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Abstract

The ubiquitous influence of fossil fuels in driving the world economy and the impera-

tive need to reduce dependence of transportation on these fuels, has brought about a decade

of research on alternative propulsion systems. Of the several alternative propulsion sys-

tems, hybrid electric vehicles (HEVs) are seen as an important short-term solution. In the

most generic sense, a HEV consists of a battery and one or more electric machines in ad-

dition to the engine powered by petroleum/diesel. Depending on the vehicle architecture,

the additional degree of freedom in selecting the amount of energy supplied by the primary

and the secondary source of energy is a challenging control and optimization problem. The

energy management strategy in a HEV aims at finding the optimal distribution of energy

between the battery and the fuel to satisfy the requested power from the driver.Different

energy management strategies have been developed both by the industry and the academia

and they can be classified into non-realizable and realizable energy management strategies

based on the amount of information required for real-time implementation. Traditionally,

the non-realizable strategies formulate the energy management problem as a constrained

optimal control problem of minimizing a performance index over a finite time interval un-

der operational constraints. These strategies provide the global optimal solution and are

used as benchmark solutions for comparative analysis of strategies. The realizable strate-

gies in the literature have been primarily developed for implementation in real vehicles and

have been shown to produce results similar to the global optimal solution. In spite of the
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extensive amount of research on both non-realizable and realizable energy management

strategies, there are many shortcomings in the literature which have been addressed in this

dissertation.

The energy management problem of finding the optimal split between the different

sources of energy in a charge-sustaining pre-transmission parallel HEV, ensuring stability

and optimality with respect to a performance objective, is addressed in this dissertation.

The dissertation develops a generic stability and optimality framework within which energy

management strategies can be analyzed and designed. The energy management problem is

cast in the form of a nonlinear optimal regulation (with disturbance rejection) problem and a

control Lyapunov function is used to design the control law. A series of theorems ensuring

optimality and asymptotic stability of the energy management strategy are proposed and

proved. The theorems use an appropriate Willans line model of the engine fuel consumption

rate and a zero-th order model of the battery state of charge/energy dynamics. The sufficient

conditions for optimality and stability are used to derive an analytical expression for the

control law as a function of the battery state of charge/state of energy error, engine fuel

consumption model and battery model parameters.

In this dissertation, several non-realizable and realizable energy management strate-

gies are developed and implemented in the backward and forward vehicle simulators. The

optimal control law (OCL) proposed in this dissertation is compared against dynamic pro-

gramming (DP) and a version of equivalent consumption minimization strategy (ECMS)

based on Pontryagin’s minimum principle. The OCL strategy is further modified to de-

velop a realizable strategy (called real-time OCL) and its performance is compared with

an adaptive version of ECMS using a forward vehicle simulator. Throughout the disser-

tation, the performance of the proposed strategy is evaluated against the global optimal
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solution from DP. The significant contribution of the dissertation is in developing and easy

to implement strategy that has very less calibration effort. Though the framework and the

strategy has been presented for a pre-transmission parallel HEV, it is scalable to different

vehicle architectures and component sizes. The dissertation also presents a comprehensive

comparison of the different proposed and developed energy management strategies.
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Chapter 1: Introduction

The enormous amount of development over the last century, brought about by the in-

dustrial revolution to mankind cannot be overemphasized. The revolution brought about a

huge impact in the way mankind saw energy resources and its utilization. The total primary

energy supply (TPES) necessary to fuel the industrial revolution and the development that

followed, has been met by the different fuel resources available in the world. As seen from

Fig. 1.1, oil and coal have been the primary fuel sources during the past three decades, in

spite of the availability of different fuels. During the past few years, there has been a high

surge in using other types of fuel such as natural gas, water, nuclear and bio-fuels. Though

the alternative fuel sources have been growing at a staggering pace, their combined con-

tribution is only 40% of the total TPES in 2009. Thus oil will continue to be one of the

primary sources of energy that will drive the economic and industrial development through-

out the world. Nevertheless the amount of oil reserves in the world has been estimated to

be a finite amount and though there have been several discoveries of oil reserves through-

out the world, the amount of oil produced has been estimated to fall drastically in the next

decade. Fig. 1.2 shows that the amount of crude oil produced from the available (and to be

explored) fields throughout the world is on a steep decline. Such a decrease in the amount

of oil available poses numerous techincal challenges in finding and using alternative fuels

such as natural gas, nuclear, biofuels, hydro, etc.
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Figure 1.1: World TPES by fuel (Mtoe) (1971 - 2009) and fuel shares of TPES (1973 -
2009) [Source: Key world energy statistics, 2011]
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Figure 1.2: Oil production forecast throughout the world [Source: International Energy
Agency, 2012]

Figure 1.3: Estimated U.S. energy use in 2010 (A quad is 1.0551018 joules) [Source:
Lawrence Livermoore National Laboratory and International energy agency, 2011]
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Figure 1.4: Top 20 nations by oil reserve as percentage of global reserves [Source: The
CIA World Factbook]

Figure 1.5: Comparison of fuel energy sources for transportation[Source: International
Energy Agency, 2012]
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Throughout the world, the ability to transport from one place to another has been the

backbone of the industrial revolution. In the United States, the transportation sector is

the major consumer of oil (primarily in the form of petroleum and diesel) as seen from

Fig. 1.3. Although there are alternative sources of energy like electricity, natural gas,

biomass, wind, solar, etc., they account for less than 3% of the amount of energy obtained

from petroleum products to drive the transportation sector. Approximately 62% of the

petroleum used in the U.S. is imported, and it is used almost exclusively for transportation

and the situation is predicted to get worse during the next few years (Fig. 1.4). Thus,

the imperative need to reduce the dependence of transportation systems on fossil fuels and

the ever-tightening emission regulations for all types of vehicles, has forced researchers

to study alternative propulsion systems. This surge brought about a decade of research on

alternative propulsion systems based on energy storage devices like batteries, fuel cells,

flywheels, etc. Because of the energy density, the liquid fuel (gasoline and diesel) has been

the primary fuel energy sources for transportation (see Fig. 1.5). Unlike the alternative

propulsion systems such as all-electric vehicles, fuel cell vehicles, natural gas powered

vehicles which are prospective long term solutions to completely eliminate the dependence

on fossil fuels, hybrid electric vehicles (HEVs) are the most common and popular short-

term solution to the problem.

In general, a hybrid electric vehicle (HEV) is comprised of an electric propulsion sys-

tem consisting of a battery pack and an electric machine. Depending on the vehicle archi-

tecture and the degree of hybridization of a conventional vehicle (only one energy source,

namely fuel), a HEV offers the following features that can help reduce fuel consumption

and emissions:
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• Idle-off capability: Depending on the degree of hybridization and the HEV archi-

tecture, the engine in a generic HEV can be switched off whenever the vehicle is

stopped. This is very useful in avoiding idle speed operation whenever possible and

thus reducing the fuel consumption and emissions. For example, if the vehicle is

stopped at a traffic light, depending on the accessory load, the engine can be turned

off and the all-electric propulsion of the HEV can be used.

• Regenerative braking: In a conventional vehicle, the kinetic energy stored in the

vehicle while accelerating is released as heat during braking events. This kinetic

energy can be recovered using the electric motor and the battery in a HEV. This is

possible because the electric machine is a reversible energy conversion device and

can be also used as a generator to recharge the battery. The capability of the HEV to

perform regenerating braking is one of the important benefits and is therefore used

in all types of HEV.

• Power assist: In addition to supplying the requested power from the driver, the elec-

tric machine and battery can be used to add extra power/torque to the wheels depend-

ing on the HEV architecture.

• Engine downsizing capability: Because there is a battery and an electric machine,

the engine need not be designed depending on the maximum power/torque request

to be supplied by the vehicle and therefore smaller engine can be used at its most effi-

cient region and the electric machine can be used to supply the remaining power/torque.

• Electric-only drive capability: Based on the HEV architecture and the degree of

hybridization, the engine can be completely turned off and an all-electric propulsion
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can be used to propel the vehicle. This capability of the vehicle helps using the engine

at its most efficient region and therefore reducing fuel consumption and emissions.

These capabilities account for the attributed savings on fuel consumption and emissions

with respect to the conventional vehicle. Unlike a conventional vehicle, the additional

degree of freedom presents a challenging optimization problem. The objective of the en-

ergy management strategy in a HEV is to find the optimal torque/power split between the

primary and secondary energy sources that minimizes a given objective function over an

entire driving cycle. The minimization can be performed with respect to several objectives

such as fuel consumption, emissions, battery aging, etc., or a combination of these objec-

tives satisfying several operational constraints. The different capabilities of the HEV can

be utilized to its maximum potential only with an effective energy management strategy.

The design, development and implementation of the energy management strategy form a

substantial part of the research done in the industry and academia.

From the time the first hybrid vehicle was developed in 1898 by Porsche, there have

been several prototypes developed by different companies. The most successful, mass

produced HEV is the Toyota Prius designed and developed by Toyota Motor Company. The

first generation of Prius was commercially available by 2000 and it was a huge commercial

success. Since then, there have been several commercially available HEVs produced by all

the major vehicle manufacturers.

1.1 Literature Review

The energy management problem, by its very nature, is a constrained optimization prob-

lem, where the objective function (3.1) is minimized under system dynamics, instantaneous

(local) and integral (global) constraints on the state and control variables. In addition to
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the extensive amount of research performed by the industry to design and develop en-

ergy management strategies for commercial HEVs, the energy management problem in a

charge-sustaining HEV has been studied in the literature for over a decade [1, 2, 3, 4, 5].

They can be classified into several categories depending on several factors. The following

classification based on the amount of information necessary to implement the strategy in

a real vehicle is used throughout this dissertation; an energy management strategy can be

categorized as follows:

1. Non-realizable Strategy: A non-realizable strategy requires complete a priori knowl-

edge of the driving cycle in order to solve the energy management problem and

therefore cannot be implemented in a real vehicle. Dynamic programming, Pon-

tryagin’s minimum principle and certain versions of equivalent consumption mini-

mization strategy are examples of non-realizable strategies.

2. Realizable Strategy: A realizable strategy does not require complete knowledge

of the driving cycle to solve the energy management problem and therefore can be

implemented in a real vehicle. Adaptive versions of equivalent consumption mini-

mization strategy, rule based strategies and stochastic dynamic programming are in

this category.

1.1.1 Non-realizable Energy Management Strategies

The first category of strategy requires the complete a priori knowledge of the driving

cycle and involves the use of classical optimal control techniques guaranteeing global/local

optimality of the solution. These strategies assume the knowledge of the past, present and

future values of the variables involved in optimization. Thus in a sense, these control al-

gorithms perform global optimization to minimize fuel consumption over a driving cycle,
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assuming that the driving cycle is known a priori. This strong assumption renders the

control law unrealizable in a real vehicle. Dynamic Programming (DP), Pontryagin’s Min-

imum Principle (PMP) and a few versions of equivalent consumption minimization strategy

(ECMS) are in this category.

DP assumes a priori knowledge of the driving cycle and solves the problem backwards

in time, considering all possible power split choices at each instant. Because DP guarantees

the global optimal solution according to Bellman’s principle of optimality, it has been used

as a benchmark solution in the HEV energy management literature [3, 6, 7, 8, 9].

PMP formulates and minimizes a Hamiltonian function (a function of the instantaneous

cost and the state constraint) at each instant to obtain the optimal solution [10, 11, 12, 13,

14]. PMP gives only the necessary conditions (not sufficient) that must be satisfied by any

global optimal solution (known as extremal solutions). For charge-sustaining HEVs, the

uniqueness of the optimal solution facilitates the use of PMP to find the global optimal

solution [13, 14].

The basic idea of ECMS is to reformulate the global optimization problem into a lo-

cal optimization problem with tuning parameters. The ECMS takes into account that for a

charge sustaining hybrid, the energy used to drive the vehicle comes eventually from the

fuel stored in the vehicle which means the battery power must be replenished [15]. The

method has been shown to produce fuel economy improvements, but the equivalence fac-

tors (tuning parameters) that allow for the transformation of electrical energy into future

fuel consumption must be determined with optimization techniques, and are dependent on

driving cycles. The papers [13, 16, 17] establish the equivalence of ECMS and PMP which

ensures that under certain conditions, the local optimal solution derived from ECMS based

on PMP can guarantee global optimality of the solution. Thus ECMS developed from PMP
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cannot be implemented in a real vehicle because it requires complete knowledge of the

driving cycle to ensure optimality.

1.1.2 Realizable Energy Management Strategies

The second category of strategies assume knowledge only of the past and present val-

ues of the variables involved in optimization and therefore can be implemented in a real-

vehicle. Because the strategies are not typically based on solving the global optimization

problem and are developed with the primary objective of realizability, they do not neces-

sarily guarantee optimality. A few versions of ECMS, several adaptive energy management

strategies and rule based strategies are in this category.

A few earlier versions of ECMS [15] developed based on engineering intuition have

been shown to be realizable strategies. The strategy was developed and implemented in a

real vehicle during the Future Truck Competition [18] giving 50% more fuel economy than

the stock rule based strategy in the vehicle. The papers [19, 20] design and develop the

first version of ECMS implemented in a vehicle and formalizes the concept of equivalent

consumption minimization. The results clearly indicate such a method can give very good

results, but the optimal equivalence factor, which depends on the driving cycle, must be

determined a priori using optimization techniques. The strategy was initially developed

using engineering common sense to be implemented in a real vehicle, but to guarantee

any kind of optimality, the strategy requires complete knowledge of the driving cycles to

tune the equivalence factors. Another version of ECMS called the box-ECMS has been

implemented in the ChallengeX Competition as shown in [21]. Yet another version of

ECMS accounting for the drivability constriants has been designed and implemented for

the EcoCAR Competition (see [22] for more details).
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A specific version of adaptive ECMS that has been implemented in a real vehicle adapts

the tuning parameters of ECMS by predicting the driving cycle and using a look-up table

to find the optimal value for the driving condition [23, 24, 25]. Because the strategy adapts

the equivalence factor depending on the real world driving conditions, they are realizable

in a real vehicle. A different version of adaptive ECMS as proposed in [26, 27, 28] adapts

the tuning parameter using the correlation between equivalence factor and battery state of

charge. Based on the driving condition experienced by the vehicle, the equivalence factor

is adapted using a simple adaptation law depending on the deviation of the battery SOC

from its reference value. These versions of adaptive ECMS clearly can be implemented in

a real vehicle because they do not require the equivalence factors to be optimized for each

driving cycle.

Heuristic rule based strategies based on rules developed using engineering intuition to

explicitly distribute the power between the two energy sources on board have also been very

popular. They have been studied for a long time now because of their simplicity in real-time

implementation [29, 30, 31, 32]. The heuristic rule based strategies are the most common

energy management strategies implemented in commercially available HEVs. Moreover,

these rules can also be derived from the global optimal solution from DP [33].

There have also been other realizable energy management strategies which assume

the knowledge of only the past and present values of the variables in optimization and

which predict the future values of these variables. For example, model predictive con-

trol and stochastic dynamic programming are in this category. Model predictive con-

trol uses a model to predict the system behavior over a prediction horizon and the so-

lution is obtained by minimizing an objective function over the prediction horizon. The

papers [8, 34, 35, 36, 37, 38] deal with model predictive control as applied to HEVs.
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Stochastic dynamic programming uses a Markov chain model to predict the power re-

quest based on an extensive amount of driving cycle data and has been applied to HEVs in

[39, 40, 41, 42, 43, 44]. A comprehensive comparison of different types of energy manage-

ment strategies (both realizable and non-realizable) for HEVs appears in [17].

1.2 Motivation

The following shortcomings in the HEV literature motivate the main contributions of

the dissertation:

• Because the non-realizable strategies that are based on classical optimal control tech-

niques (DP, PMP) require a priori knowledge of the driving cycle, the strategies can-

not be implemented in a real vehicle. Both DP and PMP are used only as benchmark

solutions to perform comparative analysis of other implementable energy manage-

ment strategies.

• Other non-realizable strategies like ECMS that transform the global optimization

problem into a local optimization problem cannot be implemented in a real vehicle,

because the optimality of ECMS for a driving cycle depends on the optimal equiva-

lence factor for that driving cycle [17, 26]. Moreover ECMS involves minimization

at each instant, which requires significant computational power on board and the

strategy must be tuned for the intended driving conditions to perform close to the

optimal solution.

• The adaptive energy management strategies, which adapt one or more calibration

parameters depending on the driving condition, cannot guarantee optimality of the

solution. Though these strategies are very useful in performing close to the global
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optimal solution from DP, they will always give sub-optimal results because any ve-

hicle is subjected to a multitude of driving conditions other than the standard driving

conditions.

• Though rule based energy management strategies are relatively easy to develop and

implement in a real vehicle, a significant amount of calibration effort is required

to improve performance over a driving cycle. Furthermore these strategies cannot

guarantee optimality because they are developed from heuristic rules based on engi-

neering common sense.

Though there have been several non-realizable and realizable energy management strate-

gies proposed in the literature, there has not been a mathematically rigorous treatment of the

design of optimal energy management strategies that can be implemented in a real vehicle.

Furthermore, there has not been a stability framework within which stable and optimal en-

ergy management strategies can be designed. Such a framework is considered herein which

facilitates the definition of stability in charge sustaining HEVs and utilizes the theoretical

results in nonlinear optimal regulation theory to analyze and design energy management

strategies. In order to develop the framework, the theoretical results published in the area

of nonlinear optimal regulation theory is used. Linear-quadratic control theory has been

developed extensively over the past century; extension to nonlinear control has broadened

the effectiveness of such techniques. Because nonlinear controllers can effectively model

the nonlinearities in the system and hence perform better than linear controllers for nonlin-

ear systems, it is not surprising that significant effort has been devoted to developing the

theory of nonlinear optimal regulation [45, 46, 47]. The papers [48, 49] serve as a tutorial

exposition of a framework for nonlinear optimal regulation in feedback control problems

involving non quadratic cost functionals. The main contribution here is in developing a
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useful mathematically rigorous framework, and the goal is in developing an energy man-

agement strategy that can be easily implemented in a real-vehicle while assuring stability

and optimality.

1.3 Organization

The dissertation is organized as follows:

• Chapter 2 describes the HEV architecture along with the simulation environment

used to develop, test and simulate the energy management strategies proposed in the

dissertation. The forward and backward vehicle simulator along with the component

models are explained in this chapter. The simulation environment described in this

chapter is used throughout the dissertation to implement the energy management

strategies;

• Chapter 3 formulates the energy management problem in a pre-transmission parallel

HEV and then applies optimal control techniques such as DP and PMP to solve

the problem. The chapter first develops the global optimal solution from DP, then

formulates a version of ECMS based on PMP and then implements these strategies

in a backward vehicle simulator. Based on ECMS, an adaptive version of ECMS that

can be implemented in a real vehicle is proposed and implemented. The adaptive

ECMS is evaluated against DP over several repetitions of the driving cycle to evaluate

the performance of the strategy.

• Chapter 4 describes the significant contributions of the dissertation. The chapter

defines the stability and optimality framework which is used to cast the energy man-

agement problem as a nonlinear optimal regulation problem. A series of results on
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applying the nonlinear optimal regulation to solve the energy management problem

in a charge-sustaining HEV is proposed and then used to derive a closed-form ex-

pression for the optimal control law (OCL). The strategy is then implemented using

a backward simulator and compared with the DP solution.

• Chapter 5 describes an extensive comparison of the various strategies developed in

the dissertation by implementing them using a forward vehicle simulator. The cal-

ibration effort and performance of both the non-realizable (DP, ECMS, OCL) and

realizable strategies (AECMS, real-time OCL) are compared.

• Chapter 6 provides a comprehensive description of the contributions made by the

individual chapters in the dissertation and the major contributions of the dissertation

to the HEV literature.
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Chapter 2: HEV Modeling and Simulation

The chapter describes the methodology used to model the various components of a

generic HEV. Two of the most popular HEV architectures are chosen. The chapter also de-

scribes the two main approaches used in building a HEV simulator, forward and backward.

Both the simulators are used in the remainder of this dissertation to design, analyze and test

several energy management strategies.

2.1 Vehicle Architecture

In general, a HEV consists of several energy sources and energy converters. Unlike a

conventional vehicle which uses an engine (with fuel as the only source of energy) to propel

the vehicle, a HEV utilizes both the engine and an electric machine powered by a battery.

Depending on the arrangement of the engine, electric machine, battery and transmission,

HEVs can be classified into different types as follows:

• Series: This type of HEV uses only the electric motor to drive the wheels. The

engine-generator set and the battery are connected in series to propel the vehicle. In

a series HEV, the electrical power from the battery and the engine-generator set is

summed electrically to satisfy the power/torque request at thw wheels. There have

been several commercially successful heavy-duty series HEVs such as the UPS series

hybrid pick-up truck and series hybrid buses by Designline.
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• Parallel: The engine and the electric motor are connected in parallel to drive the

wheels. Depending on the position of the electric motor and engine, these vehicles

are further classified as pre-transmission and post-transmission parallel HEVs. Here

the mechanical power from the engine and the electric machine is summed mechan-

ically to propel the vehicle. Honda Insight, Civic Hybrid, Accord Hybrid and Chevy

Malibu Hybrid are some of the very popular parallel HEVs.

