
ON THE GALOIS MODULE STRUCTURE OF THE UNITS AND
RAY CLASSES OF A REAL ABELIAN NUMBER FIELD

DISSERTATION

Presented in Partial Fulfillment of the Requirements for the Degree Doctor of

Philosophy in the Graduate School of the Ohio State University

By

Timothy J. All, BA

Graduate Program in Mathematics

The Ohio State University

2013

Dissertation Committee:

Warren Sinnott, Advisor

James Cogdell

David Goss



c© Copyright by

Timothy J. All

2013



ABSTRACT

We study the Galois module structure of the ideal ray class group and the group

of units of a real abelian number field. Specifically, we derive explicit annihilators

of the ideal ray class groups in the vein of the classical Stickelberger theorems.

This is made possible by generalizing a theorem of Rubin which in turn allows us

to describe a relationship between the Galois module structure of certain explicit

quotients of units and the Galois module structure of the ray class group. Along

the way, we’re compelled to study the Galois module structure of the p-adic com-

pletion of the units. We derive numerous conditions under which we may con-

clude that this module is cyclic some of which allow for p to divide the order of

the Galois group. Under those conditions, we are able to relate the annihilators of

the p-parts of various explicit quotients of units to annihilators of the p-parts of the

ray class groups in many cases. This is a generalization of a theorem of Thaine.
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CHAPTER 1

INTRODUCTION

1.1 History

Let k be an abelian number field of conductor m. Let ζm = e2πi/m and let σa ∈

Gal(Q(ζm)/Q) be defined by σa : ζm 7→ ζam. For any real x, let {x} denote the

unique real number such that x− {x} ∈ Z and 0 6 {x} < 1. Define

θk =
∑

a modm
(a,m)=1

{ a
m

}
σ−1a ∈ Q[G],

where we view σa ∈ G by restriction. The element θk is called the Stickelberger

element of k. We have the following classical theorem:

Theorem 1.1 (Stickelberger, [18]). The Stickelberger ideal Sk := Z[G]θk ∩Z[G] annihi-

lates Clk, the ideal class group of k.

Stickelberger’s theorem follows by studying the factorization of Gauss sums in

Q(ζm). This theorem is surprising (and useful) since it gives explicit information

about the ideal class group. Perhaps even more surprising is the following theorem

due to Iwasawa:

Theorem 1.2 (Iwasawa [7]). Suppose k = Q(ζpn) and let R− = (1 − σ−1)Z[G]. The

index of the subgroup S−k = θkZ[G] ∩ R− in R−, denoted [R− : S−k ], is finite. In fact,

[R− : S−k ] = h
−
pn where h−

pn is the relative class number of Q(ζpn).
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For general abelian number fields, Sinnott [16, Theorem 2.1 and Theorem 3.1]

has defined a larger ideal S ′k (which is essentially equivalent to Sk in the k = Q(ζpn)

case) whose members annihilate the ideal class group and satisfies an analogous

index formula. Similarly, for d ∈ N, Schmidt [15, Satz 1 and Satz 2] has defined

an ideal S ′k(d) (equivalent to Sinnott’s S ′k if d = 1) whose members annihilate the

ray class group Clk(d) of k of modulus d, moreover, whose index [R− : S ′−k (d)]

is finite and related to #Clk(d). Unfortunately, if k is real, then the Stickelberger

elements thus far mentioned devolve into multiples of the norm. For example, if

k = Q(ζm)
+ then σa|k = σ−a|k and {a/m}+ {−a/m} = 1. This means that

θk =
φ(m)

2[k : Q]

∑
σ∈G

σ,

where φ(m) = # (Z/mZ)×. And since θk is a multiple of the norm, no useful

information can be obtained.

Now, consider the following classical theorem due to Kummer.

Theorem 1.3 (Kummer [8]). For k = Q(ζpn)
+, define the cyclotomic units Ck of k to be

the Gal(Q(ζpn)
+/Q)-module generated by −1 and

ζ
(1−s)/2
pn

ζspn − 1

ζpn − 1
,

where 〈s〉 = (Z/pnZ)×. Then Ck is a subgroup of finite index in the group of units Ek of

k, in fact, [Ek : Ck] = h
+
pn where h+

pn is the class number of k.

Once again, for general abelian number fields, Sinnott [16, Theorem 4.1] has

defined a larger group of explicit units C ′k (which is essentially equivalent to Ck

in the k = Q(ζpn)
+ case) and obtained an analogous index formula. Similarly, for

d ∈ N, Schmidt [15, Satz 3] has defined an explicit group of unitsC ′k(d) (equivalent

to Sinnott’sC ′k when d = 1) congruent to 1modulo dwhose index in the full group

of units congruent to 1modulo d is finite and related to #Clk(d).
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The next question to ask is now plain: If k is a real abelian number field, then is

the relationship between C ′k(d) and Clk(d) purely combinatorial, or is it a symp-

tom of a deeper algebraic relationship? It is, in fact, the latter case. When d = 1 this

relationship is reflected in the work of Thaine [19], Rubin [14], and most spectacu-

larly in the work of Mazur and Wiles [11]. One of the main goals of this dissertation

is to establish similar relationships when d 6= 1.

We now discuss the work of Thaine and Rubin as it applies to this dissertation.

From here on out, k denotes a real abelian number field with Galois group G and

unit group Ek. We have the following theorem due to Thaine.

Theorem 1.4 (Thaine [19]). Let p be an odd prime not dividing [k : Q]. If θ ∈ Z[G] such

that θ annihilates Sylp(Ek/C
′
k), then θ annihilates Sylp(Clk).

Thaine’s theorem follows by noticing that the units of C ′k satisfy the following

property: for every δ ∈ C ′k, for all but finitely many rational primes ` that split

completely in k, there exists a k(ζ`)/k-norm 1 unit of k(ζ`) that is congruent to δ

modulo the primes of k(ζ`) above `. The fact that this unit is norm 1 allows us

to construct various principal ideals (α) that are invariant under the Gal(k(ζ`)/k)-

action, or principal “ambiguous ideals” as Hilbert calls them. From the factoriza-

tion of (Nk(ζ`)k (α)) we derive annihilators of Sylp(Clk) much in the same way that

Stickelberger elements are derived from the factorization of Gauss sums. The fact

that ε satisfies the aforementioned congruence relation with δ allows us to relate

the annihilators of Sylp(Clk) with those of Sylp(Ek/C
′
k).

Using a “wild variant” of Thaine’s method, Solomon [17, Proposition 4.1] was

able to prove the following theorem.

Theorem 1.5 (Solomon [17]). Fix an embedding so that we may view Qalg ⊆ Qalg
p .

Suppose p is unramified in k, let m be the conductor of k, and let Dlk denote the set of

3



ideal classes of k supported by the primes above p. Let Ok denote the ring of integers of the

topological closure of k, and set

solk :=
1

p

∑
σ∈G

logp
(
(N

Q(ζm)
k (1− ζm))

σ
)
σ−1.

Then solk annihilates Dlk ⊗Z Ok.

Naturally, this led Solomon to the following conjecture [17, Conjecture 4.1].

Conjecture (Solomon [17]). If p is unramifed in k, then solk annihilates Clk⊗ZOk.

The above conjecture is an analog of Stickelberger’s theorem for real abelian

number fields. Recently, Belliard and Quang Do [1, Theorem 5.4] were able to

prove a modified version of Solomon’s conjecture under the additional hypothesis

that p is totally split in k.

Theorem 1.6 (Belliard and Quang Do [1]). Assume p is totally split in k. If the con-

ductor of k is a prime power, then (1−τ) solk annihilates Sylp(Clk) where τ is a generator

for G; otherwise, solk annihilates Sylp(Clk).

If p is totally split in k, then Ok = Zp, solk ∈ Zp[G] and Clk⊗ZZp = Sylp(Clk).

In this setting, Belliard and Quang Do were able to prove the above theorem by

utilizing the following broad generalization of Thaine’s method obtained by Rubin

[14, Theorem 1.3].

Theorem 1.7 (Rubin [14]). Let α : Ek → Zp[G] be a G-module map. Then α(C ′k)

annihilates Gal(H/(k(ζp∞) ∩ H)) where Gal(H/k) ' Sylp(Clk) via the Artin map and

ζp∞ is the group of all p-power roots of unity.

This dissertation is motivated by generalizing the approach of Belliard and

Quang Do to arbitrary odd primes p, and extending all the annihilation results

to the ideal ray class groups. So we have two principal objectives. For an ideal a

of the ring of integers of k:
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• Define an explicit subgroup of units Ck(a) such that the G-module struc-

ture of Ek/Ck(a) is related to Clk(a) akin to the relationship between Clk and

Ek/C
′
k as seen in Theorem 1.7 and Theorem 1.4.

• Derive explicit annihilators of Clk(a)⊗ZOk (which in turn generate annihila-

tors of Sylp(Clk(a))) in the vein of Theorem 1.1.

Along the way, we discover some interesting results regarding the structure of

Ek ⊗Z Fp as an Fp[G]-module. Consequently, we can prove a ray class analog of

Thaine’s theorem (which subsumes Thaine’s theorem itself) that is applicable in

some non semi-simple cases, surprisingly enough.

1.2 Outline of Results

Chapter 2 of this dissertation is devoted to proving the following generalization of

Theorem 1.7.

Theorem 1.8. Let a be an ideal of the ring of integers of k, and let α be a G-module map

from the S-units of k to Ok[G] where S contains all the Archimedean places. There is a

subgroup of S-units CS(a) of k, whose definition (see Definition 2.8) does not involve the

ray class group Clk(a), such that

R0 · α(CS(a)) annihilates Clk(a)⊗Z Ok

where R0 is the augmentation ideal of Ok[G].

We end Chapter 2 by analyzing the G-module

Gal
(
k(ζp∞) ∩H(a)

/
k

)
.

We derive sufficient conditions to conclude that this module is trivial. Under these

conditions, it turns out we can remove the contribution from R0 in Theorem 1.8.

5



In order to establish explicit annihilators of Clk(a)⊗ZOk á la Stickelberger, we’d

like to take advantage of Theorem 1.8. This will require:

• an explicit G-module map from the S-units ES of k to Ok[G]

• explicit examples of S-units of the type CS(a).

Chapter 3 is devoted to the latter in which we study an explicit subgroup of S-

units CS(a) of k which we call the a-cyclotomic S-units (equivalent to Schmidt’s

d-cyclotomic S-units for certain d depending on a) where a is an ideal of the ring

of integers of k (see Definition 3.1). In particular, we prove the following theorem.

Theorem 1.9. CS(a) ⊆ CS(a).

We then show that the index [E : C(a)]1 is finite, and we compute it when

a = d ∈ N. In this case we prove the following generalization of Theorem 1.3.

Theorem 1.10. The index [E : C(d)] is finite and [E : C(d)] = #Clk(d) · ck(d) where

the explicit definition of ck(d) does not depend on Clk(d).

As for G-module maps from E → Ok[G], these are easiest to describe when

E ⊗Z Fp is a cyclic module. Consequently, in Chapter 4 we study the G-module

structure of E ⊗Z Fp. In certain cases, we show that the cyclicality of E ⊗Z Fp is

influenced by the capitulation of ideals and the number of primes ramifying in the

p-part of the extension k/Q. In particular, we have the following theorem.

Theorem 1.11. If p - #G, then E⊗Z Fp is a cyclic Fp[G]-module.

Things are, predictably, more complicated when p | #G. We give necessary

and sufficient conditions for the cyclicality of E ⊗Z Fp as a G-module when G is

cyclic and k/kSylp(G) is part of the Zp-extension of kSylp(G). The clearest result we

have in this vein is the following slightly more general result.

1We omit subscripts when S consists solely the Archimedean places.
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Theorem 1.12. SupposeG is cyclic and there is only one prime ideal of kSylp(G) ramifying

in k/kSylp(G). Then E ⊗Z Fp is a cyclic Fp[G]-module if and only if the natural map

Cl
k

Sylp(G) → Clk is injective.

Using a wholly different approach, we can also show that the G-module struc-

ture of E ⊗Z Fp is restricted by # Sylp(G) to a large extent. In fact, we get the

following theorem.

Theorem 1.13. If #G = p, then E⊗ Fp is a cyclic Fp[G]-module.

As # Sylp(G) gets larger, this last approach becomes less useful. On the other

hand, we did notice something unrelated but curious. Comparing results across

Chapter 4, we get the following for a very attractive price. If [k : Q] = pem and

s > e rational primes ramify in kwhose ramification indices are divisible by p, then

the p-rank of Clk is at least s − e. This result is surprising, if anything, because it

requires no class field theory to prove.

Chapter 5 is devoted to applications of the previous chapters. As mentioned

before, one of our main goals is to find explicit annihilators of Clk(a) ⊗Z Ok. We

can now do this by using Theorems 1.8 and 1.9 and the explicit G-module map

ϑ : ES → K[G] defined by

ϑ(x) =
∑
σ∈G

logp(x
σ)σ−1,

where K is the topological closure of k and logp is the Iwasawa logarithm. In

general, this map is not integral, so we must “integralize” it, i.e., we must find β ∈

K[G] such thatβϑ(ES) ⊆ Ok[G]. We find explicit examples of such integralizers and

therefore are able to derive explicit annihilators. In general, we have the following

theorem.

Theorem 1.14. Let β ∈ K[G] such that βϑ(ES) ⊆ Ok[G]. Then

R0 · βϑ(CS(a)) annihilates Clk(a)⊗Z Ok.

7



This is gives the first full proof (of a much strengthened version) of Solomon’s

[17, Conjecture 4.1] (again, under certain conditions we can remove the contribu-

tion from R0, the augmentation ideal of Ok[G]).

We also show that any G-module map from E → Ok[G] is a K[G]-multiple of

the map ϑ defined above. This gives us to describe the Ok[G] ideal S0(a) defined

by

S0(a) := 〈α(C(a)) : α ∈ HomG(E,Ok[G])〉Ok[G]

in terms of the map ϑ defined above. This ideal (or possibly the product of this

ideal with R0) annihilates Clk(a)⊗Z O and is analogous to the ideal Z[G] ∩ Z[G]θk

of Theorem 1.1.

Under the additional assumption that E ⊗Z Fp is a cyclic module (and thus

the content of Chapter 4 comes into the fold), we show that S0(a) is essentially

equal to the annihilator of (E/C(a))⊗Z Ok. This is a generalization of Theorem 1.4.

Moreover, if we also assume a = 1 and Sylp(G) is cyclic, we show that the index

[R0 : S0(1)] is finite equal to #(Clk⊗ZOk). This is a generalization of Theorem 1.2.

In summary, we have the following theorem.

Theorem 1.15. If E⊗ Fp is a cyclic Fp[G] module, then

S0(a) = R0 ·AnnOk[G](E/C(a))⊗Z Ok.

If, in addition, we have Sylp(G) is cyclic, then

R0/S0(a) ' (E/C(a))⊗Z Ok.

