 1 � λ1(σ) � λ3(σ) � λ4(σ), then ∂λ2(σ)
∂σ > 0 if and only if

� ∂λ3(σ)
∂σ � ∂λ4(σ)

∂σ > ∂λ1(σ)
∂σ , while ∂λ2(σ)

∂σ < 0 if and only if � ∂λ3(σ)
∂σ � ∂λ4(σ)

∂σ > ∂λ1(σ)
∂σ . The

same argument applies to λ3(σ).

The resolution of the hold-up problem in this chapter critically depends on the effect of

specific investment on the probabilities λ1(σ), λ2(σ), λ3(σ) and λ4(σ). This is in contrast

with prior approaches to the hold-up problem, which assume that specific investment has

no effect on the probabilities of negotiation outcomes, i.e. that λ01(σ) = λ02(σ) = λ03(σ) =

λ04(σ) = 0.

1.2.4 Technical Assumptions

1.1We assume that specific investment σ raises the cost of investment c(σ), c0(σ) > 0,

lowers the seller’s cost of production of the tradable good s(σ), s0(σ) < 0, and raises the

buyer’s valuation of the tradable good b(σ), b0(σ) > 0. This implies that the trade surplus

w(σ) = b(σ)� s(σ) also increases in investment, w0(σ) > 0.
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1.2 We further assume that the trade surplus w(σ) is concave, w00(σ) < 0, and the

seller’s cost of investment c(σ) is convex, c00(σ) > 0.

1.3 We impose two second-order concavity conditions on the cdf FV(.) and functions

w(σ) and c(σ). These two conditions together with the concavity requirement of w(σ)

and the convexity requirement of c(σ) guarantee that the joint and the seller’s objective

functions are globally concave:

(A1.3.1) �λ04(σ)w0(σ) < c00(σ)� w00(σ)(1� λ4(σ)),

(A1.3.2) w0(σ)(λ01(σ)(1�δ2
1+δ2�δ1)

(1�δ1)(1+δ1)2
+ λ02(σ)

1+δ1
+ λ03(σ)) +

λ001 (σ)w(σ)(δ2�δ1)
(1�δ1)(1+δ1)2

<

c00(σ)� w00(σ)(λ1(σ)+λ2(σ)
1+δ1

+ λ3(σ)).
The right-hand side of condition A1.3.1 is strictly positive since c00(σ) > 0 and w00(σ) <

0, while the right-hand side is strictly positive by Proposition 1.2, where we show that

λ04(σ) < 0. Similarly, the right-hand side of condition A1.3.2 is strictly positive because

c00(σ) > 0 and w00(σ) < 0, while the sign of the right-hand side is indeterminate and

depends on the sign of λ001 (σ) and the magnitude and signs of λ02(σ) + λ03(σ). We do not

impose any restrictions on the distribution function FV(.) beyond those implied by the

second-order concavity conditions A1.3.1 and A1.3.2.

1.4. We assume that b(σ) > s(σ), so that the trade is always efficient.

1.5. We assume that for σ 2 [0, Σ], w(σ) > c(σ), so that it is socially efficient to under-

take specific investment.

1.3 First-Best Specific Investment

In the first-best formulation, a social planner maximizes the joint expected payoff to the

buyer and the seller. The expectation is defined over all possible realizations of the outside

option for any δ1 2 (0, 1) and δ2 2 (0, 1). In particular, if the outside option V is in

the interval [0, w(σ)], the trade occurs, and the joint payoff is equal to the expected trade

surplus E[w(σ)jV 2 [0, w(σ)]]. Since the outside option V and specific investment σ are

independent, E[w(σ)jV 2 [0, w(σ)]] = w(σ).
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If the outside option V is in the interval (w(σ), V], the trade doesn’t occur, and the joint

payoff is equal to the buyer’s expected outside option conditional on exceeding the total

trade surplus, E[VjV 2 (w(σ), V]].

The trade doesn’t occur with probability λ4(σ), and the trade occurs with probability

1� λ4(σ) = λ1(σ) + λ2(σ) + λ3(σ). In addition, whether the trade occurs or not, the seller

undertakes specific investment σ at cost c(σ). The joint expected social payoff to the buyer

and the seller EUW is given in equation (1.1).

(1.1) EUW = �c(σ) + (1� λ4(σ))w(σ) + λ4(σ)E[VjV 2 (w(σ), V)]

Given that the equation (1.1) is globally concave by the second-order concavity condi-

tion A1.3.1, the first-best level of specific investment σ f b = argmax
σ�0

EUW is a maximizer

of EUW . As a result, the first-best level of specific investment σ f b should satisfy the the

first-order maximization equation (1.2).

(1.2) (1� λ4(σ f b))w0(σ f b) + λ4(σ f b)
∂E[VjV2(w(σ),V)]

∂σ f b
=

c0(σ f b)� λ04(σ f b)(E[VjV 2 (w(σ f b), V)]� w(σ f b))

Equation (1.2) has a natural interpretation. The left-hand side of equation (1.2) is the

expected marginal benefit from the first-best specific investment σ f b, while the right-hand

side is the expected marginal cost of σ f b. The expected marginal benefit from σ f b consists

of two positive components. The first component is the expected increase in the trade

surplus shared by the buyer and the seller. This component is positive given assumption

1.1. The second component is the expected increase in the buyer’s expected outside option

conditional on exceeding the total trade surplus. The second component is strictly positive

as well. The exact derivation of the term ∂E[VjV2(w(σ),V)]
∂σ f b

and its sign are presented in the

appendix.

The right-hand side of equation (1.2) defines the expected marginal cost of specific

investment, and it consists of two components as well: an increase in the cost of sunk

specific investment c0(σ f b) shared only by the seller and the marginal cost of adjustment in

the ex ante negotiation position of the seller vis-a-vis the buyer. The extent of the marginal
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cost from adjustment in the ex ante negotiation position depends on the size of the strictly

negative λ04(σ f b) and the positive difference between E[VjV 2 (w(σ f b), V)] and w(σ f b).

Equation (1.2) can be simplified if we expand the term ∂E[VjV2(w(σ),V)]
∂σ f b

to get the first-

best optimality condition (1.3):

(1.3) (1� λ4(σ f b))w0(σ f b) = c0(σ f b).

Similar to equation (1.2), in equation (1.3) the left-hand side denotes the expected

marginal benefit consisting of the jointly shared expected increase in the trade surplus

w(σ f b). The right-hand side denotes the expected marginal cost of specific investment

c0(σ f b) shared only by the seller. In the optimum the expected marginal benefit from spe-

cific investment shared by both parties should be equal to the marginal cost of specific

investment imposed only on the seller.

1.4 Equilibrium Specific Investment

In equilibrium the seller chooses a level of specific investment to maximize her expected

benefit from the relationship with the buyer. The seller’s expected benefit from the rela-

tionship EUS is a sum of the cost of specific investment c(σ) and the expected negotiation

payoffs. Since the expected negotiation payoffs depend on the values of δ1 and δ2, we con-

sider two cases: when (a) δ1 2 (0, 1) and δ2 < δEV
2 and (b) δ1 2 (δEV

1 , δ
EV
1 ) and δEV

2 < δ2.

Equation (1.4a) presents the seller’s expected payoff when δ1 2 (0, 1) and δ2 < δEV
2 , and

equation (1.4b) presents the seller’s expected payoff when δ1 2 (δEV
1 , δ

EV
1 ) and δEV

2 < δ2.

(1.4a) EUS
a = λ1(σ)E[

w(σ)
1+δ1

jV 2 (0, δ1w(σ)
1+δ1

)])+

(1� λ1(σ)� λ4(σ))E[w(σ)�VjV 2 ( δ1w(σ)
1+δ1

, w(σ))])� c(σ)

(1.4b) EUS
b = λ1(σ)E[

w(σ)
1+δ1

jV 2 (0, δ1w(σ)
1+δ1

)])+

λ2(σ)E[
w(σ)�V

1+δ1
+ V(1�δ2)

1�δ2
1
jV 2 ( δ1w(σ)

1+δ1
, (δ1�δ2

1)w(σ)
1�δ2+δ1�δ2

1
)])+

λ3(σ)E[w(σ)�VjV 2 ( (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
, w(σ))])� c(σ)
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Since w(σ) and V are independent, and V enters linearly into the seller’s equilibrium

payoffs, we can simplify equations (1.4a) and (1.4b) to obtain equations (1.5a) and (1.5b):

(1.5a) EUS
a = (1� λ1(σ)� λ4(σ))(w(σ)� E[VjV 2 ( δ1w(σ)

1+δ1
, w(σ))])+

λ1(σ)
w(σ)
1+δ1

� c(σ).

(1.5b) EUS
b = λ1(σ)

w(σ)
1+δ1

+ λ3(σ)(w(σ)� E[VjV 2 ( (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
, w(σ))])+

λ2(σ)(
w(σ)
1+δ1

� δ2�δ1
1�δ2

1
E[VjV 2 ( δ1w(σ)

1+δ1
, (δ1�δ2

1)w(σ)
1�δ2+δ1�δ2

1
)])� c(σ).

Given that equations (1.5a) and (1.5b) are globally concave by the second-order con-

cavity conditions A1.3.1 and A1.3.2, the equilibrium specific investment σa
eq = argmax

σ�0
EUS

a

is a maximizer of EUS
a and the equilibrium specific investment σb

eq = argmax
σ�0

EUS
b is a max-

imizer of EUS
b . Hence, the equilibrium specific investments σa

eq and σb
eq should satisfy the

first-order maximization conditions (1.6a) and (1.6b).

(1.6a)
λ1(σ

a
eq)w0(σa

eq)+λ01(σ
a
eq)w(σa

eq)

1+δ1
+ (1� λ1(σ

a
eq)� λ4(σ

a
eq))(w

0(σa
eq)�

∂E[VjV2( δ1w(σa
eq)

1+δ1
,w(σa

eq))]

∂σa
eq

)+

(�λ01(σ
a
eq)� λ04(σ

a
eq))(w(σ

a
eq)� E[V2 ( δ1w(σa

eq)

1+δ1
, w(σa

eq))])� c0(σa
eq) = 0

(1.6b)
λ1(σ

b
eq)w0(σb

eq)

1+δ1
+

λ01(σ
b
eq)w(σb

eq)

1+δ1
+ λ3(σb

eq)(w0(σb
eq)�

∂E[VjV2( (δ1�δ2
1)w(σ

b
eq)

1�δ2+δ1�δ2
1

,w(σb
eq))]

∂σb
eq

)+

λ03(σ
b
eq)(w(σ

b
eq)� E[VjV2 ( (δ1�δ2

1)w(σ
b
eq)

1�δ2+δ1�δ2
1

, w(σb
eq))])� c0(σb

eq)+

λ2(σ
b
eq)(

w0(σb
eq)

1+δ1
� δ2�δ1

1�δ2
1

∂E[VjV2( δ1w(σb
eq)

1+δ1
,
(δ1�δ2

1)w(σ
b
eq)

1�δ2+δ1�δ2
1
)]

∂σb
eq

)+

λ02(σ
b
eq)(

w(σb
eq)

1+δ1
� δ2�δ1

1�δ2
1

E[VjV2 ( δ1w(σb
eq)

1+δ1
,
(δ1�δ2

1)w(σ
b
eq)

1�δ2+δ1�δ2
1
)]) = 0

Equations (1.6a) and (1.6b) can be simplified into equations (1.7a) and (1.7b) (see chap-

ter appendix for details).

(1.7a) w0(σa
eq)(

δ1λ1(σ
a
eq)

1+δ1
+ 1� λ4(σ

a
eq)) = c0(σa

eq)

(1.7b) w0(σb
eq)(

λ1(σ
b
eq)+λ2(σ

b
eq)

1+δ1
+ λ3(σb

eq)) + λ01(σ
b
eq)

w(σb
eq)(δ2�δ1)

(1�δ1)(1+δ1)2
= c0(σb

eq)

The interpretation of equations (1.7a) and (1.7b) is similar to the interpretation of equa-

tion (1.3). The left-hand sides of equations (1.7a) and (1.7b) are the seller’s expected mar-

ginal benefits from equilibrium investments σa
eq and σb

eq, and the right-hand sides are the

seller’s expected marginal costs from σa
eq and σb

eq. The left-hand side of equation (1.7a) is

a sum of the seller’s expected marginal benefits from an increase in the trade surplus in
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all negotiation outcomes when δ1 2 (0, 1) and δ2 < δEV
2 . Similarly, the left-hand side of

equation (1.7b) is a sum of the seller’s marginal benefits from an increase in the trade sur-

plus when δ1 2 (δEV
1 , δ

EV
1 ) and δEV

2 < δ2. As opposed to equation (1.7a), the left-hand side

of equation (1.7b) includes an additional marginal benefit term: the increase in the seller’s

expected marginal benefit from improvement in the seller’s ex ante negotiation position.

More precisely, the strictly positive term λ01(σ
b
eq)

w(σb
eq)(δ2�δ1)

(1�δ1)(1+δ1)2
denotes the expected marginal

benefit of the seller due to improvement in the seller’s negotiation position of size λ01(σ
b
sb)

multiplied by the associated payoff of size
w(σb

eq)(δ2�δ1)

(1�δ1)(1+δ1)2
(by Proposition 1.2, λ01(σ

b
eq) > 0).

The right-hand sides of equations (1.7a) and (1.7b), or the cost sides, consist of a common

single term, which is the strictly positive increase in the physical cost of investment of size

c0(σa
eq) or c0(σb

eq).

Equations (1.7a) characterizes the seller’s equilibrium specific investment σa
eq when

δ1 2 (0, 1) and δ2 < δEV
2 , while equation (1.7b) characterizes the seller’s equilibrium

level of specific investment when δ1 2 (δEV
1 , δ

EV
1 ) and δEV

2 < δ2. By comparing these two

equations we can draw a conclusion about whether the equilibrium specific investment is

higher in case (a) or in case (b).

Since the cost function c(.) is strictly convex, we conclude that the level of specific in-

vestment when δ1 2 (δEV
1 , δ

EV
1 ) and δEV

2 < δ2 is higher than the level of specific investment

when δ1 2 (0, 1) and δ2 < δEV
2 if and only if the left-hand side of equation (1.7b) is exceeds

the left-hand side of equation (1.7a) for some common σ. We summarize this finding in the

Proposition 1.3.

Proposition 1.3.

For any convex function c(.), σb
eq > σa

eq if and only if λ01(σ
b
eq)w(σb

eq)
δ2�δ1

δ1(1�δ2
1)
> λ2(σb

eq)w0(σb
eq),

σb
eq < σa

eq if and only if λ01(σ
b
eq)w(σb

eq)
δ2�δ1

δ1(1�δ2
1)
< λ2(σb

eq)w0(σb
eq), and σb

eq = σa
eq if and only if

λ01(σ
b
eq)w(σb

eq)
δ2�δ1

δ1(1�δ2
1)
= λ2(σb

eq)w0(σb
eq).

Proposition 1.3 tells that the equilibrium level of investment σb
eq (when δ1 2 (δEV

1 , δ
EV
1 )

and δEV
2 < δ2) does not unconditionally exceed the equilibrium level of investment σa

eq
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(when δ1 2 (0, 1) and δEV
2 < δ2). Whether σb

eq exceeds σa
eq or not, depends on the distribu-

tion function of the outside option, the trade surplus function w(.), and depreciation rates

δ1 and δ2.

Nevertheless, we can state that σb
eq < σa

eq with certainty in two cases: when δ1 ! δ2

and when λ01(σ
b
eq)! 0. The case when δ1 ! δ2 reflects the situation when the depreciation

rate on the tradable good with specific investment converges to the depreciation rate on the

outside option with generic investment. The case when λ01(σ
b
eq) ! 0 defines the situation

when specific investment has no effect on the likelihood of negotiation outcomes, which is

possible if the increase in the trade surplus from specific investment is matched by an equal

sized increase in the value of the buyer’s outside option. Both cases contradict the two

main assumptions of specific investment: the absence of the effect of specific investment

on the outside option and the higher depreciation rate on the good produced with specific

investment.

1.5 First-Best Optimality of Equilibrium Investment

The equilibrium levels of specific investments σa
eq and σb

eq are socially optimal, if they also

satisfy the first-best optimality condition (1.3). The first-best optimality condition (1.3)

can be rearranged into a sum of the seller’s and the buyer’s expected marginal payoffs

from specific investment. By subtracting equations (1.7a) and (1.7b) from the rearranged

equation (1.3), we obtain equations (1.8a) and (1.8b).

(1.8a) λ1(σ
a
eq)

δ1w0(σa
eq)

1+δ1
= 0

(1.8b) (λ1(σ
b
sb) + λ2(σb

eq))
δ1w0(σa

eq)

1+δ1
= λ01(σ

b
eq)

w(σb
eq)(δ2�δ1)

(1�δ1)(1+δ1)2

Equation (1.8a) is the social optimality condition for the equilibrium specific invest-

ment σa
eq when δ1 2 (0, 1) and δ2 < δEV

2 and equation (1.8b) is the social optimality condi-

tion for the equilibrium specific investment σb
eq when δ1 2 (δEV

1 , δ
EV
1 ) and δEV

2 < δ2. Both

equations show that for the seller’s choice of specific investment to be socially optimal, the
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equilibrium specific investment should equate the buyer’s expected marginal benefit to the

buyer’s expected marginal cost. The left-hand sides of equations (1.8a) and (1.8b) indicate

the buyer’s expected marginal benefit from the seller’s investment, while the right-hand

sides indicate the buyer’s expected marginal cost.

Equation (1.8a) shows that when the outside option depreciates too much indepen-

dently of δ1 and δ2 < δEV
2 , the buyer does not face any costs of specific investment as

indicated by the zero right-hand side of equation (1.8a) and a strictly positive left-hand

side of equation (1.8a). This is because with probability λ1 the buyer obtains a positive

share of the trade surplus and with probability 1� λ1 the buyer obtains a payoff equal to

her expected outside option independently of the level of specific investment. Hence, an

increase in specific investment strictly raises the buyer’s payoff with probability λ1 with-

out any impact on the buyer’s payoff in any other negotiation outcome. As a result, in case

(a) the buyer’s expected marginal benefit from investment always exceeds the buyer’s ex-

pected marginal cost of zero, and the seller’s choice of specific investment always results

in under-investment.

Equation (1.8b) shows that when the depreciation rate on the outside option is suffi-

ciently low (δEV
2 < δ2) and the tradable good with specific investment depreciates at a

high enough rate δ1 2 (δEV
1 , δ

EV
1 ), the buyer receives both the expected marginal benefit

from the seller’s investment and the expected marginal cost. In particular, the strictly posi-

tive left-hand side of equation (1.8b), or the marginal benefit side, is the expected marginal

benefit from an increase in the trade surplus. The strictly positive right-hand side of equa-

tion (1.8b), or the marginal cost side, is the buyer’s expected marginal cost from an increase

in the probability λ1(σ
b
eq). By Proposition 1.2, the buyer’s expected marginal cost is strictly

positive, since λ01(σ
b
eq) > 0.

The buyer’s expected marginal cost of λ01(σ
b
eq)

w(σb
eq)(δ2�δ1)

(1�δ1)(1+δ1)2
indicates the buyer’s loss of

the additional payoff above her outside option when the probability of the negotiation

outcome λ1(σ) increases. The buyer does not lose any such payoff in case (a), because

27



in case (a) the high depreciation rate on the outside option does not allow the buyer to

crediby use her threat of rejecting the seller’s offer and extract an additional payoff above

her outside option.

Hence, the hold-up problem can be resolved only in case (b), when δ1 2 (δEV
1 , δ

EV
1 ) and

δEV
2 < δ2. In particular, depending on the distribution function of the outside option, the

trade surplus function and the depreciation rates, it is possible to have a socially optimal

investment if condition (1.8b) holds as equality, under-investment if condition (8b) is a

positive inequality, and over-investment if condition (1.8b) is a negative inequality.

In the limiting case when δ2 ! δEV
2 , equations (1.8b) converges to equation (1.8a) and

the hold-up problem always persists irrespective of the depreciation rate δ1 and functional

forms of the trade surplus function w(.) and the density function FV(.). The next proposi-

tion precisely defines conditions for the social optimality of the seller’s specific investment

for all values of δ1 and δ2.

Proposition 1.4.

Let σa
eq and σb

eq maximize the seller’s objective functions (1.5a) and (1.5b) respectively, δEV
1 , δ

EV
1 =

1
2 �

vuuut 1
4 �

(1�δ2)E[VjV2(
δ1w(σ)
1+δ1

,
(δ1�δ2

1)w(σ)

1�δ2+δ1�δ2
1
)]

w(σ)�E[VjV2( δ1w(σ)
1+δ1

,
(δ1�δ2

1)w(σ)

1�δ2+δ1�δ2
1
)]

be the ex ante cutoff values on δ1 and δEV
2 = [1� δ1(1�

δ1)(
w(σ)

E[VjV2( δ1w(σ)
1+δ1

,
(δ1�δ2

1)w(σ)

1�δ2+δ1�δ2
1
)]
� 1)] be the ex ante cutoff value on δ2. If δ1 2 (0, 1) and δEV

2 > δ2,

the seller’s equilibrium investment σa
eq always results in the under-invests from the socially optimal

point of view. If δ1 2 (δEV
1 , δ

EV
1 ) and δEV

2 < δ2, the seller’s equilibrium investment σb
eq is ex ante

socially optimal, if condition (1.8b) holds as equality. If δ1 2 (δEV
1 , δ

EV
1 ) and δEV

2 < δ2 and the

left-hand side of condition (1.8b) exceeds its right-hand side, the seller ex ante under-invests. If

δ1 2 (δEV
1 , δ

EV
1 ) and δEV

2 < δ2 and the left-hand side of condition (1.8b) exceeds its right-hand

side, the seller ex ante over-invests.

