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ABSTRACT

The state of Ohio has been witnessing an increase of pertussis incidence over the

past few years. This increase could be attributed to better recognition, reporting,

and waning vaccine immunity. As a result, Ohio has implemented a vaccine booster

program for 7th graders to try to curb the incidence. We use a model from Hethcote

[2] to model the behavior of pertussis in Ohio, based on parameters from Hethcote as

well as from literature and data from the Ohio Department of Health. The model is

then fit to incidence reports from the Ohio Department of Health and the behaviors

are examined. We identified two scenarios that matched the data, one of which has

low transmissability but high reporting and the other with high transmissibility and

low reporting. The vaccine booster is then implemented in the model with different

reporting rates and incidence contributions. We observed that the impact of the

booster seemed to be dependent on reporting rate of cases, where the higher reporting

rate leads to a greater impact than the lower reporting rate.
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CHAPTER 1

INTRODUCTION

Pertussis is a highly contagious bacterial respiratory disease caused by Bordetella

pertussis, that is usually transmitted through coughing and sneezing. A main charac-

teristic of pertussis is the uncontrollable coughing attacks that result from infection,

which result in an individual being short of breath and thus by taking a deep breath

afterwards the individual makes a “whooping” sound [6]. It is from this “whooping”

sound that pertussis obtains its other name of “whooping cough.” The population

who are most susceptible to this infection are young children, with older children

as well as adults demonstrating less severe symptoms and at times appearing to be

asymptomatic.

There are three stages to the progression of infection with pertussis. The first stage

is the Catarrhal stage, which lasts for approximately 1-2 weeks. This stage consists

of symptoms that resemble a common cold such as: runny nose, sneezing, low-grade

fever, and an occasional cough. Following the Catarrhal stage is the Paroxysmal stage,

which lasts about 1-6 weeks. It is at this second stage of infection that diagnosis most

often occurs due to the fact that this is where the coughing attacks begin. The final

stage is the Convalescence stage which can last weeks to months. After about 2-3

weeks in this stage the cough more or less disappears and recovery is gradual. If

the individual acquires another infection during this stage the coughing attacks could

return temporarily [1].
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The most common method of diagnosis is through a patient reporting the presence

of coughing attacks . Lab confirmation is generally done through use of PCR, but

cultures may also be used. As a result of lab results taking up to two weeks for results

they are not the preferred method of diagnosis. In addition, results are less efficient

if taken at a later stage of the infection or if the individual has already received

vaccinations or antibiotics. The most common diagnosis method is confirmation

of the individual having coughing attacks. Once diagnosis has occurred treatment

consists of antibiotics, generally Erythromycin, prescribed to the individual as well as

family members to prevent the spread of the infection [1]. Aside from treatment the

best line of defense against pertussis comes from completing the vaccination schedule.

The vaccine for pertussis originally was a whole-cell vaccine, but due to the com-

mon occurrence of local adverse reactions it was discontinued in the United States

in the mid 90s. Currently, vaccinations consist of an acelluar vaccine which contains

purified, inactivated components. There are two formulations of the vaccine. The

pediatric formulation is DTap meant for individuals 6 weeks of age to 6 years of age,

and the other is the adolescent formulation Tdap meant for individuals of ages 10-64

years [1]. In the state of Ohio children should complete a series of four doses of DTap

by the age of 5 years. If they have completed the series before their fourth birthday

it is recommended that they receive a fifth dose prior to starting school [6].

The state of Ohio has been noticing an increase in pertussis incidence in recent

years. Table 1.1 shows the number of confirmed pertussis cases in Ohio from 2001

through 2011. These cases were confirmed by using either method previously men-

tioned.

We can see from the table that the number of cases increases over a span of a

few years and then drops, but that the most recent years have much higher incidence
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Table 1.1: Number of Cases in State of Ohio 2001-2011 from ODH Data

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Number of Cases 337 441 325 763 1179 639 836 606 1095 1805 690

than previous ones. This behavior occurs every 3 to 5 years and can be seen in Figure

1.1 showing the total incidence in Ohio from 2001 through 2011.