In particular, if a = 1 and p - #G, then

#(R0/S0(1)) = #(Clk⊗ZOk).

8



1.3 Common Notation

We collect the common notations used throughout this dissertation here for the

convenience of the reader. Throughout we let k denote a real abelian number field

with Galois group G. For a number field K we set

oK = the ring of algebraic integers of K

ClK(a) = the ray class group of K of modulus a ⊆ ok.

If K = k, then we generally omit subscripts, and if a = o, then we generally omit

parentheses (e.g., Cl = Clk(o)). For a prime p ⊂ oK, we use vp(x) to denote the

p-adic valuation of x ∈ K. Further, we let

S = a G-stable set of places of k containing all the Archimedean places.

For any n ∈ N, we set

ζn = e2πi/n

Wn = the group of n-th roots of unity.

We fix an odd prime p, and an embedding of k ↪→ Qalg
p . We consider k ⊂ Qalg

p from

here on out and omit any mention of the embedding for the sake of brevity.

For primes λ ⊂ ok, we use the notation (λ, K/k) to denote a Frobenius auto-

morphism of λ in Gal(K/k). Note that (λ, K/k) is only defined modulo the inertia

subgroup for λ. We let [λ, K/k] denote the conjugacy class of (λ, K/k) in Gal(K/k).

Throughout we use ⊗ as an abbreviation for ⊗Z. We make a Z[G]-module M

into an R[G]-moduleM⊗R (where R is any commutative ring) in the obvious way:

form ∈M, r ∈ R, and
∑

rσσ ∈ R[G] we set

(m⊗ r)
∑
rσσ :=

∑
mσ ⊗ rrσ.

9



We let Ĝ denote the character group of G. For each χ ∈ Ĝ, we let eχ denote the

idempotent associated to χ:

eχ =
1

#G

∑
σ∈G

χ(σ)σ−1.

We may view eχ ∈ K[G] where K is any field whose characteristic does not divide

#G and contains the #G-th roots of unity.

10



CHAPTER 2

ON THE GALOIS MODULE STRUCTURE OF THE RAY CLASS

GROUP

2.1 Preliminaries

In this chapter, we write ES to denote the S-units of k, and we let a ⊆ o be an

ideal. For a natural number n, we write kn for k∩Q(ζn). We also fix the following

notations.

K = the topological closure of k in Qalg
p

O = the valuation integers of K

$ = a uniformizer of O

An(a) = Cl(a)/pnCl(a)

A(a) = Sylp(Cl(a))

Hn(a) = the ray class field over k associate to An(a).

H(a) = the ray class field over k associate to A(a).

Note that Gal(Hn(a)/k) ' An(a) and Gal(H(a)/k) ' A(a) via the Artin map.

The proof of the main result of this chapter relies on the linear disjointness of

Hn(a) and certain Kummer extensions of k(ζpn). For this reason, we will find the

following proposition, essentially from [14], very helpful.

11



Proposition 2.1. Let V 6 k× such that Vk×p
n

/k×p
n

is finite. Then

Hn(a) ∩ k(ζpn , V1/p
n

) = Hn(a) ∩ k(ζpn).

Proof. Let K be the composite of k(ζpn) and Hn(a) ∩ k(ζpn , V1/p
n

). Then we have

a natural isomorphism of Galois groups

Gal
((
Hn(a) ∩ k(ζpn , V1/p

n

)
))/

Gal (Hn(a) ∩ k(ζpn)) ' Gal(K/k(ζpn)),

moreover, Kummer theory gives us an isomorphism of Gal(k(ζpn)/k)-modules

Gal(K/k(ζpn)) ' HomZ(B,Wpn),

where B 6 Vk×p
n

/k×p
n

such that K = k(B1/p
n

). Since Gal(K/k(ζpn)) is abelian,

we have that Gal(k(ζpn)/k) acts trivially on Gal(K/k). So Gal(k(ζpn)/k) acts triv-

ially on Hom(B,Wpn). This means that for all τ ∈ Gal(k(ζpn)/k), for all ψ ∈

Hom(B,Wpn) we have

ψ(τb) = τψ(b), for all b ∈ B.

But B 6 k×/k×p
n

, so τψ(b) = ψ(b) for all b ∈ B. It follows that ψ(b) ∈ k for

all b ∈ B. Since k is real and p is an odd prime, it must be that ψ(b) = 1 for all

b ∈ B. So Hom(B,Wpn) ' Gal(K/k) is trivial. This completes the proof of the

proposition.

Let M be an R[G]-module where R is a commutative ring with 1. We make

HomG(M,R[G]) and HomR(M,R) into R[G]-modules in the usual way: for α ∈

HomG(M,R[G]), a ∈ HomR(M,R), and θ ∈ R[G] we define

(θ · α)(m) := θα(m) and (θ · a)(m) := a(θm).

We need the following lemma that relates these two modules.

12



Lemma 2.2. Let R be a commutative ring with 1, and letM be an R[G]-module. The map

Φ : HomG(M,R[G])→ HomR(M,R) defined by(
α : m→

∑
σ∈G

mσσ
−1

)
7→ (a : m→ mid)(

α : m→
∑
σ∈G

a(mσ)σ−1

)
←[ (a : m→ a(m)) ,

is a G-module isomorphism.

Proof. This is a straight-forward verification.

We will also need the following proposition regarding the injectivity of R[G]

when R = O
/
pnO .

Proposition 2.3. Let R = O
/
pnO , and let N ⊆ M be finite R[G]-modules. The natural

map

HomG(M,R[G])→ HomG(N,R[G])

is surjective.

Proof. In lieu of the above lemma, it suffices to show that the natural map

HomR(M,R)→ HomR(N,R)

is surjective. Let m ∈ M \ N, and let f ∈ HomR(N,R). We wish to extend f

to a homomorphism from N + Rm → R. Let j be the least positive integer such

that $jm ∈ N. Let e be the ramification index of p in k so that p = $e. Define

f ′ : ($j)→ R by

f ′(r) := f(rm).

Note that 0 < j 6 en, so

$en−jf ′($j) = $en−jf($jm) = f($enm) = 0.

13



It follows that f ′($j) ⊆ ($). Let u ∈ R such that u$ = f ′($j).

Now, suppose x1, x2 ∈ ($j) and r1, r2 ∈ R such that

x1 + r1$
j−1 = x2 + r2$

j−1.

Then

x1 − x2 = (r2 − r1)$
j−1.

It follows that r2 − r1 ∈ ($). Let v ∈ R such that r2 = r1 + v$. Then

f ′(x2) + r2u = f ′(x1 + r1$
j−1 − (r1 + v$)$j−1) + (r1 + v$)u

= f ′(x1) + r1u− f ′(v$j) + uv$

= f ′(x1) + r1u,

since f ′(v$j) = vf ′($j) = uv$. It follows that the map f ′′ : ($j−1) → R defined

by

x+ r$j−1 7→ f ′(x) + ru

is well-defined, moreover, f ′′|($j) = f ′. Similarly, we can lift f ′′ to a map f ′′′ :

($j−2) → R such that f ′′′|($j−1) = f ′′. Lifting j times successively, we construct a

map f(j+1) : R→ R such that f(j+1)|($j) = f ′.

Now, suppose y1, y2 ∈ N and r1, r2 ∈ R such that

y1 + r1m = y2 + r2m.

Then

y1 − y2 = (r2 − r1)m.

It follows that r2 − r1 ∈ ($j) by the minimality of j. Let v ∈ R such that r2 =

r1 + v$
j. Then

f(y2) + f
(j+1)(r2) = f(y1 + r1m− (r1 + v$

j)m) + f(j+1)(r1 + v$
j)

= f(y1) + f
(j+1)(r1) − f(v$

jm) + f(j+1)(v$j).
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By construction, we have

f(j+1)(v$j) = f ′(v$j) = f(v$jm),

so

f(y2) + f
(j+1)(r2) = f(y1) + f

(j+1)(r1).

It follows that the map F : N+ Rm→ R defined by

F(y+ rm) := f(y) + f(j+1)(r),

is well-defined, moreover, F|N = f.

2.2 Proof of the Main Theorem

For odd primes `, let

E(`, a) := {ε ∈ Ek(ζ`) : N
k(ζ`)
k (ε) = 1 and ε ≡ 1 mod a}.

The following lemma will act as a sort of explicit version of Hilbert’s Theorem 90

for our purposes.

Lemma 2.4. For any ε ∈ Ek(ζ`) such that Nk(ζ`)k (ε) = 1, we have that the element

α := ζa` + ζ
aτ
` ε+ · · ·+ ζaτ

`−2

` ε1+τ+···+τ
`−3

is non-zero for some choice of 0 6 a 6 `− 1.

Proof. Let α(x) ∈ C(x) be the rational function defined by

x 7→ ζ`

1− xζ`
+

ζτ`
1− xζτ`

· ε+ · · ·+ ζτ
`−2

`

1− xζτ
`−2

`

· ε1+τ+···+τ`−3 .

Since α(x) has distinct poles, it follows that α(x) is not identically zero. On the

other hand, we may view α(x) ∈ C[[x]] and write

α(x) =

∞∑
a=0

(
ζa+1` + ζ

(a+1)τ
` ε+ · · ·+ ζ(a+1)τ

`−2

` ε1+τ+···+τ
`−3)

xa.
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Note that the power series form of α(x) has periodic coefficients of the form of the

claim. Since α(x) is not identically zero, the claim follows.

The following theorem is crucial for what follows. It is a generalization of a

theorem of Rubin which itself is a generalization of a theorem of Thaine (see [19]

and [14]).

Theorem 2.5. Let n ∈ N and ` be an odd prime split completely in k such that ` ≡ 1

mod n. Fix a prime λ of k above `, and let A ⊆ Z/nZ [G] be the annihilator of the

cokernel of the natural map

φ : E(`, a)→
(
ok(ζ`)/L

)× ⊗ Z/nZ ,
where L is the product of all primes of ok(ζ`) above `. Then A annihilates the class of λ in

Cl(a)/nCl(a).

Proof. Let θ ∈ A, and let u ∈ ok(ζ`) such that

u ≡ s−1 mod L and u ≡ 1 mod Lσ for all σ 6= id,

where L is the prime of ok(ζ`) above λ and 〈s〉 = Z/`Z×. The element u has been

chosen so that (
ok(ζ`)/L

)×
= 〈u mod L〉Z/(`−1)Z[G].

Now, uθ ≡ ηnε mod L for some η ∈ k(ζ`)× coprime to ` and ε ∈ E(`, a). Let

〈τ〉 = Gal(k(ζ`)/k) and

α := ζ` + ζ
τ
`ε+ ζ

τ2

` ε
1+τ + · · ·+ ζτ`−2` ε1+τ+···+τ

`−3

.
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By Lemma 2.4, we may assume α 6= 0 (allowing for a small abuse of notation).

Notice that

εατ = ζτ`ε+ ζ
τ2

` ε
1+τ + · · ·+ ζτ`−1` ε1+τ+···+τ

`−2

= ζτ`ε+ ζ
τ2

` ε
1+τ + · · ·+ ζ`

= α,

since τ`−1 = id and 1+ τ+ · · ·+ τ`−2 = Nk(ζ`)k . Since ε ∈ E(`, a) we have

α ≡ ζ` + ζτ
2

` + · · ·+ ζτ`−2` mod a

≡ −1 mod a.

Now, (α) is a non-zero ideal inert under Gal(k(ζ`)/k). Given a prime ideal p ⊂ o,

the Galois group of k(ζ`)/k acts transitively on the primes above p in ok(ζ`). It

follows that

(α) = b ·
∏
σ∈G

Laσσ
−1

,

where 0 6 aσ < `−1 and b is an ideal of o. Taking norms of both sides of the above

we get (
N
k(ζ`)
k (α)

)
= b`−1 · λ

∑
aσσ

−1

.

Since α ≡ −1 mod a, we have that Nk(ζ`)k (α) ≡ 1 mod a. By assumption we have

n | (`− 1), so
∑

aσσ
−1 mod nZ[G] annihilates the class of λ in Cl(a)/nCl(a).

It remains to relate the coefficients aσ to θ. To that end, note that

aσ = ord
Lσ

−1 (α) = ord
Lσ

−1 (1− ζ`)
aσ .

Write α = β(1 − ζ`)
aσ where β is a Lσ

−1

-unit. Without loss of generality, let’s

17



suppose τ : ζ` → ζs` . The primes above ` are totally ramified in k(ζ`)/k. So τ acts

trivially on Lσ
−1

-units modulo Lσ
−1

. Hence

ε =
α

ατ
=
β(1− ζ`)

aσ

βτ(1− ζτ` )
aσ

≡
(
1− ζ`
1− ζτ`

)aσ
mod Lσ

−1

≡ (s−1)aσ mod Lσ
−1

,

the last equivalence holding because ζ` ≡ 1 mod Lσ
−1

. So

1− ζτ`
1− ζ`

= 1+ ζ` + · · ·+ ζs−1` ≡ s mod Lσ
−1

.

This gives us that ε ≡ uaσσ−1

mod Lσ
−1

, so

ε ≡ u
∑
aσσ

−1 ≡ η−nuθ mod L.

Hence
∑

aσσ
−1 ≡ θ mod nZ[G].

Remark 2.6. Note thatNk(ζ`)k (α) is totally positive. So more precisely we have A annihi-

lates the class of λ in the narrow ray class group Cl(a∞)/nCl(a∞) where a∞ is the cycle

a
∏
v|∞ v.

Now, we set A ′n(a) 6 An(a) such that A ′n(a) ' Gal(Hn(a)/(Hn(a) ∩ k(ζpn))).

Let ρ : O/pnO[G] ⊗ O → O/pnO[G] be defined by θ ⊗ x 7→ θx. The following

theorem is essentially from Rubin [14]. The use of multiple primes is necessary to

accommodate the larger ring of coefficients.

Theorem 2.7. Assume that S is finite, fix c ∈ A ′n(a), and let

α : ES/E
pn

S → (O/pnO) [G]

be aG-module map. There exists infinitely many non-conjugate j-tuples of degree 1 primes

λ1, . . . , λj 6∈ S of o such that (λi, a) = 1 and
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(i) the class of λi in An(a) is c,

(ii) pn | `i − 1 where `i = λi ∩ Z, and

(iii) there exists an O/pnO[G]-module map

f :
(
(o/L)

× ⊗ Z/pnZ)⊗ O→
(
O
/
pnO

)
[G]

such that the diagram

ES/E
pn

S ⊗ O
(
O
/
pnO

)
[G]

(
(o/L)

× ⊗ Z/pnZ)⊗ O

φ⊗ id
f

ρ ◦ (α⊗ id)

commutes where L =
∏
i

`i and φ : ES/E
pn

S → (o/L)
× ⊗ Z/pnZ is the natural

map.

Proof. Let G = Gal
(
k(ζpn)/Q

)
and

Γ = Gal
(
k(ζpn , E

1/pn

S )
/
k(ζpn , (kerα)1/p

n

)

)
.