Proof: The proof is trivial. Since σa
eq can never satisfy equation (1.8a) as an equality, it

follows that when δEV
2 > δ2, the social optimality condition (1.3) is never satisfied and the

seller always under-invests. When δ1 2 (δEV
1 , δ

EV
1 ) and δEV

2 < δ2, equilibrium investment
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σb
eq satisfies equation (1.7b) as equality, and the first-best optimality condition (1.3) reduces

to condition (1.8b). Hence, when condition (1.8b) holds as equality, the seller’s equilibrium

investment σb
eq satisfies the social optimality condition (1.3), and σb

eq is the socially optimal

ex ante investment. When the left-hand side of condition (1.8b) exceeds its right-hand side,

the marginal benefit side of the social optimality condition (1.3) exceeds the marginal cost

side of condition (1.3), which implies an ex ante under-investment. Similarly, when the

left-hand side of condition (1.8b) is less than its right-hand side, the marginal benefit side

of equation (1.3) is less than the marginal cost side of equation (1.3), which implies an ex

ante over–investment.

The question arises if the seller’s equilibrium investment σb
eq can satisfy the social op-

timality condition (1.8b) for some choice of parameter values. To be specific, assume

that the outside option is uniformly distributed, V � U[0, V]. Following this assump-

tion, we can replace λ1(σ
b
sb) + λ2(σb

eq) = FV(0 < V <
(δ1�δ2

1)w(σ
b
eq)

1�δ2+δ1�δ2
1
) =

(δ1�δ2
1)w(σ

b
eq)

(1�δ2+δ1�δ2
1)V

and

λ01(σ
b
sb) = F0V(V < δ1w(σ)

1+δ1
) = fV(

δ1w(σ)
1+δ1

) δ1w0(σ)
1+δ1

= δ1w0(σ)
(1+δ1)V

in equation (1.8b) and obtain

equation (1.9b).

(1.9b)
w(σb

eq)

w0(σb
eq)
=

(δ1�δ2
1)w(σ

b
eq)
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Equation (1.9b) is satisfied if and only if the following condition holds:

(1.10b) 1 = δ1�δ2
1

1�δ2+δ1�δ2
1

(1�δ1)(1+δ1)
2

δ2�δ1

Equation (1.10b) represents the relationship between depreciation rates δ2 and δ1 lead-

ing to the socially optimal equilibrium investment and it holds for any functions w(.) and

c(.). Hence, the second-order concavity conditions A1.3.1 and A1.3.2 should be satisfied.

If we solve the quadratic equation (1.10b) for δ2, we obtain two solutions,

(1.11b) δ�2(δ1)
� = 1�δ2

1+2δ1
2 �

q
(1�δ2

1+2δ1)2

4 � δ1[(1� δ1)2(1+ δ1)2 � δ2
1 + δ1 + 1].

The solutions converge for any δ1 2 (0.25, 1). Next, we need to determine whether the

socially optimal depreciation rates (δ1, δ�2(δ1)
�) satisfy the restrictions imposed by the ex

ante cutoff values, or whether δ1(δ
�
2) 2 (δEV

1 (δ�2), δ
EV
1 (δ�2)) and δ�2(δ1)

� > δEV
2 (δ1, δ�2(δ1)

�).
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Figure 1.4. Socially Optimal Depreciation Rates when V˜U[0, V]

To see whether the restrictions on (δ1, δ�2(δ1)
�) are satisfied we plot each socially opti-

mal depreciation rate δ�2(δ1) along with the appropriate ex ante cutoff values δEV
1 (δ1, δ�2(δ1)),

δ
EV
1 (δ1, δ�2(δ1)) and δEV

2 (δ1, δ�2(δ1)) in Figure 1.4. The graphs show that both plots of the so-

cially optimal depreciation rates lie above their respective ex ante cutoff values. Hence, for

each value of δ1 2 (0, 1) there exists at least one socially optimal depreciation rates δ�2 such

that each equilibrium specific investment is first-best optimal.

Figure 1.4 further shows that it is possible to have over-investment from the socially

optimal point of view, if the pair of depreciation rates (δ1, δ2), lies in area B or above the

graph of the socially optimal rate δ�2(δ1). Similarly, we can have under-investment from

the socially optimally point of view, if the pair of depreciation rates (δ1, δ2), lies in area A

or below the graph of the socially optimal rate δ�2(δ1). A pair of depreciation rates (δ1, δ2)
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lying outside areas A or B results in the negotiation outcomes (a), which always result in

under-investment.

An important conclusion from this example is that the resolution of the hold-up prob-

lem, when the outside option is uniformly distributed, does not depend on specific func-

tional forms of the cost function c(.) or the trade surplus function w(.) as long as the

second-order concavity conditions are satisfied. Further, the resolution of the hold-up

problem critically depends on the relationship between depreciation rates δ1 and δ2. This

is not surplising if we recall that the driving force behind different negotiation outcomes

in the bargaining game is exactly the inter-relationship between depreciation rates on the

outside option produced with generic investment and the tradable good produced with

specific investment.

1.6 Discussion

The resolution of the hold-up problem in this chapter does not depend on timing, duration

or a contractual form of interaction between trading partners. The key elements underly-

ing the optimality of specific investment is the sufficient increase in the probability of the

negotiation outcome λ1, a sufficiently low depreciation rate on the buyer’s outside option

produced with generic investment (δEV
2 < δ2) and a sufficiently high depreciation rate on

the tradable good produced with specific investment (δ1 < δ
EV
1 ).

In contrast to other approaches to the hold-up problem, we find that the resolution of

the hold-up problem does not depend on the seller’s incentive to invest. As we show in

Proposition 1.3, neither the improvement in the seller’s ex ante negotiation position nor the

presence of some specific depreciation rates are sufficient to induce the seller to increase

specific investment ex ante. The resolution of the hold-up problem in our model is driven

purely by the buyer’s side. In particular, in the example with the uniformly distributed

buyer’s outside option we show that with an appropriate choice of depreciation rates we
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can have social optimality for any choice of the seller’s specific investment, and that the

social optimality of the equilibrium investment does not depend on functional forms of

cost and payoff functions.

The hold-up problem is resolved because specific investment imposes a cost on the

buyer by lowering the likelihood of the buyer’s acquisition of an additional payoff due

to appropriate depreciation rates. In particular, since specific investment raises the trade

surplus in the relationship without changing the distribution of the parties’ outside op-

tions, there is a fall in the likelihood that the buyer can extract the extra payoff by credibly

threatening to reject the seller’s offer. If the buyer’s expected marginal cost from this fall

in the likelihood is exactly matched by the buyer’s expected marginal benefit from specific

investment, then the seller’s choice of specific investment is ex ante socially optimal.

Both key assumptions underlying the resolution of the hold-up problem are natural

consequences of the specificity of investment. The assumption that the tradable good good

with specific investment depreciates more than the outside option with generic investment

reflects the fact that specific investment has no outside value, implying that there is no

external market for goods produced with specific investment. Since the scrap value of

the good with specific investment is virtually zero, we should expect a good with specific

investment to depreciate at a higher rate than the good with generic investment.

The second assumption is the improvement in the seller’s ex ante negotiation position

from specific investment (the positive impact of investment on λ1), and this assumption

arises from the independence of specific investment and the distribution function of the

buyer’s outside option. Since specific investment raises the trade surplus in the relation-

ship and does not affect the distribution function of the outside option, the likelihood that

the buyer can extract a larger payoff by credibly using her threat of rejecting the seller’s

offer becomes smaller. Hence, with probability λ01 the buyer loses the additional payoff

above her outside option, which the buyer would have otherwise obtained should the

seller not have undertaken specific investment.
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The possible extensions to the model include the introduction of dynamics in invest-

ment decision. Since the first-best equilibrium investment in our static model is a sub-

game perfect Nash equilibrium, it should be first-best optimal in a repeated game as well.

Moreover, if we invoke folk theorems we can achieve the first-best optimality of the seller’s

specific investment in a repeated game even if the seller’s specific investment is not socially

efficient in a static game. Thus, all our results should extend to models where the seller

repeatedly undertakes specific investment. Another possible extension is the introduction

of incomplete information about depreciation rates and the parties’ payoff functions. We

are not aware of any studies of incomplete information bargaining games with outside

options, and an extension of the model in this direction may give more general results.

In general, the improvement in the seller’s ex ante negotiation position depends on the

ability of outsiders to make appealing counter-offers to the buyer after the seller under-

takes investment. If outsiders can offer the buyer competitive counter-offers on par with

the increased trade surplus in the relationship, the buyer can still maintain her prior nego-

tiation position even after the seller undertakes investment. This ability depends on many

factors aside from the degree of specificity of investment. The general competitiveness of

the market, the ability of outsiders to replicate the specific investment of the seller, legal

restrictions (patents and copyright laws), and the institutional environment also determine

the degree to which the seller’s ex ante negotiation position becomes stronger.

Another important implication of the model in this chapter is that the seller’s equi-

librium investment may lead to over-investment from the socially optimal point of view.

There is anecdotal evidence of socially inefficient specific investment. For example, the

instances of production of incompatible computer or electronic hardware by competing

producers may serve as an example of over-investment. By engaging in trade of a gen-

erally incompatible device, a buyer faces costs in terms of a foregone or reduced ability

to effectively use the threat of termination in the negotiation process, because termination
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would entail the extremely high expenses of a complete overhaul of the generally incom-

patible equipment.

The assumption that specific investment has no outside value is equivalent to the as-

sumption that a tradable good with specific investment has no or few outside rivals. If

by making specific investment the investor cannot hope to reduce the number of compet-

ing rivaling goods on par with the good produced by the seller, then the hold-up prob-

lem is likely to persist and the investor may under-invest ex ante. Based on this find-

ing we propose three testable hypotheses. Firstly, we argue that we should observe more

severe under-investment in relationship-specific assets in markets with highly competi-

tive environments and lower or no under-investment in markets with less competitive

environments. The next empirical hypothesis is related to the duration of relationships

with specific investment. We claim that because specific investment lowers the probability

of termination of the relationship, the duration of relationships with specific investment

should be longer. There are already many studies which largely support this hypothesis6.

Lastly, we predict an increase in the investor’s bargaining power from specific investment

in markets with less competitive environments. This hypothesis is at odds with the tradi-

tional conclusion, which suggests that in general the investor’s bargaining power should

become weaker due to investment specificity. To distinguish between our hypothesis and

the traditional conclusion we would like to emphasize the importance of the competitive

environment in formulating our hypothesis.

1.7 Concluding Remarks

In this chapter we demonstrate that the hold-up problem does not necessarily plague all

relationships with specific investment. The hold-up problem can be absent depending on

the degree to which specific investment adjusts the parties’ ex ante negotiation positions

6For example, Joskow (1985) finds that specificity of investment has a positive effect on the contractual
duration in his study of contractual relationships between coal suppliers and electricity generating plants.
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and the relationship between depreciation rates on the tradable good with specific invest-

ment and the outside option produced with generic investment. We further demonstrate

that it is possible to completely resolve the hold-up problem with an appropriate choice of

parameters.

In addition, we characterize a set of negotiation equilibria in the Rubinstein’s alternating-

offers bargaining game with an outside option. We extend the results of Rubinstein (1982)

and Binmore et. al. (1989) by introducing differentiated depreciation rates on the outside

option and the tradable good, and show how the new negotiation outcomes lead to the

first-best optimality of specific investment.
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Chapter 2

Auctions as Appraisal Mechanisms: Seller Behavior in eBay Auctions

In this chapter we study seller behavior in eBay auctions for high-valued goods where

external appraisal values are difficult or costly to obtain. We find that many sellers use

eBay auctions not only to sell such items but also to gather information about items’ valu-

ations from observed bids in eBay auctions. Sellers use the gathered information to update

their beliefs about distribution functions of items’ valuations. To gather information about

items’ valuations from realized bids without necessarily selling the items, sellers in eBay

auctions employ high secret reserve prices, because high secret reserve prices prevent auc-

tion sales and at the same time do not restrict entry of bidders into auctions. To signal the

quality of their items many sellers use public reserve prices together with secret reserve

prices. The proposed behavior of sellers on eBay explains several previously unanswered

stylized facts in the auctions literature: the widespread use of secret reserve prices by sell-

ers, the presence of repeated auctions, and the low rate of success of eBay auctions for

some item categories.

Like other market transaction mechanisms, an auction transfers an item from a seller to

a buyer at some specified price. However, unlike other market transaction mechanisms, an

auction, and in particular an ascending-price auction, also acts as an information gathering

mechanism by inducing competition among buyers and by forcing these buyers to reveal

their valuations of the auctioned item. If a seller has no clear idea about the value of her

item, is sufficiently patient, and wants to sell at the highest possible price, she clearly gains

by running at least one ascending-price auction without selling the item and learning the
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distribution of realized bids before engaging in an actual sale. The ability to observe real-

ized bids without selling an item can help this uninformed and patient seller to not only

discover the demand for her item but also to choose an optimal selling price. In particular,

the uninformed and patient seller can run an unsuccessful ascending-price auction, learn

the highest bid, and then offer her item in a posted price sale at the highest bid from the

unsuccessful auction stage. This way the seller’s expected revenue should equal the ex-

pected highest valuation minus the cost of an unsuccessful auction. If the seller’s cost of

an unsuccessful auction is sufficiently small, then the expected payoff from implementing

this two-stage sale clearly exceeds the expected second highest valuation - an expected

payoff from running a single-stage ascending-price auction.

The question is whether an uninformed and patient seller who wants to learn the distri-

bution of an item’s valuation can convince buyers to enter and bid truthfully in the auction

stage(s). Electronic selling platforms such as eBay offer an option suitable for this purpose.

The rules of an eBay auction allow a seller to set a secret reserve price hidden from bidders.

Bidders do not observe a secret reserve price itself, but they can see if a secret reserve price

is set until some bid exceeds it. By setting a high secret reserve price, a seller can run one

or multiple unsuccessful ascending-price auctions, observe the truthfully revealed valua-

tions, and use this knowledge either in a different selling format on eBay or delist her item

from eBay and use the acquired knowledge in a sale elsewhere1. In this chapter we pro-

vide empirical evidence that secret reserve prices could be used exactly for this purpose:

as an effective instrument, which allows uninformed and patient sellers to use eBay auc-

tions not only as a selling mechanism but also as an affordable alternative to an otherwise

expensive or unavailable appraisal mechanism.

This chapter fits into the literature on the empirical estimation of auctions data. How-

ever, unlike most studies, we concentrate on the behavior of sellers rather than on the
1Specifically, an uninformed and patient seller can use a posted price sale format available on eBay af-

ter running an unsuccessful eBay auction and learning parameters of the distribution function of bidders’
valuations.
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behavior of bidders2. In particular, we study how and why sellers set public and secret

reserve prices in eBay auctions.

Many studies test public and secret reserve prices in the context of eBay auctions. How-

ever, most of them test secret and public reserve prices only in static auctions and ignore

the fact that many unsold items are relisted. In general, existing empirical studies find that

public reserve prices raise sale prices, while secret reserve prices have either a negative or

an insignificantly positive effect on sale prices. For example, Bajari and Hortacsu (2003)

study public and secret reserve prices in static eBay auctions for collectible US coins and

find a small positive effect of secret reserve prices on sale prices. Katkar and Reiley (2006)

employ field experiments and use static eBay auctions to sell Pokemon cards with pub-

lic and secret reserve prices. They find that the presence of a secret reserve price lowers

revenue by 10% and the likelihood of sale by 34%. Lucking-Reiley et. al. (2007) use data

from static eBay auctions of collectible pennies and find that, conditional on sale, public re-

serve prices have a small positive (around 1%) but statistically insignificant effect on final

sale prices while secret reserve prices have a sizeable positive (about 15%) and statistically

significant effect on final sale prices3. Carare (2012) studies revenue effects of only public

reserve prices in dynamic auctions for computer processors and finds that optimal public

reserve prices in dynamic auctions have a significant positive effect on seller revenue4.

The theoretical discussion of the functions and determinants of public reserve prices

depends on whether bidders’ valuations are independently distributed or have a com-

monly distributed component. If bidders’ valuations are independently distributed, then,

according to Myerson (1981) and Riley and Samuelson (1981), sellers use a public reserve

price to screen out bidders with valuations below some threshold level. If bidders’ valu-

2In a recent working paper Einav et al. (2012) also address seller behavior in online markets. They argue
that sellers use online platforms such as eBay to experiment with auction parameters and with sale formats.

3Lucking-Reiley et. al (2007) study sale effects of public and secret reserve prices only in successful auctions
without relistings.

4Carare’s derivation of an optimal public reserve price is different from the standard Myerson’s optimal
public reserve price, because Carare’s derivation accounts for the possibility of a future relisting.

38



ations have a commonly distributed component, then as Milgrom and Weber (1982) and

Cai, Riley and Ye (2007) show, a public reserve price serves as a credible signal of the qual-

ity of an item on sale.

While the functions and determinants of public reserve prices have been thoroughly

researched and understood in auction theory, theoretical studies of auctions are silent on

the function and determinants of secret reserve prices. We are aware of only two theoret-

ical studies of secret reserve prices, and both these studies look at secret reserve prices as

possible alternatives to public reserve prices. Vincent (1995) shows that if bidders’ valua-

tions are commonly distributed, then secret reserve prices can generate more revenue than

public reserve prices by encouraging entry. Rosenkranz and Schmitz (2007) use prospect

theory and find that if bidders’ valuations are independently distributed, a public reserve

price enters bidders’ utility functions, and if bidders’ outside options exceed the public

reserve price, then a secret reserve price can outperform a public reserve price. However,

no empirical analysis of either of these theories is present in the literature.

We can draw several conclusions from the existing theoretical and empirical studies of

seller behavior in auctions. First of all, there is a gap in the theoretical literature related to

the use and the function of a secret reserve price. The available theoretical studies attribute

functions of a public reserve price to a secret reserve price and analyze the effectiveness

of a secret reserve price as an alternative to a public reserve price. We are able to address

this gap in the literature by relaxing the theoretical assumption that sellers have a per-

fect knowledge of the distribution function of bidders’ valuations and by showing that an

uninformed patient seller can use a secret reserve price to obtain information about the

distribution function of valuations by running an unsuccessful ascending-price auction.

Hence, we argue that a secret reserve price has a completely different purpose than a pub-

lic reserve price. While a public reserve price is used to screen out low-valuation bidders

and to signal the quality of an item on sale, a secret reserve price is primarily used by

an uninformed and patient seller to collect information about the distribution function of
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valuations prior to engaging in an actual sale.

The existing empirical studies of seller behavior in auctions are inconclusive about the

impact of secret reserve prices on seller revenue and sale prices. We test revenue effects

of secret reserve prices under the assumption that secret reserve prices are used not as

screening or signaling devices but as a mechanism through which uninformed and pa-

tient sellers are able to gather information about items’ valuations. We find that under

our specification, secret reserve prices have a strong positive effect on sale prices. We run

a simulation exercise using the actual data from sales of used tractors in eBay auctions,

where we test the price effect of imposing a secret reserve price in repeated auctions under

different belief-updating rules. We find that as long as the cost of relisting is not too high

and an uninformed seller updates a secret reserve price given the information from pre-

vious unsuccessful auctions, the sale price in an auction with an appropriately set secret

reserve price exceeds the sale price in an auction without a secret reserve price5.

Our final contribution is related to determinants of public reserve prices, secret reserve

prices and buy-it-now prices on eBay. We are not aware of any empirical studies with struc-

tural tests of determinants of secret and public reserve prices using eBay data. We find that

sellers of used tractors on eBay use public reserve prices both to screen out low valuation

bidders and to signal the quality of listed tractors. Hence, many empirical studies, which a

priori assume that public reserve prices are used exclusively for screening, overlook an im-

portant component defining seller behavior. We also test for various determinants of secret

reserve prices and find that the size of a secret reserve price is determined by the highest

bid from previously run unsuccessful second-price auctions and by average highest bids

observed in auctions for similar items. In addition, we test for determinants of buy-it-now

(BIN) prices and find that buy-it-now prices are almost exclusively determined by high-

est bids from previous unsuccessful auctions. To test for determinants of public reserve

5In the simulation exercise we account for the possibility that an item may go unsold if the secret reserve
price is not met after multiple relistings. We assume that the sale price is zero if the item does not sell after the
fifth relisting.
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prices, secret reserve prices, and BINs, we employ a completely non-parametric approach

to minimize the number of identification assumptions.

In the next section we discuss the data. In section 2.2 we define the model of a seller

and a bidder behavior. In section 2.3 we discuss the estimation strategy. In section 2.4 we

discuss determinants of public reserve prices, secret reserve prices, and BINs. In section

2.5 we test determinants of sale prices.

2.1 Data

To study the behavior of sellers on eBay we use the data on used tractors sold in eBay

auctions between 11/17/04 and 5/30/07. Our data consists of two components: (1) a com-

plete account of all auction sales on eBay between 11/17/04 and 5/30/07 without bidder

characteristics, and (2) bidder characteristics and actual bids for a portion of auctions held

on eBay between 11/17/04 and 5/30/07. Since we don’t have realized bids and bidder

characteristics for a majority of auctions held on eBay, for the analysis of a seller behavior

we construct a smaller sample of auctions with complete information on bids and bidder

characteristics6. To give an idea about the market for tractors on eBay, we first present in-

formation about all auction sales of tractors held on eBay between 11/17/04 and 5/30/07.

However, when we discuss tractor characteristics, we present information only about those

tractors, for which we have complete information on bids and bidder characteristics7.

A cursory look at outcomes of sales of tractors in eBay auctions suggests that many

auctions are not successful and a vast number of tractors are not sold on eBay. This is

a mystery, especially, if we recall that auctions have an advantage over other sale formats

6There is a sizeable share of auctions with missing information about tractor characteristics such as horse
power and year of production. We use tractor model numbers to recover these parameters from outside
sources. The main source of the outside data is www.tractor-data.com.