• Series-Parallel: This type of HEV consists of more than one electric machine con-

nected with the engine either mechanically or electrically. The simplest version of

a series-parallel HEV consists of a clutch connecting the engine to the transmission.

The power-split hybrid is the most popular series-parallel HEV, consisting of a plan-

etary gear set combining all the energy conversion devices. The power from the

engine and the electric machines can be summed either mechanically or electrically.

Toyota Prius, Chevy Volt, GM 2-Mode Hybrid and GM Tahoe Hybrid are popular

examples of the power-split series-parallel HEVs.

From the different types of HEVs described in the literature [50, 2, 51], the pre-transmission

parallel HEV architecture has been selected and is used throughout this dissertation to sim-

ulate and evaluate the performance of the proposed energy management strategies. The

vehicle architecture selected for modeling and simulation is described in detail in the fol-

lowing sections.

2.1.1 Pre-transmission Parallel HEV

The power flow in a pre-transmission parallel HEV is shown in Fig. 2.1. The sign

convention adopted throughout the dissertation is as follows:
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Figure 2.1: Power flow diagram of pre-transmission parallel HEV

• Electric machine power, torque and current are positive when the machines operate

in motoring mode;

• Accessory torque and power are positive when the accessories are being driven;

• Engine torque is positive when it is motoring;

• Battery current and power are considered positive when the battery is discharged and

vice-versa.

In Fig. 2.1, direction of the arrows indicate the positive sign convention. The dotted lines

represent the electric connection between components while the solid lines show direct

mechanical coupling. It is assumed that the mechanical accessory loads include only engine

accessories, while the main secondary loads such as air conditioning, brake compressor,

etc., are powered electrically from the main electric bus. The engine is connected in parallel

with the electric motor and the battery pack and can be engaged or disengaged from the

transmission (and wheels) using a clutch. The vehicle can operate in three different modes

depending on the status of the engine (on/off), clutch (open/close) and the gearbox.
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Figure 2.2: Power flow diagram of pre-transmission parallel HEV: Electric Mode

Electric Mode

With the clutch open, the vehicle uses only the battery and electric motor for propulsion.

The engine can be switched off because it is completely disconnected from the wheels. This

vehicle mode (shown in Fig. 2.2) does not involve any optimization as the electric motor

is the only propulsion device. The torque/power requested by the driver at the wheels is

satisfied using the battery and electric motor. The torque/power balance equations that must

be satisfied at each instant are
Tmot(t) = Tgb(t),

Pbatt(t) = Pmot,e(t) + Paccelec(t),

ωmot(t) = ωgb(t),

(2.1)

where Tgb, ωgb represent the instantaneous gearbox torque and speed; Tmot, ωmot represent

the instantaneous electric motor and speed; Paccelec represents the instantaneous electrical

accessory power; Pbatt represents the instantaneous battery power and Pmot,e represents the

instantaneous electrical power at input/output terminals of the electric motor.
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Figure 2.3: Power flow diagram of pre-transmission parallel HEV: Parallel Mode in neutral
gear

Parallel Mode in neutral gear

In this mode of operation, shown in Fig. 2.3, the clutch is closed and the gearbox

is in neutral position. The vehicle is assumed to be at stand still without any traction

power required at the wheels. Although both the devices are connected to the transmission,

because the gear is in neutral condition, the engine can be operated at any desired speed.

This mode of operation mimics the real world situation of the vehicle being stopped at a

traffic signal. The engine is kept on and used in conjunction with the battery and electric

motor to charge/discharge the battery. Because the vehicle is stopped, the gearbox torque

requested by the driver is zero. The torque/power balance equations that must be satisfied

at each instant are 
Tmot(t) + Tice(t) = Taccmech(t),

Pbatt(t) = Pmot,e(t) + Paccelec(t),

ωmot(t) = ωice(t) = ωice,opt(t),

(2.2)

where Tice, ωice represent the instantaneous engine torque and speed; Taccmech represents

the instantaneous mechanical accessory torque and ωice,opt represents the instantaneous op-

timal engine speed selected based on the maximum efficiency operating line of the engine
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Figure 2.4: Power flow diagram of pre-transmission parallel HEV: Parallel Mode

(explained in Section 2.2.1) . Assuming a constant efficiency for the electric motor (ηmot),

the engine power (Pice) can be represented as a function of battery power (Pbatt), electrical

(Paccelec) and mechanical (Paccmech) accessory power as

Pice(t) =
1

ηmot
Paccelec(t) + Paccmech(t)− ηmotPbatt(t). (2.3)

Parallel Mode

With the clutch closed, the parallel mode of operation (Fig. 2.4) uses both the devices

(mot,ice) to propel the vehicle with their speeds directly determined by the vehicle velocity.

The torque/power requested by the driver is supplied by the parallel configuration. Unlike

the parallel mode in neutral gear, in this mode of operation the gear position is determined

using a gear ratio map dependent on vehicle velocity and acceleration. The only degree of

freedom available in this mode is the engine torque (Tice) or electric machine torque (Tmot).

The torque/power balance equations that must be satisfied at each instant are
Tmot(t) + Tice(t) = Tgb(t) + Taccmech(t),

Pbatt(t) = Pmot,e(t) + Paccelec(t),

ωmot(t) = ωice(t) = ωgb(t).

(2.4)
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Assuming a constant efficiency for the electric motor (ηmot), the battery power (Pbatt) can

be represented as a function of engine power (Pice) and the requested power (Preq) as{
Pbatt(t) = − 1

ηmot
Pice(t) + 1

ηmot
Preq(t),

Preq(t) = Pgb(t) + 1
ηmot

Paccelec(t) + Paccmech(t).
(2.5)

2.2 Simulation Environment

Table 2.1: Vehicle characteristics

Characteristic Pre-Transmission
Parallel HEV

Vehicle mass 19878 kg
Engine capacity 6.7 L Diesel
Engine power 194 kW
Motor power 100 kW (continuous)

200 kW (peak)
Battery energy capacity 7.5 kWh (27 MJ)
Electrical Accessory 7 kW
Mechanical Accessory 4 kW

This section describes the simulation environment that has been used to implement and

compare the different energy management strategies designed and presented in this disser-

tation. The pre-transmission parallel HEV (Fig. 2.1) is modeled in MATLAB/Simulink

environment and the vehicle characteristics are shown in Table 2.1. In order to study the

performance of an energy management strategy, any HEV can be simulated using either

a forward or backward approach [52, 53, 54, 55, 56, 57]. These longitudinal quasi-static

vehicle simulators use stationary input/output maps (with and without inertial dynamics)

to model the various components of the vehicle. Because the simulators are primarily

used to compare the performance of different energy management strategies, in terms of

22



Figure 2.5: Information flow in forward vehicle simulator

steady state variables such as battery state of charge, fuel consumption over a driving cycle,

etc., the level of complexity attained using stationary maps is sufficient. The different ap-

proaches used in simulating the vehicle are driven by the intended purpose of the simulator

and the available computational capability.

Table 2.2: Forward and Backward Vehicle Simulator

Component Forward Simulator Backward Simulator

Vehicle dynamics
All powertrain inertias
considered

All powertrain inertias
considered

Engine model
First order dynam-
ics+fuel consumption
map

Stationary fuel con-
sumption map

Engine starter Electrical cranking Instantaneous power on
Electric machine Stationary map Stationary map
Battery model Circuit model Stationary map

Clutch dynamics Slip dynamics
Instantaneous engage-
ment
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2.2.1 Forward Vehicle Simulator

The forward vehicle simulator is a longitudinal and quasi-static simulator with stan-

dard representation of road load based on inertial, rolling and aerodynamic resistances.

It is called a forward simulator because the torque/speed signals are propagated to/from

different components of the vehicle. The information flow in a generic forward vehicle

simulator is shown in Fig. 2.5. Based on the vehicle velocity profile to be followed, a

simple PID based driver model generates acceleration and brake pedal commands (much

like a real driver). The powertrain controller block receives the accelerator and brake pedal

commands from the driver model and decides the optimal torque/power split between the

sources available. The component torque/power requests are used by the powertrain model

to calculate the force at the wheels. Because the forward simulator is primarily used in

the analysis of energy management strategies, all the components are modeled using quasi-

static map based models with the most relevant dynamics described in Table 2.2. This

simulator is used to perform the following tasks:

1. Simulation of vehicle system behavior over different driving cycles;

2. Evaluation of instantaneous and cumulative fuel consumption and battery state of

charge;

3. Possibility of evaluating effects of vehicle and drivetrain design parameters;

4. Possibility of testing and optimizing energy management strategies.

The various components of a forward vehicle simulator are described in detail with the

corresponding input and output signals.
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Figure 2.6: Driver Model

Driver Model

The PID based driver model, depicted in Fig. 2.6 and used in the forward vehicle sim-

ulator accepts the desired and actual vehicle velocity as inputs. Depending on the error in

velocity, it calculates the accelerator and brake pedal commands. The equations governing

the driver model can be expressed as
u(t) = Vdes(t)− Vact(t),
y(t) = KPu(t) +KI

∫
u(t)dt+KD

du(t)
dt
,

α(t) = y(t) ∀y(t) > 0,

β(t) = y(t) ∀y(t) ≤ 0,

(2.6)

where u represents the error in velocity, Vdes represents the desired vehicle velocity, Vact

represents the actual vehicle velocity, y represents the output of the PID controller,KP , KI , KD

represent the proportional, integral and derivative constants respectively and α, β represent

the normalized acceleration and brake pedal commands.

Forward Supervisory Controller

Unlike a conventional vehicle, the performance of a generic HEV strongly depends on

the supervisory controller. The name “supervisory controller” is used because in addition to

the lower-level component controllers, there is an extra layer of hierarchical control which

decides the vehicle mode of operation and the torque/power split between the different
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Figure 2.7: Forward Supervisory Controller

energy sources. Here the controller block accepts the accelerator and brake pedal com-

mands as inputs and calculates the engine ON/OFF state, the clutch OPEN/CLOSE state

and the torque/power/current of the powertrain components (engine, electric machine, bat-

tery, etc.). Fig. 2.7, shows a hierarchical control structure used in the development of

the supervisory controller. It consists of a mode selection strategy and an energy man-

agement strategy. The mode selection strategy decides the vehicle mode of operation by

selecting the engine and clutch states using a set of well-defined rules. In general, these

rules can either be derived from engineering common sense [29, 30, 31] or from dynamic

programming [33]. For each of the vehicle modes, the energy management strategy calcu-

lates the optimal torque/power split between the engine, electric machine and battery. The

energy management strategies (ECMS, Adaptive ECMS, Optimal control law) proposed

in this dissertation (Section 3.3, 3.4, 4.4) are implemented in this part of the supervisory

controller.
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Figure 2.8: Powertrain Model: Engine

Powertrain Model

The powertrain model block used in the forward vehicle simulator accepts the actuator

commands from the supervisory controller and calculates the force required at the wheels

to satisfy the desired velocity. The model block consists of the engine, electric machine,

battery and the transmission models.

Engine Model: The engine model (Fig. 2.8) uses a quasi-static fuel consumption map with

first order inertial dynamics for the engine. Depending on the instantaneous torque demand

and engine speed, the engine torque and the fuel consumed are calculated using
Tice(t) = min(Tice,dmd(t), Tice,max(ωice(t))(t)),

ṁf (t) = fice(Tice(t), ωice(t)),

Jice
dωice

dt
= Tice(t)− Tload(t).

(2.7)

where Tice,dmd represents the demanded engine torque, Tice,max represents the maximum

engine torque, ṁf denotes the fuel consumption rate of the engine, Jice denotes the inertia

of the engine, fice represents the nonlinear mapping relating the engine torque, speed and

fuel consumption rate and Tload represents the engine load torque.

The fuel consumption map of the engine used in this dissertation is shown in Fig. 2.9.

The engine fuel consumption rate can be expressed as a function of the engine torque/power
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Figure 2.9: Fuel Consumption Map of 6.7L Diesel Engine

Figure 2.10: Illustration of Willans line model for engine
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Figure 2.12: Quadratic fit for slope of Willans line model
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Figure 2.13: Quadratic fit for intercept of Willans line model
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Figure 2.14: Effectiveness of Willans line model
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and speed using an appropriate Willans line model [2, 58, 17]. In general, for any energy

conversion device, the efficiency of the device can be modeled by representing the input

power as an affine function of the output power and losses (Fig. 2.10). For the engine

considered in this dissertation, the plot between the input and the output power is shown

in Fig. 2.11. Here, at a given engine speed, the output power (Pice) can be written as an

affine function of the input chemical power (Pchem). The slope and intercept of each of

the Willans lines can be expressed a polynomial function (Fig. 2.12 and Fig. 2.13) of the

engine speed, by 
Pin(t) = e0(ωice(t)) + e1(ωice(t))Pout(t),

e0(ωice(t)) = e00 + e01ωice(t) + e02ω
2
ice(t),

e1(ωice(t)) = e10 + e11ωice(t) + e12ω
2
ice(t),

(2.8)

where eij, i, j = 0, 1, 2 are Willans line coefficients, Pin = Pchem = ṁfQLHV (QLHV

is the lower heating calorific value of diesel in kJ/kg) is the chemical power input to the

engine and Pout = Pice = Ticeωice is the engine power output. Given the engine torque Tice

and speed ωice, the fuel consumption rate can be written as

ṁf (t) =
1

QLHV

[e0(ωice(t)) + e1(ωice(t))Pice(t)]. (2.9)

The effectiveness of the Willans line model in approximating the fuel consumption rate of

the engine is shown in Fig. 2.14.

Depending on the vehicle mode of operation, the fuel consumption rate can also be

expressed as a function of the engine power Pice.

In the parallel mode of operation (Fig. 2.4), engine and electric motor speed are directly

determined from the vehicle speed. The fuel consumption rate model can be written as

ṁf (t) =
1

QLHV

[e0(ωgb(t)) + e1(ωgb(t))Pice(t)]. (2.10)
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Depending on the control input chosen, the fuel consumption rate can be expressed as a

function of the control input using (2.5). Under the assumption that the slope and intercept

of the Willans line model are independent of the engine speed, the fuel consumption rate

can be expressed as an affine function of engine power Pice in the manner

ṁf (t) = p2 + p3Pice(t), (2.11)

where p2, p3 are known constants calculated from (2.10). The constants p0, p1, p2, p3 were

calculated and used depending on the vehicle mode of operation. The fuel consumption rate

can also be expressed as a function of the battery power (Pbatt) and the power requested at

the gearbox (Preq) by substituting (2.5) on (2.11) to get,

ṁf (t) = p4 + p5Pbatt(t) + p6Preq(t), (2.12)

where p4, p5, p6 are known constants.

If the engine speed ωice can be chosen independent of the vehicle speed, it can be

operated in its most efficient region.The optimal engine speed (ωice,opt) can be calculated

by minimizing the chemical power Pchem as
∂Pchem

∂ωice
= 0 ⇒ ωice,opt = −1

2
e01+e11Pice

e02+e12Pice
,

∂2Pchem

∂ω2
ice

> 0,

ωice ∈ [ωice,idle, ωice,max],

(2.13)

where ωice,idle, ωice,max represent the idle and maximum speed of the engine. The fuel

consumption rate can be expressed as an affine function (Fig. 2.15) of Pice alone, as

ṁf (t) = m0 +m1Pice(t) (2.14)

where m0 and m1 are known constants obtained from (2.9) and (2.13). Moreover, because

Pice is a function of the control input Pbatt as given by (2.3), ultimately the fuel consumption
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Figure 2.15: Willans line model with engine operating at maximum efficiency

rate ṁf (t) can be expressed as a direct function of the control input, Pbatt, i.e.,

ṁf (t) = p0 + p1Pbatt(t), (2.15)

through coefficients p0, p1 expressed as follows:{
p0 = m0 +m1

(
Paccmech + 1

ηmot
Paccelec

)
,

p1 = −m1ηmot.
(2.16)

Electric machine Model: The electric machine model depicted in Fig. 2.16, uses a quasi-

static efficiency map (Fig. 2.17) to calculate the electrical power. The usage of the effi-

ciency map depends on the mode (motoring mode/generating mode) of usage of the electric

machine. The speed of the electric machine and the torque demand are the inputs to the

block. Based on these inputs, the torque and power at the output are calculated, using{
Tem = max(min(Tem,dmd(t), Tem,max(ωem)(t)), Tem,min(ωem)(t)),

ηem = fem(Tem(t), ωem(t)),
(2.17)
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Figure 2.16: Powertrain Model: Electric Machine

where Tem, ωem represent the electric machine torque and speed, Tem,dmd represent the

demanded electric machine torque, Tem,min, Tem,max denote the minimum and maximum

electric machine torques, fem represents the nonlinear mapping of the efficiency of electric

machine and ηem denotes the efficiency of the electric machine.

Battery Model: The battery model (Fig. 2.18) used in the forward vehicle simulator is

usually a circuit based nth order model. The battery state of charge (SOC) is the scalar

state variable of the energy management problem whose dynamics can be expressed as

˙SOC(t) = −ηbatt
I(t)

Qmax

(2.18)

where ηbatt represents the Coulombic efficiency [51], I(t) represents the current flowing

in (negative) and out (positive) of the battery and Qmax the maximum battery charge ca-

pacity. Numerous battery models have been developed in HEV literature depending on

the intended level of accuracy. However, the energy management problem places more

importance on the efficiency and losses in the battery pack, which allows the use of a zero-

th order equivalent circuit based model shown in Fig. 2.19. Depending on the order of

the electric circuit based model, there are several parameters that must be characterized.
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Figure 2.18: Powertrain Model: Battery

Figure 2.19: Zero-th order electrical circuit model of the battery

35



The parameters of the zero-th battery model are, the equivalent resistance (Req)1 and the

open circuit voltage (Voc)2. In general, these parameters depend on several factors such

as, state of charge and temperature. Typically, in a charge-sustaining HEV, the battery is

used only over a limited range of SOC (typically between 0.5-0.8). It is well known that

over this range of SOC operation, the model parameters (Req, Voc) do not vary significantly

as a function of SOC. Therefore, they are assumed to be known constants in this work.

Moreover, in this study, the effect of temperature on battery parameters have not been con-

sidered, leaving the investigation on temperature dependent parameters to future studies.

With reference to the zero-th order equivalent circuit model in Fig. 2.19, the voltage at the

battery pack terminals is given by

VL(t) = Voc − I(t)Req, (2.19)

where VL(t) is the instantaneous terminal voltage. Multiplying (2.19) by current I(t) on

both sides, battery power Pbatt is expressed as,

Pbatt(t) = VL(t)I(t) = VocI(t)− I2(t)Req. (2.20)

Solving the algebraic quadratic equation (2.20), the battery current I(t) is expressed as a

function of Pbatt as:

I(t) =
Voc −

√
(Voc)2 − 4ReqPbatt(t)

2Req

. (2.21)

This result can then be substituted into the definition of ˙SOC(t) generating the nonlinear

mapping

˙SOC(t) = −ηbatt
Voc −

√
(Voc)2 − 4ReqPbatt(t)

2ReqQmax

= fSOC(SOC(t), Pbatt(t) (2.22)

1The equivalent resistance of a zero-th circuit model is a single lumped resistance of the battery pack
estimated from experimental data [59].

2The open circuit voltage is the output voltage of the battery pack when it is not loaded and it is usually
determined from experimental data [59].
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Figure 2.20: Powertrain Model: Transmission

Transmission Model: The transmission model (Fig. 2.18) uses a stationary gear ratio map

(Table 2.3) to determine the torque and speed at the output of the transmission expressed

as, {
Tgb,out = ηtrans ∗R ∗ Tgb,in,
ωgb,out = ωgb,in ∗R.

(2.23)

where Tgb,in, Tgb,out represent the gearbox input and output torque, ηtrans represents the

efficiency of the transmission and R represents the gear ratio.

Table 2.3: Transmission Characteristics

Gear Number 1st 2nd 3rd 4th 5th 6th

Ratio (R) 3.49 1.86 1.41 1 0.75 0.65

Vehicle Dynamics Model: The vehicle dynamics model (Fig. 2.21) calculates the vehicle

velocity, given the force at the wheels at each instant. The inertial, aerodynamic and rolling

resistance losses are taken into account and the following equations are used:{
Fload = 1

2
ρaCdAfV

2
act +MgCr cos θ +Mg sin θ,

(M +Mr)
dVact
dt

= Ftrac − Fload,
(2.24)
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Figure 2.21: Powertrain Model: Vehicle Dynamics

Figure 2.22: Information flow in backward vehicle simulator

where Fload, Ftrac represent the road load force and the tractive force at the wheels, ρa

represents the density of air, Cd, Cr are the coefficient of drag and rolling resistance re-

spectively, Af denotes the frontal area of the vehicle, θ represents the road grade, M,Mr

represent the given mass and effective mass of the vehicle and g the acceleration due to

gravity.