Figure 1.1: Plot of Incidence from ODH data

The question that arises from the data is for what reason would the incidence

be increasing. There are several possible reasons. One reason is that as a result of

technological advancement it is possible that testing methods have improved so that

more cases are confirmed, and on a similar thought due to increased distribution

of pamphlets and public service announcements warning of pertussis the disease is
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more readily recognized and thus there is better reporting of cases. One of the more

serious possible causes of increased incidence is the thought that the acelluar vaccine

immunity is waning at a higher rate than the whole-cell vaccine immunity had in the

past.

Increased reporting and recognition are likely part of the reason that there has

been rising incidence for pertussis. Based on the data obtained from ODH though

it would also appear that waning vaccine immunity is also a cause for increased

incidence, especially if we look at Figure 1.2 showing the proportion of incidence

based on age.

Figure 1.2: Proportion of Incidence from ODH data
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Looking at the above figure we can see a disproportionate number of cases in the

10-14 year old age group. Thus as a result of this behavior, in 2010 the state of Ohio

came to the conclusion to enact a vaccine booster program for 7th graders, with the

hope that this will not only reduce the proportion of incidence in the age group, but

also reduce total incidence. Note that 1% of the ages were unknown and thus excluded

from the analysis. The purpose of this project is to attempt to mathematically model

pertussis in Ohio and the implication of the 7th grade booster program with its effect

on incidence.
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CHAPTER 2

MODEL

Our model is based on a compartmental SIR-type model including age structure,

vaccination, and waning immunity developed by Hethcote [2]. An assumption we

have also made for our model is the use of a constant population size. Two reasons

for this assumption are that the population size for the state of Ohio from 2001

to 2011 does not change by a large amount based on census data, but also using a

constant population size simplifies the model. Figure 2.1 is a schematic for the model,

and Table 2.1 lists the parameters and what they stand for. The values for these

parameters were in majority taken from Hethcote’s paper, but others were obtained

through data from ODH as well as through fitting the model to ODH incidence data.

Note that the model includes four different infected compartments represented

by Ihighest, Ihigh, Imed, and Ilow. Each of these is meant to represent individuals with

varying severity of infection with Ilow being the least severe and Ihighest being the most

severe. The S compartment is susceptibles and we can see that this compartment

has an influx from Birth, and then individuals leave either through being infected

by the λ term or by receiving a dose of the vaccine. The infected classes recover

at a rate of γ, with
1

γ
= 21 days corresponding to the expected infectious period.

The R classes are where individuals move after being infected in any of the infection

compartments. Once an individual recovers from any of the infected classes they

move into R4 where they have the highest level of immunity and cannot be infected.
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Figure 2.1: Schematic for model, after Hethcote [2]

If enough time goes by individuals move down through the R compartments by a rate

of α with
1

α
= 5 years, once they leave R4 they are then again able to be infected.
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Table 2.1: Model Parameters

Parameter Interpretation Value/Units Source

Birth Birth rate per day 3.5342 · 10−5 births day-1 ODH Database

α Waning Natural Immunity Rate 5.4795 · 10−4 day-1 Hethcote [2] and ODH Dis-

cussions

β Transmission Rate Varies Unitless Fitting Model

γ Recovery Rate 0.0476 day-1 Hethcote [2] and ODH Dis-

cussions

τ Vaccine Waning Time Rate 0.0014 day-1 Hethcote [2] and ODH Dis-

cussions

φ Aging Rate Depends on Age Class day-1 Fit to Age Groups

vacc Vaccination Rate 0.0085 Vaccinations day-1 ODH Discussions

µ Natural Death Rate 1.5 · 10−6 deaths day-1 ODH Database

ν Elderly Elevated Death Rate 3.2 · 10−4 day-1 Fitting Average Lifespan in

Ohio

The V compartments consist of individuals who have received a dose of the vaccine.

The V1 compartment represents individuals who have received the first dose through

V4 , which represents receiving the entire series of 4 doses. Completing the four dose

vaccination schedule provides complete immunity in the model, with V1 through V3

providing partial immunity. We calculated the value for vacc by observing that ODH

estimates an 85% completion rate for the series of vaccinations [5]. We decided to

undershoot the completion rate and let it be 0.8 since the values do seem to dip below

85% and then come back up according to their data. In addition we also assumed

that each dose had an equal chance of being adminstered and thus we took the fourth

root of 0.8, which came out to be 0.95. Using this we determined that the amount
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of individuals who would not receive a dose of vaccine was 0.05 and fit our model’s

parameter to this condition.