Let G act on Γ in the natural way: for g ∈ G, γ ∈ Γ , define

g · γ := g̃γg̃−1,

where g̃ is a lift of g to Gal
(
k(ζpn , E

1/pn

S )/Q
)
. This action is well-defined since

Gal
(
k(ζpn , E

1/pn

S )/k(ζpn)
)

is abelian. Let γ1, . . . , γj be a complete system of unique

representatives of Γ/G.

SinceHn(a) and k(ζpn , E
1/pn

S ) are linearly disjoint overHn(a)∩k(ζpn) by Propo-

sition 2.1, we may choose βi ∈ Gal
(
Hn(a)k(ζpn , E

1/pn

S )/k
)

such that

βi|Hn(a) = c and βi|k(ζpn ,E
1/pn

S )
= γi.
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By the Chebotarev Density Theorem [9, Chap VIII §4 Theorem 10], there exists

infinitely many degree 1 non-conjugate j-tuples of primes λ1, . . . , λj 6∈ S such that

(λi, a) = 1 and

βi ∈
[
λi, Hn(a)k(ζpn , E

1/pn

S )
/
k

]
.

Since βi|k(ζpn) = id, we have (λi, k(ζpn)/k) = id. So `i splits completely in k(ζpn),

hence `i ≡ 1 mod pn. We also have (λi, Hn(a)/k) = c, so λi ∈ c. This proves (i)

and (ii).

Now, let ε ∈ ES/Ep
n

S such that ε1/p
n ∈ k(ζpn , (kerα)1/p

n

). Then

〈ε〉k(ζpn)×p
n
/
k(ζpn)

×pn ⊆ (kerα)k(ζpn)×p
n
/
k(ζpn)

×pn .

So ε = βp
n

u where u ∈ kerα and β ∈ k(ζpn)
×. From the exact sequence of

H := Gal(k(ζpn)/k)-modules

1→Wpn → k(ζpn)
× pn−→ k(ζpn)

×pn → 1

we obtain the exact sequence of H-invariants

1→WH
n → k(ζpn)

×H → k(ζpn)
×pnH → H1(H,Wpn).

Since F is real and pn an odd prime power, we have

WH
pn = 1

k(ζpn)
×H = k×

k(ζpn)
×pnH = k ∩ k(ζpn)×p

n

.

Since H is cyclic, say generated by σ, and ker(σ− 1)|Wpn
= 1, we also have

H1(H,Wpn) = ker(Wpn
N
k(ζ`)

k−−−→Wpn)

/
im(Wpn

σ−1−−→Wpn) = Wpn

/
Wpn

= 1,
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hence [k∩k(ζpn)×p
n

: k×p
n

] = 1. It follows that β ∈ k×, and since βp
n ∈ ES, it must

be that β ∈ ES. So we have that ε ∈ kerα. This allows us to make the following

chain of equivalences:

ε ∈ kerα iff ε1/p
n ∈ k(ζpn , (kerα)1/p

n

)

iff Γ fixes k(ζpn , ε1/p
n

)

iff g · γi fixes k(ζpn , ε1/p
n

) for all g ∈ G, i = 1, . . . , j

iff λσ splits completely in k(ε1/p
n

) for all σ ∈ G, i = 1, . . . , j

iff xp
n

− ε splits completely mod λσi for all σ ∈ G, i = 1, . . . , j

iff ε ∈ kerφ.

Now, since O is a flat Z-module, we get the following exact sequences

1→ (kerα)⊗ O→ ES/E
pn

S ⊗ O
α⊗id−−−→

(
O
/
pnO

)
[G]⊗ O

1→ (kerα)⊗ O→ ES/E
pn

S ⊗ O
φ⊗id−−−→

(
(o/L)

× ⊗ Z/pnZ)⊗ O.

So the G-module map

f̃ : ρ ◦ (α⊗ id) ◦ (φ⊗ id)−1 : im(φ⊗ id)→
(
O
/
pnO

)
[G].

is well-defined. By Proposition 2.3, f̃ lifts to a G-module map

f :
(
(o/L)

× ⊗ Z/pnZ)⊗ O→
(
O
/
pnO

)
[G]

such that f ◦ (φ⊗ id) = ρ ◦ (α⊗ id).

Now we make the following definition.

Definition 2.8. For an ideal a ⊆ o, let D(a) denote the set of numbers δ ∈ k× such that

for all but finitely many primes ` split completely in k, we have that there is an ε ∈ E(`, a)

such that for all σ ∈ G,

ε ≡ δ mod Lσ
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where L ⊂ ok(ζ`) is a prime ideal such that L | `. We call D(a) the a-special numbers of

k. Let

C(a) := D(a) ∩ E and CS(a) := D(a) ∩ ES.

We call C(a) and CS(a) the a-special units of k and the a-special S-units of k, respectively.

Note that D(o) is precisely Rubin’s special numbers (see [14]). We may now

prove the main theorem of this chapter. It is the ray class analogue of theorem of

Rubin [14].

Theorem 2.9. Suppose S is finite, and let α : ES/E
pn

S →
(
O
/
pnO

)
[G] be a G-module

map. Then

α
(
CS(a)E

pn

S /E
pn

S

)
annihilates A ′n(a)⊗ O.

Proof. Let δ ∈ CS(a) and c ∈ A ′n(a). Let λ1, . . . , λj 6∈ S be as in Theorem 2.7 such

that for each i, there exists εi ∈ E(`i, a) such that

εi ≡ δ mod Lσi for all σ ∈ G,

where Li ⊂ ok(ζ`i) is the prime above λi. Set

L :=

j∏
i=1

`i and Li :=
∏
σ∈G

Lσi .

Since the primes of o above `i are totally ramified in k(ζ`i), we have that

(o/L)
× '

j∏
i=1

(o/`i)
× '

j∏
i=1

(
ok(ζ`i)/Li

)×
.

Let ui ∈ o such that

ui ≡ s−1i mod λi and ui ≡ 1 mod λσi for all σ ∈ G,σ 6= id,

where 〈si〉 = Z/`iZ×, as in Theorem 2.5. Note that

〈ui mod Li〉(Z/(`i−1)Z)[G] '
(
ok(ζ`i)/Li

)×
.
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Let θi ∈ Z/pnZ [G] such that

(δ mod Li)⊗ 1 = (εi mod Li)⊗ 1

= (uθii mod Li)⊗ 1 ∈
(
ok(ζ`i)/Li

)×
⊗ Z/pnZ .

Notice that θi is an annihilator of the cokernel of the map

E(`i, a)→
(
ok(ζ`i)/Li

)×
⊗ Z/pnZ .

So θi annihilates the class of λi in Cl(a)/pnCl(a) by Theorem 2.5. But λi ∈ c by

Theorem 2.7, so θi annihilates c. Also,

ρ ◦ (α⊗ id)((δ mod Ep
n

S )⊗ 1) = f
(
(δ mod `i)⊗ 1⊗ 1

)
by Theorem 2.7

= f ◦

(
j∏
i=1

(uθii mod Li)⊗ 1⊗ 1

)

=

j∑
i=1

θif
(
(ui mod Li)⊗ 1⊗ 1

)
.

Hence, for any x ∈ O, we have α(δ mod Ep
n

S ) = ρ ◦ (α⊗ id)((δ mod Ep
n

S )⊗ 1) so

(c⊗ x)α(δ mod Ep
n

S ) = (c⊗ x)
∑
θif((ui mod Li)⊗1⊗1)

=
∑

cθi ⊗ x · f((ui mod Li)⊗ 1⊗ 1)

= 0.

This completes the proof of the theorem.

Now, letA ′(a) := lim
−→

A ′n(a). We easily obtain the following more general corol-

lary.

Corollary 2.10. Let α : ES → O[G] be a G-module map. Then

α(CS(a)) annihilates A ′(a)⊗ O.

Proof. If the corollary is true for every finite subset of S, then it’s true for S itself. So

we might as well assume S is finite. The corollary now follows immediately from

Theorem 2.9 by letting n→∞.
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2.3 On the Defect A ′(a)

We’d like to know conditions under whichA ′(a) = A(a) to get a fuller annihilation

result. We almost immediately obtain the following.

Proof of Theorem 1.8. Let H ′n(a) and H ′(a) be the fixed fields of A ′n(a) and A ′(a),

respectively. From the start, we notice that H ′(a)/Q is abelian. So G acts trivially

on A(a)/A ′(a). It follows from Corollary 2.10 that

R0 · α(CS(a)) annihilates A(a)⊗ O = Cl(a)⊗ O,

where α : ES → O[G] is a G-module map and R0 is the augmentation ideal of

O[G].

Now, let P be a fixed prime of k(ζpn) above p, P = P ∩ k, and IP the iner-

tia subgroup for P in Gal(k(ζpn)/k). We have the following field diagram with

corresponding diagram of prime ideals below P on the left:

Q

kpn

k

Q(ζpn)

Hn ∩ k(ζpn)

k(ζpn)
IP

k(ζpn)

p

p

P

(1− ζpn)P

P

Proposition 2.11. Let e(P : p) denote the ramification index of P over p, and likewise for

the other primes below P. We have the following divisibilities:

[Hn ∩ k(ζpn) : k] | p-part of e(P : p) | p-part of e(P : p).
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Proof. Since p is totally ramified in Q(ζpn) and e(P : P) = 1, we have

e(P : p) = e(P : P)e(P : p) > e((1− ζpn) : p).

So
e((1− ζpn) : p)

e(P : p)
6 e(P : P).

On the other hand, we could solely consider degrees and obtain

[Hn ∩ k(ζpn) : k]e(P : P) 6 [k(ζpn) : k] =
e((1− ζpn) : p)

e(p : p)
.

Combining the above inequalities we have

e((1− ζpn) : p)

e(P : p)
6 e(P : P) 6

e((1− ζpn) : p)

e(p : p)[Hn ∩ k(ζpn) : k]

whence

[Hn ∩ k(ζpn) : k] 6
e(P : p)

e(p : p)
= e(P : p).

Now, since [Hn : k] is a p-power, so is [Hn ∩ k(ζpn) : k]. On the other hand,

e(P : p) = plm for some integers l > 0 and m > 1 where (m,p) = 1. In fact,

m | p−1 since e(P : p) divides the ramification index of p in Q(ζm) wherem is the

conductor of k. It follows that [Hn ∩ k(ζpn) : k] 6 pl, so [Hn ∩ k(ζpn) : k] | e(P : p).

This completes the proof of the proposition.

The second divisibility of the above proposition tells us that if p is tamely ram-

ified in k, then A ′n = An for all n. We use the first divisibility in the proposition to

obtain

Proposition 2.12. Suppose k = k ′k ′′ where k ′ ⊆ Q(ζpm)
+ and k ′′ ⊆ Q(ζd)

+ where

(p, d) = 1. Then A ′n = An for all n.

Proof. Let Ip 6 G be the inertia subgroup for p. Consider the following diagram:
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Q

kIp kpn

kIpkpn

k

Let n > m, then k ′ = kpn and k ′′ ⊆ kIp . So k = kIpkpn . Since the prime of kpn

above p is unramified in kIpkpn , it follows that e(P : p) = 1.

Lemma 2.13. Let TP 6 Gal (H ′n(a)/k) be the inertia subgroup for P. Then TP =

Gal (H ′n(a)/H
′
n).

Proof. The primes above p are the only primes ramifying in H ′n(a)/k, moreover,

since H ′n(a)/Q is abelian, it follows that TP = TP ′ where P ′ is any prime of k over

p. Hence

H ′n = H ′n(a)
Tp ,

and the lemma follows.

Combining all the above gives a sufficient condition for A ′n(a) = An(a):

Corollary 2.14. If k satisfies any one of the following

(i) p is tamely ramified, or

(ii) k = k ′k ′′ where k ′ ⊆ Q(ζpj)
+, k ′′ ⊆ Q(ζd)

+, and (p, d) = 1,

and the product of the primes of k dividing p does not divide a, then α(CS(a)) annihilates

A(a)⊗ O. Otherwise R0 · α(CS(a)) annihilates A(a)⊗ O.

Proof. Given the condition on a, Lemma 2.13 gives us that H ′n(a) = H ′n. If k satis-

fies (i) or (ii), then H ′n = k by Proposition 2.11 or Proposition 2.12, respectively. So

H ′n(a) = k, and the corollary follows by Corollary 2.10.
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CHAPTER 3

ON A-CYCLOTOMIC NUMBERS

Given the results of Chapter 2, a natural question arises: Can we find explicit ex-

amples of a-special numbers? To answer this question, we begin with a definition

for a-cyclotomic numbers which were originally discovered by Schmidt [15].

Definition 3.1. Let a ⊆ ok be an ideal. Let d(a) = d ∈ N be the minimal integer such

that a | d, and let d denote the product of all prime divisors of d. For n > 1, n - d we

define

δn,d := N
Q(ζn)
kn

∏
t|d

(1− ζtn)
µ(t)d/t,

where µ is the Möbius function:

µ(t) =


(−1)j if t = p1 · · ·pj, pi primes

1 if t = 1

0 else.

Let D(a) := 〈δn,d : n > 1, n - d〉Z[G]. We call D(a) the a-cyclotomic numbers of k, and

CS(a) := D(a) ∩ ES the a-cyclotomic S-units.

Remark 3.2. Note that ±D(1) and ±C(1) are precisely the sets of cyclotomic numbers

and units, respectively, as defined by Sinnott [16]. Also, since D(a) = D(d(a)), these

modules are most precise when a ∈ N.

Theorem 3.3. If δ ∈ D(a), then ±δ ∈ D(a), i.e., ±D(a) ⊆ D(a).
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Proof. It suffices to show that ±δn,d ∈ D(a) for all n > 1 and n - d = d(a) since

these numbers generate D(a). Let ` be a rational prime split completely in k such

that (`, nd) = 1. Define

±εn,d = N
Q(ζn`)
kn(ζ`)

∏
t|d

(ζt` − ζ
t
n)
µ(t)d/t ∈ k(ζ`).

Let λ be a prime of k above ` and L the prime of k(ζ`) above λ. Since

(1− ζ`)ok(ζ`) =
∏
σ∈G

Lσ,

it follows that ζ` ≡ 1 mod Lσ for all σ ∈ G, hence ±εn,d ≡ ±δn,d mod Lσ for all

σ ∈ G. Now, we note

N
kn(ζ`)
kn

(±εn,d) = NQ(ζn)
kn

N
Q(ζn`)
Q(ζn)

∏
t|d

(ζt` − ζ
t
n)
µ(t)d/t

= N
Q(ζn)
kn

∏
t|d

(
ζt`n − 1

ζtn − 1

)µ(t)d/t
= δ

[`,k]−1
n,d .

Since ` splits completely in k, it follows that [`, k] = 1 hence Nkn(ζ`)kn
(εn,d) =

N
k(ζ`)
k (εn,d) = 1.