7All the auctions with missing bidder characteristics are auctions taking place in 2006 and 2007. We find a
bias in the sub-sample of auctions with known bidder characteristics: for example, the average tractor horse
power in the sub-sample of auctions with known bidder chracteristics is less than the average horse power in
the full sample by 1.43 HP. This difference is statistically significant at 1% level with t-statistic of 15.421.
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(such as posted price sales) in terms of a higher probability of success. There is a reasonable

suspicion that many of these unsold tractors are relisted over and over again. We are able

to match tractors from multiple listings and construct a dataset of tractors with multiple

relistings8. We present the data on all repeated and single auction sales of tractors held on

eBay between 11/17/04 and 5/30/07 in Table 2.1.

Listing patterns Number Number Percent

listed sold sold

Single listing 23253 13251 56.99

2 listings 4031 1448 35.91

3 listings 1069 344 32.19

4 listings 404 117 28.96

5 listings 197 60 30.46

6 listings 102 30 29.41

7 listings 61 20 32.79

8 or more listings 111 34 30.63

Total number of unique tractors 29228 15304 52.36

Notes: Single listing tractors might have been listed multiple times prior

to 11/17/04, when the earliest observations in our data first appear.

Table 2.1. Auction sales of tractors on eBay between 11/17/04 and 5/30/07

We can notice two regularities by looking at Table 2.1. First, many tractors are delisted

from eBay auctions after being unsuccessfully auctioned9. In fact, only about a half of all

8When deciding whether it is the same tractor with multiple listings or different tractors, we use informa-
tion on seller id’s, whether the prior sale was successful, tractor characteristics, and engine hours.

9By "delisted" we mean unsuccessfully auctioned tractors that are not sold in auctions again. It is possible
that some unsuccessfully auctioned tractors are relisted on eBay under a different sale format (such as, for
example, an eBay posted price sale). In this dataset we do not have information on eBay posted price sales.
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tractors are successfully sold even if we account for relistings. The highest share of suc-

cessfully sold tractors is found among tractors which were listed only once10. The second

interesting regularity is that the share of sold tractors across multiple relistings is stable

and on average does not diverge from a 30% success rate.

Next, we present the data on times between listings for tractors listed twice. Table 2.2

shows that a half of unsuccessfully sold tractors are relisted within 3 days after the end

of an unsuccessful sale and almost 30% of unsuccessfully sold tractors are relisted within

the same day. The maximum time between listings for tractors listed twice is 540 days, or

about a year and a half. The average time between listings is 17.36 days.

Duration between relistings Number of 2-stage auctions Percent

less than 1 day 1201 29.79

1-3 days 811 20.12

4-7 days 559 13.87

8 days to 2 weeks 439 10.89

2 weeks to 1 month 525 13.02

from 1 month to 2 months 262 6.50

more than 2 months 234 5.81

Total 4031 100.00

Table 2.2. Times between listings for tractors listed twice

Sellers on eBay can choose the duration of their auctions. In our data the maximum

duration of auctions is 10 days and the minimum duration of auctions is less than 1 day.

More precisely, 30% of auctions last less than 7 days, 53% of all auctions last exactly 7 days

and about 18% of auctions last 10 days.

10Note that tractors with 1 listing might have been listed multiple times prior to 11/17/04, when the earliest
observations in our data first appear.
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We present the data on various auction parameters used by sellers of tractors on eBay in

Table 2.3. Sellers on eBay have a choice to set three parameters before running an auction:

a public reserve price (PRP), a secret reserve price (SRP), and a buy-it-now price (BIN)11. A

public reserve price defines the minimum bid from which participating bidders must start.

A secret reserve price defines the unobservable reserve price, which the highest bid must

exceed to successfully end an auction. If the highest bid is below a secret reserve price by

the end of an auction, the item goes unsold and the auction ends unsuccessfully. Although

a secret reserve price is not observable, bidders can see an indicator "Reserve Not Met" if

there is an unmet secret reserve price in an eBay auction listing. The secret reserve price

indicator disappears, once a bid exceeds it. A seller can adjust her secret reserve price at

any time before the last 12 hours of an active auction. In the last 12 hours of an auction an

active secret reserve price cannot be changed or deactivated.

Auction parameter Observability eBay fee for tractors

Public reserve price Fully observable $5

Secret reserve price Unobservable price, $5

observable indicator

Buy-it-now price Observable prior to if listing� 50 items/month,

auction, unobservable later free, otherwise $0.25/listing

Table 2.3. Parameters in eBay auctions

A BIN is a publicly observable temporary sale price at which any bidder can purchase

an item before the start of an auction. Any indicator of a BIN or its presence disappears
11On eBay a public reserve price is called a starting price, while a secret reserve price is called a reserve

price. To avoid confusion, in the rest of the paper we adopt the standard terminology from auctions literature
rather than the terms used on eBay.
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in an auction without a secret reserve price, once any bidder makes a bid. If a BIN is

used together with a secret reserve price, then the BIN indicator is observable until a secret

reserve price is met. We present a description of these three parameters and fees for using

them in auctions for tractors12.

In the next two tables we present the data on the use of different auction parameters

across sales with one and two listings. We can see that at least a third of sellers use a

public and a secret reserve price at the same time. Further, more than a half of sellers of

tractors with two listings and 46% of sellers of tractors with a single listing employ secret

reserve prices alone or in combination with a public reserve price and a BIN. We can also

see that the use of secret reserve prices is more than 6% higher in the first listing than in

the second listing for tractors listed twice and that the use of a public reserve price and

a secret reserve price in the first listing (all unsuccessful auctions) among tractors listed

twice is much higher than the use of a public and a secret reserve price for tractors listed

only once.

12eBay fees for using public/secret reserve prices and BINs depend on an item category.
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Features used Number Percent

Auctions with a public reserve price (PRP) (>$100) 15573 66.97

Auctions with a secret reserve price (SRP) 10705 46.04

Auctions with a buy-it-now price (BIN) 5208 22.39

Auctions with PRP and SRP 7544 32.44

Auctions with PRP, SRP and BIN 1925 8.28

Auctions with SRP and BIN 2861 12.30

Auctions without any features 4135 17.78

Total number of tractors listed once 23253 100.00

Table 2.4. The use of different auction features for tractors listed only once

Features used First listing Second listing

Number Percent Number Percent

Auctions with a public reserve price (PRP)(>$100) 3763 93.35 3301 81.89

Auctions with a secret reserve price (SRP) 2314 57.41 2064 51.20

Auctions with a buy-it-now price (BIN) 1250 31.01 1375 34.11

Auctions with PRP and SRP 2094 51.95 1506 37.36

Auctions with PRP, SRP and BIN 643 15.95 533 13.22

Auctions with SRP and BIN 724 17.96 751 18.63

Auctions without any features 45 1.12 136 3.37

Total number of tractors listed twice 4031 100.00 4031 100.00

Table 2.5. The use of different auction features for tractors listed twice
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In the next table and two figures we present the data on tractor characteristics, seller

ratings, and the number of bidders in those auctions, for which we have complete infor-

mation about all realized bids and all bidders. Table 2.6 shows that the average number

of bidders in auctions with complete bidder information is about 8.5 with a minimum of 1

and a maximum of 32. Since we don’t have complete information on bids for all auctions,

we cannot identify auctions with zero entry from auctions with missing bidder characteris-

tics. This is why we do not have auctions with zero entry in our sample and the minimum

number of bidders in our sample is 1.

Number Mean Standard Min Max

of observations Deviation

Number of

bidders 12429 8.469 5.282 1 32

Seller feedback score 12429 201.652 937.296 0 80282

Tractor age 12429 22.212 16.749 0 80

Tractor horse power 12429 42.076 29.446 10 150

Table 2.6. Tractor characteristics in auctions with complete bidder information

Table 2.6 shows that the average age of tractors in our data is more than 22 years and

68% of tractors range in age from 5.5 years to 38.9 years. The distribution of tractors by

age is given in Figure 2.1. By looking at the figure we can see that there are two clearly

identified modes. The first mode is located at the age of 1 and the second mode is located

at the age of 25. We think that the bimodal distribution of tractor ages can be explained

by practices of manufacturers of tractors. Manufacturers of tractors usually update their
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production lines from 4 to 10 years. As a result, sellers of used tractors on eBay have a

stronger incentive to sell their tractors once new generations of tractors become available.

The mode at the age of 1 clearly captures sales of the latest generations of tractors, while

the mode at the age of 25 captures sales of tractors of previous 2 or 3 generations, when the

difference between tractor characteristics from the current generation and the past gener-

ations becomes more critical.

Figure 2.1. Age of Tractors
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Figure 2.2. Tractor HP

We present the distribution of tractors by horse power in Figure 2.2. In general, tractors

can be separated into three categories by horse power: lawn tractors, small or compact

utility tractors and utility tractors. Lawn tractors rarely exceed 20 HP in power and are

used for mowing lawns or carrying relatively light loads. Small or compact utility tractors

range in power from 20 HP to 40 HP and are the most popularly used tractors for everyday

farming needs. Utility tractors range in power from 40 HP to 300 HP and are used for

cropping, construction, and other heavy duty tasks. The distribution of tractors by horse

power in Figure 2.2 shows that the most frequently listed tractors are either lawn tractors

with HP below 20 or compact utility tractors with HP between 20 and 40.

2.2 Model and Predictions

In this section we discuss the model of bidder and seller behavior on eBay. The bidder

behavior in eBay auctions has been extensively discussed (see Hasker and Sickles (2010)

for the latest survey), and it can be described as "proxy bidding." To participate in proxy

bidding in an eBay auction, a bidder has to specify the maximum willingness to pay. A
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computer then raises bids in increments from the minimum starting price set by the seller

and up to the value indicating the maximum willingness to pay specified by the bidder. A

winning bidder is notified by E-mail about the winning price after the end of an auction.

Bidders can raise values of their willingness to pay or to make bids personally at any time

during an auction.

Given the rules of proxy bidding, the key feature of an eBay auction is that bidders

incur minimum participation costs. Since bidding on eBay does not require bidders’ phys-

ical participation and is free, a typical bidder does not have to face any participation costs

aside from the search costs.

Since bids increase and a winning bidder pays an increment above the second highest

bid in an eBay auction, we use a theoretical model of a static ascending second-price auc-

tion to model bidder behavior13. We further assume that bidders’ valuations have a finite

common support [0, v] and are identically and independently distributed. The indepen-

dence assumption is used to capture the fact that we study a market of used goods with

an unlikely possibility of a post-auction resale14. We further allow that bidders engage in

"sniping," or that bidders place their bids in the last minutes of an auction closing time15.

According to Ockenfels and Roth (2006), the main consequence of sniping is that some

bidders are not able to place their highest bids before an auction closing time. As a result,

the realized bids of non-winning bidders may not reflect the bidders’ valuations of an item

on sale.

According to bidding strategies in an ascending second-price auction with sniping, the

winning bidder in an eBay auction for used tractors bids the second-highest valuation or

13By the static ascending second-price auction we mean a standard second-price auction without resale or
relisting and satisfying the assumptions of Myerson (1981).

14Unfortunately, it is impossible to identify if tractors are bought for resale, because we do not observe
tractors’ serial numbers and we do not have data on the fate of purchased or unsold tractors outside eBay.

15We find that 36.23% of auctions in our sample have at least one bid placed in the last minute of an auction
closing time.
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some value below the second-highest valuation16. All other bidders bid their true valua-

tions or some values below them. As a result, if an eBay auction is unsuccessful and there

is no winner, the seller and the bidders observe true valuations of all participating bidders

or some values below them, and if an auction is successful and the item is sold, the seller

and the bidders observe true valuations or some values below them of all participating

bidders but the winner. Hence, we state our first two assumptions about bidder behavior

in eBay auctions.

Assumption 2.1. Bidders’ cost of participation is zero.

Assumption 2.2. Bidders’ valuations are identically and independently distributed on

a finite support [0, v].

It is harder to formalize seller behavior on eBay, because in the theoretical auction lit-

erature seller behavior is analyzed under the same informational assumptions as bidder

behavior. In particular, it is usually assumed that seller and bidder valuations are realiza-

tions of the same distribution function, and that the seller and bidders know this distribu-

tion function but do not know each others’ realized valuations. Under the assumption that

the seller knows the distribution function of bidders’ valuations, the sole role of a profit-

maximizing seller is to calculate and set an optimal public reserve price before the start of

an auction.

As we can see the actual eBay auction format gives a much richer set of actions to a

seller. In addition to choosing a sale format, which is beyond the scope of discussion of

this chapter, in a standard eBay auctions a seller can set a public reserve price, a secret

reserve price and a buy-it-now (BIN) price.

The function of a public reserve price depends on whether bidders’ valuations are inde-

pendently distributed or have a commonly distributed component. If bidders’ valuations

16Due to sniping, there is a positive probability that the second-highest bidder is not able to bid her true
valuation and the winning bid is below the second-highest valuation.
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are independently distributed, then according to Myerson (1981) and Riley and Samuel-

son (1981), a public reserve price screens out low valuation bidders. If bidders’ valuations

have a commonly distributed component, then Cai, Riley, and Ye (2007) show that a public

reserve price is a credible signal of the value of the item on sale.

The second parameter available to a seller is a secret reserve price. An important differ-

ence between a secret reserve price and a public reserve price is that a secret reserve price

does not restrict bidders’ entry, and bidders with valuations below a secret reserve price

can freely participate in an auction.

The last parameter available to a seller on eBay is a buy-it-now (BIN) price. A seller can

set a price at which the item on sale can be sold immediately before the beginning of an

auction. Once the first bid greater than the secret reserve price (when applicable) is made,

the BIN and any indicator of its presence disappear and no bidder can observe the BIN

later.

Before we continue discussing seller choice of reserve prices and a BIN, we need to

specify how bidder behavior is affected by these parameters. Before we proceed, we as-

sume that bidders and the seller are risk-neutral.

Assumption 2.3. Bidders and the seller are risk-neutral.

The impact of a public reserve price on bidder behavior has been extensively discussed

in the literature, and under assumption 2.2 it amounts to limiting the participation of bid-

ders with valuations below some threshold level. If assumption 2.2 is violated and bidders’

valuations have a commonly distributed component, then a public reserve price signals the

quality of an item on sale and raises bids of participating bidders. Nevertheless, whether

assumption 2.2 is violated or not, when a public reserve price is present, no bidder with a

valuation below the public reserve price should enter an auction.
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Mathews (2003) has discussed the optimality of temporary BINs used on eBay and the

effect of such BINs on bidder behavior17. He shows that in a particular case when bidders

and a seller are risk-neutral, there is an equilibrium in which a profit-maximizing seller

sets a BIN equal to the upper bound of the support of the distribution function of bidders’

valuations, while bidders bid without taking the BIN option. When the seller is risk-averse,

in equilibrium the seller sets the BIN below the upper bound of the support of valuations,

while bidders take the BIN option with a positive probability. Using Mathews’ result, we

conclude that under risk-neutrality, the presence of a BIN in an eBay auction should not

affect bidders’ participation rates and bidding strategies.

However, whenever a BIN is used together with a very high secret reserve price, a

temporary BIN effectively turns into a permanent BIN, since by eBay rules a BIN is active

as long as the secret reserve price is not met. In this case, Hidvegi et. al. (2006) show

that a bidder’s equilibrium strategy depends on whether her valuation is above or below

an active BIN. If the bidder’s valuation is below an active BIN, then the bidder should

truthfully bid up to her valuation. If the bidder’s valuation is above an active BIN, then

the bidder should bid truthfully until winning an auction or until reaching some threshold

value after which the bidder should take the BIN.

The theoretical discussion of a secret reserve price and its effect on bidder behavior has

received only limited attention in the theoretical literature. The available studies view a

secret reserve price as an alternative to a public reserve price, and assume that a secret

reserve price plays the same screening role as a public reserve price, however, without

limiting the entry. For example, Vincent (1995) argues that if bidders are risk-averse, then

in a common-value environment a secret reserve price may have an advantage over a

public reserve price by encouraging entry.

17The difference between a temporary BIN used in eBay auctions and a permanent BIN used in other selling
formats is that a temporary BIN disappears once an auction starts, while a permanent BIN stays available
during the course of the whole auction. For discussion of a permanent BIN, see, for example, Hidvegi et. al.
(2006).
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Based on assumption 2.1 that bidders’ participation costs in a standard eBay auction

are zero, we also argue that the presence of a secret reserve price should not affect bidders’

entry as long as there is a non-zero probability of winning an auction. The next question

is whether participating bidders have a different bidding strategy in the presence of a

secret reserve price. The answer to this question depends on whether participating bidders

acquire any additional information by observing the presence of an active secret reserve

price and whether bidders obtain any additional payoff in an auction with a secret reserve

price.

We argue that the presence of a secret reserve price in a single-stage ascending second-

price auction does not reveal any additional information to bidders nor does it give any

additional payoff above the standard expected bidder payoff18. Hence, if bidders partici-

pate in a single-stage ascending second-price auction with a secret reserve price, we should

not observe any changes in the bidder behavior from an equilibrium bidder strategy in a

single-stage ascending second-price auction without a secret reserve price. However, if

the same bidders participate in several auctions for the same item and with secret reserve

prices in one or more listings, the informational structure of bidders and bidders’ expected

payoffs should change. In particular, if bidders participate in a repeated ascending second-

price auction with a secret reserve price in each stage, (a) the bidders are able to update

their beliefs about the secret reserve price at the end of each unsuccessful stage, and (b) the

bidders should take into account an expected discounted payoff from participating in all

auction stages under an evolving information structure. To simplify analysis, we assume

that bidders do not participate in more than one stage of an eBay auction with multiple

relistings.

Assumption 2.4. Bidders participate only in one stage of auctions with multiple relist-

ings.

18By a single-stage ascending second-price auction we mean a standard static second-price auction without
resale or relisting and satisfying the assumptions of Myerson (1981).
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Given assumptions 2.1, 2.2, 2.3, and 2.4 we are ready to define bidder strategies in an

eBay auction with one or more relistings in the presence of a public reserve price, a secret

reserve price, and a BIN.

Proposition 2.1. Let [0, v] be a finite support of the distribution function of bidders’ valuations,

r � 0 be a public reserve price, s � 0 be a secret reserve price, b � 0 be a buy-it-now price, and N

be a number of bidders. Then under assumptions 2.1, 2.2, 2.3, and 2.4, the following holds:

a) Conditional on a bidder’s valuation exceeding the public reserve price r, it is a weakly domi-

nant strategy for the bidder to enter an auction if the lower bound of the support of a secret reserve

price is the public reserve price r.

b) Equilibrium bidding strategies in an eBay auction with r,s,b, N bidders and sniping coincide

with equilibrium bidding strategies in an eBay auction with r, without s, N+1 bidders, and sniping.

In the proof we concentrate on bidders’ decision to participate only in the presence of

a secret reserve price. For the discussion of bidders’ strategies in the presence of a public

reserve price, see Myerson (1981). For the discussion of bidders’ strategies in the presence

of a temporary BIN and a permanent BIN, see respectively Mathews (2003) and Hidwegi

et. al. (2006).

Proof:

Under symmetry of distribution functions of bidders’ valuations, let N be the number

of bidders in an auction, vi 2 [0, v] be a valuation of a representative bidder i, bi 2 [0, vi]

be an equilibrium bid of bidder i, and assume that vi � r. Since bidder i does not observe

a secret reserve price, bidder i treats the secret reserve price s as a random variable with a

support [s, s]. Under the assumption that the lower bound of the support is s = r, costless

bidding, and if bidder i follows an equilibrium bidding strategy in a second-price auction

as in Myerson (1981), bidder i’s expected payoff from entry is (vi � bi)Prob(bi � bj 6=i, bi �

s, bi � r)� 0. If bidder i does not enter, then bidder i’s payoff is zero. Hence, it is a weakly
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dominant strategy for bidder i to enter an auction if the lower bound of the support of the

secret reserve price s is s = r.

To see that part (b) is true, note that the formulation of the problem with a secret reserve

price, a public reserve price and N bidders in Proposition 2.1 is identical to the formulation

of a problem with a public reserve price and N + 1 bidders, where the (N + 1)st bidder’s

valuation is s 2 [s, s]. Hence, bidder i’s equilibrium bidding strategy in an ascending

second-price auction with sniping, N bidders, a public reserve, and a secret reserve co-

incides with an equilibrium bidding strategy in an ascending second-price auction with

sniping, N + 1 bidders, a public reserve, and no secret reserve. �

Given the equilibrium strategies of bidders in the presence of a secret reserve price,

we can discuss the seller equilibrium behavior. We relax the standard assumption that the

seller knows the distribution function of bidders’ valuations and assume that the seller

neither perfectly knows the distribution function of bidders’ valuation nor knows its sup-

port.

Assumption 2.5. A seller does not have perfect knowledge of the distribution function

of bidders’ valuations and its support.

If the seller does not know the distribution function of bidders’ valuations, then she

cannot set an optimal public reserve price and an optimal BIN. Hence, it is natural to ex-

pect that the seller may want to gather some information about the distribution function

of bidders’ valuations, if the cost of such information is sufficiently low and the future dis-

count factor is one. The natural place to gather such information is an ascending auction

itself. An ascending-price auction is the best source of information about the distribution

function of bidders’ valuations as opposed to a descending-price auction or a posted price

sale, because in an ascending-price auction unsuccessful bidders reveal the most accurate

information about their valuations. The main drawback of an ascending auction is that
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the winning bidder may not reveal her valuation19. However, if the item does not sell

and there is no winner, even in the presence of sniping a seller is able to gather the most

accurate information about valuations of all participating bidders. Hence, if the cost of

running an unsuccessful ascending-price auction is small and an uninformed seller cares

only about learning the distribution function of bidders’ valuations, then the seller has an

incentive to run an unsuccessful ascending-price auction to learn the distribution function

of bidders’ valuations to form a belief about the distribution function of bidders’ valua-

tions.