The term τ , with
1

τ
= 2 years, represents waning vaccine immunity whose value

was based on discussion with members of ODH as well as from literature. Once an

individual’s immunity in V4 begins to wane, they move into the W classes which

are waning classes for individuals who have completed the series of vaccinations.

Individuals in any of the W classes are susceptible to infection, but can be boosted

back to V4 if they receive another dose of vaccine. It should be noted that although

an individual in V4 has completed the series of vaccinations they can still be infected,

and then move directly into R4 following infection. This infection can be thought

of as a booster for V4 since individuals do not receive any negative effects from the

infection and afterwards are in a state where they cannot be infected, thus possessing

higher immunity than they previously had.

ODH reports pertussis data according to 12 age groups. We condense these age

groups to form 6 age classes in our model. Table 2.2 shows the age groups for ODH

as well as the age groups we used for the model.

Table 2.2: ODH Age Groups and Model Age Groups

ODH <1yr 1-4yr 5-9yr 10-14yr 15-19yr 20-29yr 30-39yr 40-49yr 50-59yr 60-69yr 70-79yr 80+yr

Model 0-5yrs 6-10yrs 11-14yrs 15-19 yrs 20-69yrs 70+yrs

The reason we have condensed the age groups from ODH is because each age

group consists of 16 ordinary differential equations and thus with more age groups we

would have more equations. Using only our 6 groups we already have 96 equations.
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The differences between the equations of the age groups are mostly that there are

no births associated with any age group other than the 0-5 year age group and since

that is the age group that recieves the intial series of vaccinations the parameters

Birth and vacc only appear in the 0-5 age group. In the 11-14 year age group we

have included a parameter vaccb which represents the implementation of the booster

program. Each age group possesses a φi term which corresponds to aging out of its

respective age group. The final difference between equations is the inclusion of ν in

the elderly. This is an added mortality term for the 70+ age class, calabrated so that

the average lifespan in the model matched the averaged lifespan in Ohio.

The following equations are those from the 0-5 age group to give an idea of how

they are formulated from the schematic.
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Ṡ = Birth ·N − λ0−5S − vaccS − µS − φ1S

˙Ihighest = λ0−5S − γIhighest − µIhighest − φ1Ihighest

˙Ihigh = λ0−5(R1 + V1 +W1) − γIhigh − µIhigh − φ1Ihigh

˙Imed = λ0−5(R2 + V2 +W2) − γImed − µImed − φ1Imed

˙Ilow = λ0−5(R3 + V3 +W3) − γIlow − µIlow − φ1Ilow

Ṙ1 = αR2 − λ0−5R1 − vaccR1 − µR1 − φ1R1

Ṙ2 = αR3 − λ0−5R2 − vaccR2 − αR2 − µR2 − φ1R2

Ṙ3 = αR4 − λ0−5R3 − vaccR3 − αR3 − µR3 − φ1R3

Ṙ4 = λ0−5V4 + vacc(R1 +R2 +R3) + γ(Ihighest + Ihigh + Imed + Ilow) − αR4

−µR4 − φ1R4

V̇1 = vaccS + τV2 − λ0−5V1 − vaccV1 − µV1 − φ1V1

V̇2 = vaccV1 + τV3 − λ0−5V2 − vaccV2 − τV2 − µV2 − φ1V2

V̇3 = vaccV2 − λ0−5V3 − vaccV3 − τV3 − µV3 − φ1V3

V̇4 = vacc(W1 +W2 +W3 + V3) − λ0−5V1 − τV1 − µV1 − φ1V1

Ẇ1 = τW2 − λ0−5W1 − vaccW1 − µW1 − φ1W1

Ẇ2 = τW3 − λ0−5W2 − vaccW2 − τW2 − µW1 − φ1W1

Ẇ3 = τV4 − λ0−5W3 − vaccW3 − τW3 − µW1 − φ1W1

(2.0.1)

One term from the model that needs to be discussed in greater detail is the force

of infection λi. The force of infection is a weighted sum which takes into account

contact rates between age groups and differential infectivity of the infectious classes.