2.2.2 Backward Vehicle Simulator

In order to compare the performance of the proposed control law with the optimal global

solution obtained from dynamic programming, a backward vehicle simulator is used. The
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information flow in a backward simulator is shown in Fig. 2.22. The torque required at the

wheels and subsequently the torque/speed required from the components is calculated with

the assumption that the vehicle follows the desired velocity trajectory. The optimization

algorithm decides the optimal component torques/power from the devices depending on

the torque required at the wheels. The simulator primarily uses simplified quasi-static

map based models for all the components. Unlike the forward simulator, the backward

simulator, models all its components using stationary maps as shown in Table 2.2. The

simulator is used to perform the following tasks:

1. Evaluation of instantaneous and cumulative fuel consumption and battery state of

charge;

2. Obtain DP solution to the energy management problem in HEV;

3. Possibility of testing the effect of state and control input discretization levels on DP

solutions.

The different blocks in a backward simulator are described in detail in the following sub-

sections.

Inverse Vehicle Dynamics and Transmission Model

The inverse vehicle dynamics and transmission block (Fig. 2.23) accepts the desired

vehicle velocity and acceleration as inputs and calculates the torque required at the gearbox

in order to follow that velocity profile.
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Figure 2.23: Inverse Vehicle Dynamics and Transmission Model

Figure 2.24: Backward Supervisory Controller
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Figure 2.25: Fuel Consumption and SOC

Backward Supervisory Controller

The backward supervisory controller (Fig. 2.24) used in a backward vehicle simulator

is typically an optimization algorithm that gives benchmark solution to the energy manage-

ment problem. It accepts the torque required at the gearbox as the input and decides both

the vehicle mode of operation and optimal torque/power split between the engine and the

electric machine.

Fuel Consumption and SOC

The fuel consumed over the driving cycle and battery SOC (Fig. 2.25) is calculated

using simple stationary maps as described in Section 2.2.1.

2.3 Conclusion

The pre-transmission parallel HEV explained in this chapter will be the vehicle archi-

tecture over which several energy management strategies will be tested. Both the forward

and backward vehicle simulators are used to compare and benchmark different energy man-

agement strategies. The energy management strategies (Chapter 3) have been implemented
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in both backward and forward vehicle simulators for the vehicle architecture described

in this chapter. The stability and optimality framework developed in Chapter 4, uses the

drivability constraints described in this chapter.
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Chapter 3: Energy Management Strategies for HEVs

In this chapter, we formulate the optimal control problem in a pre-transmission parallel

HEV and develop different energy management strategies to solve the optimal control prob-

lem. In order to compare and evaluate the performance of energy management strategies,

the global optimal solution from dynamic programming (DP) is used. The DP algorithm is

used to solve the optimal control problem in a charge-sustaining HEV and implements the

algorithm in a backward vehicle simulator using an open-source MATLAB DP code [60].

The equivalent consumption minimization strategy (ECMS) derived from the necessary

conditions of optimality given by Pontryagin’s Minimum Principle (PMP) is formulated

and compared with DP. The strategy is implemented in a backward vehicle simulator and is

compared against the benchmark solution obtained from DP. An adaptive version of ECMS

is proposed, formulated and compared against DP.

3.1 Objective of the Energy Management Strategy

A generic HEV, regardless of the architecture considered, has two energy sources on

board that can supply the torque/power requested by the driver. Unlike a conventional

vehicle, the additional degree of freedom presents a challenging optimization problem. The

objective of the energy management strategy in a HEV is to find the optimal torque/power

split between the primary (fuel) and secondary (battery) energy sources that minimizes a
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given objective function over an entire driving cycle. In general, the minimization can be

performed with respect to several objectives, such as fuel consumption, emissions, battery

aging, etc., or a combination of these objectives [61], [5]. Throughout the dissertation, we

consider the problem of minimizing the total mass of fuel, mf [g] during a driving cycle,

or equivalently, minimize the following cost J :

J =

tf∫
t0

ṁf (u(t))dt (3.1)

where ṁf is the instantaneous fuel consumption rate expressed in [g/s], u(t) is the control

input, and tf − t0 is the length of the driving cycle. The energy management problem, by

its very nature, is a constrained optimization problem, where the objective function (3.1) is

minimized under system dynamics, instantaneous (local) and integral (global) constraints

on the state and control variables, as outlined in the following.

• System dynamics: Because the energy management problem in a HEV involves

finding the steady-state optimal torque/power split between the engine and electric

motor, quasi-static vehicle simulators are used. The vehicle simulators can be either

forward (Fig. 2.5) or backward (Fig. 2.22) in its approach. Thus the battery state of

charge (SOC) is the scalar state variable of the energy management problem and is

predicted using a zero-th order model as shown in Fig. 2.19. Based on this battery

model, the battery SOC dynamics is expressed as

˙SOC(t) = fSOC(SOC(t), Pbatt(t)) (3.2)

where fSOC is the nonlinear mapping derived using the circuit based model shown in

(2.22). The battery SOC and battery power are the state variables and control input

of the energy management problem, respectively.

44



• Integral constraint: In a charge sustaining HEV, the net energy from the battery is

zero over a given driving cycle, which means that the SOC at the end of the driving

cycle is desired to be the same as that in the beginning of the driving cycle, or

SOC(tf ) = SOC(t0), (3.3)

where SOC(t0), SOC(tf ) represent the battery SOC at the beginning and end of

the driving cycle. Even though this is not considered as a hard constraint in a real

HEV, it is mathematically convenient to assume that the state variable must satisfy

the constraint for any driving cycle.

• Instantaneous constraints: Similar to the integral constraint (3.3) on battery SOC,

there are instantaneous constraints imposed on the state and control variables. These

constraints mostly concern physical operation limits, such as the maximum engine

torque and speed, the maximum motor power/torque and the battery SOC. The in-

stantaneous constraints for a pre-transmission parallel HEV powertrain shown in

Fig. 2.1 are 

Pbatt,min ≤ Pbatt(t) ≤ Pbatt,max,

SOCmin ≤ SOC(t) ≤ SOCmax,

Tx,min ≤ Tx(t) ≤ Tx,max ∀t ∈ [t0, tf ]

Px,min ≤ Px(t) ≤ Px,max,

ωx,min ≤ ωx(t) ≤ ωx,max, x = ice, mot,

(3.4)

where the last three inequalities represent limitations on the instantaneous engine and

electric motor torque (T(·)), power (P(·)) and speed (ω(·)) respectively; (·)min, (·)max

are the minimum and maximum values of power, SOC, torque and speed at each

instant.
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Moreover, the instantaneous constraints are also enforced at each instant to ensure

that the total power demanded at the wheels is satisfied. In a pre-transmission parallel

HEV, like the one shown in Fig. 2.1, the engine is connected in parallel with the

electric motor and battery pack and can be engaged or disengaged from the wheels

using a clutch. The vehicle can operate in three different modes depending on the

status of clutch and gear position, namely:

1. Electric mode: The constraints that must be satisfied in this mode (Fig. 2.2) are

listed here for convenience;
Tmot(t) = Tgb(t),

Pbatt(t) = Pmot,e(t) + Paccelec(t),

ωmot(t) = ωgb(t).

(3.5)

2. Parallel mode with neutral gear: The constraints that must be satisfied in this

mode (Fig. 2.3) are listed here for convenience;
Tmot(t) + Tice(t) = Taccmech(t),

Pbatt(t) = Pmot,e(t) + Paccelec(t),

ωmot(t) = ωice(t) = ωice,opt(t).

(3.6)

3. Parallel mode: The constraints that must be satisfied in this mode (Fig. 2.4 are
Tmot(t) + Tice(t) = Tgb(t) + Taccmech(t),

Pbatt(t) = Pmot,e(t) + Paccelec(t),

ωmot(t) = ωice(t) = ωgb(t).

(3.7)

3.2 Dynamic Programming

This section describes an open-source 3 MATLAB based DP function used to solve the

energy management problem in a charge-sustaining HEV, the method of implementation

and the simulation results for a variety of driving cycles.

3a code that has been published in the literature and available for free redistribution and usage
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3.2.1 Overview

Dynamic programming (DP), the brainchild of an American mathematician, Richard

Bellman, is a method for solving complex optimization problems by breaking them down

into simpler subproblems [62]. In general, to solve a given problem, different parts of the

problem (subproblems) are to be solved and then combined to reach an overall solution.

This approach is especially useful when the number of repeating subproblems grows ex-

ponentially as a function of the size of the input. In terms of mathematical optimization,

DP [63] usually refers to simplifying a decision by breaking it down into a sequence of

decision steps over time. The discrete formulation of DP is given here, because it is the

most useful for solving complex problems, especially those that are not easily described

analytically (for example, when maps need to be used).

Consider a dynamic system described by the discrete-time dynamic equation

x(k + 1) = f(x(k), u(k)), k = 0, 1, · · · , N − 1 (3.8)

where k is the index used to indicate the value of a variable at time step t(k), x(k) ∈ Rn is

the state vector, u(k) ∈ Rp is the control input, N is the length of the optimization interval,

i.e. the number of times control is applied, and f(·, ·) is a nonlinear, time-varying, discrete-

time mapping of the state variable and control input. At each step k, the state of the system

must remain in an admissible range: x(k) ∈ S(k) ⊂ Rn . Similarly, the control variable is

constrained to belong to a set U of admissible values, which depends on the current state:

u(x(k)) ∈ U(k) ⊂ Rp.

An admissible control policy is a sequence of state feedback control actions in the

admissible set:

ψ = u(0), u(1), · · · , u(N − 1), u(k) ∈ U(x(k)). (3.9)
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Given an initial state x(0) and a sequence of functions L(x(k), u(k)) that represent the cost

of each step, the optimal policy ψ∗ is the one that minimizes the functional cost J expressed

as

Jψ = φ(x(N)) +
N−1∑
k=0

L(x(k), u(k)), (3.10)

where φ(x(N)) represents the terminal cost function and the optimal cost is J∗ = Jψ∗ =

min
ψ
Jψ.

The dynamic programming algorithm based on Bellman’s principle of optimality [62]

can be stated as follows:

Theorem 3.2.2. An optimal policy has the property that, whatever the initial state and

initial decision are, the remaining decisions must constitute an optimal policy with regard

to the state resulting from the initial decision.

In terms of mathematical optimization [63] this can be stated as follows:

Definition 1. Let ψ∗ = u∗(0), u∗(1), · · · , u∗(N − 1) be an optimal control policy over the

interval [0, N − 1], and assume that, while using ψ∗, a given state x(i) occurs at time i.

Consider now the sub-problem defined in the interval [i, N − 1] and starting at x(i). Then

the truncated policy ψ∗i = u∗(i), u∗(i+ 1), · · · , u∗(N − 1) is optimal for this sub-problem.

The principle of optimality can be justified very intuitively: if the truncated policy ψ∗i

were not optimal for the subproblem, there would be another policy that would generate a

lower cost in the interval [i, N − 1]. The total cost of the original problem could then be

reduced by switching to this other policy, once x(i) is reached. This, however, is in contrast

with the hypothesis that ψ∗ is optimal for the full problem. Therefore, ψ∗i is optimal for the

subproblem defined over [i, N − 1].
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Because of this principle, it is possible to determine the optimal sequence of control

actions starting from the final state and proceeding backwards, choosing at each step i the

path that minimizes the cost-to-go function

J(x(i)) = φ(x(N)) +
N−1∑
k=i

L(x(k), u(k)). (3.11)

The dynamic programming algorithm can be implemented proceeding backward in time

from step N − 1 to step 0. The optimal cost-to-go is the cost to go from the current state to

the final state when the optimal control policy ψ∗ is applied, calculated recursively as,J
∗(x(N)) = φ(x(N)),

J∗(x(k)) = min
u∈U(‖)

[L(x(k), u(k)) + J∗(x(k + 1))] , k = N − 1, N − 2, · · · , 0.
(3.12)

The proof of optimality of dynamic programming is fundamentally derived from the suffi-

cient conditions of optimality given by the Hamilton-Jacobi-Bellman equation [62].

3.2.3 DP as Energy Management Strategy for HEVs

Based on the overview of DP presented in the previous section, DP is used to solve

the energy management problem in the pre-transmission parallel HEV. The state variable,

control input, instantaneous and integral constraints and the performance objective of the

energy management problem in a charge sustaining HEV were stated in Section 3.1. The

battery SOC dynamics in the discrete-time version are expressed as

SOC(k + 1) = FSOC(SOC(k), Pbatt(k)), k = 0, 1, · · · , N − 1, (3.13)

where SOC(k), Pbatt(k) represent the battery SOC and battery power in discrete time,

FSOC denotes the nonlinear mapping fSOC expressed in discrete time and N is the number

of intervals considered over the length of the driving cycle t0 − tf .
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Figure 3.1: DP algorithm applied to HEV

In order to apply DP, the entire range of operation of SOC (SOCmin − SOCmax) is

discretized into several levels as shown in Fig. 3.1. The number of discretization levels

(NSOC) in SOC is an important parameter of the DP algorithm and it determines the accu-

racy and computational requirement of the DP solution. In the grid, the battery SOC value

at each discretization level j and time step k is denoted by SOC(j, k). Each arc in the Fig.

3.1 corresponds to the change in battery SOC (∆SOC(j, k)) which is expressed as

∆SOC(j, i) = SOC(j, k − 1)− SOC(i, k), i, j = 1, · · ·NSOC , k = 1, 2, · · ·N. (3.14)

The cost function of the energy management problem shown in (3.1) is used to find the cost

of all the arcs shown in Fig. 3.1. For example, the arc cost for ∆SOC(j, i) is calculated

as ṁf (Pbatt(ij, k)), where, Pbatt(ij, k) represents the battery power necessary to change

the battery SOC from SOC(j, k − 1) to SOC(i, k) at time step k − 1. Once the arc

costs for the entire grid are generated, the optimal control sequence of battery power ψ =

Pbatt(0), Pbatt(1), · · · , Pbatt(k), · · · , Pbatt(N − 1), k = 1, · · · , N is calculated backwards
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Figure 3.2: Implementation of DP Algorithm

using the following recursive formulation of DP,J
∗
N−1(SOC(N − 1)) = min

Pbatt(N−1)
[ṁf (Pbatt(ij, N − 1))] ,

J∗k (SOC(k)) = min
Pbatt(k)

[
ṁf (Pbatt(ij, k)) + J∗k+1(SOC(k + 1))

]
, k = N − 1, N − 2, · · · , 0.

(3.15)

where J∗k (SOC(k)) is the optimal cost-to-go function at state SOC(k) to reach the final

state SOCref from time k to N − 1.

3.2.4 Implementation of DP Algorithm

In order to implement DP algorithm to solve the energy management problem for

charge-sustaining HEVs (Section 3.1), an open-source generic DP code in MATLAB envi-

ronment [60] is used. This function solves the discrete-time optimal control problem using

Bellman’s principle of optimality. The DPM MATLAB function is used in conjunction

with a backward vehicle dynamics and powertrain model as shown in Fig. 3.2. In the

implementation, the DPM function has parameters such as options, prb, grd, par listed in
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Table 3.1: Parameters of DPM function

Parameters Description
dpm DP algorithm function handle

model
HEV backward model func-
tion handle

options
Options structure for DPM
function
(e.g., Maximum number of it-
erations, Tolerance allowed)

prb
Problem structure: External
inputs to DPM function
(e.g., Time step, Number of
time steps in the problem, Ve-
hicle velocity)

grd Grid Structure
(e.g., Number of state grid
points, control input grid
points, limits)

par
User defined parameter struc-
ture
(e.g., Vehicle characteristics,
component maps)

res
Results using optimal control
sequence

dyn
Dynamic structure used by
the DPM function
(e.g., Optimal cost-to-go
function, optimal control
input map)

Table 3.1 and is implemented as

[res, dyn] = dpm (model, options, prb, grd, par) . (3.16)

The DPM function accepts the variables prb, grd, par as inputs which has information

about the vehicle velocity, length of the optimization interval, number of state and control
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Table 3.2: Parameters of HEV backward model

Parameters Description

inp
X: State variables at the cur-
rent time step
U : Control input variables at
the current time step
W : External input variables
(from prb)

X
Resulting state variables after
applying control input U

C
Resulting cost after applying
control input U

I Infeasibility combinations
signals User defined output variables

input grids, vehicle characteristics, etc., as shown in Table 3.1. The function calls the back-

ward vehicle model for each combination of the state variable and control input variable in

order to solve the problem backwards. The arc cost for each state transition is calculated

and used by DP. The HEV backward vehicle model is implemented using the input and

output variables in the manner

Function [X,C, I, signals] = model (inp, par) , (3.17)

where X,C, I, signals are listed in Table 3.2.

In summary, the DP algorithm calculates the optimal sequence of engine torque, electric

machine torque, engine status and clutch status such that the constraints on battery SOC are

satisfied and minimum amount of fuel is consumed over the driving cycle. Because the DP

algorithm is given the complete choice to select the different modes of vehicle operation

and the torque/split between the devices, it produces the global optimal solution to the
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energy management problem. The control input and state variables used by DP are shown

in Table 3.1 and the variables used in the model function are shown in Table 3.2.

3.2.5 Simulation Results

Table 3.3: Performance of DP for different driving cycles

Driving Cycle FCeqv
[kg]

Manhattan 1.3191
WVU-Interstate 7.5353
WVU-Suburban 3.4391

UDDS Truck 2.8885
HTUF 6.2261
APTA 4.6715

The DP algorithm is applied to the pre-transmission parallel HEV using the backward

vehicle simulator (Fig. 2.22) and the simulation results for several heavy-duty driving cy-

cles are reported. In order to evaluate the performance of the energy management strategy,

the equivalent fuel consumed (FCeqv) are used. They are defined as

{
FCeqv =

∫ tf
t0
ṁf + ∆ SOCEmax

ηpath QLHV
, (3.18)

where SOC(tf ) is the battery SOC at the end of the driving cycle and ηpath is the

approximate efficiency of the drivetrain used in regenerating/discharging the battery. Be-

cause in a charge-sustaining HEV, the energy management strategy should ensure that the

net change in battery SOC at the end of the driving cycle is close to zero, an equivalent

fuel consumed (FCeqv) is used as a performance metric. The equivalent fuel consumed

is defined as the sum of the amount of fuel consumed along with a correction for the net

54



Figure 3.3: Mode selection strategy of DP

Figure 3.4: Engine operating points selected by DP
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Figure 3.5: Electric motor operating points selected by DP

change in battery SOC, assuming that charging/discharging of the battery can be associated

with an approximate efficiency ηpath.

The performance metrics of the global optimal solution from DP for urban driving

cycles (Manhattan, WVU-suburban, Heavy truck urban cycle (HTUF)), highway driving

cycles (WVU-interstate) and a combination of highway and urban driving conditions (Ur-

ban duty driving scheme (UDDS)) are shown in Table 3.3. The DP was given complete

freedom in selecting the vehicle mode of operation (electric or parallel) by selecting the

engine and clutch status (see Fig. 2.1). For both the operating modes, the algorithm then

decides optimal torque/power split between the engine and electric machine.

The mode selection choices made by DP shown in Fig. 3.3 indicate that there are

well-defined regions of operation for the different vehicle modes. The electric mode (EV)
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shown in Fig. 2.2 is chosen by DP by opening the clutch and switching off the engine

predominantly during the following driving conditions:

1. Braking/Coasting event: If the requested gearbox power (Pgb is negative, indicating

that the vehicle is either coasting or braking, the clutch is open and engine is off. The

electric machine is used as a generator to recharge the battery. This mode of operation

ensures that maximum energy can be regenerated from the event.

2. Vehicle launch: If the gearbox speed (ωgb) is less than the idle speed of the engine

(ωice,idle), it is not efficient to operate the engine at these speeds. The DP decides to

operate the vehicle in the electric mode of operation.

The parallel mode of operation (Fig. 2.4) is chosen by DP whenever the gearbox speed is

greater than the engine idle speed and the gearbox torque is positive. The parallel mode

of operation uses both the engine and electric motor and the points which are beyond the

maximum power of the electric machine indicate that electric machine is used at its max-

imum limit. The engine and electric motor operating points selected by DP during all the

driving cycles are shown in Fig. 3.4 and Fig. 3.5. It is evident that both the devices are

operated very close to their maximum efficiency operating points.

The battery SOC profile resulting from DP for all the driving cycles is shown in Fig.

3.6. For all the driving cycles, DP clearly produces a charge sustaining solution which can

also be seen from the Table 3.3. The equivalent fuel consumed (FCeqv) for the different

driving cycles is also shown in Table 3.3. Because DP results in the global optimal solution

to the energy management problem, the other energy management strategies developed

in the dissertation are compared against these values. Moreover, the DP based energy

management strategy cannot be implemented in a real vehicle because it requires a-priori
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knowledge of the entire driving cycle. This is the primary reason for implementing the DP

algorithm using a backward vehicle simulator and the DP solution is used as a benchmark

solution in HEV literature.