The use of an ascending-price auction in this fashion relies on three key elements: the

low cost of an unsuccessful auction in terms of a physical cost and foregone time, a suf-

ficient entry in an auction, and the ability to run an auction without selling an item. All

three elements are available to a seller on eBay. The cost of running an eBay auction varies

across item categories. In our particular case, the cost of listing a tractor is $20, the cost

of using a public or a secret reserve price is $5, and the cost of using a BIN never exceeds

$0.25. Hence, the total cost of unsuccessfully auctioning a tractor on eBay with a secret

reserve price at most amounts to $25.2520.

The assumption that sellers who use auctions to learn distributions of valuations do

not discount the future is based on the observation that we should observe a self-selection

of patient sellers into such auctions, since rational sellers should expect a low probability

of success in auctions with secret reserve prices. This claim is further reinforced by the

empirical finding that about 63% of relists occur within 7 days after an unsuccessful listing.

Given these considerations we are ready to state our next assumption.

Assumption 2.6. A seller has the future discount factor of 1 and faces negligible costs

of running an unsuccessful ascending-price auction on eBay.
19It is a weakly dominant strategy to reveal valuation for the winner only in an ascending sealed-bid second-

price (Vickrey) auction.
20The cost of an unsuccessful auction with a secret reserve price does not include a final value fee, which a

seller has to pay if the item sells. For tractors sold in eBay auctions the final value fee is %1 of the sale price
with a maximum of $250.
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The second key element is that bidders enter an eBay auction with a secret reserve price

and always bid according to equilibrium strategies of a single-stage ascending second-

price auction with sniping. By part (a) of Proposition 2.1, it is a weakly dominant strategy

to enter an auction with a secret reserve price, and by part (b) of Proposition 2.1, partici-

pating bidders use equilibrium bidding strategies of a single-stage ascending second-price

auction with sniping.

Lastly, the ability of an uninformed seller to run an ascending-price auction without

selling an item relies on the availability of a secret reserve price in eBay auctions. In par-

ticular, the ability to set an unmet secret reserve price allows an uninformed seller to run

an ascending second-price auction without selling an item and without limiting entry. In

the next proposition we state how a seller should set an equilibrium secret reserve price.

Proposition 2.2. Let [0, v] be an unknown support of the distribution function of bidders’

valuations, s � 0 be a secret reserve price, and b � 0 be a BIN price. Then under assumptions 2.1,

2.2, 2.3, 2.4, 2.5, and 2.6, in equilibrium an uninformed seller, who does not discount the future,

sets a secret reserve price equal to the maximum of the highest order statistic of the distribution

function of bidders’ valuations.

Proof: First, assume that the seller knows the support of the distribution function [0, v]

but does not know the distribution function itself. Then, according to Mathews (2003), a

risk-neutral seller should set a temporary BIN equal to v, while a risk-averse seller should

set a temporary BIN to some value below v. Hidvegi et al. (2006) show that whether a

seller and bidders are risk-neutral or not, a seller should set a permanent BIN above or

equal to the expected highest valuation of a symmetric bidder.

Next, by Proposition 2.1, the most complete revelation of bidders’ valuations in an

ascending-price auction is achieved if the seller sets a secret reserve price s above or equal

to v, s � v. Under the assumption that the distribution function of bidders’ valuations is
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discrete, the seller obtains a strictly positive expected payoff by setting the secret reserve

s equal to v. If the distribution function of bidders’ valuations is continuous, then it is a

weakly dominant strategy for an uninformed and a patient seller to set a secret reserve

price s equal to v. There is an infinite number of mixed-strategy equilibria in which an

uninformed and patient seller sets a secret reserve price s to v with a non-zero probability.

There is no pure strategy equilibrium where the seller sets the secret reserve price s above

v with probability 1, because in this case no bidder enters in equilibrium.

Since the seller does not know v, she should set a secret reserve price equal the sample

analogue of v, which is the maximum of the highest order statistic. �

We need to emphasize several important premises and consequences of Proposition 2.2.

First of all, an uninformed seller should set a secret reserve price equal to the maximum

of the highest order statistic only if the cost of relisting in terms of time and resources is

zero. If the seller faces a sizeable cost of relisting, then there is the usual trade-off between

acquisition of an additional information and foregoing profits from selling earlier. If this

is the case, a seller is better off lowering a secret reserve price to capture expected profits

from selling an item earlier.

Second, under assumptions of Proposition 2.2, an uninformed seller should set a secret

reserve price to the maximum unsuccessful bid across all unsuccessful prior auctions. This

result holds independently of whether bidders engage in sniping or not. Even if some bid-

ders are not able to place their highest bids with a positive probability due to sniping, in

the absence of any other information about the distribution function of bidders’ valuations

the highest unsuccessful bid across all unsuccessful auctions is the most accurate statistic

of the upper bound of the support of valuations. Further, note that the maximum unsuc-

cessful bid across all unsuccessful prior auctions is a random variable with a support [r, v],

where r is a public reserve price and v is the upper bound of the support of the distribution

function of bidders’ valuations. Hence, by part (a) Proposition 2.1 in equilibrium a seller
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should observe an non-zero entry in an eBay auction with a secret reserve price.

Third, the seller’s choice of an optimal BIN depends on her attitude toward risk and

whether a BIN is used together with a secret reserve price or not. If the BIN is used without

a secret reserve price, then by rules of eBay the BIN is essentially a temporary posted price,

and according to Mathews (2003), a risk-neutral seller should set the BIN equal to v, while a

risk-averse seller should set the BIN equal to some value below v21. Under the assumption

that the seller has no knowledege of the upper bound of the support v, we assume that the

seller should use the maximum of the highest order statistic as a proxy for v.

If the BIN is used together with a secret reserve price, then the BIN essentially turns

into a permanent posted price, since by rules of eBay, whenever a BIN and a secret reserve

price are used together, the BIN is active as long as the secret reserve price is not met.

According to Hidvegi et. al. (2006), in this case if either the seller or buyers are risk-averse,

the seller should set the BIN at least to the bidders’ expected highest valuation.

Last, when a BIN and a secret reserve price are used together, there is an equilibrium

in which a BIN and a secret reserve price are simultaneously set to the upper bound of the

support of the distribution function of bidders’ valuations or to its sample analogue. In this

case bidders can infer the size of a secret reserve prices by observing the BIN. As a result,

a secret reserve price is no longer a random variable from the standpoint of bidders and

entry strategies of bidders should change. However, by rules of an eBay auction, a seller

can change a secret reserve price at any time prior to the 12 hours of an auction closing

time. This gives bidders an incentive to participate in an auction with a secret reserve

price and a BIN even if their valuations are below the BIN. We test whether bidders infer

sizes of secret reserve prices from BINs by estimating the effect of a simultaneous presence

of a BIN and a secret reserve price on entry. We find that the simultaneous use of BINs and

secret reserve prices has a small though statistically significant negative effect on entry22.

21Note that if the BIN is used without a secret reserve price, it disappears once the first bid is made.
22For the results of this test see Table A2 in the appendix.
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2.3 Estimation Strategy and Identification Problems

To analyze seller behavior in eBay auctions, we construct determinants of public and

secret reserve prices from distributions of bids, which sellers observe in eBay auctions. We

assume that sellers form their beliefs about distribution functions of bidders’ valuations

by observing bids in eBay auctions of similar items or from unsuccessful eBay auctions

for their own items23. To avoid making assumptions about sellers’ beliefs of distribution

functions of bidders’ valuations, we use a non-parametric density estimator with a normal

kernel to estimate distribution functions of bidders’ valuations.

To resolve the issue with the lack of data given the non-parametric approach we make

the following assumptions. First, we reduce the number of dimensions according to which

bidders form their valuations of a tractor down to just three. These three dimensions are an

age of a tractor, a horse power of a tractor, and a brand of a tractor. Second, we discretize

each dimension to allow for a sufficient number of observations for a non-parametric esti-

mation. In particular, we allow only three categories of age: 0-10 years old, 11-30 years old,

and above 30 years old. Similarly, we allow only three categories of horse power: up to 20

HP, 21-40 HP, above 40 HP, and we allow only two categories of brand: whether a tractor

is manufactured by John Deere or not. Thus, totally we have 18 categories of tractors.

The discretization of tractors in this way is driven by the types of tractors in each cate-

gory. The division by age reflects whether a tractor on sale is of the current generation, the

past two or three generations, or is an antique tractor.

The division of tractors by horse power captures the intended purpose of tractors. Trac-

tors up to 20 HP are smaller lawn tractors such as mowers, while tractors with 21-40 HP

are compact utility tractors used for everyday farming needs. Tractors with horse power

above 40 HP are utility tractors used for heavier tasks such as cropping or construction.

23Einav et. al. (2012) make a similar argument - they argue that many sellers use online markets not only
to sell their items per se, but also for experimenting with an optimal selling strategy by relisting their items
multiple times with varying auction parameters or sale formats.
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The division of tractors by John Deere brand and non-John Deere brands is driven by

the popularity of John Deere tractors among farmers and the large number of John Deere

tractors in the data.

To obtain an untruncated distribution of valuations we use bids only from auctions

with a public reserve price of at most $10024. In addition, we ignore multi-stage auctions

where there are two or more identical bidders participating in more than one stage of

a multi-stage auction. We do so to remove the strategic component from the analysis,

since repeated bidders and a seller may engage in a strategic dynamic behavior25. To

account for the censoring of the highest valuations in successful auctions we run a two-

step procedure26. First, we non-parametrically estimate distribution functions of bidders’

valuations without accounting for the censoring problem. Next, we replace highest bids

in successful auctions with expected valuations calculated by using non-parametrically

estimated distribution functions from the first step27. Given the updated highest bids, we

non-parametrically re-estimate distribution functions.

We use the resulting estimated distribution functions for each tractor category to calcu-

late determinants of auction parameters set by sellers in eBay auctions. It is important to

emphasize that these estimated distribution functions are not unbiased estimates of true

distributions of valuations which bidders have, and the question of whether sellers are

able to control for the bias at least partially is left open for a future study. Nevertheless,

24We do not consider auctions without high public reserve prices, because sellers most likely ignore such
auctions as an accurate source of information about distribution functions of bidders’ valuations given that
such auctions truncate bids and act rather as posted price sales.

25We recognize that by ignoring auctions with repeated bidders we may overlook an important component
from the analysis. However, we leave the analysis of the repeated bidder and seller interaction for a follow up
paper.

26Note that by proposition 1, in a successful auction with sniping the winning bidder never reveals her true
valuation and bids the second highest valuation or some value below it, while all other bidders reveal their
valuations or some values below them.

27We use the standard expression for an expectation of a truncated variable to calculate an expected highest
valuation in a successful auction: E[v] = Prob(v � b) � b+ Prob(v > b) � E[vjv > b], where E[v] is the expected
highest valuation in a successful auction, b is the highest bid in a successful auction, Prob(v � b) is the non-
parametrically estimated probability of bidders’ valuations, and E[vjv > b] is the expectation of the highest
valuation conditional on exceeding the highest bid in a successful auction.
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in the appendix we test for major determinants of the bias. We find that the presence of

secret reserve prices reduces entry of bidders and particularly of low-valuation bidders.

As a consequence, there is an upward bias due to under-representation of valuations in

the left tail of distributions of valuations, which sellers should observe in auctions with

secret reserve prices. Second, we find that bidders’ valuations are not independently dis-

tributed and contain a commonly distributed component. As a result, the highest bids in

eBay auctions overstate their underlying valuations, which also contributes to the upward

bias. Lastly, due to sniping, realized unsuccessful bids do not always reflect underlying

valuations, since some bidders may not be able to place their bids before auction closing

times. Hence, the presence of sniping results in the downward bias. We leave the ques-

tion of which form of the bias dominates the distributions of valuations obtained by sellers

from eBay auctions for a future work.

2.4 Determinants of Auction Parameters

2.4.1 Determinants of Public Reserve Prices

Myerson (1981) and Riley and Samuelson (1981) show that when bidders’ valuations

are independently distributed, it is always optimal for a seller with a positive valuation

of an item on sale to set a non-zero public reserve price and exclude some low-valuation

bidders. The authors further show that the optimal public reserve price should satisfy the

following closed form expression: r�i = xi +
1

λ(r�i )
, where r�i is the optimal public reserve

price for an item i, xi is the seller’s valuation of the item on sale, and λ(r�i ) is the hazard

rate associated with the distribution function of bidders’ valuations and evaluated at the

seller’s optimal public reserve price. When bidders’ valuations have a commonly distrib-

uted component, Cai, Riley and Ye (2007) show that public reserve prices can be used as a

credible signal of the value of the item on sale.
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The test of an inter-dependent versus independent distribution of valuations in the ap-

pendix suggests that bidders’ valuations have a commonly distributed component. Hence,

public reserve prices in auctions for used tractors are used both to exclude low-valuation

bidders and to credibly signal values of tractors on sale.

If public reserve prices are used together with secret reserve prices and if uninformed

sellers use secret reserve prices to learn distribution functions of bidders’ valuations, it is

hard to justify the use of public reserve prices as a screening device. However, if public

reserve prices can serve as a credible signal of quality, then uninformed sellers can obtain

a more accurate right tail of distribution of valuations by setting high public reserve prices

and attracting higher-valuation bidders. Next, we explicitly state the hypotheses about

functions of public reserve prices in eBay auctions for used tractors.

Hypothesis 1 (public): If bidders’ valuations have both an independently and a commonly

distributed component and if sellers use eBay auctions to sell, then the sellers employ public reserve

prices to screen out low valuation bidders and to credibly signal the value of their items on sale.

Hypothesis 2 (public): If bidders’ valuations have both an independently and a commonly

distributed component and if sellers use auctions to gather information rather than sell, then the

sellers use public reserve prices exclusively to credibly signal the value of their items on sale.

In our test of functions of a public reserve price we include determinants accounting for

the screening effect and the signalling effect. To account for the screening effect we include

one over the hazard rate estimated at the public reserve price, where the hazard rate is cal-

culated from non-parametrically estimated distribution functions of bidders’ valuations.

To account for the signalling effect we include the average bid among the determinants of

a public reserve price. Since there is a reasonable suspicion that the public reserve price

may lower the average bid by limiting entry of low valuation bidders, and our estimates

may suffer from a simultaneity bias, in our estimates we use the maximum bid as an in-

strument for the average bid. In addition, we include tractor characteristics such as tractor

age, horse power and brand to capture sellers’ valuations of tractors on sale.
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To test whether public reserve prices are used exclusively for signalling when sellers

use public and secret reserve price at the same time, we interact signalling and screening

determinants of public reserve prices with a dummy for a secret reserve price. The results

of our test are presented in Table 2.7.

Variable IV Fixed Effects IV

1
Hazard ratej(ri)

*(1-Secret res. dummyi) 0.172** (0.088) 0.283*** (0.031)

Average bidi*(1-Secret res. dummyi) 0.257** (0.107) 0.131*** (0.022)

1
Hazard ratej(ri)

*Secret res. dummyi -0.432*** (0.039) -0.333*** (0.022)

Average bidi*Secret res. dummyi 0.563*** (0.028) 0.501*** (0.014)

Engine HPi 15.834*** (2.446) 17.821*** (1.903)

Agei -60.628*** (7.915) -58.539*** (4.436)

John Deerei 918.560*** (134.717) 890.793*** (122.691)

Constant 2516.408*** (337.854) 2480.307*** (126.929)

Overall R2 0.644 0.609

Number of groups 4499

Number of observations 8268 8268

Notes: The dependent variable is the public reserve price above $100;

Max. bidi*(1-Secr. res. dummyi) and Max. bidi*Secr. res. dummyi are used as

instruments for Aver. bidi*(1-Secr. res. dummyi) and Aver. bidi*Secr. res. dummyi;

Observations are clustered by seller ID in FE model; Robust standard errors

in parentheses; ***, **-statistical significance at 1%, 5%;

Table 2.7. Determinants of public reserve prices
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In both models in Table 2.7, when secret reserve prices are not used, the determinants

of a public reserve price accounting for screening and signalling effects are positive and

statistically significant. However, when public reserve prices are used together with secret

reserve prices, the coefficient for one over the hazard rate becomes negative, violating the

screening assumption, while the determinant for a signalling effect in the fixed effects IV

model more than doubles in size in comparison to the case without a secret reserve price.

We interpret this result as an evidence that when sellers use auctions to gather information

about bidders’ valuations and employ secret reserve prices, the sellers use public reserve

prices exclusively to signal the quality of their tractors on sale and to obtain valuations of

their tractors primarily from higher-valuation bidders. However, when sellers use auctions

exclusively to sell their items and do not empoy secret reserve prices, the sellers use public

reserve prices both to screen out low valuation bidders and to signal the quality of their

items.

2.4.2 Determinants of Secret Reserve Prices

To test the purpose of a secret reserve price, we suggest three possible hypotheses.

Under the first hypothesis, a secret reserve price is an alternative to a public reserve price

and is set to screen out bidders with valuations below the threshold level indicated by the

size of a secret reserve price28. Under this hypothesis a secret reserve price is a function

of one over the hazard rate estimated at the secret reserve price and a seller’s valuation

of the item on sale29. The main argument against this hypothesis is the prevalence of a

simultaneous use of public and secret reserve prices in eBay auctions.

Hypothesis 1 (secret): If bidders’ valuations have both an independently and a commonly dis-

tributed component, sellers use secret reserve prices exclusively to screen out low valuation bidders.

28The view of a secret reserve price as an alternative to a public reserve prices has received the most attention
in the literature (see, for example, Katkar and Reiley (2006), Lucking-Reiley et. al. (2007) for empirical tests).

29Under this hypothesis a secret reserve price cannot serve the signalling function of a public reserve price,
because bidders do not observe it.
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Under the second hypothesis a very patient informed seller uses a secret reserve price

to sell at the highest possible price. In this case an informed seller sets a secret reserve

price at the known upper bound of the support of the distribution function hoping that

the highest-valuation bidder enters an auction. Under this hypothesis, an informed pa-

tient seller uses an auction as a posted price sale where the sale price is revealed through

bidding.

There are two main arguments against this hypothesis. The first one is the prevalence

and stability of the share of unsold items in eBay auctions. If sellers had a perfect knowl-

edge of the distribution function of bidders’ valuations and were sufficiently patient, then

we would observe an increase in the share of sold tractors with the number of relistings.

However, we see that the share of sold tractors of about 30% is relatively stable across

relistings. The second argument against this hypothesis is the availability of a cheaper

posted price sale format on eBay, which an informed seller should prefer to a more costly

auction format with a secret reserve price30.

Hypothesis 2 (secret): If bidders’ valuations have both an independently and a commonly

distributed component, informed and patient sellers use secret reserve prices to sell at the highest

possible price.

Under the third hypothesis, a patient uninformed seller uses a secret reserve price to

learn parameters of the distribution functions of bidders’ valuations and to sell an item

at the highest possible price given the knowledge of these parameters. In this case the

equilibrium secret reserve price is set at the seller’s belief about the upper bound of the

support of the distribution function of bidders’ valuations. As the uninformed patient

seller observes unsuccessful bids, she updates her belief about the support and other para-

meters of the distribution function and recalculates the secret reserve price. By Proposition

2.2 the seller’s strategy under this hypothesis is to set the secret reserve price at the max-

30The cost of an unsuccessful posted price sale on eBay is $0.50 as opposed to a US 25.25 dollar cost of
running an unsuccessful auction with a secret reserve price and a BIN. Of course, this argument holds under
the assumption that the pool of buyers in auctions and posted price sales is the same.
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imum of the observed highest order statistic or at the highest bid across all unsuccessful

previous auctions.

Hypothesis 3 (secret): If bidders’ valuations have both an independently and a commonly

distributed component, uninformed and patient sellers use secret reserve prices to learn parameters

of the distribution function bidders’ valuations.

First, we test hypothesis 1 against hypotheses 2 and 3. Under all three hypotheses, an

introduction of a secret reserve price should lower the likelihood of a successful sale. How-

ever, under hypothesis 1, the negative effect of a secret reserve price on the probability of

sale should be of a comparable size as the effect of a public reserve price. The regression

results in Table 2.8 show that a dollar increase in the public reserve price has a small neg-

ative and statistically insignificant effect on the probability of sale, while a dollar increase

in the secret reserve price has a much stronger negative and statistically significant effect

on the probability of sale.

In the next test we explicitly test possible determinants of secret reserve prices. In our

sample we have data on secret reserve prices only in unsuccessful auctions. In successful

auctions the data on secret reserve prices is replaced by sale prices. Further, the secret

reserve prices in our data are the ones that were active in the last 12 hours of auction

closing times. Hence, the secret reserve prices in our data do not necessarily equal the

secret reserve prices set initially at auction start times31. To account for the missing secret

reserve prices in successful auctions, we use average secret reserve prices calculated for

each of the 18 categories of tractors.

31Note that by eBay auction rules a seller can update a secret reserve price at any time before the last 12
hours of an auction closing time.
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Variable Probit Marginal Effect Standard Error

Secret reservei -0.00005*** 0.000002

Public reservei -0.000001 0.000005

BIN pricei -0.000001 0.000001

John Deerei 0.019 0.015

Agei 0.0007 0.0005

Engine HPi -0.0004* 0.0002

Seller feedback scorei 0.00005* 0.00002

Number of biddersi 0.021*** 0.002

Average bidi 0.00003*** 0.00001

Number of observations 13051

Notes: The dependent variable is Sale (Y/N); Standard errors are

clustered by Seller ID; ***,*-statistical significance at 1%, 10%;

Table 2.8. Determinants of a successful sale (pooled data from all auctions)

To construct a sample for the test, we pool together tractors from all relistings. We

ignore single-stage auctions with secret reserve prices, because some single-stage auctions

are relistings of tractors listed before the data was collected and whose determinants we

do not observe.