Each age class i has a corresponding force of infection. As can be seen above λ0−5

corresponds to the force of infection for the 0 to 5 year old age group.

λi = β ·
∑
j

(
ci,j
Nj

· [Ihighest(j) + 0.75 · Ihigh(j) + 0.5 · Imed(j) + 0.25 · Ilow(j)]) (2.0.2)
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The weights associated with each of the infected classes were also taken from

Hethcote [2]. The explanation for them is that it would be expected from lower

infected classes that those individuals would not be as contagious and their symptoms

would be less severe or not appear at all, and thus contribute less to the force of

infection than the highest infected classes. The term ci,j represents total contacts per

day between individuals in group i with individuals in group j. As stated above in

the parameters β represents the transmission rate for the disease. To further explain

this we can think of an individual from the 0-5 age group coming into contact with

an individual from the 6-10 age group. ci,j in this case would be written as c0−5,6−10,

meaning that it would be interpreted as the amount of contacts a 0-5 year old would

have with a 6-10 year old. Notice that we divide by the population of the 6-10 year

old age group. This contact component would then be scaled by the population

size for the 6-10 year age class, N6−10. Since ci,j represents the number of contacts

an individual in one age group has with a corresponding age group regardless of

whether the contact is with an infected or healthy individual, we need to multiply

the total contacts by the proportion of infected individuals to make the force of

infection represent the contact rate with an infected. It is for this reason that we

divide by Nj in the formulation of λi. All of the I classes would also be from the

individuals in the 6-10 year age class who are infected.

The values for ci,j were obtained from a contact matrix of contacts per day that was

condensed from data obtained by Mossong et.al [4]. The data were obtained through

cross sectional surveys, where participants would keep contact diaries. These diaries

consisted of individuals recording every person they came into contact with as well

as details about the contacts, i.e. whether they were physical or non-physical. Their

study was conducted over 8 different European countries, but we are only using the

data about physical contacts for Great Britain for our model. The contact data from
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the study was used by Galvani and Medlock [3] to model influenza dynamics and

optimal vaccine distribution in the United States, and thus we decided that it would

be appropriate to use the data for our model as well.

Figure 2.2: Great Britain heat map of physical contacts from Mossong et al. [4]

If we examine the heat map we can note that the densest contact appears across

the main diagonal showing that for the majority the highest amount of contact occurs

between individuals encountering others in their same age group. Looking at the two

off diagonals we can see that these dense contacts occur between pairings of children

age groups with middle-aged adults. In addition the highest amount of contact occurs

between age groups 20yr to 24yr and below on the main diagonal. The youngest age

groups thus encounter the most contacts.
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CHAPTER 3

RESULTS

3.1 Model Behavior and Calibration

Table 3.1: Average Incidence Over 2001-2011 by Age Group from ODH Data

Age Group Average Incidence Proportion of Incidence

0-5 yrs 372 0.4286

6-10 yrs 156 0.1797

11-14 yrs 150 0.1728

15-19 yrs 63 0.0726

20-69 yrs 120 0.1382

70+ yrs 7 0.0081

Total 868

Table 3.1 shows the average incidence and proportion of total incidence per age

group. We want to fit the model as closely as possible to the values above before

running simulations with the vaccine booster present. To do this we are integrat-

ing the force of infection term over 1 year once the model has reached equilibrium,
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and thus we obtain the total incidence that occurs. Note that xi(t) stands for the

compartments that are susceptible to infection, not specifically the S (Susceptible)

compartment. ∫ 365

0

λi(t)xi(t)dt = Total Incidence for 1 Year (3.1.1)

Since the value obtained is the total incidence it is not accurate to match this to the

averages, because in a real-world situation not all cases that occur will be reported.