Now, let p | d be a prime, let pj be the p-primary part of d, and let dp = d/pj.

Then

εn,d = N
Q(ζn`)
kn(ζ`)

∏
t|dp

[
(ζt` − ζ

t
n)
p

(ζtp` − ζtpn )

]pj−1µ(t)dp/t
.

For all t | d/p we have that ζt` and ζtp` are primitive `-th roots of unity since

(`, nd) = 1, moreover, ζtn and ζtpn are not equal to 1 since n - d. It follows that

(ζt` − ζ
t
n) and (ζtp` − ζtpn ) are units in Z[ζn`], hence εn,d ∈ Ek(ζ`). We also have

(ζt` − ζ
t
n)
p

ζtp` − ζtpn
≡ 1 mod p
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from which it follows that[
(ζt` − ζ

t
n)
p

ζtp` − ζtpn

]pj−1
≡ 1 mod pj,

whence εn,d ≡ 1 mod pj. Since p was an arbitrary divisor of d, it follows that

εn,d ≡ 1 mod d, hence εn,d ≡ 1 mod a. Therefore, we have εn,d ∈ E(`, a), as

desired.

Remark 3.4. Note that this proves Theorem 1.9.

Let E(d) denote the group of units of k congruent to 1modulo d, and let C(d) =

D(d) ∩ E(d). Schmidt [15, Satz 3] has computed the index [E(d) : C(d)] by using the

methods of Sinnott [16, Theorem 4.1] to compute [E : C]. By the same means, we

intend to compute the index [E : C(d)] since it is related to the index of annihilators

ofA(d)⊗O generated by the images of C(d) viaG-module maps (which we intend

to compute in the sequel). This index is, in general, larger than the index computed

in [15, Satz 3], but has the advantage of being somewhat more simple.

For the remainder of this chapter, we adopt some notation common to [16]

and [15] since we follow these arguments very closely. Nevertheless, this section

will be largely self-contained since there are some subtle differences in this setting

that would be difficult to separate from [16] and [15]. Let l : k× → R[G] be the map

defined by

α 7→ −
1

2

∑
σ∈G

log |ασ|σ−1.

We let

ω ′ =
∑
χ 6=1

L ′(0, χ)eχ,

where L ′(s, χ) is the first derivative of the Dirichlet L-function attached to χ, the

complex conjugate of χ. For a Galois extension of number fields K/k, we let
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G(K/k) = Gal(K/k). For a finite subset X of G, we let s(X) denote the sum of

the elements of X in the group ring Z[G]. For every prime p, we let

ep =
1

#Tp
s(Tp)

where Tp is the inertia subgroup for p in G.

We also adopt the following generalized index notation from Sinnott [16]. Sup-

pose L andM are free Z-modules of equal rank in R[G]. Let T be an automorphism

of the R-vector space R[G] such that T(L) =M. Define

(L :M) := |det(T)|,

and note that this index is independent of T . If M ⊆ L, then the index (L : M)

coincides with the usual subgroup index [L :M].

We need the following result due to Sinnott [16, Proposition 4.2]:

Proposition 3.5 (Sinnott). For n > 1 and t a positive proper divisor of n,

(1− e1)l(N
Q(ζn)
kn

(1− ζtn)) = ω
′ · αn

t ,n

where

αn
t ,n

:= [Q(ζn) : knQ(ζn
t
)] · s(Gal(k/kn/t)) ·

∏
p|nt

(1− (p, k/Q)−1ep).

The product runs over all prime divisors p of n/t.

Suppose p | d/(d, n) so that

δn,d = N
Q(ζn)
kn

∏
t|dp

[
(1− ζtn)

p

1− ζtpn

]µ(t) dtp
= δ

(d/d)·(p−(p,k/Q)ep)

n,d/p
.

Note that (p, k/Q)ep = (p, kn/Q) since (p, n) = 1. By repeated application, we get

the following lemma.

30



Lemma 3.6. If n > 1 and n - d, then

δn,d = δ
(d/d)·γd/(d,n)
n,(d,n)

where γt :=
∏
p|t

(p− (p, k/Q)ep).

The product in γt runs over all prime divisors p of t.

This is essentially [15, Lemma 3.5]. Combining Lemma 3.6 and Proposition 3.5

we get the following proposition.

Proposition 3.7. If n > 1 and n - d, then

(1− e1)l(δn,d) = ω
′ · υn,d,

where

υn,d :=
d

d
· γd/(d,n) ·

∑
t|(d,n)

µ(t) · (d, n)
t
· αn

t ,n
.

We define U(d) to be the Z[G]-module generated by υ1,d and υn,d for all n > 1, n - d.

Remark 3.8. Note that U(d) coincides with Sinnott’s U if d = 1 (see [16, Corollary to

Proposition 2.2 and Proposition 2.3]).

The plan is to compute [E : C(d)] by factoring it into various parts, e.g., we will

show

[E : C(d)] := 2[l(E) : l(C(d))] = 2
(
l(E) : R0

)
·
(
R0 : l(C(d))

)
,

where R0 denotes the trace zero subspace of R := Z[G] (note that this is a departure

from the notation used in the previous chapter). With malice aforethought, the

next few lemmas and propositions will help us compute the indices of the factors

of [E : C(d)].

For each character χ ∈ Ĝ, let fχ denote the conductor of χ, kχ the field belonging

to χ, and ρχ the induced ring homomorphism C[G]→ C defined by∑
σ∈G

aσσ 7→
∑
σ∈G

aσχ(σ).
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Note that

ρχ(s(Gal(k/kn))) 6= 0⇔ Gal(k/kn) ⊆ kerχ = Gal(k/kχ)

⇔ kχ ⊆ kn ⊆ Q(ζn)

⇔ fχ | n.

If fχ | n, then ρχ(s(Gal(k/kn))) = #Gal(k/kn). Moreover, ρχ
(
(p, k/Q)ep

)
=

χ
(
(p, k/Q)

)
, and for all t > 1 we have

ρχ(γt) =
∏
p|t

(
p− χ

(
(p, k/Q)

))
6= 0

since p− χ
(
(p, k/Q)

)
6= 0 for any χ or p.

Proposition 3.9. The Z-module U(d) is free and rankZU(d) = #G.

Proof. Sinnott [16, Proposition 2.3] has shown that U(1) is finitely generated. In

particular, U(1) is generated by αf,f where f varies over the divisors of the con-

ductor of k. This shows that U(d) ⊆ U(1), and therefore is also finitely generated.

Hence, U(d) is free of some finite rank less than or equal to #G. To get equality it

suffices to show that ρχ(U(d)) 6= 0 for each χ ∈ Ĝ.

If χ is the trivial character, then

ρχ(υ1,d) =
d

d
· ρχ(γd) · ρχ(α1,1) =

d

d
· ρχ(γd) ·#G 6= 0.

Suppose χ is non-trivial, and let ` be a prime such that (`, fχd) = 1 and

χ((`, kχ/Q)) 6= 1.

Then υ`fχ,d ∈ U(d), and for every t | (d, `fχ), we have fχ - `fχ/t unless t = 1. So

ρχ(υ`fχ,d) =
d

d
· ρχ(γd/(d,`fχ)) · (d, `fχ) · ρχ(α`fχ,`fχ)
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Since ` is coprime to fχ, it follows that χ is trivial on T`. Hence

ρχ(α`fχ,`fχ) = [Q(ζ`fχ) : k`fχ ] ·#G(k/k`fχ) · (1− χ((`, kχ/Q)) 6= 0,

consequently ρχ(υ`fχ,d) 6= 0. Hence, for each χ ∈ Ĝ we have ρχ(U(d)) 6= 0. This

proves the proposition.

Lemma 3.10. The set D(d) is totally positive.

Proof. Since k is real, kn is real for every n ∈ N. So kn ⊆ Q(ζn)
+ for every n ∈ N.

Now, for any n, t ∈ N such that n - t, we have

N
Q(ζn)
kn

(1− ζtn) = N
Q(ζn)

+

kn

(
(1− ζtn)(1− ζ

−t
n )
)
> 0

Since D(d) is generated by elements of the above type, the lemma follows.

We write Q>0 to denote the multiplicative group of positive rational numbers.

Proposition 3.11. Let

Q(d) := {aφ(d)/[kd:Q] : a ∈ Q>0, (a, d) = 1, (a, kd/Q) = id},

where φ(d) = #Z/dZ×. Then Q(d) ⊆ D(d) ∩Q.

Proof. Let p be a prime such that p - d. Then for any t | d, t < dwe have

N
Q(ζdp)

Q(ζd)
(1− ζt

pd
) = N

Q(ζdp)

Q(ζd)
(1− ζty

d
ζtxp ) for xd+ yp = 1

=
1− ζtyp

d

1− ζty
d

= (1− ζty
d
)(p,Q(ζd)/Q)−1

= (1− ζt
d
)1−(p,Q(ζd)/Q)−1 .

On the other hand,

N
Q(ζdp)

kd
(1− ζp) = N

Q(ζd)

kd
(p) = p[Q(ζd):kd].
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Since (d/d)[Q(ζd) : kd] = φ(d)/[kd : Q], we have

N
kdp
kd

(δdp,d) =
(
N

Q(ζdp)

kd

∏
t|d

t<d

(1− ζt
dp

)µ(t)d/t

︸ ︷︷ ︸
=α∈kd

)1−(p,kd/Q)−1

· p±φ(d)/[kd:Q]

= α1−(p,k/Q)−1 · p±φ(d)/[kd:Q].

Note that although p may be divisor of the conductor of k, we know that p is

unramified in kd, so it matters not which Frobenius (p, k/Q) we choose. Hence

p±φ(d)/[kd:Q]α ≡ α(p,k/Q)−1 mod D(d).

By repeated application, for all (a, d) = 1 we have

a±φ(d)/[kd:Q]α ≡ α(a,k/Q)−1 mod D(d).

If (a, k/Q)|kd
= id, then α(a,k/Q)−1 = αwhence

a±φ(d)/[kd:Q] ∈ D(d).

What can we say about the index [l(D(d) ∩ Q) : Q(d)]? When k = Q(ζm)
+, it

turns out that it’s a power of 2. In preparation for this corollary, we make a few

observations in the vein of Lemma 3.6 that are essentially in line with [15, Lemma

3.5].

Lemma 3.12. For each δn,d ∈ D(d), there exists n0 ∈ N and τ ∈ G such that

δn,d = δ
±(d/d)·τγd/d0
n0,d0

,

where d0 = (d,m) andm is the conductor of k.
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Proof. Let n ∈ N such that n - d, and write n = pjb where p is a prime divisor of

d/d0 and b a positive integer such that (p, b) = 1. Then kn = kb since (p,m) = 1,

so

δpjb,d = N
Q(ζ

pjb
)

kb

∏
t|(d/p)

[
(1− ζtn)

p

1− ζtpn

]µ(t)d/(tp)

= N
Q(ζ

pj−1b
)

kb

∏
t|(d/p)

NQ(ζ
pjb

)

Q(ζ
pj−1b

)(1− ζ
t
pjb

)p

(1− ζt
pj−1b

)p


µ(t)d/(tp)

.

If j > 1, then we can use an argument similar to the one given at the beginning of

the proof of Proposition 3.11 to show that the numerator in the above product for

any t | (d/p) is

N
Q(ζ

pjb
)

Q(ζ
pj−1b

)(1− ζ
t
pjb)

p = (1− ζtpj−1b)
p,

hence δpjb,d = 1 (since k is real and D(d) is totally positive by Lemma 3.10). Simi-

larly, if j = 1, then the numerator in the above product for any t | (d/p) is

N
Q(ζpb)

Q(ζb)
(1− ζtpb)

p = (1− ζtb)
p−p(p,Q(ζb)/Q)−1 .

In summary, we have

δpjb,d =


1 if j > 1

δ
1−p(p,k/Q)−1

b,d/p
if j = 1

δ
p−(p,k/Q)

b,d/p
if j = 0, (by Lemma 3.6).

Repeated application of the above gives the lemma.

Corollary 3.13. If k = Q(ζm)
+, then for every δ ∈ D(d) ∩Q, we have δ2 ∈ Q(d).

Proof. We have kd = kd0 = Q(ζd0)
+ where d0 = (d,m), so

Q(d) = {a2φ(d)/φ(d0) : a ∈ Q>0, (a, d) = 1, a ≡ ±1 mod d0}.
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Let δ ∈ D(d) ∩Q×. By Lemma 3.12, let δ0 ∈ D(d0) such that δ = δ
(d/d)·γd/d0
0 . Note

that γd/d0 is invertible in Q[G] (as is every γt). So there exists N ∈ N such that

δN0 ∈ Q. Since k is real, it follows that δ20 ∈ Q, and since the elements of D(d) are

totally positive, we get δ0 ∈ Q. So

δ = δ
(d/d)·

∏
p|(d/d0)

(p−1)

0

= δ
φ(d)/φ(d0)
0 .

The corollary will follow once we show that δ0 ≡ 1 mod d0.

Now, let p be a prime dividing d0, P a prime of Q(ζn) over p, and δn,d0 ∈

D(d0). As usual, we write

δn,d0 = N
Q(ζn)
kn

∏
t|(d0/p)

[
(1− ζtn)

p

1− ζtpn

]µ(t)d0/p
.

Suppose n = tpj for some t | (d0/p). Then j > 1 otherwise n | d0. Note that

ζtn = ζpj and

(1− ζpj)
p

1− ζpj−1
=

p∏
a=1

1− ζpj

1− ζ1+ap
j−1

pj

=

p∏
a=1

( apj−1∑
b=0

ζbpj

)−1

≡
p∏
a=1

(
1+ apj−1

)−1
mod 1− ζpj

≡ 1 mod 1− ζpj.

Since 1− ζpi | P, it follows that

(1− ζtn)
p

1− ζtpn
≡ 1 mod P.

If n/t is not equal to a p-th power, then the above congruence holds as well since

1 − ζtn is a unit modulo P and the p-th power map is an automorphism. Hence
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δn,d0 ≡ 1 mod p where p = P ∩ kn. And so if δ0 ∈ D(d0) ∩Q, then δ0 ≡ 1 mod p.

Since p was an arbitrary prime divisor of d0, it follows that δ0 ≡ 1 mod d0. This

completes the proof of the corollary.

The next proposition is essentially a combination of [16, Lemma 4.2 and Propo-

sition 4.1] adjusted for our purposes. We let T(d) = l(D(d)) and any Z[G]-module

M, we denote byM0 the kernel of multiplication by s(G) inM, although, we write

T0(d) (similarly, U0(d), etc) instead of the more cumbersome T(d)0.

Proposition 3.14. Let m denote the conductor of k. Then l(C(d)) = T0(d) = T(d) ∩

(1− e1)T(d), moreover, T0(d) has finite index in (1− e1)T(d), in fact,

[(1− e1)T(d) : T0(d)] =

∑
p-d

φ(d)

[kpvp(m)d : Q]
l(p)Z : l(D(d) ∩Q)

 .
The summation is over all primes p - d. If k = Q(ζm)

+, then this index is equal to

φ(d0)
∏
p-d

φ(pvp(m))

up to a power of 2.