Lastly, since our test of determinants of secret reserve prices is based on the assumption

that sellers do not have knowledge about distribution functions of bidders’ valuations, it is

necessary to specify initial beliefs of sellers about these distribution functions. We assume

the following process of formation of beliefs. Initially, uninformed patient sellers set their

secret reserve prices by observing highest bids in auctions of similar items. Once they
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are able to run their own unsuccessful auctions and gather information about valuations

of their own tractors, they update their secret reserve prices by incorporating the data

from unsuccessful auctions. To account for the initial beliefs of sellers we average highest

bids from auctions in each of the 18 categories of tractors and include these values among

determinants of secret reserve prices.

In our test of determinants of secret reserve prices we include the following regres-

sors: fbbi,t�k,bbj, 1
λj(si,t)

, xi, mig, where bbi,t�k is the highest bid from all previous unsuccessful

auctions for tractor i with the highest bid made during an unsuccessful auction listing

k 2 f1, 2, 3, 4g, bbj is the average highest bid for a tractor in category j, 1
λj(si,t)

is one over

the estimated hazard rate for a tractor in category j and calculated at the secret reserve

price si,t, xi is the set of parameters accounting for tractor heterogeneity such as tractor’s

age, horse power and brand, and mi 2 f1, 2, 3, 4g is the number of times tractor i was

previously listed.

The results of both models in Table 2.9 allow us to reject hypothesis 1 that sellers use

secret reserve prices to screen out low valuation bidders. In the OLS model, the screening

effect represented by one over the hazard rate is negative and statistically insignificant,

while in the fixed effects model the screening effect is statistically significant but negative,

which violates the screening assumption.

Further, in both models by far the most significant determinants of secret reserve prices

are the highest bids from previous unsuccessful auctions, which capture sellers’ acquisition

of information from running unsuccessful eBay auctions for their individual items, and

average highest bids for tractors in a similar category, which capture sellers’ acquisition of

information from observing eBay auctions for similar items.

To see that secret reserve prices are used by uninformed or partly informed sellers for

the purposes of learning, note that in Table 2.9 the coefficient for the number of relist-

ings is statistically significant and negative. In other words, there is a downward adjust-

ment in secret reserve prices with an additional relisting. This contradicts hypothesis 2
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that informed sellers use secret reserve prices solely to sell at the highest possible prices,

since such informed sellers should not adjust secret reserve prices based on information

acquired from running additional unsuccessful relistings.

Variable OLS Fixed Effects

Highest Bidi,t�k 0.589*** (0.058) 0.521*** (0.133)

Average Highest Bidj 0.553*** (0.119) 0.576*** (0.197)

1
Hazard ratej(si,t)

-0.145 (0.136) -0.463** (0.204)

Agei -16.007** (7.358) -78.649** (32.886)

Engine HPi 17.961*** (6.754) 42.246* (22.774)

John Deerei 1300.824*** (342.253) 2297.449** (904.939)

Number of relistingsi -380.236** (154.887) -349.718** (158.671)

Constant -986.682** (477.178) 374.094 (750.065)

Overall R2 0.759 0.738

Number of groups 489

Number of observations 782 782

Notes: The dependent variable is secret reserve price si,t; Robust standard

errors in parentheses; Observations and errors are clustered by seller ID

in FE model; ***,**,* - statistical significance at 1%, 5%, 10%;

Table 2.9. Determinants of secret reserve prices

To explicitly test hypothesis 2 that informed sellers use secret reserve prices exclusively

to sell at the highest possible prices against hypothesis 3 that uninformed sellers use secret

reserve prices to learn, we regress current secret reserve prices on current and past highest
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bids. If sellers are informed, then the variation in the current secret reserve price should

be better explained by the current highest bid then by the past highest bid. However,

if sellers are uninformed, then the variation in the current secret reserve price should be

better explained by the past highest bid.

Variable OLS Coefficient OLS Coefficient

Highest Bidi,t 0.013 (0.008) 0.017 (0.019)

Highest Bidi,t�k 0.587*** (0.057)

Average Highest Bidj 0.445*** (0.092) 1.001*** (0.080)

Number of relistingsi -369.971** (153.222) 37.384 (222.001)

Agei -12.466* (7.015) -68.589*** (8.793)

Engine HPi 15.409** (6.733) 51.711*** (6.862)

John Deerei 1164.441*** (352.464) 2534.878*** (377.694)

Constant -814.972* (477.040) -1419.283** (598.874)

R2 0.761 0.591

Number of observations 782 782

Notes: The dependent variable is secret reserve pricei,t; Robust standard

errors in parentheses; ***,**,*-statistical significance at 1%, 5%, 10%;

Table 2.10. Informed versus uninformed sellers

The variation in the current secret reserve price in Table 2.10 is better explained by the

past highest bid than by the current highest bid. In fact, in both models in Table 2.10,

the current highest bid is statistically insignificant. Hence, there is more evidence to ac-

cept hypothesis 3 than hypothesis 2. However, since there is a strong correlation between
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highest unsuccessful bids across different periods, it is hard to make a definite claim about

exact determinants of a secret reserve price. In addition, since initially uninformed sellers

become more informed once they run unsuccessful auctions or observe bidding behavior

in auctions for similar items, it is virtually impossible to separate the behavior of a com-

pletely informed seller from the behavior of a partially informed seller by observing only

the variation in secret reserve prices. Guided by these considerations, we do not make a

definite claim that secret reserve prices are used exclusively to learn and that sellers who

use secret reserve prices are completely uninformed.

2.4.3 Determinants of BINs

To test determinants of BINs, we invoke theoretical results of Mathews (2003) and

Hidvegi et. al. (2006). The size of a BIN in an eBay auction depends on whether the BIN

is permanent or temporary. According to Mathews (2003), a risk-neutral seller should set

a temporary BIN equal to the upper bound of the support of the distribution function of

bidders’ valuations, while a risk-averse seller should set a temporary BIN to some value

below the upper bound. According to Hidvegi et. al. (2006), a risk-neutral and a risk-

averse seller should set a permanent BIN at least to the expected highest valuation. Since

the upper bound of the support of valuations is strictly above the expected highest val-

uation, we conclude that a permanent or a temporary BIN in an eBay auction should be

bounded above by the upper bound of the support of valuations and bounded below by

the expected highest valuation.

Under the assumption that a seller does not have perfect information about the dis-

tribution functions of bidders’ valuations, and therefore, cannot set the temporary BIN

to the upper bound of the support of bidders’ valuations, we assume that such an unin-

formed seller uses the highest bid from previous unsuccessful auctions to determine the

upper bound. To account for the expected highest valuation, we use an average highest
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bid for each of the 18 tractor categories. Further, we interact these determinants with se-

cret reserve prices to see whether sellers set BINs differently in auctions with secret reserve

prices.

To test the determinants of BINs, we pool together auctions with 2 or more listings.

We ignore single-listing auctions, because for these auctions we do not observe the highest

unsuccessful bids from previous listings. We presents the results of our test in Table 2.11.

Variable OLS Fixed Effects

Highest Bidi,t�k 1.013*** (0.032) 0.715** (0.358)

Average Highest Bidj 0.151*** (0.058) 0.256 (0.389)

Highest Bidi,t�k*Secret reservei 0.123*** (0.046) 0.368 (0.345)

Average Highest Bidj*Secret reservei -0.042 (0.059) -0.232 (0.346)

Constant 185.674 (266.492) 1183.553 (822.096)

Overall R2 0.936 0.933

Number of groups 219

Number of observations 354 354

Notes: The dependent variable is BINi,t; Robust standard errors in parentheses;

Observations and errors are clustered by seller ID in FE model;

***,** - statistical significance at 1%, 5%;

Table 2.11. Determinants of BINs

The results in Table 2.11 show that independently of whether a secret reserve price is

used or not, by far the most important determinant of a BIN in terms of size and signifi-

cance is the highest bid from previous unsuccessful auctions. Hence, we conclude that in
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eBay auctions sellers tend to set BINs closer to their beliefs about upper bounds of bidders’

valuations rather than to their beliefs about expected highest valuations.

It is important to emphasize that in our tests of determinants of auction parameters the

determinants of BINs and secret reserve prices are identical. We show that the variation in

both BINs and secret reserve prices is largely explained by the variation in previous highest

bids and expected highest valuations. The main difference is in the weights of these two

determinants. While the variation in secret reserve prices is explained almost equally by

the variation in previous highest bids and expected highest valuations, the variation in

BINs is almost exclusively determined by the variation in the previous highest bids only.

Given these findings, we conclude that the data on BINs can serve as a relatively accurate

approximation of the data on secret reserve price, whenever the data on secret reserve

prices is not available or impossible to obtain.

2.5 Determinants of Sale Prices

To test the effect of secret reserve prices on sale prices, we pool together tractors which

were sold after up to 5 relistings on eBay. We test sale effects of reserve prices only for those

tractors which were sold on eBay and discard those tractors which were listed but never

sold on eBay. We do so, because we do not observe final selling prices of unsold tractors as

sellers of such tractors might be using other selling formats or other selling platforms after

delisting from eBay. We also omit observations with more than 5 relistings, because sellers

of such tractors probably use the eBay platform for purposes other than selling or learning

bidders’ valuations 32.

To test sale effects of a secret reserve price, we decompose the total sale effect of a

secret reserve price into an information-acquisition effect and any other possible effect. To

capture the information-acquisition effect of a secret reserve price, we include among the

32We find that several online stores use eBay as an advertising outlet by constantly relisting an item and
providing links to their websites in item description areas.
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regressors the total number of times a secret reserve price has been used. If secret reserve

prices are used to acquire information about bidders’ valuations, then the frequency of the

use of a secret reserve price should serve as an indication of the degree of seller knowledge

about the distribution function of bidders’ valuations. To capture any other possible sale

price effect of a secret reserve price, we include a secret reserve price at the time of a

successful auction listing. In addition, among the determinants of sale prices we include

the total number of relistings, a public reserve price at sale, a BIN at sale, and tractors

characteristics such as age, horse power and brand categories.

Table 2.12 shows that the non-information-acquisition effect of a secret reserve prices,

indicated by the coefficient of a secret reserve price at sale, is positive, statistically sig-

nificant, and comparable in scale to positive sale effects of a public reserve price and a

BIN. The information-acquisition effect of a secret reserve price, indicated by the number

of times a secret reserve price has been used, also has a sizeable positive and a statisti-

cally significant sale effect. Hence, contrary to previous empirical studies of secret reserve

prices, we provide statistical evidence that the use of a secret reserve price has a strong

positive effect on a sale price33.

We believe that previous studies have different results, because they test the impact of

secret reserve prices under the assumption that sellers do not relist items after an unsuc-

cessful sale. Since the presence of a secret reserve price is highly correlated with the prob-

ability of relisting, in the absence of an explicit control for relistings the positive impact of

a secret reserve price on a sale price is neutralized by the negative effect of relistings. In

fact, if we sum up coefficients of the number of times a secret reserve price has been used

and the number of relistings in Table 2.12, the resulting small positive difference becomes

statistically insignificant34.

To make sure that there is no endogeneity problem and the use of secret reserve prices

33See, for example, Bajari and Hortacsu (2003) and Katkar and Reiley (2006).
34The difference between these two coefficients in OLS model has an F-statistic of 0.55 and a p-value of

0.459. In FE model, the difference has an F-statistic of 0.39 and a p-value of 0.534.
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is uncorrelated with an unobserved heterogeneity in the quality of tractors, we regress OLS

residuals from Table 2.12 on the set of regressors in Table 2.12. We find that residuals are

not correlated with any of the regressors35.

Variable OLS Fixed Effects

[Number of times a secret

reserve price is used]i 0.120*** (0.022) 0.103*** (0.034)

[Number of relistings]i -0.106*** (0.029) -0.087** (0.041)

[Secret reserve at sale]i 0.00002*** (0.000003) 0.00001*** (0.000005)

[Public reserve at sale]i 0.00005*** (0.000002) 0.00005*** (0.000007)

[BIN at sale]i 0.00002*** (0.000001) 0.00002*** (0.000004)

Agei -0.027*** (0.0007) -0.025*** (0.002)

Engine HPi 0.008*** (0.0003) 0.009*** (0.001)

Constant 8.744*** (0.040) 8.629*** (0.076)

Overall R2 0.509 0.502

Number of groups 3942

Number of observations 8316 8316

Notes: The dependent variable is log(sale pricei); Robust standard errors

in parantheses; Observations and errors are clustered by seller ID in FE model;

***-statistical significance at 1%; We do not report tractor brand dummies; Tractor

brand dummies are jointly statistically significant at 1% with p-value<0.0001;

Table 2.12. Determinants of sale prices

35We run an additional endogeneity test by regressing a secret reserve dummy on tractor characteristics
such as tractor age, horse power, engine hours and eleven brand categories. We find that tractor age and horse
power are the only statistically significant determinants of the use of a secret reserve price. The rest of tractor
characteristics are not statistically significant suggesting that there is no unobserved tractor heterogeneity
correlated with the use of secret reserve prices.
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To get a better idea about the impact of secret reserve prices on sale prices, we run a

simulation exercise where we implement different strategies of an uninformed seller. To

introduce dynamics into seller actions, we impose a cost of an additional relisting. We

introduce a relisting cost, because by Proposition 2.2, an uninformed seller who does not

face any costs of relisting and cares only about learning the distribution function of bid-

ders’ valuations does not have an incentive to adjust a secret reserve price. In the presence

of relisting costs, the seller has to balance the expected payoff from keeping a secret re-

serve high and learning bidders’ valuations against the expected payoff from selling an

item earlier and avoiding the relisting costs.

In our simulation exercise we impose three kinds of relisting costs. The first cost is

the listing fee of $25. The second one is a future discount factor of 0.99. The third cost is

that the seller’s payoff becomes zero if she does not sell an item after the fifth relisting. To

make our simulation exercise specific, we assume that a seller wants to sell a John Deere

tractor with a 95 HP engine and which is about 37 years old. There are 25 of these tractors

with a public reserve price less than US 100 dollars. We use 104 bids from these 25 tractors

to non-parametrically estimate a cumulative distribution function of bidders’ valuations

and its associated inverse cumulative distribution function. We draw five valuations from

the estimated inverse cdf and calculate the seller’s revenue in an ascending second-price

auction under different regimes.

We assume that the seller is uninformed about the estimated distribution function and

only knows the maximum sale price of John Deere tractors with ages above 30 and horse

power above 40. The maximum sale price of these tractors in our sample is $18988. Under

the first regime, the seller sells an item in an ascending second-price auction without a

public or a secret reserve price. As a result, she does not need to invoke her beliefs about

the parameters of the distribution function and always sells at the second highest valuation

at the first listing.
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Under the second regime, the seller uses a secret reserve price. Since the seller is un-

informed, it is optimal to set a secret reserve price equal to the expected maximum of the

highest order statistic. In our case it is $18988 - the maximum sale price of John Deere

tractors with ages above 30 and HP above 40. Once the seller is able to observe the high-

est unsuccessful bid from the an auction for her specific John Deere tractor, the seller can

adjust the secret reserve price accordingly. We assume that the seller follows a simple up-

dating rule of the following form, St = α � St�1+ (1� α) �Y1
t�1, where St is a secret reserve

at time t, St�1 is the previous period secret reserve, Y1
t�1 is the highest unsuccessful bid in

the previous auction stage, and α, α 2 [0, 1], is the weight the seller attaches to the previous

period secret reserve price.

After the seller sets the initial secret reserve price, we calculate the seller revenue in an

ascending second-price auction given the listing cost of $25 and the draw of 5 independent

valuations from the estimated distribution of valuations for the 37 year old John Deere

tractors with 95 HP. If the highest valuation is below the initial secret reserve price, we

proceed to the next stage, where we draw another set of 5 valuations, subtract $25 listing

fee, and discount the seller revenue at the rate of 0.99. We continue drawing new sets of 5

valuations, charging $25 listing fee, and discounting seller payoff if there is no sale up to

5 times. If there is no sale at the fifth draw, the seller obtains zero payoff. We run 10000

iterations to obtain an average seller revenue for 100 weights α, where α ranges from 0 to

1 with an increment of 0.01. The simulation results are presented in Table 2.13.

The results in the table show that depending on the updating rule, the introduction of

a secret reserve price can raise the simulated mean price quite significantly, however, at

the cost of an additional relisting. For example, the simulated mean seller revenue with

α = 0, where the seller adopts the highest unsuccessful bid as a secret reserve price and

completely ignores the prior secret reserve price, is $1547.7 more than the benchmark case

without a public or a secret reserve price.
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Auction Format and Data Type Mean Price Standard Mean Number

in dollars Deviation of Relistings

Actual data 7947.1 3357.7 1.08

Simulated without Public or Secret Reserve 8333.3 2421.6 1.00

Simulated with Secret Reserve and α = 0 9881.4 1795.5 2.70

Simulated with Secret Reserve and α = 0.15 9979.5 2141.8 2.90

Simulated with Secret Reserve and α = 0.5 8311.2 4773.5 4.50

Simulated with Secret Reserve and α = 0.75 1361.3 3998.5 >5

Simulated with Secret Reserve and α = 1 -125.0 0.0 >5

Table 2.13. Simulated mean price of a 37 year old John Deere tractor with 95 HP

In addition, note that when α = 0 and the seller sets the secret reserve price equal

to the highest unsuccessful bid from the first stage, the seller does not need to relist the

unsuccessfully sold item in an auction in the second stage. Instead, the seller can switch to

a posted price sale with a price equal to the highest bid from the unsuccessful first-stage

auction. Under this strategy that the seller sets a secret reserve price at the maximum of

the highest order statistic, the seller’s revenue from a posted price sale is exactly equal to

the seller revenue from a repeated auction with a secret reserve price and α = 0. Hence,

if sellers in general have weight α = 0 and the cost of a posted price sale is lower than

that of an auction, it is optimal for sellers to switch to a posted price sale after running

just one unsuccessful ascending second-price auction36. This can explain a large number

of delisted tractors after one or two unsuccessful auction rounds in the data.
36Recall that eBay offers a posted price sale format in addition to an auction-type sale format.
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The results in our analysis crucially depend on the assumption that entry is exogenous

and that bidders’ entry decisions do not depend on the presence of a secret reserve price.

However, since the higher revenue in an auction with a secret reserve price is driven by

the ability of a seller to sell to the highest valuation bidder at the highest possible price and

entry decisions of highest valuation bidders are least affected by the presence of a secret

reserve price, we expect that the lack of exogeneity of the number of bidders in auctions

with secret reserve prices should not bias our results too much.

Another critical assumption is that we are assuming that bidders do not act strategi-

cally in repeated auctions and do not shade their bids. This assumption is satisfied for

large sale platforms such as eBay, where many sales are conducted at the same time and

where it is difficult to coordinate participation in repeated auctions37. In live auctions, or

in electronic auctions with costly or restricted entry, the assumption of non-strategic bid-

ders is harder to justify. However, if it is the case that bidders are strategic, then we should

expect the convergence of sale prices in repeated auctions to sale prices in static auctions

as was shown by McAffee and Vincent (1997).

Nevertheless, the results of the simulation exercise show that the use of a secret re-

serve price can potentially raise sale prices if sellers are sufficiently patient and do not face

high costs of relisting, while bidders bid according to strategies of a single-stage ascend-

ing second-price auction and do not take into account the possibility of a future resale.

The cost of this increase in seller revenue is the necessity to run at least one unsuccessful

ascending second-price auction.

37We do not consider sellers’ response to bidders’ strategic behavior in repeated auctions, because in eBay
auction sellers cannot differentiate bidders’ identities and, therefore, most likely treat all bidders as non-
strategic.
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2.6 Concluding Remarks

In this chapter we attempt to explain several stylized facts found in the eBay data such

as the widespread use of secret reserve price, the presence of relisted items and a large

number of unsuccessful sales. We believe that sellers relist their items because they want

to learn bidders’ valuations. We also believe that there are many unsuccessful auctions on

eBay, because uninformed sellers switch to other selling formats after acquiring enough

information by running unsuccessful auctions38. We cannot demonstrate this argument

empirically, because to test this argument, we need data from alternative sales venues

used by sellers who delist their items from eBay or about eBay posted price sales.

In the chapter we give an explanation to why sellers may use a secret reserve price.

We argue that a secret reserve price serves as a cheap and an efficient tool for uninformed

patient sellers to run unsuccessful auctions to learn parameters of the distribution function

of bidders’ valuations. Our findings depends on two key assumptions: that sellers’ do not

know parameters of the distribution function of bidders’ valuations and that sellers can

observe truthful revelation of bidders’ valuations in unsuccessful ascending second-price

auctions.

There are two directions of future empirical and theoretical research. The first direction

is related to the analysis of seller behavior under non-commitment, or in the presence of

strategic bidders, who anticipate that unsold items will be relisted later and who take

this fact into consideration. The empirical analysis of such a model involves a structural

estimation of a dynamic game with evolving state variables.

The second direction of future research involves an analysis of hybrid sales, where an

uninformed seller makes a choice for an optimal selling mechanism as she acquires more

and more information about the distribution function of bidders’ valuations. The analysis

38In particular, sellers can switch to posted prices sales on eBay after running unsuccessful eBay auction
sales.
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of such hybrid sales requires the data on different selling formats and the degree of seller

informativeness.
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Chapter 3

Quality Sorting Between Electronic and Physical Platforms

In this chapter we study a model of quality sorting between electronic and physical plat-

forms. In the model a seller can auction an item with both opaque and transparent quality

attributes in either platform. Bidders can observe perfectly the quality of both the trans-

parent and the opaque attribute in a physical platform. In an electronic platform bidders

can observe perfectly only the quality of the transparent attribute but not the opaque at-

tribute. In the model, a seller pays a commission for listing her item in a physical platform.