3.3 Equivalent Consumption Minimization Strategy

This section involves the design and development of equivalent consumption minimiza-

tion strategy (ECMS) derived from the necessary conditions of optimality given by Pon-

tryagin’s minimum principle (PMP). Section 3.3.1 involves an overview of PMP in general

and its application as an energy management strategy in HEVs. Then Section 3.3.2 derives

ECMS from PMP and the simulation results for such a strategy in comparison with the

global optimal solution from DP are shown in Section 3.3.3.

3.3.1 Overview of Pontryagin’s Minimum Principle

Consider a nonlinear and possibly time varying dynamical system described by

ẋ(t) = f(x, u, t), (3.19)

where x(t) ∈ Rn is the state variable, u ∈ Rp is the control input and f(·, ·, ·) is a

continuously differentiable function with respect to x and continuous in u. A certain

set U ⊂ Rp of admissible values of the control input, the initial and final state is fixed

(x(t0), x(tf )), the initial time t0 and the final time tf is fixed. Any piecewise-continuous

function u(t) ∈ U, t0 ≤ t ≤ tf is called an admissible control if it can transfer the state

trajectory from x(t0) to x(tf ) where x(t) is the solution of the system (3.19). The solution

satisfies the initial condition x(t0) = x0 and is defined for all t ∈ [t0, tf ] and x(tf ) = xf .
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The state and control input of the system must remain, at all times, in the admissible

range: {
xmin(t) ≤ x(t) ≤ xmax(t),

u ∈ U : umin(t) ≤ u(t) ≤ umax(t).
(3.20)

Among all admissible controls transferring the state from the position x0 to xf it is required

to find an optimal control, i.e. a function u∗(t) : [t0, tf ]→ R for which the functional

J(x, u, t) = φ(x(tf ), tf ) +

tf∫
t0

L(x(τ), u(τ), τ)dτ (3.21)

is minimum with respect to u(·) such that the dynamics (3.19) and state constraint (3.20)

are satisfied. L(x(t), u(t), t) is the functional cost, φ(x(tf ), tf ) is the terminal cost. The

constraints at the final time tf are given by

φ(x(tf ), tf ) = 0. (3.22)

The cost-to-go function is defined as the minimum cost to go from any state x(t) to the

final state x(tf ), defined as

J(u) = min
u(·)

φ(x(tf ), tf ) +

tf∫
t0

L(x(τ), u(τ), τ)dτ

 . (3.23)

The Hamiltonian function is introduced as

H(x, u, t) = L(x(t), u(t), t) + λTf(x, u, t), (3.24)

where L(x, u, t) is the instantaneous cost function and λ(t) is the Lagrange multiplier used

to include the constraints on the system dynamics. λ(t) is also called the co-state of the

system. In order to solve the optimal control problem while minimizing the cost function

J(u(·)) while satisfying the state and control input constraints, Pontryagin’s Minimum

Principle is used [64]. The necessary conditions that must be satisfied by any optimal

control law are explained in detail.
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Let u∗(t) : [t0, tf ]→ R be an optimal control trajectory and let x∗(t) : [t0, tf ]→ R be

the corresponding state trajectory, i.e.,

ẋ∗(t) = f(x∗(t), u∗(t)), x∗(t0) = x(0). (3.25)

Let λ(t) be the solution of the co-state equation

λ̇(t) = −∂H(x∗(t), u∗(t), λ(t))

∂x
, (3.26)

with the boundary condition

λ(tf ) =
∂φ(x∗(tf ), tf )

∂x
, t = tf , (3.27)

where φ(·) is the terminal cost function. Then, ∀t ∈ [t0, tf ],

u∗(t) = min
u∈U
H(x∗(t), u, λ(t)). (3.28)

Furthermore, if the Hamiltonian function H(·, ·, ·) is not an explicit function of time,

there exists a constant c such that

H(x∗(t), u∗(t), λ(t)) = c, ∀t ∈ [t0, tf ]. (3.29)

In other words, Pontryagin’s Minimum Principle states that the optimal state trajectory

x∗, optimal control u∗ and the corresponding Lagrange multiplier λ∗ must minimize the

HamiltonianH so that

H(x∗(t), λ∗(t), u∗(t)) < H(x∗(t), λ∗(t), u(t)) (3.30)

is satisfied ∀t ∈ [t0, tf ] and ∀u ∈ U in the admissible control set.

These are only the necessary conditions (not sufficient) for any optimal control law.

The set of control laws that satisfy these conditions are known as the extremal solutions to
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the control problem. If the optimal solution exists, then it is also extremal. The opposite,

however, is not true: a solution may be extremal without being optimal. If the optimal con-

trol law is unique, these conditions provide an explicit way of finding the optimal control

law. Thus finding the optimal control input u∗ using these necessary conditions, involves

solving two nonlinear differential equations ((3.25, 3.26)) with boundary conditions on

x∗(t0), λ(tf ).

The HEV energy management problem shown in Section 3.1 minimizes the fuel con-

sumed over the driving cycle, satisfying the constraints on engine, electric motor and bat-

tery. The corresponding Hamiltonian function is 4:

H(SOC, Pbatt, λ) = ṁf (Pbatt) + λfSOC(SOC, Pbatt), (3.31)

where ṁf (Pbatt) is the engine fuel consumption rate expressed as a function of battery

power and fSOC(SOC,Pbatt) is the nonlinear mapping of SOC and Pbatt used to calculate

battery SOC dynamics ( ˙SOC). The engine fuel consumption rate, ṁf , which is typically

a function of engine speed and torque (2.9), is expressed as a function of the control input

Pbatt (2.12).

The optimal battery SOC (SOC∗) and control input P ∗batt satisfy the constraints on the

state and control input as seen in equations (3.2) - (3.7). Consider the optimal co-state λ∗

which satisfies the dynamic equationλ̇
∗ = −∂H(SOC∗,P ∗

batt,λ
∗)

∂SOC
,

= −λ∗ ∂fSOC(SOC∗,P ∗
batt)

∂SOC
.

(3.32)

Then P ∗batt(t) minimizes the Hamiltonian function and hence the fuel consumed over the

driving cycle, i.e.,

H(SOC∗, λ∗, P ∗batt) < H(SOC∗, λ∗, Pbatt)), (3.33)

4For ease of representation, we suppress time dependence for the variables.
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is satisfied ∀t ∈ [t0, tf ] and ∀Pbatt ∈ U in the admissible control set. In order to find the

optimal control input P ∗batt(t) that minimizes the fuel consumed over the driving cycle, the

SOC dynamics and the co-state variable dynamics must be solved. The boundary condition

for SOC dynamics is the initial value of SOC (SOCinit), while the co-state variable can take

any initial value. This gives a set of extremal control laws that might satisfy the necessary

conditions. The optimal initial value λ∗0 (depends on the driving cycle) is the one that

satisfies the terminal constraint on SOC for charge-sustainability. Because the optimal

initial value of λ (λ∗0) depends on the complete knowledge of the driving cycle, the energy

management strategy based on PMP cannot be implemented in a real-vehicle. In order to

leverage the extensive amount of work in the HEV literature on equivalent consumption

minimization strategy, a version of ECMS that has been formulated based on PMP [16, 17]

is used in this dissertation.

3.3.2 ECMS based on PMP

The equivalent consumption minimization strategy (ECMS) is based on the engineering

intuition that in a charge sustaining HEV, the energy that is used to propel the vehicle, even

if it is supplied by the battery, must eventually come from the fuel [15, 20, 19]. Hence the

amount of fuel consumed during a driving cycle also includes an electrical fuel consump-

tion which is equivalent to the amount of energy used from the battery. The sum of actual

fuel consumption rate and electrical fuel consumption rate is known as the equivalent fuel

consumption rate expressed as,

ṁf,eqv = ṁf + ṁf,elec = ṁf + s
Pbatt
QLHV

, (3.34)

where ṁf,eqv is the equivalent fuel rate, s(t) is the equivalence factor between the elec-

tric energy and the fuel, and Qlhv is the lower heating value of the fuel. The amount of
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equivalent fuel consumed (mf,eqv) over the driving cycle is minimized to solve the energy

management problem. The global optimization problem over an entire driving cycle is re-

duced to a local minimization problem where the equivalent fuel consumed is minimized

at each instant. In this formulation of ECMS, the equivalent fuel consumption rate is ex-

pressed as a function of the equivalence factor s(t), battery power at the terminals Pbatt and

lower heating calorific value of the fuel QLHV . Because this formulation does not account

for the inefficiency in transforming the battery energy into fuel and vice versa, the losses

involved are lumped into the equivalence factor s(t). This is the primary reason for having

two different equivalence factors (schg, sdis), one for charging and one for discharging the

battery [20]. In order to reduce the number of calibration parameters, an equivalent but

alternative formulation for ECMS is shown in [58, 17]. According to this formulation the

equivalent fuel consumption rate can be expressed as

ṁf,eqv = ṁf + ṁf,elec = ṁf + s
Pbatt,chem
QLHV

, (3.35)

where Pbatt,chem is the available chemical battery power (includes the efficiency of the

battery). Using the expression for Pbatt,chem as a function of Voc,max and battery current

I , the equivalent fuel consumption rate can be re-formulated as{
Pbatt,chem = Voc,maxI,

ṁf,eqv = ṁf + sVoc,maxI(t)

QLHV
,

(3.36)

where ηbatt is the approximate efficiency of the battery, Voc,max is the constant open-circuit

voltage of the battery and I(t) is the battery current flowing in and out of the battery.

The Hamiltonian function developed using PMP can be expressed as a function of the

battery current (I(t)) using (2.18) as

H(SOC, Pbatt, λ) = ṁf (Pbatt) + λ ˙SOC,

= ṁf − λ αI(t)
Qmax

.
(3.37)
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Now, using the relation between the maximum capacity of the battery (Qmax) and the max-

imum energy capacity (Emax), Qmax = Emax

Voc,max
, the Hamiltonian function can be expressed

in the manner

H(SOC, Pbatt, λ) = ṁf − λ
αI(t)Voc,max

Emax
. (3.38)

Comparing the equations (3.36) and (3.38), the equivalence factor s(t) can be expressed as

a function of the co-state variable λ(t) in the manner

s(t) = −λ(t)
Qlhv

Emax
. (3.39)

The Hamiltonian function (equation (3.31)) physically represents the equivalent fuel con-

sumption and the co-state variable represents the equivalence between the battery and fuel

use. This can be shown in the ECMS formulation as:

H(SOC, Pbatt, s) = ṁeqv(SOC, Pbatt, s)

= ṁf (Pbatt)− s(t)Emax

Qlhv
fSOC(SOC, Pbatt).

(3.40)

This Hamiltonian function is to be minimized at every instant during the entire driving

cycle and the optimal battery power is calculated. Depending on the mode of operation

in a pre-transmission parallel HEV (electric, parallel with neutral gear and parallel), the

local optimization is performed at each instant to find the optimal torque/power split. The

difference between the original formulation of ECMS [19] as shown in equation (3.34) and

the Hamiltonian function as seen in equation (3.40) is that in the former formulation, the

equivalence factor represents the chain of inefficiencies involved in the transformation of

the fuel to electric power and vice-versa, and it changes for each operating condition of

the powertrain. In equation (3.40), instead, the inefficiencies involved in the conversion are

included in the nonlinear mapping of the battery dynamics and the equivalence factor acts

as a single tunable parameter of the system. The dynamics of the equivalence factor s(t) is
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obtained by substituting equation (3.39) into equation (3.32):

ṡ(t) = −s(t) Qlhv

Emax

∂fSOC(SOC,Pbatt)

∂SOC
. (3.41)

In general, based on PMP formulation, the equivalence factor s(t) is a dynamic variable

which satisfies (3.41) whose initial value (s0) is free to be chosen. If the battery model

used is a zero-th model as shown in Fig. 2.19 and the circuit model parameters (Req, Voc)

are assumed independent of SOC, then s is time-invariant during the driving cycle. In the

implementation, s(t) is considered time varying because the computational load introduced

by the differential equation is negligible. Thus the single tuning parameter is the initial

value of equivalence factor s0.

In order to ensure charge sustainability over any driving cycle, a penalty function

p(SOC) [19, 20, 58, 17, 32] is included the Hamiltonian function that is minimized at

each time step. The new Hamiltonian function which represents the equivalent fuel con-

sumption rate is expressed as

H(SOC,Pbatt, s) = ṁf (Pbatt)− s(t)
Emax
Qlhv

p(SOC)fSOC(SOC,Pbatt). (3.42)

The penalty function p(SOC) a nonlinear function of SOC which corrects the Hamiltonian

function whenever the SOC deviates from SOCref . As seen from Fig. 3.7, the penalty is

negligible whenever SOC is close to the reference value and increases nonlinearly as the

SOC deviates from its reference. This function is crucial in ensuring a charge-sustainable

solution from ECMS derived from PMP; that is,

p(SOC) = 1 +
(

SOCref−SOC
SOCref−SOCmin

)nSOC ∀ SOC < SOCref ,

p(SOC) = 1 ∀ SOC = SOCref ,

p(SOC) = 1 +
(

SOCref−SOC
SOCmax−SOCref

)nSOC ∀ SOC > SOCref ,

(3.43)

where SOCmin, SOCmax represent the minimum and maximum SOC, typically 50% and

80%, respectively, and nSOC is the exponential coefficient governing the shape of the

66



Figure 3.7: Penalty function used in ECMS based on PMP

penalty function. The ECMS derived from PMP consists of minimizing the Hamiltonian

function at each time step respecting the constraints on the battery SOC, battery power,

equivalence factor and other instantaneous constraints. The global optimization problem is

transformed into a local problem and the single calibration parameter is s0. Since the evo-

lution of the battery SOC depends on the value of s(t), it is possible to find an appropriate

initial value s0 such that the terminal constraint ((3.3)) is satisfied. In other words, there

is a value of s0 for which the solution is perfectly charge-sustaining and is defined as the

optimal equivalence factor for that particular driving cycle.
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3.3.3 Simulation Results

This subsection describes the simulation environment used to implement the ECMS de-

veloped using Pontryagin’s Minimum Principle (Section 3.3.2) and its performance com-

pared to the global optimal solution obtained from DP (Section 3.2). The pre-transmission

parallel HEV (Fig. 2.1) is modeled in the MATLAB/Simulink environment. The character-

istics of the vehicle used here are shown in Table 2.1. In order to compare the performance

of ECMS with the optimal global solution obtained from dynamic programming, back-

ward vehicle simulator (Section 2.2.2) is used. Based on the assumption that the vehicle

follows the desired velocity trajectory, the torque required at the wheels and subsequently

the torque/speed required from the components are calculated (Fig. 2.22). The simulator

primarily uses simplified quasi-static map based models for all the components as shown

in Table 2.2.

Calibration of parameter-s0

The ECMS derived from PMP has one tuning parameter s0 which is directly related

to the co-state λ of the PMP solution as shown in (3.39). The equivalence factor s has to

satisfy the dynamic equation (3.41), whose initial value s0 can be independently selected.

As shown in the numerous papers on ECMS [19, 20, 13, 17], there is a direct correlation

between s0 and the battery SOC usage during any driving cycle. The effect of the calibra-

tion parameter s0 is shown in Fig. 3.8. As seen from these plots, the value of s0 impacts the

convergence of SOC to SOCref at the end of the driving cycle. The optimal value of s0 is

selected based on the equivalent fuel consumed (FCeqv) defined in (3.18). The effects of

using different values of s0 are summarized in Table 3.4. The optimal value of s0 ensures
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convergence of SOC to the reference value SOCref while consuming the least amount of

fuel over the driving cycle.

Table 3.4: Effect of s0 for Manhattan driving cycle

Strategy s0 Normalized FCeqv
[-] [%]

ECMS based on PMP

2 108.3
2.5 107.1
3 106.5

3.5 104.1
4 105.8

4.5 106.3
5 106.8

DP - 100

Performance for Manhattan driving cycle

Table 3.5: Performance comparison with DP for Manhattan driving cycle

Strategy Normalized FCeqv
[%]

ECMS based on PMP(s∗0 = 3.3) 102.6
DP 100

The calibration parameter s0 of the control law is optimized for the Manhattan driving

cycle by selecting the value of s0 that corresponds to the minimum value of FCeqv. In

order to find the optimal s0 (s∗0) for each driving cycle, an iterative shooting method is used

[17]. The results of such a shooting method are shown in Table 3.5. The performance of
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Figure 3.11: Engine operating points (Manhattan)
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Figure 3.12: Electric motor operating points (Manhattan)
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ECMS based on PMP with the optimum value of s0 is evaluated against the global optimal

solution obtained from DP and is shown in Figures 3.9 - 3.12.

The ECMS strategy (with s∗0) consumes 3% more fuel than the global optimal solution

and uses the battery SOC similar to the DP solution throughout the driving cycle. Because

DP has the knowledge of the entire driving cycle, it charges the battery above the SOCref

and uses the battery whenever needed. ECMS, on the other hand, minimizes the Hamil-

tonian function at each instant and results first in battery discharge, and then recharge to

the reference value. The engine and electric motor torque resulting from the ECMS based

on PMP and DP are compared in Fig. 3.10 which shows that the torque split choices of

ECMS are very close to DP. The excessive change in engine torque is a characteristic of

the instantaneous minimization performed by ECMS. The engine and electric motor are

operated mainly in their most efficient regions similar to the DP solution as shown in Fig.

3.11 and Fig. 3.12. In general, ECMS operates the engine closer to its maximum torque

curve which indicates the use of the engine to recharge the battery in addition to propelling

the vehicle.

In order to evaluate the performance of the ECMS for different driving conditions, the

simulation results for WVU-Interstate, WVU-Suburban, UDDS truck and APTA driving

cycles are shown in the following subsections.

Performance for WVU-Interstate driving cycle

This section describes the performance of the ECMS based on PMP applied to the

WVU-Interstate driving cycle, which is representative of the highway driving conditions

experienced by heavy-duty HEVs. The performance of the ECMS based on PMP in com-

parison with the global optimal solution from DP is shown in Figures 3.13 - 3.16 and Table

3.6. The ECMS strategy consumes approximately 4% more than DP, evident from the huge
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Figure 3.15: Engine operating points (WVU-Interstate)
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Figure 3.16: Electric motor operating points (WVU-Interstate)
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Table 3.6: Performance comparison with DP for WVU-Interstate driving cycle

Strategy Normalized FCeqv
[%]

ECMS based on PMP (s∗0 = 2.82) 103.9
DP 100

difference in battery SOC usage. The strategy initially uses the battery more and because

of the penalty function and the equivalent fuel, the battery is recharged to the reference

value. The sudden change in engine torque during the higway portion of the driving cycle

as seen in Fig. 3.14 is the cause for several operating points in the lesser efficient regions

(Fig. 3.15). The electric machine operating points resulting from ECMS are close to DP.

Performance for WVU-Suburban driving cycle

Table 3.7: Performance comparison with DP for WVU-Suburban driving cycle

Strategy Normalized FCeqv
[%]

ECMS based on PMP (s∗0 = 4.56) 102.8
DP 100

The ECMS strategy is compared with DP in Figures 3.17 - 3.20 and Table 3.7 for the

WVU-suburban driving cycle, which represents suburban driving conditions experienced

by heavy-duty HEVs. ECMS uses the battery within a band very close to DP, but the

SOC profiles of the two strategies are significantly different in the first half of the driving

cycle. During the driving cycle, the engine switches on/off more frequently than DP which
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Figure 3.19: Engine operating points (WVU-Suburban)
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Figure 3.20: Electric motor operating points (WVU-Suburban)
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results in less efficient operation of the engine and the electric motor. This accounts for the

increased amount of fuel consumed (4.4%) for this particular driving cycle.

Performance for UDDS driving cycle

Table 3.8: Performance comparison with DP for UDDS driving cycle

Strategy Normalized FCeqv
[%]

ECMS based on PMP (s∗0 = 12.65) 106.5
DP 100

This driving cycle is representative of the urban driving conditions experienced by

heavy-duty HEVs, which is generally a combination of city and highway driving. For

example, a school bus would undergo similar driving patterns throughout its life time. The

performance of the ECMS in comparison with DP is shown in Figures 3.21 - 3.24 and Ta-

ble 3.8. The battery SOC used by ECMS is significantly different from the DP solution,

which is also evident from the engine and electric motor torques shown in Fig. 3.22. This

accounts for the difference in the amount of fuel consumed (6.5%) betweeen ECMS and

DP for this driving cycle.