Proof. We first show that the index on the right is, in fact, finite. Note that∑
p-d

φ(d)

[kpvp(m)d : Q]
l(p)Z :

∑
p-d

φ(d)

[kd : Q]
l(p)Z

 =
∏
p-d

[kpvp(m)d : Q]

[kd : Q]
.

Now, by Proposition 3.11, we have

D(d) ∩Q× ⊇ Q(d) ⊇ {aφ(d)/[kd:Q] : a ∈ Q>0, (a, d) = 1, (a,Q(ζd)/Q) = id}

= {aφ(d)/[kd:Q] : a ∈ Q>0, (a, d) = 1, a ≡ 1 mod d}

=: Q(d).

Since ∑
p-d

φ(d)

[kd : Q]
l(p)Z : l(Q(d))

 = φ(d),
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it follows that∑
p-d

φ(d)

[kpvp(m)d : Q]
l(p)Z : l(D(d) ∩Q)

 divides φ(d)
∏
p-d

[kpvp(m)d : Q]

[kd : Q]
.

If k = Q(ζm)
+, then kd = Q(ζd0)

+ where d0 = (d,m). Moreover,

[kpvp(m)d : Q]

[kd : Q]
=
φ(d0)φ(p

vp(m))/2

φ(d0)/2
= φ(pvp(m)),

and

Q(d) = {aφ(d)/[kd:Q] : a ∈ Q>0, (a, d) = 1, a ≡ ±1 mod d0}.

Since ∑
p-d

φ(d)

[kd : Q]
l(p)Z : l(Q(d))

 = φ(d0)/2,

it follows that∑
p-d

φ(d)

[kpvp(m)d : Q]
l(p)Z : l(D(d) ∩Q)

 =
φ(d0)

2g+1

∏
p-d

φ(pvp(m))

where 2g = [D(d) ∩Q : Q(d)] (recall Corollary 3.13).

Now, we show the first part of the proposition. The fact that l(C(d)) ⊆ T0(d) is

obvious. Going the other way, let l(δ) ∈ T0(d). Then 0 = s(G)l(δ) = l(δs(G)), so

δs(G) = 1. Since G acts trivially on D(d)/C(d) (by virtue of the fact that δσ−1 is a

unit), it follows that δ#G ∈ C(d), hence δ ∈ C(d). So the first equality holds.

For the second equality, we obviously have T(d) ∩ (1 − e1)T(d) ⊆ T0(d) since

s(G)(1 − e1) = 0. Going the other way is equally obvious since for every l(δ) ∈

T0(d), we have l(δ) = (1− e1)l(δ). So the second equality holds.

Now, from the isomorphism theorems we get

(1− e1)T(d)
/
T(d) ∩ (1− e1)(T(d)) ' (e1T(d) + T(d))

/
T ,

and since e1T(d) ∩ T(d) = T(d)G, we get

(1− e1)T(d)
/
T0(d) ' e1T(d)

/
T(d)G .
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Now, since e1T(d) = (#G)−1l
(
D(d)s(G)

)
where D(d) is generated by δn,d

for n - d, we aim to compute δs(G)
n,d for which it suffices to compute δs(G)

n,(d,n)
by

Lemma 3.6. Note that for all t | (d, n) we have

N
Q(ζn)
kn

(1− ζn/t)
s(G) = N

Q(ζn)
Q (1− ζn/t)

[k:kn],

so

δ
s(G)

n,(d,n)
=
∏
t|(d,n)

N
Q(ζn)
Q (1− ζn/t)

[k:kn]µ(t)(d,n)/t.

Also note that 1−ζn/t is a unit of Z[ζn] if and only if n/t is divisible by two distinct

primes. So if p and q are primes such that either

• (p2q2, n) = p2q2, or

• (pq, n) = pq and (pq, d) = 1,

then δs(G)

n,(d,n)
= 1 since (pq, n/t) = pq for all t | (d, n).

So we assume n = pem where p is a prime such that (p,m) = 1 and m | d.

Suppose p | d. Then e > 1 else n | d. In this case, n/t is a prime-power if and only

if t = pm or t = m. So

δ
s(G)

n,(d,n)
= N

Q(ζn)
Q (1− ζpe)

±[k:kn]p ·NQ(ζn)
Q (1− ζpe−1)

∓[k:kn]

=
(
p[Q(ζn):Q(ζpe)]·p−[Q(ζn):Q(ζ

pe−1
)]
)±[k:kn]

= 1.

Suppose p - d. Then e > 1 else n | d. In this case, we have n/t is a prime-power if

and only if t = m. Hence

δ
s(G)

n,(d,n)
= N

Q(ζn)
Q (1− ζpe)

±[k:kn]

= p±[k:kn]·[Q(ζn):Q(ζpe)].
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So we have the following:

δ
s(G)
n,d = δ

s(G)·(d/d)·γd/(d,n)
n,(d,n)

=


p±[k:kn]·[Q(ζn):Q(ζpe)]·(d/d)·

∏
q|(d/(d,n))(q−1) if n = pem, p - d, m | d

1 else.

Since

[Q(ζn) : Q(ζpe)] ·
∏
q| d

(d,n)

(q− 1) = φ(d)

and (d/d) · φ(d) = φ(d), we have that D(d)s(G) is generated by p[k:kn]·φ(d) where

p runs through those primes not dividing d and n runs through those integers of

the form n = pem such that m | d. Since [k : kn] is smallest when n = ped where

e = vp(m), we have that

e1T(d) =
1

#G
l(D(d)s(G))

=
∑
p-d

(
φ(d)

[kpvp(m)d : Q]
· l(p)

)
Z.

Now, suppose δ ∈ D(d) such that l(δ) ∈ T(d)G. Then δσ−1 = 1 for all σ ∈ G

since k is real and Galois, so it follows that δ2 ∈ Q>0, thus δ ∈ Q>0 since δ is totally

real. Hence T(d)G = l(D(d) ∩Q×), and we have

[(1− e1)T(d) : T0(d)] = [e1T(d) : T(d)
G]

=

∑
p-d

φ(d)

[kpvp(m)d : Q]
l(p)Z : l(D(d) ∩Q)

 .

We are now ready to prove Theorem 1.10. Let d∞ be the cycle of k

d∞ := d
∏
v|∞ v.
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Let Ed∞ denote the units congruent to 1 modulo d∞, (i.e. the totally positive units

congruent to 1 modulo d). Recall that U(d) ⊆ U(1), and that U(1) corresponds to

the set U, the Z[G]-module generated by the elements αn
t ,n

for all n > 1 and all

t | n as defined in [16, Corollary to Proposition 2.2 and Proposition 2.3].

Theorem 3.15. The index [E : C(d)] is finite, in fact,

[E : C(d)] = #Cl(d∞) [E : Ed∞ ]
(
R : U(d)

)
[k : Q] · φ(d)2

∑
p-d

φ(d)

[kpvp(m)d : Q]
l(p)Z : l(D(d) ∩Q)

 .
If k = Q(ζm)

+, then

[E : C(d)] = #Cl(d∞) · [E : Ed∞ ][U : U(d)]

2g+1φ(d)2
∏
p|d0

pvp(m)−1

where 2g = [D(d) ∩Q : Q(d)].

Proof. Note that [E : C(d)] = 2[l(E) : l(C(d))] since the kernel of l is {±1}, hence by

Proposition 3.14

[E : C(d)] = 2
(
l(E) : R0

)
·
(
R0 : U0(d)

)
·
(
U0(d) : (1−e1)T(d)

)
·
(
(1−e1)T(d) : T0(d)

)
,

where R = Z[G]. From Dirichlet’s Unit Theorem, we have

2(l(E) : R0) =
2[k:Q]

R(k)
,

where R(k) is the regulator of k.

For the second term, we use the formula [16, Lemma 1.2(a)] to get

(R : U(d)) = (s(G)R : s(G)U(d)) · (R0 : U0(d)).

Note that s(G)R = s(G)Z, and since s(G)αn/t,n = 0 unless t = n in which case

s(G)α(1, n) = [k : Q][Q(ζn) : kn]s(G), we have

s(G)υn,d =
d

d
· φ(d/(d, n)) · [k : Q] · [Q(ζn) : kn] · s(G).
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It follows that s(G)U(d) = φ(d) · [k : Q] · s(G)Z. Hence

(R0 : U0(d)) =

(
R : U(d)

)
[k : Q] · φ(d)

.

For the third term, we use 3.7 and the fact thatω ′υ1,d = 0 to get

(
U0(d) : (1− e1)T(d)

)
=
(
U0(d) : ω

′U0(d)
)
= detω ′ =

∏
χ 6=1

L ′(0, χ).

Now, we put everything together using Proposition 3.14, the analytic class

number formula (see [6])

#Cl =
1

R(k)

∏
χ 6=0

L ′(0, χ),

and the fact that (see [9, Chapter VI §1 Theorem 1])

#Cl(d∞) = (#Cl)2[k:Q]φ(d)

[E : Ed∞ ]
.

The formula for k = Q(ζm)
+ follows from the second part of Proposition 3.14 and

the fact that (R : U) = 1 in this case by [16, Theorem 5.4].

Remark 3.16. We could relate [E : C(d)] to #Cl obviously. For example, if k = Q(ζm)
+,

then

[E : C(d)] = #Cl · 2
[k:Q]−g−1 · [U : U(d)]

φ(d) ·
∏
p|d0

pvp(m)−1
.

Similarly, we could write

[E : C(d)] = #Cl(d) · 2
[k:Q]−g−1 · [E : Ed] · [U : U(d)]

φ(d)2 ·
∏
p|d0

pvp(m)−1
.

In light of Remark 2.6 and Lemma 3.10, we chose the formulation seen in Theorem 3.15
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CHAPTER 4

ON THE GALOIS MODULE STRUCTURE OF THE UNITS

4.1 Preliminaries

For a number field K, we write EK to denote the units of the ring of integers of K.

If K = k, we typically omit the subscript. We will make ample use of the following

classical theorem.

Theorem 4.1 (Minkowski, [12]). There exists a unit ε ∈ E such that [E : 〈ε〉Z[G]] <∞
Any unit ε ∈ E such that [E : 〈ε〉Z[G]] <∞ will be called a Minkowski unit. Fix a

fundamental system of units of E, say ε1, . . . , εr > 0 where r = |G| − 1. Let G act

on E/± 1. This affords a faithful representation ρ : G→ GL(r,Z).

Proposition 4.2. Let σ ∈ G, andmρ(σ)(x) ∈ Z[x] the minimal polynomial for ρ(σ). If σ

has order n, then

mρ(σ)(x) =


xn − 1

x− 1
if 〈σ〉 = G

xn − 1 otherwise.

Proof. Let ε ∈ E be a Minkowski unit. Write

mρ(σ)(x) = x
m + am−1x

m−1 + · · ·a1x+ a0.

Suppose G = 〈σ〉. Then mρ(σ)(x) | (xn − 1)/(x − 1) since (σn − 1)/(σ − 1) = NkQ.

Supposem < n− 1. Then

(ε)a0 · (εσ)a1 · · · · · (εσm) = ±1
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thus giving a dependence relation amongst ε, εσ, . . . , εσ
m

. But, by Theorem 4.1,

any m < |G| − 1 collection of conjugates of ε should be multiplicatively indepen-

dent. This is absurd, som = n− 1, hencemρ(σ)(x) = (xn − 1)/(x− 1).

Now, suppose 〈σ〉 ( G. Thenmρ(σ)(x) | xn − 1. Supposem < n. Then

(ε)a0 · (εσ)a1 · · · · · (εσm) = ±1

thus giving a dependence relation amongst ε, εσ, . . . , εσ
m

. Any m < |G| − 1 col-

lection of conjugates of ε should be multiplicatively independent. Since m < n <

|G|− 1, this is impossible, som = n, hencemρ(σ)(x) = xn − 1.

Likewise, the set ε1 ⊗ 1, . . . , εr ⊗ 1 forms a basis of the Fq vector space E ⊗ Fq

where Fq is a finite field of characteristic p with q elements. The action of G on

E ⊗ Fq with respect to this basis affords a representation ρ : G → GL(r,Fp) ⊆

GL(r,Fq).

Lemma 4.3. Let σ ∈ G, and let hρ(σ)(x) ∈ Z[x] and hρ(σ)(x) ∈ Fp[x] be the character-

istic polynomials of ρ(σ) and ρ(σ) respectively. Then

hρ(σ)(x) ≡ hρ(σ)(x) mod p.

Proof. This follows immediately from the observation that ρ(σ) ≡ ρ(σ) mod p, so

hρ(σ)(x) = det(xI− ρ(σ)) ≡ det(xI− ρ(σ)) mod p ≡ hρ(σ)(x) mod p.

Proposition 4.4. LetO be the ring of integers of any finite extension of Qp. The following

are equivalent:

(i) There exists a Minkowski unit ε ∈ E such that ([E : 〈ε〉Z[G]], p) = 1.

(ii) E⊗ Fq is a cyclic Fq[G]-module.
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(iii) E⊗O is a cyclic O[G]-module.

Proof. Suppose (i) holds, and let ε ∈ E be a Minkowski unit such that [E : 〈ε〉Z[G]]

is co-prime to p. The cyclicality of E⊗ Fp now follows from the exactness of

〈ε〉Z[G] ⊗ Fp → E⊗ Fp → E
/
〈ε〉Z[G]

⊗ Fp → 0 (4.1)

and the fact that the third term of the sequence is zero. Note that there exists

u ∈ E⊗Fq such that 〈u〉Fq[G] = E⊗Fq if and only if dimFq〈uσ : σ ∈ G〉Fq = r. Since

r = dimFp〈εσ ⊗ 1 : σ ∈ G〉Fp = dimFq〈εσ ⊗ 1 : σ ∈ G〉Fq,

it follows that E⊗ Fq is cyclic, so (ii) holds.

Conversely, suppose u ∈ E ⊗ Fq such that 〈u〉Fq[G] = E ⊗ Fq. Let σ1, . . . , σr ∈

G \ {σ0} such that

E⊗ Fq = uσ1Fq ⊕ uσ2Fq ⊕ · · · ⊕ uσrFq

as an Fq-space. Let s(G) ∈ Fp[G] be the sum of the elements of G. Let xi ∈ Fq such

that u =
∑

εi ⊗ xi. Note that

uσ0 + uσ1 + · · ·+ uσr =
∑

ε
s(G)
i ⊗ xi = 0,

so

uσ0 = −

r∑
i=1

uσi .

It follows that AnnFq[G](u) = s(G)Fq[G] = s(G)Fq, so E ⊗ Fq ' Fq[G]/〈s(G)〉Fq .