There is no commission for listing in an electronic platform. Similarly, bidders do not pay

any fees for participating in either platform. We use Spence’s signalling model (1973) to

derive seller’s equilibrium listing strategy. We find that conditional on the quality of the

transparent attribute, the quality of the opaque attribute in a physical platform is always

no worse than the quality of the opaque attribute in an electronic platform. We further

find that when items on sale have both transparent and opaque attributes, it is impossible

to compare the item’s overall quality in both platforms without restricting bidders’ beliefs

about the quality of the opaque attribute in an electronic platform or without introduc-

ing an additional structure into the model. The main conclusion is that it is not always

true that the overall quality of items in an electronic platform is necessarily lower than the

overall quality of items in a physical platform.

The available studies of unobservable quality in electronic platforms use Akerlof’s

(1970) model of adverse selection (e.g. Lewis (2011), Overby and Jap (2009), Wolf and

Muhanna (2005)). This approach suggests that since quality is unobservable in electronic
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platforms, the items listed in an electronic platform are sold at a discount. This drives

higher quality items to a competing physical platform, where the quality is observable

and there is no price discount. As a result, the overall quality of items remaining in an

electronic platform is lower than in a competing physical platform. We take a somewhat

different approach, and analyze the quality sorting between electronic and physical plat-

forms within the framework of Spence’s (1973) signalling model. We view the seller’s

decision to list in a physical platform or in an electronic platform as an informative signal,

which bidders use to update their belief about the quality of items in an electronic plat-

form. We find that depending on the size of the updated belief, sellers of higher quality

items may list both in an electronic and in a physical platform. Further, we introduce two

quality dimensions and show that without restricting bidders’ beliefs it is impossible to

compare the overall quality of items in competing electronic and physical platforms.

Our model is related to three strands in the literature. The first strand includes mod-

els of asymmetric information. There are two basic frameworks for the analysis of mod-

els with asymmetric information: screening or adverse selection models (e.g. Mussa and

Rosen (1978), Maskin and Riley (1984)) and signalling models (e.g. Spence (1973)). We

use the signalling model to analyze unobservable quality in an electronic platform with

seller’s choice of a listing platform as a signal of quality.

The second strand of related literature is the literature on two-sided platforms (e.g.

Rochet and Tirole (2003), Anderson and Coate (2005), Armstrong (2006)). The literature

on two-sided platforms emphasizes the optimality of fees imposed on platform users by

a platform owner. In our model we introduce only one kind of a platform fee: the com-

mission which the seller has to pay for using the physical platform. There are no other

platform fees in our model. However, our model can be easily extended if we introduce

differentiated fees on bidders and sellers in electronic and physical platforms.

The third related strand involves literature on competing platforms (e.g. Ellison and

Fudenberg (2003), Ellison, Fudenberg, and Mobius (2004)). The key difference between
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our model and the models of competing platforms is our assumption that the number of

bidders per seller is the same in electronic and physical platforms, and a seller does not

affect the seller-bidder ratio by choosing one platform over another. This assumption can

be relaxed if we endogenize bidders’ entry decisions in our model.

Lastly, our model is related to the model of quality sorting between electronic and

physical platforms in Jin and Kato (2007). As opposed to the quality sorting model of

Jin and Kato (2007), we first derive an equilibrium seller strategy and then derive the

quality ranking between the two platforms. The results in our one-dimensional quality

model are similar to the results of the one-dimensional quality sorting model of Jin and

Kato (2007). However, when we introduce two-dimensional quality, our results are nei-

ther consistent with the conclusions of Jin and Kato (2007) nor with the conclusions of our

one-dimensional quality model.

The main advantage of our modelling approach is the ability to extend our model in

multiple directions. By introducing differentiated listing fees on sellers and buyers we

can connect our model to the standard models of two-sided platforms. By endogenizing

bidders’ entry decisions, we can obtain predictions both on the relative sizes of competing

platforms and quality comparisons across platforms.

In the first 4 sections of the chapter we analyze a simple model with a single opaque

quality attribute. In section 3.5 we extend the model and introduce a second transparent

quality attribute. In section 3.6 we discuss the results and in section 3.7 we conclude.

3.1 Sellers

Consider a seller s 2 S who wants to sell an item of opaque quality qi, which can be high

or low, i 2 fH, Lg. Define an item of high opaque quality as type qH and an item of low

opaque quality as type qL. The probability that an item is of each type is determined by

nature and is perfectly observable by all players in the model. In particular, we denote
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the probability of a type qH item by α and the probability of a type qL item by 1� α and

assume that α is common knowledge. A seller has no valuation for the item itself.

A seller s can offer an item of type qi 2 fqH, qLg for sale in an electronic platform or

in a physical platform. The key difference between these two platforms is that buyers can

perfectly observe the opaque quality parameter in a physical platform and cannot observe

the opaque quality parameter in an electronic platform.

By listing an item in a physical platform, a seller pays the physical platform owner a

sale fee of δp, where p is the sale price and δ 2 (0, 1) is a fixed share of the sale price

(commission), where δ is common knowledge. The seller’s listing cost in an electronic

platform is normalized to zero. The sale format in both the electronic and the physical

platform is the same, and it is a second-price open outcry (English) auction1. In the rest of

the discussion we use the terms "platform" and "auction" interchangeably.

3.2 Bidders

A seller s faces Ns potential identical bidders in each platform. Each bidder demands

only one item and derives her valuation of the item of each type from a corresponding

distribution function. A bidder’s valuation of a type qH item, vH, is identically and in-

dependently distributed with a continuous cumulative distribution function FH(v) and

a positive support [0, V]. Similarly, a bidder’s valuation of a type qL item is identically

and independently distributed with a continuous cumulative distribution function FL(v)

and a positive support [0, V]. In addition, we assume that these distribution functions

are stochastically independent, and the distribution function of valuations of a type qH

item first-order stochastically dominates the distribution function of valuations of a type

qL item, or that FH(v) � FL(v) for all v 2 [0, V].

1The results in the model do not rely on the auction format. By the Revenue Equivalence Theorem, when
risk-neutral bidders have independently and identically distributed valuations, the expected price in a first-
price auction and in a second-price auction is the same.
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We assume that bidders are indifferent between participating in an electronic or in a

physical auction, and bidders’ valuations are determined only by their perception of an

item type. We further assume that the number of potential bidders in both platforms is the

same and is always equal to Ns
2.

3.3 Strategies and Payoffs

We assume that a seller of a single item has perfect knowledge of the type of her item

and decides between listing her item in a physical platform or in an electronic platform3.

Hence, the seller employs a behavioral strategy f(β, 1� β), (γ, 1� γ)g, where β 2 [0, 1]

is the probability of listing a type qH item (high opaque quality) in a physical auction,

(1� β) is the probability of listing a type qH item in an electronic auction, γ 2 [0, 1] is the

probability of listing a type qL item (low opaque quality) in a physical auction, and (1� γ)

is the probability of listing a type qL item in an electronic auction.

Since buyers have identically and independently distributed valuations, a represen-

tative bidder employs an equilibrium bidding strategy in a second-price auction, which

depends on the distribution function of valuations given the item’s type. According to

the clock model of Milgrom and Weber (1982), in a second-price open outcry auction a

bidder with identically and independently distributed valuation vi � Fi bids her valu-

ation vi unless she is the last bidder, in which case she bids the price at which the pre-

vious remaining bidder dropped out. Given this equilibrium bidding strategy, by list-

ing an item in a platform with identical bidders who derive their valuations from the

2Since bidders are symmetric, the possibility that the same bidders may participate in different auctions
does not affect the results in the model.

3We rule out the possibility that a seller may list her item in two platforms simultaneously, given that a
sale in any platform is binding. Hence, it is not possible that a seller conducts two sales of a single item at
the same time in different platforms and then chooses a sale with the highest realized price. While some
auctions on eBay or other electronic platforms sometimes intimate that the electronic auction can be truncated
by sale of the item in simultaneous physical auctions, we leave analysis of such a situation as an extension to
be considered in future work.
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same distribution function Fi, a seller obtains the expected price pi =

VZ
0

vdGi(v), where

Gi(v) = NFi(v)N�1 � (N � 1)Fi(v)N is the distribution of the second-highest order statis-

tic4.

Note, however, that both the equilibrium bidding strategy and the expected price pi

depend on the distribution function of bidders’ valuations, which in turn depends on the

bidders’ belief about the type of an item on sale. In particular, since bidders fully observe

the opaque quality parameter of an item listed in a physical platform, for each item type

in a physical auction bidders’ derive their valuations from its corresponding distribution

function. However, when bidders participate in an electronic platform and cannot observe

the opaque quality parameter, they derive their valuations from a mixture distribution

function, which is a convex combination of a distribution function corresponding to an

item with high opaque quality and a distribution function corresponding to an item with

low opaque quality.

Since bidders are identical, they form a common belief about the quality of an item on

sale. Let θ 2 [0, 1] denote the common belief that an item on sale in an electronic platform

is of high opaque quality and (1� θ) denote the common belief that an item on sale in

an electronic platform is of low opaque quality. Then we can introduce expected prices

for each platform given bidders’ beliefs about item types. Since there are two distinct

item types and bidders can perfectly distinguish between them in a physical platform,

we define a menu of two prices in a physical platform. In an electronic platform bidders

cannot distinguish between items of high and low opaque quality; hence, in an electronic

platform we define only one price.

The menu of prices in a physical platform is fpP
H, pP

Lg, where the subscript denotes

quality and the superscript denotes that the price is formed in a physical platform. Each

4For derivation of the expected price, see Milgrom and Weber (1982) or Krishna (2009).

89



price in the menu is defined as follows, pP
i =

VZ
0

vdGi(v), i 2 fH, Lg. The expected price in

an electronic platform, pE(θ), is a function of θ, the bidders’ belief that the item on sale is of

high quality. The superscript "E" denotes that the price is formed in an electronic platform.

Given the belief θ, we define pE(θ) =

VZ
0

vdG(v, θ), where G(v, θ) = N(θFH(v) + (1 �

θ)FL(v))N�1 � (N � 1)(θFH(v) + (1� θ)FL(v))N is the distribution of the second-highest

order statistic for a mixture distribution θFH(v) + (1� θ)FL(v) for all θ 2 [0, 1].

3.4 Equilibrium

Before we proceed to equilibrium predictions, in Lemma 3.1 we derive the ranking of ex-

pected prices in an electronic and a physical platform and the dependence of expected

prices in an electronic platform on the belief parameter θ.

Lemma 3.1

a)For v 2 [0, V], if FH(v) � FL(v), then pP
L � pE(θ) � pP

H for θ 2 [0, 1].

b)For v 2 [0, V], if θ1 < θ2, then pE(θ1) < pE(θ2) for θ1, θ2 2 [0, 1].

Proof:

a)Firstly, note that if FH(v) � FL(v), then FH(v) � θFH(v) + (1� θ)FL(v) � FL(v) for

any θ 2 [0, 1]. Secondly, note that G(v) = NsF(v)N�1 � (Ns � 1)F(v)N is a monotone

increasing function of F(v) and, therefore, preserves the relationship FH(v) � θFH(v) +

(1� θ)FL(v) � FL(v) for any θ 2 [0, 1]. Hence, we conclude that GH(v) � G(v, θ) � GL(v)

and
VZ

0

vdGL(v) �
VZ

0

vdG(v, θ) �
VZ

0

vdGH(v) for any θ 2 [0, 1]. This establishes that if

FH(v) � FL(v), then pP
L � pE(θ) � pP

H for θ 2 [0, 1].

b) Similarly to the proof of part (a), note that if θ1 < θ2, then G(v, θ1) < G(v, θ2) by

increasing monotonicity of G(v). Hence, we conclude that pE(θ1) < pE(θ2).�
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The results in Lemma 3.1 suggests that when the distribution function of valuations

for an item of high opaque quality first-order stochastically dominates the distribution

function of valuations for an item of low opaque quality, the expected price in an electronic

platform is at least as high as the expected price for an item of low opaque quality in a

physical platform and at most as high as the expected price for an item of high opaque

quality in a physical platform. In part (b) of Lemma 3.1 we show that the expected price

in an electronic platform should increase if bidders attach a higher probability to a high

opaque quality item. In the next proposition we show that a seller always lists an item of

low opaque quality in an electronic platform.

Proposition 3.1

It is a dominant strategy for a seller to list an item of low opaque quality (type qL) in an

electronic platform.

Proof:

Note that the maximum expected payoff a seller can obtain by listing an item of type qL

in a physical auction is (1� δ)pP
L , where δ > 0 is the size of the commission in a physical

platform. Note further that by Lemma 3.1, (1� δ)pP
L < pP

L < pE(θ) for δ > 0 and any

bidders’ belief θ 2 [0, 1]. Hence, a seller obtains a strictly higher payoff by listing an item

of type qL in an electronic platform for any bidders’ belief, and it is a dominant strategy

for a seller of a low quality item to list only in an electronic platform. �

In the next proposition we derive equilibrium conditions for sorting of items of high

opaque quality between electronic and physical platforms. We use the notion of a Perfect

Bayesian Equilibrium (PBE) to derive results in Proposition 3.2.

Proposition 3.2

Let pP
H be the expected price for a type qH item in a physical platform, pP

L be the ex-

pected price for a type qL item in a physical platform, and pE(θ = α) be the expected price

for an item in an electronic platform when bidders believe that the probability of facing
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a type qH item in an electronic platform is α, where α is determined by nature. Then the

following holds:

(a) If pE(θ = α) � (1� δ)pP
H � pP

L , then there are two PBE: (1) a seller lists both a type

qH item and a type qL item in an electronic platform, and (2) a seller lists a type qH item in

a physical platform and a type qL item in an electronic platform.

(b) If pE(θ = α) � pP
L � (1� δ)pP

H, then there is a unique pooling PBE and a seller lists

both a type qH item and a type qL item in an electronic platform.

(c) If (1� δ)pP
H � pE(θ = α) � pP

L , then there is a unique separating PBE and a seller

lists a type qH item in a physical platform and a type qL item in an electronic platform.

Proof:

Note that by Proposition 3.1, pE(θ = α) � pP
L is always true. Hence, we need to

establish equilibrium seller’s strategies constitute when pE(θ = α) � (1 � δ)pP
H � pP

L ,

pP
L � (1� δ)pP

H, and when (1� δ)pP
H � pE(θ = α).

Before we proceed further, recall that β 2 [0, 1] is the seller’s probability of listing a

type qH item in a physical auction and (1� β) is the sellers’ probability of listing a type qH

item in an electronic auction. Similarly, γ 2 [0, 1] is the seller’s probability of listing a type

qL item in a physical auction and (1� γ) is the seller’s probability of listing a type qL item

in an electronic auction. Given the seller’s strategies, we can define bidders’ belief θ about

a type qH item listed in an electronic auction. We assume that bidders form their belief

θ about a type qH item in an electronic platform according to Bayes’ rule. In particular,

we assume that θ(β, γ) = α(1�β)
α(1�β)+(1�α)(1�γ)

, where α is the probability of a type qH item

as determined by nature, α(1 � β) is the probability that a type qH item is listed in an

electronic auction given the seller’s behavioral strategy (β, γ), α(1� β) + (1� α)(1� γ)

is the probability of listing both types of items in an electronic auction given the seller’s

behavioral strategy (β, γ). Similarly, the probability that an item listed in an electronic

auction is of type qL is 1� θ(β, γ) = (1�α)(1�γ)
α(1�β)+(1�α)(1�γ)

.

By Proposition 3.1, a seller always lists a type qL item in an electronic auction, which
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implies that γ = 0 for any belief θ. Given that γ = 0, we need to consider only three

possible cases: (1) fβ = 1, γ = 0g, (2) fβ = 0, γ = 0g, and (3) fβ 2 (0, 1), γ = 0g. Note that

expected prices for a type qH item and a type qL item in a physical auction do not depend

on seller’s behavioral strategies. Hence, in all three cases we denote the expected price in

a physical auction for a type qH item by pP
H and the expected price in a physical auction

for a type qL item by pP
L .

Case (1): Given the seller’s strategy of β = 1 and γ = 0, bidder belief about a type qH

item in an electronic auction is θ(β = 1, γ = 0) = 0. As a result, the expected price in

an electronic auction is pE(θ = 0) = pP
L . Given this price, the incentive compatibility con-

straint for a seller listing a type qH item is ICH : (1� δ)pP
H � β(1� δ)pP

H+(1� β)pP
L , where

the left-hand side of the inequality is the seller’s payoff from following the behavioral strat-

egy β = 1 and the right-hand side is the deviation payoff. Similarly, the incentive compat-

ibility constraint for a seller listing a type qL item is ICL : pP
L � γ(1� δ)pP

L + (1� γ)pP
L ,

where the left-hand side is the seller’s payoff from following the behavioral strategy γ = 0

and the right-hand side is the deviation payoff. Note that the incentive compatibility con-

straint ICL is always satisfied and the incentive compatibility constraint ICH is satisfied if

(1� δ)pP
H � pP

L . Hence, the seller’s strategy fβ = 1, γ = 0g is an equilibrium if (1� δ)pP
H �

pP
L .

Case (2): Given the seller’s strategy of β = 0 and γ = 0, bidder belief about a type qH

item in an electronic auction is θ(β = 0, γ = 0) = α. As a result, the expected price in an

electronic auction is pE(θ = α). Given this price, the incentive compatibility constraint for a

seller listing a type qH item is ICH : pE(θ = α) � β(1� δ)pP
H +(1� β)pE(θ = α), where the

left-hand side of the inequality is the seller’s payoff from following the behavioral strategy

fβ = 0, γ = 0g and the right-hand side is the deviation payoff. Similarly, the incentive

compatibility constraint for a seller listing a type qL item is ICL : pE(θ = α) � γ(1 �

δ)pP
L + (1� γ)pE(θ = α), where the left-hand side is the seller’s payoff from following the

behavioral strategy fβ = 0, γ = 0g and the right-hand side is the deviation payoff. Since
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the right-hand side of ICL is less than the right-hand side of ICH, both ICL and ICH hold

if ICH holds. Since ICH holds if pE(θ = α) � (1� δ)pP
H, the seller’s behavioral strategy

fβ = 0, γ = 0g is an equilibrium if pE(θ = α) � (1� δ)pP
H.

Case (3): Given the seller’s behavioral strategy of β 2 (0, 1) and γ = 0, bidder be-

lief about a type qH item in an electronic auction is θ(β 2 (0, 1), γ = 0) = α(1�β)
α(1�β)+(1�α)

.

As a result, the expected price in an electronic auction is pE(θ = α(1�β)
α(1�β)+(1�α)

). Given

this price, the seller’s payoff from randomizing with probability β 2 (0, 1) between list-

ing a type qH item in a physical platform and an electronic platform is β(1 � δ)pP
H +

(1 � β)pE(θ = α(1�β)
α(1�β)+(1�α)

). The deviation payoff depends on whether (1 � δ)pP
H >

pE(θ = α(1�β)
α(1�β)+(1�α)

). Let’s consider both cases and first assume that (1� δ)pP
H > pE(θ =

α(1�β)
α(1�β)+(1�α)

). Then the incentive compatibility constraint for a seller listing a type qH item

is ICH : β(1� δ)pP
H + (1� β)pE(θ = α(1�β)

α(1�β)+(1�α)
) � (1� δ)pP

H. Note that this ICH con-

straint is violated, since (1� δ)pP
H > pE(θ = α(1�β)

α(1�β)+(1�α)
).

Let’s consider the second case and assume that (1 � δ)pP
H < pE(θ = α(1�β)

α(1�β)+(1�α)
).

Then the incentive compatibility constraint for a seller listing a type qH item is ICH : β(1�

δ)pP
H + (1� β)pE(θ = α(1�β)

α(1�β)+(1�α)
) � pE(θ = α(1�β)

α(1�β)+(1�α)
). Similarly, this ICH constraint

is violated, since (1� δ)pP
H < pE(θ = α(1�β)

α(1�β)+(1�α)
). Hence, the seller’s strategy of β 2

(0, 1) and γ = 0 is not an equilibrium.

Further, note that equilibria in cases (1) and (2) hold together when pE(θ = α) � (1�

δ)pP
H � pP

L , the equilibrium in case (1) is unique when pE(θ = α) � pP
L � (1� δ)pP

H, and

the equilibrium in case (2) is unique when (1� δ)pP
H � pE(θ = α) � pP

L . This concludes

the proof of Proposition 3.2. �

The results in Proposition 3.2 suggest that depending on the commonly known dis-

tribution of high and low opaque quality items, a seller of a high opaque quality can list

her item with certainty either in an physical platform or in an electronic platform. This is

in contrast to the result in Proposition 3.1, where we show that a seller of a low opaque
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quality item always lists her item only in an electronic platform.

When the condition in part (c) of Proposition 3.2 holds, a seller of a high opaque quality

item always lists her item in a physical auction, and we have pure market segmentation

with multiple identical sellers of high opaque quality items listing their items in a physical

platform and multiple identical sellers of low opaque quality items listing their items in an

electronic platform. When the condition in part (b) of Proposition 3.2 holds, the physical

platform collapses, since multiple identical sellers of both high and low opaque quality

items list only in an electronic platform. When the condition in part (a) of Proposition 3.1

holds, we have an impure market segmentation with possibly some identical sellers of high

opaque quality items listing their items in an electronic platform and some in a physical

platform and all sellers of low opaque quality items listing their items in an electronic

platform.

Note that the seller’s equilibrium listing strategy does not depend on the total num-

ber of bidders in each platform as long as the number of bidders in an electronic and a

physical platform is the same. If the number of bidders in electronic and physical plat-

forms is different, then the ranking of prices in Lemma 3.1 may not hold, and the results

in Propositions 3.1 and 3.2 may not be valid.