Sensitivity of ECMS based on PMP with s0

Because the optimality properties of ECMS based on PMP depends on the optimal

value of s0, it is important to study the sensitivity of the results to s0.The effect of different

values of s0 is shown in Fig. 3.25. For all the driving cycles, there is a single value

of s0 that assures charge sustainability and consumes the least amount of fuel. As seen

from the plot, the ECMS based on PMP developed is sensitive to the variation of s0. This
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Figure 3.23: Engine operating points (UDDS)
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Figure 3.24: Electric motor operating points (UDDS)
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Figure 3.25: Effect of s0 on deviation of SOC

is significant because the optimality and stability properties for a wrong guess of s0 are

affects the performance of ECMS based on PMP.

3.4 Adaptive Equivalent Consumption Minimization Strategy

The optimality of ECMS (as derived from PMP) depends on the optimal value of s(t)

whose dynamics are shown in equation (3.41). The initial value (s0)), which depends on

the driving cycle, must be guessed to find the optimal from the extremal solutions ob-

tained from PMP. This is also true from the definition of the equivalence factor as the

fuel-equivalent cost of the battery usage, which can clearly change with driving conditions.

For example, if there is a long downhill driving segment, then the equivalence factor should
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be as low as possible to allow for maximum regenerative capability. Clearly the same value

of s0 would not be optimal during a highway driving segment.

The results of ECMS implementation corresponding to different values of s0 are shown

in Fig. 3.8 and Table 3.4. The optimality of ECMS derived from PMP depends on the

optimal value of s∗0 for the particular driving cycle. Because the vehicle is always subjected

to a multitude of conditions different from the calibrated driving cycles, the sensitivity of

the ECMS solution to the wrong guess of s0 is crucial. The sensitivity of ECMS to s0

as shown in Fig. 3.25 is an important concern for a real-time implementation of ECMS

because the optimal value of s0 can be found only if the entire driving cycle is known a-

priori. Hence a real-time implementation of ECMS with a given single equivalence factor

is clearly sub-optimal. In order to have an ECMS that is at least close to the optimal

solution, adaptation of the equivalence factor is crucial.

The version of adaptive ECMS (referred to as AECMS) proposed in [26] and used in

this research is based on the following facts:

• The optimal value of equivalence factor is the one that generates a charge-sustaining

solution;

• If the equivalence factor is smaller than the optimal value, the battery SOC tends to

decrease and tends to increase if the equivalence factor is too high;

• The interval over which charge-sustainability is required should ideally be the entire

trip, but this is impossible because its duration is not known a-priori; thus, it is as-

sumed that the SOC should return to a reference value at regular intervals, of duration

T ;
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• The charge-sustainability interval T should be long enough to allow battery charging

and discharging in the entire operating range.

Based on these facts, the adaptive strategy updates the value of the equivalence factor at the

end of each of these intervals (defined as adaptation intervals). The adaptation is based on

the measured SOC variation from the reference value at the end of the interval: if the SOC

has decreased, it means that that the value of s0 previously used was too low; if the SOC

has increased, s0 was too high. The adaptation law used is:

s0,k+1 =
(s0,k−1 + s0,k)

2
+Kp∆SOC(kT )

∆SOC(kT ) = SOCref − SOC(kT ); k = 1, 2, ... (3.44)

s0,1 = s0,0 = any initial guess ∈ [1, 5],

where Kp is the adaptation gain, T is the adaptation period, SOCref is the reference value

of SOC and s0,i is the initial value of equivalence factor at the ith interval, i.e., s0,i = s0(iT ).

Though there have been strategies [27, 28] in the literature that have used adaptation laws

based on SOC feedback, the strategy proposed here is conceptually different because the

adaptation is not done for each time step (Fig. 3.26). In fact, in a HEV, it is normal that the

SOC deviates from its reference value during the operation of the vehicle, but the charge

sustainability constraint requires that only the SOC at the end of driving cycle is equal to

the reference value. Since in real-world conditions, the duration of the driving cycle is

not known a-priori, the charge-sustainability condition is enforced on shorter time frames

(more specifically for every T seconds). In the basic formulation of the algorithm the SOC

difference between two generic operating points separated by T seconds is calculated. For

example, the SOC should be higher after a regenerative braking phase and will be lower

after a high acceleration transient. Hence the adaptation should be done only when the
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Figure 3.26: Adaptive ECMS system

vehicle is in a similar operating condition (for e.g. vehicle stop). The adaptation interval

is not strictly T seconds, but rather a stretchable time to allow for the vehicle to come to a

stop. This is a very reasonable assumption to make in the transit bus application for which

the strategy has been developed.

3.4.1 Simulation Results

This subsection describes the simulation environment used to implement the AECMS

proposed in the previous section and its performance is compared to the global optimal

solution obtained from DP (Section 3.2). The pre-transmission parallel HEV is modeled

using a backward vehicle simulator (Section 2.2.2) in the MATLAB/Simulink environment.

Based on the assumption that the vehicle follows the desired velocity trajectory, the torque

required at the wheels and subsequently the torque/speed required from the components

are calculated (Fig. 2.22). The simulator primarily uses simplified quasi-static map based

models for all the components as shown in Table 2.2. Because AECMS is developed for

real-time implementation, the performance of the strategy is evaluated over several repeti-

tions of driving cycles.

89



Performance for Manhattan driving cycle

Table 3.9: Performance comparison with DP for Manhattan driving cycle

Strategy Normalized FCeqv
[%]

AECMS 109.6
DP 100

AECMS is tested for eight repetitions of the Manhattan driving cycle and its perfor-

mance is evaluated against the global optimal solution from DP. The Manhattan driving cy-

cle is representative of the city/urban driving cycle with many start stop events. Similar to

the results shown in the previous sections, the deviation of battery SOC from its reference

and the equivalent fuel consumed (FCeqv) as defined in (3.18), are used as performance

metrics. Adaptive ECMS consumes 10% more fuel than DP over the eight repetitions of

the driving cycle. The performance of AECMS is compared with DP in Fig. 3.27, Fig.

3.28 and Table 3.9. Though the initial guess of equivalence factor (s0) is different from the

optimal value, the adaptation ensures the convergence of s0 and the battery SOC. As seen

from Fig. 3.28, the convergence of s0 to s∗0 = 3.3 guarantees the convergence of battery

SOC to its reference.

Performance for WVU-Interstate driving cycle

The performance of AECMS is compared with DP in Fig. 3.29, Fig. 3.30 and Table

3.10. The WVU-Interstate driving cycle is representative of the highway driving conditions

experience by heavy-duty HEVs. In order to evaluate the performance of adaptation, eight

repetitions of the driving cycle are considered. Teh strategy consumes 5% more fuel than
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Table 3.10: Performance comparison with DP for WVU-Interstate driving cycle

Strategy Normalized FCeqv
[%]

AECMS 105.3
DP 100

DP over the eight repetitions of the driving cycle while ∆SOC = 2% at the end of eight

repetitions. The adaptation ensures the convergence of s0 to its optimal value s∗0 = 2.82.

This convergence guarantees that the battery SOC is close to SOCref at the end of the

driving cycle.

Performance for WVU-Suburban driving cycle

Table 3.11: Performance comparison with DP for WVU-Suburban driving cycle

Strategy Normalized FCeqv
[%]

AECMS 108.9
DP 100

The WVU-Suburban is a suburban driving cycle which is representative of the suburban

driving conditions experience by heavy-duty HEVs like school buses, pick up trucks etc.,.

The ∆SOC and FCeqv for eight repetitions of WVU-suburban driving cycle are shown in

Fig. 3.31, Fig. 3.32 and Table 3.11. The adaptive strategy consumes 9% more fuel than DP

which is clearly due to less efficient operation of the engine. As seen from Fig. 3.32, the

adaptation ensures the convergence of s0 to its optimal value s∗0 = 4.56. This convergence
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guarantees that the battery SOC is as close to SOCref with ∆SOC = 2.2% at the end of

eight repetitions of the driving cycle.

Performance for UDDS driving cycle

Table 3.12: Performance comparison with DP for UDDS driving cycle

Strategy Normalized FCeqv
[%]

AECMS 108.8
DP 100

The performance of the adaptive strategy over eight repetitions of UDDS driving cycle

is compared with the global optimal solution from DP. Table 3.12 shows that the strategy

consumes 9% more fuel than DP with ∆SOC = 4%. This driving cycle represents realistic

driving conditions undergone by many semi-urban heavy-duty vehicles likes UPS pick up

trucks. The battery SOC profile, equivalent fuel consumed, variation of equivalence factor

and error in SOC is shown in Figures 3.33 - 3.34. Though the initial guess for equivalence

factor is not optimal, the adaptation ensures the convergence of s0 to its optimal value

s∗0 = 12.65.

3.5 Conclusion

The main contributions from the chapter are the design and development of different

energy management strategies such as DP, ECMS and AECMS for pre-transmission paral-

lel HEV. The energy management problem in a charge-sustaining HEV is formulated and

several optimal control techniques are used to solve the problem. Because DP solves the
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problem backwards and provides the global optimal solution based on the sufficient con-

ditions of optimality, it is a benchmark solution for the rest of the dissertation. The DP

algorithm is given the complete freedom of selecting the vehicle mode of operation and

the torque/power split between engine and electric machine. The mode selecting strategy

used by DP is analyzed and simple rules to select the most appropriate mode of operation

is formulated. Though ECMS has been studied in the literature for a long time, the equiv-

alence between ECMS and PMP is a relatively new result. The dissertation utilizes this

equivalence between ECMS and PMP to design an ECMS based on the necessary condi-

tions of optimality provided by PMP. The equivalence factor is written as a function of the

co-state variable and the strategy has been implemented with a single calibration parameter.

The reduction of the number of calibration parameters is significant because the amount of

calibration effort necessary to implement the strategy in a real-vehicle is decreased consid-

erably. The relationship between the equivalence factor and the battery SOC deviation from

the reference at the end of the driving cycle is utilized to develop an adaptive strategy. Both

the ECMS and AECMS proposed in this dissertation have been derived from results found

in the literature, while the application of the strategies in a backward vehicle simulator for

a pre-transmission parallel HEV is a contribution to the literature. The implementation of

DP algorithm available in the literature for a pre-transmission parallel HEV is an important

contribution. The extraction of mode selection strategy from DP results for this particular

vehicle architecture and the comparative analysis of the strategies are some of the other

contributions of the chapter. The energy management strategies developed in this chapter

will be implemented and compared in Chapter 5 using a forward vehicle simulator.
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Chapter 4: Stability and Optimality Framework

Though there have been several energy management strategies in the literature (Section

1.1), there has not been a stability framework within which stable and optimal energy man-

agement strategies can be designed. Such a framework is considered in this chapter which

facilitates the definition of stability in charge sustaining HEVs and utilizes the theoretical

results in nonlinear optimal regulation theory to analyze and design energy management

strategies. The main contribution here is in developing a useful mathematically rigorous

framework, and the goal is in developing an energy management strategy that can be eas-

ily implemented in a real-vehicle while assuring stability and optimality. It is shown that

by suitably casting the energy management problem into a nonlinear optimal regulation

problem and using an appropriate Lyapunov function candidate, it can be proved that the

state-feedback based optimal control law (with respect to minimum fuel consumption) pro-

duces a charge-sustaining behavior. The control Lyapunov function5 is also used in deriving

an analytical closed-form expression for the optimal control law.
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4.1 Stable and Optimal Energy Management Strategies

In order to develop the framework, stable and optimal energy management strategies

for charge-sustaining HEVs must be defined. For example, if the battery SOC at the end

of a driving cycle is either too high or too low from the reference SOC, the capability of

the strategy to either recharge the battery (say, using a regenerative braking event) or to

discharge the battery (say, to assist the engine during a high acceleration event) is severely

compromised. The most important and pertinent variable of interest in energy management

strategies is the deviation of battery SOC from the reference SOC. Two different battery

SOC error profiles (e = SOCref − SOC) are shown in Fig. 4.1. Because in a charge-

sustaining HEV all the energy used for propulsion effectively comes from the fuel, it is

crucial to have zero net change in battery SOC over the driving cycle. This is essential to

utilize the vehicle’s hybrid potential and to extend the life of the battery. In Figure 4.1,

the battery SOC error profile 1 shows a charge sustaining solution, in which the average

SOC over the driving cycle close to the reference value. The SOC error profile 2 shows

a charge depleting solution at the end of the driving cycle. Ideally in a charge sustaining

HEV, the average value of SOC throughout a given driving cycle is desired to be close to

the reference value.

The primary objective of the energy management strategy is to optimally split the

torque/power between the energy conversion devices minimizing the amount of fuel con-

sumed over the driving cycle, while respecting the constraints on the devices and on battery

SOC. An energy management strategy is optimal if it consumes the least amount of fuel

5A control-Lyapunov function [64] is a function V (x, u) that is continuous, positive-definite (V (x, u) >
0 ∀x 6= 0), proper (V (x)→∞ as |x| → ∞), and such that

∀x 6= 0, ∃u V̇ (x, u) < 0.
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ė(t) = fe(P
∗
batt)

P ∗
batt =

2Voc

cµ e− 4Req

c2µ2 e
2eref = 0

u∗(t)

e(t)

−

Preq = 0

Figure 4.2: Energy management strategy as a nonlinear optimal regulation problem

over a driving cycle in addition to satisfying the constraints. For what follows, the different

SOC error profiles (profiles [1] and [2]) are categorized as:

Definition 1: An energy management strategy for a charge-sustaining HEV is called

charge-sustaining if the system origin (e = 0) is asymptotically stable, while minimizing

the fuel consumed over the driving cycle

The asymptotic stability of the origin guarantees that the battery SOC is sufficiently

close to the reference SOC at the end of the driving cycle (t0−tf ) and thus ensures the non-

drifting property of the battery SOC. In order to evaluate energy management strategies,

the battery SOC is the primary state variable. Considering the error in battery SOC from

the reference value (e = SOCref − SOC) as the state variable, the state dynamics (4.1)

is defined. With origin (e = 0) being the only equilibrium point of the system, asymptotic

stability of the origin over an infinite interval guarantees that the average value of SOC over

the driving cycle is close to the reference value.
e = SOCref − SOC,

ė = α
Voc−
√

(Voc)2−4ReqPbatt

2ReqQmax
= fe(Pbatt),

Pbatt = 0⇒ ė = 0.

(4.1)
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4.2 Nonlinear Optimal Regulation for Pre-transmission Parallel HEV

This section deals with formulating a theorem that uses a control Lyapunov function to

develop a state-feedback based control law that minimizes the fuel consumption over an

infinite horizon and stabilizes the battery SOC in the absence of external disturbances. We

formulate the energy management problem with the vehicle operating in parallel mode with

neutral gear (Fig. 2.3) as a nonlinear optimal regulation problem as shown in Fig. 4.2 (see

List of Symbols for symbol definitions). The error in battery SOC (e = SOCref − SOC)

and battery power are considered as the state and control variables of the system. The

battery SOC error dynamics are defined ase = SOCref − SOC,

ė = α
Voc−
√

(Voc)2−4ReqPbatt

2ReqQmax
= fe(Pbatt),

(4.2)

where Pbatt is the control input of the system and ˙SOC(t) describes the battery SOC dy-

namics (see (2.22)).

4.2.1 Mathematical Preliminaries

The mathematical preliminaries for the scalar system (4.2) with single control input,

which are instrumental to the discussion, are presented in this sub section.

Consider an open set D ⊂ R such that e ∈ D, an arbitrary set U1 ⊂ R such that

Pbatt ∈ U1 and 0 ∈ D, 0 ∈ U1. In the HEV problem, the state domain and control domain

can be defined as{
e ∈ D = [SOCref − SOCmax, SOCref − SOCmin],

Pbatt ∈ U1 = [Pbatt,min, Pbatt,max].
(4.3)

Furthermore, let fe : U1 → R satisfy fe(0) = 0. Now consider the controlled system

ė = fe(Pbatt), e(0) = e0, t ≥ 0, (4.4)
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where the control input Pbatt(·) is restricted to the class of functions such that

Pbatt ∈ Ω1, t ≥ 0, (4.5)

where the control constraint set Ω1 ⊂ U1 is compact and 0 ∈ Ω1. The control input

constraint set Ω1 is defined by the maximum and minimum battery power depending on

the battery parameters at each instant. Let the optimal control law P ∗batt be a measurable

mapping P ∗batt : D → Ω1 satisfying P ∗batt(0) = 0. Now the system (4.2) with feedback

control Pbatt = P ∗batt(e), has the form

ė = fe(P
∗
batt(e)), e(0) = e0, t ≥ 0. (4.6)

In order to address the problem of characterizing feedback controllers that minimize a

performance functional, letH1 : R× R× R→ R, ṁf : R→ R and λ ∈ R such that,

H1(e, Pbatt, λ) , ṁf (Pbatt) + λ · fe(Pbatt), (4.7)

where H1(·, ·, ·) is the Hamiltonian function, λ is the co-state variable and ṁf (·) is the

instantaneous fuel consumption rate of the engine. Because the vehicle is operating in

parallel mode in neutral gear, the engine can be disconnected from the wheels and operated

along the maximum efficiency line. In this mode of operation, the engine fuel consumption

rate can be expressed as an affine function of the engine power (Pice) as in (2.14). Moreover,

because Pice is a function of the control input Pbatt as given by (2.3), ultimately the fuel

consumption rate ṁf (t) can be expressed as a direct function of the control input, Pbatt,

i.e.,

ṁf (t) = p0 + p1Pbatt(t), (4.8)

through coefficients p0, p1 expressed as follows:{
p0 = m0 +m1

(
Paccmech + 1

ηmot
Paccelec

)
,

p1 = −m1ηmot.
(4.9)
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where ηmot represents the efficiency of the electric machine and Paccmech, Paccelec represent

the mechanical and electrical accessory power. Finally, without loss of generality, a new

Hamiltonian function H̄1 is defined to take on zero-value when evaluated at the optimal

control, as {
H1(e, Pbatt, λ) = ṁf (Pbatt) + λfe(Pbatt),

H̄1(e, Pbatt, λ) , H1(e, Pbatt, λ)− p0,
(4.10)

where p0 is a parameter of the engine fuel consumption rate model defined in (4.9).

The result that follows gives sufficient conditions under which the origin e = 0 can be

locally asymptotically stabilized under nonlinear state feedback control, while also assuring

optimality of the fuel consumption over an infinite time horizon. Sufficient conditions for

stability and optimality are given in the case where no external inputs or disturbances enter

the system (4.4), which corresponds to Pgb = 0 ∀ t ≥ 0, with the system initial condition

different from zero, i.e. e0 6= 0. In the context of charge-sustaining HEVs, the considered

scenario (Fig. 4.2) corresponds to having the vehicle switched on without any tractive force

at the wheels (vehicle velocity = 0) and the battery SOC is not at the reference value, i.e.

SOCref 6= SOC(0). What follows is the first of a series of original results on stability and

optimality in the context of the energy management problem in HEVs, that builds upon the

main results appearing in [48]

Theorem 1. Consider the system (4.4) with performance functional

J(e0, Pbatt(·)) ,
∫ ∞

0

ṁf (Pbatt)dt. (4.11)

Then with the feedback control Pbatt = P ∗batt(e), where P ∗batt(e) satisfies{
P ∗batt(e) = 2Voc

cµ
e− 4Req

c2µ2
e2,

c = 2ReqQmaxp1
α

,
(4.12)

the solution e(t) = 0, t ≥ 0 of the closed-loop system (4.6) is locally asymptotically stable

and the optimal feedback control law P ∗batt(e(·)) minimizes J(e0, Pbatt(·))
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Proof: Considering the candidate Lyapunov function V (e) = 1
2
µe2; µ > 0, local

asymptotic stability of the origin e(t) = 0 and optimality of P ∗batt with respect to J(e0, Pbatt(·))

are proved using the following conditions given in Theorem 4.7.4 in the Appendix:

1. The Lyapunov function V (e) has a minimum value of 0 at the origin

V (0) = 0. (4.13)

2. The candidate Lyapunov function V (e) is a positive definite function of e

V (e) > 0 ∀ e ∈ D, e 6= 0. (4.14)

3. The optimal feedback control law is zero at the origin:

P ∗batt(0) = 0. (4.15)

4. Asymptotic stability of the origin is achieved when the optimal control law is applied,

i.e. V̇ (P ∗batt) < 0:

∂V
∂e
fe(P

∗
batt(e)) < 0 ∀e ∈ D, e 6= 0,

= µefe(P
∗
batt(e)) < 0,

⇒
{
fe(P

∗
batt(e) < 0⇒ P ∗batt(e) < 0 ∀e > 0,

fe(P
∗
batt(e) > 0⇒ P ∗batt(e) > 0 ∀e < 0.

(4.16)

5. The Hamiltonian function H̄1 takes on the minimum value of zero when the optimal

control law (Pbatt = P ∗batt(e)) is applied:{
H̄1(e, P ∗batt(e),

(
∂V
∂e

)T
) = 0,

⇒ ṁf (P
∗
batt(e)) = −∂V

∂e
fe(P

∗
batt(e)) ∀e ∈ D.