Thus once we obtain the total incidence we will be be multiplying it by a parameter

δ which will represent the reporting rate. We can alter total incidence to include all

of the compartments susceptible to infection or only some of them. The reason we

would not want all of the compartments that are susceptible would be because in

older age groups infected individuals would not show symptoms as readily and thus

would most likely not be reported as cases. Making this assumption is reasonable

due to the fact that adults will be much less likely to report a case for themselves

since when they are infected with pertussis it may seem like a “common cold,” while

young children are much more likely to be taken to a physician when ill even for less

severe cases. Table 3.2 shows different calculations for incidence based on the above

assumptions and what the reporting rate would need to be to fit the total incidence

from the model to the total incidence from the ODH data. The way the values are

determined is by fitting the proportion of cases in the 0-5yr age group to the ODH

data. Once we find the value of β that gives the correct proportion for the 0-5 age

group we can find the proportions for the rest of the age groups, and also the total

incidence. We can note that the total incidence from the model is greater than the

reported incidence from ODH , and thus we need to incorporate a reporting rate, δ, to

fit the total incidence to the reported incidence. The contribution to incidence column

in Table 3.2 represents which I classes are considered to contribute to incidence for

each age group in each scenario.

15



δ ·
∫ 365

0

λi(t)xi(t)dt = Reported Incidence (3.1.2)

Table 3.2: Computations of Reported Incidence and Reporting

Rates with Proportions (Prop) of Incidence by Age Group

Contribution to Incidence Total Incidence Reporting Rate δ Prop 0-5yr Prop 6-10yr Prop 11-14yr Prop 15-19yr Prop 20-69yr Prop 70+yr

0-5 All I classes, other

classes only Ihighest

2616.9 cases
1

3
0.4335 0.1184 0.1106 0.1405 0.1834 0.0136

0-5 All I classes, others

Ihighest and Ihigh

50,386 cases
1

58
0.4299 0.2263 0.1382 0.1065 0.0808 0.0183

0-5 All I classes, 20-69

and 70+ only Ihighest, others

Ihighest and Ihigh

44,346 cases
1

51.0899
0.4295 0.2610 0.1716 0.1369 9.5573 · 10−4 1.5773 · 10−5

0-5 All I classes, 15-19, 20-

69, 70+ only Ihighest, others

Ihighest and Ihigh

36,346 cases
1

41.87
0.4319 0.3215 0.2345 0.0105 0.0016 3.0144 · 10−5

Examining the output from the model we can see that the proportions given are

not exactly the same as the data, but that for the majority are quite close. Since

there has not been much research into the reporting rate for pertussis we will need to

formulate our own assumptions to decide which set-up is best. The highest reporting

rate is 1 in every 3 cases reported, and the lowest is 1 in 58 cases. Note that some of

the proportions in the last two rows are very small. The elderly class having a small

proportion is not a major issue since according to our data they make up less than

1% of the incidence, but in row three we can see that the adult proportion is also

very small, which does not match the data. Thus when we run our simulations for

varying coverage of the booster we calculate new incidence by allowing all I classes to

contribute for the 0-5yr age group and only Ihighest for the others, with reporting rate

16



δ =
1

3
. We will also use the second calculation consisting of all I classes to contribute

to 0-5yr age group with Ihighest and Ihigh for the other age groups, and the reporting

rate δ =
1

58
, since the proportions for this age group are also close to the proportions

found from the data.

Table 3.3: Distribution of Incidence in Model with β = 0.2995

Age Class Proportion of Total Incidence Proportion of Ihighest Proportion of Ihigh Proportion of Imed Proportion of Ilow

0-5yr 0.007 0.1107 0.0033 0.0069 0.0085

6-10yr 0.019 0.1101 0.0214 0.0180 0.0151

11-14yr 0.021 0.0930 0.0299 0.0162 0.0115

15-19yr 0.037 0.1352 0.0596 0.0242 0.0175

20-69yr 0.810 0.5168 0.7808 0.8240 0.8448

70+yr 0.105 0.0342 0.1050 0.1107 0.1026

Table 3.4: Distribution of Incidence in Model with β = 2.1765

Age Class Proportion of Total Incidence Proportion of Ihighest Proportion of Ihigh Proportion of Imed Proportion of Ilow