On the other hand E⊗ Fq = (E⊗ Fp)⊗ Fq, so as Fp[G]-modules we have

×n︷ ︸︸ ︷
(E⊗ Fp)⊕ · · · ⊕ (E⊗ Fp) ' (E⊗ Fp)⊗ Fq

' Fp[G]
/
〈s(G)〉Fp ⊗ Fq

' Fp[G]
/
〈s(G)〉Fp ⊕ · · · ⊕ Fp[G]

/
〈s(G)〉Fp︸ ︷︷ ︸

×n

,
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where q = pn. The modules E ⊗ Fp and Fp[G]/〈s(G)〉Fp decompose uniquely

(up to isomorphism) into a direct sum of indecomposable modules since they’re

finite (see [3, Theorem 14.5]). Considering the above, it follows that E ⊗ Fp '

Fp[G]/〈s(G)〉Fp , hence E ⊗ Fp is cyclic. Let ε ∈ E such that 〈ε ⊗ 1〉Fp[G] = E ⊗ Fp.

From the exactness of Equation (4.1) and the fact that the first map is now onto, we

get that ([E : 〈ε〉Z[G]], p) = 1, so (i) holds.

Now, let K denote the residue field ofO. Much like Equation (4.1), for u ∈ E⊗O

we have the exact sequence

〈u〉O[G] ⊗O K→ (E⊗O)⊗O K→
(
E⊗O

/
〈u〉
)
⊗O K→ 0.

So we have

E⊗O is cyclic⇔
(
E⊗O

/
〈u〉
)
⊗O K = 0

⇔ 〈u〉O[G] ⊗O K� (E⊗O)⊗O K

⇔ (E⊗O)⊗O K ' E⊗ K is cyclic,

for some u ∈ E⊗O. This completes the proof of the proposition.

4.2 On the G-module structure of E⊗ Fp when p - #G

In this section, we assume p - #G. We begin with the following special case.

Theorem 4.5. If G is cyclic, then E⊗ Fp is a cyclic Fp[G]-module.

Proof. Let τ be a generator for G. By Proposition 4.2 it follows that the minimal

polynomial for ρ(τ) is

mρ(τ)(x) = x
r + xr−1 + · · ·+ x+ 1.
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Since degmρ(τ) = r, it must be that the characteristic polynomial for ρ(τ), say

hρ(τ)(x), is equal tomρ(τ)(x). By Lemma 4.3 we have

hρ(τ)(x) ≡ hρ(τ)(x) mod p

≡
∏

d|(r+1)
d>1

Φd(x) mod p,

where Φd(x) ∈ Z[x] is the d-th cyclotomic polynomial. Since p - #G = r + 1,

it follows that for each d | (r + 1), we have p - d. Hence Φd(x) mod p splits

into a square free product of irreducibles. Moreover, Φd(x) mod p is coprime to

Φd ′(x) mod p for d 6= d ′ since Φd(x) is coprime to Φd ′(x) in Z[x]. So hρ(τ)(x)

factors into a square free product of irreducibles. By the structure theorem for

finitely generated modules over a principal ideal domain, it follows that hρ(τ)(x)

is the only invariant factor of the transformation ρ(τ). Hence E ⊗ Fp is a cyclic

Fp[G]-module.

To address the general abelian case we need the following lemma.

Lemma 4.6. Let Fq contain the #G-th roots of unity. Then the following are equivalent.

(i) There exists a Minkowski unit ε ∈ E such that ([E : 〈ε〉Z[G]], p) = 1.

(ii) For all χ ∈ Ĝ such that χ 6= 1, we have dimFq eχ(E⊗ Fq) = 1.

Proof. If (i) holds, then there exists u ∈ E ⊗ Fq such that E ⊗ Fq = 〈u〉Fq[G] by

Proposition 4.4. Since the eχ are orthogonal idempotents and e1(E ⊗ Fq) = 0, it

follows that

E⊗ Fq =
⊕
χ 6=1

eχ(E⊗ Fq),

where

eχ(E⊗ Fq) = {eχu
θ : θ ∈ Fq[G]} = 〈eχu〉Fq.

47



So dimFq eχ(E ⊗ Fq) is either 1 or 0 depending on whether or not eχu is non-zero

or zero, respectively. Since

r = dimFq E⊗ Fq =
∑
χ 6=1

dimFq eχ(E⊗ Fq),

where #Ĝ− 1 = r, it follows that for every χ 6= 1, we have dimFq eχ(E⊗ Fq) = 1.

Conversely, suppose for all χ ∈ Ĝ such that χ 6= 1, we have dimFq eχ(E ⊗

Fq) = 1. For every χ 6= 1, let uχ be any non-zero element of eχ(E ⊗ Fq) so that

〈uχ〉Fq = eχ(E⊗ Fq). It follows that {uχ}χ 6=1 forms a basis for E⊗ Fq. Let

u =
∑
χ 6=1

uχ ∈ E⊗ Fq.

Since eχu = uχ, it follows that E ⊗ Fq is cyclic, hence (i) holds by Proposition 4.4.

We now show that E⊗ Fp is a cyclic Fp[G]-module in general (when p - #G).

Proof of Theorem 1.11. Let Fq contain the #G-th roots of unity, and let χ ∈ Ĝ such

that χ 6= 1. Let F be the fixed field of kerχ. Then χ is a non-trivial character of

H = G/kerχ, the Galois group of the cyclic extension F/Q. Since k is real and

Galois while p is odd, we have

EF ⊗ Fp ↪→ E⊗ Fp.

Note that

eχ =
1

#G

∑
σ∈G

χ(σ)σ−1

=
1

#G

∑
τ∈H

∑
σ∈kerχ

χ(τ)τ−1σ−1.
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So if we let χ∗ denote the character χ as viewed in Ĥ, then

eχ|EF⊗Fq =
1

#G

∑
τ∈H

(#kerχ)χ(τ)τ−1

=
1

#H

∑
τ∈H

χ(τ)τ−1

= eχ∗,

where 〈χ∗〉 = Ĥ. Since F/Q is cyclic, Theorem 4.5 and Lemma 4.6 give us that

dimFq eχ(EF ⊗ Fq) = dimFq eχ∗(EF ⊗ Fq) = 1.

Since EF ⊗ Fq ↪→ E⊗ Fq, we get that

dimFq eχ(E⊗ Fq) > dimFq eχ(EF ⊗ Fq) = 1.

Since

r = dimFq E⊗ Fq =
∑
χ 6=1

dimFq eχ(E⊗ Fq),

it follows that dimFq eχ(E ⊗ Fq) = 1. The theorem now follows from Lemma 4.6.

4.3 On the G-module structure of E⊗ Fp when p | #G

In this section we assume p | #G, and we write #G = pem where (p,m) = 1 and

e > 0. For a number field K, we let PK denote the collection of principal ideals of

K. For a subfield F of k, let RF denote the collection of principal ideals (b) of F such

that (b)ok is the p-th power of a principal ideal of k.

Lemma 4.7. Let H 6 G and F the fixed field of H. Then

(E/Ep)H ' (Ek×p ∩ F)/F×p,

moreover,

# (E/Ep)
H
= p[F:Q]−1 · [RF : PpF ] .
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Proof. From the short exact sequence of H-modules

1→ k×p → Ek×p → Ek×p/k×p → 1,

we obtain the long exact sequence of H-invariants

1→ k×pH → (Ek×pH)→
(
Ek×p/k×p

)H → H1(H, k×p)→ · · · .

Hilbert’s theorem 90 is the statement that H1(H, k×) = 1. Since k is real, we

have that k× → k×p is an isomorphism. Hence H1(H, k×p) = 1, as well. Since k is

Galois and contains no roots of unity while F is the fixed field of H, we have

(k×p)H = k×p ∩ F = F×p.

Hence

(E/Ep)H '
(
Ek×p/k×p

)H ' (Ek×p ∩ F)/F×p,

which proves the first claim. For the second, notice that

# (E/Ep)
H
=
[
Ek×p ∩ F : EFF×p

]
·
[
EFF

×p : F×p
]
.

Since EF ∩ F×p = EpF , we have

EFF
×p/F×p ' EF/EpF .

Since k is real, so is F. Hence, by Dirichlet’s Unit Theorem, we have

[EF : E
p
F ] = p

[F:Q]−1.

It remains to show that [Ek×p ∩ F : EFF×p] = [RF : P
p
F ].

Now, from the natural map

Ek×p ∩ F → RF

b 7→ (b)
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we get that

Ek×p ∩ F
/
EF ' RF,

from which we easily derive

Ek×p ∩ F
/
EFF

×p ' RF/PpF .

For the remainder of this section, we assume thatG is cyclic and we let F denote

the fixed field of Sylp(G).

Theorem 4.8. E⊗ Fp is a cyclic Zp[G]-module if and only if [RF : PpF ] = p.

Proof. Let τ be a generator for G, and let mρ(τ) be the minimal polynomial for

ρ(τ) ∈ GL(r,Z). By Proposition 4.2 and Lemma 4.3, we have

mρ(τ)(x) =
xp

em − 1

x− 1
≡
(
xm − 1

x− 1

)pe
· (x− 1)pe−1 mod p

≡ (x− 1)p
e−1
∏
d|m
d6=1

Φp
e

d (x) mod p

= hρ(τ)(x),

where hρ(τ)(x) ∈ Fp[x] is the characteristic polynomial for ρ(τ). For each d | m, we

have p - d, hence

Φd(x) ≡
r(d)∏
j=1

qd,j(x) mod p,

where each qd,j(x) ∈ Fp[x] is irreducible. If d = 1, then r(d) = 1 and q1,1(x) =

x − 1. From the structure theorem on finitely generated modules over principal

ideal domains it follows that

E/Ep '
⊕
d|m

r(d)⊕
j=1

t(d,j)⊕
i=1

Fp[x]/(q
ed,j,i
d,j (x)), (4.2)
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where x acts like τ,

1 6 ed,j,1 6 · · · 6 ed,j,t(d,j),

and
t(d,j)∑
i=1

ed,j,i =


pe − 1 if d = 1

pe else.

Now, note that Sylp(G) = 〈τ
m〉, and

xm − 1 ≡
∏
d|m

r(d)∏
j=1

qd,j(x) mod p.

Consider the map ψd,j,i : Fp[x]/
(
q
ed,j,i
d,j (x)

)
→ Fp[x]/

(
q
ed,j,i
d,j (x)

)
defined by

g(x) 7→ g(x) · (xm − 1).

If

g(x) · (xm − 1) ≡ 0 mod qed,j,id,j (x),

then

g(x) · qd,j(x) ≡ 0 mod qed,j,id,j (x)

since all other factors of xm − 1 are co-prime to qd,j(x). Hence,

g(x) ≡ qed,j,i−1d,j (x) · f(x) mod qed,j,id,j (x),

where f(x) can be any representative from Fp[x]/ (qd,j(x)). It follows that

#kerψd,j,i = pdegqd,j(x). (4.3)

So, using Equation (4.2) and Equation (4.3), we have

#(E/Ep)Sylp(G) = #{ε mod Ep : ετ
m

mod Ep ≡ ε mod Ep}

= #ker (τm − 1 : E/Ep → E/Ep)

=
∏
d|m

r(d)∏
j=1

t(d,j)∏
i=1

#kerψd,j,i

= p
∑
d|m

∑r(d)
j=1 degqd,j(x)·t(d,j).
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Now, we have

E⊗ Fp is a cyclic Fp[G]-module⇔ t(d, j) = 1 for all j = 1, . . . , r(d), and d | m

⇔ #(E/Ep)Sylp(G) = p
∑
d|m

∑r(d)
j=1 degqd,j(x)

⇔ #(E/Ep)Sylp(G) = pm

⇔ pm−1 · [RF : PpF ] = p
m

⇔ [RF : P
p
F ] = p,

where the second to last equivalence follows from Lemma 4.7. The theorem now

follows from Proposition 4.4.

When is [RF : PpF ] = p? We relate this index to ideal classes in the following

way. Let ι : ClF → Clk be the natural map. Let Ik and IF denote the group of

fractional ideals of k and F, respectively. Let Dk ⊆ Ik (resp. DF ⊆ IF) denote the

subgroup of fractional ideals supported by those primes that are ramified over F

(resp. those primes that ramify in k). Let BF ⊆ IF denote the subgroup of fractional

ideals supported by those primes that are unramified in k. Note that we naturally

then have

IF = DFBF ' DF × BF.

Let Dlk ⊆ Clk (resp. DlF ⊆ ClF) denote the subgroup of ideal classes supported

by Dk (resp. DF). For any abelian group G, we let G[p] denote the part of G

annihilated by p.

We will explicitly give a homomorphism

ψ : RF
/
PpF →

(
ι−1(Dlk)

/
DlF

)
[p]

with a bounded kernel (depending on the ramification in k/F) and in many cases

onto. Suppose (b) ∈ RF and let d ∈ DF, a ∈ BF such that

(b) = d · a.
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Since d ∈ DF, there exists an ideal D ∈ Dk such that Dp = dok. And since (b) ∈ RF,

there exists (β) ∈ Pk such that (b)ok = (β)p, so

(b)ok = Dp · (aok) = (β)p.

Since a ∈ BF, it follows that a is a p-th power in BF, so RF ⊆ DFBpF . Let b ∈ BF such

that a = bp so that

(b)ok = Dp(bok)
p = (βp).

It follows that bok = D−1(β), that is, [b] ∈ ι−1(Dlk). On the other hand, bp =

d−1(b), so

[b]p ≡ 1 mod DlF.

Hence

[b] mod DlF ∈
(
ι−1(Dlk)

/
DlF

)
[p].

So we have a well defined homomorphism

RF →
(
ι−1(Dlk)

/
DlF

)
[p]

(b) 7→ [b] mod DlF,

where b is the p-th root of the projection of (b) into BF. If (b) ∈ PpF , then [b] ∈ DlF,

so we have the induced homomorphism

ψ : RF
/
PpF →

(
ι−1(Dlk)

/
DlF

)
[p]

(b) mod PpF 7→ [b] mod DlF
(4.4)

The next two lemmas give us some information about the image and kernel of ψ.

Lemma 4.9. If p - #Dlk, then ψ is onto.

Proof. Let [b] mod DlF ∈
(
ι−1(Dlk)

/
DlF

)
[p], and let d ∈ DF such that

bp = (b)d
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where (b) ∈ PF. Also, let D ∈ Dk such that bok = (β)D where (β) ∈ Pk. Hence

(bβ−p) = (d−1ok)D
p.

Since d−1 ∈ DF we have that d−1ok = D ′p for some D ′ ∈ Dk. So we have

(bβ−p) = (D ′D)p.

Suppose p - #Dlk. Then D ′D is principal, say D ′D = (δ). So

(b) = (δβ)p,

hence (b) ∈ RF and ψ((b) mod PpF ) = [b] mod DlF. So ψ is onto.

Lemma 4.10. The kernel of ψ is isomorphic to a subgroup of (Z/pZ)s where s is the

number of primes ramifying in k/F.