Another important implication of Proposition 3.2 is that whenever a physical platform

exists for single-dimensional quality items, the quality of items in a physical platform is

no worse than the quality of items listed in an electronic platform. We formally state this

implication in Corollary 3.1.

Corollary 3.1.

For single-dimensional quality items, whenever a physical platform exists, the quality

of items listed in a physical platform is no worse than the quality of items listed in an

electronic platform.
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3.5 Two-dimensional Quality

In this section we generalize the model and introduce two-dimensional quality. Consider

an item of quality consisting of two parameters: a transparent quality parameter and an

opaque quality parameter. For simplicity we assume that the transparent quality parame-

ter, t, can be either high or low, t 2 fH, Lg. The opaque quality parameter, i, can also be

high or low, i 2 fH, Lg. Depending on whether the transparent and the opaque quality

parameters are high or low, an item can be one of four possible types: qH,H, qH,L, qL,H, qL,L,

where the first subscript indicates the transparent quality and the second subscript indi-

cates the opaque quality. As before, we assume that the opaque quality is not observable

in an electronic platform but perfectly observable in a physical platform. However, the

transparent quality is perfectly observable both in an electronic and in a physical platform.

The probability of each type is determined by nature and is common knowledge in the

model5. We denote the probability of a type qt,i item by αt,i, t, i 2 fH, Lg, and assume that

∑
t,i2fH,Lg

at,i = 1.

Bidders derive their valuations for each type of item from a corresponding stochasti-

cally independent cumulative distribution function. We denote a cumulative distribution

function of valuations for an item of type qt,i by Ft,i(v), v 2 [0, V] and t, i 2 fH, Lg. As be-

fore, we assume that conditional on transparent quality a cumulative distribution function

of valuations for a high opaque quality item first-order stochastically dominates a cumu-

lative distribution function of a low opaque quality item, or that Ft,H(v) � Ft,L(v) for all

v 2 [0, V] and t 2 fH, Lg. In addition, we assume that conditional on opaque quality a cu-

mulative distribution function of valuations for a high transparent quality item first-order

stochastically dominates a cumulative distribution function of a low transparent quality

item, or that FH,i(v) � FL,i(v) for all v 2 [0, V] and i 2 fH, Lg.

5In other words, we assume that bidders know the probability of an item of each type before a seller chooses
a specific sale platform.
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We define a menu of prices for each type of item in a physical platform and an electronic

platform. The menu of prices for a high transparent quality item is fpP
H,H, pP

H,L, pE
H(θH)g,

where the superscript denotes whether the price is formed in a physical or in an electronic

platform, the first subscript letter "H" in all three prices indicates that the prices belong

to a high transparent quality item, and the second subscript letters in the first two prices

indicate whether the opaque quality is high or low. The argument θH in the third price

indicates the bidders’ belief that a high transparent quality item has high opaque quality.

The menu of prices for a low transparent quality item fpP
L,H, pP

L,L, pE
L(θL)g is defined in

a similar fashion with the only difference that θL indicates the bidders’ belief that a low

transparent quality item has high opaque quality. By part (a) of Lemma 3.1, we have that

pP
H,L � pE

H(θH) � pP
H,H, pP

L,L � pE
L(θL) � pP

L,H, pP
L,L � pP

L,H � pP
H,H, and pP

L,L � pP
H,L �

pP
H,H,.

We can derive sorting conditions of items of different quality between electronic and

physical platforms. Since bidders observe the transparent quality of items in both plat-

forms, the market for items with two-dimensional quality essentially breaks into two sepa-

rate segments: with high transparent quality items and with low transparent quality items.

Hence, the results of Proposition 3.1, Proposition 3.2 and Corollary 3.1 about sorting of

opaque quality items are true for each segment. Further, the sorting of items across two

platforms does not depend on the transparent quality per se, since by Proposition 3.1 all

low opaque quality items are listed in an electronic platform, and by Proposition 3.2 the

sorting of high opaque quality items only depends on the probabilities αH,H, αH,L, αL,H,

and αL,L.

In the next two corollaries we derive conclusions about the quality of items listed in the

two platforms. In Corollary 3.2 we state that the opaque quality of high transparent quality

items in a physical platform is no worse than the opaque quality of low transparent quality

items in a physical platform, if the physical platform exists. This is a direct consequence

of Proposition 3.1: Since only low opaque quality items are always listed in an electronic
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platform, in a physical platform the opaque quality of high transparent quality items is no

worse than the opaque quality of low transparent quality items.

Without making any additional assumptions about the number of items of each type

and quality indexes, in Corollary 3.3 we present sufficient conditions when the opaque

quality of high transparent quality items in an electronic platform is no worse than the

opaque quality of low transparent quality items in an electronic platform, and when both

the opaque and the transparent quality of items in a physical platform is no worse than the

opaque and the transparent quality of items in an electronic platform.

Corollary 3.2.

If a physical platform exists for items of high and low transparent quality, then the

opaque quality of high transparent quality items listed in a physical platform is no worse

than the opaque quality of low transparent quality items listed in a physical platform.

Corollary 3.3.

Let αt,i be the probability of an item of type qt,i and pE[�1]
t (.) denote an inverse of a price

in an electronic platform, t, i 2 fH, Lg.

a) The opaque quality of high transparent quality items listed in an electronic platform

is no worse than the opaque quality of low transparent quality items listed in an electronic

platform if αL,H
αL,H+αL,L

<
α�L,H

α�L,H+α�L,L
= pE[�1]

L ((1� δ)pP
L,H).

b) The opaque and the transparent quality of items listed in a physical platform is no

worse than the opaque and the transparent quality of items listed in an electronic platform

if αH,H
αH,H+αH,L

<
α�H,H

α�H,H+α�H,L
= pE[�1]

H ((1� δ)pP
HH) and pP

L,L � (1� δ)pP
L,H.

Proof:

a) By Proposition 3.1, low opaque quality items of any transparent quality are exclu-

sively listed in an electronic platform. Next, consider the equilibrium listing strategies of

sellers of high opaque quality items of any transparent quality. Consider a pair of prob-

abilities (α�L,H, α�L,L) for a low transparent quality item such that (1� δ)pP
L,H = pE

L(θL =
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α�L,H
α�L,H+α�L,L

). Then we can define an inverse
α�L,H

α�L,H+α�L,L
= pE[�1]

L ((1� δ)pP
L,H) by continuity of

pE
L(θL) for any F(v) > 0 and N � 0. Since by part (b) of Lemma 3.1, pE

L(θL) is monotone

increasing in θL, by part (c) of Proposition 3.2 we have that for any pair of probabilities

(αL,H, αL,L), such that αL,H
αL,H+αL,L

<
α�L,H

α�L,H+α�L,L
, sellers always list high opaque and low trans-

parent quality items in a physical platform. This means that the only low transparent

quality items listed in an electronic platform are the ones with low opaque quality. Hence,

for any listing strategy of sellers of high transparent quality items, the opaque quality of

high transparent quality items listed in an electronic platform is no worse than the opaque

quality of low transparent quality items listed an electronic platform.

b) Similarly to the proof of part (a), note that for any pair of probabilities (αH,H, αH,L),

such that αH,H
αH,H+αH,L

<
α�H,H

α�H,H+α�H,L
= pE[�1]

H ((1� δ)pP
HH), sellers always list high opaque and

high transparent quality items in a physical platform. By part (c) of Proposition 3.2, when

pP
L,L � (1� δ)pP

L,H, sellers always list high opaque and low transparent quality items in

an electronic platform. Given that by Proposition 3.1, low opaque quality items of any

transparent quality are always listed in an electronic platform, the quality of items in a

physical platform is no worse than the quality of items in an electronic platform. �

Part (a) of Corollary 3.3 states that unless all high opaque and low transparent quality

items are listed in a physical platform, we cannot guarantee that the opaque quality of

high transparent quality items in an electronic platform is higher than the opaque quality

of low transparent quality items in an electronic platform. This result means that there is

necessarily a positive correlation between transparent and opaque quality in an electronic

platform only if all low transparent and high opaque items are listed in a physical platform,

which can happen only if bidders have a sufficiently low belief that a low transparent

quality item has high opaque quality.

Part (b) of Corollary 3.3 states that the opaque and the transparent quality of items in a

physical platform is no worse than the opaque and the transparent quality of items in an
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electronic platform, if items of high transparent and high opaque quality are exclusively

listed in a physical platform and if items of low transparent and high opaque quality are

exclusively listed in an electronic platform. In other words, the overall quality of items,

as defined as opaque and transparent quality, is necessarily higher in a physical platform

than in an electronic if the conditions in Part (b) of Corollary 3.3 are satisfied. More specific

conditions on the quality sorting of items of different types in electronic and physical plat-

forms require assumptions on the number of items of each type and the quality indexes.

The main conclusion in this section is that the introduction of an additional quality

dimension breaks down the unambiguous quality sorting implication of the basic model

with one-dimensional quality. Unless restrictive conditions of Corollary 3.3 are satisfied,

without any additional assumptions it is impossible to make any conclusions about the

quality sorting across different platforms conditionally on some specific quality parameter

or unconditionally on any quality parameters. To illustrate this point, consider a plausible

scenario when items of low transparent and high opaque quality are listed in a physical

platform, while items of high transparent and high opaque quality together with items of

high transparent and low opaque quality and items of low transparent and low opaque

quality are listed in an electronic platform. In this scenario, it is impossible to make any

conclusion about the average quality of items in both platforms without any further infor-

mation about the quantity of items of each type and the quality values.

3.6 Discussion

We can draw several general empirical implications from our model, which should hold

independently of bidders’ beliefs or the dimensionality of quality. First of all, by Corol-

lary 3.1, holding the transparent quality constant, the opaque quality of items in a physical

platform should be no worse than the opaque quality of items in an electronic platform.

100



Secondly, by Corollary 3.2, we should observe a non-negative correlation between trans-

parent and opaque quality for items in a physical platform. Lastly, as Corollary 3.3 shows,

it is impossible to establish the correlation between transparent and opaque quality for

items in an electronic platform without an additional structure and without some restric-

tions on bidders’ beliefs. For the same reason, it is impossible to conclude how the overall

(opaque and transparent) quality of items in a physical platform compares to the overall

quality of items in an electronic platform. However, if we observe a positive correlation

between transparent and opaque quality in an electronic platfom, it should be the case

that the share of items with low transparent and high opaque quality in an electronic plat-

form is either low or non-existent. By Proposition 3.2, we know that low transparent and

high opaque quality items are never listed in an electronic platform if the bidders’ belief

about high opaque quality of a low transparent quality item is sufficiently low. Similarly,

if we observe a negative correlation between transparent and opaque quality in an elec-

tronic platfom, it should be the case that the share of items with low transparent and high

opaque quality in an electronic platform is sufficintly high. By Proposition 3.2, we know

that this can happen only if low transparent and high opaque quality items are listed in an

electronic platform, which is possible if the bidders’ belief about high opaque quality of a

low transparent quality item is sufficiently high.

The closest available study of the quality sorting between electronic and physical plat-

forms is the work by Jin and Kato (2007). The authors study the sorting of graded and

ungraded baseball cards of different quality between online market and a retail market.

The authors consider a model with one-dimensional quality, grading costs, retail listing

fees, and unobservable quality of ungraded cards in online market6. The authors derive

the quality ranking of cards of different quality across different platforms and find that the

quality of graded cards traded online is no worse than the quality of ungraded cards traded

6The authors assume that the search costs in online market are zero, while the search costs in a retail market
are a fixed share of the sale price. Hence, the search costs in a retail market essentially act like the commission
in our physical platform.
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in a retail market, which in turn is no worse than the quality of ungraded cards traded on-

line. This result is consistent with the conclusions of our model with one-dimensional

quality.

In our model, we would combine graded cards sold online and the cards sold in a

retail market into one category, because the quality of graded cards listed online and the

quality of cards sold in a retail market is perfectly observable and because there are costs

associated with grading and with listing in a retail market. Since our model suggests that

the lowest quality baseball cards will always be listed online ungraded, the quality of cards

listed online graded and the quality of cards listed in a retail market ungraded will always

be higher. This is consistent with results in Jin and Kato (2007). However, as we show

in the rest of the chapter, when we introduce an additional quality dimension, the clear

quality sorting result in Jin and Kato (2007) and in our one-dimensional quality model

may not hold.

We consider an extension of the two-dimensional quality model and introduce qual-

ity grading. An introduction of the quality grading in the two-dimensional quality model

adds one additional platform to the existing electronic and physical platforms. Hence,

high and low transparent quality items of high and low opaque quality can be listed in a

physical platform, ungraded in an electronic platform, and graded in an electronic plat-

form7. Since grading essentially reveals the quality of an item online, a seller will grade

an item and list it in an electronic platform if the grading cost is less than the physical

platform listing fee. Otherwise, a seller will list her item in a physical platform ungraded.

As a result, whenever grading is available, an electronic platform with graded items will

replace a physical platform if the physical platform listing fee is more than the grading

cost, and a physical platform will replace an electronic platform with graded items if the

grading cost is more than the physical platform listing fee.

7A seller will not grade an item listed in a physical platform, because grading is costly and because the
quality of an item listed in a physical platform is assumed to be perfectly observable with or without grading.
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The coexistence of a physical platform and an electronic platform with graded items

is possible if we introduce an additional intermediate opaque quality with a property that

the expected payoff from listing an ungraded intermediate quality item in a physical plat-

form is higher than the expected payoff from grading and listing the intermediate quality

item in an electronic market. In addition, it must be the case that the expected payoff

from listing a graded high quality item in an electronic platform should exceed the ex-

pected payoff from listing the high quality item ungraded in a physical platform. This

modification is consistent with the model of Jin and Kato (2007), who assume a continu-

ous one-dimensional quality. Note that the presence of a transparent quality dimension in

our model with grading does not have any role in determining listing patterns. Another

way through which we can introduce the coexistence of a physical platform and an elec-

tronic platform with graded items is by introducing the mechanism of Ellison, Fudenberg

and Mobius (2004) and allow sellers to affect seller-buyer platform ratios by choosing one

platform over another.

The second possible extension is the introduction of heterogeneity in bidders’ distri-

bution functions of valuations. Note that the introduction of heterogeneity in bidders’

distribution functions does not have any impact on our equilibrium predictions as long as

the ranking of prices in Lemma 3.1 is preserved. The ranking of prices in Lemma 3.1 solely

relies on the assumption of the first-order stochastic dominance. Hence, as long as the dis-

tribution of the second-highest order statistic for the high opaque quality item first-order

stochastically dominates the distribution of the second-highest order statistic for the low

opaque quality item, all results in our model are preserved independently of the degree of

heterogeneity in bidders’ distribution functions.
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3.7 Concluding Remarks

In this chapter we construct a simple model of asymmetric information, where a seller

of an item with unobservable quality parameter chooses between electronic and physical

platforms. The physical platform is costly to use and completely discloses the quality pa-

rameter. The electronic platform is free to use and does not reveal the quality parameter. A

seller sends an informative signal about quality of her item to potential buyers by choosing

one platform over another. We use Spence’s (1973) signalling model as a general frame-

work for the analysis. We find that a seller always lists low unobservable quality item in

an electronic platform. However, a higher unobservable quality item can be listed both in

electronic and in a physical platform. As a result, we conclude that the quality of items in

a physical platform should be no worse than the quality of items in an electronic platform.

However, if we introduce an additional transparent quality parameter, the quality ranking

between the two platforms no longer holds.
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Appendix A

Proofs and Additional Tests

A.1 Appendix for Chapter 1

Proof of proposition 1.1.

For the existence and uniqueness proofs of part 1 see pages 46-48 of Osborne and Ru-

binstein (1990).

Proof of part 2:

According to Rubinstein (1982), a pair of SPNE strategies is the solution (x, y) to the

system: y1 = v1(x1, 1) and x2 = v2(y2, 1), where v1(., 1) and v2(., 1) are present value

functions of the payoffs obtained with one period of delay. Consider the seller’s offer

of the form x = (α(w(σ) � v), v + (1� α)(w(σ) � v)) and the buyer’s offer of the form

y = ((1� β)(w(σ)� v), v+ β(w(σ)� v)), where α is the seller’s share of the trade surplus

above the buyer’s outside option and β is the buyer’s share of the trade surplus above

the buyer’s outside option. Given that δ1 is the depreciation rate on the trade surplus

and δ2 is the depreciation rate on the outside option, the SPNE conditions require that

v + (1 � α)(w(σ) � v) = δ2v + δ1β(w(σ) � v) and (1 � β)(w(σ) � v) = δ1α(w(σ) � v).

Solving for α and β, we obtain α = 1
1+δ1

+ v(1�δ2)

(w(σ)�v)(1�δ2
1)

and β = 1
1+δ1

� δ1v(1�δ2)

(w(σ)�v)(1�δ2
1)

. By

plugging in α and β into x and y we obtain x = (w(σ)�v
1+δ1

+ v(1�δ2)

1�δ2
1

, δ1(w(σ)�v)
1+δ1

+ v(δ2�δ2
1)

1�δ2
1
) and

y = ( δ1(w(σ)�v)
1+δ1

+ δ1v(1�δ2)

1�δ2
1

, w(σ)�v
1+δ1

+ v(1�δ1�δ2
1+δ1δ2)

1�δ2
1

).

Consider the seller’s offer (w(σ)�v
1+δ1

+ v(1�δ2)

1�δ2
1

, δ1(w(σ)�v)
1+δ1

+ v(δ2�δ2
1)

1�δ2
1
) and note that when

v 2 ( δ1w(σ)
1+δ1

, (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
), δ1 2 (δ1, δ1), and δ2 2 (δ2, 1), the seller’s offer (w(σ)�v

1+δ1
+ v(1�δ2)

1�δ2
1

, δ1(w(σ)�v)
1+δ1

+

v(δ2�δ2
1)

1�δ2
1
) is always accepted by the buyer, because the buyer’s share of δ1(w(σ)�v)

1+δ1
+ v(δ2�δ2

1)

1�δ2
1
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strictly exceeds the buyer’s outside option v. In all other cases, the buyer rejects the seller’s

offer (w(σ)�v
1+δ1

+ v(1�δ2)

1�δ2
1

, δ1(w(σ)�v)
1+δ1

+ v(δ2�δ2
1)

1�δ2
1
) and takes the outside option v. Hence, in all

cases except when v 2 ( δ1w(σ)
1+δ1

, (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
), δ1 2 (δ1, δ1), and δ2 2 (δ2, 1) the seller al-

ways proposes the offer (w(σ) � v, v),which the buyer does not want to reject in favor

of the outside option, and the seller’s offer x = (w(σ) � v, v) together with the buyer’s

offer y = (δ1(w(σ) � v), w(σ) � δ1(w(σ) � v)) constitute a pair of SPNE strategies. To

see why these strategies are SPNE, note that if the buyer rejects the seller’s offer x =

(w(σ) � v, v), the highest offer the buyer can get is w(σ) � δ1(w(σ) � v) with one pe-

riod of delay. Since δ1[w(σ) � δ1(w(σ) � v)] < v, whenever δ1w(σ)
1+δ1

< v, the buyer does

not have any incentives to reject the seller’s offer and negotiate. To see that the seller’s

strategy is subgame perfect, consider the seller’s incentive to reject the buyer’s offer y =

(δ1(w(σ)� v), w(σ)� δ1(w(σ)� v)). In case of the rejection, the seller at most can obtain

w(σ)� v with one period of delay or δ1(w(σ)� v). Hence, the seller’s threat of rejection

of any offer y1 < δ1(w(σ)� v) is credible and the seller’s startegy is subgame perfect. To

see that these startegies are unique, see pages 767-768 of Binmore et. al. (1989).

Consider the cutoff values δ1, δ1 =
1
2 �

q
1
4 �

(1�δ2)v
w(σ)�v . We claim that δ1 and δ1 belong to

the interval (0, 1). First, note that the term 1
4 �

(1�δ2)v
w(σ)�v is always less than 1

4 , which implies

that 0 < δ1, δ1 < 1. Next, we show that 1
4 �

(1�δ2)v
w(σ)�v � 0. To see this, note that

∂( 1
4�

(1�δ2)v
w(σ)�v )

∂v < 0

and when v = (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1

(the maximum of v), the term 1
4 �

(1�δ2)v
w(σ)�v = δ2

1 � δ1 +
1
4 � 0 for

all δ1 2 (0, 1).

Consider the cutoff value δ2 = [1� δ1(1� δ1)(
w(σ)

v � 1)]. We claim that δ2 belongs to

the interval (0, 1) when v 2 ( δ1w(σ)
1+δ1

, w(σ)). First, note that ∂δ2
∂v = δ1(1� δ1)

w(σ)
v2 > 0 (δ2 is

strictly increasing in v). When δ1
1+δ1

w(σ) = v, δ1(1� δ1)(
w(σ)

v � 1) = δ1, and the threshold

value is δ2 = 1� δ1 > 0. When v ! w(σ), δ2 = 1� δ1(1� δ1)(
w(σ)

v � 1) ! 1 and for any

v < w(σ), δ2 = 1� δ1(1� δ1)(
w(σ)

v � 1) < 1. Hence, for any v 2 ( δ1w(σ)
1+δ1

, w(σ)), we have

δ2 2 (0, 1).

Next, we show that δ1w(σ)
1+δ1

< (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1

for any δ2 > δ2. To see this note that δ1
1+δ1

=
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δ1�δ2
1

1�δ2
1
< δ1�δ2

1
1�δ2+δ1�δ2

1
for any δ2 > δ1. Since δ2 > δ1 whenever v > δ1

1+δ1
w(σ), we conclude

that when δ2 > δ2, (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
> δ1w(σ)

1+δ1
.