0-5yr 0.0286 0.5956 0.1321 0.0404 0.0136

6-10yr 0.0541 0.2715 0.1708 0.0744 0.0411

11-14yr 0.0448 0.0829 0.1237 0.0654 0.0362

15-19yr 0.0608 0.0356 0.1355 0.0880 0.0521

20-69yr 0.7032 0.0142 0.3598 0.6170 0.7464

70+yr 0.1085 2.1228 ·10−4 0.0780 0.1147 0.1105

Tables 3.3 shows how incidence is distributed between the different age groups

using β = 0.2995, corresponding to incidence being calculated where all I classes
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contribute to incidence for the 0-5 age group and only Ihighest for the other classes.

Table 3.4 shows how incidence is distributed between the age groups with β = 2.1765,

corresponding to the same condition for the 0-5 age group, but with Ihighest and Ihigh

for all other age groups. A behavior our model demonstrates in both cases is the fact

that majority of the incidence occurs in the the 20-69 age group, which implies that in

the model infection is driven by the adult population. In the absence of the booster,

only the 0-5 age group is vaccinated, and thus this age group would be expected to

have the highest proportion of Ihighest incidence. This holds true for β = 2.1765, but

not for β = 0.2995.

Table 3.5: Proportion of Population for Ohio by Age Group for ODH Age Groups

and Model Age Groups

ODH Age Groups 0-4yr 5-9yr 10-14yr 15-19yr 20-29yr 30-39yr 40-49yr 50-59yr 60-69yr 70-79yr 80+yr

0.066 0.072 0.073 0.072 0.130 0.147 0.155 0.113 0.076 0.063 0.035

Model Age Groups 0-5yr 6-10yr 11-14yr 15-19yr 20-69yr 70+yr

0.080 0.073 0.058 0.072 0.619 0.097

Table 3.5 provides the distribution of the population throughout the age groups

for both the ODH age groups as well as the model age groups. Referencing Table 3.1

where we showed the proportions of incidence for the ODH data based on our age

structures it is interesting to see that the 0-5 age group which makes up about 8% of

the population contains almost 43% of the incidence while the 20-69 age group which

is approximately 62% of the population only contains around 14% of the incidence.

Note that with the model proportions the 20-69 age group holds the majority of the

population, and thus it makes sense that in both set-ups shown in Table 3.3 and Table
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3.4 that the adult population makes up the largest proportion of the total incidence.

This difference between the proportions of incidence for the model and ODH data is

resolved through the use of δ where we have fit the total incidence of the model to

the data as well as the proportions of incidence for each age group.

3.2 Model with Booster

Figure 3.1: Model Output: Infected Compartments Over Time With and Without

Booster by Age Group
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Figure 3.1 shows how the output of the model changes when the booster is in-

cluded. We can see that for all classes the amount of infection does decrease with

the booster present. We see that with the booster present that incidence decreases

throughout the age classes and that majority of the classes demonstrate damped os-

cillations eventually approaching a new equilibrium. At the current scale it doesn’t

appear as though the 11-14 age group possesses these damped oscillations and instead

reaches its equilibrium much faster. The 15-19 age group also possesses this quicker

approach to equilibrium, but also seems to have some damped oscillations.

The following information was found by running the model without the booster un-

til it reach equilibrium and then using those equilibrium as our new initial conditions

with the inclusion of vaccb in the model, which represents the booster vaccination

rate. We assumed that the the booster would be distributed at the same rate as a

dose of the vaccine for the 0-5 age group. This assumption seemed reasonable since

similar to the series of vaccinations the booster will be required for students to attend

school. In addition we ran the model for the equivalent of the booster program being

in place for 20 years.

Figure 3.2 represents the reported incidence when incidence is reported for all I

classes for the 0-5 age group and only Ihighest for the other age groups. What we can

see from the output is that the total reported cases appears to decrease each year

after the booster has been implemented. By year 20 it seems that the model may be

approaching a new equilibrium for the booster, which we can note is significantly less

than the initial reported incidence prior to booster implementation.