(4.17)

From (4.17), substituting the expression of fuel consumption (4.8), the optimal con-

trol law P ∗batt(e) from nonlinear state feedback is:{
P ∗batt = 2Voc

cµ
e− 4Req

c2µ2
e2,

c = 2ReqQmaxp1
α

.
(4.18)
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ζ̇(t) = −kP ∗
ice + kPreq

Pice∗ = k2µ2ζ
2

4γ2(kµζ+p̄1)

ζref = 0

u∗(t)

ζ(t)

−

Preq 6= 0

Figure 4.3: Energy management strategy as a nonlinear optimal regulation problem with
disturbance rejection

6. The Hamiltonian function H̄1 takes on a value greater than zero when a control law

(Pbatt) other than the optimal control law (P ∗batt) is applied:{
H̄1(e, Pbatt,

(
∂V
∂e

)T
) ≥ 0,

⇒ ṁf (e, Pbatt) ≥ ∂V
∂e
fe(Pbatt) ∀e ∈ D, u ∈ Ω1.

(4.19)

All the sufficient conditions are satisfied and the optimal control law (P ∗batt(e)) as a function

of the state variable is obtained.

4.3 Extension to Disturbance Rejection Case

This section deals with extending the theorem proved in Section 4.2 to include the

case of external disturbances. The theorem formulated in the last section assumes that the

vehicle is stopped and the requested power at the wheels is zero. The situation considered

now corresponds to the vehicle moving and the energy management strategy must find the

optimal torque/power split between the engine and electric motor. Thus we formulate the

energy management problem with the vehicle operating in parallel mode (Fig. 2.4) as a

nonlinear optimal regulation problem with disturbance rejection as shown in Fig. 4.3. The

battery SOE is used instead of battery SOC because it is more convenient in formulating

the theorem and its proof from a control design stand point. The battery SOE is defined

as the amount of battery energy stored, relative to the maximum energy capacity of the
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battery, which can be expressed as{
˙SOE = −ηbatt Pbatt

Emax
,

Emax = QmaxVoc,max,
(4.20)

where ηbatt is the constant efficiency of the battery, Voc,max is the constant maximum open-

circuit voltage of the battery and Emax is the constant maximum battery energy capacity.

The battery SOE can be calculated from SOC using a simple relationship,

SOE = SOC
VL

Voc,max
, (4.21)

where VL is the terminal voltage of the battery and SOC is the battery state of charge as

defined in (2.22). The power requested at the wheels (Preq) is considered as disturbance to

the system. The error in battery state of energy, SOE, (ζ = SOEref − SOE) and engine

power (Pice) are considered as the state and control variables of the system. Define the

battery SOE error (ζ) dynamics as a function of the control input (Pice) in the manner
ζ = SOEref − SOE,
ζ̇ = −kPice + kPreq,

k = ηbatt
Emaxηmot

,

(4.22)

where k is a constant dependent on the battery and electric motor parameters, ηmot is the

electric motor efficiency and Preq is the requested power at the gearbox (external distur-

bance to the system).

4.3.1 Mathematical Preliminaries

Consider an open set Z ⊂ R such that ζ ∈ Z , an arbitrary set U2 ⊂ R such that

Pice ∈ U2 and 0 ∈ Z, 0 ∈ U2. In this case, the state domain and control domain can be

defined as {
ζ ∈ Z = [SOEref − SOEmax, SOEref − SOEmin],

Pice ∈ U2 = [0, Pice,max].
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Also consider the disturbance input to the system as w ∈ W such that W ⊂ R. In the

parallel mode of operation, the power requested at the gearbox (Preq) as defined in (2.5) is

the disturbance input w = Preq. Now consider the controlled system{
ζ̇ = −kPice + kPreq, ζ(0) = ζ0, t ≥ 0,

z = ζ,
(4.23)

where z is the performance variable. The control input Pice(·) is restricted to the class of

admissible controls consisting of measurable functions Pice(·) such that

Pice ∈ Ω2, t ≥ 0, (4.24)

where the control constraint set Ω2 ⊂ U2 is compact and 0 ∈ Ω2. Let the optimal control

law P ∗ice be a measurable mapping P ∗ice : Z → Ω2 satisfying P ∗ice(0) = 0. Now the system

(4.23) with feedback control Pice = P ∗ice(ζ), has the form

ζ̇ = −kP ∗ice + kPreq, ζ(0) = ζ0, t ≥ 0. (4.25)

In order to address the problem of characterizing feedback controllers that minimize a

performance functional, let Γ(ζ) : Z → R,H2 : R×R×R→ R, ṁf : R→ R and λ ∈ R

such that,

H2(ζ, Pice, λ) , ṁf (Pice) + Γ(ζ) + λ · (−kPice), (4.26)

where H2(·, ·, ·) is the Hamiltonian function, Γ(ζ) is a positive definite function of ζ , λ is

the co-state variable and ṁf (·) is the instantaneous fuel consumption rate of the engine.

Because the vehicle is operating in parallel mode, the engine speed (ωice) is directly deter-

mined from the gearbox speed (ωgb). The fuel consumption rate model (2.9) can be written

as

ṁf (t) =
1

QLHV

[e0(ωgb(t)) + e1(ωgb(t))Pice(t)]. (4.27)
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Under the assumption that the slope and intercept of the Willans line model are independent

of the engine speed, the fuel consumption rate can be expressed as an affine function of the

control input, i.e., engine power Pice in the manner

ṁf (t) = p2 + p3Pice(t), (4.28)

where p2, p3 are known constants obtained from fitting the fuel consumption rate map with

the engine power Pice. Finally, without loss of generality, a new Hamiltonian function H̄2

is defined to take on zero-value when evaluated at the optimal control, as{
H2(ζ, Pice, λ) = ṁf (Pice) + Γ(ζ) + λ · (−kPice),
H̄2(ζ, Pice, λ) , H2(ζ, Pice, λ)− p2,

(4.29)

where p2 is a parameter of the engine fuel consumption rate model as given in (4.28).

The result that follows gives sufficient conditions under which the origin ζ = 0 can

be locally asymptotically stabilized under nonlinear state feedback control, while assuring

optimality with respect to the fuel consumed over an infinite time horizon in the presence

of external disturbances. The feedback controller guarantees stability, minimizes an aux-

iliary performance functional, and guarantees that the input-output map of the closed-loop

system is dissipative, nonexpansive, and passive [49] for bounded input disturbances. In

the context of charge-sustaining HEVs, the considered scenario corresponds to the vehicle

driven for a driving cycle considering the power request at the wheels as an external dis-

turbance to the system (Fig. 4.3). What follows is an extension of the theorem proposed in

Section 4.2 in the presence of external disturbances based on the results given in [49].

Theorem 2. Consider the system (4.23) with performance functional

J(ζ0, Pice(·)) ,
∫ ∞

0

ṁf (Pice)dt. (4.30)
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Then with the feedback control Pice = P ∗ice(ζ), where P ∗ice satisfies

P ∗ice =
k2µ2ζ2

4γ2 (kµζ + p3)
, (4.31)

the solution ζ(t) = 0, t ≥ 0 of the closed-loop system (4.25) is locally asymptotically stable

and the optimal feedback control law P ∗ice(ζ(·)) minimizes J(ζ0, Pice(·)).

Proof: Considering the candidate Lyapunov function V (ζ) = 1
2
µζ2, µ > 0 and func-

tions Γ(ζ) = 1
4γ2

(
∂V
∂ζ

)2

k2, and r(ζ, Preq) = γ2P 2
req − ζ2,γ, k > 0, the local asymptotic

stability of the origin ζ(t) = 0 and optimality of P ∗ice with respect to J(ζ0, Pice(·)) are

proved using the following conditions taken from Theorem 4.7.4 and from the book [49]:

1. The Lyapunov function V (ζ) has a minimum value of 0 at the origin

V (0) = 0. (4.32)

2. The candidate Lyapunov function V (ζ) is a positive definite function. In fact, V (ζ)

is a quadratic function of ζ , and

V (ζ) > 0 ∀ ζ ∈ Z, ζ 6= 0. (4.33)

3. The optimal feedback control law is zero at the origin:

P ∗ice(0) = 0. (4.34)

4. Asymptotic stability of the origin is achieved when the optimal control law is applied,

i.e. V̇ (P ∗ice) < 0: 
∂V
∂ζ

(−kP ∗ice(ζ)) < 0 ∀ζ ∈ Z, ζ 6= 0,

⇒
{
P ∗ice(e) < 0 ∀e < 0,

P ∗ice(e) > 0 ∀e > 0.

(4.35)
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This analysis provides conditions on the sign of state feedback control law P ∗ice(ζ)

and because the engine power cannot be negative, the signs of the optimal feedback

law can be expressed as: {
P ∗ice(ζ) = 0, ∀ e ≤ 0,

P ∗ice(ζ) > 0, ∀ e > 0.
(4.36)

5. The Hamiltonian function H̄2 takes on the minimum value of zero when the optimal

control law (Pice = P ∗ice(ζ)) is applied:{
H̄2(ζ, P ∗ice,

(
∂V
∂ζ

)
) = 0,

p3P
∗
ice + 1

4γ2
k2µ2ζ2 − kµζP ∗ice = 0 ∀ζ ∈ Z.

(4.37)

The optimal nonlinear state feedback control law (P ∗ice) can now be expressed as{
P ∗ice = k2µ2ζ2

4γ2(kµζ+p3)
,

k = ηbatt
Emaxηmot

> 0, γ > 0, µ > 0.
(4.38)

6. The Hamiltonian function H̄2 takes on a value greater than zero when a control law

(Pice) other than the optimal control law (P ∗ice) is applied:

H̄(ζ, Pice,

(
∂V

∂e

)
) ≥ 0. (4.39)

7. In order to prove passivity with respect to the disturbance input Preq(t), the following

condition must be satisfied:
∂V
∂ζ
kPreq ≤ r(ζ, Preq) + ṁf (P

∗
ice(ζ)) + Γ(ζ),

⇒ kµζPreq ≤ γ2P 2
req + ζ2

[
k2µ2

4γ2
− 1
]

+ p3.
(4.40)

If there exists a constant γ such that γ ≥ 3k, then a minimum bound for µ can be

calculated as
ζ2

36
µ2 − (kζPreq)µ+ 9k2P 2

req − ζ2 + p3 ≥ 0. (4.41)

The passivity condition (4.40) is satisfied only if we can find a suitable γ and µ.

All the conditions are satisfied and the optimal control law (P ∗ice(ζ)) as a function of the

state variable is obtained.
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4.4 Optimal and Stabilizing Control law

The control law (Pice = P ∗ice(ζ)) developed using the previous results can be expressed

as

P ∗ice =
k2µ2ζ2

4γ2 (kµζ + p3)
, (4.42)

where ζ(t) is the error in battery SOE, k, γ, p3 > 0 are known constants, and µ is the only

calibration parameter of the control law. These parameters and constants depend on the

powertrain architecture and the components; for example,

1. k = ηbatt
Emaxηmot

is a constant depending on the battery capacity, efficiency and electric

motor efficiency and the size/type of battery and electric machine;

2. γ = 3k is a constant expressed as a function of k obtained from the passivity condi-

tion in (4.40);

3. p3 is a Willans line coefficient of the engine as in (4.28) which depends on the size

and type of the engine used; and,

4. µ is the calibration parameter that must be tuned to achieve the best performance.

According to the previous results, the control law P ∗ice locally asymptotically stabilizes

the origin e = 0. This implies that the battery SOE asymptotically converges to the SOE

reference value. Because the battery SOC is linearly related to the battery SOE (4.21), the

control law results in asymptotic convergence of the battery SOC to its reference value. In

a charge-sustaining HEV, the battery SOC reference value is ideally the initial value with

which the trip began. In addition to stabilizing the battery SOC, the control law minimizes

the amount of fuel consumed over the infinite time horizon. That is, it is also optimal with
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respect to the performance functional J(ζ0, Pice(·)),

J(ζ0, P
∗
ice(ζ)) = min

Pice

J(ζ0, Pice(ζ)). (4.43)

Though the theorem guarantees that the control law minimizes the fuel consumed over

an infinite time horizon, the energy management problem in a HEV minimizes the amount

of fuel consumed over a finite length (see (3.1) in Section 3.1). The presence of calibration

parameter µ in the control law (4.42) signifies the application of a theoretically developed

control law in a real-world application. Thus, for a given driving cycle, the sufficient con-

ditions of asymptotic stability of battery SOE and optimality with respect to fuel consumed

are assured only with the optimal µ (µ∗). The optimal value of µ for a given driving cycle

is obtained by studying the behavior of battery SOC and the fuel consumed over the driv-

ing cycle. The calibration of µ and its performance in comparison with the global optimal

solution are described in Section 4.5.

4.4.1 Analysis over a simple driving cycle

In order to understand the effect of calibration parameter µ, a simple synthetic driving

cycle as shown in Fig. 4.4 is used. The driving cycle consists of three events namely accel-

eration, cruise and deceleration. The acceleration event lasts for 2 minutes, the deceleration

event for 4 minutes and the vehicle is at a constant speed of 20 m/s for about 9 minutes.

The optimizing and stabilizing control law (4.42) is used to find the optimal power split

between the engine and the battery using different values of µ. As µ is increased from very

low to very high values, the optimal engine power P ∗ice increases and the power requested

is supplied primarily by the engine as seen in figures 4.5 and 4.6. The effect of increasing

µ on battery SOC and current is clearly seen in figures 4.9 and 4.10. As seen in Fig. 4.10,

the battery is used more as the value of µ decreases.
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Figure 4.4: Synthetic driving cycle

The performance of the control law for different values of µ is evaluated using the

metrics defined as,

• Deviation in SOC: Because in a charge-sustaining HEV, the net energy used from

the battery is zero, the average battery SOC( ¯SOC) over a driving cycle is desired

to be close to the reference value (SOCref ). The amount of deviation in the average

battery SOC from the reference value over a driving cycle of length T is defined as,
¯SOC = 1

T

∫ tf
t0
SOC(t)dt,

DEV =
¯SOC−SOCref

SOCref
∗ 100%.

(4.44)
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Figure 4.11: Effect of µ on deviation of SOC
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• Norm in SOC error: The deviation of the battery SOC at each instant over the driving

cycle is characterized as L1,L2,L∞ norm in battery SOC error.

error =
SOC−SOCref

SOCref
∗ 100%,

‖error‖1 = |error(1)|+ |error(2)|+ · · ·+ |error(T )| ,

‖error‖2 =
√
|error(1)|2 + |error(2)|2 + · · ·+ |error(T )|2,

‖error‖∞ = maxi |error(i)| , i = 1, 2, 3, · · · , T.

(4.45)

The deviation in battery SOC quantifies the performance of the control law in achieving

charge sustainability and the norm in SOC error quantifies the usage of the battery SOC

over the entire operating range. The effect of the calibration parameter µ on these perfor-

mance metrics is shown in figures 4.11 and 4.12. It can be seen that the deviation in battery

SOC and the norm in SOC error decreases and reaches a steady state value as µ increases.

4.5 Simulation Results

This section describes the simulation environment used to implement the optimal con-

trol law (abbreviated as OCL) developed using Theorem 2 from Section 4.3. The per-

formance of the control law is compared with the global optimal solution obtained from

DP (Section 3.2). The pre-transmission parallel HEV (Fig. 2.1) is modeled in the MAT-

LAB/Simulink environment. The characteristics of the vehicle used here are shown in

Table 2.1. In order to compare the performance of the proposed OCL with DP, a back-

ward vehicle simulator (Section 2.2.2) is used. Based on the assumption that the vehicle

follows the desired velocity trajectory, the torque required at the wheels and the compo-

nents are calculated (Fig. 2.22). The simulator primarily uses simplified quasi-static map

based models for all the components as shown given in Table 2.2. Although Theorem 2

proved in Section 4.3 assumes an infinite time horizon, the developed OCL has been im-

plemented over a driving cycle of finite length. The implementation of OCL as a solution
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of the energy management problem involves calibrating the parameter µ, and comparing

the performance of OCL with DP for several driving cycles. The driving cycles (Manhat-

tan, WVU-interstate, WVU-suburban, UDDS) used here are representative of the the city,

urban and highway driving conditions experienced by heavy-duty HEVs.

4.5.1 Calibration of parameter-µ

Table 4.1: Effect of µ for Manhattan driving cycle

Strategy µ Normalized FCeqv
[kg] [%]

Optimal Control Law (OCL)

10 106.3
50 104.2
100 103.6
200 103.5

DP - 100

The optimal control law P ∗ice(ζ) shown in (4.42) has a tuning parameter µ that must

be calibrated to ensure convergence of battery SOC to SOCref at the end of the driving

cycle. Thus the optimal and stable energy management strategy is assured only with the

optimal µ i.e., µ = µ∗, for each driving cycle. The effect of the calibration parameter µ

on the battery SOC profile for Manhattan driving cycle is shown in Fig. 4.13. It is evident

that µ affects the convergence of SOC to SOCref at the end of the driving cycle. The

control law depletes the battery with a smaller value for µ. As µ is increased, the battery

SOC profile becomes increasingly similar to the DP solution. The optimal value of µ is

selected based on the equivalent fuel consumed (FCeqv) (see (3.18 for definition). The

effect of using different values of µ on FCeqv is summarized in Table 4.1. In order to

find the optimal µ (µ∗) for each driving cycle, an iterative shooting method is used [17].
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This off-line optimization method must be performed for each driving cycle to obtain its

corresponding µ∗. The effect of increasing the value of µ on the deviation in battery SOC

can be seen in Fig. 4.14. After a particular value of µ, the deviation in battery SOC from

the reference value saturates to a value close to zero. The variability in the battery SOC

over the driving cycle is characterized by L1,L2,L∞ norm in battery SOC error. All the

three norms in battery SOC error settle to a steady state value as µ is increased.

4.5.2 Performance for Manhattan driving cycle

Table 4.2: Performance comparison with DP for Manhattan driving cycle

Strategy Normalized FCeqv
[%]

OCL (µ∗ = 200 kg) 103.5
DP 100

The performance of OCL with µ∗ = 200 kg is compared with DP in Figures 4.16 -

4.19 and Table 4.2. As shown in Fig. 4.16, the battery SOC profile resulting from OCL is

close to that of DP. Throughout the driving cycle, DP decides to use the engine at the most

efficient region of operation and recharges the battery whenever possible. On the other

hand, OCL calculates the engine power according to the nonlinear function of the error in

SOC (4.42) which results in wider range of operating points as shown in Fig. 4.18. The

electric motor operating points decided by both DP and OCL as shown in Fig. 4.19.

4.5.3 Performance for WVU-Interstate driving cycle

The WVU-Interstate driving cycle is representative of the highway driving conditions

experienced by heavy-duty HEVs. The OCL developed in Section 4.3 is compared with the
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Figure 4.19: Electric motor operating points (Manhattan)
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Figure 4.22: Engine operating points (WVU-Interstate)
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Table 4.3: Performance comparison with DP for WVU-Interstate driving cycle

Strategy Normalized FCeqv
[%]

OCL (µ∗ = 200 kg) 103.7
DP 100

DP solution in Figures 4.20 - 4.23 and Table 4.3. Although the battery SOC profile resulting

from OCL and DP are similar in shape, the amount of charging and discharging is different.

Because of the complete a-priori knowledge of the driving cycle, DP uses the battery by

operating the engine at its most efficient regions (Fig. 4.22). On the other hand, the OCL

depletes the battery more during the initial phase of the driving cycle and then recharges

the battery to ensure convergence with SOCref (Fig. 4.20). The engine operating points

resulting from OCL are not always the most efficient because of the sudden mode change

from parallel to electric, evident from Fig. 4.21. The battery SOC profile and engine and

electric motor operating points resulting from OCL account for the excess amount of fuel

consumed (3% more than DP).

4.5.4 Performance for WVU-Suburban driving cycle

Table 4.4: Performance comparison with DP for WVU-Suburban driving cycle

Strategy Normalized FCeqv
[%]

OCL (µ∗ = 200 kg) 104.4
DP 100
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Figure 4.26: Engine operating points (WVU-Suburban)
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Figure 4.27: Electric motor operating points (WVU-Suburban)
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Similar to the Manhattan driving cycle, the WVU-Suburban driving cycle is an urban

heavy-duty driving cycle. The performance of OCL is compared with DP in Figures 4.24

- 4.27 and Table 4.4. The torque split decision taken by OCL coincides with the optimal

solution from DP during selected sections of the driving cycle as seen in Fig. 4.24. More-

over, the OCL switches off the engine whenever there is small braking event, evident from

the engine and electric motor torque plots shown in Fig. 4.25. This kind of engine and

electric motor operation can be also seen from the operating points shown in Figures 4.26

and 4.27. The difference in the amount of fuel consumed between OCL and DP (4.4%) is

a direct result of the issues mentioned here.

4.5.5 Performance of Optimal Control Law for Combined Driving
Cycle

In order to check the effectiveness of the optimal control law, the strategy is imple-

mented in the pre-transmission parallel HEV over a driving cycle that is a combination of

urban and highway driving cycles. The driving cycle consists of the manhattan driving

cycle, wvu-interstate and wvu-suburban driving cycle. As seen from Fig. 4.28, the opti-

mal control law maintains the battery SOC close to the reference throughout the driving

cycle. The torque split between the engine and electric motor is shown in Fig. 4.29 and the

operating points are shown in figures 4.30 and 4.31.