To prove the uniqueness of the buyer’s and the seller’s SPNE strategies, we follow Ru-

binstein (1982). Define Ms as the supremum and ms as the infimum of the seller’s payoffs

over all SPNE payoffs in a game where the seller proposes first. Similarly, define Mb + v

as the supremum and mb + v as the infimum of the buyer’s payoffs over all SPNE payoffs

in a game where the buyer proposes first. Next, we show that the following inequalities

must hold:

(1) mb + v � w(σ)� δ1Ms

(2) Ms � w(σ)� (δ1mb + δ2v)

(3) ms � w(σ)� (δ1Mb + δ2v)

(4) Mb + v � w(σ)� δ1ms

If the seller rejects the buyer’s offer, then the highest payoff the seller can obtain in the

present value terms is δ1Ms. This implies that the buyer can obtain at least w(σ)� δ1Ms,

which is the right-hand side of inequality (1). Since mb + v is the infimum of the buyer’s

SPNE payoffs, inequality (1) should hold.

If the buyer rejects the seller’s offer, then the smallest payoff the buyer can obtain in

the present value terms is δ1mb + δ2v. As a result, at most the seller can obtain is w(σ)�

(δ1mb + δ2v), and inequality (2) should hold.

Similarly, if the buyer rejects the seller’s offer, then the highest payoff the buyer can

obtain in the present value term is δ1Mb + δ2v. As a result, the seller can at least obtain

w(σ)� (δ1Mb + δ2v) implying that inequality (3) should hold.

If the seller rejects the buyer’s offer, then the lowest payoff the seller can obtain in the

present value term is δ1ms. This implies that the buyer can obtain at most w(σ) � δ1ms,

which is the right-hand side of inequality (4). Since Mb+ v is the supremum of the buyer’s

SPNE payoffs, inequality (4) should hold.
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Since the buyer’s and the seller’s strategies x = (w(σ)�v
1+δ1

+ v(1�δ2)

1�δ2
1

, δ1(w(σ)�v)
1+δ1

+ v(δ2�δ2
1)

1�δ2
1
)

and y = ( δ1(w(σ)�v)
1+δ1

+ δ1v(1�δ2)

1�δ2
1

, w(σ)�v
1+δ1

+ v(1�δ1�δ2
1+δ1δ2)

1�δ2
1

) are subgame perfect, we must have

that when δ1
1+δ1

w(σ) < v < δ1�δ2
1

1�δ2+δ1�δ2
1
w(σ), then ms � w(σ)�v

1+δ1
+ v(1�δ2)

1�δ2
1
� Ms and mb+ v �

w(σ)�v
1+δ1

+ v(1�δ1�δ2
1+δ1δ2)

1�δ2
1

� Mb + v.

Next, we claim that if δ1
1+δ1

w(σ) < v < δ1�δ2
1

1�δ2+δ1�δ2
1
w(σ), then ms =

w(σ)�v
1+δ1

+ v(1�δ2)

1�δ2
1
=

Ms and mb + v = w(σ)�v
1+δ1

+ v(1�δ1�δ2
1+δ1δ2)

1�δ2
1

= Mb + v. To see this, note that inequalities

(2) and (1) together imply that w(σ) � Ms � δ1mb + δ2v � δ1(w(σ) � δ1Ms) + v(δ2 �

δ1) or that w(σ)�v
1+δ1

+ v(1�δ2)

1�δ2
1
� Ms. The resulting inequality together with the constraint

w(σ)�v
1+δ1

+ v(1�δ2)

1�δ2
1
� Ms implies that Ms =

w(σ)�v
1+δ1

+ v(1�δ2)

1�δ2
1

. If we plug Ms =
w(σ)�v

1+δ1
+ v(1�δ2)

1�δ2
1

into inequality (1), we obtain mb � w(σ)�v
1+δ1

� δ1v(1�δ2)

1�δ2
1

. This inequality together with the

constraint mb + v � w(σ)�v
1+δ1

+ v(1�δ1�δ2
1+δ1δ2)

1�δ2
1

implies that mb + v = w(σ)�v
1+δ1

+ v(1�δ1�δ2
1+δ1δ2)

1�δ2
1

.

Inequalities (3) and (4) together imply that ms � w(σ) � (δ1Mb + δ2v) � w(σ) �

δ1(w(σ) � δ1ms � v) � δ2v or that ms � w(σ)�v
1+δ1

+ v(1�δ2)

1�δ2
1

. This inequality together with

the constraint ms � w(σ)�v
1+δ1

+ v(1�δ2)

1�δ2
1

implies that ms =
w(σ)�v

1+δ1
+ v(1�δ2)

1�δ2
1

. If we plug

ms =
w(σ)�v

1+δ1
+ v(1�δ2)

1�δ2
1

into inequality (4), we obtain Mb + v � w(σ)�v
1+δ1

+ v(1�δ1�δ2
1+δ1δ2)

1�δ2
1

.

This inequality together with the constraint w(σ)�v
1+δ1

+ v(1�δ1�δ2
1+δ1δ2)

1�δ2
1

� Mb + v implies that

Mb + v = w(σ)�v
1+δ1

+ v(1�δ1�δ2
1+δ1δ2)

1�δ2
1

.

Proof of part 3:

Given the seller’s participation constraint, the buyer at most can obtain w(σ) in the

relationship. When v > w(σ), the buyer is strictly worse off accepting the seller’s proposal.

Hence, the seller’s optimal strategy is to offer any division to the seller and the buyer’s

optimal strategy is to reject the proposal immediately and take the outside option.

Derivation of ∂E[VjV2(w(σ),V]]
∂σ .

Note that ∂E[VjV2(w(σ),V]]
∂σ = ∂

∂σ

Z V

w(σ)
VdFV(V)

1�FV(w(σ))
= ∂

∂σ

Z V

w(σ)
VdFV(V)

λ4(σ)
. By applying Leibniz

integration rule, we obtain
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∂
∂σ

Z V

w(σ)
VdFV(V)

λ4(σ)
=

�w0(σ)w(σ) fV(w(σ))
λ4(σ)

�
λ04(σ)

Z V

w(σ)
VdFV(V)

(λ4(σ))2
=

�λ04(σ)
E[VjV2(w(σ),V]]�w(σ)

λ4(σ)
, since λ04(σ) = � fV(w(σ))w0(σ).

Simplification of equations (1.6a) and (1.6b).

The first step is to expand the terms
∂E[VjV2( δ1w(σa

eq)
1+δ1

,w(σa
eq))]

∂σa
eq

,
∂E[VjV2( (δ1�δ2

1)w(σ
b
eq)

1�δ2+δ1�δ2
1

,w(σb
eq))]

∂σb
eq

, and

∂E[VjV2( δ1w(σb
eq)

1+δ1
,
(δ1�δ2

1)w(σ
b
eq)

1�δ2+δ1�δ2
1
)]

∂σb
eq

.

∂E[VjV2( δ1w(σa
eq)

1+δ1
,w(σa

eq))]

∂σa
eq

= ∂
∂σa

eq

Z w(σa
eq)

δ1w(σa
eq)

1+δ1

VdFV(V)

FV(w(σa
eq))�FV(

δ1w(σa
eq)

1+δ1
)
= ∂

∂σa
eq

Z w(σa
eq)

δ1w(σa
eq)

1+δ1

VdFV(V)

λ2(σa
eq)+λ3(σa

eq)
, which by Leibniz

integration rule is equal to
w0(σa

eq)w(σa
eq)f fV(w(σa

eq))�(
δ1

1+δ1
)2 fV(

δ1
1+δ1

w(σa
eq))g

λ2(σa
eq)+λ3(σa

eq)
�

λ02(σ
a
eq)E[VjV2(

δ1w(σa
eq)

1+δ1
,w(σa

eq))]

λ2(σa
eq)+λ3(σa

eq)
.

∂E[VjV2( δ1w(σb
eq)

1+δ1
,
(δ1�δ2

1)w(σ
b
eq)

1�δ2+δ1�δ2
1
)]

∂σb
eq

= ∂
∂σb

eq

Z (δ1�δ2
1)w(σ

b
eq)

1�δ2+δ1�δ2
1

δ1w(σb
eq)

1+δ1

VdFV(V)

FV(
(δ1�δ2

1)w(σ
b
eq)

1�δ2+δ1�δ2
1
)�FV(

δ1w(σb
eq)

1+δ1
)
= ∂

∂σb
eq

Z (δ1�δ2
1)w(σ

b
eq)

1�δ2+δ1�δ2
1

δ1w(σb
eq)

1+δ1

VdFV(V)

λ2(σ)
, which

by Leibniz integration rule is equal to
w0(σb

eq)w(σb
eq)f(

δ1�δ2
1

1�δ2+δ1�δ2
1
)2 fV(

(δ1�δ2
1)w(σ

b
eq)

1�δ2+δ1�δ2
1
)�( δ1

1+δ1
)2 fV(

δ1w(σb
eq)

1+δ1
)g

λ2(σb
eq)

�
λ02(σ

b
eq)E[VjV2(

δ1w(σb
eq)

1+δ1
,
(δ1�δ2

1)w(σ
b
eq)

1�δ2+δ1�δ2
1
)]

λ2(σb
eq)

.

∂E[VjV2( (δ1�δ2
1)w(σ

b
eq)

1�δ2+δ1�δ2
1

,w(σb
eq))]

∂σb
eq

= ∂
∂σb

eq

Z w(σb
eq)

(δ1�δ2
1)w(σ

b
eq)

1�δ2+δ1�δ2
1

VdFV(V)

FV(w(σ))�FV(
δ

1+δ w(σ))
= ∂

∂σb
eq

Z w(σb
eq)

(δ1�δ2
1)w(σ

b
eq)

1�δ2+δ1�δ2
1

VdFV(V)

λ3(σb
eq)

, which by

Leibniz integration rule is equal to
w0(σb

eq)w(σb
eq)f fV(w(σ))�(

δ1�δ2
1

1�δ2+δ1�δ2
1
)2 fV(

(δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
)g

λ3(σb
eq)

�
λ03(σ)E[VjV2(

(δ1�δ2
1)w(σ

b
eq)

1�δ2+δ1�δ2
1

,w(σb
eq))]

λ3(σ)
.

Next, we take derivatives of λ1(σ) = FV(V < δ1w(σ)
1+δ1

), λ2(σ) = FV(
δ1w(σ)
1+δ1

< V <

(δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
)= FV(V < (δ1�δ2

1)w(σ)
1�δ2+δ1�δ2

1
) � FV(V < δ1w(σ)

1+δ1
), and λ3(σ) = FV(

(δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
< V <

w(σ))= FV(V < w(σ))� FV(V < (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
) and plug them into the resulting expansions.

After plugging in the resulting expansions into equations (6a) and (6b) and noting that

λ01(σ) = f ( δ1w(σ)
1+δ1

) δ1w0(σ)
1+δ1

, λ02(σ) = f ( (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
) (δ1�δ2

1)w
0(σ)

1�δ2+δ1�δ2
1
� f ( δ1w(σ)

1+δ1
) δ1w0(σ)

1+δ1
, and λ03(σ) =

f (w(σ))w0(σ)� f ( (δ1�δ2
1)w(σ)

1�δ2+δ1�δ2
1
) (δ1�δ2

1)w
0(σ)

1�δ2+δ1�δ2
1

we obtain equations (1.7a) and (1.7b).
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A.2 Appendix for Chapter 2: Tests of Directions of the Bias

A.2.1 Repeated versus Non-repeated Bidders

The most important assumption of Proposition 2.1 is that bidders follow a single-

stage ascending second-price auction bidding strategy in the presence of a secret reserve

price. Since a bidder may expect that an item listed in an auction with a secret reserve

price is very likely to be relisted again, the highest unsuccessful bid of this bidder does

not necessarily reveal her valuation. We call bidders who take into account the possibility

of participation in a future listing due to a secret reserve price as repeated bidders. The

change in the bidding behavior of such bidders is driven by a number of factors.

First of all, a repeated bidder realizes that by participating in an ascending second-

price auction she reveals information about her valuation to other repeated bidders and

that other repeated bidders may exploit this information in future stages. As a result, a

repeated bidder in the current stage auction may not bid truthfully. We do not intend to

go into more details about this aspect of repeated bidders; for more details, see Bergemann

and Said (2011).

Second, a repeated bidder realizes that her bid reveals information about her valua-

tion to the seller, and the seller can exploit this information in the future as well. Under

the assumption that the seller has imperfect information about the distribution function

of bidders’ valuations, a repeated bidder acting strategically has incentives to under-bid

to convince the seller of a different distribution function. By under-bidding and forcing

the seller to have a wrong update about the distribution function of valuations, a repeated

bidder may obtain substantial gains if the seller with a wrong updated belief chooses a sell-

ing format with a higher trade surplus allocated to bidders or changes auction parameters

benefitting participating bidders.

Of course, if bidders in auctions with a secret reserve price do not intend to participate

in future sales, then they have no incentive to act strategically and their bidding behavior

115



in auctions with a secret reserve price coincides with their bidding behavior in single-stage

auctions with a secret reserve price. To make sure that there is no strategic component in

bidders’ behavior in our sample and the identification assumption is satisfied, we remove

all auctions were there are two or more identical bidders participating in two or more

stages of a multi-stage auction. We present the distribution of auctions by the number of

identical bidders across relistings in the next table.

The results in Table A1 show that there is a sizeable share of auctions in our data, where

there are at least two identical bidders participating in at least two listings of the same

tractor. To satisfy the identification assumption that there are no repeated bidders in our

data, we omit observations from the bottom half of Table A.1 when estimating distribution

functions of bidders’ valuations and when testing for determinants of secret and public

reserve prices. In other words in our sample we retain only those auctions, where either

all bidders in all listings are different or there is at most one identical bidder participating

in at most two listings.
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Type of Auctions 2-stage 3-stage 4-stage 5-stage

auctions auctions auctions auctions

Auctions with at most 1 identical bidder

in at most 2 listings (number) 709 76 20 5

Auctions with at most 1 identical bidder

in at most 2 listings (percent) 69.04% 46.34% 38.46% 23.81%

Auctions with multiple identical bidders

in at most 2 listings (number) 318 88 32 16

Auctions with multiple identical bidders

in at most 2 listings (percent) 30.96% 53.66% 61.54% 76.19%

Table A.1. Share of identical bidders in different stages in repeated auctions

A.2.2 Entry Rates

To test the assumption that entry decisions of bidders do not depend on the presence

of a secret reserve price and/or BINs, we regress the number of bidders on a number of

determinants including the presence of a secret reserve price, the size of a public reserve

price, and the size of a BIN.

The results in Table A.2 show that the presence of a secret reserve price has a strong

negative impact on entry. For instance, the presence if a secret reserve price lowers the

average number of bidders by more than 0.8 bidders. In addition, note that although the

simultaneous presence of a BIN and a secret reserve price has a statistically significant

negative impact on entry, the size of the impact is quite small. Hence, we find evidence to
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support our claim that the simultaneous use of a BIN and a secret reserve price does not

excessively reduce entry.

Variable Coefficient Standard Error

Public reservei -0.0001*** 0.000001

Secret reserve dummyi -0.206*** 0.004

BINi 0.000002*** 0.0000007

BINi*Secret reserve dummyi -0.00001*** 0.0000008

Public reservei*Secret reserve dummyi 0.00008*** 0.000001

John Deerei 0.080*** 0.003

Agei -0.008*** 0.0001

Engine HPi 0.002*** 0.00005

ln(Seller feedbacki) 0.022*** 0.0008

ln(Buyer feedbacki) 0.008*** 0.0008

Constant 2.589*** 0.006

Number of observations 43138

Dependent variable is the number of bidders; ***-statistical significance at 1%;

Table A.2. Poisson regression of the number of bidders

The negative impact of a secret reserve price on entry suggests that both the non-

parametrically estimated distribution function of valuations and the empirical distribution

of bids, which uninformed sellers use to form their beliefs about the distribution functions

of valuations, are likely to over-represent higher valuations and under-represent lower

valuations. It is natural to expect that a bidder with a lower valuation is less likely to enter
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an auction with a secret reserve price, since the probability of winning in such an auction

given the equilibrium strategy of an uninformed seller is virtually zero. To test whether

the presence of a secret reserve price biases the distribution of valuations toward the right

tail, we regress average bids on a secret reserve price dummy. The results in Table A.3

show that the presence of a secret reserve price raises the average bid. Hence, the distri-

bution of bids observed by an uninformed seller and our estimated distribution functions

are skewed to the right.

Variable Coefficient Robust Standard Error

Number of biddersi 26.349*** 5.109

John Deerei 1214.455*** 91.461

Agei -81.396*** 1.963

Engine HPi 27.612*** 1.186

Public reservei 0.785*** 0.023

Secret reserve dummyi 400.334*** 64.826

BINi .095*** 0.012

Constant 2783.676*** 95.752

Number of observations 13057

R2 0.592

The dependent variable is the average bid; ***-statistical significance at 1%;

Table A.3. OLS regression of the average bid on a secret reserve dummy
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A.2.3 Independent versus Inter-dependent Valuations

The identification of the highest valuation from the highest observable bid in unsuc-

cessful auctions is based on the assumption that bidders’ valuations are independently

distributed. If bidders’ valuations have a commonly distributed component, then a bidder

with the highest bid over-bids relative to her valuation1.

We argue that bidders’ valuations are independently distributed, although a commonly

distributed component is likely to be present as well. The main justification for the inde-

pendence assumption comes from the nature of the items on sale in our sample. In section

2 we show that the average age of the tractors in our sample is about 22 years with a large

share of tractors exceeding 30 years. Since most of the tractors in the sample are old, they

are probably purchased for own use rather than for a later resale. By "own use" we mean

that the bidders most likely intend to use the purchased tractors for farming purposes or

for spare parts. In either case, the bidders’ valuations of the tractors on sale are mostly

guided by bidders’ individual preferences and less by valuations of other bidders. Based

on this consideration we argue that the independence assumption is likely to fit the data

more accurately.

We follow the approach of Bajari and Hortacsu (2003) to empirically test whether bid-

ders’ valuations are independently distributed or have a commonly distributed compo-

nent. The empirical test of Bajari and Hortacsu is based on the argument that if there

is a commonly-distributed component in bidders’ valuations then bidders should ratio-

nally lower their bids in larger auctions. Hence, Bajari and Hortacsu argue that the num-

ber of bidders should be negatively correlated with realized bids if there is a commonly-

distributed component in bidders’ valuations. In contrast, if bidders’ valuations are com-

pletely independently distributed, then the number of participating bidders should not

1In the literature this phenomenon is known as the "winner’s curse," and it occurs because a bidder with
the highest bid takes the fact that she is the winner as a negative signal of the quality of the item on sale.
Hence, in the presence of a commonly distributed component in bidders’ valuations the highest observable
bid exceeds the true highest valuation. For an overview, see Kagel and Levin (2002).
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affect realized bids.

To control for affiliation among bidders’ valuations we include dummies for 18 cate-

gories of tractors. In addition, since the number of bidders is endogenous to realized bids,

we use the minimum bid as an instrument for the number of bidders. Since we regress

individual realized bids, we also include bidders’ feedback scores among determinants.

We present results of our test in Table A.4.

The IV regression results in Table A.4 show that the number of bidders is statistically

significant and negatively correlated with realized bids. According to Bajari and Hortacsu

(2003), this indicates that bidder’s valuations have a commonly distributed component,

and the highest bids in unsuccessful auctions exceed their underlying valuations.
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Variable Coefficient Robust Standard Error

Number of biddersi -1222.166*** 198.562

Secret reserve dummyi -1689.940*** 386.458

BINi*Secret reserve dummyi -3796.384*** 619.197

BINi 0.073** 0.033

ln(Seller feedbacki) 404.160*** 142.116

ln(Buyer feedbacki) -146.798** 68.294

Agei -209.094*** 23.806

Engine HPi 56.059*** 13.494

John Deerei -942.256 942.939

Number of observations 43138

The dependent variable is realized bids; ***,**-statistical significance at 1%,5%;

In the table we do not report coefficients for category dummies;

Category dummies are jointly statistically significant at 1% with p-value<0.0001

Table A.4. IV regression of realized bids on the number of bidders

A.3 Appendix for Chapter 3

To simplify the empirical testing of the sorting condition in part (c) of Proposition 2 in

the rest of the chapter, we state that the expected price pE(θ = α) in Proposition 2 is

an upper bound of any observable price in an electronic platform. To see this, note that

pE(θ(β 2 (0, 1], γ = 0) < α) < pE(θ(β = 0, γ = 0) = α) by Lemma 1.

122



To get a better idea of this expected price in an electronic platform pE(θ = α) and it’s

relation to prices in a physical platform, we derive conditions when pE(θ = α) is higher

than a linear combination of prices in a physical platform with weights α and 1� α.

Proposition

If N�2
N�1 > F(v), then pE(θ = α) > αpP

H + (1� α)pP
L , and if N�2

N�1 < F(v), then pE(θ =

α) < αpP
H + (1� α)pP

L .

Proof:

To show this result, take a second derivative of the distribution function of the sec-

ond highest order statistic G(v) = NF(v)N�1 � (N � 1)F(v)N with respect to F(v) to ob-

tain d2G(v)
dF(v)2 = N(N � 1)((N � 2)F(v)N�3 � (N � 1)F(v)N�2). Note that G(v) is convex

if N�2
N�1 > F(v), and G(v) is concave if N�2

N�1 > F(v). Further, note that if N�2
N�1 > F(v)

and G(v) is convex, then αG(FH(v)) + (1� α)G(FL(v)) > G(αFH(v) + (1� α)FL(v)) andZ
vd(αG(FH(v))) +

Z
vd((1� α)G(FH(v))) <

Z
vd(G(αFH(v) + (1� α)FL(v))). This im-

plies that pE(θ = α) > αpP
H + (1� α)pP

L . A similar argument can be made to demonstrate

the second part of the claim in the proposition. �
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