Proof. Suppose (b) mod PpF ∈ kerψ. Let d ∈ DF and b ∈ BF such that

(b) = dbp.

Since (b) mod PpF ∈ kerψ, it follows that [b] ∈ DlF. Let (c) ∈ PF and d ′ ∈ DF such

that b = (c)d ′ so that

(bc−p) = dd ′p ∈ DF ∩ PF.

So we have

kerψ 6 (DF ∩ PF)PpF
/
PpF

' DF ∩ PF
/
(DF ∩ PF) ∩ PpF

= DF ∩ PF
/
(DF ∩ PF)p .

Let l1, . . . , ls be the primes of F ramifying in k so that DF = lZ1 · · · lZs . Since each

[li] has finite order in DlF, it follows that DF ∩ PF is a finitely generated, rank s,

torsion-free Z-module. Hence

DF ∩ PF
/
(DF ∩ PF)p '

(Z/pZ)s ,
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and the lemma follows.

This tells us that the index [RF : PpF ] is influenced by the primes that ramify in

k/F and the structure of the natural map ClF → Clk. So in order to know more

about the kernel and image of ψ, it’s natural to start making assumptions about

the quality of ramification from F to k.

The simplest situation is when there is a single prime ideal l of F that ramifies

in k/F. In this scenario, the ramification in k/F must come from a cyclotomic field

with a conductor equal to a prime power. To be precise, let ` be the rational prime

below l. Let F ′ be the fixed field of the non-p parts of G so that k = FF ′ and

Q = F ∩ F ′. From the coprimality of [F : Q] and [F ′ : Q], it follows that ` is the only

prime ramifying in F ′/Q. So F ′ ⊆ Q(ζ`n) for some n, and l is totally ramified in k/F.

Notice that this forces either p = ` or # Sylp(G) | `− 1. In the former case, we have

k/F is part of the Zp-extension of F. We tend to be able to say more in this situation

than in any other, but for now we content ourselves with simply assuming that

only one prime ramifies in k/F if anything for the sake of maintaining generality

at no extra cost.

We also note that ker(ClF → Clk) is a p-group. Indeed, let [a] ∈ ker(ClF → Clk)

and (α) ∈ Pk such that aok = (α). Taking norms we have a# Sylp(G) = (NkF(α)),

whence the claim. We now prove Theorem 1.12, in fact, we show a little more.

Theorem 4.11. Suppose there is only one prime ideal l of F ramifying in k/F. Then

rankFp RF
/
PpF = 1+ rankFp ker(ClF → Clk).

So E⊗ Fp is cyclic if and only if ClF → Clk is injective.

Proof. Let ` be the rational prime below l. We have the following field diagram on

the left accompanied by the respective factorizations of ` on the right:
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Q

F F ′

Q(ζ`m)
k

(`)

lf

Lfp
e

(λ)p
e

(1− ζ`m)
φ(`m)

Note that Dlk is generated by [L] and

Lf = (λ)ok,

so #Dlk | f. Since p - f, it follows that p - #Dlk. Hence, by Lemma 4.9, the map ψ

is onto. Also, since raising to the p-th power is an automorphism of Dlk, we have

that Dlk is generated by [ι(l)] = [L]p
e

, as well. It follows that ι−1(Dlk) = (ker ι)DlF.

This gives us the isomorphism(
ι−1(Dlk)

/
DlF

)
[p] =

(
(ker ι)DlF

/
DlF

)
[p]

'
(

ker ι
/

DlF ∩ ker ι
)
[p]

' (ker ι)[p],

where the last isomorphism follows since ker ι is a p-group and p - #DlF (since

p - f).

Now, let (l) ∈ PF such that l#DlF = (l). Then #DlF | f (since lf = (`)oF) so that

(l)f/#DlFok = lfok = Lfp
e

= (λ)p
e

ok,

so (l)f/#DlF ∈ RF. Let n be the least positive integer such that (l)n ∈ RF. It follows

that n | f/#DlF, so p - n. Let (L) ∈ RF such that (L) = (l)n and note that

(L) = (l)n = l#DlF ·n.

Since p - #DlF ·n, it follows that (L) 6≡ 1 mod PpF . So (L) is a non-trivial element in

kerψ. It follows that (L) generates kerψ from Lemma 4.10.
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Putting everything together we have

rankFp RF
/
PpF = rankFp kerψ+ rankFp imψ

= 1+ rankFp ker ι.

This proves the first statement of the theorem while the second follows immedi-

ately from the first and Theorem 4.8.

We now specialize to the setting alluded to before. Let F be a real cyclic exten-

sion of Q such that p - [F : Q], and let

F = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F∞
denote the Zp-extension of F. Let RF,n denote the collection of principal ideals of

F that are p-th powers of principal ideals of Fn. Let ιn : ClF → ClFn be the natural

map, and

ψn : RF,n
/
PpF →

(
ι−1n (DlFn)

/
DlF

)
[p]

be the map defined in Equation (4.4). We need the following proposition.

Proposition 4.12 (Greenberg). LetN > 0. For all D ∈ DFN such that [D] ∈ Sylp(ClFN),

there exists N ′ > N such that for all n > N ′, DoFn is principal.

Proof. See [5, Corollary to Proposition 1].

Theorem 4.13. Suppose there exists s distinct primes of F lying over p. Then for all

sufficiently large n, we have ψn is onto and rankFp kerψn = s so that

rankFp RF,n
/
PpF = s+ rankFp

(
ι−1n (DlFn)

/
DlF

)
[p].

Proof. Since ClF is finite, we may assumeN is large enough so that for all j > i > N

ι−1i (DlFi) = ι
−1
j (DlFj) =: D̃lF.
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Let [b] ∈
(

D̃lF
/

DlF
)
[p], and let D ∈ DFN , (β) ∈ PFN such that

boFN = D(β).

Also, let d ∈ DF and (b) ∈ PF such that bp = d(b). Finally, let D ′ ∈ DFN such that

D ′p = d−1oFN . Then

(bβ−p) = (DD ′)p,

So [DD ′] ∈ Sylp(ClkN), and we apply Proposition 4.12 to obtain an integer N ′ =

N ′([b]) > N such that for all n > N ′, [DD ′] ∈ ker(ClFN → ClFn). Let n > N ′ and

let δ ∈ k×n such that DD ′oFn = (δ). It follows that (bβ−p) = (δ)p, so (b) ∈ RF,n,

moreover, ψn((b) mod PpF ) = [b] mod DlF. Now let

N0 = max
{
N ′([b]) : [b] ∈

(
D̃lF
/

DlF
)
[p]
}
.

It follows that for all n > N0, the map ψn is onto.

Now, suppose (b) ∈ DF ∩ PF, and let

(b) = pe11 · · · p
es
s ,

where p1, . . . , ps are the primes of F over p, i.e., the primes of F ramifying in FN/F.

Let D ∈ DFN such that

(b) = Dp,

so [D] ∈ Sylp(ClFN). We apply Proposition 4.12 once more to obtain an integer

N ′((e1, e2, . . . , er)) = N
′ > N

such that for all n > N ′, [D] ∈ ker(ClFN → ClFn). Let n > N ′ and let (δ) ∈ PFn such

that DoFn = (δ). It follows that (b) = (δ)p, so (b) ∈ RF,n, moreover, (b) mod PpF ∈

kerψn and

(b) mod PpF = pe11 · · · p
es
s mod (DF ∩ PF)p.
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Now let

N1 = max{N ′((e1, . . . , es)) : 0 6 ei < p}.

It follows that for all n > N1, we have

kerψn = DF ∩ PF
/
(DF ∩ PF)p .

Hence, for all n > max{N0, N1} we have that ψn is onto and rankFp kerψn = s.

This completes the proof of the theorem.

Combining the previous two theorems gives us the following corollary.

Corollary 4.14. For all sufficiently large n, the following are equivalent.

(i) EFn ⊗ Fp is a cyclic Fp[Gal(Fn/Q)]-module.

(ii) Precisely one prime of F ramifies in F∞ and the map ClF → ClFn is injective.

Theorem 4.11 is particularly interesting in lieu of the following theorem also

due to Greenberg.

Theorem 4.15 (Greenberg). Suppose only one prime of F ramifies in F∞. Then the fol-

lowing are equivalent.

(i) # Sylp(ClFn) is bounded as n→∞.

(ii) Sylp(ClF) = ker(ClF → ClFn) for sufficiently large n.

Proof. See [5, Theorem 1].

Greenberg conjectured that the above always holds, that is, that # Sylp(ClFn) is

indeed bounded as n→∞. A lot of work has gone into verifying this conjecture in

various special cases (mainly when the base field is a real quadratic). In the special

case when precisely one prime of F ramifies in F∞ we get the following relationship

between Greenberg’s conjecture, the cyclicality of EFn ⊗ Fp, and the p divisibility

of #ClFn .
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Corollary 4.16. Suppose only one prime of F ramifies in F∞. Then the following are

equivalent:

(i) For all n > 0, p - #ClFn .

(ii) EFn ⊗ Fp is cyclic and # Sylp(ClFn) is bounded as n→∞.

Proof. The fact that the first statement implies the second follows from Corol-

lary 4.14. If the second statement holds, then Theorem 4.11 and Theorem 4.15

give us that

Sylp(ClF) = ker(ClF → ClFn) = 1,

for n sufficiently large, hence p - #ClF. Since there are no unramified intermediate

extensions of the p-extension Fn/F, it follows that p - #ClFn for all n (see for

example [20, Theorem 10.4(a)]).

And now for something completely different. If τ is a generator for G, then

the number of invariant factors of τ acting on E ⊗ Fp is restricted by [k : Q] in the

following way.

Proposition 4.17. In the notation of Theorem 4.8, we have

t(1, 1) 6 e and t(d, j) 6 e+ 1 for d > 1.

Proof. Let τ be a generator for G, and fix a prime ideal p of Z[ζm] over p. We view

ρ(τ) ∈ GL(r,Z[ζm]), and ρ(τ) ∈ GL(r,Z[ζm]/p). From the proof of Theorem 4.2,

we have

hρ(τ)(x) ≡
xp

em − 1

x− 1
mod p

≡ (x− 1)p
e−1

m−1∏
a=1

(x− ζam)
pe mod p.
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LetQ ∈ GL(r,Z[ζm]/p) such that (Q)−1ρ(τ)Q is in Jordan Canonical Form, and let

Q ∈ GL(r,Z[ζm]) be a lift of Q. Note that detQ 6∈ p and (detQ)Q−1 has entries in

Z[ζm]. Let x ∈ Z[ζm] such that

x · detQ ≡ 1 mod p,

so that

x · (detQ)Q−1ρ(τ)Q ≡ (Q)−1ρ(τ)Q mod p.

Let J ∈ GL(r,Z[ζm]) be the naive lift of (Q)−1ρ(τ)Q such that J is in Jordan Canon-

ical Form. It follows that

x · (detQ)Q−1ρ(τ)Q = J+ P ′,

where P ′ is an r× rmatrix with entries in p. Hence

Q−1ρ(τ)Q = J+ J

(
1

x · detQ
− 1

)
+ P ′︸ ︷︷ ︸

=P

,

where P is an r × r matrix with entries in Q(ζm) having p-adic valuation greater

than zero.

Now, fix 0 6 a 6 m− 1, and suppose, in the notation of Theorem 4.8, we have

ζam is a root of qd,j(x). Then the elementary divisors of (x− ζam) are

(x− ζam)
ed,j,1 , (x− ζam)

ed,j,2 , . . . , (x− ζam)
ed,j,t(d,j) .

It follows that there are precisely t(d, j) rows of (p + ζam)I − (J + P) composed

entirely of entries with p-adic valuation greater than zero. It follows that

vp(hρ(τ)(p+ ζ
a
m)) = vp

(
det
(
(p+ ζam)I− (J+ P)

))
> t(d, j).

On the other hand, we have

vp(hρ(τ)(p+ ζ
a
m)) = vp

(
(p+ ζam)

pem − 1

p+ ζam − 1

)
= vp

(
(p+ ζam)

pem − 1
)
− vp(p+ ζ

a
m − 1).
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Note that (ζam + p)m = 1+ pu where vp(u) = 0, so

(ζam + p)p
em − 1 =

pe∑
j=1

(
pe

j

)
(pu)j.

We also have vp(p) = 1, so

vp

((
pe

j

)
(pu)j

)
= e− vp(j) + j

is increasing p-adically. Hence

vp(hρ(τ)(p+ ζ
a
m)) = vp

(
pe∑
j=1

(
pe

j

)
(pu)j

)
− vp(p+ ζ

a
m − 1)

= vp

((
pe

1

)
pu

)
− vp(p+ ζ

a
m − 1)

= e+ 1− vp(p+ ζ
a
m − 1).

Putting it all together we get

t(d, j) 6 vp(hρ(τ)(p+ ζ
a
m)) = e+ 1− vp(p+ ζ

a
m − 1).

Since

vp(p+ ζ
a
m − 1) =


1 if a = 0

0 else,

the theorem follows.

So we immediately obtain

Proof of Theorem 1.13. Suppose #G = p and let τ be a generator for G. In the nota-

tion of Theorem 4.8, the invariant factors for ρ(τ) are

(x− 1)e1,1,1 , (x− 1)e1,1,2 , . . . , (x− 1)e1,1,t(1,1) .

By Proposition 4.17, we have t(1, 1) = 1. Hence E⊗Fp is a cyclic F[G]-module.
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Since it has nothing to do with anything, we end this section with a curious

digression whose significance we don’t fully understand.

Proposition 4.18. There exists an embedding

(DF ∩ PF)/(DF ∩ PF)p
/

kerψ ↪→ Dlk[p]

where we view kerψ as a subgroup of DF ∩ PF
/
(DF ∩ PF)p by Lemma 4.10.

Proof. Let (b) ∈ DF∩PF. Then (b)ok = Dp for some D ∈ Dk. So the following map

is well-defined:

Ψ : DF ∩ PF
/
(DF ∩ PF)p → Dlk[p]

(b) mod (DF ∩ PF)p 7→ [D] = [((b)ok)
1/p].

If (b) mod (DF ∩ PF)p ∈ kerΨ, then D = (δ) for some (δ) ∈ Pk. So (b)ok = (δ)p,

hence (b) ∈ RF. Also, since (b) ∈ DF, it follows that (b) mod PpF ∈ kerψ, so

kerΨ ⊆ kerψ.

Conversely, if (b) mod PpF ∈ kerψ, then there exists (c) ∈ PF such that (bcp) ∈

DF ∩ PF, there exists D ∈ Dk such that (bcp) = Dp, and there exists (β) ∈ Pk such

that (b)ok = (β)p. It follows that Dp = (cβ)p, so D = (cβ). Hence kerψ ⊆ kerΨ,

and the proposition follows.

From Proposition 4.18, it follows that if the group

(DF ∩ PF)/(DF ∩ PF)p
/

kerψ

is non-trivial, then p | #Dlk | #Cl. This observation leads to the following corol-

lary.