4.5.6 Sensitivity of optimal control law with respect to µ

Because the optimality and stability properties of the control law developed in Section

4.3 depends on the optimal value of µ, it is important to study the sensitivity of the results

with respect to µ. In order to generalize the effects of µ, the deviation in SOC (4.44) is

calculated for a wide range of µ for different representative driving cycles. The effect of
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Figure 4.30: Engine operating points (Manh-WVUinter-WVUsub)
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Figure 4.31: Electric motor operating points (Manh-WVUinter-WVUsub)
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Figure 4.34: Effect of µ on L2 norm of error for several driving cycles
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Figure 4.35: Effect of µ on L∞ norm of error for several driving cycles
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different values of µ is shown in figures 4.32,4.33,4.34 and 4.35. For all the driving cycles,

there is a single value of µ that assures charge sustainability (∆SOC = 0) and consumes

the least amount of fuel. As seen from the plot, the optimal control law developed is

relatively insensitive to the variation of µ. This is significant because the optimality and

stability properties for a wrong guess of µ are still close to the performance of µ∗.

4.6 Conclusion

The main contribution of this chapter is a new stability and optimality framework for

designing analytical energy management strategy. The proposed strategy is designed and

developed for a charge sustaining pre-transmission parallel HEV, but the methodology is

scalable to different vehicle architectures and component sizes. The chapter proves a se-

ries of theorems on solving the problem as a nonlinear optimal regulation problem with

and without disturbance rejection. The theorems are instrumental in developing a closed-

form expression for the nonlinear state feedback based optimal control law. The resulting

novel control law is proved optimal with respect to the fuel consumed over an infinite time

horizon and guarantees local asymptotic stability of the origin. Although the optimality

of the control law and asymptotic stability property of the origin are proved for an infinite

time horizon, the results show the performance of the optimal control law when applied

to a finite time driving cycle. The optimality ensures that minimum fuel is consumed and

stability guarantees that battery SOC at the end of the driving cycle converges to SOCref .

The optimal control law is implemented in a simplified backward simulator and its per-

formance is compared with the global optimal solution from DP for several representative

driving cycles such as Manhattan, WVU-Interstate, WVU-suburban and UDDS. The con-

trol law developed is a nonlinear state feedback based control law which depends on the
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vehicle architecture and parameters of the components (engine, electric machine and bat-

tery). The calibration parameter (µ) must be tuned for each driving cycle using iterative

shooting methods to guarantee optimality and stability. The strategy with the optimal µ∗

for each driving cycle consumes within 4.5% of the fuel consumed by DP and ensures that

the SOC variation at the end of the driving cycle is less than 0.06%. Although the optimal-

ity and stability properties of the control law depend on the optimal value of the calibration

parameter, because the strategy is reatively insensitive to the parameter, the closed-form

control law developed is a signifcant contribution to the HEV energy management litera-

ture. The optimal control law shown here can also be easily implemented in a real vehicle

because of its simplicity, and this is emphasized by implementing the strategy in a forward

vehicle simulator (see Chapter 5).

4.7 Appendix

This section of the chapter describes the theoretical results available in the nonlinear

optimal regulation theory that have been used in Sections 4.2 and 4.3. The theorems shown

here are taken from the book [49].

4.7.1 Nonlinear Optimal Regulation

Let D ⊂ Rn be an open set and let U ⊂ Rm be an arbitrary set, where 0 ∈ D and 0 ∈ U.

Furthermore, let f : D×U→ Rn satisfy f(0, 0) = 0. Now consider the controlled system

ẋ(t) = f(x(t), u(t)), x(0) = x0, t ≥ 0. (4.46)

The control u(·) in (4.46) is restricted to the class of admissible controls consisting of

measurable functions u(·) such that

u(t) ∈ Ω, t ≥ 0, (4.47)
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where the control constraint set Ω ⊂ U is compact and 0 ∈ Ω. A measurable mapping

φ : D → Ω satisfying φ(0) = 0 is called a control law. Given a control law φ(·) and a

feedback control u(t) = φ(x(t)), the closed-loop system has the form

ẋ(t) = f(x(t), φ(x(t))), x(0) = x0, t ≥ 0. (4.48)

In order to address the problem of characterizing feedback controllers that minimize a

performance functional, let L : Rn × Rm × Rn → R, L : Rn × Rm → R and p ∈ Rn such

that,

H(x(t), u(t), p) , L(x(t), u(t)) + pTf(x(t), u(t)). (4.49)

Furthermore, define the set of asymptotically stabilizing controllers S(x0) for each initial

condition x0 ∈ D, that is, S(x0) , u(·) : u(·) is admissible and x(·) given by (4.46) satisfies

x(t)→ 0 as t→∞.

Theorem 4.7.2. [48] Consider the controlled system (4.46) with performance functional

J(x0, u(·)) ,
∞∫

0

L(x(t), u(t))dt. (4.50)

Assume that there exists a C1 function V : D→ R and a control law φ : D→ Ω such that

1.

V (0) = 0, (4.51)

2.

V (x(t)) > 0, x(t) ∈ D, x(t) 6= 0, (4.52)

3.

φ(0) = 0, (4.53)
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4.
∂V

∂x
f(x(t), φ(x(t))) < 0, x(t) ∈ D, x(t) 6= 0, (4.54)

5.

H(x(t), φ(x(t)),

(
∂V

∂x

)T
) = 0, x(t) ∈ D, (4.55)

6.

H(x(t), u(t),

(
∂V

∂x
)T
)
≥ 0, x ∈ D, u ∈ Ω. (4.56)

Then with the feedback control u(·) = φ(x(·)), the solution x(t) = 0, t ≥ 0, of the closed-

loop system (4.48) is locally asymptotically stable, and

J(x0, φ(x(·))) = V (x0). (4.57)

Furthermore, the feedback control u(·) = φ(x(·)) minimizes J(x0, u(·)) in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)). (4.58)

4.7.3 Nonlinear Optimal Regulation with Disturbance Rejection

Let D ⊂ Rn be an open set and let U ⊂ Rm be an arbitrary set, where 0 ∈ D and 0 ∈ U.

Let W ⊂ Rd be a subset of measurable functions. Furthermore, let f : D×U→ Rn satisfy

f(0, 0) = 0. Now consider the controlled system

ẋ(t) = f(x(t), u(t)) + J1(x(t)) · w(t), x(0) = x0, t ≥ 0. (4.59)

The control u(·) in (4.59) is restricted to the class of admissible controls consisting of

measurable functions u(·) such that

u(t) ∈ Ω, t ≥ 0, (4.60)

150



where the control constraint set Ω ⊂ U is compact and 0 ∈ Ω. A measurable mapping

φ : D → Ω satisfying φ(0) = 0 is called a control law. Given a control law φ(·) and a

feedback control u(t) = φ(x(t)), the closed-loop system has the form

ẋ(t) = f(x(t), φ(x(t))) + J1(x(t)) · w(t), x(0) = x0, t ≥ 0. (4.61)

In order to address the problem of characterizing feedback controllers that minimize a

performance functional, let L : Rn × Rm × Rn → R, L : Rn × Rm → R and p ∈ Rn such

that,

H(x(t), u(t), p) , L(x(t), u(t)) + pTf(x(t), u(t)) + Γ(x(t), u(t)). (4.62)

Furthermore, define the set of asymptotically stabilizing controllers S(x0) for each initial

condition x0 ∈ D, that is, S(x0) , u(·) : u(·) is admissible and x(·) given by (4.59) satisfies

x(t)→ 0 as t→∞.

Theorem 4.7.4. [48] Consider the controlled system (4.59) with performance functional

J(x0, u(·)) ,
∞∫

0

L(x(t), u(t))dt. (4.63)

Assume that there exists a C1 function V : D→ R and a control law φ : D→ Ω such that

1.

V (0) = 0, (4.64)

2.

V (x(t)) > 0, x(t) ∈ D, x(t) 6= 0, (4.65)

3.

φ(0) = 0, (4.66)

151



4.
∂V

∂x
f(x(t), φ(x(t))) < 0, x(t) ∈ D, x(t) 6= 0, (4.67)

5.

∂V

∂x
· J1(x(t)) · w(t) ≤ r(x,w) + L(x, φ(x)) + Γ(x, φ(x)), x(t) ∈ D, w(t) ∈ W,

(4.68)

6.

H(x(t), φ(x(t)),

(
∂V

∂x

)T
) = 0, x(t) ∈ D, (4.69)

7.

H(x(t), u(t),

(
∂V

∂x
)T
)
≥ 0, x ∈ D, u ∈ Ω. (4.70)

Then with the feedback control u(·) = φ(x(·)), the solution x(t) = 0, t ≥ 0, of the closed-

loop system (4.61) is locally asymptotically stable, and

J(x0, φ(x(·))) = V (x0). (4.71)

Furthermore, the feedback control u(·) = φ(x(·)) minimizes J(x0, u(·)) in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)). (4.72)

Furthermore, the solution x(t), t ≥ 0 satisfies the dissipativity constraint

T∫
0

r(x(t), w(t))dt+ V (x0), T ≥ 0, w(·) ∈ W. (4.73)
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Chapter 5: Comparative Analysis of Energy Management Strategies

This chapter is devoted to the comparison and evaluation of the different energy man-

agement strategies developed in the previous chapters. The energy management strategies

developed in the dissertation can be categorized based on the feasibility of implementation

in a real vehicle. Thus they can be classified into realizable and non-realizable strategies.

• Non-realizable Strategy: A non-realizable strategy requires complete a-priori knowl-

edge of the driving cycle in order to solve the energy management problem and there-

fore cannot be implemented in a real vehicle. DP, ECMS (with optimal s0) and OCL

(with optimal µ) are in this category.

DP developed in Section 3.2 solves the energy management problem backwards as-

suming complete knowledge of the driving cycle and cannot be implemented in a

real vehicle.

ECMS strategy developed in Section 3.3 has a calibration parameter s∗0 that must be

tuned for every driving cycle in order to ensure a charge sustainable solution. Clearly

this strategy cannot be implemented in a real vehicle, because for each driving cycle,

the optimal s∗0 must be calculated.
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The OCL strategy developed in Section 4.3 has a single calibration parameter µ that

must be tuned for every driving cycle in order to assure optimality and stability prop-

erties. Such a strategy cannot be realized in a real vehicle because calibration requires

the complete knowledge of the driving cycle.

• Realizable Strategy: A realizable strategy does not require knowledge of the driving

cycle to solve the energy management problem and can be implemented in a real

vehicle. Adaptive ECMS (referred to as AECMS) and an implementable version of

OCL referred to as real-time OCL are in this category.

The adaptive ECMS (AECMS) developed in Section 3.4 is a version of ECMS where

the equivalence factor s0 is adapted based on the deviation of battery SOC from its

reference. The adaptation law ensures convergence of battery SOC to its reference

as the driving cycle is repeated for a long duration. This strategy does not require

a-priori knowledge of the driving cycle and therefore can be implemented in a real

vehicle.

Because the OCL strategy developed in Section 4.3 is relatively insensitive to µ∗ and

a single value of µ can be used for any driving cycle, the strategy (referred to here

as real-time OCL) can be implemented in a real vehicle. The real-time OCL strategy

does not require knowledge of the driving cycle and therefore belongs to the category

of realizable strategies.

The realizability of the different strategies proposed and developed in the dissertation are

summarized in Table 5.1. Unlike the simulation results shown in Chapters 3 and 4, where

the strategies were implemented using a backward vehicle simulator, this chapter deals
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Table 5.1: Realizability of energy management strategies

Strategy Realizable
DP NO

ECMS (with s∗0) NO
OCL (with µ∗) NO

AECMS YES
Real-time OCL YES

with the implementation using a forward vehicle simulator. Because DP cannot be imple-

mented in a forward vehicle simulator, the results shown in Section 3.2 are used here as the

benchmark solution. In order to compare and evaluate the performance of the strategies,

several performance metrics such as calibration effort, SOC variation and equivalent fuel

consumed are defined as follows:

1. Calibration effort: The amount of calibration necessary in assuring that the energy

management strategy produces a charge sustaining solution while minimizing the

amount of fuel over the length of the driving cycle;

2. SOC variation and equivalent fuel consumed: The deviation of battery SOC from its

reference throughout the driving cycle and the amount of fuel consumed corrected

for the net battery SOC change at the end of the driving cycle.

The comparative study is performed over different driving cycles such as Manhattan, WVU-

interstate, WVU-suburban and UDDS. The real world driving conditions experienced by

vehicles are simulated by evaluating the realizable strategies over combined driving cycles,

also used to evaluate realizable strategies.
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5.1 Non-realizable Energy Management Strategies

This section of the chapter describes the calibration effort, battery SOC variation and

equivalent fuel consumed for the non-realizable energy management strategies such as DP,

ECMS and OCL.

5.1.1 Calibration Effort for ECMS

Table 5.2: Effect of s0 for Manhattan driving cycle

Strategy s0 Normalized FCeqv
[-] [%]

ECMS

2 108.3
2.5 107.1
3 106.5

3.5 104.1
4 105.8

4.5 106.3
5 106.8

DP - 100

The ECMS derived from PMP has one tuning parameter s0 which is directly related

to the co-state λ of the PMP solution as discussed in Chapter 3 (see (3.39)). The equiv-

alence factor s has to satisfy the dynamic equation (3.41), whose initial value s0 can be

independently selected. As shown in the numerous papers on ECMS [19, 20, 13, 17], there

is a direct correlation between s0 and the battery SOC usage during any driving cycle. The

effect of the calibration parameter s0 is shown in Fig. 5.1.

As seen from these plots, the value of s0 impacts the convergence of SOC to SOCref

at the end of the driving cycle. The optimal value of s0 is selected based on the equivalent

fuel consumed (FCeqv) defined in (3.18). The effects of using different values of s0 are
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summarized in Table 5.2 for the Manhattan driving cycle. The optimal value of s0 ensures

convergence of SOC to the reference value SOCref while consuming the least amount of

fuel over the driving cycle. Because the optimality properties of ECMS based on PMP

depends on the optimal value of s0, it is important to study the sensitivity of the results to

s0.For all the driving cycles, there is a single value of s0 that assures charge sustainability

and consumes the least amount of fuel [14]. As seen from the Figures 5.1 and Table 5.2,

ECMS is highly sensitive to the variation of s0 and the value of s0 directly determines the

optimality and charge sustainability of the ECMS solution.

5.1.2 Calibration Effort for OCL

Table 5.3: Effect of µ for Manhattan driving cycle

Strategy µ Normalized FCeqv
[kg] [%]

OCL

10 106.3
50 104.2

100 103.6
200 103.5

DP - 100

The optimal control law P ∗ice(ζ) developed in Chapter 4 (see (4.42)) has a tuning pa-

rameter µ that must be calibrated to ensure convergence of battery SOC to SOCref . Thus

the optimal and stable energy management strategy is assured only with the optimal µ i.e.,

µ = µ∗, for each driving cycle. The effect of the calibration parameter µ on the battery

SOC profile for Manhattan driving cycle is shown in Fig. 5.2. It is evident that µ affects

the convergence of SOC to SOCref throughout the driving cycle. The control law de-

pletes the battery with a smaller value for µ. As µ is increased, the battery SOC profile
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Figure 5.3: Effect of µ on deviation in SOC for different driving cycles

becomes increasingly similar to the DP solution. The optimal value of µ is selected based

on the equivalent fuel consumed (FCeqv) (see (3.18 for definition). The effect of using

different values of µ on FCeqv is summarized in Table 5.3 for the Manhattan driving cycle.

Because the optimality and stability properties of the control law developed in Section

4.3 depend on the optimal value of µ, it is important to study the sensitivity of the results

with respect to µ. In order to generalize the effects of µ, deviation in battery SOC (4.44)

and L1,L2,L∞ (4.45) norm in battery SOC error are calculated for a wide range of µ for

different representative driving cycles. For example, the Manhattan, WVU-suburban and

UDDS truck driving cycles represent the urban driving conditions of heavy-duty vehicles.

The WVU-interstate and HTUF driving cycles represent a combination of urban and high-

way driving cycles. The effect of different values of µ is shown in figures 5.3,5.4,5.5 and
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Figure 5.6: Effect of µ on L∞ norm on error for different driving cycles

5.6. For all the driving cycles, an optimal value of µ assures charge sustainability and con-

sumes the least amount of fuel. As seen from the plot, the optimal control law developed

is relatively insensitive to the variation of µ. This is significant because the optimality and

stability properties for a wrong guess of µ are still close to those for µ∗.

5.1.3 Comparison of Calibration Effort

Table 5.4: Calibration effort for non-realizable energy management strategies

Strategy Calibration effort
DP None

ECMS (with s∗0) Medium
OCL (with µ∗) Medium
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The calibration effort required for the non-realizable energy management strategies pro-

posed and developed in this dissertation is listed in Table 5.4. The DP algorithm which has

been used to find the global optimal solution has no calibration parameters that must be

tuned for different driving cycles. Because the strategy cannot be implemented in a real

vehicle and there are no calibration parameters involved, no calibration effort involved in

its implementation. The ECMS and OCL have their corresponding calibration parameters

s0 and µ that must be calibrated to ensure the strategy produces a charge sustaining so-

lution while minimizing the fuel consumed over any driving cycle. The effect of using

sub-optimal calibration for both the strategies can be seen in Figures 5.1 and 5.2. Though

the variation of battery SOC with different values of s0 is wider than the effect of µ, both

strategies require a similar amount of calibration effort in tuning the parameters. Thus,

for both the strategies the amount of calibration effort involved is characterized as medium

compared to DP and the other realizable strategies described in Section 5.2.

5.1.4 SOC Variation and Equivalent Fuel Consumption

In a charge-sustaining HEV, the primary assumption is that all the energy used to propel

the vehicle is derived from the primary energy source (fuel). The net change in the battery

energy at the end of the driving cycle should ideally be zero. The equivalent fuel consumed

(FCeqv) are used as performance metrics to characterize any energy management strategy.

They are defined as {
∆SOC =

SOC(tf )−SOCref

SOCref
· 100,

FCeqv =
∫ tf
t0
ṁf + ∆ SOCEmax

ηpath QLHV
,

(5.1)

where SOC(tf ) is the battery SOC at the end of the driving cycle and ηpath is the ap-

proximate efficiency of the drivetrain used in regenerating/discharging the battery. The

equivalent fuel consumed is defined as the sum of the amount of fuel consumed along with
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Table 5.5: Performance comparison of strategies

Driving cycle Strategy Normalized FCeqv
[%]

Manhattan
DP 100

ECMS (s∗0 = 3.3) 106.1
OCL (µ∗ = 200kg) 103.5

WVU-Interstate
DP 100

ECMS (s∗0 = 2.82) 102.9
OCL (µ∗ = 200kg) 103.7

WVU-Suburban
DP 100

ECMS (s∗0 = 4.56) 102.8
OCL (µ∗ = 200kg) 104.4

UDDS
DP 100

ECMS (s∗0 = 12.65) 104.5
OCL (µ∗ = 200kg) 104.2

a correction for the net change in battery SOC, assuming that the charging/discharging of

the battery can be associated with an approximate efficiency ηpath. For example, if an en-

ergy management strategy depletes the battery at the end of a driving cycle, evidently the

amount of fuel consumed (by the engine) will be less. The fuel consumed does not account

for the fact that the depleted battery energy must be replenished. Thus, the equivalent fuel

consumed will add an equivalent amount of fuel proportional to the battery energy used as

shown in (5.1). If ∆SOC is positive, this implies that SOC(tf ) > SOCref and the excess

battery SOC can be used later to save fuel. If ∆SOC is negative, it implies that more fuel

is required to recharge the battery SOC to the reference value. The best strategy is clearly

the one with the minimum ∆SOC and minimum FCeqv.

The equivalent fuel consumed FCeqv for several driving cycles are shown in Table 5.5.

Both ECMS and OCL developed in Sections 3.3 and 4.3 are implemented using a forward

vehicle simulator and compared with the benchmark solution from DP (Section 3.2). It
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can be seen that the ECMS and OCL perform very close (within 3%) to each other over

all the driving cycles. Because the DP provides the global optimal solution to the problem,

no energy management strategy can match its performance. The detailed discussion of the

results shown in the Table 5.5 is given in the following subsections.

Performance for Manhattan driving cycle

Both ECMS and OCL are implemented with their respective optimal calibration pa-

rameters and compared with DP in Figures 5.7 - 5.10 and Table 5.5. Even with the optimal

value for the calibration parameters, the battery SOC profile resulting from both ECMS

and OCL are different from the benchmark DP solution (Fig. 5.7). Because DP has entire

a-priori knowledge of the driving cycle, it uses the battery and engine at the most efficient

operating regions. This is also seen from the engine and electric machine operating points

shown in Figures 5.9 and 5.10.