Figure 3.3 represents the reported incidence when incidence is reported for all I

classes for the 0-5 age group with Ihighest and Ihigh for the other age groups. The

behavior we notice here is different from the previous calculation. We reach the

minimum incidence after booster implementation by year 5. Unlike the previous
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Figure 3.2: Total Reported Incidence for β = 0.2995

figure it would also appear that the model has already reached its equilibrium in this

case.

Table 3.6 allows us to see the behavior we described about the above figures, but in

terms of actual numeric values. We can notice that for δ =
1

3
the reported incidence

drops the most during the first 2-3 years. The values for δ =
1

58
in Table 3.6 show us

just how quickly we appear to reach equilibrium. In fact, by year 8 we can see that

the reported incidence value practically stays the same at 653, but eventually goes

up to 654 and stays there from year 14 through year 20.

The information in Table 3.7 allows us to compare our model results for incidence

with and without the booster against those from ODH. Notice that the amount of

incidence for all of the age groups decreases with the implementation of the booster.

We can see the effect the booster has on the 11-14 age group where its new incidence
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Figure 3.3: Total Reported Incidence for β = 2.1765

has almost disappeared completely. The 0-5 age group still has a considerable amount

of incidence, but it should be noted that within this group are children who are too

young to have completed the series of vaccines and also children who are too young

to have even received their first dose, making this age group the most susceptible to

infection. We can also see that there are 360 less cases for the average total with this

reporting rate when compared to the model output without the booster.

As for δ =
1

58
we can see that many of the age groups have less incidence than

the ODH data, but that overall the change is not as drastic as it was for the other

reporting rate. Also, we can see that the incidence for the 70+ age group did not

change with the implementation of the booster. Similar to the higher reporting rate

the 11-14 age group that is now receiving the booster has drastically decreased in
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Table 3.6: Reported Cases Per Year with Reporting Rate from Model with Booster

Reporting

Rate

Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 8 Year 9 Year 10

δ =
1

3
750 646 598 577 562 542 523 513 506 495

δ =
1

58
726 665 655 653 652 653 653 653 653 653

Reporting

Rate

Year 11 Year 12 Year 13 Year 14 Year 15 Year 16 Year 17 Year 18 Year 19 Year 20

δ =
1

3
482 474 470 463 455 449 447 443 438 434

δ =
1

58
653 654 653 654 654 654 654 654 654 654

incidence. The total incidence with the booster for this δ is about 211 less cases than

the model without the booster.

Table 3.8 shows the incidence for an age group caused by a corresponding age

group using the calculation for incidence with all I classes for the 0-5 age group and

only Ihighest for the other classes using β = 0.2995. A major characteristic that can be

noticed is that for many of the age groups adults are the cause of a large proportion

of their infections. We can see that for the 0-5 age group that almost 50% of the

infections arise from the adult population and in the 70+ age group over 70% of their

infections come from the adults. Another interesting behavior is that for the 6-10,

15-19, and 20-69 age groups the majority of their infections come from their own age

group. Thus these age groups are driving infection within themselves. The 11-14

age group has more interesting behavior from the implementation of the booster,

where each of the age groups seem to contribute similar amounts to the 11-14 group’s

incidence.

Table 3.9 is similar to Table 3.8, but with β = 2.1765. A major difference with

these proportions is that the adult population does not seem to cause as much in-

cidence in other age groups, with the exception being the 70+ age group. Overall

with this set-up infection within each age group seems to be driven by the age group
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Table 3.7: Average Reported Cases by Age Group from Model with Booster

Age Group Average

Incidence

ODH

Average

Model

Incidence

Without

Booster

δ =
1

3

Average

Model

Incidence

With

Booster

δ =
1

3

Average

Model

Incidence

Without

Booster

δ =
1

58

Average

Model

Incidence

With

Booster

δ =
1

58

0-5 yrs 372 379 308 374 335

6-10 yrs 156 103 83 197 188

11-14 yrs 150 97 5 120 11

15-19 yrs 63 123 26 92 45

20-69 yrs 120 160 83 70 64

70+ yrs 7 12 8 16 16

Total 868 873 513 869 658

itself. This behavior is very similar to the behavior we observed from the heat map

of contacts between age groups earlier. Unlike the previous set-up we see that for the