Corollary 4.19. Let s denote the number of rational primes ramifying in k whose ramifi-

cation indices are divisible by p. If s > e, then rankFp Clk > s− e.
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Proof. Let F ′ denote the fixed field of the non-p parts of Gal(k/Q) so that F ′/Q is a

p-extension. Note that Sylp(ClF ′) ↪→ Clk since ker(ClF ′ → Clk) has exponent prime

to p. So it suffices to prove the corollary under the assumption that [k : Q] = pe.

In this case we have F = Q, ClF = 1, and so by Equation (4.4), Lemma 4.7, and

Lemma 4.10 we get

(
E
/
Ep
)G ' RQ

/
PpQ = kerψ ⊆ DQ ∩ PQ

/
(DQ ∩ PQ)p

On the other hand, by Proposition 4.17 we have

rankFp
(
E
/
Ep
)G
6 e,

whereas

rankFp DQ ∩ PQ
/
(DQ ∩ PQ)p = s

where s is the number of rational primes ramifying in k/Q. So if s > e, we get that

rankFp (DF ∩ PF)/(DF ∩ PF)
p
/

kerψ > s− e.

Hence, by Proposition 4.18, we get that rankFp Clk > s− e.

This result is surprising, if anything, because no class field theory was required

to prove it.
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CHAPTER 5

APPLICATIONS

5.1 Stickelberger Theorems for Real Fields

As in Chapter 2, let ES denote the S-units of k, let K denote the topological closure

of k in Qalg
p , let O denote the ring of integers of K, and let $ denote a uniformizer

of O. We write E for ES if S consists only of the Archimedean places.

Define the map ϑ : k× → K[G] by

x 7→
∑
σ∈G

logp(x
σ)σ−1,

where logp is the Iwasawa logarithm [13, §V.4.5].

Lemma 5.1. The map ϑ is a G-module map.

Proof. The additivity of ϑ is obvious. For any τ ∈ G, note that

ϑ(xτ) =
∑
σ∈G

logp(x
τσ)σ−1 let ρ = τσ

=
∑
ρ∈G

logp(x
ρ)ρ−1τ

= τϑ(x).

So ϑ is a G-module map.

In general, ϑ is not integrally valued. This brings us to the following definition.

66



Definition 5.2. A group ring element β ∈ K[G] is called an S-integralizer if βϑ(ES) ⊆

O[G]. If S consists only of the Archimedean places, we simply say that β is an integralizer.

Remark 5.3. Note that an S-integralizer need not be integral itself! This is a curious and

essential difference between this setting and the classical Stickelberger theory.

The next lemma ensures that S-integralizers exist by establishing an explicit

one for every S.

Lemma 5.4. Let the ramification index of p in k be e = pnb where (p, b) = 1. Then

ϑ(k×) ⊆ ($)p
n−ne · O[G].

Proof. Let y ∈ O×, and letm be sufficiently large so that

yp
m−1 ≡ 1 mod $.

Write yp
m−1 − 1 = $tu where u ∈ O×. Then

logp(y) =
logp(y

pm−1)

pm − 1
=

1

pm − 1

∞∑
j=1

uj(−1)j−1
$tj

j
.

For j = pacwhere (p, c) = 1, we have j = $eav for some v ∈ O×. So

$tj

j
∈ $tpac−aeO ⊆ $pa−aeO.

It’s straightforward to show that the quantity pa − ae is smallest when a = n

because b 6
p− 1

2
. It follows that logp(y) ∈ $

pn−neO.

Remark 5.5. The above lemma shows that, for example,$ne−p
n

integralizes ϑ|ES for any

given S. If p is tamely ramified in k, this reduces to $−1. If p is unramified, this reduces

to p−1 as in Solomon [17, Conjecture 4.1].

In lieu of Corollary 2.14, we also make the following definition.

Definition 5.6. If k satisfies either (i) or (ii) of Corollary 2.14, then we say that k is

p-simple. If, in addition, p - a, then we say that k is p-simple for a.
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Combining the results of the previous chapters, we obtain one of the main goals

of this dissertation: a proof of Theorem 1.14 and the explicit derivation of annihi-

lators of the ray class groups of a real abelian number field (in lieu of Lemma 5.4).

This gives the first full proof of (a much strengthened version of) a conjecture of

D. Solomon [17, Conjecture 4.1], and is the real analog of the classical theorem of

Stickelberger and its generalizations obtained by Sinnott and Schmidt.

Theorem 5.7. Let β be an S-integralizer. If k is p-simple with respect to a, then

βϑ(CS(a)) annihilates Cl(a)⊗ O.

Otherwise

R0 · βϑ(CS(a)) annihilates Cl(a)⊗ O.

Proof. This follows immediately from Corollary 2.14, Lemma 5.1, and Theorem 3.3.

For an integralizer β =
∑

bσσ
−1 ∈ K[G], we set

R0 =
{∑

aσσ
−1 ∈ O[G] :

∑
aσ = 0

}
S0,β(a) = the O[G] ideal generated by βϑ(C(a))

T0,β = the O[G] ideal generated by βϑ(E).

Additionally, let

Lβ(x) =
∑
τ∈G

bτ−1 logp(x
τ)

so that

βϑ(x) =
∑
σ∈G

Lβ(x
σ)σ−1.

We also consider β as a linear transformation K[G] → K[G] defined by γ 7→ βγ.

Let Rp(k) denote the Leopoldt regulator of k (see [10]) and q = #O/($).

68



Theorem 5.8. If [R0 : S0,β] is finite, then

[R0 : S0,β(a)] = q
ord$[E:C(a)]+ord$ Rp(k)+ord$ detβ|R0 .

Proof. Suppose the above index is finite, and note that [R0 : S0,β(a)] is finite if and

only if detβ|R0 6= 0. Now, we observe ker logp
∣∣∣
E
= {±1}, so

1→ ±1→ E
βϑ−→ O[G]

is exact. Since O is a flat Z-module, we get that the map E⊗ O → O[G] defined by

ε ⊗ x 7→ βϑ(ε)x is an injective homomorphism because p 6= 2. Moreover, for all∑
aσσ ∈ O[G] we have that

∑
(εσ ⊗ aσ) 7→

∑
βϑ(εσ)aσ = βϑ(ε)

∑
aσσ.

So T0,β ' E⊗ O, and similarly, S0,β(a) ' C(a)⊗ O as O[G] modules. Hence

[T0,β : S0,β(a)] = [E⊗ O : C(a)⊗ O] = # ((E/C(a))⊗ O) = qord$[E:C(a)].

It remains to compute [R0 : T0,β]. Let ε1, . . . , εr be a system of fundamental

units for E, and let σ1, . . . , σr be the non-identity elements of G. Then T0,β is the

O-span of the βϑ(εi) while R0 is the O-span of the σ−1i − 1. Let aij ∈ O such that

βϑ(εj) =

r∑
i=1

aij(σ
−1
i − 1),

for each j = 1, . . . , r. If [R0 : T0,β] is finite where e1, . . . , er and f1, . . . , fr are bases

of the O-modules R0 and T0,β, respectively, with

fj =

r∑
i=1

aijei,

then

[R0 : T0,β] = q
ord$ det(aij).
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Now, note that

βϑ(εj) = Lβ(εj) +

r∑
i=1

Lβ(ε
σi
j )σ−1i

= Lβ(N
k
Q(εj)) +

r∑
i=1

Lβ(ε
σi
j )(σ−1i − 1)

=

r∑
i=1

Lβ(ε
σi
j )(σ−1i − 1),

since NkQ(ε) = ±1 ∈ ker logp
∣∣∣
E

. Similarly, we have

Lβ(ε
σi
j ) =

∑
τ∈G

bτ−1 logp ε
σiτ
j

=
∑
τ∈G

bτ−1σi logp ε
τ
j

=

r∑
k=1

(bσiσ−1
k

− bσi) logp ε
σk
j .

So

(aij) = (Lβ(ε
σi
j )) = (bσiσ−1

j
− bσi)(logp ε

σi
j ).

We also compute

β(σ−1j − 1) =

r∑
i=1

(bσiσ−1
j

− bσi)(σ
−1
i − 1),

hence

det(aij) = (detβ|R0)Rp(k).

This completes the proof of the theorem.

Considering Corollary 2.14, we are even more interested in the following ideal

S0(a) := 〈α(C(a)) : α ∈ HomG(E,O[G])〉O[G].

As it happens, every element of HomG(E,O[G]) is of the type βϑ.
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Theorem 5.9. For everyα ∈ HomG(E,O[G]), there existsβ ∈ K[G] such thatα = βϑ|E.

Consequently,

T0 =
∑

T0,β and S0(a) =
∑

S0,β(a),

where T0 = 〈α(E) : α ∈ HomG(E,O[G])〉O[G] and each sum varies over all integralizers.

Proof. Let ε ∈ E such that [E : 〈ε〉Z[G]] = m is finite. Let Q0 denote the collection

of trace-zero elements of K[G], and let Θ : Q0 → Q0 be the linear map defined by

multiplication by ϑ(ε). Then

detΘ =
∏
χ∈Ĝ
χ 6=1

∑
σ∈G

χ(σ) logp ε
σ.

Since {logp ε
σ}σ 6=id are linearly independent over Q, a theorem of Brumer [2] gives

us that they are linearly independent over Qalg. Note that∑
σ∈G

χ(σ) logp(ε
σ) =

∑
σ 6=1

(χ(σ) − 1) logp(ε
σ),

hence detΘ 6= 0.

Now, let α ∈ HomG(E,O[G]). Since Θ is onto, there exists β ∈ Q0 such that

Θ(β) = βϑ(ε) = α(ε).

For any η ∈ E, we have that

α(η) =
α(ηm)

m
,

where ηm = εψ for some ψ ∈ Z[G]. So

α(η) =
ψβϑ(ε)

m
= βϑ(η).

Hence α = βϑ|E, as claimed.

Remark 5.10. In this way, we see that S0(a) is analogous to the classical Stickelberger

ideal, and the elements ϑ(δ) for δ ∈ C(a) are analogous to the classical Stickelberger

elements.
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By comparison with Theorem 5.8, one might hope that the index [R0 : S0(a)] is

free of the conspicuous contributions from the Leopoldt regulator and integralizer

β. This is often the case, and the key step is understanding how T0 relates to R0.

Theorem 5.11. If E ⊗ Fp is a cyclic Fp[G]-module, then T0 = R0. If we additionally

assume that Sylp(G) is cyclic, then

R0/S0(a) ' (E/C(a))⊗ O.

In particular, if a = 1 and p - #G, then

#(R0/S0) = #(Cl⊗O).

Proof. Let ε ∈ E such that [E : 〈ε〉Z[G]] = m where (p,m) = 1. For any κ ∈ R0, let

ακ : E→ O[G] be defined by ακ : ε 7→ κ extended to the rest of η ∈ E by

ακ(η) =
ακ(η

m)

m
.

Note that ακ is well-defined sincem ∈ O×, hence T0 = R0.

Now, suppose Sylp(G) is cyclic. Then R0 is cyclic (see [4]). Suppose κ is a

generator for R0 and let β ∈ K[G] such that ακ = βϑ|E, by Theorem 5.9. It follows

that kerακ = ±1, T0,β = R0, and S0,β(a) = S0(a) so that

R0/S0(a) = T0,β/S0,β(a)

'
(
E⊗ O

/
C(a)⊗ O

)
' (E/C(a))⊗ O.

The last statement of the theorem now follows from Theorem 3.15.

5.2 On the Annihilators of E/C(a)

In this section, we wish to know how S0(a) compares with AnnO[G](E/C(a)) ⊗ O.

When E⊗ Fp is cyclic, these ideals are essentially equal.
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Theorem 5.12. If E⊗ Fp is cyclic, then

S0(a) = R0 ·AnnO[G](E/C(a))⊗ O.

Proof. Let ε ∈ E such that [E : 〈ε〉Z[G]] = m where (p,m) = 1. For any κ ∈ R0, let

ακ : E → O[G] be defined as in the proof of Theorem 5.11. Let β ∈ K[G] such that

ακ = βϑ|E (using Theorem 5.9). Let E ′ = kerακ, C ′(a) = E ′ ∩ C(a), and note that

by the flatness of O as a Z-module, we have

E
/
E ′C(a) ⊗ O ' (E/E ′)⊗ O

/
(C(a)/C ′(a))⊗ O

' T0,β/S0,β(a).

It follows that if γ ∈ AnnO[G](E/C(a)) ⊗ O, then γακ(ε) = γκ ∈ S0,β(a). The

theorem now follows by Theorem 5.9 .

Combining Theorems 5.7 and 5.12 we immediately obtain the following corol-

lary.

Corollary 5.13. If E⊗ Fp is cyclic then

Cl(a)⊗ O is annihilated by


R0 ·AnnO[G](E/C(a))⊗ O if k is p-simple for a

R20 ·AnnO[G](E/C(a))⊗ O else.

The above corollary is a generalization of Thaine’s [19, Theorem 6], in fact, if

a = 1 and p - #G, then it is precisely [19, Theorem 6].

Remark 5.14. Recall the definition of C(a) from Chapter 2. Let

S0,β(a) := 〈βϑ(C(a))〉O[G]

S0(a) := 〈α(C(a)) : α ∈ HomG(E,O[G])〉O[G].

By Theorem 5.9, we have S0(a) =
∑

S0,β where the sum runs over all integralizers β.

Note that Theorem 5.7, Theorem 5.8, the first part of Theorem 5.11, Theorem 5.12, and
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Corollary 5.13 all hold with C(a), S0,β(a), and S0(a) in place of C(a), S0,β(a), and S0(a),

respectively. However, it isn’t clear whether there exist a-special units other than the a-

cyclotomic units. For fun, take k = Q(
√
p) where p is a prime congruent to 1 modulo 4.

Then the cyclotomic units of k are cyclic generated by

δ =

p∏
a=1

(1− ζap)
−χ(a),

where χ : Z/pZ× → {±1} is the quadratic character. It is known that #Cl is odd, and from

Corollary 2.14, we have that (1 − τ)[E : C] annihilates #Cl where τ is the non-identity

element ofG. Since τ acts by inversion on the ideal class group of k, it follows that 2[E : C]

annihilates #Cl. Since #Cl is odd, it follows that the exponent of Cl divides [E : C]. On

the other hand, from Chapter 3, we know that [E : C] = 2 ·#Cl. If Cl is cyclic, then the

exponent of #Cl equals the exponent, hence

#Cl | [E : C] | [E : C] = 2 ·#Cl .

Hence [C : C] is equal to 1 or 2. On the other hand, suppose p = 62501. It is known that

Cl ' Z/3Z× Z/3Z in this case, so if [C : C] was non-trivial, i.e., not equal to 1 or 2, then

the 3-part of [E : C] is equal to the exponent of Syl3(Cl). For this reason, it would be very

interesting to know whether special units other than the cyclotomic units exist, and if so,

do they make a habit of giving information about the exponent of Cl.
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