Performance for WVU-Interstate driving cycle

The performance of ECMS and OCL strategies are compared with DP in Figures 5.11

- 5.14. The WVU-Interstate is a highway driving cycle with very few start-stop events.

The DP algorithm is able to use the knowledge that the driving cycle does not contain

any significant braking events, and therefore uses the engine at its most efficient region,

recharging the battery whenever possible. This can be seen in operating points chosen

(Fig. 5.13). Both ECMS and OCL operate the engine over its entire range, resulting in

more fuel consumption (Table 5.5). Moreover, as seen from Fig. 5.12, ECMS and OCL

switches off the engine whenever there is a small braking event, which is also evident from

the engine and electric machine operating points in Figures 5.13 and 5.14. The sudden
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Figure 5.13: Engine operating points (WVU-Interstate)
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Figure 5.14: Electric motor operating points (WVU-Interstate)
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switching of the engine state might be undesirable from the vehicle driveability stand-point

and it can be rectified by including a timer to monitor engine on/off events.

Performance for WVU-Suburban driving cycle

Unlike the interstate driving cycle, the suburban driving cycle consists of many start-

stop events as shown in Fig. 5.15, which facilitates regenerative braking. During the first

600 seconds of the driving cycle, the battery SOC profile resulting from OCL coincides

with the choice made by DP, while ECMS decides to deplete the battery to propel the

vehicle during this phase. After this phase, the choice made by both ECMS and OCL

is very different from DP. This is also seen from the engine operating points shown in

Fig. 5.17. Both ECMS and OCL use the engine at its limits, which is not necessarily the

most efficient region of operation. The electric motor is also operated in several inefficient

regions by OCL as shown in Fig. 5.18. The effect of this is the amount of fuel consumed

by OCL over the WVU-suburban driving cycle (Table 5.5).

Performance for UDDS driving cycle

The performance of ECMS and OCL strategies are compared with the optimal solution

from DP in Figures 5.19 - 5.22 for the UDDS driving cycle. The battery SOC profile

resulting from OCL is very similar to DP while the battery SOC profile resulting from

ECMS is different from DP (Fig. 5.19). The engine and electric motor operating points

are widespread over the entire region of operation of engine and electric machine. This

operation leads to the increase in fuel consumption for ECMS and OCL, compared with

DP. As seen from the plots, the performances of ECMS and OCL are very close to each

other (see also Table 5.5).
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Figure 5.17: Engine operating points (WVU-Suburban)
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Figure 5.18: Electric motor operating points (WVU-Suburban)
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Figure 5.21: Engine operating points (UDDS)
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Figure 5.22: Electric motor operating points (UDDS)
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5.2 Realizable Energy Management Strategies

This section of the chapter describes the calibration effort, battery SOC variation and

the equivalent fuel consumed for the realizable energy management strategies such as

AECMS and real-time OCL.

5.2.1 Comparison of Calibration Effort

The AECMS developed in Section 3.4 has low calibration effort because the initial

value of the equivalence factor s0 is adapted using the feedback from battery SOC. The

adaptation law ensures convergence of battery SOC with SOCref at the end of the driving

cycle. Though the adaptation gain Kp and adaptation period T must be calibrated in order

to guarantee an optimal and charge sustainable solution from AECMS, a single value of

Kp and T can be used for all driving cycles. Thus the calibration effort for AECMS to

be implemented in a real vehicle is reasonable. The real-time OCL is a version of OCL

developed in Section 4.3, that uses a single value for the calibration parameter µ for any

driving cycle. Because the OCL strategy developed is relatively insensitive to the value

of µ, a real-time version of OCL can be developed and implemented in a real vehicle.

Therefore such a strategy has a low calibration effort.

5.2.2 SOC Variation and Equivalent Fuel Consumption

In this chapter, several non-realizable energy management strategies (DP, ECMS, OCL)

have been compared over different types of driving cycles. Although these strategies have

been implemented using a forward vehicle simulator and compared with the global optimal

solution from DP, they cannot guarantee a similar performance when implemented in a

real vehicle. This is because the real vehicle undergoes a multitude of driving conditions
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Table 5.6: Combination of driving cycles

Letter Driving cycle
A Manhattan
B WVU-Interstate
C WVU-Suburban

ABC-CBA-BAC Combination-1
BCA-ACB-CAB Combination-2

which might be a random combination of different driving conditions. Thus, in order to

evaluate the realizable energy management strategies developed in the dissertation over

varied driving conditions, a combination of driving cycles must be used. The driving cycles

can be arranged in many ways and two such combinations of Manhattan, WVU-Interstate,

WVU-Suburban and UDDS driving cycle are selected here. For brevity, the driving cycles

have been denoted using letters (A,B,C,D) as shown in Table 5.6 and two combinations of

the driving cycles (combination-1 and combination-2) are used to evaluate the performance

of the adaptive ECMS and real-time OCL strategies.

Performance for combined driving cycles

The AECMS developed in Section 3.4 is an adaptive version of ECMS, where the initial

value of equivalence factor s0 is adapted using battery SOC feedback. This strategy can

be implemented in a real vehicle because it does not require any a-priori knowledge of

the driving cycle. The simulation results for Manhattan, WVU-interstate, WVU-suburban

and UDDS driving cycles shown in Section 3.4.1 suggest that the strategy produces charge-

sustaining results over several repetitions of driving cycles. The initial guess of equivalence

factor s0 is taken as the average of the optimal values of s0 for the driving cycles. The

adaptation law adapts s0 such that SOC does not deviate from SOCref at the end of T
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seconds. Extensive simulation results with different values for the adaptation period T and

gainKp suggest that the sensitivity of the strategy with respect to these parameters is small.

These values have been chosen as T = 100 s and KP = 5 for all the simulations shown in

the dissertation.

The OCL developed in Section 4.3 and shown in (4.42) has a single calibration param-

eter µ which must be tuned for each driving cycle in order to assure the optimality and

stability properties. Because the strategy is less sensitive to the optimal µ = µ∗ as shown

in figures 5.3 to 5.6, a single value of µ can be used for any combination of driving cy-

cles. This variation of OCL strategy is called the real-time OCL strategy. The single value

of µ used in this part of the section is an average of the optimal values for Manhattan,

WVU-interstate, WVU-suburban and UDDS driving cycle. This property of the optimal

control law facilitate the real-time implementation of the strategy without requiring a-priori

knowledge of the driving cycle. Because the strategy uses a nonlinear state feedback based

control law

P ∗ice =
k2µ2ζ2

4γ2 (kµζ + p3)
, (5.2)

where ζ(t) is the error in battery SOE, k, γ, p3 > 0 are known constants, and µ is the

only calibration parameter of the control law, the strategy aims at reducing the deviation

of battery SOC from its reference during the entire length of the driving cycle. This fea-

ture eliminates the need for an adaptation of the calibration parameter similar to adaptive

ECMS.

The results of the comparison between two real-time implementable strategies (adaptive

ECMS, real-time OCL) over a combined driving cycle is shown in Figures 5.23 - 5.27 and

Table 5.7. The battery SOC profile resulting from AECMS (Fig. 5.23) is spread across

the entire region of operation (0.5− 0.8), while the real-time OCL uses the battery mostly
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Figure 5.26: Engine operating points (Combination-1)
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Figure 5.27: Electric motor operating points (Combination-1)
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Table 5.7: Performance comparison of AECMS and Real-time OCL for combined driving
cycles

Driving cycle Strategy
Normalized
FCeqv
[%]

Combination-1
AECMS (s∗0 = 5.83) 100
Real-time OCL (µ =
200 kg)

99.31

Combination-2
AECMS (s∗0 = 5.83) 100
Real-time OCL (µ =
200 kg)

99.14

below the reference SOC. Whenever the battery SOC deviates from SOCref , the nonlinear

state feedback based control law aims at reducing the error in battery SOC as seen from

Fig. 5.24. The real-time OCL strategy consumed around 2% less fuel than AECMS during

the long driving cycle. The engine and electric motor operating points decided by AECMS

and real-time OCL are shown in Figures 5.26 and 5.27. The AECMS operates the engine

over a band close to the maximum torque curve at all speeds, while real-time OCL operates

the engine over a wider range.

The AECMS and real-time OCL strategies are compared over another combined driving

cycle and the results are shown in Figures 5.28 - 5.32 and Table 5.7. Similar to the first

combination of driving cycles, the real-time OCL strategy performs better than the AECMS

in terms of both the equivalent fuel consumed and battery SOC variation. Even though

the battery SOC profile produced by the real-time OCL strategy is different from that of

AECMS, as seen in Fig. 5.28, the fuel consumed is very similar. The engine and electric

motor operating points shown in Figures 5.31 and 5.32 suggest that AECMS uses the engine

over a band close to the maximum torque while the real-time OCL uses the engine over a
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Figure 5.31: Engine operating points (Combination-2)
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Figure 5.32: Electric motor operating points (Combination-2)
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wider range of operation. The electric motor operation of the two strategies is very similar

except for a few maximum torque points.

5.3 Conclusion

The different energy management strategies proposed in the dissertation have been im-

plemented using a forward vehicle simulator. Several important performance metrics are

defined and the strategies are evaluated using those metrics. Depending on realizability in

a real vehicle, the strategies are classified into two groups, namely, non-realizable and real-

izable strategies. DP, ECMS and OCL are in the category of non-realizable strategy, while

AECMS and real-time OCL are the realizable strategies. The performance metrics of the

non-realizable strategies are compared with the DP solution and it can be seen that ECMS

and OCL perform within 6% of the fuel consumption throughout any driving cycle. The

amount of calibration effort necessary to implement ECMS and OCL are also quantified as

medium because the calibration parameters must be calibrated for each driving cycle. The

realizable strategies based on ECMS (AECMS) and OCL (real-time OCL) have been pro-

posed and implemented using a forward vehicle simulator. The amount of calibration effort

necessary to implement these strategies is low because the strategies are realtively insensi-

tive to the calibration parameters and therefore can be easily implemented in a real vehicle.

The performance metrics of the realizable strategies are evaluated over combined driving

cycles to simulate the real world driving conditions. The most significant contribution of

this chapter is the design and implementation of a real-time version of OCL developed and

based on the stability and optimality framework formulated in Chapter 4. It is shown that

the developed real-time OCL consumes around 1% less fuel than AECMS throughout the

combined driving cycles.
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Chapter 6: Conclusion

In this dissertation, three main areas of energy management in HEVs are discussed:

stability and optimality framework; design of realizable, stable and optimal energy man-

agement strategy; and, comparison of various non-realizable and realizable energy man-

agement strategies. The dissertation aims at designing energy management strategies for a

pre-transmission parallel HEV. The pre-transmission parallel vehicle architecture and the

simulation environment used to implement the strategies are developed in Chapter 2 and

used throughout the dissertation to compare the strategies. The forward and backward ve-

hicle simulator along with the Willans line model for engine fuel consumption rate and the

battery SOC dynamics are proposed in this chapter.

The main contributions of Chapter 3 are the development and implementation of differ-

ent energy management strategies such as DP, ECMS and AECMS for a pre-transmission

parallel HEV. The energy management problem in a charge-sustaining HEV is formulated

and several optimal control techniques are used to solve the problem. Because DP solves

the problem backwards and provides the global optimal solution based on the sufficient

conditions of optimality, it is a a benchmark solution for the rest of the dissertation. The

DP algorithm is given the complete freedom of selecting the vehicle mode of operation and

the torque/power split between engine and electric machine. The mode selection strategy

used by DP is analyzed and simple rules to select the most appropriate mode of operation
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are formulated. Though ECMS has been studied in the literature for a long time, the equiv-

alence between ECMS and PMP is a relatively new result. The dissertation utilizes this

equivalence between ECMS and PMP to design an ECMS based on the necessary condi-

tions of optimality provided by PMP. The equivalence factor is written as a function of the

co-state variable and the strategy has been implemented with a single calibration parameter.

The reduction of the number of calibration parameters is significant because the amount of

calibration effort necessary to implement the strategy in a real-vehicle is considerably de-

creased. The relationship between the equivalence factor and the battery SOC deviation

from the reference at the end of the driving cycle is utilized to develop an adaptive strat-

egy. Both the ECMS and AECMS proposed in this dissertation have been derived from

the literature, while the application of the strategies in a backward vehicle simulator for a

pre-transmission parallel HEV is a contribution to the literature. The implementation of

DP algorithm available in the literature for a pre-transmission parallel HEV is an important

contribution. The extraction of mode selection strategy from DP results for this particular

vehicle architecture and the comparative analysis of the strategies are some of the other

contributions of the chapter. The energy management strategies developed in this chapter

are implemented and compared in Chapter 5 using a forward vehicle simulator.

Chapter 4 consists of several important contributions of the dissertation. The main

contribution of this chapter is a new stability and optimality framework for designing an

analytical energy management strategy. The proposed strategy is designed and developed

for a charge sustaining pre-transmission parallel HEV, but the methodology is scalable to

different vehicle architectures and component sizes. The chapter proves a series of theo-

rems on solving the problem as a nonlinear optimal regulation problem with and without
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disturbance rejection. The theorems are instrumental in developing a closed-form expres-

sion for the nonlinear state feedback based optimal control law. The resulting novel control

law is proved optimal with respect to the fuel consumed over an infinite time horizon and

guarantees local asymptotic stability of the origin. Although the optimality of the control

law and asymptotic stability property of the origin are proved for an infinite time hori-

zon, the results show the performance of the optimal control law when applied to a finite

time driving cycle. The optimality ensures that minimum fuel is consumed and stability

guarantees that battery SOC at the end of the driving cycle converges to SOCref . The op-

timal control law is implemented in a simplified backward simulator and its performance

is compared with the global optimal solution from DP for several representative driving

cycles such as Manhattan, WVU-Interstate, WVU-suburban and UDDS. The control law

developed is a nonlinear state feedback based control law which depends on the vehicle

architecture and parameters of the components (engine, electric machine and battery). The

calibration parameter (µ) must be tuned for each driving cycle using iterative shooting

methods to guarantee optimality and stability. The strategy with the optimal µ∗ for each

driving cycle consumes within 4.5% of the fuel consumed by DP and ensures that the SOC

variation at the end of the driving cycle is less than 0.06%. Although the optimality and

stability properties of the control law depend on the optimal value of the calibration param-

eter, because the strategy is reatively insensitive to the parameter, the closed-form control

law developed is a signifcant contribution to the HEV energy management literature. The

optimal control law shown here can also be easily implemented in a real vehicle because

of its simplicity, and this is emphasized by implementing the strategy in a forward vehicle

simulator.
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In Chapter 5, the different energy management strategies proposed in the dissertation

have been implemented using a forward vehicle simulator. Several important performance

metrics are defined and the strategies are evaluated using those metrics. Depending on

realizability in a real vehicle, the strategies are classified into two groups namely, non-

realizable and realizable strategies. DP, ECMS and OCL are in the category of non-

realizable strategies, while AECMS and real-time OCL are the realizable strategies. The

performance metrics of the non-realizable strategies are compared with DP solution and it

can be seen that ECMS and OCL perform within 6% of the fuel consumption and within

0.1% of ∆SOC at the end of any driving cycle. The amount of calibration effort neces-

sary to implement ECMS and OCL are also quantified as medium because the calibration

parameters must be calibrated for each driving cycle. The realizable strategies based on

ECMS (AECMS) and OCL (real-time OCL) have been proposed and implemented using a

forward vehicle simulator. The amount of calibration effort necessary to implement these

strategies is low because the strategies are realtively insensitive to the calibration parame-

ters and therefore can be easily implemented in a real vehicle. The performance metrics of

the realizable strategies are evaluated over combined driving cycles to simulate real world

driving conditions. The most significant contribution of this chapter is the design and im-

plementation of a real-time version of OCL developed based on the stability and optimality

framework formulated in Chapter 4. It is shown that the developed real-time OCL con-

sumes approximately 2% less fuel than AECMS with about 1.5% battery SOC variation at

the end of combined driving cycles.

Overall, the main contributions of this dissertation to the HEV energy management

literature can be summarized as follows:
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1. Formalization of a stability and optimality framework to analyze and design energy

management strategies for charge-sustaining HEVs;

2. Design and development of a stable and optimal energy management strategy for a

pre-transmission parallel HEV;

3. An analytical closed-form expression for the optimal control law has been developed

and implemented;

4. Based on the framework, both non-realizable and realizable versions of the optimal

control law with very less calibration effort have been proposed and implemented;

5. Implementation of DP, ECMS (based on PMP) and AECMS for pre-transmission

parallel HEV;

6. Performance evaluation and comparison of different energy management strategies

against the global optimal solution from DP.

6.1 Future work

This section of the chapter describes the future work that can be carried out based on

the foundation developed by the dissertation.

6.1.1 Implementation of Real-time OCL

In the dissertation, the OCL is developed using the stability and optimality framework

formulated in Chapter 4. This non-realizable strategy is modified to develop the real-time

OCL which is a realizable strategy. The effectiveness of such a realizable strategy must

be assessed using a hardware-in-the-loop set up. The performance of the strategy in the
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presence of CAN bus communication and on-board memory, processor limitations is cru-

cial for real time implementation. The strategy can then implemented in a real vehicle and

compared against other realizable strategies. Because of the minimal number of calibration

parameters and the ease of implementation, the strategy can give promising results.

6.1.2 Extension of OCL to other architectures

Throughout the dissertation, the energy management strategies have been designed and

implemented for a pre-transmission parallel HEV. In Chapter 4, the OCL is developed

for the vehicle which has a single degree of freedom between the engine and the electric

motor. Because the stabilizing control law (4.42) decides the optimal engine power (P ∗ice),

the optimal battery power (P ∗batt) is calculated from the drivability constraint imposed by

the power requested at the wheels. In other HEV architectures (for example, series-parallel

HEV [50]), there can be multiple degrees of freedom resulting from the stabilizing and

optimizing control law. Thus for other architectures, the series of results proved in Chapter

4 must be re-formulated to account for a control input vector instead of a scalar control

input.

6.1.3 Minimization of Engine Emissions and Battery Aging

The amount of emissions from the engine and the battery aging factor can also be

included in the objective function to be minimized (equation 3.1) in the manner

min
u(t)

Jnew =

tf∫
t0

[α1ṁf (ωice, Tice) + α2ṁCO,HC,NOx(ωice, Tice) + α3ṁeqv,age]dt, (6.1)

where αi, i = 1, 2, 3, is the weighting factor corresponding to the different objectives, Jnew

is the new objective function and ṁeqv,age is the equivalent amount of fuel consumed cor-

responding to the aging of the battery, which can be thought as a function of the severity
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factor of a battery [5]. The severity factor (σ) can be modeled as a function of battery SOC,

temperature and its C-rate (rate of charge/discharge to/from the battery). The dependence

of the severity factor on C-rate is based on the type of vehicle (HEV or PHEV) consid-

ered. For example, in a charge-sustaining HEV, the average battery C-rate is quite high

(around ±15C) because of a smaller range of operation (0.5 to 0.8). In a PHEV, because

the battery range of operation is quite large (0.2 to 0.9), the average battery C-rate is low

(around ±4C). Hence the effect of battery C-rate on aging is minimal for a PHEV, unlike

a HEV. The battery life estimation model using the severity factor [65, 66] is shown for

PHEV applications. Since the severity factor depends on the battery temperature, a thermal

model of the battery must be incorporated into the battery dynamics model shown in Sec-

tion 2.2.1. Throughout the dissertation, the minimization has been performed with respect

to the amount of fuel consumed and in order to include the emissions ([61]) and battery

aging, the new objective function must be defined. The stability and optimality framework

developed in Chapter 4 needs to re-formulated to minimize the new performance index. It

can qualitatively observed from Fig. 5.23 and Fig. 5.28 that for the same amount of fuel

consumed, the real-time OCL uses the battery very close to the SOCref throughout the

driving cycle. This tremendously reduces the stress on the battery life. The effect of the

two strategies on battery aging can be quantitatively studied in detail by using the severity

factor discussed above.

6.1.4 Extension of OCL to Plug-in HEVs

The stability and optimality framework and the OCL strategy developed in Chapter 4

can be applied to plug-in HEVs (PHEVs) with some modifications. In general, a PHEV

essentially differs from a HEV in the fact that it uses a much larger range of battery SOC
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(i.e., nominally from 0.2 to 0.9) because the battery energy can be replenished using the

power grid. The range of battery SOC used is dependent on many factors such as driving

cycle, energy management strategy, battery size, etc. Hence the battery SOC in a plug-in

HEV is generally required to track a predefined profile throughout the driving cycle. The

optimal trajectory to be tracked can either be an optimal SOC profile obtained from DP or

a user-defined SOC profile. Because the energy management problem has been formulated

using nonlinear optimal regulation theory, the objective of maintaining error in battery

SOC/SOE to zero still holds true. Though the framework used to develop OCL must be

re-formulated and the series of results needs to proposed and proved for OCL applied to

PHEVs.
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