11-14 age group the infection due to other age classes is not very similar across the

various age groups. In fact, the majority of the infections come from the age groups

adjacent to the 11-14 group.
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Table 3.8: Distribution of Incidence from Age Groups: β =

0.2995 where columns correspond to the proportion of cases

caused by the age group in the corresponding column

0-5 yr 6-10yr 11-14yr 15-19yr 20-69yr 70+

0-5yr 0.162 0.189 0.016 0.088 0.468 0.078

6-10yr 0.069 0.533 0.015 0.101 0.245 0.036

11-14yr 0 .027 0.237 0.107 0.205 0.324 0.101

15-19yr 0.010 0.034 0.011 0.507 0.300 0.138

20-69yr 0.011 0.027 0.003 0.028 0.894 0.037

70+yr 0.003 0.010 0.002 0.012 0.741 0.232

Table 3.9: Distribution of Incidence from Age Groups: β =

2.1765 where columns correspond to the proportion of cases

caused by the age group in the corresponding column

0-5 yr 6-10yr 11-14yr 15-19yr 20-69yr 70+

0-5yr 0.466 0.260 0.019 0.066 0.158 0.032

6-10yr 0.178 0.653 0.016 0.067 0.073 0.013

11-14yr 0.093 0.391 0.153 0.184 0.131 0.049

15-19yr 0.047 0.075 0.021 0.606 0.162 0.090

20-69yr 0.076 0.091 0.010 0.051 0.736 0.036

70+yr 0.025 0.036 0.006 0.023 0.661 0.25
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CHAPTER 4

DISCUSSION AND CONCLUSIONS

These results from the model imply that the booster program in Ohio will have some

effect on reducing total incidence, but the impact greatly depends on the reporting

rate. As a result a next step for the state of Ohio would be to try to gain an idea

of what the actual reporting rate for pertussis may be. A study could be conducted

in which a sample of the population from various age groups could be swabbed pe-

riodically and then tested for infection, then the results of the sampling could be

compared to the number of reported cases to determine an estimate of the reporting

rate in Ohio.

A general feature of the model is that the adult population acts as a major reser-

voir for pertussis. Thus, since this population generally has less severe cases it makes

sense that they may not report regularly, and that a significant number of cases are

being overlooked. We saw according to the results in Table 3.7 that a higher report-

ing rate corresponds to a large proportion of infections being caused by the adult

population. Thus, examining possible ways of implementing a booster program for

adults could be beneficial. Currently adults who are expecting a child are encouraged

to receive a dose of Tdap to help prevent infection to the newborn, but to have an

effect on the total incidence a larger portion of the adult population most likely would

need to receive boosters. Based on the lower reporting rate though we notice we do

not see any particular age group contributing a majority of the infections and thus
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it is difficult to pick any particular age group to boost in addition to the 11-14yr age

group. Again, this indicates a reason for Ohio to research the actual reporting rate

for pertussis.

A topic that has been discussed since the acelluar vaccine was found to wane faster

than the whole cell vaccine for pertussis, is the development of a new vaccine. One

of the main aspects of the new vaccine would be to improve the length of protection

it would provide for individuals. In addition, the current vaccine only works in

preventing infection from Bordetella pertussis, but there are other strains that can

cause infection. As a result, creating a vaccine that would provide protection for

multiple strains of pertussis could aid in reducing the amount of incidence if the

length of protection of the vaccine could not be improved.

Hethcote’s results indicated that utilizing a booster program for adolescents and

adults concurrently will not lead to herd immunity, meaning that the infection cannot

be eradicated from the population [2]. Although our model was run with only an

adolescent booster we can see that even with the higher reporting rate that infection

does not disappear. The level of incidence merely obtains a new equilibrium value,

which would agree with Hethcote’s findings.

Further improvements to the model could be made including allowing population

growth as well as the inclusion of more age groups. Our model could also be used

to see what implications a booster program could have if implemented for other age

groups, or if there were multiple age group booster programs in place. The issue

that would need to be addressed with the case of multiple age group boosting is the

coverage of the booster. Since older age groups are generally no longer in school it

is difficult to create some kind of requirement for receiving the booster for these age

groups, and research would need to be done to estimate these values.
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